

Robotics 1

Inverse kinematics

Prof. Alessandro De Luca

DIPARTIMENTO DI INGEGNERIA INFORMATICA AUTOMATICA E GESTIONALE ANTONIO RUBERTI

Inverse kinematics what are we looking for?

direct kinematics is always unique; how about inverse kinematics for this 6R robot?

Inverse kinematics problem

- "given a desired end-effector pose (position + orientation), find the values of the joint variables that will realize it"
- a synthesis problem, with input data in the form

$$T = \begin{bmatrix} R & p \\ 000 & 1 \end{bmatrix}$$

 $T = \begin{vmatrix} R & p \\ 000 & 1 \end{vmatrix}$ $r = \begin{vmatrix} p \\ \phi \end{vmatrix}$, or any other task vector

classical formulation:

generalized formulation: inverse kinematics for a given end-effector pose inverse kinematics for a given value of task variables

- a typical nonlinear problem
 - existence of a solution (workspace definition)
 - uniqueness/multiplicity of solutions
 - solution methods

Solvability and robot workspace

- primary workspace WS_1 : set of all positions p that can be reached with at least one orientation (ϕ or R)
 - out of WS₁ there is no solution to the problem
 - for $p \in WS_1$ and a suitable ϕ (or R) there is at least one solution
- secondary (or dexterous) workspace WS₂: set of positions p that can be reached with any orientation (among those feasible for the robot direct kinematics)
 - for $p \in WS_2$ there is at least one solution for any feasible ϕ (or R)
- $WS_2 \subseteq WS_1$

STORYM VE

Workspace of Fanuc R-2000i/165F

Workspace of planar 2R arm

- if $I_1 \neq I_2$
 - $WS_1 = \{ p \in R^2 : |I_1 I_2| \le ||p|| \le |I_1 + I_2 \}$
 - $WS_2 = \emptyset$
- if $I_1 = I_2 = \ell$
 - $WS_1 = \{ p \in \mathbb{R}^2 : ||p|| \le 2\ell \}$
 - $WS_2 = \{p = 0\}$ (infinite number of feasible orientations at the origin)

Wrist position and E-E pose inverse solutions for an articulated 6R robot

Counting and visualizing the 8 solutions

to the inverse kinematics of a Unimation Puma 560

Multiplicity of solutions some examples

- E-E positioning of a planar 2R robot arm
 - 2 regular solutions in WS₁
 - 1 solution on ∂WS₁
 - for $I_1 = I_2$: ∞ solutions in WS₂

singular solutions

- E-E positioning of an articulated elbow-type 3R robot arm
 - 4 regular solutions in WS₁
- spatial 6R robot arms
 - ≤ 16 distinct solutions, out of singularities: this "upper bound" of solutions was shown to be attained by a particular instance of "orthogonal" robot, i.e., with twist angles $\alpha_i = 0$ or $\pm \pi/2$ ($\forall i$)
 - analysis based on algebraic transformations of robot kinematics
 - transcendental equations are transformed into a single polynomial equation of one variable
 - seek for an equivalent polynomial equation of the least possible degree

A planar 3R arm

workspace and number/type of inverse solutions

$$I_1 = I_2 = I_3 = \ell$$

$$WS_1 = \{ p \in \mathbb{R}^2 : \|p\| \le 3\ell \}$$

$$WS_2 = \{ p \in R^2 : ||p|| \le \ell \}$$

any planar orientation is feasible in WS₂

1. in WS₁: ∞^1 regular solutions (except for 2. and 3.), at which the E-E can take a *continuum* of ∞ orientations (but *not all* orientations in the plane!)

2. if $\|p\| = 3\ell$: only 1 solution, singular

3. if $\|p\| = \ell : \infty^1$ solutions, 3 of which singular

4. if $\|p\| < \ell : \infty^1$ regular solutions (never singular)

Multiplicity of solutions summary of the general cases

- if m = n
 - ∄ solutions
 - a finite number of solutions (regular/generic case)
 - "degenerate" solutions: infinite or finite set, but anyway different in number from the generic case (singularity)
- if m < n (robot is redundant for the kinematic task)
 - ∄ solutions
 - ∞^{n-m} solutions (regular/generic case)
 - a finite or infinite number of singular solutions
- use of the term singularity will become clearer when dealing with differential kinematics
 - instantaneous velocity mapping from joint to task velocity
 - lack of full rank of the associated m×n Jacobian matrix J(q)

