
Robotics 1

Inverse kinematics
Prof. Alessandro De Luca

Robotics 1 1

Inverse kinematics
what are we looking for?

Robotics 1 2

direct kinematics is always unique;
how about inverse kinematics for this 6R robot?

Inverse kinematics problem

!  “given a desired end-effector pose (position +
orientation), find the values of the joint variables
that will realize it”

!  a synthesis problem, with input data in the form

!  T =

!  a typical nonlinear problem
!  existence of a solution (workspace definition)
!  uniqueness/multiplicity of solutions
!  solution methods

 R p

000 1
p

!
"  r = , or any other task vector

Robotics 1 3

classical formulation:
inverse kinematics for a given end-effector pose

generalized formulation:
inverse kinematics for a given value of task variables

Solvability and robot workspace

!  primary workspace WS1: set of all positions p that can be
reached with at least one orientation (! or R)
!  out of WS1 there is no solution to the problem
!  for p " WS1 and a suitable ! (or R) there is at least one solution

!  secondary (or dexterous) workspace WS2: set of positions p
that can be reached with any orientation (among those
feasible for the robot direct kinematics)
!  for p " WS2 there is at least one solution for any feasible ! (or R)

!  WS2 # WS1

Robotics 1 4

Workspace of Fanuc R-2000i/165F

WS1
(! WS2 for spherical wrist

without joint limits)

Robotics 1 5

section for a
constant angle $1

rotating the
base joint angle $1

Workspace of planar 2R arm

!  if l1 % l2
!  WS1 = {p " R2: |l1-l2| & !p!& l1+l2}
!  WS2 = '

!  if l1 = l2 = "
!  WS1 = {p " R2: !p!& 2"}
!  WS2 = {p = 0} (infinite number of feasible orientations at the origin)

x

y •  p

l1

l2

q1

q2

l1+l2

|l1-l2|

2 orientations

1 orientation

(WS1

Robotics 1 6

inner and outer
boundaries

Wrist position and E-E pose
inverse solutions for an articulated 6R robot

LEFT DOWN RIGHT DOWN

LEFT UP RIGHT UP

4 inverse solutions
out of singularities
(for the position of

the wrist center only)

8 inverse solutions considering
the complete E-E pose

(spherical wrist: 2 alternative
solutions for the last 3 joints)

Unimation PUMA 560

Robotics 1 7

Counting and visualizing the 8 solutions
to the inverse kinematics of a Unimation Puma 560

Robotics 1 8

LEFT DOWN

LEFT UP

RIGHT DOWN

RIGHT UP

Multiplicity of solutions
some examples

!  E-E positioning of a planar 2R robot arm
!  2 regular solutions in WS1
!  1 solution on (WS1

!  for l1 = l2:) solutions in WS2

!  E-E positioning of an articulated elbow-type 3R robot arm
!  4 regular solutions in WS1

!  spatial 6R robot arms
!  & 16 distinct solutions, out of singularities: this “upper bound” of

solutions was shown to be attained by a particular instance of
“orthogonal” robot, i.e., with twist angles *i = 0 or ±+/2 (,i)

!  analysis based on algebraic transformations of robot kinematics
!  transcendental equations are transformed into a single polynomial

equation of one variable
!  seek for an equivalent polynomial equation of the least possible degree

singular solutions

Robotics 1 9

1.  in WS1 :)
1 regular solutions (except for 2. and 3.),

at which the E-E can take a continuum of
) orientations (but not all orientations in the plane!)

2.  if !p!= 3" : only 1 solution, singular

3.  if !p!= " :)1 solutions, 3 of which singular

4.  if !p!< " :)1 regular solutions (never singular)

A planar 3R arm
workspace and number/type of inverse solutions

x

y
•  p

l1

l2

q1

q2

l3

q3 l1 = l2 = l3 = "

WS1 = {p " R2: !p!& 3"}

WS2 = {p " R2: !p!& "}
any planar orientation is feasible in WS2

Robotics 1 10

Multiplicity of solutions
summary of the general cases

!  if m = n
!  ! solutions
!  a finite number of solutions (regular/generic case)
!  “degenerate” solutions: infinite or finite set, but anyway

different in number from the generic case (singularity)

!  if m < n (robot is redundant for the kinematic task)
!  ! solutions
! )n-m solutions (regular/generic case)
!  a finite or infinite number of singular solutions

!  use of the term singularity will become clearer when dealing
with differential kinematics

!  instantaneous velocity mapping from joint to task velocity
!  lack of full rank of the associated m"n Jacobian matrix J(q)

Robotics 1 11

Dexter robot (8R arm)

