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Inversion of differential kinematics

= find the joint velocity vector that realizes a desired end-
effector “generalized” velocity (linear and angular)

J square and

generalized velocity :
non-singular

v =1Q)q q=J'q)v

= problems

= near a singularity of the Jacobian matrix (high q)
» for redundant robots (no standard “inverse” of a rectangular matrix)

in these cases, "more robust” inversion methods are needed
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Incremental solution
to inverse kinematics problems

= joint velocity inversion can be used also to solve on-line and
incrementally a “sequence” of inverse kinematics problems

= each problem differs by a small amount dr from previous one

of
r =fr(q) dr =;—;q)dq =Jr(Q)dC|
direct kinematics differential kinematics

r+dr=f(q = q=f"'(r+dr

” first, increment the then, solve the inverse
r—r+ dr desired task variables kinematics problem

dg=J]"'(@dr = qg-— g+dg

first, solve the inverse then, increment the
differential kinematics problem original joint variables
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Behavior near a singularity
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Simulation results

planar 2R robot in straight line Cartesian motion

G =J%a)v

regular case

a line from right to left, at «=170° angle with x-axis,
executed at constant speed v=0.6 m/s for T=6 s
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Simulation results

planar 2R robot in straight line Cartesian motion

evolution of joint angles evolution of joint velocities
T T T

path at
a=170°
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qdot (deg/s)

minimum singular value of the Jacobian
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Simulation results

planar 2R robot in straight line Cartesian motion

G =J%a)v

close to singular case

actual Cartesian path
2 T T T T

y (m)

a line from right to left, at «=178° angle with x-axis,
executed at constant speed v=0.6 m/s for T=6 s
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Simulation results

planar 2R robot in straight line Cartesian motion

evolution of joint angles
T
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minimum singular value of the Jacobian
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evolution of joint velocities
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Simulation results

planar 2R robot in straight line Cartesian motion

g=J%q)v close to singular case
with joint velocity saturation at V;=300°/s

actual Cartesian path
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a line from right to left, at «=178° angle with x-axis,
executed at constant speed v=0.6 m/s for T=6 s
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Simulation results

planar 2R robot in straight line Cartesian motion

evolution of joint angles
T
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evolution of joint velocities
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Damped Least Squares method

. A 1 :
min H =~ ldl* + S [l7g - |, A>0 3,

4 /
g= \n+JE D)ol =0 O + JJ) " 1y

equivalent expressions, but this one is more convenient in redundant robots!

= inversion of differential kinematics as an optimization problem

= function H = weighted sum of two objectives (minimum error norm on
achieved end-effector velocity and minimum norm of joint velocity)

= A = 0 when “far enough” from a singularity

= Wwith A > 0, there is a (vector) errore (= v-Jg) in executlng the
desired end-effector velocity v (check that & =2 (M +JJ ) 1), but the
joint velocities are always reduced (“damped”)

= Jy scan be used for both m = nand m < n cases
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Simulation results

planar 2R robot in straight line Cartesian motion

a comparison of inverse and damped inverse Jacobian methods
even closer to singular case

q=J%q)v q=Jps(q) Vv

actual Cartesian path actual Cartesian path
2 T T T T T 2 T T T T T

y (m)

| en  start
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error ...
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a line from right to left, at «=179.5° angle with x-axis,

executed at constant speed v=0.6 m/s for T=6 s
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Simulation results

planar 2R robot in straight line Cartesian motion

: i th at :
q=Jq)v OLiaﬂng]so q = Jps(q) v

here, a very fast a completely different inverse solution,
reconfiguration of around/after crossing the region
first joint ... close to the folded singularity
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Simulation results

planar 2R robot in straight line Cartesian motion
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Simulation results

planar 2R robot in straight line Cartesian motion
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norm of Cartesian position error
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|damping factor
) is chosen

| non-zero

| only close to
singularity!
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Use of the pseudo-inverse

a constrained optimization (minimum norm) problem

il
Mmin H = —
q 2

1|2 suchthat Jg—v =0

solution | g = .J jj'U

pseudo-inverse of ]

« if v € R(.J), the constraint is satisfied ( v is feasible)
. else .J§ = v where @P minimizes the error ||.J¢ — v||

orthogonal projection of v on R.(.J)

Robotics 1

16



Properties of the pseudo-inverse

it is the unique matrix that satisfies the four relationships

« JJAT =T Jhygt = gt
(D =gt (JIHT = gt
« ifrankp=m=n:  Jf =71

sifp=m<n Jf= FegJH=t

it always exists and is computed in general numerically
using the SVD = Singular Value Decomposition of J

(e.g., with the MATLAB function pinv)

17
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Numerical example

Jacobian of 2Rarm with |y =, =1and g, = 0 (rank p = 1)

_ | =251 —s1
J o 201 C1
q = Jhy

is the minimum norm
joint velocity vector that
realizes v

i —281 201 -
—S1 1
N (T
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General solution for m<n

all solutions (an infinite number) of the inverse differential kinematics problem
can be written as

(]:J#U‘l‘(I—J#J)f any joint

velocity...

