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Differential kinematics

= relations between motion (velocity) in joint space

and motion (linear/angular velocity) in task space
(e.g., Cartesian space)”

= instantaneous velocity mappings can be obtained
through time derivation of the direct kinematics or
iNn @ geometric way, directly at the differential level
» different treatments arise for rotational quantities
= establish the link between angular velocity and
= time derivative of a rotation matrix

= time derivative of the angles in a minimal
representation of orientation
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Angular velocity of a rigid body

“rigidity” constraint on distances among points:
Irs|l = constant

mE) v - Vp; orthogonal to r

- Vp1

Vp1
1 Vp2 = Vp1 = 01 X Iy
2 Vp3 = Vp1 = 1 X T3
Vp3
3 Vp3 = Vpp = 0y X I3

VP,P,P; 2-1=3 ®p o =w,=0

= Vo + o X ;= Ve + S(w) r; () |"i]-=(oxri]-|

= the angular velocity w is associated to the whole body (not to a point)

= if 3 Py, P, with v, =vp,=0: pure rotation (circular motion of all P, ¢ line P,P,)
= »=0: pure translation (all points have the same velocity v;)
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Linear and angular velocity
of the robot end-effector

w
. i v
wy =216, Wy =716
O—
P P d
; r= (pl (I))
w; =z, 6, |
alternative definitions T — Rip
of the direct kinematics 000§ 1
% of the end-effector

= vV and w are “vectors”, namely are elements of vector spaces
= they can be obtained as the sum of single contributions (in any order)
= these contributions will be those of the single the joint velocities
= on the other hand, ¢ (and d¢/dt) is not an element of a vector space

= a minimal representation of a sequence of two rotations is not obtained summing
the corresponding minimal representations (accordingly, for their time derivatives)

in general, o = d¢/dt
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Finite and infinitesimal translations

= finite Ax, Ay, Az or infinitesimal dx, dy, dz translations

(linear displacements) always commute

y

/

X \ >
Az same final
/ , position
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Finite rotations do not commute

example
Z Z A
— o
initial ¢x =30
orientation
Y,
X
mathematical fact: w is
NOT an exact differential form 5 ¢, =90°
V4 (the integral of w over time
depends on the integration path!)
¢, = 90° Y
> ZA
Y 7
Xy

different final

, orientations!
Yy

note: finite rotations still commute
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Infinitesimal rotations commute!

= infinitesimal rotations d¢y, d¢y, d¢, around X,y,z axes

1 0 0 1 0 0
Ry(dy) =1 0 oS §y —Sin oy :> Re(ddy) = | O 1 —dgy
0 sin ¢y coS ¢y | 0 doy 1 |

cos ¢y O sindy 1
Ry(dy) =| O ' 1 0 ! |:> Ry(dy) = L 0 1
| —sin¢dy 0 cos ¢y —do v

cos ¢, -sind, O 1 -d¢,
R2(92) = | sin ¢§ cos q>zz 0| D Rfdp)=|dop, 1
0 0 1 0 0

<€— third-order
(infinitesimal)
terms

= R(dp) = R(dq)x, d(i)Yr dq)z) =

1

in any order = I + S(do)

— neglecting
L 1 _dq)z dq)YJ second- and
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Time derivative of a rotation matrix

let R = R(t) be a rotation matrix, given as a function of time

since I = R(t)R'(t), taking the time derivative of both sides yields
0 = d[R(t)RT(t)]/dt = dR(t)/dt RT(t) + R(t) dRT(t)/dt
= dR(t)/dt RT(t) + [dR(t)/dt RT(t)]"
thus dR(t)/dt RT(t) = S(t) is a skew-symmetric matrix

let p(t) = R(t)p’ a vector (with constant norm) rotated over time

= comparing A .
dp(t)/dt = dR(t)/dt p" = S(t)R(t) p* = S(t) p(t) s
dp(t)/dt = w(t) x p(t) = S(w(t)) p(t) D

we get S = S(w) &"p

R=5(w)R| 4= | S(w) =RRT
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Example
Time derivative of an elementary rotation matrix

