Robotics 1

Robotics 1

Trajectory planning

Prof. Alessandro De Luca

DIPARTIMENTO DI INGEGNERIA INFORMATICA
AUTOMATICA E GESTIONALE ANTONIO RUBERTI

=3 SAPIENZA

UNIVERSITA DI ROMA

Trajectory planner interfaces

functional robot units

external sensors I‘

trajectory planner*

l

task planner*

control*

* = programming “points”

internal sensors

robot action described
as a sequence of poses
or configurations
(with possible exchange
of contact forces)

reference profile/values
=) (continuous or discrete)
for the robot controller

TRAJECTORY
= | PLANNER

Robotics 1 2

Trajectory definition
a standard procedure for industrial robots

1. define Cartesian pose points (position+orientation) using the teach-box

2. program an (average) velocity between these points, as a 0-100% of a
maximum system value (different for Cartesian- and joint-space motion)

3. linear interpolation in the joint space between points sampled from the
built trajectory

examples of additional features

a) over-fly Ag—3B b) sensor-driven STOP c) circular path
. through 3 points
—C

D
main drawbacks

®m semi-manual programming (as in “first generation” robot languages)
m |imited visualization of motion

m) o mathematical formalization of trajectories is useful/needed

Robotics 1 3

From task to trajectory

TRAJECTORY

|l
GEOMETRIC PATH

+

TIMING LAW

PATH

{of motion py(t)

of interaction F4(t)

describes the time evolution of s=s(t) .

\.

parameterized by s: p=p(s)

B

(e.g., s is the arc length) > p(s(t))

B

p(s) =

p(S)|
p,(S)

| P,(S)

t TIME

7

,6/ PARAMETER S,

example: TASK planner provides A, B
TRAJECTORY planner generates p(t)

Robotics 1

Trajectory planning
operative sequence

@ —_" TASK planning

= Ssequence of pose points (“knots”) in Cartesian space -1
—" interpolation in Cartesian space

re- Cartesian geometric path (position + orientation): p = p(s)
Q05 @ —_" path sampling and kinematic inversion
r—z,‘g = sequence of “knots” in jc_)int space —
© — interpolation in joint space

= . geometric path in joint space: q = q(\)

additional issues to be considered in the planning process

= obstacle avoidance
= on-line/off-line computational load
= sequence @) is more “dense” than @

Robotics 1 5

Example

‘——

B
A ~ I \\

N\
/ p(s) \
/ \
l |
% /
S/ 3
N Se - 7 /Q3(7\)
i T T e
A B C .
Cartesian space joint space

Robotics 1 6

Cartesian vs. joint trajectory planning

= planning in Cartesian space
= allows a more direct visualization of the generated path
= Obstacle avoidance, lack of “wandering”
= planning in joint space
= does not need on-line kinematic inversion
= issues in kinematic inversion
= g e q (or higher-order derivatives) may also be needed

= Cartesian task specifications involve the geometric path,
but also bounds on the associated timing law

« for redundant robots, choice among «"™ inverse solutions,
based on optimality criteria or additional auxiliary tasks

« Off-line planning in advance is not always feasible

= €.g., when interaction with the environment occurs or
sensor-based motion is needed

Robotics 1 7

Path and timing law

= after choosing a path, the trajectory definition is completed by
the choice of a timing law
p=p(s) =s=5st) (Cartesian space)
g=q(n) = A=:A}) (joint space)
« if s(t) = t, path parameterization is the natural one given by time
= the timing law

= iS chosen based on task specifications (stop in a point, move at
constant velocity, and so on)

= may consider optimality criteria (min transfer time, min energy,...)

= constraints are imposed by actuator capabilities (max torque, max
velocity,...) and/or by the task (e.g., max acceleration on payload)

note: on parameterized paths, a space-time decomposition takes place

CII:)s + LR

e.g., in Cartesian p(t) = dp. p(t) = e T

—S
space ds

Robotics 1

Trajectory classification

= space of definition
= Cartesian, joint
= task type
= point-to-point (PTP), multiple points (knots), continuous,
concatenated
= path geometry
= rectilinear, polynomial, exponential, cycloid, ...
= timing law
= bang-bang in acceleration, trapezoidal in velocity, polynomial, ...
= coordinated or independent

= motion of all joints (or of all Cartesian components) start and
ends at the same instants (say, t=0 and t=T) = single timing law

or

= Mmotions are timed independently (according to the requested
displacement and robot capabilities) — mostly only in joint space