“projection” matrix in the kernel of J

this is also the solution to a slightly modified constrained optimization problem
(biased toward the joint velocity &, chosen to avoid obstacles, joint limits, etc.)

: L. : .
min H = 5||q—€||2 suchthat Jg —v =
verification of which actual task velocity is going to be obtained
Vo =G = J(J#v +(I - J#J)g) =JI'V+ (U= DNE=JT" (Iw) =T NHw =Jw =v

if vER()=v =Jw, forsome w
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Higher-order differential inversion

inversion of motion from task to joint space can be performed
also at a higher differential level

acceleration-level: given g, g

d=13"@(F-J,@a)

jerk-level: given g, g, g

G=3"@ (f -3.(@4-23.(@q)
the (inverse) of the Jacobian is always the leading term
smoother joint motions are expected (at least, due to the
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environment
T

Tn
O - F
- A ” u —
\
T3 I:e
1:1 T; n . ” 1
' generalized” vectors: may contain
linear and/or angular components
convention: generalized forces are
% ;

positive when applied on the robot

t = forces/torques exerted by the motors at the robot joints

F = equivalent forces/torques exerted at the robot end-effector

= F, = forces/torques exerted by the environment at the end-effector

= principle of action and reaction: | Fo=-F |

reaction from environment is equal and opposite to the robot action on it
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Transformation of forces — Statics

environment

7,

in a given configuration

[\
=

= what is the transformation between F at robot end-effector and t at joints?

in static equilibrium conditions (i.e., no motion):

= what F will be exerted on environment by a t applied at the robot joints?
= what t at the joints will balance a F, (= -F) exerted by the environment?

all equivalent formulations

Robotics 1
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Virtual displacements and works
dq,

N S =Bt
dq2 dq3 —=~y-"
N T

infinitesimal (or “virtual”, i.e., satisfying all possible
constraints imposed on the system) displacements
at an equilibrium

‘ = without kinetic energy variation (zero acceleration)
= without dissipative effects (zero velocity)

the “virtual work” is the work done by all forces/torques
acting on the system for a given virtual displacement
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13dq;

d
tdg : FT[ EJ = - FTJdg

7, the sum of the "virtual works" done by all principle of
forces/torques acting on the system = 0  virtual work

jgt} = 7ldg — F1Jdg = 0
m | =7 ()F

Robotics 1 By
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Duality between velocity and force

1@

~ velocity ¢ generalized velocity v
(or displacement dq) (or e-e displacement l b })
in the joint space in the Cartesian space |
forces/torques T generalized forces F’
at the joints at the Cartesian e-e

W

the singular configurations
for the velocity map are the same () = p(J7)
as those for the force map
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Dual subspaces of velocity and force

summary of definitions

R(J)={veR" :3¢e IR",Jqg=v}
NI ={veR":4¢e R", JGg= v}
—{FeR":J'F=0}
R(J) +N(JIH = R™

R ={reR":3F e R™,J'F =1}
N()={reR":2F e R",J'F = 1}
={qeR":Jqg=0}
RJD) + N(J) = R?
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Velocity and force singularities

list of possible cases

o = rank(J) = rank(J™) < min(m,n)

— —~

1. p<m
Hgi= 0 Jg=0
JF#0: JIF=0

2. p=m
Hg= 0 Jg=0

NI = {0}

Robotics 1

1. det]J =0
Hgi= 0 Jg=0
JF#£0: JIF=0
2. det] =0
N(J) = {0}
NI = {0}

1. p<n
Hgi= 0 Jg=0
JF#0: JIF=0

2. p=n
JF#0: J'F=0
MNED) = [0}
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Example of singularity analysis

planar 2R arm with generic

_| -lisi7hsyy -1sg, _
link lengths 1, and J(a) { det J(q) = I;I,5,

lici+lcyr  15Cy,

singularity at g,= 0 (arm straight) ﬂ J= {E:i:zgil I I(Z:SIJ XN
177271 2*~1
RA) = o{iﬂ NIDE o{gﬂ "
® R()

swan = | 2| xoy=pl ®
- l, - -(h+L) | B

singularity at g,= x (arm folded) =) ] { ()81 1os, J
$R(J) and X(JT) as above

MRAT) = [{IZEIJ (for ly=1,, l{ﬂ) R(J) = ﬁ{-(lzl-zll)J (for I,=1,, [{H)
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Velocity manipulability

