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Robot components: 
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Properties of measurement systems - 1 

!  accuracy 
 agreement of measured values with a given reference 
standard (e.g., ideal characteristics) 

!  repeatability 
 capability of reproducing as output similar measured 
values over consecutive measurements of the same 
constant input quantity 

!  stability 
 capability of keeping the same measuring characteristics 
over time/temperature (similar to accuracy, but in the long run) 
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Accuracy and Repeatability 
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Accuracy and Repeatability 
in robotics 
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!  accuracy is how close a robot can come to a given point in its workspace 
!  depends on machining accuracy in construction/assembly of the robot, flexibility effects 

of the links, gear backlash, payload changes, round-off errors in control computations, ... 

!  can be improved by (kinematic) calibration 

!  repeatability is how close a robot can return to a previously taught point 
!  depends only the robot controller/measurement resolution 

!  both may vary in different areas of 
the robot workspace 
!  standard ISO 9283 defines conditions 

for assessing robot performance 

!  limited to static situations (recently, 
interest also in dynamic motion) 

!  robot manufacturers usually provide 
only data on “repeatability” 

simple test on repeatability of a 
Fanuc ArcMate100i robot (1.3 m reach) 

video 



Properties of measurement systems - 2 

!  linearity error 
 maximum deviation of the measured output from the 
straight line that best fits the real characteristics 
!   as % of the output (measurement) range 

!  offset error 
 value of the measured output for zero input 
!  sometimes not zero after an operation cycle, due to hysteresis 

!  resolution error 
 maximum variation of the input quantity producing no 
variation of the measured output 
!   in absolute value or in % of the input range 
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Sensor measurements 
some non-idealities 
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Classes of sensors for robots 

!  proprioceptive sensors measure the internal state of the 
robot (position and velocity of joints, but also torque at joints or 
acceleration of links) 
!  kinematic calibration, identification of dynamic parameters, control 

!  exteroceptive sensors measure/characterize robot 
interaction with the environment, enhancing its autonomy 
 (forces/torques, proximity, vision, but also sensors for sound, smoke, 
humidity, …) 
!  control of interaction with the environment, obstacle avoidance, 

localization of mobile robots, navigation in unknown environments 
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Position sensors 

!  provide an electrical signal proportional to the displacement 
(linear or angular) of a mechanical part with respect to a 
reference position 

!  linear displacements: potentiometers, linear variable-
differential transformers (LVDT), inductosyns 

!  angular displacements: potentiometers, resolvers, syncros    
(all analog devices with A/D conversion), encoders (digital) 

the most used in robotics, since also linear 
displacements are obtained through rotating 

motors and suitable transmissions 
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Absolute encoders 

Nt = # tracks = # bit 
(min 12 in robotics) 

•  rotating optical disk, with alternated 
transparent and opaque sectors on 
multiple concentric tracks 

•  (infrared) light beams are emitted by 
leds and sensed by photo-receivers 

•  light pulses are converted into 
electrical pulses, electronically 
processed and transmitted in output  

•  resolution = 360°/2Nt  

•  digital encoding of absolute position 

when the optical disk is rotating fast, the 
use of binary coding may lead to (large) 
reading errors, in correspondence to 
multiple transitions of bits 
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GRAY 
CODE 

BINARY 
CODE 

Absolute encoding 

adjacent codes differ 
by just one bit 

XOR 
optical disks 
with 2 bits  
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Use of absolute encoders 

•  ready to measure at start (no “homing”) 

•  two modes for permanent operation 
- when switching off the drive, position 

parameters are saved on a flash memory 
(and brakes activated)  

- battery for the absolute encoder is always 
active, and measures position even when 
the drive is off 

- data memory > 20 years 

•  single-turn or multi-turn versions, e.g.  
- 13-bit single-turn has 213 = 8192 steps per 

revolution (resolution = 0.044°) 

- 29-bit multi-turn has 8192 steps/revolution 
+ counts up to 216 = 65536 revolutions 

•  aluminum case with possible interface to field 
bus systems (e.g., CANopen or PROFIBUS) 

•  typical supply 5/28V DC @1.2 W 
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Incremental encoders  

•  optical rotating disk with three tracks, alternating 
transparent and opaque areas: measures  
incremental angular displacements by counting trains 
of Ne pulses (“counts”) per turn (Ne = 100÷5000) 

•  the two A and B tracks (channels) are 
in quadrature (phase shift of 90° 
electrical), allowing to detect the 
direction of rotation 

•  a third track Z is used to define the “0” 
reference position, with a reset of the 
counter (needs “homing” at start) 

•  some encoders provide as output also 
the three phases needed for the 
switching circuit of brushless motors 
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Incremental encoders  

•  two (cheap) incremental encoders 
inside a mouse 
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•  a OMRON incremental encoder 
with 2000 pulses/turn 

diameter  40 mm 
mass m ! 100 g 

inertia J = 1 10-6 kg m2  



•  “fractions of a cycle” of each pulse train are 
measured in “electrical degrees” 

