

Robotics 1

Wheeled Mobile Robots Introduction and Kinematic Modeling

Prof. Alessandro De Luca

DIPARTIMENTO DI INFORMATICA E SISTEMISTICA ANTONIO RUBERTI

Summary

introduction

- Wheeled Mobile Robot (WMR)
- operating environments
- basic motion problem
- elementary tasks
- block diagram of a mobile robot

kinematic modeling

- configuration space
- wheel types
- nonholonomic constraints (due to wheel rolling)
- kinematic model of WMR

examples of kinematic models

- unicycle
- car-like

Wheeled mobile robots

SuperMARIO & MagellanPro (DIS, Roma)

Hilare 2-Bis (LAAS, Toulouse) with "off-hooked" trailer

Wheeled mobile robots

full mobility

OMNIDIRECTIONAL robots

Omni-2

STONE STONE

Video

SuperMARIO

external 3D

- unstructured
 - natural vs. artificial landmarks

internal 2D

- known
 - availability of a map (possibly acquired by robot sensors in an exploratory phase)
- unknown
 - with static or dynamic obstacles

STORYM VE

Basic motion problem

- high computational complexity of the planning problem
- dynamic environment (including multiple robots)
- restricted mobility of robotic vehicle

Multi-robot environment

5 robots in simultaneous motion

- point-to-point motion
 - in the configuration space
- path following
- trajectory tracking
 - geometric path + timing law
- purely reactive (local) motion

mixed situations of planning and control

Elementary motion tasks (cont'd)

final configuration

path following

trajectory tracking

- examples of reactive motion
 - on-line obstacle avoidance

wall following

target tracking

STOON NAME OF THE PARTY OF THE

Block diagram of a mobile robot

actuators (A) DC motors with reduction task output (even identity, i.e., q) effectors (E) on-board manipulator, gripper, ... sensors

- proprioceptive: encoders, gyroscope, ...
- exteroceptive: bumpers, rangefinders (IR = infrared, US = ultrasound),
 structured light (laser+CCD), vision (mono, stereo, color, ...)

control

- high- / low-level
- feedforward (from planning) / feedback

Block diagram of a mobile robot (cont'd)

low-level control: analog velocity PI(D) loop with high gain (or digital, at high frequency)

high-level control: purely kinematics-based, with velocity commands

Configuration space

for wheeled mobile robots

- rigid body (one, or many interconnected)
- pose of one body is given by a set of INDEPENDENT variables
 - # total of descriptive variables (including all bodies)
 - # total of HOLONOMIC (positional) constraints
 - # generalized coordinates
- wheels (of different types) in contact with the ground
 - (possibly) additional INTERNAL variables

configuration space C

- ullet parameterized through q
- \bullet dim C = n

$$q = \left[\begin{array}{c} x \\ y \\ \vartheta \end{array} \right]$$

$$\dim \mathbf{C} = 3$$

$$q = \begin{bmatrix} x \\ y \\ \vartheta \\ \phi \end{bmatrix}$$

dim
$$C = 4$$

$$q = \begin{bmatrix} x \\ y \\ \theta \\ \phi \\ \delta \end{bmatrix}$$

$$\dim C = 5$$

Additional configuration variables

in all previous cases, one can add in the parameterization of ${\bf C}$ also the rolling angle ψ of each wheel

STONE STONE

Types of wheels

- conventional
 - fixed
 - centered steering

omni-directional (Mecanum/Swedish wheels)

Differential constraints

pure rolling constraints

each wheel rolls on the ground without slipping (longitudinally) nor

skidding (sideways)

continuous contact

used in dead-reckoning (odometry)

geometric consequence

there is always an Instantaneous Center of Rotation (=ICR) where all wheel axes intercept: one ICR for each chassis (= rigid body) constituting the WMR

Instantaneous Center of Rotation

ICR: a graphical construction

computing in sequence (with some trigonometry):

Nonholonomy

from constraints ...

• for each wheel, condition $v_n = 0$ can be written in terms of generalized coordinates and their derivatives

$$a(q)\dot{q} = 0$$

for N wheels, in matrix form

$$A(q)\dot{q} = 0$$

N differential constraints (in Pfaffian form = linear in velocity)

partially or completely

not integrable \P NONHOLONOMY $q \in \mathcal{C}$ but $\dot{q} \in \ker(A)$

21

Nonholonomy (cont'd)

... to feasible motion

$$A(q)\dot{q} = 0$$
 nonintegrable (nonholonomic)

ALL feasible motion directions can be generated as

$$\dot{q} \in \ker A(q) \rightarrow \dot{q} = G(q)v$$

being

$$\operatorname{Im} G(q) = \ker A(q) \quad \forall q \in \mathcal{C}$$

" the image of the columns of matrix *G* coincides with the kernel of matrix *A*"

Nonholonomy (cont'd)

a comparison ...

same number of commands

and generalized velocities

the space of feasible velocities has dimension **3** and **coincides** with the tangent space to the robot configuration space

STORYM VE

Nonholonomy (cont'd)

less number of commands than generalized velocities!

the space of feasible velocities has here dimension **2** (a **subspace** of the tangent space)

Kinematic model of WMR

- provides all feasible directions of instantaneous motion
- describes the relation between the velocity input commands and the derivatives of generalized coordinates (a differential model!)

$$\dot{q} = G(q)v$$

- needed for
 - studying the accessibility of \mathcal{C} (i.e., the system "controllability")
 - planning of feasible paths/trajectories
 - design of motion control algorithms
 - incremental WMR localization (odometry)
 - simulation ...