1 0 0
Ry(9(t)) = | 0 cos o(t) -sin o(t)
| 0 sin¢(t) cos ¢(t) |

: |0 0 0 1 0 0
Ry(@) RTy(9) =¢ | 0 -singp -cos¢ || O coso¢ sind
' 0 cos¢ -sing || 0 -sing cos ¢ |
0 0 0
=10 0 -¢ | =5S(w)
0 0 0 1
'R
w=1]0
_O_
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Time derivative of RPY angles and w

RRPY ((XXI ﬁyl Yz) = RZY’X” (YZI ﬁyl OLx) Trey (BrY)
AN
z 1 cpcy sy O Q
the tr_\ree_ w=|cBsy ¢ 0 B
contributions sp 0 1 ?
vz, By, ox” to w . 4 - , 7]
are simply v |3 ) X y <¢
summed as - T T
vectors y 1st col in  2nd col in
/% RACIIRVAB,)  Rolr)
Ay ’ _ det Trey (B,y) =cf =0
X v%oc for p = £n /2
(singularity of the
X" RPY representation)

similar treatment for the other 11 minimal representations...
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Robot Jacobian matrices

= analytical Jacobian (obtained by time differentiation)

_ p= .=|5=(m).=J .
r h} (q) ) i {q}} Lo A=)

= geometric Jacobian (no derivatives)
v p J(q) | . .

= = q=]
MEREEUS
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f

r<

Py =-1y510; - I S15(d; + ay)

Py =11€1q; + 1, Cp (G; + ) m) J(q) =

here, all rotations occur around the same
fixed axis z (normal to the plane of motion)
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direct kinematics

py=1li¢c,+1,¢p

¢ =Qq; +Q,
<
;8- 15845 , S5
e+ ¢y l, Cyy
1 1
o _/

given r, this is a 3 x 2 matrix

12



Analytical Jacobian of polar robot

A

pz

direct kinematics (here, r = p)

_ \
Py = (3 G Cy

Py=03Cs 1)

pz=d1+q352 y,

v

taking the time derivative

.| TA3GS: A3SCy GGy | ,
P=] 0CC; -03S,S; GS; |9 =J(q)q
0 4G S,

of(a)
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Geometric Jacobian

always a 6 x n matrix

V
end-effector :
instantaneous[vEJ = | D] = [J“(q) JL”(q)} C|1
velocity WEg JA(Q) UNTC) IR (¢)) d,

Ve = J(a) 9, @..+ 1.,(9) g, wg = Ja1(q) 9; @+ 150(9) q,

contribution to the Iin_ear contribution to the angular
e-e velocity due to g, e-e velocity due to g,
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Contribution of a prismatic joint

note: joints beyond the i-th one are considered to be “frozen”, . _
so that the distal part of the robot is a single rigid body Ji(@) g =z,d

L Zig

prismatic
i-th joint

Ji(q) q Zi 4 Cii

joint @a | 0

RF,
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Contribution of a revolute joint

Ju(q) Clli

Jai(a) éIi = Ziq éi

g = 0;\ .revo.lu.te
i-th joint
jo‘inti @ a; | (2 Pi-1,6) 6,
RF, :
JAi(q) qi Zi-l ei

Robotics 1 16



Expression of geometric Jacobian

([bo,EJ =) ”VEJ _ [JL(CI)J(':' _ [JM(CI) JLn(CI)} q1
g | O JA(Q) 1,(@) - 1,.(q) (::|n

prismatic revolute this can be also
i-th joint i-th joint computed as
9Po,e
Ju(a) Ziq Zi.1 X Pi-1E T
|
JAi(q) O Zl'l

all vectors should be
expressed in the same
reference frame
pl 1,E — pO E(qll an) pOI l(qll Iql 1) (here’ the base frame RFO)

z.; = °Ry(qy)..."?R;.1(q;.4) {ﬂ
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Example: planar 2R arm

DENAVIT-HARTENBERG table

joint | o | d a 0;
1 0 0 l, | aq,
2 0 0 L | g,
Cl = Sl O |1C1
_ls, ¢ 0 ILs 1€ Po,1
0 0O 1 0
0 0 0 1 P1,e = Po,e~ Po,1
] Zo X Poe 21 X Py C, -Spp 0 i+ ey,
- - . op = | 12 w2 0 s+ sy, [ Poe
’ : 2“1 0 0 1 0
0 0 0 1
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] =
Z4y Z4
4 N
- 1384 15845 - 5S4,
l,c,+ |,C l,C
_ 1~1 2%12 2%12 P
note: the Jacobian is here a 6x2 matrix,
thus its maximum rank is 2
] B
at most 2 components of the linear/angular

