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Kinematics of robot manipulators 

  study of ... 
 geometric and timing aspects of robot motion, 
without reference to the causes producing it 

  robot seen as ... 
   an (open) kinematic chain of rigid bodies 

interconnected by (revolute or prismatic) joints 
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Motivations 

  functional aspects 
  definition of robot workspace 
  calibration 

  operational aspects 

  trajectory planning  
  programming 
  motion control 

task execution 
(actuation by motors) 

task definition and 
performance 

two different “spaces” related by kinematic (and dynamic) maps 
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Kinematics  
formulation and parameterizations 

  choice of parameterization q 
  unambiguous and minimal characterization of robot configuration 
  n = # degrees of freedom (dof) = # robot joints (rotational or 

translational) 

  choice of parameterization r 
  compact description of position and/or orientation (pose) variables of 

interest to the required task 
  usually, m ≤ n and m ≤ 6 (but none of these is strictly necessary)   

JOINT 
space 

TASK 
(Cartesian) 

space 

q = (q1,…,qn) r = (r1,…,rm) 

DIRECT 

INVERSE 

r = f(q) 

q = f -1(r) 
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Open kinematic chains 

  m = 2 
  pointing in space 
  positioning in the plane 

  m = 3 
  orientation in space 
  positioning and orientation in the plane 

q1 

q2 

q3 

q4 

qn 

r = (r1,…,rm) 

e.g., it describes the 
pose of frame RFE 

RFE 

e.g., the relative angle 
between a link and the 

following one 
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Classification by kinematic type 
(first 3 dofs) 

Cartesian or 
gantry 
(PPP) 

cylindric 
(RPP) 

SCARA 
(RRP) 

polar or 
spherical 

(RRP) 

articulated or 
anthropomorphic 
(RRR) 

R = 1-dof rotational (revolute) joint 
P = 1-dof translational (prismatic) joint 
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Direct kinematic map 

  the structure of the direct kinematics function 
depends from the chosen r 

  methods for computing fr(q) 
  geometric/by inspection 
  systematic: assigning frames attached to the robot 

links and using homogeneous transformation matrices  

r = fr(q) 
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Example: direct kinematics of 2R arm 

x 

y 

q1 

q2 

P 
•   

l1 

l2 

px 

py 
φ q = q = 

q1 

q2 

r = 
px 
py 
φ 

n = 2 

m = 3 

px = l1 cos q1 + l2 cos(q1+q2) 

py = l1 sin q1 + l2 sin(q1+q2) 

φ  = q1+ q2 

for more general cases, we need a “method”!  
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Numbering links and joints 

joint 1 

link 0 
(base) 

link 1 

joint 2 

joint i-1 
joint i 

joint n 
joint i+1 link i-1 

link i link n 

(end effector) 

Robotics 1                9 

revolute prismatic 



Spatial relation between joint axes 

axis of joint i axis of joint i+1 

common normal  
(axis of link i) 

90° 

90° 

A 

B 

a i = displacement AB between joint axes (always well defined) 

α i	



π 	



α i = twist angle between joint axes 
         — projected on a plane π orthogonal to the link axis 

with sign 
(pos/neg)! 
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Spatial relation between link axes 

link i-1 

link i 

axis of joint i 

axis of link i axis of link i-1 

C 

D 

d i = displacement CD (a variable if joint i is prismatic) 

θ i = angle between link axes (a variable if joint i is revolute)        
         — projected on a plane σ  orthogonal to the joint axis 

θi 
σ 	



with sign 
(pos/neg)! 
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Denavit-Hartenberg (DH) frames 

joint axis 
i-1 

joint axis 
i 

joint axis 
i+1 

link i-1 
link i 

xi-1 

Oi-1 

xi 

zi 

Oi 

ai 

θi 

αi 

zi-1 di 

common normal 
to joint axes 

i and i+1 axis around which the link rotates  
or along which the link slides  
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frame RFi  is  
attached to link i 

link i-1 is moved 
by joint i-1 



Denavit-Hartenberg parameters 

  unit vector zi along axis of joint i+1 
  unit vector xi along the common normal to joint i and i+1 axes (i → i+1) 
  ai = distance DOi — positive if oriented as xi (constant = “length” of link i)  
  di = distance Oi-1D — positive if oriented as zi-1 (variable if joint i is PRISMATIC) 
  αi = twist angle between zi-1 and zi around xi (constant) 
  θi = angle between xi-1 and xi around zi-i (variable if joint i is REVOLUTE)  

axis of joint 
i-1 

axis of joint 
i 

axis of joint 
i+1 

link i-1 
link i 

xi-1 

Oi-1 

xi 

zi 

Oi 

ai 

θi 

αi 

zi-1 di 

D 
•   
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Denavit-Hartenberg layout made simple 
(a popular 3-minute illustration...) 