!  m = 6 (position and orientation of E-E)
!  n = 8 (all revolute joints)
! )2 inverse kinematic solutions (redundancy degree = n-m = 2)

exploring inverse kinematic solutions by a self-motion

video

Robotics 1 12

Solution methods

ANALYTICAL solution
(in closed form)

NUMERICAL solution
(in iterative form)

"  preferred, if it can be found*
"  use ad-hoc geometric inspection
"  algebraic methods (solution of

polynomial equations)
"  systematic ways for generating a

reduced set of equations to be
solved

* sufficient conditions for 6-dof arms
•  3 consecutive rotational joint axes are

incident (e.g., spherical wrist), or
•  3 consecutive rotational joint axes are

parallel

"  certainly needed if n>m (redundant
case), or at/close to singularities

"  slower, but easier to be set up
"  in its basic form, it uses the

(analytical) Jacobian matrix of the
direct kinematics map

"  Newton method, Gradient method,
and so on…

Jr(q) =
 (fr (q)

 (q

Robotics 1 13

D. Pieper, PhD thesis, Stanford University, 1968

Inverse kinematics of planar 2R arm

x

y
•  p

l1

l2

q1

q2

px

py direct kinematics

 px = l1 c1 + l2 c12

 py = l1 s1 + l2 s12

data q1, q2 unknowns

“squaring and summing” the equations of the direct kinematics

 px
2 + py

2 - (l12 + l22) = 2 l1 l2 (c1 c12 + s1 s12) = 2 l1 l2 c2

and from this

 c2 = (px
2 + py

2 - l12 - l22)/ 2 l1 l2, s2 = ±-1 - c2
2 q2 = ATAN2 {s2, c2}

2 solutions

in analytical form

must be in [-1,1] (else, point p
is outside robot workspace!)

Robotics 1 14

Inverse kinematics of 2R arm (cont’d)

x

y
•  p

q1

q2

px

py

q1 = ATAN2 {py, px} - ATAN2 {l2 s2 , l1 + l2 c2}

*
.

by geometric inspection
q1 = * - .

2 solutions
(one for each value of s2)

note: difference of ATAN2 needs
to be re-expressed in (-+ , +]!

•  p

q1’

q2’

 q2’’

q1”

{q1,q2}UP/LEFT {q1,q2}DOWN/RIGHT

q2’ e q2’’ have same absolute
value, but opposite signs

Robotics 1 15

Algebraic solution for q1

l1 + l2c2 - l2s2

 l2s2 l1 + l2c2

c1

s1

px

py
=

q1 = ATAN2 {s1, c1} = ATAN2 {(py(l1+l2c2)-pxl2s2)/det, (px(l1+l2c2)+pyl2s2)/det}

det = (l12 + l22 + 2 l1l2c2) > 0
except for l1=l2 and c2=-1
being then q1 undefined

(singular case:)1 solutions)

notes: a) this method provides directly the result in (-+ , +]
 b) when evaluating ATAN2, det > 0 can be eliminated
 from the expressions of s1 and c1

px = l1 c1 + l2 c12 = l1 c1 + l2 (c1 c2 - s1 s2)

py = l1 s1 + l2 s12 = l1 s1 + l2 (s1c2 + c1s2)

linear in
s1 and c1

another
solution
method…

Robotics 1 16

Robotics 1 17

Inverse kinematics of polar (RRP) arm

px

py

pz

q1

q2

q3

d1

px = q3 c2 c1

py = q3 c2 s1

pz = d1 + q3 s2

q1 = ATAN2{py/c2, px/c2}

if px
2+py

2 = 0, then q1 remains undefined (stop); else

(2 regular solutions {q1,q2,q3})

q2 = ATAN2{(pz - d1)/q3, ± -(px
2 + py

2)/q3
2 }

if q3
 = 0, then q1 and q2 remain both undefined (stop); else

(if it stops,
a singular case:

)2 or)1
solutions)

we have eliminated q3>0 from both arguments!

px
2 + py

2 + (pz - d1)2 = q3
2

q3 = + -px
2 + py

2 + (pz - d1)2

our choice: take here only the positive value...

q2 is NOT a
 DH variable!

Inverse kinematics
for robots with spherical wrist

x0

y0

z0

x6

y6

z6 = a

first 3 robot joints
of any type (RRR, RRP, PPP, …)

find q1, …, q6 from the input data:
• p (origin O6)
• R = [n s a] (orientation of RF6)

z3
z5

j4 j5

j6
O6 = p

W

d6

j1

1.  W = p - d6 a / q1, q2, q3 (inverse “position” kinematics for main axes)

2.  R = 0R3(q1, q2, q3) 3R6(q4, q5, q6)
 (inverse “orientation”
 kinematics for wrist) given Euler ZYZ or ZXZ

rotation matrix
known,
after 1.

