

Programming Mobile Robots with Aria and Player

Amanda Whitbrook

Programming Mobile Robots
with Aria and Player

A Guide to C++ Object-Oriented Control

123

Dr. Amanda Whitbrook
University of Nottingham
School of Computer Science
IMA Research Group
Wollaton Road
Nottingham NG8 1BB
UK
amw@cs.nott.ac.uk

ISBN 978-1-84882-863-6 e-ISBN 978-1-84882-864-3
DOI 10.1007/978-1-84882-864-3
Springer London Dordrecht Heidelberg New York

British Library Cataloguing in Publication Data
A catalogue record for this book is available from the British Library

Library of Congress Control Number: 2009940604

c© Springer-Verlag London Limited 2010

Apart from any fair dealing for the purposes of research or private study, or criticism or review, as per-
mitted under the Copyright, Designs and Patents Act 1988, this publication may only be reproduced,
stored or transmitted, in any form or by any means, with the prior permission in writing of the publis-
hers, or in the case of reprographic reproduction in accordance with the terms of licenses issued by the
Copyright Licensing Agency. Enquiries concerning reproduction outside those terms should be sent to
the publishers.
The use of registered names, trademarks, etc., in this publication does not imply, even in the absence of a
specific statement, that such names are exempt from the relevant laws and regulations and therefore free
for general use.
The publisher makes no representation, express or implied, with regard to the accuracy of the information
contained in this book and cannot accept any legal responsibility or liability for any errors or omissions
that may be made.

Cover design: eStudioCalamar, Figueres/Berlin

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Additional material to this book can be downloaded from http://extras.springer.com.

This book is dedicated to my family; my son
Charlie, my mother Josephine, my sister
Squirrel, and the memories of my late brother
Steven and late father Ray.

Preface

This book is intended as a comprehensive guide to object-oriented C++ program-
ming and control of the Pioneer class of robots made by MobileRobots Inc. It
covers both the native API (ARIA, supplied by the manufacturer for use with all
their classes of robot), and the popular and more generic open-source Player server,
which can be used with many different makes and models. Hence, although the
book is written around the Pioneer robots in particular, the techniques and princi-
ples demonstrated are applicable to a wide range of other mobile robots currently in
use in academic and industrial robot labs around the world.

The aim is to provide a text that can be used for the practical teaching of object-
oriented programming with real robots, and also support researchers using Player
and ARIA in their labs. The reader will learn how to install the necessary software,
troubleshoot common problems, set up the files needed to describe their robot con-
figuration, and will rapidly be able to get started with the task of creating their own
control programs.

The text assumes some prior knowledge of object-oriented concepts since the
main focus is instructing the user in the use of the ARIA API and the Player C++
client library. However, the instructions here are given primarily by example and
in such a way that the object-oriented concepts themselves are also implicitly ex-
plained. Readers completely new to object-oriented programming should therefore
have no problems with understanding the text and should find themselves easily get-
ting to grips with object-oriented principles as well as learning how to program their
robots.

The book is divided into six chapters. Chapter 1 provides some background in-
formation about Pioneer robots and their control including the various client-server
programming architectures that can be adopted, the robot devices present and the
software that is available to support them. It also quickly covers installation of
the ARIA API and various other MobileRobots resources such as ACTS software
(ActivMedia Color Tracking System), MobileSim (the ARIA simulator) and Map-
per3Basic (software for creating navigation maps). In addition, it explains how to
install Player and its simulator Stage. Chapter 2 presents detailed information on the
use of the ARIA API for robot programming, showing how to connect to and control

vii

viii Preface

the robot and each of its devices. Chapter 3 is concerned with use of the MobileR-
obots resources installed in Chapter 1, i.e. ACTS, MobileSim and Mapper3Basic,
and Chapter 4 rounds off the ARIA section of the book by explaining how to create
and use subclasses with ARIA. Programming with the Player C++ client library is
the subject of Chapter 5, and as with Chapter 2, comprehensive details about con-
necting to and controlling the robot and each of its devices are supplied. Chapter
6 describes the use of Player’s Stage simulator and explains how to create world
files and configuration files to define virtual robots, their device set-ups and their
environments.

The ARIA and Player sections of the book are both fully supported by sam-
ple programs, but the reader is also directed to the online supporting materials at
http://extras.springer.com, where more detailed and complex programs are avail-
able. These additional programs are intended to integrate all of the techniques pre-
sented, and they are explained further in the Appendix section.

Finally, please note that this guide is concerned with installing and using ARIA
and Player software on Linux-based operating systems only, since Player is not
compatible with Windows operating systems.

Nottingham, May 2009 Amanda Whitbrook

Acknowledgements

Thanks to my Robot Lab colleagues - Phil Birkin, Robert Oates, Jamie Twycross,
Jon Garibaldi and Uwe Aickelin at the University of Nottingham, School of Com-
puter Science.

Thanks also to all those who regularly post replies to questions on the Player /
Stage mailing list, in particular, the Player / Stage developers who include Brian
Gerkey, Andrew Howard, Nate Koenig, Richard Vaughan, Fred Labrosse, Geoffrey
Biggs, Toby Collet and Radu Bogdan Rusu. Special thanks to Geoffrey Biggs at the
University of Auckland for helpful advice and information concerning use of the
Pioneer 5D arm with the Player server.

Thanks to MobileRobots Inc. for sorting out queries about the Pioneers.

ix

Contents

1 Introduction and Installations . 1
1.1 The Client-Server Paradigm . 1
1.2 Software for Pioneer Robot Control . 1
1.3 Pioneer Robot Devices . 4
1.4 MobileRobots Software Installations . 5

1.4.1 ARIA . 6
1.4.2 Mapper3Basic . 7
1.4.3 MobileSim. 7
1.4.4 ACTS . 7

1.5 Player and Stage Installations . 8
1.5.1 Prerequisites . 9
1.5.2 Player - Default Location . 9
1.5.3 Player - Selected Location . 10
1.5.4 Selecting Drivers . 11
1.5.5 Stage - Default Location . 11
1.5.6 Stage - Selected Location . 12

2 Programming with the ARIA API . 13
2.1 Getting Started . 13

2.1.1 Compiling Programs . 13
2.1.2 Connecting to a Robot . 14

2.2 Instantiating and Adding Devices . 16
2.2.1 Ranged Devices . 16
2.2.2 Non-ranged Devices . 18

2.3 Reading and Controlling the Devices . 18
2.3.1 The Motors . 18
2.3.2 The Sonar Sensors . 21
2.3.3 The Laser Sensor . 22
2.3.4 The Bumpers . 24
2.3.5 The 5D Arm . 27
2.3.6 The 2D Gripper . 30

xi

2.3.7 The Pan-tilt-zoom Camera . 33

xii Contents

3 Other MobileRobots Inc. Resources . 37
3.1 ACTS Software . 37

3.1.1 Training the Channels . 37
3.1.2 Programming ACTS Using ARIA . 44

3.2 MobileSim . 46
3.3 Mapper3Basic . 49

4 Using ARIA Subclasses . 53
4.1 Creating and Using ArAction Subclasses . 53
4.2 Creating and Using ArActionGroup Subclasses 57
4.3 Creating and Using ArMode Subclasses . 60

5 Programming with Player . 63
5.1 Player Configuration Files . 63
5.2 Using PlayerViewer . 66
5.3 Programming with the Player C++ Client Library 68

5.3.1 Compiling Programs . 68
5.3.2 Connecting to a Robot . 70

5.4 Instantiating and Adding Devices . 73
5.5 Reading and Controlling the Devices . 73

5.5.1 The Motors . 74
5.5.2 The Sonar Sensors . 75
5.5.3 The Laser Sensor . 75
5.5.4 The Bumpers . 77
5.5.5 The 5D Arm . 79
5.5.6 The 2D Gripper . 83
5.5.7 The Pan-tilt-zoom Camera . 85
5.5.8 The Virtual Blob Finder Device . 86
5.5.9 Using the Blob Finder with ACTS . 91

6 Stage Simulations . 93
6.1 Introduction . 93
6.2 Creating World Files . 93
6.3 Creating Configuration Files . 101
6.4 Running Stage . 102
6.5 Accelerated Simulations . 104

A Guide to the Extra Materials . 109
A.1 Folders . 109
A.2 Testing the Programs . 110

References . 111

Index . 113

Chapter 1
Introduction and Installations

1.1 The Client-Server Paradigm

Pioneer P3-DX robots act as the server in a client-server environment. The low level
details of mobile robotics are managed by servers embodied in the operating system
software (ARCOS, AROS, P2OS) of the robot’s micro-controller [14]. The client
software that provides the high level control must run on a computer connected to
the micro-controller. This can either be the on-board PC that communicates with it
directly through a serial connection, or via a remote networked PC, which requires
a server program to be running on the robot PC, providing the communication link
between the remote PC and the micro-controller. The first scenario is shown dia-
grammatically in Figure 1.1 below.

1.2 Software for Pioneer Robot Control

There are currently two software packages that can be used to write high level con-
trol programs for the Pioneer 3 robots. These are:

• The ARIA API
This software is provided by the Pioneer manufacturers, MobileRobots Inc. (for-
merly ActivMedia) and can be used to control any of their models, e.g. AmigoB-
ots, PeopleBots and Pioneers. ARIA stands for ActivMedia Robotics Interface
for Application and it is an object-oriented Applications Programming Inter-
face (API), written in C++ and intended for the creation of intelligent high-level
client-side software. It is essentially a library for C++ programmers. In addition,
a programmer’s own “action” classes may inherit from the base ArAction class.
These classes run in their own thread with the robot’s current action being de-
termined by an action resolver, see Chapter 4. This facilitates easy creation of
a subsumption-like architecture, although this methodology does not have to be
followed. ARIA is therefore technically architecture independent.

1

2 1 Introduction and Installations

Fig. 1.1 Controlling the robot from the on-board PC

ARIA client programs can run from the robot on-board PC, communicating with
the micro-controller through an RS-232 serial link, see Figure 1.1. In addition,
client programs can run on a remote PC. In this scenario (see Figure 1.2) the
client program requests services from a server program that runs on the robot
PC. An additional library, ArNetworking is used to write the server and client
programs, but ArNetworking is not covered here. All ARIA programs presented
in this text assume that the user is controlling their robot from its own on-board
PC.

• The Player Server
Player is a single device server that runs on the robot PC, providing control over
the sensors and actuators [1]. It is language independent meaning that client con-
trol software can be written in any language that can open and control a TCP
socket. Client-side libraries are currently available for C, C++, Tcl, LISP, Java,
and Python. This guide covers use of the Player C++ library to provide high level
client control programs for real Pioneer 3 robots and virtual ones created through
Player’s 2D simulator, Stage. The Player/Stage project is open source software
and can be used to control many different robot makes, models and devices, for

1.2 Software for Pioneer Robot Control 3

example ER1 robots, kheperas and clodbusters, see Table 1.1 for a full list of sup-
ported robots. Player is architecturally independent and client programs can run
both from the robot PC and from a remote networked PC, with no modification.

Fig. 1.2 Controlling the robot remotely using ArNetworking

4 1 Introduction and Installations

Table 1.1 Robots supported by the Player server

Manufacturer Device(s) Driver

Acroname Garcia garcia
Botrics Obot d100 obot
Evolution
Robotics

ER1 and ERSDK robots er1

iRobot Roomba vacuuming robot roomba roomba
K-Team Robotics Extension Board (REB) attached to Kameleon 376BC reb

Khepera khepera
MobileRobots PSOS/P2OS/AROS-based robots (Pioneer, AmigoBot) p2os

and integrated accessories, including a CMUcam connected
to the AUX port

Nomadics NOMAD200 (and related) mobile robots nomad
RWI/iRobot RFLEX-based robots B21r, ATRV Jr and integrated accessories rflex
Segway Robotic Mobility Platform (RMP) segwayrmp
Upenn Grasp Clodbuster clodbuster
Videre Design ERRATIC mobile robot platform erratic

1.3 Pioneer Robot Devices

The devices available for Pioneer 3 robots are listed in Table 1.2 and illustrated
in Figures 1.3 and 1.4 below, which show two different hardware configurations.
The devices include a SICK LMS200 laser range finder, sonar range finding sen-
sors, a Canon VC-C4 pan-tilt-zoom camera, grippers, bumpers, and a five-degree-
of-freedom (5D) arm. Table 1.2 shows which devices may be controlled by each
of the programming interfaces, ARIA and Player, and considers both real and simu-
lated robots. (MobileSim is the 2D simulator for ARIA and Stage is the 2D simualtor
for Player.) ACTS is a blob finding software package compatible with ARIA, see
Section 3.1, but Player uses a simpler proxy to support blob finding, see Chapter 5.

Table 1.2 Common devices available for the Pioneer 3 robot and software that supports them

Device Description ARIA
(Real
robot)

Mobile
Sim
0.5.0

Player
2.0.5
(Real
robot)

Stage
2.0.4

Sick LMS200 Laser (front 180◦) Range finding laser sensor
√ √ √ √

Pioneer Sonar Ring (8 front, 8 rear) Range finding sonar sensors
√ √ √ √

Canon VC-C4 ptz camera Pan-tilt-zoom camera
√ √ √

Simple blob finding device For tracking colour
√ √

ACTS blob finder For tracking colour
√ √

Pioneer bumper pads (5 rear) Collision detection
√ √ √ √

Pioneer 2D gripper 2 degrees freedom
√ √ √

Pioneer 5D arm 5 degrees freedom
√ √

1.4 MobileRobots Software Installations 5

Fig. 1.3 Pioneer P3-DX sensors and actuators

It is clear from Table 1.2 that both ARIA and Player are fully able to support
control of real Pioneer robots and their devices, but that the MobileSim simulator is
much more limited than Stage in terms of the devices that can be simulated. Stage
2.0.4 is fully able to support all of the devices listed except for ACTS and for the
5D arm (which can only be simulated in 3D).

The next section is concerned with downloading and installing the necessary
packages to run the ARIA API and the other MobileRobots resources.

1.4 MobileRobots Software Installations

Root permissions are required to install all of the MobileRobots software and any
other programs (e.g. rpm or alien) that may be needed as part of the installation pro-
cess. ARIA and its associated programs can be downloaded from the MobileRobots
web site “http://www.mobilerobots.com”, but a valid user ID and password must
be supplied. Follow the “support and downloads” link and then the “software and
firmware” link, which leads to a list of the available programs.

6 1 Introduction and Installations

Fig. 1.4 Pioneer P3-DX sensors and actuators, alternative configuration

1.4.1 ARIA

The software must be installed both on the robot and on any PC where you intend
to compile, test or execute your control programs. At the time of writing ARIA is
on version 2.7.0 and this available for both Debian and Red Hat Linux. Download
the appropriate installation file and save it in /usr/src. If you have Red Hat com-
patible Linux and the Red Hat package manager installed on your system you can
install by using:

rpm -i ARIA-2.7-0-0.i386.rpm.

If you have Debian Linux then use:

dpkg -i libaria 2.7.0 i386.deb.

The software installs in the directory /usr/local/Aria.

1.4 MobileRobots Software Installations 7

1.4.2 Mapper3Basic

Mapper3Basic is presently at version 2.2.5 and is available for both Debian and
Red Hat Linux. Download the appropriate installation file (“Mapper3Basic-2.2-5-
0.i386.rpm” for Red Hat Linux or “mapper3-basic 2.2.5 i386.deb” for Debian) and
save it in /usr/src. You can then install it in the same way as ARIA.

The software installs in the directory /usr/local/Mapper3Basic and the
binary is /usr/local/bin/Mapper3Basic.

1.4.3 MobileSim

MobileSim is currently available for Red Hat and Debian Linux and is on ver-
sion 0.5.0 at the time of writing. Download the appropriate Linux installation file
(“MobileSim-0.5.0-0.i386.rpm” for Red Hat or “mobilesim 0.5.0 i386.deb” for De-
bian) and save it in /usr/src. Install using the rpm command or dpkg command.

The software installs in the directory /usr/local/MobileSim and the bi-
nary is /usr/local/bin/MobileSim.

1.4.4 ACTS

ACTS is currently only available for Red Hat Linux. Download the Red Hat Linux
installation file, e.g. “ACTS-2.2-0.i386.rpm” and save it in /usr/src. If you have
Red Hat Linux and the Red Hat package manager installed on your system you can
install by using:

rpm -i ACTS-2.2-0.i386.rpm.

If you do not have Red Hat Linux you can still install the Red Hat package man-
ager, for example, with Debian you can use apt-get install rpm and then
install as above. However, there are often problems when trying to install source
code intended for a different distribution of Linux. For example the install may
indicate failed dependencies that are actually present; a common example is re-
porting that /bin/sh is required but not present. This sort of error can some-
times be overcome by using the --nodeps option, i. e. rpm -i --nodeps
ACTS-2.2-0.i386.rpm, but this can often mean that the software fails to install
properly as it does not check for required files. The best solution to this problem is
to install alien on your machine. You can then convert the Red Hat installation file
to your own distribution. For example, with Debian, use:

apt-get update

8 1 Introduction and Installations

apt-get install alien

and then convert using:

alien --to-deb ACTS-2.2-0.i386.rpm.

In the above example a new file “acts-2.2-0.i386.deb” would be created. You can
then install in the usual way, for example:

dpkg -i aria-2.2-1.i386.deb

for Debian. The software installs in the directory /usr/local/acts and the
executable is the file /usr/local/acts/bin/acts.bin. After installation
you will need to edit the file /etc/ld.so.config. This file is a list of paths to
libraries, so you will need to add the following path to the list:

/usr/local/acts/lib.

You should then save the edited file and run ldconfig to update the libraries.
When you try to run the binary you may get the following error message “error
while loading shared libraries: libpng.so.2: cannot open shared object file: No such
file or directory”. This problem can be solved by creating a symbolic link to the
file libpng.so. If you have this installed it will be in the directory /usr/lib.
Go into that directory and use the following command: ln -s libpng.so
libpng.so.2. Then try running the binary again.

1.5 Player and Stage Installations

The Player and Stage source programs are available for free download at:

“http://sourceforge.net/project/showfiles.php?group id=42445”.

This book consistently refers to the installation and use of Player and Stage ver-
sion 2.0 of which the latest versions were 2.0.5 and 2.0.4 respectively at the time
of writing. Although newer versions (2.1) are available, the programs written and
used for demonstration in this book were all tested with version 2.0. However, they
should work with version 2.1 with no problems.

The best sources of information for Player and Stage are the current online man-
uals [1] and [2] respectively. Other useful resources include the project authors’ pa-
pers [4], [5] and [6] and the Player / Stage users searchable mailing list archive [7],
which can often provide help with specific problems.

The default location for installation is /usr/local so you will need root per-
missions to install the software there. However, Player and Stage both allow instal-

1.5 Player and Stage Installations 9

lation in other folders so you can install them within your home directory if you do
not have root permissions on your machine, see Section 1.5.3 and Section 1.5.6.

1.5.1 Prerequisites

For Linux you should be running either a 2.4 or 2.6 kernel. You should also have
a recent version of gcc (the GNU Compiler Collection), preferably version 3.2 or
above. (Use gcc -v to check which version you have.) The following tools are
also required:

• gcc with C++ support (g++)
• autoconf
• automake
• libtool
• make

Player/Stage also depends on some third-party libraries. The main one (needed for
PlayerViewer and Stage) is the GIMP toolkit (GTK), which comes as standard with
most Linux distributions. If you do not have it you can install by using, for example:

apt-get install libgtk-dev
apt-get install libgtk2.0
apt-get install libgtk2.0-dev

on a Debian system. In addition, the GTK has some dependencies of its own. If
you want to run Stage you should install Player first.

1.5.2 Player - Default Location

If you want to run client programs on a real robot but from a remote machine you
will need to install Player on both the robot and the remote PC. The default loca-
tion for the binary is /usr/local, so you will need root permissions if you want
to install it there. First download the source tarball, e.g. “player-2.0.5.tar.bz2” and
place it in the file /usr/src, then uncompress it using:

bzip2 -dc player-2.0.5.tar.bz2 | tar xf -.

After uncompressing a new directory in /usr/src (player-2.0.5) will have been
created . Go into this directory and configure Player by typing: ./configure. The
screen output from the configuration will show useful information such as which
drivers will be built. You can also check the file “config.log” for detailed information

10 1 Introduction and Installations

about which tests failed and why. When you are satisfied with the configuration out-
put compile by typing make and finally install Player by typing make install.
On installation the Player binary is placed in /usr/local/bin, and the libraries
(e.g., “libplayercore”, “libplayerdrivers”) will be placed in /usr/local/lib.
Note that PlayerViewer, the GUI visualisation software for Player, should also be
installed as part of the process and also resides in /usr/local/bin. To check
that the software has installed properly you can type:

pkg-config --libs playercore

and the following libraries should be displayed on screen:

-lplayercore -lltdl -lpthread -lplayererror.

If this message is displayed instead: “Package playercore was not found in the
pkg-config search path. Perhaps you should add the directory containing ‘player-
core.pc’ to the PKG CONFIG PATH environment variable. No package ‘player-
core’ found” then you will need to add the path /usr/local/lib/pkgconfig
to your PKG CONFIG PATH. This can be done by editing your bashrc file (a hid-
den file in your home directory), i.e., by adding the following line to it:

export PKG CONFIG PATH=/usr/local/lib/pkgconfig:

$PKG CONFIG PATH.

Note that librtk2, the library for the robot toolkit that was an integral part of instal-
lation for older versions of Player and Stage has been deprecated and is not required
for installation of Player 2.0 or Stage 2.0. The robot toolkit is now a part of Player.

1.5.3 Player - Selected Location

You can change the installation directory from the default by using the --prefix
option and specifying the absolute path of the desired location when configuring. For
example, if you need to install Player in your home directory (e.g. /home/amw/)
because you do not have root access, use:

./configure --prefix=/home/amw/local/player.

Then run make and make install as before.
After installation the executables are in /home/amw/local/player/bin,

and the libraries in /home/amw/local/player/lib. Various environment
variables will also need to be set including the PATH, LD LIBRARY PATH and
PKG CONFIG PATH. In the example above you would need to add the following
to your .bashrc file.

1.5 Player and Stage Installations 11

export PKG CONFIG PATH=$PKG CONFIG PATH:home/amw/
local/player/lib/pkgconfig::$PKG CONFIG PATH
export PATH=/home/amw/local/player/bin:$PATH
export CPATH=/home/amw/local/player/include:$CPATH
export LD LIBRARY PATH=/home/amw/local/player/lib:
$LD LIBRARY PATH

The first line tells Stage where Player is. The second line shows where the Player
binary is, so that you can run it by just typing player <configfile> instead
of the full path name. The third line shows where the header files are for compiling
Player programs and the fourth shows where the libraries are for linking.

1.5.4 Selecting Drivers

Certain drivers will be built and others omitted by default. To override the defaults
you can use the --enable and --disable options when configuring, to enable
and disable the compilation of certain drivers respectively. For example to enable
the ACTS driver you would use:

./configure --enable-acts.

