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Inverse kinematics
what are we looking for?

—v
(—50.19°

|- 3&.48°

oy

direct kinematics is always unique;

how about inverse kinematics for this 6R robot?
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Inverse kinematics problem

= "given a desired end-effector pose (position +
orientation), find the values of the joint variables
that will realize it”

= a synthesis problem, with input data in the form

_ | Rp _|P
T =] b =t = | |, or any other task vector
000: 1 0
classical formulation: generalized formulation:

inverse kinematics for a given end-effector pose  inverse kinematics for a given value of task variables

= a typical nonlinear problem
= existence of a solution (workspace definition)
= uniqueness/multiplicity of solutions

= Solution methods
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Solvability and robot workspace

= primary workspace WS;: set of all positions p that can be
reached with at least one orientation (¢ or R)

= out of WS, there is no solution to the problem
« for p € WS, and a suitable ¢ (or R) there is at least one solution

= secondary (or dexterous) workspace WS,: set of positions p
that can be reached with any orientation (among those
feasible for the robot direct kinematics)

« for p € WS, there is at least one solution for any feasible ¢ (or R)

[ | WSZ g WS]_
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Workspace of Fanuc R-2000i/165F

Area di lavoro section for a

Operating Space constant angle 6, WS
a3 37 814.5 _ 31, 125 21 1 -
o /_\H (= WS, for spherical wrist
4

- AR =Dk
/ Ayl
: . a \:t arg
;-'.h % T %
Lﬂ..l Side View
|I' l
+180°" = i 0

Top View
rotating the
base joint angle 6,
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Workspace of planar 2R arm

2 orientations

y
. oWS,
inner and c_>uter

_ boundaries 1 orientation
[ |f I]. #Z Iz

« WS, = {p R [Ij-,] = |p[|= 1,+1}

| WSZ - @
s ifly=1,=1

= WS, = {peR2 |p|= 20}
= WS, = {p = 0} (infinite number of feasible orientations at the origin)
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Wrist position and E-E pose
inverse solutions for an articulated 6R robot

_LEFT DOWN Unimation PUMA 560 RIGHT DOWN

4 inverse solutions /

out of singularities
. (for the position of
the wrist center only)

LEFT UP — RIGHT UP

8 inverse solutions considering
the complete E-E pose
(spherical wrist: 2 alternative
_ solutions for the last 3 joints)
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Counting and visualizing the 8 solutions
to the inverse kinematics of a Unimation Puma 560 )

RIGHT UP

!

RIGHT DOWN

!

LEFT UP

LEFT DOWN

!

%%W@
REED
Al
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Multiplicity of solutions
some examples

= E-E positioning of a planar 2R robot arm
= 2 regular solutions in WS,

= 1 solution on 0WS; : .

: . singular solutions
« forl; = l,: o« solutions in WS,

= E-E positioning of an articulated elbow-type 3R robot arm
= 4 regular solutions in WS,

= spatial 6R robot arms
= < 16 distinct solutions, out of singularities: this “upper bound” of
solutions was shown to be attained by a particular instance of
“orthogonal” robot, i.e., with twist angles o, = 0 or +x/2 (Vi)
= analysis based on algebraic transformations of robot kinematics
= transcendental equations are transformed into a single polynomial

equation of one variable
= seek for an equivalent polynomial equation of the least possible degree
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A planar 3R arm
workspace and number/type of inverse solutions

/(3

o L=L=1=10
WS, = {p €R2 |p||= 3¢}
WS, = {p €RZ ||p| = €}

x  any planar orientation is feasible in WS,

at which the E-E can take a continuum of
« orientations (but not all orientations in the plane!) %%

1. in WS, : »l regular solutions (except for 2. and 3.), - 17(/

2. if |p]|= 3¢ : only 1 solution, singular  ,H——o0——o C
3. if ||p]|= € : ! solutions, 3 of which singular
e ~ [

4. if |p||< € : «! regular solutions (never singular)
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Multiplicity of solutions
summary of the general cases

m ifm=n
= 7 solutions
= a finite number of solutions (regular/generic case)

= degenerate” solutions: infinite or finite set, but anyway
different in number from the generic case (singularity)

