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Preface 
 
Data fusion is a research area that is growing rapidly due to the fact that it provides 

means for combining pieces of information coming from different sources/sensors, resulting 
in ameliorated overall system performance (improved decision making, increased detection 
capabilities, diminished number of false alarms, improved reliability in various situations at 
hand) with respect to separate sensors/sources. Different data fusion methods have been 
developed in order to optimize the overall system output in a variety of applications for 
which data fusion might be useful: security (humanitarian, military), medical diagnosis, 
environmental monitoring, remote sensing, robotics... Generally speaking, there is no fusion 
approach that works better than the others, but depending mainly on the types (quality, 
quantity) of data, some approaches might be better suited to a particular problem than the 
others. Actually, the choice of the combination method which is best-suited for a particular 
application is related to types of sources/sensors, types of data (numerical, symbolic, 
knowledge-based; maps, legends, historical information…), amounts of data available etc. 
As a consequence, various data fusion techniques have been investigated for years, such as 
probability theory, fuzzy logic, possibility theory, evidence theory (Dempster-Shafer, belief 
functions). In addition, depending mainly on the types of data processing involved and on 
the problem itself, several levels of data fusion exist in general (e.g., pixel level, feature level, 
decision level, or object assessment, situation assessment, impact assessment). In different 
data fusion books and articles, we can also find various data fusion architectures, having 
three main classes: centralized, decentralized and hybrid. As a result of this variety of 
techniques, architectures, levels, etc., data fusion is able to bring solutions in various areas of 
diverse disciplines.   

The goal of this book is to provide highlights of the current research in the field of data 
fusion. The book consists of twenty-five research papers, addressing various problems in 
areas such as: target tracking (including adaptive sensor management, data association and 
road obstacle tracking), obstacle detection for the railway traffic, real-time traffic state 
estimation, air traffic control, automotive applications (e.g., car safety and driver assistance), 
robotic systems, smoke detectors and home security, industrial instrumentation and process 
monitoring, remote sensing (vegetation indices, update of scarce high resolution images 
with time series of coarser images, land cover classification), medical imaging, anomaly 
detection and behavior prediction, environmental monitoring including forest fires and 
electromagnetic pollution, change detection, (distributed, wireless) sensor networks, etc. The 
list of possible applications is, actually, large, since most of the methodologies presented in 
the book can be adapted easily to a variety of problems and situations. The techniques 
involved cover a wide range of classical or novel methods, from different Bayesian-based 
approaches via Dempster-Shafer evidence theory and fuzzy logic to artificial neural 
networks and multi-agent based fusion methods. Depending mainly on the technique, 
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different strategies for including expert knowledge and other collateral sources of 
information in the fusion process are also investigated. 

Altogether, the book aims to provide a valuable source of up-to-date data fusion 
methods, systems, applications and tools. As such, it may be useful to researchers, 
engineers, computer scientists, as well as to undergraduate and graduate students who are 
interested in the latest developments in the data fusion field.  

The editor is thankful to the contributors for their precious work towards the realization 
of this book as well as to Dr. Vedran Kordić for his valuable help. 

 
January 2009 

Editor 

Dr. ir. Nada Milisavljević 
Department of Communication, Information, Systems and Sensors 

Royal Military Academy,  
Brussels, Belgium  
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Advanced Sensor and Dynamics Models with an 
Application to Sensor Management 

Wolfgang Koch 
German Defence Research Establishment (FGAN e.V.) 

Germany 

1. Introduction 
The methods provided by sensor and data fusion [14] are important tools for fusing large 
sets of mutually complementary data end efficiently exploiting the sensor systems available. 
A challenging exploitation technology at the common interface between sensors, command 
& control systems, and the human decision makers involved, this technology plays a key 
role in applications with time-critical situations or in situations with a high decision risk, 
where human deficiencies are to be compensated by automatically or interactively working 
fusion techniques (compensating decreasing attention in routine situations, focusing the 
attention on anomalous or rare events, complementing limited memory, reaction, or 
combination capabilities of human beings). Besides the advantages of reducing the human 
work load in routine or mass tasks, data fusion from mutually complementary information 
sources can well produce qualitatively new knowledge that otherwise would remain 
unrevealed. 
A. Providing Elements for Situation Pictures 

Sensor and data fusion provides ‘information elements’ for producing near real-time 
situation pictures, which electronically represent a complex and dynamically evolving 
overall scenario in the air, on the ground, at sea, or in an urban environment. The concrete 
operational requirements in a given application define the particular information sources to 
be fused. A careful analysis of the underlying requirements is thus essential for any fusion 
system design. 
Information elements are extracted from currently received sensor data while taking into 
account the available context knowledge and pre-history. They typically provide answers to 
questions related to objects of interest such as: Do objects exist at all, and how many of them 
are in the sensors’ fields of view? Where are they at what time? Where will they be in the 
future with what probability? How can their overall behavior be characterized? Are 
anomalies or hints about their possible intentions recognizable? What can be inferred about 
the classes the objects belong to or even their identities? Are there characteristic 
interrelations between individual objects? In which regions do they have their origin? What 
can be said about their possible destinations? Are object flows visible? Where are sources or 
sinks of traffic? 
The sensor data to be fused can be inaccurate, incomplete, or ambiguous. Closely-spaced 
objects are often totally or partially unresolvable. Possibly, the measured object parameters 
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are false or corrupted by hostile measures. The context information is in many cases hard to 
be formalized or even contradictory. These deficiencies of the information to be fused are 
unavoidable in any real-world application. Therefore, the extraction of ‘information 
elements’ for situation pictures is by no means trivial. 
B. Aspects of Sensor and Data Fusion 

Among the primary technical prerequisites for sensor data and information fusion are 
communication links with a sufficient bandwidth, small latency, and robustness against 
failure or jamming. Moreover, the transformation of the sensor data into a common 
coordinate system requires a precise space-time registration of the sensors, including their 
mutual alignment. 
Figure 1 provides an overview of different aspects and their mutual interrelation. The 
sensors play a central role and can be located in different ways (collocated, distributed, 
mobile) producing measurements of the same or of a different type. Fusion of 
heterogeneous sensor data is of particular importance, such as the combination of kinematic 
measurements with measured attributes providing information on the classes to which 
objects belongs to. In the context of defense and security applications especially, the 
distinction between active and passive sensing is important since passive sensors enable 
covert surveillance, which does not reveal itself by emitting radiation. Multifunctional 
sensor systems offer additional operational modes, thus requiring more intelligent strategies 
of sensor management that provide feedback via control or correction commands to the 
process of information acquisition. By this the surveillance objectives can often be reached 
more efficiently. Context information is given, for example, by available knowledge on the 
sensor and object properties, which is often quantitatively described by statistical models. 
Context knowledge is also environmental information on roads or topographical occlusions 
(GIS: Geographical Information Systems). Seen from a different perspective, context 
information, such as road maps, can be extracted from real-time sensor data as well [27]. 
Militarily relevant context knowledge (e.g. doctrines, planning data, tactics) and human 
observer reports (HUMINT: Human Intelligence) is also important information in the fusion 
process [4]. The exploitation of context information of any kind can significantly improve 
the fusion system performance. 
 

 
Fig. 1. Sensor data and information fusion for situation pictures: overview of characteristic 
aspects and their mutual interrelation. 
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The information elements required for producing a timely situation picture are provided by 
an integrative, spatio-temporal processing of the various pieces of information available, 
which in themselves often have only limited value for understanding the situation. 
Essentially, within the fusion process logical cross-references, inherent complementarity, 
and redundancy are exploited. More concretely speaking, the methods used are 
characterized by a stochastic approach (estimating relevant state quantities) and a more 
heuristically defined knowledgebased approach (imitating the actual human behavior when 
exploiting information). Besides the operational requirements, this more or less coherent 
methodology is the second building principle, which gives the field of sensor data and 
information fusion its characteristic shape. 
C. Overview of a Generic Tracking System 

Among the fusion products, so-called ‘tracks’ are of particular importance. Tracks represent 
knowledge on relevant state quantities of individual objects, object groups such as convoys 
and formations, or even large object aggregations (e.g. march columns). The information 
obtained by ‘tracking’ [6], [2], [22] includes in particular the history of the objects. If 
possible, a one-toone association between the objects/object groups and the tracks is to be 
established and has to be preserved as long as possible (track continuity). Quantitative 
measures describing the quality of this knowledge are important constituents of tracks. The 
achievable track quality, however, does not only depend on the sensor performance, but 
also on the operational conditions within the actually considered scenario and the available 
context knowledge. 
 

 
Fig. 2. Generic scheme of functional building blocks within a tracking/fusion system along 
with its relation to the sensors (centralized configuration, type IV according to O. 
Drummond). 

Figure 2 shows a generic scheme of functional building blocks within a tracking/fusion 
system along with its relation to the underlying sensors. After passing a detection process, 
essentially working as a means of data rate reduction, the signal processing provides 



 Sensor and Data Fusion 

 

4 

estimates of parameters characterizing the waveforms received at the sensors’ front ends 
(e.g. radar antennas). From these estimates sensor reports are created, i.e. measured 
quantities possibly related to objects of interest, which are the input for the tracking/fusion 
system. All sensor data that can be associated to existing tracks are used for track 
maintenance (using, e.g., prediction, filtering, and retrodiction). The remaining data are 
processed for initiating new tentative tracks (multiple frame track extraction). Association 
techniques thus play a key role in tracking/fusion applications. Context information in 
terms of statistical models (sensor performance, object characteristics, object environment) is 
a prerequisite to track maintenance and initiation. Track confirmation/termination, 
classification/identification, and fusion of tracks related to the same objects or object groups 
is part of the track processing. The scheme is completed by a manmachine interface with 
displaying and interaction functions. Context information can be updated or modified by 
direct human interaction or by the track processor itself, for example as a consequence of 
object classification or road map extraction. In the case of multifunctional sensors, feedback 
exists from the tracking system to the process of sensor data acquisition (sensor 
management). 
D. A Characteristic Application: Sensor Management 

Modern multifunctional agile-beam radar based on phased-array technology is an excellent 
example for a sensor system that requires sophisticated sensor management algorithms. 
This is particularly true for multiple object tracking tasks where such systems call for 
algorithms that efficiently exploit their degrees of freedom, which are variable over a wide 
range and may be chosen individually for each track. Of special interest are military air 
situations where both agile objects and objects significantly differing in their radar cross 
section must be taken into account. Unless properly handled, such situations can be highly 
allocation time- and energyconsuming. In this context, advanced sensor and dynamics 
models for combined tracking and sensor management are discussed, i.e. control of data 
innovation intervals, radar beam positioning, and transmitted energy management. By 
efficiently exploiting its limited resources, the total surveillance performance of the sensor 
system can be much improved. 
Figure 3 shows a simplified scheme illustrating the information flow in tracking-driven 
phasedarray radar management. The starting point is the tracking system, which generates a 
request for new sensor information based on the current quality of an already established 
individual object track or on the requirement of initiating new tracks. We thus distinguish 
between track update and search requests, which enter into the priority management unit 
where its rank is evaluated based on the current threat or overload situation, for example, 
thus enabling graceful system degradation when necessary. 
For each preparation of a radar system allocation, track-specific radar parameters must be 
set, such as the calculated radar revisit time and the corresponding radar beam position, 
rangeand Doppler-gates, or the type of the radar wave forms to be transmitted. Track search 
requests require the setting of appropriate revisit intervals, search sectors and patterns, and 
other radar parameters. In the dwell scheduling unit these preparations are transformed 
into antenna commands, by which the radar sensor is allocated and radar energy 
transmitted. The received echo signals pass a detection unit. If no detection occurs in the 
track maintenance mode, a local search procedure is initiated, new radar parameters are set, 
and a subsequent radar sensor allocation is started with as small a time delay as possible. 
This local search loop is repeated until either a valid detection is produced or the track is  
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Fig. 3. Simplified scheme of the information flow in tracking-driven phased-array radar 
management. 

canceled. While a new beam position according to a global or sector search pattern is 
calculated if no detection occurs in the track search mode, a tentative detection has to be 
confirmed before a new track is finally established. After a successful detection, the received 
signal passes the signal processing unit, where characteristic object parameters, such as 
object range, azimuth angle, radial velocity, and the object strength, are estimated being the 
input for the tracking system. This closes the data processing and sensor management loop. 
In military applications, distinct maneuvering phases often exist, since even agile objects do 
not maneuver permanently. Nevertheless, abrupt transitions to high-g turns can well occur. 
Allocation time and energy savings are thus to be expected if adaptive dynamics models of 
the object dynamics are used. Besides their kinematic characteristics, the mean radar cross 
section (RCS) of the objects to be tracked is usually unknown and variable over a wide 
range. By processing of signal amplitude information, however, the energy spent for track 
maintenance can be adapted to the actual object strength. By this measure the total sensor 
load can also be significantly reduced. 
Due to the locally confined object illumination by the pencil-beam of a phased-array radar, 
abrupt transitions into maneuvering flight phases are critical since, in contrast to more 
conventional track-while-scan radar, a periodic object illumination is no longer guaranteed. 
Any track reinitiation is thus highly allocation time- and energy-consuming and also locks 
the sensor for other tasks (e.g. weapon guidance or providing communications links). This 
calls for intelligent algorithms for beam positioning and local search [17], [24], [20] that are 
crucial to phased-array radar tracking. 
For track-while-scan radar systems, Bayesian tracking techniques are well-established. They 
provide an iterative updating scheme for conditional probability densities of the object state, 
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given all sensor data and a priori information available. In those applications data 
acquisition and tracking are completely decoupled. For phased-array radar, however, the 
current signal-to-noise ratio of the object (i.e. the detection probability) strongly depends on 
the correct positioning of the pencil-beam, which is now taken into the responsibility of the 
tracking system. Sensor control and data processing are thus closely interrelated. This 
basically local character of the tracking process constitutes the principal difference between 
phased-array and track-while-scan applications from a tracking point of view. By using 
suitable sensor models, however, this fact can be incorporated into the Bayesian formalism. 
The potential of this approach is thus also available for phased-array radar. The more 
difficult problem of global optimization, taking successive allocations into account, is not 
addressed here. 

2. Sensor and dynamics models in bayesian object tracking 
Fusing data produced at different instants of time, i.e. the tracking problem, is typically 
characterized by uncertainty and ambiguities, which are inherent in the underlying 
scenario, the object dynamics, and the sensors used. The Bayesian approach provides a well-
suited methodology for dealing with many of these phenomena. More concretely speaking, 
the Bayesian approach provides a processing scheme for dealing with uncertain information 
(of a particular type), which also allows to make ‘delayed’ decisions if a unique decision 
cannot be made in a particular data situation. Ambiguities can have different causes: 
Sensors may produce ambiguous data due to their limited resolution capabilities or due to 
phenomena such as Doppler blindness in MTI radar (MTI: Moving Target Indicator). Often 
the objects’ environment is a source of ambiguities itself (dense object situations, residual 
clutter, man-made noise, unwanted objects). A more indirect type of ambiguities arises from 
the objects’ behavior (e.g. qualitatively distinct maneuvering phases). Finally, the context 
knowledge to be exploited can imply problem-inherent ambiguities as well, such as 
intersections in road maps or ambiguous tactical rules describing the over-all object behavior. 
The general multiple-object, multiple-sensor tracking task, however, is highly complex and 
involves sophisticated combinatorial considerations that are beyond the scope of this 
chapter (see [5], [30] as an introduction). Nevertheless, in many applications, the tracking 
task can be partitioned into independent sub-problems of (much) less complexity. 
According to this discussion, we proceed along the following lines. 
• Basis: In the course of time, one or several sensors produce measurements of one or 

more objects of interest. The accumulated sensor data are an example of a ‘time series’. 
Each object is characterized by its current ‘state’, a vector typically consisting of the 
current object position, its velocity, and acceleration. 

• Objective: Learn as much as possible about the individual object states at each time of 
interest by analyzing the ‘time series’ created by the sensor data. 

• Problem: The sensor information is inaccurate, incomplete, and possibly even 
ambiguous. Moreover, the objects’ temporal evolution is usually not well-known. 

• Approach: Interpret sensor measurements and object state vectors as random variables. 
Describe by probability density functions (pdfs) what is known about these random 
variables. 

• Solution: Derive iteration formulae for calculating the probability density functions of 
the state variables and develop a mechanism for initiating the iteration. Derive state 
estimates from the pdfs along with appropriate quality measures. 
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A. The Key-role of Bayes’ Formula 

At particular instants of time denoted by tl, l = 1, ..., k, we consider the set Zl =  
of nl measurements related to the object state xl. In case of multiple objects xl is the joint state. 
The corresponding time series up to and including tk is recursively defined by k

 = {Zk, nk, 
k-1}. The central question of object tracking is: What can be known about the object states xl 

at time instants tl, i.e. for the past (l < k), at present (l = k), and in the future (l > k), by 
exploiting the sensor data collected in the times series k? According to the approach 
previously sketched, the answer is given by the conditional probability density functions 
(pdf) p(xl│ k) to be calculated iteratively as a consequence of Bayes’ rule. For l = k, i.e. for 
object states at the current time tk, we obtain: 

 
(1) 

In other words, p(xk│ k) can be calculated from the pdfs p(xk│ k-1) and p(Zk, nk│xk). 
p(xk│ k-1) describes, what is known on xk given all past sensor data k-1, i.e. a prediction. 
Obviously, p(Zk, nk│xk) needs to be known up to a constant factor only. Any function 

 (2) 

produces the same result. Functions of this type are also called likelihood functions and 
describe what can be learned from the current sensor output Zk, nk about the object state xk at 
this time. This is the reason, why likelihood functions are often also called “sensor models”, 
since they mathematically represent the sensor, its measurements and properties, in the data 
processing formalism. For well-separated objects, perfect detection, in absence of false 
returns, and for bias-free measurements of linear functions Hkxk of the object state with a 
Gaussian, white noise measurement error characterized by a covariance matrix Rk, the 
likelihood functions are proportional to a Gaussian: ℓ(xk; zk, Hk, Rk) ∝N(zk; Hkxk, Rk). 

B. Prediction Update Step 

The pdf p(xk│ k-1) in the Equation 1 is a prediction of the knowledge on the object state for 
the time tk based on all the measurements received up to and including time tk-1. By writing 
this pdf as a marginal density, p(xk│ k-1) = ∫dxk-1 p(xk, xk-1│ k-1), the object state xk-1 at the 
previous time tk-1 comes into play yielding: 

 
(3) 

The state transition density p(xk│xk-1, 
k-1) is often called the “object dynamics model” and 

mathematically represents the kinematic object properties in the data processing formalism 
in the same way as the likelihood function represents the sensor(s). 
1) Gauss-Markov Dynamics: A Gauss-Markov dynamics, defined by the transition density 

 (4) 
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is characterized by the modeling parameters Fk│k-1 (evolution matrix), describing the 
deterministic part of the temporal evolution, and Dk│k-1 (dynamics covariance matrix), 
characterizing its stochastic part. If we additionally assume that the previous posterior is a 
Gaussian, given by 

 (5) 

p(xk│ k-1) is also a Gaussian: 

 (6) 

with an expectation vector x k│k-1 and a covariance matrix Pk│k-1 given by: 

 (7) 

 (8) 

This directly results from a useful product formula for Gaussians1: 

 

(9)

where we used the abbreviations: 

 (10)

Note that after applying this formula the integration variable xk-1 in the Equation 3 is no 
longer contained in the first Gaussian of the product. The integration becomes thus trivial as 
pdfs are normalized. 
2) IMM Dynamics Model: In practical applications, it might be uncertain which dynamics 
model out of a set of possible alternatives is currently in effect. Such cases, e.g. objects 
characterized by different modes of dynamical behavior, can be handled by multiple 
dynamics models with a given probability of switching between them (IMM: Interacting 
Multiple Models, [2], [6] and the literature cited therein). The model transition probabilities 
are thus part of the modeling assumptions. More strictly speaking, suppose that r models 
are given and let jk be denoting the dynamics model assumed to be in effect at time tk, the 
statistical properties of systems with Markovian switching coefficients are summarized by 
the following equation: 

 (11)

                                                 
1Sketch of proof: Interpret N(z; Hx, R)N(x; y, P) as a joint density p(z, x) = p(z│x)p(x). It can 
be written as a Gaussian, from which the marginal and conditional densities p(z), p(x│z) can 
be derived. In the calculations make use of known formulae for the inverse of a partitioned 
matrix (see [2, p. 22], e.g.). From p(z, x) = p(x│z)p(z) the formula results. 
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 (12)

For r = 1, the previous linear-Gaussian model results as a limiting case. Fortunately, the 
tracking performance does not seem to critically depend on the particular choice of the 
model transition probabilities p(jk│jk-1), provided the number r of models involved is small 
[7]. 
Let us assume that the previous posterior is written as a Gaussian mixture, 

 
(13)

 
(14)

 
(15)

i.e. a weighted sum of individual Gaussians. The vector index jk-1 is defined by jk-1 = jk-1, jk-2, 
..., jk-n, i.e. the mixture p(xk-1│ k-1) is given by rn components, where n is a parameter. The 
case n = 1 corresponds to the situation standard IMM prediction [2, p. ???ff]. With a 
previous posterior of this type, we obtain for the prediction update: 

   
(16)

 
(17)

 
(18)

with weighting factors , an expectation vector , and a covariance matrix 

given by: 

 (19)

 (20)

 (21)

by exploiting the product formula (Equation 9). From these considerations follows that the 
number of mixture components is continuously increasing in each prediction update step. 
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Via moment matching [2, p. 56], the number of mixture components can be kept constant if 
the sum over jk-n in Equation 18 is approximated by: 

 
(22)

with  given by: 

 
(23)

 
(24)

 
(25)

yielding a Gaussian sum representation of p(xk│ k-1) with rn mixture components. 
C. Filtering Update Step 

According to previous considerations, the conditional pdf p(xk│ k) can be calculated 
iteratively by combining the following pieces of evidence: p(xk-1│ k-1) (knowledge of the 
past), p(xk│xk-1) (object dynamics), ℓ( xk;Zk, nk) (measurements, sensor model). 
1) Standard Kalman Update Formulae: In case of well-separated objects under ideal conditions, 
i.e. without false returns, assuming perfect detection, a single dynamics model, and 
Gaussian measurement errors, the well-known Kalman filtering results as a limiting case of 
this more general Bayesian approach. The Kalman filter is thus a simple straight-forward 
realization of Bayesian tracking. In this idealized situation, i.e. with: 

 (26)

 (27)

Equation 1 provides Gaussian pdfs, 

 (28)

representing the available knowledge at each time tk. According to the previous product 
formula (Equation 9), we obtain two equivalent versions of the Kalman update equations for 
xk│k, Pk│k: 

 

(29)
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(30)

with the Kalman Gain Matrix Wk│k-1 and the Innovation Covariance Matrix Sk│k-1, given by 

 (31)

 (32)

At time t0, the pdf p(x0│ 0) = N(x0; x0│0, P0│0)describes the initial knowledge on the object 
kinematics. As an example, let us consider state vectors , consisting of the 
object position and velocity, and position measurements zk with measurement error 
covariance matrices Rk. Based on a first measurement z0 and the context information that 
vmax is a measure of the maximum object speed to be expected, a reasonable initiation is 
given by , . 
2) More Sophisticated Sensor Models: A very simple example illustrates, in which way negative 
sensor evidence, i.e. an expected but actually missing sensor measurement, is to be treated 
within the Bayesian formalism. Let us first exclude false measurements and assume that the 
objects of interest are detected with a constant detection probability PD < 1. This problem is 
thus identical with the previously discussed Kalman filtering except that measurements are 
not at each time tk available. In this case, the underlying sensor model, i.e. the likelihood 
function, has not only to describe the measurement process, characterized by the 
measurement matrix Hk and the measurement error covariance matrix Rk, but also the 
detection process, characterized by the detection probability PD < 1. According to this 
discussion, there exist to possibilities: either the object was detected at time tk, (data 
interpretation hypothesis ik = 1, or not (data interpretation hypothesis ik = 0). Under the 
assumption that the probabilities p(ik = 1│xk) = PD and P(ik = 0│xk) = 1 - PD do not depend on 
the object state xk, we obtain with ij = 0 for i ≠ j and ij = 1 for i = j the following likelihood 
function: 

 
(33)

         (34)

         (35)

With p(xk│ k-1) = N(xk; x k│k-1, P k│k-1), Equation 1 leads to the following conclusions: 
1. For a positive sensor output (nk = 1) the measurement zk is processed via Kalman 

filtering resulting in p(xk│ k) = N(xk; x k│k, P k│k)with x k│k and P k│k  given by Equations 
29 and 30. 

2. For a negative sensor output (nk = 0) the likelihood function is given by the constant  
1-PD. This implies that prediction pdf is not modified in the filtering step: x k│k = x k│k-1,  
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P k│k = P k│k-1. According to the Kalman update equations this result can formally be 
interpreted as a processing of a pseudo-measurement with an infinitely large 
measurement error covariance matrix , since in this case - 1=0. 

The Bayesian formalism and the sensor model (likelihood function) obviously define how a 
negative sensor output, i.e. a missing detection is to be processed. 
In the case of well-separated objects in the presence of false returns and imperfect detection, 
the nk sensor data Zk are also not longer uniquely interpretable. Let ik = 0 denote the data 
interpretation hypothesis that the object has not been detected at time tk, all sensor data 
being false returns, while ik = i, i = 1,..., nk represents the hypothesis that the object has been 
detected,  ∈Zk being a object measurement, the remaining sensor data being false returns. 
Evidently,  is a set of mutually exclusive and exhaustive data interpretations. Due to 
the total probability theorem, the corresponding likelihood function is thus given by: 

              
(36)

 
(37)

                                        

                                                
(38)

          
(39)

where we assumed a constant detection probability PD and false returns equally distributed 
in the field of view │FoV│ and Poisson distributed in number; i.e. the probability of having 
n false returns is given by  with a spatial false return density ρF 

and │FoV│denoting the volume of the field of view. See [22] for a more detailed discussion. 
According to the Equation 1, this likelihood function implies that p(xk│ k) becomes a 
Gaussian mixture, a weighted sum of Gaussians, whose parameters are obtained by 
exploiting the product formula (9). 
D. Gaussian Mixtures and Multiple Hypothesis Tracking 

In many applications, such as group target tracking with possibly unresolved measurements 
[26], in ground moving target tracking with STAP radar [21], or target tracking with a 
phasedarray radar in the presence of jamming [10], the sensor model is described by a 
likelihood function of the type ℓ(xk; Zk, nk) ∝  p(Zk, nk│ik, xk) p(ik│xk) [20]. Such 
likelihood functions, which are essentially characterized by taking different data 
interpretation hypotheses ik into account, are the basis for Multiple Hypothesis Tracking 
algorithms (MHT, see [5]). In this context, each mixture component of the pdfs that result 
from Bayes’ Rule and a Gaussian mixture prediction, 
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(40)

represents a track hypothesis, which is characterized by a sequence of data interpretation 
hypotheses ik = (ik, i k-1,...,...), i.e. data interpretation history. 
The structure of a Gaussian mixture for p(xk│ k) also occurs if an IMM prediction p(xk│ k-1) 
(see previous subsection) is updated by using a Gaussian likelihood function ℓ(xk; zk,Hk,Rk) = 
N(zk; Hkxk, Rk) according to Equation 1 and the product formula (Equation 9): 

            
(41)

                                   
(42)

where the mixture parameters are given by: 

 
(43)

 (44)

 (45)

with the standard Kalman Gain and Innovation Covariance matrices 

 (46)

 (47)

IMM filtering may thus be considered as a multiple ‘model hypotheses’ tracking method. 
Also combined IMM-MHT-approaches are discussed in the literature, e.g. [23]. See [34], [35] 
for an alternative treatment of the multiple hypothesis, multiple model tracking problem. 
E. Summary and Realization Aspects 

A Bayesian tracking algorithm is an iterative updating scheme for conditional probability 
density functions p(xl│ k) representing all available knowledge on the kinematical state 
vectors xl of the objects to be tracked at discrete instants of time tl. The pdfs are conditioned by 
both the sensor data k

 accumulated up to some time tk, typically the current scan time, and by 
available context information, such as sensor characteristics, object dynamics, environments, 
topographical maps, tactical rules. Depending on the time tl at which estimates for the state 
vectors xl are required, the related estimation process is referred to as prediction (tl > tk) and 
filtering (tl = tk). In the following the iterative calculation is illustrated schematically: 
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(48)

Under more realistic conditions, the pdfs have the structure of finite mixtures, i.e. weighted 
sums of individual densities that assume particular data interpretations or model 
hypotheses to be true. This structure is a direct consequence of the uncertain origin of the 
sensor data and/or of the uncertainty related to the underlying system dynamics. Provided 
the densities p(xl│ k) are calculated correctly, optimal estimators can be derived related to 
various risk functions adapted to the applications. See [19] for a generalization of this 
Bayesian scheme to extended objects and object clusters and to retrodiction [23]. 
Due to the uncertain origin of the sensor data, naively applied Bayesian tracking leads to 
memory explosion. The number of components in the mixture densities p(xk│ k) 
exponentially grow at each step. Suboptimal approximation techniques are therefore 
inevitable in any practical realization. Fortunately, in many applications, the densities 
resulting from prediction and filtering are characterized by a finite number of modes that 
may be fluctuating and even large for a while, but does not explosively grow. This is the 
rationale for adaptive approximation methods that keep the number of mixture components 
under control without disturbing the density iteration too seriously [12], [32]. In other 
words, the densities can often be approximated by mixtures with (far) less components (e.g. 
by merging of similar and pruning of irrelevant mixture components). Provided the relevant 
features of the densities are preserved, the resulting suboptimal algorithms are expected to 
be close to optimal Bayesian filtering. For dealing with non-linearities ‘extended’ or 
‘unscented’ Kalman filtering (EKF [2], UKF [14]) or particle filtering (PF [31]) can be used. 

3. Example: tracking-driven phased-array radar management 
Resource management for a multi-functional radar certainly depends on the particular 
application considered. We here discuss track maintenance for ground-based air 
surveillance while minimizing the allocation time and energy required. The track accuracy 
is important only insofar as stable tracks are guaranteed. Track initiation or implementation 
issues are not addressed here. To make the benefits of IMM modeling and amplitude 
information clearly visible, false detections (clutter, electronic counter measures), data 
association conflicts, or possibly unresolved measurements were excluded. Nevertheless, 
their impact might well be incorporated into the general Bayesian framework [16]. 
A. Sensor Modeling for Phased-array Radar 

In phased-array radar tracking, additional sensor information can be acquired when needed. 
Before each “radar resource allocation” [7], certain radar parameters must be selected by the 
tracking system depending on the current lack of information. We here consider the object 
revisit time tk, the current beam position bk, i.e. a unit vector pointing into the direction where 
radar energy is to be transmitted, and the transmitted energy per dwell ek. Other radar 
parameters (detection threshold λD, radar beam width B) are assumed to be constant. After 
processing the skin echo produced by the illuminated object, the resource allocation Rk at 
time tk results in measurements of direction cosines of the object and the object range, zk = 
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( u k, v k, r k), along with the signal amplitude ak. A single dwell may be insufficient for 
object detection and subsequent fine localization. Let  denote the number of dwells 
needed for a successful detection and  the set of the corresponding beam 
positions. Each radar allocation is thus characterized by the tuple Rk = (tk,Bk,  , ek, zk, ak). 
The sequence of successive allocations is denoted by Rk = {Rk,R k-1}. 
1) Radar Cross Section Fluctuations: The instantaneous radar cross section k of realistic objects 
strongly depends on the radar frequency used and the current aspect angle. For this reason, 
statistical models are used for describing the backscattering properties of the objects. In 
many practical cases, k is described by gamma-densities, 

 (49)

                                         
(50)

In this equation σ  denotes the mean RCS of the object that is usually unknown, but 
constant in time and characteristic of a certain class of objects, while the parameter m 
denotes the number of “degrees of freedom”. The individual samples k are assumed to be 
statistically independent for subsequent dwells (guaranteed by frequency decorrelation, 
e.g.). The cases m = 1, 2 are referred to as Swerling-I and -III fluctuations [11]. 
Let the instantaneous object signal vk = (v1, v2) with the two orthogonal signal components v1 

and v2 be additively corrupted by Gaussian noise with variance  according to the 
standard modeling assumptions [11]. Since the signal components are assumed to be 
statistically independent, the pdf of the resulting sensor signal sk = (s1, s2) is 

 (51)

The normalized scalar quantity  derived from sk, is thus Rice-distributed 
[11]: . Hence, snk denotes 
the instantaneous signal-to-noise ratio of the object being proportional to the instantaneous 
radar cross section k. The expectation value of  with respect to p( │snk) is given by 

[ ] = 1 + snk. According to the normalization chosen, pure noise (snk = 0) has thus unit 
power. Due to the RCS model previously discussed, snk is gamma-distributed with the mean 
SN: p(snk│SN) = Gm(snk; SN, m). The conditional density of  given SN is thus obtained by 
calculating: 

 
(52)

The integration can be carried out (see [1], e.g.) yielding: 

 (53)

where Lm-1 denotes the Laguerre polynomials. For Swerling-I/III these polynomials are 
given by: L0(-x) = 1, L1(-x) = 1+x. Obviously, p( │SN) can be interpreted as a gamma 
mixture with the expectation value [ ] = 1 + SN. 
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2) Mean Received Signal-to-Noise Ratio: Any sensor model for phased-array radar tracking has 
to provide a functional relationship between the expected signal-to-noise ratio SNk at the 
revisit time tk, the sensor parameters considered (here: transmitted energy, beam position) 
and the relevant object parameters (mean RCS, object position). With a Gaussian beam form 
model [17], well proven in applications, the radar range equation (see [11], e.g.), we assume: 

 (54)

 (55)

rk is the actual object range at time tk, while dk = (uk, vk)  denotes the related direction 
cosines. With the beam position  and the (one-sided) beam width B, Δbk is a 
measure of relative beam positioning error. The radar parameter SN0 is the expected mean 
signal-to-noise ratio of a object with a standard mean cross section σ 0 at a reference range r0 
that is directly (Δbk = 0) illuminated by the beam with the energy e0. Due to the functional 
relationship stated in Equation 53, the signal strength  can be interpreted as a 
measurement of σ . 
3) Detection and Measurement Process: A detection is assumed if the received signal strength 
exceeds a certain detection threshold:  > λD. For a given m in the fluctuation model 
(Equation 50), the detection probability PD is a function of SN and λD: 

 
(56)

The false alarm probability PF is analogously obtained: . 
Integration results in explicit expressions for PD [11]. For Swerling-I/III fluctuations, we 
obtain: 

 (57)

 
(58)

For object tracking  is available after a detection, i.e.  > λD. We thus need the conditional 
density: 

 

(59)

For strong objects we can assume SN ≈ 1 + SN ≈ ... ≈ m + SN and thus approximately obtain: 
 which is similar to the expression in 

Equation 53. On the other hand, let the detection probability for m ≠ 1 be approximately 
given by:  (i.e. by a Swerling-I-model). We can therefore 
write: p(a│  > λD, SN, m) ≈ Sm( ; SN, m) with: 
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(60)

Let us furthermore assume that monopulse localization after detection result in bias-free 
measurements  of the direction cosines and range with Gaussian measurement errors. 
According to [11], the standard deviations  depend on the beam width B and the 

instantaneous snk in the following manner:  Since snk is 

unknown, in the last approximation  is used as a bias-free estimate of snk ( [ ] = 1 + snk). 
The range error is assumed to be Gaussian with a constant standard deviation r. Evidently, 
this model of the measurement process does not depend on the RCS fluctuation model. 
B. Bayesian Tracking Algorithms Revisited 

According to the previous discussion, object tracking is an iterative updating scheme for 
conditional probability densities p(xk│Rk) that describe the current object state xk given all 
available resource allocations Rk

 and the underlying a priori information in terms of 
statistical models. The processing of each new measurement zk via Bayes’ Rule establishes a 
recursive relation between the densities at two consecutive revisit times (a prediction step 
followed by filtering). 

 
(61)

with jk = (jk,..., jk-n+1) denoting a particular model history, i.e. a sequence of possible hypotheses 
regarding the object dynamics model from a certain observation at time tk-n+1 up to the most 
recent measurement at time tk (“n scans back”). In the case of a single dynamics model (r = 
1), the prediction densities p(xk│Rk-1) are strictly given by Gaussians (standard Kalman 

prediction). For n = 1, p(xk│Rk-1) is approximated by a mixture with r components according 
to the r dynamics models used. GPB2 and standard IMM algorithms are possible 
realizations of this scheme [3]. For standard IMM, the approximations are made after the 
prediction, but before the filtering step, while for GPB2 they are applied after the filtering 
step. Hence, GPB2 requires more computational effort. For details see [3]. 
2) Processing of Signal Strength Information: Let us treat the normalized mean RCS of the 
object, sk = σ k/σ 0, as an additional component of the state vector. Since the signal strength 
after a detection occurred may be viewed as a measurement of sk, let us consider the 
augmented conditional density 

 (62)

The calculation of p(xk│Rk) was discussed in section 2. For the remaining density p(sk│xk,Rk), 
an application of Bayes’ Rule yields up to a normalizing constant: 

 (63)
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Let us furthermore assume that p(sk│xk,Rk-1) are given by inverse gamma densities, 

 (64)

which are defined by: 

 (65)

where ŝ  is the expectation of this density, ŝ  =  [s] > 0, μ a parameter μ > 1. For μ > 2, the 
related variance exists: V[s] = ŝ 2/(μ - 2). This class of densities is invariant under the 
successive application of Bayes Rule according to Equation 63, since up to normalization we 
obtain: 

 (66)

 
(67)

 (68)

where the parameters α k, ŝ k, and μk are given by: 

 (69)

 (70)

 (71)

With reference to sk the density (sk; ŝ k, μk) is correctly normalized. Evidently, α k depends 
on the object position (α k = α k(rk, uk, vk)). In order to preserve the factorization of p(xk, sk│Rk) 
in a normal mixture related to the kinematic properties of the object xk and an inverse 
gamma density related to its RCS sk, we use the approximation: 

 
(72)

where r̂ k, û k, v̂ k are the MMSE estimates for rk, uk and vk derived from p(xk│Rk). Hence, α k 

compensates both the estimated positioning error of the radar beam and the propagation 
loss due to the radar equation. Assuming sk to be constant, we have (sk; ŝ k│k-1, μk│k)= 

-1(sk; ŝ k-1, μk│k-1). In principle, a dynamics model describing temporal changes of the 
radar cross section might be introduced. 

C. Adaptive Bayesian Sensor Management 

The tracking results are essential for adaptive radar revisit time control, the selection of the 
transmitted radar energy, and the design of intelligent algorithms for local search. 
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1) Adaptive Radar Revisit Time Control: The time tk when a radar allocation Rk should take 
place is determined by the current lack of information conveniently described [17] by the 
error covariance matrix Pk│k-1 of the predicted state estimate xk│k-1. Since p(xk│Rk-1) is a 
normal mixture, xk│k-1 and Pk│k-1 are given by: 

 
(73)

 
(74)

The covariance matrix  of the individual mixture components grow the faster in time 
the more often maneuvers are assumed in the corresponding model histories. This has an 
impact on the total covariance matrix Pk│k-1 according to the corresponding weighting 
factors . In addition, Pk│k-1 is “broadened” by the positively definite spread terms 

(  - xk│k-1) (  - xk│k-1) . Obviously, the adaptive IMM modeling affects Pk│k-1 in a 
rather complicated way. 
A scalar measure of the information deficit is provided, e.g., by the largest eigenvalue of the 
covariance matrix of the predicted object direction (in terms of u, v). Let it be denoted by  
Gk│k-1. A track update is allocated when the Gk│k-1 exceeds a predetermined proportion of the 
squared radar beam width B: 

 (75)

The relative track accuracy v0 introduced by this criterion is a measure of the minimum track 
quality required and a parameter to be optimized. In many practical applications, v0 = 0.3 is 
a reasonable choice [17]. 
2) Transmitted Radar Energy Selection: In view of the tracking system, the sensor performance 
is mainly characterized by the signal-to-noise ratio that determines both, the detection 
probability and the measurement error. By suitably choosing the transmitted energy per 
dwell ek, the expected signal-to-noise ratio SNk│k-1 can be kept constant during tracking. 
Besides v0, SNk│k-1 is an additional parameter subject to optimization. Since v0 may be viewed 
as a measure of the beam positioning error, the energy ek at time tk is defined by this 
condition (Equation 54): 

 (76)

 
(77)

By this particular choice, the influence of the radar range equation is compensated (at least 
for a certain range interval). For the mean radar cross section σ  either a worst-case 
assumption or estimates from object amplitude information can be used. The track quality v0 

also affects the transmitted energy. As a side effect of this choice, the standard deviations 
 of the u, v-measurements are kept constant on an average. 



 Sensor and Data Fusion 

 

20 

3) Bayesian Local Search Procedures: Intelligent algorithms for beam positioning and local 
search are crucial for IMM-type phased-array tracking. Overly simple strategies may easily 
destroy the benefits of the adaptive dynamics model, because track loss immediately after a 
model switch can easily occur. To avoid this phenomenon, we adapt the optimal approach 
based on the predicted densities p(xk│Rk-1) proposed in [17] to IMM tracking [24]. 
1. The beam position  of the first dwell at time tk is simply given by the predicted 

direction dk│k-1 to be derived from the predicted density function p(xk│Rk-1). 
2. If no detection occurs in the first dwell, this very result provides useful information on 

the target. We thus have to calculate the conditional density of the target state given the 
event : ‘no detection at time tk in the direction ’. 

3. An application of Bayes’ Rule directly yields: 

 (78)

up to a normalizing factor. In this expression, the detection probability PD depends on 
the expected SN (Equation 54) and thus on the current beam and target position bk, dk. 

4. The two dimensional density  can easily be calculated on a grid. The 
beam position for the next dwell is then simply provided by its maximum. 

5. This computational scheme for Bayesian local search is repeated until a detection 
occurs. Since the maximum of the densities  is searched, the 
computation of the normalization integral is not required. Numerically efficient 
realizations are possible. 

Alternatively,  might be used for calculating the expected SN in a certain 
direction bk: 

 
Searching the maximum of SN(bk) results in a different local search strategy. In the examples 
considered below, however, no significant performance improvements were observed. 
Nevertheless, there might be applications where the maximization of SN(bk) is 
advantageous (e.g. for track recovery in case of intermittent operating modes). 
This local search scheme exploits ‘negative’ evidence, as also here the lack of an expected 
measurement carries information on the current target position. We here in particular 
observe a direct impact on adaptive sensor management. Again, the prerequisite for dealing 
with negative evidence is an adequate sensor performance model. As in the case of 
resolution phenomena (section 2), the processing of negative sensor evidence implies 
mixture densities with possibly negative mixture coefficients, i.e. not each mixture 
component has a direct probabilistic interpretation. As the mixture coefficients sum up to 
one, the overall density nevertheless has a well-defined probabilistic meaning. 
Figure 4 illustrates this scheme of Bayesian local search for a particular example. In Figure 
4a the predicted pdf , a mixture density, is shown for some time tk. The target is 
expected to be in the bright region with high probability , the true target position being 
indicated by a green dot. The blue dot denotes the beam position of the next dwell. The 
related detection probability is 26%. However, no detection occurred during the first dwell 
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Fig. 4. Bayesian local search: five consecutive dwells 
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1. We thus calculate the conditional pdf  given that event. As visible in 
Figure 4b, it differs significantly from . The previous maximum decreased in 
height, while the global maximum is at a different location. Again no detection occurred; the 
resulting density  reflecting the two pieces of ‘negative’ evidence 

 is shown in Figure 4c. Now the search algorithm decides to look again near 
the position at dwell 1. Although wrong in this case, this does not seem to be unreasonable. 
In addition, two smaller local maxima appear that increase in size as in the next dwell also 
no detection occurred. According to Figure 4d the next decision is ambiguous. We finally 
obtain a decision which leads to success. The last picture shows the updated pdf (Figure 4f). 

4. Discussion of numerical simulation results 
Simulation results provide hints as to what extent the total performance of multiple-object 
air surveillance by phased-array can be improved by using adaptive techniques for 
combined tracking and sensor control. The following four questions are addressed: 
1. What resource savings (allocation time, energy) can be expected by using adaptive 

dynamics models? 
2. How should the IMM dynamics modeling be designed (e.g. number of models, 

transition matrix)? 
3. What energy savings can be expected by exploiting object amplitude information for 

sensor control? 
4. Why is Bayesian local search important when adaptive dynamics models are used for 

revisit time control? 
A. Discussion of Simulation Scenarios 

In general we follow the parameter and threshold settings recommended in [17]. To exclude 
false alarms due to receiver noise, the false alarm probability is PF = 10-4. False returns due to 
clutter or ECM are not considered. The standard deviation of the measurement errors in 
object range is r = 100 m, while the the radar beam width is B = 1°. We assume a minimum 
time interval of 20 ms between consecutive dwells on a particular object and statistically 
independent signal amplitudes (frequency decorrelation, e.g.). The reference range is set to 
r0 = 80 km. 
1) IMM Modeling Parameters: Antenna coordinates (direction cosines, range) are used also for 
tracking; non-linearities introduced by these non-Cartesian coordinates are taken into 
account [16]. In each component uk, vk, rk the state vector is given by position, speed, and 
acceleration. For the sake of simplicity, we consider a block diagonal system matrix defined 
by 

 
(79)

 
(80)

with Δtk = tk – tk-1. The maneuvering capability of the objects is thus characterized by two 
parameters: maneuver correlation time θ and acceleration width Σ. For r = 2, 3 we consider the 
parameter sets: 



Advanced Sensor and Dynamics Models with an Application to Sensor Management 

 

23 

• M1 (worst-case model): Σ1 = 60 m/s2, θ1 = 30 s 
• M2 (best-case model): Σ2 = 1 m/s2, θ2 = 10 s 
• M3 (medium-case model): Σ3 = 30 m/s2, θ3 = 30 s 
The matrices of the model transition probabilities are given by: 

 
(81)

We observed that the performance does not critically depend on the particular switching 
probabilities pij chosen. A detailed mismatch analysis, however, has not been performed. A 
track is considered to be lost if more than 50 dwells occur in the local search of if the beam 
positioning error Δbk is greater than 3B. We thus permit even a rather extensive local search 
that correspondingly burdens the total energy budget. In all simulations considered below 
(1000 runs) the relative frequency of track loss is less than 2%. 
2) Selected Benchmark Trajectories: The horizontal projection of four standard benchmark 
trajectories (military cargo aircraft, medium bomber, fighter/attack aircraft, and anti-ship 
missile) is shown in Figure 5 along with representative kinematical characteristics such as 
acceleration (solid line), range (dashed), height (dotted), and speed (solid). They have been 
proposed in [8], [9] and cover a rather wide range of militarily relevant objects. The missile 
trajectory might serve to explore the performance limits of the algorithms. In principle, 
missiles can execute even stronger maneuvers. It is questionable, however, if for those 
objects and their individual missions the dynamics models discussed above remain 
applicable. All objects are tracked over a period of 180 s. The RCS fluctuations are described 
by a Swerling-III model. The mean cross sections significantly vary from object to object (4., 
2., 1.2, .5 m2). 
3) Measures of Performance Considered: The discussion is confined to a few intuitively clear 
and simple performance measures obtained by Monte-Carlo simulation (1000 runs). In 
general a single performance measure is not sufficient as there may exist applications where 
the transmitted energy is the limiting factor, while in a different scenario the number of 
radar allocations must be kept low. 
The adaptivity becomes visible if the performance is evaluated as a function of the tracking 
time that can be compared with the kinematics of the individual trajectories (Figure 5). Here 
we used histograms with 100 cells. In particular we considered: the mean revisit intervals, 
the mean number of dwells for a successful update, the mean number of sensor allocations 
in total required for track maintenance, the mean energy spent for a successful allocation, 
the mean energy totally spent for track maintenance, and the mean RCS of the objects 
estimated during tracking. 
Four tracking filters were compared: worst-case Kalman filter (KF), standard IMM filter 
with two or three models, respectively (S-IMM2,3), and IMM-MHT filtering with model 
histories of length n = 4. For IMM-MHT with n > 4, the performance characteristics change 
only slightly. We thus conclude that n = 4 already provides a good approximation to 
optimal filtering (at least for the scenarios considered here). With reference to object 
amplitude information we considered three cases: 1) the object RCS σ is known and used 
for energy management. 2) The mean RCS σ is unknown and to be estimated during 
tracking. 3) A worst-case assumption is used for all objects (σ = 0.5 m2). 
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Fig. 5. Horizontal projections and kinematical quantities (military cargo aircraft, medium 
bomber, fighter/attack aircraft, and anti-ship missile) 
B. Remarks on IMM Modeling Design 

Practically, the question arises how many models should be used in the IMM approach. In 
addition it must be clarified if each trajectory needs an individual modelling or if the same 
IMM modelling can be used without significant loss of performance. For the fighter 
scenario, a worst/best-case model should be appropriate at first sight. Trajectory 1 (Cargo 
Aircraft), however, shows that military objects can occur for which medium-case models are 
sufficient. To answer these questions, we used IMM with two (r = 2, M1, M2) and three 
models (r = 3, M1, M2, M3), respectively, with v0 = 0.3, SNk│k-1 = 50. How these parameters 
affect the performance is discussed further below. Figure 6 shows the resulting mean revisit 
intervals for all trajectories. The kinematical object characteristics are clearly mirrored. We 
observed: 
1. As expected, Kalman filtering (r = 1, M1) leads to constant revisit intervals that are 

comparable for all trajectories. This is no longer true for S-IMM. The resultant curves 
related to r = 2 (solid) and r = 3 (dashed) significantly differ from each other. The onset 
of maneuvers (Figure 5) strongly affects the mean update intervals and thus illustrates 
the adaptivity of the algorithm. 
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Fig. 6. Revisit intervals for different filters: military cargo aircraft, medium bomber, 
fighter/attack aircraft, and anti-ship missile 

2. The difference between the cases r = 2, 3 vanishes however, if IMM-MHT is used. If 
model histories are permitted (here n = 4), it seems to be irrelevant if besides 
worst/bestcase assumption additional medium-case models are used. Even longer 
histories or further models (r > 3) do not significantly improve the performance 
obtained with r = 2 and n = 4. For a suitable (!) choice of the switching probabilities, the 
performance of S-IMM4 approaches closes to B-IMM2; for B-IMM4 no improvement over 
B-IMM2 was observed. 

3. For the bomber and the fighter, S-IMM3 (M1, M2, M3) outperforms S-IMM2 (M1, M2), in 
spite of the fact that for these trajectories only worst-case maneuvers occur and the 
medium-case model appeared to be unnecessary at first sight. The difference between r 
= 2 and r = 3, however, is not as clear as for scenario 1 (cargo aircraft). 

4. For the moderately maneuvering cargo aircraft, the question arises whether the 
performance can be improved by using a medium/best-case IMM modelling. We found 
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Fig. 7. Radar allocations for different filters: military cargo aircraft, medium bomber, 
fighter/attack aircraft, and anti-ship missile 

that worst/best-case IMM-MHT and medium/best-case IMM-MHT differ, but not very 
much. This indicates that worst/best-case IMM-MHT has a more or less “universal” 
character, i.e. it does not critically depend of the scenario considered (at least within 
certain limits). 

These observations indicate that the mixtures p(xk│Rk) for n = 4, r = 2 have enough internal 
degrees of freedom to provide an adequate representation of the actual object behavior. 
Refined approximations by even more mixture components seem to be irrelevant for the 
trajectories considered. A rule of thumb: A worst/best-case analysis of the problem along 
with IMM-MHT seems to be sufficient to achieve a nearly optimal tracking performance. 
Obviously, for two dynamics models, reasonable and intuitive assumptions for the 
switching probabilities are easily obtained. IMM-MHT thus enables a more simplified 
dynamics modelling without significant loss of performance. 
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Fig. 8. Radar energy spent for different filters: military cargo aircraft, medium bomber, 
fighter/attack aircraft, and anti-ship missile 
C. Gain by IMM Modelling 

To investigate the gain by adaptive dynamics models, let us for the present assume that the 
mean RCS of the object is known and used for energy management. Figure 7 shows the 
mean number of allocations required for track maintenance (KF, S-IMM2, B-IMM2). As 
expected, for KF the mean number of revisits linearly increases with increasing tracking 
time and is nearly the same for all trajectories. By adaptive dynamics modeling, however, 
the number of sensor allocations is reduced. 
1. Compared with KF, IMM results in significant resource savings. There is an 

improvement by IMM-MHT over S-IMM; the difference, however, is less significant 
than between SIMM and KF. Besides simplified modeling assumptions, the practical 
use of IMM-MHT therefore consists in the exploration of the limiting bounds for 
performance improvements. 

2. The largest gain is observed for the cargo aircraft and the bomber. In the case of the 
fighter aircraft, the allocations required are reduced by about 50 % compared with 
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worstcase Kalman filtering. Even during the 7 g weaving of the missile, some 
advantages of the IMM modeling can be observed. 

Figure 7 shows the mean number of dwells per revisit. Up to peaks corresponding with the 
onset of maneuvers, it is constant and roughly equal for all filters and trajectories. The more 
adaptive the filter is, the higher the peaks are, i.e. the larger the revisit intervals can be 
during inertial flight. The peaks thus indicate that for abrupt maneuvers a local search might 
be required. This is the price to be paid for increased adaptivity. Evidently, intelligent 
algorithms for beam positioning and local search are essential for IMM phased-array tracking. 
These observations are consistent with Figure 8, which shows the mean energy spent for 
track maintenance (relative units). Besides the object maneuvers, these curves are influenced 
by the current object range (Figure 5, dotted line). In addition, the mean energy spent per 
revisit is displayed. Up to characteristic peaks, the energy per revisit is roughly the same for 
all tracking filters. 
D. On the Quality of RCS Estimates 

In a practical application, the mean RCS of the objects to be tracked is unknown and might 
be estimated from object amplitude information. In general, the estimators used should be at 
least approximately bias-free, the estimated error and the empirical error should be roughly 
identical, and the estimators should show a certain robustness against model mismatch. As 
indicated by Figure 9, the estimator previously proposed provides rather satisfying results 
for all trajectories. Using IMM-MHT for tracking, the recursion was initiated with σ  = .5 m2 

(worst-case assumption) and m0 = 1.01. 
 

 
Fig. 9. On the quality of RCS estimates 

The solid lines show the mean RCS estimates as a function of the tracking time. For all 
scenarios it is roughly constant and corresponds with the actual values (4, 2, 1.2, 0.5 m2). The 
dotted lines indicate the mean estimation error (available in the simulation). The curves 
show peaks that are related to the onset of maneuvers and the corresponding lack of track 
accuracy. The dashed lines denote the mean standard deviation calculated by the estimator 
itself. Tracking and RCS estimation are closely interrelated: Only when tracked over a 
certain period of time, are estimates reliable enough to distinguish between the object 
classes. A satisfying RCS estimation by signal processing only, i.e. without a temporal 
integration along the estimated trajectory does not seem to be possible. In this context, IMM 
retrodiction techniques [23] might be considered that can provide more accurate estimates 
of the trajectory and thus more accurate RCS estimates. 
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Table I. Mismatch regarding the fluctuation model 
E. RCS Model Mismatch 
The backscattering properties of real objects are highly complex. A practicable method for 
estimating the RCS must thus show some robustness against model mismatch. To get a first 
hint, we generated in our simulation amplitude information according to both Swerling I 
and III being processed according to both modelling assumptions. The results for the four 
possible combinations are summarized in table I. Besides the quantities already shown in 
Figure 9, we also listed the total energy spent for tracking (relative units). 
1. For matching models, the RCS estimates are nearly bias-free and more or less roughly 

consistent. 
2. For Swerling III fluctuations, the estimates are more accurate than in case of Swerling I. 
3. For Swerling I (no mismatch), more energy is spent than for Swerling III (keeping  

SNk│k-1 constant). 
4. If Swerling I amplitudes are processed according to Swerling III, the RCS is 

overestimated, consistency is lost. 
5. It is underestimated if Swerling III amplitudes are processed according to Swerling I. 
6. Mismatch does not greatly affect the performance (energy). 
F. Adaptive Energy Management. 

Finally we have to show up to what degree the radar energy to be spent can be reduced by 
estimating the RCS in comparison to worst-case assumptions. In Figure 9 the mean radar 
energy spent for track maintenance is displayed. The dotted lines refer to IMM-MHT 
tracking using the true RCS of the objects (as previously discussed). In a practical 
application, this cannot be realized; the resultant curves, however, may serve as a reference 
to discuss the performance of RCS-adaptive algorithms. The solid lines denote methods that 
exploit signal strength information for estimating the RCS (Worst-Case Kalman filter, IMM-
MHT). Dashed lines indicate algorithms that use a worst-case assumption (here: 0.5 m2, 
missile) on the RCS (KF, IMM-MHT). 
A comparison between sensor control by using the true RCS (not available in a real 
application) and methods exploiting recursive RCS estimates is of particular interest. The 
largest deviation is observed for scenario 1 (σ = 4 m2). This is to be expected, as the 
recursion was started with a worst-case assumption. The discrepancy between both curves, 
however, is not very significant in all four cases. Compared with IMM-MHT (Worst-Case  
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Fig. 10. Mean Number of Allocations for Different Filters and Trajectories 

RCS) it can be neglected. The difference between sensor control with known and estimated 
RCS is roughly constant during tracking. We thus conclude that it is caused primarily in the 
initiation phase where not much signal strength information is yet available. As soon as 
reliable RCS estimates have been produced, the performance is practically identical. Figure 9 
also shows how the resource savings due to adaptive dynamics models and RCS-adaptive 
energy management are related to each other. 
In table II, scalar performance measures are summarized for all scenarios and processing 
methods: object revisit intervals (ΔT), sensor allocations required, energy spent for track 
maintenance (time averages taken over the tracking time). The last column shows the energy 
spent by the various methods relative to IMM-MHT with known RCS. Compared with 
IMM-MHT (Worst-Case RCS), the gain is: 3.8 (cargo aircraft), 2.6 (Bomber), 1.5 (Fighter), .9 
(anti-ship missile). Hence, in the missile-scenario, where the worst-case assumption is 
correct, a small loss of performance must be taken into account. 
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Table II. Gain by rcs-adaptive energy control 

5. Adaptive sensor management: summary of results 
The gain by exploiting adaptive dynamics models and signal amplitude information is 
demonstrated by simulations with standard benchmark trajectories representative of typical 
military objects (cargo aircraft, medium bomber, fighter, and anti-ship missile) [8], [9]. 
Preliminary results were published in [25]. 
1. In the case of IMM-MHT, simple worst/best-case considerations seem to be sufficient 

for modelling the object dynamics. Medium-case models implying additional, a priori 
unknown parameters (e.g. transitions matrices) result in significant performance 
improvements only for standard IMM algorithms. IMM-MHT thus permits simplified, 
more qualitative models without significant loss of performance. 



 Sensor and Data Fusion 

 

32 

2. Compared with worst-case Kalman filtering, IMM results in considerable resource 
savings. The reduction with respect to the number of allocations required and the 
energy spent for track maintenance is roughly comparable and varies between 50 and 
100% depending on the scenario considered. Essentially, the savings are due to longer 
revisit intervals on an average. 

3. IMM-MHT improves on standard IMM algorithms. The difference, however, is less 
significant than between standard IMM and worst-case Kalman filtering. Besides 
simplified modelling assumptions, the practical use of IMM-MHT primarily consists in 
the exploration of the theoretical boundaries that limit the performance improvements 
achievable by adaptive dynamics models. 

4. Due to abrupt maneuvers after a longer inertial flight, IMM-type tracking must 
necessarily be complemented by efficient Bayesian algorithms for adaptive beam 
positioning and local search. If used, however, racking process remains highly stable, 
because all information on the possible dynamical behavior of the objects is taken into 
account. 

5. By processing object amplitude information along the estimated trajectory, the a priori 
unknown RCS of the objects can (roughly) be estimated. The estimate is approximately 
bias-free; its variance corresponds with the empirical variance. It is closely related to the 
tracking process and might provide a contribution to object classification. Within 
certain limits, the method seems to be rather robust against model mismatch. 

6. Compared with worst-case assumptions on the object RCS, significant energy savings 
can be obtained by exploiting amplitude information. Depending on the scenario 
considered, the gain is larger than the improvement achievable by adaptive dynamics 
models. The difference to algorithms that use of the correct object RCS (available in a 
simulation) is comparatively small and arises mainly in the initiation phase. 
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1. Introduction    
Level 1 data fusion is defined as object assessment (Hall & Linus, 2001). This process of 
estimation and prediction of an entity can be decomposed into a functional series of 
subprocesses as defined by the well known Bowman model (Steinberg, et al, 1999) that is 
depicted in Figure 1. While data fusion can apply to a host of applications, this chapter looks 
at the problem from a target tracking point of view. 
 

Detect Predict Associate Hypothesis
Generation Update

Hypothesis
Management

 
Fig. 1.  Fusion Architecture Based upon the Bowman Model. 

In tracking, the object, a potential target, can be considered to have two descriptive state 
vector elements: kinematics (e.g., position, velocity, etc.) and classification. These state 
vectors are generated based upon the information provided by a host of sensors over time.  
When a single target is present, this problem is straightforward.  When multiple targets exist 
in the region of interest, however, the association subcomponent of Figure 1 becomes the 
key element of the process. Data association, sometimes referred to correlation, is the 
process of determining the correct target object to relate to each measurement.  In Figure 2, 
multiple sensors along with a number of targets appear in the region interest. The reported 
kinematic measurements from all the sensors are shown in Figure 3.  The association step of 
the fusion process determines which measurements are from the same target. This process is 
repeated each time a sensor reports measurements to the fusion system. In addition to issues 
with the number of targets and sensors reporting, each sensor has a degree of uncertainty 
associated with it. Instead of each measurement being expressed as a crisp point or even a 
line of bearing, uncertainty in the measurement creates a region of varying shape and size 
that depends on the type of sensor measurement and the sensor’s accuracy is created. These 
regions, usually described as probability density functions, then interact with probability 
density functions that describe the target’s kinematic track information. 
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To generate the associations between targets and measurements and between measurements 
of different sensors, association scoring routines have been developed. Since the 
measurements are described as random variables, as are the fused target tracks, the 
association algorithms are often based on a probabilistic measure. Most often, the 
association is based on the joint probability of the distance between the measurement and 
predicted location of the target based on the last known position and its velocity 
information: 

 ( ) ( ),
b d

a c
F z f x y dxdy= ∫ ∫z xy  (1) 

 

 
Fig. 2.  Multiple sensor platforms in a region with multiple targets 
 

 
Fig. 3. Resulting reported kinematic measurements from platforms 
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where the bounds for the calculating the probability are based an estimate of the error in the 
target location prediction.   Often, the track state estimate is computed using a Kalman filter 
(Blackman, 1986), (Blackman & Popoli, 1999), (Barshalom & Li, 1993).  This implies that the 
measurements and the track states are Gaussian random vectors. When this assumption is 
used, a simplified distance measure, referred to has the Mahalanobis distance (Blackman & 
Popoli, 1999),  

  ( ) ( )2 1
1 2 2 1 2( ) ( ) ( )T Tχ −= − + −h x z HPH R h x z  (2) 

is used.  The values R and P denote the measurement error covariance and the state error 
covariance, respectively. This weighted distance is computed in the measurement space.  
The coordinate transformation from the track state-space to the measurement space is 
through the output-coupling function 

 ( )1 1=z h x  (3) 

and its associated Jacobian 

 
1 2

T

nx x x
⎡ ⎤∂ ∂ ∂
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h h hH . (4) 

The distance is a unitless value and is a chi-squared random variable. As such, the 
Mahalanobis distance is sometimes referred to as the chi-squared metric. For some 
applications in tracking, the chi-squared metric is normalized between 0 and 1 as either a 
non-metric 

 ( ) ( )1
1 2 2 1 2( ) ( ) ( )T T

e
−− − + −h x z HPH R h x z , (5)   

where 1 indicates perfect association and 0 indicates no association, or as a normalized 
metric 

 ( ) ( )1
1 2 2 1 2( ) ( ) ( )1

T T

e
−− − + −− h x z HPH R h x z , (6)   

where the reverse is true. 
Often, the probability association score of Eq. (1) can be considered computationally 
complex for real time calculations. One reason for this is that the density function can also 
be dependent on the reported mean value of the target location, i.e., near field effects. Also, 
each target track’s density function is recalculated for each update with a new measurement.  
Eq. (1) does clearly allow for modeling of the sensor anomalies and blockages that can occur.  
The boundary could be quite complex.  Piece-wise linear approximations can be used to 
reduce this complexity. On the other hand, the chi-squared metric (Eq. (2)), which is a 
standard association routine, is straightforward in its computation. The target tracks 
provided the Kalman filter already have the associate state error covariance. A sensor model 
provides the conversion. One drawback with this method is that the uncertainty of the 
measurement is assumed to be Gaussian. Some implementations use a Gaussian sum 
approach (Alspach & Sorenson, 1972) to approximate non-Gaussian distributions. This 



 Sensor and Data Fusion 

 

38 

requires multiple iterations of the scoring routine followed by a weighting computation.  A 
new Gaussian sum must be computed if blockage occurs on the sensor. A problem that 
underlies both the probability association approach and the chi-squared metric approach is 
that the implementations often do not incorporate the underlying probability that is 
necessary for the algorithms to provide accurate results.  Often, the equations are employed 
without regard to an understanding of the probability distributions or, in the case of 
blockages and anomalies, the redistributions of the probability.   
Another technique for the data association problem is to use basic fuzzy logic to provide the 
scoring mechanism. Fuzzy logic can utilize a linguistic/rule-based interpretation and 
implementation of the problem. The technique that will be described in the succeeding 
sections of this chapter is based on two interpretation of the widely-used chi-squared metric: 
a mathematical interpretation and a graphical interpretation.  Its foundations for the basic 
Gaussian measurement to Gaussian track problem are then expanded to the problems 
where one of the two elements of the association pair is Gaussian and the other is of uniform 
distribution.  This is followed by the case where both track and measurement are uniformly 
distributed. The applications of both hard constraints or boundary conditions and soft 
constraints are developed.   

2. Basic fuzzy logic 
Fuzzy logic is simply the mapping from an input measurement space to an output 
measurement using linguistic variables. It gives us the ability to model imprecisions by 
incorporating qualitative components into a quantitative analysis. Fuzzification is the 
process of mapping a numerical value into linguistic variables and associated degrees of 
membership. Defuzzification in contrast is the process of taking a consequence fuzzy 
membership function and creating a crisp value.  
To develop fuzzy logic for the correlation of data, two sets of fuzzy membership functions, 
antecedent and conclusion (consequent), are required.  A membership function is a function 
that maps the elements of the set to a value from 0 to 1. The value to which the set is 
mapped is called the degree of membership. Each membership function for a fuzzy set 
relates to some knowledge base for that fuzzy set. For example, if the fuzzy set were 
temperature, the membership functions of hot, warm, and cold might be used. The range of 
temperatures would then be mapped into degrees of membership for each membership 
function. Figure 4 details these sets of membership functions. In Figure 4, the temperature 76 
degrees has a degree of membership of 0.1 for cold, 0.6 for warm, and 0 for hot. 
Figure 4 also demonstrates that all of the membership functions need not be the same shape 
or symmetric, although those characteristics are usually desirable to simplify the 
implementation. Another issue is the difference between inclusion of boundary points 
between the antecedent membership functions and the conclusion fuzzy sets. In antecedent 
sets, the extreme membership functions extend to infinity, as seen in Figure 5. Even if 
bounds exist on the antecedent fuzzy set, the extension will not have an adverse effect on 
the result. The conclusion function bounds are more important, however.  As seen in Figure 
6, the output bounds are exceeded.  One of the most useful properties of fuzzy sets is that 
crisp values can be given a fuzzy representation. A crisp value in an antecedent fuzzy set 
can be represented as a simple discrete unit impulse. For the consequence membership 
functions, the crisp value is represented as the Dirac delta function. 
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Fig. 4. Resulting reported kinematic measurements from platforms 
 

 
Fig. 5. Resulting reported kinematic measurements from platforms 
 

 
Fig. 6. Resulting reported kinematic measurements from platforms 

If the function was defuzzified using the center of gravity method of Eq. (7), the bounds 
could not be achieved unless the center of the area of the extreme membership functions 
existed at the bounds. The position of the extreme bounds is determined by the 
defuzzification algorithm chosen.  In the center of gravity technique, 

 ( )
i i

i

i
i

center area
output t

area

⋅
=
∑
∑

 (7) 

where centeri is the center point of the ith membership function and areai is the area of the ith 
membership function.   
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3.  Basic fuzzy data association 
There are a number of approaches to using fuzzy logic in the data association step for 
kinematic fusion.  The approach developed here uses the chi-squared metric of Eq. (5) as the 
foundation.  When this is done, the resulting association measure will be similar to the 
standard scoring algorithm when both the measurement and the track are Gaussian 
distributions.  To create a fuzzy interpretation of the chi-squared metric, two interpretations 
of the association score are used: a mathematical interpretation and a graphical 
interpretation.  
First, the chi-squared metric is considered a measure of the distance between two 
measurements: an estimated or predicted measurement and a reported measurement.  
The distance is weighted by the associated error covariances for each of these 
measurements.  The covariance in the fuzzy logic association is used to scale the residuals 
or individual components of the Euclidian distance when they are mapped into the 
antecedent membership functions.  This scaling relative to the context can be considered 
similar to the considerations of distances of golf as opposed to astronomy.  The term close 
means in golf can mean a few inches while in astronomy it is considered in light years.  
Thus, the first fuzzy membership functions are developed based on the weighted 
residuals.  
As seen in Figure 7, the parameters used to map the residual to the antecedent membership 
functions do not have fixed values. These parameters that define these membership 
functions are created using a fuzzy logic interpretation of the error covariance matrices and 
their related error ellipses. An error ellipse is an ellipse centered at the position mean of a 
measurement.  The semi-major and semi-minor axes of the error ellipse are defined by the 
square root of the eigenvalues of the position covariance components of the error covariance 
matrices.  The ellipse is oriented based on the eigenvectors.  Using just the eigenvalues as 
the semi-axes creates a 1-sigma error ellipse.  For this association approach, a 1.5-sigma error 
ellipse is used.  An interpretation for the measurement covariance and an interpretation for 
the track covariance are both used to create and develop the parameter set, as seen in Figure 
8.  The parameter set is a weighted combination of the existing parameter set.  This 
“layered” fuzzy approach is shown in Figure 9.  By layering the fuzzy logic, two potential 
inputs to the association scoring inference engine are eliminated. 
The second interpretation of the chi-squared metric is based graphically on the overlap of n-
sigma ellipse of the track state and the measurement, as seen in an example in Figure 10.  A 
percentage of overlap of the area of the measurement to the track covariance ellipse as well 
as the percentage of overlap area of the track to measurement covariance ellipse is 
calculated. The antecedent membership functions are shown in Figure 11. The two area 
measures along with the combined residual score form the three fuzzified inputs to the 
inference engine. A sample inference engine component for a residual of medium and the 
two overlap values is shown in Table 1.   
In summary the five potential inputs have been reduced to three fuzzy inputs: the weighted 
residual, the percentage of measurement covariance overlap with the track covariance, and 
the percentage of the track covariance overlap with the measurement covariance.  This is 
mapped through inference engines (Table 1) to an association score that is valued between 0 
and 1 by defuzzifying the consequent resulting from Figure 12.    
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Fig. 7. Residual antecedent membership functions.  

 
Fig. 8. Measurement and track covariances are used to determine a weighted parameter set 
through a fuzzy inference engine. 

 
Fig. 9. A layered fuzzy system uses fuzzy logic to adjust the antecedent membership functions 
for another input.  This reduces significantly the number of rules in the inference engines. 
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Fig. 10.  Error ellipses approximate measurement and track Gaussian distributions.  Here, 
two measurements (solid lines) overlap two tracks (dashed lines). 

 

 
Fig. 11. Antecedent sets used to compute the association score for percentage of overlap of 
both track error ellipse and measurement error ellipse. 
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Table 1. Element of Inference Engine to Map to Association Score Consequence Functions 
for a Uniform Measurement to Gaussian Track 
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Fig. 12. Association score consequence membership functions.  

3.1 Algorithm outline 
The computation of the fuzzy data association score is performed using the following 
algorithm: 
Step 1. Compute the semi-major and semi-minor axes and the rotation of the error ellipse 

defined by the covariance matrices of the tracks and the measurements. The values 
are a result of the eigenvalues and the orthonormal eigenvectors.  This will define a 
1-sigma error ellipse. 

Step 2. Compute the points of the octagons approximation of the n-sigma error ellipse for 
the measurements and the tracks.   

Step 3. For each track-measurement pair define the overlapping region of the error octagon 
approximations as set forth in the following steps: 

Step 3a Determine the intersection points of each a measurement octagon with a track 
               octagon. This is done by computing the intersections of the lines that define the line 
               segments of the octagons sides.  

 
Fig. 13. Ellipses are approximated by octagons and the convex hull of their intersection is 
defined. 
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Step 3b Determine the vertices that may lie inside the other octagon such, as shown in 
               Figure 13. This is done by determining taking each vertex separately of the 
               measurement octagon placing it the track octagon and calculating if it creates a new  
               convex hull.  If a new convex hull is created then that vertex does not lie within the 
               other octagon. The procedure is repeated by using the track vertices with the  
               measurement octagon. 
Step 4. Using the triangle area calculation of Heron’s formula 

( )( )( )area s s a s b s c= − − − , 

where a, b, and c are the vertices of the triangle and 

1
2 ( ),s a b c= + +  

compute the area of the two octagons and the overlapping region as seen in Figure 14. 

 
Fig. 14.  The area of overlap between the two octagons is computed by dividing the polygon 
into triangles and applying Heron’s formula. 

Step 5. Compute the percentage of overlap for each covariance matrix. 
Step 6. Using the layered fuzzy approach, which depends on the size of the covariances, 

define the degree of membership of the residual size. The covariances are used to 
generate the antecedent membership function parameters from an a priori set of 
parameters:   

( )
( )

1 1 1 1

2 2 2 2

, , ,

, , ,

a b c

a b c

=

=

P

P

…

…

 
using a fuzzy logic approach. 
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Step 7. Employing the residual antecedent function from Step 7 define the degree of 
membership of the residual. 

Step 8. Employing the antecedent membership functions, define the degree of memberships 
for the percentage of overlap for each of the octagons (track and measurement). 

Step 9. Employ the inference engines with the three inputs, residual and two percentages 
of overlap, and the consequence membership functions to compute the score. 

The functional flow of the algorithm is shown in Figure 15. 
 

 
Fig. 15.  To reduce inference engine complexity, a layering of fuzzy logic provides the 
functional approach to chi-squared metric emulation.   

4. Fuzzy data association with uniform measurements 
One of the benefits of the fuzzy association approach is that it is not necessary that for either 
the measurements or the track to have a Gaussian distribution. With some minor 
modifications to the algorithm, the case of a uniform distribution, as happens with bearings-
only measurements, can be associated without using a Gaussian approximation. 

4.1 Fuzzy association for a Gaussian track and a uniform measurement 
The generation of the association score when the measurement is uniform can be performed 
in a manner quite similar to the algorithm outlined in Section 3.1.  First, the semi-major and 
semi-minor axes and the rotation of the error ellipse defined by the covariance matrix of the 
track are computed in order to generate the 1-sigma error ellipse. The desired n-sigma error 
ellipse for the track is approximated by an octagon, while, for now, the uniform distribution 
is a rectangle. Use of more complex polygons can prove more accurate approximations to 
the uncertainty region. For each track-measurement pair, an overlapping region of the error 
octagon approximation and the uniform distribution is calculated. A pseudo-residual is 
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computed, based on the average distance from the Gaussian mean to the uniform 
distribution, as in Figure 16. The covariance size of the track generates the parameters for 
the distance antecedent membership function. Antecedent membership functions such as 
those in Figure 17 define the degree of membership values for the percentage of overlap for 
the track’s octagon and the measurement distribution. These fuzzy values fire the inference 
engines using the three inputs – the residual and two percentages of overlap.  Table 2 shows 
an inference engine when the residual value is fuzzified to close. 
 

 
Fig. 16. Association of a Gaussian to a uniform distribution is dependent on both overlap 
and a modified residual. 

 
Fig. 17.  Antecedent membership functions describe the percentage of overlap. 
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Table 2. Element of Inference Engine to Map to Association Score Consequence Functions 
for a Uniform Measurement to Gaussian Track 
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The resulting membership functions are defuzzified to generate the association score. The 
consequence membership functions used are similar to those depicted in Figure 18. 
 

 
Fig. 18.  Consequence membership functions used to develop the association score. 

4.2 Fuzzy association for a uniformly distributed track and a uniformly distributed 
measurement 
For the two uniform distributions case, the association problem degenerates into a simple 
problem of determining the area of overlap. First, the area of overlap for both the 
measurement and the track is computed. The percentage of overlap for each is then 
calculated. Fuzzification, using the antecedent membership functions similar to that of 
Figure 17, defines the degree of membership for the percentage of overlap for the track 
distribution and the measurement distribution. A single inference engine, such as shown in 
Table 3, maps the inputs to the consequence membership functions. The consequence 
membership functions shown in Figure 18 would also be suitable for this case. Defuzzifying 
the resulting membership function computes the resulting association score. 
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Table 3. Inference Engine to Map to Association Score Consequence Functions for a Uniform 
Measurement to a Uniform Track 

5.  Fuzzy data association in the presence of constraints 
The fuzzy association routine can be augmented to accommodate a variable scale target 
location region. As seen in Figure 19, information such as bathymetric data could influence 
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the location possibilities of a submarine or a ship (National Geophysical Data Center, 2007).  
Deep draft ships and submarines often avoid shallows that could endanger the vessel and or 
mission. Thus, various depths would weight the effectiveness of uncertainty differently 
based on the locations. So in Figure 20, the uncertainty ellipses of a track or measurement 
would be less pronounced near the shores and over the seamounts where operations would 
be less likely.  Such measurements would better fit with littoral-active vessels. The channels 
would be much likely operations for the vessels in question. The incorporation of this new 
information is incorporated by creating a weighting to the component of the area of overlap 
in the fuzzy association routine. The weighting is generated using a fuzzy scoring technique. 
The added information improves the performance of the association routine based in a 
global sense. 
 

 
Fig. 19. Bathymetric data influences feasible track space of a vessel. 

5.1 Fuzzy association with hard constraints 
If sensor blockage or target prohibition is present, the covariance ellipses can be modified 
accordingly to incorporate the constraint. Figure ww+4a details the reduction of the error 
ellipse area based on senor blockage of the sensor and prohibited terrain for the target. The 
new area considered for overlap is shown in Figure 20b. These are considered hard 
constraints in that the regions are removed. The remaining feasible regions can be mapped 
similar to the redistribution of the Dempster-Schafer concept (Dempster, 1967) or by a 
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simple reduction in area. The steps of the algorithm  remain the same if area is removed due 
to sensor blockage or terrain prohibitions. Only the percentages of overlap change. 
 

        
Fig. 20. Uncertainty error ellipses are affected by sensor blockage. a) Gaussian ellipses and 
blockage indicated; b) resulting alteration of ellipse.  

5.2 Incorporation of soft constraints for fuzzy association – the penalty method 
In Figure 21, shading is used to indicate four distinct regions where the target can operate 
with the measurement and the track uncertainty ellipses overlaying these. These regions 
might be used to reflect operational conditions, such as indicating the depth that a 
submarine can operate in the specific regions. Since stealth is the submarines primary 
 

 

 
Fig. 21.  Measurement and track ellipses span distinct regions of operation. 
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defense, operations in the shallows, where visual spotting becomes more likely, are less 
probable. So the different regions of overlap indicate that the area of overlap used by the 
fuzzy association algorithm should be reduced in a systematic way. The penalty method 
approach is based on the concept of discrete regions of target possibility or sensor capability.  
The approach proposed is to use a weighting scheme that maps the operational parameters 
into the environmental reports to create a weight.  Since much of the information is heuristic 
in nature, the use of a fuzzy logic mapping for this weighting is proposed.  
Figure 22 presents a chi-squared emulation with the added component of the penalty 
function.  As shown, the weighting adapts the area of overlap using a fuzzy logic system.  
The complexity of the component varies significantly depending on the knowledge of the 
target type, the environment, and the sensor system.   
As discussed in (Stimson, 1998) and (Hall & Linus, 2001), the sensor systems are often well 
understood with the physical capabilities well defined. The operational environment is 
somewhat less understood but often known to a good degree so that the mission can be 
successful.  Finally, while the target capabilities may be well known, the actual classification 
of the target to use such data is not often available.  A library of information can be used to 
generate membership functions a priori for each component of knowledge. The level of 
uncertainty associated with the knowledge component will be combined into the final score 
that will drive the adaptation weighting.  This is shown in Figure 23.   
The implementation of this penalty based routine is created by implementing the following 
algorithm: 
Step 1. Compute the semi-major and semi-minor axes and the rotation of the error ellipse 

defined by the covariance matrices of the tracks and the measurements. This is 
performed by generating the eigenvalues and eignevectors of the covariance 
matrices.  This will define a 1-sigma error ellipse. 

Step 2. Approximate the n-sigma error ellipses for both the measurement and the track by 
octagons.  Compute the vertices of the octagons.  