. . . compare rows 1, 2, and 6
end-effector velocity can be independently assigned with the analytical Jacobian

in slide #12!
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b) we may choose

RF, ‘}/ -I- E= 0. (q)
the one ]USt

oy computed ..
RF On —OJn(q)q E= Vn T O X I
9 © = v, + S(rg,)
| el _ %Ry O[T S(rg,)
RF§/ B 0 5R,||0 I || %
0 . .
— BRO(q) 0 I S( rEn(q)) OJn(q) q — BJE(q) q
0 °Ry(9) I
a) we may choose — g _
RFg = RF(q) never singular!
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= 8R robot manipulator with transmissions by
pulleys and steel cables (joints 3 to 8)

= lightweight: only 15 kg in motion

= motors located in second link

= incremental encoders (homing)

« redundancy degree for e-e pose task: n-m=2
= compliant in the interaction with environment

- P J /
o L} .
P £ £ E

[[ & (mm) [ d(mm) | a(rad) | range & (dex) |

| i
0 0 0 /2 | [[12.56, 179.80]
1 11d 150 - 53, 2]
2 0 0 /2 7. 173]
3 100 350 T2 [65. 298]
1 0 0 —p 174, -3]
g px| 250 m—p 7. 265]
G 0 0 —7/2 | [-129.99, -45]
7 100 0 - [-55.05, 30]

Robotics 1 21



= geometric Jacobian %J4(q) is very complex
= "mid-frame” Jacobian 4],(q) is relatively simple!

d13183+d383C281 —)Cqy 82—d1C3C1C2 —dsCICS

—lg8gqC08, +0363C1 +01C1C‘2—d1 €182

—d3C30281—0183C182 —d183C]C2—d383C1 —d181C3+038281

4j4=
—c3€181—33€1
—8281

—2500 81 +CgC
a183+dsesea dsacs 0o 0 0
—@Qg84q8q —ageg 000
—@10q3—d30337—GgCy dgsg —ag 0 0
6 rOWSI — g 82 ErY 0 0 —=4
8 columns d e
—2382 —Cg o 1 o0

—az24—dscscy —asescace+ds8s sy

—dgezagtagey dp8z8g84—az3584¢Cg

dgsg —agzc6cs+dz 586
—C48; —C4C5385+24C
—8485 —83C586—C40g

—-Cp 2585
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b0 o= W4, T W, T W4 = a4 b1 + 35(01) by + A3(0, 02) b3 = T(9)

! I

(moving) axes of definition for the sequence of rotations ¢,

P I O I O
= J(q) = ] ] = J
r M = Ja) [0 T@J (@) 1) [0 T_l(q))} (a)

T(¢) has always <«  singularity of the specific

a singularity minimal representation of orientation
R2w R = S(w) R (= foreach columnr; of R (unit vector of a frame),
we have P wxr
| [
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Acceleration relations (and beyond...)

Higher-order differential kinematics

= differential relations between motion in the joint space and motion in
the task space can be established at the second order, third order, ...

= the analytical Jacobian always “weights” the highest-order derivative

!

velocity r=1(q) g / matrix function N,(q,q)

acceleration  r=13(q) g + 3(q) g

jerk r'=3(a)q+23(q)q+ iL(\q) g

snap r=3(q9)q+ .. matrix function N3(q,q,q)

= the same holds true also for the geometric Jacobian J(q)
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Primer on linear algebra

given a matrix J: m x n (m rows, n columns)

= rank p(J) = max # of rows or columns that are linearly independent
= p(J) = min(m,n) (if equality holds, J has “full rank™)
= if m =nandJ has full rank, J is “non singular” and the inverse J-1 exists
= p(J) = dimension of the largest non singular square submatrix of J
= range R(J) = vector subspace generated by all possible linear
combinations of the columns of ] <—— also called “image” of J
RA)={veRM:Jt&R", v=]E}
= dim(3(3)) = p(J)
= kernel X(J) = vector subspace of all vectors € € R" such that J's = 0
= dim(R(J)) =n-pQJ) T~ also called “null space” of J
= (NRAJ)+ RAT) =RM|e [RAT) + () =R"
= sum of vector subspaces V,; + V, = vector space where any element v can be
writtenasv = v, + v,, withv,€V,, v, €V,