STONE STONE

Dexter robot (8R arm)

- m = 6 (position and orientation of E-E)
- n = 8 (all revolute joints)
- ∞^2 inverse kinematic solutions (redundancy degree = n-m = 2)

exploring inverse kinematic solutions by a self-motion

ANALYTICAL solution (in closed form)

NUMERICAL solution (in iterative form)

- preferred, if it can be found*
- use ad-hoc geometric inspection
- algebraic methods (solution of polynomial equations)
- systematic ways for generating a reduced set of equations to be solved
- certainly needed if n>m (redundant case), or at/close to singularities
- slower, but easier to be set up
- in its basic form, it uses the (analytical) Jacobian matrix of the direct kinematics map

$$J_{r}(q) = \frac{\partial f_{r}(q)}{\partial q}$$

 Newton method, Gradient method, and so on...

- * sufficient conditions for 6-dof arms
- 3 consecutive rotational joint axes are incident (e.g., spherical wrist), or
- 3 consecutive rotational joint axes are parallel

D. Pieper, PhD thesis, Stanford University, 1968

Inverse kinematics of planar 2R arm

direct kinematics

$$p_x = l_1 c_1 + l_2 c_{12}$$

$$p_y = l_1 s_1 + l_2 s_{12}$$
data
$$q_1, q_2 \text{ unknowns}$$

"squaring and summing" the equations of the direct kinematics

$$p_x^2 + p_y^2 - (l_1^2 + l_2^2) = 2 l_1 l_2 (c_1 c_{12} + s_1 s_{12}) = 2 l_1 l_2 c_2$$

and from this

$$c_2 = (p_x^2 + p_y^2 - l_1^2 - l_2^2)/2 l_1 l_2, s_2 = \pm \sqrt{1 - c_2^2} \implies q_2 = ATAN2 \{s_2, c_2\}$$

must be in [-1,1] (else, point p is outside robot workspace!)

Inverse kinematics of 2R arm (cont'd)

by geometric inspection

$$q_1 = \alpha - \beta$$

2 solutions (one for each value of s_2)

 $q_1 = ATAN2 \{p_y, p_x\} - ATAN2 \{l_2 s_2, l_1 + l_2 c_2\}$

note: difference of ATAN2 needs to be re-expressed in $(-\pi, \pi]!$

$\{q_1,q_2\}_{DOWN/RIGHT}$

q2' e q2" have same absolute value, but opposite signs

Algebraic solution for q₁

another solution method...

$$p_x = I_1 c_1 + I_2 c_{12} = I_1 c_1 + I_2 (c_1 c_2 - s_1 s_2)$$

$$p_{y} = l_{1} s_{1} + l_{2} s_{12} = l_{1} s_{1} + l_{2} (s_{1}c_{2} + c_{1}s_{2})$$

linear in s_1 and c_1

$$\begin{bmatrix} I_1 + I_2 C_2 & -I_2 S_2 \\ I_2 S_2 & I_1 + I_2 C_2 \end{bmatrix} \begin{bmatrix} C_1 \\ S_1 \end{bmatrix} = \begin{bmatrix} p_x \\ p_y \end{bmatrix}$$

$$\det = (I_1^2 + I_2^2 + 2 I_1 I_2 c_2) > 0$$

except for $I_1=I_2$ and $C_2=-1$ being then q_1 undefined (singular case: ∞^1 solutions)

$$q_1 = ATAN2 \{s_1, c_1\} = ATAN2 \{(p_y(l_1+l_2c_2)-p_xl_2s_2)/det, (p_x(l_1+l_2c_2)+p_yl_2s_2)/det\}$$

notes: a) this method provides directly the result in $(-\pi, \pi]$

b) when evaluating ATAN2, det > 0 can be eliminated from the expressions of s_1 and c_1

Inverse kinematics of polar (RRP) arm

$$p_{x} = q_{3} c_{2} c_{1}$$

$$p_v = q_3 c_2 s_1$$

$$p_z = d_1 + q_3 s_2$$

$$p_x^2 + p_v^2 + (p_z - d_1)^2 = q_3^2$$

$$q_3 = + \sqrt{p_x^2 + p_y^2 + (p_z - d_1)^2}$$

our choice: take here only the positive value...