•  1° electrical = 1° mechanical/Ne,          
360° mechanical = 1 turn   

•  signals are fed in a digital counter, with a  
D-type flip-flop to sense direction + reset 

•  to improve resolution (4"), the leading and 
trailing edges of signals A and B are used; it 
is the sequence of pulses C that clocks now 
the counter (increments or decrements) 

Signal processing 

C 
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Quadrature detection in incremental encoders 
a more complete implementation 
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•  it is assumed that an oversampling clock "clk” (e.g., as provided by a FPGA) 
is available, which is faster than the two quadrature signals A and B 
•  the digital count output will have a resolution multiplied by 4 

NOTE: since in practice A and B signals may 
not be synchronous to the clock signal, 

two extra D flip-flops per input should be used  
to avoid meta-stable states in the counters 

90° electrical 

XOR gates 

D (delay) flip-flops 



Count multiplication 
example of quadrature detection 
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•  an incremental encoder with Ne = 2000 (electrical) cycles provides a 
count of N = 8000 pulses/turn after electronic multiplication 
•  its final resolution is (mechanical) 360°/8000 = .045° (= 0° 2’ 42’’) 
•  needs a 13-bit counter to cover a full turn without reset (213 = 8192) 



Accuracy in incremental encoders 

•  division error: maximum 
displacement between two 
consecutive leading/trailing 
edges, typically within max    
± 25° electrical 

•  the phase shift of the two 
channels, nominally equal to 
90° electrical, is typically 
within max ± 35° electrical 
(quadrature error)  

...apart from  
quantization errors 
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Indirect measure of velocity 
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animation of Savitzky-Golay filter 
with cubic polynomials 

!  numerical differentiation of digital measures of position 
!  to be realized on line with Backward Differentiation Formulas (BDFs) 

!  1-step BDF (Euler method):  

!  4-step BDF:  

!  convolution filtering is needed because of noise and position quantization 
!  use of non-causal filters (e.g., Savitzky-Golay) helps, but introduces delays 

!  Kalman filter for on line state estimation (optimal, assuming Gaussian noise) 

! 
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Kinematic Kalman Filter 
for velocity estimation 
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Velocity sensor: Tachometer 
always mounted on the (electrical) motor axis 

N S 

# 

permanent magnet coil with area $%

&%

principle of operation (single coil) 

$%&%

V 

V = - d'/dt  = |B|$ & sin &t 

B = cost 

amplitude V ( &%
⇒ to reduce ripples, use m coils 

rotated regularly by 180°/m 
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magnetic field: 
flux through the coil is '(B) = |B|$ cos # = |B|$ cos &t 



DC tachometer 
an example 

Robotics 1              22 

•  Servo-Tek Tach Generator (B series) 
•  bi-directional 
•  output voltage 11÷24 V @1000 RPM 
•  low ripple: < 3% peak-to-peak of DC 

value (with 72 KHz filter) 
•  weight = 113 g, diameter = 2.9 cm 
•  linearity error < 0.1% (at any speed) 
•  stability 0.1% (w.r.t. temperature)  

1.75 mNm (as a load) 



Accelerometers 
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animation of  
measurement principle 

in a piezoelectric  
accelerometer 

!  measure of linear acceleration based on inertial forces (no “touch”) 
!  units: [m/s#] or gravitational acceleration [g] (non-SI unit: 1g ! 9.81 m/s#) 

!  different principles for converting mechanical motion in an electrical signal 
!  piezoelectric: piezoceramics (PZT) or crystals (quartz), better linearity & stability, 

wide dynamic range up to high frequencies, no moving parts, no power needed 

!  piezoresistive: for high-shocks, measures also static acceleration (g), needs supply 

!  capacitive: silicon micro-machined sensing element, superior in static to low 
frequency range, can be operated in servo mode, cheap but limited resolution 

!  modern solution: small MEMS (Micro Electro-Mechanical Systems) 

!  multiple applications: from vibration analysis to long range navigation 



Operation principle 
seismic accelerometer 
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Frequency characteristics 
of a piezoelectric accelerometer 
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MEMS accelerometers 
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!  very simple MEMS (a cantilever beam with a test mass, with damping from the 
residual gas sealed in the device), single- or tri-axial, very small and light 

!  cross-couplings among acceleration sensing directions should be limited $ 3% 

ADXL335 3-axis, small, 
low power, ±3g, with signal 
conditioned voltage outputs  



Mounting accelerometers on robots 
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3-axial MEMS 
accelerometer 
on the forearm 

of a KUKA KR15/2 
[DLR/Sapienza, 2007]  

3-axial capacitive accelerometer  
on end-effector tool of an ABB robot 

(Crossbow Technology: 2g range,  
1V/g output, 0-50 Hz, ±2° align error) 

[Linköping, 2012]  

Bosch BMA 150 3-axial accelerometers  
integrated in two larger Tactile Modules on the 

links of a Bioloid humanoid left arm [TUM, 2011] 