   note: the authors of this video use r in place of a, and do not add subscripts! 
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video 

https://www.youtube.com/watch?v=rA9tm0gTln8 



Ambiguities in defining DH frames 

  frame0: origin and x0 axis are arbitrary 
  framen: zn axis is not specified (but xn must be 

orthogonal to and intersect zn-1) 
  when zi-1 and zi are parallel: the common 

normal is not uniquely defined (Oi can be 
chosen arbitrarily along zi) 

  when zi-1 and zi are incident: the positive 
direction of xi can be chosen at will (however, 
we often take xi = zi-1 × zi) 

Robotics 1              15 



Homogeneous transformation 
between successive DH frames (from framei-1 to framei) 

  roto-translation around and along zi-1 

  roto-translation around and along xi 

cθi -sθi  0   0 
sθi  cθi  0   0 
 0   0    1   0 

 0   0    0   1 

 1   0   0   0 
 0   1   0   0 
 0   0   1   di 

 0   0   0   1 

cθi -sθi  0   0 
sθi  cθi  0   0 
 0   0    1   di 

 0   0    0   1 

i-1Ai’ (qi) = = 

rotational joint ⇒  qi = θi  prismatic joint ⇒  qi = di  

1   0    0    ai 
0  cαi -sαi  0 
0  sαi  cαi  0 

0   0    0    1 

i’Ai = 
always a  

constant matrix 
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Denavit-Hartenberg matrix 

cθi     -cαi sθi        sαi sθi    aicθi  
sθi      cαi cθi       -sαi cθi    aisθi 
 0         sαi               cαi        di 

 0          0            0            1  

i-1Ai  (qi) = i-1A i’    (qi) i’A i =  

compact notation: c = cos, s = sin 

super-compact notation: ci = cos qi, si = sin qi 
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J. Denavit and R.S. Hartenberg, “A kinematic notation for lower-pair mechanisms based on matrices,” 
Trans. ASME J. Applied Mechanics, 23: 215–221, 1955 



Direct kinematics of manipulators 

xE 

yE 

zE approach a 

slide s 

normal n 

description “internal” 
 to the robot using 

•  product 0A1(q1) 1A2(q2)…n-1An(qn) 
•  q = (q1,…,qn) 

description “external”  
 to the robot using 

•  BTE =             = 

•  r = (r1,…,rm) 

  R   p 

000  1 

n s a   p 

0 0 0   1 
BTE = BT0 0A1(q1) 1A2(q2) …n-1An(qn) nTE 

    r = fr(q) 

alternative descriptions of the direct kinematics of the robot 

RFB 
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x0 

y0 

z0 

RF0 

RFE 



Example: SCARA robot 

q1 q2 

q3 

q4 
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Sankyo SCARA 8438 

video 

Sankyo SCARA SR 8447 



J1 shoulder 

J2 elbow 

J3 prismatic  
≡ 

J4 revolute 

Step 1: joint axes 

all parallel 
(or coincident) 

twists α i = 0 
or π   
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a1 

Step 2: link axes 

a2 a3 = 0 

the vertical “heights” 
of the link axes 

are arbitrary 
(for the time being) 
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Step 3: frames 

= a axis 
(approach) 

z0 

x0 
y0 

= z3 

x3 

z4 
x4 

axes yi for i > 0 
are not shown 

(nor needed; they form  
right-handed frames) 
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z2  

x2 

z1 

x1 



Step 4: DH table of parameters 

i α i	

 ai di θ i 

1 0 a1 d1 q1 

2 0 a2 0 q2 

3 0 0 q3 0 

4 π 0 d4 q4 

note that:  
•  d1 and d4 could be set = 0 
•  here, it is d4 < 0 
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z0 

x0 
y0 

= z3 

x3 

z4 
x4 

z1 

x1 z2  

x2 



Step 5: transformation matrices 

cθ4     sθ4       0     0 
sθ4    -cθ4        0     0 
 0        0         -1    d4 
 0        0  0     1  

1     0     0  0  
0     1     0  0 
0     0     1  d3  
0     0     0    1  

cθ2   - sθ2  0    a2cθ2  
sθ2     cθ2  0    a2sθ2 
 0       0            1     0 
 0       0        0     1  

cθ1   - sθ1  0   a1cθ1  
sθ1     cθ1  0    a1sθ1 
 0       0            1     d1 
 0       0        0     1  

