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Inverse kinematics 
what are we looking for? 
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direct kinematics is always unique; 
how about inverse kinematics for this 6R robot? 



Inverse kinematics problem 

!  “given a desired end-effector pose (position + 
orientation), find the values of the joint variables 
that will realize it” 

!  a synthesis problem, with input data in the form 

!  T = 

!  a typical nonlinear problem 
!  existence of a solution (workspace definition) 
!  uniqueness/multiplicity of solutions 
!  solution methods  

  R   p 

000  1 
p 

! 
"  r =      , or any other task vector 
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classical formulation: 
inverse kinematics for a given end-effector pose 

generalized formulation: 
inverse kinematics for a given value of task variables 



Solvability and robot workspace 

!  primary workspace WS1: set of all positions p that can be 
reached with at least one orientation (! or R) 
!  out of WS1 there is no solution to the problem 
!  for p " WS1 and a suitable ! (or R) there is at least one solution 

!  secondary (or dexterous) workspace WS2: set of positions p 
that can be reached with any orientation (among those 
feasible for the robot direct kinematics) 
!  for p " WS2 there is at least one solution for any feasible ! (or R)  

!  WS2 # WS1 
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Workspace of Fanuc R-2000i/165F 

WS1  
(! WS2 for spherical wrist 

without joint limits) 
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section for a 
constant angle $1  

rotating the  
base joint angle $1  



Workspace of planar 2R arm 

!  if l1 % l2 
!  WS1 = {p " R2: |l1-l2| & !p!&  l1+l2} 
!  WS2 = ' 

!  if l1 = l2 = " 
!  WS1 = {p " R2: !p!& 2"} 
!  WS2 = {p = 0} (infinite number of feasible orientations at the origin) 

x 

y •    p 

l1 

l2 

q1 

q2 

l1+l2 

|l1-l2| 

2 orientations 

1 orientation 

(WS1 
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inner and outer  
boundaries 



Wrist position and E-E pose 
inverse solutions for an articulated 6R robot 

LEFT DOWN RIGHT DOWN 

LEFT UP RIGHT UP 

4 inverse solutions 
out of singularities 
(for the position of 

the wrist center only) 

8 inverse solutions considering 
the complete E-E pose 

(spherical wrist: 2 alternative 
solutions for the last 3 joints) 

Unimation PUMA 560 

Robotics 1                7 



Counting and visualizing the 8 solutions 
to the inverse kinematics of a Unimation Puma 560 
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LEFT DOWN 

LEFT UP 

RIGHT DOWN 

RIGHT UP 



Multiplicity of solutions 
some examples 

!  E-E positioning of a planar 2R robot arm 
!  2 regular solutions in WS1 
!  1 solution on (WS1 

!  for l1 = l2: ) solutions in WS2 

!  E-E positioning of an articulated elbow-type 3R robot arm 
!  4 regular solutions in WS1 

!  spatial 6R robot arms 
!  & 16 distinct solutions, out of singularities: this “upper bound” of 

solutions was shown to be attained by a particular instance of 
“orthogonal” robot, i.e., with twist angles *i = 0 or ±+/2 (,i) 

!  analysis based on algebraic transformations of robot kinematics 
!  transcendental equations are transformed into a single polynomial 

equation of one variable 
!  seek for an equivalent polynomial equation of the least possible degree 

singular solutions 
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1.  in WS1 : )
1 regular solutions (except for 2. and 3.),                                

at which the E-E can take a continuum of                                   
) orientations (but not all orientations in the plane!) 