= if m < n (robot is redundant for the kinematic task)
= 7 solutions
= "M solutions (regular/generic case)
= a finite or infinite number of singular solutions

= use of the term singularity will become clearer when dealing
with differential kinematics

» instantaneous velocity mapping from joint to task velocity
» lack of full rank of the associated mxn Jacobian matrix J(q)
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Dexter robot (8R arm)

= m = 6 (position and orientation of E-E)
= n = 8 (all revolute joints)
= o? inverse kinematic solutions (redundancy degree = n-m = 2)

video

exploring inverse kinematic solutions by a self-motion
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Solution methods

ANALYTICAL solution ——  NUMERICAL solution
(in closed form) \ (in iterative form)
= preferred, if it can be found™ = certainly needed if n>m (redundant
= use ad-hoc geometric inspection case), or at/close to singularities
= algebraic methods (solution of = slower, but easier to be set up
polynomial equations) = in its basic form, it uses the
= systematic ways for generating a (analytical) Jacobian matrix of the
reduced set of equations to be direct kinematics map
lv
e (@) = 1@
sufficient conditions for 6-dof arms r 9q

e 3 consecutive rotational joint axes are
incident (e.g., spherical wrist), or

e 3 consecutive rotational joint axes are
parallel

= Newton method, Gradient method,
and so on...

D. Pieper, PhD thesis, Stanford University, 1968
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2

. . ‘\.g.;
Inverse kinematics of planar 2R arm Quil#

direct kinematics
py=lc+1cpy
p, =15, + 1,55,

LTJ
> data g, g, unknowns

“squaring and summing” the equations of the direct kinematics

P+ P2 -2+ L2 =21 h(ccy +55p) =216

and from this in analyiclcal form

7 (P +Pps2-12-12) 211y s, = 2V1-¢* » g, = ATAN2 {s,, C;}

must be in [-1,1] (else, point p 2 solutions
is outside robot workspace!)
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by geometric inspection

g, =a-p

|

dq; = ATAN2 {p,, p,} - ATAN2 {l, s, , |; + |, G}

v

2 solutions
(one for each value of s,)

note: difference of ATAN2 needs
to be re-expressed in (-t , x]!

{91, 92 upjierT {91,92 }pown/riGHT

d, e g, have same absolute
value, but opposite signs

v
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Algebraic solution for g,

another pp=l¢cg+Lc,=1Lc+1(c;c-5,8,) inear in
solution <. and c
method... p, =111+ 1,8, =15 +1,(5:C, + CiS)) L L
L +1,¢, - 1S, Ci| | Px
s, i+ 16 ||s; Py
\ J
v except for |,=I, and ¢,=-1
det = (12 + 1,2+ 21,,¢c,) >0 being then g, undefined

(singular case: «! solutions)

q; = ATAN2 {Sll Cl} = ATAN2 {(py(l1+|2C2)_px|252)/detl (px(|1+|2C2)+py|252)/det}

notes: a) this method provides directly the result in (-, x]
b) when evaluating ATAN2, det > 0 can be eliminated

from the expressions of s; and ¢,
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Inverse kinematics of polar (RRP) arm @&

?

pz

Py = 03 G Cy
Py =03 C 54

pz=d1+q352

g, is NOT a
DH variable!

p2 + p,2+(p, - d;)? = g3

g3 =+ Vp2+p2+(p,-d)

our choice: take here only the positive value...

if g; = 0, then g, and g, remain both undefined (stop); else

(if it stops,
d, = ATAN2{(p, - d;)/a3;, = V(p,® + p,%)/ds* } a singular case:
%02 Or ool
if p,>+p,2 = 0, then g; remains undefined (stop); else squtirons)

q; = ATAN2{p,/c,, p,/C,} (2 regular solutions {q;,d,,ds})

Robotics 1 we have eliminated g;>0 from both arguments! 17



Inverse kinematics
for robots with spherical wrist

e s Y

- ~y . .: //
a""’ : S AL
- B
» first 3 robot joints : Og=p
/ of any type (RRR, RRP, PPP, ...) / B
| s 13, 26 = d