Step 3. For each track-measurement pair, define the overlapping region of the error by 
using at least an octagon approximation to each area as set forth in the following 
steps:  

Step 3a Determine the intersection points of each measurement octagon with a track 
               octagon by computing the intersections of the lines that define the line segments of  
               the sides of the octagon. 
Step 3b  Determine the vertices that may lie inside the other octagon by taking each vertex of 
               the measurement octagon separately and calculating if it creates a new convex hull  
               with the track octagon.   

If a new convex hull is created, then that vertex does not lie within the other 
octagon. The procedure is repeated by using each of the track vertices with the 
measurement octagon. 

Step 3c Approximate the constraint boundary condition as exemplified in Figure 5 with a 
              piece-wise linear approximation. 
Step 3d Define the multiple irregular polygons for each operational region using the vertices  
              defined in Step 3c and 3d. 
Step 4. Using the triangle area calculation of Heron’s formula 

area = s(s − a)(s − b)(s − c) , 
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where a, b, and c are the vertices of the triangle and 

s = 1
2 (a + b + c),

 
the area of the two octagons and the overlapping region is then computed by 
summing the areas of the triangles. 

 

 
Fig. 22.  Penalty function augments determination of overlap. 
 

 
Fig. 23.  Level of uncertainty combines into final score. 
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Step 5. Compute the percentage of overlap for each covariance matrix using penalty 
method approach: 

Step 5a Using layered fuzzy logic as in Figure 7, the information from the different 
                constraint components and their uncertainties create a component weight which 
                then is fed as input to the fuzzy systems to create the area restriction weight for  
                each region defined in Step 3d. 
Step 5b   Compute the weighted area  

area = wiareai
i=1

# of  regions

∑
 

and incorporate that into percentage of overlap: 

( ) 100areapercent eig
⎛ ⎞

= ⋅⎜ ⎟
⎝ ⎠∏ R

 
Step 6. Using the layered fuzzy approach shown in Figure kk+1, which depends on the size 

of the covariances, define the degree of membership of the residual size.  
Antecedent membership functions provide the fuzzification of the error 
covariances. The inference engine then maps input to the consequence membership 
functions.  Each parameter defines a set of parameters for each of the membership 
functions which provide the parameters that describe the antecedent membership 
functions for the residual.  

Step 7. Employing the antecedent membership functions for overlap, the degree of 
memberships for the percentage of overlap for each of the octagons (track and 
measurement) is defined. 

Step 8. Employing the inference engines with the three inputs, residual and two 
percentages of overlap as described above. 

Step 9. Defuzzify the resulting membership function to generate the association score.  The 
consequence membership functions are used to compute the score. 

6. Association example with constraints  
To demonstrate the implementation of the association concept an example with constraints 
is shown. The implementation of this complex example is shown for the three cases: no 
constraint, a hard constraint, and soft constraints. 
The typical passive fixed-sonar array provides a superb example for the use of the soft-
constraint fuzzy association routine. Depending on the deployment of the line array and its 
final settling point on the sea bottom, the capabilities of sonar for different bearing angles 
varies. In Figure 24, a simulated example of an array’s direct blast zone is shown. Because of 
line distortions as the result of nonlinear deployment and sea-bottom features which block 
sound propagation to some or all of the receivers, the acoustic capabilities change. The 
darker regions indicate less reception capabilities for the array. A fixed line array also has 
the problem that sign of the angle of the acoustic source from the sonar cannot always be 
determined. Thus, a mirror image of the true measurement is also generated. 
Figure 25 shows a three target example for the sonar array defined in Figure 24 with the 
boundaries of the capability regions are overlaid. The measurement is a bearings-only 
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measurement with ambiguity.  The associated uncertainty is defined by the solid ellipses.  
The track uncertainties are defined by the dashed lines. The uncertainty ellipses and track 
locations are defined in Table 4 for the three targets. The center of the direct blast 
convergence zone is considered to be origin of the region. As an ambiguous line of bearing, 
the measurement is approximated by a single Gaussian with its uncertainty ellipse defined 
in Table 5.  
Figure 26 defines the antecedent membership functions based on the capabilities.  Figure 27 
defines the consequence membership functions to generate weighting functions for the areas 
of overlap. 
 

 
Fig. 24. Array has varying levels of reception (with darker regions indicating poorer 
reception) over direct blast zone. 
 

 
Fig. 25. Example with three targets in array region with varying levels of reception. 
 

Track 
no. 

x-coord 
(NM) 

y-coord 
(NM) 

Semi-major 
axis (NM) 

Semi-minor 
axis (NM) 

Angle 
(deg) 

1 7.69 9.85 5.77 1.45 90 
2 1.23 15.38 3.85 3.85 0 
3 -5.69 -10.62 4.81 2.89 0 

Table 4. Target track locations and uncertainties 
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Meas. 
no. 

x-coord 
(NM) 

y-coord 
(NM) 

Semi-
major axis 

(NM) 

Semi-
minor axis 

(NM) 

Angle 
(deg) 

1 6.31 10.92 12.5 3.85 60 

2 -6.31 -10.92 12.5 3.85 240 

Table 5. Measurement locations with an ambiguous detection 
 

 
Fig. 26. Antecedent membership functions for possibility of a target in a region 
 

 
Fig. 27. Consequence membership functions for the weighting based on soft constraints. 

The inference engine is defined as 
 

Track 
Existence Impossible Not 

Likey Unusual Usual 

 None Some Partial Full 
 
For the hard constraint case, the inference engine is defined as 
 

Track 
Existence Impossible Not 

Likely Unusual Usual 

 None None Full Full 
 
The results for the soft-constraint or penalty method approach for association are compared 
in Table 6. They are compared against those of the normalized chi-squared technique, the 
standard fuzzy association method, and the hard-constraint or barrier method. 
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 Chi-Squared Fuzzy 
Association 

Fuzzy Assoc. 
with 

Constraints 

Fuzzy 
Assoc. with 

Penalty 

Target 1 0.767 0.637 0.637 0.58 

Target 2 0.024 0.083 0 0.008 

Target 3 0.9252 0.841 0 0 

Table 6. Association scores based on the normalized chi-squared and the three fuzzy 
association techniques 

The results for this example case clearly indicate that use of constraints provides improved 
association scoring as the non-possible solutions are eliminated. The soft-constraint 
approach has the advantage over the use of hard-constraints in that improbable solutions 
still appear but with a lower score.  This is of use in multi-hypothesis tracking systems and 
N-dimensional-assignment based systems. 
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1. Introduction     
Many science and engineering applications require hardware and software systems that 
acquire, process, and integrate information gathered by various knowledge sources. A 
typical example is that of an intelligent road vehicle using several sensors installed in its 
front bumper to perform a robust driving assistance under all operative conditions. For 
most of these systems, information made available by the knowledge sources is incomplete, 
inconsistent, or imprecise. A crucial element in achieving autonomy and efficiency for these 
systems is the availability of a mechanism that can model, fuse, and interpret the 
information for knowledge assimilation and decision making. The fused data reflects not 
only information generated by each knowledge source, but also information that cannot be 
inferred by either knowledge source acting alone. 
This chapter deals with fusing data from sensors that provide information about kinematics 
characteristics of targets in a moving road scene. The sensors include radar and laser range 
finder. Information about the positions and velocities, in addition to errors associated with 
sensor readings is used to solve the target tracking problem. Target tracking with both 
single and multiple sensors involve this concept: if the track kinematic estimate errors are 
small, it is easy to locate the next target measurement and continue to update and/or refine 
the kinematic estimate. The correctly associated measurements provide a “restoring force” 
since they must correspond to the same underlying target. Loss of accuracy for any reason 
makes it more difficult to identify the measurements from the target of interest if other 
targets are present. The aim of the fusion center is to obtain an estimate of the target 
kinematic state vector and the accuracy of this state estimate quantified by its error 
covariance. Estimation fusion can be classified into three categories, depending on which 
information is available at the fusion center: centralized fusion if all measurements are 
available at the fusion center, decentralized fusion if local estimates are available at the 
fusion center and hybrid fusion if available information includes both unprocessed data 
from one sensor and processed data from the other one. In order to be robust, the best 
achievable performance has to be defined. It depends on the accuracy of the measurements, 
the sampling interval, and the scenario used. For a linear and Gaussian system, the Kalman 
filter estimation is optimal. However, in non-linear cases, one cannot conclude on the 
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optimality of an estimation system. Some comparisons using bounds are thus made to 
characterize performance limitations, and consequently, to determine whether imposed 
performance requirements are realistic or not. In time-invariant statistical models, a 
commonly used lower bound is the Cramer-Rao Lower Bound (CRLB), given by the inverse 
of the Fisher information matrix. An extension of the CRLB to random parameters was 
derived: Posterior CRLB (PCRLB). More recently, a simple and straightforward derivation 
of the PCRLB for the problem of discrete-time nonlinear filtering has been proposed. Many 
bound comparisons will be made according to fusion architectures, to the accuracy of 
measurements, to various sensor configurations, and to the scenarios used in order to select 
the most robust fusion system which has to be installed in our experimental vehicle 
(VELAC: LASMEA’s experimental vehicle). This paper starts with a description of the 
motivation to use a combination of range-only measurements with Cartesian ones, and 
provides a mathematical formulation of the problem. Subsequently, the Posterior Cramer-
Rao Lower Bounds (PCRLB) are derived and analyzed from the aspect of algorithm 
convergence. Section 4 presents the two proposed algorithms and their error performance 
comparison according to the theoretical bounds. Since the combination of range-only 
measurements with Cartesian ones can be formulated as a nonlinear filtering problem, the 
Extended Kalman Filter (EKF) and the Particle Filter (PF) are selected as approximation to 
the optimal recursive Bayesian solution of the nonlinear filtering problem. Finally, an 
experiment is made in order to evaluate the decentralized fusion performance.  

2. Problem description 
2.1 Background 
Among the mobile robotic problems, obstacle detection and avoidance are the most 
important. Indeed, each mobile robot having to move in an unknown environment must be 
able to detect obstacles. J. Hancock's point of view (Hancock, 1999) is that the problem of 
obstacle avoidance will never be solved. Indeed, mobile robots are becoming more and more 
capable, and are evolving with increasing speed; these robots will thus need to observe 
farther and higher areas. Our proposed method for road obstacle detection and tracking 
combines two dissimilar sensor measurements to achieve a robust performance. It uses a 
laser based 3D-sensor (Laser Mirror Scanner LMS-Z210-60 from Riegl) which measures 
range and angles, combined with a radar sensor which delivers range and range rate. For 
the laser sensor, since target motion is best described in Cartesian coordinates but 
measurements are available in sensor coordinates, a commonly used method is to convert 
measurements from sensor to Cartesian coordinates (Li & Jilkov, 2001). Thus, we combine 
Cartesian target coordinates  and  with radar range  and radar range rate  target 
measurements. Given the characteristics of the radar sensors (Blanc et al., 2004) we can 
affirm that radar data are complementary with all the other data. Indeed, the radar is 
insensitive to atmospheric conditions, thus it is judicious, even essential, to use such a 
sensor for obstacle detection in road environment. These sensors are installed in VELAC 
(LASMEA's Experimental Vehicle), see Fig. 1. 
Lidar sensor : the 3D-Laser Mirror Scanner LMS-Z210-60 is a surface imaging system based 
upon accurate distance measurement by means of electro-optical range measurement and a 
two axis beam scanning mechanism. The range finder system is based upon the principle of 
time-offlight measurement of short laser pulses in the infrared wavelength region. Many 
methods for time-of-flight’s calculation are described in (Hancock, 1999). The task of the 
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Fig. 1. LASMEA's experimental vehicle exteroceptive sensors. 
scanner mechanism is to direct the laser beam for range measurement in an accurately 
defined position. The 3D images are configurable. In our approach 20 lines x 103 pixels 
images at nearly 2 Hz are used (see Fig.2). The line scan mechanism (rotating polygonal four 
facets mirrors) provides a scan angle range about 60° fixed at a speed of 5 lines/s up to 
maximum 90 lines/s with an angle step width included between 0.072° and 0.36° and a 
readout accuracy of 0.036°.The frame scanner mechanism which is slower (1°/s up to max 
20°/s) than the line scan relies on rotating the optical head together with the fast line scan. 
This is accomplished by mounting both the line scanner mechanism and the optical head on 
a rotating table (0° up to max. 333°). The angle step width is 0.072° to 0.36° with an angle 
readout accuracy of 0.018°. For the obstacle detection, a two parts detection algorithm is 
used: first the segmentation of the 3D image in regions and second the recognition of the 
obstacle (particularly road vehicles) among these regions. A region growing algorithm is 
used to perform the segmentation of the 3D image. A region, including shots located at 
nearly the same distance  with a tolerance ∆ , is parameterized by a vector which includes 
the size of the target and the position of target’s center in the laser scanner reference. These 
characteristics are then compared to a car model. If parameters of a region are close to those 
of the model, this region is declared as an obstacle. Finally, a measurement vector 

 and its associated covariance 
00  are constructed. 
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After detection of different obstacles, we are able to track them in consecutive frames using 
a constant velocity Kalman filter and a nearest neighbor standard data association method. 
Each target is characterized by a state vector  and its associated covariance . It is 
noticed that we are able to detect and track several types of obstacles (cars and trucks) 
(Blanc et al., 2005). The data association system based on research of nearest neighbor seems 
sufficient for this system. It is thus not necessary to use methods of type JPDAF or with 
multiple assumptions. Moreover, the precision of the lidar measures allows data association 
to easily integrate observation which corresponds best to the considered track. We will be 
able, for example, to use the obstacle size as one of the criteria of associations if several 
measurements fall into the validation window. The advantage of this method is based on 
the measurements precision delivered by the lidar and on a high detection probability. 
Moreover, in a road context, the number of tracks to follow in front of our experimental 
vehicle is weak. That reduces considerably necessary calculations to the data association 
systems. 
 

 
Fig. 2. 3D image and obstacle detection 
Radar sensor: the key interests to use a Radar in this project are on the one hand the accuracy 
of the obstacle speed estimate and on the other hand the quality of its information up to 150 
m in spite of difficult weather conditions. 
Firstly, the radar data are treated to determine the distance and the relative speed of the 
objects (or obstacles) located in the enlightened space by the Radar beam. The reader can 
refer to (Blanc et al., 2004) for many details on the radar data processing. Every 8 ms the 
radar delivers a measurement of time, amplitude, range and an index speed for all echoes. 
The range gate is 22.5 m and an index speed corresponds to a speed of  0.238  
m/s. In radar measurements, one target can generate several echoes in close range gate as 
well as neighbor speed samples. A pretreatment is thus necessary in order to gather the 

echoes emanating from the same target. In a second step, a measurement vector  

and its covariance matrix 
00  are associated to each resulting target. 

The Radar tracking is based on Kalman filter and yields to a more accurate range estimate 
than the gate value (22.5 m) (see Fig. 3). Each target is characterized by a state vector  and its associated covariance . 
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Fig. 3. Radar tracking results in foggy conditions 
Obviously, all the sensors have different sample rates. Hypotheses made in this paper are: 
• sensors are synchronous 
• radar sample rate  is lower or equal to the other one  (lidar), e.g   with 

; 
Moreover, to avoid an additional level of complexity due to false detections and multiple 
target scenarios, we assume: 
• unity probability of detection and zero probability of false alarm; 
• all sensor measurements are associated for each target: we don't address the problem of 

data association. 
Thus, the aim of the fusion center is to estimate Cartesian target state  and , its 
associated covariance, with respect to every , using all available information .  Estimation 
fusion can be classified into three categories, depending on which information is available at 
the fusion module (Li et al., 2003): 
• , , , : centralized fusion (CF) if all measurements are available at 

the fusion center.  
• , , , : decentralized fusion (DF) if local estimates are available at 

the fusion center 
• hybrid fusion if available information at the fusion center includes both unprocessed 

data from one sensor and processed data from the other one. 
In this chapter, we focus on centralized and decentralized fusion. 
Moreover, between two available Cartesian measurements, the problem can be seen as a 
problem of target tracking with range-only measurements, i.e. range and range rate 
measurements. According to our bibliographical research, few publications are devoted to 
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this problem (Song, 1999) (Ristic et al., 2002). In (Song, 1999) the author discusses the 
conditions for target observability from range-only measurements. He concludes the same 
condition as the observability criterion for the related and extensively studied problem of 
bearing-only target motion analysis: if the target is moving at a constant velocity, the 
observer must be moving with a non-zero acceleration or if the target is moving at a 
constant acceleration, the observer must be moving with a non-zero jerk in order to observe 
the target. In (Ristic et al., 2002), the authors show that, for a typical scenario, tracking 
algorithms based on range and range-rate measurements can converge toward a steady 
state. 

2.2 Mathematical formulation 
Let us consider the fusion target state vector: , , , (1) 

where ,  are the tracked positions in the reference frame which is common to both sensors, 
and ,  the tracked relative speed. Evolution model can be represented in a matrix form by: , ~ 0, (2) 

where is the transition matrix which models the evolution of , and  the covariance 
matrix of  which represents the acceleration. 

1 0 00 1 0 00 0 10 0 0 1 , 00 , 2 000 20
 (3) 

The available information at time  is defined by: 
• Centralized fusion: 
        if  is available, i.e.  

, ~ 0,  (4) 

00  (5) 

else 

, ~ 0,  (6) 
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 (7) 

• Decentralized fusion 
        if  is available, i.e.  

̃ , ~ 0,  (8) 

 (9) 

         where  is the cross covariance matrix 
         else ̃ , ~ 0,  (10) 

 (11) 

 
 (12)

3. Posterior Cramer-Rao lower bounds 
3.1 Derivation of the bounds 
The system defined by both the evolution and the measurement model, respectively defined 
in (2) and (4,5) is considered. If /  is an unbiased estimator of , calculated from the 
measurement sequence , ,  and from the knowledge of  (initial pdf), then 
the covariance matrix of / , noted /  admits a lower bound given by: 

/ / /  (13)

where  is the Fisher information matrix which we want to determine. Tichavsky et al. 
(Tichavsky et al., 1998) proposed a method to calculate  recursively: 
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(14)

where since the evolution model is linear and noises are Gaussian: 

(15) 

(16) 

 (17) 

where  and  are respectively the Jacobian matrix of  and  
evaluated at the true value of . Finally, by using the inversion matrix lemma, the 
recursive information matrix calculation is: 

 (18)

In practice, the most difficult problem is the calculations of the expected value operator  in 
(18). The expectation is only taken with respect to the state vector  (the bound is 
independent of the actual measurement sequence). A Monte Carlo approximation can be 
applied to implement the theoretical PCRB formulae. One first needs to create a set of state 
vector realizations, the so-called target trajectories. Then the appropriate term in (12) is 
computed as the average over this set. 
The recursions start with the initial information matrix  computed from the initial density 

. If  is Gaussian then  else ∆ log . 

3.2 Analysis of the bounds 
The scenario used is constructed from a ground truth approximation. It is a typical case of 
adaptive cruise control (ACC) scenario. For this, VELAC and only one obstacle are 
equipped with DGPS. Their locations are acquired every second. Obstacle position is sent 
to VELAC by MF communications. Relative positions and velocities are shown in Fig. 4 
after approximation. VELAC and obstacle move at a speed bounded by 20km/h and 
90km/h. 
As described in (Blanc et al., 2007) it is not necessary to stack  in the  measurement 
vector except if  ,  (with our sensors , ). Firstly, the Fig. 5 confirms, as 
expected, that the more data are available the more performance increases. As we can see, 
PCRLBs of  and  increase between two Cartesian measurements as it the trajectory 
taken does not respect the observability criterion. For the calculations 100 MC runs are 

used and 2 00 2 , 7 00 0.2 . Moreover, decentralized and centralized 

estimation fusion architectures have an equivalent good performance for this ACC 
scenario. 
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Fig. 4. A scenario used for the analysis of Posterior Cramer-Rao lower bounds 

 
Fig. 5. Decentralized fusion (solid line) and centralized fusion (dashed line) PCRLB of  , , ,  with a fixed 0.5 , a varying 0.01 , 0.3  

4. Tracking algorithms 
4.1 Extended Kalman filter 
Estimation fusion using range, range-rate and Cartesian measurements, is a non-linear 
dynamic state estimation problem because the measurement equation is non-linear (12). The 
Kalman filter is therefore inappropriate. The conventional approach is to approximate Eqs. 
(4, 6, 8, 10) by a series expansion and then to use an equivalent measurement matrix in the 
ordinary Kalman filter equations: Extended Kalman filter (EKF) for a first-order series 
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expansion (linearization) of the non-linear measurement equation. The recursive equations 
of the EKF are presented below to describe the evaluation of the relative estimated state /  and its associated covariance matrix /  by using the measurement  and the 
relative state vector /  with its associated covariance matrix / . The state equation 
prediction is worked out by Eq. (2) while the covariance matrix is given by: 

/ /  (19)

The measurement prediction is given by Eqs. (4, 6, 8, 10). We don’t stack  in the 
measurement vector for Eqs. (4, 8) as it is proposed in previous section. 
The Kalman gain matrix can be evaluated as 

/ /  (20)

where  represents CF or DF, and  is the linearised measurement matrix evaluated at 
the predicted state. 
Finally, the updated fusion state and its associated covariance matrix are given by: 

/ /  (21) 

/ (22) 

4.2 Particle filter 
Originally developed in the tracking community (Gordon et al., 1993), the particle filtering is 
currently enjoying a strong development in many research fields (vision, localization, 
navigation, robotics, etc.), in particular in multi-target tracking. This filter is a sequential 
Monte-Carlo method in which particles traverse the state space in an independent way, and 
interact under the effect of a probability function which automatically concentrates the 
particles in the state space areas of interest. This method has the advantage of not requiring 
linear or Gaussian assumptions on the model.  Moreover, it is very easy to implement, since 
it is enough to know how to simulate independent various trajectories of the model. We 
propose here, to carry out a particle filtering on the fusion module level. A fusion state is 
initialized. From this vector, a set of  particles is built. Noise particles are generated 
( , 1, . . , ) and applied to the initial vector: 

/ / , 1  (23)

Then, the model defined in (2) is applied to  particles in a prediction step. Correction is 
carried out on the level of the calculation of the weights. We calculate  weights assigned to 
the  predicted particles. We have: p z /X /  (24)

Weights are then normalized, and finally the fused state considered is given by: 

X /  (25)
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and its covariance by: 

X / / X / /  (26)

The particles are resampled and returned to the prediction step. 

4.2 Algorithm performance and comparison 
The performance of estimation fusion for two algorithms is analyzed by Monte-Carlo 
simulations. The analysis is made for the trajectory presented in Fig. 4. The measurement 
covariances are assumed to be 7 , 0.2  and 2 , 2 . 
The sampling rates are 0.01  and 0.5 . The resulting error curves were computed 
to the theoretically derived PCRLB. The estimation error is defined as . The 
performance is measured by the root mean square error (RMSE), which, for component  of 

the state vector, is defined as  where the expectation operator was computed 
by averaging over 50 independent Monte-Carlo runs. Results are shown in Fig. 6. 

 
Fig. 6. Performance of EKF and PF against PCRLB 

Firstly, we may notice that the EKF and particle filter errors are initially smaller than the 
square root of PCRLB which is unexpected. This result is due to the initialization, which 
does not exactly match to the inverse of the initially used information matrix in the PCRLB 
computation. For clarity, results for particle filter are present only with 2000 particles. 
Nevertheless, we observe that as the number of particles is increased, the performance of the 
particle filters improves, and approaches the PCRLB’s. This improved accuracy of the 
particle filter, however, is at the expense of the computational load. Particle filter with 10000 
particles is equivalent to EKF. Thus, in practical operation system, the EKF appears more 
suitable for implementation than the particle filter. 
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5. Experiments 
Quantitative results for decentralized fusion are obtained with a ground truth. Velac and 
only one obstacle are equipped with DGPS. Their locations are acquired every second. 
Obstacle position is sent to Velac by MF communication. In the same time, the obstacle is 
tracked by both processes (Radar/Lidar).  Decentralized fusion process and comparison are 
done offline. The measurement system includes a differential GPS Omnistar which delivers 
trames with format TSIP (Trimble Standard Interface Protocol). This GPS gives, in the best 
configuration, a position with a ±40 cm accuracy. It delivers a coefficient, called gdop: the 
current accuracy is gdop times 40 cm. DGPS errors are shown in Fig. 7. Moreover, for data 
communication, a radio modem of Satel receives trames coming from the obstacle. Fig. 7 
shows the results for the range estimation by extended Kalman filter and particle filter. 
Moreover, it shows the radar and lidar estimate. We see that radar estimate is less accurate 
than lidar estimate in this particular scenario. The DGPS reference allows computing root 
mean square error and its standard deviation (std) for both filters. As it is shown on results, 
performance of range estimation is correct for both filters. Errors and DGPS accuracy have 
almost the same order. Moreover, as expected, the EKF have very small computation time 
compared with the particle filters. Only EKF allows real time utilization because of the radar 
data rate which is 8 ms. 
 

 
Fig. 7. Range estimation by EKF and particle filter 
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6. Conclusion 
This paper has discussed the problem of centralized/decentralized fusion estimation for 
target tracking using range, range-rate and Cartesian measurements for road obstacle 
tracking. The Posterior Cramer-Rao Lower Bounds were derived and two tracking 
algorithms were developed. The PCRLBs allow us to predict the best achievable 
performance under various conditions such as the relative target trajectory, and 
measurement sample rate. Two algorithms have been considered: the extended Kalman 
filter and the particle filter. This study has shown that both algorithms are efficient for this 
kind of scenario even if the particle filter is unattractive for implementation in a practical 
operational system. Our future work will consist in developing a new method of 
laser/camera fusion for pedestrian detection. This work will take place in the context of the 
LOVe (Logiciel d’Observations des Vulnérables) which aims at improving road safety, 
mainly focusing on pedestrian security. 
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1. Introduction     
The great development of the railway as a mean of transport makes necessary more and 
more reliable the required safety systems. Among these systems, those called detectors of 
the fall of objects can be remarked, mainly demanded in the high-speed lines, to detect the 
existence of objects on the track supposing a risk  (larger than 50x50x05cm) for the railway 
circulation in some specific areas such as tunnels and overpasses (GIF, 2001). This type of 
systems is based on different sensory elements; in (GIF, 2001) it is proposed one based on 
infrared (IR) barriers, where links are established between emitters and receivers. The 
detection of objects is carried out by the interruption of these links. But this system can be 
lacking in reliability, mainly due to outdoor problems related to IR sensors. 
In this chapter, it is proposed a new system, based on an IR barrier as well, but including an 
algorithm to validate the existence of obstacles, increasing the reliability of the detection 
system. First of all, to be able to discriminate the different emissions in a receiver, it is 
necessary to encode them. The detection of the emissions is carried out by correlation 
(Tseng, Shu-Ming & Bell, 2000), where a detection threshold is defined to evaluate if the link 
is active or not. Because the detection of objects is based on the radiation lack at the 
receivers, this circumstance does not always imply the existence of a dangerous object for 
the railway, generating false alarms. The adverse climatology also gives the degradation of 
the optical channel, so the radiation lack in these circumstances can be confused with the 
existence of objects.  
Furthermore, in some cases small objects can interrupt the links (falling leaves, small 
animals, etc.), or even a wrong operation of a sensor can be confused with the existence of 
an object, generating false alarms. To avoid these situations, in this work different 
procedures are proposed to conclude if there are dangerous objects in the scanned area. 
Therefore, the starting point is the information provided by the IR receivers: the result of the 
correlation, and a threshold output indicating if the link is active. The information about the 
state of the links (on or off) is combined by means of the Dempster-Shafer evidential theory 
(Klein, 2004) taking into account the channel degradation and the spatial diversity of the 
sensory system structure, so a certainty value can be obtained about the existence objects 
larger than 50x50x50 cm. 
Regarding this problem, the following aspects will be analyzed in this chapter: description 
of the structure of the sensory system; main factors of infrared channel degradation; a brief 
explanation about the proposed encoding scheme and the detection of the emissions; sensor 
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data fusion to obtain the existence certainty of dangerous obstacles based on Dempster 
Shafer’s rule; real tests; and finally, the most relevant conclusions.  

2. Description of the sensory system 
2.1 Sensory system 
For the application described in the previous section, either infrared or laser emitters could 
be used. Irrespective of the sensor type chosen, all the details that will be discussed below 
can be applied to both types. The choice of the system may depend on financial 
considerations. In this work, the results shown have been obtained using infrared emitters, 
mainly because this kind of sensor was required by Spanish Railway Regulations (GIF, 
2001). 
Infrared barriers usually consist of emitter-receiver pairs, each placed on opposing sides of 
the line, so it is only possible to detect the presence of an obstacle, but not its exact position. 
In order to detect obstacles on the railway, and distinguish at least vital areas (on the track) 
from the non-vital areas (to the side of the track), a special structure has been designed. In 
this case, every emission is detected by several receivers, providing different optical links 
among the emitters and the receivers as is shown in Figure 1. 
 

 Reception 
System

Emission 
System

 
Control System 

Alarms

Weather 
conditions

Data Fusion

Vital zone 

Non Vital zone 

Non Vital zone 

 
Fig. 1. Detection system placed on a section of track. 

The distance between emitting sensors is 25 cm, in order to detect 50x50x50cm obstacles 
successfully (the size is determined by railway regulations) (GIF, 2001). The configured 
distance between emitters and receivers is 14 meters on a high-speed line. Basically, the 
method of obstacle detection, and its location on the railway, is based on the lack of 
reception by detectors. According to (GIF, 2001) the time scan of the system is 500 ms, and if 
an obstacle is inside the detection area more than 3 seconds, an alarm should be generated. 
For a more detailed study about the sensory system see (García et al., 2004). Figure 2 shows 
the scheme of the infrared barrier, and how when there a minimum dimension object, at 
least two links are interrupted. 

2.2 Geometric distribution of the sensors 
Taking into account the infrared emitter beam angle (≈±2°), if the range is 14 meters, every 
emission reaches five receivers, as Figure 3 shows; and reciprocally, every receiver has to 
detect five emissions.  
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Fig. 2. Scheme of the infrared barrier. 
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Receiverx+2  
Fig. 3. Emitter-receivers links. 
Figure 4 shows the distribution of sensors at a 2.25m segment of the barrier, displaying the 
five links that every emitter provides.  Regarding the sensors distribution, and as it will be 
explained in Section 4, it is necessary to use five different codes to distinguish every 
emission in a receiver. 
 

 
Fig. 4. Distribution of emitters and receivers. 

There are some improvements with the structure shown in Figure 4. On the one hand, if 
there is a minimum dimension obstacle in the supervised area, at least ten links are 
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interrupted. In (GIF, 2001, 2004) only two interrupted links are required to detect the 
obstacle. On the other hand, due to the fact that detection is based on link interruption, if a 
sensor is not working, it can be mistaken for the detection of one obstacle. The number of 
interrupted links allows the system to distinguish the presence of an obstacle from an out of 
order sensor, being of particular advantage to those carrying out maintenance tasks. Finally, 
the obstacles can be located with this structure in two main zones: on the tracks or outside of 
the tracks.  

3. Infrared channel degradation 
The outdoor infrared emission suffers from diverse losses, which can produce a wrong 
detection in the receiver. If the receiver does not detect one emission during a predefined 
time, an alarm will be generated, informing that there is an obstacle. But if the obstacle does 
not exist, the alarm is actually false. As far as possible, it is necessary to avoid the false 
alarms generation. So, it is very important to consider those circumstances that can produce 
infrared channel degradation. 
In these outdoor optical systems there are some phenomena that can provide false alarms, 
mainly the weather condition and the solar radiation. There are other reasons, as 
propagation losses or wrong alignment among emitters and receivers. Assuming that the 
last ones have been already considered in the link design, only the two first are described 
below: 
Atmospheric attenuation. Snow, fog and rain are considered. Although there are numerous 
studies about the losses due to the meteorology, the expression (1) is used to quantify 
atmospheric attenuation (Yokota et al., 2002). 

 13( )atmL dB R
V

= ⋅  (1) 

where V is the visibility in kilometres and R the link range in kilometres.  The technical 
definition of visibility or visual range is the distance that light decreases to 2% of the original 
power, or qualitatively, visibility is the distance at which it is just possible to distinguish a 
dark object against the horizon (Kim et al., 2000). Table 1 shows the relation between 
weather condition and the visibility. 
 

Visibility V Weather condition 
V>50km Very clear 
6km<V<50km Clear 
1km<V<6km Haze /snow /light rain 
0.5km<V<1km Light fog /snow / heavy rain 
V<0.5km Thick fog 

Table 1. Relation between visibility and weather condition. 

Taking into account (1), in a 14 meters link (the distance among emitters and receivers in the 
obstacle detection system), atmospheric attenuation θk in the time instant k is 

 kV
k

5.18

10
−

=θ  (2) 
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where Vk is the value of the visibility in the instant k. Some authors use a different 
expression (Kim et al., 1998) for atmospheric losses, taking into account the wavelength of 
the emission and the size distribution of the scattering particles, related to the visibility. 
Nevertheless, the obtained results with both expressions are similar.  
Solar interference. As the photodiode wavelength (850nm) is inside the solar spectrum, 
natural background light can potentially interfere with signal reception. In some 
circumstances, direct sunlight may cause link outages for periods of several minutes when 
the sun is within the receiver’s field of view (Bloom et al., 2003). However, the times, when 
the receiver is most susceptible to the effects of direct solar radiation (either at dawn or at 
dusk), can be easily estimated. There are some solutions to mitigate this problem, like 
proper orientation or use of a narrow-bandwidth light filters, but it is almost impossible to 
avoid them completely. It is important to remember that interference by reflected sunlight is 
possible as well. The solar effect in the IR barrier is the photodiode saturation.  

4. Encoding scheme and detection of the emissions  
As has been previously described, a multi-mode operation is carried out in the barrier 
(simultaneous multi-emission and multi-reception). Therefore it is necessary to encode 
every emission in order to avoid interferences among the different emissions and to 
discriminate them at the receiving block.   
Due to the fact that the obstacle detection is based on a lack of signal in the receiver, 
sometimes it can be produced by atmospheric attenuation. Furthermore, solar interference is 
a high source of noise that can make impossible to distinguish the emissions in the reception 
system, producing false alarms.  
For the mentioned reasons, it is necessary to choose an encoding scheme that permits the 
multi-mode operation under low signal-to-noise ratios. Trying to answer these 
requirements, mutually orthogonal complementary sets of sequences have been used 
(Tseng, Shu-Ming & Bell, 2000)(Chow, 2003)(De Marziani, 2007) for encoding the emissions. 
More details about the codification scheme and the adaptation to the infrared sensor can be 
found in (Diaz et al., 2007). 
In Figure 4, every emitter uses a different code (shown by different colour in the diagram). 
The detection of the different emissions is carried out by means of a correlation process, 
where the output of every receiver provides five measurements, corresponding to the 
correlation values obtained for every link, as Figure 5 shows. Due to the fact that the 
emitters transmit periodically, the correlation output obtained for every link is a periodic 
signal as shows (3). 

 [ ]( ,
,

0

i
j x

k k j k
i

y G k i T ηθ σ δ φ
=∞

=

= ⋅ ⋅ ⋅ − ⋅ +∑  (3) 

In (3), G is the process gain, according to the encoding scheme (Diaz et al., 2007); T is the 
emission period (around 100ms); θk represents atmospheric attenuation described in (2); j is 
the lateral attenuation (it depends on the sensor emission pattern (Diaz et al., 2007)); φn,k is 
the noise component after the correlation; x is the position of the receiver in the barrier and 
j∈ {1, 2, 3, 4, 5} represents every link established in a receiver, as shown in Figure 5. The 
index k represents the time instant when data are captured. 
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Fig. 5. Block diagram of the detection process. 

According to Figure 5, the output of every receiver can be represented as a vector ( x
ky  of five 

measurements, as (4) shows  
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where x is the position of the receiver in the barrier; and k represents the time instant. Every 
component of vector  ( x

ky  is represented in (3). Figure 6 shows the multi-detection carried 
out in an IR receiver in absence of obstacles. The amplitude differences depend on the lateral 
deviations between emitters and receiver (see Figures 3 and 4), so the maximum correlation 
output is provided by the emitter placed in the axial axis.  
In (5), the matrix Yk contains the correlation output of all the links in the IR barrier. Every 
column of matrix Yk is the belonging vector shown in (4), being X the number of receivers in 
the barrier. 
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To evaluate if an established link j in the receiver x is not interrupted, the correlation value 
xj

ky
,(

should be higher than a determined detection threshold (TH). But when the tracks are 
free of obstacles, the correlation value could be lower than the threshold due to the channel 
degradation (as was previously described), and consequently false alarms would be 
produced. To reduce false alarms, it was proposed in (Garcia et al., 2005) the use of a 

dynamic threshold, xj
kHT ,(
 , . This threshold is based on an H∞ filter (Simon, 2000), and it is 

dynamically adapted considering meteorology and solar interference. The H∞ filter gives an 

estimate 
xj

ky
,(

ˆ of the correlation value 
xj

ky
,(

for every link j in every receiver x at every time 
instant, establishing the threshold in time instant k. But to avoid false alarms, it is necessary 
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to set a minimum threshold TH-min, depending of the codification scheme and the expected 
noise. Equation (6) shows how the dynamic threshold is generated. Finally, for every link is 

generated an output 
xj

kz
,(

 corresponding to its state: on or off, as shown in (7). Similarly as 
(5), one matrix Zk is obtained representing the state of all the links (1, on; 0, off). Figure 7 
depicts the diagram block of a receiver tuned to a generic code considering the described 
process.  
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Fig. 6. Real correlation outputs obtained in an IR receiver when the links are not interrupted. 

 

 
Fig. 7. Block diagram of a receiver Rx tuned to a generic code C. 
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As it is concluded from (6), threshold in time instant k depends on the estimated correlation 
output in time instant k-1, and the threshold will be adapted to the slow changes of the 
channel produced by weather conditions or solar radiation. On the contrary, if there exists 
an obstacle it will generate a fast change of the channel, causing a lack of signal in the 
receiver, and consequently, a low correlation value. As it is shown in (Garcia et al., 2005), 
this strategy reduces false alarms due to the channel degradation.  

5. Sensor data fusion 
In a railway environment, typical situations that can generate a false alarm must be 
identified. Although, the occurrence of false alarms has been notably reduced by using 
dynamic threshold in the detection stage, it is still possible for some receivers not to detect 
the emissions because a small object (moving leaves, small animals, etc.) has temporarily 
interrupted the link, or because weather conditions are severe, or, simply, because the 
corresponding emitter is damaged. These situations should not cause alarm activations for 
the existence of objects. 
In detection, two pieces of information must be present in every sensor output (Klein, 2004). 
Firstly, the detection itself; the barriers provides this information in matrices Yk and Zk. 
Secondly, how well, or with what confidence the sensor has been able to detect an object. For 
the latter, it is necessary to combine data from different sources, taking into account external 
variables such as weather conditions or sensor degradation. For the IR barrier, weather 
conditions can be modeled by considering visibility, as has been previously explained. There is 
a direct relation between visibility and atmospheric attenuation. It is also worth noting that the 
failure of just one individual link may be considered insignificant, since if a dangerous object 
exists, at least 10 links will be interrupted, as was described in Section 2. 
Considering the above remarks, the data fusion has been carried out at two levels. Firstly, 
the detection area has been divided into 25cm-wide influence areas according to the 
receivers, so if a dangerous object exists, it is detected in two consecutive influence areas. 
The result of this level is a measurement of the certainty of existence of objects in every 
influence area. Secondly, values for the certainty of the existence of objects belonging to two 
consecutive influence areas have been fused by means of Dempster-Shafer evidential theory 
(Klein, 2004) to obtain a final value for the certainty of existence of objects larger than 
50x50x50cm. Figure 8 shows a block diagram of the validation of obstacle detection 
considering the information that provides the barrier. 

5.1 Certainty of existence of objects in the influence area, A(x) 
Figure 9 shows the division of the detection area into influence areas. The influence area of 
the receiver Rx is represented by A(x). After the analysis of the influence area, a value for the 
certainty of existence of objects is obtained represented by cA(x) ∈ [0, 1]. 
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Fig. 8. Validation of obstacle detection. 
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Fig. 9. Influence areas. 

As Figure 9 shows, and more detailed in Figure 10, there exist eleven links for every 
influence area, established between five emitters and five receivers. These links cross several 
areas, except for the link between the emitter x and the receiver x, that only exists in the area 
A(x).  
To determine if a link is interrupted, it is only necessary to evaluate the state (on, off) of the 
corresponding element in the matrix Zk. Due to the fact that the channel degradation can 
generate a lack of signal in the detector, this situation can be mistaken for the existence of an 
object. For this reason, if at any k instant, zk(j,x was zero –existence of an obstacle-, but a high-
level channel degradation occurred at the k-1 instant, it would be very unlikely that the lack 
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of signal was produced by an object. Therefore, to obtain the certainty of the link interrupted 
by an object, the link degradation has to be considered. 
 

 
Fig. 10. Links for influence area A(x). 

Furthermore, the probability of an object interrupting a link in the area A(x) depends on the 
percentage of the range of the link placed in such area. For the link between emitter x and 
receiver x (link lx,x) the probability is one, but for the rest is 0.5 or 0.25. Table 2 shows the 
probability ρe,r for every link inside a detection area. Sub-indexes e and r denote the x 
position of the emitter and the receiver respectively. 
 

Index i -5 -4 -3 -2 -1 0 1 2 3 4 5 
Link le,r lx,x-2 lx,x-1 lx+1,x-1 lx-2,x lx-1,x lx,x lx+1,x lx+2,x lx-1,x+1 lx,x+1 lx,x+2 

Probability ρe,r 0.25 0.5 0.5 0.25 0.5 1 0.5 0.25 0.5 0.5 0.25 

Table 2. Probability of an object interrupting a link in the area A(x). 

Regarding this, the certainty of interruption of a link by an object between the emitter e and 
the receiver r is the following: 

 rerere ,,, ·ρασ =  (8) 

where αe,r is the channel degradation before the interruption of the link; and ρe,r is the 
probability of the object to be in the area A(x). The value of αe,r is empirically computed 
according to Figure 11. 
 

 
Fig. 11. Calculation of αe,r. 
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In Figure 11, αmax=0.5; TH-min is the minimum threshold; G is the process gain -see (3)-; and 
xj

ky ,(
1ˆ −  is the estimate of the correlation carried out by the H∞ filter at k-1 instant (before the 

interruption of the link). This estimate can be considered as a channel degradation 
measurement, and it corresponds to the link between the emitter e and the receiver r. After 
obtaining σe,r, the value for the certainty of the existence of obstacles in the area A(x) is 
computed considering the eleven links. If it is assumed that the probability of the link le,r 
being interrupted by an object is σe,r, then cA(x) is obtained as the union probability of 
independent events, as (9) shows. In (9), for convenience, the probability of every link is 
represented by P(li) ( ( ) reilP ,σ= ), and i represents every link according to the assignment 

done in Table 2. 
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It is important to remark that if the number of interrupted links in a barrier provides a value 
for the corresponding cA(x)>0.5, then it is very possible than an object exists in the area A(x), 
but it can not be concluded if it is larger than minimum dimensions. 

5.2 Dempster-Shafer’s theory application 
Once the values for the certainty of existence of objects are available for every area, they can 
be combined between consecutive areas A(x) and A(x+1), in order to obtain the certainty of 
existence of objects larger than 50x50x50cm. According to the Dempster-Shafer’s theory 
(Klein, 2004), if cA(x) is considered as the probability mass of the certainty of existence of 
objects in the area A(x), a value co,x ∈ [0,1] can be obtained as shows (10), representing the 
result of the fusion between the areas A(x) and  A(x+1).   

 ( ) ( ) )()1()1()(

)1()(
, · 1· 11 xAxAxAxA

xAxA
xo cccc

cc
c

++

+

−−−−
⋅

=  (10) 

The higher the value of co,x is, the higher the certainty of existence of object larger than 
50x50x50cm is. But if co,x takes a value of 0.5, it means that there is a situation of uncertainty 
(it can not be concluded if there exists a dangerous object). Values of co,x lower than 0.5 mean 
there is a certainty of absence of object. 
All the components co,x can be arranged in a vector CO as (11) shows, being NZ the number of 
influence areas. According to the number of consecutive components of vector CO higher 
than 0.5, can be concluded how large the object is.  

 [ ])1(,,1, −=
ZNoxoo cccOC  (11) 
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6. Real results 
To evaluate the feasibility of the proposed data fusion algorithms, a prototype of the barrier 
has been used. Figure 12 shows an IR barrier prototype based on 4 emitters and 8 receivers. 
Figure 13 shows the established links among emitters and receivers and the detection areas. 
Notice that any area have eleven links as was explained, due to the fact that it is necessary 5 
emitters, and in this situation only 4 have been used. This prototype carries out the encoding 
and detection schemes that have been previously described. 
 

        
                                             (a)                                                                (b) 
Fig. 12. IR barrier prototype: (a) Emitter barrier; (b) Receiver barrier. 
 

 
Fig. 13. Established links and detection areas using the prototype of the barrier. 
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Focusing on the data fusion algorithms, two situations have been tested: firstly, when an 
object larger than 50 cm of side is between the barriers; and secondly, when there exist 
random cuts of the links.  
Figure 14 shows the scheme of a real example of detection, when one dangerous object 
(larger than 50x50x50cm) is inside the detection area. Table 3 shows all the relevant 
information that it is necessary for applying the algorithm belonging to A(1) and A(2) (the rest 
of areas have been omitted for simplicity): first column shows the established links in each 
area; second column, the estimate of the correlation values carried out by the H∞ filter in k-1 
instant for each link, ( ,

1ˆ j x
k−y , when any link was interrupted; next columns show the channel 

degradation (αe,r) before the interruption of the link and  the probability ρe,r of the object to 
be in the area A(x); and finally, last column shows the certainty of interruption of a link by an 
object, σe,r. In this test, αe,r has been obtained as was shown in Figure 11. The minimum 
threshold TH-min  is fixed to 50, αmax =0.5  and the process gain G is 1024.  
 

 
 
 

Fig. 14. Interrupted links when an object larger than 50 cm of side exists. 

Then, the certainties of existence of objects in areas (cA(x)) have been computed using the 
algorithm described (8)-(9). Finally, consecutive areas have been combined by using (10) to 
obtain the vector Co, containing the certainty of existence of objects larger than 50x50x50cm. 
Table 4 shows the interrupted links (e,r), and the obtained results for cA(x) and the vector Co.  
As the results show there is a high certainty (higher than 0.7) of the existence of an object 
larger than 50x50x50cm, between areas A(-1) y A(0), A(0) and A(1), and A(1) y A(2). Due to the fact 
that these areas are consecutive ones, it could be concluded that the size of the object (x 
dimension) is between 75 and 100 cm. 
Figure 15 displays a different situation. In this case, there are random cuts of the links, due 
to the existence of small objects. In a real situation it can be due to small animals, flying 
leaves, a sensor failure, etc. The applied method is the same that has been described in the 
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previous example. Table 5 shows the data fusion results, showing clearly a low certainty of 
the existence of dangerous objects (larger than 50x50x50 cm). 
 
 
 

Area A(1) 

Link (e,r) 1ˆky −  αe,r ρe,r σe,r 

1,-1 60 0.05 0.25 0.012 

1,0 207.2 0.5 0.5 0.25 

2,0 102.8 0.26 0.5 0.13 

0,1 145.1 0.47 0.5 0.23 

1,1 416.8 0.5 1 0.5 

2,1 99.3 0.24 0.5 0.12 

3,1 55 0.02 0.25 0.005 

0,2 66.7 0.08 0.5 0.04 

1,2 252.5 0.5 0.5 0.25 

1,3 73 0.11 0.25 0.027 

Area A(2) 

Link ( , )e r  1ˆky −  αe,r ρe,r σe,r 

2,0 102.8 0.26 0.25 0.065 

2,1 99.3 0.24 0.5 0.12 

3,1 55 0.02 0.5 0.01 

0,2 66.7 0.08 0.25 0.02 

1,2 252.5 0.5 0.5 0.25 

2,2 321.3 0.5 1 0.5 

3,2 130.3 0.4 0.5 0.2 

1,3 73 0.11 0.5 0.055 

2,3 345.1 0.5 0.5 0.25 

2,4 203.2 0.5 0.25 0.125 
 
 

Table 3. Real data belonging to detection areas A(1) and A(2) for the situation shown in Figure 
14. 
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Interrupted links (e,r): (0,-2);(0,-1);(1,-1);(0,0);(1,0);(2,0);(0,1);(1,1);(2,1);(3,1); (0,2); (1,2); (2,2); (3,2) 

A(-2) A(-1) A(0) A(1) A(2) A(3) A(4) A(5) 

CA(-2)=0.125 CA(-1)=0.44 CA(0)=0.8 CA(1)=0.84 CA(2)=0.76 CA(3)=0.2 CA(4)=0 CA(5)=0 

co,-2=0.1       

 co,-1=0.75      

  co,0=0.95     

   co,1=0.94    

    co,2=0.44   

     co,3=0  

      co,4=0 

[ ]0044.094.095.075.01.0=OC  

 
 
 

Table 4. Data fusion results for the test shown in Figure 14. 

 
 
 

 
 
 
 
 

Fig. 15. Interrupted links when there are random cuts of the links. 
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Interrupted links (e,r): (0,-2);(0,-1);(1,-1);(3,5) 

A(-2) A(-1) A(0) A(1) A(2) A(3) A(4) A(5) 

CA(-2)=0.125 CA(-1)=0.5 CA(0)=0.25 CA(1)=0 CA(2)=0 CA(3)=0.125 CA(4)=0.25 CA(5)=0.125 

co,-2=0.125       

 co,-1=0.25      

  co,0=0     

   co,1=0    

    co,2=0   

     co,3=0.04  

      co,4=0.04 

[ ]04.004.000025.0125.0=OC  

 
Table 5. Data fusion results for the test shown in Figure 15. 

7. Conclusion 
In this chapter, a real prototype of an infrared barrier for obstacle detection on the tracks has 
been presented. Due to the fact that detection is based on the lack of radiation in the 
receivers, the channel degradation can be mistaken with the existence of obstacles. For this 
reason, validation algorithms are necessary, in order to increase the reliability of the 
detection. 
Sensor data fusion based on the evidential theory has been applied in order to obtain the 
certainty of the existence of dangerous obstacles for the railway traffic. The proposed fusion 
algorithm takes into account the spatial diversity of the links that are established in the 
barrier and how the channel degradation affects them. Real tests have been carried out, in 
order to validate the described algorithms, showing them successful results.  
To improve the safety level required in this application, it is necessary to incorporate new 
sensory systems, as can be cameras or ultrasounds to make up for the infrared deficiencies. 
All the information provided by these new sensory systems, have to be fused with the IR 
barrier, in order to obtain reliable information about the existence of objects on the tracks 
that can suppose a risk for railway traffic. 
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1. Introduction    
Due to the rapid development of Intelligent Transportation Systems (ITS), more and more 
different types of sensors are employed to detect traffic state information, so as to serve 
traffic agencies and travelers. However, each type of traffic detectors has its inherent 
drawbacks. For instance, loop detectors, as a kind of economical and efficacious detectors, 
have been widely used in most advanced cities. However, lots of errors are often induced by 
their high failure ratio and inaccurate traffic state conversion arithmetic. Similarly, probe 
vehicles are another type of popular detectors, which also has some problems, such as poor 
statistical representation and errors in the map matching. Therefore, how to make full use of 
the data from these detectors to obtain more accurate and comprehensive traffic state 
information becomes a new urgent problem need to be solved.  
Recent years, information fusion as a new technology has been introduced to solve this 
problem, expecting to get better results by integrating information from multiple types of 
detectors. In this field, some researchers advanced their fusion methods on how to combine 
the data from loop detectors and GPS probe vehicles, and achieved good effectiveness to 
some extent. For example, R.-L. Cheu et al. developed a neural network based model to 
perform the fusion (Cheu et al., 2001); K. Choi and Y. Chung presented a fusion algorithm 
based on fuzzy regression (Choi & Chung, 2002); T. Park and S. Lee researched this problem 
using Bayesian approach, who got good effect in simulation data (Park & Lee, 2004); H.-S. 
Zhang et al. proposed an architecture to manage, analyze and unify the traffic data (Zhang 
et al., 2005).  
More recently, pointing to the incompleteness and inaccurateness of traffic detector data, El 
Faouzi and Lefevre originally put forward a classifiers fusion method based on Evidence 
Theory (El Faouzi & Lefevre, 2006), which provided a new idea toward solving this 
problem. Also, a prospect to build an adaptive and dynamic fusion scheme was given at the 
end of their article. According to this prospect, we introduce a new fusion model in this 
article to meet the requirement of real-time fusion. This model advances over D-S Evidence 
Theory (Dempster, 1967; Shafer, 1976) in temporal domain, and the idea comes from some 
thought of the Federated Kalman Filter initially proposed by N. A. Carlson (Carlson, 1988; 
1990). Therefore, we call it the Federated Evidence Fusion Model (FEFM). It can be used to 
fuse not only the two kinds of detectors referred above, but also other information sources 
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(cameras, mobile phones etc.). In addition, sensor reliability is considered in this model by 
the form of evidence reliability to increase the accuracy of estimation. In the experiments, a 
simulation test is first assumed to explain the advantage of the proposed model, in 
comparison with conventional D-S Evidence Theory and the other two transformed models. 
After that, an application case is presented to embody the validity of the model in 
engineering practice, using the real-world data from the SCATS loop detectors and GPS-
equipped taxies in Shanghai. 

2. A brief review of Evidence Theory 
Evidence Theory was initially introduced by Dempster (Dempster, 1967), and then Shafer 
(Shafer, 1976) showed the benefits of belief functions for modeling uncertain knowledge. In 
this section, some mathematical elements of Evidence Theory are recalled. 

2.1 Basic concepts 
Let { }= …1 2, , , Nω ω ωΩ  be a frame of discernment, in which all elements are assumed to be 

mutually exclusive and exhaustive. The power set of Ω is denoted by { }2 |= ⊆Ω A A Ω . 

Basic Probability Assignment (BPA) is a function that can be mathematically defined by 2Ω  
in [0, 1], such that ( ) =Φ 0m  where Φ  denotes an empty set, and ( ) 1m

⊆

=∑
A Ω

A .  

The belief function (bel) and the plausibility function (pl) are defined as follows: 
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( ) ( )
≠ ⊆

∩ ≠
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∑

∑
Φ

Φ

bel m
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B A

B A

A B A Ω

A B A Ω
  (1) 

in which ( )bel A  represents the sum of masses in all subsets of A, whereas ( )pl A  
corresponds to the sum of masses committed to those subsets which don’t discredit A. 

2.2 Combination of belief functions 
Multiple evidences can be fused by using Dempster’s combination rules, shown in equation 
(2), which also is known as the orthogonal sum. This sum is both commutative and 
associative. 

                                 ( ) ( ) ( )
∩ = ∀ ⊆

∩ =⎧
⎪= ⎨ ⋅ ∩ ≠⎪ −⎩

∑
, ,

0, Φ
1 , Φ

1 i j
m

m m
K A B C A B Ω

A B
C A B A B   (2) 

with 

                                                      ( ) ( )
∩ = ∀ ⊆

= ⋅∑
Φ , ,

i jK m m
A B A B Ω

A B   (3) 

where the term K is called the conflict factor between two evidences, which reflects the 
conflict degree between them. 
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2.3 Evidence reliability 
When the information provided by sensors is not totally reliable to result in the belief 
functions, a coefficient a is used to discount the belief. This coefficient will transfer the belief 
into the set Ω. Thus, the discounted belief function ma can be obtained by the following 
formula: 

                                                     
( ) ( )
( ) ( ) 1

α

α

m αm
m αm α
⎧ =⎪ ⊂⎨

= + −⎪⎩

A A
A Ω

Ω Ω
  (4) 

where [ ]0,1α∈ . 

2.4 Evidence distance 
A. L. Jousselme et al. presented a principled metric distance between two BPAs (Jousselme 
et al., 2001). The authors treat BPA as a vector in a 2 Ω  linear space, where Ω  denotes the 
cardinality of Ω . Then, they define the distance between im  and jm  as 

                                                 ( ) ( ) ( )1,
2

T

BPA i j i j i jd m m m m m m= − −D   (5) 

in which D is a matrix with size of 2 2×Ω Ω , whose elements can be calculated by formula (6). 

                                                       ( ), ,
∩

= ∀ ⊆
∪

A B
D A B A B Ω

A B
  (6) 

Furthermore, the evidence distance satisfies the below restriction:  

                                                                 ( )0 , 1BPA i jd m m≤ ≤   (7) 

3. Federated evidence fusion model 
In this section, we introduce the FEFM in three steps: first, the reliability matrix is discussed; 
then, we build the frame of the FEFM; finally, the fusion algorithm is presented. Besides, the 
other two models with different forms are also given like the Federated Kalman Filter. 

3.1 The improved evidence reliability 
From engineering practice, we find that different evidence sources have different reliabilities 
in estimating the same state; similarly, the same evidence sources also have different 
reliabilities in measuring different states. Therefore, we define a reliability weight 

( ), ,0 1i j i jw w≤ ≤ , which is used to reflect the degree of the reliability that one evidence 
corresponds to each state. The reliability matrix W is shown in (8). 

                                               

1 2

1,1 1,2 1,1

2 ,1 2 ,2 2 ,2

,1 ,2 ,

N

N

N

M M M NM

S S S
w w wE
w w wE

w w wE

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

W   (8) 
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where [ ] ( ), 0,1 , 1,2, , ; 1,2, ,i jw i M j N∈ = =… … ; jS  denotes the jth independent state to be 
recognized; iE  denotes the ith independent evidence. 
In some sense, the reliability that the evidence corresponds to different states can be deemed 
as the probability that the evidence exactly estimates the state, because it accords with the 
definition of probability. Thus, we can draw a conclusion that, a reliability matrix W* 
between evidences and all of the subsets of Ω  is defined as follows:  
 

 

{ } { } { } { } { } { } { }1 2 1 2 1 3 2 3

1,1 1,2 1, 1, 1, 1, 1, 1,1,2 1,3 2 ,31

2 2,1 2 ,2 2 , 2 , 2 , 2 , 2 , 2 ,1,2 1,3 2 ,3

,1 ,2 , ,1,2 1,3

, , , |N j

N j j j j jj j j j N j

N j j j j jj j j j N j

M
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E w w w P w P w P w P w P w

E w w w P w P w

= = = ≠

= = = ≠

= =

≠

=

Ω

W*

, , , ,2 ,3M j M j M j M jj j N j
P w P w P w
= ≠

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 (9) 

 

When 1i = , we have 
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 (10) 

 

where +̂  denotes the addition operation in probability theory. 
Likewise, when = …2, ,i M , we can also obtain the above conclusions respectively. This 
issue comes from the addition formula in probability theory, as the N states are irrelevant 
with each other.  
Representing every weight with , 'i jv , a reliability index matrix V can be shown as: 

 

{ } { } { } { } { } { } { }1 2 1 2 1 3 2 3

1,1 1,2 1, 1, 1 1, 2 1,21 1,2 2 1,2 1
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N N
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N N N N

N N N N
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≠

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢
⎢
⎢⎣ ⎦

Ω

V
⎥
⎥
⎥

  (11) 

where [ ] ( ), ' 0,1 , 1,2, , ; ' 1,2, ,2 1N
i jv i M j∈ = = −… … . 

In this case, the modified BPA can be shown in equation (12): 

                                                
( ) ( )
( ) ( )

, '

, '

' ,

' 1 ,
i i j i

i i j i

m v m

m v m
⊂

⎧ = ⋅⎪ ⊂⎨
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A A
A Ω

Ω A
  (12) 

where  ( )'im  indicates that the BPA has been modified by the reliability index of evidences.  
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The proposed reliability index matrix V can also be generalized to denote other weight 
meanings, such as measure accuracy or evidence importance. Among them evidence 
importance was referred in (Fan & Zuo, 2006). For example, 1,1 2 ,1v v>  indicates that 
evidence 1 is more reliable than evidence 2 to judge state 1. We can also think that evidence 
1 is more important than evidence 2. All of the other generalizations can be explained as the 
same. 
By considering evidence reliability, the uncertainty and inaccuracy of evidences are greatly 
decreased. Meanwhile, the conflict between two evidences may be weakened to some degree.  

3.2 Federated evidence fusion frame 
The combination rule proposed by Dempster provided a convenient tool for us to fuse 
multi-source information. In our case, we are going to fuse the data obtained from multiple 
types of traffic detectors in real-time. Therefore, we build the FEFM in a structure with 
feedback, which was inspired by the theory of Federated Kalman Filter first proposed by 
Carlson (Carlson, 1988; 1990). The proposed fusion frame with feedback is illustrated in 
figure 1. As the figure shows, the whole fusion system consists of four parts, which are the 
input level, the feature extracting level, the fusion level and the output level. Among them, 
the fusion level can be further divided into two components: main fusion system and sub-
fusion system.  
 

 
Fig. 1. Frame of the FEFM. 

3.3 Federated fusion algorithm 
In this algorithm, we use ( ), , 1,2, ,i i tm i M=A …  to represent the BPA extracted from the data 
from the ith type of detectors at time t.  
For the sub-fusion systems, the fusing rule makes use of the combining formula (2). It is 
shown as follows: 
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where ( ) = …, , 1,2, ,i i tm i MB  denotes the fusion result of subsystem i at time t, and ( )1tm C −  
represents the fusion result of the main system at time 1t − . They both are in the form of 
BPA. The function ( )g  is the operation shown as follows: 

                                                   
( )( ) ( )
( )( ) ( )

−

− −

−⊂

⎧ =⎪
⎨

= −⎪⎩ ∑
1

1 1

11
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t t

t

g m λm

g m λm
C Ω

C C

Ω C
  (14) 

where λ  is a variable, which represents the degree that ( )1tm C −  is weakened, and its value 
satisfies the restriction 0 1λ≤ ≤ . The value of this parameter can be determined under the 
condition that the fusion result is identical with the real state at all time in the training set. 
By this means, we can weaken the feedback, i.e. avoid the feedback leading the fusion result 
at this time. 
For the main fusion system, the fusion rule also use the combining algorithm of D-S 
Evidence Theory, which is  
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  (15) 

where m(Ct) denotes the integrated result of the main fusion system at time t, which also is 
the final fusion result at time t.  
Then, we can obtain the conclusion of state estimation at that time through a certain decision 
rule: the maximum belief or the maximum plausibility etc. 

3.4 The other two structures 
Similar to the Federated Kalman Filter, the FEFM also has the other two transformed 
structures. They are named the Distributed Feedback Fusion (DFF) and the no feedback 
fusion (NFF). 

3.4.1 Structure of the distributed feedback fusion 
The distributed feedback fusion structure is shown in figure 2. In this structure, feedback 
information to every subsystem does not come from the main fusion system any more, but 
be produced by themselves. After every fusion cycle, the fusion results obtained by the sub-
fusion systems are all sent back to their inputs to be integrated with the inputted state 
features at the next time. The detailed algorithm is given as follows: 
For the sub-fusion systems,  

 ( )
( )

−

−

−

−∩ =

−∩ =

= ⊕

×
=

− ×

∑
∑

, 1 , ,

, 1 ,

, , 1 ,

, 1 ,

, 1 ,Φ
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1 ( ) ( )
i t i t i t

i t i t

i i t i i t i i t

i i t i i tB A B

i t i i tB A

m B m B m A

g m B m A

g m B m A
  (16) 

in which, − = …, 1( ), 1,2, ,i i tm B i M  denotes the feedback information from the output of 
subsystem i, which is the fusion result of this subsystem at time − 1t .  
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As to the main fusion system, the formula is the same as the standard FEFM algorithm. 
 

 
Fig. 2. Frame of the distributed feedback fusion 

3.4.2 Structure of the no feedback fusion 
 

 
Fig. 3. Frame of the no feedback fusion 
As is shown above, this type of structure has neither any feedback information from the 
main fusion system, nor from the sub-fusion system. Therefore, in this model, the fusion 
outputs of the sub-fusion systems are directly sent into the main fusion system. This fusion 
outputs are attained by combining the inputs of the sub-fusion systems at this time and 
those at the last time. The difference of this algorithm lies in: 
For the sub-fusion systems,  
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  (17) 

in which, − = …, 1( ), 1,2, ,i i tm A i M  denotes the BPA of state feature put in sub-fusion system i 
at time t-1.  
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Likewise, in the main fusion system, the fusion algorithm also is the same as the standard 
FEFM algorithm. 

4. Implementation of fusion algorithm 
In the last section, we have introduced the core algorithms of the FEFM; however, it still 
needs more procedures, if we want to veritably apply the whole model to the practice. They 
will be presented in this section. 

4.1 Determination of reliability matrix  
In Reference (Guo et al., 2006), reliability was divided into static reliability and dynamic 
reliability. Herein, we only consider the static one. Thus, reliability weight ,

s
i jw  can be 

calculated by (18). 

                                                          ( )( ), , ,,s s o
i j BPA i j i j

BPA

w f d m m

f b a d

⎧ =⎪
⎨

= − ⋅⎪⎩
  (18) 

in which BPAd  is the evidence distance that can be computed by (5); ,
s
i jm  denotes the BPA 

output of the sensor i about the state class j in the training set; ,
o
i jm  represents the BPA of 

what we have known about the class membership of the same data; a=1 and b=1, due to the 
boundary condition: [ ], 0,1i jw ∈ . 

4.2  Creation of masses 
Above all, we use the negative exponential proposed by Denoeux (Denoeux, 1995) to create 
the masses, shown in (19). 

       { }( ) ( )exp β
i n i im ω γ d= −   (19) 

where di is a type of distance between the data detected by the i th kind of detectors and the 
prototype of each state class. The prototype can be designated artificially or be obtained by 
clustering the historical data. The parameters β and ri are decided depending on the real-
world data in the training set. 
Afterward, we define the conversions below to create the BPAs. 
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  (20) 

in which the maxkth  denotes the kth  maximum value in all the masses derived from the 
results computed by (19); k  is a natural number in the range from 1 to N ; N  is the total 
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number of elements in the frame of discernment; ,
s
i kv  represents the static reliability index 

weight, which has been computed beforehand. 

4.3 Decision-making rules 
Herein, we choose the maximum belief rule as the decision-making principle. Also, some 
additional conditions are provided according to the context of traffic engineering. The 
decision-making rules are shown as follows: 

                                            max max 2 max, 1,
, ,

m m thst if st st
Dst

otherwise
− =⎧

= ⎨
⎩Ω

  (21) 

where Dst indicates the decision output of state value; max mst  denotes the state value 
corresponding to the mass with the maximum value; if the output is Ω , it means no verdict. 
In this case, we may give an output of state 0. 

5. Experiments 
5.1 Synthetic data 
First, we use synthetic traffic data to demonstrate the effectiveness of the proposed model. 
Assume the discernment framework of traffic state is 1 2 3 4{ , , , }S S S S=Ω , and the evidence set 
is { }1 2,E E=E . The BPAs based on both evidences are listed in Table 1. 

 
Time Evidence {S1} {S2} {S3} {S4} Ω 

T1 E1: m1(A1, t1) 0.7 0.1 0 0 0.2 

 E2: m2(A2, t1) 0.1 0.8 0 0 0.1 

T2 E1: m1(A1, t2) 0.25 0.55 0 0 0.2 

 E2: m2(A2, t2) 0 0.6 0.25 0 0.15 

T3 E1: m1(A1, t3) 0 0.1 0.8 0 0.1 

 E2: m2(A2, t3) 0 0 0.6 0.25 0.15 

T4 E1: m1(A1, t4) 0 0 0.2 0.7 0.1 

 E2: m2(A2, t4) 0.8 0.1 0 0 0.1 

T5 E1: m1(A1, t5) 0 0 0.1 0.8 0.1 

 E2: m2(A2, t5) 0 0 0.2 0.75 0.05 

Table 1. BPAs for the case 

Herein, we provide 5 pairs of evidences at 5 continuous times respectively, among which 
the two evidences at time T1 have a partial conflict, and the pair of evidences is completely 
conflict at time T4. Whereas, the evidences at other three times have little conflicts and only 
embody the state transferring.  
The BPAs after being fused are listed in Table 2, which shows the comparison of the fusion 
results of the five models. They are the conventional Evidence Theory, Evidence Theory 
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considering reliability, standard FEFM, DFF and NFF, which are orderly denoted by m(Ct1), 
m’(Ct1), mI(Ct1), mD(Ct1) and mN(Ct1).  
 

Time Evidence {S1} {S2} {S3} {S4} Ω 

T1 m(Ct1) 0.37 0.58 0 0 0.05 

 m’(Ct1) 0.48 0.33 0 0 0.19 

 mI(Ct1) 0.48 0.33 0 0 0.19 

 mD(Ct1) 0.48 0.33 0 0 0.19 

 mN(Ct1) 0.48 0.33 0 0 0.19 

T2 m(Ct2) 0.06 0.82 0 0.08 0.04 

 m’(Ct2) 0.12 0.62 0.09 0 0.17 

 mI(Ct2) 0.23 0.63 0.05 0 0.09 

 mD(Ct2) 0.28 0.64 0.03 0 0.05 

 mN(Ct2) 0.18 0.64 0.06 0 0.12 

T3 m(Ct3) 0 0.02 0.92 0.03 0.03 

 m’(Ct3) 0 0.03 0.71 0.13 0.13 

 mI(Ct3) 0.05 0.19 0.57 0.09 0.1 

 mD(Ct3) 0.06 0.14 0.6 0.1 0.1 

 mN(Ct3) 0.02 0.11 0.66 0.1 0.1 

T4 m(Ct4) 0.42 0.05 0.11 0.37 0.05 

 m’(Ct4) 0.31 0.04 0.08 0.23 0.34 

 mI(Ct4) 0.19 0.1 0.34 0.18 0.19 

 mD(Ct4) 0.25 0.08 0.25 0.2 0.22 

 mN(Ct4) 0.2 0.04 0.3 0.23 0.23 

T5 m(Ct5) 0 0 0.06 0.93 0.01 

 m’(Ct5) 0 0 0.12 0.81 0.07 

 mI(Ct5) 0.02 0.01 0.17 0.76 0.04 

 mD(Ct5) 0.02 0.01 0.13 0.79 0.05 

 mN(Ct5) 0.02 0 0.11 0.82 0.05 

Table 2. Results of fusion. m(Ct1), m’(Ct1), mI(Ct1), mD(Ct1) and mN(Ct1) respectively denotes 
the conventional Evidence Theory, Evidence Theory considering reliability, standard FEFM, 
DFF and NFF. 

In figure 4(a), the bar plot of the fusion consequences at time T4 is shown to display the 
predominance of the FEFM. In the third row, the integrated feedback fusion represents the 
standard FEFM. From the figure, we can find that the former two methods can not give a 
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clear answer due to the huge conflict. However, the standard FEFM gives a definite choice. 
We can also see that the other two forms of the FEFM do not perform well at this situation, 
although a little of progress is made. This phenomenon can also be seen in figure 4(b), which 
shows us a course of estimation during the whole 5 times. Moreover, we can find a different 
determination between the first model and the other four models at time T1, which is 
because there is a partial conflict between the two evidences, whereas the reliability 
mitigates its effect to some extent. 
 

 
                                         (a)                                                                           (b) 

Fig. 4. Bar plot of the fusion results. (a) is the fusion results using the five models at time T4; 
(b) is the fusion results using these models during the 5 times. 

5.2 Data from real traffic 
In this section, we employ two types of traffic mean-speeds on an urban link in Shanghai to 
carry out the fusion estimation experiment. The two speeds were derived by estimating with 
the SCATS loop detector data and GPS-equipped taxi data. The detailed algorithms were 
provided in reference (Kong et al., 2007). The real-world data were collected at a section of 
Zhao Jia Bang Road of Shanghai through a whole day, which was from 0 o’clock to 24 
o’clock on Sep. 26, 2006, and the average speeds were computed in every five minutes. Also, 
we screened a segment of surveillance video during 2:00 PM-4:00 PM at this link on the 
same day in order to validate the model. 
The fusion consequence of the standard FEFM is shown in figure 5, from which we can 
clearly see that the traffic state is reasoned and tracked at the feature level. According to the 
verifying test by replaying the video, the estimation accuracy of our model is beyond 95%. 
Herein, we define five different traffic states, corresponding to ‘very congested’, ‘congested’, 
‘medium’, ‘smooth’ or ‘very smooth’, respectively.  
Moreover, the fusion algorithm was embedded into the Shanghai Urban Traffic Information 
System developed by our laboratory to implement the fusion estimation. The estimation 
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results were displayed on the traffic information display platform, as figure  6 shows. Figure 
6(a) and 6(b) respectively illustrates the results estimated only by the SCATS data or the GPS 
data; and figure 6(c) shows the results by fusing the two types of data. In these figures, the 
color of the road sections, red, orange, yellow, green, or dark green, represents the 
corresponding traffic states defined above respectively. 
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Fig. 5. Traffic state estimation results of the standard FEFM with the real-world data on the 
link in Shanghai through 24 hours. 

 

 
 

(a) 
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(b) 

 
(c) 

Fig. 6. Estimation results displayed on the platform. (a) is the result from the SCATS loop 
detector data; (b) is the result from the GPS-equipped taxi data; (c) is the result by fusing the 
two types of data. 

6. Conclusions 
This paper has proposed a model for real-time traffic state estimation by developing D-S 
Evidence Theory in temporal domain. As it realizes online fusion of heterogeneous detector 
data at the feature level, the method has strong application potentials in fusing data from 
many other different types of sensors (cameras, cell phones, etc.). Furthermore, the evidence 
reliability to every state is considered in the FEFM. Finally, the model shows great 
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advantages over conventional D-S Evidence Theory in the simulation test and good 
accuracy by the tests with the real-world data.  
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1. Introduction 
Nowadays, the radar is no longer the sole technology which is able to ensure the 
surveillance of air traffic. The extensive deployment of satellite systems and air-to-ground 
data links leads to the emergence of complementary means and techniques on which a great 
deal of research and experiments have been carried out over the past ten years. 
In such an environment, the sensor data processing, which is a key element in any Air 
Traffic Control (ATC) centre, has been continuously upgraded so as to follow the sensor 
technology evolution and in the meantime improves the quality in term of continuity, 
integrity and accuracy criteria. 
This book chapter proposes a comprehensive description of the state of art and the roadmap 
for the future of the multi sensor data fusion architectures and techniques in use in ATC 
centres. 
The first part of the chapter describes the background of ATC centres, while the second part  
of the chapter points out various data fusion techniques. Multi radar data processing 
architecture is analysed and a brief definition of internal core tracking algorithms is given as 
well as a comparative benchmark based on their respective advantages and drawbacks. 
The third part of the chapter focuses on the most recent evolution that leads from a Multi 
Radar Tracking System to a Multi Sensor Tracking System. 
The last part of the chapter deals with the sensor data processing that will be put in 
operation in the next ten years. The main challenge will be to provide the same level of 
services in both surface and air surveillance areas in order to offer: 
• highly accurate air and surface situation awareness to air traffic controllers, 
• situational awareness via Traffic Information System – Broadcast (TIS-B) services to 

pilots and vehicle drivers, and 
• new air and surface safety, capacity and efficiency applications to airports and airlines. 

2. Air traffic control 
Air Traffic Control (ATC) is a service provided to regulate the airline traffic. Main functions 
of the ATC system are used by controllers to (i) avoid collisions between aircrafts, (ii) avoid 
collisions on manoeuvring areas between aircrafts and obstructions on the ground and (iii) 
expediting and maintaining the orderly flow of air traffic. 



 Sensor and Data Fusion 

 

104 

An ATC system shall adapt itself to the control context, determined by the airspace to be 
controlled: 
• en-route area: control of aircrafts located at a high and medium altitude, 
• terminal / approach areas: terminal area is restricted to major airports while approach 

area is dedicated to align aircrafts at arrival or in departure in order to pave their way 
for the Flight Information Region (FIR), 

• runways / ground areas: management of aircrafts on airports and on ground between 
runways and taxiways. 

 

 
Fig. 1. Air Traffic Control principal areas of applications 
In order to be efficient in all the above mentioned situations, the system shall be adaptable 
and shall be completed by several other sub-systems in order to face: 
• differences in aircraft evolution: trajectory for en-route aircraft is more stable than 

trajectory of an aircraft in terminal area, 
• great variety of separation norms: in en-route area for example, the required accuracy 

for the aircraft positioning is less important than in terminal area, 
• failure importance: the loss of radar picture is more important in terminal area than in 

en-route area where aircrafts are less close to each another. 

2.1 ATC system 
Automatic air traffic management control systems implement main ATC functions which 
address related ATC services. ATC functions are adaptable to the following rules: 
• operational control: real traffic control, 
• test and evaluation: all sub-systems are tested and operationally validated (shadow 

procedures), 
• training: training of air traffic controllers on simulated air traffic. All external actors are 

simulated (i.e. radars, foreign centres, etc.) 
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• archiving, replay and visualization for legal reasons (accidents, failures, etc.) but also to 
evaluate the tax amount imposed to the airlines.  

 

 
Fig. 2. Automation ATC System synoptic 

2.2 ATC system services 
2.2.1 Airspace surveillance service 
Surveillance is a key function for airspace management and supports both strategic 
separation assurance of aircraft and strategic planning of traffic flows. 

2.2.2 Ground surveillance service 
Aircrafts movements on the ground are managed mainly by an A-SMGCS (Advanced 
Surface Movement Guidance and Control System), depending on the traffic density of an 
airport.  
This system receives information coming from all available sensors (notably from primary 
surface radar, multilateration, ADS-B and mode S radar) and then processes them into its 
own fusion module before displaying these data on a specific visualization. This system is 
able to provide with proximity alerts function (control) and aircraft trajectories optimisation 
(movement guidance). 
This system shall also detects vehicles which are located on runways and tarmacs areas: for 
this purpose they are equipped  with specific beacons. 
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2.2.3 Sensor data processing systems 
An ATC automation centre shall take into account data which are sent by numerous 
surveillance sensors. The rule of a tracking system is then to process and to unify all data, in 
order to provide a fused information to the visualisation and the safety nets systems. 

2.2.4 Safety nets management and separation assurance 
The surveillance function provides with current aircraft state information to the controller  
position and to the separation automation functions, i.e. the short term conflict alert (STCA) 
system for the detection of immediate path conflicts and the Minimum Safe Altitude 
Warning (MSAW) system for the detection of potential flight into terrain. These automation 
functions require enhanced surveillance in order to provide with accurate and reliable path 
predictions for medium term look ahead periods. 

2.2.5 Visualization systems 
A visualization system shows the air situation picture to the controller. The presentation of 
the information regarding an aircraft shall comply with restricted rules. The following 
elements are shown on the display: 
• a symbol corresponding to the current position and the type of sensor detection, 
• other symbols associated to the past-time positions, 
• an optional speed vector oriented depending on the course and whose length is 

proportional to the ground speed, 
• a customisable label showing aircraft information: Mode 3/A, Mode C, ground speed, 

Flight Plan information, etc. 

2.2.6 Flight data processing services 
The Flight Data Processing management service contains all the sub-systems in charge of  
the flight plan life management (including its modifications and its distribution to other sub-
systems). 

2.3 Surveillance sensors 
Surveillance sensors are at the beginning of the chain: the aim of these systems is to detect 
the aircrafts and to send all the available information to the tracking systems. 
Current surveillance systems use redundant primary and secondary radars. The progressive 
deployment of the GPS-based ADS systems shall gradually change the role of the ground 
based radars. The evolution to the next generation of surveillance system shall also take into 
account the interoperability and compatibility with current systems in use. 
The figure 3 shows a mix of radar, ADS and Multilateration technologies which will be 
integrated and fused in ATC centres in order to provide with a high integrity and high 
accuracy surveillance based on multiple sensor inputs. 

2.3.1 Primary Surveillance Radar (PSR) 
Primary radars use the electromagnetic waves reflection principle. The system measures the 
time difference between the emission and the reception of the reflected wave on a target in 
order to determine its range. The target position is determined by measuring the antenna 
azimuth at the time of the detection. 
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Fig. 3. Surveillance sensor environment 
 

 
Fig. 4. Historical perspective of surveillance sensor technology 
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Reflections occur on the targets (i.e. aircrafts) but unfortunately also on fixed objects 
(buildings) or mobile objects (trucks). These kind of detections are considered as parasites 
and the “radar data processing” function is in charge of their suppression. 
The primary surveillance technology applies also to Airport Surface Detection Equipment 
(ASDE) and Surface Movement Radar (SMR). 

2.3.2 Secondary Surveillance Radar (SSR) 
Secondary Surveillance Radar includes two elements: an interrogative ground station and a 
transponder on board of the aircraft. The transponder answers to the ground station 
interrogations giving its range and its azimuth. 
The development of the SSR occurs with the use of Mode A/C and then Mode S for the civil 
aviation.  
Mode A/C transponders give the identification (Mode A code) and the altitude (Mode C 
code). Consequently, the ground station knows the 3-dimension position and the identity of 
the targets. 
Mode S is an improvement of the Mode A/C as it contains all its functions and allows a 
selective interrogation of the targets thanks to the use of an unique address coded on 24 bits 
as well as a bi-directional data link which allows the exchange of information between air 
and ground. 