2.  if !p!= 3" :  only 1 solution, singular  

3.  if !p!= " : )1 solutions, 3 of which singular 

4.  if !p!< " : )1 regular solutions (never singular) 

A planar 3R arm 
workspace and number/type of inverse solutions 

x 

y 
•    p 

l1 

l2 

q1 

q2 

l3 

q3 l1 = l2 = l3 = " 

WS1 = {p " R2: !p!& 3"} 

WS2 = {p " R2: !p!& "} 
any planar orientation is feasible in WS2 
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Multiplicity of solutions 
summary of the general cases 

!  if m = n 
!  ! solutions 
!  a finite number of solutions (regular/generic case) 
!  “degenerate” solutions: infinite or finite set, but anyway 

different in number from the generic case (singularity) 

!  if m < n (robot is redundant for the kinematic task) 
!  ! solutions 
!  )n-m solutions (regular/generic case) 
!  a finite or infinite number of singular solutions 

!  use of the term singularity will become clearer when dealing 
with differential kinematics 

!  instantaneous velocity mapping from joint to task velocity 
!  lack of full rank of the associated m"n Jacobian matrix J(q)  
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Dexter robot (8R arm) 

!  m = 6 (position and orientation of E-E) 
!  n = 8 (all revolute joints) 
!  )2 inverse kinematic solutions (redundancy degree = n-m = 2)  

exploring inverse kinematic solutions by a self-motion 

video 
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Solution methods 

ANALYTICAL solution 
(in closed form) 

NUMERICAL solution 
(in iterative form) 

"  preferred, if it can be found* 
"  use ad-hoc geometric inspection 
"  algebraic methods (solution of 

polynomial equations) 
"  systematic ways for generating a 

reduced set of equations to be 
solved 

* sufficient conditions for 6-dof arms 
•  3 consecutive rotational joint axes are 

incident (e.g., spherical wrist), or 
•  3 consecutive rotational joint axes are 

parallel  

"  certainly needed if n>m (redundant 
case), or at/close to singularities 

"  slower, but easier to be set up 
"  in its basic form, it uses the 

(analytical) Jacobian matrix of the 
direct kinematics map 

"  Newton method, Gradient method, 
and so on… 

Jr(q) = 
  (fr (q) 

 (q 
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D. Pieper, PhD thesis, Stanford University, 1968 



Inverse kinematics of planar 2R arm 

x 

y 
•    p 

l1 

l2 

q1 

q2 

px 

py direct kinematics 

 px = l1 c1 + l2 c12  

 py = l1 s1 + l2 s12 

data      q1, q2 unknowns 

“squaring and summing” the equations of the direct kinematics 

 px
2 + py

2 - (l12 + l22) = 2 l1 l2 (c1 c12 + s1 s12) = 2 l1 l2 c2 

and from this 

 c2 = (px
2 + py

2 - l12 - l22)/ 2 l1 l2,  s2 = ±-1 - c2
2        q2 = ATAN2 {s2, c2} 

2 solutions 

in analytical form 

must be in [-1,1] (else, point p 
is outside robot workspace!) 
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Inverse kinematics of 2R arm (cont’d) 

x 

y 
•    p 

q1 

q2 

px 

py 

q1 = ATAN2 {py, px} - ATAN2 {l2 s2 , l1 + l2 c2}  

* 
. 

by geometric inspection 
q1 = * - .  

2 solutions  
(one for each value of s2) 

note: difference of ATAN2 needs 
to be re-expressed in (-+ , +]! 

•    p 

q1’ 

q2’ 

 q2’’ 

q1” 

{q1,q2}UP/LEFT {q1,q2}DOWN/RIGHT 

q2’ e q2’’ have same absolute 
value, but opposite signs 
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Algebraic solution for q1 

l1 + l2c2   - l2s2 

   l2s2        l1 + l2c2  

c1 

s1 

px 

py 
= 

q1 = ATAN2 {s1, c1} = ATAN2 {(py(l1+l2c2)-pxl2s2)/det, (px(l1+l2c2)+pyl2s2)/det} 

det = (l12 + l22 + 2 l1l2c2) > 0 
except for l1=l2 and c2=-1 
being then q1 undefined 