- ]5 _]4‘ d6

find q4, ..., g¢ from the input data:

e p (origin Og)
= [n s a] (orientation of RF)

1. W=p-dga — dq;y, 0, Gz (inverse "position” kinematics for main axes)

2. R =70Rs3(qy, g, d3) 3Re(A4, s, qe) — 3Rg(ds, G5, Gg) = "R3TR — Q4 G5, G

1 ! = (inverse “orientation”
given known, Euler ZYZ or ZXZ kinematics for wrist)

after 1.  rotation matrix
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6R example: Unimation PUMA 600

z n, -~ C'[C:’(C‘C5C6 o S‘SQ) e S:]S’(}.l. N

~SISCiCe + C.S,)
spherical "= SIC(GGG- 5,50 = $u8G) - N = 9%(q)
wrist ke +C [5G+ S,
e" ?_\ n.= = 53(CCsG = S.8) = C238,C
7y 4R ; 0, = Gy~ Cnp(CiCsSs + SiCg) + 51,555 )
~$1[~ 5.CsSg + C.C)
0,= SII=Ci(CCSe+ S.:G) + 5055, - S = Oye(q)
: TG [ 5.GS + GG
G | 0. = Sp(CCsSe+ SG) + CuSsS 7
C TN = CGaCS* 5109 = S .
— PAMM‘EI:IBS‘;E: T— a, = 5)(CoyCeSs + $1nCs) + €555 d= Z6(q)
Joint = o 9 ¢ a Range a.= "'S;;C.S,-i- Cncs .
1 -%° 6, 0 0 8,:+/—160° P = Cy(dySyy 7 ayCoy + a,Gy) = §5,dy
§ %o & 4w Emssis | B=S(dSnTalntaG)+Cd | - P = 04(q)
. W Lt e  eaihee p:= =(=d.Cy+ 0,5+ 0,5,).
6 0 o (g) 0 f:+ /= 170° _ _ _
qaslion acin . 8 different inverse solutions
Rere dg=0, that can be found in closed form
so that 0,=W directly (see Paul, Shimano, Mayer; 1981)
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Numerical solution of
inverse kinematics problems

= use when a closed-form solution g to ry = f.(q) does not exist
or is “too hard” to be found

J(q) = oty (analytical Jacobian)
aq

Newton method (here for m=n)
x 1y =f(q) = () + (a9 (q- ) +o(][g-d|d) < neglected

gt = g + J1(g) [rq - f(a9)]

= convergence if q° (initial guess) is close enough to some q*: f.(q") =ry
= problems near singularities of the Jacobian matrix J.(q)

= in case of robot redundancy (m<n), use the pseudo-inverse 1.#(q)

= has quadratic convergence rate when near to solution (fast!)
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Operation of Newton method

= in the scalar case, also known as "method of the tangent”
= for a differentiable function f(x), find a root of f(x)=0 by iterating as

4

A

f(x,)
Kk

» X
an approximating sequence /

{xl,xz,x3,x4,x5,...} /
animation from

http://en.wikipedia.org/wiki/File:NewtonIteration_Ani.gif

Funktion
R S e S S e Tangente
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Numerical solution of
inverse kinematics problems (cont'd)

= Gradient method (max descent)
= minimize the error function

H(@) = 2 ||rg - f(@) |2 = V2 [ry - FLQ)IT [ry - F(Q)]
qk+1 — qk - a VqH(qk)
from VH(q) = - 3,7(q) [r4 - f(q)], we get
g<tl = g + a J,7(q¥) [rq - f(a9)]

m the scalar step size a > 0 should be chosen so as to guarantee a
decrease of the error function at each iteration (too large values
for a may lead the method to “miss” the minimum)

= When the step size a is too small, convergence is extremely slow
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Revisited as a “feedback” scheme
q(0)
v

g ¥~ € 1 9 f 9 ., r;=cost

f(q) r

e =ry-f(q) = 0 <« closed-loop equilibrium e=0 is asymptotically stable

V =12 eTe = 0 Lyapunov candidate function

V=ele = e% (rg-f(@) =-€"J qg=-e"JJ’e <0

V=0 « ec Ker(J.")  in particulare = 0

asymptotic stability
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Properties of Gradient method