1.5.5 Stage - Default Location

You should first install Player and check that it is working correctly, see Sec-
tion 1.5.2 and Section 1.5.3. The default location for stage is /usr/local. To
install it here you will need root permissions. First download the source tarball, e.g.
“stage-2.0.4.tar.gz” and place it in the folder /usr/src, then uncompress it using:

tar xzvfp stage-2.0.4.tar.gz.

After uncompressing, a new directory in /usr/src (stage-2.0.4) will have been
created. Go into this directory and configure Stage by typing: ./configure.
When you are satisfied with the configuration output, compile by typing make and
finally install Stage by typing make install. Note that version 2.0 of Stage is
not a program that runs as a standalone, i.e. there is no Stage binary. It merely pro-
vides a “plugin” for Player, which adds simulated robots; you run Player’s binary
with an appropriate configuration file, see Section 6.3. You can verify that the in-
stallation was successful by typing the following:

12 1 Introduction and Installations

/usr/local/bin/player /usr/src/stage-2.0.4/
worlds/simple.cfg.

You can just type player simple.cfg if you are already in the worlds di-
rectory and if your system knows where to find the Player binary.

1.5.6 Stage - Selected Location

You can change the installation directory from the default by using the --prefix
option and specifying the absolute path of the desired location when configuring. For
example, if you need to install Stage in your home directory (e.g. /home/amw/)
because you do not have root access, use for example:

./configure --prefix=/home/amw/local/player.

Then run make and make install as before. It is important to use the same
prefix that you used when installing Player as Stage is a plugin for Player.

The next chapter describes the process of constructing object-oriented control
programs using the ARIA API. You will quickly learn how to connect to your robot,
instantiate, add and connect to devices, control each sensor and actuator and inte-
grate all of this into a single control program.

Chapter 2
Programming with the ARIA API

2.1 Getting Started

The best source of information is the online help document that comes with the
software installation [14]. It is located in /usr/local/Aria and has the name
“Aria-Reference.html”. All the classes that form the ARIA library are listed and
their attributes and methods are described there.

2.1.1 Compiling Programs

ARIA programs are compiled under Linux by using g++ on the command line. All
programs must be linked to the ARIA library “lAria” and the additional libraries
“lpthread” and “ldl”. The ARIA library is located in /usr/local/Aria/lib
and the header files are located in /usr/local/Aria/include. You will need
to add the path /usr/local/Aria/lib to the file /etc/ld.so.conf and
run ldconfig in order to access the libraries. As an example, suppose you have
a control program named “test.cpp” and you wish to create a binary called “test”.
From the directory where “test.cpp” is located, you would type the following:

g++ -Wall -o test -lAria -ldl -lpthread -L/usr/local/
Aria/lib -I/usr/local/Aria/include test.cpp.

Alternatively, a suitable bash script such as the example given below can be written
to save typing:

#!/bin/sh

Short script to compile an ARIA client
Requires 2 arguments, (1) name of binary

13

14 2 Programming with the ARIA API

and (2) name of program to compile

if [$# != 2]; then
echo Require 2 arguments
exit 1

fi

g++ -Wall -o $1 -lAria -ldl -lpthread -L/usr/local/Aria
/lib -I/usr/local/Aria/include $2

2.1.2 Connecting to a Robot

A method for sending and receiving data to and from the server must be specified.
For real robots the server software for low level control runs on the micro-controller
and communication between this and the robot PC is through a serial port. If you
want to test your programs on a simulator first (on a remote PC) and then run them
on a real Pioneer without changing the program, the best way to connect is to use
the ArSimpleConnector and ArArgumentParser classes. The ArSimpleConnector
class first tries to connect to a simulator if one is detected, otherwise it connects
through the serial port of the real robot. For this to work you need to run the control
program on the robot PC itself, i.e. connect to the robot first using ssh and then
run the program. Unfortunately this involves copying the control program from the
remote PC to the robot and recompiling. If you want to run the program directly
from a remote PC you need to use the separate ArNetworking C++ library to create
a server program that runs on the robot PC and a client program that runs on the
remote PC. The server program sets up the services that the client program can then
request. This involves writing a new control program and is beyond the scope of this
guide, which assumes that you will run your program on the robot PC.

Below is an extract of a program that shows how to connect to a robot using Ar-
SimpleConnector.

/* Include files */

#include "Aria.h" 1

#include <stdio.h> 2

/* Main method */

int main(int argc, char **argv) 3

{

/* The robot and its devices */

Aria::init(); //Initialise ARIA library 4

2.1 Getting Started 15

ArRobot robot; //Instantiate robot 5

ArArgumentParser parser(&argc, argv); //Instantiate argument parser 6

ArSimpleConnector connector(& parser); //Instantiate connector 7

/* Connection to robot */

parser.loadDefaultArguments(); //Load default values 8

if (!connector.parseArgs()) //Parse connector arguments 9

{
cout << "Unknown settings\n"; //Exit for errors 10

Aria::exit(0); 11

exit(1); 12

}

if (!connector.connectRobot(&robot)) //Connect to the robot 13

{
cout << "Unable to connect\n"; //Exit for errors 14

Aria::exit(0); 15

exit(1); 16

}

robot.runAsync(true); //Run in asynchronous mode 17

robot.lock(); //Lock robot during set up 18

robot.comInt(ArCommands::ENABLE, 1); //Turn on the motors 19

robot.unlock(); //Unlock the robot 20

Aria::exit(0); //Exit Aria 21

} //End main

“Aria.h” must be included with all programs (line 1) and before the ARIA library
can be used it must be initialised by using Aria::init() (line 4). The ArRobot class
(instantiated here in line 5) is the base class for creating robot objects that you can
then connect devices to. An instance of the class essentially represents the base of
a robot with no sensors attached and only the motors for actuators [12]. However,
MobileRobots describe the class as the “heart” of ARIA as it also functions as the
client-server gateway, constructing and decoding packets and synchronising their
exchange with the micro-controller [14]. Standard server information packets (SIPs)
get sent by the server to the client every 100 milliseconds by default. The ArRobot
class runs a loop (either in the current thread by using the ArRobot::run() method
or in a background thread by using ArRobot::runAsync()), which is synchronised to
the data updates sent from the robot micro-controller. In the above program the Ar-
Robot::runAsync() method is used (line 17) after connection has been established.
Running the robot asynchronously like this ensures that if the connection is lost the
robot will stop.

An ArArgumentParser object is instantiated here in line 6. This is a standard
argument parser for maintaining uniformity between ARIA-based programs. It en-
sures that all the configurable elements of an ARIA program (robot IP address etc.)

16 2 Programming with the ARIA API

are passed to it in the same way [12]. The constructor for ArSimpleConnector takes
a pointer to the ArArgumentParser object (line 7). The loadDefaultArguments()
method of ArArgumentParser is called in line 8. This allocates the default argu-
ments required to connect to a local host (either MobileSim, see Section 3.2 or the
real robot). Once the default arguments are loaded they can be parsed to the ArSim-
pleConnector object by using its parseArgs() method (line 9). The connectRobot()
method can then be used to make the actual connection. A pointer to the ArRobot
object must be supplied as the argument (line 13).

Before running any commands the motors should be placed in an enabled state,
(line 19). It is advisable to lock the robot (line 18) to ensure that the command is
not interfered with by other users, and the robot should be unlocked afterwards (line
20). When the program ends ARIA must be exited using the syntax in line 21. If you
get a segmentation fault when running the program it may be necessary to remake
the files in /usr/local/Aria after installation.

2.2 Instantiating and Adding Devices

In ARIA devices fall into two categories, ranged devices (sonar, laser and bumpers),
which inherit from the ArRangeDevice class and non-ranged devices, (anything
else, e.g. a pan-tilt-zoom camera or a 2D gripper). There are differences in how
these types of device are associated with a robot.

2.2.1 Ranged Devices

Ranged devices are instantiated and then added to the robot using ArRobot’s ad-
dRangeDevice() method, which takes a pointer to the device as its argument. Below
are some extracts of programs that show how to instantiate a sonar device, a laser
device and a set of bumpers, and also how to add them to an ArRobot object called
“robot”.

ArRobot robot; //Instantiate the robot

ArSick laser; //Instantiate its laser

ArSonarDevice sonar; //Instantiate its sonar

ArBumpers bumpers; //Instantiate its bumpers

robot.addRangeDevice(&sonar); //Add sonar to robot

robot.addRangeDevice(&laser); //Add laser to robot

robot.addRangeDevice(&bumpers); //Add bumpers to robot

The laser device requires additional initialisation to other devices as it inherits
from the ArRangeDeviceThreaded class (which inherits from the ArRangeDevice
class). This means that it is a ranged device that can run in its own thread. It there-

2.2 Instantiating and Adding Devices 17

fore requires additional connection to the robot using ArSimpleConnector’s con-
nectLaser() method, see line 8 of the program extract below.

/* Connection to laser */

Aria::init(); //Initialise ARIA library 1

ArRobot robot; //Instantiate robot 2

ArSick laser; //Instantiate laser 3

robot.addRangeDevice(&laser); //Add laser 4

ArArgumentParser parser(&argc, argv); //Instantiate argument parser 5

ArSimpleConnector connector(& parser); //Instantiate connector 6

.

.

. //Connect to robot

.

laser.runAsync(); //Asynchronous laser mode 7

if (!connector.connectLaser(&laser)) //Connect laser to robot 8

{
cout << "Can’t connect to laser\n"; //Exit if error 9

Aria::exit(0); 10

exit(1); 11

}

laser.asyncConnect(); //Asynchronous laser mode 12

Lines 1 to 6 instantiate the various objects and lines 8 to 11 make and check the
connection. Asynchronous connection is specified in lines 7 and 12 and ensures that
the laser will stop if the connection fails. An alternative way of connecting to the
laser is shown below.

connector.setupLaser(&laser);

laser.runAsync();

if (!laser.blockingConnect())

{
cout << "Could not connect to SICK laser... exiting\n");
Aria::exit(0);

exit(1);

}

18 2 Programming with the ARIA API

2.2.2 Non-ranged Devices

Non-ranged devices do not inherit from ArRangeDevice so are not associated with
the ArRobot object in the same way. In fact, non-ranged devices may inherit from
other base classes, for example an ArVCC4 object (Canon VC-C4 pan-tilt-zoom
camera) inherits from the ArPTZ class. In general, the robot is added to non-ranged
devices instead of their being added to the robot. Sometimes this may be done as
part of the initialisation, for example the program extract below shows how a 2D
gripper and Canon VC-C4 pan-tilt-zoom camera are associated with the robot at the
same time as they are instantiated:

ArGripper gripper(&robot); //Instantiate gripper and add robot

ArVCC4 ptz(&robot); //Instantiate Canon VCC4 camera and add robot

On the other hand, the robot is added to a 5D arm object by first instantiating
the arm and then using its setRobot() method to add the robot, see Section 2.3.5 for
further details.

ArP2Arm arm; //Instantiate a 5D arm

arm.setRobot(&robot); //Add robot to arm

An ACTS object (virtual blob finding device) uses its openPort() method both to
add the robot and to set up communication with the ACTS server running on the
robot, see Section 3.1 for further details.

ArACTS 1 2 acts; //Instantiate an ACTS object

acts.openPort(&robot); //Add robot and set up communication

//with ACTS server running on that robot

2.3 Reading and Controlling the Devices

Once devices have been instantiated and added to the robot, they can be controlled.
The rest of this chapter shows how this is achieved in ARIA for the Pioneer’s motors,
sonars, laser, bumpers, 5D arm, 2D gripper and camera. Programming of the ACTS
blob finder is dealt with in Section 3.1.

2.3.1 The Motors

Motion commands can be issued explicitly by using the setVel(), setVel2() and
setRotVel() methods of the ArRobot class; the setVel() method sets the desired trans-
lational velocity of the robot in millimetres per second, setVel2() sets the velocity
of the wheels independently and setRotVel() sets the rotational velocity of the robot

2.3 Reading and Controlling the Devices 19

in degrees per second. In addition there are the setHeading() and setDeltaHeading()
methods, which change the robot’s absolute and relative orientation (in degrees) re-
spectively. There is also a method to move a prescribed distance (move()) and a
method for stopping motion (stop()). If a positive double is supplied as the argu-
ment for move(), the robot moves forwards. If a negative double is supplied the
robot moves backwards. Some examples of these methods are shown below. All
these use a previously declared ArRobot object called “robot”.

robot.setVel(200); //Set translational velocity to 200 mm/s

robot.setRotVel(20); //Set rotational velocity to 20 degrees/s

robot.setVel2(200,250); //Set left wheel speed at 200 mm/s

//Set right wheel speed at 250 mm/s

robot.setHeading(30); //30 degrees relative to start position

robot.setDeltaHeading(60); //60 degrees relative to current orientation

robot.move(200); //Move 200 mm forwards

Other methods of interest are setAbsoluteMaxTransVel() and getAbsoluteMax-
TransVel(), which set and get the robot’s maximum allowed translational speed. This
is useful if you do not want your robot to exceed a given speed for safety reasons.
The methods setAbsoluteMaxRotVel() and getAbsoluteMaxRotVel() do the same
for rotational speed and the methods getVel() and getRotVel() return the robot’s
translational and rotational speeds respectively, as double values.

Note that more complex forms of motion can be achieved by creating action
classes that inherit from ARIA’s ArAction class and adding the actions to the robot.
The actions then provide motion requests that can be evaluated and combined to
produce a final desired motion. In this way complex behaviours can be achieved.
However you can create actions that do not inherit from ArAction if you do not
want to implement this particular behaviour architecture. Further details about Ar-
Actions are provided in Chapter 4. The program below shows user-written methods
“wander()” and “obstacleAvoid()” that implement simple wandering and obstacle
avoidance behaviours respectively. These methods do not inherit from ArAction.

/∗
∗---
∗ Wandering mode

∗---
∗/

void wander(double speed, ArRobot *thisRobot)

{

int rand1; //Whether to change direction

int rand2; //Used to decide angle of turn

int rand3; //Used to decide direction of turn

int dir; //Direction of turn

srand(static cast<unsigned>(time(0))); //Set seed

20 2 Programming with the ARIA API

rand1 = (rand()%2); //Get random no. between 0 and 1

if (rand1 == 0) //1 in 2 chance of turning

{
rand2 = (rand()%10); //Get random no. between 0 and 9

rand3 = (rand()%2); //Get random no. between 0 and 1

switch(rand3) //Get direction based on rand3

{
case 0:dir = -1;break; //Turn right

case 1:dir = 1;break; //Turn left

}
}else
{
dir = 0; //Don’t turn

rand2 = 0;

}

thisRobot->setRotVel(rand2*10*dir/2); //Set rotational speed

thisRobot->setVel(speed); //Set translational speed

}

/∗
∗---
∗ Obstacle avoidance mode

∗---
∗/

void obstacleAvoid(double minAng, double driveSpeed, ArRobot *thisRobot)

{

double avoidAngle; //Angle to turn to avoid obstacle

if (minAng ≥ 0 && minAng < 46) //If obstacle is to the left

{
cout << "TURNING RIGHT!\n";
avoidAngle = -30.0; //Turn right

}

if (minAng > −46 && < 0) //If obstacle is to the right

{
cout << "TURNING LEFT!\n";
avoidAngle = 30.0; //Turn left

}

thisRobot.setRotVel(avoidAngle); //Set rotational speed

thisRobot.setVel(driveSpeed); //Set translational speed

}

2.3 Reading and Controlling the Devices 21

2.3.2 The Sonar Sensors

Sonar devices are instantiated and added to the robot as described in Section 2.2.1.
To obtain the closest current sonar reading within a specified polar region, the cur-
rentReadingPolar() method of the ArRangeDevice class can be called. The polar
region is specified by the startAngle and endAngle attributes (in degrees). This goes
counterclockwise (negative degrees to positive). For example if you want the slice
between -45 and 45 degrees, you must enter it as -45, 45. Figure 2.1 below shows
the angular positions ARIA assigns to each of the sonar on the Pioneer robots. The
closest reading is returned by the method, but is the distance from the object to the
assumed centre of the robot. To obtain the absolute distance the robot radius should
be subtracted. This can be done by calling ArRobot’s getRobotRadius() method.
The angle at which the closest reading was taken is obtained by supplying a pointer
to the double variable holding that value. An example program that implements the
currentReadingPolar() method is shown below:

ArRobot robot; //Instantiate the robot

ArSonarDevice sonar; //Instantiate its sonar

robot.addRangeDevice(&sonar); //Add sonar to robot

.

. //Connect to robot

.

double reading, readingAngle; //To hold minimum reading and angle

reading = sonar.currentReadingPolar(-45,45,&readingAngle);

//Get minimum reading and angle

If raw sonar readings are required then the getSonarReading() method of the Ar-
Robot class can be called. The index number of the particular sonar is used as the ar-
gument. The method returns a pointer to an ArSensorReading object. By calling the
getRange() and getSensorTh() methods of this class you can obtain both the reading
and its angle. If you need all the sonar readings then you should first determine the
number of sonar present using the getNumSonar() method of the ArRobot class and
then call the getSonarReading() method in a loop. An example user-written method
“getSonar()”, which prints all the raw sonar readings and their angles is shown be-
low:

/∗
∗--
∗ Print raw sonar data

∗--
∗/

void getSonar(ArRobot *thisRobot)

{

22 2 Programming with the ARIA API

Fig. 2.1 The angular positions of the sonar sensors

int numSonar; //Number of sonar on the robot

int i; //Counter for looping

numSonar = thisRobot->getNumSonar(); //Get number of sonar

ArSensorReading* sonarReading; //To hold each reading

for (i = 0; i < numSonar; i++) //Loop through sonar

{
sonarReading = thisRobot->getSonarReading(i);

//Get each sonar reading

cout << "Sonar reading " << i << " = " << sonarReading->getRange()

<< " Angle " << i << " = " <<

sonarReading->getSensorTh() << "\n";
}

}

The sonar can be simulated using MobileSim, see Section 3.2.

2.3.3 The Laser Sensor

Laser devices are instantiated, added to the robot and connected as described in sec-
tion 2.2.1. As both the sonar and laser devices inherit from the ArRangeDevice class,
the currentReadingPolar() method can also be used with the laser, see Section 2.3.2.
An example program is shown below:

ArRobot robot; //Instantiate the robot

2.3 Reading and Controlling the Devices 23

ArSick laser; //Instantiate its laser

robot.addRangeDevice(&laser); //Add laser to robot

.

. //Connect to robot

.

double reading, readingAngle; //To hold minimum reading and angle

reading = laser.currentReadingPolar(-45,45,&readingAngle);

//Get minimum reading and angle

Another useful method to invoke is the checkRangeDevicesCurrentPolar() method
of the ArRobot class. This checks all of the robot’s ranged sensors in the specified
range, returning the smallest value. An example using an ArRobot object called
“robot” is shown below.

double reading = robot.checkRangeDevicesCurrentPolar(-45,45);

Fig. 2.2 Laser readings and their positions on the robot (181 readings)

If raw laser readings are required then the procedure is slightly more complex
than for sonar sensors as it involves using lists. The method to call is the ge-
tRawReadings() method of the ArSick class. This returns a pointer to a list of Ar-
SensorReading object pointers. You will need to loop through this list to obtain the
values and angles, so you will also need to declare an iterator object for the list
as well as the list itself. You can then loop through each ArSensorReading pointer
and obtain its reading and angle by calling its getRange() and getSensorTh() meth-
ods. An example user-written method “getLaser()”, which prints all the raw laser
readings and their angles is shown below:

24 2 Programming with the ARIA API

/∗
∗--
∗ Print raw laser data

∗--
∗/

void getLaser(ArSick *thisLaser)

{

/∗ Instantiate sensor reading list and iterator object ∗/
const std::list<ArSensorReading *> *readingsList;

std::list<ArSensorReading *>::const iterator it;

int i = -1; //Loop counter for readings

readingsList = thisLaser->getRawReadings();

//Get list of readings

//Loop through readings

for (it = readingsList->begin(); it != readingsList->end(); it++)

{
i++;

//Output distance and angle

cout << "Laser reading " << i << " = " << (*it)->getRange()

<< " Angle " << i << " = " << (*it)->getSensorTh() << "\n";
}

}

By default the laser should return 181 readings, see Figure 2.2 for the angular
positions of each reading. If you require two readings for each degree then you
should add the argument -laserincrement half when calling your control program.
Further details about the SICK LMS200 laser and its operation can be found in [19].
Note that the laser can be simulated using MobileSim, see Section 3.2.

2.3.4 The Bumpers

Bumpers are instantiated and added to the robot as described in Section 2.2.1. Once
bumpers have been declared you can obtain their state by calling the getStallValue()
method of the ArRobot class. An example program using an ArRobot object called
“robot” is shown below:

int rearBump=0; //State of bumpers and wheels

int numBumpers; //Number of bumpers

numBumpers = robot.getNumRearBumpers(); //Find number of bumpers

rearBump = robot.getStallValue(); //Get stall status

Table 2.1 below shows how to interpret the integer value returned by the getStal-
lValue() method. First convert the integer to a binary number and store it in two bits.

2.3 Reading and Controlling the Devices 25

For example if 6 was returned this would be 0000000000000110. The interpretation
of the integer 6 is that rear bumpers 1 and 2 were bumped. On the Pioneers bumper
1 is the right most rear bumper and bumper 5 is the left most rear bumper, see Fig-
ure 2.3. If an integer value of 32 was returned this would mean that bumper 5 was
bumped. However, if the left wheel was stalled the integer value would be 1. If the
right wheel was stalled it would be 256 and if both were stalled it would be 257.

Fig. 2.3 Rear bumpers on the Pioneer robots

Table 2.1 Interpreting the stall integer

Example binary 0 0 0 0 0 0 1 1 0

Bumper number Right
wheel
stall

- - 5 4 3 2 1 Left
wheel
stall

Decimal component 256 128 64 32 16 8 4 2 1

If you need to check that the correct number of bumpers are being recognised
(there are 5 rear bumpers on Pioneer P3-DX robots), then you can call the get-
NumRearBumpers() method of the ArRobot class, which returns an integer value.
There are also methods for checking the number of front bumpers, getNumFront-
Bumpers(), and for checking whether front and rear bumpers are present, hasFront-
Bumpers() and hasRearBumpers(), which both return boolean values. The program
below shows the implementation of a user-written method “escapeTraps()”, which
uses the bumpers to determine where a bump has occurred and how to escape from
it. The integer value “bumpVal” supplied to the method should be the result of call-
ing ArRobot::getStallValue() . The double value “minRearReading” should be the
smallest reading from the rear sonar, to determine whether the robot should reverse

26 2 Programming with the ARIA API

out of the trap or move forwards. Notice that the method ArUtil::sleep() is called to
allow the robot time to carry out the motion commands; the argument to this is in
milliseconds.