2.3.3 Multilateration sensors 
A multilateration system is composed of several beacons which receive the signals which 
are emitted by the aircraft transponder. The purpose is still to be able to localize the aircraft. 
These signals are either unsolicited (squitters) or answers (SSR or Mode S) to the 
interrogations of a nearby radar. Localization is performed thanks to the Time Difference Of 
Arrival (TDOA) principle. For each beacons pair, hyperbolic surfaces whose difference in 
distance to these beacons is constant are determined. The aircraft position is at the 
intersection of these surfaces. 
The accuracy of a multilateration system depends on the geometry of the system formed by 
the aircraft and the beacons as well as the precision of the measurement time of arrival. 
Nowadays, multilateration is used mainly for ground movement’s surveillance and for the 
airport approaches (MLAT). Its use for en-route surveillance is on the way of  deployment 
(Wide Area Multilateration (WAM)). 

2.3.4 Automatic Dependant Surveillance – Contract (ADS-C) 
The aircraft uses its satellite-based or inertial systems to determined and send to the ATC 
centre its position and any other information as: 
• aircraft position, 
• expected road, 
• ground/air speeds 
• Meteo data (wind direction and speed, temperature, etc). 
ADS-C information are transmitted through point-to-point communications via VHF or via 
satellite. Ground and on-board equipments managed the transmit conditions (periodical, on 
event, on emergency, …) 
ADS-C is used typically on desert or oceanic areas as radars cannot insure any surveillance 
on those areas. 
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2.3.5 Automatic Dependant Surveillance – Broadcast (ADS-B) 
The aircraft uses its satellite-based or inertial systems to determine and send to the ATC 
centre its position and other sort of information. Aircraft position and speed are transmitted 
one time per second at least. 
ADS-B messages (squitters) are sent, contrary to ADS-C messages which are transmitted via 
a point-to-point communication. By way of consequence, the ADS-B system is used both for 
ATC surveillance and on-board surveillance applications. 

2.3.6 Respective advantages and drawbacks 
 

Sensor type Advantages Drawbacks 

Primary radar 
(Non-

dependant 
surveillance 

sensor) 

Non cooperative targets detection 
as no on-board equipment is 
required. 
Can be used for ground 
surveillance. 
High data integrity level. 

Targets cannot be identified. 
Target altitude cannot be 
determined. 
High power emission is required 
which limits its range. 
High latency and low update rate. 

Secondary 
radar 
(Semi-

dependant 
surveillance 

sensor) 

Identity and altitude 
determination as well as range 
and azimuth. 
Less sensitive to interferences 
than primary radar. 
Its range is more important than 
the primary radar as the 
interrogation and the answer have 
only one-way distance to cover. 
Mode S introduces the air-to-
ground data link. 
Medium data integrity level. 

Does not work for the ground 
surveillance due to the loss of 
accuracy introduced by the delay 
of the transponder processing. 
Mode A/C has a lot of issues 
related to the question/answer 
confusion. Mode S solves this 
problem by interrogating the 
targets in a selective manner. 
High latency and low update rate. 

Table 1. Past and current technology sensor advantages and drawbacks 
 

Sensor type Advantages Drawbacks 

Multilateration 
(Semi-

dependant 
surveillance 

sensor) 

SSR technology can be used (does 
not need any evolution of on-
board equipments). 
Suitable for ground surveillance: 
needs Mode S equipment as Mode 
A/C transponders are deactivated 
mainly on ground in order to limit 
radio pollution. 
Small latency. 
High update rate. 
Position accuracy. 

Signals shall be received correctly 
by 4 beacons at least which raise 
the issue of beacons location, 
especially for en-route 
surveillance. 
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Sensor type Advantages Drawbacks 

ADS-C 
(Full-

dependant 
surveillance 

sensor) 

Use of surveillance area with no 
radar coverage. 
Information “expected road” 
available. 
Air/ground data link available. 

Depends only on the aircraft 
(equipped or not) and on the data 
correction that it sends. 
Time stamping errors. 
Very low update rate. 
GPS outages. 

ADS-B 
(Full-

dependant 
surveillance 

sensor) 

Use for ATC and for on-board 
surveillance applications. 
High refresh rate (1s at least). 
Air/ground data link available. 
Small latency. 
High update rate. 
Position accuracy. 

Depends on the aircraft only 
(equipped or not) and on the data 
correction which is sent. 
Not all the aircrafts are equipped 
at this time. 
Time stamping errors. 
GPS outages. 

Table 2. New and emerging sensor technology advantages and drawbacks 

2.3.7 Sensor data processing 
As shown in figure 5 hereunder, a sensor data processing is composed generally of two 
redundant trackers. Radar (including Surface Movement Radar) and ADS-C data are 
received directly by the trackers while ADS-B and WAM sensor gateways help in reducing 
the data flow as well as checking integrity and consistency. 
 

 
Fig. 5. Sensor Data Processing 
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As shown in figure 5 above, trackers are potentially redundant in order to prevent from sub-
systems failure. 

3. Sensor data processing architectures 
3.1 Data fusion techniques 
This paragraph presents the data fusion techniques for radar data processing. 
3.1.1 Introduction 
Several level of data fusion are available: 
• plots (radar reports are directly used into the fusion module), 
• tracks (radar reports are used to update local radar tracks which are used into the 

fusion module), 
• mixture between tracks and plots, 
• signals (research area). 
Several techniques using various level of data fusion are analysed in this paragraph. 
Multi radar tracking establishes one track per aircraft which is common to all radars. A great 
number of methods have been used in ATC centres. These methods can be divided into two 
main categories: 
• selection techniques and 
• average or weighted techniques. 
An historical perspective of data fusion techniques which have been used in ATC centres is 
proposed on figure 6 below. 
 

 
Fig. 6. Historical perspective of principle data fusion techniques 

3.1.2 Selection techniques 
The selection techniques are also known as “mosaic systems”. Airspace is divided into cells 
with a pre-determined preferred sensor for each of them. The system receives data from all 
sensors and choose the appropriate information of each cell in which aircraft  is detected. 

3.1.2.1 Multiple plot switching method 
This method consists in a selection at the radar plots level. Then, at each processing cycle, 
only one plot is selected among several plots coming from various radars which detect the 
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aircraft. This plot is used to create or update a common track. Selection is realized according 
to geographic priority rules (mosaic system). 
 

 
Fig. 7. Multiple plots switching method 

3.1.2.2 Multiple track switching method 
This method consists in a selection at the track level. Then, mono sensor independent tracks 
are updating for each radar, given several local tracks. Then, one of these local tracks is  
selected, depending on the relative position of the radars (mosaic) or their respective accuracy. 
 

 
Fig. 8. Multiple tracks switching method 

3.1.3 Average techniques 
3.1.3.1 Multiple track average method 
A mono radar track is independently elaborated for each aircraft per radar. When several 
local tracks are available, the common track is established by weighting (barycentre) of these 
local tracks (Chong et al., 2000) (Bar Shalom et al., 1988). 
 

 

Fig. 9. Multiple tracks average method 
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3.1.3.2 Multiple plot average method 
At each processing cycle, the common track established by weighting (barycentre) of the 
plots coming from various radars. 
 

 

Fig. 10. Multiple plots average method 

3.1.4 Variable update technique 
The major disadvantage of the above-mentioned methods is that they do not use all the 
available information for one aircraft at one time. This  leads to a sub-optimal tracking (Bar 
Shalom, 1989). 
Moreover, the multi radar processing is depreciated in all the above-mentioned methods as 
the main tracking sub functions are performed in mono radar and a combination of local 
information is realized afterwards. 
The Variable Update method consists in using all the plots coming from any radar to update 
a unique synthetic common track. 
The track update is performed in the fly as soon as sensor reports are received. The 
reduction of the meantime update in multi-radar configuration improves the accuracy of the 
track parameters estimation.  
In addition, sensors with different characteristics and qualities can be introduced in the 
same processing. Obviously, Variable Update based tracking constitutes a centralized 
processing. 
Systems using this method are the most efficient. However, they implement a more complex 
algorithmic as they shall take into account the characteristics of the various sensors and an 
asynchronous processing of radar plots. 

3.1.5 Comparison of the various data fusion techniques 
Figure 11 below gives an idea of the tracking performance evolution depending on the data 
fusion techniques versus the CPU load. Indeed, the hardware performance has durably 
limited the deployment of newest data fusion techniques in ATC system. This is no longer 
the case with the introduction of the PC technology in early systems. 

3.2 Radar data processing architecture 
The radar data processing proposed in this paragraph is based on a Variable Update data 
fusion technique. The main chain tracker generally uses this technique while fallback tracker 
is based mainly on an older technology such as Multiple Track Average technique. 
As entry data, the multi radar tracking function has several kind of plots at its disposal 
which can be primary, secondary or combined. Then, measurements from different radars 
are allocated so as to update radar tracks (Bar Shalom, 1992). 
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Fig. 11. Data fusion techniques comparison (CPU load versus tracking performance) 

The table 3 below gives a quick comparison between Average and Variable Update 
techniques. 
 

Average technique Variable Update technique 
No variable scanning rate adaptation Variable scanning rate adaptation 
Low CPU load Medium up to high CPU load 
Low track accuracy Good track accuracy 
Low track discrimination Good tracks discrimination 
Manoeuvre detection in long time Manoeuvre detection in short time 
Long initiation time delay (mono sensor) Short initiation time delay (multi sensor) 
Several sensor types integration 
vulnerability Several sensor types integration robustness 

Table 3. Comparison between Average and Variable Update techniques 

A complete description of the Radar Data processing functions is available in (Baud et al., 
2006). 
The association function is based on NNPDA (Nearest Neighbour Probabilistic Data 
Association) method. Tracks are automatically initialised. The tracking filter which is used is 
an Interacting Multiple Model (IMM) in the System Cartesian frame. Manoeuvre components 
are managed through a Multiple Hypothesis Tracking (MHT) method. Bias registration is 
performed by using a dedicated Kalman filter. All tracks from the air situation picture are 
distributed periodically (“broadcast mode”) at a specified update rate (set to 5s in most cases). 

4. Sensor data processing architectures 
Sensor data processing architectures proposed in this paragraph trace the evolutions from 
the Multi Radar Tracking System (described in paragraph 3 above) to the Multi Sensor 
Tracking System. 
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Fig. 12. Multi Radar Tracking System (MRTS) architecture 

4.1 Mode S enhanced-tracking architecture 
This architecture is fully described in paper (Baud et al., 2007). Figure 13 below shows how 
the Mode S data are introduced into a sensor data processing. 
 

 
Fig. 13. Mode S enhanced-tracking architecture 
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Correlation and association processing take into account the 24-bit ICAO Address unique 
identifier to facilitate the association of a plot to any existing tracks. The Downlinked 
Aircraft Parameters (DAPs) are used after their own consistency checking to speed up the 
track initiation and to update the track state vector. The introduction of on-board 
parameters when updating the track improves the global tracking accuracy especially 
during manoeuvres (Bar Shalom, 1992). 
The track distribution is enhanced so as to provide additional information to the air traffic 
controllers. 

4.2 Radar / ADS data fusion architecture 
This architecture is partially described in paper (Baud et al., 2006). 
The radar / ADS-B data processing architecture takes advantage of the multiple report 
variable update technique. A semi-centralized and semi-distributed hybrid architecture is 
proposed: an internal ADS-B only air situation picture is elaborated as well as a complete 
Radar / ADS-B fused air situation. 
 

 
Fig. 14. Radar / ADS-B / ADS-C data fusion architecture 
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The ADS-B pre-processing sub-function (Besada et al., 2000) consists in the following 
processing: 
• ADS-B report validation against ADS-B only air situation picture, 
• ADS-B report validation against other surveillance sources. 
This pre-processing is required in order to cope with GPS outages, time stamping issues and 
GPS/INS on-board switching. 
Target models parameterization remains the same as for radar because the addressed targets 
are identical. Consistent ADS-B reports are used also to improve the radar bias registration. 
CPU loads issues can be encountered due to the very low data refresh rate (1Hz or more). 
This is the reason why an ADS-B sensor gateway (Figure 5 above) is used in high traffic 
density areas. 
On the contrary, ADS-C data are directly used by multi sensor pre-correlation, correlation 
and association processing prior to the update of the multi sensor track state vector. Specific 
track management processing is performed so as to cope with the low refresh rate of such 
data. ADS-C data serves mainly in oceanic areas as a gap filler. 

4.3 Radar / WAM data fusion architecture 
Figure 15 below shows how the WAM data are introduced into a sensor data processing. 
 

 
Fig. 15. Radar / WAM data fusion architecture 

The radar / WAM data processing architecture takes advantage of the multiple report 
variable update technique. A semi-centralized and semi-distributed hybrid architecture is 
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proposed: an internal WAM only air situation picture is elaborated as well as complete 
Radar / WAM fused air situation picture (Daskalakis et al., 2005). 
The WAM pre-processing sub-function consists in the following processing: 
• WAM report validation against WAM only air situation picture, 
• WAM report validation against other surveillance sources. 
This pre-processing is required in order to cope with WAM receivers clock synchronization 
issues and to determine, given WAM report accuracy, the observability of the target, and 
then avoid sub-optimal or erratic track behaviour. 
Target models parameterisation remains the same as for radar because the addressed targets 
are identical.  
CPU loads issues can be encountered due to the very low data refresh rate (1Hz or more), 
reason for which a WAM sensor gateway (Figure 5 above) is used in high traffic density 
areas. 

4.4 Architecture enhancements for A-SMGCS 
The first step of A-SMCGS data application into a Multi Sensor Tracking System is briefly 
explained in this paragraph. The second step is part of the future gate-to-gate surveillance 
concepts addressed in paragraph 5.2 below. 
A-SMGCS sensor is expected to send local tracks that are used to speed up the multi sensor 
track initiation, especially on Parallel Runway Monitoring (PRM) volumes. 
A-SMGCS sensor data are processed as for the WAM data but without dedicated pre-
processing. 

5. Architectures for the future 
The main enhancement in the surveillance environment, which influences the transition 
from the current conventional environment towards the future CNS/ATM system, is the 
introduction of new types of sensors (i.e. SSR Mode-S, ADS-B, ADS-C, ASDE, and 
Multilateration Systems) and the resulting capability to acquire on-board data through the 
various air-ground data links. The advanced features of the future CNS/ATM environment 
create the need for modifications both in the internal functionality and the interfaces with 
the functional entities of the environment (that is to say data sources and users). 
First enhancements that concern the use of SSR Mode-S, ADS-B, ADS-C and WAM have 
been explained in the paragraph 4 above. 

5.1 Traffic Information service – Broadcast (TIS-B) 
TIS-B is a service that provides current aircraft surveillance information to airborne systems 
(and usually the pilot). This is a broadcast service from ground stations sending surveillance 
information from ground to air. As such, there is no TIS-B data transfer from aircraft to 
ground and there is no acknowledgement of the reception of TIS-B messages. 
An Air Traffic Service Provider (ATSP) collects and correlates surveillance data from 
radar, multilateration systems and from ADS-B ground stations in order to provide a TIS-
B service. 
Then, individual surveillance systems data are fused in the sensor data processing, which 
is in charge of the transfer of fused tracks to the TIS-B system. This determines which TIS-
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B targets are required to be broadcasted (by considering the available radar and ADS-B 
data). Finally the TIS-B ground station broadcasts these targets at regular intervals in 
order to be received by properly equipped aircraft where the information is presented 
then to the pilot. 
The sensor data processing is in charge of the multi sensor data fusion as well as the 
validation of the incoming ADS-B reports against radar/multilateration surveillance data. 
The sensor data processing shall be enhanced so as to cope with the little latency which is 
allocated to the data fusion system (less than 1s) and the fact that it shall send tracks each 
time the track state vector is updated (“update mode” versus the above-mentioned  
“broadcast mode”). 

5.2 Gate-to-gate concept 
Typical airport surveillance systems consists in an Advanced – Surface Movement Control 
and Guidance System (A-SMCGS). These systems mainly use Surface Movement Radar 
(SMR) or Airport Surface Detection Equipment (ASDE) data, ADS-B and Airport 
Multilateration (MLAT) data inputs to build the airport tracking situation picture which is 
displayed to the controllers. 
The purpose of the gate-to-gate concept from a surveillance prospective is to provide the 
controller with a synthetic information that covers aircraft movements for ground, approach 
and en-route areas. Then, this requires the inclusion of the airport surface surveillance 
sensors as an input of the sensor data processing system. Enhancements of tracker 
functionalities are the following: 
• dedicated processing which deals with sensor reports anomalies (reflections, side-lobes, 

outliers and blunders), 
• correlation/association improvements to cope with high density multi targets 

environment, 
• target models which deals with new object dynamics, 
• target classification and airport map interfacing which helps in the appropriate 

selection of the models. 
Two solutions are proposed: 
• distributed architecture with the use of the outputs of an A-SMGCS system (described 

in paragraph 4.4 above), 
• centralized architecture with the fusion of data from all various airport data sources in 

the sensor data processing module (refer to figures 16 and 17 below). 
Figure 17 below does not show the ADS, WAM processing even if they are still persist in the 
complete integrated architecture. 
MLAT pre-processing complies with what is done in WAM pre-processing module. 
In normal conditions, mobiles (both aircraft and ground vehicles) are constrained to move 
only within some restricted areas of the airport (runways, taxiways and roads), each one of 
which imposing particular motion patterns and kinematics bounds. The restrictions can be 
either of a physical nature (shape of ways, obstacles, etc.) or rule-based procedures 
(permitted manoeuvres, circulation direction, etc.). 
Ground information is included in the two most important aspects of the estimation process: 
sensor data pre-processing (characterization of error covariance) and target dynamic 
modeling to improve the accuracy of final state vector estimations. 
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Fig. 16. Centralized air / ground data fusion architecture 
 

 
 

Fig. 17. SMR/ASDE pre-processing synoptic 
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Either distributed or centralized architectures can be chosen according to the kind of 
sensor to be integrated and to the tracking accuracy, continuity and integrity metrics to be 
verified. 

7. Conclusion 
Nowadays, the development of advanced ATM systems is realised by the implementation of 
advanced means of communication, navigation and surveillance for air traffic control 
(CNS/ATM).  
The definition of a new set of surveillance standards has allowed the emergence of a post-
radar infrastructure based on data-link technology. The integration of this new technology 
into gate-to-gate architectures has notably the following purposes: 
• fluxing air traffic which is growing continuously, 
• increasing safety related to aircraft operations, 
• reducing global costs (fuel cost is increasing quickly and this seems to be a long-term 

tendancy), and 
• reducing radio-radiation and improving the ecological situation. 
In this context, sensor data processing will continue to play its key rule and its software as 
well as its hardware architecture is expected to evolve in the meantime. The performance 
requirements of such a sub-system (accuracy, latency, continuity and integrity) is expected 
to become more and more strict in the incoming years. This issue will be discussed in a 
future chapter. 
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1. Introduction     
Sensor data fusion plays an important role in current and future vehicular active safety 
systems. The development of new advanced sensors is not sufficient enough without the 
utilisation of enhanced signal processing techniques such as the data fusion methods. A 
stand alone sensor cannot overcome certain physical limitations as for example the limited 
range and the field of view. Therefore combining information coming from different sensors 
broadens the area around the vehicle covered by sensors and increases the reliability of the 
whole system in case of sensor failure. 
In general, data fusion is not something innovative in research; a lot has been done for 
military applications, but it is rather a new approach in the automotive field. The state-of-
the-art in the automotive field is the fusion of many heterogeneous onboard sensors, e.g. 
radars, laserscanners, cameras, GPS devices and inertial sensors, and the use of map data 
coming from digital map databases.  
A functional model very similar to the Joint Directors of Laboratories (JDL), which is the 
most prevalent in data fusion, is used in automotive fusion. According to this model the 
data processing is divided to the following levels: signal, object, situation and application. 
All these levels communicate and exchange data through a storage and system manager.  
The JDL model is only a functional model which allows different architectures for fusion 
implementation. These architectures are divided in centralized, distributed and hybrid; each 
one has advantages and disadvantages.  
In the data fusion process the main focus is on object and situation refinement levels, which 
refer to the state estimation of objects and the relations among them, correspondingly. The 
discrimination between these levels is also made by using the terms low and high level 
fusion instead of object and situation refinement.  
There are several vehicular applications that fusion of data coming from many different 
sensors is necessary. These can be divided into three main categories: longitudinal support, 
lateral support and intersection safety applications.  
There is a current tendency to exploit also wireless communications in vehicles. Talking cars 
forming ad hoc networks may be useful in future applications to cover more safety cases 
that can not be covered so far, due to physical limitations of onboard sensors. In this way the 
electronic horizon and the awareness of the driver can be extended even to some kilometres 
away. A lot of ongoing research is focused on the design of efficient protocols and 
architectures for vehicular ad hoc networks and on the standardization of this kind of 
vehicular communication. 
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2. The revised JDL model 
Sensor data fusion systems can be met in several applications, from military to civilian. 
Despite the wide variety of all those application domains the data fusion functional model 
is common and it was developed in 1985 by the U.S. Joint Directors of Laboratories (JDL) 
Data Fusion Group. The goal of this group was to develop a model that would help 
theoreticians, engineers, managers and users of data fusion techniques to have a common 
understanding of the fusion process and its multiple levels. Since then the model was 
constantly revised and updated and the one described in Fig. 1 is from the 1998 revision 
(Hall & Llinas, 2001).   
 

 
Fig. 1. Joint Directors of Laboratories (JDL) model 

• Level 0: Preprocessing of sensor measurements (pixel/signal-level processing). 
• Level 1: Estimation and prediction of entity states on the basis of inferences from 

observations. 
• Level 2: Estimation and prediction of entity states on the basis of inferred relations 

among entities. 
• Level 3: Estimation and prediction of effects on situations of planned or 

estimated/predicted actions by the participants. 
• Level 4: Adaptive data acquisition and processing related to resource management and 

process refinement. 
The question raised is how this model can be applied in multi-sensor automotive safety 
systems (Polychronopoulos et al., 2006). The corresponding revised JDL model is depicted 
in Fig. 2. 
According to the automotive fusion community, level 4 does not belong to the core fusion 
process and hence it has been left out of the model in Fig. 2. A key topic in the automotive 
industry is Level 5, which corresponds to the Human Machine Interface, but it is not 
considered as part of the data fusion domain (see Fig. 1). While the scope of the first data 
fusion systems was to replace the human inference and let the system decide on its own, 
recently the human became more and more important in the fusion process and there are 
thoughts on extending the JDL model in order to include the human in the loop. 
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Fig. 2. Revised JDL model for automotive applications 

3. Fusion architectures 
The revised JDL model does not imply explicitly how the fusion process is implemented and 
how information among different levels is exchanged. Due to this fact a variety of 
architectures can be extracted from this functional model. Based on the way that information 
is fused, three different architectures may be implemented: centralized, distributed and 
hybrid. Each one has its own advantages which are mentioned in the following paragraphs 
and inside Table 1 (Blackman & Popoli, 1999). 

3.1 Centralized architecture 
This architecture is theoretically the simplest and ideally has the best performance when all 
the sensors are accurately aligned, that is when the sensors measure identical physical 
quantities. In this architecture the raw measurements from all sensors are collected in a 
central processing level (Fig. 3). On the one hand, this is the main advantage of the 
centralized architecture, that all raw data is available at the data fusion algorithm. On the 
other hand, the data fusion algorithm is much more complex compared to the one used in 
 

 
Fig. 3. Centralized Fusion Architecture 
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the case of distributed architecture, since it has to analyze and process raw data at a higher 
rate. The Multiple Hypothesis Tracking (MHT) algorithm is easily implemented since all 
data is available inside the central processor. 
Inefficiencies in this method can occur due to the large amount of data that have to be 
transferred on time in the central processor.  
 

Centralized Architecture Distributed Architecture 
• Accurate data association and 

tracking 
• Optimization of the estimated 

position and track of an object 
• Reduced weight, volume, power and 

productive cost with regard to 
distributed architecture (less 
processors used) 

• Increased HW reliability (less 
processors needed in the data fusion 
chain) 

• Logic and implementation are direct 
• Use of Multiple Hypothesis Tracking 

(MHT) algorithm is direct 

• Pre-processing of data reduces the 
load in the central processor 
(moderate data transfer 
requirements) 

• More efficient utilization of the 
individual sensor characteristics 

• Optimization of signal processing in 
each sensor 

• Least vulnerable to sensor failure 
• Flexibility in the number and type of 

sensors used which allows addition, 
removal or change of sensors without 
significant changes in the structure of 
the fusion algorithm  

• Cost effective since it allows 
additional fusion in an existing multi-
sensor configuration 

Table 1. Advantages of centralized and distributed architecture 

3.2 Distributed architecture 
The distributed fusion architecture is depicted in Fig. 4. The main advantage of a 
decentralized architecture is the lack of sensitivity regarding the correct alignment of the 
sensors. Additionally, this architecture has scalable structure, avoiding centralized 
computational bottlenecks, is robust against sensor failure and modular.   
In the case of distributed fusion pre-processed data is the input in the central processor. For 
each sensor the signal level processing can be carried out in the frequency domain or in the 
time domain or in pixel based (image processing) and the final input to the central processor 
will be the entity with its attributes, with a certain level of confidence for further fusion in 
central level. The hidden assumption made here is that the sensors are acting independently, 
which is not true for all the cases. Suffering from redundant information is the main 
drawback of this architecture.  

3.3 Hybrid architecture  
In hybrid architecture the centralized architecture is complemented from different signal 
processing algorithms for each sensor, which can provide also input to a backup sensor level 
data fusion algorithm (Fig. 5). The hybrid architecture keeps all the advantages of the 
centralized architecture and additionally allows the fusion of tracks coming from individual 
sensors in a sensor level fusion process. The main disadvantages of this hybrid approach are 
the increased complexity of the process, the potential high requirements in data transfer and 
the probable cross correlation between local and central trackers. 
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Fig. 4. Distributed Fusion Architecture 
 

 
Fig. 5. Hybrid Fusion Architecture 

4. Object refinement 
Object refinement lies on the first level of the JDL fusion model and it concerns the estimation 
of the states of discrete physical objects (vehicles in our case). The analysis in this paragraph is 
based on the distributed architecture that was described previously. The reason for selecting 
the distributed approach is mainly due to its modularity and theoretically easier adaptation to 
different vehicles (independently of the sensors used with slight further processing). Hence, it 
can be considered as the most promising approach for future vehicular applications, if a level 
of processing is carried out inside each sensor or sensor system and no raw data is used. The 
main parts of object refinement are the following: 
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• Measurements pre-processing 
• Sensor level tracking 
• Spatial & temporal alignment 
• Track-to-track association 
• Track level fusion algorithm 
• Road geometry estimation 

4.1 Measurements pre-processing 
Sometimes, in practical problems, when the sensors provide raw data a first step of pre-
processing is required. For example, the long range radar sensors, used for automotive 
applications, provide object data as output, which do not need further pre-processing, while 
the laserscanner sensors provide polygons that need to be classified to vehicles and road 
borders by implementing appropriate pre-processing.  

4.2 Sensor level tracking 
This function corresponds to the first boxes in Fig.4, which take as input the sensor 
measurements. In these boxes gating, association, filtering and local track management take 
place. First of all, for the tracking algorithm a motion model should be selected for updating 
the Kalman filter (the transition matrix of the Kalman filter). The motion models that are 
widely used in the automotive field are the constant acceleration (CA) and the constant 
acceleration and turn rate model (CTRA) that are described in detail in (Bar-Shalom & Li, 
1993; Blackman & Popoli, 1999).  
After the selection of the motion model follows the measurement-to-track association 
problem that is the problem of finding the best association between tracks and 
measurements. Several association methods exist and the most common are the Global 
Nearest Neighbor (GNN) and the Joint Probabilistic Data Association (JPDA). The former is 
one-to-one measurement to track assignment, while the latter uses more than one 
measurement to update one track and more than one track can be updated by the same 
measurement. The selection of one of the two methods depends on the quality and nature of 
the sensor measurements. For instance, for a tracking algorithm carried out for a long range 
radar sensor, the GNN approach is adequate (Blackman & Popoli, 1999; Floudas et al., 2007). 
Then, according to the results of the association problem, the track management module 
should decide for initialization of new tracks and confirmation or deletion of existing tracks. 
The decision process is based on simple rules of consecutive “hits” and “misses”, where a 
hit is defined when there is a successful association between at least one measurement and a 
track and a miss when a track remains without an assigned measurement for this cycle of 
the process (Floudas et al., 2008). 
The final step in sensor level tracking is the filtering and prediction function, where the new 
tentative tracks (unassigned measurements) and the previously existing confirmed tracks 
are filtered and outputted to the track-to-track association procedure. Also according to the 
selected motion model the future position of the updated tracks (new and existing) is 
predicted and the gate for further track processing is calculated. The scope of this gate is to 
reduce the computational load of checking all measurements with all tracks and just 
investigate the association of the tracks with measurements that fall inside their gates.   
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4.3 Spatial & temporal alignment 
The next step, right after the sensor level tracking, is the spatial and temporal alignment of 
all the tracks that are coming from the different sensors. For further association and fusion 
of these tracks a common coordinate system and time reference are needed. In most cases 
the coordinate system that is used has its origin in the geometrical center of the vehicle and 
the longitudinal axis is the x-axis. As a time reference the time provided by the Controller 
Area Network (CAN) bus is used. CAN is actually a network protocol, designed specifically 
for automotive applications, that allows communication among the electronic control unit(s) 
of each vehicle with other devices and sensors connected to it. All tracks that are coming 
from different sensors are fed into the CAN bus and in this way time synchronization is 
accomplished.    

4.4 Track-to-track association 
After the tracks that are coming from the sensor level tracking have been aligned in space 
and time, the track-to-track association is executed. The aim of the association is to decide 
which tracks that are coming from different sensors correspond to the same object. This is 
useful in cases that we have multiple sensors with common or complementary areas of 
surveillance. The multidimensional assignment approach is used in case that three or more 
sensors are observing the same object. For this kind of problems the Lagrangian relaxation 
method is directly applicable (Deb et al., 1997). 

4.5 Track level fusion algorithm 
There are several methods to update two or more tracks (using state vectors and covariance 
matrices) with track-to-track fusion; some of them are summarized in the following lines. 
Regarding the selection of fusion method for two tracks update several methods are 
applicable; starting from Simple Fusion (Singer & Kanyuck, 1971) that implies that the tracks 
are uncorrelated thus it is a suboptimal method. The Weighted Covariance Fusion (Bar-
Shalom, 1981; Blackman & Popoli, 1999) accounts for correlation between trackers (common 
process noise) producing the cross covariance matrix from the existing covariance matrices.   
The fusion finally selected when reliable tracks are available is the Covariance Intersection 
method (Uhlmann, 1995). Covariance Intersection method deals with the problem of invalid 
incorporation of redundant information.  
The Covariance Union method (Uhlmann, 2003) solves the problem of information 
corruption from spurious estimates. Covariance Union method guarantees consistency as 
long as both the system and the measurement estimates are consistent, but it is 
computationally demanding. Covariance intersection method is a conservative solution but 
superior to weighted covariance method.  
However in many practical cases the covariance of obviously not reliable tracks can lead to 
inaccurate estimates, and therefore a constant predefined weight can be used for these cases. 
Finally, according to the road environment, the computational load, the process noise, the 
correlation of sensor measurements and the independency assumption, the proper method 
for fusion can be selected.  

4.6 Road geometry estimation 
The role of object refinement is not only to estimate the state of each vehicle, but also to 
estimate the status of other objects in the road environment such as the road borders. 
Parallel to sensor level tracking a road geometry estimation algorithm is running. The 
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mathematical model for the road geometry representation could be either the clothoid 
(Lamm et al., 1999) or the B-Splines (Piegl & Tiller, 1996) model. The basic sensor used for 
extracting the road geometry is a camera. This camera, after image processing, provides 
information about the lanes, the lane markings, the curvature of the road etc. and utilizing 
the clothoid or the B-Splines model a first estimation of the road geometry is calculated.  
Moreover, the road geometry is estimated based on information coming from a digital map 
database. The current position of the vehicle in the map is extracted based on a GPS or a 
differential GPS sensor and advanced map matching techniques. A way of extracting the 
road geometry using digital maps is described in detail by (Tsogas et al., 2008a). 
The fusion of these estimations to obtain the final road geometry estimation is carried out 
using a fuzzy system (Jang et al., 1997) or a Dempster-Shafer (Dempster, 1968; Shafer, 1976) 
reasoning system. Additionally, other active sensors, e.g. radars or laserscanners, can be 
used as input to the fusion process to increase the robustness of the system 
(Polychronopoulos et al., 2007; Tsogas et al., 2008a). The fusion process is based on the 
assumption that camera and laserscanner data is more reliable close to the vehicle, while 
map data is more accurate far ahead from the vehicle.  

5. Situation refinement 
Situation refinement belongs to the second level of the JDL model and it refers to the 
relations among the various objects in the road environment.  Quite often the term high 
level fusion is used instead. Within situation refinement the meaning of the current situation 
around the vehicle is tried to be comprehended. Some questions that are dealt with here are: 
‘Is this group of slow moving vehicles involved in a traffic jam?’, ‘Are the trajectories of two 
vehicles approaching each other intersecting? Is there a danger of collision?’ and so on. 
The three most known theories that are used in high level fusion, proportional to the 
problem, are: Fuzzy systems (Dubois & Prade, 1980; Jang et al., 1997), Bayesian probability 
theory (Bernardo & Smith, 2000; Bolstad, 2007) and Dempster-Shafer theory (Dempster, 
1968; Shafer, 1976). In this chapter, an overview of the main parts of situation refinement 
will be outlined, but the selection of the most appropriate theory is not explicitly indicated. 
The outcome of situation refinement enriches the environment model including additional 
attributes of the ego-vehicle and other objects (e.g. predicted paths, detected maneuvers).  
Summarizing, it can be said that situation refinement is the basis to assess the risk of present 
and predicted future situations, given that all involved participants act in a predictable way. 
Finally, situation refinement can be uncertain due to incompleteness of knowledge and 
uncertain information sources (Tsogas et al., 2007; Tsogas et al., 2008b). 
The main parts of situation refinement discussed here, are the following: 
• Path prediction 
• Maneuver detection 
• Driver intention 
• Assignment of a lane to an object 
• High level events 

5.1 Path prediction 
Path prediction is a key component of situation refinement and it can be divided into three 
parts. The first part is to calculate the future path of the vehicle based on its current 
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dynamical state and the adoption of a specific motion model. This model could be the 
Constant Velocity (CV), Constant Acceleration (CA), Constant Turn Rate (CTR) Constant 
Turn Rate and Acceleration (CTRA) or Bicycle Model (BM) (Liu & Peng, 1996; Pacejka, 
2006), a combination of two or three of these models with the use of an Interacting Multiple 
Model (IMM) filter or a dynamically adaptive rule-based model. A Kalman Filter is also 
useful for smoothing the vehicle’s dynamics (e.g. speed, yaw rate) and reducing the 
measurement noise. The second part consists of the extraction of the future path based on 
the estimation of the road borders and assuming that the driver will follow the road 
geometry without performing any maneuver. Moreover in this part a dedicated motion 
model is required. Almost always a CV model suffices. The third and more sophisticated 
part is the combination of the first two parts. The fusion of these paths can be performed in 
several different ways. The simplest way is to use a weighted average estimation. For the 
calculation of the short term future path the dynamic state of the vehicle is more important, 
while for the long term path the estimation of the road geometry has major influence. 
Significant work on this issue has been carried out by (Polychronopoulos et al., 2007).     

5.2 Maneuver detection 
The purpose of this algorithm is to identify the maneuver performed by the driver. This 
calculation can be realized with a Dempster-Shafer reasoning system. At the beginning the 
set of the maneuvers that the system can detect should be formed. An example set is the 
following: 

Ω={free motion, lane change, overtaking, following another vehicle} 
According to the above set and the information sources, the Dempster-Shafer reasoning 
system can estimate the actual maneuver that is performed by the vehicle. The information 
sources could be: the estimated time that the vehicle will cross the lane, the minimum 
distance of the vehicle to the lane marking, the time in which this minimum distance will be 
achieved, the curvature of the road, the curvature of the vehicle’s path and the distance from 
the vehicle in front. For each one of these sources a basic probability assignment function 
will be assigned for calculating the evidence masses. Then the fused evidence masses will be 
calculated and the belief and plausibility values will be extracted in order to evaluate the 
final confidence. 
Here is an example, how the algorithm calculates the performed maneuver: First of all let’s 
assume that the ego vehicle is overtaking another vehicle. The time to cross the lane should 
have very small values and the ego vehicle should be following another vehicle in relatively 
small distance. If this is the input information to the system, then the algorithm should 
detect an overtaking maneuver with high confidence. 

5.3 Driver intention 
Another important function in the situation refinement domain is checking whether the 
maneuver performed by the driver was intended or not. This can be of great importance 
especially for the Human Machine Interface (HMI) application. For example, if the output of 
the driver intention module is that the current performed maneuver is not intended, then 
there is a high possibility of an upcoming unpleasant situation, so the HMI system should 
intervene and inform the driver before it is too late. A Dempster-Shafer or Rule based or 
Fuzzy inference system can be used for identifying the driver’s intention. The input sources 
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to this system comprise the output of maneuver detection algorithm, the type of the road 
(rural, highway, construction area etc.), the curvature of the road, and other vehicle data 
such as the status of the indicator (ON/OFF), the velocity etc.  
The formulation of the rules in a rule based system or the membership functions in a Fuzzy 
inference system or the basic probability assignment functions in a Dempster-Shafer system 
are based on simple guidelines. For instance, the possibility for intended lane change in 
sharp-curved road segments is lower than in cases of straight road segments. When the 
curvature exceeds a threshold then it is very unlikely that the driver will change lane. 

5.4 Assignment of a lane to an object 
This part of situation refinement is responsible for assigning a lane index to every fused 
object relative to the future path of the ego vehicle. It indicates the relationship among the 
detected objects in the road, the lanes of the road and the ego vehicle. A Dempster-Shafer 
reasoning system is applicable also in this case.  
The sources that can be used to estimate the assigned lane index to the object are the 
following: 
• offset of the position of each vehicle from the position of the ego vehicle exploiting the 

future path calculated previously using different motion models (CA, CTR & CTRA) 
• distance of the detected object from the ego vehicle 
The offset is calculated using the future trajectory of the ego vehicle and the coordinates of 
the detected object. 
The basic probability assignment functions are formulated based on the following rules: 
• The closer the detected object is located to the lane borders, the lower evidence mass is 

assigned to the corresponding proposition. 
• The further the detected object is, the lower the evidence mass assigned to the 

corresponding information source is. 

5.5 High level events 
Since situation refinement is also called high level fusion, high level events such as 
estimation of weather conditions and traffic, should be taken into account within this fusion 
level. Both the estimation of the traffic density and of the weather conditions could be based 
on a Bayesian network approach (Jensen & Nielsen, 2007; Korb & Nicholson, 2004). 
As far as the traffic is concerned, it could be classified in light, medium or dense traffic. For 
this calculation the fused objects from object refinement as well as the road attributes such 
as lane markings, road offset, lane offset, road width, lane width and heading, curvature 
and curvature rate of the corresponding segment are needed. 
The estimation of the weather conditions (fog, rain, icy road) is much more complex, 
because for this kind of calculations, input from specific sensors is needed. 

6. Application and use cases 
In the automotive field there are several applications that fusion of data of various sensors is 
necessary. For all around coverage and for supporting at the same time a lot of different 
applications, data fusion becomes a complicated procedure. The sensors used are very 
heterogeneous and vary in quality. Some sensors are of poor quality, others, like the long 
range radars, are of high quality but due to their limited field of view support from other 
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sensors with wider coverage area is necessary. The synchronization of all these sensors, the 
processing power needed (many embedded PCs), the space they need for installation in the 
car and the cost comprise constraints for the fast incorporation of such systems in the 
market. Despite all the above facts, the key challenge in all these applications which would 
lead the future active safety systems in success is a robust and reliable data fusion.  
 

 
Fig. 6. Coverage areas for various automotive safety applications 

The figure above shows many different automotive safety applications and their coverage 
areas. It is obvious that there is a significant variety of applications in the automotive field, 
such as Adaptive Cruise Control (ACC), front/rear collision mitigation, parking aid, 
front/rear collision avoidance, blind spot support, lane change and lane keeping support, 
vulnerable road users (e.g. pedestrians, cyclists) protection and so on.  
The aim of this chapter is not to refer to all these applications but to highlight the most 
important ones and these that will contribute to the reduction of road accidents and 
respectively to the fatalities.  

6.1 Intersection safety 
Intersections comprise a major accident hotspot according to statistics, as proved by the data 
taken out of CARE2005 and provided by Renault. Above 40% of all injury accidents in 
Europe take place at intersections, while approximately 25% and 35% of the fatalities and 
the serious injuries come out from intersections respectively. The aim of intersection safety 
applications is to assist and protect not only the drivers, but also the vulnerable road users 
(e.g. pedestrians, cyclists). Accident scenarios at intersections are amongst the most 
complicated, since intersections are frequented by many and different road users 
approaching from different directions. Some examples of accident scenarios are the 
following: 
• Collisions with oncoming/crossing traffic while turning into or crossing over an 

intersection 
• Violation of the traffic light (red light runner) 
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For this type of applications advanced on-board sensor systems are necessary, but even such 
sensors maybe don’t suffice. The exploitation of wireless cooperation among the road users 
and especially infrastructure support at intersections is more than essential. In this 
paragraph the analysis will be restricted on the in-vehicle systems. 
An example of an equipped vehicle with advanced on-board sensors for intersection 
scenarios is depicted in Fig. 7.  
 

 
 

Fig. 7. Equipped vehicle for intersection safety applications 

The key factors at intersection are the use of sensors with wide field of view, like the 
laserscanners, and highly accurate vehicle localisation. The laserscanner can detect other 
vehicles, pedestrians, cyclists and natural landmarks. The camera, after image processing, 
can extract information about the lane markings. Highly accurate vehicle localisation can be 
performed by fusing information from camera, laserscanner and map data extracted from a 
detailed map of the intersection with the use of a GPS/DGPS sensor.  

6.2 Safe speed and safe distance 
This application belongs to the more general category of longitudinal support systems, 
which comprise Adaptive Cruise Control (ACC), front/rear collision avoidance, stop and go 
etc. At this point it should be mentioned that ACC systems were the first systems 
introduced to a vehicle, which made use of a long range radar sensor. The aim of ACC was 
to automatically adjust the vehicle’s speed and distance from the vehicle ahead. Safe speed 
and safe distance application is an extension of the traditional ACC system. 
In Europe numerous car accidents happen due to inappropriate vehicle’s speed or headway. 
According to European Transport Safety Council, more than 40% of fatal accidents are 
caused by excessive or inappropriate speed. The higher impact speed the greater likelihood 
of serious and fatal injury. In addition, rear-end and chain accidents represent a significant 
part of road accidents in Europe as well. 
The aim of a safe speed and safe distance application is to aid the driver in avoiding 
accidents related to excessive speed or too short headway. Specifically, the sensorial suite of 
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such a system consists of a long range radar and two medium range radars for obstacle 
detection, a vision-based system for lane detection and a combination of differential GPS 
and digital map data for global positioning.  
Figure 8 highlights an equipped vehicle for safe speed and safe distance applications.   
 
 

 
 
Fig. 8. Equipped vehicle for safe speed and safe distance applications 

Data fusion takes place at multiple levels in order to provide an enhanced view of the 
environment. Differential GPS and inertial sensors are fused together with map data for 
acquiring a more accurate positioning. Data from the radars is fused and a more complete 
representation of the environment is achieved. Also for this application the predicted paths 
of the host vehicle and other vehicles play a key role.  

6.3 Lane keeping support 
Lane keeping support may be considered as a member of the lateral safety applications 
family. This category comprises also other important applications such as lane change 
assistance, lateral collision avoidance and lane departure warning. The aim of lane keeping 
support systems is to assist the driver to keep the vehicle safely in its own lane. For this 
reason vision-based sensing systems are utilized, which observe the curvature of the road 
and the position of the vehicle in the lane. In contrast to other warning safety systems, the 
lane keeping support system utilizes an actuator, which applies a vibration to the steering 
wheel in order to keep the host vehicle in the lane.  
The objective of lane keeping support systems is not to control the vehicle completely 
automatically, but mainly to give the driver an intuitive support by turning the steering 
wheel in the right direction. However, the driver has to react and take control of the vehicle 
so as to avoid lane departure. 
If the system detects a lane departure, it issues a warning to the driver and at the same time 
it activates the steering actuator. This approach exploits data fusion between camera, digital 
maps and other active sensors like radars or laserscanners. The fact that the system 
comprises an actuator means that the system is a hard real-time system. This in turn poses 
tight requirements on the performance of the data fusion algorithms. The figure below 
shows an equipped vehicle that supports lane keeping applications. 
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Fig. 9. Equipped vehicle for lane keeping support applications 

7. Future trends 
In the past decade the advances in autonomous sensor technologies and the major objective 
of the European Union to reduce to a half road accidents and fatalities by 2010, led to the 
development of advanced driver assistance systems. The fusion of data coming from 
different advanced in-vehicle sensors was initially in the centre of this attempt. However, 
this approach suffers from serious limitations. Specifically: 
• the perception environment of the vehicle cannot go beyond the sensing range 
• the sensor systems cannot perform well in all environments (the urban roads comprise 

a major challenge)  
• in several cases the system is not able to perceive the situation in time in order to warn 

the driver and suggest a corrective action 
• the cost of the sensor systems is too high and so their installation is feasible only at 

luxurious vehicles. 
However, recently there is a lot ongoing research on cooperative vehicles, which focuses on 
overcoming all the above limitations. There are two different types of communication: 
roadside-to-vehicle and vehicle-to-vehicle, as pointed out by CAR 2 CAR communication 
Consortium (Fig. 10). In addition, the exploitation of wireless communications in vehicular 
environments will enhance and expand currently available safety and comfort applications 
(e.g. tunnel support, upgrade of intersection safety, internet in the vehicle, ecological 
driving). A cooperative collision warning application is presented in detail by (Lytrivis et 
al., 2008). 
The limited bandwidth, security issues, privacy, reliability and propagation are some of the 
emerging disadvantages of the wireless connectivity in vehicles. For all the above reasons 
new organizations, initiatives and working groups, such as DSRC, WAVE, C2C-CC, were 
created.  
Dedicated Short Range Communications (DSRC) is a short to medium range (1000 meters) 
communications service that supports both public safety and private operations in roadside-
to-vehicle and vehicle-to-vehicle communication environments by providing very high data 
transfer rates. It operates at 5.9 GHz and provides a spectrum of 75 MHz. 
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The design of an effective communication protocol that deals with privacy, security, multi-
channel propagation and management of resources is a challenging task that is currently 
under intensive scientific research. A dedicated working group has been assigned this 
specific task by IEEE and the ongoing protocol suite is the IEEE 1609, mostly known as 
WAVE (Wireless Access in Vehicular Environments). 
The CAR 2 CAR Communication Consortium (C2C-CC) is a non-profit organization 
initiated by European vehicle manufacturers, which is open for suppliers, research 
organizations and other partners. The goal of the C2C-CC is to standardize interfaces and 
protocols of wireless communications between vehicles and their environment in order to 
make the vehicles of different manufacturers interoperable and also enable them to 
communicate with road-side units. 
 

 
 

Fig. 10. Vehicles cooperating with other vehicles and roadside units (http://www.car-to-
car.org/index.php?id=131) 

Additionally, new challenges are posed to the data fusion process. The association and 
synchronization of data from on-board sensors together with the wireless network data is 
the main challenge. Moreover, the manipulation of delayed information and the reliability 
of the information transferred via the network are other important issues. 

8. Conclusion 
This chapter has summarized the state-of-the-art in sensor data fusion for automotive 
applications, showing that this is a relatively new discipline in the automotive research area, 
compared to signal processing, image processing or radar processing. Thus, there is a 
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tendency of using already available knowledge from other research areas, such as the 
military or robotic areas. The initial and the revised JDL functional fusion model, applicable 
for automotive industry, have been highlighted. Several discrete architectures were 
described. On the one hand, it can be stated that central fusion architecture, which uses 
more sensor data at the processing level, is able to deliver the higher performance. On the 
other hand, the processing demands and the integration effort are much more significant 
compared to the distributed fusion architecture. Moreover the two main levels of fusion, 
object and situation refinement, and their corresponding functions were outlined. 
Additionally, some automotive applications which make use of data fusion were described. 
Finally, a brief report about the current research activity and the new challenges derived 
from the exploitation of wireless communications were indicated.       
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1. Introduction     
Multisensor data fusion and integration is a rapidly evolving research area that requires 
interdisciplinary knowledge in control theory, signal processing, artificial intelligence, 
probability and statistics, etc. Multisensor data fusion refers to the synergistic combination 
of sensory data from multiple sensors and related information to provide more reliable and 
accurate information than could be achieved using a single, independent sensor (Luo et al., 
2007). Actually Multisensor data fusion is a multilevel, multifaceted process dealing with 
automatic detection, association, correlation, estimation, and combination of data from 
single and multiple information sources. The results of data fusion process help users make 
decisions in complicated scenarios. Integration of multiple sensor data was originally 
needed for military applications in ocean surveillance, air-to air and surface-to-air defence, 
or battlefield intelligence. More recently, multisensor data fusion has also included the non-
military fields of remote environmental sensing, medical diagnosis, automated monitoring 
of equipment, robotics, and automotive systems (Macci et al., 2008).  
The potential advantages of multisensor fusion and integration are redundancy, 
complementarity, timeliness, and cost of the information. The integration or fusion of 
redundant information can reduce overall uncertainty and thus serve to increase the 
accuracy with which the features are perceived by the system. Multiple sensors providing 
redundant information can also serve to increase reliability in the case of sensor error or 
failure. Complementary information from multiple sensors allows features in the 
environment to be perceived that are impossible to perceive using just the information from 
each individual sensor operating separately. (Luo et al., 2007) 
Besides, driving as one of our daily activities is a complex task involving a great amount of 
interaction between driver and vehicle. Drivers regularly share their attention among 
operating the vehicle, monitoring traffic and nearby obstacles, and performing secondary 
tasks such as conversing, adjusting comfort settings (e.g. temperature, radio.) The 
complexity of the task and uncertainty of the driving environment make driving a very 
dangerous task, as according to a study in the European member states, there are more than 
1,200,000 traffic accidents a year with over 40,000 fatalities.  This fact points up the growing 
demand for automotive safety systems, which aim for a significant contribution to the 
overall road safety (Tatschke et al., 2006). Therefore, recently, there are an increased number 
of research activities focusing on the Driver Assistance System (DAS) development in order 
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to reduce the driver’s workload and prevent driving accidents and several types of safety 
systems have therefore been proposed to help lessen the danger and assist the driver (Hsieh 
et al., 2007). Current technology field of the automotive industry focuses on the 
development of active safety applications and advanced driver assistant systems (ADAS) 
instead of passive safety systems. Passive safety systems such as seatbelts and airbags 
provide protection in the case of collision; more recently however, active safety systems 
have been introduced to help the driver avoid collisions in the first place. Nowadays, 
systems such as lane departure warning and rear-end collision avoidance have been 
introduced (Amditis et al., 2006); (Mammar et al., 2006). These active safety systems are 
required to interact much more with the driver than passive safety systems, creating a 
closed loop between driver, vehicle, and the environment. Examples of such systems could 
be found in the Laboratory for Intelligent and Safe Automobiles (LISA) (Trivedi et al., 2007).  
An ADAS shall support the driver in his/her task to drive the vehicle providing additional 
information or warning when encountering any dangerous situation. The system should be 
equipped with various types of sensors to observer the environment around the vehicle. For 
example, radar and laser scanners are sensors used to measure distance and velocity of 
objects, and video cameras are used to detect the road surface and lane markings or to 
provide additional visual information (Leohold, 2004). This aspire a reduction or at least an 
alleviation of traffic accidents by the means of collision mitigation procedures, lane 
departure warning, lateral control, safe speed and safe following measures (see figure 1).  
 

 
Fig. 1. Safety zone around the vehicle by implementation of multi sensory (PreVENT, 2006) 

This chapter describes data fusion concepts, an applicable model, paradigm of multisensor 
fusion algorithms, current sensor technologies and some applications such as object 
tracking, identification and classification and a providence view on next-generation car 
safety and driver assistance systems. The later applications are particularly suitable to 
provide an overview of multisensor data fusion starting from the plain detection of multiple 
objects around a given host vehicle to inferring: the position and speed of possible obstacles, 
the type of objects in the road environment, the relative movement, and distribution of 
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obstacles over a given area, the early detection of a possible collision, possible suggestions 
for prompt and effective countermeasures (e.g., sudden braking, steering wheel adjustment, 
etc.). In this chapter, a new framework of active ADAS is proposed. The framework 
implements a data-fusion architecture of multiple sensors, including several key 
functionalities in ADAS, and related applications for different driving conditions and 
vehicle’s surround as well as drivers state monitoring to detect the amount of driver’s 
fatigue and his/her inattention. Our proposed ADAS consists of functionally isolated 
sensors to observe the environment around the vehicle and the vehicle inside situation. 
Commonly used sensors in an ADAS are included in the framework and the multi-sensor 
selection is formulated as an optimal programming problem and implemented in a two 
relevant simulator. The Ultimate goal of proposed ADAS is to create safety zones around 
vehicles by the means of embedded multisensor data fusion systems that sense 
environment, so detects the type and significance of impending dangers. Depending on the 
nature of the threat, an active and preventive safety system will inform, warn, and actively 
assist the driver to avoid an accident or mitigate its possible consequences. 

2. Requirements of advance driver assistance systems 
Many existing robotics technologies apply to intelligent assistance driving; however, much 
research works neglect the preview of the driver and driver response delay. Moreover, the 
behavior of high-speed vehicles differs greatly from other robots. To obtain safe driving, a 
driver should be in the center of the “safety analysis” not on the center of driving process; 
that is one of the key differences of our method than other researches. Driver’s response 
delay, together with other factors, restricts the driving path of a vehicle. In proposed model 
not only we use multiple and optimal sensor fusion technique but also apply the driver’s 
behavior and degree of his/her alertness in overall control of the host vehicle in a real time 
manner through a supervisor unit (Rezaei Ghahroudi & Fasih, 2007). The supervisor unit is 
a decision unit that may sometimes directly interpose the actuators to control the vehicle in 
dangerous situations. 
The other key difference in this method, unlike other researches that focused in one 
particular application, is that we believe in order to control the vehicle similar to an expert 
and sober driver, the ADAS systems should not work independently. Instead, after sensor 
data fusion and decision making, it should run several driving assistance system 
simultaneously for reliable and robust control of the vehicle. It means in a real word, several 
actuators should take an appropriate action simultaneously, while most of current DAS 
systems on the market just carry out one single system at a time; for example Automatic 
Cruise Control (ACC) or Park assistance each of them act individually. For better 
understanding, imagine the following example. Encountering an unexpected obstacle in the 
road will cause heavy braking by all of the vehicles in all of the lanes; this may bring about 
deviation of other vehicles in an unpredictable way. In such situations, in addition to 
decreasing speed, the system should correct its direction (steer angle) to mitigate from 
accident or lessen the scathes and in ideal state, preventing incidence (Figure 2).  
In figure 2 there are four successive steps come one by one. At First because of e.g. falling a 
tree or collapse of hillside (unpredictable obstacle) on the road, the entire lines blockaded 
and consequently all the vehicles should stop immediately. Suddenly ACC system of the 
host vehicle (Green car) detects that the foreside vehicle (blue car) has stopped (step1). Then 
emergency braking system starts to decrease the speed of the vehicle (step2). During step 
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two, side ultrasonic sensors detect a car on the left side that is coming close and close (step 
3), so the supervisor unit decides to intervene and correct the steer angle to escape from the 
left car (silver car) and correct its path (step 4).  
 

 
Fig. 2. Schematic of a typical accident in real world 

It means, in such cases it needs to act simultaneously several driver assistance systems such 
as emergency braking system, steer angle correction, lateral collision warning system, front 
monitoring and keep in lane monitoring. Now let’s discuss the design and development of a 
multi sensor selection in order to cover most of essential vital driver assistance systems in a 
dynamic scenario. In order to cover different driving conditions, a set of sensor should be 
established for identifying the driving environment.  

3. Optimal sensor selection and multi sensor assembly 
In a typical scenario, a combination of vehicles in different position of the road are facing 
various driving conditions such as driving straight, turning, overtaking a vehicle, meeting 
pedestrians, etc. For these different conditions, the ADAS equipped vehicle need different 
sets of sensors to detect environment-related information and determine a correct driving 
condition. The decision on selecting a proper set of object-detecting sensors should be made 
based on the capability of available sensors and real-time driving condition. Now, In order 
to formulate and simulate the selection of object-detecting sensors with respect to various 
driving situations, the sensors should be capable of evaluating Driver commands (steer angle 
setting, backing, changing lane, turning a corner and overtaking a vehicle), Relative Vehicle’s 
Velocity, Traffic Flow (Low or Dense), and Driver’s behavior (Observant, sleepy, drowsy, 
aggressive, using cell phone, etc.), (Hsieh et al., 2007).  
The combination of these parameters will be used to reflect a proper diving situation 
encountered by the driver. So we need an optimal selection of some appropriate sensors to 
monitor all these four factors (Kaempchen and Dietmayer, 2003). But, which sensor is better 
and optimal? Image sensors have some drawbacks, such as low ability of sensing depth and 
advantage of higher ability of discrimination than LIDAR and RADAR. Radar shows limited 
lateral spatial information because it is not available at all, the field of view is narrow, or the 
resolution is reduced at large distances. Although LIDAR has a wide view field that solves 
part of the previous problems, there are other problems such as low ability of 
discrimination, clustering error, and recognition latency. These restrictions of the different 
sensor types explain the attention given to sensor fusion in research on object detection and 
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tracking (Cheng et al., 2007). According to advantages and drawbacks of mentioned sensors 
and various real driving situations, we implement an optimal selection of state of the art and 
most typical sensors that can be classified into four different types: Radars (RL, RS), Laser 
scanner (L), Camera Sensors (C) and Ultrasonic Sensor (U). In this project, 16 object-
detecting sensors among four types of sensors are considered to be assembled on the test 
vehicle (Figure 3) 
   

 
Fig. 3. Sensor placement with full coverage, redundancy and sufficient overlapping area 
The sensor network assembly consists of one Long Range Radar-LRR (2nd generation long 
range radar by Bosch) mounted for front monitoring (RL), five Short Range Radar sensors 
(from M/A-COM / Tyco Electronics) four of them in both sides and one in the front (RS). 
Four laser scanners (from IBEO GmbH) with broad range and wide viewing angle, two of 
them in front and the others for rear side (L), three CMOS cameras INKANSC640PG by 
Aglaia GmbH (Amditis et al., 2006) two of them in side mirrors for rear and blind spot 
coverage and one in the middle of the front windscreen to face forward (CL); A short range 
monocular camera for backside (CS), and finally two ultrasonic on both sides (U).  The 
placement of these object-detecting sensors and the main characteristics, such as detecting 
distance and the field of view, for these object-detection sensors can be seen in figure 3. All 
the sensors transmit data through a CAN-interface (Wahl & Doree, 2000) to the perception 
layer. 
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The placement of these 16 object-detection sensors are based on the following six main 
functionalities required in a state of the art ADAS. The six key functionalities are adaptive 
cruise control (ACC), lane departure warning (LDW), lane change assistant (LCA), rear view 
(RV), lane keeping assistance (LKA) and Emergency Braking System (EBS).  
 

          
Fig.  4. Active sensors for lane change and overtaking (Top) and vehicle following with safe 
distance and safe speed according to ACC set point (Bottom). 

These functionalities are required to match seven scenarios of straight, back, follow a 
vehicle, overtake a vehicle, lane change, turn corner, and emergency stop.  
• Driving straight is the forward driving on a lane without leaving the lane. 
• Driving back is the backward driving without leaving the lane. 
• Following a vehicle is the driving accompanied a vehicle which driving in the front and 

keeping a proper relative distance and velocity. 
• Overtaking a vehicle is cutting in a road by overtaking a vehicle which is driving in the 

front and there are left overtaking and right overtaking when driving on a road. 
• Lane changing is the straight driving but changing the lane to another lane. Turning 

corner is to make a turn when driving on a road including intersection and forked road 
and there are left turning corner and right turning corner. 

• Emergency stop is reducing the speed with a logical deceleration in order to eliminate 
an unexpected obstacle. 

Figure 4 shows two sample scenario and active sensors for Overtaking (Top) and ACC and 
vehicle following (Bottom) schemes.  
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4. Driver assistance framework based on multi sensor data fusion 
After implementing sensor assembly, a practical framework needs to be designed. We 
assume a driver assistance system as a vehicle–driver–environment interactive closed-loop 
system; moreover, we focus on not only the current situation of vehicle and driver, but also 
the future situation by predicting the potential collision probability distribution. In this 
framework, onboard sensors provide real-time information about drivers, traffic 
environment, and vehicles. How to configure these sensors is closely related to the 
application domain. For example, for multisensor ACC systems, radar and camera often 
suffice, but for pedestrian protection systems, an infrared sensor is essential to robust 
detection under various weather conditions.  
 

 
Fig. 5. Overall Architecture of Driver Assistance System based of sensor data fusion 

As shown in figure 5 on the basis of various factors, an integrated interactive road safety 
analysis framework is introduced, where the system consists of the following modules:  
1-Sensor Layer: including onboard environment monitoring sensor, inside driver 
monitoring sensor and vehicle body sensor e.g. vehicle ego-state and vehicle dynamic 
module. In General, the external sensors capture object appearance, range, and sound 
outside a vehicle, a vision based system monitor and record driver’s behavior, and the 
interior sensors collect vehicle state, such as speed, acceleration, and steering angle. Figure 6 
and 7 describe characteristics of two main typical sensors required for this system, LASER 
and RADAR respectively (Schneider, 2005), (Langheim et al., 2001) 
The main technical characteristics of a typical Long Range Radar sensor are: 
• Frequency: 76-77 GHz 
• Range: 1-150 m 
• Search Area: 12° 
• Speed measurement precision: < 0.2 km/h 
• Angular Precision: < 0.3° 
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Fig. 6.  Bosch 2nd Generation Long Range Radar Sensor Unit 
 

    
Fig. 7. ALASCA XT, the last Laserscanner from IBEO Automobile Sensor GmbH 

The main characteristics of the current laser sensor are:  
• Scan Frequency: 12.5 Hz or 25 Hz 
• Horizontal Viewing angle: up to 240° field of view  
• Effective Distance range (at reflectivity 5 %): up to 40 m 
• Standard deviation of measured distance:  +/- 5 cm 
• Eye-safe laser (laser class 1)  
2- Perception Layer: this layer aims to give a realistic representation of the environment to 
the applications; it can be seen as an intermediate layer between the sensorial sub-system 
and the system applications. It includes sensor fusion of previous layer in order to 
environment modeling, overall sensor fusion, and future situation assessment.  
The role of the perception layer is to:  
• Carry out a perception enhancement of the external scenario, even independently on 

any given application 
• Describe the environment and the traffic scenario (obstacles and host vehicle dynamics, 

road geometry, etc.) in a formal way. 
• Support the specific needs of the ADAS system in the reconstruction of the environment 
• Act as an intermediate layer between sensors and functions, defined by the I/O 

protocols and interfaces.  
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The main functions of environment modeling and sensor fusion are to sense and recognize 
obstacles, lanes, pedestrians and traffic signs, etc.; where sensor information of different 
kinds is fused to model the environment. For the future situation assessment module, future 
road safety situations are assessed by combining traffic rules, vehicle dynamics, and 
environment prediction. Since the safety distance varies with the speed of a host vehicle, we 
adopt preview time rather than safety distance as the measurement of safety response. The 
safety response time is given as (Cheng et al., 2007): 

v
dddT svr ++

=0
 

(2) 

Where dr is the distance required to respond to the nearest object due to driver response 
delay, dv is the distance to slow down, ds is the safety distance between the host vehicle and 
obstacles, and v is the speed of the host vehicle. 
3- Decision making agents layer: as its names implies, perform decision carrying out one or 
several various driver assistant depending the status of previous layers. For example to 
make decision about “safe distance” in following a vehicle , it refers to the decision about 
determining a distance in meters that needs to be maintained to a vehicle ahead in order to 
avoid a collision in case the vehicle suddenly brakes. Safe-distance decision depends on a 
number of factors such as vehicle type, reaction time, braking distance, road surface and 
traffic conditions, driver awareness, etc. Over the years, different criteria have been 
suggested to determine a safe following distance for driving. Often cited is the two seconds 
rule illustrated in Figure 8 (Irion et al, 2006). 
Decision-making agents have two functions: first to generate warning strategies for warning 
systems, such as route guide systems, haptic alert and warning display devices, and the 
secondly to plan the actions of the actuators to control the path of the host vehicle. As we 
know, the parameters of a vehicle model are affected by many factors and vary with the 
outside environment. Therefore, real-time learning algorithms using fuzzy logic have been 
applied to solving lateral and longitudinal control problems for a long time and have shown 
good performance (Cheng  et al., 2007). 
 

 
Fig. 8. Safe Distance decision by applying two seconds rule  

4-Action Layer: Including two primary sections HMI and Actuators. This layer is 
responsible for handling the output from all the different applications in order to carry out 
appropriate warning and intervention strategies and then, to pass the information, 
suggestions or alarms to the driver through a given HMI. An in-vehicle HCI module 
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presents visual, sound and haptic warning information from the decision module and the 
path planning module to the driver. On the other hand action planning affects on actuators 
to prevent collisions and mitigate the dangerous. These are our final objective in order to 
approach to safe driving.  

5. Sensor fusion processing 
In this section we focus on data fusion and some common terminologies in literatures 
(Strobel & Coue, 2004) that take place in the perception layer. In general, sensor data fusion 
means processing steps which take the sensor data of several single sensors and combine the 
information from these sensors to a common and a certainly better result comparing with 
the outcome of each single sensor’s processing could provide. This effect of getting better or 
more adequate results out of sensor data fusion compared to single sensor processing is 
called ‘synergy’ or ‘synergetic effect’. Figure 9 shows the process of ‘multi sensor 
processing’, starting with the sensor data acquisition. Next, the sensors processing, divided 
into several tasks, as ‘Calibration, ‘Feature Extraction’, ‘Object Detection’, etc., begins to 
analyze the sensors data and, in the end, serves the application with a more or less detailed 
model of the environment. 
Before the sensors acquisition task is taking place, the sensors should be calibrated one by 
one in both time and space. That means, opposed to single sensor, a multi sensor system has 
to be synchronized, or the data acquired has to be time-aligned. Next, the sensors have to be 
‘space-aligned’, meaning that displacements (in a mathematical sense) between the different 
(spatial) sensor coordinate systems have to be determined. Figure 9 gives a non-exhaustive 
exemplary overview on the tasks necessary for sensor data fusion processing. 
In multi sensory, there are sequences for following the ‘level of abstraction’. The calibration, 
time-alignment and reconstruction tasks, for example, take place at low level, while the 
‘objects detection’ and the ‘obstacles classification’ are quite high level tasks within the 
processing. In some points of view, these classifications called early and late sensor data 
fusion, as well. 
 

 
Fig. 9. Sensor Fusion Processing 
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From now, interest is focused on to sensor data fusion taking place exclusively within the 
perception layer. Generally, current trends in sensor data fusion inside the perception layer 
are classified in three sections of “Sensor refinement”, “Object Refinement” and “Situation 
Refinement” (Strobel & Coue, 2004). 

5.1 Sensor refinement 
Sensor Refinement itself covers three tasks of “Calibration”,” Time Alignment” and 
“Reconstruction of Sensor Models”. All of them try to approach best observations from 
sensors. On the whole, the sensor refinement consists of the lowest, respectively the earliest 
processing steps. Hence, it is builds the interface between sensor and sensor processing 
system, too. 
Generally speaking, because of its natural complexity, the low level processing tasks have 
not been inspected as detailed as processing steps which are taking place within the object 
and situation refinement.  Actually compared to the object and the situation refinement 
level, these low level tasks have to cope with a huge amount of raw sensor data. In addition, 
due to the quite different sensor characteristics, imaging, ranging, etc. the raw sensor data 
may appear completely different as well. 
In principle, the problem is obvious; in recent approaches most of the tasks taking place 
within the sensor refinement has been examined and to some extent even solved for single 
sensor processing in a rather long term period. But then, the same results have been applied 
for multi sensor systems. So, even in a multi sensor system each sensor is treated as a single 
sensor. On the other hand, these tasks should be easier to cope with and could be solved 
more accurate while more information has been considered during processing. So, on the 
low level, we have got all the information needed to tackle them in this sense. In the 
following, we discuss sub-sections of sensor refinement block with some well chosen 
examples of interest that are employed to present this fact. 

5.1.1 Calibration and time alignment 
Calibration refers to the process of determining the relation between the output of 
measuring instrument (here multi sensors) and the value of the input quantity or attribute 
according to a standar measurement. The problem with time-alignment is something 
different. In general, multi sensor systems are not synchronized, i.e. each sensor aquises its 
measuring at a different and specific time. Actually it would be difficult or useless to 
establish a multi sensor processing and the perception of the environment based on 
measurements from different sensors taken at different times; because they probably show 
contradictory states of the environment. Hence, a multi sensor system has to be time 
aligned. Within the ‘SAVE-U’ project (www.cordis.europa.eu) (Marchal et al., 2003), for 
example, the calibration of a multi sensor system consisting of a coloured camera 
(resolution: 640 x 480 pixels) and a far infrared sensor - at a resolution of 320 x 240 pixels - 
has been examined and implemented. Based on a manual selection of 20 corresponding 
points in two images, one from the coloured camera and another from the far infrared 
sensor, showing the same scenario the coordinate systems of both, the camera and the far 
infrared sensor are aligned; That means, a transformation which maps the coordinates of the 
camera to the coordinate system of the far infrared sensor, respectively vice versa, is derived 
from these corresponding points. On the calibration problem for single sensors and single 
sensor systems, e.g. for monocular stereo cameras and panoramic cameras, some efforts 
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have been taken already (Li et al, 2003) (Huang et al., 2006). Especially for stereo cameras 
even automatic calibration methods have already been proposed. But these existing 
methods still provide no reasonable solutions for the automotive sector. 

5.1.2 Sensor modeling 
Another group of problems to cope with on the sensor refinement level concerns the sensor 
models and a common representation and description of raw data. In automotive 
applications, the term ‘sensor model’ is understood as a model of sensor’s data and how the 
sensor information matches the environment, including both model of the sensor’s data and 
model of the vehicle’s environment. This is mostly done individually for some types of 
sensors, e.g. for RADAR sensor probabilistic models are widely accepted, but not for a multi 
sensor system ‘as a whole’. Until now, no common model was found which is able to 
represent all the different types of sensor data emerging in the field of preventive safety 
applications on these low levels e.g. radar, laser, images, etc.  

5.2 Object refinement 
The objective of the object refinement level is to interpret the multiple sensor ‘observations’, 
subsets of the sensors’ raw and slightly preprocessed data, as individual objects or as parts 
of the environment observed (e. g. pedestrians, other vehicles, buildings, guard rails, trees, 
etc.). The input of this level consists of the output of the sensor refinement, called 
observations, which should be interpreted correctly. As Figure 10 illustrates ‘observations’ 
coming from several sensors (illustrated as ellipses in different colours) - represented in a 
common model as claimed above - are interpreted as objects (for example other vehicles or 
pedestrians) during the object refinement. 
 

 
Fig. 10. Correlation between input-output of sensor refinement and object refinement 

Hence, the output of the object refinement level generally consists of a list of objects with 
specific parameters or attributes (e. g. their position, their velocity, their height …). The key 
functions of ‘object refinement’ are, among others, considered to be feature extraction, 
(single or multi) object tracking, ‘observation-to-track’ association and track maintenance (in 
the case of multi object tracking), as well as object classification (Strobel & Coue, 2004). 
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5.2.1 Feature extraction 
Generally speaking, feature extraction could be regarded as the process of deducing 
‘features’ or eye-catching properties, like segments of sensor data corresponding to the same 
object in the environment for example, from the sensor data. Concepts or techniques which 
are basically used for feature extraction could be segmentation, contour extraction, etc. 
The following example shows feature extraction via segmentation in LIDAR sensor data:  
In order to segmentation of the environment, first we have to perform clustering. The 
readings, e.g. from a LIDAR are subdivided into sets of neighbor points (Figure 11, left) by 
taking the proximity between each two consecutive points of the scan into account. A cluster 
is hence, a set of measures (points of the scan) close enough to each other, which due to their 
proximity; probably belong to the same object (Mendes et al., 2004). The segmentation 
criterion is based on two consecutive measurements of laser emitter, rk, rk+1; we can 
conclude that they belong to the same segment if the distance between them fulfils the 
following expression:  
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Where Rmin = min {Rk, Rk+1}, Rk+k+1 =|Rk-Rk+1| and θ  is angular resolution of Laser sensor. 
α was introduced to reduce the dependency of segmentation with respect to the distance 
between the Laser Emitter and the object, and L0 to handle the longitudinal error of the 
sensor. If L0 = 0, then α represents the maximum absolute inclination that an object's face 
can have to be detected as a unique segment (Figure 11). Continuing the line fitting (Mendes 
et al., 2004) and considering the whole near lines as a single object we would be able to 
determine the object’s type, comparing with a model-based database. In that step using a 
technique called “Identity estimation”, relies on special classification algorithms that are 
used to recognize an object on the basis of some significant extracted features-the shape or 
 

 
Fig. 11. Laser Scanning (left) and clustering method (right) 
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patterns- of various vehicles detected on a road, for example. In car safety applications, 
these kinds of algorithms can also be employed to construct a list of the objects (e.g., a tree, a 
motorcycle, a road sign, etc.) surrounding the host vehicle. 
Figure 12 (left side) shows an example of observations, namely raw data (a list of points) 
coming from a scanning LIDAR at an angular resolution of 0.5 ° from a parking. 
 

 
Fig. 12. LIDAR raw data (left side) and extracted features on the right side (provided by 
INRIA Rhone-Alpes) 

In Figure 12 (on the right) we see the result from the first step of this feature extraction: the 
segmentation of raw LIDAR data in a set of segments (all marked in different colours). This 
is done using ‘Split and Merge’ (SaM) techniques as proposed in (Lee, 2001). During the 
‘splitting’ step, the set of observations is recursively subdivided and a new segment is 
associated to each subdivision. Then, during the ‘merging’ step, segments lying closed to 
each other are merged. 
Now, we have to decide which segments belong to the same object, a vehicle or a building 
close to the parking, and to estimate the position as well as the orientation of the object. This 
could be done using the Hough transform (Duda & Hart, 1972), (Tardos et al., 2002) under 
the hypothesis that the object could be represented as a rectangle. Then, a probability 
histogram on the object position and its orientation is constructed using the Hough 
transform, each mode of this probability distribution corresponding to one object (a vehicle 
or a building). But, as the vague term ‘feature’ already indicates, for feature extraction 
numerous procedures exist, depending only on the concrete definition of the term ‘feature’: 
features could be segments of corresponding sensor data, contours, prominent points, etc, 
for example. And at the end, as much as the meaning or the definition of the term ‘feature’ 
varies throughout the applications new or slightly adapted methods have been proposed to 
perform the feature extraction and to tackle the newly stated problem in these cases. In 
addition to object detection, we have to determine the absolute velocity of the moving object 
around the vehicle.   
Normally the vehicle speed is measured by an encoder coupled with axle. But in sensor 
based system we can perform a vehicle speed estimation using two observations from a 
static object during a period of T.  If we assume (r1, θ1) and (r2,θ2) as two observations like 
figure 13 left, then vh, speed of host vehicle is:  
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Cosrrrrvh
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Fig. 13. Speed estimation approach  

Where m is the number of the consecutive frames and is generally 2≥  for improving the 
accuracy of velocity. Here, we assumed that over a small interval of time mT, the driving 
direction of the host vehicle is consistent with the Y-axis in the Cartesian coordinates system 
XOY. Now after determining the speed of vehicle host, we can define the coordinate system 
of two segments at position P0=(x0, y0) and P1=(x1, y1), while: 

                          110110 sin,cos θθ ryrx =−=   (5) 

 2221221 sin,cos θθ rmTvryrx h +=−=   (6)

 5.2.2 Sequential estimation and filtering problems 
Estimation algorithms generally return the values of some quantitative entity parameters or 
attributes that are particularly significant for the application considered (R. Goodman et al., 
1997). For instance, in car safety and driver assistance systems, estimations could be made 
for kinematic parameters (e.g., the position and the relative velocity) of the objects observed 
outside the host vehicle. To improve the estimation of the objects’ attributes, or the objects’ 
state (from objects detected around the vehicle), it is helpful to use several time-discrete 
estimations of the same objects determined at different times. The best would be if we could 
model the evolution of the objects’ attributes in time. This is basically a filtering problem - 
called the ‘sequential estimation problem’. One of the most famous filter used in the 
automotive sector to cope with these problems is called ‘Kalman filter’ (see (Kalman, 1960) 
and (Welch & Bishop, 2001) for details) and its extended version, the ‘extended Kalman 
filter’. This probabilistic filter is based on a model of the evolution of the object's attributes 
in time, called the dynamic model, and on a sensor model (Strobel & Coue, 2004). Here, the 
concept is to determine the estimation of the objects’ state at a given time k+1 in two stages: 
a prediction stage uses the dynamic model and the estimation of the state at time k to 
determine a prediction of the state of the object at time k+1. Then an update stage confronts 
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this prediction with the new sensor observations at time k+1 and updates the objects’ 
attributes, accordingly. 
 

 
Fig. 14. An Example of Prediction scheme used in the 'Kalman filter' 

Figure 14 shows the general prediction scheme of the ‘Kalman filter’ in the case of a two 
dimensional problem. Indeed both, the ‘Kalman’ and the ‘extended Kalman filter’ are 
simply efficient implementations of the general ‘Bayesian filter’ (compare (A.H. Jazwinski, 
1970), for example)) - with strong constraints to linearity of the dynamic model and 
‘Gaussian noise’ in the case of ‘Kalman filter’. But more recent implementations of the 
‘Bayesian filter’, namely the so called ‘particle filters’ (compare (A. Doucet et al., 2000), (S. 
Arulampalam et al., 2002)) become more and more popular in these fields, as they allow an 
efficient approximation of at least all ‘Bayesian’ filtering problems. On the other hand, 
‘Bayesian filters’ are not the only technique used to come up with the ‘sequential estimation 
problem’. For example, solutions based on the fuzzy logic are proposed as well (see 
Ggruyer, 1999)), but they use the same prediction scheme (see Figure 14).  

6. Fuzzy fusion methodology 
Here we propose a fuzzy logic approach as sensor fusion, just for ACC driver assistance 
system which is applicable on other driver assistance system in a similar manner.  Then a 
new filtering method is performed -different from typical Kalman and Bayesian approaches- 
to reach more desirable results. The fuzzy logic system is carried out by FuzzyTECH 
simulator and the filtering has performed by MATLAB R2007b.  
As you see in figure 4 (Bottom), to follow a vehicle by an ACC system we must keep safe 
distance by measuring the front vehicle distance to the host vehicle. On the other hand, four 
types and five sensors among total 16 sensors should be considered, each of which with 
different coverage area and may be infected by some environments noise, consequently with 
deferent measurements regarding the position of front vehicle. In such situation, we fuse all 
sensor data by fuzzifying them so determine a near real distance (Figure 15). 
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Fig. 15. Sensor fusion scheme using fuzzy logic method 
Structure of fuzzy logic system: 
The initial system structure is defined by input and output variables with their linguistic 
terms. Linguistic variables are components of fuzzy logic systems that “transform” real, 
crisp values, here from sensors, into linguistic values. The output also defined by some 
linguistic variables but finally should be defuzzified in to real output value (Figure 16).  
 

 
Fig. 16. Linguistic variable definition for sensors (inputs) and fused data (output)  

In addition to the linguistic variables, a preliminary rule set must also be created for the 
system prototype. In this system, each of sensor measurements are matched to some 
membership functions and then a distance rule block is defined as output (Figure 17). 
Here are two sample rules according to figure 16: 
• IF (LRR=Medium Far AND Vision, SRR, L1, L2 = Far) THEN Distance = Far 
• IF (LRR=Close AND Vision=Medium Close AND SRR=Medium AND L1, L2=Far) 

THEN Distance = Above Medium 
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Fig. 17. Some of Membership functions for sensors (LRR, SRR) and output of sensor fusion 
(Distance) 

Then a sample input data entered as the distance of the front vehicle with various speed and 
acceleration to examine the robustness of the system. The results was very interesting, after 
several modification and improvement of membership functions with Min-Max 
Aggregation operator of FuzzyTECH Simulator, finally a satisfactory following by the host 
vehicle is extracted. Let’s have a brief description on figure 18. In this graph, Blue curve is 
the real position of front vehicle with different acceleration rate at different times. The Red 
Curve is estimated distance according to multisensor data fusion using fuzzy approach. As 
can be seen from figure 18 in the area with multi detecting sensors, (e.g. in distances < 50m) 
we saw more fluctuations, But in far distance (distance >100m) we saw better following, 
even with just a single LRR sensor! The reason is very clear; because the nature of different 
multi sensors (In lower distances), they feed the system a little bit different measurements 
and data, which will cause some fluctuations in overall distance detection. But in general, 
this is more reliable than a single sensor in far distance, despite a little fluctuation. The worst 
deviation found in this stage was about 26.5±  meters.   