/ 3R6(q4, q5, q6) = 0R3
T R

Robotics 1 18

z4

/ q4, q5, q6

6R example: Unimation PUMA 600

8 different inverse solutions
that can be found in closed form
(see Paul, Shimano, Mayer; 1981)

spherical
wrist

Robotics 1 19

a = 0z6(q)

n = 0x6(q)

s = 0y6(q)

p = 06(q)

here d6=0,
so that 06=W directly

a function of
q1, q2, q3 only!

0 neglected

!  use when a closed-form solution q to rd = fr(q) does not exist
or is “too hard” to be found

!  (analytical Jacobian)

!  Newton method (here for m=n)
!  rd = fr(q) = fr(qk) + Jr(qk) (q - qk) + o(!q - qk!2)

 qk+1 = qk + Jr
-1(qk) [rd - fr(qk)]

!  convergence if q0 (initial guess) is close enough to some q*: fr(q*) = rd
!  problems near singularities of the Jacobian matrix Jr(q)
!  in case of robot redundancy (m<n), use the pseudo-inverse Jr

#(q)
!  has quadratic convergence rate when near to solution (fast!)

Numerical solution of
inverse kinematics problems

Jr(q) =
(fr
(q

Robotics 1 20

Operation of Newton method

!  in the scalar case, also known as “method of the tangent”
!  for a differentiable function f(x), find a root of f(x)=0 by iterating as

Robotics 1 21

animation from
http://en.wikipedia.org/wiki/File:NewtonIteration_Ani.gif

!

xk+1 = xk "
f(xk)
f '(xk)

!

x1{ ,x2,x3,x4,x5,...}
an approximating sequence

!  Gradient method (max descent)
!  minimize the error function

 H(q) = # !rd - fr(q)!2 = # [rd - fr(q)]T [rd - fr(q)]

 qk+1 = qk - * 1qH(qk)
 from 1H(q) = - Jr

T(q) [rd - fr(q)], we get

 qk+1 = qk + * Jr
T(qk) [rd - fr(qk)]

!  the scalar step size * > 0 should be chosen so as to guarantee a
decrease of the error function at each iteration (too large values
for * may lead the method to “miss” the minimum)

!  when the step size * is too small, convergence is extremely slow

Numerical solution of
inverse kinematics problems (cont’d)

Robotics 1 22

Revisited as a “feedback” scheme

Jr
T(q) 2

3

fr(q)

+

-

e rd q
.
q

q(0)

rd = cost

e = rd - fr(q) / 0 4 closed-loop equilibrium e=0 is asymptotically stable

V = # eTe 5 0 Lyapunov candidate function

.
q

.
e

.
V = eT = eT d (

 dt
(rd - fr(q)) = - eT Jr = - eT Jr Jr

Te & 0

.
V = 0 4 e " Ker(Jr

T) in particular e = 0

asymptotic stability

(* = 1)

Robotics 1 23

r

Properties of Gradient method

!  computationally simpler: Jacobian transpose, rather than its
(pseudo)-inverse

!  direct use also for robots that are redundant for the task
!  may not converge to a solution, but it never diverges
!  the discrete time evolution of the continuous scheme

 is equivalent to an iteration of the Gradient method
!  scheme can be accelerated by using a gain matrix K>0

.
q = Jr

T(q) K e

qk+1 = qk + 6T Jr
T(qk) [rd - f(qk)] (* = 6T)

note: K can be used also to “escape” from being stuck in a stationary point,
by rotating the error e out of the kernel of Jr

T (if a singularity is encountered)

Robotics 1 24

A case study
analytic expressions of Newton and gradient iterations

!  2R robot with l1=l2=1, desired end-effector position rd = (1,1)
!  direct kinematic function and error

!  Jacobian matrix

!  Newton versus Gradient iteration

Robotics 1 25

!

fr(q) =
c1 + c12
s1 + s12

"

$

%
&
'

!

Jr(q) =
" fr(q)
"q

=
-(s1 + s12) -s12
c1 + c12 c12

$
%

&

'
(

!

e = rd - fr(q) = 1
1
"

$ %
&
' - fr(q)

!

Jr
T(qk)

!

"
-(s1 + s12) c1 + c12

-s12 c12

$
%

&

'
(

!

qk+1 = qk +

!

1- (c1 + c12)
1- (s1 + s12)
"

$

%

&
'

!

1
s2

c12 s12

-(c1 + c12) -(s1 + s12)
"

$

%

&
'

!

q=qk

!

q=qk

!

q=qk

•

ek

!

Jr
-1(qk)

det Jr(q)

Error function

!  2R robot with l1=l2=1, desired end-effector position rd = (1,1)

Robotics 1 26

plot of !e!2 as a function of q = (q1,q2)

e = rd - fr(q)

two local minima
 (inverse kinematic solutions)

Error reduction by Gradient method

!  flow of iterations along the negative (or anti-) gradient
!  two possible cases: convergence or stuck (at zero gradient)

Robotics 1 27

start

one solution

local maximum
(stop if this is the initial guess)

. .

another start...