if $q_3 = 0$, then q_1 and q_2 remain both undefined (stop); else

$$q_2 = ATAN2\{(p_z - d_1)/q_3, \pm \sqrt{(p_x^2 + p_y^2)/q_3^2}\}$$

if $p_x^2 + p_y^2 = 0$, then q_1 remains undefined (stop); else

(if it stops,
a singular case:
$$\infty^2$$
 or ∞^1
solutions)

$$q_1 = ATAN2\{p_y/c_2, p_x/c_2\}$$
 (2 regular solutions $\{q_1, q_2, q_3\}$)

Inverse kinematics for robots with spherical wrist

 y_0

find q_1 , ..., q_6 from the input data:

- p (origin O₆)
- R = [n s a] (orientation of RF₆)
- 1. $W = p d_6 a \rightarrow q_1, q_2, q_3$ (inverse "position" kinematics for main axes)

2.
$$R = {}^{0}R_{3}(q_{1}, q_{2}, q_{3}) {}^{3}R_{6}(q_{4}, q_{5}, q_{6}) \rightarrow {}^{3}R_{6}(q_{4}, q_{5}, q_{6}) = {}^{0}R_{3}{}^{T}R \rightarrow q_{4}, q_{5}, q_{6}$$

(inverse "orientation" known, Euler ZYZ or ZXZ kinematics for wrist) after 1. rotation matrix

 X_0

j1

Joint -	α°	00	d	а	Range
1	-90°	θ,	0	0	θ ₁ :+/-160°
2	0	0,	0	a2	$\theta_2: +45 \rightarrow -225^{\circ}$
3	90°	0,	do	a,	83:225°45°
4	-90°	0,	d.	o	84:+/-170°
5	90°	0.	0	0	85:+/-135°
6	0	0,	(0)	0	06:+/-170°
$a_2 = 17.000$	$a_3 = 0.75$				
$d_3 = 4.937$	$d_4 = 17.000$		T	925	
	h	ere	d.	=0,	

so that 0_6 =W directly

 $n_s = C_1[C_{23}(C_4C_5C_6 - S_4S_6) - S_{23}S_5C_6]$ - S,[S,C,C,+ C,S,] $n_y = S_1[C_{23}(C_1C_3C_6 - S_4S_6) - S_{23}S_3C_6]$ \Rightarrow $p = {}^{0}X_6(q)$ + C1[S4C4C6 + C4S6] $n_{s} = -S_{23}(C_{4}C_{5}C_{5} - S_{4}S_{6}) - C_{23}S_{5}C_{6}$ $o_x = C_1[-C_{23}(C_4C_5S_6 + S_4C_6) + S_{23}S_5S_6]$ $-S_1[-S_4C_5S_6 + C_4C_6]$ $o_y = S_1[-C_{23}(C_4C_5S_6 + S_4C_6) + S_{23}S_5S_6] > S = {}^{0}Y_6(q)$ $+C_{1}[-S_{4}C_{5}S_{6}+C_{4}C_{6}]$ $o_2 = S_{23}(C_4C_5S_6 + S_4C_6) + C_{23}S_5S_6$ $a_x = C_1(C_{23}C_4S_5 + S_{23}C_5) - S_1S_4S_5$ $a = {}^{0}z_{6}(q)$ $a_{\nu} = S_1(C_{23}C_4S_5 + S_{23}C_5) + C_1S_4S_5$ $a_2 = -S_{23}C_4S_5 + C_{23}C_5$ $p_x = C_1(d_4S_{23} + a_3C_{23} + a_2C_2) - S_1d_3$ $p = 0_6(q)$ $p_y = S_1(d_4S_{23} + a_3C_{23} + a_2C_2) + C_1d_3$ $p_2 = -(-d_4C_{22} + a_1S_{22} + a_2S_2).$

8 different inverse solutions

that can be found in closed form (see Paul, Shimano, Mayer; 1981)

Numerical solution of inverse kinematics problems

- use when a closed-form solution q to $r_d = f_r(q)$ does not exist or is "too hard" to be found
- $J_r(q) = \frac{\partial f_r}{\partial q}$ (analytical Jacobian)
- Newton method (here for m=n)

•
$$r_d = f_r(q) = f_r(q^k) + J_r(q^k) (q - q^k) + o(\|q - q^k\|^2)$$
 \leftarrow neglected

$$q^{k+1} = q^k + J_r^{-1}(q^k) [r_d - f_r(q^k)]$$

- convergence if q^0 (initial guess) is close enough to some q^* : $f_r(q^*) = r_d$
- problems near singularities of the Jacobian matrix J_r(q)
- in case of robot redundancy (m<n), use the pseudo-inverse $J_r^{\#}(q)$
- has quadratic convergence rate when near to solution (fast!)