7. Moving average filter 
In Continuation, it is tried to improve red (fusion) curve by keeping both reliability of multi 
sensory in lower distance and reducing the fluctuations in multisensor areas. In this stage a 
filtering method is applied as it follows.  A slight improvement in computational efficiency 
can be achieved if we perform the calculation of the mean in a recursive fashion. To illustrate 
this, consider the following development: Suppose that at any instant k, the average of the 
latest n samples of a data sequence, xi, is given by: 
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Fig. 18. Host vehicle following based on sensor data fusion 
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Similarly, at the previous time instant, k-1, the average of the latest n samples is: 
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which on rearrangement gives:  
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This is known as a moving average filter because the average at kth instant is based on the 
most recent set of n values. In other words, at any instant, a moving window of n values is 
used to calculate the average of the data sequence (see Figure 19).  
When used as a filter, the value of kx is taken as the filtered value of kx . The expression is a 
recursive one, because the value of kx is calculated using its previous value, 1−kx , as 
reference. This is always the case, regardless of the number of data points (n) we consider, 
calculating the current filtered value requires the use of nkx − , i.e. the measurement n time-
steps in the past. This means that: 
1. the filtering cannot be initiated reliably until n measurements have been made, and  
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2. We need to store the value of nkx − which, depending on the way the algorithm is coded, 
may require up to n storage locations. 

 

 
Fig. 19. Moving Window of n Data Points 

Additionally, the technique places equal emphasis on all data points. Thus a value in the 
past will have the same influence as a more current measurement when calculating the 
filtered signal. This may be a desirable feature when the mean value of the measurement is 
almost constant, but not when the vehicle moves at various acceleration rates. These 
problems can however, be reduced by generating the filtered value in a slightly different 
manner. Actually, in dynamic systems, such as forward vehicle monitoring, the most 
current values tend to reflect better the state of the process. A filter that places more 
emphasis on the most recent data would therefore be more useful. Such a filter can be 
designed by following the procedure used in developing the moving average filter. As 
before, the starting point is the mean expressed as: 
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By shifting the time index back one time-step, we obtain the corresponding expression for 

kx as: 
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write the filter as: 
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This expression is Exponentially Weighted Moving Average Filter. When used as a filter, the 
value of kx is again taken as the filtered value of kx . Notice that now, calculation of kx does 

not require storage of past values of x, and that only 1 addition, 1 subtraction, and 2 
multiplication operations are required. The value of the filter constant,α , dictates the 
degree of filtering, i.e. how strong the filtering action will be. Since 0≥n  , this means that 

10 <≤ α . When a large number of points are being considered, 1→α , and 1−→ kk xx . 

This means that the degree of filtering is so great that the measurement does not play a part 
in the calculation of the average! On the other extreme, if 0→n , then 

kk xx → which means 

that virtually no filtering is being performed. The Exponentially Weighted Moving Average 
filter places more importance to more recent data by discounting older data in an 
exponential manner (hence the name). This characteristic can be illustrated simply by 
describing the current average value in terms of past data. 
For example, since  ( ) kkk xxx αα −+= − 11 ,  Then   

 ( ) 121 1 −−− −+= kkk xxx αα
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Therefore, 
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If we keep on expanding x terms on the right hand side, we will see that the contribution of 

older values of ix are weighted by increasing powers of α . Since α is less than 1, the 

contribution of older values of ix becomes progressively smaller. The weighting on ix may 

be represented graphically by the following plot (Figure 20): 
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Fig. 20. Exponential weighting effect 

What this means is that in calculating the filtered value, more emphasis is given to more 
recent measurements. By applying this approach to red curve of figure 18 and using 
MATLAB, we obtain more satisfactory results than before (very close to real distance) in 
overall fusion system (Figure 21) 
 

 

 
 

 

Fig. 21. Applying moving average filter with different windows sizes of 3,5,7,9 

According to several experiments and as can be seen from figure 21, moving average filter 
with windows size of 5 met better following and more smoothing on our fusion graph. 
Figure 22 shows Fusion graph before (red) and after applying the filtering approach (green). 
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Fig. 22. Sensor Data Fusion before and after applying moving average filter 

8. Future works 
For future works, it could be continued with the last two sections of fusion processing 
(Figure 9) called situation refinement. During situation refinement it is tried to understand 
the meaning of the current situation around the vehicle: questions like “is this group of 
objects some meters in front of the vehicle a group of vulnerable pedestrians willing to cross 
the street?” or they are some bicyclists?; “Will the traffic light ahead turn to red in a few 
seconds?”. These could be done by considering a priori knowledge and additional 
environment information coming from digital maps, vehicle-to vehicle as well as vehicle-to-
infrastructure communication, etc. 
And finally, Trajectory Prediction, could be done by taking the history of an object’s state 
parameters and attributes; for example its position and its respective speed in the past, and 
try to predict the object’s state in the near term future. 

9. Conclusion 
As the cars play an important and wide spreading role in transportation systems of all 
countries, the chance of having accident is also greatly increased. A number of cars, 
automobiles, bicycles and also pedestrians may involve in such accidents which 
sometimes cause miserable disasters. This fact attracts increasing numbers of researchers 
to work on driver assistance systems to be installed on modern automobiles. Such systems 
involve lots of considerations ranging from technical to cultural issues. One of interesting 
technical challenges on this field is the way that sensors communicate with each other and 
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the control unit and also the methods to collect, interpret and blend data come from these 
sensors, which is considered in the fields of sensor networks and sensor fusion 
techniques. 
In this literature, the technologies of driver assistant systems and emerge of these systems 
are discussed. Also key features for an ADAS are introduced in addition with common 
problems and challenges that will appear in the implementation procedure. Furthermore a 
generalized framework for selecting proper sensors and mounting them on vehicle body in 
addition with a comprehensive methodology for employing sensors, initializing them and 
fusion of data from such sensors are introduced to be suitable for lots of applications and 
working environments.  
Finally, a modern approach based on fuzzy logic and a filtering improvement is discussed 
to work as the multi-sensor data fusion core, which is implemented in FuzzyTech and 
MATLAB and the related experimental results are illustrated within the text. 
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1. Introduction 
Detection of moving objects has been utilized in industrial robotic systems, for example, in 
the recognition and monitoring of unmanned systems that also require compression of 
moving images [1], [2], [3], [4]. Trajectory prediction of moving objects is required for a 
mobile manipulator that aims at the control and observation of motion information such as 
object position, velocity, and acceleration. Prediction and estimation algorithms have 
generally been required for industrial robots. For a simple example, in a pick-and-place 
operation with a manipulator, the precise motion estimation of the object on the conveyor 
belt is a critical factor in stable grasping. A well-structured environment, such as the 
moving-jig that carries the object on the conveyor belt and stops when the manipulator 
grasps the object, might obviate the motion estimation requirement. However, a well-
structured environment limits the flexibility of the production system, requires skillful 
designers for the jig, and incurs a high maintenance expense; eventually it will disappear 
from automated production lines. To overcome these problems, to tracking a moving object 
stably without stopping the motion, the trajectory prediction of the moving object on the 
conveyor belt is necessary [5]. The manipulator control system needs to estimate the most 
accurate position, velocity, and acceleration at any instance to capture the moving object 
safely without collision and to pick up the object stably without slippage. When the motion 
trajectory is not highly random and continuous, it can be modeled analytically to predict the 
near-future values based on previously measured data [6]. However, this kind of approach 
requires significant computational time for high-degrees-of-freedom motion, and its 
computational complexity increases rapidly when there are many modeling errors. In 
addition, performance is highly sensitive to the change of the environment. Those state-of-
the-art techniques perform efficiently to trace the movement of one or two moving objects 
but the operational efficiency decreases dramatically when tracking the movement of many 
moving objects because systems implementing multiple hypotheses and multiple targets 
suffer from a combinatorial explosion, rendering those approaches computationally very 
expensive for real-time object tracking [7]. 
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Fig. 1. Intelligent environment by distributed cameras 

2. Vision systems in robotic space 
2.1 Structure of robotic space 
Fig. 2 shows the system configuration of distributed cameras in Intelligent Space. Since 
many autonomous cameras are distributed, this system is autonomous distributed system 
and has robustness and flexibility. Tracking and position estimation of objects is 
characterized as the basic function of each camera. Each camera must perform the basic 
function independently at least because over cooperation in basic level between cameras 
loses the robustness of autonomous distributed system. On the other hand, cooperation 
between many cameras is needed for accurate position estimation, control of the human 
following robot [8], guiding robots beyond the monitoring area of one camera [9], and so on. 
These are advanced functions of this system. This distributed camera system of Intelligent 
Space is separated into two parts as shown in Fig. 2. This paper will focus on the tracking of 
multiple objects in the basic function. Each camera has to perform the basic function 
independently of condition of other cameras, because of keeping the robustness and the 
flexibility of the system. On the other hand, cooperation between many cameras is needed 
for accurate position estimation, control of mobile robots to supporting human [10],[11], 
guiding robots beyond the monitoring area of one camera[12], and so on. These are 
advanced functions of this system. 
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Fig. 2. Configuration of distributed camera system 

2.2 Previous research for tracking 
Neural networks can be classified into two categories: supervised learning- and 
unsupervised learning methods. In most of the previous research, the supervised learning 
method was adopted to overcome the nonlinear properties [10],[12]. Since the supervised 
learning method requires the relation between input and output [9] at all times, it is not 
suitable for real-time trajectory estimation for which the input-output relation cannot be 
obtained instantaneously in the unstructured environment. Therefore, in this study, SOM 
(Self Organizing Map), that is, a type of unsupervised learning method, was selected to 
estimate the highly nonlinear trajectory that cannot be properly predicted by the Particle 
filter. Also, SOM is a data-sorting algorithm, which is necessary for real-time image 
processing since there is so much data to be processed. Among the most popular data-
sorting algorithms, VQ (Vector Quantization), SOM, and LVQ (Learning Vector 
Quantization), SOM is selected to sort the data in this approach since it is capable of 
unsupervised learning. Since VQ is limited to the very special case of a zero neighborhood 
and LVQ requires preliminary information for classes, neither of them is suitable for the 
unsupervised learning of the moving trajectory.  Fig. 3 shows the estimation and tracking 
system for this research. The input for the dynamic model comes from either the Particle 
filter or SOM according to the following decision equation:  

outout SOMkFilterParticlekvalueredictedP ⋅−+⋅= )1(  

where k=1 for error threshold≤  and k=0 for error threshold> . 
The threshold value is empirically determined based on the size of the estimated position 
error. 

3. Processing flow 
3.1 Extraction of object 
Classifying the moving-object pattern in the dynamically changing unstructured 
environment has not yet been tackled successfully [13]. Therefore, in this research, the 
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Fig. 3. Estimation and tracking system of robotic space 

camera was fixed on a stable platform in order to capture static environment images. To 
estimate the states of the motion characteristics, the trajectory of the moving object was pre-
recorded and analyzed. Fig. 4(a) and Fig. (b) represent the object images at (t-1) instance and 
(t) instance, respectively. 
 

   
                           (a)  (t-1) instance                                 (b) (t) instance 
Fig. 4.  Detected image of moving object at each instance 

As recognized in the images, most parts of the CCD image correspond to the background. 
After eliminating the background, the difference between the two consecutive image frames 
can be obtained to estimate the moving-object motion. To compute the difference, either the 
absolute values of the two image frames or the assigned values can be used. The difference 
method is popular in image pre-processing for extracting desired information from the 
whole image frame, which can be expressed as 

),(2Image),(1Image),(Output yxyxyx −=  
The difference image between Fig. 4(a) and Fig. 4(b) is represented in Fig. 5. When the 
difference image for the whole time interval can be obtained, the trajectory of the moving 
object can be calculated precisely.   
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Fig. 5. Difference image between (t) and (t-1) instance images 

3.2 Target regions encoded in a state vector using particle filter 
Particle filtering provides a robust tracking framework, as it models uncertainty. Particle 
filters are very flexible in that they not require any assumptions about the probability 
distributions of data. In order to track moving objects (e.g. pedestrians) in video sequences, 
a classical particle filter continuously looks throughout the 2D-image space to determine 
which image regions belong to which moving objects (target regions). For that a moving 
region can be encoded in a state vector. In the tracking problem the object identity must be 
maintained throughout the video sequences. The image features used therefore can involve 
low-level or high-level approaches (such as the colored-based image features, a subspace 
image decomposition or appearance models) to build a state vector. A target region over the 
2D-image space can be represented for instance as follows: 

r {l, s, m, }γ=  
 

where l is the location of the region, s is the region size, m is its motion and γ is its direction. 
In the standard formulation of the particle filter algorithm, the location l, of the hypothesis, 
is fixed in the prediction stage using only the previous approximation of the state density. 
Moreover, the importance of using an adaptive-target model to tackle the problems such as 
the occlusions and large-scale changes has been largely recognized. For example, the update 
of the target model can be implemented by the equation 

1r (1 ) r E[r ]t t tλ λ−= − +
 

where λ weights the contribution of the mean state to the target region. So, we update the 
target model during slowly changing image observations. 
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4. Tracking moving objects 
4.1 State-space over the top-view plan 
In a practical particle filter [5],[6] implementation, the prediction density is obtained by 
applying a dynamic model to the output of the previous time-step. This is appropriate when 
the hypothesis set approximation of the state density is accurate. But the random nature of 
the motion model induces some non-zero probability everywhere in state-space that the 
object is present at that point. The tracking error can be reduced by increasing the number of 
hypotheses (particles) with considerable influence on the computational complexity of the 
algorithm. However in the case of tracking pedestrians we propose to use the top-view 
information to refine the predictions and reduce the state-space, which permits an efficient 
discrete representation. In this top-view plan the displacements become Euclidean distances. 
The prediction can be defined according to the physical limitations of the pedestrians and 
their kinematics. In this paper we use a simpler dynamic model, where the actions of the 
pedestrians are modeled by incorporating internal (or personal) factors only. The 
displacements Mt

topview  follows the expression 

1M A( )M Nt t
topview topview topviewγ −= +

 
where A(.)is the rotation matrix, 

topviewγ  is the rotation angle defined over top-view plan and 

follows a Gaussian function ( ; )topviewg γγ σ , and N is a stochastic component. This model 

proposes an anisotropic propagation of M: the highest probability is obtained by preserving 
the same direction. The evolution of a sample set is calculated by propagating each sample 
according to the dynamic model. So, that procedure generates the hypotheses. 

4.2 Estimation of region size 
The size of the search region represents a critical point. In our case, we use the a-priori 
information about the target object (the pedestrian) to solve this tedious problem. We 
assume an averaged height of people equal to 160 cm, ignoring the error introduced by this 
approximation. That means, we can estimate the region size s of the hypothetical bounding 
box containing the region of interest r {l, s, m, }γ=  by projecting the hypothetical 
positions from top-view plan in Fig. 6.  
 

 
Fig. 6. Approximation of Top-view plan by image plan with a monocular camera 
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A camera calibration step is necessary to verify the hypotheses by projecting the bounding 
boxes. So this automatic scale selection is a useful tool to distinguish regions. In this way for 
each visual tracker we can perform a realistic partitioning (bounding boxes) with 
consequent reduction in the computational cost. The distortion model of the camera's lenses 
has not been incorporated in this article. Under this approach, the processing time is 
dependent on the region size. 

4.3 Object model update 
In multi-motion tracking, the hypotheses are verified at each time step by incorporating the 
new observations (images). A well known measure of association (strength) of the 
relationship between two images is the normalized correlation. 
 

, , ( arg  ;  )i j nor i i jdc corr t et hypothesis=
 

 
where i : target region, and j : an hypothesis of the target region i. The observation of each 
hypothesis is weighted by a Gaussian function with variance σ . 
 

2
,

2

-(1- )

2( ; ) 1 
2

i j

dc

dc

i j

dc

h e σ

πσ
=

 
 
where ( ; )i jh  is the observation probability of the hypothesis j tracking the target i. The 
obvious drawback of this technique is the choice of the region size (defined in previous 
section) that will have a great impact on the results. Larger region sizes are less plagued by 
noise effects. 

5. Experiments 
To compare the tracking performance of a mobile robot using the algorithms of the 
Particle filter and SOM, experiments of capturing a micro mouse with random motion by 
the mobile robot were performed. As can be recognized from Fig. 7, SOM based Particle 
Filter provided better performance to the mobile robot in capturing the random motion 
object than the other algorithms. As shown in Fig. 7, the mobile robot with SOM based 
Particle Filter has a smooth curve to capture the moving object. As the result, the 
capturing time for the moving object is the shortest with SOM based Particle Filter. 
Finally, as an application experiments were performed to show the tracking and capturing 
a mobile object in robotic space.  
Fig. 8 shows the experimental results for tracking a moving object that is an 8x6[cm] red-
colored mouse and has two wheels with random velocities in the range of 25-35[cm/sec]. 
First, mobile robot detects the moving object using an active camera. When a moving object 
is detected within view, robot tracks it following the proposed method. 
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                                   (a) SOM                                               (b) SOM + Particle Filter 
 

Fig. 7. Tracking trajectory by SOM and SOM based particle filter 
 
 
 

(1) (2) (3)

(4) (5) (6)

(7) (8) (9)
 

Fig. 8. Experimental results for tracking a moving object 
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6. Conclusions 
In this paper, the proposed tracking method adds an adaptive appearance model based on 
color distributions to particle filtering. The color-based tracker can efficiently and 
successfully handle non-rigid and fast moving objects under different appearance changes. 
Moreover, as multiple hypotheses are processed, objects can be tracked well in cases of 
occlusion or clutter. This research proposes estimation and tracking scheme for a moving 
object using images captured by multi cameras. In the scheme, the state estimator has two 
algorithms: the particle filter that estimates the states for the linear approximated region, 
and SOM for the nonlinear region.  The decision for the switchover is made based on the 
size of the position estimation error that becomes low enough for the linear region and 
becomes large enough for the nonlinear region. The effectiveness and superiority of the 
proposed algorithm was verified through experimental data and comparison. The 
adaptability of the algorithm was also observed during the experiments. For the sake of 
simplicity, this research was limited to the environment of a fixed-camera view. However, 
this can be expanded to the moving camera environment, where the input data might suffer 
from higher noises and uncertainties. As future research, selection of a precise learning 
pattern for SOM in order to improve the estimation accuracy and the recognition ratio, and 
development of an illumination robust image processing algorithm, remain.  
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1. Introduction      
Real time human tracking in indoor environment is highly demand and important to many 
applications for ubiquitous robotics services. There are several technologies for human 
tracking in the indoor environment, such as vision, pressure, infrared, and ultrasonic have 
been proposed. However, some technologies are costly, or have many restrictions when they 
are applied. For example, implant several cameras around indoor environment through real 
time image processing for tracking people is frequently discussed. However, the computer 
vision method does not function in dark situation and the privacy issue also generated.  
Recent advances in radio frequency, microprocessor and sensor technologies enable the 
wireless sensor network (WSN) system. Wireless sensor network system used for target 
tracking can be found (Liu, J. et al., 2007 ); (Hua Li et al., 2008); (Djuric, P. M. et al., 2008). In 
general, the smart home aims to provide appropriate intelligent services to assist the 
resident’s living. Autonomous and multi-functional robots plays important role in the smart 
home. However, if robots depend on their own sensors, the applications will be limited. 
Sensor network system uses multi sensor combined with microprocessor and radio 
transmission into a device and deploy in the monitoring environment. With the ambient 
information provided by sensor network based ubiquitous robotics services system, robots 
can serve people more quickly and accurately.  
There are a lot of researches discuss sensor network theories or applications. However, these 
researches (Yoon Gu Kim et al., 2006); (Taehong Kim et al., 2008) deal with implement 
sensor network in indoor environment just implant additional sensor nodes on the desks or 
ceiling. We propose a solution on implementing the sensor network system for ubiquitous 
robotics services in the indoor environment.  
Since most building have implant traditional smoke detector on ceiling for fire detection. We 
try to implement sensor network system in indoor environment and modify these smoke 
sensors. We developed a prototype of wireless multi-functional detector; the sensor consists 
of pyroelectric infrared (PIR) sensor for detecting human radiation, temperature sensor for 
measuring the ambient temperature and smoke sensor to replace the original smoke 
detector function on ceiling. With this multi-functional detector, robot can locate the remote 
people in the environment and provide the services.  
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2. Related work 
The are some technologies used for tracking targets: Vision based algorithm using sequences 
of images from cameras that moving people can be tracked(Q. Cai &  J. K. Aggarwal, 1998) 
or the number of people can be found(D. B. Yang et al., 2003). The infrared also can be used 
to facilitate the location of people. However, they can only record the count of people enter 
or exit in a certain area such a the door of a room (ACOREL Corp.). And this technology 
requires careful and dense deployment, and dose not work in a more complicated 
envrionment. Some localization technologies adopt the acceleration and air pressure sensors 
to detect the location of people (R. J. Orr & G. D. Abowd, 2000). The obvious drawbacks of 
this technology are costly and need careful deployment. Some researches use ultrasonic 
sensor technology and adopt time of flight (TOF) method to obtain the location information. 
The “cricket“ localization system uses a combination of ultrasonic and radio frequency (RF) 
to provide a location support service(Yunbo Wang et al., 2007).  

3. Ubiquitous service space for smart home 
Realize smart home, identification card with radio frequency transceiver on it which called 
“iCard” are needed as in Fig.1. iCard is a simple IEEE 802.15.4 (ZigBee) protocol transceiver 
and can be made as identify card.  
 

            
                                            (a)                                                       (b) 

Fig. 1. (a) iCard (b) Wear on human 

ZigBee protocol provides the unique ID information in the same ZigBee wireless 
environment, thus it can easy identify people with their own ID code.  
Since the pyroelectric sensors are suffered from multi target tracking, therefore the 
assistance from radio frequency signal contain with the people ID information is needed for 
sensor network multi human tracking system.  
iSensor is a multi-functional detector composed with ZigBee protocol transceiver, 
microprocessor, pyroelectric sensor, temperature sensor and smoke sensor. ZigBee protocol 
is designed as low-cost and low-power for home automation or hospital care. Pyroelectric 
sensor can detect the radiation from human body; with multi pyroelectric sensors the 
accuracy of people localization can be improved by data fusion technique. Temperature 
sensor data can be provided to HVAC system and adjust the temperature of environment. 
Smoke sensor is the original function and designed to detect fire disaster. The Architecture 
of iSensor is illustrated in Fig. 2. 
Recent researches discuss on human tracking use pyroelectric sensor or radio frequency 
signal alone. However, the pyroelectric signal might suffer from tracking multi-targets, and 
accuracy of radio frequency tracking method might not be reliable. The iSensor will 
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The robot is equipped with ZigBee compatible communication module for communicating 
with sensor network. The iSensor network system installed in the ceiling, they collects 
ambient information and reports to the multi-functional robot. Robots can perform the tasks 
such as fire fighting, resident following or intruder detection.  

4. Pyroelectric sensor 
The indoor tracking system should be implemented with many sensors installed in rooms; 
therefore low cost is the main consideration of smart home service.  Since each room is 
different in shape and size, the location of obstacles which prevent the normal operation of 
sensors are also varied. A good localization system must be robust from noise and reduce 
the influence of surroundings.  
The PIR sensor can detect the infrared wavelength emitted from humans. They are robust to 
their surroundings. iSensor are easily installed on the ceiling, where they are not easy 
affected by the structure of rooms or obstacles.  

4.1 Working principle 
For a linear sensor, the response signal of n sensors S(t) R  is given by 

 S t h t v r Ψ r, t drΩ     (1) 

where * represents convolution operation, h(t) is the impulse function of a sensor, Ω is the 
object, v(r) is the positive visibility function between n sensor and the object space,  Ψ(r,t) is 
the radiation from the target.  
The visibility v(r1,r2) denotes the contribution by the field at point r2 to the field at r1. 
 

 
Fig. 5. Pyroelectric sensor behavior 
Pyroelectric sensor signals are proportional to the change in temperature of the crystal 
rather than the temperature of environment. Fig. 5 shows a human walking through a 
pyroelectric sensor and the corresponding output signal. The response time of the 
transducer amplifier of the detector limits the maximum frequency. The resultant transfer 
function turns to be a bandpass one. 
 

 
Fig. 6. pyroelectric detector 
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4.2 Pyroelectric sensor deployment and overlapping issue 
In order to determine the location of residents within the monitoring area, an array of PIR 
sensors is used as shown in Fig. 7. 
 

 
Fig. 7. The localization for PIR sensors 

We find some interested questions when developing pyroelectric sensor system. A field of 
view of our sensor is 100º on directivity-horizontal and 60º on directivity-vertical, as shown 
in Fig 8. In other words, a field of view is an ellipse, and we must discuss this issue when 
deploying sensor nodes. 
 

 
Fig. 8. The general architecture of sensor network system  

Given an interested sensing field A, our approach is to get the signal of human radiation in 
an indoor environment. According to a specification of PIR sensor, a field of view of PIR 
sensor is an ellipse. And function of an ellipse is expressed as 

 ( ) ( ) 12222 =−+− bmyanx   (2) 

and     sin
cos

x a n
y b m

θ
θ

= ∗ +⎧
⎨ = ∗ +⎩

                              

Where n, m are coordinate of node; a, b are major and minor axis of an ellipse, respectively. 
When deploying node, calculate the relationship of distance between each node should be 
afresh. Fig. 9 illustrates the deployment of node without overlap; we find that an 
overlapping issue of ellipse is not like that of a circle. A graph that is account by three center 
of a circle is an isosceles triangle, not an equilateral triangle. 
Assume that coordinate of n1, n2, and n3 is (0, 0), (0, 2a), and (a, a tanθ), respectively and 
∠n3n1n2=θ. And centre of gravity of the triangle can be obtained as (a, 1 tan

3
a θ∗ ∗  )in Fig. 9. 
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Fig. 9. Normal deployment without overlapping 
 

 
Fig. 10. The concept of Dx and Dy 

Consider the distance between nodes should be corrected by decreasing red and boldface 
lines (Dx, Dy) to reach a minimal overlap. 
 

 
Fig. 11. Geometry of each angle and length  

Use approximation theory to get a length of Dx, a degree of angle φ is narrow enough that a 
length of (k+Dx) is similar to a length of l (i.e. D 1 k) in Fig 9. A length of l is expressed 
as  

 l a tanθ csc     (3) 

where  tan tanθ  
And function of length k is as (4); because a degree of φ is smaller than that of  (i.e. φ ), approximate function can be obtained as (5). 

 ( )[ ] ( )[ ]22 cossin ϕφϕφ +⋅++⋅= bak    (4) 

( ) ( )22 cossin φφ ⋅+⋅= bak   
Combining function of (3) and (5), get a function of length of Dx that we want to decrease 
and correct a distance between nodes in (6).  
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( )

( ) ( )2 21 tan csc sin cos
3

Dx l k

a a bθ φ θ θ

= −

= ⋅ ⋅ ⋅ − ⋅ + ⋅
  (6) 

And function of length of Dy is expressed as  

                    D a tanθ-b     (7) 

Combining (6) and (7), the distance between each node can be corrected. In this issue, we 
discuss questions of deployment and overlapping, and a discussion is not identical among 
ellipse and circle.  

5. Localization through radio frequency signal 
5.1 ZigBee radio frequency transceiver 
Our indoor RF localization system utilizes the CC2420 chip. The CC2420 is a single-chip 
IEEE 802.15.4 compliant and ZigBee™ ready RF transceiver. It provides a highly integrated, 
flexible low-cost solution for applications using the world wide unlicensed 2.4 GHz 
frequency band. The mobile user also equips with CC2420 transceiver and floods the 
beacons every 50 ms. 
For the direct line of sight propagation path, according to the free space model, the power 
received by the receiver is given by the Friis space equation(T. S. Rappaport, 2002) as  

 P P G G   (8) 

Where Pt is the transmitted power in watts, Pr is the received power, Gt is the transmitter 
antenna gain, Gr is the receiver antenna gain, λ is the wave length in meters, and d is the 
distance from transmitter to receiver.  

5.2 Received signal strength 
In order to locate residents, the estimated distance between sensor nodes and users is 
needed. Taking consideration of the estimation distance into localization algorithms; the 
coordination of ZigBee transceiver can be obtained. Radio signal propagation is easily 
influenced by diffraction, reflections, and scattering of radio induced obstacles in a building, 
thus the RSS signal measurement is contaminated by the measuring error and NLOS error. 
The measurement error results from the measuring processes in a noisy channel and can be 
improved with better signal-to-noise ratio (SNR). NLOS errors depend on the multi path 
dominated environments and change from time to time. 
We record the received signal strength index (RSSI) and distances between the sensor nodes 
and users. By using maximum likelihood method the propagation model can be found for 
fading channel. This model provides the mean RSS(d) that received from mobile user, and 
equation (8) state that. The RSS(d0) is the received signal strength in dB at a reference 
distance, and n is denoted the path loss exponent. The measured RSS is calculated by ML 
and find the parameter RSS(d0) and n. The measured RSS fit into channel model is obtained 
by using the equation (8). d is the estimation of the distance from equation (9), and Xσ is the 
random variable that denoted the estimation error with variance σ2 from equation (10). We 
find that random variable Xσ increases with distance between the sensor node and mobile user.  
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Fig. 12. The measured RSSI of radio signal 

     RSS d RSS d 10nlog d/d    (9) 

   d d 10RSS RSS
     (10)    

    d d X      (11) 

6. Covariance intersection method 
In the distributed environment such as sensor network, we cannot keep track on “which 
node received estimations from which level nodes”. Thus we do not know the degree of 
redundant information exists in an estimation a node received. It means that the error 
between predicted and actual position covariance will be underestimated. The covariance 
information must keep consistency to avoid the disastrous consequences of redundant data 
on Kalman filter type estimators. However, it is not possible to maintain cross covariance 
consistent with distributed. This makes the estimated state based on the assumed state 
model with little correction from the new measurements. Thus, drifts the state estimate 
away from the actual state. The Covariance Intersection (CI) (S. Julier & J. Uhlmann, 2001) 
can be treated as a generalized Kalman filter. The primary advantage of CI is that it permits 
filter and data fusion to be performed on probabilistically defined estimates without 
knowing the degree of correlation among those estimates. Thus CI does not need 
assumptions of the dependency of the two data of information, when it fuses them. If the 
cross-variance of the data is unknown, it is not possible to compute the exact covariance 
matrix of the estimate, but still desirable to have a pair estimate-covariance that is 
consistent, as defined below. 
Set Z a random variable with mean z and estimation z. The estimation error can be given by z z z and the covariance associated with this error is P E zzT . Let Pzz, be an 
estimation of the covariance of z, then the pair z, P  is said to be consistent if 

      P P   (12) 

The proof can be found in (S. Julier & J. Uhlmann, 2001). The pair of estimate-covariance is 
consistent if the estimated covariance matrix is in the upper bound of the actual covariance 
of the estimate.  
Set x and y be two random variables which have means and covariance matrices are E{x}=X, 
E{y}=Y separately 
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 Cov{x}=Pxx, Cov{y}=Pyy, Cov{xy}=Pxy  (13) 

Define the estimate Z as a linear combination of x and y: where x and y might represent 
either a prior estimate of Z with certain covariance matrix or a measurement which has its 
own uncertainty. 
The covariance intersection method is a data fusion algorithm which uses a convex 
combination of the means and covariances in the information field. This approach is 
referenced on a geometric interpretation of the Kalman filter process. The general form of 
the Kalman filter is  

 z W X W Y  (14) 

 P W P WT W P WT W P WT W P WT
 
  (15) 

The weights Wx and Wy are chosen to minimize the trace of Pzz. If the estimates are 
independent (Pxy=0), the form of the conventional Kalman filter can be reduce.  
The Covariance Intersection method provides estimation and a covariance matrix which 
their covariance ellipsoid encloses the intersection region. The estimate is consistent 
independent of the unknown value of P. Given the upper bound P P   and P P  , the 
covariance intersection estimator are defined as follows: 

 }{ 1 1
zz x xx y yyZ P w P X w P Y− −= +   (16) 

 1 1 1
zz x xx y yyP w P w P− − −= +   (17) 

 1x yw w+ = , 0≦wx,wy≦1.  (18) 

The parameter wi gives the relative weights assigned to x and y. Different choices of wi can 
be used to optimize the covariance estimate with different performance criteria such as 
minimizing the trace or the determinant of Pzz. 

 Let { }T
x xx xtr W P Wα ≡   (19) 

 { }T
y yy ytr W P Wβ ≡   (20) 

 Thus   P p p   (21) 

and the gains are  

 1
x zz xxW P Pα

α β
−=

+
  1

y zz yyW P Pα
α β

−=
+

  (22) 

This theorem presents the advantage of the optimality of the best wi in CI algorithm.  
The main benefit of parallel estimation for each measurement type is the independence of 
the data fusion method for the location estimation calculation that has different 
measurement type each. The estimation calculations can be substituted with another 
location estimate calculation with an associated error covariance estimate and the data 
fusion technique can still be used.  
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(a) 

(b) 

(c) 

(d) 

Fig. 14. Event detection from matched filter (a) Raw data (b) Digitized signals (c) Logic 
signals (d) Event windows. 

 
Fig. 15. Four elements signal when human user walk pass the pyroelectric sensor system  
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Fig. 16. RSS measured data 
 

 
 

Fig. 17. Covariance Intersection with RSS and Pyroelectric measurement 

Fig. 17 shows that covariance intersection fuses pyroelectric sensor and RSS localization 
estimation. The maximum mean distance error of RSS is near to sixteen percentages and the 
maximum mean distance error from pyroelectric measurement is near to eight percentages. 
Using covariance intersection algorithm, the mean distance error is below four percentages. 
The accuracy of locating residents under our system can be increased by using covariance 
intersection. 
In the Fig. 18, the circle mark is the actual test trace, square is the measurement through 
pyroelectric sensor, triangular is the result from RSS and diamond is the fusion result from 
CI, The tracking error can be reduced through data fusion technique. 
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1. Introduction    
Today's security systems are expected to function more accurately and efficiently. Intelligent 
homes as a high demanded future technology need to become less expensive and more 
certain. These goals could be achieved by using fusion methods. In the following, two 
theories are applied to a home security system which are Dempster-Shafer evidential theory 
and Proportional Conflict Redistribution Rule no.5 (PCR5). The significant aim of this 
research is to show the application of fusion methods in order to establish the security 
system used in Intelligent Housing Systems (IHS) and detecting the precise location of the 
intruder at home, which are not viable through the traditional systems. The exactitude of 
PCR5 method to Dempster-Shafer Theory (DST) has been considered after applying them to 
the system. In the following, home security system is simulated by MATLAB. In sections 2 
and 3, this research work will review the DST and PCR5 and their combinational rules. 
Section 4 deals with the security system and applying the theories to a scenario, and finally 
part 5 presents the conclusions obtained by simulating the attack scenarios. 

2. Dempster-Shafer evidential theory basis 
In Dempster-Shafer Theory (DST), there is a frame of discernment θ, which its elements are 
all possible states of a system. Therefore, the Dempster-Shafer (DS) fusion process is based 
on 2θ elements called propositions. 
To every subset in this frame a probability mass is assigned which is called basic probability 
assignment or basic belief assignment (bpa or m). 
 m; must satisfy the following conditions : 

 m: 2θ → [0, 1], m (Ø) = 0, 2 ( )A m Aθ∈∑ =1  (1) 

The probability that the true answer is A denoted by a confidence interval:   
[Belief (A), Plausibility (A)] in which, 
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 Bel (A) = ( )
B A

m B
⊆
∑  (2) 

 Pl (A) = 1 ( )
B A

m B
φ∩ =

− ∑   (3) 

The width of the interval therefore represents the amount of uncertainty in A, given the 
evidence.  
The belief function Bel (A) in a subset, entails belief in subsets containing that subset. The 
plausibility function measures the total belief mass that can move into A. For combining two 
belief functions over the same frame of discernment with different bpas (m1 and m2) and 
different sources, DS combination rule is used: 

 1 2( ) [ ]( )m C m m C= ⊕ =
1 2

1 2

( ) ( )

1 ( ) ( )
A B C

A B

m A m B

m A m B
ϕ

∩ =

∩ =

−

∑

∑
  (4) 

In which 1 2( ) ( )
A B

k m A m B
ϕ∩ =

= ∑ is interpreted as a measure of conflict among the various 

sources (Blaylock & Allen, 2004; Sentz & Ferson, 2002; Wu et al., 2002).  
As an example consider a frame of discernment with three possible states H= {A, B, C}, then 
all subsets of H are 2 θ elements which are: 
{A}, {B}, {C}, {A, B}, {A, C}, {B, C}, {A, B, C}, {Ø}. 
Bel (B, C) = m ({B}) + m ({C}) + m ({B, C}) 
Pl (B, C) =m ({B}) + m ({C}) + m ({B, C}) + m ({B, A}) + m ({A, B, C}) + m {(C, A)} 
Suppose that 
m1 (G) = 0.6, m1 (V) = 0.3, θ1= (GUV) = 0.1, 
m2 (G) =0.5, m2 (V) =0.35, θ1= (GUV) =0.15  
Then, 
 m (G) = [(0.6*0.5) + (0.6*0.15) + (0.1*0.5)]/[1-(0.6*0.35)-(0.3*0.5)] = 0.6875 
It could be seen that the combinational probability is more than the single probabilities of 
each source. 

3. Proportional conflict redistribution rule no.5 (PCR5) basis 
The basic idea of PCR rules is reallocating the partial conflicts to the non-empty sets that 
contribute in the conflict mass.  
The process of applying PCR to calculating the total mass of several sources is as follows:  
• Applying the conjunctive rule to calculate the belief masses of sources; 
• Calculating the total or partial conflicting masses; 
• Redistributing the total or partial conflicting masses to the non-empty sets contributed 

in the conflicts correspondingly to their original masses. 
Several versions of PCR rules derived from the way in which the conflicting mass is 
reallocating to the non-empty sets. 
According to the PCR5 rule the partial conflicting mass redistributes to the non-empty sets 
that involved in the partial conflict.  
The PCR 5 formula for combining two sources is as follows (Dezert & Smarandache, 2006, (a)):  
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mPCR5 (Ø) = 0 and    G θ∀ ∈Χ \{ }   

 mPCR5(X)=m12(X)+
∈
∩ =

+
+ +

∑
2 2

1 2 2 1

Y G\{X} 1 2 2 1X Y φ

m (X) m (Y) m (X) m (Y)[ ]
m (X) m (Y) m (X) m (Y)

  (5) 

Where 
∈

∩ =

= ∑
Θ

Δ

1 2
X,Y G
X Y X

m12(X) m (X)m (Y)    

Proof and complete explanation about PCR5 rule and other PCR rules could be found at 
(Dezert & Smarandache, 2006(a), Smarandache & Dezert, 2006(b)). 
In this paper we use the above formula to combine the result of two sources with the third 
one and so forth. 
PCR5 rule is more exact than Dempster's rule. This is because of how it redistributes the 
conflicting mass to the sets, which are involved in the conflict rather than redistributing to 
all non-empty sets like what happens in Dempster's rule. 

4. Simulation results 
In order to simulate the security system, imagine a home with sensors located in different 
areas according to Fig. 1. The security system discussed here is a system, capable of 
detecting intruders. If there is need to protect the home from fire, as a result the smoke 
detectors and heat detectors should be used. Now four kinds of sensors are used to 
implement the system: 
- Wall vibration intended to detect mechanical vibrations caused by chopping, sawing, 

drilling, ramming or any type of physical intrusion.   
- PIR/Microwave in which microwave and PIR (passive Infrared) sensors are 

electronically connecting together with AND logic. Microwave sensors are active 
devices, which cover a zone or an area with electrical field and detect movement and 
PIRs are passive, which detect a heat-emitting source (human bodies). 

- Sound detectors that "listen" to the noises produced by the intruder.  
- Glass-Break detectors, which are sensitive to 5 kHz, shock and frequencies produced if 

a glass is broken. 
It is tried to use almost maximum number of sensors, but it can be changed by the designer's 
opinion. In designing the IHS, it is tried to indicate the zone that the intruder attacks there. 
The home is divided into 6 areas as shown in figure 1. 
Considering the table1, the probability of detection of sensors is estimated as following 
(Rowshan & Simonetta, 2003):  
PIR/Microwave: VL = 0-0.2, L = 0.2-0.4, M/H = 0.4-0.6, H = 0.6-0.8, VH = 0.8-1 
Sound detector: VL = 0-0.3, L = 0.3-0.5, M/H = 0.5-0.7, H = 0.7-0.9, VH = 0.9-1 
The worst condition for the system is when an intruder is crawling as given in table 1. The 
threshold probability for detection of sound detectors set to 0.3 and for PIR/Microwaves, set 
to 0.45. These values are supposed to be 0.25 for wall sensor and 0.4 for glass-break 
detectors. The ignorance of all sensors is set to 0.1. 
The system checks the 22 sensors' sample for every 0.5 seconds. As soon as one sensor rises 
up the threshold, the system looks for another and combines the output of them to check if 
there is a real attacking. If an intrusion happened, depending on which zone's sensors 
participate in combination, the corresponding zone alarm would be triggered. 
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Fig. 1. House plan with sensors located in it 

The sensors are sensitive to the delay between two detections and the system resets if the 
intruder delayed between two actions, so the system is programmed in a way that each time 
one sensor's output increases the threshold value, the system holds it for 10 minutes. As 
soon as the new value becomes greater than the last one, the newer one will be held and 
subsequently this recent new value would be considered in the corresponding calculation 
process. 
First, consider a room with the five sensors mentioned above: two glass-break detectors, two 
PIRs, and one wall sensor. The mentioned system is simulated by the Monte-Carlo method 
in which, one mathematical experiment with random numbers is repeated for thousands of 
times (C.Henderson et al., 2005). 
The probabilities for detection produced by the sensors are random numbers. Applying the 
output value for the sensors is repeated for 1000 times. About 100 times out of 1000, the 
results of two methods contradicted each other. One of those contradictory conditions is 
considered below. The mass of intruder and secure for five sensors are as follows: 
 

m1(i) = 0.17 m2(i) = 0.76 m3(i) = 0.16 m4(i) = 0.15 m5(i) = 0.89 
m1(s) = 0.73 m2(s) = 0.14 m3(s) = 0.74 m4(s) = 0.75 m5(s) = 0.01 
θ = 0.1 
 

With these probabilities, DST method considered the situation safe; however, PCR5 detects 
the condition as a dangerous one. The calculation process for DST and PCR5 is shown in 
table.2 and table.3. 
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Sensor Lists- 
Estimate 

Probability of 
Detection- 

very low VL, low 
L, medium M, 

high H, very high 
VH, N/A not 

applicable 

N/AN/AN/AN/AN/AN/ABinary Sensors 

N/AN/AN/AN/AN/AN/AFix Barrier/ Wall 
Sensor 

      Infrared Sensors 

H H M/HVH VH VH 
Infrared 

Beambreak 
Detector 

Passive infra-Red 
Sensor (PIR) 

H H M/HVH VH VH 
Detector(Heat 

sensor) 

      Microwave 
Sensors 

M/HM/HM/HH VH H Microwave 
Bistatic 

M/HM/HM/HH VH H Microwave 
Monostatic 

      Other Sensors 
Dual Technology

H H M/HVH VH VH Passive 
IR/Microwave 

M L VL M/HM L Sound Sensors 

Table 1. The estimate probability of detection for sensors 
 

The step of calculation is according to the direction of arrows in the upper left cell of the 
tables. I.e. by fusing m1 and m2, m12 is achieved, then by fusing m3 and m12, m123 is 
deduced, and so forth.  
Take note that although sensors number 2 and 5 display a high range of perilous situation, 
the DST method did not pay attention and announce the safe mode, however using PCR5 
method by which conflict mass redistribute proportionally to the partial masses, danger 
mode is detected. 
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 m1(i)=0.17 
m1(s)=0.73 
θ1=0.1 

m3(i)=0.16 
m3(s)=0.74 
θ3=0.1 

m4(i)=0.15 
m4(s)=0.75 
θ4=0.1 

m5(i)=0.89 
m5(s)=0.01 
θ5=0.1 

m2(i)=0.76 
m2(s)=0.14 
θ2=0.1 

K=0.4214 
m12(i)=0.5273 
m12(s)=0.4490
θ12=0.0237 

K=0.5380 
m123(i)=0.2619 
m123(s)=0.7337
θ123=0.0044 

K=0.6935 
m1234(i)=0.0954 
m1234(s)=0.9040
θ1234=6.36e-004 

K=0.1945 
m1234(i)=0.4883 
m1234(s)=0.5113 
θ1234=3.27e-004 

Table 2. Calculation of the mass of intruder and secure with DST method 
 

 m1(i)=0.17 
m1(s)=0.73 
θ1=0.1 

m3(i)=0.16 
m3(s)=0.74 
θ3=0.1 

m4(i)=0.15 
m4(s)=0.75 
θ4=0.1 

m5(i)=0.89 
m5(s)=0.01 
θ5=0.1 

m2(i)=0.76 
m2(s)=0.14 
θ2=0.1 

m12(i)=0.5182 
m12(s)=0.4718
θ12=0.01 

m123(i)=0.3134 
m123(s)=0.6856
θ123=0.001 

m1234(i)=0.1662 
m1234(s)=0.8337
θ1234=1e-004 

m1234(i)=0.5493 
m1234(s)=0.4507 
θ1234=1e-004 

Table 3. Calculation of the mass of intruder and secure with PCR5 method 

The above situation can be mapped into a dining room with five sensors included two glass-
break detectors, two PIRs, and one wall sensor. One of the glass-break detectors and one of 
the PIRs detect the intruder with the mass 0.89 and 0.76 respectively. The other sensors 
cannot detect anything according to their masses. Applying two methods implied that by 
using PCR5 rule, which is more exact than DST, the system could detect the dangerous 
situation. Now by implementing the main scenario to IHS with 22 sensors, there can be a 
better understanding between two theories by comparing the differences.  
Fig. 2 (1 to 5) indicated the function of detecting by the sensors, i.e. it shows the sensors’ 
detection status corresponding to the movement of an intruder. 
It is assumed that the total time for traversing the path to reach the object shown in Fig. 1 is 
130 seconds. Another assumption is that each sensor takes a sample in every 0.5 seconds. 
 

 
Fig. 2.1. Output pattern of PIR1 located in zone 0  

1

2 3

1

2 3
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Fig. 2.2. Output pattern of SD1 located in zone 0  

 

 
 

Fig. 2.3. Output pattern of PIR4 located in zone 3  

 

 
 
 

Fig. 2.4. Output pattern of PIR5 located in zone 3 
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Fig. 2.5. Output pattern of PIR6 located in zone 3 

Therefore, there are 260 samples in total. The horizontal axis in Fig.2 shows the samples and 
the vertical one indicates the probability of the detection.  
Considering the SD1 graph as an example, it is noticed that the sensor began to detect the 
thief until around the sample 57, where the peak of the probability of the detection of the 
sensor appears. This is due to the minimum distance between the intruder and the sensor. 
Afterward when the intruder receded from the sound detector, the probability of the 
detection is also decreased. 
It is assumed that it takes 60 seconds (120 samples) to pass the corridor (path 1), 30 seconds 
to pass the meal table (path 2), 10 seconds to crawl the path 3, and 30 seconds to reach the 
object (path 4). 
By simulating the security system with MATLAB, around sample 56 the PCR5 method 
announces the danger mode, but DST is safe yet until the 208 sample. At sample 208 DST 
alarms that the intruder attacks in zone 3. In sample 56 the mass of intruder and secure of 
PIR4, SD1, and PIR1 in the entrance of the home are as follows:  
 
mPIR4 (i) = 0.47 mPIR4 (s) = 0.43 θPIR4 = 0.1 
mSD1 (i) = 0. 3 mSD1 (s) = 0.6 θSD1 = 0.1 
mPIR1 (s) = 0.58 mPIR1 (i) = 0.32 θPIR1 = 0.1 
 
With using formulas number 4 and 5 it can be seen that by DST calculation the system is in 
the safe mode and by PCR5 is in the attack mode. Therefore, the system realized the 
intruder at the first minutes of his entrance and alarmed or called the local police station, or 
even locked the doors or it can done any prevention actions by which it is programmed. The 
process for calculating the PCR5 mass of intruder and secure is shown below. 
 
m12PCR5 (i) = 0.218 + [(0.13254/1.07) + (0.0387/0.73)] = 0.3949 
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m12PCR5 (s) = 0.361 + [(0.05547/0.73) + (0.1692/1.07)] = 0.5951 
θ12PCR5 = 0.01 
m123PCR5(i) = 0.5154 
m123PCR5 (s) = 0.4845 
θ123PCR5 = 0.001 

5. Conclusion 
As shown in Fig.2 the probabilities of the sensors for activating are very low. At least PIR's 
are more sensitive than what were supposed here and the sensors had to detect the intrusion 
with higher probability. Meanwhile the worst conditions of the sensors for detection have 
been considered. However, the proposed system based on data fusion concept could easily 
detect the intruder.  
One of the advantages of using this system is detecting the zone where the intruder 
attacked, so based on the location of the house, the different mechanisms could be used in 
order to trap the intruder. 
The higher reliability of the simulated security system was achieved due to the redundancy 
and complementary characteristics of the sensor fusion itself, and the nature of the parallel 
processing of sensor data fusion approach provides less costly information processing. In 
this scenario the "m (intruder ∩ secure) =Ø", as a result, the conflicting masses in PCR5 are 
transferred to those that contributed in conflicting mass. For future work, "m (intruder ∩ 
secure) ≠ Ø" could be considered; meanwhile, the other fusion approaches using fuzzy 
integral operator or neuro-fuzzy method could be applied.   
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1. Introduction  
Process sensors form an essential component of modern industrial production processes. 
They usually have to be operated under stringent environmental, safety, and cost 
constraints. Some of the key requirements on process instrumentation are: operation under 
harsh and varying environmental conditions, high reliability, fault tolerance, and low cost. 
The failure of process sensors may cause high losses due to plant breakdowns or out-of-
specification products. Therefore it is important to know as much as possible about the 
momentary states of a production process. In addition, the estimates need to have low 
uncertainty and high reliability.  
Sensor and data fusion can be key techniques to economically reach these goals and achieve 
higher performance than with isolated single point sensors alone. These methods enable the 
quantification of otherwise inaccessible quantities that cannot be deduced from a single sensor 
or management principle. Examples are the concentration measurement of ternary solutions or 
the tomographic estimation of spatially distributed material parameters from arrays of single 
point sensors. Industrial processes are usually operated within a defined environment, 
although there may be very harsh conditions like temperature variations, aggressive fluids, 
and high humidity. There are certain limits of operation. The nominal parameters, like desired 
product specifications as well as normal or acceptable fluctuations are known in advance 
while unknown encounters like in classical sensor fusion for target tracking, autonomous 
guidance, and battlefield surveillance are not within the scope of operation.   
This fact potentially establishes a precise and specific model of the industrial process at 
hand. The knowledge then contained in the process model can be fruitfully exploited in 
model-based data fusion. Generally, model-based approaches reach beyond straightforward 
methods like physical redundancy with majority votings or heuristic filtering operations.  
The achievable measurement precision as well as decision making reliability is usually 
higher in model-based approaches due to the additional regularization of the state or 
hypotheses space that is achieved with an appropriate model. However, at the same time 
special care needs to be taken to choose a model that allows for sufficient and representative 
variation. This is the only way the inherent variability of a process can be adequately 
represented.  
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The well-known JDL (Joint Directors of Laboratories) data fusion process model is a popular 
and useful conceptual framework for the classification and comparison of data fusion 
approaches (Hall & Llinas, 1997), (Varshney, 1997), (Macii et al., 2008). It was originally 
developed with military applications like surveillance and target tracking in mind. It has 
been pointed out that the JDL model does not fully address data fusion problems from non- 
military areas, like image fusion. However, a classification of such fusion algorithms may be 
useful for a common understanding. After a preprocessing stage the JDL model 
distinguishes four levels of processing:  
• Object refinement (level 1) 
• Situation refinement (level 2) 
• Threat refinement (level 3) 
• Process refinement (level 4) 
Due to the frequent availability of a well-defined process description, the model-based data 
fusion approaches in industrial process instrumentation are classified as level 1 processes in 
most cases. In this object refinement stage parametric, locational, and identity information 
are combined. Major functions are the transformation and alignment of data to a suitable 
reference frame, and the estimation and prediction of states. In terms of process 
instrumentation, the desired output of the object refinement process are quantitative and 
unambiguous figures. Due to the precise knowledge of the desired target quantities these 
figures can be straightforwardly used for an objective assessment of the industrial process. 
Therefore the higher levels of the JDL model do not play an as important role in industrial 
as in military applications. 
According to another popular characterization of data fusion approaches the fusion can take 
place at different stages of the signal processing chain. A common categorization uses three 
levels (Varshney, 1997), (Hall et al., 1999):  
• Data-level fusion 
• Feature-level fusion 
• Decision-level fusion 
In data-level fusion the raw data from each of the sensors are combined. In this context raw 
data are single measurements like temperature or pressure readings. All further processing 
is based on the totality of data. This approach is able to yield the most accurate results, but it 
requires the sensors to be commensurate, i.e. that the different data can be processed in a 
common framework. If the data are in different regimes they have to be registered first, e.g. 
through coordinate transformations. Data-level fusion requires centralized data processing, 
since the totality of raw data has to be simultaneously available. A high communication 
bandwidth is necessary since all raw data have to be transferred. In feature-level fusion the 
raw data of each sensor are processed locally. A feature vector is generated from the 
corresponding observations. Features can, e.g., be volume fractions of materials, flow rates, 
or flow profiles, which are derived from multiple single point measurements. The different 
vectors are then fused to give a single feature vector. The necessary communication 
bandwidth is reduced compared to data-level fusion. However, the generation of the single 
feature vectors results in some data loss in general. Finally, in decision-level fusion, each 
sensor derives higher-level decisions from its own data and features. A decision could be 
whether there is a process malfunction or not. The individual decisions are finally fused by 
some sort of voting to give the final inference. The high required bandwidth in data-level 
fusion may be a severe disadvantage in large scale distributed target tracking applications, 
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but is not regarded as a major issue in process instrumentation. Sensors that share a 
common or similar state space or reference frame are usually installed in close vicinity. In 
distributed production environments the derived feature and decision information is passed 
on to the control room. 
This chapter is intended to give an overview of applications of model-based data fusion in 
the context of industrial instrumentation and process monitoring. The diverse examples 
addressed are grouped according to a classification in: uniquely determined, 
overdetermined, underdetermined, or sequential data fusion (Tanner, 2003). Data fusion 
may already take place in instruments that are received as single sensor installations from 
an outside perspective (Ruhm, 2007). Examples are sensors that rely on additional measured 
quantities to compensate for unwanted cross-sensitivities. Internal temperature 
compensation of the primary measurand, e.g., is indispensable in many instruments. A next 
step is data fusion of multiple independent and non-redundant sensors to compensate for 
cross-sensitivities among the primary measurands that can be explicitly modelled. A typical 
application is the concentration measurement in ternary or multinary solutions. A 
characteristic feature of this class of sensor fusion problems is that the number of unknown 
parameters can be uniquely determined from the number of input quantities of the fusion 
process. 
A concept more easily perceived as data fusion is the combination of identical parallel 
sensors to provide redundant information. This leads to a higher degree of security and 
reduces measurement uncertainty. The use of such redundant sensor arrays has a long 
tradition in industrial process instrumentation as sensor breakdowns and false decisions can 
have dramatic implications. Even single sensor failures may be able to cause malfunctions of 
large-scale facilities like power plants if security issues are not properly addressed in the 
system architecture. A slightly different approach than redundancy maximization is the use 
of identical sensors in a specific spatial configuration. By using appropriate models it is then 
possible to deduce quantities that cannot be measured with a single point sensor of the same 
measurement principle. Further benefits are increased accuracy of the estimates and 
powerful error compensation without additional sensors. This approach is convincing if 
very simple and cost-efficient elements can be used and will be illustrated by means of 
capacitive and magnetic sensors for angular position measurement. In these cases the 
number of measurement values exceeds the number of unknown parameters to be 
determined. 
The third class of data fusion applications covers the converse case where the number of 
independent measurements from a homogeneous sensor array is actually smaller than the 
number of unknown parameters. This occurs when spatially varying material parameters 
are to be determined using industrial process tomography. The number of measurements 
obtained at the boundary of a problem domain is limited compared to the appropriate 
discretization of the domain. This leads to ill-posed inverse problems. The incorporation of 
additional prior knowledge through the process model is essential in order to obtain a 
meaningful solution of the problem. Here the concept of model-based measurement peaks 
in its relevance as a framework for multi-sensor data fusion. Solution strategies for 
tomographic problems are introduced in the corresponding section and the importance of 
the process model is discussed. Besides single-modality tomographic data fusion, multi-
modality fusion is also addressed. For this case a sequential fusion process is proposed.  
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In subsequent sections, grouped according to uniqueness of the data fusion solution, several 
model formulations will be introduced. These model formulations range from static to 
dynamic, ideal to those including nuisance effects and noise, and explicit to implicit. Also 
different fusion algorithms including response surfaces, stochastic filters, and sequential 
fusion will be addressed within the respective applications. 

2. Non-redundant measurement processes 
2.1 Error compensation 
Measurement processes and the superordinate fusion algorithms can be modelled in various 
ways. Depending on the actual situation and the aim of the measurement they may be 
formulated as static or dynamic systems. For certain applications a static model may be 
sufficient although virtually every sensor shows some kind of dynamic behaviour. For the 
following considerations we assume a vector ( )...21 zzzT =  of two or more 
measurements as input to a nonlinear static fusion equation f . 

 )(zfx =  (1) 

The output of the fusion process is the scalar variable x . This kind of data fusion can 
already be found in most of modern process instruments. In the simplest case a single input 
variable is directly related to the output of the fusion relation and defines the primary 
measurement equation. An illustrative example that can be found throughout the process 
industries is density measurement. A classical instrument for that purpose is the vibrating 
tube densimeter (Ihmels et al., 2000) (Laznickova & Huemer, 1998). The operating principle 
based on a spring-mass system is sketched in figure 1 using a U-shaped tube.  The process 
fluid under test flows through a metal or glass tube that is decoupled from the surrounding 
through a base mass. In order to measure the fluid density the tube is excited by a force 
acting on the bend. The tube then vibrates at its resonant frequency, which is sensed by the 
pick-up mechanism.  
 

 
Fig. 1. Principle of the vibrating tube densimeter. 

The resonant frequency depends on the mass Tm  of the tube and the mass of the fluid Fm  
inside the tube. With the spring constant  c  the relation for the resonant frequency Rf  and 
the period of oscillation Rτ  can be obtained.  
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As the volume of the tube is constant and known the measurement is proportional to the 
fluid density. Equation (2) can be reformulated to give the density ρ as a function of the 
period of oscillation, where A and B are constants. 

 BA += 2τρ  (3) 

In practice equation (3) is not sufficient to obtain accurate results over a wide operating 
range as there are several other factors influencing the period of oscillation. Temperature 
changes lead to changes in the tube volume and the spring constant. The same holds for 
changes of the fluid pressure p . To compensate for these effects a polynomial expansion 
can be applied to the constants in the measurement equation. 

 ∑∑ +=
j

j
j

j

j
j pbTaA  (4) 

 ∑∑ +=
j

j
j

j

j
j pdTcB  (5) 

For increased accuracy also mixed terms can be included. Combining equations (3) – (5) we 
obtain the fusion equation to compensate for the nuisance effects of temperature and 
pressure on the density reading. 

 ),,( pTf τρ =  (6) 

As the accuracy requirements are increased even further influences need to be compensated 
for. Fluid viscosity, as an example, is known to have a small effect on the period of 
oscillation (Krasser & Senn, 2007).  

2.2 Multidimensional parameter estimation 
In the error compensation case several auxiliary measurands act on individual scalar output 
quantities in a unidirectional way. A more complex fusion process can be introduced if a 
vector of output quantities ( )...21 xxxT =  is introduced in equation (1). Then the input 
parameters can interact with all of the outputs simultaneously. This allows for the use of 
more flexible and powerful fusion methods. Figure 2 shows flow charts of the scalar and 
multidimensional data fusion approaches. The data fusion process 12f  can range from a 
matrix in the linear case to arbitrary response surface methods, e.g. based on polynomial 
expansions.  
The concentration measurement of ternary and multinary solutions is a typical problem in 
this class of fusion procedures. The density measurement introduced in section 2.1 is often 
used for concentration measurement of binary solutions. However, if there are more than 
two components only the sum of contributions of the individual components can be 
measured. The measurement problem may be resolved by fusing suitable methods for 
binary concentration measurement. As a representative application the measurement of 
extract and alcohol concentration in beer production is presented (Vasarhelyi, 1977). Beer is 
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basically a ternary mixture of water, extract and alcohol. So density measurement alone is 
not sufficient. The same is true for sound velocity and refractive index measurements, which 
are also classical methods for density and concentration determination (Hauptmann et al., 
2002). If the response curves of two measured quantities to extract and alcohol variations are 
linearly independent in a certain range the problem can be solved with data fusion. Then 
both quantities can be uniquely determined from the primary measurements. The procedure 
is sketched in figure 3. 
 

 
Fig. 2. Data fusion by means of unidirectional error compensation (left) and multi-
dimensional parameter transformation (right). 
 

 
Fig. 3. Determination of extract and alcohol concentration in beer from density and sound 
velocity measurements. 

The example qualitatively shows the extract and alcohol determination from density and 
sound velocity measurements. It can be seen that an extract change increases both sound 
velocity and density. On the contrary, a change of the alcohol concentration increases sound 
velocity and decreases density. This orthogonality allows for the unique determination of the 
target quantities. The inversion procedure corresponds to the transformation of a point in the 
Euclidean density/sound velocity space to a different, in general curvilinear, coordinate system. 

3. Redundant measurement processes 
3.1 Sensor fault detection and isolation 
One of the most prominent applications of data fusion in industrial process instrumentation 
is sensor fault detection and isolation (FDI). It is of fundamental importance in all safety-
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critical processes where the reliability of sensor data needs to be assured. Typical examples 
are nuclear power plants and other assets processing dangerous materials or handling very 
high power. In such cases false sensor readings may cause expensive and harmful damage. 
The central step in FDI is the generation of residuals. Residuals are functions of sensor 
outputs and must rise in case of a sensor fault (Betta & Pietrosanto, 2000) (Dorr et al., 1997) 
(Simani, 2000). Faults can then be detected by comparing the residuals with thresholds that 
are suitably defined with respect to the normal sensor operation. Finally the faulty sensors 
are isolated by analyzing the different residuals.  
Physical and analytical redundancies are the two possible types of redundancy necessary for 
the calculation of residuals. Physical redundancy means the use of several sensors 
measuring the same physical quantity in parallel. Analytical redundancy is concerned with 
the application of analytical models in order to produce estimates of sensor signals from 
other sources of data. It requires the precise knowledge of the underlying process. Typically 
applied in this category are stochastic filters and observers like the Kalman filter. The 
application study in section 3.2 treats a sensor system using an extended Kalman filter with 
integrated FDI functionality. 
Physical redundancy is more general as it does not rely on such information. However, it is 
more expensive to implement as multiple sensors for every quantity to be measured need to 
be employed. Residuals for a redundant set of sensors are computed by comparing each 
sensor signal with an estimate of the true value of the measured physical quantity ς . A 
straightforward linear measurement and fault model can be used to relate the true value to 
the measurement jz  of sensor j . 

 jjj vz δς ++=  (7) 

Each of the n sensor readings is corrupted with a random noise component v . The 
component jδ is considered the contribution of an abnormal degradation or fault of sensor 
j . The individual sensor fault  contributions are assumed independent. The estimate of the 

true value ς is obtained from a weighted sum of the sensor readings. Constant weights are 
used if the random contributions v  are uncorrelated white Gaussian noise with the same 
variance. There are many different possibilities to derive and analyze the residual vector r  
for the redundant instruments. The proper choice depends on the assumed fault 
mechanisms and effects. A good choice for the introduced linear fault model is the 
difference of the individual sensor values and the calculated mean of the respective 
remaining measurements.  

 ∑
≠=

−
−=

n

jkk
kjj z

n
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,1
1

1  (8) 

In the fault-free case the expectation of the residuals is zero and the standard deviation 
depends on the individual sensor standard deviations and the number of sensors. 
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In the case of a single instrument error the residual of this sensor has a mean equal to the 
fault amplitude, while the other residuals show a mean that is lower by a factor )1/(1 −n . 
With this information suitable thresholds for the detection of occurring faults can be easily 
established.  
Other possibilities for the detection of faults include the calculation of statistical, spectral, 
and temporal characteristics of the residuals and artificial intelligence methods. The use of 
fuzzy logic allows for a flexible integration of different aspects of failure modes with 
empirical knowledge, for which analytical models are difficult to define (Park & Lee, 1993). 
Input quantities of the system like differences of sensor values and other characteristics are 
fuzzified using linguistic variables.  An example is shown in figure 4. 
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Fig. 4. Membership functions used for fuzzy-based fault detection and isolation. 

The differences of sensor readings are normalized according to the standard uncertainties of 
the sensors. In the shown example three membership functions ‘small’, ‘medium’, and 
‘large’, based on Gaussian and spline functions, are employed for the fuzzification (Steiner 
& Schweighofer, 2006).  Further input variables can be elaborated from other observations 
related to error and fault occurrence. The actual fault model is contained in the rule base 
that is used for fuzzy inference. Rules are formulated as if-then relations. 

IF residual 1=small AND residual 2=small THEN 
operation=normal (10)

The de-fuzzification stage of the Mamdani-type fuzzy system finally yields quantitative 
measures of the output fault parameters. Fuzzy systems have the advantage that they can be 
easily extended with more detailed application-specific process knowledge. 

3.2 Integrated sensor arrays 
With suitably designed sensor arrays and data fusion algorithms the tasks of error 
compensation and fault detection and isolation can be readily combined within a single 
instrument. Another potential feature is the highly accurate estimation of quantities of 
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interest through the combination of multiple low accuracy sensing elements. The achievable 
performance is illustrated in the following by means of an integrated smart capacitive 
sensor array for the determination of angular position and speed (Watzenig et al., 2003) 
(Watzenig & Steiner, 2004). The approach is based on the use of the extended Kalman filter 
(EKF), which is frequently used for data fusion in applications like target tracking. It offers a 
powerful framework also for industrial applications of data fusion. In contrast to the 
methods introduced in this chapter it is based on dynamical state space models and allows 
to monitor and exploit dynamical effects of the involved sensors and processes. 
The capacitive angular position sensor consists of a rotor mounted coaxially between two 
stator plates. One stator plate corresponds to the transmitter. It is divided into 16 segments, 
the other stator contains the receiving electrode. The 16 segments of the transmitting 
electrode are electrically isolated from each other. The two stator plates are both bounded by 
an inner and an outer guarding ring connected to ground potential. The electrically 
conductive rotor is also grounded. It affects the coupling capacitances between the 
transmitter segments and the receiving electrode, dependent on its angular position. The 
used sinusoidal rotor shape yields a sinusoidal capacitance distribution. Segment driver and 
receiver electronics ensure that the received voltage signal amplitude is linearly dependent 
on the coupling capacitances. Figure 5 illustrates the axial view of a capacitive angular 
position sensor with approximately sinusoidal capacitance variation. In particular, a four-
blade rotor in front of the transmitting electrode with 16 segments is shown. The receiving 
electrode is similar to the transmitting electrode, but without segmentation. Thus, the sensor 
array consists of 16 simple low resolution measurement channels which acquire data at 
different spatial orientations. The sensible combination of the channel data allows for the 
accurate estimation of angular position. The same principle can be applied to the 
measurement of other quantities like inclination angle, torque, liquid level, and flow. It can 
also be used with other physical sensing effects. 

 
Fig. 5. Axial view of a capacitive angular position sensor. A four-blade rotor with a 
sinusoidal rotor shape is placed in front of the transmitting electrode, which is divided into 
16 segments. The receiving electrode above the rotor is not shown. 
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The data fusion algorithm is based on the EKF. Therefore a discrete-time state space model 
of the sensor array is introduced. It is derived from a continuous second order system using 
a sampling interval T . The state vector kx  at time step k  is composed of the angular 
position kϕ  and the angular speed kω . 
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The measurement equation (12) relates the state vector to the vector kz  containing the 16 
segment readings through the nonlinear measurement function h . Due to the special shape 
of the rotor the segment voltages are basically phase-shifted sinusoids as a function of the 
angular position. Both state and measurement equations are corrupted by process and 
measurement noise sequences w  and v , respectively. They are assumed to be uncorrelated 
white Gaussian sequences with covariance matrices Q  and R . 

 kkk vxhz += )(  (12) 

The EKF recursively estimates the process states based on the current values of the states 
and the state error covariance matrix kP . The algorithm can be grouped in a prediction step 
and a correction step. First the states and covariance are projected to the next time step 
based on the process model. The projected values are indicated by the superscript ‘-’. The 
correction uses the current measurement to update the projected states. The central equation 
is the calculation of the Kalman gain matrix  kK . It is based on a linearization of the 
measurement equation using the Jacobian kH  of h . 

 ( ) 1−−− += RHPHHPK T
kkk

T
kkk  (13)  

The gain matrix is then used to update the state estimate using the current measurement. 

 ( )[ ]−− −+= kkkkk xhzKxx ˆˆˆ  (14) 

The term in brackets, which is the difference between actual measurement and estimated 
measurement, is called innovation sequence. It is a sensitive indicator of differences between 
a fault-free model and the current system. If the measurements and the model are in 
agreement, it has a mean of zero. Thereby Kalman filtering can also conveniently be used for 
fault detection and isolation using analytical redundancy. For the present application the 
innovation sequence sk can be used to compensate for occurring segment offsets. The 
measurement equation (12) can be extended by offset voltages ξ for the individual 
segments.  

 kkkk vxhz ξ++= )(  (15) 

The offset values can be estimated without increasing the size of the Kalman filter equation 
systems by directly integrating the innovation sequence. 

 kkk s⋅+=+ τξξ 1  (16) 
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The choice of the integration time constant  determines the trade off between smoothness of 
the estimates and bandwidth of the offset compensation. The relation of the discrete-time 
EKF to the capacitive sensor system is illustrated in figure 6. The 16 measured segment 
voltages are used as inputs to the EKF. Based on the fusion of all signals the EKF is able to 
calculate accurate estimates of angular position and speed. 
 

 
Fig. 6. Block diagram of the capacitive sensor with the extended Kalman Filtering with 
integrated offset estimation and compensation. 

Figure 7 illustrates the performance of the EKF and the offset compensation approach. The 
first subfigure shows three of the measured sinusoidal voltages of adjacent segments. The 
second figure depicts the estimated segment offsets. There is a slight global offset at time 
step 0, which is compensated after about 10 samples. At time step 170 the voltage of 
segment 1, plotted bold, is stressed by an offset of 30% of the signal amplitude. The 
monitored innovation sequence is illustrated in subfigure 3. The sudden change in the 
amplitude of the sequence corresponding to segment 1 at time instant 170 (dashed vertical 
line) is obvious. The last chart shows the progression of the absolute angular position error.  
A further approach to perform error compensation for the capacitive sensor array that is 
capable of handling additional errors like line faults, short circuits, driver failures, and 
electromagnetic disturbances, is to use several parallel Kalman filters and integrate the 
estimates in an additional data fusion step. Decentralized Kalman filtering also drastically 
reduces the computational requirements for the signal processing of the sensor array. In the 
present case the 16 measurement signals can be pairwise used as inputs to eight parallel 
EKFs. The inputs are wired in such a way that a single EKF processes signals that have a 
phase shift of 90°. The block diagram of the whole sensor system including the final fusion 
stage is sketched in figure 8. 
All filters operate on the same process model, but use different measurement equations. 
Assuming equivalent error covariances for all filters, the decentralized fusion can be done 
by averaging the eight Kalman Filter state estimates. This assumption holds as long as no 
segment fault occurs.  
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By introducing fault detection with subsequent deactivation of certain filters with deficient 
state estimates the decentralized fusion can be applied for the general case. The fusion 
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Fig. 7. Readings of the first three segments, segment offsets, monitored innovation sequence 
and curve of remaining angular position error. The signal of segment 1 is stressed by a DC 
offset at time step 170. 

 
Fig. 8. Block diagram of the capacitive sensor with decentralized Kalman Filtering and 
subsequent data fusion with fault detection. 
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equation (11) does not consider the correlation of the single Kalman filter estimates due to 
the common process noise states. However, a comparison with the optimal fusion filter 
(Hashemipour et al., 1998) applied to the same problem shows only minor differences. The 
computational cost of the proposed averaging is very low compared to the optimal filter and 
numerical problems inherent in optimal fusion are avoided. 
The availability of eight state estimates in parallel can be exploited for fault detection. The 
correlation between the different outputs and the final averaged estimate provides a 
confidence figure (an estimate for the variance) for each filter output. 
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The last N measurements are used for the calculation of the mean square difference. In order 
to exclude a faulty filter some threshold level must be defined. This threshold level should 
be adaptive in a sense that only a segment that is significantly worse than the others is 
eliminated. A possible choice is the mean of the confidence figures with a tuning parameter α. 
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The performance of the decentralized filtering approach to data fusion with the capacitive 
sensor array is demonstrated with two failure modes; segment drift, and segment 
disturbance. In capacitive sensing a line break does not necessarily lead to a full breakdown 
of the segment signal, because the capacitive coupling over a break is still considerable. 
Since this coupling may depend on external influences such as temperature or vibrations, a 
noisy segment signal as shown in figure 9 may occur.  The noise contamination of one signal 
instantaneously affects the position estimate of the corresponding filter. The confidence 
figure of this filter quickly rises above the threshold, so that the corrupted EKF is excluded 
from the calculation of the final estimate. It can be included again when the variance 
estimate is below the threshold again. 
Another failure mode is demonstrated in figure 10. The offset for one segment continuously 
increases. This occurs in practical implementations when, e.g., water drops or dirt 
accumulate on a segment, because the high conductivity or permittivity of such a 
contamination lead to an amplification of the signal. Again, this error is quickly detected, 
long before even a very restrictive range checking algorithm would have the chance to 
detect this problem. Consequently the angular position estimate remains unaffected from 
the disturbance. 

4. Ill-posed measurement processes 
4.1 Industrial process tomography 
In some measurement problems the available data is not sufficient to fully characterize the 
process at hand. This is often the case in distributed scenarios where spatially varying 
quantities that cannot be measured directly need to be resolved. For example, tomographic 
measurement techniques are able to provide two-dimensional or three-dimensional 
information about internal states of industrial processes. The knowledge of the internal 
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Fig. 9. Segment readings, output of selected filters, fused result, and adaptive threshold level 
in the case of a segment disturbance caused by a crack in the line. 
 

 
Fig. 10. Segment readings, output of selected filters, fused result and adaptive threshold 
level in presence of a segment offset drift. 
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behavior of such processes can be used for process design, prediction and process control in 
order to increase product quality and process efficiency. Depending on the application, 
different tomographic sensing modalities have been developed for industrial purposes, e.g. 
electrical capacitance tomography (ECT), electrical resistance tomography (ERT), ultrasonic 
reflection tomography (URT), positron emission tomography (PET) and X-Ray tomography 
(Scott & McCann, 2005) (Plaskowski et al., 1995). These techniques have in common that the 
spatially distributed parameters are reconstructed from a limited number of measurements. 
The sensors are usually distributed around the boundary of the problem domain. The fusion 
of this boundary data in order to obtain estimates of the spatial distributions of the 
quantities of interest is an ill-posed inverse problems. This implies that there is no unique 
solution to the problem. Ill-posed problems are very sensitive to noise and special measures 
need to be taken to obtain a stable meaningful solution (Kak & Slaney, 2001). This includes 
the choice of a suitable model of the measurement process and the incorporation of available 
prior knowledge through regularization. A multitude of reconstruction algorithms has been 
proposed, ranging from simple linear backprojection methods to model-based approaches 
based on nonlinear optimization methods and stochastic filtering methods like extended 
Kalman filters and particle filters. 
Electrical capacitance tomography presents as a representative example. The objective in 
industrial ECT is to estimate the dielectric properties of heterogeneous mixtures or distinct 
transitions between occurring phases based on capacitance measurements between certain 
electrodes at the boundary of a closed container like a pipeline. Figure 11 illustrates the 
schematic of an ECT sensor based on the measurement of displacement currents (Wegleiter 
et al., 2005). The cross-section of a non-conducting pipe is used as measurement plane. 16 
electrodes are evenly spaced around the circumference of the pipe. The setup is protected 
from electromagnetic interference by a grounded outer shield.  
Every single electrode can be alternately used as a transmitter and a receiver. The front-end 
electronics of an electrode consists of a transmitting amplifier and an input stage comprising 
a current-to-voltage converter, a bandpass filter, and a high frequency peak rectifier. A 
single measurement frame consists of 16 projections, according to the 16 available 
transmitting electrodes. For one projection a specific electrode acts as transmitter while all 
the others sense the displacement current. A measurement frame consequently consists of 16 
by 15 = 240 entries. 
The reconstruction of the permittivity distribution within the pipe from the boundary 
measurements requires a mathematical model of the measurement process. This forward 
model establishes the functional mapping between the cross-sectional material distribution 

( )yxr ,ε  and the measured displacement currents q . Under the assumption of non-
conducting materials, negligible magnetic fields, and wave propagation effects it can be 
modelled as an electrostatic field problem in the interior of the screen. This leads to a 
generalized Laplace equation for the electric potential v  (Watzenig et al., 2007b). 

 ( ) 0=∇⋅∇ vrε  (20) 

Dirichlet boundary conditions 0vv =  at the transmitting electrode and 0=v at the sensing 
electrodes are prescribed. The charges at the electrodes are proportional to the displacement 
currents occurring with time-harmonic excitation. The electrode charges are determined by 
integration of the electric displacement along the electrode boundaries. The forward model 
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Fig. 11. Measurement configuration and schematic of a typical ECT sensor. The 
measurement electrodes are placed around the pipe containing the imaging domain. Every 
electrode features dedicated transmitting and receiving hardware. The acquired data is 
transferred to a PC where the signal processing is performed. 
is numerically solved using the finite element method (FEM). The problem domain is 
thereby discretized into n  triangular finite elements, where the permittivity is assumed  
constant within a single element. The discretization of equation (20) leads to a linear 
equation system for the vector v  of the potentials of the finite element nodes.  

 rvK r =)(ε  (21) 

The stiffness matrix K reflects the geometry of the problem and the permittivities of the 
finite elements. Due to the sparsity of the stiffness matrix the equation system can be solved 
efficiently using specialized algorithms. However, in the context of industrial process 
tomography a compromise between the spatial resolution and accuracy of the finite element 
mesh and the computation time still has to be met. Figure 12 shows one quadrant of a 
typical finite element discretization. The domain is bounded by the outer screen. The 
interior contains the electrodes, the pipe and the imaging plane. The whole interior of the 
pipe is segmented into 316 elements, which is the number of unknown parameters to be 
reconstructed. 
The unknown permittivity distribution can be estimated from the measured displacement 
currents by inverting the known measurement relation. A key issue associated with this 
inverse problem is its ill-posedness. This basically means that there is no unique solution 
and that it does not depend continuously on the data. The available reconstruction methods 
can be generally classified in non-iterative and iterative algorithms. Non-iterative methods 
assume a linear relationship between permittivities and displacement currents through the 
sensitivity matrix S. 
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 rSq ε=  (22) 

This is an approximation since the actual relation is nonlinear. A linear reconstruction 
generates permittivity estimates from a pseudoinverse of the sensitivity matrix. 

 Dqr =ε̂  (23) 
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Fig. 12. Finite element discretization of one quadrant of the ECT problem domain. It consists 
of the electrodes (black), pipe (gray) and the imaging plane (light gray). The domain is 
bounded by the outer screen. 

The pseudoinverse can be calculated in various ways. The simplest method is to use the 
transpose of the sensitivity matrix. More elaborate approaches like the offline iteration 
online reconstruction (OIOR) use an iterative precomputation. 
More accurate results can be achieved with iterative methods that are based on the full 
nonlinear forward model. 

 ( )rfq ε=  (24) 

In this case the inverse problem can be solved by minimizing a least squares cost functional. 
The minimization can be performed using the Gauss-Newton algorithm. A flow chart of the 
procedure starting from an initial guess for the permittivity distribution is sketched in figure 
13. The minimization is terminated when the residual is below a predefined threshold. 
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Fig. 13. Flow chart of the nonlinear least squares reconstruction for ECT. 
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2  (25) 

The first term on the right hand side of equation (25) is the sum of squared errors between 
measured displacement currents qm and the simulated values. The minimization of this term 
alone would not yield sufficient results due to the ill-posedness of the inverse problem. 
Therefore a second term, the regularization term, has to be added in order to stabilize the 
solution. The relative weight of the two terms is controlled by the regularization parameter 
α. The assumptions that are placed in this term introduce prior knowledge about the 
assumed material distributions and can take various forms. A popular choice in the absence 
of specialized knowledge is generalized Tikhonov regularization. 

 ( ) 2
2rr LR εε =  (26) 

The regularization matrix L is a discrete approximation of the Laplace operator, leading to 
high values of R for jumps between neighboring finite elements. Consequently, this choice 
leads to a smoothing of the reconstructed permittivity distribution. 
Figure 14 illustrates an ECT sensor with a predefined two-phase material composition of 
gravel and air (left). The reconstructed cross-sectional material distribution based on the 
described least squares reconstruction method with Tikhonov regularization is shown on 
the right. The relative permittivity values are coded in gray scale. 
 

  

Fig. 14. ECT sensor partly filled with gravel (left) and the corresponding least squares 
reconstruction (right). 