Robotics 1 9

Relevant characteristics

= computational efficiency and memory space
= e.g., store only the coefficients of a polynomial function

= predictability (vs. “wandering” out of the knots) and
accuracy (vs. “overshoot” on final position)

= flexibility (allowing concatenation, over-fly, ...)
= continuity (in space and in time)

(at least C!, but also up to jerk = da

dt

Robotics 1 10

Trajectory planning in joint space

= g=4(t)orqg=q(r), » =2\t
= it is sufficient to work component-wise (q; in vector q)

= an implicit definition of the trajectory, by solving a problem with
specified boundary conditions in a given class of functions

= typical classes: polynomials (cubic, quintic,...), (co)sinusoids,
clothoids, ...

= imposed conditions
= passage through points = interpolation
» initial, final, intermediate velocity (or geometric tangent for paths)
= initial, final acceleration (or geometric curvature)
= continuity up to the k-th order time (or space) derivative: class Ck

many of the following methods and remarks can be
directly applied also to Cartesian trajectory planning (and vice versa)!

Robotics 1 11

Cubic polynomial

C|(0) = (in C|(T) = Cin Cl(O) = Vin C|(T) = Vi | +— 4 conditions

AQ = gp - G
t) = Q;, + Aq[at® + b’ + ct +d nHin
a(t) = g, q{» - J] = T« [0, 1]
4 coefficients —> “doubly normalized” polynomial qy(t)
gv0) =0 <« d=0 g(l)=1< a+b+c=1
dn'(0) = dqy/dr|.o = € = v;,T/Aq qy'(1) = day/de|._,=3a + 2b + C
= VfinT/Aq

special case: v, = Vg, = 0 (rest-to-rest)
gv0) =0 <« c=0

qpl)=1 =« a+b=1 } 5
—

a -
qy(1)=0 <= 3a+2b=0 b =3

Robotics 1 12

Quintic polynomial

gt) =av +bt*+cP+dei+er+f 6 coefficients
t=t/T,t € [0, 1]

allows to satisfy 6 conditions, for example (in normalized time)

q(0) = qo ||a(1) = q;| |a'(0) = voT|[d’(1) = v;T| |q"(0) = a,T?|(q"(1) = a,T?

q(t) = (1 - ©)’[qy + (3qp+VvyT) T + (8, T?+6v,T+12q,) t%/2]

special case: vp =v; =a,=a; =0

q(t) =g, + Aq[67° - 157t* + 1013] AQ = q; - qq

Robotics 1 13

4-3-4 polynomials

three phases (Lift off, Travel, Set down) in pick-and-place operations

Q¢ .

42 q,(t) = 4th order polynomial
g+(t) = 3rd order polynomial
gs(t) = 4th order polynomial

d; “ .

Jo 14 .

coefficients
t, t, t, t
initial depart approach final

boundary conditions
alt) =6 a(t) =at) =0, alt) =at) =, a(t) = |- 6 passages

. . - - 4 Talin] | f |
a(to) = a(t) = 0 q(to) = a(t) = 0 } veIocity/acI:rc]:gIIgr/a’éirz)an
q(t’) = a(t*) qit) =qty) i=1,2 } 4 continuity

Robotics 1 14

Higher-order polynomials

= a suitable solution class for satisfying symmetric boundary
conditions (in a PTP motion) that impose zero values on
higher-order derivatives
= the interpolating polynomial is always of odd degree
= the coefficients of such (doubly normalized) polynomial are always
integers, alternate in sign, sum up to unity, and are zero for all
terms up to the power = (degree-1)/2
= in all other cases (e.g., for interpolating a large number N of
points), their use is not recommended
= N-th order polynomials have N-1 maximum and minimum points
= oscillations arise out of the interpolation points (wandering)

Robotics 1 15

Numerical examples

interpolating polynomial of degree 9

interpolating polynomial of degree 29

oth | \ 29th
degree | | degree
| 4 derivatives .| J
are zero | 0
el | overshoot
Y 14 derivatives nor
| are zero! | _ .
— | wandering
2.5 N o = 4.5
| normalized
velocity velocity
| | peaking
' at midpoint
Robotics 1 16

Interpolation using splines

= problem
interpolate N knots, with continuity up to the second derivative
= Solution

spline: N-1 cubic polynomials, concatenated so as to pass through N
knots and being continuous in velocity and acceleration in the N-2
internal knots