Unicycle (ideal)

• the choice of a base G(q) in the kernel of A(q) can be made according to physical considerations on the real system

Unicycle (real)

a) three centered steering wheels [Nomad 200]

synchro-drive (2 motors)

$$\dot{q} = \begin{bmatrix} \cos \theta & 0 \\ \sin \theta & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \end{bmatrix}$$

1 = linear speed2 = angular speedof the robot

$$\dot{\psi}_i = v_1/r \quad i \in \{A, B, C\}$$
$$\dot{\beta}_i = v_2$$

Unicycle (real)

b) two fixed wheels + castor [SuperMARIO, MagellanPro]

note: *d* is here the half-axis length (in textbook, it is the *entire* distance between the two fixed wheels!!)

Equivalence of the two models

a) ⇔ b) by means of a transformation

(invertible and constant) between inputs

$$\begin{cases} v_1 = \frac{v_R + v_L}{2} \\ v_2 = \frac{v_R - v_L}{2d} \end{cases} \Leftrightarrow \begin{cases} v_R = v_1 + dv_2 \\ v_L = v_1 - dv_2 \end{cases}$$

...however, pay attention to how possible (equal) bounds on maximum speed of the two wheels are transformed!

Car-like

$$\begin{cases} \dot{y}\cos\theta - \dot{x}\sin\theta = 0\\ \dot{y}_f\cos(\theta + \phi) - \dot{x}_f\sin(\theta + \phi) = 0\\ x_f = x + \ell\cos\theta \quad y_f = y + \ell\sin\theta \end{cases}$$

$$A(q)\dot{q} = \begin{bmatrix} -\sin\theta & \cos\theta & 0 & 0 \\ -\sin(\theta + \phi) & \cos(\theta + \phi) & \ell\cos\phi & 0 \end{bmatrix} \begin{bmatrix} \dot{x} \\ \dot{y} \\ \dot{\theta} \\ \dot{\phi} \end{bmatrix}$$

Car-like (continued)

FD = Front wheel Drive

$$\dot{q} = \begin{bmatrix} \dot{x} \\ \dot{y} \\ \dot{\theta} \\ \dot{\phi} \end{bmatrix} = \begin{bmatrix} \cos\theta\cos\phi & 0 \\ \sin\theta\cos\phi & 0 \\ (1/\ell)\sin\phi & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} v_{1f} \\ v_{2} \end{bmatrix} \quad \text{linear and angular speed of front wheel}$$

 ≃ kinematic model of unicycle with trailer (e.g., Hilare 2-bis)

Car-like (continued)

RD = Rear wheel Drive

$$\dot{q} = \begin{bmatrix} \dot{x} \\ \dot{y} \\ \dot{\theta} \\ \dot{\phi} \end{bmatrix} = \begin{bmatrix} \cos\theta & 0 \\ \sin\theta & 0 \\ (1/\ell)\tan\phi & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} v_{1r} \\ v_{2} \end{bmatrix} \longleftarrow \text{ linear speed of rear wheel (medium point of rear-axis)}$$

singularity at
$$\phi = \pm \frac{\pi}{2}$$

(the model is no longer valid)

a) f = fixed or centered s = steerable

General constraint form by wheel type

b) o = steerable with off-set (off-centered)

Possible kinematic "classes"

5 possible classes for the WMR kinematic model (single chassis)

$$N = N_f + N_s + N_o =$$
 number of wheels

class

description

example (N = 3)

Ι

$$N_f = N_s = 0$$

is an omnidirectional WMR!

II

$$N_s = 0$$
 $N_f \geq 1$ on same axis

Example of class I WMR

(omnidirectional)

with three conventional off-centered wheels, independently actuated

$$N_f = 0$$
 $N_s > 1$ synchronized if > 1

$$N_S = 1$$
 $N_O = 2$

$$N_f \geq 1$$
 on same axis

$$N_s \geq 1$$
 at least one out of the common axis of the two fixed wheels

$$N_f = 0$$

 $N_s > 2$ synchronized if > 2

- WMRs in same class are characterized by same "maneuverability"
- previous models of WMRs fit indeed in this classification: SuperMARIO (class II), Nomad 200 (class III), car-like (class IV)