/∗
∗---
∗ Escape traps mode

∗---
∗/

void escapeTraps(int bumpVal, double speed, double minRearReading,

ArRobot *thisRobot)

{

if (bumpVal == 0)

{
cout << "TRAPPED AT FRONT MOVING BACKWARDS!\n";
thisRobot->setRotVel(20);

thisRobot->setVel(-1*speed); //Reverse

ArUtil::sleep(2000);

}else
if (bumpVal > 1 && bumpVal < 63) //If any bumper registers

{
cout << "TRAPPED BEHIND MOVING FORWARDS!\n";
thisRobot->setRotVel(20);

thisRobot->setVel(speed); //Move forwards

ArUtil::sleep(2000);

}else
if (bumpVal == 1 || bumpVal == 256 || bumpVal == 257)

//Either wheel has stalled

{
cout << "TRAPPED - MOVING EITHER FORWARD OR BACKWARDS!\n";

if (minRearReading < 200) //Trapped at back

{
thisRobot->setRotVel(20);

thisRobot->setVel(speed); //Move forwards

ArUtil::sleep(2000);

cout << "GOING FORWARDS TO ESCAPE\n";
}else //Not trapped at back

{
thisRobot->setRotVel(20);

thisRobot->setVel(-1*speed); //Move backwards

ArUtil::sleep(2000);

cout << "GOING BACKWARDS TO ESCAPE\n";
}

}
}

}

Note that the MobileSim simulator does not generate bump signals other than the
right and left wheel stall signals, see Section 3.2.

2.3 Reading and Controlling the Devices 27

2.3.5 The 5D Arm

ArP2Arm is the interface to the AROS/P2OS-based Pioneer arm servers. The arm is
attached to the robot’s micro-controller via an AUX serial port and the arm servers
manage the serial communications with the arm controller [14]. The physical arm
has 6 open-loop servo motors and 5 degrees of freedom, see [18] for more details.
The end effector is a gripper with foam-lined fingers that can manipulate objects
up to 150 g in weight. Table 2.2 lists the joints, which are illustrated in detail in
Figure 2.4 and Figure 2.5.

Table 2.2 Joints list for the Pioneer 5D arm

Joint Number Description

1 Rotating base
2 Pivoting shoulder
3 Pivoting elbow
4 Rotating wrist
5 Gripper mount (pivoting)
6 Gripper fingers

Fig. 2.4 5D arm gripper detail

28 2 Programming with the ARIA API

Fig. 2.5 The joints on the Pioneer

An ArP2Arm object is instantiated and associated with the robot as described
in Section 2.2.2, see also lines 1 to 3 of the program below. Note that the Ar-
Robot object that attaches to it must be run in its own thread, i.e. you should use
ArRobot::runAsync() if you are using the 5D arm. Following instantiation the arm
must be initialised first (line 4). This process communicates with the robot, checking
that an arm is present and in good condition [14]. The servos must also be powered
on (line 8) before the arm can be used. The program below shows how to do this:

ArRobot robot; //Instantiate a robot 1

ArP2Arm arm; //Instantiate a 5D arm 2

arm.setRobot(&robot); //Add arm to robot 3

if (arm.init() != ArP2Arm::SUCCESS) //Initialize the arm 4

{
printf("Arm initialization failed.\n"); 5

Aria::exit(0); 6

exit(1); 7

}
arm.powerOn(); //Turn on the arm 8

ArUtil::sleep(4000); //Wait for arm to stop shaking 9

2.3 Reading and Controlling the Devices 29

Note that the arm can shake for up to 2 seconds after powering on and if it is
told to move before it stops shaking then it can shake even more violently. The
powerOn() method of the ArP2Arm class waits 2 seconds by default but it is advis-
able to include an extra sleep statement as an added precaution (line 9).

The joints in the arm can be controlled by using the ArP2Arm::moveTo() method.
This takes three arguments: an integer which specifies which joint is to be controlled,
a float which specifies the position to move the joint to (in degrees) and an unsigned
char, which specifies the speed of movement. If a velocity of 0 is specified then the
current speed is used. Note that each joint has a -90 to 90 degree range approx-
imately, but this can differ between designs. On the Pioneers all the joints rotate
through at least 180 degrees, except the gripper fingers. The program below shows
commands that move the arm joints (lines 1 to 5) and the fingers (line 6).

arm.moveTo(1,45,40); //Set each joint 1

arm.moveTo(2,50,40); 2

arm.moveTo(3,20,40); 3

arm.moveTo(4,10,40); 4

arm.moveTo(5,15,40); 5

arm.moveTo(6,30,40); //Set gripper 6

ArUtil::sleep(6000); 7

arm.park(); //Home arm and power it off 8

arm.uninit(); //Uninitialize the arm 9

The gripper at the end of the Pioneer arm is treated like the joints, where the an-
gle passed is proportional to the amount of closing, i.e. to move it you just send the
moveTo() command to joint 6. There is a public attribute ArP2Arm::NumJoints that
allows the number of joints to be determined. By declaring a P2ArmJoint object it
is also possible to obtain information about the state of that joint. This is done by
using the getJoint() method of the ArP2Arm class and by reference to the myVel,
myHome, myCenter, myPos, myMin, myMax and myTicksPer90 attributes of the
class. The program extract below illustrates this:

ArRobot robot; ArP2Arm arm;

arm.setRobot(& robot);

if (arm.init() != ArP2Arm::SUCCESS)

{
cout << "Arm did not initialise\n";
exit(1);

}
P2ArmJoint *joint;

for (i=1, i<ArP2Arm::NumJoints; i++)

{
joint = arm.getJoint();

cout << "Joint " << i << "velocity " << myVel << "home "

<< myHome << "\n";
}

30 2 Programming with the ARIA API

After use the arm should be set to its home position, powered off and unini-
tialised. Lines 8 and 9 of the previous program show how this is achieved. The
park() method both homes the arm and powers it off. This can also be accomplished
with the separate methods home() and powerOff(). The home() method takes an in-
teger value as its argument. If -1 is specified all joints are homed at a safe speed. If a
single joint is specified only that joint is homed at the current speed. The powerOff()
method should only be called when the arm is in a good position to power off as it
will go limp. It is safer to use park() as this homes the arm first before it is powered
off.

There are a number of other joint controlling methods that can be used. These
include moveToTicks(), moveStep(), moveStepTicks(), moveVel() and stop(). The
moveToTicks() method works in a similar way to the moveTo() method except the
position is specified in ticks instead of degrees. A tick is the arbitrary position value
that the arm controller uses. It uses a single unsigned byte to represent all the possi-
ble positions in the range of the servo for each joint, so the range is 0 to 255 and this
is mapped to the physical range of the servo. This is a lower level of arm control than
using moveTo(). The moveStep() method also works in a similar way to moveTo()
except that it moves a joint through the specified number of degrees rather than to a
fixed position. The moveStepTo() method moves a joint through a specified number
of ticks. The moveVel() method sets a particular joint to move at a specified velocity.
It takes two integers, the first specifies the joint and the second specifies the veloc-
ity. The desired velocity is actually achieved by varying the time between each tick
movement. Thus, the attribute value supplied is actually the number of milliseconds
to wait between each point in the path; 0 is the fastest, 255 is the slowest and a rea-
sonable range is between 10 and 40. Calling the stop() method simply stops the arm
from moving. This overrides all other actions except for initialisation. The 5D arm
cannot be simulated using MobileSim as a 3D simulator is required for robot arms.

2.3.6 The 2D Gripper

The 2D gripper is instantiated and added to the robot as described in Section 2.2.2.
Physically it is a two degree of freedom manipulation accessory that attaches to the
front of the robot, see Figure 1.3 and Figure 2.6. It has paddles and a lift mechanism
driven by reversible DC motors, with embedded limit switches that sense the paddle
and lift positions. The paddles contain a grip sensor and front and rear infrared
break beam switches that close horizontally until they grasp an object or close on
themselves. Further details about the gripper device can be found in [14].

Table 2.3 shows the commands (i.e., all the methods of the ArGripper class) that
can be used to determine the state of the gripper, the integer values that they return
and how these are interpreted. Note that the getGripState() method returns a value
of 2 (closed) both when the grippers are closed around an object and when they are
fully closed on themselves. The integer value 0 (between open and closed) refers to
their being in a moving state, not to their semi-closure. Note also that the paddles

2.3 Reading and Controlling the Devices 31

are always triggered when the gripper is closed. When the gripper is open they are
triggered only when they are touched with sufficient pressure. Table 2.4 shows the
ArGripper methods that can be used to control the gripper.

Fig. 2.6 The Pioneer 2D gripper

The program extract below shows use of the gripper’s getType() method to check
that a gripper is present before it is deployed for action.

ArRobot (robot); //Instantiate robot

ArGripper gripper(&robot); //Instantiate gripper and add robot

int gripType; //Type of gripper

gripType = gripper.getType(); //Get gripper type

if (gripType != ArGripper::NOGRIPPER) //If gripper is present

{
gripper.gripperDeploy(); //Open and raise gripper

ArUtil::sleep(4000); //Wait while this completes

}

The program sample below shows a user-written method to test the state of the
break beams and the paddles and to close the grippers if they are broken by a can.
After closure, the state of the break beams is tested again to make sure the can was
successfully grabbed. The method returns a boolean value, which indicates whether
the grab was successful or not.

/∗
∗---
∗ Can gripping routine

∗---
∗/

bool canGrip(ArGripper *thisGripper, ArRobot *thisRobot)

{

32 2 Programming with the ARIA API

Table 2.3 Methods to obtain the gripper states

Method Description Returns Interpretation

getGripState() The collective state of 0 Between open and closed
the paddles 1 Open

2 Closed

getPaddleState() The individual state of 0 Not triggered
the paddles 1 Left triggered

2 Right triggered
3 Both triggered

getBreakBeamState() The state of the 0 None broken
break beams 1 Inner beam broken

2 Outer beam broken
3 Both beams broken

getType() Type of gripper 0 Query type (QUERYTYPE)
The returned integer 1 General input output (GENIO)
maps to an ARIA 2 User input output (USERIO)
-defined enumeration 3 Packet requested from robot (GRIPPAC)
value shown in 4 No gripper present (NOGRIPPER)
brackets

Table 2.4 Methods to control the gripper

Command Interpretation

gripOpen() Opens the gripper paddles
gripClose() Closes the gripper paddles
liftUp() Raises the lift to the top
liftDown() Lowers the lift to the bottom
gripperDeploy() Puts the gripper in a deployed position, ready for use
gripStop() Stops the gripper paddles
liftStop() Stops the lift
gripperHalt() Halts the lift and the gripper paddles

int beamState; //State of break beams

int paddleState; //State of the paddles

bool grippedCan = false; //Whether can gripped

beamState = thisGripper->getBreakBeamState(); //Get state of beams

paddleState = thisGripper->getPaddleState(); //Get paddle state

cout << "Gripper state is " << gripState << " \n";
cout << "Beam state is " << beamState << " \n";

/∗ If any beam is broken or paddles are triggered ∗/
if (beamState == 1 || beamState == 2 || beamState == 3 ||

paddleState == 1 || paddleState == 2 || paddleState == 3)

{

2.3 Reading and Controlling the Devices 33

thisRobot->setVel(0);

thisGripper->gripClose(); //Grasp can

ArUtil::sleep(4000);

beamState = thisGripper->getBreakBeamState(); //Get beam state

if (beamState == 1 || beamState == 2 || beamState == 3)

{
grippedCan = true;

thisGripper->liftUp(); //Lift can

ArUtil::sleep(4000);

}else
{
thisGripper->gripOpen(); //Re-open as no can

ArUtil::sleep(2000);

grippedCan = false;

}
}

return grippedCan; //Whether grab succeeded

}

The user-written method below releases a gripped can, reverses and then turns
the robot. Note that the 2D gripper cannot be simulated using MobileSim, see Sec-
tion 3.2.

/∗
∗---
∗ Can dropping routine

∗---
∗/

void canDrop(double speed, ArGripper *thisGripper, ArRobot *thisRobot)

{
thisRobot->setVel(0); //Stop moving

thisGripper->liftDown(); //Lower gripper

ArUtil::sleep(4000);

thisGripper->gripOpen(); //Open gripper

ArUtil::sleep(4000);

thisRobot->setVel(-1*speed); //Reverse slowly

ArUtil::sleep(4000);

thisRobot->setRotVel(90); //Turn away

ArUtil::sleep(2000);

}

2.3.7 The Pan-tilt-zoom Camera

A pan-tilt-zoom camera is instantiated and added to the robot as described in Sec-
tion 2.2.2. Most Pioneers come with a Canon VC-C4 camera (see [21] and [20] for
more details), so the ArVCC4 class, which inherits from the ArPTZ class, must be

34 2 Programming with the ARIA API

used. Once instantiated the camera must first be initialised using the init() method
of the ArVCC4 class. The program extract below shows how to do this:

ArRobot(robot); //Instantiate robot

ArVCC4 ptz(&robot); //Instantiate ptz and add robot

bool ptzInitialized; //Whether ptz initialized

ptzInitialized = ptz.init(); //Initialize ptz

ArUtil::sleep(4000);

Once initialised, the camera can be controlled using the pan(), tilt() and zoom()
methods of the ArVCC4 class. These move the camera to a specified angle in de-
grees, which must be an integer value. In addition, the tiltRel() and panRel() meth-
ods can also be used to tilt or pan the camera relative to its present position. Other
useful methods include, panTiltRel() and panTilt() which perform the pan and tilt
operations together. Here, two integers representing the degrees of pan and tilt re-
spectively are taken as arguments. The current angles of the camera can be obtained
by calling getPan(), getTilt() and getZoom(). The methods getMaxPosPan() and get-
MaxNegPan() retrieve the highest positive and lowest negative values that the cam-
era can pan to (in degrees). The methods getMaxPosTilt() and getMaxNegTilt() do
the same for the tilt angles.

The user-written method below performs a simple camera movement exercise,
panning and tilting the camera through its full range continuously. Note that a pan-
tilt-zoom camera cannot be simulated using MobileSim, see Section 3.2.

/∗
∗---
∗ PTZ exercise mode

∗---
∗/

void ptzExercise(int inc, bool initPTZ, ArVCC4 *thisPTZ)

{

typedef enum //Tilt up or down

{
up U,

down D,

} VertDirection;

typedef enum //Pan left or right

{
left L,

right R,

} HorizDirection;

int panAngle; //Current pan angle

int tiltAngle; //Current tilt angle

int lowPan; //Lowest pan angle

int lowTilt; //Lowest tilt angle

2.3 Reading and Controlling the Devices 35

int highPan; //Highest pan angle

int highTilt; //Highest tilt angle

HorizDirection hDir; //Horizontal direction

VertDirection vDir; //Vertical direction

if (initPTZ == true) //Camera initialization success

{
panAngle = thisPTZ->getPan(); //Get current pan

tiltAngle = thisPTZ->getTilt(); //Get current tilt

highPan = thisPTZ->getMaxPosPan(); //Get max pan

lowPan = thisPTZ->getMaxNegPan(); //Get min pan

highTilt = thisPTZ->getMaxPosTilt(); //Get max tilt

lowTilt = thisPTZ->getMaxNegTilt(); //Get min tilt

cout << "Pan = " << panAngle << " Tilt = " << tiltAngle << "\n";

if (panAngle == highPan && tiltAngle == highTilt)

{
cout << "Changing direction to L and D\n";
hDir = left L; //Change directions

vDir = down D;

}
if (panAngle == lowPan && tiltAngle == lowTilt)

{
cout << "Changing direction to R and U\n";
hDir = right R; //Change directions

vDir = up U;

}
if (hDir == right R) //If going right

{
thisPTZ->panRel(inc); //Increment pan right

}else
{
thisPTZ->panRel(-1*inc); //Increment pan left

}
if (vDir == up U) //If going up

{
thisPTZ->tiltRel(inc); //Increment pan up

}else
{
thisPTZ->tiltRel(-1*inc); //Increment pan down

}
}else
{
cout << "Cannot initialize camera\n"; //Error message

}
}

The next chapter looks at some of the other software packages offered by Mo-
bileRobots including ACTS, Mapper3Basic and the simulator MobileSim.

Chapter 3
Other MobileRobots Inc. Resources

3.1 ACTS Software

The ActivMedia Color Tracking System (ACTS) is a virtual vision sensor that al-
lows tracking of coloured objects on 32 different channels. One of its components
is a server program that can run on the robot PC. When running this server the
user also supplies a configuration file that contains the locations of colour lookup
tables (.lut files). These files hold the information about the colours that should be
tracked and there is one file for each channel. The files are created by “training”
each channel with a client program called EZ-train, using either still images or live
video pictures. The best source of information about ACTS is the user guidebook,
see [16].

In order to run ACTS as a blob finder device, a frame grabber, camera and sup-
porting driver software are required. On the Pioneers the frame grabber is the device
that Linux refers to as /dev/video0 and the camera is the Canon VC-C4. An X-
window system is needed to train the channels using EZ-train, but Pioneer robots’
on board PCs do not usually run X-windows. A way around this is to install the
ACTS software both on the robot PC (for blob finding) and on the remote lab PC,
which runs X-windows (for training the channels). It is also possible to export the
graphical display over a network so that one machine runs and another displays the
graphics, but the details of this are beyond the scope of this book.

3.1.1 Training the Channels

Once the software is installed on the remote PC and the robot PC run the binary on
the remote PC by typing ./acts.bin from the directory /usr/local/acts/
bin. Both the server and the EZ-train client will then run on the remote PC and two
windows should be created, the image window and the control panel window for the
EZ-train client. These are illustrated below in Figure 3.1 and Figure 3.2.

37

38 3 Other MobileRobots Inc. Resources

By default the image loaded into the image window is a still image of a Pioneer
robot, however, you can specify a different image to load by typing ./acts.bin
-f <imagename.ppm>, where <imagename> is the name of the image you wish
to load. Whilst running the program you can also change image by selecting File →
Load Image from the menu and selecting your image. All images must be portable
pixmap files with the extension .ppm, but it is usually very easy to save pictures in
this format for example using KSnapshot or to convert them using graphical pack-
ages such as GIMP.

Fig. 3.1 EZ-train image window

Suppose you have a robot that has to pick up red cans in its gripper and you wish
to train the ACTS system to track the red cans. By running the ACTS server on the
robot (which runs another server program called savServer by default) and a client
program called savClient on the remote PC, you can obtain live images from the
robot camera on the remote PC. You can then capture some of the images of the
cans as seen by the robot (using KSnapshot for example) and use these to train one
of the channels to recognise the red cans. When you first run ACTS on the robot,
you will need to specify a configuration file, but you will not have created one yet as
you will not have trained any channels. You will therefore need to create a “dummy”
configuration file in a simple text editor, which has the format illustrated below:

1 <NoChannel>

1 <NoChannel>

1 <NoChannel>

.

.

.

.

1 <NoChannel>

1 <NoChannel>

1 <NoChannel>

The file consists of “1 <NoChannel>” repeated 32 times on separate lines. Once

3.1 ACTS Software 39

Fig. 3.2 EZ-train control pose window

this file is created save it, for example as “actsconfig” in your robot home directory
and then you can start the ACTS server on the robot by typing:

/usr/local/acts/bin/acts.bin -t actsconfig &

from your home directory. The ACTS server will run, but no channels will be loaded.
The -t extension runs ACTS with no graphics, i. e. only the server runs and no at-
tempt is made to load up the EZ-train windows. You can then run savClient on the
remote PC by typing:

/usr/local/acts/SAV/savClient

from the remote PC. A message box will ask which host you want to connect to.
Type the name of the robot into the box and you should then see live video images
from the robot camera on your remote PC. Use a program such as KSnapshot to
capture a number of images of the cans, in different lighting conditions. You should
also obtain some images of the background and other colours that the robot can see,
so that you can make sure that these colours are not included in the .lut file.

40 3 Other MobileRobots Inc. Resources

Once you have saved your images you can close ACTS on the robot. On the
remote PC load the first picture into the image window by selecting File → Load
Image from the menu. An example image is shown below in Figure 3.3.

Fig. 3.3 The red cans as seen by the robot

Next select the channel you wish to train by clicking on one of the numbered
buttons in the control panel window, see Figure 3.2. Then indicate the maximum
number of blobs you want to track on that channel by clicking on the forward arrow
in the text box marked “Blobs tracked”, or just type the number in; the maximum is
10 for each channel. Colours from the image are added to the channel by selecting
pixels or groups of pixels from it. This is done by clicking the “+” button from the
“training tools” frame and then clicking and dragging the mouse to create a rectangle
that selects the part of the image you want to include. You can repeat this process as
many times as possible, adding more and more pixel colours to the channel. If you
want to remove pixels from the channel click the “-” button from the “training tools”
frame and then select the pixels you want to remove. For example, you might want
to do this if you discover that some pixels on the cans also appear in the background.

You can select a number of different image modes; visible mode (Figure 3.4),
thresh mode (Figure 3.5) and overlay mode (Figure 3.6). These help to show which
pixels are currently recognised by the channel; right clicking the mouse button on
the image cycles through them. Visible mode shows the recognised pixels in their
actual colours against a black background, thresh mode shows the recognised pixels
in white against a black background and overlay mode shows the recognised pixels
in blue against the actual background. The blue colour is the default but can be
changed to green or red if desired.

A number of images taken in different lighting conditions should be processed to
train the channel adequately. If the colour to be tracked does not differ significantly
from the background or other colours that the robot may see, it may be quite difficult
to prevent the robot detecting false blobs. For example, the background carpet in
Figure 3.6 has several shades of pink that may be the same as some of the pink
pixels found on the cans. In the image, the cans are not fully shaded blue as many
pixels have been removed from the channel to prevent the background carpet and

3.1 ACTS Software 41

Fig. 3.4 Visible mode

Fig. 3.5 Thresh mode

Fig. 3.6 Overlay mode

walls of the robot’s environment (see Figure 3.7) being tracked as blobs. In general,
colours that stand out well from the background should be chosen. It is also better if
the objects to be tracked are matte rather than gloss as this prevents reflections from
light sources and other colours.

42 3 Other MobileRobots Inc. Resources

Fig. 3.7 Showing the Pioneer robot, the cans and the background colours

When a channel has been trained it is saved by selecting File → Save Channel
from the control panel window. A name (with the .lut extension) and a file location
can then be specified. Other channels can then be trained and saved as separate .lut
files. When all the channels required have been saved a configuration file needs to
be created by selecting File → Save Runtime Config from the control panel window.
All this file does is store the locations of the saved .lut files. Once you have saved
all the lookup tables and the configuration file you can close ACTS on the remote
PC. The configuration file will have the following format:

1 ~/channel1.lut

1 ~/channel2.lut

1 <NoChannel>

1 <NoChannel>

:

:

:

1 <NoChannel>

1 <NoChannel>

1 <NoChannel>

1 <NoChannel>

The configuration file shown above has two trained channels 1 and 2; the other
30 channels are not used. The first line specifies the location of channel 1’s .lut

3.1 ACTS Software 43

file “channel1.lut” and the second line specifies the location of channel 2’s .lut file
“channel2.lut”. Here they are stored in the user’s home directory. If you need to go
back and edit a channel after closing ACTS you can reload the configuration file by
typing for example:

/usr/local/acts/bin/acts.bin -c actsconfig.

The -c parameter instructs ACTS to load the desired configuration file. Note that
-t was used on the robot PC as this parameter suppresses loading the graphical
training software as well.