Operation of Newton method

- in the scalar case, also known as "method of the tangent"
- for a differentiable function f(x), find a root of f(x)=0 by iterating as

$$X_{k+1} = X_k - \frac{f(X_k)}{f'(X_k)}$$

an approximating sequence $\{x_1, x_2, x_3, x_4, x_5, ...\}$

animation from http://en.wikipedia.org/wiki/File:NewtonIteration_Ani.gif

Numerical solution of inverse kinematics problems (cont'd)

- Gradient method (max descent)
 - minimize the error function

$$\begin{aligned} H(q) &= \frac{1}{2} \| r_d - f_r(q) \|^2 = \frac{1}{2} [r_d - f_r(q)]^T [r_d - f_r(q)] \\ q^{k+1} &= q^k - \alpha \nabla_q H(q^k) \\ \text{from } \nabla H(q) &= -J_r^T(q) [r_d - f_r(q)], \text{ we get} \\ q^{k+1} &= q^k + \alpha J_r^T(q^k) [r_d - f_r(q^k)] \end{aligned}$$

- the scalar step size $\alpha > 0$ should be chosen so as to guarantee a decrease of the error function at each iteration (too large values for α may lead the method to "miss" the minimum)
- when the step size α is too small, convergence is extremely slow

Revisited as a "feedback" scheme

$$e=r_d-f_r(q) \to 0 \iff closed-loop\ equilibrium\ e=0\ is\ asymptotically\ stable$$

$$V=1/2\ e^Te\ge 0 \quad Lyapunov\ candidate\ function$$

$$\dot{V} = e^T \dot{e} = e^T \frac{d}{dt} (r_d - f_r(q)) = -e^T J_r \dot{q} = -e^T J_r J_r^T e \le 0$$

$$\dot{V} = 0 \iff e \in \text{Ker}(J_r^T) \quad \text{in particular } e = 0$$
asymptotic stability

Properties of Gradient method

- computationally simpler: Jacobian transpose, rather than its (pseudo)-inverse
- direct use also for robots that are redundant for the task
- may not converge to a solution, but it never diverges
- the discrete time evolution of the continuous scheme

$$q^{k+1} = q^k + \Delta T J_r^T(q^k) [r_d - f(q^k)] \qquad (\alpha = \Delta T)$$

is equivalent to an iteration of the Gradient method

scheme can be accelerated by using a gain matrix K>0

$$\dot{q} = J_r^T(q) K e$$

note: K can be used also to "escape" from being stuck in a stationary point, by rotating the error e out of the kernel of \mathbf{J}_r^T (if a singularity is encountered)

A case study

STOOL MARKET

analytic expressions of Newton and gradient iterations

- 2R robot with $l_1=l_2=1$, desired end-effector position $r_d=(1,1)$
- direct kinematic function and error

$$f_r(q) = \begin{pmatrix} c_1 + c_{12} \\ s_1 + s_{12} \end{pmatrix}$$
 $e = r_d - f_r(q) = \begin{pmatrix} 1 \\ 1 \end{pmatrix} - f_r(q)$

Jacobian matrix

$$J_{r}(q) = \frac{\partial f_{r}(q)}{\partial q} = \begin{pmatrix} -(S_{1} + S_{12}) & -S_{12} \\ C_{1} + C_{12} & C_{12} \end{pmatrix}$$

Newton versus Gradient iteration

$$det J_{r}(q)$$

$$q^{k+1} = q^{k} + \begin{cases} \frac{1}{s_{2}} \begin{pmatrix} c_{12} & s_{12} \\ -(c_{1} + c_{12}) & -(s_{1} + s_{12}) \end{pmatrix} \Big|_{q=q^{k}} \\ \alpha \begin{pmatrix} -(s_{1} + s_{12}) & c_{1} + c_{12} \\ -s_{12} & c_{12} \end{pmatrix} \Big|_{q=q^{k}} \end{cases} - \bullet \begin{pmatrix} 1 - (c_{1} + c_{12}) \\ 1 - (s_{1} + s_{12}) \end{pmatrix} \Big|_{q=q^{k}}$$