(singular case: )1 solutions) 

notes: a) this method provides directly the result in (-+ , +] 
 b) when evaluating ATAN2, det > 0 can be eliminated 
      from the expressions of s1 and c1 

px = l1 c1 + l2 c12 = l1 c1 + l2 (c1 c2 - s1 s2) 

py = l1 s1 + l2 s12 = l1 s1 + l2 (s1c2 + c1s2)  

linear in  
s1 and c1  

another  
solution  
method… 
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Inverse kinematics of polar (RRP) arm 

px 

py 

pz 

q1 

q2 

q3 

d1 

px = q3 c2 c1   

py = q3 c2 s1 

pz = d1 + q3 s2  

q1 = ATAN2{py/c2, px/c2} 

if px
2+py

2 = 0, then q1 remains undefined (stop); else  

(2 regular solutions {q1,q2,q3}) 

q2 = ATAN2{(pz - d1)/q3, ± -(px
2 + py

2)/q3
2 }  

if q3
 = 0, then q1 and q2 remain both undefined (stop); else  

(if it stops, 
a singular case:  

)2 or )1 
solutions) 

we have eliminated q3>0 from both arguments!  

px
2 + py

2 + (pz - d1)2 = q3
2 

q3 = + -px
2 + py

2 + (pz - d1)2 

our choice: take here only the positive value... 

q2 is NOT a 
 DH variable! 



Inverse kinematics  
for robots with spherical wrist 

x0 

y0 

z0 

x6 

y6 

z6 = a 

first 3 robot joints 
of any type (RRR, RRP, PPP, …) 

find q1, …, q6 from the input data: 
• p  (origin O6) 
• R = [n s a] (orientation of RF6)  

z3 
z5 

j4 j5 

j6 
O6 = p 

W 

d6 

j1 

1.  W = p - d6 a   /   q1, q2, q3  (inverse “position” kinematics for main axes) 

2.  R = 0R3(q1, q2, q3) 3R6(q4, q5, q6) 
                        (inverse “orientation”  
                         kinematics for wrist) given Euler ZYZ or ZXZ 

rotation matrix 
known, 
after 1. 

/  3R6(q4, q5, q6) = 0R3
T R 
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z4 

/  q4, q5, q6  



6R example: Unimation PUMA 600 

8 different inverse solutions  
that can be found in closed form 
(see Paul, Shimano, Mayer; 1981) 

spherical 
wrist 
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a = 0z6(q) 

n = 0x6(q) 

s = 0y6(q) 

p = 06(q) 

here d6=0,  
so that 06=W directly 

a function of 
q1, q2, q3 only! 



0 neglected 

!  use when a closed-form solution q to rd = fr(q) does not exist 
or is “too hard” to be found 

!                   (analytical Jacobian)   

!  Newton method (here for m=n) 
!  rd = fr(q) = fr(qk) + Jr(qk) (q - qk) + o(!q - qk!2) 

                    qk+1 = qk + Jr
-1(qk) [rd - fr(qk)]  

!  convergence if q0 (initial guess) is close enough to some q*: fr(q*) = rd 
!  problems near singularities of the Jacobian matrix Jr(q)  
!  in case of robot redundancy (m<n), use the pseudo-inverse Jr

#(q)  
!  has quadratic convergence rate when near to solution (fast!) 

Numerical solution of  
inverse kinematics problems 

Jr(q) = 
(fr 
(q 

Robotics 1              20 



Operation of Newton method 

!  in the scalar case, also known as “method of the tangent” 
!  for a differentiable function f(x), find a root of f(x)=0 by iterating as 
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animation from 
http://en.wikipedia.org/wiki/File:NewtonIteration_Ani.gif 

  

! 

xk+1 = xk "
f(xk)
f '(xk)

  

! 

x1{ ,x2,x3,x4,x5,...}
an approximating sequence 



!  Gradient method (max descent) 
!  minimize the error function 

       H(q) = # !rd - fr(q)!2 = # [rd - fr(q)]T [rd - fr(q)]  

                        qk+1 = qk - * 1qH(qk) 
    from 1H(q) = - Jr

T(q) [rd - fr(q)], we get 

                   qk+1 = qk + * Jr
T(qk) [rd - fr(qk)] 