Once you have suitable colour lookup tables and a configuration file, copy them
to the robot PC. You may need to edit the configuration file as this needs to show
where the lookup tables are located in the robot’s file system. You can then run
ACTS on the robot and load the desired channels by typing for example:

/usr/local/acts/bin/acts.bin -t ˜/actsconfig

where “actsconfig” is the name of the ACTS configuration file saved in your home
directory. You can then refer to the channels in your high level code as it is the client
programs that decide what to do with the blob tracking information. It is worth men-
tioning that on start-up the ACTS server consults a file called Acts.pref that is set-up
and stored in a hidden directory called .ActivMedia in the user’s home directory
when they first run ACTS. This sets a number of options and by default it has the
following settings:

; ACTS preference file. Lines starting with ; are comments

[ACTS]

ImageFilename

ConfigurationFilename

MinimumRunLengthWidth 5

ImageWidth 160

ImageHeight 120

SocketAddr 5001

FrameGrabberType v4l

FrameGrabberDev /dev/video0

FramesPerSec 30

ShowGraphics true

PALCamera false

PXCGrabber false

InvertImage false

FrameGrabberChannel 1

44 3 Other MobileRobots Inc. Resources

The file is a plain text file and can be readily edited. The FrameGrabberChannel
variable should be given value 0 for the Pioneers as their cameras use the Com-
posite1 protocol. MinimumRunLengthWidth is the minimum width in pixels for a
coloured area to be tracked as a blob. Changing this to 20, for example, would mean
that a blob had to consist of 20 or more pixels before it was recognised for tracking.
However, the command line arguments supplied when ACTS is run can override the
settings of “Acts.pref”, see Table 1 of [16] for a full listing of the command line
arguments.

3.1.2 Programming ACTS Using ARIA

The ArACTS 1 2 class is used to represent an ACTS object. It is instantiated as
described in Section 2.2.2. The class’s openPort() method both adds the robot to the
device and sets up communication between the robot and the ACTS server. To obtain
the number of blobs found on a particular channel use ArACTS 1 2::getNumBlobs(),
supplying an integer (the channel number) as the argument. To refer to blobs found
by ACTS an instance of an ArACTSBlob class first needs to be declared. The Ar-
ACTS 1 2::getBlob() method can then be called. This takes three arguments; the
channel number, the blob number and a pointer to the object that will hold its data.
You can then obtain its data by calling, for example, the ArACTSBlob::getArea(),
ArACTSBlob::getXCG() or ArACTSBlob::getYCG() methods. The first of these
returns the area of the blob as an integer value. The last two are used to deter-
mine where the blob’s centre of gravity is relative to the centre of the camera.
The getXCG() method gives the x-coordinate and getYCG() gives the y-coordinate,
which are double values. In addition there are the getLeft(), getRight(), getTop()
and getBottom() methods which return the positions of the borders of the blob. Be-
fore executing a high level client control program that involves ArACTS 1 2 and
ArACTSBlob objects the ACTS server must first be running on the robot PC. The
program extract below shows how to instantiate an ArACTS 1 2 object and connect
it to a robot running ACTS.

ArRobot robot; //Instantiate robot

ArACTS 1 2 acts; //Instantiate ACTS object

acts.openPort(&robot); //Add robot and set up communication

//with ACTS server running on that robot

The user-written method below shows ACTS tracking a colour defined by a par-
ticular channel. It returns the value of the largest blob found:

3.1 ACTS Software 45

/∗
∗---
∗ Blob tracking mode

∗---
∗/

int trackBlobs(int channel, double speed, ArACTS 1 2 *thisACTS,

ArVCC4 *thisPTZ, bool movePTZ)

{

ArACTSBlob blob; //Instantiate blob object

ArACTSBlob largestBlob; //Instantiate blob object to

int numBlobs; //hold largest no. of blobs

int blobArea = 0; //Area of blob

bool found = false; //Whether blob is found

double xRel; //x-co-ord (centre of gravity)

double yRel; //y-co-ord (centre of gravity)

numBlobs = thisACTS->getNumBlobs(channel); //Get number of blobs seen

if (numBlobs!=0) //If there are blobs

{
cout << "Found " << numBlobs << " blobs\n";
for (int i = 0; i < numBlobs; i++) //Loop through all blobs

thisACTS->getBlob(channel, i+1, &blob);

if (blob.getArea() > blobArea) //Get area of each blob and

{ //compare with current largest

found = true; //Blob has been found

blobArea = blob.getArea(); //Set value of largest

largestBlob = blob; //Assign largest for tracking

}
}else
{
cout << "No blobs detected - remaining still\n";
found = false;

thisRobot->setVel(0); //Set speed to zero

}

if (found == true) //Found blob to track

{
/∗ Determine where the largest blob’s center of gravity ∗/
/∗ is relative to the center of the camera∗/
xRel = (double)(largestBlob.getXCG() - 160/2.0) / (double)160;

yRel = (double)(largestBlob.getYCG() - 120/2.0) / (double)120;

if (movePTZ == true)

{
if(!(ArMath::fabs(yRel) < .20)) //Tilt camera toward blob

{
//Camera moves up or down to

if (-yRel > 0) //centre on blob

{
cout << "Tilting camera up toward blob\n";
thisPTZ->tiltRel(1);

46 3 Other MobileRobots Inc. Resources

}else
{
cout << "Tilting camera down toward blob\n";
thisPTZ->tiltRel(-1);

}
}

}

// Set the heading for the robot

if (ArMath::fabs(xRel) < .10) //If blob central don’t adjust

{
thisRobot->setDeltaHeading(0); //XRel should be > 0.1

}else
{
if (ArMath::fabs(-xRel * 10) <= 10) //If blob central

{ //Move in required direction

thisRobot->setDeltaHeading(-xRel * 10);

}else if (-xRel > 0) //If blob is not central

{
thisRobot->setDeltaHeading(10); //Move in required direction

}else
{
thisRobot->setDeltaHeading(-10);

}
}

thisRobot->setVel(speed); //Set speed for travel to blob

}
return largestBlob.getArea(); //Return value of largest blob

}

3.2 MobileSim

MobileSim simulates MobileRobots platforms and their environments, which is use-
ful for debugging and testing ARIA clients. It is a modification of the Stage simula-
tor (see Chapter 6) created by Richard Vaughan, Andrew Howard and others as part
of the Player/Stage project, converting Mapper3Basic .map files (see Section 3.3)
to the Stage environment and placing a simulated robot model there. Control is pro-
vided via TCP port 8101.

The binary is run from the command line by typing MobileSim. If no additional
parameters are specified a dialogue box is opened, see Figure 3.8. This allows you
to select your robot type from the Robot Model list box (p3dx is the default) and
load a map by clicking the Load Map button and selecting a saved Mapper3Basic
map. Alternatively, the No Map button can be clicked. If no map is specified the
usable universe (indicated by a grey colour) is limited to 200 metres by 200 metres.

You can also open a map and specify a robot type from the command line by
typing:

3.2 MobileSim 47

MobileSim -m <map file> -r <robot model>,

for example,

MobileSim -m mymap.map -r p3dx.

If you launch the application in this way no initial dialogue box is displayed.

Fig. 3.8 The initial dialogue box for MobileSim

The MobileSim window is opened once the robot type and map have been spec-
ified, see Figure 3.9. The map environment and robot are displayed in the centre of
the window with the robot at a home position (if this was specified when the map
was created) or at the centre. You can pan the window by holding down the right
mouse button and dragging and can zoom it with the mouse scroll wheel or by hold-
ing down the middle mouse button and dragging towards or away from the centre of
the circle that appears. The robot can be moved by dragging it with the left mouse
button and can be rotated by dragging with the right mouse button. Both of these
actions update the robot’s odometry. Grid lines may be added by checking View →
Grid from the menu.

A control program that uses the ArSimpleConnector class to connect to a robot
will work on the MobileSim simulator without requiring any modification. This is
because the class first tries to connect to MobileSim and only tries to connect to
a real robot on a serial connection if MobileSim is not running. A program that
uses ArTcpConnection should also work on the simulator with no modification. To
run these programs on the simulator you need only run MobileSim and then type

48 3 Other MobileRobots Inc. Resources

the name of the program’s binary into the command line, for example ./test.
Figure 3.9 shows the execution of a wandering and obstacle avoidance program that
uses the laser and sonar devices. The area shaded blue represents the laser output
and the sonar rays are shown in grey coming from the edge of the robot.

The File menu allows the user to load a fresh map (Load File), reset the robot to
its original position on the map (Reset) and export frames or sequences of frames
(Export). The format for frame export and the duration of the export can also be
set. The View menu allows various display features to be turned off and on. These
include shading the laser range area, showing grid lines, showing the trails that the
robot makes, turning off display of the laser and sonar rays and showing position
data. Position data gives the odometric pose (x, y and theta values), velocity and
true pose. The Clock menu allows the user to pause the robot. A display showing
the robot’s trail and the position data are illustrated in Figure 3.10 and Figure 3.11
respectively.

Note that several devices cannot be simulated by MobileSim. These include grip-
pers, 5D arms, pan-tilt-zoom units, cameras, and blob finding devices, see Table 1.2
for a full list. MobileRobots does not have any immediate plans to update Mo-
bileSim to include these devices, but it is likely that a version that includes the
gripper will be released before any version that includes the blob finder.

Fig. 3.9 The MobileSim GUI window

3.3 Mapper3Basic 49

Fig. 3.10 The simulated Pioneer’s trail

3.3 Mapper3Basic

Mapper3Basic can be used to create and edit maps for MobileSim (see Section 3.2)
so that walls and other obstacles can be simulated. This can be done by drawing
map lines, goals, forbidden lines and areas, home points and areas and dock points.

The binary is run from the command line by typing Mapper3Basic, which
opens a graphical window shown in Figure 3.12. To start a new map select File
→ New from the menu and a blank sheet will be loaded. To open an existing map
select the Open icon or File → Open from the menu. If you require grid lines you
can select View → Grid Lines from the menu.

Lines, goals and other map objects are placed on the sheet by selecting the ap-
propriate button from the second row and then clicking and dragging the mouse to
draw the object. The example above shows four lines drawn to form a rectangle and
another four drawn to form an inner rectangle (unshaded). If placed outside the inner
rectangle but inside the outer rectangle the robot would be able to move within the
outer but would not be able to enter the inner rectangle. However, this is not a truly
forbidden area as the robot could be placed within the inner rectangle and would
still be free to move around. Forbidden areas are created by selecting the Forbidden
Area icon and clicking and dragging the mouse over the area that the robot must not
enter. These areas are shown shaded orange. In addition, forbidden lines can also be
created using the Forbidden Line icon. These could be used to prevent the robot from

50 3 Other MobileRobots Inc. Resources

Fig. 3.11 The simulated Pioneer’s position data

getting too close to hazards that cannot be detected with range sensors, for example
staircases and holes. If you require your robot to avoid forbidden areas you will also
need to create an instance of a virtual ranged device ArForbiddenRangeDevice in
your ARIA program and add it to the robot. This is used to measure the distances
from forbidden areas.

If you require your robot to begin in a particular location on the map then select
the Home Point icon and click on the point where the robot must begin. Maps are
saved as bitmap images in the form of .map files by selecting the Save icon or
choosing Save or Save As from the file menu. Once saved the maps can be loaded
into MobileSim.

Goals, home areas and dock points can also be created. However, these features
are for use when creating maps for MobileEyes, MobileRobots’ GUI navigation
system for remote robot control and monitoring. MobileEyes can connect to ARIA,
ArNetworking and ARNL (ARIA’s Navigation Library) servers over a wireless net-
work to display the map of the robot’s environment. It provides controls to send
the robot to goal points or any other point on the map, and also allows the robot
to be driven directly with the keyboard or joystick. However, further details about
MobileEyes and the navigation library are not included in this guide as details about
MobileEyes are available with the online documentation that comes with the soft-
ware.

3.3 Mapper3Basic 51

Fig. 3.12 The interface for Mapper3Basic

The next chapter examines the use of subclasses within ARIA and covers each
of ArAction, ArActionGroup, and ArMode subclasses.

Chapter 4
Using ARIA Subclasses

4.1 Creating and Using ArAction Subclasses

Another way of controlling a robot with ARIA is to create action subclasses that
inherit from the base ArAction class. When instances of these classes are added to
an ArRobot object the robot’s resulting behaviour is determined through an action
resolver. This invokes each ArAction object (via its fire() method), and the actions
request what kind of motion they want by returning a pointer to an ArActionDesired
object. The action resolver determines what the resulting combination of those re-
quested motions should be, then commands the robot accordingly. The idea behind
this is to have several behaviours acting simultaneously, which combine to drive the
robot.

When using the ArAction class direct commands can still be used (for example
ArRobot::setVel()), but if you mix direct motion commands with ArAction objects
you must fix ArRobot’s state by calling ArRobot::clearDirectMotion() before ac-
tions will work again.

The program below shows how to create an action that inherits from the Ar-
Action class. This is an adaptation of the actsSimple.cpp program that appears
in /usr/local/Aria/examples. Note that it is similar to the blob finding
method shown in Section 3.1.2. The difference is that this is a class inheriting from
ArAction, whereas the program in Section 3.1.2 was just a method.

#include "Aria.h"

#include <iostream>

/∗ This class moves a robot toward the largest blob seen ∗/

class Blobfind : public ArAction 1

{
public:

enum State //State of action

{
NO TARGET, //No target in view

53

54 4 Using ARIA Subclasses

TARGET, //Target in view

};

Blobfind(ArACTS 1 2 *acts, ArVCC4 *camera); //Constructor 2

~Blobfind(void); //Destructor

ArActionDesired *fire(ArActionDesired currentDesired); 3

State getState(void) return myState; //Return state of action

protected: 4

ArActionDesired myDesired; 5

ArACTS 1 2 *myActs;

ArVCC4 *myCamera;

State myState;

int myChannel;

};

// Constructor

Blobfind::Blobfind(ArACTS 1 2 *acts, ArVCC4 *camera) : 6

ArAction("Blobfind", "Moves towards the largest blob.")

{
myActs = acts;

myCamera = camera;

myChannel = 1;

myState = NO TARGET;

}

Blobfind::~Blobfind(void) //Destructor

// The fire method

ArActionDesired *Blobfind::fire(ArActionDesired currentDesired) 7

{
ArACTSBlob blob;

ArACTSBlob largestBlob;

bool flag = false;

int numberOfBlobs;

int blobArea = 10;

double xRel, yRel;

myDesired.reset(); //Reset desired action 8

numberOfBlobs = myActs->getNumBlobs(myChannel);

if(numberOfBlobs != 0) //If there are blobs

{
myState = TARGET;

for(int i = 0; i < numberOfBlobs; i++)

{
myActs->getBlob(myChannel, i + 1, &blob);

if(blob.getArea() > blobArea)

{
flag = true;

4.1 Creating and Using ArAction Subclasses 55

blobArea = blob.getArea();

largestBlob = blob;

}
}

}else
{
myState = NO TARGET;

}

if(flag == true)

{
//Determine where the largest blob’s center of gravity

//is relative to the center of the camera

xRel = (double)(largestBlob.getXCG() - 160.0/2.0) / 160.0;

yRel = (double)(largestBlob.getYCG() - 120.0/2.0) / 120.0;

if(!(ArMath::fabs(yRel) < .20)) //Tilt camera toward blob

{
if (-yRel > 0)

myCamera->tiltRel(1);

else

myCamera->tiltRel(-1);

}

if (ArMath::fabs(xRel) < .10) //Set heading and velocity

{
myDesired.setDeltaHeading(0); 9

}
else

{
if (ArMath::fabs(-xRel * 10) <= 10)

myDesired.setDeltaHeading(-xRel * 10); 10

else if (-xRel > 0)

myDesired.setDeltaHeading(10); 11

else

myDesired.setDeltaHeading(-10); 12

}

myDesired.setVel(200); 13

return &myDesired; 14

}
else

{
myDesired.setVel(0); 15

myDesired.setDeltaHeading(0); 16

return &myDesired; 17

}
}

The important lines in the program are numbered. Line 1 declares the class as
a subclass of ArAction. Line 2 declares the constructor, which takes pointers to
an ACTS device and a camera as its arguments. Line 3 declares the fire() method,
which is the important one to override for subclasses of ArArction. It must return a

56 4 Using ARIA Subclasses

pointer to an ArActionDesired object to indicate what the action wants to do and can
be NULL if the action does not want to change what the robot is currently doing. It
must also have ArActionDesired currentDesired as its parameter. This enables the
action to determine what the resolver currently wants to do as currentDesired refers
to the resolver’s current desired action. It is used solely for the purpose of giving
information to the action.

Line 4 begins declaration of the protected attributes of the class; only subclasses
have access to these. Line 5 declares the ArActionDesired object called “myDe-
sired”. Line 6 begins the constructor method and the right hand side part, for ex-
ample : ArAction(“Blobfind”, “Moves towards the largest blob”) must be included.
Line 7 begins the fire() method. This method sets the action request by returning
the pointer to “myDesired”. Line 8 resets “myDesired” and lines 9 to 17 set “my-
Desired” under different conditions. Note that “myDesired” is used with ArRobot
direct motion commands like setDeltaHeading().

A main method that uses the above action is given below. This assumes that the
above class was saved as “BlobFind.cpp”.

#include "Aria.h"

#include "BlobFind.cpp" 1

#include <stdio.h>

#include <iostream>

using namespace std;

int main(int argc, char** argv)

{
ArRobot robot; //Instantiate robot

ArSonarDevice sonar; //Instantiate sonar

ArVCC4 vcc4 (&robot); //Instantiate camera

ArACTS 1 2 acts; //Instantiate acts device

ArSimpleConnector simpleConnector(&argc, argv);

if (!simpleConnector.parseArgs() || argc > 1)

{
simpleConnector.logOptions();

exit(1);

}

/∗ Instantiate actions ∗/
ArActionLimiterForwards limiter("speed limiter near", 300,600,250); 2

ArActionLimiterForwards limiterFar("speed limiter far", 300,1100,400); 3

ArActionLimiterBackwards backwardsLimiter; 4

ArActionConstantVelocity stop("stop", 0); 5

ArActionConstantVelocity backup("backup", -200); 6

Blobfind blobFind(&acts, &vcc4); //Blob finding action 7

Aria::init();

robot.addRangeDevice(&sonar); //Add sonar to robot

/∗ Connect to the robot ∗/
if (!simpleConnector.connectRobot(&robot))

4.2 Creating and Using ArActionGroup Subclasses 57

{
cout << "Could not connect to robot... exiting\n";
Aria::shutdown();

return 1;

}

acts.openPort(&robot); //Connect to acts

vcc4.init(); //Initialise camera

ArUtil::sleep(1000); //Wait a second.....

robot.setAbsoluteMaxTransVel(400);

robot.comInt(ArCommands::ENABLE, 1); //Enable motors

ArUtil::sleep(200);

/∗ Add actions to robot ∗/
robot.addAction(&limiter, 100); 8

robot.addAction(&limiterFar, 99); 9

robot.addAction(&backwardsLimiter, 98); 10

robot.addAction(&blobFind, 77); 11

robot.addAction(&backup, 50); 12

robot.addAction(&stop, 30); 13

robot.run(true); //Run the program 14

Aria::shutdown();

return 0;

}

Here, line 1 includes the file containing the ArAction subclass “Blobfind”. Lines
2 to 7 declare instances of the action classes that the robot will use; line 7 is the
“Blobfind” action created earlier, the others are all standard ArAction subclasses
that form part of the ARIA library. ArActionLimiterForwards and ArActionLimiter-
Backwards limit the forwards and backwards motion of the robot respectively based
on range sensor readings, and ArActionConstantVelocity simply sets the robot at a
constant velocity. Lines 8 to 14 add the actions to the robot using ArRobot’s ad-
dAction() method. This method takes a pointer to an ArAction object and an integer
value representing the action’s priority as its arguments. The priority values are used
by the action resolver to determine the final desired action of the robot. Line 14 runs
the program.

4.2 Creating and Using ArActionGroup Subclasses

ArActionGroup subclasses are used to wrap a group of ArAction subclasses together
to form an action group. This is useful if you have a number of actions that imple-
ment a behaviour collectively but you want to be able to activate the behaviour with
one call to the group’s activate() method. The program below shows how to group
actions using a subclass of the ArActionGroup base class. It does the same job as
the previous example, i.e. carries out blob tracking at the same time as limiting the
forward and backward robot motions. The difference is that here all the actions are

58 4 Using ARIA Subclasses

added to the robot and their priorities are set using the addAction() method of the
ArActionGroup class. The action “blobFind” created in the previous section is im-
plemented by including the source file (line 1), declaring a pointer to an instance of
the class (lines 2 and 3) and adding the action to the group (line 4).

#include "Aria.h"

#include "BlobFind.cpp" 1

/∗ Implements blob finding in an action group ∗/

class BlobfindGroup : public ArActionGroup

{
public:

BlobfindGroup(ArRobot *robot, ArACTS 1 2 *acts, ArVCC4 *camera);

~BlobfindGroup(void);

/∗ Declaring the actions that will be added ∗/

protected:

Blobfind* blobFind; 2

ArActionLimiterForwards* limiter;

ArActionLimiterForwards* limiterFar;

ArActionLimiterBackwards* backwardsLimiter;

ArActionConstantVelocity* stop;

ArActionConstantVelocity* backup;

};

/∗ Constructor ∗/

BlobfindGroup::BlobfindGroup(ArRobot *robot, ArACTS 1 2 *acts,

ArVCC4 *camera):ArActionGroup(robot)

{

/∗ Instantiate and add the actions to the group ∗/

blobFind = new Blobfind(acts, camera); 3

limiter = new ArActionLimiterForwards("speed limiter near", 300, 600,

250);

limiterFar = new ArActionLimiterForwards("speed limiter far", 300, 1100,

400);

backwardsLimiter = new ArActionLimiterBackwards;

stop = new ArActionConstantVelocity("stop", 0);

backup = new ArActionConstantVelocity("backup", -200);

addAction(blobFind, 77); 4

addAction(limiter, 100);

addAction(limiterFar, 99);

addAction(backwardsLimiter, 98);

addAction(backup, 50);

addAction(stop, 30);

}

/∗ Destructor ∗/
BlobfindGroup::~BlobfindGroup(void) {}

4.2 Creating and Using ArActionGroup Subclasses 59

The main method (below) remains largely unchanged, except that there is now no
need to declare and add the actions as they are already declared in the group class.
All you need to do is declare the group (line 1) and then activate it exclusively (line
2).