= computationally simpler: Jacobian transpose, rather than its
(pseudo)-inverse

s direct use also for robots that are redundant for the task
= May not converge to a solution, but it never diverges

s the discrete time evolution of the continuous scheme
gl =gf + AT 3. 7(g9) [rg - f(d9)] (o = AT)

is equivalent to an iteration of the Gradient method
= scheme can be accelerated by using a gain matrix K>0

q=1JT(gq)Ke

note: K can be used also to “escape” from being stuck in a stationary point,
by rotating the error e out of the kernel of JrT (if a singularity is encountered)
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A case study

analytic expressions of Newton and gradient iterations

= 2R robot with I;=I,=1, desired end-effector position ry = (1,1)
= direct kinematic function and error

f.(a) = (C”gz) e=r,-f.q - () f.(a)

= Jacobian matrix

1(q) = of.(@ ( (S; +5Sy3) '512)

dq C, +Cp, Cio
s  Newton versus Gradient iteration

e BACH) ]

\i ( Ci S12 ) e,
G g S, (€, +Cp5) (S +512)/|a=a (1 (c, + C12))
(_ 1-(s; +5y,)
o k
a=q

25
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Error function

~

= 2R robot with |I;=I,=1, desired end-effector position ry = (1

squared Cartesian distance from solutions for p = (1,1) iso-levels of Cartesian distance from the two solutions (*) for p = (1,1)
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(inverse kinematic solutions)
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Issues in implementation

= initial guess q°
= only one inverse solution is generated for each guess
»« multiple initializations for obtaining other solutions

= optimal step size a in Gradient method

= a constant step may work good initially, but not close to the
solution (or vice versa)

= an adaptive one-dimensional line search (e.g., Armijo’s rule) could
be used to choose the best o at each iteration

= stopping criteria

Cartesian error
(possibly, separate for " ry - f(g%) " <€
position and orientation)
= understanding closeness to singularities
numerical conditioning

6mintJ(Q9)} 2 o, of Jacobian matrix (SVD)
(or a simpler test on its determinant, for m=n)

nrement 19404 < g
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Numerical tests on RRP robot

= RRP/polar robot: desired E-E position ry=p4 = (1, 1,1)
—see slide 17, d;=0.5
= the two (known) analytic solutions, with g5 = 0, are:
q* = (0.7854, 0.3398, 1.5)
q =(q,-w,t-q,,q;3) = (-2.3562, 2.8018, 1.5)
= horms € = 10~ (max Cartesian error), € =10 (min joint increment)
s K..,=15 (max iterations), |det(J,)| < 10 (closeness to singularity)

= numerical performance of Gradient (with different o) vs. Newton
= test 1: q°= (0, 0, 1) as initial guess

s test 2: @0 = (-m/4, /2, 1) —"singular” start, since ¢,=0 (see slide 17)
s test 3: g% = (0, /2, 0) —"double singular” start, since also q;=0
= Solution and plots with Matlab code
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norm of Cartesian position error [m]

Numerical test - 1

= fest 1: q°= (0, 0, 1) as initial guess; evolution of error norm

Gradient method with constant step = 0.5

Gradient method with constant step = 1

-
T

o
©
T

o
)
T

o
~
T

o
S
T

Gradient: o = 0.5

o
o

sIoW, 15 (maX)

iterations\

norm of Cartesian position error [m]

I
IS

o
v

0 i i i i
o 1 2 3 4

Gradient: o = 1

too large, oscillates |
around solution

I T
5 6 7 8 9 10 11 12 13 14 15
iterations

Newton method
T T

norm of Cartesian position error [m]
o o o
= [} © —_

o
S
T

0

Newton |

very fast, converges |
in 5 iterations

0
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0 i i i i i i i i i i i i i i
o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

iterations
0.6

norm of Cartesian position error [m]

o
©

o
o

o
~

Gradient method with constant step = 0.7

Gradient: o = 0.7

good, converges
in 11 iterations

nts
04}
E o2}
o
0
‘

Cartesian errors % 1

component-wise

.