!  the scalar step size * > 0 should be chosen so as to guarantee a 
decrease of the error function at each iteration (too large values 
for * may lead the method to “miss” the minimum) 

!  when the step size * is too small, convergence is extremely slow 

Numerical solution of  
inverse kinematics problems (cont’d) 
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Revisited as a “feedback” scheme 

Jr
T(q) 2 

3 

fr(q) 

+ 

- 

e rd q 
. 
q 

q(0) 

rd = cost 

e = rd - fr(q) / 0  4  closed-loop equilibrium e=0 is asymptotically stable 

V = # eTe 5 0  Lyapunov candidate function 

. 
q 

. 
e 

. 
V = eT = eT   d ( 

  dt 
(rd - fr(q)) = - eT Jr = - eT Jr Jr

Te  & 0 

. 
V = 0   4   e " Ker(Jr

T)     in particular e = 0 

asymptotic stability 

(* = 1) 
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Properties of Gradient method 

!  computationally simpler: Jacobian transpose, rather than its 
(pseudo)-inverse 

!  direct use also for robots that are redundant for the task 
!  may not converge to a solution, but it never diverges 
!  the discrete time evolution of the continuous scheme  

           

 is equivalent to an iteration of the Gradient method 
!  scheme can be accelerated by using a gain matrix K>0 

. 
q = Jr

T(q) K e 

qk+1 = qk + 6T Jr
T(qk) [rd - f(qk)] (* = 6T) 

note: K can be used also to “escape” from being stuck in a stationary point, 
by rotating the error e out of the kernel of Jr

T (if a singularity is encountered)   
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A case study 
analytic expressions of Newton and gradient iterations 

!  2R robot with l1=l2=1, desired end-effector position rd = (1,1) 
!  direct kinematic function and error 

!  Jacobian matrix 

!  Newton versus Gradient iteration 
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! 

fr(q) =
c1 + c12
s1 + s12

" 
# 
$ 

% 
& 
' 

  

! 

Jr(q) =
" fr(q)
"q

=
-(s1 + s12) -s12
c1 + c12 c12

# 

$ 
% 

& 

' 
( 

  

! 

e = rd - fr(q) = 1
1
" 
# 
$ % 
& 
' - fr(q)

  

! 

Jr
T(qk)

  

! 

"
-(s1 + s12) c1 + c12

-s12 c12

# 

$ 
% 

& 

' 
( 

  

! 

qk+1 = qk +
  

! 

1- (c1 + c12)
1- (s1 + s12)
" 

# 
$ 

% 

& 
' 

  

! 

1
s2

c12 s12

-(c1 + c12) -(s1 + s12)
" 

# 
$ 

% 

& 
' 

  

! 

q=qk

  

! 

q=qk

  

! 

q=qk

• 

ek 

  

! 

Jr
-1(qk)

det Jr(q) 



Error function 

!  2R robot with l1=l2=1, desired end-effector position rd = (1,1) 
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plot of !e!2 as a function of q = (q1,q2) 

e = rd - fr(q) 

two local minima 
 (inverse kinematic solutions) 



Error reduction by Gradient method 

!  flow of iterations along the negative (or anti-) gradient 
!  two possible cases: convergence or stuck (at zero gradient) 
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start 

one solution 

local maximum 
(stop if this is the initial guess) 

. . 

another start... 

...the other solution 

saddle point 
(stop after some iterations) 

(q1,q2)’ =(0,!/2) (q1,q2)” =(!/2,-!/2) (q1,q2)max =(-3!/4,0) (q1,q2)saddle =(!/4,0) 

e " Ker(Jr
T) ! 