Depending on the industrial process at hand, models of the material distribution other than 
those described may replicate the situation more accurately. This allows to incorporate more 
detailed prior knowledge and helps to obtain accurate reconstruction results. Usually the 
materials involved in a process are known in advance. This sets constraints on the 
admissible parameter range (Steiner & Watzenig, 2008). When the distribution is piece-wise 
constant, like in discrete multi-phase flow, closed contour models would be appropriate. 
Boundaries between different materials are explicitly modelled, which introduces process-
specific additional prior knowledge. Contour models can e.g. be based on polynomial 
splines, Fourier series expansions, and level set functions (Kortschak et al., 2007) (Watzenig 
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et al., 2007a). Closed Fourier contours in two dimensions can be obtained through 
parameterizations of the x and y coordinates with a period T=1. 
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The parameterization is similar for the other coordinate. The complexity of shapes that can 
be modelled can be increased by using more terms. The reconstruction can be performed by 
fitting the model parameters to the measurements, similar to the bulk model based on the 
finite element discretization.  
Another sensing modality for industrial process tomography is ultrasound reflection 
tomography (URT). A common approach records reflections of transmitted ultrasonic waves 
at material boundaries. The measured travel times of reflected waves from many different 
directions can be used to reconstruct the locations and contours of material inhomogeneities. 
Also for URT there are different reconstruction approaches, from simple backprojection to 
model-based approaches utilizing specific contour models (Steiner et al., 2006). Results 
obtained with simple backprojection and a B-spline-based contour model and least squares 
minimization are illustrated in figure 15. The backprojection algorithm can be more 
generally applied to a wide range of problems. However, the results suffer from noise and 
blurring. If the process can be clearly characterized a proper model can lead to much better 
results, as demonstrated in the right subfigure. 
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Fig. 15. URT reconstruction of a gas bubble in liquid. The left picture shows the results of a 
backprojection reconstruction. The right image shows the results obtained through using a 
contour model based on B-splines. The dashed ellipse shows the original bubble. The black 
curves show the evolution of the contour over the indicated iterations of the algorithm. 

4.2 Tomographic sensor fusion 
Multimodality tomography systems combine two or more different sensing modalities. The 
rationale is to increase the reconstruction accuracy by data fusion of complementary data. If 
sensibly combined, the multimodal data may contain more information about the state of 
the imaging domain than could be achieved with a single sensing modality alone. 
Multimodal sensors therefore offer the possibility to monitor complex processes that cannot 
be dealt with by single modalities. They can be fruitfully applied to three-phase flow, like 
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oil-gas-water flow occurring in oil production, where a single modality only gives good 
contrast for two of the involved materials. ECT and URT, e.g., are well suited for data 
fusion. The main motivation is that the electrical modalities are sensitive to the bulk 
properties of materials while ultrasound is sensitive to phase boundaries, yielding the 
desired complementarity. So URT can give accurate boundary information not available 
with electrical tomography and electrical tomography can give information about connected 
volumes not achievable with URT alone (Steiner, 2006). 
The most widely used principle of dual modality data fusion in terms of the data flow is 
sequential coupling of the modalities, which is illustrated in figure 16. After individual 
acquisition of the raw data with the two sensor arrays the inversion of the first modality is 
independently performed. The result is then used as additional input for the reconstruction 
of the second modality. This can be seen as providing a priori knowledge about the process 
state for the second stage. Another option for the combination of two modalities is parallel 
processing of the totality of raw data. However, this raises serious issues of data association 
(Steiner, 2007). 

 
Fig. 16. Sensor fusion of two tomographic sensing modalities through sequential coupling of 
the raw data. 

For the particular combination of sequential URT-ECT fusion the URT reconstruction can be 
used to deduce an outer approximation of the inclusion region containing the disperse 
phase of the material distribution, i.e. to uniquely assign parts of the imaging domain to the 
background region. If used in the subsequent ECT reconstruction, this information reduces 
the degrees of freedom of the inverse problem and thus the ill-posedness of the problem. 
Another approach is to use the incomplete information about object edges in the URT image 
to relax the smoothness assumption of ECT incorporated by the regularization term. This 
provides physically sound regularization as locations with a high probability of occurring 
material interfaces are allowed to show steeper permittivity gradients. A combination of 
these two sequential fusion approaches is compared to a single ECT reconstruction of two 
objects in figure 17. The left picture shows the ECT result, where the two objects cannot be 
resolved by the least squares reconstruction algorithm with smoothing Tikhonov 
regularization. ECT is least sensitive in the center of the imaging region, leading to a low 
spatial resolution. In contrast, URT offers highest sensitivity in the central region. The fusion 
reconstruction, due to the additional prior information from URT, distinguishes clearly 
between the two material inclusions.  
An URT image as prior information is able to supply information about material 
boundaries. This can straightforwardly be included in contour-based reconstruction 
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algorithms for ECT. An example result is shown in figure 18. The capacitance data was 
reconstructed using a level set approach, where the contour is generated from equipotential 
curves of a two-dimensional function. A common regularization approach in this case is to 
penalize the arc length of the contour. The URT reconstruction can be added to the 
regularization term, forcing the level set contour towards the URT reconstruction while still 
allowing for deviations. The ECT reconstruction of two bubbles in figure 18 shows some 
blurring compared to the true object contours. The URT reconstruction, containing a sparse 
collection of points located  just at the object boundaries, gives the extra information to 
allow for a close match of the true contours. 

 
Fig. 17. Comparison of single ECT (left) and sequential URT-ECT fusion (right) 
reconstructions with a FEM-based spatial discretization of the imaging domain. The black 
curves show the true phase boundaries of the two material inclusions. 

 

 
Fig. 18. Comparison of single ECT (left) and sequential URT-ECT fusion (right) 
reconstructions with a level set-based contour model. The dashed curves show the true 
phase boundaries of two material inclusions. 

5. Conclusion 
With increasing demands on the quality and efficiency of industrial processes as well as 
environmental and safety regulations, industrial process instrumentation is required to 
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acquire more accurate and comprehensive information. As the complexity of industrial 
processes increases, the same holds for the instrumentation. Data fusion techniques 
maximize the amount of useful information that can be extracted from raw sensor data.  
This chapter gives an overview of model-based data fusion methods used in industrial 
process instrumentation with several typical application examples. They are intended to 
demonstrate the wide range of data fusion applications and are grouped in ascending 
complexity; from error compensation to multidimensional parameter estimation, sensor 
fault detection and isolation, integrated sensor arrays, industrial process tomography, and 
tomographic data fusion. It is expected that the consistent use of process models and data 
fusion methods will allow for an even more comprehensive and accurate characterization of 
industrial processes in the future. 
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1. Introduction   
Modern control systems are characterized by increased complexity, flexibility, intelligence 
and enhanced ability to handle uncertainty. In order to incorporate the above features, the 
control systems need to possess significant capabilities such as perception, knowledge 
acquisition, learning, adaptability, and reasoning. The ability to percieve its environment 
forms a very important characteristic of such control systems. The revolutionary 
advancement in the field of sensor technology that has led to the development of superior 
sensing capabilities, and progress in computing and information processing, has made it 
possible to develop systems with enhanced perceptive abilities. Modern control systems 
generally employ multiple sensors to provide diverse, complementary as well as redundant 
information. These multiple sensor systems necessitate the development of sensor fusion 
algorithms that can combine information in a coherent and synergistic manner to yield a 
robust, accurate, and consistent description of quantities of interest in the environment.  
There are several issues that arise when fusing information (Brooks & Iyengar, 1998, Hall & 
Llinas 2001) from multiple sources, some of which include data association, sensor 
uncertainty, and data management. The most fundamental of these issues arise from the 
inherent uncertainty in sensor measurement. The uncertainties in sensor measurement are 
caused not only by the device impreciseness and noise, but also manifest themselves from 
the ambiguities and inconsistencies present within the environment, and from an inability to 
distinguish between them. The strategies used to fuse data from multiple sensors should be 
capable of handling these uncertainties, and combining different types of information to 
obtain a consistent description of the environment. Some of the popular techniques for 
sensor fusion that are explored extensively in literature include Dempster-Shafer theory for 
evidential reasoning (Dempster, 1968, Shafer, 1976), fuzzy logic (Yager & Zadeh, 1991, 
Mahajan et. al., 2001 ), neural network (Garg & Kumar, 2007, Chin, 1994), Bayesian approach 
(Press, 1989, Berger, 1985), and statistical techniques (McKendall & Mintz, 1992) such as 
Kalman filter (Maybeck, 1979, Kalman, 1960, Sasiadek, 2002). All of these methods differ in 
the manner they attempt to model the uncertainties inherent in the sensor measurements.  
Another possible uncertainty that arises in the sensor measurement process occurs when the 
measurements become corrupted and appear spurious in nature. Such corrupted 
measurements are difficult to model because they are not directly attributable to the 
inherent noise or other sources of uncertainty mentioned above. The cause of the corruption 
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may be due to events such as permanent sensor failures, short duration spike faults, or 
nascent (slowly developing) failures. Previous attempts at developing experimental models 
usually preclude the use of spurious measurements, and represent uncertainties attributable 
only to sensor noise and inherent limitations. Fusion techniques based on these incomplete 
models provide inaccurate estimation that can eventually result in potentially damaging 
action by the control system. Hence, a sensor validation scheme is necessary to identify 
spurious measurements so that they can be eliminated before the fusion process. There are 
several techniques reported in the literature for sensor validation and identification of 
inconsistent data. Many of them are limiting because they are based on specific failure 
models; these techniques can work well for events that occur due to known failure modes, 
however, they do not capture all possible failure events and often perform poorly when 
unmodeled failures occur. As a means to detect inconsistency, there should be either 
redundancy in the data, or some availability of a priori information. For example, in the case 
where a priori information is available, researchers have used the Nadaraya-Watson 
Estimator (Wellington et al., 2002) and a priori observations to validate sensor 
measurements. A few researchers have used a model based Kalman filter approach (Del 
Gobbo et al., 2001), while others have used covariance (Nicholson, 2004, Benaskeur, 2002), 
probability (Soika, 1997, Ibarguengoytia et al., 2001), fuzzy logic (Frolick et al., 2001), and 
neural network (Rizzo & Xibilia, 2002) based approaches. Some of these methods are explicit 
model-based, whereas others require tuning and training. In the general case, where a priori 
information is often not available, these approaches are typically deficient and can often 
lead to undesirable results. 
This chapter presents a unified sensor fusion strategy based on a modified Bayesian 
approach that can take uncertainty of sensor data into account and automatically identify 
the inconsistency in sensor measurements so that the spurious measurements can be 
eliminated from the data fusion process. First, a novel strategy to accurately and adaptively 
represent uncertainty in sensor data in the form of probabilistic sensor model is developed. 
The strategy establishes the dependence of sensor’s uncertainties on some of the 
environmental parameters or parameters of any feature extraction algorithm used in 
estimation based on sensor’s outputs. In order to establish this dependence, the approach 
makes use of a neural network that is trained via an innovative technique that obtains 
training signal from a maximum likelihood estimator. The proposed method, then, adds a 
term to the commonly used Bayesian formulation. This term is an estimate of the probability 
that the data is not spurious, based upon the measured data and the unknown value of the 
true state. In fusing two measurements, it has the effect of increasing the variance of the 
posterior distribution when measurement from one of the sensors is inconsistent with 
respect to the other. The increase or decrease in variance can be estimated using the 
information theoretic measure “entropy”. The proposed strategy was verified with the help 
of extensive computations performed on simulated data from three sensors. A comparison 
was made between two different fusion schemes: centralized fusion in which data obtained 
from all sensors were fused simultaneously, and a decentralized or sequential Bayesian 
scheme that proved useful for identifying and eliminating spurious data from the fusion 
process. The simulations verified that the proposed strategy was able to identify spurious 
sensor measurements and eliminate them from the fusion process, thus leading to a better 
overall estimate of the true state. The proposed strategy was also validated with the help of 
experiments performed using stereo vision cameras, one infra-red proximity sensor, and one 
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laser proximity sensor. The information from these three sensing sources was fused to 
obtain an occupancy profile of the robotic workspace.  
This chapter is organized as follows: First, it introduces Bayesian technique for sensor fusion 
in Section 2. Next, in Section 3, it presents the neural network based sensor modeling 
technique. The proposed strategy for inconsistency detection and data fusion in Bayesian 
framework is presented in Section 4. Simulation studies to verify the proposed method for 
inconsistency detection is presented in Section 5. Section 6 presents the experimental 
validation carried out in a robotic workcell using three independent sensory sources. 
Finally, conclusions are presented in Section 7. 

2. Bayesian technique for sensor fusion 
Bayesian inference (Press, 1989, Berger, 1985) is a data fusion algorithm based on Bayes’ 
theorem (Bayes, 1763)  that calculates posterior probability distribution of n-dimensional 
state vector ‘X’, after the observation or measurement denoted by ‘Z’ has been made. The 
probabilistic information contained in Z about X is described by a probability density 
function (p.d.f.) p(Z | X), known as likelihood function, or the sensor model, which is a 
sensor dependent objective function based on observation. The likelihood function relates 
the extent to which the a posteriori probability is subject to change, and is evaluated either 
via offline experiments or by utilizing the available information about the system. If the 
information about the state X is made available independently before any observation is 
made, then the likelihood function can be improved to provide more accurate results. Such a 
priori information about X can be encapsulated as the prior probability and is regarded as 
subjective because it is not based on observed data. Bayes’ theorem provides the posterior 
conditional distribution of X = x, given Z = z, as 
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Since the denominator depends only on the measurement (the integration is carried out over 
all possible values of state), an intuitive estimation can be made by maximizing this 
posterior distribution, i.e., by maximizing the numerator of Equation (1). This is called 
Maximum a posteriori (or MAP) estimate, and is given by: 

 ( ) ( ) )(|maxarg|maxarg
^

xXPxXzZpzZxXpx
xx

MAP =======   (2) 

The data from multiple sensors can be fused simultaneously (centralized fusion scheme), or 
sequentially (decentralized fusion). In this chapter, we will focus on decentralized fusion 
scheme in which, at any given instant, only two measurements or beliefs are fused. The 
recent interest in sensor networks, where distributed nodes possess capability to process 
information, has necessitated the development of algorithms to fuse information in a 
decentralized manner. The decentralized approach can be easily implemented in a 
distributed Bayesian framework where the posterior distribution obtained from old 
measurements becomes the prior distribution. Hence, the addition of new sensor 
measurement zn to the belief obtained from n-1 sensors ( 1... 1 1 2 1, ,...n nZ z z z− −= ) can be achieved 
in an incremental manner via Equation (3): 
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It may be noted that Equation (3) is valid only when measurements from different sensors 
are conditionally independent.  
The Bayesian approach offers several advantages, including: appropriate representation of 
uncertainties using probability distributions; a well-defined mechanism to combine prior 
information with current sensor information; the existence of several machine learning 
algorithms to carry out the calculation of estimates and predictions; and thorough statistical 
characterization of the quantities of interest. Since the estimation takes into account 
available data from all previous as well as current experiments, the approach leads to a 
theoretically optimal solution. However, for most practical applications, a lack of priors or 
use of non-informative priors presents difficulties for Bayesian-based sensor fusion 
approaches. Assumptions regarding informative priors creates the possibility of 
unreasonable fusion between priors and likelihood functions. Moreover, most of the fusion 
strategies based on Bayesian approaches reported in the literature handle inconsistency in 
data rather poorly. In practical real-world scenarios, where data generated by sensors might 
be incomplete, incoherent or inconsistent, this approach might lead to erroneous results. 
Consequently, the inconsistency in data needs to be dealt with accordingly when Bayesian 
approaches are used. 

3. Sensor modeling 
Sensor modeling (Manyika & Durrant-Whyte, 1994, Kumar et al., 2005b, Kumar et al., 2006a) 
deals with developing an understanding of the nature of measurements provided by the 
sensor, the limitations of the sensor, and probabilistic understanding of the sensor 
performance in terms of the uncertainties. The information supplied by a sensor is usually 
modeled as a mean about a true value, with uncertainty due to noise represented by a 
variance that depends on both the measured quantities themselves and the operational 
parameters of the sensor.  A probabilistic sensor model is particularly useful because it 
facilitates the determination of the statistical characteristics of the data obtained. This 
probabilistic model is usually expressed in the form of probability density function (p.d.f.) 
( )|p z x  that captures the probability distribution of measurement by the sensor (z) when the 

state of the measured quantity (x) is known. This distribution is extremely sensor specific 
and can be experimentally determined (Durrant-Whyte, 1988).  

3.1 Estimation of sensor model parameters 
Maximum Likelihood (ML) method is a procedure for finding the value of one or more 
parameters for a given statistical data which maximizes the known likelihood distribution. If 
Gaussian distribution is considered, the distribution representing the sensor model is given by: 
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where the event Di represents the data (zi, xi) (xi is the true value of state, and zi is the 
corresponding sensor measurement), and , the standard deviation of the distribution, is the 
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parameter to be estimated. The likelihood function is the joint probability of the data given 
by: 
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and the parameter  can be estimated via ML method by maximizing L() given by Equation 
(5). This results in a constant value of  representing a rigid sensor model. 
Most of the published research on sensor fusion is based on the development of rigid sensor 
models. In practice, the performance of sensors or any source of information depends upon 
several factors. These include, for example, the environmental conditions under which the 
measurements were made, and the performance of estimation/calibration algorithm. 
Establishing dependence of a sensor’s performance on various parameters of environment 
and other signal/feature extraction algorithms is not a trivial task. Statistical techniques 
such as correlation analysis can be used to determine the manner in which these factors 
affect the sensor’s output. Selecting the factors that can possibly affect the sensor output is 
difficult, and is mostly based on heuristics. Many feature extraction algorithms include 
goodness-of-fit function that can be investigated to observe the correlation with 
uncertainties in sensor output.  
After the factor which affects the sensor’s performance has been selected, the next challenge 
is to establish a functional correspondence between the factor and the uncertainty in the 
sensor’s output. Statistical system identification, regression analysis, or any mapping 
algorithm can be investigated to establish the correspondence. It might be difficult, if not 
impossible, to obtain the mathematical relation, and in the absence of such mathematical 
relation, model-based statistical approach would be difficult to use. In this chapter, the 
universal approximation capabilities of neural networks have been used to establish this 
correspondence. 

3.2 Proposed neural network based sensor modeling 
A neural network (NN) (Rumelhart & McClelland, 1988, Haykin, 1998) is an information-
processing paradigm inspired by the way in which the heavily interconnected, parallel 
structure of the human brain processes information. They are often effective for solving 
complex problems that do not have an analytical solution or for which an analytical solution 
is too difficult to be found. Currently, they are being applied in many real-world problems 
(Garg & Kumar, 2007). Three-layered NNs (i.e., one input layer, one output layer and one 
hidden layer), with hidden layer having sufficient nodes and a sigmoid transfer function, 
and linear transfer function in the input and output layers (Hornik, 1989) are considered to 
be universal approximators. In this chapter, a three-layered NN has been used to obtain a 
correspondence between the parameters of the distribution representing the sensor model 
and the factors which affect sensor’s performance. The input to the neural network is the 
vector Q which represents vector of environmental or algorithmic factors that affect the 
sensor’s performance. Output of the network is the vector  of parameters of the distribution 
representing the sensor model. Hence, if the sensor model is represented by a Gaussian 
distribution, the parameter  is given by: 



 Sensor and Data Fusion 

 

230 

 ( )BWQNNET ,,=σ   (6) 

W is the weight matrix, and B is the bias matrix. Back-propagation (BP), based on gradient 
descent technique, is a fairly popular method for training neural networks that establishes a 
particular set of weights obtained by adjusting them based on the errors between the actual 
and target output signals. For the neural network considered for the system in this research, 
however, the target data for  is unknown, and cannot be obtained directly from 
experiments. Here, the neural network is trained in a novel manner from the signals 
obtained from Maximum Likelihood parameter estimation approach. Likelihood function that 
needs to be maximized is given by Equation (5), in which parameter  is represented by a 
neural network function given by Equation (6). Hence, the likelihood function that needs to 
be maximized by choosing appropriate weights and biases of the neural network is given by:  
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The weights and biases can be calculated using the gradient descent method or via 
evolutionary strategies (Goldberg, 1989). The technique described above has been used to 
obtain models of infra-red proximity sensor and vision sensors in stereo configuration. 

4. Fusion of inconsistent multi-sensor data 
Sensors often provide spurious data (Kumar et al., 2006b, 2007) which can be due to sensor 
failure or due to some inherent limitation of the sensor and/or some ambiguity in the 
environment. The Bayesian approach described in Section 2 is inadequate in handling this 
type of spurious data. The approach does not have a mechanism to identify when data from 
sensors is incorrect. The following paragraphs describe the use of a Bayesian-based 
approach for fusion of data from multiple sensors that takes into account measurement 
inconsistency. 
While building a stochastic sensor model, generally spurious data are identified and 
eliminated. Hence these experimentally developed sensor models represent uncertainties 
arising only from sensor noise. If the event s = 0 represents that the data obtained from a 
sensor is not spurious, then the sensor model developed in this manner actually represents 
the distribution ( )0,| === sxXzZp . From Bayes’ theorem, the probability that the data 
zi measured by sensor ‘i’ is not spurious conditioned upon the actual state x, is given by: 

 ( )[ ] ( )[ ] ( )[ ]
( )[ ] ( )[ ]∑ ==

====
====

s
iii

ii
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,|
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( )[ ]isP 0=  is the sensor specific prior probability that the data provided by Sensor i is not 
spurious. The denominator of the right hand side of the above equation is a summation 
carried over all possible values of s which are 0 and 1. The above equation can be re-written 
as: 
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To combine the sensor measurement from sensor n sequentially with the current belief 
obtained from sensors ‘1, 2…n-1’, Equation (3) can be re-written as: 
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Hence, the introduction of term ( )[ ]nnzZxXsp === ,|0  in the denominator has the effect 

of increasing the spread (variance) of the posterior if the new measurement has a greater 
probability of being spurious, and decreasing the spread of the posterior if the new 
measurement has a lower probability of being spurious. The increase or decrease in the 
spread of the posterior distribution can be easily ascertained by determining the information 
content given by the entropy of distribution obtained from the following equation: 

 ( ) ( )dxzzzZxXpzzzZxXpXH nn∫ ====−= ),...,|(log),...,|( 2121   (11) 

 

Entropy of a variable represents the uncertainty in that variable. A larger value of entropy 
implies more uncertainty and hence less information content. The fusion of a new 
measurement should always lead to a decrease in entropy, and fusion should always be 
done in order to reduce entropy. Based on increasing or decreasing the entropy of the 
posterior, this method can identify and eliminate spurious data from a sensor. It is noted 
that the prior probability ( )[ ]nsP 0=  has a constant value and simply acts as a constant 

weighting factor in Equation (10). This value does not influence the posterior distribution 
nor the MAP estimate of the state. 

4.1 Bayesian fusion without consideration of spuriousness in data (method 1) 
If the spurious nature of the sensor data is not considered, and the models of the ‘n’ sensors 
are given by the following Gaussian likelihood function: 
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then, from Bayes’ Theorem the fused MAP estimate is given by: 
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4.2 Bayesian fusion with consideration of spuriousness in data (method 2) 
If the spurious nature of the sensor data is considered, then the Gaussian sensor model 
represented by distribution ( )0,| === sxXzZp  is given by: 
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The probability that the measurement from Sensor ‘k’ is not spurious given the true state ‘x’ 
and measurement ‘zk’, is assumed to be represented by the following equation: 
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An advantage of choosing the above formulation for representing the probability is that the 
probability is 1 when measurement ‘zk’ is equal to the true state ‘x’, and decreases when the 
measured value moves away from the true state. The rate at which the probability decreases 
when the measured value moves away from the true estimate depends upon the parameter 
‘ak’. The value of the parameter is dependent on the variances of the sensor models and the 
distance between the output of sensor k with respect to other sensors. 
In the decentralized or sequential fusion scheme, measurements from only two sources are 
fused at once. The belief resulting from the fusion of two sensors is then fused with the next 
sensor, and the process continues henceforth. Fusion of two sensors ‘k’ and ‘k+1’ using 
Equation (10) yields: 
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The value of parameter ‘ak’ in Equation (15) is assumed to be given by: 
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which leads to 
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The value of parameter ‘bk’ is chosen to satisfy the following inequality: 

 ( )22 2
12k k k kb z zσ +≥ −   (19) 

Satisfaction of this inequality ensures that the posterior distribution in Equation (18) remains 
Gaussian and hence has a single peak. The parameter value should be chosen based on 
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maximum expected difference (represented by ‘m’) between the sensor readings so that 
inequality (19) is always satisfied. Hence, 

 2 2 22k kb mσ=   (20) 
Substituting Equation (20) in Equation (18) gives: 
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It is apparent that the entire process has the effect of increasing the value of the variance of 

individual distribution by a factor of 
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measurement imply that the variance increases by a bigger factor. Depending on the 
squared difference in measurements from the two sensors, the variance of the posterior 
distribution may increase or decrease as compared to the variance of individual Gaussian 
distributions representing the sensor models. Therefore, the strategy is capable of 
determining if fusion of the two measurements would lead to an increase or decrease of the 
variance of the posterior distribution. In information theoretic terms, the strategy is capable 
of determining if the fusion leads to an increase in information content (or entropy given by 
Equation (11)) or not. Based on increasing or decreasing of entropy in the posterior, a 
decision can be made whether to fuse those two sensors or not. This approach provides an 
opportunity to eliminate sensor measurements that are spurious and fuse measurements 
from only those sensors that are consistent, ensuring an increase in information content after 
fusion. 

5. Simulation results 
A simulation study was carried out to validate the effectiveness of the proposed strategy in 
identifying inconsistent data while fusing data from three sensors. A comparative analysis 
was performed to study the efficiency with which the two methods (described in Section 4) 
were able to handle inconsistency in data. The following parameters were assumed in the 
simulation: 
 

Sensor 1: ( )
1

0 0.90P s⎡ = ⎤ =⎣ ⎦ and 1 3σ =  

Sensor 2: ( )
2

0 0.98P s⎡ = ⎤ =⎣ ⎦  and 2 2σ =  

Sensor 3: ( )
3

0 0.94P s⎡ = ⎤ =⎣ ⎦  and 3 2.5σ =  

True value of state: 20x =  
Simulation data was generated so that Sensor 1 provided 90% of the time normally 
distributed random data with a mean value of 20 and variance 9. It provided incorrect data 
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10% of the time which was uniformly distributed outside the Gaussian distribution. Sensor 2 
provided 98% of the time normally distributed random data with a mean value of 20 and 
variance 4, and 2% of the time it provided incorrect data. Similarly, Sensor 3 provided 94% 
of the time normally distributed random data with a mean value of 20 and variance 6.25, 
and 6% of the time it provided incorrect data. It may be noted here that the values for 
( )[ ]ksP 0= have been assumed simply for the purpose of generating simulated data. These 

are not used in the fusion algorithm. Since these values are constants, they do not have any 
effect on the posterior distribution or the MAP estimate. 
Figure 1.(a) illustrates a case when all of the three sensors are in agreement, and 
measurement from none of the sensors is inconsistent with the rest. It can be seen that 
posterior distributions obtained from both methods coincide resulting in the same value of 
MAP estimate. In Figure 1.(b), measurement from Sensor 1 is in disagreement from the other 
two sensors. Method 1, which is a simple Bayesian fusion and does not take into account 
inconsistency of data, results in the weighted average of the three measurements. Method 2 
identifies the sensor which provides spurious measurements and eliminates that from the 
fusion process. Hence, it simply considers measurements from Sensors 2 and 3, and fuses 
 

0 5 10 15 20 25 30 35 40 45 50
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

x

Pr
ob

ab
ili

ty

Sensor 3

Sensor 2

Method 2

Method 1

Sensor 1

1.(a) 

0 5 10 15 20 25 30 35 40 45 50
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

x

P
ro

ba
bi

lit
y

Sensor 1
Sensor 3

Method 2

Method 1

Sensor 2

1.(b) 

0 5 10 15 20 25 30 35 40 45 50
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

x

P
ro

ba
bi

lit
y

Sensor 3

Sensor 1

Sensor 2

Method 2
Method 1

1.(c) 

0 5 10 15 20 25 30 35 40 45 50
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

x

P
ro

ba
bi

lit
y

Sensor 3

Sensor 2

Method 2 Method 1

Sensor 1

1.(
d) 

Fig. 1. Fusion of Three Sensors 1.a: All Sensors in Agreement, 1.b: Sensor 1 in Disagreement, 
1.c: Sensor 2 in Disagreement, 1.d: Sensor 3 in Disagreement 
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them appropriately using Equation (21). In a similar manner, Figure 1.(c) and Figure 1.(d) 
respectively show that measurements from Sensor 2 and Sensor 3 are spurious. The figures 
show the efficiency with which Method 2 identifies and eliminates spurious measurements, 
and results in better estimates (closer to the true value) of the variable.  
Ten thousand (10,000) data points were generated in the manner described above and fusion 
was carried out using both methods. The mean value of the sum of squared error (MSE) 
between the fused value and true value for all ten thousand data points was computed. The 
values of MSE were found as 6.94 for Method 1 and 5.50 for Method 2. Hence, Method 2 was 
able to reduce the mean square error by approximately 21% when compared to Method 1. 

6. Experimental results 
The theories developed in Sections 3 and 4 were validated with the help of experiments 
performed in the Robotics and Manufacturing Automation (RAMA) Laboratory at Duke 
University. The objective of the experiment was to obtain a three-dimensional occupancy 
profile of the robotic workspace using three independent sensory sources: stereo vision, an 
infra-red proximity sensor, and a laser proximity sensor. This section provides in detail first 
the sensor modeling process for the three sensory sources, and then the experiments for 
fusing data from them.  

6.1 Sensor modeling 
Stereo Vision: One of the most important components of stereo vision algorithm is stereo 
matching (Garg & Kumar, 2003) which involves finding out the location of the point in right 
image plane corresponding to a point in the left image plane. The relative displacement of 
these two points, called disparity, is used to estimate the three-dimensional position of the 
point. The accuracy with which stereo vision sensors are able to specify three-dimensional 
positional information about a point depends on how precisely the stereo vision algorithm 
is able to find the match of the point. The correlation score (Zhang et al, 1995) of the 
matched points, which measures the correlation between two template windows from left 
and right images, is a measure of “goodness-of-match” of the two points. The score ranges 
from -1 to +1, -1 representing not similar at all, and +1 representing most similar. The sensor 
modeling technique formulated in Section 3 has been used to develop a model for the stereo 
vision sensors that could take into account the effect of performance of the stereo matching 
algorithm on the uncertainty in sensor’s output. 
An experiment was carried out in the RAMA Laboratory, wherein a set of fifty data points 
was obtained. The data set consisted of 3-D location of point in world coordinate system 
obtained via stereo vision sensors (via transformation as discussed in reference (Kumar & 
Garg, 2004)), correlation score for that point, and the actual 3-D location of the point in 
world coordinate frame.  
The strategy presented in Section 3.2 was used to develop a Gaussian model of the sensor. In 
this model the standard deviation of the distribution, which represents the uncertainty of 
the data, is dependent on the correlation score for the specific point. This dependence was 
modeled with the help of a neural network with five nodes in the hidden layer. This neural 
network takes correlation score as input, and outputs the value of standard deviation (sigma 
σ) for that particular correlation score. The neural network was trained via the process based 
on the Maximum Likelihod technique as presented in Section 3.2. Genetic Algorithm (GA) 
was used to maximize the likelihood function given by Equation (7). Though 
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computationally intensive as compared to back-propagation based methods, GAs provide 
globally optimum results. The likelihood function given by Equation (7) was calculated by 
obtaining the data set representing the actual 3D location of points and the corresponding 
measurements from the stereo vision. Figure 2 shows the graph of standard deviation σ  of 
the probability distribution function representing the model of stereo vision sensor as 
obtained by the neural network plotted against the correlation score of stereo matched 
points. As illustrated in Figure 2, the sensor model obtained from this approach separately 
for X, Y, and Z directions showed  the intuitive trend that as the correlation score increases, 
i.e., as the stereo match gets better, the standard deviation decreases. Smaller value of 
standard deviations implies that the positional information obtained from stereo vision is 
less uncertain, and hence the degree of belief in the sensor output is more. 
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Fig. 2. Stereo Vision Sensor Model: Variation of Standard Deviation of Sensor Model in X, Y, 
Z Directions with respect to the Correlation Score of Stereo Matched Points 

Infra-Red (IR) Proximity Sensor: The output of the IR proximity sensor is an analog voltage 
which is indicative of the distance of the object detected by the sensor. From the test data 
obtained from experiments, it was seen that the uncertainty in data increases when the 
distance to the object increases. Since the output of the sensor is indicative of the distance, 
sensor modeling process tries to capture the relationship between sensor’s uncertainties and 
sensor output. 
In the laboratory experiments, the Infra-Red sensor was mounted on the wrist of the robot 
so that it looked vertically down (negative Z direction in world coordinate frame). The IR 
sensor provided the information about the distance to the nearest object detected directly in 
front of the object. Information about the position of end effector was obtained from the 
encoders of the robot. Hence, IR sensor can be effectively used in conjunction with robot 
encoders to provide 3-D information about any object. Similar to vision sensor, in this 
research, the model of the IR sensor was obtained separately for all three X, Y, and Z 
directions based on the method described in Section 3.2. The variation of standard deviation 
of the Gaussian sensor model obtained from this approach, as illustrated by Figure 3, 
showed a decrease when the sensor output increased which means that when the distance to 
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the object decreases (i.e. sensor’s output is larger) the standard deviation becomes smaller, 
and the sensor’s measurement becomes less uncertain.  
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Fig. 3. Infra-Red Proximity Sensor Model: Variation of Standard Deviation of Sensor Model 
in X, Y, and Z Directions with respect to the Sensor Output 

Laser Proximity Sensor: Similar to IR proximity sensor, the output of laser sensor is 
indicative distance to the detected object. Sensor modeling for laser proximity sensor was 
done in a similar manner as the IR proximity sensor. The variation of standard deviation of 
the Gaussian sensor model obtained from this approach, as illustrated by Figure 4, showed a 
flat curve which means that the uncertainty in sensor measurement remained indifferent to 
distance to the detected object. In practice, the laser proximity sensor was very accurate, and 
the uncertainty in sensor measurement was not dependent on the distance. 
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Fig. 4. Laser Proximity Sensor Model: Variation of Standard Deviation of Sensor Model in X, 
Y, and Z Directions with respect to the Laser Sensor Output 
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6.2 Sensor fusion for 3D modeling of workspace 
The model of workspace was obtained in an occupancy grid framework. The occupancy 
grid (Elfes, 1992, Kumar et al, 2005a) is a multi-dimensional field (usually of dimension two 
or three) where each cell (or unit of the grid) stores or represents the probabilistic estimate of 
the state of spatial occupancy. Occupancy grids are one of the most common low-level 
models of an environment, which provide an excellent framework for robust fusion of 
uncertain and noisy data. If the state variable (occupancy, in this case) associated with a cell, 
Ci, is denoted by s(Ci), then the occupancy probability )]([ iCsP  represents the probabilistic 
estimate of occupancy of that particular cell. If 0])([ ≈= occCsP i , then the cell is assumed 
to be empty, while, if 1])([ ≈= occCsP i , then the cell is assumed to be occupied. If a single 
sensor is used to obtain the occupancy grid, Bayes’ Theorem can be used in the following 
manner to determine the state of the cell: 

 P[s(Ci) = occ | z] =
p[z | s(Ci) = occ]P[s(Ci) = occ]

p[z | s(Ci)]P[s(Ci)]
s(Ci )

∑
  (22) 

where z is the sensor measurement. The probability density function (p.d.f.) 
])(|[ occCszp i = is dependent on the sensor characteristics and is called the sensor model. 

The probability ])([ occCsP i =  is called prior probability mass function and specifies the 
information made available prior to any observation. 
Occupancy grids were obtained individually for stereo vision, infra-red, and laser proximity 
sensors, and then the individual grids were fused using two techniques: i) Simple Bayesian 
Fusion, and ii) Sequential Bayesian Fusion with Proposed Inconsistency Detection and 
Elimination Strategy. The details of the process for obtaining occupancy grids and sensor 
fusion are explained in reference (Kumar et al, 2005a). 
In the experiment a cylindrical object was placed on the robot’s work-table. Figure 5 shows the 
images of the work-table obtained from the stereo cameras. Figure 6.a shows the actual 
occupancy grid of the workspace. This was obtained based on the geometric dimensions of the 
object and its location in the workspace. For the occupancy grid developed in this research, 
each grid is of size 5mm X 5mm X 5mm. Figures 6.b, 6.c, and 6.d show the occupancy grids 
independently obtained from stereo vision, IR proximity sensor, and laser proximity sensor 
respectively. Figure 6.e shows the occupancy grid obtained from simple Bayesian approach, 
and Figure 6.f shows the occupancy grid obtained from the Bayesian approach that utilizes the 
inconsistency detection and elimination technique proposed earlier. 
 

  
Fig. 5.  Images of the Worktable Obtained from the Left and the Right Cameras 



Multi-Sensor Data Fusion in Presence of Uncertainty and Inconsistency in Data 

 

239 

Stereo 
Vision IR Proximity Laser Proximity Simple 

Bayesian 

Bayesian with 
Proposed 

Inconsistency 
Detection 

1279 1062 399 459 384 

Table 1. Error Associated with Occupancy Grids Obtained from Fusion Process 
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Fig. 6.  Occupancy Grids a) Actual Grid, b) Grid Obtained from Stereo Vision, c) Grid 
Obtained from IR Proximity Sensor, d) Grid Obtained from Laser Proximity Sensor, e) Fused 
Grid (Simple Bayesian Approach, Method 1), and f) Fused Grid (Proposed Bayesian Fusion 
with Inconsistency Detection and Elimination, Method 2) 



 Sensor and Data Fusion 

 

240 

To facilitate a comparison of the performance of the fusion process via different algorithms, 
a measure of error was formulated which is given by the following equation: 

 ( ) ( )[ ]2∑ −=
iC

sensoriactuali CsCsError   (23) 

 

where ( )
actualiCs  is the actual state of the cell, and ( )

sensoriCs  is the state of the cell obtained 

from the sensor and/or fusion process. The state of the cell is either 1 (for occupied) or 0 (for 
empty). Table I provides the error value associated with the occupancy grid obtained from 
the fusion process described above. The table compares the error value obtained via the two 
approaches. The first approach is based on the simple Bayesian fusion scheme, and the 
second approach is based on the proposed Bayesian fusion scheme embedded with the 
mechanism for inconsistency detection and elimination. 
From the figures as well as from the table of results, it is evident that the proposed fusion 
scheme based on Bayesian approach with inbuilt mechanism to identify and eliminate 
spurious/inconsistent measurement presented in this chapter has been able to reduce the 
uncertainty inherent in individual sensors. The proposed method has been able to reduce 
the error by approximately 70% as compared to stereo vision, 64% as compared to IR 
proximity sensor, and 4% as compared to laser proximity sensor. On the other hand, simple 
Bayesian technique was able to reduce the error by approximately 64% as compared to 
stereo vision and by 56% as compared to IR proximity sensor. The technique based on 
simple Bayesian approach led to an increase in error by approximately 15% as compared to 
laser proximity sensor. The increase in error demonstrates the fact that it is not necessary 
that incorporation of additional sensor data will lead to improved accuracy of estimation. 
This is particularly more evident in cases when the accuracy of measurements from sensors 
differs by a large amount. In this case, the measurements from laser proximity are far more 
accurate (as seen from sensor models) than measurements from the stereo vision or IR 
proximity sensor, and fusion of measurements from the laser with stereo vision and IR 
proximity leads to an increase in error. However, the proposed technique has an inbuilt 
mechanism to determine if the fusion process leads to an increase in the information 
content, and, in this way was able to eliminate inconsistent data and improve the overall 
accuracy of the fusion process. Of the 24000 points (or cells) where the fusion of data from 
three sensors occurred (fusion occurred at 30x40x20 cells of the occupancy grid), the 
proposed technique detected 393 points where data from IR sensor were inconsistent and 
1028 points where data from stereo vision were inconsistent. None of the data from laser 
sensor were detected to be inconsistent. This observation is consistent with the fact that laser 
sensor was far more accurate than the other two sensors. 
One of the limitations of the proposed technique is that when there is a large number of 
sensors supporting an inconsistent measurement, then, based on the beliefs of the individual 
measurements, the technique may consider inconsistent measurement to be the correct one, 
and might disregard the correct measurements obtained by fewer numbers of sensors. In 
psychology, this kind of problem is termed as group conformity. For example, when an 
individual’s opinion differs significantly from that of others in a group, the individual is 
likely to feel extensive pressure to align his or her opinion with others. In the case of sensor 
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systems, this kind of condition is more likely to occur in adversarial situations, such as the 
battlefield, where events are prone to be camouflaged to escape detection. Hence, a formal 
criterion to establish the difference between spuriousness and opinion difference must be 
developed for the sensor fusion process to be accurately carried out in such adversarial 
situations. For example, in these situations, the technique proposed in this chapter could be 
applied if sensor models could be developed that represent the possibility/likelihood of 
events being camouflaged. Real time implementation and scalability aspects of the proposed 
sequential scheme have to be considered. To improve real time applicability of decentralized 
sensor fusion approaches, concepts from parallelization of processing can be incorporated. 
The recent interest in distributed sensing can incorporate such parallel/distributed 
framework of processing and sensor fusion. 

7. Conclusions 
Sensors measurements are inherently uncertain and often inconsistent. Appropriate 
consideration of uncertainty and identification/elimination of inconsistent measurements 
are essential for carrying out accurate estimation. The research reported in this chapter 
proposes a unified and formalized approach to fuse data from multiple sources which can 
take uncertainty of sensor data into account and automatically identify inconsistency in 
sensor data. Appropriate modeling of uncertainties in sensor measurement is necessary. 
This chapter presents an innovative neural network based method to model sensor’s 
uncertainties. Further, the chapter presents a strategy that adds a term to the popular 
Bayesian approach corresponding to a belief that the sensor data is not spurious 
conditioned upon the data and true state. An information theoretic measure is utilized to 
observe the information content of the posterior distribution to identify and eliminate 
inconsistent data. An extensive simulation study was performed where data from three 
sensors was fused. It was observed that the presented method was very effective in 
identifying spurious data, and, elimination of spurious data ensured more accurate 
results. Finally, the effectiveness of the proposed technique to identify and eliminate 
inconsistent sensor data in sequential Bayesian fusion was demonstrated with the help of 
an experiment performed in a robotic workcell where measurements from stereo vision, 
infra-red proximity, and laser proximity sensor were fused to obtain three-dimensional 
occupancy profile of robotic workspace. 
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1. Introduction    
As a consequence of the great variability between sensors, the characteristics of remotely 
sensed data widely differ with respect to spectral and spatial resolutions. Additionally to  
their respective technical characteristics and peculiarities, sensors also have different 
temporal frequencies of acquisition. Coarser sensors (e.g. SPOT VEGETATION or TERRA 
MODIS) have generally close to daily acquisition rates while high spatial resolution sensors 
(e.g. SPOT HRVIR or IKONOS) have lower acquisition rates. Cloud-free high resolution 
imagery may therefore not be available at the required period unlike coarser resolution 
images. On top of this, high resolution images are sometimes so highly priced that updating 
past high resolution images with recent coarse images can be cost effective. For these 
reasons, there is a real need for a sound theoretical framework that aims at merging 
information coming from two or more different sensors while taking explicitly into account 
the spatial resolution discrepancies between images. Typically, for cost effective 
applications, this could involve predicting a high resolution image by updating a past one 
with more recent but coarser images.  
It is a common fact that remote sensors have different spatial resolution. This change of 
resolution is thus a typical issue in remote sensing applications. Depending on users’ needs 
and the heterogenity of the study areas, different algorithms of fusion were proposed for the 
spatial enhancement of remotely sensed images. These include Brovey method (Pohl & van 
Genderen, 1998), Intensity-Hue-Saturation (IHS; Harrison & Jupp, 1990), Principal 
Component Analysis (PCA; Pohl & van Genderen, 1998), wavelet-based Multi-Resolution 
Analyses (MRA; Zhou et al., 1998; Garzelli & Nencini, 2005; Ranchin et al., 2003), High-Pass 
Filter (HPF; Chavez et al., 1991), generalized Laplacian methods (Aiazzi et al., 2002) and 
downscaling cokriging (Pardo-Iguzquiza et al., 2006), just to quote a few of them. Detailed 
reviews of the numerous available algorithms can be found in (Pohl & van Genderen, 1998; 
Chavez et al., 1991; Wang et al., 2005; Ballester et al., 2006 or Laporterie et al., 2005). 
Unfortunetely, most of these methods are devoted to the case of spatial enhancement of 
remotely sensed images only in the case of simultaneous images. In other words, the images 
to be fused are assumed to be taken at the same time but with different spectral bands and 
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different spatial resolutions. It is therefore relevant to focus our attention on data fusion 
methods that typically enable us to account for several information sources in order to 
produce a single but improved image. Recently, a new Bayesian Data Fusion (BDF) 
framework was proposed in a general space-time prediction context by (Bogaert & 
Fasbender, 2007), with the aim of merging various kind of information sources that are all 
different but relevant for a same target variable. Though initially developed with stochastic 
space-time random fields applications in mind, the method proved to be efficient for 
remotely sensed applications as well (e.g. Fasbender et al., 2008b). 
This chapter shows how the BDF approach can be used for the update of high resolution 
images with coarser images. In order to illustrate the general principle of the method, a 
synthetic case study was created from SPOT VEGETATION composite images (1km 
resolution) available at different dates. Spatially degraded 10km and 100km images are 
generated and used as coarse images. From the whole time-series of coarser images and only 
few of the initial images over time, it is then shown how BDF allows  predicting the high 
resolution image at, say, date 2 by combining at the same time (i) the high-resolution image at 
a previous date 1, (ii) the coarser image at date 2, and (iii) the evolution of the coarser images 
between dates 1 and 2. Based on a quality assessment conducted by comparing the BDF-
predicted images with the corresponding original 1 km images, it is shown that the method is 
able to provide both consistent results and improved images. Built on sound theoretical 
grounds, easy to implement and computationally fast, this method opens new avenues in the 
field of cost effective and efficient data fusion techniques for remotely sensed data. 

2. Bayesian data fusion 
Combining different sources of information into a single final result (i.e. data fusion) is a 
problem of general concern for a large panel of applications, that goes far beyond satellite 
imagery and encompasses a wide array of potential methods. Among them, Bayesian 
approaches have led to interesting applications with respect to various problems such as 
image surveillance (Jones et al. 2003), object recognition (Chung & Shen, 2000), object 
localization (Pinheiro & Lima, 2004), robotic (Moshiri et al., 2002), image processing (Rajan 
& Chaudhuri, 2002), classification of remote sensing images (Bruzzone et al., 2002) and  
environmental modelling (Wikle et al., 2001), just to quote few of them. The main advantage 
of a Bayesian approach is to set the problem of data fusion into a clear probabilistic 
framework. The present chapter relies on a general Bayesian Data Fusion approach in the 
context of spatial data (Bogaert & Fasbender, 2007). Its specific implementation will focus 
here on the problem of updating high resolution images with time series of coarser images. 

2.1 General formulation 
The basic concept of BDF as presented in (Bogaert & Fasbender, 2007) relies on the idea that 
variables of interest, denoted as vector 1( ,... ) 'nZ Z Z= , cannot be directly observed. 

Instead, they are linked to the observable variables ,i jY  through an error-like model, with 

 , , ,( )i j i j i i jY g Z E= +  (1) 

where gi,,j(.)’s are functionals and E is a vector of random errors that are stochastically 
independent from Z. Assuming that the Ei,,j's of the random vector E are stochastically 
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independent, it is easy to obtain the conditional probability density function (pdf) of the 
vector of interest given the observed variables, with 
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where i corresponds to the channel number and pi is the number of secondary information 
corresponding to the same Zi (see Bogaert & Fasbender, 2007 for more details). 
Using Bayes theorem again for 
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where f(zi) is the a priori distribution of Zi. According to the information sources at hand, 
intermediate stages between Eq. (2) and Eq. (3) are possible as well (e.g. an expression 
mixing both 

,
(.)

i jEf  and ,(. | )i jf y  distributions). 

It is worth noting that this BDF framework has interesting similarities with other multi-
sensor data fusion methods (see Mitchell, 2007 for more details). The advantage of the BDF 
framework over other existing multi-sensor data fusion methods is that it proposes a 
general formulation when accounting for several secondary information sources whatever 
the nature of these secondary information. Thanks to this, the range of applications that can 
be tackled by the BDF approach is wider and is far beyond the scope of the traditional multi-
sensor fusion issue. 

2.2 Specific assumptions 
The previous section presented the general BDF framework but it is important here to 
choose some specific assumptions in order to tackle the issue of updating high resolution 
images. In this context, there are three sources of information available at each location, 
namely the high resolution image at date 1, the coarser image at date 1 and the coarser 
image at date 2. In our implementation, the following notations will be used : 
• Z is the unknown multispectral reflectance values for the finer resolution pixel  at date 2 
• YH is the multispectral reflectance values for the finer resolution pixel at date 1 
• YL1 is the multispectral reflectance values for the coarser resolution pixel at date 1 
• YL2 is the multispectral reflectance values for the coarser resolution pixel at date 2 
Let us first assume that the finer and the coarser images share the same spectral bands. In 
these conditions, several predictions methods for the unknown pixel Z, all based on these 
information sources, can be used. In this application, only two methods will be evaluated. 
The first one simply consists in using the coarser multispectral YL2 has a raw estimate of the 
unknown pixel Z. Of course, although the image composed by the pixels YL2 is smoother 
than the target high resolution image, the global fluctuations are accounted for in the 
smooth image. The unexplained part of the variabiliy is then the local fluctuations with a 
mean equal to zero for each of the spectral bands and a variance Σ1 that can be estimated 
from the difference YH - YL1 between high and coarser resolution images at date 1. 
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The second prediction considered here is based on the following High-Pass Filtering 
approach : 
1. the high resolution image at date 1 is first decomposed into a lower frequencies image 

and a higher frequencies image using a Gaussian filter. 
2. the higher frequencies image is then combined with the coarser image at date 2. 
The resulting image has thus the advantages that details are provided by the high resolution 
image at date 1 whereas the global fluctuations are provided by the coarser image at date 2. 
The mean of this image is thus expected to be the same as the objective image and its 
variance Σ2 can be estimated from the variance of  YL1 - YL2. 
Now, assuming mutivariate Gaussian distribution for both secondary information sources 
as well as a non-informative prior distribution (i.e. constant distribution over the domain), 
the fused distribution is also a multivariate Gaussian distribution with a mean vector μ and 
a covariance matrix Σ given by 
 

 
Fig. 1. Study site 

 1 1 1
1 2

− − −Σ = Σ +Σ  (4) 

 1 1
1 1 2 2μ μ μ− −= Σ(Σ +Σ )  (5) 

where μ1 and μ2 are respectively the two predictions decribed above. The value μ is thus a 
relevant candidate for the predition of the unknown finer resolution pixel Z. 
Up to this point, it was assumed that finer and coarser images share the same spectral 
bands. However, this situation rarely occurs in real case applications. Fortunately, the 
generalization of the previous approaches is straightforward for non fully overlapping 
spectral bands. Indeed, one could easily generalize 1LY Z E= +  into, e.g., 

1LY AZ b E= + +  with b∈R  and n nA ×∈R (i.e. the spectral bands of the coarser image 
are linked to the spectral bands of the target image through a translation vector b and a 
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scaling matrix A). Thanks to this, it is now theoretically possible to update high resolution 
images from a first sensor like e.g. SPOT HRVIR or IKONOS with time series of coarser 
images from a second sensor like e.g. TERRA MODIS or SPOT VEGETATION. 

3. Demonstration case study 
3.1 Simulated data 
In this case study, coarser images were simulated from biweekly composite images based on 
real SPOT VEGETATION images with a spatial resolution of 1km. The original images were 
taken in the South-East Asia region (Fig. 1). Composite images were computed on a 
biweekly basis using the mean compositing method (Vancutsem et al., 2007).  The covered 
period is 2004-2005 so that 50 images were available for this study. Fig. 2 shows this 
evolution for the year 2005. After a clouds screening, each original image was degraded at 
10 km and 100km resolution by averaging all 1km pixels corresponding to the area. 
Resulting images were then resampled at 1km in order to match the original 1km spatial 
resolution (Fig. 3). 
 

 
Fig. 2. Evolution of the original biweekly images at 1km resolution. 

In the context of this chapter, original 1km images are assumed to be the finer images and 
blurry simulated ones are the coarser images. Furthermore, it is worth noting that spectral 
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bands of both the finer and the coarser images are the same so that the specific assumptions 
described in the previous section can be directly applied here without modifications. 
 
1km 

 

10km 

 

100km 

 
Fig. 3. Examples of original finer (1km) and corresponding simulated coarser  images (10km 
and 100km). 

3.2 Results 
Two different situations are considered in this application. In the first situation, one assumes 
that the finer resolution images are exhaustively known for the previous year. 
Consequently, one can choose the most relevant previous finer image. In the second 
situation, one assumes that there is only one previous finer resolution image, so that there 
may be a seasonal shift between the previous and the objective finer resolution images (see 
Fig. 2 for the differences between seasons). Both situations are described and compared 
hereafter in the next subsections. 

3.2.1 Situation 1: finer resolution images exhaustively known for the previous year 
The methodology of Section 2.2 was applied here in the case where finer resolution images 
are exhaustivelly known for the previous year and when using coarser resolution input 
images either at 10km or at 100km (Fig. 4). Using the finer resolution image one year before 
the target date (i.e. at the same biweekly composite number but at the previous year) is a 
relevant choice for the finer resolution input in the fusion method : in that case, the previous 
finer resolution image and the new objective image correspond to the same period. As a 
consequence, there will be less changes due to the seasonal shift between both finer images. 
Fig. 5 shows the evolution of the fused image for the year 2005 when using 100km coarser 
images. By comparison with the true evolution of the 1km images in Fig. 2, there is no 
significant color difference between the predicted images from the BDF method and the 
objective images. Futhermore, it is clear that the details from the finer resolution images are 
correctly accounted for in the fused images while the colors are updated by the coarser 
images (Fig. 6 illustrates this for the 21st biweekly composite image and with 100km coarser 
image). Results (not shown here) were also convincing with the 10km coarser input images. 
It is also worth noting that, although only one finer image was chosen in this application for 
sake of brevity, there is no theoretical limitation on the number of finer resolution images to 
be accounted for within the BDF framework. The methodology presented in Section 2.2 and 
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more specifically Eqs. 4 and 5 can easily be generalized to the case of multiple finer 
resolution input images with no additional theoretical development. It is thus possible to 
account for the entire time series of the finer resolution images (before and after the 
objective image) . This is left for further researches at this point. 
 

 
Fig. 4. Situation 1. Inputs for the fusion are the original 1km image at previous year and the 
coarser image (here 100km) at the target date. Fused images are then compared with the 
true original 1km images at the target date. 

3.2.2 Situation 2: finer resolution image known for only one previous date 
In the second situation, the finer resolution input image is assumed to be available at only 
one biweekly composite image. By doing this, the previous situation is thus generalized to 
the case where there is less available information at the finer resolution. The past finer image 
can be located anywhere in the current year (or even be related to a previous year) so that 
the seasonal effects are not necessarily seen in the finer image. Furthermore, the information 
relevance of the finer image with respect to the fused one is expected to drop along with the 
change of seasons (e.g. rainy season versus dry saison). As a consequence, the seasonal trend 
will only be included by the coarser image and details from the finer image will be included 
as long as the past and target biweekly images will correspond to the same season. In order 
to illustrate this situation, the only finer resolution image was assumed to be the first 1km 
biweekly image of the year 2005. Fig. 7 illustrates this situation in the case of 10km coarser 
images, although the methodology is of course the same for 100km. 
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Fig. 5. Evolution of the decadal fused images for year 2005 when using the biweekly 
composite high spatial resolution image of the previous year. The resolution of the coarser 
images is equal to 100km here. 

Similarly to the previous situation, the same methodology was applied for both spatial 
resolution for the coarser image (10km and 100km). Fig. 8 shows the temporal evolution of 
the fused images when using 10km coarser images. Again, a simple comparison between 
Figs. 2 and 8 shows that this temporal  evolutation is in good accordance with the temporal 
evolution of the target images at 1km resolution (it is worth noting that pixels that were 
covered by clouds in the finer input image were of course not updated in the fused images). 
Furthermore, Fig. 9 illustrates the effect of the inputs on the fused results. Indeed, one can 
clearly see that the change of colors between the first and the second dates is correctly 
accounted for thanks to the 10km coarser image while the details from the previous finer 
resolution image are well preserved. Results (not shown here) were also in good accordance 
when using the 100km coarser images. 

3.2.3  Quality assessment and comparison between both situations 
Several indices were chosen for the quality assessment of the fused images. As time series 
are complete for each of the three spatial resolution, it is straightforward to compare 
updated images with the true images at 1km at each of the 25 biweekly period of year 2005. 
More specifically, one can compute the Mean Error (ME), the Mean Absolute Error (MAE) 
and the Root Mean Squared Error (RMSE) with 
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Fig. 6. On the left : the 21st biweekly fused image when using (i) original 1km image at 
previous year (upper rectangle) and (ii) coarser 100km image at target date (lower 
rectangle). On the right : original 21st biweekly 1km image. 

 
Fig. 7. Situation 2. Inputs for the fusion are the first biweekly original 1km image of the year 
and the coarser image (here 10km) at the target date. Fused images are then compared with 
the true original 1km images at the target date. 
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where Ek is the difference between pixels values of the true and the fused images and N is 
the number of pixels in the images. It is worth noting that these indices were computed 
without cloud pixels (i.e. pixels that are detected as clouds at least once in the two images). 
Fig. 10 shows the evolution of the ME for Situations 1 and 2, both for the two coarser 
resolution (each curve corresponds to a different spectral band). It is clear from these results 
that using the finer image of the previous year and the 10km coarser image provides the 
best results regarding the ME, while the ME values have larger amplitudes in the other cases 
(especially in the case of only one finer image and 100km coarser image). However, these 
amplitudes are significantly small (reflectance values belong to [0,1] interval) in order to 
conclude that the method is unbiased. 
 

 
Fig. 8. Evolution of the biweekly fused images for the year 2005 when using the first 
biweekly finer image of the current year. The resolution of the coarser images was equal to 
10km here. 
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Fig. 9. On the left : the 9th biweekly fused image when using (i) original 1km image at 
beginning of the year (upper rectangle) and (ii) coarser 10km image at target date (lower 
rectangle). On the right : original 9th biweekly 1km image. 

 
Fig. 10. Evolution of the Mean Error (reflectance) as a function of the time for Situations 1 (b 
and d) and 2 (a and c), both for the 10km (a and b) and the 100km (c and d) coarser resolutions. 
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Similarly, Figs. 11 and 12 show respectively the evolutions of the MAE and RMSE for the 
various cases. Again, it is clear from these results that it is preferable to use the finer 
resolution image of the previous year than to rely on a unique finer image at another season. 
However, the MAE and RMSE significantly increase between the 10th and the 20th biweekly 
composite numbers (i.e. the end of the dry season and the beginning of the rain season). 
Therefore, fused images are less precise for this period of the year. This is probably a 
consequence of both the intra and inter annual variation of the vegetation in the studied 
area.  
As there were two secondary information sources (i.e. the past finer image and the coarser 
one at target date), it is also interesting to focus on the influence of these sources on the 
fused images. For this, correlation coefficients were computed between corresponding 
spectral bands of the different images. Again, these coeficients were computed at each 
biweekly composite number, allowing us to see how they evolve over time. 
 
 

 
 
 

Fig. 11. Evolution of the Mean Absolute Error (reflectance) as a function of the time for 
Situations 1 (b and d) and 2 (a and c), both for the 10km (a and b) and the 100km (c and d) 
coarser resolutions. 

Correlation coefficients between the fused and the original 1km input images are 
represented in Fig. 13. It is worth noting that the influence of the  finer resolution image 
decreases rapidly at the end of the first quarter of the year (i.e. end of the dry season) when 
using the finer resolution image at the first biweekly compsite, whereas this influence 
remains rather constant when using the finer image of the previous year. This is of course  
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Fig. 12. Evolution of the Root Mean Squared Error (reflectance) as a function of the time for 
Situations 1 (b and d) and 2 (a and c), both for the 10km (a and b) and the 100km (c and d) 
coarser resolutions. 

 
Fig. 13. Evolution of the correlation coefficients between fused and original 1km input 
images as a function of  the time for Situations 1 (b and d) and 2 (a and c), both for the 10km 
(a and b) and the 100km (c and d) coarser resolutions. 
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mainly due to the fact that there is a significant seasonal shift of vegetation between the first 
biweekly composite of the year (i.e. beginning of the dry season) and the middle of the year 
(i.e. rainy season). Furthermore, the correlation coefficients increase significantly during the 
rainy season, i.e. when the vegetation starts to grow again. It is also worth noting that the 
influence of the finer input image on the fusion results is bigger when using 100km coarser 
image. This is simply because 10km images are more relevant for the prediction at 1km than 
100km ones. Thus, as 100km images are less informative, their influence on the fused images 
is smaller. 
Similarly, it is interesting to focus on the evolution of the coarser images’s influences on the 
fused results (Fig. 14). It is worth noting that this influence is rather constant when using the 
first biweekly finer image of the current year, while it drops in the middle of the year when 
using the finer image of the previous year. These behaviors are thus precisely opposite with 
those observed for the finer resolution images in Fig. 13. Again, it is mainly due to the fact 
that the finer images of the previous year correspond to the same season as the target 
unknown image, thus globally exhibiting the same vegetation conditions. As a consequence, 
fused images rely a little bit less on the coarser image for the update of the previous finer 
images (i.e. correlation coefficients are smaller). 
 
 

 
 
 

Fig. 14. Evolution of the correlation coefficients between fused and coarser input images as a 
function of the time for Situations 1 (b and d) and 2 (a and c), both for the 10km (a and b) 
and the 100km (c and d) coarser resolutions. 
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4. Conclusion 
In this chapter, a Bayesian data fusion (BDF; Bogaert & Fasbender, 2007) framework was 
applied for the update of scare high resolution images with time series of coarser images. 
This BDF framework aims at reconciling various secondary information sources into a 
unique prediction. Although initially proposed in a spatial prediction context, a 
generalization of this BDF approach was presented here for space-time predictions. It is 
worth noting that, as information are known exhaustively over space, the use of 
remotely sensed images is a singular case of secondary information sources so that 
interpolation (or spatial predictions) is not even needed here. Other applications using 
this BDF framework can be found in (Fasbender et al., 2008a; Fasbender et al., 2008b; 
Fasbender et al., 2008c). 
After a brief general description of the BDF framework, several specific hypotheses were 
assumed in order to account for the three available information sources (the coarser 
images at date 1 and 2 and the finer image at date 1). Based on these three images, two 
methods were considered for the prediction of the target image (i.e. the finer image at 
date 2). The first method was to consider the coarser image at date 2 as a raw estimation 
of the target image. The second method was based on a High-Pass Filter (HPF) approach 
for which the lower frequencies of the finer image at date 1 are substituted by the coarser 
image at date 2. Consequently, details are provided by the high resolution image at date 1 
whereas the global fluctuations are provided by the coarser image at date 2. The final 
prediction is eventually based on the combination of both methods within the BDF 
framework. 
In this chapter, the proposed methodology was applied to a synthetic case study. Coarser 
images were simulated from biweekly composite images based on real 1km SPOT 
VEGETATION images in the South-East Asia region. Two coarser resolutions were tested 
here : 10km and 100km (even if the ratio between finer and coarser resolution images is 
expected to be smaller for real case applications). Moreover, two situations differing with 
respect to the amount of information sources at finer resolution were considered in this 
illustration. In Situation 1, finer resolution images were assumed to be available for the 
whole previous year, whereas only one finer image was available in Situation 2 (here, the 
first biweekly image of year 2005). Results showed that the method correctly accounted 
for the important seasonal trend due to the dry and rain seasons whatever the resolution 
of the coarser images (10km or 100km) or the amount of available finer images (only one 
or the whole previous year). Although visual interpretations were clearly in favor of BDF 
predictions, a validation was also performed using the true 1km images. Mean Error 
(ME), Mean Absolute Error (MAE) and Root Mean Squared Error (RMSE) were computed 
for each spectral band, both situations and both coarser resolutions, as a function of the 
time. Although the ME values fluctuate around zero (showing the accuracy of the 
method), the MAE and the RMSE values increase during the dry season (showing thus 
that there is a drop of precision for the method in this period of the year). This effect is 
most probably due to local changes of vegetation that are not observable at the coarser 
resolutions. However, results showed that using the finer image of previous year and 
10km coarser images led to the most efficient updates (i.e. smaller ME, MAE and RMSE 
amplitudes).  
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As there were two methods of prediction to be merged within the BDF framework, it is also 
intersting to focus on their respective influences on the fused images. Results showed that 
the influence of the finer input images is rather constant in Situation 1, while this influence 
drops during the dry season in Situation 2. This is of course mainly due to the fact that, in 
Situation 1, finer input images and target ones are assumed to correspond to the same 
season, exhibiting thus the same stage of vegetation. Conversly, the influence of the coarser 
images on the fused images drops during the dry season in Situation 1, while being rather 
constant in Situation 2. Again, this inversion is probably due to the fact that the finer input 
and the target images are more similar in Situation 1 than in Situation 2, thus relying less on 
the coarser input image in Situation 1. 
Although we only applied it here to a synthetic case study, generalizations of this BDF 
method are possible in order to tackle real case applications. As examples, using finer and 
coarser images with different spectral bands and using more than one past finer images for 
the prediction are just two possibilities for future researches. It thus opens new avenues in 
the context of updating high resolution images with coarser images. 
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1. Introduction  
Remotely sensed data from satellite sensors such as Moderate Resolution Imaging 
Spectroradiometer (MODIS) and Advanced Very High Resolution Radiometer (AVHRR) 
provide almost daily global coverage. Satellite sensor data are used to create scientific data 
products that include surface reflectance, land surface temperature, sea-surface temperature 
and many others, as well as ancillary metadata like satellite viewing angle and data quality 
information. Vegetation indices, like Normalized Difference Vegetation Index (NDVI) 
(Jensen, 2000), derived from reflectance products of satellite sensors, are generally used as 
indicators of relative abundance and activity of green vegetation, often including leaf-area 
index, percentage green cover, chlorophyll content, green biomass, and absorbed photo-
synthetically active radiation. 
Frequently reflectance data products needed to create vegetation indices include undesired 
cloud, water vapour, aerosols, or other poor quality pixels. Continuous monitoring of 
occurrences such as droughts, frosts, floods, major fires, forest stress, or natural disasters are 
just a few of the circumstances when daily cloud-free vegetation index composites data are 
of high utility. The traditional approach to creating a single synthetic cloud-free image that 
includes ideal values selected from a temporal set of possibly cloudy satellite images 
collected over a continuous time period of interest is called multi-temporal compositing 
(MTC). MTC compositing is generally used to create vegetation indices images from data 
products with high temporal and low spatial resolution such as those produced by the 
National Oceanic and Atmospheric Administration’s (NOAA) AVHRR sensor or NASA’s 
MODIS (Justice, 1998). Various methods of MTC have been utilized to produce scientific 
data products including Maximum Value Compositing (MVC), Constrained View 
Maximum Value Compositing (CV-MVC) (Cihlar et. al., 1994, Heute et. al., 1999), and CV-
MVC which incorporates sensor data quality information. 
The motivation for investigating multi-sensor and temporal fusion for creating high-
temporal frequency composites is to overcome the limitations of single-sensor MTC 
methods and deliver continuous monitoring capabilities that exceed the temporal frequency 
of currently available 8-day, 10-day, 14-day, and 16-day composite vegetation index data 
products. Currently available composite products do not provide sufficient frequency and 
temporal detail to capture and quantify important events, do not deliver data for continuous 
environmental monitoring, and provide temporally sparse inputs precluding effective 
agricultural productivity modelling. 
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In this chapter, new approaches are presented for creating high-temporal resolution 
vegetation index data products by multi-sensor and temporal fusion (MSTF) (Shrestha et. 
al., 2006). MSTF methods are detailed that employ rule-based image fusion methods to 
combine data streams from similar sensors to deliver almost daily cloud-free high-temporal 
resolution vegetation index composites. Results of daily MSTF cloud-free vegetation index 
compositing are presented to illustrate their significance and potential operational utility for 
1) providing regional vegetation and ecosystem condition monitoring as applied to a 
disaster event such as Hurricane Katrina, and 2) providing bioproductivity monitoring and 
crop modelling insight for an agricultural study area of interest with large crop production 
fields that include a plurality of pixels. In the earlier case, daily data sets are shown as well 
as cross-platform fused products providing visible indication of decreasing greenness, 
whereas in the latter case, the MSTF approach is implemented, products are demonstrated, 
phonological growth stages of crops are examined using daily data products, and results are 
compared to traditional standard scientific data product produced by MTC methods.   

1.1 NDVI 
Vegetation indices are conventionally used as a representative of vegetation that 
characterizes the vegetation vigor (Rouse et al., 1974). Vegetation indices are defined as 
dimensionless, radiometric measures that function as indicators of relative abundance and 
activity of green vegetation, often including leaf-area index, percentage green cover, 
chlorophyll content, green biomass, and absorbed photo-synthetically active radiation 
(Jensen, 2000). In this study, we have used Normalized Difference Vegetation Index (NDVI); 
the most widely used form of VI, which was introduced by Deering (Deering, 1978) and 
Tucker (Tucker, 1979). The principle underlying NDVI is the strong reflectance of healthy, 
chlorophyll-based vegetation at near-infrared wavelengths and its relatively weak 
reflectance in the visible red. NDVI is simply defined as the ratio of the difference between 
these reflectance normalized by their sum as shown by the equation 1. This yields a 
dimensionless quantity ranging in theory from -1 to 1, but in practice the lowest value 
seldom falls below -0.25. The value increases from -1 to +1 with the increase in vegetation. 
The clouds are in the lower end of the NDVI value range. 

 NearIR RNDVI
NearIR R

−
=

+
 ( 1) 

The NDVI is calculated using equation 1, where NearIR represents near infra-red reflectance 
and R represents red reflectance. Unfortunately, these images frequently include undesired 
cloud and water cover. Areas of cloud or water cover preclude analysis and interpretation of 
terrestrial land cover, vegetation vigor, and/or analysis of change. Figure 1 shows NDVI 
images of Mississippi and Arkansas, US, created using reflectance data from AVHRR (a) 
and Terra MODIS (b) on May 7, 2004. 
This chapter presents multi-sensor and temporal fusion (MSTF) of NDVI datasets from the 
MODIS sensor, a key NASA sensor system aboard two satellites, the Terra (EOS AM) and 
Aqua (EOS PM). Terra and Aqua MODIS collect image data for the entire Earth's surface 
every 1 to 2 days, acquiring data in 36 spectral bands, or groups of wavelengths.  The spatial 
resolution of MODIS images varies from 250m x 250 m to 1000m x 1000 m.  
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AVHRR May 07/04 TERRA MODIS May 7/04  
(a)   (b) 

Fig. 1. Color coded NDVI for states of Mississippi and Arkansas, US from AVHRR (a) and 
Terra MODIS (b) sensors for 7 May 2004 (Mali et al., 2005). 

2. Compositing 
To more effectively monitor the dynamics of changing conditions on the surface of our 
planet, removing the frequent and extensive cloud cover that obscures daily observations 
over many parts of Earth's is the primary motivating reason for developing methods for 
producing spatially and temporally continuous and consistent NDVI images. The traditional 
approach of creating a single synthetic cloud-free image that includes ideal values selected 
from a temporal set of possibly cloudy satellite images collected over a continuous time 
period of interest is called multi-temporal compositing (MTC). There are several MTC 
methods that are generally based on the temporal NDVI values, satellite view angle, and 
also the quality flags for the pixel. 
The MTC process of selecting pixels with highest NDVI value for each individual pixel 
across a set of temporal collection for compositing purposes is known as Maximum Value 
Compositing (MVC). MVC is the procedure used to generate composited AVHRR-NDVI 
product (Holben, 1986). Presence of a high concentration of water vapour lowers the near 
infrared channel response and thereby lowers the derived NDVI value. Therefore, the 
highest NDVI value, also referred to as the greenest pixel, is presumed to select the 
observation under conditions when the atmosphere contained the least amount of water 
vapour. The shortest path length for reflected radiation occurs at nadir, and it is least 
affected by water vapour concentration (USGS). Furthermore, pixel size increases with view 
angle; therefore nadir-view pixels are considered optimal because they possess minimal 
spatial distortions (Gao et al., 2003). In addition, high-angle views enable the relative 
altitude of vegetation above the ground to present more leaf area and less soil cover to the 
observing system sensor. For all of these reasons, MVC processing approaches have been 
refined to include constraints that remove such bias by employing a scan angle or zenith 
angle constraint. In this refined approach to MVC, the selection criteria allows the use of 
pixels observed at angles near nadir during the compositing process and discards pixels 
observed at angles far from nadir. MODIS-VI compositing algorithm uses either reflectance 
based BRDF or constraint view maximum value compositing (CV-MVC) algorithm over a 
period of 16 days (Huete et al., 1999).  
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The presence of clouds in the daily data products precludes the use of NDVI for continuous 
vegetation monitoring using satellite observation. Additionally, the traditional MVC is a 
representative NDVI (highest value) for a given temporal range is selected for 8/10/16 days 
and up to 30 days period. For example, the NASA standard scientific data product, MOD13 
(LPDAAC, 2008) is a comprehensive standard vegetation index product that includes NDVI 
composited over 16 day period. These standard cloud-free composites of NDVI have high 
utility/usefulness for many applications where regular continuous vegetation monitoring 
may not be required. However, in certain cases where regular vegetation monitoring is 
required, an 8/10/16 day or longer temporal range may not be sufficient. For example, in 
the case of crop monitoring, changes in NDVI values can provide significant insight to crop 
vigor and provide information for identifying changes from one stage of vegetation growth 
to other. Therefore, there is a need for cloud-free NDVI products that provide high temporal 
resolution. Multi-sensor and temporal fusion (MSTF) provides methods needed to generate 
daily cloud-free NDVI products with broad areas of useful application. 

3. Multi-Sensor and Temporal Fusion (MSTF) 
The MODIS sensor system is onboard two satellites Aqua and Terra and has high temporal 
resolution providing almost daily revisitis around the globe. Therefore,  using the MODIS 
sensors onboard the two satellites, NDVI images created from MODIS land surface 
reflectance datasets (MOD09) provide an ideal opportunity for multi-sensor fusion. In 
addition to observation reflectance data, the LPDAAC also provides additional metadata 
associated with the datasets for Global Geolocation Angles (MODMGGAD) and Quality 
Assurance (MODGST). The fusion algorithm uses the associated MODIS geolocation angles 
and MODIS quality assurance (QA) metadata (extracted from MODGST) to differentiates 
between land, water, cloud, and snow observation.  
The principles behind the presented rule-based algorithm for multi-sensor and temporal 
fusion are a) that observations selected for the day of interest are preferred, but values may 
be considered that persist from observations made over previous days;  b) that pixels with 
lower view angles contain less noise; and c) that associated MODIS QA metadata may be 
used to select land observations. After the preprocessing steps to extract NDVI, zenith angle, 
and quality data, a stepwise temporal selection process is followed to identify observation 
pixels, from both Aqua and Terra, which fulfill the necessary criteria for fusion. The criteria 
that are enforced are for i) a zenith angle for the pixel less than 48o, and ii) a quality code for 
the underlying pixel indicating classification as a clear land observation. Thereby, pixels 
classified as water, cloud, snow, and no data values are exempted from consideration for 
fusion. The zenith angle threshold (MAX_ANGLE) of 48o is used, such that only pixels with 
associated zenith angles less that 48o are selected. The zenith angle threshold was chosen to 
reduce striping effects that were observed in the composites created using higher zenith 
angles (Mali et al., 2005). Given the view angles and quality metadata for each pixel of the 
images from different satellites, the following pseudo code illustrates the rule-based fusion 
(O’Hara et al., 2008, Shrestha et al., 2005).  
                               For day from 0 to MAX_DAY 
                               if (angle is less than MAX_ANGLE) AND (mask is MASK_LAND) 
                                select pixel, zenith angle, mask 
                                compute confidence 
                               else 
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                                get next pixel  
                               If no pixel selected  
                                select pixel with highest NDVI, zenith angle, mask 
                                assign least confidence 
 

In both the cases that are presented in this chapter, a six day temporal window 
(MAX_DAY),  48o zenith angle (MAX_ANGLE), and the quality mask observation classified 
clear observation of land (MASK_LAND) are used. When both of the observations for a day 
meet the required constraints, either the observation with lower zenith angle or the 
observation with higher NDVI can be selected for fusion. In this case, we have chosen 
observation with higher NDVI.   

4. Results and analysis 
Using the technique for multi-sensor and temporal fusion described in earlier section, 
experiments were conducted to illustrate use cases for vegetation and ecosystem condition 
monitoring for a disaster event and for agricultural crop bioproductivity monitoring and 
modelling. The locations for the use cases considered two sites – 1) the Mississippi Delta, USA 
and 2) the Pampas of Argentina. Use case results are presented in the following sections.  

4.1 Mississippi delta, USA 
The texts and results in this section are extracted from (O’Hara et al., 2008). This section 
illustrates the use case for MSTF fused NDVI created of Mississippi Delta region in Unites 
States during the time frame of Hurricane Katrina. For this use case, the objective was to 
utilize MSTF to demonstrate temporal compositing methods with significant implications 
for monitoring continuous vegetation status. To accomplish this objective, it was decided 
that a major meteorological event would provide unique insight as to whether the 
application would enable status tracking, identification, and potentially quantification of 
pre-event conditions, event-related stress, and post-event recovery of greenness. To 
accomplish this, an area within Mississippi was selected above the coast, but within the 
areas impacted by Hurricane Katrina. The ability to remove clouds and characterize the 
daily vegetation conditions before and after a major hurricane was deemed to be a good 
application for testing the ability to remove heavy or complete cloud cover for a desired 
geographic area and a temporal interval of interest (O’Hara et al., 2008). 
For a thirty-two (32) day period from August 20 to September 20, during a time frame  
covering the temporal period prior to as well as after Hurricane Katrina (August 29th, 2005), 
MODIS – Aqua and Terra datasets were downloaded for the Area of Interest (AOI). The 
AOI is focused in the Mississippi Delta region, and corresponds to MODIS grid H10V5. 
These daily data were downloaded, pre-processed to NDVI and associated metadata of 
zenith angle and quality, and were used to compute fused daily NDVI. The daily MODIS 
reflectance, geolocation angle, and quality assurance datasets were downloaded from the 
NASA LPDAAC.  
Figures 2 and 3 represent the color coded daily NDVI images computed from Aqua and 
Terra MODIS land surface reflectance datasets for August 20, 2005 to September 20, 2005. 
Figure 4 represents the fused dataset created using multi-sensor and temporal fusion for the 
same time period. 
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Fig. 2. Color coded Aqua NDVI Data for 32 days (Aug 20 – Sep 20, 2005). Here Grey color 
shows cloud cover, the low NDVI values are in orange and yellow colors, the increase in 
NDVI is shown by increase in darkness of green color, and the white color represent the ‘No 
Data’ values; and are related to the NDVI values represented in the color bar (O’Hara et al., 
2008). 

 

  Aug 20, 2005 Aug 21 2005 Aug 22 2005 Aug 23 2005 Aug 24 2005 Aug 25 2005 Aug 26 2005 Aug 27 2005 

Aug 28 2005 Aug 29 2005 Aug 30, 2005 Aug 31, 2005 Sep 1, 2005 Sep 2, 2005 Sep 3, 2005 Sep 4, 2005 

Sep 5, 2005 

Sep 13, 2005 

Sep 6, 2005 Sep 7, 2005 Sep 8, 2005 Sep 9, 2005 Sep 10, 2005 Sep 11, 2005 Sep 12, 2005 

Sep 18, 2005 Sep 17, 2005 Sep 16, 2005 Sep 15, 2005 Sep 14, 2005 Sep 19, 2005 Sep 20, 2005  
Fig. 3. Color coded Terra NDVI data for 32 days (Aug 20- Sep 20, 2005). The color mapping 
is the same as employed in Figure 2 (O’Hara et al., 2008). 
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Through visual inspection of daily Aqua, Terra, and fused NDVI images, from Figures 2, 3, 
and 4, initial indications of cleanness, completeness, and continuity of data coverage as well 
as general trends in greenness are observed in the fused images compared to the cloud 
obscured and noisy appearance of NDVI products created from daily reflectance data. Here, 
visual representations of the regional NDVI datasets are provided. Detailed field level zonal 
analyses of fused datasets with respect to daily and composited standard single sensor 
MODIS datasets will be published in upcoming publication (O’Hara et al., 2008). Visual 
inspection of MSTF results show a clear trend, when viewing along a diagonal from top-left 
to lower right (earliest date to latest date), of general decrease in greenness and increase in 
yellow content. This clearly illustrates the usefulness of the products to provide improved 
understanding of the significant decreases in vegetation vigor due to loss of leaves, downed 
trees, and general vegetation stress as a result of Hurricane Katrina event.  
In the next section, the use of MSTF fused NDVI for crop productivity and continuous 
vegetation monitoring of large agricultural fields in Argentina is presented. 
 