#include "Aria.h"

#include "BlobFindGroup.cpp"

#include <stdio.h>

#include <iostream>

using namespace std;

int main(int argc, char** argv)

{

ArRobot robot; //Instantiate robot

ArSonarDevice sonar; //Instantiate sonar

ArVCC4 vcc4 (&robot); //Instantiate camera

ArACTS 1 2 acts; //Instantiate acts

ArSimpleConnector simpleConnector(&argc, argv);

if (!simpleConnector.parseArgs() || argc > 1)

{
simpleConnector.logOptions();

exit(1);

}

Aria::init();

robot.addRangeDevice(&sonar); //Add sonar to robot

/∗ Declare the Blobfinder action group ∗/

BlobfindGroup blobFindGroup(&robot, &acts, &vcc4); 1

/∗ Connect to the robot ∗/
if (!simpleConnector.connectRobot(&robot))

{
cout << "Could not connect to robot... exiting\n";
Aria::shutdown();

return 1;

}

acts.openPort(&robot); //Connect to acts

vcc4.init(); //Initialise camera

ArUtil::sleep(1000); //Wait a second...

robot.setAbsoluteMaxTransVel(400); //Set max speed

robot.comInt(ArCommands::ENABLE, 1); //Enable motors

ArUtil::sleep(200);

/∗ Implement the actions in the group ∗/
blobFindGroup.activateExclusive(); 2

60 4 Using ARIA Subclasses

robot.run(true); //Run the program

Aria::shutdown();

return 0;

}

4.3 Creating and Using ArMode Subclasses

Once an ArActionGroup subclass has been created an ArMode subclass that im-
plements the group action using a single keyboard character can be written. The
program below shows how to implement this. Line 1 includes the “BlobfindGroup”
class and line 2 declares an instance of the class. The constructor just deactivates
the group behaviour initially, line 3. The activate() and deactivate() methods of the
base class (starting on lines 4 and 5 respectively) must be overridden in the subclass.
These methods should just activate and deactivate the behaviour.

#include "Aria.h"

#include "BlobFindGroup.cpp" 1

class BlobfindMode : public ArMode

{
public:

BlobfindMode(ArRobot *robot, const char *name, char key, char key2,

ArACTS 1 2 *acts, ArVCC4 *camera);

~BlobfindMode(void);

void activate(); //Activate mode

void deactivate(); //Deactivate mode

/∗ Declaring the group associated with this mode ∗/

protected:

BlobfindGroup myGroup; 2

};

/∗ Constructor ∗/

BlobfindMode::BlobfindMode(ArRobot *robot, const char *name, char key,

char key2, ArACTS 1 2 *acts, ArVCC4 *camera) : ArMode(robot,

name, key, key2),

myGroup(robot, acts, camera)

{
myGroup.deactivate(); //Deactivate group 3

} //(only run when key pressed)

/∗ Destructor ∗/

BlobfindMode::~BlobfindMode(void) {}

4.3 Creating and Using ArMode Subclasses 61

void BlobfindMode::activate() 4

{
if (!baseActivate())

{
return;

}
myGroup.activateExclusive();

}

/∗ Deactivation method ∗/

void BlobfindMode::deactivate() 5

{
if (!baseDeactivate())

{
return;

}
myGroup.deactivate();

}

A main method that implements the blob finding mode is shown below. It also
has a default wander mode. The user can switch into blob finding mode by pressing
the “b” or “B” key.

#include "Aria.h"

#include "BlobFindMode.cpp" 1

#include <stdio.h>

#include <iostream>

using namespace std;

int main(int argc, char** argv)

{

ArRobot robot; //Instantiate robot

ArSonarDevice sonar; //Instantiate sonar

ArVCC4 vcc4 (&robot); //Instantiate camera

ArACTS 1 2 acts; //Instantiate acts

ArSimpleConnector simpleConnector(&argc, argv);

ArKeyHandler keyHandler; //Instantiate key handler 2

if (!simpleConnector.parseArgs() || argc > 1)

{
simpleConnector.logOptions();

exit(1);

}

Aria::init();

robot.addRangeDevice(&sonar); //Add sonar

Aria::setKeyHandler(&keyHandler); 3

robot.attachKeyHandler(&keyHandler); //Add key handler 4

/∗ Connect to the robot ∗/
if (!simpleConnector.connectRobot(&robot))

62 4 Using ARIA Subclasses

{
cout << "Could not connect to robot... exiting\n";
Aria::shutdown();

return 1;

}

acts.openPort(&robot); //Connect to acts

vcc4.init(); //Initialise camera

ArUtil::sleep(1000); //Wait a second...

robot.setAbsoluteMaxTransVel(400); //Set max speed

ArUtil::sleep(200);

robot.runAsync(true);

/∗ Set up robot ∗/

robot.lock();

robot.comInt(ArCommands::ENABLE, 1); //Enable motors

/∗ Implement blobfinding mode or wander mode using single keys ∗/

BlobfindMode blobFind(&robot, "blobfind-mode", ‘b’,‘B’, &acts, &vcc4); 5

ArModeWander wander(&robot, "wander-mode", ‘w’, ‘W’); 6

wander.activate(); //Set default behaviour 7

robot.unlock();

robot.waitForRunExit(); //Run the program 8

Aria::shutdown();

return 0;

}

Line 1 includes the file containing the “BlobfindMode” class. Line 2 instantiates
an ArKeyHandler object for processing key events and lines 3 and 4 register it with
the main ARIA library and attach it to the ArRobot object respectively, which should
be done before connecting to the robot. Line 5 declares a “BlobfindMode” object.
Note that the parameters supply the name of the mode and the keys that will be used
to switch to it. Line 6 does the same for the “ArModeWander” mode that is part of
the ARIA library. Line 7 sets the default behaviour to wandering, i.e., the robot will
begin with this behaviour when the program starts. Line 8 runs the program.

The next chapter deals with programming Pioneer robots using Player software,
and as with the ARIA section, each device is treated separately.

Chapter 5
Programming with Player

5.1 Player Configuration Files

In order to run Player you need to specify a configuration file, which is a simple text
file that tells the robot which drivers to use for which device. If you placed your orig-
inal Player tarball in /usr/src then the source code for all of the drivers will have
been placed in /usr/src/player-2.0.5/server/drivers when you un-
zipped it, so you can browse through these files to see which drivers are potentially
available. All the drivers that were built on your system at the time of installation
will have been compiled and linked into “libplayerdrivers”, but not all drivers are
built by default, see Section 1.5.4.

In the configuration file the drivers used are specified by name and then a list of
the interfaces they provide is given. The port they must communicate with is also
listed in some cases and some drivers allow the specification of other attributes. An
example configuration file for the Pioneers is presented below:

Pioneer P3-DX-SH

driver

(

name "p2os"

provides ["odometry:::position2d:0"

"sonar:0"

"gripper:0"

"power:0"

"bumper:0"]

port "/dev/ttyS0"

)

driver

(

63

64 5 Programming with Player

name "canonvcc4"

provides ["ptz:0"]

port "/dev/ttyS1"

)

driver

(

name "sicklms200"

provides ["laser:0"]

port "/dev/ttyS2"

rate 38400

delay 32

resolution 50

range res 1

alwayson 1

)

driver

(

name "camerav4l"

provides ["camera:0"]

port "/dev/video0"

source 0

size [320 240]

norm "ntsc"

mode "RGB888"

)

driver

(

name "cmvision"

requires ["camera:0"]

provides ["blobfinder:0"]

colorfile ["colors2.txt"]

)

The first driver listed is the p2os. This driver offers access to the micro-controller
that runs the special embedded operating system on Pioneer robots. It is connected to
the serial port /dev/ttyS0 of the robot and mediates control of several interfaces
explained in Table 5.1.

The next driver listed is the canonvcc4, which controls a Canon VC-C4 pan-
tilt-zoom unit. The configuration file tells Player that the driver provides the pan-
tilt-zoom function and that the unit is connected to serial port /dev/ttyS1. Note
that when using Player all pan-tilt-zoom units must be connected to a serial port
otherwise they will not function, see Section 5.5.7 for further details.

5.1 Player Configuration Files 65

Table 5.1 P2OS interfaces

Interface Function

odometry:::position2d Returns odometry data and accepts velocity commands
sonar Returns data from sonar arrays (if equipped)
gripper Controls gripper (if equipped)
power Returns the current battery voltage (12 V when fully charged)
bumper Returns data from bumper array (if equipped)

The next driver is the sicklms200, the driver for the SICK LMS200 laser that
comes with some Pioneer robots. The configuration file tells Player that the driver
provides an interface for the laser and that it is connected to port /dev/ttyS2. In
addition, there are a number of other attributes that can be set including the baud rate
(the default is 38400), the delay in seconds before initialisation (the default is 0), the
resolution (50 = 361 readings, 100 = 181 readings, the default is 50) and the range
resolution. The default range resolution is 1, which means 1 mm precision, 8.192
m max range. This can also be set to 10 (10 mm precision, 81.92 m max range) or
100 (100 mm precision, 819.2 m max range). The alwayson attribute can also be
used to specify whether to keep the laser on all the time that Player is running. If the
parameter 1 is used, the laser remains on. The default value is 0, which means that
the laser is disconnected after any client programs that use it have finished executing.
In terms of saving battery power it is better not to keep the laser running all the time.

The camerav41 driver captures images from V4l-compatible cameras. The port
specified is the device for reading the video data, i.e., the framegrabber /dev/
video0 in this case. Other attributes include source, for specifying which capture
card input source should be used, norm for specifying NTSC or PAL capture stan-
dards and size for indicating the required image size. Mode tells Player the desired
capture mode. The options are:

• RGB888 (24-bit RGB) The default
• RGB565 (16-bit RGB)
• RGB32 (32-bit RGB; producing 24-bit colour images)
• YUV420P (planar YUV data converted to 24-bit colour images)
• YUV420P GREY (planar YUV data; producing 8-bit monochrome)

The last driver listed is the cmvision driver, which provides a virtual blob finder
device. The configuration file shows that the device requires the camera and will
not function without it. This is expressed by using the requires key word. A “color”
or configuration file must also be specified for indicating the colours to be tracked.
Section 5.5.8 provides more details on the cmvision blob finder.

Once you have set up a configuration file for your robot and saved it (for example
as “pioneer.cfg” in your home directory on the robot) you can run the Player server
by opening a secure shell on the robot and typing:

player pioneer.cfg &

66 5 Programming with Player

on the command line. This assumes you are in your home directory and that your
system knows where the Player binary is. If not then you will need to specify the
full path names of Player’s binary and the configuration file. When the Player server
runs you will see the following output on the command line:

∗ Part of the Player/Stage/Gazebo Project [http://playerstage.sourceforge.net].

∗ Copyright (C) 2000 - 2005 Brian Gerkey, Richard Vaughan, Andrew Howard,

∗ Nate Koenig, and contributors. Released under the GNU General Public License.

∗ Player comes with ABSOLUTELY NO WARRANTY. This is free software, and you

∗ are welcome to redistribute it under certain conditions; see COPYING

∗ for details.

Listening on ports: 6665

You can also obtain more debugging information by typing:

player -d 9 pioneer.cfg &.

Note that if there are errors in your configuration file the server will report the error
and will not run. Once you have the Player server running on your robot you can run
high level client control programs from the robot itself or from a remote PC. You
can also run a tool called PlayerViewer remotely to get visual images of the output
from the robot’s sensors, see Section 5.2 below. To kill the Player server at any time
type either killall player or kill -9 followed by the process number.

5.2 Using PlayerViewer

PlayerViewer is a GUI client program that enables a user to view sensor data from
a player server. It also provides some teleoperation capabilities. PlayerViewer is in-
stalled at the same time as Player, by default in /usr/local/bin. To run it you
must first run the Player server on a real robot or run Player with Stage, see Chap-
ter 6. You need X-Windows on your system to view the output from PlayerViewer,
so when running Player on a real robot it is normally run from a remote PC. If you
are running Player with Stage then typing:

/usr/local/bin/playerv

from a shell console or just playerv (if your system knows where the binary
is located) will bring up the PlayerViewer GUI interface. If you are running Player
on a real robot then from the remote PC shell type:

playerv -h <robotname>

5.2 Using PlayerViewer 67

or

playerv -p <portnumber>

where <robotname> is the host name of your robot and <portnumber> is the port
number that Player is listening on. Figure 5.3, Figure 5.4 and Figure 5.5 below show
the GUI interface for PlayerViewer. To pan the window click and drag with the left
mouse button. To zoom click and drag with the right mouse button.

The GUI has three root menus, File, View and Devices. The user is able to see the
output from the robot’s devices by subscribing to them from the Devices menu. This
menu lists the available devices based on information supplied by the configuration
file. To subscribe to a device select Subscribe from the sub-menu for that device.
Most devices only have Subscribe in their sub-menu, but position2d:(p2os) also has
options to command the robot’s position, i.e., move the robot manually. The File
menu is used to save images either as stills in jpeg or ppm formats, or as movies
at one and two times normal speed. It also provides an Exit function to close the
application. The View menu provides options for rotating the image and for turning
grid lines off and on.

Figure 5.3 is the PlayerViewer output for a real Pioneer robot in a small pen with
two gate posts, see Figure 5.1. The user was subscribed to the position, laser and
sonar devices and the Command and Enable options were selected from the posi-
tion2d:(p2os) sub-menu. The solid red line in Figure 5.3 shows the robot position,
the purple area shows the laser range and the brown triangles represent the sonar
output. Note how the laser sensor is much more accurate than the sonars in the real
world. The dotted red line illustrates use of the command feature. To command the
robot’s position the target crosshairs inside the robot are dragged to the desired lo-
cation. Enable must be selected from the position2d:(p2os) sub-menu for this to
work.

Figure 5.4 and Figure 5.5 show PlayerViewer images based on a virtual Stage
Pioneer robot in the world shown in Figure 5.2. In Figure 5.4 the user was subscribed
to the position, pan-tilt-zoom, gripper, blob finder and sonar devices. Here, the pan-
tilt-zoom field of view is shown by the green lines. To pan and zoom the camera
unit click and drag the green circle. Clicking and dragging the blue circle will also
tilt a real camera. The blobs seen are shown in the small window underneath and to
the right of the robot. In Figure 5.5 the user was subscribed to the position, laser,
pan-tilt-zoom and gripper devices.

68 5 Programming with Player

Fig. 5.1 The real environment upon which Figure 5.3 is based

5.3 Programming with the Player C++ Client Library

The remainder of this chapter covers use of the Player C++ library, which provides
high level client control programs for real robots and virtual ones created through
Player’s 2D simulator Stage.

5.3.1 Compiling Programs

Player programs are compiled under Linux by using g++ on the command line
and programs must be linked to the Player C++ library, so you may need to add
the path /usr/local/lib to the file /etc/ld.so.conf to let your dynamic
linker know where the “libplayerc++.so.2” file is. After adding it you will also
need to run ldconfig. You may also need to add the same directory to the
LD LIBRARY PATH environment variable. As an example, suppose you have a
control program called “test.cpp” and you wish to create a binary called “test”.
From the directory where “test.cpp” is located, you would type the following:

g++ -o test‘pkg-config --cflags playerc++‘ test.cpp
‘pkg-config --libs player.

Alternatively you could write a shell script, such as the one shown below to save

5.3 Programming with the Player C++ Client Library 69

Fig. 5.2 Stage world upon which Figure 5.4 and Figure 5.5 are based

typing this every time you want to compile:

#!/bin/sh

Short script to compile a Player 2.0.5
playerc++ client
Requires 2 arguments, (1) name of binary
and (2) name of program to compile

if [$# != 2]; then
echo Require 2 arguments
exit 1

fi

g++ -Wall -o $1 ‘pkg-config --cflags playerc++‘ $2
‘pkg-config --libs playerc++‘

70 5 Programming with Player

Fig. 5.3 PlayerViewer output for a real Pioneer robot

Fig. 5.4 PlayerViewer output for a simulated robot with sonar sensors

5.3.2 Connecting to a Robot

The Player C++ client library uses classes as proxies for local services. There are
two kinds, the single server proxy PlayerClient and numerous proxies for the devices

5.3 Programming with the Player C++ Client Library 71

Fig. 5.5 PlayerViewer output for a simulated robot with laser sensor

used, for example the Position2dProxy for obtaining position and setting speed.
Connection to a Player server is achieved by creating an instance of the PlayerClient
proxy and specifying host and (or) port arguments. The program below shows how
to pass and process host and port arguments and create the server proxy. The impor-
tant lines are numbered.

#include <libplayerc++/playerc++.h> //c++ client library 1

#include <stdio.h>

#include <stdlib.h>

#include <iostream>

using namespace std;

using namespace PlayerCc; 2

#define USAGE \ 3

"USAGE: test-program [-h <host>] [-p <port>] \n"
" -h <host>: connect to Player on this host\n"
" -p <port>: connect to Player on this TCP port\n"

char host[256] = "localhost"; //Default host name 4

int port = 6665; //Default port number 5

int main(int argc, char **argv)

{
/∗ Set the host and port arguments∗/
int i = 1;

72 5 Programming with Player

while (i < argc)

{
if(!strcmp(argv[i],"-h")) //If host argument specified

{
if(++i < argc)

{
strcpy(host,argv[i]); //Set host connection variable 6

}else
{
puts(USAGE); //Explain how to set arguments

exit(1);

}
}else if(!strcmp(argv[i],"-p")) //If port argument specified

{
if(++i < argc)

{
port = atoi(argv[i]); //Set port connection variable 7

}else
{
puts(USAGE); //Explain how to set arguments

exit(1);

}
}
i++;

}

PlayerClient robot(host, port); //Create PlayerClient 8

robot.SetDataMode(PLAYER DATAMODE PULL); //Set data to PULL mode 9

robot.SetReplaceRule(-1, -1, PLAYER MSGTYPE DATA, -1, 1); 10

}

Line 1 includes the Player C++ client library and line 2 indicates that the pre-
defined PlayerCc namespace is being used. These lines must be included for all
Player C++ client programs. Line 3 defines the output that will be displayed on
screen if the host and port arguments are not specified in the right way. Lines 4 and
5 set the default values for host and port respectively if no arguments are passed. In
the first part of the program the arguments that were passed at run time are examined
and, if necessary, they are passed to the host and port variables (lines 6 and 7). This
is important since no arguments need to be passed if a Stage simulation is being
run. However, if the client is run on a real robot but remotely from a networked PC
then a host name or port number needs to be given. Line 8 creates an instance of
a PlayerClient object called “robot”. Lines 9 and 10 set the data mode for message
passing. In PULL mode the server only sends data after the client requests it. Player
queues up messages and sends the current contents of the queue upon the client’s
request. The default mode is PUSH in which Player pushes messages out to the
client as fast as it can.

If the compiled client binary of the above program was called “test” you would
type either:

5.5 Reading and Controlling the Devices 73

./test -h <robotname>

or

./test -p <portnumber>

to run the program, where <robotname> and <portnumber> are the host and port
numbers respectively. If you are running Stage then just typing ./test should run
the client in the Stage window, see Chapter 6.

5.4 Instantiating and Adding Devices

All devices are registered by creating instances of the appropriate proxies and initial-
ising them through the established PlayerClient object. The program extract below
shows how to instantiate laser and sonar devices and associate them with a Player-
Client object called “robot”. Note that connection is achieved here by simply using
the argument “localhost”.

PlayerClient robot(localhost); //Create instance of PlayerClient 1

SonarProxy sp(&robot, 0); //Create instance of SonarProxy 2

LaserProxy lp(&robot, 0); //Create instance of LaserProxy 3

Line 1 creates an instance of the PlayerClient object called “robot”. Line 2 creates
a SonarProxy object called “sp” and associates it with the “robot” object and line 3
does the same for the LaserProxy object “lp”. The second constructor parameter for
these proxies is an integer representing the index number for the proxy. Here, the
indexes are both 0 since there is only one of each.

5.5 Reading and Controlling the Devices

Once devices have been instantiated and added to the robot they can be controlled.
The rest of this chapter shows how this is achieved using Player’s C++ client li-
brary. It shows how to read and control the Pioneer’s motors, sonars, laser, bumpers,
5D arm, 2D gripper, camera, pan-tilt-zoom device, virtual blob finder device and
ARIA’s ACTS blob finder. Note that the standard units for Player are metres, radi-
ans and seconds.

74 5 Programming with Player

5.5.1 The Motors

In order to control the motors it is first necessary to create an instance of a Posi-
tion2dProxy object and associate it with a PlayerClient object. There are several
methods of the Positiond2dProxy class that can be used to set linear and angular
speeds and to obtain odometry readings. These are summarised in Table 5.2 be-
low and the following program extract shows how to use some of them. Note that
the DTOR() function is specific to the client library and simply converts degrees to
radians.

double xpos;

double ypos

double zpos;

PlayerClient robot(localhost); //Create PlayerClient

Position2dProxy pp(&robot, 0); //Create PositionProxy

pp.SetMotorEnable (true); //Enable motors

xpos = pp.GetXPos(); //Get position data

ypos = pp.GetYPos();

zpos = pp.GetYaw();

cout << "X pos is " << xpos << "\n";
cout << "Y pos is " << ypos << "\n";
cout << "Z pos is " << zpos << "\n";
for (;;)

//Continuous loop

{
pp.SetSpeed(2.0, DTOR(30)); //Set linear speed and turn

}

Table 5.2 Methods of the Position2dProxy class and their functions

Method Function Arguments

void SetSpeed() Sets linear and angular speed (non-
holonomic robots)

double aXSpeed = linear velocity
double aYawSpeed = angular veloc-
ity

void SetMotorEnable() Enables the motors bool enable; true = enabled, false =
disabled

void ResetOdometry() Resets odometry to (0, 0, 0) N/A
void SetOdometry() Sets odometry to desired position double aX = desired x co-ordinate

double aY = desired y co-ordinate
double aYaw = desired angle

double GetXPos() Gets the x position N/A
double GetYPos() Gets the y position N/A
double GetYaw() Gets the angular position N/A

5.5 Reading and Controlling the Devices 75

5.5.2 The Sonar Sensors

In order to read from the sonar it is first necessary to create an instance of a
SonarProxy object. The program extract below shows how to do this and also
demonstrates use of the GetScan() and GetCount() methods to read the sonar and
determine the number of sonar present. The program continually executes a FOR
loop, which reads the proxy data (using the Read() method of the PlayerClient ob-
ject), puts the current sonar values into a simple array and drives the robot in a
circle.

PlayerClient robot(localhost); //Create PlayerClient

cout << "You have successfully connected\n";
Position2dProxy pp(&robot, 0); //Create Position2dProxy

SonarProxy sp(&robot, 0); //Create SonarProxy

int numSonar; //No. of sonar readings

numSonar = sp.GetCount(); //Gets no. of sonar readings

double scan data[numSonar]; //Array to hold sonar data

for (;;) //Begin read-think-act loop

{
robot.Read(); //Reads data for all devices

for (int i = 0; i < numSonar; i++) //Loop through sonar readings

{
scan data[i] = sp.GetScan(i); //Store readings in array

cout << "sonar data " << i << " " << scan data[i] << "\n";
} //End loop through sonar

pp.SetSpeed(0.1, DTOR(30)); //Move robot slowly in circle

} //End read-think-act loop

The method GetPose(x) returns the sonar pose (in m, m, radians) for the sonar
with index number x. Note that individual sonar readings can be referenced using
the syntax sp[0] instead of sp.GetScan(0). Stage 2.0 can simulate the sonar, see
Chapter 6.

5.5.3 The Laser Sensor

In order to read from the laser it is first necessary to create an instance of a Laser-
Proxy object. The program extract below shows how to do this and also demon-
strates use of the GetRange() and GetCount() methods to read the laser data and get
the number of points on the scan respectively. The program continually executes a
FOR loop, which reads the robot’s data, puts the current laser values into a simple
array and drives the robot in a circle.