Error function

• 2R robot with $l_1=l_2=1$, desired end-effector position $r_d=(1,1)$

plot of $\|e\|^2$ as a function of $q = (q_1, q_2)$

two local minima (inverse kinematic solutions)

- flow of iterations along the negative (or anti-) gradient
- two possible cases: convergence or stuck (at zero gradient)

STORYM VE

Issues in implementation

- initial guess q⁰
 - only one inverse solution is generated for each guess
 - multiple initializations for obtaining other solutions
- optimal step size α in Gradient method
 - a constant step may work good initially, but not close to the solution (or vice versa)
 - an adaptive one-dimensional line search (e.g., Armijo's rule) could be used to choose the best α at each iteration
- stopping criteria

Cartesian error (possibly, separate for position and orientation)
$$\|r_d - f(q^k)\| \leq \epsilon \quad \text{algorithm increment} \ \|q^{k+1} - q^k\| \leq \epsilon_q$$

understanding closeness to singularities

$$\sigma_{min}\{J(q^k)\} \geq \sigma_0 \quad \text{of Jacobian matrix (SVD)} \\ \text{(or a simpler test on its determinant, for m=n)}$$

Numerical tests on RRP robot

■ RRP/polar robot: desired E-E position $r_d = p_d = (1, 1, 1)$ —see slide 17, d_1 =0.5

• the two (known) analytic solutions, with $q_3 \ge 0$, are:

$$q^* = (0.7854, 0.3398, 1.5)$$

 $q^{**} = (q_1^* - \pi, \pi - q_2^*, q_3^*) = (-2.3562, 2.8018, 1.5)$

- norms $\varepsilon = 10^{-5}$ (max Cartesian error), $\varepsilon_{\rm q} = 10^{-6}$ (min joint increment)
- $k_{max}=15$ (max iterations), $|det(J_r)| \le 10^{-4}$ (closeness to singularity)
- numerical performance of Gradient (with different α) vs. Newton
 - test 1: $q^0 = (0, 0, 1)$ as initial guess
 - test 2: $q^0 = (-\pi/4, \pi/2, 1)$ —"singular" start, since $c_2 = 0$ (see slide 17)
 - test 3: $q^0 = (0, \pi/2, 0)$ —"double singular" start, since also $q_3 = 0$
- solution and plots with Matlab code

Numerical test - 1

• test 1: $q^0 = (0, 0, 1)$ as initial guess; evolution of error norm

STORYM VE

Numerical test - 1

• test 1: $q^0 = (0, 0, 1)$ as initial guess; evolution of joint variables

both to solution $q^* = (0.7854, 0.3398, 1.5)$

Numerical test - 2

Numerical test - 3

• test 3: $q^0 = (0, \pi/2, 0)$: "double" singular start

Gradient (with $\alpha = 0.7$)

- starts toward solution
- 2 exits the double singularity
- slowly converges in 19 iterations to the solution q*=(0.7854, 0.3398, 1.5)

Newton
is either
blocked at start
or (w/o check)
explodes (NaN)!!

Robotics 1

STAN

Final remarks

- an efficient iterative scheme can be devised by combining
 - initial iterations with Gradient method ("sure but slow", having linear convergence rate)
 - switch then to Newton method (quadratic terminal convergence rate)
- joint range limits are considered only at the end
 - check if the found solution is feasible, as for analytical methods
- if the problem has to be solved on-line
 - execute iterations and associate an actual robot motion: repeat steps at times t_0 , $t_1=t_0+T$, ..., $t_k=t_{k-1}+T$ (e.g., every T=40 ms)
 - the "good" choice for the initial q^0 at t_k is the solution of the previous problem at t_{k-1} (gives continuity, needs only 1-2 Newton iterations)
 - crossing of singularities and handling of joint range limits need special care in this case
- Jacobian-based inversion schemes are used also for kinematic control, along a continuous task trajectory r_d(t)

Robotics 1 34