0

0.6

ot

-0.2

041
E ozf
o
‘

0.2
0 i
0 1 3 4 5 6 7 8 9 10 1
iterations
N err 0mp 5
0.57-10
i 1 i eX
2 3 4 5
‘ y
2 3 4 5
eZ

2 3 4 5

iterations

30



q, [rad]

q, [rad]

5 [m]

Numerical test - 1

= fest 1: @°= (0, 0, 1) as initial guess; evolution of joint variables

Gradient: o =1 Gradient: oo = 0.7

not converging converges in

to a solution 11 iterations
\

Joint variables Joint variables Joint variables
1 e 0.8 . 1 , ,
0.6 0.8
T 5 o6l
0.5f 1 £ o4} g
& & 0.4
0.2t 0.2
o S S S S S SR SO SO S o ; ; ; i i i i i i i i 0 ;
o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 0 1 2 3 4 5 6 7 8 9 10 N 0 2 3 4 5
1 T T T T T T T T T T T T T T 0.4 08
0.3} 0.6
0.5 - B = E
£ o2 £ o4}
| I C
0 o1l 0.2
oL 0 | | i i i i L L L L L 0 L
o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 0 1 2 3 4 5 6 7 8 9 10 1 0 2 3 4 5
B 1.8 18
1.6 . 16} 1.6
L i E .l E 14
1.4 = 14 s
1.2 . . 12} 121
1 I T S T S S N S S R ; ; ; ; ; i ; ; i ; ; 1 ! !
o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 0 1 2 3 4 5 6 7 g8 9 10 11 0 2 3 4 5
iterations iterations iteration:

Newton

converges in

5 iterations
J

I
both to solution g* = (0.7854, 0.3398, 1.5)

Robotics 1
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Numerical test - 2

= fest 2: q° = (-n/4, /2, 1): singular start
. Newton method with check of
<> singularity:
blocked at start

21F .

| <> without check:
it diverges!

error norms

Gradient
ao=0.7 :

\\\\\\\\\\\

starts toward
solution, but |
slowly stops
(in singularity):
when Cartesian error

11111111111111

ol
a, [rad]
o

lllllllllll 100 i i i i I i i I i I I L 1 i
5708
Vector e E Ker(J T) 11111111111111 0o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
r .
2 T T T T T T T T T T T T T T
_ o8 i
£ —_
® 06 | E OW\/—V
: &
1 2z s 4 5 & 7 8 s 10 1 T YT TR TR T )
P 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
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Numerical test - 3

m test3: @0 = (0 n/2 0) “double” singular start

Gdnmhd h

. Gradient (with o = 0.7) Newton
E ¥, | @ starts toward solution is either
2 1 @ exits the double singularity  blocked at start
5 1 s © slowly converges in 19 or (w/o check)
50 F 0.96-10 iterations to the solution explodes (NaN)!!
\ q*=(0.7854, 0.3398, 1.5)

I R R CRATEC TR G e e
S g Lo
= | = re
q) Q _ 15F —

— 05f (¢o) 3
c £ \ = 1\ P
({0} of : (] o5L I : A7
o ©
O % 1 2 8 4 5 6 7 8 9 1011 1213 14 15 16 17 18 19 + % 1 2 3 4 5 6 7 8 9 1011 1213 14 15 16 17 18 19
= =
8 0.6 s L A S S S B B Q 15 T T T T T T

- lo— : 1 :po.s»/v

RObO t i CS 1 iterations 33



Final remarks

= an efficient iterative scheme can be devised by combining

= initial iterations with Gradient method (“'sure but slow”, having linear
convergence rate)

= switch then to Newton method (quadratic terminal convergence rate)
= joint range limits are considered only at the end
= check if the found solution is feasible, as for analytical methods

= if the problem has to be solved on-line

= execute iterations and associate an actual robot motion: repeat steps
at times t,, t;=t,+T, ..., t, =t _+T (e.g., every T=40 ms)

« the “good” choice for the initial q° at t, is the solution of the previous
problem at t,_, (gives continuity, needs only 1-2 Newton iterations)

= crossing of singularities and handling of joint range limits need
special care in this case

= Jacobian-based inversion schemes are used also for kinematic
control, along a continuous task trajectory ry(t)
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