 

Aug 28 2005 

Sep 14, 2005 

Sep 3, 2005 Sep 4, 2005 

Aug 20, 2005 Aug 21 2005 Aug 22 2005 Aug 23 2005 Aug 24 2005 Aug 25 2005 Aug 26 2005 Aug 27 2005 

Aug 29 2005 Aug 30, 2005 Aug 31, 2005 Sep 1, 2005 Sep 2, 2005

Sep 5, 2005 

Sep 13, 2005 

Sep 6, 2005 Sep 7, 2005 Sep 8, 2005 Sep 9, 2005 Sep 10, 2005 Sep 11, 2005 Sep 12, 2005 

Sep 18, 2005 Sep 17, 2005 Sep 16, 2005 Sep 15, 2005 Sep 19, 2005 Sep 20, 2005  
Fig. 4. Color coded fused output NDVI data for 32 days (Aug 20- Sep 20, 2005). The color 
mapping is the same as employed in Figure 2 (O’Hara et al., 2008). 

4.2 The pampas of Argentina 
The second use case demonstrates the use of fused daily NDVI data to create data products 
that deliver greatly enhanced capabilities to analyze current conditions and long-term crop 
signatures. These signatures as shown as greeness curves that depict representative 
vegetation conditions characterized by NDVI and enable improved understanding of crop 
phenological growth states. As studies have shown in the past, multi-temporal observation 
data may be analyzed to detect phenological changes useful for crop classification (Haralick, 
at al., 1980) as well as to provide signature curves of crop growth which utilize NDVI to 
model crop growth, phenological growth stages, and crop maturity. This approach is 
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presented in terms that illustrate utility for delivering enhanced understanding of specific 
crop types as well as development and vigor over time during a crop season as well as over 
multiple seasons to provide insight about crop rotation, management practices, double 
cropping, and timing of planting and maturity of crops.  
This use case demonstrates the use of fused NDVI Data products derived from satellite 
observations of Aqua and Terra MODIS to provide a major observational source of field 
level vegetation data.  
South America is considered as the major soybean growing region of the world. For that 
reason, Argentina was chosen as the main area of interest for this experiment. The study 
area lies in the Pampas, which includes the Cordoba region and other nearby areas, is a 
major soybean farming region within Argentina. Figure 5 shows the eight field sites in 
Argentina. The field sites were chosen with the help of a local expert such that the MODIS 
tile with grid ID H12V12 contained all the field sites.  For each field site, large soybean fields 
were chosen, and the field boundaries were decided and validated. By using large crop 
production fields it was insured that the fields included a plurality of pixels in coarse-
resolution (250m x 250m) MODIS reflectance datasets. Most of the fields selected are more 
than 50 hectares in area to comply with coarse resolution of MODIS datasets. For this 
chapter, we show the results from one of the sites in Marco Juarez. Figure 6 shows the three 
field boundaries at Marco Juarez in a) high resolution AWiFS image and b) low resolution 
fused MODIS image. 
 

 

 
Fig. 5. The eight field sites in Argentina shown overlaying AWIFS imagery (56m resolution).   
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   (a)    (b) 

Fig. 6. (a) Three digitized field boundaries shown for Marcos Juarez overlaying high 
resolution AWIFS false color composite. The fields are numbered 501, 502, and 503 for 
identification purposes (b) Fields in Marco Juarez shown in lower resolution (250m x 250m) 
color coded fused MODIS imagery for February 1, 2007. 

Daily MODIS reflectance (MOD09), Geolocation Angle (MODMGGAD), and Quality 
Assurance (MODGST) data for the H12V12 tile were acquired for Aqua and Terra MODIS 
for three years (August 2004-August 2007). These daily Aqua and Terra MODIS datasets 
were pre-processed to NDVI and associated metadata for quality assurance were computed. 
The pre-processed daily datasets were then used to compute fused daily NDVI using the 
multi-sensor and temporal fusion (MSTF). Figure 6 b) shows the fused NDVI product for 
February 1, 2007 for Marco Juarez with the overlay of three fields in the region.  
 

 
 (a)    (b) 

Fig. 7. (a) Color coded Aqua 16-day composite MYD13 NDVI for January 25- February 10, 
2007 (b) Color coded Terra 16 day-composite MOD13 NDVI for January 17- February 2, 2007 
showing the fields in Marco Juarez. The color mapping is the same as employed in Figure 2.  

To quantify the vegetation vigor of a field that is represented by multiple NDVI pixels, an 
average of all the NDVI pixel values within the area of the field boundary is calculated. 
After the fusion of the datasets using MSFT, daily average NDVI value for each field was 
calculated from the fused daily datasets. Using the daily average NDVI values for the field, 
temporal NDVI signatures were created for each field. The temporal NDVI signatures for 
three fields in Marco Juarez (fig. 6) are shown in figures 8, 9, and 10. The temporal NDVI 
signatures represent the phenology curves for the changing vegetation on the field. To make 



 Sensor and Data Fusion 

 

272 

comparisons with standard datasets, average NDVI value were also calculated from 16-day 
MOD13 standard composites from Aqua and Terra. Figure 7 a) and b) show the MOD13 
composites for Aqua and Terra that contain the February 1, 2007 respectively. 
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Fig. 8. Temporal signatures created using fused NDVI for field 501 at Marco Juarez. The red 
circles on (a) represent mean NDVI for the field from 16 day MOD13 composites from Terra 
and red squares on (b) represent mean NDVI from 16 day MOD13 composites from Aqua.  
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Fig. 9. Temporal signatures created using fused NDVI for a field 502 at Marco Juarez. The red 
circles on (a) represent mean NDVI for the field from 16 day MOD13 composites from Terra 
and red squares on (b) represent mean NDVI from 16 day MOD13 composites from Aqua.  
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Fig. 10.  Temporal signatures created using fused NDVI for a field 503 at Marco Juarez. The red 
circles on (a) represent mean NDVI for the field from 16 day MOD13 composites from Terra 
and red squares on (b) represent mean NDVI from 16 day MOD13 composites from Aqua.  
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In figures 8, 9 and 10, the NDVI temporal signatures using mean NDVI for three different 
fields in Marco Juarez are presented for August 2004 - July 2007. Also presented are the 
Aqua and Terra 16 day MOD13 average NDVI values for the fields using the red circles and 
red squares respectively. In periods outside the crop season, low NDVI values represent 
fallow conditions when there is little or no greenness or vegetation within the field 
boundary. At the beginning of the crop season, seeds are planted, crops emerge, leaf area 
accumulates, and vegetation growth may be monitored by tracking changes and increases in 
NDVI values. As the crop matures, NDVI values increase, and with higher crop vigor, NDVI 
values continue to increase up to the maturation stage for the plants at which point leaf 
growth terminates and observed greenness starts to decrease. Crop harvesting and fallow 
periods (for out of seasons) are part of the typical cycle for agricultural regions and this 
phenomena is well represented in 8,9, and 10. The NDVI values for all the fields in the 
figures exhibit fallow periods between the crop seasons during which vegetation growth can 
be readily observed for the three (3) year period presented. It can also be seen from the 
figures that the fused NDVI follows the trend demonstrated by the 16 day MOD13 NDVI 
composite values. The fused daily NDVI, however, provide a much greater detail of change 
in NDVI than the 16-day composites.   
For field 503 shown in figure 10, for the planting season for 2006-2007, two discreet crop 
signatures are present as evidenced by the significant and separate increases in NDVI 
during that crop season. The two readily observed “humps” represent double cropping, 
which means that two crops were planted during the same season. Typical of management 
practices in the region, double cropping is usually conducted wherein an early planting of 
wheat is followed by a late planting of soybean. For the rest of the fields (501 and 502), 
single cropping practices may be observed across the three years presented.   
This use case presents results indicating that MSTF provides unique and previously 
unavailable capabilities to continuously monitor and analyze crop conditions, development, 
management practices, maturity, and overall productivity for fields, farms, and regions of 
agricultural interest. The method of MSTF presented is intended to demonstrate robust 
results that can be obtained by a simple rule-based implementation of cross-platform fusion. 
The method presented in no way alters, modifies, or changes observation values. Therefore, 
for any observation system, there will be noise present that accompanies the desired 
“signal” portion of the results. The degree of agreement between the MSTF results and 
standard NASA MOD13 products is remarkable and clearly illustrates the powerful 
capabilities that MSTF delivers for continuous temporal monitoring of vegetation 
conditions. Clearly, there are significant opportunities to improve on these results, and this 
can be readily accomplished by implementing approaches to noise removal. It can be seen 
from the figures that even on the relatively cleaner fused datasets, there is some noise 
present in the NDVI temporal signatures. Further research and implementation testing may 
be conducted to evaluate different filtering methodologies to denoise the temporal NDVI 
signatures. Approaches that may be readily implemented include simple median filtering, 
moving-average, or wavelet based denoising (Bruce et al., 2006) or using Savitzky-Golay 
Filtering (Chen et al., 2004). Regardless of the noise component, the MSTF results presented 
in this use case clearly illustrate the useful nature of daily products and the utility of this 
method to deliver needed products for agricultural applications. 
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5. Conclusion 
Vegetation indices, like Normalized Difference Vegetation Index (NDVI), derived from 
reflectance products of satellite sensors with high temporal resolution (e.g. MODIS) are very 
useful resource for vegetation monitoring. However, these images frequently include 
undesired cloud and water cover. Such areas of cloud or water cover preclude analysis and 
interpretation of terrestrial land cover, vegetation vigor, and/or analysis of change. Multi-
sensor and temporal fusion (MSTF) is a useful tool to perform fusion to remove clouds from 
NDVI datasets originating from multiple sensors that collect observations at slightly 
different times of each day across a geographic area of interest (and may be selected for a 
temporal window of interest). MSTF is performed by using both the reflectance observation 
data as well as the available ancillary metadata for the available reflectance datasets. The 
cloud-free daily NDVI composite data products obtained using the MSTF datasets provide 
an advantage for a wide variety of applications, such as disaster monitoring, vegetation 
stress monitoring, crop health monitoring, and regional or global bio-productivity 
modelling that would benefit greatly by the availability of higher temporal resolution NDVI 
data.  
In this chapter, two use case examples were presented clearly showing the utility of MSTF 
for the fusion of NDVI datasets from Aqua and Terra MODIS. In the first use case, fusion 
based NDVI products were created and illustrated the usefulness of the process to provide 
cloud-free image datasets during the time frame of Hurricane Katrina. This use case clearly 
shows that MSTF provides capabilities of value to vegetation and ecosystem monitoring and 
change analysis. In the second use case, fusion based NDVI products were used for remote 
vegetation observation for appropriately sized agricultural fields in Argentina to model and 
quantify crop growth and development. MODIS NDVI products and field boundaries were 
employed to extract data that were presented in the form of crop growth phenology curves 
which are evidence of the ability to show in high temporal detail the stage of growth and 
maturity of crops. This approach has obvious application to detecting the onset of greenness 
that may be used to refine estimations of planting date, crop growth status, and maturity. In 
both of the presented use cases, a 6 day maximum temporal window was chosen. The 
presented temporal compositing period is provides daily data and can be observed to be 
highly complementary to standard NASA data sources such as 16 day MOD13 composites. 
It is also observed that the fused products exhibit the trend of NDVI change the MOD13 
composites and provide a greater detail of change in NDVI than the 16-day composites. 
Here, we have used datasets from Aqua and Terra MODIS which have the same spatial 
resolution and have same spectral characteristics.  
Further studies may be conducted to consider refinements to the MSTF process. The easiest 
pathway to improved products lies in considering and evaluating methods to remove noise 
and enhance the signal component of MSTF products. More challenging improvements may 
be considered aimed at increasing the richness of MSTF products by evaluating how best to 
include in MSTF processing data streams from additional sensors with different spectral, 
spatial, and temporal characteristics.  In all MSTF provides a new set of capabilities for 
improving capabilities to observe the dynamic and changing conditions of the earth’s 
surface. This data fusion approach offer major opportunities for extensible and highly 
transferable application as well as operational implementations to meet a broad variety of 
earth science and societal needs. 
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1. Introduction     
A fully polarimetric synthetic aperture radar (SAR) is a device that is able to transmit and 
receive both orthogonal (horizontal and vertical) components of an electromagnetic wave 
(Touzi et al., 2004). Its signals include the magnitude and phase information, rendered as 
complex variables. Many classification algorithms have been proposed for SAR images 
(Cloude & Pottier, 1997; Ferro-Famil et al., 2001; Hoekman & Vissers, 2003; Kersten et al., 
2005; Lee et al., 1994; Lee et al., 1999, Lee et al., 2004), that can be grouped into three main 
types (Chen et al., 2003): 1) algorithms based on image processing techniques, 2) algorithms 
based on a statistical model, 3) algorithms based on the scattering mechanism of the 
electromagnetic waves. Our interest is in the first type, since such algorithms permit a 
general approach to the images, potentially after investigating the physical properties of 
natural media.  
In a previous work (Alberga et al., 2006), several ways of representing polarimetric SAR 
data (Cloude & Pottier, 1996; Cameron et al., 1996; Cloude & Pottier, 1997; Freeman & 
Durden, 1998) have been analyzed and their usefulness for land cover classification 
compared. The classifiers used were the minimum distance classifier, the maximum 
likelihood classifier and a neural network - the Multi-Layer Perceptron (MLP), trained by 
the Back-Propagation (BP) learning rule. The MLP outperformed the other two classifiers. In 
addition, the MLP does not need any a priori knowledge on the statistics of the input data, 
thus it can be applied to any possible polarimetric observable, permitting an unbiased use of 
the classification results (Benediktsson, et al., 1990). For these reasons, the MLP is used also 
in this work. 
The accuracy of the classification of a given polarimetric representation (i.e., set of 
polarimetric parameters) was taken in (Alberga et al., 2006) as a measure of the usefulness of 
that set and compared with the accuracies obtained using other representations of the data. 
The substantial equivalence of the parameters in these terms was shown. However, no 
attempt was made to take advantage of the complementary information provided by the 
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different parameters nor was their fusion performed in order to improve the classification 
performance. This is the scope of the present research. 
Papers on polarimetric data fusion can be rarely found in the literature. In (Mascle et al., 
1997; Le Hégarat-Mascle et al., 1998), an unsupervised classification is performed on each 
image separately and the results are fused using a strategy based on belief functions (Shafer, 
1976; Smets, 1990). 
In this paper, classification results coming from several sets of polarimetric parameters are 
fused following different strategies (SMART, 2004), two based on the belief function 
framework (Shafer, 1976; Smets, 1990) and one based on fuzzy theory (Dubois et al., 1999). 
After decision combination on pixel level, as a final step of the fusion module, a spatial 
regularization is performed. 
In Section 2, the sets of polarimetric parameters under consideration are described, and the 
classifier used is presented in Section 3. The main aspects of the belief function theory are 
underlined in Section 4. The applied fusion approaches are detailed in Section 5. Section 6 
presents the experimental data and the characteristics of the analyzed scene, while Section 7 
reports on the results of data fusion and on their comparison with the classification results 
of each set of polarimetric parameters. Finally, Section 8 is devoted to conclusions, followed 
by acknowledgements and references.  

2. Investigated polarimetric parameters 
Fully polarimetric radars can transmit and receive both orthogonal components of an 
electromagnetic wave (Touzi et al., 2004). Thus, its vector nature is taken into account 
ensuring that complete scattering information carried by radar echo signals may be used for 
target detection and identification. Within this framework, different representations exist of 
the scattering interactions, such as, e.g., the 2 x 2 scattering matrix [S] or the higher order 
ones, the coherency and covariance matrices. 
In the field of terrain classification, the choice of a given representation has been related to 
considerations on both the statistics of the data and the physics of the scattering 
mechanisms. In particular, the use of incoherent parameters (i.e., those derived from the 
second order matrices) has become predominant with respect to that of the coherent ones 
related to the [S] matrix. For multi-look data represented as covariance or coherency 
matrices, Lee et al. (Lee et al. 1994) defined a distance measure for the membership of a pixel 
to a class based on the complex Wishart distribution and this measure could be incorporated 
in several classification algorithms (Ferro-Famil et al., 2001; Lee et al. 1999). Accordingly, 
only second order representations were considered when operating these classifiers (Ferro-
Famil et al., 2001; Lee et al. 2004); not much attention was paid, until now, to coherent 
parameters. 
Different viewpoints are adopted when choosing a coherent or incoherent representation: in 
the first case, the hypothesis is made that the scattering interaction within a resolution cell 
involves only one or few point scatterers. Their phase can then be measured and analyzed or 
taken into account when deriving new parameters. Moreover, in the case of independent 
scattering mechanisms, these may be singularly recognized (coherent target decomposition 
theorems perform just this separation). Given their definition, the reliability of coherent 
methods is higher when dealing with man-made artifacts, which correspond better to such a 
scenario. Thus, in our specific experimental case, we expect good classification performance 
of coherent representations especially for urban areas or other targets with a “stable” 
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behavior. On the contrary, incoherent methods perform immediately an averaging of the 
returned signals that yields the loss of the direct reference to the phase of the elementary 
targets. However, they provide a statistically sounder description of the behavior of 
”dynamic” natural environments. For these environments, target decomposition theorems 
may be applied and permit to recognize different scatterers. Namely, they separate the 
responses of different mechanisms considered as “average” ones (e.g., within forested areas 
they can distinguish between distributed volumes and surface scatterers). 
Since coherent representations are better suited to targets approximating ideal point scatterers 
(as it happens in urban areas) and incoherent ones to randomly distributed targets (forests or 
fields), it can be expected that their use would provide complementary information that, by 
classification applications, could be better exploited by means of a fusion approach.  
The representations reported in the following subsections have been taken into account in 
order to benefit from the different types of information they provide as well as because they 
are the most often used and known. 

2.1 First and second order matrices 
When a horizontally or vertically polarized wave is incident upon a target, the backscattered 
wave can have contributions in both horizontal and vertical polarizations. Thus, the 
backscattering of the target can be completely described by a scattering matrix: 

 [ ] ⎥
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⎤
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⎣

⎡
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vvvh

hvhh
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In other words, the four complex elements of the scattering matrix describe the 
transformation of the polarization of the incident wave to the polarization of the 
backscattered wave. For monostatic configurations (the ones in which the receive antenna is 
co-located with the transmit antenna), the scattering matrix becomes symmetric, i.e., Shv =Svh. 
The real and imaginary parts of the three complex terms of the scattering matrix provide six 
variables in total that can be reduced to five independent parameters by normalization with 
respect to a given phase term. For our tests, we normalize with respect to the phase of the hh 
term and the results of the classification, performed using this representation, are indicated 
as cl1 in the remaining part of the chapter. 
Real systems involve scatterers situated in dynamic environments and subject to space 
and/or time variations (i.e., non-deterministic scatterers). This causes the electromagnetic 
waves to be partially polarized and thus prevents the scattering process from being 
described by a single matrix [S]. Hence, averaging processes are needed to cope with the 
statistical variation of the polarization. The covariance and coherency matrices, the 
definition of which includes such averaging, take into account these variations and permit 
their description. 
In the monostatic case, the 3 x 3 covariance matrix has the form: 
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with its elements derived from the ones of the scattering matrix. By definition, the 
covariance matrix is Hermitian positive semidefinite, hence, its symmetric elements are 
complex conjugates and only nine independent parameters are necessary in order to 
completely characterize it. For classification, these nine parameters (the three real main 
diagonal elements and the real and imaginary parts of the three non-redundant off-diagonal 
elements) have been given as input to the classifier. In the following, the MLP output results 
based on the covariance matrix elements are denoted as cl2. 
Alternatively, an incoherent representation is provided by the coherency matrix, which is 
defined as: 
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A direct interpretation of the measured values is possible, e.g., in terms of the scattering 
model to be adopted (and this depending, in turn, on the surface roughness). The 
predominance of one [S] matrix term over the other is connected to the type of scattering on 
the illuminated surface (Ulaby et al. 1982; Born & Wolf, 1985; Curlander & McDonough, 
1991). More precisely, |Shh|>|Svv| when the incident beam is scattered according to the 
Fresnel model, valid for almost flat surfaces, whereas the case of |Shh|<|Svv| is verified for 
scattering from rough surfaces described by the Bragg model. 

2.2 Target decomposition theorems 
Target decomposition (TD) theorems permit to identify different scattering mechanisms 
corresponding to sets of theoretical models (Cloude & Pottier, 1996; Corr & Rodrigues, 2002; 
Moriyama et al., 2004). This further means that these methods intrinsically perform a 
classification, since they recognize and weight the contributions of different model targets in 
a scene. 
We have applied here the principal decomposition theorems: the Pauli and the Cameron 
decomposition, as examples of the coherent methods (that operate on the scattering matrix), 
and the Freeman decomposition, as an example of the incoherent ones (based on the 
covariance and coherency matrices). 
The classification results corresponding to the Pauli decomposition are referred to as cl3. By 
means of the set of the Pauli matrices, it is possible to write a generic matrix  
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where a, b, c and d are complex numbers. The first decomposition term represents single 
scattering from a plane surface or a sphere, the second and third term correspond to double-
bounce scattering from diplane reflectors with a relative orientation of 45°, and the fourth 
term - to a scatterer that rotates every incident polarization by 90°. As it causes [S] to be non-
symmetric, the fourth term disappears in reciprocal backscattering cases.  
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The Cameron decomposition (Cameron et al., 1996) (cl4) is a more generalized example of 
the model fitting seen with the previous decomposition. A generic matrix [S] (not only in 
the monostatic case) can be characterized by its tendency of being more or less symmetric 
according to the reciprocity rule and it can be split into two terms representing reciprocal 
and non-reciprocal scattering mechanisms. The reciprocal term represents a target which is 
more or less symmetric with respect to an axis in the plane orthogonal to the radar line-of-
sight and, again, a distinction can be made between the most and the least dominant 
symmetric target components.1 Thus, the decomposition follows the scheme (Cameron et al., 
1996): 
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The degrees of reciprocity and symmetry are evaluated in terms of projection angles of the 
scattering vectors onto the corresponding subspace and subsets via proper projection 
operators. As SAR data are calibrated in order to fulfill reciprocity constraints, the basic 
distinction among scatterers made by this method is based on their geometrical symmetry. 
For this reason, only the decomposition of the [S] matrix into its most dominant and least 
dominant symmetric terms, [ ]max

symS  and  [ ]min
symS , has to be performed. 

The principle behind incoherent decomposition theorems consists in modeling the scattering 
interaction so that the received power may be expressed as sum of contributions due to 
different basic mechanisms. As seen above, similar modeling based on the [S] matrix yields 
normally combinations of terms where typical scatterers, like spheres and diplanes, may be 
recognized. In (Freeman & Durden, 1998), another method is presented, less bound to pure 
mathematical models and more to real scatterers. The Freeman decomposition (cl5) 
describes the scattering as due to three physical mechanisms: first-order (surface) scattering, 
s, a double-bounce scattering mechanism (corner reflector), d, and canopy (or volume) 
scattering from randomly oriented dipoles, v. According to this model, the measured power 
P may be finally expressed as (Freeman & Durden, 1998): 

  vdshvvvhh PPPSSSP ++=++= 222 2 ,  (5) 

with the three decomposition terms being related via a system of linear equations to the 
covariance matrix elements. 

                                                 
1 Note the difference in the use of the word ``symmetry'' when referred to scattering 
matrices and to targets. According to the Cameron decomposition, scattering matrices which 
are symmetric due to the reciprocity constraint may describe targets which are 
geometrically more or less symmetric in the plane orthogonal to the radar line-of-sight (in 
the case of a helix, a symmetric scattering matrix represents a target which is not 
geometrically symmetric). 
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2.3 Entropy/α analysis 
A generic coherency matrix may be diagonalized and decomposed by determining its 
eigenvalues and eigenvectors (Cloude, 1986; Cloude & Pottier, 1996; Cloude & Pottier, 1997). 
Using this decomposition, the different relevance of each scattering mechanism (within a 
given resolution cell) is expressed by means of its eigenvalues. Indeed, while the 
eigenvectors discriminate the presence of different scattering mechanisms, the eigenvalues 
underline their intensity. A quantity that measures the randomness of these scattering 
processes is the polarimetric scattering entropy, H: 
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The three λi are the calculated eigenvalues, conventionally ordered such that 0 ≤ λ3 ≤ λ 2≤ λ1, 
and Pi represents the appearance probability of each contribute. H ranges from 0 to 1: H = 0 
stands for a deterministic scattering process (the coherency matrix has only one non-zero 
eigenvalue), while H = 1 indicates a degenerated eigenvalues spectrum, typical of random 
noise processes (the coherency matrix has three identical eigenvalues). 
To estimate the relative importance of the different scattering mechanisms, the polarimetric 
anisotropy (A) has been introduced: 
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A medium entropy means that more than one single scattering mechanism contributes to 
the backscattered signal, but it is not clear how many additional mechanisms are present 
(one or two). In this case, a high A states that only the second scattering mechanism is 
important, whereas a low A indicates a remarkable contribute also of the third one. 
Finally, a further parameter, the α angle, may be derived from the coherency matrix 
eigenvectors, which is associated to the type of scattering mechanism and can vary in the 
range [0, π/2]. α = 0 stands for isotropic surfaces, α = π/2 for isotropic diplanes or helices. 
Low values of α represent all-anisotropic scattering mechanisms with Shh different from Svv. 
The boundary between anisotropic surfaces and diplanes is represented by the case α = π/4, 
which describes a horizontal dipole. An average α  angle is normally used in polarimetric 
SAR data analysis. Henceforth, the classification results of the H/α /A parameters are 
referred to as cl6.  

3. Classification algorithm  
The neural network classifier chosen in this work is the Multi-Layer Perceptron architecture, 
with one hidden layer, trained by the Back-Propagation learning rule. The MLP is a fully 
connected feed-forward neural network, composed of nodes arranged in layers. It can be 
used to perform every non-linear input-output mapping, such as classification functions 
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(Hertz et al., 1991), or more complex tasks such as the approximation of continuous 
functions (Funahashi, 1989). For this purpose, it is necessary to submit the MLP to a training 
phase that searches the optimum set of weights minimizing a cost measure, usually given by 
the mean square error between estimated and expected outputs. This training phase, 
performed by the well-known BP learning rule (Hertz et al., 1991), requires a set of input-
output examples. In this context, the input examples are obtained by a supervised procedure 
that identifies on the mono- or multi-band image, and for each class of interest, a 
corresponding region of points. Consequently, the output examples are given by the class 
labels j, j=1, 2, …, n (n being the number of classes), represented by n-dimensional Boolean 
vectors. The MLP dimension to be used is related to the current classification problem. In 
particular, the number of MLP input nodes corresponds to the number of polarimetric 
features under investigation, whereas the number of output nodes is set equal to the 
number n of classes identified on the images. The performance of each trained MLP is 
estimated on an independent test data set. 
The same MLP classification procedure is applied to each of the six sets of polarimetric 
parameters described in Section 2, and the classification results are referred to as cl1 - cl6 
(Table 1). The results are good for some sets and exhibit lower performances for other sets, 
in terms of global accuracy (see Section 7). However, the overall accuracy does not 
completely describe the behavior of the classifier. Looking more precisely at the 
performances for each class, it appears that even a globally good set of parameters can lead 
to classification results for a particular class which are worse than the ones obtained using 
another set of parameters. The main reason is that classes may be well separated in some 
polarimetric representations and not in other ones, and there is no single set of parameters 
that separates correctly all classes. These observations advocate for a fusion of all 
classification results obtained on the different sets of polarimetric parameters. An important 
contribution of this paper is to show how this fusion can be performed using the belief 
function theory. 
 

Classification Corresponding set of parameters 
cl1 scattering matrix 
cl2 covariance matrix 
cl3 Pauli decomposition 
cl4 Cameron decomposition 
cl5 Freeman decomposition 
cl6 H/α /A parameters 

Table 1. Set of parameters used to obtain each classification 

4. On belief functions 
Belief function theory or Dempster-Shafer (DS) evidence theory has been already widely 
used in satellite image processing (Mascle et al., 1997; Le Hégarat-Mascle et al., 1998; 
Cleynenbreugel et al., 1991; Tupin et al. 1999; Milisavljević & Bloch, 2003). DS theory allows 
representing both imprecision and uncertainty, using plausibility and belief functions 
derived from a mass function. The mass of a proposition A is a part of the initial unitary 
amount of belief that supports that the solution is exactly in A. It is defined as a function m 
from 2Θ into [0, 1]. Θ is the decision space (frame of discernment) and it is a set of N possible 
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solutions, e.g., classes Ci, i = 1, 2, ..., N (Θ = {C1, C2,…, CN}), while the power set, denoted 2Θ, 
consists of 2N subsets of Θ: 

 { }{ }Θ∪∅=Θ ,...,,,...,,,2 2121 CCCCC N ,  (9) 

meaning that it contains not only single hypotheses (singletons) of Θ, but also all possible 
unions of the singletons, called compound hypotheses or disjunctions. Thus, in this 
formalism, any combination of possible decisions from the decision space can be quantified 
rather than considering only the singletons of Θ (Shafer, 1976; Smets, 1990). This is one of 
the main advantages of the DS approach, as it leads to a very flexible and rich modeling, 
able to fit a large class of situations, occurring in image fusion in particular. Another 
advantage of this method over the probabilistic ones is in allowing an easy way of 
representing the state of a total ignorance by means of the so-called vacuous basic belief 
assignment: m(Θ) = 1, m(A) = 0, for all A ≠ Θ. The basic difficulty that some other theory, 
such as probabilistic, faces in these cases is the inability of distinguishing between lack of 
belief and disbelief (Shafer, 1976).  
In image processing, mass functions may be derived at three different levels: the most 
abstract level, an intermediate level, and the pixel level. At the pixel level, which is the most 
interesting here, mass assignment is inspired from statistical pattern recognition. The most 
widely used approach is as follows: masses on simple hypotheses are computed from 
probabilities or from the distance to a class center (Appriou, 1993;  Denœux, 1995; Appriou, 
1998). Then a global ignorance m(Θ) is introduced as a discounting factor, often as a constant 
on all pixels (Lee & Leahy, 1990). In most cases, no other compound hypothesis is 
considered, and this drastically under-exploits the power of DS. The mass assignment in 
(Bloch, 1996) is based on a reasoning approach where knowledge about the information 
provided by each image is used to choose the focal elements (i.e., subsets with non-zero 
mass values). A similar reasoning is used in (Milisavljević & Bloch, 2001). However, in the 
case of large numbers of classes, this process would become too tedious, and unsupervised 
methods are needed, such as (Mascle et al., 1997) for SAR imaging or (Ménard et al., 1996) 
for fusion of several classifiers. 
If we have evidence issued from M sources, modeled in terms of previously defined mass 
functions, these masses are combined applying Dempster’s rule of combination (Shafer, 
1976; Smets, 1993). This rule has two main forms, normalized (Shafer, 1976) (by imposing 
m(∅) = 0), and unnormalized (Smets, 1993), corresponding to the closed-world and the 
open-world assumptions, respectively. For mj being the mass function associated with 
source j (j = 1, 2, ..., M), the unnormalized Dempster’s rule of combination is: 
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hence preserving the mass assignment to the empty or zero set, that indicates the strength of 
the possibility that “something else” happens (either the full set is not an exhaustive set of 
hypotheses or there is some contradiction between the sources, e.g., some of them are not 
reliable). 
Dempster’s rule of combination is commutative and associative. Also, it behaves in a 
conjunctive way, meaning that when more sources are combined, mass is more focalized 
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(thus imprecision decreases) while conflict behaves in a disjunctive way (increases) (Bloch, 
1996).  
Sources under combination have to fulfill the condition of being independent in the 
cognitive sense (Shafer, 1976; Smets, 1993). This is related to the notion of distinctness, 
meaning “no double counting” of pieces of evidence (Dempster, 1967). In case of non 
distinct pieces of evidences, other combination rules should be employed, such as the 
cautious rule proposed in (Denœux, 2008). In our experiments, we assume independence 
and distinctness. 
From a mass function, one can derive a belief function, being the degree of minimum or 
necessary specific (Smets, 1993) support for A: 
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and a plausibility function, as the degree of maximum specific support for A: 
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After combination, the final decision is usually taken in favor of a simple hypothesis using 
one of several rules (Denœux, 1995; Denœux, 1997): e.g., the maximum of plausibility 
(generally over simple hypotheses), the maximum of belief, the pignistic decision rule 
(Smets & Kennes, 1994), etc. For some applications, such as humanitarian demining, it may 
also be necessary to give more importance to some classes (e.g., mines, since they must not 
be missed) at the decision level. Then maximum of plausibility can be used for the classes 
that should not be missed, and maximum of belief for the others (Milisavljević et al., 2003; 
Milisavljević & Bloch, 2005). 
Not many papers can be found dealing with fusion of polarimetric data. In (Mascle et al., 
1997), the main idea is to perform unsupervised classification on each image of a 
polarimetric data set separately. The intersections of the obtained classes define the set of 
discernment and the initial classes can be expressed as disjunctions of some of these 
intersections. This allows determining automatically both the singletons and the interesting 
disjunctions. This paper also shows the interest of using a fusion approach and of combining 
data from several polarimetric images. In (Le Hégarat-Mascle et al., 1998), the idea is to 
introduce neighborhood information as a mass function, so as to take a spatial regularity 
constraint into account and to consider it as a source of information.  

5. Fusion 
5.1 Fusion strategies 
Fusion strategy no. 1 - including a global discounting factor (F1):  
Some of the classification results in this work differentiate well two classes and some others 
do not. In addition, the overall reliability of each of the classification results is different. This 
fact should be taken into account in the fusion process so that the more reliable classification 
results influence the fusion result more than the less reliable ones. These are cases in which 
DS theory may be successful so it is our first choice of fusion approaches.  
A first, simple method would consist in considering each of the classification results cl1 - cl6 
as one information source. The focal elements would be simply the classes, using the 
outputs directly as mass functions. As no confidence values are provided but only decision 
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images, the mass would assume only values 0 or 1. This approach would inevitably result in 
a high conflict after the combination. Moreover, only the classes detected by all classifiers 
would be obtained as resulting focal elements, so no good result could be expected. This 
shows the interest of really using belief function theory or any other theory that takes into 
account the specificities of the classifiers, disjunctions of classes and ignorance (mass 
assigned to the full set, Θ).   
In our first fusion strategy, we still consider each classifier output as one information source, 
but the focal elements are the singletons and Θ. The definition of m(Θ) takes into account 
both the fact that some classes are not detected (thus it should be equal to 1 at points where 
0 is obtained for all detected classes) as well as global errors. We propose to use a 
discounting factor γ (Xu et al., 1992) equal to the overall accuracy of a classification result, 
i.e., the sum of the diagonal elements of the confusion matrix, divided by the cardinality of 
the training areas. This discounting is applied to all masses defined as in the previous, 
straightforward approach. Then, if the output value of classification result clk (k = 1,2,...6) is Ci 
at a given pixel, the masses for that pixel and that classification output are assigned as follows: 

 kik Cm γ=)( ,  (13) 

 kkm γ−=Θ 1)( .  (14) 

Note that this strategy explicitly uses the confidence matrix, which should be computed on 
the training areas for each classification output. Hence, at each step of the fusion, the focal 
elements are always singletons and Θ. After assigning masses by all classification outputs in 
the above way, the DS fusion is performed. Decision rule can be maximum of belief, of mass 
or of pignistic probability (all being equivalent in this case). This approach is very easy to 
implement and models in a simple way the fact that classification outputs may not give any 
information on some classes and may be imperfect. Results are explained by the conjunctive 
behavior of the Dempster’s rule of combination.  
Fusion strategy no. 2 - including class-dependent discounting factors (F2):  
As a second alternative, we propose to use the confusion matrices for defining more specific 
discounting for each class. This approach is close to the one proposed in (Mercier et al., 2005; 
Mercier et al., 2008). Each output of the classifier is still one information source, and the focal 
elements are the singletons and Θ. From the confusion matrix computed from classifier 
output clk (k = 1,2,...6) and from the training areas, we use the diagonal coefficients confk(i,i) 
for discounting. Thus, if the output value of clk is Ci at a given pixel, the masses for that pixel 
and that classifier output are assigned as follows: 

 ),()( iiconfCm kik = ,  (15) 

 ),(1)( iiconfm kk −=Θ .  (16) 

In comparison with the previous method, the richness of the information provided by a 
classifier output is better exploited as the class-dependent classification accuracy is used 
instead of a global accuracy of the classifier. 
Fusion strategy no. 3 - fuzzy fusion (F3):  
In order to compare the previous methods with a fuzzy approach, we have tested a simple 
method, where for each class we choose the best classification results, and combine them 
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with a maximum operator (possibly with some weights). Then a decision is made according 
to a maximum rule. The choice is made based on the confusion matrix for each classification 
result, by comparing the diagonal elements in all matrices for each class. This approach is 
interesting because it is very fast. It uses only a part of the information, which could also be 
a drawback if this part is not chosen appropriately. Some weights have to be tuned, which 
may need some user interaction in some cases. Although it may sound somewhat ad hoc, it is 
interesting to show what can be obtained using the best parts of all classifier outputs. 
In a next step, in order to take more benefit from the information and to avoid the ad hoc 
tuning of the weights, we use for each class all the classifier outputs. If the value of 
classification result clk at a given pixel is Ci, it participates in the combination for that class 
discounted by the corresponding diagonal element of the confusion matrix, confk(i,i). Such 
discounted classifier outputs are combined using a maximum operator. The decision is 
made again applying a maximum rule. Thus, in this approach, all classification results that 
have the same class as output participate in the combination performed for that class, 
discounted by their accuracy for that class.  
Finally, we develop a third fuzzy fusion strategy, where for each class we use again all the 
classifier outputs. As in the previous strategy, if clk output at a given pixel is Ci, this classifier 
participates in the combination for that class discounted by the corresponding diagonal 
element of the confusion matrix, confk(i,i). In addition, even if the output of classification 
result clk at a given pixel is Cj, j ≠ i, it participates in the combination for class Ci if the 
confusion between the two classes, expressed by confk(i,j) in the confusion matrix, is high 
enough (above a threshold). In that case, this element of the confusion matrix is used for 
discounting the classifier output prior to combination per class using a maximum operator. 
The decision is again made using a maximum rule. Since the results obtained in this way 
make the largest use of the information and are the best of the three strategies proposed in 
this subsection, this fuzzy strategy is used here. Note that this approach takes into account 
the fact that if the decision is Cj, the true class is possibly Ci, to some degree. 
The actual list of classification results used for each class in our application is detailed in 
Subsection 7.3. 

5.2 Spatial regularization 
Spatial regularization is the final step in our fusion approach, applied to the output of each 
of the proposed strategies. Namely, it is very unlikely that isolated pixels of one class can 
appear in another class. Hence, several local filters have been tested, such as a majority filter, 
a median filter, or morphological filters, applied on the decision image. A Markovian 
regularization approach on local neighborhoods was tested too. All these filters give similar 
and good results, and improve results of the previous fusion steps (see Section 6). A recently 
proposed approach (Bloch, 2008) could be used as well, by integrating spatial information 
directly in the definition of mass functions. 

6. Data and experimental approach 
For the tests presented here, we have used single-look complex data of the area of 
Oberpfaffenhofen, Germany, acquired by the E-SAR airborne sensor of the German 
Aerospace Centre (DLR) during a measurement campaign in October 1999 (see Table 2). The 
data consist of L-band scattering matrices measured in the hv-basis. The size of the data set 
is 1000 x 4050 pixels (in range and azimuth, respectively).  
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Noise removal and speckle reduction are obtained by means of simple boxcar filtering with 
fixed window dimensions. The averaging window adopted for all sets of parameters is 5  x 
11 pixels (in range and azimuth, respectively). In this way, data processing could be 
performed following a consistent approach, i.e., choosing the same averaging window size 
to define the covariance and coherency matrices or to filter data derived from coherent 
methods.  
The imaged area is situated approximately 25 km South-West of the city of Munich and 
includes several interesting features: the DLR centre, the former Fairchild Dornier airplane 
factory and the airfield shared by the two firms (see Figure 1). Not far from them, a small 
lake and the village of Gilching are located. Other important man-made structures are the 
motorway and the railway line stretching across the image. The vegetation patches consist 
of coniferous and mixed forests, meadows and crops.  
A common classification procedure has been adopted for all the polarimetric parameters 
(Alberga et al., 2006). At first, a set of seven ground cover classes has been defined: “water”, 
“houses”, “roads”, “trees”, “grass”, “field 1” and “field 2”. For each of them, separated areas 
of training and test samples have been identified having a comparable number of pixels (at 
this scope, aerial photographs and a cartographic map have been used as complementary 
sources of information). Then, the training pixels from each class have been fed into the 
classifiers to perform the training stage. As a following step, all the data have been classified 
using the MLP. Finally, the test samples have been used to measure the classification 
performance. The fusion of the results has been performed at this stage, according to the 
three strategies described in Section 5 and providing a re-assignment of the pixels. 
 

 
Fig. 1. Backscattered intensity image and regions of interest: [1] “water”, [2] “houses, [3] 
“roads”, [4] “trees”, [5] “grass”, [6] “field 1”, [7] “field 2”.  

The class “roads” has been defined using only the runway of the airport, so it refers to a 
relatively wide asphalt surface. Regarding the class indicated as “houses”, it is related to 
areas with family houses surrounded by gardens (often including trees). In other words, it 
represents an impure class, characterized by the presence of different scattering 
components: flat surfaces, dihedrals, volumes (surrounding vegetation), and rough surfaces 
(ground). 
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Flight date 6/10/1999 
RF-band L 

Centre frequency 1.3 GHz 
Wavelength 23 cm 
Bandwidth 100 MHz 

Range resolution 1.5 m 
Azimuth resolution 0.89 m 

Table 2. Main data and E-SAR system parameters 

7. Results 
In the following, different measures are used to assess the classification accuracy, based on 
the confusion matrices obtained on the test areas (note that the columns and the rows in the 
confusion matrices correspond to the ground-truth map and to the classification output 
map, respectively): 
• κ coefficient, as a measure of the quality of the classified map compared to a randomly 

generated map: 
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where N is the total number of pixels in the confusion matrix, r is the dimension of the 
confusion matrix, conf(i,i) is the number of pixels on the main diagonal, i.e., in row and 
column i of the confusion matrix, conf(i,+) is the total number of pixels in row i, and 
conf(+,i) is the total number of pixels in column i of the confusion matrix; 

• overall accuracy γ, i.e., the percentage of correctly classified pixels: 
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• user’s accuracy (UA), being the probability that a given pixel will appear on the ground 
as it is classified, so for class j, it can be defined as: 
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• producer’s accuracy (PA), i.e., the percentage of a given class that is identified correctly 
on the map, being for class j calculated as: 
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Figures 2-4 contain images of classification results cl1 - cl6, which are inputs for the fusion 
module. The accuracy estimates obtained for each of the classification results are given in 
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Table 5. The use of the covariance matrix leads to the best overall accuracy. This confirms 
the capability of incoherent observables to describe complex scenarios better than coherent 
ones. Indeed, the Freeman decomposition has the second best overall performance. The 
limits of the H/α /A parameters are bound to their definition: neither of the three 
parameters expresses an intensity or a power measurement but they directly provide a 
semantic interpretation of the type and statistical behavior of the imaged targets. At the class 
level, again, the Freeman decomposition provides some of the best PA and UA values but 
then also some coherent representations yield specific class maxima, indicating the 
capability of the given model to describe the typical target of that class. 
 

 
 

Fig. 2. MLP classification results: left - [S] matrix (cl1), right - covariance matrix (cl2). 
 

 
 

Fig. 3. MLP classification results: left - Pauli decomposition (cl3), right - Cameron 
decomposition (cl4) 
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Fig. 4. MLP classification results: left - Freeman decomposition (cl5), right - H/α /A (cl6). 

Besides the fusion results, the fusion module provides confidence and stability images too. 
At each pixel, the confidence image contains the confidence degree of the decided class, 
while the stability image represents the difference between the confidence in the decided 
class and the confidence in the second most possible class. Examples of these two images are 
shown in Figure 8. 

7.1 Results with F1 
Here, we provide the results obtained using the method F1 (Subsection 5.1). The values of 
the discounting factors γ, corresponding to the six classification results cl1 - cl6 are given in 
Table 3. For each classification result, this factor is calculated as the normalized sum of the 
diagonal elements of the confusion matrix obtained on the training areas (i.e., the overall 
accuracy).  
 

Classification result cl1 cl2 cl3 cl4 cl5 cl6 
γ 0.66 0.84 0.66 0.71 0.77 0.55 

Table 3. Discounting factors for F1 

Figure 5 shows the result of fusion using the F1 approach and spatial regularization. Table 5 
indicates that F1 outperforms the best classification results in most of the cases. The only 
exceptions are UA for “roads” and PA for “grass”. The overall accuracy improvement with 
respect to the single representations ranges from 13% to 37% but the main advantage of the 
fusion approach lies in the fact that, at class level, all features are recognized with good PA 
and UA. For example, the low PA of “water” using the [S] matrix elements or of “field 1” 
using the H/α /A parameters have been largely compensated by means of the information 
provided by the other representations. 

7.2 Results with F2 
The discounting factors for the method F2, described in Subsection 5.1, are given in Table 4.  
They correspond to the diagonal elements of the confusion matrices obtained on the training 
areas, for each of the six classification results. 
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Fig. 5. Results of F1 before (left) and after (right) spatial regularization 
 

Classification result → 
Class ↓ 

cl1 cl2 cl3 cl4 cl5 cl6 

water 0.23 0.70 0.50 0.48 0.59 0.55 
houses 0.70 0.89 0.68 0.83 0.86 0.57 
roads 0.84 0.80 0.84 0.74 0.74 0.42 
trees 0.89 0.98 0.89 0.88 0.92 0.87 
grass 0.70 0.80 0.59 0.71 0.66 0.63 
field 1 0.84 0.89 0.78 0.82 0.80 0.17 
field 2 0.41 0.81 0.31 0.54 0.82 0.67 

Table 4. Discounting factors for F2 

According to Table 5, F2 provides better results than the best individual classification in 
most of the cases. However, there are only half of the classes for which this fusion method 
outperforms the previous one. Hence, regardless the specificity of the class discounting 
(varying depending on the class), no clear advantage is obtained by this type of fusion. An 
overall discounting factor for a given classification result (as for F1) seems to be sufficient. 
Figure 6 shows the result of the F2 fusion.   

7.3 Results with F3 
As explained in Subsection 5.1, with this approach we take into account the fact that for 
some classifier outputs, there exist pairs of  classes  whose  confusion  is  quite  strong. Thus, 
even if clk does not give class Ci as its output but class Cj, we include that classification result 
in the combination for class Ci if the corresponding coefficient of the confusion matrix 
obtained on the training data, confk(i,j) has a value higher than some threshold.  
The following classifier outputs have been used, all discounted by the corresponding 
coefficients in the confusion matrices: 
• for “water”: all six classification results in case of “water”, plus “grass” and “roads” for 

cl3, “field 1” and “roads” for cl6 and “roads” for cl2, cl4 and cl5; 
• for “houses”: all six classification results in case of “houses”, plus “trees” for cl3 and cl4; 
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Fig. 6. Results of F2 before (left) and after (right) spatial regularization 

 
Fig. 7. Results of F3 before (left) and after (right) spatial regularization 

• for “roads”: all six classification results in case of “roads”, plus “field 1” and “water” for 
cl1 and cl6, and “water” for cl3, cl4 and cl5; 

• for “trees”: all six classification results in case of “trees” and “houses”; 
• for “grass”: all six classification results in case of “grass”, plus “water” for cl1 - cl5, 

“field 1” for cl6, and “field 2” for cl1, cl2 and cl4; 
• for “field 1”: all six classification results in case of “field 1”, plus “roads” and “grass” 

for cl6, “grass” for cl3 and “field 2” for cl1; 
• for “field 2”: all six classification outputs in case of “field 2” and “grass”, plus “roads” 

and “field1” for cl6. 
Table 5 shows that F3 provides results similar to F1. Note that the typical sources of 
confusion (i.e., the classes characterized by reciprocal PA and UA) are also those whose 
intensity is roughly comparable (e.g., “water” and “grass” or “houses” and “trees”). Thus, it 
seems that the radiometric information finally plays the most relevant role in the definition, 
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and hence classification, of a feature. Fig. 7 presents the result of F3 fusion. Confidence and 
stability images for this type of fusion are shown in Fig. 8. 
 

                 
Fig. 8. Confidence (left) and stability (right) image for F3 

  cl1 cl2 cl3 cl4 cl5 cl6 F1 F2 F3 
γ  0.68 0.73 0.64 0.65 0.71 0.49 0.86 0.84 0.86 
κ  0.62 0.68 0.58 0.59 0.66 0.41 0.84 0.81 0.84 

water 0.25 0.60 0.43 0.40 0.61 0.51 0.75 0.53 0.74 
houses 0.72 0.90 0.71 0.82 0.92 0.66 0.94 0.93 0.95 
roads 0.72 0.70 0.72 0.59 0.71 0.32 0.85 0.90 0.85 
trees 0.88 0.92 0.83 0.85 0.92 0.87 0.99 0.99 0.99 
grass 0.80 0.60 0.57 0.68 0.52 0.54 0.68 0.69 0.66 
field 1 0.84 0.62 0.79 0.69 0.54 0.05 0.89 0.92 0.91 

 
 
 

P
A 

field 2 0.42 0.70 0.25 0.43 0.70 0.60 0.83 0.80 0.83 
water 0.73 0.84 0.62 0.59 0.79 0.62 0.96 0.99 0.95 

houses 0.86 0.81 0.80 0.83 0.81 0.70 0.96 0.97 0.96 
roads 0.52 0.92 0.67 0.56 0.85 0.35 0.89 0.75 0.89 
trees 0.70 0.85 0.69 0.75 0.89 0.69 0.93 0.90 0.94 
grass 0.54 0.49 0.39 0.49 0.54 0.50 0.69 0.66 0.68 
field 1 0.84 0.78 0.76 0.84 0.77 0.17 0.90 0.86 0.89 

 
 
 

U
A 

field 2 0.45 0.44 0.37 0.34 0.37 0.25 0.62 0.66 0.63 

Table 5. Results on the test data  

8. Conclusion 
In this chapter, three strategies for fusion of land cover classification results of polarimetric 
SAR data are proposed, two of them based on belief function theory and one based on fuzzy 
sets theory. As a final step of each of the fusion strategies, spatial regularization is 
performed. The proposed fusion strategies are applied to the outputs of a neural network 
classifier, corresponding to six different sets of polarimetric parameters as input. The values 
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of the different polarimetric parameters are extracted from single-look complex data of the 
area of Oberpfaffenhofen, Germany, acquired by the E-SAR airborne sensor of the German 
Aerospace Centre.  
The proposed fusion strategies do not need statistical independence of their input 
information. Each of the strategies uses the confusion matrices obtained on the training data 
set as means for estimating the accuracy of each of the classification results and for weighing 
them prior to their fusion.  
The test data set, different from the training data set, is used to compare the classification 
accuracy of the fusion results with the single representation classification results. The results 
obtained by each of the three fusion strategies show a significant improvement of the 
classification accuracy of the separate classification results.  
The general improvement of the classification accuracy indicates the complementary nature 
of the information provided by the analyzed polarimetric representations. Although their 
classification performance is comparable, different characteristics of the scene are enhanced 
by each set of observables, so their fusion effectively takes advantage of their whole 
information content. 
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1. Introduction 
1.1 A definition of information and image fusion 
The principle of information fusion is widely used in image-based processes where the data 
are acquired from several sources, e.g. in the fields of remote sensing (Lennon et al., 2000), 
satellite (Wald, 2002) or biomedical imaging (Barra & Boire, 2001a). L. Wald defined the 
fusion operation as “a formal framework in which are expressed the means and tools for the 
alliance of data originating from different sources”. According to the same author, the aim 
of a fusion process is to improve the quality of the available information, where the notion 
of quality depends on the application context. I. Bloch et al. give a more specific definition of 
fusion: “data fusion consists in combining several pieces of information issued from 
different sources about the same phenomenon, in order to take a better decision on this 
phenomenon” (Bloch & Maître, 1997). In accordance with this statement, the fusion of image 
data is viewed as the joined use of heterogeneous images for decision aid. 
The first and most obvious difference between these definitions (and the numerous others 
proposed in the literature) lies in the aim of the fusion process. That is, the goal to reach is 
here either to improve the information provided by the different sources, each of them 
considered as being imperfect (Dubois & Prade, 1994), or to take a decision about the 
observed scene. The first objective may be viewed as a qualitative improvement (reducing 
information imperfections), while in the second case the aim is to reduce the doubt about 
the validity of the decision by increasing the amount of available information. This last case 
may thus also be viewed as a quantitative improvement of the information. 
Whatever the definition for the fusion process, data stemming from one source are generally 
used to compensate for a lack of information or as a medium for complementary features 
about the physical object or phenomenon studied. In this chapter, image fusion will refer to 
a computer-based process aiming at extracting knowledge from an image set, which was 
obviously not visible in the original images. This new information may consist in either 
image data (visual result) (Aguilar & New, 2002; Montagner et al., 2005a), numerical indexes 
(Wang et al., 1998; Montagner et al., 2005b), or even subsets of image regions (image 
segmentation in e.g. binary sets) (Bloch et al., 2003). 
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1.2 Relevance of information fusion in computer-based diagnosis-aid processes 
In the general field of medical imaging, with a special interest here for the study of the 
human brain, the collection of various data coming from anatomical and functional imagery 
is becoming very common for the study of a given pathology. The treatment of these data is 
performed by a physicist, who analyses and aggregates them according to his knowledge. 
The aim is to provide a better medical decision, to propose a prognosis, or to assist 
physicians in a surgical intervention. This approach may clearly be modeled and automated 
by means of an information fusion process, with the interest of providing accurate 
numerical information to the physicist. 
The sensitive nature of the brain makes imaging to be a major investigation tool (rather than 
a surgical approach), and one can find many medical examples and interests for such an 
automatic process. Morphological aspects of the human brain are mainly studied using 
magnetic resonance imaging (MRI). An MR image is a 3D data volume that gives 
information on structural composition of the organ (distribution of tissues, fine spatial 
resolution). It can be obtained using a wide range of parameters, so that the resulting images 
provide sufficient contrasts between the different structures to be located (tissue interfaces, 
tumors, etc.). The brain may also be studied from a functional point of view, using two 
major functional modalities: PET and SPECT (positron/single photon emission 
tomography). The images are obtained by injecting or inhaling a radioactive tracer that 
preferentially characterized a physiologic (e.g. glucose metabolism) or a biologic (e.g. blood 
flow) process, and then measuring the resulting particle emission. Both PET and SPECT 
provide 3D datasets reconstructed from these planar projections (Hudson & Larkin, 1994). 
Such images have a poor spatial resolution and are not informative on what they are not 
supposed to represent. Figure 1 shows examples of anatomical and functional images of a 
same brain. 
 

           
                    (a)                                      (b)                                 (c) 

Fig. 1. Three views of a same brain: anatomical (a. MR image) and functional (b. and c. 
SPECT images respectively showing the blood perfusion and dopamine receptors density) 
The main interest of a fusion between information stemming from both MR and such 
functional images is to supply anatomical information for the accurate detection of 
pathologic areas characterized in functional imaging by physiological abnormalities (Barra 
& Boire, 2000b, Barra & Boire, 2001a ). Clinical implications are various and numerous, from 
the detection of functional abnormalities in the study of dementia (Julin & al., 1997) to the 
precise location of activity sites in neurotransmission SPECT imaging, or the accurate 
quantification of monoamine transmitters density. Several examples of the fusion scheme 
we propose will be detailed at the end of this chapter. From a more clinical standpoint, these 
applications of multisource medical brain imaging can be explained as follows: 
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• brain tissue segmentation can be carried out as an accurate mean of quantifying the 
volume of brain matters in diseases such as Alzheimer’s dementia, epilepsy, or 
hydrocephalus, for purpose of diagnosis, treatment, and general understanding; 

• accurate segmentation of subcortical brain structures is a fundamental issue in several 
applications like the assessment of structural brain abnormalities, the study of abnormal 
entities (e.g. carcinoma), the mapping of functional activation onto human anatomy, the 
study of brain disorders (e.g. schizophrenia) or computer-assisted neurosurgery; 

• effects of Parkinson’s disease and Parkinsonian syndromes on striatal structures are 
commonly characterized by mean of functional imaging (Catafau, 2001). However, an 
early detection of these effects remains inaccessible to the single visual examination of 
SPECT (or even PET) images. A quantification process can provide objective numerical 
indexes in relation with the pathology severity, but it highly depends on the difficult 
location of regions of interest (ROIs). A fusion with  a morphological image of the same 
brain may represent a suitable solution to this critical segmentation problem; 

• new diagnosis elements may also be obtained by the synthesis of an image holding both 
functional and anatomical information. An advanced fusion strategy (not limited to a 
color channel combination) allows the physicist to select image features to be displayed, 
to avoid spatial covering or frequency mixing that would hinder a good perception of 
the diagnostic information (e.g. hypoperfused gray matter for patients suffering from 
probable Alzheimer’s disease (Colin & Boire, 1999)). 

1.3 Managing characteristics and structure of heterogeneous image information 
When considering the fusion process, input images intensities are often not directly 
compatible, owing to their numerical nature (numerical type, value range, etc.) and, above 
all, their physical meaning. Aggregating the information held by two corresponding pixels 
thus implies to model this information in a common formalism. Handling heterogeneous 
data also occurs when considering information stemming from different sensors, but of 
different types (e.g. signal and image sensor, expert knowledge and image sensor). Here 
again, a common theoretical formalism is needed to embed these data, and the choice of this 
framework is guided by the nature of available information. 
As stated above, medical information acquired from automated sensors, and especially 
medical images, holds an imperfect information in a sense commonly admitted in the field 
of information fusion: data are often subject to many uncertainties (e.g. which tissue 
class(es) associated with a given image intensity range?), possibly due to both inaccuracies 
(e.g. quantization of image intensities, single value standing for large spatial regions) 
and/or some inherent ambiguities (e.g. several possible reasons/classes). 
SPECT images are a relevant example of these uncertainties. In addition to the mandatory 
corrections of scattering and other quality-loss phenomena during the tomographic 
reconstruction (i.e. attenuation, depth-dependent resolution, etc.) (Soret et al., 2003), 
computer-based diagnosis processes have to face the problem of low spatial resolution 
intrinsically linked with SPECT images (PET images having a higher resolution, but being 
more expensive). Consequently, the 3D reconstruction process builds quite large-size voxels, 
and generates partial volume effects (PVE). Even after PVE correction (Boussion et al., 2006), 
the image information is therefore the object of some imprecision that makes it impossible to 
accurately define the boundaries of anatomical structures of interest. Furthermore, the 
functional information held by tomoscintigraphic images is intrinsically not well fitted to 
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such a task, because of its possible double meaning: if a low image intensity theoretically 
follows a low fixation rate of the tracer, it nevertheless remains difficult to determine from 
the image alone whether this level is associated with an out-of-structure site, or to an 
abnormal functional activity within structure boundaries (Fig. 2). 
The three most common approached used to represent and manage heterogeneous 
information in that context are the well known probability theory, the belief functions 
theory (Shafer, 1976), and the possibilistic logic based on the fuzzy sets formalism (Zadeh, 
1978 ; Dubois & Prade, 2004). 
 

                                
                                                           (a)                                      (b) 

Fig. 2. Co-registered MR (a. showing striatal structures) and neurotransmission SPECT 
images (b); Outlines of caudate nuclei are roughly defined on (b), whereas boundaries of 
putamens disappear with the lose of dopamine receptors 

Digital images stemming from acquisition processes cited in 1.2 are composed of discrete 
sets of numerical values (2D/3D arrays of image intensities), standing for given features of 
the physical phenomenon measured. A pixel (or voxel in 3D) from one of these images is 
viewed here as the region of the real space in which the associated value has been 
quantified. Both the numerical aspects and the spatial distribution of image intensities have 
therefore to be managed in the fusion process, each of these features being of equal 
relevance in the definition of image information. If the questions of information modeling 
and aggregation of numerical information using fuzzy sets or other uncertainty models have 
been widely studied, the problem of spatial matching of data sets to fuse is often considered 
of secondary importance. 
In the case where all images have the same size and spatial resolution, a fusion process can 
sometimes be directly performed by aggregating information stemming from image 
numerical values (Bloch, 1996) associated with a unique pixel (with the same index in image 
arrays). This is only possible if acquisitions have been made from in the same geometrical 
referential, and if the object of interest is represented with the same size in each image. Since 
this configuration rarely occurs (because of practical acquisition constraints such as sensor 
size or spatial and temporal resolutions), most numerical values in a given image don’t have 
direct spatial correspondence with intensities from other data sets (Fig. 3). 
In order to manage both geometrical relations (only affine relations are addressed here 
because of the nature of organs we are interested in) and the difference in spatial resolution 
between images, most methods process the image information in a multiscale context. Such 
processes are either based on frequency analysis of data, e.g. managing all image 
information on a common wavelet base (Pajares & De La Cruz, 2004), or on a “resolution 
hierarchy” obtained by iterative degradation of original images (Matsopoulos et al., 1994). 



Multilevel Information Fusion: A Mixed Fuzzy Logic/Geometrical Approach  
with Applications in Brain Image Processing 

 

303 

The problem is often reduced to the trivial fusion case presented above by a simple 
registration of image data in a common geometrical base, including an interpolation of 
numerical data. But the choice of an interpolation method relies on strong assumptions (e.g. 
linear variation of the measured phenomenon in the real space) that on the one hand 
simplify the fusion, but also introduce some unwanted imprecision in the data that may 
hinder an accurate quantification of brain activity in MRI/SPECT fusion. In this case, 
authors only commonly align the MR image on the SPECT image in order to preserve data 
to quantify (Soret et al., 2003 ; Rousset et al., 1998). But this method dramatically decreases 
the anatomical precision. 

 
Fig. 3. a. A slice from MR (left) and SPECT (right – original and registered) images of the 
same brain; b. Consequences of co-registration on voxels from original images through the 
example of an anatomical structure (putamens) 

1.4 A fusion framework for medical images 
This chapter describes an information fusion scheme devoted to 2D/3D medical images. 
Both the different stages of this process and the global architecture were designed to answer 
practical problems and give assistance for diagnosis using medical image processing and 
information fusion. This work is typically related to the fusion of different kind of medical 
images (in which numerical intensities express different physical phenomena), with 
different spatial orientation and resolution. In the following, the method is presented 
through examples of brain images processing and illustrated in the case of two input 
images, although it can be applied to both a more general fusion problem and to other 
organs. Details of the method are given under the assumption that input images are 3D 
datasets (collections of voxels), but the extension to the 2D images case is trivial. Most of the 
illustrations are given in 2D for visual convenience. 
The  fusion process we propose here is guided by the intrinsic nature of images, viewed as 
digital information embedded with a given geometrical structure. This multilevel fusion 
scheme is designed to manage the possibly different spatial distributions of image data 
apart from other heterogeneity sources, in order to preserve the accuracy of initial data 
through the whole process. The fuzzy formalism is used as a theoretical framework to 

(a) 

(b) 
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represent image data, and possibly other kind of information (e.g. expert knowledge). The 
management of image geometrical features is based on principles and algorithms stemming 
from the field of discrete geometry to preserve the accuracy of original data to fuse 
(avoiding early interpolation). 
The first part of this chapter is centered on the presentation of methodological aspects of this 
work. Section 2 introduces the general structure of the generic fusion scheme. Sections 3 and 
4 respectively focus on the theoretical background for the fuzzy modeling/fusion of image 
numerical data, and geometric principles and algorithms used for the management of the 
spatial structure of input images. 
Depending on both the nature of the information to fuse and the objective of the fusion, the 
tools defined by this fusion scheme may be used in several scenarios. For example, fusing 
two images with different spatial resolution will highly take benefit from the management 
of image geometrical features, while the fusion of an image with symbolic information (i.e. 
with no particular spatial structure) will only require a single-level fusion based on fuzzy 
modeling. Moreover, this fusion scheme is versatile enough to allow multistage fusion too: 
during the modeling stage, the information representation may also consists in a first 
complete fusion process. 
The second part of this chapter presents three practical examples of brain image fusion 
relying on the proposed scheme in the case of three different scenarios. Section 5.1 illustrates 
an example of a 1 level/1 stage fusion scenario aiming at the refinement of brain tissue 
segmentation from multispectral MR images. The second fusion level (management of 
image spatial features) is first illustrated in section 5.2 (1 stage only), with the synthesis of an 
unique image from multimodal information sources. Finally, section 5.3 illustrates the 2 
levels/2 stages fusion process, by means of a functional quantification of the brain activity 
from SPECT images, using an MR image to locate anatomical structures of interest. The 
segmentation of such anatomical structures is driven by expert information in a first 
MRI/symbolic information fusion. 

2. A theoretical framework for the fusion process 
2.1 General fusion scheme 
This fusion architecture is an improvement of an existing fusion process, that was designed 
making use of fuzzy logic (Barra & Boire, 2001a). Input images were supposed to be initially 
aligned, and this first registration stage was followed by three fusion steps: 
1. Information modeling step: datasets were first represented in a common theoretical 

formalism, in order to compensate for the heterogeneous nature of the information 
provided by the images. The choice of using fuzzy logic is explained in section 3.1, and 
details on the modeling itself are given in sections 3.2. 

2. Aggregation step: information models were injected into a fitted fusion operator, 
designed to either produce a new information expressed under the same formalism, or 
to emphasize information buried into original images (section 3.3). 

3. Decision step: the information produced by the previous step was taken back to the 
relevant numerical domain or to the decision context in which the fusion process is 
involved, possibly resulting in a final formalism conversion. Moreover, this step came 
possibly out to a crisp information model (α-cut, thresholding, etc.), once the amount of 
information aggregated during the fusion process was sufficient to take a decision. 
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As stated above, the major problem for e.g. activity quantification purpose using 
morphological and functional images is the initial registration stage that introduces some 
additional uncertainties about the information to measure. The generic fusion scheme 
proposed in this chapter is designed to be possibly used both for classical fusion tasks, i.e. to 
answer fusion problems that were previously coped thanks to the fusion process presented 
above, and to preserve as long as possible the accuracy of initial data for a use in more 
complex fusion problems based for example on multiresolution data. 
 

 
Fig. 4. A synoptic diagram of the fusion process designed in this chapter. This process is 
illustrated in the case of two input images { }2,1,0 ∈iI i , each being represented by both a 
numerical model iNM  and a geometrical model iGM ; The final aggregation stage provides 
a fused information model fIM  that leads to a decision in the sense given above (point 3) 

For this last purpose, all information sets cannot always be modeled using the same 
formalism, or can even not get modified at the modeling stage (e.g. binary masks of ROIs vs. 
original SPECT data). This methodological aspect is the first particularity of the fusion 
process we now propose: the modeling step is extended to the use of compatible theoretical 
frameworks, which have together a physical meaning, instead of strictly equivalent 
formalisms. The problem to be solved here is more particularly to give both information 
stemming from the modeling stage a spatial coherence. 
To do so while preserving the accuracy of initial information, we choose to delay the 
management of this spatial correspondence as far as possible in the fusion process. The 
solution we propose consists in managing the image spatial structure apart from image 
numerical intensities.  For each input image, these two sets of characteristics are modeled 
separately, leading to running (partially) two independent fusion processes in parallel. 
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Fusion operators are designed to aggregate information models in each domain. These 
operators are finally combined to provide the final aggregation function (Fig. 4), 
transforming information represented by intensities and structural information models 
together into the final fusion result. 

2.2 Definitions and relations with classical information fusion processes 
The modeling, aggregation and decision stages presented above are commonly accepted as 
a structure for fusion-based processes (Wald, 2002). The estimation of information models, 
considered as an additional task by some authors, is for us fully included in the modeling 
stage (as shown in 3.2). Each branch of the improved version of the process (Fig. 4) follows 
the same classical scheme, until aggregation operators are designed to achieve a global 
fusion between corresponding voxels from input images, represented in the corresponding 
formalism (i.e. voxel to voxel/geometrical matching of image structures at the voxel level, as 
described in section 4). 
Dasarathy proposed three levels of fusion (Dasarathy, 1997), corresponding to three 
abstraction levels for representing information: data fusion (values directly provided by the 
sensors), feature fusion (information derived from previous data) and decision fusion 
(information expressing hypothesis to be confirmed). The process depicted on Figure 4 is 
composed of two fusion levels, the first one being performed separately on the two image 
features sets. This first level clearly occurs at the feature level, since input images are first 
modeled in each domain, and no decision is moreover taken until both aggregation models 
are combined. This last step can be associated to an additional fusion level considered by 
some authors: model fusion, aiming at combining pieces of information that represent a 
method or process. 
A distinction is usually made between two kinds of information as an input of the fusion 
process: numerical information vs. symbolic information. The architecture of the fusion 
process described in this chapter allows the description of two other categories of 
information extracted from input images: structural information of digital images, managed 
through the right path of the schematic description of the process (Fig. 4), and numerical 
models of image semantic information (left path). This last category is obviously not 
independent from a classical description of input information, since it may refer to 
numerical representation (fuzzy logic) of both image numerical intensities and symbolic 
information transcribed in the same geometrical referential as image data. Because of the 
theoretical frames chosen to represent structural information and the previous group of 
information type, we may also refer to these domains as respectively the geometrical (or 
spatial) model and the numerical model. 

2.3 The different scenarios of fusion 
Depending on both the spatial referential in which are expressed the information to fuse and 
the aim of the fusion, applications based on the scheme described here may use only one or 
both processing paths illustrated on Figure 4. Considering the left branch alone (no 
geometrical information to manage), the model aggregation level is then avoided, and the 
combination operator at level 1 may thus achieve a single-level feature-based aggregation, 
directly providing fIM  (Fig. 7.a and 11.b). 
The multistage aspect of the fusion architecture refers to the ability to achieve building the 
image numerical model as a complete iteration of the fusion process (Fig. 11). Image 
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intensities are injected as inputs for the sub-fusion process. Consequently, this fusion stage 
is carried out based on numerical models only, but may also involve external sources such 
as expert knowledge (symbolic information) (Fig. 11.b). The result of the sub-fusion stage is 
then used as a model of image numerical intensities in the first stage process. 

3. Numerical information modeling and related aggregation operators 
3.1 Possibilistic logic as a theoretical framework 
Data we will have to manage are quite imprecise and uncertain, due for example to partial 
volume effects or noise. We, thus chose to model these data with a theory managing 
uncertainty and imprecision, and we particularly focused on possibilistic logic. Possibilistic 
logic was introduced by Zadeh in (Zadeh, 1978) in order to simultaneously represent and 
manage imprecise and uncertain knowledge. In fuzzy set theory, a fuzzy measure is a 
representation of the uncertainty, giving for each subset Y of the universe of discourse X a 
coefficient in [0,1] assessing the degree of certitude for the realization of the event . In 
possibilistic logic, this fuzzy measure is modeled as a measure of possibility Π satisfying 
( ) ( ) 10, =XΠ=Π ∅ and ( )ipsu

iii
YΠ=YΠ∪ . An event Y is fully possible if ( ) 1=YΠ , and 

impossible if ( ) 0=YΠ . Zadeh showed that Π  could completely be defined from the 
assessment of the certitude on each singleton of X. Such a definition relies on the definition 
of a distribution of possibility π , satisfying ( ) 1=xπpsu

Xx∈
. Fuzzy and crisp sets can then be 

represented by distributions of possibility, from the definition of their characteristic 
function. 
We choose the possibilistic logic as the common theoretical frame for the representation of 
the available data. More precisely, we model all the information using distributions of 
possibility, and equivalently we represent this information using fuzzy sets. 

3.2 Information modeling: from image data to semantic knowledge 
We consider in the following two types of information to be represented by numerical 
models: the information extracted from images, we call the numerical information, which 
mainly consists in tissue characterization (morphological images) or activity distribution 
(functional images), and the symbolic or semantic information modeling the linguistic data 
that may be provided by an expert. 
• Numerical information: numerical information is directly extracted from images, and is 

modeled as distributions of possibility either representing brain tissues, (cerebrospinal 
fluid (CSF), white matter (WM) and gray matter (GM) distributions in morphological 
images), or distribution of the functional activity. These distributions are computed 
using a possibilistic clustering algorithm (Krishnapuram & Keller, 1993) on particular 
feature vectors representing voxels (Barra & Boire, 2000b). If each voxel Nj ≤≤1 is 
described by a p-dimensional feature vector jx , the possibilistic clustering algorithm is 

an iterative algorithm that searches for C compact clusters gathering in { }jx=X  the 

jx 's by computing both a fuzzy partition matrix ( ) NjC;iu=U ji, ≤≤≤≤ 11, , 

( )jπ=u iij  being the membership degree of jx to class i, and unknown cluster centers 

( ) Cib=B i ≤≤,1 . The algorithm uses iterative optimizations to find the minimum of a 
constrained objective function 
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 ( ) ( ) ( )∑∑∑∑ − m
ijiij

m
ij uη+b,xdu=XU,B,J 1²  (1) 

subject to [ ] 00,1 >uN,<u,u ijmax
iijij ∑∈ and iη being the intra-class mean fuzzy 

distance as proposed in (Krishnapuram & Keller, 1996). Parameter m controls the 
degree of fuziness of U, and is chosen equal to 2 in the following. d is the Euclidean 
distance in Rp . 

• Semantic information: symbolic information was given by clinicians and experts and 
consisted in topological and morphological information These fuzzy propositions might 
typically be modeled in the possibilistic logic frame. We already propose a theoretical 
framework to model approximate distance and direction information as fuzzy sets and 
we refer the reader to (Barra & Boire, 2001b) for a detailed description of the modeling 
process. 

3.3 Aggregating the information: definition of fusion operators 
Fuzzy sets and the possibilistic logic both offer a wide range of combination operators and a 
flexible way to choose them. (Bloch, 1996) proposed a classification of these operators with 
respect to their behavior (in terms of conjunctive, disjunctive or compromise), the possible 
control of this behavior, their properties and their decisiveness, which proved to be useful 
for several applications in image processing.  
Generally speaking, a fusion operator aggregates Ni distributions of possibility iπ into a 
fused distribution π , using a fusion operator F : ( )NππF=π ...1, . The definition of F, its 
mathematical properties and its behaviour with respect to the agreement and the conflict 
between the iπ are driven by the application. Some examples of such fusion operators are 
given in the application section. 

4. Spatial information modeling and fusion using discrete geometry 
The core of the proposed method is a geometrical model representing the spatial structure of 
input images at the voxel level, and allowing the fusion of the corresponding features 
considering geometrical relation between images. This model has been chosen considering 
the fusion process backward, from model aggregation to the modeling stage. The central 
point was to give the spatial information a final form that was compatible with the final 
information stemming from the fusion of numerical models, making it possible to merge 
fusion operators which produced them. 

4.1 The redistribution principle: getting coefficients from spatial relations 
In the case where a two-levels fusion is performed, the final aggregation stage we propose to 
carry out is called “redistribution” (i.e. redistribution of the numerical information held by 
image voxels). The information provided by the geometrical aggregation operator aims at 
representing spatial relations between images by simple sets of numerical values (spatial 
coefficients). These values, thus consistent with image numerical models, are thereafter used 
during the final aggregation stage, as weighting factors in the assignment of data from one 
image or information model to another one (usually from a low-resolution one to a  high-
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resolution one in a multiresolution problem), in order to compensate for the difference of 
spatial referential (orientation, resolution, etc.). 
If we again consider the two images case, let ρ be a spatial coefficient locally modeling 
spatial relations between both images. Since the elementary part of a 3D digital image is the 
voxel, ρ = ρ(v1,v2) models the basic spatial relation between a voxel v1 from image I1 and a 
voxel v2 from image I2. Note that in the following, v and V will stand for v1 and v2 for 
typographic convenience. This notation is moreover justified since images I1 and I2, in the 
case where they have to be geometrically registered, often have different spatial resolution 
that implies voxels with different sizes. Voxel v thus denotes the spatial element with the 
highest resolution/the smallest voxel size, and V the element with the largest size. 
Spatial coefficients have to express spatial relations between both images, in order to 
combine information really stemming from the same spatial location. Image numerical 
intensities are obtained by integrating the measured phenomenon in regions of the real 
space corresponding to image voxels. To study the spatial distribution of image intensities 
and spatial relations linking an image to another one, the model thus simply consists in 
representing the influence region of each numerical value during the measurement, i.e. 
modeling image voxels themselves. Modeling the whole image thus boils down to define a 
tilling of the image space by these voxel models. 
For the sake of simplicity, only the case of cubic voxels is addressed here (an hexagonal 
model is for instance a better representation of a spherical influence area, but leads to much 
more time-consuming algorithms). Discrete geometrical tools used in the following have 
been chosen under this assumption. The digital nature of image information has also guided 
the choice of the processing operator used to obtain spatial coefficients from the geometrical 
models. The question of studying spatial relations between two voxel lattices is indeed very 
close to the classical discrete coordinates changing problem (Reveilles, 2001). Discrete and 
computational geometry provide efficient tools to answer such a problem. 
The extension of the tilling created by image voxels to the whole space may be considered as 
a discrete coordinate system. Therefore, the problem of spatially matching a given image 
with another one is intrinsically linked with the question of accurately expressing, in a target 
basis B2, discontinuous information from a basis B1, B1 ≠ B2. A solution was proposed in 
(Reveilles, 2001) with a suitable formalism for 3D image fusion. When images have close or 
equal spatial resolutions, the ratio between edge length of v and V is not sufficient to 
disregard the committed error when rounding to integers the results of classical basis 
change formulas (Fig. 5). In this case, one shall determine the volume of the geometrical 
intersection between unit elements of the grids and use this value in an interpolation step. 
Hence, this last processing stage finally appears to be compulsory, but guided by all the 
available image spatial information. 

4.2 Geometrical modeling and fusion operators based on computational geometry 
Both the difference in spatial resolution and the spatial misalignment of corresponding 
structures in images have to be managed during the modeling. When considering two 
images I1 and I2, these spatial features make information from I1 and I2 to be expressed in 
two different geometrical spaces, which have to be linked through the geometrical model. 
The geometrical transform resulting from the usual registration step is not applied to the 
data (and in particular data are not interpolated), but we use the corresponding 
mathematical function to generate the geometrical model. Both images are modeled as 
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                                           (a)                                       (b) 

Fig. 5. Illustration of the discrete coordinates changing problem in 2D (a. different grid sizes, 
b. grids with quite similar pixels). Basis change formulas associate part of pixels in light gray 
to the right pixel in the other grid, while dark gray surfaces show possible errors 

tilings of the geometrical space by cubic voxels, each grid being positioned with respect to 
each other using this transform. One of the input images I1 being used as a geometrical 
reference, let us assume that its voxels are represented by elementary unit volumes of the 
canonical basis. The underlying idea is to build a set of vectors from the transform, which 
will generate the cubes that represents voxels in general position (voxels from I2). 
In the case of brain imaging, a rigid transform is often sufficient to match images of cerebral 
structures from both data sets, since the brain is considered as a non-deformable solid. The 
rigid transform is initially composed of rotations and translations (6 parameters in 3D). A 
difference in spatial resolution implies a third part in the transform, based on the 
application of a scaling factor. In this case, let I1 be the image with the highest spatial 
resolution, and suppose that the registration operation aims at aligning I2 on I1. 
Let T be the registration operator. The generating vectors of the base cube in general 
position are the images of canonical unit vectors by T, and this cube has its origin on a point 
p ≠ 0 because of translation components in T coming from the image registration 
(p = T⋅(0 0 0 1)t in homogeneous coordinates). Other cubes of the tiling are obtained by 
translation of this origin voxel. More details about the model building process may be found 
in (Montagner et al, 2005c). 
Geometrical relations between the digital grids are then identified by processing spatial 
coefficients ρ, i.e. volumes of the polyhedra resulting from the intersection between cubic 
voxels in general position and unit cubes (Fig. 6.d). 
The intersection volume between two given voxels V and v is computed using an efficient 
cube intersection algorithm (Reveilles, 2001). The processing cost is lower than the one 
obtained using a general convex polyhedra intersection algorithm, thanks to the use of cube 
symmetries and resulting analytical formulas. The algorithm runs through the 6 faces of 
both cubes, processing a polygonal boundary of the volume at each iteration. Let I be the 
polygon obtained as the intersection between the support plane P of the current cube square 
face F and the other cube (Fig. 6.a). Analytical formulas provide 3D coordinates of this 
intersection in a canonical space (Fig. 6.b), and the polygon is then brought back to its real 
position using the octahedral group of cube symmetries (Fig. 6.e). At this stage, I is possibly 
larger than the real polygonal face. It is therefore restricted to its common part with F (Fig. 
6.c) using an adapted version of the O’Rourke’s general polygon intersection algorithm 
(O’Rourke, 1998). 
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 (a)              (b)                   (c)                      (d)                      (e) 

Fig. 6. a-c. Steps of the algorithm used to process the intersection polyhedron (d) between 
two cubic models of voxels C1 and C2, using cube symmetries (e) 

4.3 Final model aggregation stage: combination of numerical and geometrical 
information 
If ρ is the result of the elementary fusion between basic elements v and V of the geometrical 
model, the final redistribution process can be expressed for general purpose as 

 ( ) ( ){ }VVvVv g,,, ρδ Δ=  (2) 

where Δ{⋅,⋅} is the redistribution function, assigning to voxel v a part δv,V of the information 
held by V, either in its direct form (initial image intensity in the case of the quantification 
process) or resulting from the image numerical modeling (g(⋅) is a general information 
function). The final aggregation step then brings together the fusion operators from both 
domains to compute the result of the global fusion process. The elementary part of this 
result ϕv,V, for example in the spatial base of image I1 (e.g. at the highest spatial resolution) is 
processed as 

 ( ){ } ( ) ( ) ( ){ }VVvvv VvVv g,,,fφ,fφ ,, ρδϕ ==  (3) 

where ϕ{⋅,⋅} is the aggregation operator, and f(⋅) is another information function. Functions 
f(⋅) and g(⋅) represent information provided by image numerical models, or even stand for 
information derived from a first fusion stage in which spatial relations have no influence 
(case of the multistage use of the general fusion scheme). 
Using the intersection volumes between voxels v and V as spatial coefficients ρ(v,V), 
equation (2) thus simply becomes δv,V = ρ(v,V)·g(V). Hence, the value assigned to voxel v is 
processed from the redistributed intensities of voxels Vi in a neighborhood of v as 

 ( ) ( )∑
∩

=
vV

iiv
i

VVv g,ρδ  (4) 

where Vi∩v refers to the set of voxels Vi having a non-null intersection with v. Formula (4) 
processes the value δv associated with v as a combination of the information g(Vi) associated 
with surrounding voxels Vi, where the contribution of Vi is proportional to its common 
volume with v. As a matter of fact, this computation mode is very close to a linear 
interpolation of g(Vi), in the case where v straddles several voxels Vi. But this process uses 
the maximum of information available in the image structure, thus minimizing the 
hypothesis required on the distribution of the physical phenomenon measured. When 
building image models, reference voxels v are moreover represented as unit volumes. 
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Spatial coefficients ρ(v,V) are thus numerical values ranging from 0 (no intersection between 
v and V) to 1 (full intersection, i.e. v ⊆ V), and ( )∑ ∩

=
vV i

i
Vv 1,ρ  for a given voxel v. The 

redistribution process is thus normalized so that each piece of information δv naturally 
belongs to the same value range as the original numerical support of g(V). In the case where 
v is fully included in V (∃!Vi, Vi = V/Vi∩v ≠ ∅), the information δv = g(V) is kept unchanged 
since the whole unit volume stems from the intersection with an unique voxel V. 