PlayerClient robot(localhost); //Create PlayerClient

cout << "You have successfully connected\n";
Position2dProxy pp(&robot, 0); //Create Position2dProxy

LaserProxy lp(&robot, 0); //Create LaserProxy

76 5 Programming with Player

int numLaserReadings; //No. of laser readings

numLaserReadings = lp.GetCount(); //Gets no. of laser readings

double scan data[numLaserReadings]; //Array to hold laser data

for (;;) //Begin read-think-act loop

{
robot.Read(); //Reads data for all devices

for (int i = 0; i < numLaserReadings; i++) //Loop through laser readings

{
scan data[i] = lp.GetRange(i); //Store readings in array

cout << "laser data " << i << " " << scan data[i] << "\n";
} //End loop through laser

pp.SetSpeed(0.1, DTOR(30)); //Move robot slowly in circle

} //End read-think-act loop

Table 5.3 below summarises the functions of some of the LaserProxy class meth-
ods. The Configure() method allows the user to specify certain laser parameters at
run time, such as the maximum and minimum angles that the scan should include
and the resolution and intensity values. Note that the resolution and intensity values
can also be set by the configuration file, but are overridden when the Configure()
method is used. The current settings can be determined by using the GetScanRes(),
GetRangeRes(), GetMaxAngle(), GetMinAngle() and GetIntensity() methods. Fig-
ure 5.6 shows a set of 361 laser readings and their corresponding angular positions.
Note that as with the sonar, individual laser readings can also be referenced using
the syntax lp[0] instead of lp.GetRange(0). Stage 2.0 can simulate the laser device,
see Chapter 6.

Fig. 5.6 Angular positions of the 361 laser readings

Once the laser and (or) sonar sensors have been read it is useful to write routines
that process them in some form or another, for example determining the minimum
reading and its angle so that the robot can perform obstacle avoidance if necessary.

5.5 Reading and Controlling the Devices 77

Table 5.3 Methods of the LaserProxy class and their functions

Method Function Arguments

double GetScanRes() Get the angular resolution N/A
double GetRangeRes() Get the range resolution N/A
double GetMaxAngle() Maximum angular position

for the scan
N/A

double GetMinAngle() Minimum angular position
for the scan

N/A

double GetRange() Get a particular laser reading aIndex = the index of the reading required
double GetCount() Get the number of points in a

scan
N/A

double GetIntensity() The intensity of a particular
laser reading

aIndex = the index of the reading required

void Configure() For setting laser parameters aMinAngle = Minimum angle of scan
aMaxAngle = Maximum angle of scan
aScanRes = Angular resolution
aRangeRes = Linear resolution
aIntensity = Intensity of scan

The Player C++ client library does not provide any pre-written programs to do this,
but an example program is provided as part of the online materials that supplement
this book, see the Appendix for more details.

5.5.4 The Bumpers

The bumpers are read by creating an instance of a BumperProxy object and asso-
ciating it with a PlayerClient object. The program extract below shows how to do
this:

PlayerClient robot(localhost); //Create PlayerClient

Position2dProxy pp(&robot, 0) //Create Position2dProxy

BumperProxy bp(&robot, 0); //Create BumperProxy

In addition, the following program extract shows how a robot named “taylor”
may be programmed to respond to the bumpers. The IsAnyBumped() method de-
tects whether any of the bumpers have been activated. The “escapeTraps()” method
of a user-written class is called with boolean arguments “cornered” (set to true
here if the average laser reading is lower than a threshold value “avTol”), and
bp.IsAnyBumped().

if (taylor.average <= avTol || bp.IsAnyBumped() == true)

{
if (taylor.average <= avTol)

{

78 5 Programming with Player

cornered = true;

}else
{
cornered = false;

}
taylor.escapeTraps(cornered, bp.IsAnyBumped());

}

The user-written “escapeTraps()” method is presented below. In this method the
angular and linear speeds are dependent both upon whether the robot was cornered
and whether it was bumped at the back.

void Robot::escapeTraps(bool cornered, bool bumped)

{

int random number; //Decide turn direction

int factor; //Negative or positive angle

int angle; //Turn angle

random number = (rand()%2); //Get 0 or 1

if (random number == 0)

{
factor = -1;

}else
{
factor = 1;

}

if (cornered == true)

{
angle = factor * 135;

}else
{
angle = factor * 75;

}

if (bumped == false)

{
steerRobot(-0.1, angle); //Reverse turn

}else
{
angle = factor * 5;

cout << "BUMPED AT REAR - MOVING FORWARD BY " << angle << " DEGREES\n";
steerRobot(0.1, angle); //Forward turn

}
}

It is also possible to check individual bumpers using the IsBumped() method and
supplying the bumper index number as the argument. Note that bp.IsBumped(0)
and bp[0] are equivalent where “bp” is a BumperProxy object. Table 5.4 below

5.5 Reading and Controlling the Devices 79

summarises some of the functions of the methods of the BumperProxy class. The
bumpers can be simulated in Stage 2.0.4 see Chapter 6.

Table 5.4 Methods of the BumperProxy class and their functions

Method Function Arguments

bool IsBumped() Returns true if specified
bumper has been bumped,
false otherwise

aIndex = index of bumper

bool IsAnyBumped() Returns true if any bumper
has been bumped, false oth-
erwise

N/A

player bumper define t GetPose() Returns a specific bumper
pose

aIndex = index of bumper

void RequestBumperConfig() Requests the geometries of
the bumper

N/A

5.5.5 The 5D Arm

The drivers for the 5D arm are incorporated into the p2os driver in Player version
2. This adds two new interfaces, an actuator array interface (actarray) that provides
direct control of each joint and an inverse kinematics interface (limb) that allows
specification of a position and orientation for the end effector (the gripper). For a
full explanation of both forward and inverse kinematics see [10]. The configuration
file presented below shows the changes that must be made to include these two new
interfaces. Lines 1 and 2 simply add them to the list of interfaces that the p2os
driver provides, whereas lines 3, 4 and 5 are additional attributes associated with
the limb interface. The limb pos value specifies the position of the base arm from
the robot centre; this is in radians and the default values are 0, 0, 0. These values
are dependent on the configuration. The limb links values are the offsets from each
joint to the next in metres. The default settings are 0.06875, 0.16, 0, 0.13775 and
0.11321. The measured distances between each joint are actually 0.06875, 0.16000,
0.092000, 0.04575 and 0.11321. However, the way to specify the link lengths is not
obvious since some of them rotate around different axes to the others. A complete
description of the Pioneer arm and details of how to measure the link lengths are
given in [11]. The limb offsets values are the angular offsets of each joint from the
desired position to the actual, and the defaults are 0, 0, 0, 0, 0. These values are for
calibration purposes and can be measured by commanding the joints to zero radians
and measuring the actual angle.

80 5 Programming with Player

Pioneer with arm

driver

(

name "p2os"

provides ["odometry:::position2d:0"

"sonar:0"

"aio:0"

"dio:0"

"power:0"

"actarray:0" 1

"limb:0" 2

"bumper:0"]

port "/dev/ttyS0"

limb pos [0 0 0] 3

limb links [0.06875 0.16 0 0.13775 0.11321] 4

limb offsets [0 0 0 0 0] 5

)

The individual joints can be controlled through Player by creating an instance of
an ActArrayProxy object and associating it with a PlayerClient object. The ActAr-
rayProxy methods, MoveTo() MoveHome() and MoveAtSpeed() can then be used to
command its position (in radians) or speed and the GetCount() method can be used
to determine the number of joints. The gripper fingers are controlled by command-
ing the sixth joint and the GetActuatorGeom() method can be called to determine
the angles necessary to close and open them fully. The RequestGeometry() method
of the ActArrayProxy class lists each joint and prints out data about its type, centre,
minimum, maximum and home positions.

The pose of the end effector can also be controlled by creating an instance
of a LimbProxy object, associating it with a PlayerClient object and using the
SetPose() method of the LimbProxy class. SetPose() requires full pose informa-
tion (position, approach vector and orientation vector), where approach is forward
from the gripper and orientation is up from the gripper. All values are in metres
with x forward, y to the left and z up. If the inverse kinematic calculator cannot
find a solution to set the effector to the desired position then the arm’s status is
PLAYER LIMB STATE OOR (i.e. out of reach). Using lp.SetPose(0.6.671f, 0.0f,
0.309f, 1, 0 0, 0, 0, 1) should stretch out the arm straight in front of the robot. The
RequestGeometry() method of the LimbProxy class shows the current limb offset,
the end effector position, the approach vector and the orientation vector.

The program below shows how to obtain the number of joints and then set the
position of each joint to 20 degrees by using the MoveTo() method of the ActAr-
rayProxy class. Next, the grippers are fully closed and opened using GetActuator-
Geom() and its min and max attributes and MoveTo(). The LimbProxy class is then
used to extend the arm in front of the robot using the SetPose() method of the class.
Finally, the arm is set back to its home position using the MoveHome() method of
the ActArrayProxy class. Note that ten calls to the Read() method are necessary in
order to obtain the geometry data.

5.5 Reading and Controlling the Devices 81

#include <libplayerc++/playerc++.h>

#include <unistd.h>

#include <stdlib.h>

#include <iostream>

using namespace std;

int main(int argc, char **argv)

{

using namespace PlayerCc;

/∗ Connect to Player server ∗/
PlayerClient robot(localhost);

/∗ Set up arm proxies ∗/
ActArrayProxy ap(&robot, 0);

LimbProxy lp(&robot, 0);

uint numJoints;

int joint = 0;

for (int i = 0; i < 10; i++)

{
robot.Read();

}
numJoints = ap.GetCount();

cout << "There are " << numJoints << " joints\n";

ap.RequestGeometry();

lp.RequestGeometry();

cout << "Position before movement\n";
cout << ap;

cout << lp;

for (joint = 0; joint < numJoints; joint++)

{
ap.MoveTo(joint, DTOR(-20));

sleep(2);

}

for (int i = 0; i < 10; i++)

{
robot.Read();

}

82 5 Programming with Player

lp.RequestGeometry();

cout << "Position after first movement (using MoveTo)\n";
cout << lp;

cout << "Now closing gripper\n";
ap.MoveTo(numJoints-1, ap.GetActuatorGeom (numJoints-1).min);

sleep(2);

cout << "Now opening gripper\n";
ap.MoveTo(numJoints-1, ap.GetActuatorGeom (numJoints-1).max);

sleep(2);

cout << "Setting pose of end effector\n";
lp.SetPose(0.60671f, 0.0f, 0.319f, 1, 0, 0, 0, 0, 1);

sleep(2);

for (int i = 0; i < 10; i++)

{
robot.Read();

}

lp.RequestGeometry();

cout << "Position after second movement (SetPose)\n";
cout << lp;

for (joint = 0; joint < numJoints; joint++)

{
ap.MoveHome(joint);

}

for (int i = 0; i < 10; i++)

{
robot.Read();

}

lp.RequestGeometry();

cout << "Position after homing\n";
cout << lp;

return(0);

}

The program produces the output shown below. Note how the position of the end
effector changes after each movement.

5.5 Reading and Controlling the Devices 83

There are 6 joints

Position before movement

6 actuators:

Act Type Min Centre Max Home CfgSpd Pos Speed State Brakes

0 Linear 1.435 -0.000 -1.510 -0.000 0.755 -0.000 0.000 2 N

1 Linear 2.127 -0.000 -1.064 1.963 0.818 0.851 0.000 2 N

2 Linear 1.636 -0.000 -1.554 1.636 0.818 0.851 0.000 2 N

3 Linear -1.601 0.000 1.525 -0.031 0.763 -0.031 0.000 2 N

4 Linear -1.441 0.000 1.441 -1.441 0.721 -1.412 0.000 4 N

5 Linear -1.257 0.000 0.471 0.000 0.785 0.000 0.000 4 N

Limb offset: 0.000, 0.000, 0.000

End effector position: 0.043, -0.003, 0.260

Approach vector: -0.999, -0.030, 0.028

Orientation vector: 0.000, 0.005, -1.000

Position after first movement (using MoveTo)

Limb offset: 0.000, 0.000, 0.000

End effector position: 0.001, -0.003, 0.235

Approach vector: -0.973, -0.030, -0.228

Orientation vector: 0.000, 0.004, -0.974

Setting pose of end effector

Position after second movement (SetPose)

Limb offset: 0.000, 0.000, 0.000

End effector position: -0.046, -0.001, 0.191

Approach vector: -0.846, 0.008, -0.529

Orientation vector: 0.000, -0.020, -0.849

Position after homing

Limb offset: 0.000, 0.000, 0.000

End effector position: 0.297, -0.110, 0.119

Approach vector: -0.264, 0.071, 0.956

Orientation vector: 0.000, 0.329, -0.291

The LimbProxy class also has a MoveHome() method that moves the end effector
to its home position, and a Stop() method that halts the limb. The arm cannot be
simulated in Stage as three dimensions are needed to simulate this device.

5.5.6 The 2D Gripper

The 2D gripper can be read and controlled by creating an instance of a Gripper-
Proxy object and associating it with a PlayerClient object. The program extract be-
low shows how to do this:

PlayerClient rb(host, port); //Create PlayerClient

GripperProxy gp(&rb, 0); //Create GripperProxy

84 5 Programming with Player

The methods of the GripperProxy class are summarised in Table 5.5. In addition,
the program extract below demonstrates picking up a puck in the gripper by first
checking the state of the break beams. It also goes on to check the state of the
beams after the grippers have closed around the puck so that the success of the grab
can be determined. Note that the GripperProxy object provides data on the state of
the paddles (open or closed) and the beams (clear or broken).

uint outerState; //State of outer break beam

uint innerState; //State of inner break beam

bool havePuck = false; //Whether puck held in gripper

for (;;) //Start of read-think-act loop

{
robot.Read();

outerState = gp.GetOuterBreakBeam(); //Read state of outer beam

innerState = gp.GetInnerBreakBeam(); //Read state of inner beam

cout << State of gripper << gp << \n; //Print gripper state

if (outerState == 1 || innerState == 1) //If either beam broken

{
pp.SetSpeed(0.001, 0.0); //Slow down to grasp puck

gp.SetGrip(GRIPclose,0); //Close paddles around puck

sleep(2);

gp.SetGrip(LIFTup, 0); //Lift puck

sleep(3);

havePuck = true; //Puck successfully collected

}

if (havePuck == true && (outerState == 0 && innerState == 0)

{
cout << "FAILED TO GRASP PUCK - RE-OPENING PADDLES\n";
havePuck = false;

gp.SetGrip(LIFTdown, 0); //Lower gripper

sleep(2);

gp.SetGrip(GRIPopen, 0); //Release puck

sleep(2);

}
} //End of read-think-act loop

The following program extract demonstrates dropping a puck after a successful
collection.

if (havePuck == true) //Collected puck

{
gp.SetGrip(LIFTdown, 0); //Lower gripper

sleep(3);

gp.SetGrip(GRIPopen, 0); //Release puck

sleep(2);

pp.SetSpeed(-0.1, 0); //Reverse away from puck

sleep(10);

havePuck = false; //Reset boolean after drop

}

5.5 Reading and Controlling the Devices 85

Table 5.5 Methods of the GripperProxy class and their functions

Method Function

uint GetOuterBreakbeam() Returns 0 if outer beam not broken, 1 if outer beam broken
uint GetInnerBreakBeam() Returns 0 if inner beam not broken, 1 if inner beam broken
uint GetPaddlesOpen() Returns 0 if paddles closed, 1 if paddles open
uint GetPaddlesClosed() Returns 0 if paddles open, 1 if paddles closed
uint GetPaddlesMoving() Returns 0 if paddles not moving, 1 if paddles moving
uint GetLiftUp() Returns 0 if gripper is not raised, 1 if gripper is raised
uint GetLiftDown() Returns 0 if gripper is not down, 1 if gripper is down
uint GetLiftMoving() Returns 0 if gripper is not moving up or down, 1 otherwise
void SetGrip() Sets status of the gripper

The 2D gripper can be simulated in Stage 2.0.4, see Chapter 6.

5.5.7 The Pan-tilt-zoom Camera

By default the Pioneer robots have the pan-tilt-zoom device connected to the AUX
port on the P2OS board in the robot. Player cannot control the pan-tilt-zoom unit
through this connection so it is therefore necessary to make a cable to connect it to a
normal serial port before the canonvcc4 driver can operate. Instructions for making
and fitting the cable are given below [3]. Before starting you will need to purchase a
VISCA - DB9 conversion cable, a 20-ribbon connection cable and a 20-pin header
connector.

• Split the ribbon into two 10-pin sections about half way down the cable. Remove
about an inch off pins 10 and 20 to make two 9-pin cable ends. Attach two male
DB-9 serial connectors to these ends. The serial connection with pin 1 will go to
the serial port on the micro-controller and the other will connect to to the VISCA
- DB9 conversion cable. Attach the 20-pin header to the end of the cable that is
not separated.

• Remove the top plate and nose from the robot and take out the cable that con-
nects serial ports ttyS0 and ttyS1 of the computer to the serial port of the P2OS.
This will be a 20-pin header but will have only 9 wires as the default Pioneer
configuration does not use port ttyS1.

• Put the 20-pin header of the new cable into the free serial ports on the computer
and connect the wire from ttyS0 (pins 1 to 9) to the serial port on the micro-
controller. Connect the other serial connection (pins 11 to 19) to the female DB-
9 connector on the VISCA to DB-9 conversion cable. Pass the cable outside the
robot cover and replace the nose and top cover of the robot. The other end of the
VISCA cable connects to the camera’s RS-232C-IN socket (the far right socket).

• To test the connection run /usr/local/Aria/examples/demo on the
robot and select ‘C’ for camera control and ‘@’ for a Canon camera. Select ‘2’

86 5 Programming with Player

for the serial port /dev/ttyS1 and then test to make sure that the key controls
will pan, tilt and zoom the camera.

Note that the camerav41 driver (responsible for getting the actual camera images)
can still operate with the pan-tilt-zoom device connected to the AUX port, so if you
only require images and do not need the camera to move then it is not necessary to
make a special cable.

A pan-tilt-zoom unit such as the Pioneers’ Canon VC-C4 can be controlled by
creating an instance of a PtzProxy and associating it with a PlayerClient object. The
program extract below shows how to do this:

PlayerClient rb(localhost); //Create PlayerClient

PtzProxy zp(&rb, 0); //Create PtzProxy

The pan, tilt and zoom values can then be set using the SetCam() method of the
PtzProxy class. This method takes three doubles representing pan, tilt and zoom
respectively as its arguments. In addition, the current settings for pan, tilt and zoom
can be obtained by calling the GetPan(), GetTilt() and GetZoom() methods of the
class. The Canon VC-C4 has a pan range of -98 to 98 degrees, a tilt range of -30 to
88 degrees and a zoom range between 0 and 2000 units [1].

For some camera models the SetSpeed() method can be used to set the speeds
of the pan, tilt and zoom functions. It takes three double values representing each
of these speeds respectively. However, this method does not work for the Canon
VC-C4 as it is a very slow device. Some examples of the other methods are shown
below:

/∗ Read the current ptz settings ∗/
cout << "Pan " << zp.GetPan() << " Tilt " << zp.GetTilt() << " Zoom "

<< zp.GetZoom() << "\n";

zp.SetCam(DTOR(0), DTOR(88), zp.GetZoom()); //Set pan to 0, tilt to 88

//Leave zoom as it is

A generic pan-tilt-zoom camera can be simulated in Stage 2.0., although the tilt
function cannot be emulated due to the 2D nature of the simulation, see Chapter 6.

5.5.8 The Virtual Blob Finder Device

This subsection deals with the BlobfinderProxy, which can be used with the generic
cmvision driver when using real robots. CMVision (Color Machine Vision) is a blob
finding software library written by Jim Bruce, see [9]. Player’s cmvision driver in-
cludes all of the CMVision source code so there is no need to download and install
it separately. The driver provides a stream of camera images to CMVision and as-
sembles the resulting blob information into Player’s data format. The driver also

5.5 Reading and Controlling the Devices 87

requires a camera driver such as camerav41 to obtain the image data. The declara-
tion of these drivers in the configuration file is shown below:

driver

(

name "camerav4l"

provides ["camera:0"]

port "/dev/video0"

source 0

size [320 240]

norm "ntsc"

mode "RGB888"

)

driver

(

name "cmvision"

requires ["camera:0"]

provides ["blobfinder:0"]

colorfile ["colors2.txt"]

)

The path to an additional CMVision configuration file should be specified as the
argument to the colorfile attribute; here the file is “colors2.txt” in the home directory.
The CMVision configuration file has a format as shown below:

[Colors]

(255, 128, 0) 0.0000 0 Ball

(255, 255, 0) 0.0000 0 Yellow Team

(0, 0, 255) 0.0000 0 Blue Team

(255, 255, 255) 0.0000 0 White

(255, 0, 255) 0.0000 0 Marker 1 (Pink)

(160, 0, 160) 0.0000 0 Marker 2 (Purple)

[Thresholds]

(12:153, 99:127,143:168)

(101:196, 60:115,114:148)

(64:157,144:164, 85:129)

(105:192, 68:187,120:131)

(85:190, 82:189,141:269)

(30: 85,130:145,135:145)

In the colors section the RGB values of the colours to be tracked must be speci-
fied. They can also be given a name, for example “Marker 1 (Pink)”. In the thresh-
olds section the values are the minimum and maximum tolerances for these colours
and are specified in YUV values. If you have a still photograph of an object you
need to track you can determine the RGB values using a graphical package such as
GIMP. Take readings from a number of pixels and then determine the maximum,

88 5 Programming with Player

minimum and average for each of the R, G and B values. You can then convert the
maximum and minimum values to YUV using appropriate formulae. The broadcast-
ing standard CCIR 601 defines the relationship between YUV and RGB as:

Y = 0.299R+0.587G+0.114B+0, (5.1)

U = −0.169R−0.331G+0.500B+128, (5.2)

V = 0.500R−0.419G−0.081B+128, (5.3)

see [8]. You should use the average values (in RGB) for the colors section of the
CMVision configuration file and the maximum and minimum values (in YUV) for
the thresholds section. The configuration file for the cans described in Section 3.1 is
shown below:

[Colors]

(158, 81, 74) 1.0000 0 Red

[Thresholds]

(66:189,101:114,160:175)

On sampling the pixels the image of the can had an average R value of 158, an
average G value of 81 and an average B value of 74. The maximum and minimum R,
G and B values were [255, 165, 142] and [112, 48 , 42] respectively. So the lowest Y
value is the result of feeding the lowest R, G and B values into Equation 5.1 above,
i.e., 66. The highest Y value is the result of feeding the highest R, G and B values
into Equation 5.1, i.e. 189. In some cases the number obtained from feeding in the
lowest R, G and B values may be higher than the number obtained from feeding
in the highest values. In these cases the numbers should still be entered into the
thresholds section in numerical order, lowest first.