3A4(q4) = 

2A3(q3) = 1A2(q2) = 

0A1(q1) = 

q = (q1, q2, q3, q4)  

   = (θ1, θ2, d3, θ4)   
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Step 6a: direct kinematics 
as homogeneous matrix BTE (products of iAi+1) 

c4     s4      0     0 
s4    -c4      0     0 
 0     0       -1    d4 
 0     0     0     1  

c12  -s12      0    a1c1+ a2c12 
s12   c12       0    a1s1+ a2s12 
 0     0         1       d1+q3 
 0     0      0          1  

3A4(q4) = 

0A3(q1,q2,q3) = 

c124    s124      0    a1c1+ a2c12 
s124   -c124      0    a1s1+ a2s12 
 0      0          -1    d1+q3+d4 
 0      0        0          1  

BTE = 0A4(q1,q2,q3,q4) = 

p = p(q1,q2,q3) 
R(q1,q2,q4)=[ n s a ] 
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(BT0 = 4TE = I) 



Step 6b: direct kinematics 
as task vector r ∈  Rm 

take 
p(q1,q2,q3) 

as such 

c124    s124      0    a1c1+ a2c12 
s124   -c124      0    a1s1+ a2s12 
 0      0          -1    d1+q3+d4 
 0      0        0          1  

0A4(q1,q2,q3,q4) = 

extract αz  
from 

R(q1,q2,q4) 
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     px          a1c1+ a2c12 
r =  py  = fr(q) =  a1s1+ a2s12   ∈ R4

  
       pz                d1+q3+d4                      
       αz   q1+q2+q4 

I 

I 



Stanford manipulator 

   6-dof: 2R-1P-3R (spherical wrist) 

  shoulder offset 
  “one possible” DH assignment of 

frames is shown 
  determine the associated  

  DH parameters table 
  homogeneous transformation 

matrices 
  direct kinematics 

  write a program for computing 
the direct kinematics 

  numerically (Matlab) 
  symbolically (Mathematica, 

Maple, Symbolic Manipulation 
Toolbox of Matlab, …) 
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DH table for Stanford manipulator 

   6-dof: 2R-1P-3R (spherical wrist) 
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i αi ai di θi 

1 -π/2 0 d1>0 q1=0 

2 π/2 0 d2>0 q2=0 

3 0 0 q3>0 -π/2 

4 -π/2 0 0 q4=0 

5 π/2 0 0 q5=-π/2 

6 0 0 d6>0 q6=0 

joint variables are in red,  
with their current value in the shown configuration 



KUKA LWR 4+ 
  7R (no offsets, spherical shoulder and spherical wrist) 

  determine  
  frames and table 

of DH parameters 
  homogeneous 

transformation 
matrices 

  direct kinematics 
  d1 and d7 can be 

set = 0 or not  
(as needed) 

available at  
DIAG Robotics Lab 
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left right 



KUKA KR5 Sixx R650 
  6R (offsets at shoulder and elbow, spherical wrist) 

  determine  
  frames and table of DH parameters 
  homogeneous transformation matrices 
  direct kinematics 

available at  
DIAG Robotics Lab 

Robotics 1              30 

top view 

side view (from observer in V) 

V 



Appendix:  
Modified DH convention 

  a modified version used in J. Craig’s book “Introduction to Robotics”, 1986 
  has zi axis on joint i 
  ai-1 & αi-1 = distance & twist angle from zi-1 to zi, measured along & about xi-1 

  di & θi = distance & angle from xi-1 to xi, measured along & about zi 
  source of much confusion... if you are not aware of it (or don’t mention it!) 
  convenient with link flexibility: a rigid frame at the base, another at the tip... 
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€ 

i−1Ai
mod =

cθ i −sθ i 0 ai−1
cα i−1sθ i cα i−1cθ i −sα i−1 −di sα i−1
sα i−1sθ i sα i−1cθ i cα i−1 dicα i−1
0 0 0 1

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 

€ 

i−1Ai =

cθ i −cα i sθ i sα i sθ i aicθ i
sθ i cα icθ i −sα icθ i ai sθ i
0 sα i cα i di
0 0 0 1

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 

modified DH tends to place frames 
at the base of each link 

x0 

y0 x1 

y1 

x2 
y2 

x0 

y0 
x1 

y1 

x2 
y2 

planar 2R 
example 

classical 
(or distal) 

modified 
(or proximal) 