4.4 Relations with data interpolation 
As stated above, information redistribution expressed through equation (4) can be 
considered, from a computational point of view, as an interpolation of the numerical 
intensities from image I2. But the interpolation is no longer uniform: the redistributed 
information is processed like in a nearest-neighbor interpolation when v ⊆ V , or is linearly 
interpolated with respect to intersection volumes when V intersects v boundaries. This 
adaptive way of processing minimizes the estimation error of the average activity in the set 
{vj/vj∩V ≠ ∅}, in comparison with a linear variation of 

jvδ with respect to the distance to 

voxels Vi. Moreover, representing the spatial relation between input images through 
coefficients ρ establishes an accurate link between pieces of numerical information they hold 
without modifying them. This straightforward matching makes it possible to adapt 
numerical intensities stemming from image I2 to the content of image I1, e.g. for 
measurement purpose. This second property will thus naturally find a direct application in 
the quantification of neuronal activity presented in section 5.3. 
Finally, the redistribution principle is also characterized by two major methodological 
points: the nature of weighting factors in interpolation formulas, built from objective image 
spatial structure and relations, and the ability to introduce spatial coefficients into advanced 
aggregation models at the final aggregation step. Indeed, the general operation expressed by 
equation (2) can obviously be delayed, and split up into new parts of equation (3) so that 
coefficient ρ, g(V) and f(v) are combined differently by the aggregation operator ϕ. 

5. Application to medical image analysis 
5.1 Multispectral MR images fusion 
The first application we propose is a 1 level/1 stage fusion scenario (Fig. 7.a), and concerns 
the fusion between several MR brain images stemming from different acquisition 
techniques. Images reflect the same type of knowledge (anatomical distribution of brain 
tissues), and provide complementary information with the use of different acquisition 
parameters. Numerous applications can benefit from the MR images fusion process, from 
abnormal tissue segmentation (tumors (Dou et al., 2006, Philipps et al., 1994), encephalitis, 
etc.) to the quantification of white matter, gray matter and cerebrospinal fluid volumes in 
normal (e.g. Wagner et al., 2006) or pathological people (e.g. Swayze et al., 2003). 
The aim here is thus to extract C tissue classes from a set of n MR images. Following the 
theoretical framework proposed in this chapter, each MR image Ii first provides C 
distributions of possibility i

Tπ , modeled as C fuzzy tissue maps. Given a tissue T, the 
corresponding C fuzzy maps have then to be fused using a fusion operator. Since the 
original MR images provide distinct but complementary information about the distribution 
 



Multilevel Information Fusion: A Mixed Fuzzy Logic/Geometrical Approach  
with Applications in Brain Image Processing 

 

313 

   
                     (a)                                                                     (b) 

Fig. 7. Instantiation of the fusion scheme in the MR/MR fusion (a) and image synthesis 
examples (b). The decision step (defined in 2.1) concerns the production of segmented 
images in the first case, and is not applied in the second case (direct display of fusion result) 

of T in the brain, the only areas of ambiguity may be due the transitions between T and 
neighboring tissues, or may be related to the pathological signature of T (e.g. a tumor 
imaged with a contrast agent may have a very significant hyper or hypo signal, not related 
to a pure anatomical acquisition). The fusion operator has thus not only to underline the 
redundancies between the i

Tπ 's, but also to shed light on possible areas of conflict between 
the distributions of possibility. We illustrate the construction of the fusion operator in the 
case n=2, and the extension to any n is trivial (Dubois & Prade, 1992). If both distributions of 
possibility 1

Tπ and 2
Tπ agree and are reliable, a renormalized T-norm is used to aggregate 

the information: 

 ( ) hπ,πmin=π 2
TTT /1  (5) 

where 
( ) ( )| |( )
N

iπiπ
=h

TT∑ −
−

21

1  measures the agreement between both distributions of 

possibility. On the contrary, if only one of the distributions is reliable, the operator has to be 
cautious and gradually reports the confidence on the union of the distributions, guided by 
(1-h), an estimation of the conflict: 

 ( )[ ]hπ,πmaxmin=π 2
TTT −,11  (6) 

In order to manage both situation, the final operator acts as 

 ( ) ( )[ ]⎟⎟
⎠

⎞
⎜
⎜
⎝

⎛
− hπ,πmaxmin,

h
π,πminmax=π 2

TT

2
TT

T ,11
1

 (7) 
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This gives for each tissue T a fused distribution of possibility, and each voxel i is thus 
defined by C values ( ) ( )( )iπiπ C...1 . Since the aim of the fusion is to provide a volumetric 
quantification of brain tissues, the decision stage labels a voxel i as belonging to tissue ( )iT̂  
such as 

 ( ) ( ){ }iπArgMax=iT TT
ˆ  (8) 

As test data, we used simulated MR images generated with the online MRI Simulator at the 
McConnell Brain Imaging Centre (BrainWeb , http://www.bic.mni.mcgill.ca/brainweb/) in 
Montreal. The data sets are based on an anatomical model of a normal brain that results 
from registering and preprocessing of 27 scans from the same individual with subsequent 
semi-automated segmentation. In this data set the different tissue types are well-defined, 
both fuzzy and crisp tissue membership are allocated to each voxel. From this tissue labeled 
brain volume the MR simulation algorithm, using discrete-event simulation of the pulse 
sequences based on the Bloch equations, predicts signal intensities and image contrast in a 
way that is equivalent to data acquired with a real MR-scanner (T1-weighted, T2-weighted 
and Proton Density). Both sequence parameters and the effect of partial volume averaging, 
noise, and intensity non-uniformity (RF) are incorporated in the simulation results (Kwan et 
al., 1999).  In order to obtain the true, i.e. reference volumes, the voxels labeled as gray, 
white matter and CSF in the discrete brain phantom (noise=0%, RF=0%) were counted. 20 
additional simulated BrainWeb data sets that were used are each based on an anatomical 
model of an individual normal brain (for details see (Aubert-Broche et al., 2006)). 
Figure 8 presents the results obtained for the fusion of several couples of images of the 
model. The T1/T2 fusion provides a very accurate WM map, a CSF map very close to the one 
provided by the T2 image only, and a GM map suffering from several drawbacks (mainly a 
poor definition of some gray matter structures (basal ganglia)). The T1/PD and the T2/PD 
fusions exhibit a poorly informative CSF map, since both acquisitions suffer from a lack on 
information on the distribution of this tissue, especially in sub-arachnoïd spaces. The other 
fused distributions are very close to those provided by BrainWeb.  
Figure 9 shows the final segmentation map, obtained with the three types of fusion. Each 
segmented map was assessed with respect to the reference map provided by BrainWeb, both 
using an expert evaluation (a neurosurgeon visually assessed the accuracy of the segmented 
maps), and quantitative indexes: 
• the confusion matrix M, giving for each tissues T and T' the number MTT' of voxels 

being classified as T in the BrainWeb segmentation, and as T' in the computed 
segmented image; 

• the Tanimoto indexes (TI) (Duda et al.,2001) computed from M, and allowing an 
accurate comparison between two segmentation results; 

• for each tissue T, the relative errors (RE) in volumetric quantification between the 
computed map and the reference one. 

Table 1 presents some of these results for the three types of fusion. Globally, best results 
were obtained with the T1/T2 fusion process, those images being indeed very discriminant 
for brain tissue segmentation (Kiviniity, 1984), but need a preliminary registration step. 
Finally, Table 2 presents a comparison between the fusion method and three classical 
segmentation methods, either using a clustering algorithm on one image only, or a 
bidimensional histogram analysis in the (T1,T2) space. The best quantitative indexes were 
obtained using the fusion process, for all tissues. 
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 Réf T1/T2 T1/PD T2/PD 
 Vol (%) TI Vol (%) RET (%) TI Vol(%) RET (%) TI Vol(%) RET (%) 

CSF 5,96 0.71 6.94 14.1 0.63 6.75 13.25 0.66 7,43 24.6 
WM 23,5 0.82 22.72 3.32 0.85 23.13 1.57 0.75 24.14 2.72 
GM 20,07 0.76 20.67 2.98 0.80 20.45 1.89 0.71 18.76 6.52 

Table 1. Quantitative evaluation of the MR/MR fusion process 
 

CSF 

   

WM 

   

GM 

   
 BrainWeb T1/T2 T1/PD T2/PD 

Fig. 8. Fused tissue maps 

   
BrainWeb T1/T2 T1/PD T2/PD 

Fig. 9. Segmented images obtained from several fusion processes 
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 T1 only T2 only 2D histo. analysis T1/T2 Fusion 
 TI RET (%) TI RET (%) TI RET (%) TI RET (%) 

CSF 0.63 14.2 0.79 13.6 0.67 15.98 0.77 14.1 
GM 0.82 3.87 0.58 7.81 0.78 5.12 0.82 3.32 
WM 0.76 3.14 0.65 5.45 0.76 3.05 0.76 2.98 

Table 2. Comparison of segmentation results between the fusion method and classical 
algorithms 

5.2 Image synthesis from multimodal information 
This application of the general fusion scheme aims at accurately locating the functional 
information extracted from a SPECT image of the brain with respect to underlying 
anatomical structures. The difficulty of representing both complete pieces of information on 
the same image was pointed out in early studies on this subject (Hill, 1993), stating that the 
efficiency of displaying superimposed color layers decreases when the number of image 
features to show increases. Conversely, an advanced image fusion strategy, such as the one 
proposed in this chapter, can avoid spatial covering or frequency mixing by selecting 
features from each image that are relevant for diagnosis. 
The image fusion is performed between an MR image, and either a brain perfusion or a 
neurotransmission SPECT image. The first functional imaging modality provides diagnostic 
information for brain pathologies where a visible reduction of blood supply is 
representative for the dead of neuronal cells in the related region of the brain, such as 
Alzheimer type dementia. The second one gives information about a specific neuronal 
activity, possibly responsible for pathologies such as Parkinson’s disease and Parkinsonian 
syndromes (low level in target anatomical structures, mostly putamens and heads of 
caudate nuclei). In both cases, the difference in spatial resolution between MR and SPECT 
images requires a geometrical modeling of image spatial features, i.e. using the 2-level 
fusion capability of the fusion scheme (Fig. 7.b). 
Referring to formula (2), the information function g(⋅) is a direct reference to initial values 
associated with voxels V from image I2 = If holding the functional information. Using the 
redistribution principle, the final model aggregation assigns to voxel v the redistributed 
intensity δv processed from formula (4) with g(V) = If(V), the original numerical value 
associated with V in the SPECT image. Formula (4) thus finally becomes 

 ( ) ( )∑
∩

=
vV

ifiv
i

VIVv,ρδ  (9) 

Let πC(v) be the fuzzy membership degree of voxel v to the tissue class C (white matter, gray 
matter, and cerebrospinal fluid) from the numerical model of the MR image (computed as 
explained in section 3.2). An activity μC is associated with each anatomical class, either from 
an arbitrary gray level adapted to the human visual perception to emphasize important 
information, or from a mean functional activity for class C. In each case, μC may be 
considered as the second part of the numerical model representing image I2. Anyway, the 
anatomical information is preserved in the global shape of brain tissue classes, and local 
variations of the functional activity within each class are injected, in addition to μC in the 
proposed model, through the adapted form of equation (3): 
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where δv is the redistributed functional activity mixing the geometrical information with 
original intensities from I2 = If (first part of the numerical model for this image). The other 
part of the numerator stems from the aggregation of numerical models only, μC (second part 
of numerical model for I2) being independent of any spatial context. Formula (10) is thus a 
good example of the introduction of spatial coefficients into advanced aggregation models 
detailed in section 4.4. 
The image synthesis process has been applied to both brain perfusion SPECT ([99mTc]-ECD) 
and neurotransmission SPECT ([123I]-FP-CIT) images, in the case of a patient suffering from 
a multiple system atrophy (MSA, Parkinsonism plus syndrome – Fig. 1). A single T1-
weighted MR data set is associated with perfusion and neurotransmission SPECT images, 
which were simultaneously acquired (El Fakhri et al., 2001). Both SPECT images and the 
pre-processed MR image are isotropic, with voxel sizes of 2.33 mm and 1.5 mm respectively. 
The quality of synthetic images (Fig. 10) was assessed by an expert, focusing on the 
following diagnosis elements: activity peaks and lacks, shape and position of anatomical 
structures. He answered the following questions for both the brain perfusion and the 
neurotransmission images: 
1. Is the ability to locate functional activity in relation to anatomical structures really 

improved? 
2. Are diagnosis elements clearly visible on the synthetic image? 
For purpose of assisting the diagnosis task, the perfusion information (Fig. 10.a to d) has to be 
emphasized in the region of cerebral cortex (gray matter). The concentration level of the tracer 
within CSF structures is null. Variations are visible in the WM and mostly in the GM (activity 
ratio estimated to 1/4), corresponding to the above requirement. High activity levels in the 
cortical region are clearly visible, this effect being reinforced by the already high mean activity 
of this structure. Nevertheless, hypoperfusion zones are mostly visible in regions with low 
base activity, i.e. thanks to remaining diffused activity in the surrounding white matter. 
In the case of the neurotransmission image (Fig. 10.e to h), the high activity bound in the 
striatum implies a decrease of visual contrast in the surrounding region. However, deducing 
the shape and position of anatomical structures remains possible thanks to the outlines of 
close tissue classes. Indeed the functional activity presents only low variations outside the 
striatum (CSF in the ventricular system and GM in the cortex). Likewise, edges of the 
putamens and caudate nuclei can also be deduced from areas with a low activity levels 
within the striatum itself (see Fig. 10.h). The synthesis process thus emphasizes the 
information brought by lacks of activity. 

5.3 Quantification of functional activity using a multistage information fusion 
The solution we propose for measuring brain activities in a SPECT image uses both the 
multilevel (management of multiresolution discrete data) and the multistage aspects of the 
fusion architecture (Fig. 11.a). This last point refers to modeling image activities as binary 
maps of subcortical brain structures used as measurement ROIs. This segmentation task is 
achieved as a second iteration of the fusion process (1 level/1 stage) with MR images and 
symbolic information as inputs (Fig. 11.b). We refer the reader to (Barra & Boire, 2001b) for a 
detailed description of this modeling stage. 
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   (a)                            (b)                       (c)                                 (d) 

       
   (e)                             (f)                      (g)                                 (h) 

Fig. 10. Image synthesis from MR/perfusion fusion (a-d) and MR/neurotransmission fusion 
(e-h) 

     
                        (a)                                                                         (b) 

Fig. 11. Fusion scheme for the example of a brain activity quantification process (a); Original 
intensities from 0

2I  (SPECT) are combined, through spatial coefficients, with ROIs Boolean 
models stemming from the second fusion stage (b); The decision in (a) may consist in 
classifying the whole SPECT exam according to the quantification index fIM  

As in section 5.2 (and referring to equation (2)), the numerical model of a voxel V from the 
SPECT image is g(V) = If(V), the original numerical value associated with V. Let Sa be this 
binary mask representing the brain structure of interest (‘a’ standing here for “anatomical”). 
The contribution of voxel v to the fusion result may thus be expressed as 
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since formula (3) is also multiplicative with f(v) = Sa(v) (crisp membership) when using 
intersection volumes as spatial coefficients, and referring to equation (9). Consequently, the 
functional activity in out-of-structure anatomical voxels, in which the numerical expression 
of this activity is mostly due to the multiresolution partial volume effect (PVE), is naturally 
cancelled. The final result of the fusion process can be expressed as 

 
( )

ns

nst

S

SS

ϕ

ϕϕ
ϕ

−
=  (12) 

and is seen as an estimation of the radiotracer binding potential (Soret et al., 2003). ϕSt is the 
global activity of the target anatomical structure (we use mean values), processed from the 
binary mask St through equations (11). In the same way, the quantity ϕSns is processed for a 
non-specific region of the brain (i.e. not influenced by the studied pathology). 
The following tests have been carried out for a methodological assessment of the proposed 
quantification process. Since the method has been designed to overcome partial volume 
effects due to multiresolution, the assessment protocol aims at evaluating the accuracy of 
activity measurement from highly PVE-prone ROIs, in the context of several ratios of spatial 
resolutions between input images (this kind of PVE is mostly due to voxels from the 
functional image located at the external bound of the measurement region). The 
quantification has been performed on series of ROIs with a reference shape but different 
volumes (slice selection). Performances have been compared with the method considered as 
reference: registration of the MR image on the SPECT image. 
The test dataset is made of a numerical phantom dedicated to the study of deep brain 
structures and dopamine neurotransmission phenomena involved in Parkinson’s disease and 
Parkinsonian syndromes. It results from a Monte-Carlo simulation of the striatum-based 
neurotransmission (El Fakhri et al., 2001) using theoretical binding values in associated 
structures from a brain morphological phantom (Zubal et al., 1996). This phantom is also used 
as an anatomical reference for the data fusion process, and specially to build the image 
geometrical model. The functional image resulting from the simulation is initially aligned with 
the input data. A linear transform is applied to anatomical data to preserve the original 
functional information (including image rescaling by various factors, so that the ratio between 
voxel sizes is successively 1/2, 1/4 and 1/8). The initial measurement ROI is limited to right 
and left putamens. In simulated data, the tracer fixation ratio between putamens and the non 
specific (NS) reference region (here the occipital cortex) corresponds to a healthy case. 
Table 3 shows the results obtained when quantifying the phantom activity within regions 
described above. Results are assessed in termes of relative error |ϕ-ϕref|/ϕref, where ϕ is the 
estimated binding potential (BP) processed through equation (12) with ϕSt relative to the 
truncated putamens and ϕSns standing for the non-specific occipital cortex region. ϕref refers 
to the same quantity, processed from the a priori model activities. Error values are averaged 
from quantities measured after applying linear transforms with 5 sets of parameters 
(rotation angles and translation vectors). 
The quantification error is always lower for the redistribution method. The maximum 
difference is obtained for a resolution ratio of 1/4, due to the value quantified within the non 
specific region, that has a high influence on the BP estimated (see equation (12)). Conversely, 
the irregular and thin shape of this structure allow results to be quite constant (between ratios 
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1/2 and 1/4) using the MR registration method. The higher the resolution ratio, the more 
constant the size of the interpolated ROI, because of the effects of thresholding mask 
coefficients. The minimum error always corresponds to the largest measurement ROI (close to 
initial volume), and the maximum value to the thinnest one, except in the case of 
redistributions with a ratio of 1/8, due to the influence of the NS region again. 
 

  Resol. ratio 1/2 Resol. ratio 1/4 Resol. ratio 1/8 
  Error (%) Volume Error (%) Volume Error (%) Volume 

Min. 20.4 9909 24.8 9625 44.6 8859 MR image regist. 
Max. 34.0 1341 24.9 9710 44.6 8859 
Min. 11.8 9923 2.9 9918 24.16 1961 Redistribution Max. 24.7 1980 8.6 1691 31.2 9920 

Table 3. Minimum and maximum relative quantification errors (depending on the actual 
volume of the measurement ROI, also indicated in cm3 for comparison with the volume of 
the original putamen structure = 104 cm3, that provided the quantitative reference value) 

6. Conclusion 
The collection of anatomical and functional images, as well as the expert knowledge and 
habits play nowadays in clinical routine an important role for the study of a given 
pathology. The clinician merges and aggregates all this complementary, redundant and 
sometimes conflicting information to provide a better diagnosis. We proposed in this 
chapter a theoretical framework mimicking this aggregation process, based on the use of 
fuzzy logic modeling, fusion operators, and we enrich this classical fusion process with the 
introduction of spatial information modeling. This allows the information to be preserved 
until the final fusion step, and gives the opportunity to introduce the original image 
information into complex fusion operators. We provide the clinician with several outputs, 
from segmented images to quantitative indexes or synthesis images, and we think our 
process to be generic enough to allow the introduction of other information sources. 
The multilevel information fusion is applied to three clinical applications, involving 
anatomical and functional images, and also geometrical and structural information. Results 
prove the efficiency of the approach, and shed light on several potential new applications 
not only in brain imaging, but also in the multimodal study of other organ, or even to other 
branches where several images, with several geometrical properties, are used, registered 
and merged. 
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1. Introduction 
Higher-level fusion aims to enhance situational awareness and assessment (Endsley, 1995).  
Enhancing the understanding analysts/operators derive from fused information is a key 
objective. Modern systems are capable of fusing information from multiple sensors, often 
using inhomogeneous modalities, into a single, coherent kinematic track picture. Although 
this provides a self-consistent representation of considerable data, having hundreds, or 
possibly thousands, of moving elements depicted on a display does not make for ease of 
comprehension (even with the best possible human-computer interface design).  Automated 
assistance for operators that supports ready identification of those elements most worthy of 
their attention is one approach for effectively leveraging lower-level fusion products. 
A straightforward, commonly employed method is to use rule-based motion analysis 
techniques. Pre-defined activity patterns can be detected and identified to operators.  
Detectable patterns range from simple trip-wire crossing or zone penetration to more 
sophisticated multi-element interactions, such as rendezvous.  Despite having a degree of 
utility, rule-based methods do not provide a complete solution. 
The complexity of real-world situations arises from the myriad combinations of conditions 
and contexts that make development of thorough, all-encompassing sets of rules impossible.  
Furthermore, it is also often the case that the events of interest and/or the conditions and 
contexts in which they are noteworthy can change at rates for which it is impractical to 
extend or modify large rule corpora. Also, pre-defined rules cannot assist operators 
interested in being able to determine whether any unusual activity is occurring in the track 
picture they are monitoring. Timely identification and assessment of anomalous activity 
within an area of interest is an increasingly important capability—one that falls under the 
enhanced situational awareness objective of higher-level fusion. 
A precursor of being able to automatically notify operators about the presence of anomalous 
activity is the capability to detect deviations from normal behavior. To do this, a model of 
normal behavior is required. It is impractical to consider a rule-based approach for 
achieving such a task, so an adaptive method is required: that is, a capability to learn what is 
normal in a scene is required. This normalcy representation can then be used to assess new 
data in order to determine their degree of normalcy and provide notification when any 
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activity deviates beyond some level of tolerance from the learned representation of normal 
behavior. Additionally, learned normalcy models can be used to predict future vessel 
behavior over timescales beyond the capabilities of standard track fusion/stitching 
engines—that is, on the order of hours to days (depending on the application domain).  
Learning of kinematic normalcy models for use in anomalous behavior detection and future 
behavior prediction are the core elements of the problem addressed in this chapter. 
Numerous real-world constraints must be addressed when developing such capabilities if the 
results are to have any practical, fieldable utility.  Key drivers for these constraints are that 
new track data are continually collected, that activity patterns can change over time, and that 
operators play no more than a limited role in guiding the evolution of the activity pattern 
learning system. It is not realistic to train models in batch mode where all data contributing to 
the learned representation have to be available prior to training onset.  Periodic re-training 
with datasets of ever increasing size is also untenable. A static representation (one that is 
trained from available data then frozen for use against new data) is a suspect approach for 
situations where activity patterns are not static. Given the potentially huge amount of data to 
be processed, it is not reasonable to expect that labels indicating which tracks (or portions 
thereof) are normal and which are not will be applied to the data.  On the other hand, 
sometimes relevant data are relatively scarce.  So, in addition to being able to handle very large 
amounts of data, it is also important to be able to learn useful representations from limited 
amounts of data. These factors further define the problem addressed here. 
Additional considerations also inform our approach. For instance, it is self-evident from any 
real-world situation that behavior is often contingent on ambient context. For example, 
travel patterns of individuals would (it is to be hoped) differ between weekdays and 
weekends or between daytime and nighttime. These are relatively simple contexts, but even 
so, they provide an important role in helping produce accurate representations of normalcy.  
Another example would differentiate between peak hour and non-peak hour periods when 
considering traffic activity patterns on a highway.  During non-peak hours, stopped vehicles 
(or even those moving slowly) would be unusual, and thus worthy of attention (or even 
suspicion), whereas during peak-hours slowly moving traffic may be the norm. Some 
contexts are far more subtle or difficult to determine a priori. Consider the case of a relatively 
permanent change in daily travel of an individual who changes jobs.  Importantly, that 
individual’s initial visit(s) to the new job location – during the interview process, for 
instance – would have registered as deviations from normal workday travel patterns. If the 
job location were available as context data to the system, then a new model for workday 
travel could be learned once the individual’s status had been updated.  In the absence of 
such context information, the original model would slowly be adapted to the new pattern 
due to the incremental learning that takes place. Prior to the new pattern becoming mature 
in the model, this pattern would still be considered deviant. 
To partially address this type of shortcoming, our learning approach can take advantage of 
externally-generated feedback about its performance to refine the learned representations.  
Although they do not ever need supervision to learn normalcy models, our algorithms can 
certainly exploit human subject matter expertise. Via reinforcement learning, operators can 
influence the learned models in a number of ways.  For instance, regarding the last example 
above, if an operator determines that the new pattern of workday travel is indeed normal, 
then that pattern can be selected from a display, labelled as normal, and fed to the learning 
algorithm, which would then label clusters associated with this new pattern as normal.  In 
effect, this speeds up the learning process on the basis of superior human insight.  By the 
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same token, an operator could select a trajectory that the learned model considers normal 
and indicate that it is to be considered anomalous, whereupon the system would 
thenceforth consider any similar trajectory anomalous and produce corresponding 
notification. Another route to reinforcement learning is available via responses to anomaly 
detections. An operator can respond to notifications with agreement or disagreement. 
Disagreement indicates that the responsible behaviour is not anomalous and should be 
considered normal. 
Neurobiological systems such as the human central nervous system are eminently suited to 
the challenges of such problems, so we draw inspiration for the development of automated 
high-level fusion support systems from computational neuroscience. Complementary, 
neurobiologically-inspired learning algorithms reduce massive amounts of data to a rich set 
of information embodied in models of behavioral patterns represented at a variety of 
conceptual, spatial, and temporal levels. Our approach, based on neurobiological principles, 
learns incrementally as new data are available, adapts learned models as underlying activity 
patterns change, and does not rely on labeled data for learning. Before presenting our 
approach in more detail, a brief survey of related work follows. 

2. Related work 
Beyond that from our group, the literature on trajectory-based motion learning and pattern 
discovery for the type of surveillance outlined in the introduction to this chapter is relatively 
sparse, largely due to the nature of the application. However, the more limited field of 
video-based surveillance (surveyed in Hu et al., 2004a and Liao, 2005) has reported advances 
using a variety of approaches, including Learning Vector Quantization (LVQ) (Johnson & 
Hogg, 1996), Self-Organising Maps (SOMs) (Owens & Hunter, 2000), hidden Markov 
Models (HMMs) (Alon et al., 2003), fuzzy neural networks (Hu et al., 2004b), and batch 
expectation-maximization (EM) (Makris & Ellis, 2005). Most of these techniques attempt to 
learn high-level motion behavior patterns from sample trajectories using discrete point-
based flow vectors as input to a machine learning algorithm.  For realistic motion sequences, 
convergence of these techniques is slow and the learning phase is usually carried out offline 
due to the high dimensionality of the input data space. In addition, many of these 
algorithms use supervised and/or batch learning and require statistically sufficient amounts 
of data for constructing normalcy models of motion pattern behavior upon which to base 
anomaly detection and prediction. A noteworthy example that uses on-line clustering has 
been reported by Piciarelli and Foresti (2006). Alas, the dependence of their approach upon 
data acquisition at fixed time intervals for encoding of temporal information in their 
representation is a limitation that cannot generally be satisfied in real-world applications. 
Our work addresses a wider range of issues relevant to real-world applicability and utility 
than the approaches noted above.  We use incremental, unsupervised learning of non-
statistical and statistical representations to deal with variable amounts of data. This 
produces usable normalcy models early in the learning process while data are still limited, 
yet refines the specificity of the models as additional data become available. 

3. Event-level normalcy learning and anomaly detection 
Our approach for detecting anomalous behavior is to assume that normal activity occurs 
frequently, while activity that is sufficiently different from normal activity is rare and 
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anomalous.  In addition, it must be possible to incorporate explicit knowledge about normal 
and anomalous activity when it is available.  One example is a set of vessel traffic data that 
has been analyzed by an operator who has verified that it contains no anomalous activity.  
Such input may also occur after the training data has already been presented; for example, 
an operator is able to select a vessel track from live data and indicate that its activity is 
normal. Thus, it is required that normalcy models be (1) learned continuously in response to 
incoming vessel track data, (2) adaptable to operator input, and (3) capable of recovering 
from operator mistakes. 
To learn context-sensitive models of vessel behavior, we have developed a neural network 
classifier which incrementally constructs a multidimensional Gaussian (hyper-ellipsoid) 
model of each category that is relatively insensitive to outliers and learns the normal pattern 
of behavior independent of the feature dimensions comprising the learning hyper-space.  
When a new data point falls into a particular category, the network updates its parameters 
adaptively to the incoming data and provides an accurate measure of normal/anomalous 
behavior. When a new data point is sufficiently beyond all learned categories, then a new 
category is formed. During classification, the network reports the distance from the data 
point to its closest category.  If this distance is not within the predefined settable threshold, 
then that point is reported as a deviation from normalcy. The maximum size of each 
category hyper-ellipsoid is also a predefined location- and dimension-dependent variable, 
which controls the representational fineness by constraining the size of each category. The 
network is capable of learning (by updating the categories and their associated hyper-
ellipsoids) and classifying (by comparison to the latest hyper-ellipsoid models) data on-the-
fly without any operator intervention. As each model matures, the gradient of certain model 
parameters reaches an asymptote that can be automatically checked for and utilized to 
activate models for classification purposes. The speed and performance of this learning 
algorithm makes it suitable for real-time situations wherein an operator/analyst can 
interactively facilitate the learning process and/or control over the sensitivity level of 
system alerting to control false alarms. These reasons also make this technology suitable for 
event-level learning in maritime domain awareness (MDA) or other tracking applications. 

3.1 Example results 
Figure 1 illustrates a two-dimensional projection of the learned representation from vessel 
track data recorded in the Miami Harbor vicinity during August 2004.  Each category is 
represented by an ellipse, which accounts for 99% (3 standard deviations around the mean) 
of the data within that category.  One aspect of this learned representation is worthy of note 
here. Panning from west to east (left to right) across the figure the potential locations of 
vessels become less constrained. In fact, in the east-most section of the region, the learned 
representation spans the location space.  It should also be noted that the great majority of 
the learned category ellipses in the east-most area are uniformly pale, an indication that the 
pattern of travel within this area does not follow particular navigation routes. The darker 
ellipses indicate higher traffic areas. Figure 2 shows the learned 4-dimensional model of 
same model illustrated in Figure 1. Note that as vessels get closer to the port, they reduce 
their speed and travel in east-west direction (red-blue ellipsoids) through a narrow channel. 
The left panel in Figure 3 shows the percentage of track reports as a function of Mahalanobis 
distance to the center of closest category for a two-dimensional model (based on position: 
longitude and latitude) of each individual vessel. The thick black curve shows the mean  
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Fig. 1.  Two-dimensional depiction of normalcy model learned from six months of real AIS 
vessel surveillance data from the Miami Harbor area (based on 4 dimensions – latitude, 
longitude, speed, and course).  A map of the relevant region is overlaid with the learned 
representation of normal event activities as a set of shaded ellipses.  Darker shading is 
proportional to the number of observations in an ellipse. 
 

 
Fig. 2.  Four-dimensional depiction of learned model illustrated in Figure 1.  Ellipse coloring 
indicates principal vessel course: red = eastward, blue = westward, green = northward, 
yellow = southward.  Towards the harbor region velocity decreases (as indicated by the 
lower ellipses). 
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across all vessels with more than 2000 track reports. The right panel in Figure 3 shows the 
mean of percent track reports for 2D, 3Dspeed (position, and speed), 3Dcourse (position and 
course) and 4D (position, speed, and course) models of normalcy patterns. Note that all four 
curves approximately follow a Gaussian distribution pattern. As each category accumulates 
more data, the distribution of data within each category becomes closer to a Gaussian 
distribution. 
In order to adaptively learn not only the model categories, but also the scale at which they 
are learned over time, we have developed an enhancement to our learning approach that 
applies the concept of scale space to our learning algorithm. This is a familiar concept in the 
field of computer vision, in which (Gaussian or Laplacian) image pyramids are used to 
efficiently represent and analyze images at multiple scales of image resolution (Burt & 
Adelson, 1983). In our multi-scale learning enhancement, multiple models are learned 
simultaneously as different model layers, with each successive layer having a scale 
parameter that results in a coarser scale model being learned than the model in the previous 
layer. This is an efficient learning representation because, while multiple model layers are 
learned, the coarse-resolution model layers use larger and fewer categories than the fine-
resolution model layers (see Figure 4). Although multiple model layers are learned 
simultaneously, only one of the model layers is “active” at any given time for the purpose of 
detecting deviations and alerting. As learning proceeds the average category evidence in 
each layer is monitored, and this value is used as the criteria for switching between model 
layers. 
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Fig. 3.  Proportion of track reports beyond Mahalanobis distance from ellipse centroids as a 
function of ellipse standard deviations.  Left: Individual vessel model functions; thick black 
line is the average function over all vessels.  Right: Average functions for differing model 
dimensionality. 

4. Inter-event normalcy learning and anomaly detection – behavior prediction 
Learning for behavior prediction aims to predict the future position of a vessel given its 
current behavior (location and velocity).  Essentially, this involves learning links between 
behavioral events. It is important that the prediction learning system operates 
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autonomously so as to not make demands on already busy operators.  Also essential is that 
learning occurs incrementally in order to allow the system to take advantage of increasing 
amounts of data without having to take the system offline in order to batch process massive 
amounts of data.  An additional benefit of this incremental approach is that the system will 
be able to adapt to changing behavior patterns automatically. For these reasons, our learning 
approach for this task is based on the associative learning algorithm introduced in Rhodes 
(2007) and extended in Bomberger et al. (2006), Rhodes et al. (2007a), and Zandipour et al. 
(2008).  Weights between grid locations change via presynaptically gated Hebbian learning.  
The set of weights in which learning takes place is determined by the velocity state of the 
vessel at the start of each temporal prediction window.  Learning is based on the associative 
learning algorithm, as described in Rhodes et al. (2007a): 

 Δ = ⋅ ⋅ −
1 ( )ijk jk ik ijk

jk

w x x w
N

  (1) 

where Njk is the number of times that node j has been activated in the kth set of weights 
(which corresponds to the vessel velocity state at the beginning of the prediction interval, 
indexed by k), wijk is the connection weight from node j to node i, and xjk and xik are the 
activations of grid locations j (location at the start of the period—the source location) and i 
(location at the end of the period—the target location) respectively. Note that the learning 
rate is node-dependent, such that it decreases with the amount of activity that has been 
encountered by a node. For a node j in the kth set of weights, the learning rate first starts at a 
maximum of 1 and then decreases inversely with Njk. Each node thus begins in a fast-
learning mode, and then the weights are slowly tuned as more data is presented.  Learning 
is presynaptically-gated by activation at the source location. If this location is not active, 
then no connections from this location to other locations will change their weights.  If the 
source location is active, then links with active target locations will increase their weights 
and links with inactive target locations will decrease their weights. Given the binary 
activations used in the network, weights are bounded between 0 and 1 and the size of 
weight changes is governed by the learning rate and the size of the current weight. This 
data-dependent learning rate causes the learned weights to accurately track the conditional 
probabilities encountered in the training data.  In contrast to neural network approaches 
that use batch learning to minimize a global error function with a limited set of hidden 
weights, this associative learning approach is both incremental and local, and each weight can 
be physically interpreted as part of a probability density function.  The incremental and local 
nature of the learning process causes the model to adapt as new data is received and is less 
prone to convergence to local extrema since there is no global error function to be optimized. 
This form of learning has a number of attractive properties for the current application.  First, 
more frequent combinations of source and target locations are rapidly learned, as indicated 
by larger weights.  Second, random/infrequent combinations will cause learning when they 
occur but will also be unlearned through weight decay when they do not occur. This 
property also provides noise tolerance. Third, the system is able to automatically track 
changes in behavior over time. Fourth, the system is also able to maintain multiple sets of 
models for alternating operating conditions, for example, to capture seasonal differences or 
other factors. Fifth, the learning is entirely unsupervised, and requires no operator 
intervention. 
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Fig. 4. As more data are received, the normalcy models fill in at the various spatial scales.  
Those with coarser resolution ‘mature’ earlier (top), but gradually those with finer 
resolution develop sufficiently to be used (middle, then bottom).  Data-driven utilization of 
finer resolution models serves to maintain detection sensitivity (while enabling rapid initial 
use of less precise models). 
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4.1 Example results 
From the same recorded AIS dataset used in Section 3, we utilized vessel location (latitude 
and longitude) and velocity (course and speed) as the basis for demonstrating our 
mechanism for predicting future vessel behavior.  We placed a square grid over the area of 
interest surrounding the port of Miami so as to discretize vessel location (see Figure 5).  We 
also defined a discretization of vessel velocity that enables learning to be contextually 
specific to the behavior of the vessel. Thus for each vessel report, we were able to place the 
vessel in a grid location having a velocity state.  For purposes of exposition, the chosen 
temporal prediction horizon is 15 minutes. 
 

Zone 1 Zone 2 Zone 3 Zone 4 

Westward 

Eastward 

Target Vessel 

Predicted Positions 
(after 15 min) 

Future Position 
(after 15 min) 

 
Fig. 5. Snapshot from Miami Harbor surrounds depicting system operation. The location 
multi-scale grid is superimposed over an ENC map of the area. Current vessel location is 
indicated on the map by circular markers and identification numbers.  One vessel (ID 
107793) has been selected for prediction display (as indicated by the larger, brighter 
marker). The actual future position of this vessel at the end of a 15 minute prediction 
horizon is indicated by the diamond.  Model predictions of future location are indicated by 
highlighted grid locations. The strength of the weight underlying each prediction is 
indicated by the highlight intensity (pale=small weights; dark=large weights). Since the 
actual future location falls within a predicted grid location, this example represents a hit.  
The map is overlaid with zones that we have imposed for analysis of prediction results.  
Grids in zone 4 are four times larger than grids in zone 3, and 16 times larger than grids in 
zones 1 and 2. 

To determine performance, we compared the set of grid locations (and corresponding 
weights) predicted by the model based on the current location and velocity state of each 
vessel to each vessel’s corresponding actual location 15 minutes into the future. 
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Each location prediction consists of a set of grid locations (the target states) and the 
corresponding model weights from the grid location determined by the known location and 
velocity of the vessel (the source state).  The set of weights from the source state to the target 
states forms a probability density function, where the weight to each target state represents 
the conditional probability that it will occur in 15 minutes given that the source state has 
occurred. 
Recall, precision, accuracy, and coverage statistics were calculated periodically.  Coverage 
provides a measure of how well the learning has progressed in terms of being able to make 
predictions for all events presented to the model. Recall and precision are standard 
information retrieval metrics for assessing model performance. Recall is equivalent to PD 
(probability of correct detection) and is an absolute measure of prediction accuracy.  
Precision is related to PFA (probability of false alarms), which decreases as recall increases.  
Accuracy—as defined here—is a relative measure of prediction accuracy in that it measures 
the probability of correct prediction made.  In contrast, recall factors in all events irrespective 
of whether a prediction was made or not.  Rhodes et al. (2007a) showed that recall is the 
most relevant metric for evaluation of prediction performance. In order to generate a 
prediction at a requested recall level, a subset of the predicted grid locations is selected by 
adding predicted locations (in order from highest to lowest weight) until the sum of the 
weights exceeds the requested recall level. 
Due to fast learning (to a weight of 1) at a node when it is first activated, coverage less than 1 
indicates that some of the vessel states for which predictions are to be made have never been 
previously encountered. Accuracy differs from recall only to the extent that vessel states for 
which predictions are to be made have not been encountered before. The important measure 
is whether the predicted grid locations contain the actual future vessel location with the 
same probability as the recall level that is requested.  That is, does the actual recall match the 
requested recall threshold (TR)? Ideally, actual recall should always match requested recall.  
Therefore, the plot of actual recall vs. requested recall threshold should ideally produce a 
straight line with slope of 1 (and 0 intercept). 
The recall vs. requested recall threshold (TR) is plotted in Figure 6 for all zones and speed states, 
along with the coverage, accuracy, and precision. The solid black line (slope = 1) illustrates the 
recall performance of an ideal predictor for reference, for which the actual recall matches the 
requested recall level. As described earlier, coverage is less than 1 when vessel states for which 
predictions are to be made have not been encountered before, and thus is constant as TR 
increases. Accuracy differs from recall only when coverage is less than 1. Precision decreases 
with increased TR, having a shallow slope. The most important quantity from Figure 6 is 
how well recall matches the requested recall level. If the match is good, the predictions are 
accurate with respect to the uncertainty in the underlying data distribution, so lower 
precision can be tolerated. 

5. Discussion 
The neuro-cognitively inspired learning algorithms and representational paradigms 
described here have been remarkably successful in a variety of application domains. We 
have previously reported their use in a prototype program for port and littoral zone 
surveillance and automated scene understanding (Rhodes et al. 2006, 2007b). We also have 
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Fig. 6.  Prediction results compiled across all zones.  The top panel is based on a uniform 
grid; the middle and bottom panels are based on 2-scale and 3-scale grids respectively.  The 
multi-scale grids had significantly better results on the metrics.  Recall (red), coverage 
(magenta), accuracy (green) and precision (blue) are plotted vs. requested recall.  The solid 
black line (slope=1) illustrates the recall performance of an ideal predictor for reference. 
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unreported success in other maritime domain awareness applications as well as land-based 
applications. The latter have been based on data from platforms such as surveillance towers 
and UAVs. 
Learning-based track data analysis and exploitation as a surveillance and monitoring 
capability is an emerging new capability that becomes increasingly important as constraints 
on personnel clash with increasing needs for vigilant watchkeeping. These capabilities 
contribute to higher-level fusion situational awareness and assessment objectives. They also 
provide essential elements for automated scene understanding to shift operator focus from 
sensor monitoring and activity detection to assessment and response. 
While having performed well in a variety of prototype level situations, our current effort 
represents first-generation technology. It is not yet mature enough for operational use. Each 
new application area produces new insight into the strengths and weaknesses of the 
algorithms and how they should be embedded into an overall system. Studying 
performance characteristics under a variety of circumstances enables the robustness and 
generality of the algorithmic components to be identified and enhanced.  This also permits 
incorporation of situation specific functionality as needed to meet specific operational 
requirements. It is also often the case that insights gained from a new domain yield 
solutions that are beneficial across numerous domains. 

6. Future research 
Although the approaches described here have met with considerable success in a variety of 
domain applications, much remains to be done to produce a truly effective capability.  For 
example, we have begun to move beyond the kinematic trajectory domain to address 
abnormality detection problems in other fields. Once we have multi-domain normalcy 
learning capabilities, it will be important to fuse across those domains in order to enhance 
anomaly detection. Consider, for example, a potential situation where a given activity 
pattern is considered normal in each of two domains judged independently, but determined 
to be deviant when the domains are jointly judged. 
Other lines of pursuit include enhancing the flexibility of the contextually-sensitive aspect of 
our learning approach and refining the reinforcement learning approach used to incorporate 
operator feedback. In the former case, our current approach treats contexts in a discrete 
manner, proscribing capabilities such as mixing contexts to determine normalcy of current 
activity patterns or interpolating between contexts to account for previously unseen 
combinations of contextual conditions. As for reinforcement learning, enhancing the model 
refinement utility offered to operators is the key objective. Model fidelity and integrity need 
to be maintained while enabling user-specific insights and expertise to be incorporated via 
simple, intuitive interactions with the system. Moreover, potentially divergent interests of 
different users have to be accommodated in any tool in order for it to be useful in situations 
where multiple operators will be interacting with it. 
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1. Introduction 
The increasing complexity of the artificial implementations of biological systems poses 
issues in sensory feature extraction and fusion, drift compensation and pattern recognition, 
especially when high reliability is required [1, 2, 3, 4]. In particular, in order to achieve 
effective results, the pattern recognition system must be carefully designed. At present, 
these instruments often fail to give the expected results and research is under development. 
This happens for a series of concomitant causes, ranging from the measurements, to the 
limits relevant to instability and non-reproducibility of most existing sensors, up to the 
inappropriate use of the pattern recognition scheme, i.e. the perception of an odour/taste 
and its classification through the comparison with similar stimuli perceived in the past. 
Many techniques are used for this purpose, but recently, the processing architectures are 
often performed by models inspired by biology, such as genetic algorithms and Artificial 
Neural Networks (ANN) [4, 5, 6]. Enhancing the reliability of high-level processing systems 
represents the next critical step. Such architectures require high-efficiency interconnection 
and co-operation of several heterogeneous modules, i.e. control, data acquisition, data 
filtering, feature selection and pattern analysis. Heterogeneous techniques derived from 
chemometrics, neural networks, fuzzy-rules used to implement such tasks may introduce 
module interconnection and cooperation issues [7, 8]. It may not be reliable to establish a 
multi-channel communication among common artificial neural networks tools, feature 
extraction and selection processes, and acquisition and control systems. Moreover, high 
level interfaces often do not allow adapting of the architecture and/or the processes 
topology at run-time. As a result complex processing methods have to be designed. A real-
time approach for data analysis requires the realization of interconnected modules which 
are capable to establish an efficient communication channel. In this way the application 
should be able to control all modules of the elaboration chain, including analysis protocol 
management and sensory and actuating interfaces. 
The body is felt as a unity, with different qualities at different times and the brain 
mechanism that underlies the experience also comprises a unified system that acts as a 
whole and produces a neurosignature pattern of a whole body [9]. A distributed processing 
throughout many areas of the brain, comprises a widespread network of neurons that 
generates patterns, processes information that flows through it, and ultimately produces the 
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pattern that is felt as a whole body possessing a sense of self. The stream of neurosignature 
output with constantly varying patterns riding on the main signature pattern produces the 
feelings of the body-self with constantly changing perceptual and emotional qualities. The 
new breakthroughs made in the past few decades in material science in order to develop 
intelligent sensing materials built in compliance, non-linearity and softness allow to mimic 
the multi-component and bi-phasic nature of biological matter. Moreover, intelligent 
algorithms allow the transduction signals to be effectively reconstructed. In order to provide 
an artificial neural network architecture with the capabilities of processing, coding and 
fusing in real-time the distributed information continuously flowing from an artificial 
distributed sensing network, in this chapter a mammalian cortex inspired model is 
described. 
According to the biological sensory systems, where environmental stimuli are deconstructed 
and then reconstructed in the brain to create perceptions [10], the presented architecture 
may help dealing with a dynamic and efficient management of multi-transducer data 
processing techniques, as well as serving as an initial step in the reconstruction of a fused 
image from its deconstructed features. The raw signals obtained from artificial 
implementations of biological systems can be preprocessed in order to extract relevant 
features. Features vectors constitute the dataset for sensory fusion and the pattern 
recognition processes. Fusion and processing are achieved by the homogeneous software 
frameworkwhere, in order to gain short-term priming in co-operation with other modules, 
artificial neural models and architectures inspired to the mammalian cortex [11, 12, 13, 14] 
are implemented. Artificial neuron models with high computational efficiency and 
biological accuracy are adopted to obtain a learning strategy able to avoid catastrophic 
interference [15, 16, 17] and to enable a selection of neuronal groups [18]. To take into 
account this theory the time variable in the learning task is used, so that neural groups may 
raise from a selection process. 
The framework is able to manage at the same time transducer devices and data processing. 
Synchronization among modules and data flow is managed by the framework offering 
remarkable advantages in simulation of heterogeneous complex dynamic processes. Specific 
control processes, pattern recognition algorithms, sensory and actuating interfaces may be 
created inheriting from the framework base structures. The architecture is library-oriented 
rather than application-oriented and starting from the base models available in the 
framework core dedicated models for processes, maps and connections may be derived. 
Such a strategy permits the realisation of a user-defined environment able to automate the 
elaboration of cooperating processes. Etherogenous processes will be able to communicate 
each other inside the framework as specified by the user. The framework architecture has 
been designed as a hierarchical structure whose root is a manager module. It is realised as a 
high-level container of generic modules and it represents the environment in which process 
modules and I/O filtering interfaces are placed. Modules may be grouped recursively in 
order to share common properties and functionalities of entity modules belonging to the 
same type. Communication channels are realised as connections through specific projection 
types that specify the connection topology. Connections are delegated to dispatch 
synchronization information and user-defined data. The filtering interface modules are able 
to drive the transducer hardware and to dispatch information to process modules. All base 
modules manage dynamic structures and are designed to maintain data consistency while 
the environment state may change. High level processes such as control processes and 
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pattern recognition algorithms are defined as application processes inside the framework. 
Such processes inherit properties and functionalities from the framework base structures, 
taking advantage of automation capabilities provided by the framework core. The 
framework allows to create a communication language between the framework core and the 
hardware architecture. This guarantees an increased flexibility thanks to the presence of 
interfaces performing the function of interpreters for the specific hardware and filters which 
specify the way the framework core senses and communicates the information. 

2. A framework solution for high complex tasks 
From a general point of view, a complex system consists of different modules cooperating in 
order to perform data acquisition from multiple sensors, data analysis through several 
techniques and data redirection to the actuator systems. The architecture here proposed 
addresses three main issues: 
• acquisition from sensors: a protocol interface will be available to dispatch data coming 

from input systems; for each hardware sensory system the user will realize the software 
driver to filter the signals and to dispatch data to the framework core via the framework 
I/O interface. 

• data processing: inside the framework core all the processes will be specified by the 
user; for each process the user will specify the algorithms, the connection topology 
between other processes and, optionally, the geometrical structure. 

• actuator driving: a protocol interface will be available to dispatch data from the 
framework core; for each hardware actuating system the user will realize the software 
driver to filter the data and to dispatch the signals from the framework I/O interface to 
the actuating systems. 

The design of a versatile instrument for data management and elaboration should be 
suitable for those systems which are equipped with distributed transducer devices, where a 
particular attention should be paid to inter-process communication. Applications of such 
instrument space from the simple elaboration of signals supplied by sensory and actuating 
networks, to pattern analysis and recognition techniques. Design specification included the 
ability to let the system to be able to operate in real-time. The realization of a framework 
able to perform a parallel device management should give to all the modules the ability to 
cooperate and the possibility to share data coming from sensory systems and directed to the 
actuating systems. The possibility to operate in real time imposes critical efficiency 
requirements to each single module. The framework design pays attention to the 
management and the synchronization of data and processes. Control modules and pattern 
recognition algorithms are defined as application processes inside the framework. The 
framework is realised as a software library in order to exploit the potentials of the 
computational algorithms and to enhance the performances of the processing techniques 
based on artificial neural networks. The architecture is able to manage at the same time 
transducer devices and data processing. Synchronization among modules and data flow is 
managed by the framework offering remarkable advantages in simulation of heterogeneous 
complex dynamic processes. Specific control processes, pattern recognition algorithms, 
sensory and actuating interfaces may be created inheriting from the framework base 
structures. 
In order to exploit the potentials of the computational algorithms and to enhance the 
performances of control processing techniques, the framework is realised as a C++ software 
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library. In this way the library architecture is a re-programmable instrument available to the 
user to develop specific applications. It has been designed to be portable to any software 
platform in order to gain abstraction from the operating system. The framework however 
needs a low-level software layer to perform kernel re-building and low-level system calls. 
An Intel-based personal computer is actually being used and a commercial operative system 
grants the low-level communication. 

2.1 I/O device communication 
The framework core and application processes are interfaced with the outside world 
through the framework I/O interface. This layer has been developed in order to act as a 
buffer for the flow of information coming in from the sensors and out to the actuators. With 
this strategy sensory fusion is gained enabling an abstraction with respect to the specific 
technology of the transducers used. Signals coming from the sensors are gathered in parallel 
and are encoded according to a standard protocol. The encoded information is received by a 
specific filter for each sensor, which then sorts them to framework I/O interface. For each 
actuating system a mirror image architecture has been reproduced with respect to the one 
described for the sensors. The information available in the framework I/O interface is 
encoded by a filter using the same standard protocol. A specific interface for each actuator 
pilots its specific hardware system. This architecture allows setting up a communication 
language between the framework core and sensory and actuating devices. This guarantees 
an increased flexibility thanks to the presence of interfaces performing the function of 
interpreters for the specific hardware and filters which specify the way the framework core 
senses and communicates the information. Fig. 2.1 shows the flow of information to and 
from the framework core. Communication channels are established as connections between 
application processes so that framework is able to perform a low-level inter-process 
communication. The domain of data flowing through connections and the flow chart of the 
application processes are user-defined. 

2.2 Parallel distributed processing  
Synchronization among modules and data flow is managed by the framework offering 
remarkable advantages in simulation of heterogeneous complex dynamic processes. Specific 
control processes, pattern recognition algorithms, sensory and actuating interfaces may be 
created inheriting from the framework base structures, taking advantage of process 
automation provided by the framework core. A spatial definition of the entities involved in 
the framework can be supplied, making this information available to the control system for 
subsequent processing. To guarantee the execution of real-time applications an inner 
synchronization signal is provided from the framework core to the processes and to the 
framework I/O interface, enabling to gain time-space correlation. A dynamic geometrical 
representation can be visualised by a high efficiency 3D graphic interface, giving a support 
during experimental setup debug. Processes and connections are managed at run time and 
they can be manipulated under request. The presence of dynamic structures implies a 
configurable resource management, so the framework offers an optimised interface for 
enumeration and direct access requests. 

2.3 Control and processing modules  
The framework architecture has been designed as a hierarchical structure whose root is a 
manager module (3DWorld ). It is realised as an high-level container of generic modules 
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Fig. 2.1. Architecture of the framework for the parallel management of multiple elaboration 
processes. The transducer devices are synchronized and controlled through an appropriate 
I/O interface 

representing the environment in which process modules (W) and I/O filtering interfaces are 
placed (Drivers). All these modules inherit low-level properties and functionalities from a 
base module (3DObject ) realised as an element able to populate the process environment. 
Virtual and pure-virtual functionality strategies have been applied to this base module in 
order to obtain an abstraction with respect to the generic application task. In this way the 
core is able to process user-defined functionalities without being reprogrammed. Moreover, 
modules may be grouped recursively (WGroup) in order to share common properties and 
functionalities of entity modules belonging to the same type. Communication channels are 
realised as connections (WConnection) through specific projection types that specify the 
connection topology. Connections are delegated to dispatch synchronization information 
and user-defined data (WConnectionSpec). The filtering interface modules are able to drive 
the transducer hardware and to dispatch information to process modules. All base modules 
manage dynamic structures and they are designed to maintain data consistency while the 
environment state may change. This behaviour permits the execution of dynamic and real-
time parallel distributed processing while synchronization and data flowing are managed 
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by the environment. All modules are realized as running processes while their control and 
synchronization is managed by the framework. The hierarchical and collaboration chart of 
the base structures is shown in Fig. 2.2. 
 

 
Fig. 2.2. Inheritance and collaboration diagram of the main modules of the framework core: 
I/O interfaces, communication channels, processes 

3. Framework overview 
Architecture implementation details will be showed in this section making use of the 
Unified Modelling Language (UML) representation. In Fig. 3.1 the legend is showed. 
 

 
Fig. 3.1. Graph relationship legend 

The boxes in the above graph have the following meaning: 
• A filled black box represents the struct or class for which the graph is generated. 
• A box with a black border denotes a documented struct or class. 
• A box with a grey border denotes an undocumented struct or class. 
• A box with a red border denotes a documented struct or class for which not all 

inheritance/containment relations are shown. A graph is truncated if it does not fit 
within the specified boundaries. 

The arrows have the following meaning: 
• A dark blue arrow is used to visualize a public inheritance relation between two classes. 
• A dark green arrow is used for protected inheritance. 
• A dark red arrow is used for private inheritance. 
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• A purple dashed arrow is used if a class is contained or used by another class. The arrow 
is labeled with the variable(s) through which the pointed class or struct is accessible. 

• A yellow dashed arrow denotes a relation between a template instance and the 
template class it was instantiated from. The arrow is labeled with the template 
parameters of the instance. 

The implementation will be described using technical object-oriented language terms. To 
avoid confusion main terms are resumed: 
• an object is an synonymous word for a class or a structure and it defines a new data type. 
• an instance of an object is a variable declared as object type. 
• an object's property is called member. 
• an object's function is called method. 
• a derived object is a child of another object, and it inherits properties and functionalities 

from his father object, which is called base object. 
• a private member or method is accessible only inside the object. 
• a protected member or method is accessible both from the object and from a derived object. 
• a public member or method is always accessible. 
• while structures start implicitly with public definitions, classes start implicitly with 

private definitions. 
• a virtual method defines a function that, if it is overridden in a derived object, cause the 

call to derived method even it is called on the base object. 
• a pure-virtual method is undefined in the base object and, as a result, the base object can 

not be instantiated. 
• an abstract object contains only pure-virtual methods. 

3.1 Portability  
Since the framework library is written using the C++ programming language, the software 
portability is guaranteed by the standard ANSI-C/C++ definitions. However the low-level 
interfaces depend on the particular libraries of the operative system. For this reason a low-
level layer was defined to include all the dependencies for the specific platform. The low-
level layer (ARI_Macro) has been realised defining a set of operations for run-time memory 
management (allocation and deallocation), file I/O interface, log reports and window assert 
dialogs. All these operations are implemented as C++ macro and they will be used by the 
framework for all the low-level operative system interfacing. 
Graphic User Interface (GUI) is not embedded in the framework in order to not slow down 
the application efficiency and to let the user to be able to choose his preferred tools. Since 
each of the framework objects provides functions to get information about the status and the 
output data, the GUI tools are developed as external modules that can be linked to the 
architecture. Main graphic output is guaranteed by OpenGL rendering, which libraries are 
available for many hardware platforms. If the user choose to use OpenGL support, then he 
must link OpenGL libraries to his application. Application GUI is actually supplied for 
Microsoft Windows operating system, including useful tools for layered graphs (MGraph) 
and OpenGL dialog windows (glCDialog). While data storage is already supplied by the 
framework, additional end-user tools are available for file tables (TabData) and database 
tables (TabDataConn) supporting MySQL, SQLServer and general ODBC drivers. Since all 
these tools are external they not compromise the architecture efficiency, making the user 
able to choose his appropriate strategy. 
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3.2 Containers  
Container structures have been developed adopting a template-object strategy. A chunk-
memory-allocation strategy has been applied to dynamic containers in order to obtain a 
configurable compromise between flexibility and direct memory access efficiency. Iterators 
have been defined for such dynamic structures in order to perform high-efficiency list 
browsing. Static arrays are able to perform real-time memory reallocation. Basic containers 
are showed in Fig. 3.2. 
 

 
Fig. 3.2. Basic containers implemented in the framework. A chunk-memory allocation 
stategy has been applied to dynamic containers 
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3.3 The base structure: 3DObject  
The basic element of the framework is called 3DObject. This is an element able to perform 
basic functions which are useful to many of the modules included in the framework. 
3DObject properties include a label, a 3D position, a 3D radius and a set of user-defined 
flags. The label will be useful for log reports, application debug and for easy high-level 
object identification. The default label will be associated with the hexadecimal memory 
address of the object, which is unique during the execution of the application. Three-
dimensional position and radius will be useful for graphic rendering under user request. 
Such values are initialised with null values, since the rendering functions are optional. Flags 
specify the way in which the object manager will process the object (see 3DWorld ). By 
default no flag is set for a 3DObject. 
Several functions has been supplied for this base object in order to guarantee I/O transfers, 
3D management and flags maintenance. Since process objects will be derived from 3DObject, 
a set of virtual functions has been defined to perform process synchronization and update. 
The use of virtual functions guarantees the ability of the object manager to call redefined 
functions on derived objects without knowing them. User-defined processes have to follow 
the base virtual protocol, redefining the way in which synchronization and update 
operations are performed. In Fig. 3.3 the 3DObject architecture is showed. 
 

 
Fig. 3.3. Architecture of the 3DObject structure. This is the base object used to populate the 
process environment managed by the 3DWorld structure 

Defined virtual functions are Render, SetInput and Update. Each of these functions will be 
called by the object manager only if the appropriate flag is set. Such strategy makes the user 
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to be able to specify virtual overrides for his specific processes. Render function will specify 
the way in which the object will be graphically rendered. OpenGL is the default renderer, 
permitting an high efficient three-dimensional output. Graphic rendering is useful for object 
status monitoring during application execution and debug. The definition of a rendering 
function does not reduce object efficiency since Render virtual function will be called only if 
screen repainting is needed and if the rendering flag has been set. 
SetInput and Update functions specify the core process algorithms. The first method is 
needed to workaround the serial processing of all the objects. In fact the parallel execution of 
all the process objects will be serialized by the low-level CPU scheduling. The order of the 
execution of each process may compromise the effective result of the process network in the 
case of multiple cooperating processes. For this reason the object manager will first call the 
SetInput method over all the processes with the intent of buffering the actual output data 
over communication channels (see WConnection). After this buffering step, the Update 
method will be called over all the objects making use of the buffered connection data instead 
of the object actual output data. Such a strategy guarantees the independence from the 
process execution order. Default base method just defines the virtual processing and 
rendering protocol. 
The same virtual strategy has been adopted for buffers and files data storage. A set of virtual 
functions has been defined to perform an object independent way for file I/O (ToFile, 
FromFile) using platform independent file operations. Such methods use buffer virtual 
functions (ToBuffer, FromBuffer, GetBufferLen) which will be specified by the user for each 
process. Default implementation of buffer virtual methods just defines the buffering I/O 
protocol. 

3.4 The object manager: 3DWorld  
Synchronization and update of all the running processes is managed by 3DWorld. This 
structure is a collection of 3DObject. Elements are organised in a dynamic list where the 
access order is often sequential. 3DWorld provides the execution of specific methods for all 
the objects added during an initialisation step. Internally 3DWorld manages the reference of 
each object and not the object itself. This strategy speeds up the enumeration of the 
elements, giving to the user the opportunity to override the manager behaviour and to gain 
the direct control of each single element. Elements may be added and removed at run-time 
(AddObject, RemoveObject ) while the execution of process virtual methods is managed 
accordingly to the active flags of each elements (Render, SetInput, Update). 

3.5 The base process structure: W  
The process base structure inherits properties and functionalities from 3DObject. W is a 
generic transferring function, which is able to communicate with structures of the same base 
type. Communication channels are established as connections and the domains of input and 
output data are defined by the user. For this reason a pure-virtual strategy has been applied 
to this structure to take into account a processing method (Process) which is still not defined 
at this level. For this reason a W structure can not be instantiated. It only defines the process 
standard protocol and provides topology connection methods. Render, SetInput and Update 
flags are automatically activated in the initialization step. The architecture of W structure is 
shown in Fig. 3.4. 
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Fig. 3.4. Architecture of the W structure. It represents the base process model 

W is a template structure where OUTDATA and CONNSPEC types are user-defined. While 
OUTDATA represents the output pattern, CONNSPEC contains the specification for each 
input connection. The 3DObject virtual method Update is redefined to set the new output 
value accordingly to the result of the pure virtual method Process, which will be specified in 
derived process structures. Actual process output can be retrieved using GetOutput method. 
W provides methods to specify the connection topology of the single process (AddInputFrom, 
AddOutputTo) in respect to the other input and output processes. SetInput method is 
redefined to perform a scan over all the input connections and to transfer the actual output 
value of input process to the connection buffer (see WConnection). For sake of efficiency the 
starting point for both input and output connections is stored in each W structure. Since 
connections are usually browsed sequentially, enumeration methods are provided to 
perform high efficient navigation over input and output connections (First, Next, End). In 
derived structures the Process method has to be redefined to perform the core process 
algorithm, taking into account the specific data connection and the data output given by 
each input process, which are already buffered into the corresponding input connection. 
Process method is defined as private function, so it can not be directly called by the user 
since it is automatically managed by the framework during the update step. With this 
strategy the process, which core is still undefined, is able to manage the unknown 
information of the user-defined process. 
Buffer I/O operation (GetBufferLen, ToBuffer, FromBuffer) are redefined to provide data storage 
for actual process output and for the actual specification values for all the input connections. 
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3.6 The connection between two processes: WConnection and WConnectionSpec  
A connection between two process is realised by the Wconnection template structure. Since 
input connections for a given process are embedded inside the process itself, the template 
types are the same used for W structure. WConnection stores references of both source and 
destination processes. A field of OUTDATA type is stored to perform data buffering. In fact 
during the SetInput step on the destination process, the GetOutput method is called over the 
input process and the resulting value is stored inside the connection. While the W structure 
contains the references of both the first input connection and the first output connection, the 
next links to connections are stored into two dynamic lists inside the WConnection structure. 
In Fig. 3.5 an example of this strategy is shown. 
 

 
Fig. 3.5. Connection strategy example. Each process contains the references of both the first 
input connection and the first output connection. Each connection contains the references of 
both the source and the destination process, plus the references to both the next input 
connection and the next ouput connection 

Inside the WConnection structure a field of CONNSPEC type is used to store the specific 
information needed by the destination process to evaluate the output data given by the 
source process. The base class for the CONNSPEC type is the WConnectionSpec structure. 
This structure is an abstract class where only a pure virtual method is defined (Init ). This 
method will be automatically called during the creation of the connection to perform the 
initialisation of the CONNSPEC values on the basis of the user-defined parameters. This 
structure only defines the connection initialisation protocol and must be redefined in the 
derived structures. 

3.7 Grouping processes: WGroup and WProjectionSpec  
Processes may be grouped into a WGroup structure, which template arguments are the same 
of the W structure (OUTDATA, CONNSPEC). Since this structure only contains the 
references to several W structure, the user does not lose the control over each single process. 
Grouping processes results in a logical managing of several objects, which can be added and 
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removed at run-time (Add, Remove methods). 3DObject is the base class for the WGroup 
structure, permitting the redefinition of the virtual functions for flag, synchronization and 
I/O mangement over all the grouped entities. WGroup contains its own flags, with the 
possibility to propagate flags to each grouped entity (AddFlags, RemFlags, SetFlag, IsSetFlag). 
With the same strategy adopted for the 3DWorld structure, WGroup is able to propagate 
rendering and synchronization signals over grouped entities according to their active flags. 
By default these flags are activated only for the group and they are not propagated to the 
sub-entities. Since the WGroup structure has its own geometrical position and volume, a 
Dispose function is supplied for geometrically disposing all the grouped entities according to 
their volumes. Such information will be automatically taken into account during the 
framework rendering processing. 
WGroup contains useful methods to create connections both to other groups and to other 
single processes. Since these methods (AddInputFrom, AddOutputTo) may involve more than 
one entity, connections are realised through projection specifications (WProjectionSpec). 
During the projection initialisation step, the framework looks for projection flags in order to 
perform the user-specific connection strategy. Currently one-to-one, N-to-one, uniform random-
to-N, sub-group-to-N and polar-random-to-N flags are supported (see WGroup.h header file). 
Since the entities inside a group are often browsed sequentially, high efficient iterators are 
defined also for this structure. I/O buffering operations are redefined to automatically join 
I/O buffering operations of each grouped entity. The Wgroup architecture is shown in Fig. 
3.6. 

 
Fig. 3.6. Architecture of theWGroup structure. Many entities may be grouped togheter in 
order to create an high-level entity able to populate the process environment 
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3.8 SensorDriver and ActuatorDriver  
The SensorDriver structure is the starting point for filtering input data coming from the 
generic input system. This structure directly derives from 3DObject and uses IFNeuron and 
IFNeuronGroup structures. These two structures are specifically designed for artificial neural 
networks using the integrate-and-fire model, as it will be discussed later. However at this 
level they are used as buffering structures where the process functions (Set-Input, Update) 
are skipped by the framework. This choice, as it will be shown, does not cause lack of 
efficiency and of generality. 
Since sensor information have to be available before then the framework update step, the 
SensorDriver objects have to be added into 3DWorld by the user before than other process 
object. During the construction of the structure, only the Set-Input flag is set. SetInput 
method will be redefined for the specific hardware in derived structures, where the data 
filtering algorithm will be specified. 
During the initialisation step (InitDriver ) the user will specify the length of the sensor buffer 
data needed during the hardware acquisition step. At this point the driver just allocates the 
memory space in a static array, and it waits for the registration of the IFNeuron entities. 
These entities represent the objects where sensor data will be mapped. Such entities will be 
specifled using the Register method, where the SetInput and Update flags are automatically 
removed from each registered entity. SensorDriver structure will be operative only when all 
of the needed mapping entities will be registered by the user. In order to speed up the 
acquisition process, the references of the IFNeuron objects are indexed during the registering 
phase. Such a strategy permits a direct memory access over all the registered entities. The 
user may choose to switch on/off the driver using the SetPowerOn method. The SensorDriver 
architecture is shown in Fig. 3.7. The ActuatorDriver structure follows a similar architecture. 
 

 
Fig. 3.7. Architecture of the SensorDriver structure. This object represents the base model for 
the interface of a generic input system 
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4. Cortical-based artificial neural networks 
The concept of artificial neural networks is to imitate the structure and workings of the 
human brain by means of mathematical models. Three basic qualities of the human brain 
form the foundations of most neural network models: 
• knowledge is distributed over many neurons within the brain; 
• neurons can communicate (locally) with one another; 
• and the brain is adaptable. 
The terminology with which neural networks are described is derived from these three 
qualities of the human brain, and is as follows: 
• structure of the neuron; 
• network topology; 
• adaptation and learning rule. 
The neurons, or processing units, which make up the neural network are single elements 
and consist principally of four components: 
• a connection function; 
• an input function; 
• an activation or transfer function; 
• an output function. 
A neuron receives signalsthrough several input connections. These are weighted at the input 
to a neuron by the connection function. The weights employed here define the coupling 
strength (synapses) of the respective connections and are established via a learning process, 
in the course of which they are modified according to given patterns and a learning rule. 
The input function compresses these weighted inputs into a scalar value, the so-called 
network activity at this neuron. Simple summation is generally employed here. In such 
cases, the network activity, which results from the connection function and the input 
function, is the weighted sum of the input values. The activation function determines a new 
activation status on the basis of the current network activity, if appropriate taking the 
previous status of the neuron into account. This new activation status is transmitted to the 
connecting structure of the network via the output function of the neuron, which is 
generally a linear function. By way of reference to biological neurons, the activation status at 
the output of a neuron is also known as the excitation of the neuron. 
A process unit is of interest only as a unit of a network consisting primarily of homogeneous 
elements. In artificial neural nets, these elements are generally interconnected to form a rigid 
network structure, as a result of which the learning algorithm only rarely includes provision 
for the formation of new connections and the removal of old connections, such as occurs in 
biological systems. A layered connecting structure is generally employed, whereby the layer 
on which the input signals act is referred to as the input layer; the layer at which the results 
are collected is known as the output layer; and the layers located between these are known 
as hidden layers. The neurons are generally fully connected on a layer-by-layer basis. The 
number of layers often determines the performance of a network. 
A distinction can be made between feedforward, lateral and feedback connections for the 
method of linking the different layers. Both feedforward and feedback connections over 
several layers are conceivable. The connecting structure and the choice of processing units 
determine the structure of a network. In order to carry out a data fusion and a classification, 
the network must be taught a task by presenting it with examples in a training phase. The 
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training phase normally proceeds as follows: random values are initially assigned for the 
weights of the neurons. Patterns from a training data record are then presented to the 
network and the weightings are adapted on the basis of the learning rule and training 
pattern until a convergence criterion, e.g. a defined error threshold, is attained. A test phase 
is then carried out, in which unknown test patterns are presented to the network to establish 
the extent to which the network has learnt the task in hand. Selection of the patterns for the 
training phase is a particularly important aspect. These patterns must describe the task as 
completely as possible, as in later use the network will only be able to provide good results 
for problems which it has learnt. This means that patterns must be selected which cover all 
classes and, where possible, describe the boundary ranges between the classes. 
Most of these architectures are not able to proceed in new learning processes without 
loosing memory of the past learning processes (catastrophic interference) [16, 17]. In order to 
overcome these issues models able to gain short-term priming in co-operation with other 
modules have been developed. In particular, hippocampus-based models operate a pattern 
separation avoiding the catastrophic interference [11, 12]. Input patterns are spread among 
different interconnected modules following the McCloskey and Cohen model [11] consisting 
of several interconnected two-dimensional self-organising maps of artificial neurons (Fig. 
4.1). The Input Entorhinal Cortex and the Output Entorhinal Cortex maps represent 
respectively the input and the output of the net. Input and output maps have the same 
dimension in order to evaluate the activation and deactivation error by a one-to-one 
comparison of neuronal activity. Activation error represents the percentage of neurons that 
are firing in the Output Entorhinal Cortex and that are under threshold in the Input 
Entorhinal Cortex. Deactivation error represents the percentage of neurons that are under 
threshold in the Output Entorhinal Cortex and that are firing in the Input Entorhinal Cortex. 
 

 
Fig. 4.1. Hippocampus model proposed by McCloskey and Cohen; a) Input pattern; b) Input 
Entorhinal Cortex; c) Output Entorhinal Cortex; d)Dentate Gyrus; e) CA3; f) CA1 
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4.1 Learning strategy: selection of neuronal groups  
The Theory of Neuronal Group Selection (TNGS) proposed by Edelman [18, 19], suggests a 
novel way for understanding and simulating neural networks. To take into account this 
theory we have to use the time variable in the learning task, so that neural groups may raise 
from a selection process. This strategy has been adopted by Izhikevich, who simulated a 
minimal neural network which is able to show the property of polychronization [20]. In such a 
network a correspondence between synaptic weights and axonal delays exists as a result of 
the neuron bahaviour. One neuron can belong to many groups, which count is usually 
higher than the count of the neurons theirself. This guarantees a memory capability which is 
higher than the capability reached by the classical neuronal network. Such an architecture 
has been implemented into the framework here presented, giving the possibility to connect 
the neuronal groups to sensory and actuating systems. The advantage of the use such an 
approach makes it possible to gain time-space correlation on input signals. 
The classical approach in artificial neural networks simulation takes into account the 
modulation of the action potential rithm as the only parameter for the information flowing 
to and from each neuron. Such a strategy seems to be in contrast with novel experimental 
results, since neurons are able to generate action potential which are besed on the input 
spike timings, with a precision till to one millisecond. The spike-timing synchrony is a 
natural effect that permits a neuron to be activated in correspondence of synchrounous 
input spikes, while the neuronal activation of the post-synaptic neuron is negligible if pre-
synaptic spikes arrives asynchronously to the target neuron. Axonal delays usually lie in the 
range [0.1 , 44] milliseconds, depending on the type and location of the neuron inside the 
network. Such a property becomes an important feature for the selection of the neural 
groups as it is exposed by Edelman. In the artificial neural network model, the synaptic 
connection are modified according to the STDP rule. If a spike coming from an excitatory 
pre-synaptic neuron causes the fire of the post-synaptic neuron, the synaptic connection if 
reinforced since it given the possibility to generate an other spike in order to propagate the 
signal. Otherwise the synaptic connection is weakened. The values of the STDP parameters 
are choosen in order to permit a weakening that is grater than the reinforcement. Such a 
strategy permit the progressive removal of the unnecessary connections and the persistance 
of the connections between correlated neurons. 

5. Implementation of artificial neurons: towards real-time data fusion and 
processing 
The complexity of a biological neuron may be reduced by using several mathematical 
models. Each of these reproduce some of the functionalities of real neurons, such as the 
excitability in response to a specific input signal. The most accurate model for a biological 
neuron has been developed by Hodgkin and Huxley [13] and it is able to exactly reproduce 
the shape of the action potential of a neuron by taking into account the ionic currents. Beside 
of this, the model is computationally expensive and it takes about 1200 FLOPs (FLoating 
Point Operations) to simulate one millisecond of a single neuron activity. Several attempts 
have been made in order to reduce the mathematical complexity of this model. The most 
effective result has been obtained by the Morris-Lecar model [13], which is able to describe 
the oscillations of the muscular fibers of the giant squid and it is still close to the Hodgkin-
Huxley model accuracy. Unfortunately the computational complexity is still high, since it 
takes about 600 FLOPs for one millisecond of neuron activity. Since these bottom-up 



 Sensor and Data Fusion 

 

354 

approaches are focused on the characterization of the biophysic properties of the cell 
membrane, a different approach has been adopted by Fitzhugh and Nagumo [13], taking 
into account the information of the nervous signal as a temporal distribution rather than an 
action potential shape. This top-down approach leads to the development of parametric 
differential equations with the aim to match them with experimental results. The Fitzhugh-
Nagumo model, wich takes about 72 FLOPS for one millisecond of neuron activity, is based 
on a variant of the Van Der Pol oscillator. Studies on the dynamics of non-linear systems 
swoed a large variety of behaviours. Actually, the use of mathematical analogies seems to be 
the only way to simulate a large number of interconnected artificial neurons. 
For this reason the integrate-and-fire model (and its variant models) is the simpler and most 
used model for classification and prediction tasks in pratical scenarios. 

5.1 The integrate-and-fire model  
The integrate-and-fire model is the simplest model of a spiking neuron that takes into 
account the dynamics of the input. The basis of the integrate-and-fire model is the simple 
compartmental model of a neuron. The equivalent electric schema is showed in Fig. 5.1. 
 

 
Fig. 5.1. The integrate-and-fire artificial neuron model: equivalent electric schema 

The computational implementation of the integrate and fire model follows the schema 
showed in Fig. 5.2. 
 

 
Fig. 5.2. The integrate-and-fire artificial neuron model: computational schema 

An IFNeuron structure has been implement in the framework as a running process directly 
deriving from the W structure. Template arguments have been specialised to obtain an 
OUTDATA as a real number (double precision floating point value) and a CONNSPEC as a 
IFNeuronConnectionSpec structure, which is shown in Fig. 5.3. 
The connection structure for such a process uses a real number to manage the synaptic 
weight. The value may be initialised by the user or randomly chosen by the framework 
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according to the value initialisation parameters. A weight buffer value is needed for internal 
operations during supervised learning using the multi layer perceptron process, which will 
be discussed later. The IFNeuron structure defines the private virtual method Process in 
order to perform the weighted sum of signal coming from input connections. The result 
value is then filtered using the sigmoid function according to the integrate and fire model. 
The structure internally saves a value to speed up the delta-rule algorithm adopted during 
supervised learning. The I/O buffering operations simply manage internal members and 
recall the base class methods. The rendering function provides the graphic visualisation of 
the soma and of the input connections. The architecture is shown in Fig. 5.4. 
 

 
Fig. 5.3. The IFNeuronConnectionSpec structure 
 

 
Fig. 5.4. Architecture of IFNeuron structure 

The IFNeuronGroup structure, which represents a group of IFNeurons, has been derived from 
the WGroup base structure. The IFNeuronGroup structure will be used by high-level 
processes in order to perform supervised and unsupervised learning tasks based on the 
integrate and fire neuron model. 
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5.2 The leabra neuron model 
The Leabra base model [11, 12] is a simplified version of the Hodgkin-Huxley model. Both 
models are shown in Table. 1. 
 