= in a given configuration, we wish to evaluate how “effective”
Is the mechanical transformation between joint velocities and
end-effector velocities

= "how easily” can the end-effector be moved in the various directions
of the task space
= equivalently, “how far” is the robot from a singular condition

= we consider all end-effector velocities that can be obtained
by choosing joint velocity vectors of unit norm

R s G e

task velocity
manipulability ellipsoid (JJT)'1 if p=m

note: the “core” matrix of the ellipsoid
equation v Alv=1 is the matrix Al 29
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Manipulability ellipsoid

in velocity

planar 2R arm with unitary links

'

scale of
1 €llipsoid

length of principal (semi-)axes:
singular values of ] (in its SVD)

o T} = Y NfIIT) > 0

in a singularity, the ellipsoid
loses a dimension
(for m=2, it becomes a segment)

direction of principal axes:
(orthogonal) eigenvectors
associated to A,

manipulability measure

0 1 2

Robotics 1

w=~detJJ" =Tlo; =0

i=l1

proportional to the volume of the
ellipsoid (for m=2, to its area)
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Idet JI

Manipulability measure

planar 2R arm with unitary links: Jacobian J is square s +det(ss") =detJ- detJ" =|detJ] =£Ilol-

manipulability (L1 = L2 =1) manipulability as a function of radial distance (L1 = L2 =1) singular values of J as a function of radial distance (L1 = L2 =1)
1 T T T T T 15
091 . ol
081
0.7} —
1+ / i 3 15F
«©
N £
061 . )
B £ 0:(J3)
rl (7]
0.5 a 3 3"
= c 1
04} ] EE
0.5 il k=)
03} iy ® 0'2(.])
ool max at 0,=m/2 | max at r=v2 osf
0.1 8
0 0.5 1 15 2 25 3 e 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 r 0 0.2 0.4 0.6 0.8 1 1.2 14 1.6 1.8 2 r
theta,, [rad] 2 distance along x-axis [m] distance along x-axis [m]
2
151

] /\ | o best posture for manipulation
| | (similar to a human arm!)

full isotropy is never obtained
in this case, since it always o,#0,
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Force manipulability

= in a given configuration, evaluate how “effective” is the
transformation between joint torques and end-effector forces

“how easily” can the end-effector apply generalized forces (or balance
applied ones) in the various directions of the task space

= in singular configurations, there are directions in the task space where
external forces/torques are balanced by the robot without the need of

any joint torque
= we consider all end-effector forces that can be applied (or
balanced) by choosing joint torque vectors of unit norm

lr=1 m FlyjlFr=1

same directions of the principal
axes of the velocity ellipsoid, but task force

with semi-axes of inverse lengths manipulability ellipsoid
Robotics 1
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note:
velocity and force
ellipsoids have here
a different scale
for a better view

1.5¢

1F

0.5¢

y [m]
=

2+

Velocity and force manipulability

dual comparison of actuation vs. control

planar 2R arm with unitary links

velocity manipulability ellipsoid

area s ~|det(JJ") = 0,(J) 0,(J)

-2 -15 -1 -05 0 05 1 15
x [m]

2

y [m]

N
T

force manipulability ellipsoid

: ! 1 1
area oc w}det(]J ) = OI(J). m

-2 -15 -1 -05 0 0.5 1 15 2
X [m]

Cartesian actuation task (high joint-to-task transformation ratio):
preferred velocity (or force) directions are those where the ellipsoid stretches

Cartesian control task (low transformation ratio = high resolution):
preferred velocity (or force) directions are those where the ellipsoid shrinks

Robotics 1

33



Velocity and force transformations

= the same reasoning made for relating end-effector to joint forces/
torques (static equilibrium + principle of virtual work) is used also
for relating forces and torques applied at different places of a rigid
body and/or expressed in different reference frames

relation among generalized velocities
A A 57:B.
Rp —“RpS("rpa)
0 ARp

:

/L, B

B
fa | — ka 0
mA S(Frpu) Ry PRp

relation among generalized forces

fa
m A

Robotics 1 34



Example 1: 6D force/torque sensor

frame of measure for the forces/torques
(attached to the wrist sensor)

RF,
‘\JBA
f

mx_Rfs

frame of interest for evaluating
forces/torques in a task
with environment contact
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Example 2: Gear reduction at joints

transmission element
with motion reduction ratio N:1

one of the simplest applications em = NGO

of the principle of virtual work!
u=Nu,
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