So far we have described setting up Player and CMVision configuration files in
order to use the BlobfinderProxy with a real robot. If you are running your program
in Stage you do not need to declare the cmvision and camerav41 drivers in your
configuration file or specify a CMVision configuration file. This is because Stage
configuration files are written slightly differently to those for real robots. Further
details are provided in Chapter 6, which describes setting up a configuration file,
world file and robot description file for simulating blob finding in Stage.

Once you have set up your configuration file you can control the virtual blob
finding device by declaring an instance of a BlobfinderProxy object and associating
it with a PlayerClient object. The program extract below shows how to do this:

PlayerClient rb(localhost); //Create instance of PlayerClient

BlobfinderProxy bp(&rb, 0); //Create instance of BlobfinderProxy

The BlobfinderProxy uses the GetCount() method to return the number of blobs
seen and the GetBlob() method (with an unsigned integer as an argument) to specify

5.5 Reading and Controlling the Devices 89

a particular blob. Note that bp.GetBlob(0) and bp[0] are equivalent. In addition there
are various attributes to the GetBlob() method. The x attribute shows the blob’s
distance along the x axis of the blobfinder window, the area attribute gives the blob’s
area and the top attribute indicates how close the blob is to the top of the window.
The color attribute shows the colour of the blob as a packed RGB value and the
GetWidth() and GetHeight() methods of the class return the width and height of the
image respectively.

The program below shows a user-defined method that could be used for deter-
mining whether there are blobs of the right colour present and which one should be
tracked, i.e., which has the largest area. Assume that “foundBlob” is a new global
boolean variable for the class that this method is part of, i.e., an attribute of the class.

/∗
∗---
∗ Use blobfinder to locate pucks of a specified packed RGB value

∗---
∗/

int Robot::searchPucks(double sd, int rgb, BlobfinderProxy *bfp)

{

int trackIndex; //Index of tracked blob

int maxArea = 0;

foundBlob = false; //Colour not tested yet

if (bfp->GetCount()>0) //If blobs seen

{
cout << "THERE ARE " << bfp->GetCount() << " BLOBS.\n";
for (int j=0;j<bfp->GetCount();j++) //Loop through blobs

{
cout << "blob " << j << "[" << bfp->GetBlob(j).color << "]\n";
if (bfp->GetBlob(j).color == rgb) //If colour matches

{
foundBlob = true;

cout << "BLOB " << j << " IS A RED BLOB\n";
cout << "blob " << j << " x ["<<bfp->GetBlob(j).x<<"]\n";
cout << "blob " << j << " area ["<<bfp->GetBlob(j).area<<"]\n";
cout << "blob " << j << " top ["<<bfp->GetBlob(j).top<<"]\n";
if (bfp->GetBlob(j).area > maxArea) //Find biggest red blob

{
maxArea = bfp->GetBlob(j).area;

trackIndex = j;

}
}

}

}else //If no blobs detected

{
cout << "NO BLOBS DETECTED!\n"; //No blobs of right colour

trackIndex=999;

foundBlob = false;

}

90 5 Programming with Player

if (bfp->GetCount() > 0 && foundBlob == false)

{
cout << "NO RED BLOBS TO TRACK!\n"; //No blobs detected

trackIndex=999;

foundBlob = false;

}
return (trackIndex); //Pass blob index

}

The following lines could be used in a main program to call the above method
and guide the robot towards the selected blob, if present. Assume that a “Robot”
object of a user-defined “Robot” class called “taylor” was declared earlier and that
the packed RGB value for tracking is 16711680 (red). Assume also that “wander-
Random()” and “steerRobot()” are user-written methods for a random wander and
for steering the robot in a given direction respectively.

const int RED = 16711680; //Packed rgb value

int blobIndex; //Blob to be tracked

double maxSafeSpeed = 0.17; //Maximum drive speed

for ;;

{
rb.Read(); //Read proxies

if (count%10 == 0) //Count one second

{
/∗Look for red pucks ∗/
blobIndex = taylor.searchPucks(maxSafeSpeed, RED, &bp);

cout << "Blob index is " << blobIndex << "\n";

if (taylor.foundBlob == true) //If red blob

{
cout << "FOUND BLOB\n";
double turn = (40.0 bp.GetBlob(blobIndex).x)/3.0;

taylor.steerRobot(maxSafeSpeed, turn); //Steer robot to blob

}
if (taylor.foundBlob == false) //If no red blobs

{
cout << "LOOKING FOR BLOBS\n";
taylor.wanderRandom(maxSafeSpeed); //Wander randomly

}
}

}

Calling rb.Read() in the above program fills the BlobfinderProxy object with the
latest data on all blobs in view. A pointer to the proxy is passed to the user-created
“searchPucks()” method of the “Robot” class so that the data can be processed. The
method returns the index of the blob with the largest area. If a blob is found the robot
turns 40 degrees minus the x value of the blob, which sets the robot moving towards
the blob (as the centre of the blob tracking window along the x-axis was set to 40).

5.5 Reading and Controlling the Devices 91

The width of the x-axis can be set using the image attribute of the blob finder model
in Stage (see Section 6.2) or by setting the size attribute of the camerav41 driver. If
the object is central the robot does not adjust its course but if the object is to the right
of centre, for example has an x value of 60, then it turns about seven degrees right.
Thus the robot is constantly tracking the largest red blob if one is present, otherwise
it wanders randomly looking for blobs. The blob finder can be simulated in Stage
2.0.4, see Chapter 6.

5.5.9 Using the Blob Finder with ACTS

You can also use Player’s BlobfinderProxy class with MobileRobots’ ACTS blob
finding software. The ACTS server must be running on a real robot and you must
declare the acts driver in your Player configuration file as shown below:

driver

(

name acts

provides [blobfinder:0]

configfile /home/amw/actsconfig

channel 0

)

Unlike the cmvision driver there is no need to declare a camera driver for ACTS.
The channel attribute refers to the channel or .lut file listed in your ACTS configu-
ration file (see Section 3.1 for further details on training ACTS channels and setting
up the configuration file). Once the Player and ACTS configuration files are set up
you can use the BlobfinderProxy methods described in Section 5.5.8 to track blobs.

The next chapter looks at Player’s 2D simulator Stage and demonstrates how to
set up world files and configuration files to describe your virtual robot, its sensors
and actuators and its environment.

Chapter 6
Stage Simulations

6.1 Introduction

Stage is a Player plugin module providing simple and computationally cheap two-
dimensional emulation of mobile robots and their various devices [2]. Robot control
clients that have been written for real robots should be able to run on Stage without
requiring any modification and vice versa. The Stage 2.0.4 simulator can model
the Pioneer P3-DX differential steer robot base with front and rear sonar, a laser
range finder, pan-tilt-zoom unit, virtual blob finder device, bumpers, 2D gripper and
odometry.

6.2 Creating World Files

In Stage the robot and its environment are described by creating a world file. The
world file declares the window in which the simulation will be displayed, the models
it will use and their various attributes. A list of the attributes common to all models
and their data types is given below. Note that some attributes require their values to
be enclosed in square brackets (these are shown with square brackets in the list), but
others do not require any brackets at all.

• pose [float float float] - the pose of the model in its parent’s coordinate system.
• size [float float] - the size of the model.
• origin [float float float] - the position of the object’s centre relative to its pose.
• color (string) - the colour of the object using a colour name from the X11

database.
• gui nose (bool) - if 1 draw a nose on the model showing its heading (positive

x-axis).
• gui grid (bool) - if 1 draw a scaling grid over the model.
• gui movemask (int) - define how the model can be moved by the mouse in the

GUI window.

93

94 6 Stage Simulations

• gui boundary (bool) - if 1 draw a bounding box around the model indicating its
size.

• obstacle return (bool) - if 1 this model can collide with other models that have
this property set.

• blob return (bool) - if 1 this model can be detected in the blob finder (depending
on its colour).

• ranger return (bool) - if 1 this model can be detected by ranger sensors.
• laser return (int) - if 0 this model is not detected by laser sensors. If 1 the model

shows up in a laser sensor with normal (0) reflectance. If 2 it shows up with high
(1) reflectance.

• gripper return (bool) - if 1 this model can be gripped by a gripper and can be
pushed around by collisions with anything that has a non-zero obstacle return.

• mass (float) - estimated mass in kilogrammes.

The world file may also refer to other files known as include files. These are
given the extension .inc and should be listed using the include keyword. The exam-
ple world file given in this section includes the files “pioneer.inc”, which describes
a Pioneer robot and “map.inc”, which describes a map model.The “pioneer.inc” file
is shown first. Note that comments are placed into world and include files by using
the # key.

Pioneer p3dx definition

#The laser range finder

define sick laser laser

(

range min 0.0

range max 8.0

fov 180.0 # Field of view

samples 361 # No of readings each cycle

color "blue"

size [0.14 0.14]

)

The sonar array

define p3dx-sh sonar ranger

(

scount 16

define the pose of each transducer [xpos ypos heading]

spose[0] [0.115 0.130 90]

spose[1] [0.155 0.115 50]

spose[2] [0.190 0.080 30]

spose[3] [0.210 0.025 10]

spose[4] [0.210 -0.025 -10]

spose[5] [0.190 -0.080 -30]

spose[6] [0.155 -0.115 -50]

6.2 Creating World Files 95

spose[7] [0.115 -0.130 -90]

spose[8] [-0.115 -0.130 -90]

spose[9] [-0.155 -0.115 -130]

spose[10] [-0.190 -0.080 -150]

spose[11] [-0.210 -0.025 -170]

spose[12] [-0.210 0.025 170]

spose[13] [-0.190 0.080 150]

spose[14] [-0.155 0.115 130]

spose[15] [-0.115 0.130 90]

define the field of view of each transducer

[range min range max view angle]

sview [0 5.0 15] # min and max range in metres

define the size of each transducer [xsize ysize] in metres

ssize [0.01 0.05] # size in metres - has no affect on data

)

define p3dx-sh gripper gripper

(

pose [0.22 0 0]

color "black"

)

define p3dx-sh blobfinder blobfinder

(

channel count 6

channels ["red" "blue" "green" "cyan" "yellow" "magenta"]

range max 8.0

image [80 60]

)

define p3dx-sh camera ptz

(

size [0.08 0.08]

ptz [0.0 0.0 60.0]

ptz speed [1.0 0.0 0.3]

p3dx-sh blobfinder()

)

#define 5 straight bumpers around the rear edge of the robot

define p3dx-sh bumper bumper

(

96 6 Stage Simulations

bcount 5

bpose[0] [-0.25 0.22 128 0.105 0.0]

bpose[1] [-0.32 0.12 161 0.105 0.0]

bpose[2] [-0.34 0.00 180 0.105 0.0]

bpose[3] [-0.32 -0.12 199 0.105 0.0]

bpose[4] [-0.25 -0.22 232 0.105 0.0]

)

The configuration

define p3dx-sh position

(

actual size

size [0.445 0.400]

the pioneer’s center of rotation is offset from its center of area

origin [-0.04 0.0 0]

draw a nose on the robot so we can see which way it points

gui nose 1

estimated mass in KG

mass 15.0

this polygon approximates the shape of a pioneer

polygons 1

polygon[0].points 8

polygon[0].point[0] [0.23 0.05]

polygon[0].point[1] [0.15 0.15]

polygon[0].point[2] [-0.15 0.15]

polygon[0].point[3] [-0.23 0.05]

polygon[0].point[4] [-0.23 -0.05]

polygon[0].point[5] [-0.15 -0.15]

polygon[0].point[6] [0.15 -0.15]

polygon[0].point[7] [0.23 -0.05]

Pioneers have differential steering

drive "diff"

obstacle return 1

p3dx-sh sonar()

p3dx-sh gripper()

p3dx-sh camera()

sick laser()
)

6.2 Creating World Files 97

The above file is used to describe the sensor and actuator configuration of a Pio-
neer robot. The define statement is used to create a new model that can be referred
to later in the file and also in the world file. The first model created is of type laser
and is given the name “sick laser”. The additional attributes of laser models are:

• samples (int) - the number of readings in each cycle, i.e. the number of laser
samples per scan.

• range min (float) - the minimum range reported by the scanner in metres. The
scanner will detect objects closer than this but report their range as the minimum.

• range max (float) - the maximum range reported by the scanner in metres. The
scanner will not detect objects beyond this range.

• fov (float) - the maximum angular field of view of the scanner in degrees.

In the file shown all of the above are set and two attributes generic to all models
are also set; color and size. Next the sonar arrangement is described by creating
a model called “p3dx-sh sonar” of type ranger. The additional attributes of ranger
models are:

• scount (int) - the number of range transducers.
• spose [<transducer index>] [float, float, float] - pose of the transducer relative to

its parent.
• ssize [float float] - size in metres. This has no effect on the data, it only determines

how the sensor looks in the Stage window.
• sview [float float float]- minimum range and maximum range in metres, field of

view angle in degrees.

In the sample file the spose values are set for each of the sixteen transducers and
the ssize and sview values are also set. The next model created is of type gripper and
is given the name “p3dx-sh gripper”. There are no additional attributes for gripper
models. The fourth model created is of type blobfinder and is given the name “p3dx-
sh blobfinder”. Blobfinder models have the additional attributes:

• channel count (int) - the number of channels, i.e., the number of discrete colours
detected.

• channels[string string ...] - this list defines the colours detected in each channel
using colour names from the X11 database. The number of strings must match
channel count.

• image[int int] - the width and height of the image in pixels. This determines the
blob finder’s resolution.

• ptz[float float float] - sets the pan, tilt and zoom angle (fov) of the blob finder
although tilt angle has no effect.

• range max float - maximum range of the sensor in metres.

In the example, a window size of 80 x 60 pixels and six channels are set and the
blobfinder model is set to detect objects as far away as eight metres. A model of type

98 6 Stage Simulations

ptz, called “p3dx-sh camera” is created next. Ptz models share the ptz attribute of
blobfinder models and also have the additional attribute ptz speed [float float float],
which controls the speed at which the pan, tilt and zoom angles are set. Note how
the “p3dx-sh blobfinder” model is added to the “p3dx-sh camera” model to make
the blob finder device a child of the ptz device. This means that the pan, tilt and
zoom of the blob finder are set by controlling the pan, tilt and zoom of the camera.

The final sensors declared are the bumpers. The attribute bcount is used to set
the number of bumpers, and then the pose of each bumper is expressed using the
bpose<bumper index> attribute.

The last model created is called “p3dx-sh” and is of type position. This defines
the whole robot including all of its sensors and actuators. Here, the generic model
attributes size, origin, gui nose and mass are used to describe the robot and a model
type called polygons is used to describe the shape of the robot. One polygon with
eight points is declared using the polygons<index number>.points attribute. The
co-ordinates for each point of the polygon are then set using the polygons<index
number>.point attribute. Position models also have a drive attribute which can be
set to diff, omni or car, depending on whether the robot uses a differential-steer
mode (Pioneers), omni-directional mode or is car-like. The devices created earlier,
the sonar, laser, gripper and camera (which includes the blob finder as a child) are
attached to the robot in the final lines of the “p3dx-sh” declaration section.

The “map.inc” file defines a model called “map” that is of generic type model.
This sets some basic properties of the plan of the robot’s environment including how
the robot’s sensors will respond to it. For example, here the gripper return attribute
is set to 0 as the robot should not treat walls etc. as objects to be grasped and pushed.
The file is presented below:

define map model

(

color "black"

boundary 1

gui nose 0

gui grid 1

gui movemask 0

gui outline 0

gripper return 0

)

The example world file that includes the “map.inc” and “pioneer.inc” files is pre-
sented below:

Test world for Pioneer p3dx

Include file that defines Pioneers

include "pioneer.inc"

6.2 Creating World Files 99

Include ‘map’ object used for floorplans

include "map.inc"

size of the world in metres

size [15 15]

speed of the simulation

interval sim 100 # milliseconds per update step

interval real 50 # real-time milliseconds per update step

gui interval 100 # rate at which window is re-drawn (milliseconds)

set the resolution of the underlying raytrace model in metres

resolution 0.02

configure the GUI window

window

(

size [510.000 750.000] # size of window

center [0.006 -0.009]

scale 0.008 # size of each bitmap pixel in metres

)

load an environment bitmap - this is defined in map.inc

map

(

bitmap "pen.png"

size [3 5] # size of the bitmap drawing

map resolution 0.02

name "pen"

)

create a robot

p3dx-sh

(

name "robot1"

color "red"

pose [-0.166 -1.177 86.295]

)

define puck model

(

size [0.08 0.08]

gui movemask 3

gui nose 0

100 6 Stage Simulations

ranger return 0

laser return 0

blob return 1

gripper return 1

obstacle return 1

)

puck(pose [-1.114 1.467 -105.501] color "red")

puck(pose [-0.781 -0.264 -307.877] color "blue")

puck(pose [-1.095 0.838 -461.643] color "green")

The world entity has attributes:

• interval sim (milliseconds) - the length of each simulation update cycle in mil-
liseconds.

• interval real (milliseconds) - the amount of real-world (wall-clock) time the sim-
ulator will attempt to spend on each simulation cycle.

• resolution (metres) - the resolution of the underlying bitmap model. Larger values
speed up raytracing at the expense of fidelity in collision detection and sensing.

• size [float float] - the size of the world in metres.
• gui interval (milliseconds) - the rate at which the Stage window is redrawn.

The interval sim and interval real attributes can be used to specify how fast the
Stage simulation should run in relation to real time. When these are the same Stage
runs at approximately real time, but if interval real is set to less than interval sim it
runs faster than real time. If interval real is set to 0 Stage runs as fast as it can. The
attribute gui interval is set at 100 by default, i.e., the Stage window is re-drawn every
100 milliseconds. If the value is increased from 100 then the window is redrawn
less frequently, which enables Stage to run even faster in some circumstances (see
Section 6.5 for further details about accelerated simulations).

After setting the world properties a window entity is declared to describe how the
Stage window will be drawn on screen. The window entity has attributes center, size
and scale. Size sets the window size in pixels, center sets the location of the centre
of the window in world coordinates (metres) and scale sets the ratio of the world to
the pixel coordinates i.e., the window zoom. A map model is then declared, which
was defined earlier in the “map.inc” file. Within this you must specify the path to
the actual image that contains the floor plan by using the bitmap attribute. Images
must be drawn in black and white and saved either as bitmaps (.bmp), portable
network graphics (.png) or portable pix map (.ppm) files. The “pen.png” image,
which represents the real robot pen shown in Figure 5.1, is shown in Figure 6.1.

A “p3dx-sh” model, which was defined earlier in the “pioneer.inc” file is declared
next. It is given the name “robot1” and assigned a color and pose. Finally, another
model type is defined called “puck”. This could also be defined in another include
file, but here it is defined within the world file itself. The “puck” objects are created
for detection using the blob finder and the robot must be able to grasp them in its
gripper and transport them. It must be able to push the pucks and they should not
be detected by the laser or sonar. Thus, the laser return and ranger return values are

6.3 Creating Configuration Files 101

Fig. 6.1 A Stage floor plan

set to 0 and the gripper return and blobfinder return values are set to 1. It would
also be useful to be able to move the pucks in Stage by left-clicking the mouse and
dragging them, so the gui movemask attribute is given value 3. After having defined
the “puck” model, three are declared in the final lines of the file and given a colour
and pose.

6.3 Creating Configuration Files

A configuration file also needs to be created before Player can run with Stage. It
takes a similar format to the configuration file used with real robots, but needs to
specify the stage driver. In fact, the driver must be listed at least twice, first as pro-
viding the simulation (and here the world file must also be given), and then as pro-
viding all the other functions, for example position2d, laser, sonar, ptz, blobfinder
and gripper. The second listing should also include the name of the robot that these
functions apply to (given in the world file). An example Stage configuration file is
shown below.

Configuration file for controlling Stage devices

load the Stage plugin simulation driver

driver

(

102 6 Stage Simulations

name "stage"

provides ["simulation:0"]

plugin "libstageplugin"

load the named file into the simulator

worldfile "simple.world"

)

driver

(

name "stage"

provides ["position2d:0" "laser:0" "sonar:0" "ptz:0"

"blobfinder:0" "gripper:0"]

model "robot1"

)

In the world file the “p3dx-sh” robot declared was given the name “robot1”. In
the configuration file above the name “robot1” is used to indicate that all robots with
this name should be given these functions. Note that multiple names can be used.
For example, we might have declared a “p3dx-sh” robot with the name “robot2”. If
we wanted this robot to have only the laser, sonar and positional functionality we
would add an additional five lines to the configuration file as shown below:

driver

(

name "stage"

provides ["position2d:0" "laser:0" "sonar:0"]

model "robot2"

)

6.4 Running Stage

Stage 2.0 is not a binary and therefore cannot be run independently of Player. To run
it the Player binary is called along with the configuration file that specifies the stage
driver, see Section 6.3. For example, if you have a Stage configuration file called
“mysimple.cfg” in your home directory, you are in your home directory and your
system knows the path to the Player binary, you would type the following:

player mysimple.cfg.

If the system does not know the Player path then you will need to type the full
path.

6.4 Running Stage 103

Figure 6.2 below shows the Stage GUI. The File menu provides access to the
sub-menus Save, Reset, Screenshot and Exit. The Save function writes the current
robot positions, object positions and magnifications into a world file. This is saved
under the same name and in the same location as the world file currently open. The
Reset function reloads the world file so that the robot and objects are set back to their
starting positions. The Screenshot function allows the user to save the current world
as an image, either a jpeg or a png file. In addition, a single frame or a sequence of
frames (a movie mpeg) may be saved. Exit quits the application. The right mouse
button is used for zooming in and for turning robots and objects and the left mouse
button is used to grab and move robots and objects and pan left and right and up and
down.

The Edit menu provides access to a sub-menu Preferences, a new feature added
to Stage version 2.0 that allows the user to change the values for interval sim, in-
terval real and gui interval in the world file at run time, see Section 6.2 . Figure 6.3
shows the dialogue box that is displayed when this feature is used.

Fig. 6.2 The Stage GUI

104 6 Stage Simulations

Fig. 6.3 Stage preferences dialogue box

The View menu has a number of different sub-menus to turn various display pa-
rameters off and on. These include showing the robot’s trail (see Figure 6.7, where
the trail is shown in red), displaying the grid lines and printing the position text on
the window, i.e. current velocity, x, y and z co-ordinates, see Figure 6.6. In addition,
there are data and configuration display options for most of the sensors, for exam-
ple, laser data shows the current laser output shaded in purple, see Figure 6.6 and
Figure 6.9, and laser config shows the laser field of view, see Figure 6.6. This also
shows the blob finder field of view, which is selected by checking blob config on
the menu. The gripper beam display can also be turned off and on by checking grip-
per data on the View menu, see Figure 6.8. Figure 6.4 illustrates the pan-tilt-zoom
and laser configurations and Figure 6.5 shows the sonar configuration. (Figures 6.4
to 6.9 are all screen grabs from Player 2.0.1 running Stage 2.0.1, which uses the
configuration, world and bitmap files presented in Section 6.2 and Section 6.3.)