...the other solution

saddle point
(stop after some iterations)

(q1,q2)’ =(0,!/2) (q1,q2)” =(!/2,-!/2) (q1,q2)max =(-3!/4,0) (q1,q2)saddle =(!/4,0)

e " Ker(Jr
T) !

Issues in implementation

!  initial guess q0
!  only one inverse solution is generated for each guess
!  multiple initializations for obtaining other solutions

!  optimal step size * in Gradient method
!  a constant step may work good initially, but not close to the

solution (or vice versa)
!  an adaptive one-dimensional line search (e.g., Armijo’s rule) could

be used to choose the best * at each iteration
!  stopping criteria

!  understanding closeness to singularities

!qk+1-qk! $ #q !rd - f(qk)! $ #
Cartesian error

(possibly, separate for
position and orientation)

algorithm
increment

$min{J(qk)} % $0

numerical conditioning
of Jacobian matrix (SVD)

(or a simpler test on its determinant, for m=n)

Robotics 1 28

Numerical tests on RRP robot

!  RRP/polar robot: desired E-E position rd = pd = (1, 1 ,1)
 —see slide 17, d1=0.5

!  the two (known) analytic solutions, with q3 % 0, are:
q* = (0.7854, 0.3398, 1.5)
q** = (q1

*- +, + - q2
*, q3

*) = (-2.3562, 2.8018, 1.5)

!  norms # = 10-5 (max Cartesian error), #q =10-6 (min joint increment)
!  kmax=15 (max iterations), |det(Jr)| $ 10-4 (closeness to singularity)

!  numerical performance of Gradient (with different *) vs. Newton
!  test 1: q0 = (0, 0, 1) as initial guess

!  test 2: q0 = (-+/4, +/2, 1) —”singular” start, since c2=0 (see slide 17)

!  test 3: q0 = (0, +/2, 0) —”double singular” start, since also q3=0
!  solution and plots with Matlab code

Robotics 1 29

Numerical test - 1
!  test 1: q0 = (0, 0, 1) as initial guess; evolution of error norm

Robotics 1 30

Gradient: * = 0.5 Gradient: * = 1 Gradient: * = 0.7

slow, 15 (max)
iterations

too large, oscillates
around solution good, converges

in 11 iterations

Newton

very fast, converges
in 5 iterations

0.15 10-8

0.57 10-5

Cartesian errors
component-wise

ex

ey

ez

Numerical test - 1

!  test 1: q0 = (0, 0, 1) as initial guess; evolution of joint variables

Robotics 1 31

Gradient: * = 1 Gradient: * = 0.7
not converging
to a solution

converges in
11 iterations

Newton
converges in
5 iterations

both to solution q* = (0.7854, 0.3398, 1.5)

Numerical test - 2
!  test 2: q0 = (-+/4, +/2, 1): singular start

Robotics 1 32

Gradient
* = 0.7

with check of
singularity:

blocked at start

without check:
it diverges!

Newton

er
ro

r
no

rm
s

starts toward
solution, but
slowly stops

(in singularity):
when Cartesian error
vector e ∈ Ker(Jr

T)

jo
in

t
va

ria
bl

es

!!

Numerical test - 3
!  test 3: q0 = (0, +/2, 0): “double” singular start

Robotics 1 33

Newton
is either

blocked at start
or (w/o check)

explodes (NaN)!! er
ro

r
no

rm
 Gradient (with * = 0.7)

①  starts toward solution
②  exits the double singularity
③  slowly converges in 19

iterations to the solution
 q*=(0.7854, 0.3398, 1.5)

jo
in

t
va

ria
bl

es

Ca
rt

es
ia

n
er

ro
rs

0.96 10-5

Final remarks

!  an efficient iterative scheme can be devised by combining
!  initial iterations with Gradient method (“sure but slow”, having linear

convergence rate)
!  switch then to Newton method (quadratic terminal convergence rate)

!  joint range limits are considered only at the end
!  check if the found solution is feasible, as for analytical methods

!  if the problem has to be solved on-line
!  execute iterations and associate an actual robot motion: repeat steps

at times t0, t1=t0+T, ..., tk=tk-1+T (e.g., every T=40 ms)

!  the “good” choice for the initial q0 at tk is the solution of the previous
problem at tk-1 (gives continuity, needs only 1-2 Newton iterations)

!  crossing of singularities and handling of joint range limits need
special care in this case

!  Jacobian-based inversion schemes are used also for kinematic
control, along a continuous task trajectory rd(t)

Robotics 1 34