Issues in implementation 

!  initial guess q0  
!  only one inverse solution is generated for each guess 
!  multiple initializations for obtaining other solutions 

!  optimal step size * in Gradient method 
!  a constant step may work good initially, but not close to the 

solution (or vice versa) 
!  an adaptive one-dimensional line search (e.g., Armijo’s rule) could 

be used to choose the best * at each iteration 
!  stopping criteria 

!  understanding closeness to singularities 

!qk+1-qk! $ #q !rd - f(qk)! $ # 
Cartesian error 

(possibly, separate for  
position and orientation) 

algorithm 
increment 

$min{J(qk)} % $0 

numerical conditioning  
of Jacobian matrix (SVD) 

(or a simpler test on its determinant, for m=n) 
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Numerical tests on RRP robot 

!  RRP/polar robot: desired E-E position rd = pd = (1, 1 ,1)  
 —see slide 17, d1=0.5 

!  the two (known) analytic solutions, with q3 % 0, are: 
q* = (0.7854, 0.3398, 1.5) 
q** = (q1

*- +, + - q2
*, q3

*) = (-2.3562, 2.8018, 1.5) 

!  norms # = 10-5 (max Cartesian error), #q =10-6 (min joint increment) 
!  kmax=15 (max iterations), |det(Jr)| $ 10-4 (closeness to singularity) 

!  numerical performance of Gradient (with different *) vs. Newton 
!  test 1: q0 = (0, 0, 1) as initial guess 

!  test 2: q0 = (-+/4, +/2, 1) —”singular” start, since c2=0 (see slide 17) 

!  test 3: q0 = (0, +/2, 0) —”double singular” start, since also q3=0 
!  solution and plots with Matlab code 
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Numerical test - 1 
!  test 1: q0 = (0, 0, 1) as initial guess; evolution of error norm 
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Gradient: * = 0.5 Gradient: * = 1 Gradient: * = 0.7 

slow, 15 (max) 
iterations 

too large, oscillates 
around solution good, converges 

in 11 iterations 

Newton 

very fast, converges 
in 5 iterations 

0.15 10-8 

0.57 10-5 

Cartesian errors 
component-wise 

ex 

ey 

ez 



Numerical test - 1 

!  test 1: q0 = (0, 0, 1) as initial guess; evolution of joint variables 
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Gradient: * = 1 Gradient: * = 0.7 
not converging 
to a solution 

converges in  
11 iterations 

Newton 
converges in  
5 iterations 

both to solution q* = (0.7854, 0.3398, 1.5) 



Numerical test - 2 
!  test 2: q0 = (-+/4, +/2, 1): singular start  
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Gradient 
* = 0.7 

with check of  
singularity: 

blocked at start 

without check: 
it diverges! 

Newton 

er
ro

r 
no

rm
s 

starts toward 
solution, but 
slowly stops 

(in singularity): 
when Cartesian error 
vector e ∈ Ker(Jr

T)  

jo
in

t 
va

ria
bl

es
 

!! 



Numerical test - 3 
!  test 3: q0 = (0, +/2, 0): “double” singular start  

Robotics 1              33 

Newton 
is either 

blocked at start 
or (w/o check) 

explodes (NaN)!! er
ro

r 
no

rm
 Gradient (with * = 0.7) 

①  starts toward solution 
②  exits the double singularity 
③  slowly converges in 19 

iterations to the solution 
 q*=(0.7854, 0.3398, 1.5) 

jo
in

t 
va

ria
bl

es
 

Ca
rt

es
ia

n 
er

ro
rs

 

 

 

 

0.96 10-5 



Final remarks 

!  an efficient iterative scheme can be devised by combining 
!  initial iterations with Gradient method (“sure but slow”, having linear 

convergence rate) 
!  switch then to Newton method (quadratic terminal convergence rate) 

!  joint range limits are considered only at the end 
!  check if the found solution is feasible, as for analytical methods 

!  if the problem has to be solved on-line 
!  execute iterations and associate an actual robot motion: repeat steps 

at times t0, t1=t0+T, ..., tk=tk-1+T (e.g., every T=40 ms)  

!  the “good” choice for the initial q0 at tk is the solution of the previous 
problem at tk-1 (gives continuity, needs only 1-2 Newton iterations) 

!  crossing of singularities and handling of joint range limits need 
special care in this case 

!  Jacobian-based inversion schemes are used also for kinematic 
control, along a continuous task trajectory rd(t)  
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