

Robotics 1

Information and Program

Prof. Alessandro De Luca

Dipartimento di Ingegneria Informatica Automatica e Gestionale Antonio Ruberti

- First semester (12 weeks)
 - Monday, October 5, 2015 Monday, December 21, 2015
- Courses of study (with this course mandatory or explicitly in optional group)
 - Master in Artificial Intelligence and Robotics (MARR)
 - Master in Control Engineering (MCER)
- Credits: 6
 - 48 hours of classes, 2 of laboratory, 75 of individual study
- Classes
 - Monday <u>15:45-17:15</u> 8:30-10:00 (room <u>B2</u>, Via Ariosto 25)
 - starting from Monday, October 12
 - Friday 10:15-11:45, 12:00-13:30 (room B2)

Contacts

- Email deluca@diag.uniroma1.it
- Office hours
 - Tuesday 12:00-13:30 c/o A-210, left wing, floor 2, DIAG, Via Ariosto 25
 - and/or contact me by email (with some advance)
 - check my known travel dates at .../~deluca/Travel.php
- Course website www.diag.uniroma1.it/~deluca/rob1_en.html
- Extra material (pdf of lecture slides, videos, written exams, ...)
 - available on the course website
 - lecture slides ready, but with updates during the course
- Video DIAG Channel playlist Robotics 1 full course 2014/15 videos
 - 30 (+1) videos in the classroom, about 41 h, > 8300 views
- YouTube Channel with more videos of research performed in the Lab
 - www.youtube.com/user/RoboticsLabSapienza

Robotics 1

General information

- Prerequisites
 - self-contained course, without special prerequisites
 - elementary knowledge on kinematics and automatic control is useful
- Aims
 - tools for kinematic analysis, trajectory planning, and programming of motion tasks for robot manipulators in industrial and service environments
- Textbook
 - B. Siciliano, L. Sciavicco, L. Villani, G. Oriolo: *Robotics: Modelling, Planning and Control*, 3rd Edition, Springer, 2009
- Other strictly related courses
 - Robotics 2: second semester, 6 credits
 - Autonomous and Mobile Robotics: second semester, 6 credits