The bottom bar of the GUI displays time data, see Figure 6.2. The elapsed time
since Stage began running is shown in the far left hand corner and the ratio of real
to simulated time is given to the right of this. In this example both interval real and
interval sim are set to the same value in the world file, so the ratio is 0.98. This
means that the simulation is running in approximately real time. The Clock menu
has only one sub-menu Pause; checking this suspends any executing program. When
it is unchecked again the program resumes as if there had been no discontinuation.

6.5 Accelerated Simulations

In the Player examples supplied online as part of the materials to support this book
(see Appendix A), simulations up to 10 times faster than real speed have been

6.5 Accelerated Simulations 105

Fig. 6.4 Stage simulation showing ptz and laser configurations

achieved using Stage 2.0.1. The world file had interval sim set to 100 and inter-
val real set to 10. Experiments were done setting interval real to 0 and increasing
the value of the gui interval setting, but these produced no further increase in speed.
Delays in the “gripper.cc” and “griptrack.cc” programs were originally set using
the unix sleep() function, which takes its argument in seconds. However, when run-
ning simulations faster than real speed this caused problems as the commands were
still carried out in real time despite the Stage world file settings, i.e., sleep(1) still
caused the system to wait 1 second, even when Stage was running 10 times faster.
To get around this problem the sleep() commands were changed to usleep() com-
mands, which take their arguments in microseconds and the arguments were varied
inversely with the speed of the simulation.

In addition to the problem described above, the timings of the read-think-act
loops also caused difficulties when running the “goalseek.cc”, “gripper.cc” and
“griptrack.cc” programs faster than real time. Commands need to be carried out ap-
proximately every second because the robot is given angular speeds for goal seeking
and blob tracking, rather than fixed angles to turn through. The line:

if (count%10 == 0)

in the main read-think-act loop performs this function as messaging runs at ap-
proximately 10 Hz. This ensures that commands are carried out only on every tenth
execution of the loop, i.e., approximately every second. However, when fast sim-

106 6 Stage Simulations

Fig. 6.5 Stage simulation showing sonar configuration

ulations were used it was necessary to reduce the counter value inversely with the
speed of the simulation. The formula:

int(round(10/simSpeed))

was used as the counter value where “simSpeed” was the speed of the simulation.
Simulations 1, 2, 4 and 10 times faster than real speed were performed using all
three programs with the robot turning towards the goal (and the blobs in the case of
“griptrack.cc”) adequately in all cases. The formula:

int((2*round(10/simSpeed)))

was used in the case of “goalseek.cc”, except where “simSpeed” was equal to 1.

6.5 Accelerated Simulations 107

Fig. 6.6 Stage simulation showing laser output and position text

Fig. 6.7 Stage simulation showing laser and sonar outputs and the trail of the robot

108 6 Stage Simulations

Fig. 6.8 Stage simulation showing laser, gripper beam and blob finder outputs

Fig. 6.9 Stage simulation showing laser output. The robot is seen transporting a puck in its grippers

Appendix A
Guide to the Extra Materials

A.1 Folders

The online materials (http://extras.springer.com) that supplement this book are di-
vided into 2 folders, ARIA and Player. The ARIA folder contains a control program
“control.cpp” that uses a number of simple behaviours contained in the files “Robot-
Modes.cpp” and “RobotModes.h”. These behaviours do not inherit from the ArAc-
tion class. The control program also uses data processing techniques found in the
files “SensorData.cpp” and “SensorData.h”. The control program can perform vari-
ous demos depending on which macros are defined at the beginning of the program.
For example, if you want to run the arm movement demo, uncomment the ARM def-
inition and recompile. The ARIA folder also contains a single blob finding action
(the file “BlobFind.cpp” is the action and “single control.cpp” is the file that uses
it), a group blob finding action (the file “BlobFindGroup.cpp” is the action group
and “group control.cpp” is the file that uses them) and a blob finding mode (the file
“BlobFindMode.cpp” is the mode and “mode control.cpp” is the file that uses it).
The ARIA folder also icludes a bash script “acomp” for quick compilation of ARIA
client programs, and a test ACTS configuration file “actsconfig” with its associated
.lut files “channel1.lut” and “channel2.lut”. A subfolder Images comprises images
of a test robot environment and cans for ACTS training. It also includes a test map
for use with MobileSim.

The Player folder contains a configuration file for a real robot “config-Player2.cfg”
and world, include and configuration files for Stage 2 simulations “simple.world”,
“mysimple.cfg”, “map.inc”, “sick.inc” and “pioneer.inc”. There are four demo
programs, “goalseek.cc”, which performs goal seeking in the world described
by “simple.world”, “gripper.cc”, where the robot collects blocks and transports
them through the goal, “griptrack.cc”, where the robot tracks only the red blocks
and transports them through the goal, and “joint.cc” which controls the 5D arm.
The first three programs make use of behaviours and data processing methods
contained in the files “Robot.cpp” and “Robot.h”. “WorldReader.h” is used with
“goalseek.cc” when simulated robots are required to go to specific co-ordinates in

109

110 A Guide to the Extra Materials

the world rather than find the gate and travel through it. It simply reads in the start-
ing position of the robot from the world file. User documentation for these user-
written “Robot” and “WorldReader” classes is available in [13]. The “joint.cc” pro-
gram requires the file “args.h”, a standard test file supplied with Player. The files
“miniRobot.h”, “miniRobot.cpp” and “minigoal.cc” are more simplified versions of
“Robot.h”, “Robot.cpp” and “goalseek.cc”. The Player folder also includes a bash
script “pcomp” for quick compilation of Player client programs and a subfolder
bitmaps with the image “pen.png” needed for the test Stage simulations.

A.2 Testing the Programs

The programs in the ARIA folder were tested using a Pioneer P3-DX robot run-
ning Debian Linux 2.6.10 with ARIA version 2.4.1 and ACTS version 2.2.1. The
programs in the Player folder were tested by running the Player server on the same
robot with Player 2.0.1 installed in the default location. The client programs were
run on a remote PC running Debian Linux 2.6.10 with Player 2.0.1 also installed
in the default location. The program “joint.cc” was tested on a different Pioneer
P3-DX robot with a 5D arm, running the same operating system and with Player
2.0.1 installed in the default location. The programs “goalseek.cc”, “gripper.cc” and
“griptrack.cc” were tested in simulation using the remote PC described and Stage
2.0.1 installed in the default location. The program “joint.cc” was not tested in sim-
ulation as Stage does not support the 5D arm device.

References

1. Gerkey, B.: The Player Robot Device Interface (2005)
http://playerstage.sourceforge.net/doc/Player-2.0.0/player/index.html. Cited 3rd June 2009

2. Vaughan, R.: The Stage Robot Simulator (2007)
http://playerstage.sourceforge.net/doc/Stage-2.0.0/. Cited 3rd June 2009

3. Bryant, J. L.: Instructions for Rewiring a Pioneer Robot so that the PTZ Camera Device can
be Connected to a Serial Port (ttyS1) on the On-board Computer (2006)
http://playerstage.sourceforge.net/index.php?src=faq#evid30 wiring. Cited 3rd June 2009

4. Vaughan, R. T., Gerkey, B., Howard, A.: On Device Abstractions For Portable, Reusable
Robot Code. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robot
Systems, pp. 2121-2427, Las Vegas, USA (2003)

5. Gerkey, B., Vaughan, R. T., Howard, A.: The Player/Stage Project: Tools for Multi-Robot
and Distributed Sensor Systems. In: Proceedings of the 11th International Conference on
Advanced Robotics, pp. 317-323, Coimbra, Portugal (2003)

6. Gerkey, B. P., Vaughan, R. T., Sty, K., Howard, A., Sukhatme, G., S., Mataric, M. J.:
Most Valuable Player: A Robot Device Server for Distributed Control. In: Proceedings of
the IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 1226-1231,
Wailea, Hawaii (2001)

7. SourceForge.Inc.: SourceForge.net email archive: PlayerStage-users (2009)
http://sourceforge.net/mailarchive/forum.php?forum name=playerstage-users. Cited 3rd June
2009

8. Wilson, D.: RGB/YUV Pixel Conversion (2007)
http://www.fourcc.org/fccyvrgb.php#BOURGEOIS. Cited 3rd June 2009

9. Bruce, J.: CMVision Realtime Color Vision (2006)
http://www.cs.cmu.edu/ jbruce/cmvision/. Cited 3rd June 2009

10. Niku, S.B.: Introduction to Robotics: Analysis, Systems, Applications. Prentice Hall (2001)
11. Gan, J, Q., Oyama, E., Rosales, E. M., Hu, H.: A complete analytical solution to the inverse

kinematics of the Pioneer 2 robotic arm. Robotica 23, 123-129 (2005)
12. Oates, R.: Bob’s Guide To using ARIA (2006)

http://www.boboates.co.uk/aria.pdf. Cited 3rd June 2009
13. Whitbrook, A. M.: An Idiotypic Immune Network for Mobile Robot Control. MSc Disserta-

tion, School of Computer Science, University of Nottingham (2005)
14. ActivMedia Robotics Interface for Application (ARIA) ActivMedia, NH, USA, (2005), avail-

able with ARIA software download
15. Pioneer 3-SH Operations Manual, Version 1, ActivMedia, NH, USA, (2004)
16. ACTS User Manual, Version 6, ActivMedia, NH, USA, (2006)
17. ActivMedia Robotics’ Pioneer Gripper Manual, Version 6, ActivMedia, NH, USA, (2004)
18. ActivMedia Robotics’ Pioneer Arm Manual, Version 5, ActivMedia, NH, USA, (2004)

111

112 References

19. Laser Range-Finder Installation and Operations Manual, Version 1, ActivMedia, NH, USA,
(2002)

20. PTZ Robotic Cameras Manual, Version 3, ActivMedia, NH, USA, (2003)
21. VC-C4/VC-C4R Instruction Manual, Version 3, Canon, Japan (2000)

Index

5D arm, 4, 18, 27, 28, 79, 80
5D arm approach vector, 80, 83
5D arm end effector position, 80, 83
5D arm limb offset, 80, 83
5D arm orientation vector, 80, 83
5D arm servos, 28, 30

accelerated Stage simulations, 104
actarray interface, 79
ActArrayProxy, 80
action group, 57
action resolver, 1, 53
activate() method, 57, 60
ACTS, 4, 11, 18, 37–40, 42–44, 55, 91
ACTS configuration file, 37, 38, 42, 43, 91
acts driver, 91
ACTS pref file, 43, 44
actuator array interface, 79
addAction() method, 57, 58
addRangeDevice() method, 16
Alien software, 5, 7
alwayson attribute, 65
ArAction class, 1, 19, 53, 55, 57
ArAction subclass, 53, 57
ArActionConstantVelocity subclass, 57
ArActionDesired class, 53, 56
ArActionGroup class, 57
ArActionGroup subclass, 57, 58, 60
ArActionLimiterBackwards subclass, 57
ArActionLimiterForwards subclass, 57
ArACTS 1 2 class, 44
ArACTS 1 2::getBlob() method, 44
ArACTS 1 2::getNumBlobs() method, 44
ArACTSBlob class, 44
ArACTSBlob::getArea() method, 44
ArACTSBlob::getXCG() method, 44
ArACTSBlob::getYCG() method, 44

ArArction class, 55
ArArgumentParser class, 14, 15
ARCOS, 1
ArForbiddenRangeDevice class, 50
ArGripper class, 30
ArKeyHandler class, 62
ArMode subclass, 60
ArNetworking, 2, 3, 14, 50
ARNL, 50
AROS, 1, 3, 27
ArP2Arm class, 27–29
ArP2Arm::moveTo() method, 29
ArP2Arm::NumJoints attribute, 29
ArPTZ class, 18, 33
ArRangeDevice class, 16, 18, 21, 22
ArRangeDeviceThreaded class, 16
ArRobot class, 15, 16, 18, 19, 21, 23–25, 28,

53, 56, 62
ArRobot::clearDirectMotion() method, 53
ArRobot::run() method, 15
ArRobot::runAsync() method, 15
ArRobot::setVel() method, 53
ArSensorReading class, 21, 23
ArSick class, 23
ArSimpleConnector class, 14, 16, 17, 47
ArTcpConnection class, 47
ArUtil::sleep() method, 26, 29
ArVCC4 class, 18, 33, 34
ATRV Jr, 3
autoconf, 9
automake, 9
AUX port, 3

B21r robot, 3
baud rate, 65
bitmap files (bmp), 100

113

114 Index

blob finding device, 4, 65, 67, 86, 88, 90, 93,
100

BlobfinderProxy, 86, 88, 90, 91
bump sensors, 4, 16, 24, 25, 77–79, 93
BumperProxy, 77–79

camerav41 driver, 65, 86–88, 91
Canon VC-C4 camera, 4, 18, 33, 35, 37, 64,

85, 86
canonvcc4 driver, 64, 85
checkRangeDevicesCurrentPolar() method, 23
Clodbuster robot, 3
CMUcam, 3
CMVision, 86–88
CMVision configuration file, 65, 87, 88
cmvision driver, 65, 86, 88, 91
Color Machine Vision, 86, 87
Configure() method, 76
connectLaser() method, 17
connectRobot() method, 16
currentDesired attribute, 56
currentReadingPolar() method, 21, 22

deactivate() method, 60
Debian Linux, 6, 7, 9
DTOR() function, 74
dynamic linker, 68

endAngle attribute, 21
ER1 robot, 3
ERRATIC robots, 3
ERSDK robot, 4
EZ-train software, 37–39

failed dependencies error, 7
fire() method, 53, 55, 56
forward kinematics, 79
framegrabber, 65
FrameGrabberChannel variable, 44

Garcia robot, 3
getAbsoluteMaxRotVel() method, 19
getAbsoluteMaxTransVel() method, 19
GetActuatorGeom() method, 80
GetBlob() method, 88, 89
getBottom() method, 44
getBreakBeamState() method, 31
GetCount() method, 75, 76, 80, 88
getGripState() method, 30, 31
GetHeight() method, 89
GetInnerBreakBeam() method, 85
GetIntensity() method, 76
getJoint() method, 29
getLeft() method, 44

GetLiftDown() method, 85
GetLiftMoving() method, 85
GetLiftUp() method, 85
GetMaxAngle() method, 76
getMaxNegPan() method, 34
getMaxNegTilt() method, 34
getMaxPosPan() method, 34
getMaxPosTilt() method, 34
GetMinAngle() method, 76
getNumFrontBumpers() method, 25
getNumRearBumpers() method, 25
getNumSonar() method, 21
GetOuterBreakbeam() method, 85
GetPaddlesClosed() method, 85
GetPaddlesMoving() method, 85
GetPaddlesOpen() method, 85
getPaddleState() method, 31
GetPan() method, 86
getPan() method, 34
GetPose() method, 75, 79
GetRange() method, 75, 76
getRange() method, 21, 23
GetRangeRes() method, 76
getRawReadings() method, 23
getRight() method, 44
getRobotRadius() method, 21
getRotVel() method, 19
GetScan() method, 75
GetScanRes() method, 76
getSensorTh() method, 21, 23
getSonarReading() method, 21
getStallValue() method, 24, 25
GetTilt() method, 86
getTilt() method, 34
getTop() method, 44
getType() method, 31
getVel() method, 19
GetWidth() method, 89
getXCG() method, 44
GetXPos() method, 74
GetYaw() method, 74
getYCG() method, 44
GetYPos() method, 74
GetZoom() method, 86
getZoom() method, 34
GIMP toolkit (GTK), 9
GNU Compiler Collection (gcc), 9
grip sensor, 30
gripClose() method, 31
gripOpen() method, 31
gripper infrared break beams, 30, 31, 84
gripper lift mechanism, 30
gripper paddles, 30, 31, 84
gripperDeploy()method, 31

Index 115

gripperHalt() method, 31
GripperProxy, 83, 84
grippers, 4, 16, 18, 30, 31, 33, 67, 83, 85, 93,

100
gripStop() method, 31

hasFrontBumpers() method, 25
hasRearBumpers() method, 25
home() method, 30
host argument, 71–73

init() method, 34
inverse kinematics, 79, 80
inverse kinematics interface, 79
IsAnyBumped() method, 77, 79
IsBumped() method, 78, 79
iterator object, 23

jpeg files, 67, 103

Kameleon 376BC robot, 3
Khepera robot, 3

laser range resolution, 65
laser resolution, 65
laserincrement half argument, 24
LaserProxy, 73, 75, 76
LD LIBRARY PATH variable, 10, 68
ldconfig, 68
libplayerdrivers library, 63
libpng.so file, 8
librtk2 library, 10
libtool, 9
liftDown() method, 31
liftStop() method, 31
liftUp() method, 31
limb interface, 79
limb links attribute, 79
limb offsets attribute, 79
limb pos attribute, 79
LimbProxy, 80, 83
lists, 23
loadDefaultArguments() method, 16
lookup table (lut) files, 37, 39, 42, 43, 91

make, 9
Mapper3Basic, 7, 49
Mapper3Basic dock points, 49, 50
Mapper3Basic forbidden areas, 49, 50
Mapper3Basic forbidden lines, 49
Mapper3Basic goals, 49, 50
Mapper3Basic home areas, 49, 50
Mapper3Basic home points, 49
Mapper3Basic map files, 46, 50

Mapper3Basic map lines, 49
MinimumRunLengthWidth variable, 44
MobileEyes, 50
MobileSim, 4, 5, 7, 16, 22, 24, 26, 30, 33, 34,

46–50
MobileSim position data, 48
mode attribute, 65
motors, 18, 74
move() method, 19
MoveAtSpeed() method, 80
MoveHome() method, 80, 83
moveStep() method, 30
moveStepTicks() method, 30
moveStepTo() method, 30
MoveTo() method, 80
moveTo() method, 29, 30
moveToTicks() method, 30
moveVel() method, 30
mpeg files, 103
myCenter attribute, 29
myHome attribute, 29
myMax attribute, 29
myMin attribute, 29
myPos attribute, 29
myTicksPer90 attribute, 29
myVel attribute, 29

NOMAD200 robot, 3
non-ranged devices, 16, 18, 27, 28, 30, 33
norm attribute, 65
NTSC capture format, 65

Obot d100 robot, 3
odometric pose, 48
openPort() method, 18, 44
overlay mode, 40

P2ArmJoint class, 29
P2OS, 1, 3, 27
p2os driver, 64, 79
PAL capture format, 65
pan attribute, 86
pan() method, 34
pan-tilt-zoom camera, 4, 16, 18, 33, 35, 64, 67,

85, 86, 93
panRel() method, 34
panTilt() method, 34
panTiltRel() method, 34
park() method, 30
parseArgs() method, 16
PATH variable, 10
PKG CONFIG PATH variable, 10
Player C++ client library, 68, 70, 72, 73, 77
Player C++ client library proxies, 70
Player configuration file, 63–67, 76, 79, 91

116 Index

Player debugging information, 66
Player drivers, 9, 11, 63, 64
Player PULL mode, 72
Player PUSH mode, 72
Player stage driver, 101, 102
PLAYER LIMB STATE OOR status, 80
PlayerCc namespace, 72
PlayerClient proxy, 70, 72–75, 77, 80, 83, 86,

88
PlayerViewer, 10, 66, 67
PlayerViewer command feature, 67
port argument, 71–73
portable network graphics (png) files, 100, 103
portable pix map (ppm) files, 67, 100
Position2dProxy, 71, 74
powerOff() method, 30
powerOn() method, 29
PSOS, 3
PtzProxy, 86

ranged devices, 16, 21, 22, 24
Read() method, 75, 80
Red Hat Linux, 6, 7
Red Hat Package Manager, 5–7
RequestBumperConfig() method, 79
RequestGeometry() method, 80
requires key word, 65
ResetOdometry() method, 74
RFLEX-based robots, 3
RGB data, 65, 87–90
robot toolkit (RTK), 10
robot trails, 48, 104
Robotic Mobility Platform, 3
Roomba robot, 3
root permissions, 8, 9, 11
RS-232, 1, 2
runAsync() method, 28

savClient software, 38, 39
savServer software, 38
segmentation fault, 16
server information packets (SIPs), 15
setAbsoluteMaxRotVel() method, 19
setAbsoluteMaxTransVel() method, 19
SetCam() method, 86
setDeltaHeading() method, 19, 56
SetGrip() method, 85
setHeading() method, 19
SetMotorEnable() method, 74
SetOdometry() method, 74
SetPose() method, 80
setRobot() method, 18
setRotVel() method, 18
SetSpeed() method, 74, 86

setVel() method, 18
setVel2() method, 18
SICK LMS200 laser sensor, 4, 16, 22–24, 48,

65, 67, 73, 75, 76, 93
sicklms200 driver, 65
size attribute, 65
sonar sensors, 4, 16, 21–23, 25, 48, 67, 73, 75,

76, 93
SonarProxy, 73, 75
source attribute, 65
Stage bcount attribute, 98
Stage bitmap attribute, 100
Stage blob return attribute, 94
Stage blobfinder model, 97
Stage blobfinder return attribute, 101
Stage bpose attribute, 98
Stage bumper model, 98
Stage center attribute, 100
Stage channel count attribute, 97
Stage channels attribute, 97
Stage color attribute, 94, 97
Stage configuration file, 88, 100–102, 104
Stage define statement, 97
Stage drive attribute, 98
Stage fov attribute, 97
Stage gripper model, 97
Stage gripper return attribute, 94, 98, 101
Stage gui boundary attribute, 94
Stage gui grid attribute, 94
Stage gui interval attribute, 100, 103, 105
Stage gui movemask attribute, 94, 101
Stage gui nose attribute, 94, 98
Stage image attribute, 97
Stage include file, 94, 97
Stage include keyword, 94
Stage interval real attribute, 100, 103–105
Stage interval sim attribute, 100, 103–105
Stage laser model, 97
Stage laser return attribute, 94, 100
Stage map model, 100
Stage mass attribute, 94, 98
Stage models, 93
Stage obstacle return attribute, 94
Stage origin attribute, 94, 98
Stage point attribute, 98
Stage points attribute, 98
Stage polygons model, 98
Stage pose attribute, 94
Stage position model, 98
Stage ptz attribute, 97, 98
Stage ptz model, 98
Stage ptz speed attribute, 98
Stage range max attribute, 97
Stage range min attribute, 97

Index 117

Stage ranger model, 97
Stage ranger return attribute, 94, 100
Stage resolution attribute, 100
Stage samples attribute, 97
Stage scale attribute, 100
Stage scount attribute, 97
Stage size attribute, 94, 97, 98, 100
Stage spose attribute, 97
Stage ssize attribute, 97
Stage sview attribute, 97
Stage window entity, 100
Stage world file, 93, 94, 97, 100–105
startAngle attribute, 21
Stop() method, 83
stop() method, 19, 30
symbolic link, 8

TCP socket, 2
thresh mode, 40

tick, 30
tilt attribute, 86
tilt() method, 34
tiltRel() method, 34
training an ACTS channel, 41
true pose, 48

unix sleep() function, 105
unix usleep() function, 105

visible mode, 40

X-Windows, 66

YUV data, 65, 87, 88

zoom attribute, 86
zoom() method, 34

	1848828632
	front-matter
	fulltext
	fulltext_001
	fulltext_002
	fulltext_003
	fulltext_004
	fulltext_005
	back-matter