= all the above quantities/subspaces can be computed using, e.g., Matlab
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Robot Jacobian
decomposition in linear subspaces and duality
space of

/ ‘} space of
joint velocities J task (Cartesian)

- / > velocities

KA + X(I) =R" RA) + XA =R™

dual spaces
sooeds |enp

space of space of

. T task (Cartesian)
joint torques %‘ J / forces

(in a given configuration q)
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Mobility analysis

= p(d) = p((q), RA) = RA(Qq)), X(AN)= RXA'(q)) are locally defined, i.e.,
they depend on the current configuration g
= J(J(g)) = subspace of all "generalized” velocities (with linear and/or

angular components) that can be instantaneously realized by the robot
end-effector when varying the joint velocities at the configuration g

= if J(g) has max rank (typically = m) in the configuration q, the robot
end-effector can be moved in any direction of the task space R™

= if p(3(q)) < m, there exist directions in R™ along which the robot end-
effector cannot move (instantaneously!)

= these directions lie in X(J7(q)), namely the complement of :(J(q)) to the
task space R™, which is of dimension m - p(J(q))

= when X(J(q)) = {0}, there exist non-zero joint velocities that produce
zero end-effector velocity (“self motions”)

= this always happens for m<n, i.e., when the robot is redundant for the task
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Kinematic singularities

configurations where the Jacobian loses rank
< loss of instantaneous mobility of the robot end-effector

for m = n, they correspond to Cartesian poses at which the number of
solutions of the inverse kinematics problem differs from the “generic” case

\\: 77

in” a singular configuration, we cannot find a joint velocity that realizes a
desired end-effector velocity in an arbitrary direction of the task space

“close” to a singularity, large joint velocities may be needed to realize
some (even small) velocity of the end-effector

finding and analyzing in advance all singularities of a robot helps in
avoiding them during trajectory planning and motion control
= when m = n: find the configurations g such that det J(q) = 0
= When m < n: find the configurations g such that all mxm minors of ] are
singular (or, equivalently, such that det [J(q) J7(q)] = 0)

finding all singular configurations of a robot with a large number of joints,
or the actual “distance” from a singularity, is a hard computational task
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analytical Jacobian

: “1iS1m 1Sy, - 1Sy, | '
—_ —_ J
P { lici+ G G a=Ja)q

direct kinematics
py=lic+1cp

py=1ls + 1,84,

det J(q) = l;l5s,

= singularities: arm is stretched (g, = 0) or folded (g, = x)

= singular configurations correspond here to Cartesian points on the

boundary of the workspace

= in general, these singularities separate regions in the joint space with
distinct inverse kinematic solutions (e.g., “elbow up” or “"down”)

Robotics 1
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Singularities of polar (RRP) arm

direct kinematics
Py =43 C ¢
Py =043 G Sy
p,=d; +055,
analytical Jacobian
[ -035,C; -03CiS; G4

p=| GGG -G5S, SiC | q=13(q)q
0 4sC; S;

~ Y,

= singularities
= E-E is along the z axis (q, = £x/2): simple singularity = rank J = 2
= third link is fully retracted (q; = 0): double singularity = rank J drops to 1

= all singular configurations correspond here to Cartesian points internal
to the workspace (supposing no limits for the prismatic joint)
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Singularities of robots
with spherical wrist

n = 6, last three joints are revolute and their axes intersect at a point

without loss of generality, we set O, = W = center of spherical wrist
(i.e., choose d¢ = 0 in the DH table)

I, 0
)aq)=| M
J21 J22

since det J(qy,...,qs) = det J;, - det J,,, there is a decoupling property
« detJ;(qy,...,03) = 0 provides the arm singularities
« det J,»(q4, gs) = 0 provides the wrist singularities

being J,, = [2; 2, z:] (in the geometric Jacobian), wrist singularities
correspond to when z;, z, and z; become linearly dependent vectors

= when either q; = 0 or q; = £mx/2
= inversion of J is simpler (block triangular structure)

= the determinant of J will never depend on q,: why?
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