Programming robot motion Teaching Cartesian poses and playing them back

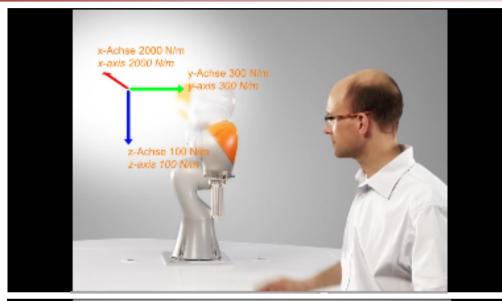
video

KUKA LBR iiwa robot with 7 revolute joints

Robotics 1

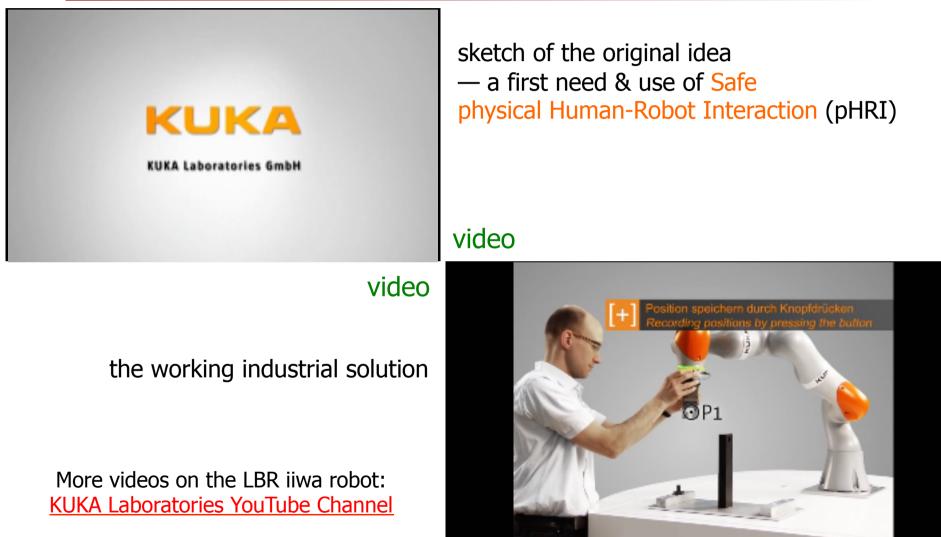
Programming robot motion

Executing nominal trajectories and "complying" with uncertainties


video

Programming robot compliance

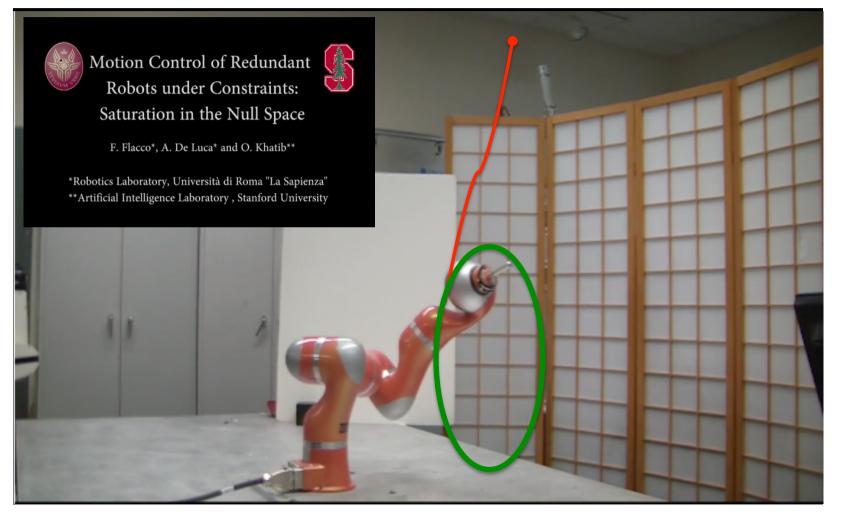
Controlled reaction to applied forces/torques at robot end-effector


video

video

Programming robot motion Teaching tasks by demonstration (kinesthetic learning)

Program


- Introduction
 - Manipulator arms (and some mobile robots)
 - Industrial and service applications
- Components
 - Mechanical structures
 - Actuators
 - Sensors
 - proprioceptive (encoder, tacho)
 - exteroceptive (force/torque, tactile, ultrasound, infrared, laser, vision)
- Kinematic models
 - Minimal representations of orientation
 - Direct and inverse kinematics of robot manipulators
 - Differential kinematics: analytic and geometric Jacobians
 - Statics: Transformations of forces
 - Robot singularities

- Planning of motion trajectories
 - Trajectory planning in the joint space for robot manipulators
 - Trajectory planning in the task/Cartesian space
- Control
 - Control system architectures
 - Kinematic control laws (in joint or in task/Cartesian space)
 - Independent joint axis control laws (P, PD, PID)
- Programming and Simulation
 - Programming languages for industrial robots (KRL)
 - Use of Matlab/Simulink and VREP
 - Demos in the lab with the KUKA robots (6-dof KR5 and 7-dof LWR4+)

Tracking a Cartesian trajectory with hard position/velocity bounds on robot motion

video DIAG-Sapienza/Stanford, IEEE ICRA 2012

Robot control by visual servoing with limited joint motion range

Avoiding joint limits with a low-level fusion scheme Olivier Kermorgant and François Chaumette

Lagadic team INRIA Rennes-Bretagne Atlantique

video INRIA Rennes, IEEE/RSJ IROS 2011

Sensor-based robot control in dynamic environment (coexistence with human)

A Depth Space Approach to Human-Robot Collision Avoidance

F. Flacco*, T. Kröger**, A. De Luca* and O. Khatib**

*Robotics Laboratory, Università di Roma "La Sapienza" **Artificial Intelligence Laboratory , Stanford University

video DIAG-Sapienza/Stanford, IEEE ICRA 2012

Safe physical human-robot interaction (sensorless and on a conventional industrial robot!)

video DIAG-Sapienza, IEEE ICRA 2013

Robotics 1

Exams and beyond

- Type homework + written test + oral examination
- Schedule (written sessions of 2015/16, open soon in INFOSTUD)
 - 2 sessions at the end of this semester
 - January 11 and February 5, 2016
 - 2 sessions at the end of next semester
 - June 6 and July 11, 2016
 - 1 session after the summer break
 - September 11, 2016
 - 2 extra sessions only for students of previous years, part-time, etc.
 - April 1, 2016 and in Fall (tbd in the period 19/10-11/11/2016)
- Registration to exams
 - www.uniroma1.it/infostud
- Master theses

available at DIAG Robotics Lab: www.diag.uniroma1.it/labrob Robotics 1

- Advanced kinematics / Robot dynamics
 - Calibration
 - Redundant robots
 - Dynamic modeling: Lagrange and (recursive) Newton-Euler methods
 - Identification of dynamic parameters
- Control techniques
 - Free motion linear and nonlinear feedback control, iterative learning, robust control, adaptive control
 - Constrained motion impedance and hybrid force-velocity control
 - Visual servoing (kinematic approach)
- Special topics
 - Diagnosis and isolation of robot actuator faults
 - Human-robot collision avoidance & detection, with safe robot reaction

Other courses about Robotics and Control...

- Autonomous and Mobile Robotics (6 credits), next semester
 - kinematics, planning, control of wheeled mobile robots
 - motion planning with obstacles, navigation, and exploration
 - Prof. Oriolo http://www.diag.uniroma1.it/~oriolo/amr
- Medical Robotics (6 credits), next semester
 - robot surgical systems and more
 - Dr. Vendittelli http://www.diag.uniroma1.it/~vendittelli
- Elective in Robotics (12 credits), starting this semester
 - four modules of 3 credits
 - research-related subjects and seminars
 - multiple teachers http://www.diag.uniroma1.it/~vendittelli/eir
- Robot Programming (module: 3 credits in Elective in AI), in this semester
 - robot programming using C++, ROS, NAO SDK as development frameworks
 - Prof. Nardi http://www.diag.uniroma1.it/~nardi/Didattica/CAI/robpro.html