= 4(N-1) coefficients
= 4(N-1)-2 conditions, or
= 2(N-1) of passage (for each cubic, in the two knots at its ends)
= N-2 of continuity for velocity (at the internal knots)
= N-2 of continuity for acceleration (at the internal knots)
= 2 free parameters are still left over
= Can be used, e.g., to assign initial and final velocities, v, and v,

s presented next in terms of time t, but similar in terms of space A

Robotics 1 17

Building a cubic spline

q=6() = {80, tE b &+ NI} g,

9t \ Qi+1 /‘\/,V/N'

Vi] \q.k/ On
Ch/v\c'b/'

tl t2 tk l;k+ 1 tN-1 tN
. Y

time intervals h,

O(t) =ag+ayt+a,?+ast €0 h],t=t-t (k=1,..,N-1)

continuity conditions . 0(hy) = B41(0)
for velocity and acceleration ‘s ‘.
v Ok(hy) = B8y,1(0)

Robotics 1 18

An efficient algorithm

1. if all velocities v, at internal knots were known, then each cubic in the spline
would be uniquely determined by

E_)K(O) =0k = dko he he || @ | | Gker - Gk - Vichk @
GK(O) = VK = aKl 2h 3h 2 a K3 VK+1 = VK
2. impose the contlnmty for accelerations (N-2 conditions)

K(h) =23, +6ash= e|<+1(O) = 2 8,1,
3. expressing the coefficients ay,, ay3, a1, in terms of the still unknown knot
velocities (see step 1.) yields a linear system of equations that is always (easily)

solvable . ~N [v, ~ ~ ~
A(h) Vs | = | b(h,q,vy,vy)
_ N) L Y,

t t 1

tri-diagonal matrix unknown known vector
always invertible -\, 1, pe substituted then back in @)
Robotics 1 19

Robotics 1

/

2(hy+h,)

hs

Structure of A(h)

hy

2(h,+h;) h,

hyo 2(hysthys)

M3

hye 2(hyothyg)

diagonally dominant matrix (for h, > 0)

[the same matrix for all joints]

_/

20

Robotics 1

Structure of b(h,q,vy,vy)

4 ; ~
h.h [hi%(as5 - ;) + hy(q, - q1)] - hyvy
112
3
P [1,%(d4 - G3) + h3%(q; - 6,)]
2N3
3
he -h [Pn-3%(Ane1 - On-2) + (Ao - Ons)]
N-3'IN-2
3
hy.»2 - Qney) + Dyl 2(Qnes = - hyoV
\hN-th-1[n-2"(An = On-1) N-17(0n-1 = On-2)] N-2VN

21

Properties of splines

= the spline is the solution with minimum curvature among all
interpolating functions having continuous second derivative

= a spline is uniquely determined from the set of data q;,...,Qy,
PN o NP VARV

= the total transfer time is T = 2h, = t - t,

= the time intervals h, can be chosen so as to minimize T (linear
objective function) under (nonlinear) bounds on velocity and
acceleration in [0, T]
= for cyclic tasks (q,=q,), it is preferable to simply impose continuity of
velocity and acceleration at t,=t as the “squaring” conditions
= in fact, even choosing v,;=v, doesn’t guarantee acceleration continuity
= in this way, the first=last knot will be handled as all other internal knots

= when initial and final accelerations are also assigned, the spline
construction can be suitably modified

Robotics 1 22

A modification
handling assigned initial and final accelerations

= two more parameters are needed in order to impose also the
initial acceleration o, and final acceleration o,

= two “fictitious knots” are inserted in the first and last original
intervals, increasing the number of cubic polynomials from N-1
to N+1

= in these two knots only continuity conditions on position,
velocity and acceleration are imposed

= two free parameters are left over (one in the first cubic and
the other in the last cubic), which are used to satisfy the
boundary conditions on acceleration

= depending on the (time) placement of the two additional knots,
the resulting spline changes

Robotics 1 23

A numerical example

= N = 4 knots (3 cubic polynomials)
= jointvaluesq;=0,q9,=2%,0;=n/2,q,= =
= att,=0,t,=2,t;=3,t,=5(thus,h,=2,h,=1, h;=2)
= boundary velocities v; = v, =0
= 2 added knots to impose accelerations at both ends (5 cubic polynomials)
= boundary accelerations a; = a, =0
= two placements: att,"=0.5and t,’= 4.5 (x), ort;"=1.5and t,” = 3.5 (%)

pos vel acc
30 L

|rad]
-
|
[rad/s)
[w=]
|}
[
[rad/s"2]
i

Robotics 1 24