 
Table 1. Top: Hodgkin and Huxley neuron model, based on chemical species. Bottom: 
Leabra model; a) Excitatory conductance; b) Inhibitory k-WTA function; c) Membrane 
potential; d) Activation function 

Leabra uses a point neuron activation function that models the electrophysiological 
properties of real neurons, while simplifying their geometry to a single point. This function 
is nearly as simple computationally as the standard sigmoid activation function, but the 
more biologically-based implementation makes it considerably easier to model inhibitory 
competition, as described below. Further, usingthis function enables cognitive models to be 
more easily related to more physiologically detailed simulations, thereby facilitating bridge-
building between biology and cognition. 
Leabra uses a kWTA (k-Winners-Take-All) function to achieve inhibitory competition 
among units within a layer (area). The kWTA function computes a uniform level of 
inhibitory current for all units in the layer, such that the k+1th most excited unit within a 
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layer is generally below its firing threshold, while the k-th is typically above threshold. 
Activation dynamics similar to those produced by the kWTA function have been shown to 
result from simulated inhibitory interneurons that project both feedforward and feedback 
inhibition. Thus, although the kWTA function is somewhat biologically implausible in its 
implementation (e.g., requiring global information about activation states and using sorting 
mechanisms), it provides a computationally effective approximation to biologically 
plausible inhibitory dynamics. For learning, Leabra uses a combination of error-driven and 
Hebbian learning. Implementation diagrams are shown in Table 2. 
 

 
Table 2. Leabra model: inheritance and collaboration diagrams of structures for leabra 
model implementation 

5.3 The Izhikevich artificial neuron  
Izhikevich recently developed a simple model for an artificial neuron wich is able to 
reproduce all the behaviours showed above [13]. The model takes 13 FLOPs for simulate one 
millisecond of neuron activity and it is based on a top-down approach, using two 
differential equation with four parameters. The introduction of axonal delays shows the 
possibility to create a neural network able to perform classification and prediction tasks. The 
connection of several maps follows and the Spike-Timing-Dependant Plasticity (STDP) rule, 
which permits the implementation of a real time learning rule based on signals which 
continuously flow from input systems. This architecture follows the theories of Edelman 
about the selection as the basis for the learning process. 
The model proposed by Izhikevich for the artificial neuron simulation shows the ability to 
reproduce the same accuracy of the Hodgkin and Huxley model. It can be resumed in the 
following relations: 
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A reset condition is needed: 

 
The four parameters (a, b, c and d) are dimensionless values. The v variable represents the 
membrane potential of the neuron, while u keeps into account the activation of K+ ionic 
currents and the deactivation of the Na+ ionic currents. The I variable takes into account the 
synaptic currents and the bias currents as the input signal of the neuron. Depending on the 
values of the four parameters, the system may have a steady-state (which corresponds to a 
lack of activity in the neuron) and an unsteady-state (which corresponds to the presence of 
activity in the neuron). The reset condition is needed to perform the return of the system 
into the steady state after the neuron has fired. Table 3 shows the values of the four 
parameters in order to obtain the known neuron behaviours. 
In order to implement a network able to use the polychronization feature as it is described 
above, a software module has been realised. An IzhikevichNeuron structure (see Fig. 5.5) has 
been implement in the framework as a running process directly deriving from the W 
structure. 
 

 
Fig. 5.5. The IzhikevichNeuron structure 
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Template arguments have been specialised to obtain an OUTDATA as a real number 
(double precision floating point value) which represents the membrane potential of the 
neuron, and a CONNSPEC as a IzhikevichNeuronConnectionSpec structure, which is shown in 
Fig. 5.6. 
 

 
Fig. 5.6. The IzhikevichNeuronConnectionSpec structure 

The connection structure for such a process uses real numbers to manage the synaptic 
weight and the synaptic channel delay. The values may be initialised by the user or 
randomly chosen by the framework according to the value initialisation parameters. A 
delta-weight value is needed for internal operations during the learning process, as it will be 
discussed later. 
The IzhikevichNeuron structure is initialised using the Init method in order to setup the 
internal parameters (a, b, c, d) which specify the behaviour of the artificial neuron. Several 
initialisation wrapper methods are provided to use predefined behaviours as they are 
showed in Table 3. The STDP algorithm (Fig. ??) is implemented with a time-window of size 
equal to 1000 milliseconds. During this period the delta-weight values are updated 
according to the STDP rule, while weights are updated at the end of each period. During 
each period the structure traces the firing activity and the STDP status of the neuron, storing 
the information in two static arrays. The structure defines the private virtual method Process 
in order to perform the learning task. If the neuron is firning, the Process method reset the 
internal status (u, v) and the STDP value is reported to a value equal to 0.1. Otherwise the 
STDP value is decreased with a time-constant equal to 20 milliseconds. Subsequently the 
input connections are browsed to update input current, whose contribute depends on the 
thalamic input neurons and on those neurons who fired with a timing equal to the 
connection delay. According to the STDP rule, the STDP value of the post-synaptic neuron is 
increased if it fired synchronously with the the pre-synaptic neuorn, and it is decreased if 
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the pre-synaptic fire caused no firing in the post-synaptic neuron. Finally the status is 
updated following the Izhikevich model, and, if 1000 milliseconds are enlapsed, the synaptic 
weights of the connections coming from the excitatory neurons are updated with the actual 
delta-weigth values. During this step the weights are clamped within a convenient range 
and the delta-weight values are decreased with using a decay coefficient equal to 0.9. 
 

 
Table 3. Values of the four dimensionless parameters used to obtain the corresponding 
neuron behaviour. 

The I/O buffering operations simply manage internal members and recall the base class 
methods. The rendering function provides the graphic visualisation of the soma and of the 
input connections. 
The IzhikevichNeuronGroup structure (Fig. 5.7a), which represents a group of 
IzhikevichNeurons, has been derived from the WGroup base structure. The IFNeuronGroup 
structure will be used by high-level processes in order to perform the monitoring of the 
activity of the neurons during the learning and test tasks. Methods are provided to obtain 
the activation percentage (GetActPerc) and to retrieve the sub-group identification relating 
to a specified input pattern. A specific structure (ARI_ING_Record ) has been realised to 
store the neuron reference and the activation time for each neuron belonging to the sub-
group. Such records can be enumerated using the the iterator methods (First, End, Next, 
Get). 
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Moreover, an IzhikevichMap structure (Fig. 5.7b) has been derived from W base structure in 
order to speed-up the artificial neural group processing. This structure includes all the 
previous described structures, optimising the memory usage and computational efficiency. 
 

 
Fig. 5.7. a) The IzhikevichNeuronGroup structure. b) The IzhikevichMap structure 
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A ThalamicRandomSensorDriver structure has been developed to train the architecture with 
random signals. Such signals are the basis of the cortico-thalamic interplay of neural 
assemblies and temporal chains in the cerebral cortex. A Mic-SensorDriverStructure has been 
used to test the architecture with audio signals. For such signals the power spectrum has 
been obtained using the ARI_FFT structure. Both structures are showed in Fig. 5.8. 
 

 
Fig. 5.8. a) The ThalamicRandomSensorDriver structure. b) The MicSensorDriver structure 

6. Conclusions 
In this work authors describe a high-efficiency architecture for parallel sensory fusion and 
real-time management of heterogeneous multi-transducers data processing. The interfaces 
with the external sensors and actuators, the specific control and processing methods and the 
data flowing through inner communication channels can be defined. For such entities the 
framework offers extendable structures, whose base implementation allows the realisation 
of high-efficiency data processing.Systems equipped with multiple transducers, tasks 
execution that are running as cooperative processes, off-line and real-time data aquisition 
and analysis tools, general stand alone applications represent some of the potential 
application areas. 
A library-oriented interface was preferred to a user-oriented interface. Real-time analysis 
and actuation is gained for all the transducers and for all the running processes. Multi-
process cooperation is possible thanks to a homogeneous communication language. The 
user can create extensions of new models of entities and processes. The data acquisition 
from sensor devices is granted by a protocol interface that is able to dispatch data coming 
from input systems. The data processing may be specified by the user inside the framework 
core. The actuator driving is granted by a protocol interface that is able to dispatch data 
from the framework core. Filters for sensory and actuating systems can be redefined 
according to the particular device technology; the efficiency of the filtering and buffering 
processes over the data coming from sensors and over the data directed to actuating devices 
is delegated to appropriate interfaces. The portability is allowed by a layered structure, an 
abstraction, and by the specification of the I/O drivers. A modular, reusable and object-
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oriented architecture grants a parallel distributed processing, making the framework base 
architecture available to the researcher as a structured programming environment. Such 
features make the framework a solution for high-complex simulation tasks, representing a 
powerful instrument for the development of complex simulation tools operating as off-line 
and real-time applications. 
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1. Introduction    
Although natural hazards have been present on earth forever, we still have not developed 
effective way of dealing with them, and because of that the early detection of natural 
hazards is still quite important task. Traditional methods based on human observers are 
mostly used, but they have shown ineffective because of a human observer’s subjectivity.  
Modern technologies, especially sensors technology provide tools for new techniques of 
natural hazard early detection. The sensor network technology is one of the most important 
technologies currently being investigated by scientist all around the world. The sensors, 
creating a sensor network, today could be deployed in nature on places where it was not 
possible to put sensors before, particularly because of today’s development of wireless 
communication and miniature autonomous power supplies.  
Collecting data from sensors creating a sensor network is one part of the research in this 
field, and another one is sensor network data utilization. The goal of sensor data 
interpretation, particularly using data fusion techniques, is to understand the sensor 
network surrounding and to create the image of the world around the sensors. In this paper 
this image of the world around the sensors will be call the scenario of the phenomenon.  
Combining sensors for collecting data and advanced algorithms for data processing and 
interpretation, more advanced object called the observer could be designed. Combining 
several observers an observer network could be established, capable for better 
understanding what is going on in sensors surroundings. In such a way an advanced early 
warning system for initial phase natural hazards detection could be designed.  
When done by humans, the process of recognition the phenomenon of interest based on 
fusion of sensory inputs is called perception. Our work was primarily inspired by formal 
theory of perception introduced in 1989 by Benett, Hoffman and Prakash (Bennett at al., 
1989). This theory is used as a framework for formal description of data fusion processes in a 
observer network.  
The observer network is a system consisting of its physical part, various sensors deployed 
directly in the environment integrated with appropriate communication components, and 
software part, intelligent mechanisms for sensor network data fusion and interpretation. 
Data fusion is used as a formal framework for combining data from different physical 
sensors of the same type, but also from different type of sensors. Data fusion main task is to 
obtain information of greater quality. The exact definition what ‘greater quality’ means is 
primarily application dependent (Wald, 1999).  
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Our main phenomenon of interest is forest fire. Forest fires represent a constant threat to 
ecological systems, infrastructure and human lives. Croatia belongs to countries with 
enhanced summer forest fire risk, particularly the Dalmatian coast and islands. Great efforts 
are therefore made to achieve early forest fire detection, which is traditionally based on 
human surveillance. Since 2003 we have intensively work at University of Split on 
development of automatic forest fire observer. The forest fire observer is the elementary 
node of forest observer network currently under development in Croatia, particularly in 
Croatian National Parks.  

2. The observer theory  
The observer theory is the formal theory of perception (Bennett at al., 1989). The theory is 
based on thesis that perception is process of inference and that it could be described 
mathematically using Bayes theorem. The goal of perception is to calculate the probability 
that specific scenario has occurred if sensory inputs are given; thus the process of perception 
can be described using Bayesian rule for conditioned probability (Bennett at al., 1996):  
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where S is the scenario and I is the image, so the interpretation could be that the conditioned 
probability of occurrence of a scenario S, if the image I is given by sensory input, is equal  
probability of receiving the image I, if the scenario S happened, multiplied with probability 
of occurrence of S in the environment divided with probability of receiving the image I. 
Probability P(S) depends on the nature of the phenomenon the scenario describes, joined 
probability P(I|S) can be induced from sensory mapping functions, i.e. for image camera 
sensor it is perspective projection together with some limitations of the sensor and  P(I) 
could be available from sensor information type. 
According to the theory of perception in real situations this fraction is often uncertain, so 
more general form of Bayesian theory was used and presented using the formal foundation 
called the observer (Bennett at al., 1989 ). The observer is defined as a six-tuple: 

 O = (X, Y, E, S, π, η)  (2) 

where X and Y are measurable spaces, E and S are subsets of X and Y respectively, π is a 
measurable surjective function and η conclusion kernel. Space X is a configuration space of 
the observer and E is a configuration event of the observer. Space X is a formal 
representation of those possible states of affair over which the configuration event E of the 
observer is defined. Y is an observation space, or premises space, of the observer. Space Y is 
a formal representation of the premises available to the observer for making inferences 
about occurrences of E. S is the observation event. Only points in S are premises of observer 
inferences which conclude that an instance of the configuration event E has occurred. π is a 
perspective map, the measurable surjective function from X to Y (π :X → Y) with π(E) = S. η 
is a conclusion kernel of the observer. For each point in the observation event s ∈ S, η(s,⋅) is a 
probability measure on E supported on (π -1(s) ∩ E). This means that kernel η is a convenient 
way of assigning a probability measure on E to every point of S. 
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3. Forest fire observation and the forest fire observer 
3.1 Traditional approach  
Forest fires are phenomena with devastating consequences. Preferred moment for fighting 
forest fires is during the initial fire stage. Automatic prediction of enhanced forest fire risk 
and early detection of forest fire in its initial stage is possible, but it requires a lot of visual, 
meteorological and historical data, detail information about the monitoring area, and quite 
complex processing procedures which include a lot of information fusion. 
Today the traditional way of information fusion, having as a primarily goal the forest fire 
detection in early stage, is mostly based on human observers located in monitoring stations 
on monitoring spots. Human observer collects the data using natural senses, particularly 
vision, carefully observing his (or her) surroundings, but also reading the data from weather 
sensors displays and using past experiences and knowledge about particularly vulnerable 
and dangerous parts of landscape (for example because there is a railway or local road). In 
specific weather conditions the forest fire risk is enhanced and as a consequence, human 
observer attention is increased. But finally, the forest fire detection in its initial stage is done 
by vision. During the fire season a number of human observers, creating the human 
observers network, are usually responsible for early detection of forest fires in monitoring 
area. If the fire is spotted, the appropriate fire alarm is raised and the fire-fighters are 
activated.  

3.2 Observer network approach  
The similar concept was used in our forest fire monitoring observer network designed as a 
semi-automatic system for raising fire alarms (Stipanicev & Hrasnik, 2007, Stipanicev et al. 
2007a). Forest fire observer network was conceived as a system for real time data monitoring 
and information fusion having the same goal as the human observers – detection of forest 
fire in its initial stage. The system is semi – automatic, because the final decision for fire-
fighters activation is done by human operator located in operation center. Now, using the 
forest fire observer network one operator can take care about larger area in comparison with 
human observers located on monitoring spots. In forest fire observer network the technical 
devices called forest fire sensors are located on monitoring spots while processing units and 
human operator are located in an operation center. The benefit of such system is not only 
that one operator can control larger area, but also his (her) working conditions in the 
operation center are much better and lower level of operator concentration is required 
because the system will warn the operator if any level of hazard is possible.    
Forest fire detection in initial stage is based on environmental data collected with the sensor 
network deployed directly in the environment. Various sensors are responsible for sensing 
different aspects of reality connected with forest fire phenomenon. The same as in the case 
of human observers the most important sensor of forest fire observer network is the vision 
sensor and that is the pan/tilt/zoom controlled CCD camera sensitive in visible spectrum 
located on appropriate monitoring spot. Additional information are collected using a mini 
meteorological stations measuring temperature, humidity, wind speed and direction, 
atmospheric pressure, sun radiation, wetness, lightning discharges etc. An example of our 
forest fire sensors located in on observatory on mountain Mosor near Split and in Nature 
Park Vrana lake is shown in Figure 1.  
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Fig. 1. Forest fire sensors on mountain Mosor near Split and in Nature Park Vrana lake 

The main task of the forest fire observer is to collect all these data and to perform algorithms 
for data validation, data fusion and data interpretation, having as final result information 
about phenomena taking place in the environment, namely the forest fire in its initial stage. 
When performed by human observer, these actions are performed using complex processes 
of perception, so the inspiration to our work was the process of human perception based on 
the observer theory explained in short in Section 2. Let us here illustrate how observer 
theory could be applied to the forest fire observer.  
Forest fire is a phenomenon of interest which may be recognized from sensory inputs. 
Simple forest fire observer consists of six entities as stated in equation (2).   
The first part is the configuration space X.  The space X is a set of all possible scenarios that 
can be recognized in environment. We call this set scene configuration. Some of those 
scenarios which could happened in our environment observed by forest fire observers are 
thunder, lightning, twister, fog, forest fire or simple sunny day phenomenon. Only those 
scenarios holding the occurrence of forest fire are collected in a configuration space E, which 
is a subset of set X. We referee to E the name the phenomenon configuration. So set E holds 
those scenarios where phenomenon of interest is identified, in our case only the forest fire 
including all its features, primarily the existence of smoke and flames.  
The second part is the observation space Y. Sensors deployed in environment are used to 
map the input space X to the output space Y. We call the space Y the scene observation. The 
mapping function, or the sensors function is the perspective map π. Depending on the 
senses available, it can have only elements of orthogonal projection of three dimensional 
input places to two dimensional image if only a camera or image sensor is available, or it 
can include some measurements done by other sensors like meteorological sensors. Set Y 
holds images of scenarios in X with respect of this perspective map. The perspective map 
has to be injection, but not necessary surjection, so the set Y usually holds less elements then 
the set X. When mapping is done, all elements of X are mapped into elements of Y, and 
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those elements of X which are also elements of E, are mapped into elements of Y which are 
elements of S. The set S is a subset of Y holding those images of scenario where observer can 
identify phenomenon from E, and we name this set the phenomenon observation. So the 
conclusion could be: If an image from S is recognized by observer, the observer concludes 
that the phenomenon has occurred. But the problem is that the perspective map is not 
surjection, so sometimes happens that a scenario from E (fire) and a scenario from ¬E (not 
fire) could have the same image inside the set S. So if former scenario (not fire) happens, the 
observer can falsely conclude that phenomenon had happen. This situation is called the false 
alarm. The probability of the false alarm is given by the conclusion kernel η. The kernel η 
gives for each element of S the probability distribution supported on E, thus the conclusion 
kernel gives the final result of our observer – the probability that different scenarios from E 
really happen and belong to S. The illustration of forest fire observer is shown in Fig. 2.  
 

 
Fig. 2. Illustration of the forest fire observer 
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When a phenomenon x1 takes place in the environment and it is a forest fire, this event x1 is 
inside the subset E of X, so we can write x1∈E (photo in upper left corner of X in Fig.2). In 
observation space one observation event y1 corresponds to this configuration event (photo 
in upper left corner of Y in Fig.2).  If y1 is inside S (y1∈S), and the observer concludes that 
this observation event y1 was caused by the configuration event x1 it assigns to pair (π-1(y1) , 
x1) the biggest probability measure. The final observer conclusion is “There is a forest fire” 
and in decision diagram this situation is treated as a hit or correct detection.  
The second case is for phenomenon x2, which is not a forest fire (x2∉E, photo in upper right 
corner of X in Fig.2).  Let us suppose that the mapped data into observation space are also 
“clean”, without any forest fire signs, so the corresponding observation event (y2∉S, photo 
in upper right corner of Y in Fig.2).  The final observer conclusion is “There is not a forest 
fire” and in decision diagram this situation is treated as correct reject. 
The third case happens when phenomenon x3 which is outside the subset E (x3∉E, photo in 
lower left corner of X in Fig.2) is mapped into an observation event y3 which is inside the 
subset S (y3∈S, photo in lower left corner of Y in Fig.2). This situation is called the false 
alarm, because the configuration event is not in E, but the observation event is in S. The 
conclusion kernel should be defined in such a way that these images are assigned lower 
probability on E then in the case of correct detection. The false forest fire alarm could be for 
example triggered by clouds, clouds shadows or mist. 
The forth possible combination is when configuration event x4 is in E (x4∈E, (photo in lower 
right corner of X in Fig.2) which means that there is a forest fire, but the observation event y4 
is outside S (y4∈S, photo in lower right corner of Y in Fig.2). This situation is called the miss 
case and it is the worst case, taking into question the efficiency of the observer. The 
phenomenon (forest fire) has happen, but the observer was not able to recognize it.  The 
miss case should be avoided and if the observer is defined well then these situation should 
never happened. 
Four possible decisions of forest fire observer are illustrated in the decision diagram in Fig. 3.  

 
Fig. 3. Decision diagram for the forest fire observer 

The quality of the observer could be evaluated according to the number of false alarms and 
miss cases, and the waiting factor of these two possible decisions could not be the same. In 
good forest fire observer the set of miss cases has to be the zero set, and the cardinality of 
the set of false alarms has to be as close as posible to zero. 
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The collection of observers form the observer network. The observer network is responsable 
for phenomena detection in wider area. For example according to our analysis Split and 
Dalmatia County, which is the costal and island county in Croatia located in central part of 
Adriatic, having alltogether 14 045 km2 and 4 572 km2 on land, could be optimaly covered 
by the forest fire observer network having 56 forest fire sensors (Stipanicev et al. 2007b). Fig. 
4 shows their locations and covering. The forest fire sensor on mountain Mosor shown in 
Fig.1 will be the part of this network, so it is marked  in Fig.4. too.   

4. Observer network architecture 
The process of human perception could be divided in two steps: the first one is self 
perception when observer examines if the readings form his (her) senses are valid (Linsay & 
Norman, 1977). If observer in self perception step concludes that there is something wrong 
with senses, then any other conclusion can not be valid. The second step is identification of 
scenario based on information from sensors.  Having this in mind, we have defined the 
three layers observer network architecture. Similar architecture was proposed by EU EYES 
project (EYES, 2005). 
 

 
 

Fig. 4. Forest fire observer network of Split and Dalmatia County 

This architecture is designed to be a unified framework for intelligent support of observer 
network. The framework covers processes of sensor network data collection, validation and 
implementation in a specific use case. In addition mechanisms for self observation and self 
reparation are included. The observer network architecture is shown in Fig.5.  
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Fig. 5. Illustration of observer network architecture 

The information flow is bottom up. Two types of observers has been defined – the low level 
observer or image fire observer (IFO) and the high level observer or decision fire observer 
(DFO), both of them composed of elements on two neighboring layers (Stipanicev et al., 
2007c).  
Low-level observer includes sensors on data layer and processing nodes on information 
layer. Some aspects of the environment are measured by sensors on data level and 
transferred as a raw data to nodes on information layer.  The sensor sei is used for mapping 
the scene configuration space X to first level of scene observation space Y with its own 
perspective map. On the information layer there are three nodes. The first one dci is 
responsible for transformation of raw input data to structured information used as an input 
of high-level observer. Other processing elements ssvi and sdvi are responsible for observer 
self perception, performing the validation of data integrity and testing the sensors 
functionality. Syntactic and semantic validation of data is performed based on the 
knowledge about the sensor’s type and features, as well as their locations. Locations are 
important because data from other sensors in vicinity of the validated sensor are used 
during its semantic validation.   
High-level observer includes several nodes on information layer and one processing node 
for each type of observation on the knowledge layer. Let us suppose that only forest fire 
detection is defined as an observation task. Node ak is responsible for that on knowledge 
layer, but his decisions are based on information presented to him by various nodes on the 
information layer. To explain its functionality we will simplify the procedure of forest fire 
detection and said that it is based on three elements: motion detection, segmentation in RGB 
space and information is it raining or not. So, forest fire detection node ak on knowledge 
layer has three corresponding nodes on information layer. Their elements dci, dcn and dcj are 
responsible for preparation of appropriate input data. Data presented by nodes dci and dcn 
are results of image analysis, and data presented by the third one dcj is a result of moisture 
sensor row data interpretation. This means that both nodes dci and dcn are connected with 
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the same sensor on the sensor layer and that is the video camera. The third node dcj has a 
different sensor on the sensor layer and that is the moisture sensor. Both nodes dci and dcn 
have the same raw data input (the same digital image), but they transform this input data in 
different type of output information. Node dci is a motion detector, so his output data, 
presented to forest fire decision maker ak are regions on the image where motion has been 
detected.  Node dci is responsible for RGB segmentation, so his output data presented to 
forest fire decision maker ak are regions on the image where image red, green and blue 
components are inside predefined bands.  The third node dcj is the most simple one having 
moisture sensor data as input and binary information 1 (it is raining) or 0 (it is not raining) 
as an output to ak . Now the task of forest fire decision maker is to conclude combining all 
input data is there a fire on the image or not and if there is a fire where it is located.   
On application (knowledge) level it is possible to have various nodes and various 
applications for example not only forest fire detection, but fog detection, thunderstorm 
detection, intruder detection, etc. Each of them is connected with various nodes on the 
services (information) layer. We would like to emphasis that application nodes on 
knowledge layer make their decisions using data fusion and sensor fusion procedures. Their 
decisions are based on interpretation of data from various sensors, but also interpretation of 
data from the same sensor processed in different ways.    

5. Multi agent architecture 
The first part of our work was to define observer network organization, and the second one 
was its implementation in real life. Before choosing the best environment and architecture 
for implementation of observer network system we have stated a number of requests, 
primarily the system has to be modular, suitable to run on distributed environments and 
controlled through a number of user parameters. Last but not least was that the knowledge 
base has to be easily accessed and changeable.  
Our final choice was the multi agent architecture configurable using database, knowledge 
base and properties files. Observer network realized in the form of multi-agent system 
consists of following parts: 
• Ontology – defined to ease communication between intelligent agents, and between 

intelligent agents and external programs. Ontology adds meaning to the database slots. 
• Multi agent shell – the core of the system, a shell consisting of agent bodies 

implementing the observer network functionality. During run time the number of living 
agents is determined according to the sensor network configuration and system 
properties written in system files.  

• Data base – holds two kinds of tables:  administrative tables with the system 
configuration and data tables with data information and alarms. Each level of observer 
network architecture has its own result written in its own table.  

• Knowledge base – holds additional information, like the common sense rules, about 
sensors and sensor relative connections. Can be updated during run time, because the 
system has to be capable to learn.  

• Properties file – tells the agents where to find database and external files. 
• External programs – virtual sensors can be implemented in the form of formulae or in 

the form of external programs for more sophisticated calculations and analysis. These 
external programs can exist independent on the observer network system, but can be 
used by agent responsible for collecting virtual sensors data. 
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Multi agent system, incorporating the three layer architecture is responsible for senor 
network data collection, verification, and forest fire detection. Intelligent agents are 
implemented using JADE  - Java Agent Development Environment (JADE, 2008). Agents 
run Rete algorithm in knowledge based reasoning (Singh et al. 2004). The multi agent 
architecture of the system is shown in Fig. 6. 
An agent of type CollectorAgent is responsible for data collection and archiving data into a 
database. SyntacticObserverAgent is triggered when data is stored into database with 
purpose of checking syntactic validity. SemanticObserverAgent input are sensor data from 
the same observer node. This agent first recognizes the same kinds of values on a same 
observer node, deployed for the redundancy, and notices the difference in them. Small 
differences are ignored, becouse although the sensors are covering the same location, 
differences in their exact location, elevation and orientation can cause different values. But 
larger outliers are rejected.  
 

 
Fig. 6. Multi agent system of the observer network 

5.1 Observer network ontology 
As already stated in previous paragraph, ontology is defined to help the communication 
between different parts of the system, since those parts are not running in the same process, 
sometimes not even on the same computer. The ontology of observer networks provides 
contextual framework to messages that are exchanged between these parts.  
Ontology of observer network can be divided in two parts – domain independent and 
domain dependent part. Domain independent part of ontology holds concepts and 
formalisms related to sensor and observer network configuration. The concepts of domain 
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independent part of the ontology can be linked to layers of three layer observer network 
architecture, as shown in Fig. 7. 
We can consider the topmost concept to be the concept of location which can be compared 
to the observation station in traditional approach. The concept of location holds all relevant 
data about the physical location in the environment where the sensor node is situated. 
Usually one observer node holds one or more Data Server entities with sensing devices 
attached to it. 
Domain dependant part of ontology holds the description of phenomenon taking place in 
the environment observed. In the case of forest fire observer, this concept holds the 
description how the forest fire is recognized using sensor values from the sensor network. 
The most important sensor in this case is the image sensor – video camera sensitive in 
visible spectra, but meteorological conditions can also be of use in recognition of forest fire 
and in rejection of false alarm from the image sensor.   
 

 
Fig. 7. Concepts of ontology distributed on observer network architecture 

5.2 Multi agent data fusion 
The whole observer network system performs data and information fusion with the goal of 
constructing the image that is most likely to correspond to the scenario taking place in the 
environment. Information about the configuration of sensor network and observer network, 
the knowledge about the phenomenon of interest and data from sensor network are input 
parts of this fusion and a fusion result is more sophisticated single information – image of 
scenario. 
Following the formalism of observer, configuration space is the space consisting of every 
phenomenon that can take place in the environment. The configuration event is that 
phenomenon this observer is responsible for. The sensor network configures the perspective 
function for mapping different aspects of phenomenon into an observation space consisting 
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of data from sensor network and information about sensor network including observer 
environment. Observation event is the subset of the observation space where phenomenon 
of interest can be recognized. When an observation of the phenomenon happens, the 
observer network mechanisms decides which scenario from configuration space is most 
likely to be the true and that it has happened in the environment.   

6. Conclusion 
Inspirited by the formal theory of perception and technology of sensor network we have 
introduced the idea of observer network as a reliable framework for data and information 
fusion. Our ideas have been successfully tested in the case of forest fire observer network. 
Observer network was implemented using multi-agent technology. A special multi agent 
shell was designed for this purpose having software system desirable features like 
modularity and flexibility. 
The system was implemented in number of locations in Croatia under the name iForestFire® 
(iForestFire, 2008), particularly in national and nature parks as a small level observer 
networks. Two bigger observer networks are now in realization. The first one is in County of 
Istra where 22 forest fire sensors are already implemented and the second part dealing with 
multi-agent observer network is now in realization phase. Buzet subsystem is realized and 
shown in Fig.8. It is conceived of 5 forest fire sensors.   
 

 
Fig. 8. Forest fire sensors location and various screen of Buzet forest observer network 

The Split and Dalmatia County forest fire observer network shown in Fig.4. is also planed 
for realization.  
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Our case study was forest fire detection, so forest fire observer network was designed, but 
the same concept could be used for recognizing phenomenon of any other kind.  
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1. Introduction    
The present Chapter describes a methodical approach to the design of a monitoring process 
for environmental applications. The case study and experimental results concern the remote 
control of exposure levels to electromagnetic pollution. The main contribution focuses on 
the design of a configurable network of wireless and smart web-sensors and the 
development of a two-levels data fusion procedure. The aim of an environmental 
monitoring process is to provide qualified information on the investigated phenomenon, so 
to minimize possible errors or hazardous consequences for the exposed population. That 
objective requires not only an appropriate choice of the measurement system, but care has to 
be paid about the maintenance of instrumentation in order to assure a suitable metrological 
state. On the contrary measured data may be inconsistent and meaningless so to provide an 
erroneous knowledge about the monitored process, often that occurrence is cause of 
underestimated risks. Therefore the operating state of the measurement system has to be 
guaranteed with the passing of time, in order to get reliable data. So the matter requires to 
evaluate the measurement system performances, (Neely et al., 2000). Moreover data 
processing stage plays a crucial role when decisions have to be taken with reference to 
warning limits. In fact several laws and regulations have been issued to limit the exposure 
levels to environmental parameters responsible for pollution, in order to keep under control 
the status of our habitat and so to guarantee an appropriate quality of life. But such 
decisions are the result of a comparison between the fixed limits and the measured data, 
consequently the uncertainty contribution due to measurement process may be reason of 
wrong decisions if its effect is not taken into consideration. In that context, the considered 
application field needs methodical monitoring processes being able to characterize and 
manage in real time warning and risky situations so to reduce possible harms for the 
exposed population. In the urban centers today it is possible to characterize several 
electromagnetic pollution sources to different working frequencies, as in example the lines 
of power supply or the antennas of the radio-television service, (Ahlbom et al., 1998; IEC 
50166-2, 1995). Medical studies would seem to point out a relationship between the 
continual exposure to high electromagnetic field levels and the onset of some typologies of 
cancer. The World Health Organization suggests prudence and the observance of the quality 
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standard levels. Therefore, environmental data and available information have to be timely 
processed by means of suitable procedures in order to guarantee specific requirements of 
accuracy and reliability, so to minimize errors and risks. Furthermore sensor data may be 
erroneous, inaccurate or incomplete because of malfunctions, anomalies, delays, unsuitable 
maintenance or limited range. In addition, typically, environmental monitoring requires a 
wide network of sensors displaced on a large area, such sensors have inevitably different 
metrological characteristics. So a huge amount of data has to be processed in short time 
according to information on measurement uncertainty, topographical data, operating state 
of the sensors and further knowledge. At this aim the authors propose a sensor data fusion 
procedure being able to merge such information in order to optimize the processing so to 
get information of greater quality. The developments of the research in the environmental 
monitoring field show several open problems to be treated. For example, distributed 
systems have to be dynamically configurable according to changing conditions of the 
surrounding environment, or to environmental and topographical information, (Lin & 
Gerla, 1997). The actual sensor networks do not provide effective solutions and the used 
architecture is not able to configure itself, (Bertocco et al., 2002; Hou et al., 2004; Lee & Song, 
2006; Mahfuz & Ahmed, 2005; Saripalli et al., 2006; Tsujita et al., 2005). Moreover sampling 
plans have to be flexible according to the desired accuracy and specifications. Also 
population density distribution has to be considered, in fact in presence of alarm 
occurrences, it is possible to characterize the zones which need more attention and have 
higher intervention priority as the most populated ones. The present Chapter focuses 
attention on such matters in order to propose possible useful tools for environmental 
monitoring applications. In the first part of the Chapter the design of a configurable network 
of wireless and smart web-sensors is described. Since electromagnetic field is characterized 
by spatial and temporal variations, a distributed network has been designed. As a matter of 
fact, weather conditions, the presence of metallic objects and antennas of radio-mobile 
service may affect the trend of the electromagnetic field. Therefore sensors, displaced along 
a wide urban area, measure the electromagnetic field levels in high and low frequency 
ranges according to suitable sampling plans. Then a remote processing Server allows to fuse 
the available information so to evaluate the overcoming of the law limits and the occurrence 
of alert states. By General Packet Radio Service (GPRS) communication the network 
exchanges data and commands with a remote client, then data are stored on WEB Pages. 
Each measurement unit consists of an isotropic smart sensor, a GPS module and a GPRS 
modem. In order to optimize the configuration of the sensor network, an algorithm has been 
developed. In this way the network is configurable according to the needs, and the area is 
divided in local zones. The size of the partition depends on the accuracy and the resolution 
required for the monitoring, so environmental and topographical information is used to 
optimize the network configuration and the monitoring map. If the specifications and 
accuracy requirements change, it is possible to configure dynamically the sensor network 
and the sampling plans by a new partition of the area. The single sensor has the task to 
monitor a specific zone and, according to the monitoring map, sends data to an ASP Web 
Page. A Server acquires the measured electromagnetic field levels for each zone, with 
information on the state of the single sensor like its measurement uncertainty, its reliability 
and its operating state; data are protected by a password system. The second part of the 
Chapter describes a sensor data fusion procedure developed by the authors in order to 
qualify the data processing stage. A two-levels approach allows the progressive fusion of 
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the huge amount of data so to get first local and then global information about the exposure 
to electromagnetic field in the monitored area. In fact, each sensor allows to collect data in a 
specific zone, such information provides only a small ‘image’ of the whole area concerning a 
restricted spatial portion correlated with the near zones. The data fusion procedure merges 
those partial ‘images’ so to provide a view of the electromagnetic field behavior in the area. 
In this way the limitation of the single sensor is overcome and a more accurate knowledge 
on the field exposure is got. By data fusion, the initial large amount of information may be 
used to get a more accurate, consistent and meaningful result. Errors are so reduced, as 
much as possible, using the same redundancy of data. The main problem is to characterize 
optimal fusion rules being able to merge complementary information so to minimize the 
global probability of fault or error. At this purpose a Statistical Model estimates the sensor 
reliability curves and its operating state. In this way measured data, information on the 
sensor network reliability and measurement uncertainty are processed for a more efficient 
interpretation of the data and a more accurate representation of the monitored area than that 
one provided from the single sensor; the useful information is so maximized. Furthermore it 
is interesting to notice that typically sensors are in a continuous working state so they may 
go to faulty occurrences. In such circumstance, data fusion represents an effective tool to get 
accurate and efficient information from faulty measurements. The proposed procedure fuses 
data and correlated information so to get an improved accuracy. The Server runs the 
procedure in order to verify the compliance of the exposure levels to electromagnetic field 
with the limits established from law. A fuzzy algorithm allows to perform a first level of 
data fusion. Data of the single zone are processed by a decision-making algorithm in order 
to take local decisions concerning warning or alarm occurrences. The erroneous decision 
probabilities are estimated according to the statistical distribution of process and the 
measurement uncertainty, in this way the initial data amount is reduced and local 
information is got. A second level of data fusion allows to get a global information about the 
exposure to electromagnetic field in the whole area, in this way local decisions and 
environmental information are fused in order to get a more accurate image about the 
pollution status of the area. A report shows the global situation. Consequently, the zones 
which require more attention are characterized, and suitable corrective interventions can be 
planned. Quality indexes provide information on reliability and consistency of the results. 
The originality of the present contribution is due to the design of a configurable network of 
smart sensors and to a two-levels data fusion procedure compliant with the quality 
assurance requirements, (ISO 9001, 2000). Knowledge on measurement uncertainty and 
sensor reliability is merged in order to optimize the available information and obtain a 
better estimation about the monitored process by using the same data redundancy. 

2. The sensor network design 
2.1 The configurable architecture 
In the present paragraph is described the design of the monitoring network used. The aim is 
to verify the compliance of the electromagnetic field levels with the limits established by 
laws, and to get global information about the field behaviour on the whole monitored area. 
Today networking and communication sectors have achieved remarkable developments in 
real-time applications, but the increasing complexity of systems and networks is cause of 
further problems concerning the management and maintenance of the used 
instrumentation. So not always the available network architecture is suitable for obtaining a 
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consistent and significant view of the observed phenomenon. As a result in order to 
guarantee reliability and accuracy, it is required an accurate choice of instrumentation, but 
also suitable procedures estimating its metrological state and measurement uncertainty. In 
this view, the authors propose the project of an original configurable network of wireless 
and smart web-sensors. Main features of the contribution regard the possibility to configure 
dynamically the network according to the needs and the topographical information. So the 
sampling plans, the partition of the area and the sensors layout are updated if requirements 
and specifications change. By a methodical approach, a distributed network has been 
projected so to monitor a wide urban centre (Reggio Calabria city, in the south of Italy). The 
network and the smart web-sensors have been projected according to the guidelines of the 
IEEE 1451 Standard, (IEEE 1451, 2001). The whole monitoring process has been optimized by 
innovative procedures being able to manage the network and maintain the sensors, so to 
check the operating state of the instrumentation and estimate the next calibration interval. 
The choice of a distributed architecture is due to the geographical extent. The single 
measurements units are displaced according to the monitoring map along the area. The size 
of the area to be monitored requires a complex and wide measurement network, so in order 
to reduce the computational burden of each sensing unit and to manage easily the network, 
an algorithm performs a geographical partitioning of the area. In this way the region is 
divided in several small local zones. The algorithm allows to make an efficient partition, in 
order to guarantee a suitable size for each zone according to the topographical information 
on the area and the population density distribution. The information collected in the single 
zone provide a meaningful view of the electromagnetic field trend, and the correlation 
among different measurements in the area is assured. Such constraint is an important 
requirement for the data fusion stage. The number N of the zones depends on the sampling 
specifications, and zones size is not necessarily equal. According to the desired accuracy and 
resolution of monitoring, the algorithm designs a specific partition of the area and so a new 
network configuration. A major/minor severity level of the sampling plan is therefore cause 
of a major/minor partition. The user can modify and configure the partition by setting some 
parameters, like the distribution of population density and the topographical data. The map 
of the area is acquired, and a Cartesian axes system is selected. According to the dimensions 
of the area, the number of sensors and the available resources, the user chooses the initial 
width of the grid to be applied. A first partition is so made on the area map, and a 
preliminary sampling plan is shown for each local zone. At first, the algorithm does a simple 
subdivision of the area which is partitioned by zones with equal size. A high number of 
zones would allow a more accurate monitoring, but it is also cause of high costs. So the 
matter requires a compromise between the desired resolution, the available resources and 
the tolerable costs. The best solution is therefore to characterize the zones which need a 
higher attention level, in fact it is possible to single out the “sensible zones” where the 
partition grid has to be thickened. In details, the cost constraints limit the maximum number 
of possible zones, so an opportune criterion has to be considered. Surely zones with greater 
population density require a more accurate monitoring. In fact in presence of an alarm 
occurrence or of high exposure levels to electromagnetic field, the risk for the exposed 
population is more high considering the possible impact on a greater number of people. 
Therefore the algorithm reduces the size of partition in the zones characterized by a high 
population density or by the presence of sensible targets like schools, orphanages, hospitals 
or known electromagnetic pollution sources. As a result, such zones are monitored with 
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more care. So the user provides the function of the population density pd(x,y) of the area, or 
specifies the site of the sensible targets or otherwise a generic zone of interest. Then 
automatically, the algorithm thickens the partition grid of the sensible zones, such zones are 
divided in further four sub-zones with equal size (see Fig. 1). 
 

   
                                        a                                                                              b 
Fig. 1. (a) Partition tool. (b) Partition of the monitored area 

According to topographical information about the area and specifications, the best 
configuration of the sensor network is got. The final partition allows to characterize the 
sampling map for each zone, while specific sampling plans are projected for the sub-zones 
in order to perform a more detailed monitoring with greater accuracy and resolution. Each 
sensor has to monitor a specific local zone with reference to a particular sampling plan. The 
sampling time, the refresh time of the monitoring map, the thickness of the grid, the number 
of samples and their locations depend on the desired confidence and severity level, on the 
tolerable costs, on the available resources and on the tolerable reliability for the monitoring. 
Usually a homogeneous sample is obtained by placing the monitoring points uniformly 
along the zone, but not always topographical data are compatible with this choice, so an 
accurate plan is necessary to assure a suitable reliability of collected information. The 
configurability features of the network allow so to adapt the sampling plans and the 
network configuration to environmental and topographical data. In this way the single zone 
is characterized by a sample of electromagnetic field levels measured in specific points, the 
representativeness of the sample is guaranteed by an experimental design. According to the 
local monitoring plan, each sensor moves along the associated zone and collects 
environmental data in the fixed points of interest. In this way the mobile architecture allows 
the measurement system to monitor a wide area with a reduced number of sensors. Network 
configuration, monitoring maps, number and size of the zones can be updated dynamically if 
the sampling specifications change, so a new partition is performed and new sensors may be 
added. The network security is guaranteed by a password access, thus only the authorized 
administrator can get access and manage the whole network and its configuration. 

2.2 The wireless and smart web-sensors 
If the electromagnetic field levels overcome the warning limits fixed by law, timely 
corrective actions are required in order to reduce possible risks for the population health. In 
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these circumstances only a real time monitoring process of the area allows to characterize 
such alarm events. So the matter demands the remote control of the used measurement 
instrumentation and a prompt data processing. The designed distributed network is 
composed of several wireless and smart web-sensors projected according to the guidelines 
of the IEEE 1451 Standard, (De Capua & Morello et al., 2004b; De Capua & Morello et al., 
2005c). Each measurement system is an isotropic sensor sensitive to the electromagnetic 
field, it is equipped with a GPRS modem for wireless communication, and a GPS module for 
its localization. Three transducers, displaced orthogonally along the three axes of a 
Cartesian system by a plexiglas support, constitute the sensing unit. The single output is a 
μV~mV voltage proportional to the electromagnetic field applied perpendicularly to the 
chip surface. A suitable circuit has been projected in order to condition and amplify the 
voltage signals by an embedded auto-scale setting with noise compensation (see Fig. 2). 
 

 

 
                                      a                                                                                b 
Fig. 2. (a) Electromagnetic Field Sensor. (b) Signal conditioning circuit 

The system is able to configure automatically itself so to select the smaller available scale, in 
this way the smart sensor optimizes the accuracy and the resolution of measurement, 
reducing the measurement uncertainty of collected data. A 16 bits A/D converter has been 
used to digitalize the three signals in order to make possible the communication between 
the several functional blocks of the sensor. A microcontroller architecture manages the 
exchange of data between the transducers, the GPRS modem, the GPS module and the internal 
memories. A LCD display shows the measured level of electromagnetic pollution. A flash 
memory storages metrological information about the sensor concerning its operating status, 
measurement uncertainty, calibration and reliability curves, next calibration interval, 
probability of faulty functioning, the actual sensor reliability, and the probabilities of 
erroneous decision relating to the decision making process. Such information is updated at 
the successive sensor calibration because of the inevitable decline of performances with time 
affecting any measurement system. It represents an important and essential knowledge for 
the data processing stage, in fact the data fusion procedure uses such information in order to 
optimize data and credibility of the results for a more accurate, complete and fault tolerant 
computing (for more details see Paragraph 3). Measured data are stored in a Secure Digital 
(SD) Memory. Then each sensor sends data (electromagnetic field levels, GPS position and 
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metrological information) to its own Web Page in Active Server Pages (ASP) format. In this 
way the single Web Page contains information about the pollution status of the associated 
zone, the sensor history and its operating state. Such data are accessible by password, only 
authorized users can read data and information for processing and statistical purposes. The 
Server acquires and processes data by the sensor data fusion procedure in order to test the 
electromagnetic field compliance with the exposure limits, (see Fig. 3). 
 

 
Fig. 3. Control panel of data acquisition and processing  

Merely a free WEB Page is accessible to general public, it contains final reports and 
computing results on the pollution status of the monitored area. Wireless communication 
has been made possible by a programmable GPRS modem with M2M technology. Queries 
are performed by AT commands. In this way the administrator of network can get direct 
access to the single sensor by a PIN number. He may ask for specific measures or exchange 
information about the desired sampling specifications (sampling time and monitoring map). 

3. The sensor data fusion approach 
3.1 Sensor reliability 
Any measurement result is characterized by the estimated value of the measurand and the 
associated measurement uncertainty. The latter depends strongly on the metrological state 
of the used measurement system. Measurement uncertainty is a parameter characterizing 
the dispersion of the quantity values being attributed to the measurand by a measurement 
process, (IEC-ISO GUM, 1995; ISO/TS 17450-2, 2002). Typically the uncertainty of a generic 
measurement system changes inevitably with time. Therefore in order to guarantee reliable 
measures, the operating state of the used equipment and measurement systems has to be 
checked periodically by calibration, (ANSI/NCSL Z540-1, 1994; ISO/IEC 17025, 1999; UNI 
EN ISO 10012-1, 1993; UNI EN ISO 30012-1, 1993; UNI EN ISO 10012-2, 2001). In this view in 
the present paragraph the authors propose an original procedure being able to estimate the 
reliability and the performances of the sensors of the network, such an approach allows to 
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qualify and maximize the measured data. Clearly data with higher quality and accuracy are 
indispensable for a reliable processing. For that reason the developed procedure provides 
information about the credibility of the measured data and the actual reliability level of each 
sensor. Such knowledge is then used in order to characterize the integrity of the whole 
network and of the computing results. Thus if the reliability of the network or of the single 
sensor decreases below a fixed tolerable level, the sensor/sensors have to be calibrated. A 
proper maintenance of the used measurement instrumentation is an important prerequisite 
in order to guarantee the credibility of sensor data fusion. In details, by a Statistical Model 
the procedure estimates optimal calibration intervals for the single sensor. The purpose is to 
reduce the probability of an out-of-tolerance state during the maintenance time. So 
according to a desired reliability target, the next calibration time is estimated, assuring a 
suitable operating state for the sensor. About that matter, numerous models have been 
proposed by several authors, (Castrup & Johnson, 1994; Nunzi et al., 2004; Wyatt & Castrup, 
1991). The present original approach bases oneself on evaluating the impact of the 
uncertainty associated with the calibration process on the estimation of the maintenance 
interval, (De Capua & Morello et al., 2005b). An erroneous analysis of the calibration results 
could be cause of unsuitable calibration intervals. Consequently it may be the reason for 
possible out-of-tolerance states during the maintenance time, so unreliable data would be 
processed. The basic problem concerns the decision, made during a calibration process, 
about the real operating state of a sensor. The used approach allows to characterize the 
decision reliability by the erroneous decision probabilities about the real state of the tested 
sensor. The estimated decision risk is subsequently used in order to optimize the reliability 
function of the sensor concerning its in-tolerance state. A sensor is in a tolerance operating 
state if its metrological characteristics are compliant with fixed tolerance limits in order to 
guarantee a tolerable measurement uncertainty. According to information on the last 
calibration process of the sensor, the Model estimates the erroneous decision probability Πβ 
concerning the occurrence to have taken a wrong decision about its in-tolerance state. In 
other words Πβ represents the probability to have supposed erroneously in the last 
calibration that the sensor was in an in-tolerance state, and so in accordance with the 
tolerance limits, because of the uncertainty associated with the calibration process, whereas 
in truth it was in an out-of-tolerance state, and so not compliant with the tolerance limits. If 
δ is the tolerance limit of the tested parameter; xm is the random variable representing the 
tested parameter; x is the random variable of the calibration process, its distribution around 
the expected parameter value represents the randomness of the measurement result, in 
other words its standard deviation is the standard uncertainty due to calibration process. 
We can assert that the tested parameter or the considered metrological characteristic is 
compliant with the tolerance limit, and consequently the sensor is in a tolerance state, if 
xm∈[0 δ]. So the erroneous decision probability associated with the sensor calibration is 
estimated by the equation: 

 Πβ= ( )
[ ]
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Where Fx(-) is the Cumulative Distribution Function (CDF) associated with the variable x, 
while fXm(-) is the Probability Density Function (PDF) of the variable xm.  
The next step requires the definition of the sensor reliability curve R(t), it can be estimated 
by the following expression based on the Weibull Model: 
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That function allows to evaluate the in-tolerance probability of the sensor in a precise 
moment t according to a desired quality target. In order to optimize the estimation of the 
reliability function, the parameter Ro has been set equal to 1-Πβ, in this way the erroneous 
decision probability weighs the information about the reliability level concerning the 
operating state of the sensor. In fact high probability values of erroneous decision are cause 
of low reliability levels for the sensor, because of a high probability to have supposed 
erroneously in the last calibration that the sensor was in an in-tolerance state. The 
parameters λ and β in the equation (2) are evaluated by a maximum likelihood estimation, 
in order to characterize the best fit function according to past information on previous 
calibrations of the considered sensor. In other words, the two parameters are settled in order 
to guarantee the best fit with the data history of the previous calibrations. In fact the 
reliability function can be sampled by historical time series of previous calibration data, by 
means of the ratio between the number of in-tolerance operating states and the total number 
of calibrations in a definite time t. In the Fig. 4 (a) the trend of reliability function is shown 
for different values of the two parameters. The Fig. 4 (b) shows the reliability curve 
estimated for a sensor of the network starting from data of six previous calibrations. 
 

  
                                       (a)                                                                              (b) 
Fig. 4. (a) Weibull Model. (b) Sensor reliability curve 

The reliability function allows to get information about the temporal evolution of the sensor 
performances. In this way it is possible to know how its measurement reliability decreases 
over time. So a low reliability level is sign of a sensor which may be faulty because of out-of-
tolerance occurrences; differently a high reliability level is sign of a sensor with an 
appropriate in-tolerance state, and therefore the measured data are reliable. The reliability 
curve of each sensor is stored in its own internal flash memory and subsequently in the 
relative Web Page. In addition the procedure allows to estimate the next calibration interval 
t* by fixing a desired maximum tolerable reliability R* for the single sensor: 

 *
*

1 ln( )oRt
R

β

λ
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In this way during the maintenance interval t*, the sensor reliability R(t) will not decrease 
below the target level R*, so to guarantee a suitable in-tolerance state. The described 
procedure has therefore two benefits: first it provides a suitable maintenance interval for the 
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single sensor in order to assure an appropriate operating state and therefore reliable data for 
the following fusion stage; finally the reliability function permits to evaluate the actual 
reliability of each sensor Ri(t’) in a precise moment t’, such information is used during the 
processing stage in order to assure a fault tolerant fusion of data. In this way each zone is 
characterized by a value Ri(t’) which is representative of the data reliability collected in the 
zone and consequently it gives a measure of the credibility of the fusion results. 

3.2 The two-levels data fusion procedure 
After the monitoring process each zone is characterized by a set of electromagnetic field 
levels collected according to the sampling plans. But information on the sensor reliability 
and on measurement uncertainty allows in addition to improve the available knowledge 
minimizing errors during the computation. Now data from different sensors have to be 
merged in order to optimize the information about possible alarm occurrences regarding 
pollution status of the monitored area. Sensor data fusion is the best solution to manage data 
and correlated knowledge from different sources which may be faulty. Moreover the 
sensors are distributed on a wide area to monitor a particularly complex phenomenon with 
temporal and spatial evolutions; besides a wireless sensor network is more complicate than 
a wired network because of communication errors, delay and topographical constraints. So 
each sensor has only a restricted view of the monitored phenomenon limited to the own 
local zone. Data fusion solves the limitation of the single source, and it is indispensable 
when a wide distributed network has to be used in order to get a more accurate view of the 
process behaviour in the whole area, (Linn et al., 1991; Wu et al., 2002). It allows a more 
efficient interpretation of data reducing the initial amount with less uncertainty and error 
than that obtained from a single source. The complexity of the matter needs not only to 
analyze and characterize these features, but also a careful analysis and integration of 
correlated information are necessary. The proposed approach consists in a two-levels data 
fusion, (De Capua & Morello et al., 2005a; De Capua & Morello et al., 2007). The procedure 
is able to improve the accuracy of data and to detect possible faulty states of the sensors. 
First for each zone, a fuzzy algorithm provides local decisions regarding alert occurrences 
due to the overcoming of the law limit, (De Capua & Morello et al., 2004a). In this way the 
initial amount of data is reduced by a preliminary fusion, and information on the 
measurement uncertainty is used to qualify the decision making process reducing errors 
and risks. Subsequently a final fusion of data and of correlated knowledge provides global 
information about the behaviour of electromagnetic field in the area so to characterize the 
general pollution status. In detail, after the partition of the area, each sensor must acquire a 
sample of Ni measures along the own local zone. Starting from the collected data and 
information on sensors performances, the Server processes electromagnetic field levels in 
order to single out possible hazardous events in the monitored area. For each measured 
value, the conformity with the exposure limit has to be evaluated. In fact in presence of 
warning situations, corrective interventions must be undertaken so to safeguard the 
population health. The problem requires suitable decision making rules in order to take 
reliable decisions. The matter concerns the choice of the more plausible decision about the 
conformity of measured data with the exposure limit. The uncertainty, which affects the 
measures, could be cause of possible wrong decisions, so a measured value may seem 
erroneously over the fixed limit, (Carbone et al., 2002; Castrup, 1995; Catelani et al., 1998; 
Zingales, 1996). Consequently the comparison between measured value and exposure limit 



A Sensor Data Fusion Procedure for Environmental Monitoring Applications  
by a Configurable Network of Smart Web-Sensors 

 

389 

cannot be performed by a simple mathematical comparison. Qualified procedures are 
necessary to take account of costs and risks associated to erroneous decisions. It is possible 
to use the same data redundancy in order to improve the results accuracy, and correlated 
information as environmental and topographical knowledge may qualify the computation. 
The fuzzy algorithm is able to perform a decision making process on the acquired data. Each 
zone is characterized by a sample of Ni measures, which are representative of the 
electromagnetic field behavior according to the desired severity level of the monitoring. The 
procedure is performed in the single zone, to determine if an acquired measurement value is 
conformance or non-conformance with the specification limit. So starting from the statistical 
distribution correlated with the monitored process and the metrological characteristics of 
the measurement system, the algorithm takes a decision about the overcoming occurrence of 
the exposure limit for the single measured datum in the zone. The possible alternatives of 
decision are two: A1 indicates the conformance occurrence, that is the measured level is 
below the limit; while A2 indicates the non-conformance occurrence, in other words the level 
is beyond the specification limit. The information stored in the flash memory of the sensor, 
regarding its metrological operating status, is used in order to estimate the erroneous 
decision probabilities associated with the measurement process. So data are fused with 
information regarding the statistical distribution of process and the measurement 
uncertainty. Starting from the Ni measured values, the Statistical Model described in the 
previous Paragraph allows now to calculate the probability Pα. It represents the probability 
to have supposed erroneously the measured value being above the exposure limit, because 
of the associated measurement uncertainty, when the measurand is really in conformity 
with the limit: 

 Pα= ( ) ( )
0
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Similarly to the equation (1) δ is the exposure limit; xm is the random variable associated 
with the measured quantity; and x is the random variable associated with the measurement 
process, so its standard deviation represents the standard measurement uncertainty. With 
the same symbolism it is possible to define the erroneous decision probability Pβ. Differently 
it represents the probability to have supposed erroneously the measured value being below 
the exposure limit, because of the associated measurement uncertainty, when the 
measurand is really in non-conformity with the limit: 

 Pβ= ( )
[ ]

( )
0 ,

' ' '
m

m

x x
X

F x f x dx
δ

δ
−

− ⋅∫  (5) 

The reader has to notice that the equations (1) and (5) are equal, but the meaning of the 
expression is different. Because in the first equation the probability concerns the calibration 
process and so the decision regards the tolerance state of sensor. The second equation 
estimates the probability concerning the measurement process of the electromagnetic field 
levels and so the respective decision refers to the overcoming of the exposure limit. In the 
same way, the variables δ, xm and x have a different connotation in the two equations being 
associated with the calibration and the measurement process respectively. The Fig. 5 shows, 
in example, the trend of the function Pα(u, δ), where σy represents the standard deviation of 
the measured data. The function characterizes the relation between the erroneous decision 
probability and the measurement uncertainty u and the exposure limit δ. 
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Fig. 5.  Trend of Pα(u, δ) 

Increasing values of u are cause of more and more high values of the erroneous decision 
probability; while a restrictive limit δ lead to a higher error probability. In order to explain 
the developed fuzzy decision making algorithm, we must start from the guidelines of the 
Standard EN ISO 14253-1, (ISO EN 14253-1, 1998). According to the Standard decisional rule 
it is possible to single out three zones when the measured value is put in comparison with 
the exposure limit: the conformance and non-conformance zones and the uncertainty range. 
So, if U is the expanded uncertainty, the measured value belongs to the conformance zone if 
it falls in the left interval [0 δ-U]; the right interval [δ+U +∞] represents the non-conformance 
zone; while the middle interval [δ-U δ+U] is the uncertainty range. The Fig. 6 shows the 
fuzzy decisional criterion developed according to the guidelines of the ISO Standard rule. 
 

 
Fig. 6.  Fuzzy decisional rule 

Pα%

u/σy δ/σy
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Now in order to understand the criterion, it is necessary to analyze the previous ISO 
Standard. The rule of the ISO Standard is a simple decisional criterion: if the measured value 
belongs to the conformance or non-conformance zone then the measurand has to be 
considered respectively compliant or not compliant with the limit. Several gaps make such 
decisional rule not optimal. In the first instance, it is possible to point out that no decisional 
criterion is suggested for the uncertainty range, so if the measured value belongs to the 
interval [δ-U δ+U], the ISO criterion does not provide any reliable decision. In the second 
instance, the decisional rule is lacking in information about the reliability or consistency of 
decision, so no knowledge is given about the decision goodness. It is possible to interpret 
such an approach as a binary one, so if the measured value belongs to the conformance 
zone, we could assign a credibility level equal to 1 to the conformity alternative A1, while the 
non-conformity alternative A2 has a null credibility level; in fact according to the ISO 
Standard in this case the ‘conformity’ decision has to be taken. By a first analysis that choice 
is not always the most reliable, because the comparison does not take into account the 
measurement uncertainty influence. So also the ‘non-conformity’ alternative could be 
plausible with a credibility level being not null. In this view, a fuzzy approach may improve 
the decisional rule when data affected by uncertainty are available, (Sousa & Kaymak, 2001; 
Triantaphyllou & Chi-Tun, 1996). The proposed fuzzy algorithm improves the ISO Standard 
rule by fusing information about the measurement uncertainty and the erroneous decision 
probabilities. In fact the previous probability Pβ allows to estimate the probability to have 
supposed erroneously the measured value in conformity with the exposure limit; since this 
probability is not necessarily null, it is possible to assert by a fuzzy approach that also the 
non-conformity alternative may be plausible. As a result if the measured value belongs to 
the conformance zone we can assign a credibility level equal to 1-Pβ to the alternative A1, 
while the credibility level of the alternative A2 is not exactly equal to zero but equal to Pβ, see 
Fig. 6. In this way the decisional criterion weighs up the occurrence of a possible wrong 
decision due to the measurement uncertainty. With the same reasoning, we can observe that 
the probability Pα to have supposed erroneously the measured value in non-conformity with 
the limit, is not necessarily null. So if the measured value belongs to the non-conformance 
zone, it is reasonable to assign a credibility level equal to 1-Pα to the alternative A2, and Pα to 
the alternative A1. The Fig. 6 shows the membership functions of the decisional criterion. For 
each decision alternative along the x-axis is represented the measured value, whereas the y-
axis refers to the credibility assignment. In this way for each alternative, the function assigns 
a credibility level according to the measured value. The probabilities Pα and Pβ weigh the 
decisional criterion in order to guarantee the decision consistency. Therefore the credibility 
level depends on the erroneous decision probabilities and so on the measurement 
uncertainty. A second decisional criterion takes in account risks and costs associated with 
the available alternatives, so to improve the discernment properties of the algorithm. 
Practical visual tools provide information about the confidence level of decision, generating 
a graphical representation of the global reliability of the two possible alternatives A1 and A2. 
Starting from the credibility levels, two fuzzy triangular sets show the global satisfaction of 
the decisional rules for the two alternatives (see Fig. 7). 
Each alternative is then described by a triangular set, which shows the alternative reliability. 
The single triangle is got by fixing the x-axis of the vertex equal to the previous credibility 
levels in Fig. 6 and its y-axis equal to 1. In this way the credibility levels of the membership 
functions are characterized by the most high level of reliability. By a fuzzy approach also the  
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Fig. 7.  Global reliability of the alternatives 

near credibility levels are possible with a lower reliability degree, and it is visible by the 
decreasing trend of the triangle sides. A rapid visual analysis of the Fig. 7 allows to single 
out the best reliable alternative, in other words the alternative characterized by highest 
credibility levels. In the example reported in Fig. 7, the best alternative is A2, because its 
triangle is on the right side with highest credibility levels. So the measured value has to be 
assumed non-compliant with the exposure limit. A quality index provides information on 
the decision reliability or decision consistency DC: 
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where: 
i. (pmi)max is the vertex abscissa of the triangle associated with the chosen alternative; 
ii. (pmi)min is the vertex abscissa of the triangle associated with the rejected alternative; 
iii. (pri)max is the abscissa of the right base value of the triangle associated with the chosen 

alternative. 
The proposed fuzzy decision making algorithm allows to perform a first level of data fusion. 
So starting from the data collected in the single zone, each measured value is put in 
comparison with the exposure limit. The most reliable decision is taken about the 
conformity or non-conformity with the limit. The available information stored in the flash 
memory of each sensor is so used in order to minimize risks of possible decisional errors. The 
further knowledge on the reliability of sensor and the next calibration interval represents an 
useful information in order to evaluate the actual performances of the sensor and its 
operating status. The same computing is executed in each zone of the investigated area. This 
allows the data reduction in order to manage the computational load. In this way the i-th 
local zone is merely characterized by Ni decision results. In order to evaluate the pollution 
status of the single zone, the frequency of non-conformities fi is estimated: 

 fi= Nio/Ni  (7) 

where Nio is the number of values which overcome the exposure limit, and Ni is the total size 
of the sample. In Fig. 8 the warning report of the local zones is shown. The report depicts the 
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pollution status in the area according to the made partition. The graduate color scale shows 
the different levels of pollution severity. The green color characterizes the zones with 
electromagnetic field levels in conformity with the exposure limit. The yellow color 
underlines the zones where warning situations are happened. The red color indicates 
alarm/alert events which may be cause of possible risks for the exposed population. The 
analysis of the pollution status in the area is an useful tool in order to single out the zones in 
which warning occurrences have happened. In this way it is possible to plan local corrective 
interventions, so to safeguard the involved population. Such information is not yet 
functional to characterize the risk state of the whole area, so an additional level of fusion is 
required in order to merge further information on topographical data and sensor reliability. 
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Fig. 8.  Pollution status of the zones 

The second level of data fusion has the task to fuse the obtained knowledge in order to get a 
view of the global pollution status of the area, so to plan general actions on the area 
characterizing the zones with higher priority of intervention. So information concerning the 
results of the decision making process in the single zone, the sensor reliability and 
topographical data are fused. The final result has the objective to improve the available 
knowledge turning the attention no more to the single zone but to the whole area. In this 
way the local results of each zone are weighed by the information concerning the reliability 
of the respective sensor. It is reasonable to observe that in presence of an alarm status, the 
zones, which have a higher priority of intervention, are those characterized by a higher 
reliability degree and a higher population density. So the zones with a higher priority of 
intervention may be singled out by means of the relative population density σri: 

 tliri σσσ =   (8) 

where σli is the population density of the i-th zone, whereas σt is the total population density 
of the whole area. So high levels of σri point out zones with high intervention priority, 
because, in presence of alarm situations, the impact on the population would be more 
disastrous. By the equation (2), it is possible to estimate the reliability Ri(t’) of each sensor in 
a specific instant t’. This parameter represents a practical information about the consistency 
of the data fusion in the first level processing. So it can be used in order to get an indication 
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about the possibility of false alarm in the i-th zone due to a faulty functioning of the sensor. 
Now we can define a Loss Function Li for the single zone by the following expression: 

 Li=100*(fi*Ri)2*(σri)2  (9) 

This parameter is a percentage measure of the cost of non-quality, it shows how the non-
quality of the monitored process is high, and so how the process is in an out-control 
situation. The Fig. 9 shows the trend of the Loss Function over the relative population 
density σri and the reliability of sensor Ri weighed by the frequency of non-conformities fi. 
The function represents an effective parameter evaluating the risk state of the i-th zone. A 
graduated color scale shows the risk level for the zone, where the red color characterizes the 
zones with higher risk. 

 
Fig. 9.  Risk state of the i-th zone 

The aim of that parameter is to characterize the risk of the zones in the whole area. So, 
assuming fi to be constant, zones with high population density are characterized by high 
loss of quality. While the zones, which have a high probability of false alarm occurrences, 
have less weight in the definition of intervention plans. Finally a global index F provides 
information about the average frequency of the alarm occurrences in the N zones of the area: 

 1
*

N

i i
i

f R
F

N
==
∑

  (10) 

By a weighed sum of the non-conformities frequencies fi, which are weighed by the 
respective sensor reliability Ri, the index provides a measure of the global alarm occurrence 
in the area. The final reports and computing results are stored in free-accessible Web Pages, 
so ordinary users can get knowledge about the environmental pollution of the area. 
In conclusion, the first level of data fusion is functional to get restricted information about 
the local zone and the conformity of the electromagnetic field with the exposure limit fixed 
by laws. So local plans of intervention can be designed. A report shows the pollution status 
of the single zone. The knowledge of the measurement uncertainty allows to qualify the 
processing stage, in order to take reliable decisions during the comparison between 
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measured values and exposure limit. The used fuzzy algorithm permits to minimize the 
possible occurrence of errors. The second level of fusion has the task to fuse the previous 
information with topographical data and performances of sensor. The zones are put in 
comparison so that an outline of the global electromagnetic field behavior is got. The 
purpose is to design a global plan of intervention. In this way the zones with higher priority 
of intervention are singled out, and information about the risk for population health is 
obtained. Indexes and parameters provide knowledge about the reliability of the computing 
results and the risk state of each zone. Correlated information is used in order to guarantee a 
fault tolerant data fusion, so that zones with lower reliability levels, or in other words zones 
with a greater possibility of false alarm occurrences have less weight in the computing. 

4. Experimental results 
The sensor data fusion procedure and the network of wireless and smart web-sensors have 
been tested in order to verify the consistency of the developed models. Experimental results 
have been obtained by a monitoring process carried out in a wide urban centre (Reggio 
Calabria city, in the south of Italy). Starting from the map of the area, the partition algorithm 
has subdivided the area in several local zones. According to the available resources, the 
topographical data and the desired accuracy for the monitoring, 30 local zones have been 
singled out. The initial partition grid has been thickened in two specific zones, because of 
the presence of sensible targets (schools and hospitals). So 8 new sensible zones have been 
got with a smaller size, they have required a more accurate monitoring, (see Fig. 10). 
 

 
Fig. 10.  Partition of the monitored area 

In these zones the monitoring maps have been designed with more attention. The sampling 
plans for the remaining zones have been realized by an experimental design in order to 
optimize the choice of the specifications. In details, information on the severity level of 
monitoring, the desired accuracy and the population density distribution have been used in 
order to get for each zone the single monitoring map, the sampling frequency and the 
sample size. In this way the single zone has been characterized by a representative sample 
of electromagnetic field levels. The monitoring of the several zones has been executed in 
different temporal windows. In fact because of the limited number of the available 
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prototypes of the smart sensors, the same sensors have been used for monitoring different 
zones, though the sensor network design would expect the presence of a specific sensor for 
each zone. However that may be, that choice does not compromise the consistency of the 
monitoring. The Fig. 11 (a) shows the moment of data acquisition. The Server acquires for 
each zone the set of the measured values and information about the operating state of the 
sensor. In Fig. 11 (b) the data trend of a specific zone is shown. 
 

      
                                         a                                                                              b 

Fig. 11.  (a) Data acquisition. (b) Electromagnetic field trend in the i-th zone 

By a first analysis of the figure, it is possible to observe that some values (highlighted by a 
red oval line) would seem to overcome the exposure limit depicted by a dash red line. After 
the data acquisition, the Server runs the sensor data fusion procedure in order to compute 
data and information, (see Fig. 12). 
 

    
                                         a                                                                              b 
Fig. 12.  (a) Processing stage. (b) Fuzzy triangular sets of the alternatives 

In the Fig. 12, it is possible to see the several processing steps of the fuzzy decision making 
algorithm, with an example of fuzzy triangular sets for a specific measured value. In detail, 
considering the zone n°4 as an example, the measured electromagnetic field level y=5.96 
V/m would seem to not overcome the exposure limit δ=6 V/m, as it is shown in Fig. 11 (b). 
The estimated erroneous decision probabilities are Pα=0.0045 and Pβ=0.0061. By observing 
the triangular sets, the decision making procedure has computed that the measured value 
overcomes the exposure limit with a decision consistency DC=1.5%. In the same way, the 
procedure has been performed in each zone for all measured values. So each zone has been 
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characterized by Ni decision results. By calculating the frequency of non-conformities fi for 
the single zone, the following report concerning the pollution status of the area has been got, 
(see Fig. 13). 

 
Fig. 13.  Pollution status of the zones 
By a simple analysis of the report it has been possible to detect the presence of three zones 
which require more attention. In fact the figure shows the presence of three zones with a 
different colouring; such zones are also highlighted in the Fig. 10 by a red contour. 
In the Table 1, the experimental results relating to the second level of data fusion are shown, 
in detail, as an example, the data of the previous three sensible zones are reported. 
 

Zone # Frequency of non- conformities 
fi є[0 1] 

Sensor Reliability 
Ri є[0 1] 

Risk State 
Li% 

… … … … 
7 0.2 0.9965 0.00089% 
8 0.1 0.9961 0.00022% 
9 0.34 0.996 0.0026% 

… … … … 

Table 1. Experimental results 

These zones are characterized by frequencies of non-conformities fi above average, because 
of warning occurrences. The matter has required a more detailed monitoring in order to 
perform a more careful analysis. The investigation has made possible the identification of 
the sources of pollution in the zones. In fact the high exposure levels were caused mainly by 
antennas of radio-mobile service located in the vicinity. Only for such zones the monitoring 
campaign has therefore highlighted the necessity of local corrective actions in order to 
reduce the emission power of the sources, so to conform the electromagnetic field levels to 
the law’s exposure limit. The average frequency of alarm occurrences F=0.03 is rather low 
similarly to the risk state levels of the zones, so no global plan of intervention in the area is 
necessary but only local ones for the three examined zones. Finally, the estimated sensor 
reliability levels point out that the sensors are in an optimal operating state, therefore the 
probability of a faulty functioning and of false alarm is very low, assuring a suitable 
reliability for the results of the data fusion process. 
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5. Conclusion 
In this Chapter an original approach to sensor data fusion for environmental monitoring 
applications has been proposed. Care has been paid for an innovative design of the 
distributed network of wireless and smart web-sensors with remote data processing. The 
architecture of the network is dynamically configurable by an algorithm according to the 
requirements and the accuracy desired for the monitoring. The sensors are able to measure 
the environmental electromagnetic field. A GPRS modem and a GPS module allow the 
single measuring unit to communicate remotely and to acquire information about its 
geographic location. In order to distribute the burden of measurement among several 
sensors, the monitored area (an urban centre) is divided in several local zones, where a set of 
sensors acquire a fixed number of data according to designed monitoring maps. Sampling 
time and location of the measurement points depend on topographical and environmental 
knowledge. The collected data are sent to ASP Web Pages accessible in reading only from 
identified users. The alone administrator has authorization to manage the whole network 
and to exchange information and commands with the sensors. Data and correlated 
information are remotely processed by an innovative data fusion procedure. The data fusion 
approach represents a suitable solution in order to manage a wide network and to process 
data from different sources. The developed procedure allows to minimize errors and faulty 
computing, by using information about the measurement uncertainty and the performances 
of the sensors. The data amount is processed and the same redundancy is used in order to 
increase the reliability and the accuracy of the results. A first level of data fusion provides 
information on alarm occurrences. So measured values are put in comparison with the 
exposure limit. The fuzzy decision making algorithm permits to qualify the comparison 
process minimizing possible occurrences of wrong decisions. A quality index values the 
consistency of the final decision alternative chosen. The estimation of the erroneous decision 
probabilities and the measurement uncertainty improve the computing results. A warning 
report shows the pollution status of the zones. Successively the results of the decisional 
process, information on sensor reliability and population density distribution are fused so to 
obtain a global view on the risk state in the whole area. The procedure is fault tolerant and 
permits the maximization of the useful information. In this way a more reliable result is got 
than that obtained from the single sensor, so greater efficacy and efficiency are achieved. 
The projected measurement process is a complete solution in support of monitoring, 
controlling and alarm reporting applications for environmental purposes. 
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1. Introduction 
Sensor networks are designed to satisfy specific signal processing objectives, such as target 
recognition and identification, industrial quality control, community health sensing, 
multimedia systems & applications, etc. The satisfaction of each objective first requires careful 
stochastic modeling of the environment and deployment of the pertinent performance 
criterion; a optimal or best centralized (or coherent) signal processing procedure can be then 
determined, whose rate of convergence to the deployed performance criterion will be 
predictable. The centralized procedure utilizes unconstrained raw data, it is performed by a 
fusion center  and attains the best possible convergence rate.  In the distributed environment of 
sensor networks, however, the transmission of raw data to the fusion center induces a high 
communication cost (both in transmission power and bandwidth), where raw data are 
collected by local sensors. To reduce the communication cost, raw data are preprocessed by 
the local sensors.  Reduced pertinent information is subsequently transmitted by the local 
sensors to possibly first cluster heads which in turn process the received information  and 
transmit further reduced information to a fusion center. The fusion center executes the final 
steps of the now termed decentralized (or non-coherent) procedure for the satisfaction of the 
network objective. The arising issues here are: (a) The performance versus communication cost 
tradeoff arising when the centralized and the decentralized procedures are compared and (b) 
the effect of feedback on the convergence rate of the decentralized  procedures. 
We select as signal processing objective the monitoring of changes in operational scenarios.  
Such monitoring has numerous applications, including detection of anomalies in 
community health and industrial quality control. We propose, analyze and evaluate a 
sequential monitoring algorithm, including convergence, power and false alarm, as well as 
performance comparison with the corresponding centralized system. 
The problem of detecting rapidly and accurately a change in the stochastic process that 
generates observation data has long history and numerous applications. The applications 
include industrial quality control, detection of edges in images, network quality control and 
traffic monitoring in data and sensor networks. The search for algorithms that detect 
changes in the underlying process which generates observation data has taken two distinct 
directions: Bayesian and non Bayesian. Since the assumed knowledge of prior probabilities 
in the Bayesian approaches is considered here unreasonable and unrealistic, we exclusively 
focus on non Bayesian solutions to the problem. 
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Motivated by the application of industrial quality control, (Page 1954) first proposed a 
sequential algorithm to detect a possible change from a given stationary and memoryless 
process to another given such process, where it was only assumed that such a change may 
occur randomly in time. (Lorden 1971) analyzed Page’s algorithm and proved its asymptotic 
optimality in the sense of stopping time. (Bansal et al 1986) extended Page’s algorithm for 
stationary and ergodic processes with memory and proved optimality in the sense of 
asymptotic expected stopping time. (Bansal et al 1989) also “robustified” the algorithm for 
resistance to data outliers. Burrell et al (1998) extended the algorithm in (Bansal et al 1986) to 
sequentially detect reoccurring possible changes within a given set of stochastic processes, 
and analyzed asymptotic performance. (Lai 1995) considered a scenario similar to that in 
(Burrell et al 1998). (Veeravalli et al 1993) adopted the algorithm of (Page 1954) and that of 
(Bansal et al 1986) to analyze the effect of a fusion center processing outputs from a set of 
distributed-data collecting sensors. Some modification of the latter scenario where 
considered by (Mei 2005). (Burrell et al 2004) considered a distributed modification of the 
algorithm presented in (Burrell et al 1998), to monitor traffic in sensor networks, where 
partial decisions from neighboring sensors are incorporated into the sequential algorithmic 
processing at each sensor.  
 In this chapter, we consider the existence of a fusion center which processes partial 
decisions by distributed local sensors, to make the final decision as to the change of the 
underlying data generating process. The processes model adopted is that of (Burrell et al 
1998). Feedback from the fusion center to the sensors is implicit and utilized in the 
algorithmic steps of the overall system. 
The chapter is organized as follows: In Section 2, the system model is presented. In Section 
3, preliminaries about the basic algorithms deployed by a centralized system are presented. 
In Section 4, the algorithmic system is presented and analyzed and the comparison of its 
performance with that of the centralized system is discussed.  In Section 5, numerical 
evaluation scenarios are included.  In Section 6, some conclusions are drawn.        

2. System  model 

We consider discrete-time processes and we let time start at zero. Let 1
nx  denote the 

sequence  x1, … , xn of n observations after time zero and let { μ i ; i = 0, 1,  … , m-1} denote 
the measures of m distinct and parametrically defined stochastic processes. The 
assumptions in the problem we consider are then as follows: the observation sequence is 
initially generated by the process μ 0 , while it is possible that a shift to any one of the m-1 
processes μ i ; i = 1, … , m-1 may occur at any point in time, where if a μ 0 → μ i shift occurs, 
then the process μi remains active thereafter. The objective is to detect the occurrence of a μ 0 
→ μ i shift as accurately and as timely as possible, including the detection of the process μ i 
which μ 0 changed to. Let us denote by f i  ;  i = 0,1, .., m-1 density or probability functions 
induced by the processes μi ; i = 0, 1,  … , m-1 and let us denote by 1

1( | ) ; 0,1,..., 1n
i nf x x i m− = −  

conditional density or probability functions at x n , given the sequence 1
1
nx − . 

In a centralized system, the problem objective is satisfied by a single processor which 
collects all the data and processes them sequentially via the algorithm in (Burrell et al 1998). 
Here, a decentralized system is considered, however, where M physically distributed 
processors collect local data, in conjunction with possible feedbacks from a fusion center. 
(See Figure 1). The M sensors are identical, placed in identical stochastic environments; that 



Monitoring Changes in Operational Scenarios via Data Fusion in Sensor Networks 

 

403 

is, possible changes of the local data generating processes occur simultaneously at all sensor 
sites. Each sensor deploys a sequential algorithm to detect a possible μ 0 → μ i , i = 0,1, .., m-1 
change and transmits its local decisions to the fusion center. The fusion center makes the 
final decision as to a possible change in the data generating process, while it may be 
implicitly notifying the sensors as to its decision status at all times. 
 

Fusion Center

Sensor 1 Sensor j Sensor M 

{vn} 

{vn} )(1 Mxn)1(1
nx )(1 jxn

}{ )(M
nu

}{ )( j
nu

}{ )1(
nu

{vn} 

 
Fig. 1. Fusion Center 

Let 1 ( )nx i denote a n-dimensional local to sensor i data sequence. Let ( )j
nu  denote the input of 

sensor j to the fusion center at time n. Note that sensor j does not transmit anything to the 
fusion center, until it makes a decision; if it makes a decision in favor of a μ 0 → μ i shift at 
time n, it then transmits ( )j

nu = i ; which also implies ( )j
ku = i ; for all k > n ; before n the fusion 

center simply deduces that ( )j
lu = 0 , l  ≤ n-1, which means that senor j has not yet decided 

that a change from μ 0 has occurred. Let vn denote the feedback of the fusion center to the 
sensors, at time n. Then, vn = 0 ; for all n before a shift decision is made by the fusion center. 
Note, that the fusion center does not need to transmit any feedback to the sensors before it 
makes its shift decision: the sensors simply deduce then that vn = 0 during such periods. At 
the time when the fusion center makes its decision, it simply “orders” the sensors to stop 
their local processing.  

3. Preliminaries 
Let us assume that all the processes μ i ; i = 0, 1,  … , m-1 are ergodic and stationary, where 

1 1
,

0 1

( )log
( )

n
i

i n n

f wL n
f w

Δ
−=  

1 0 1
0,

1

( )log
( )

n

n n
i

f wL n
f w

Δ
−=  

,0 ,limi i nn
I L

Δ

→∞
=  



 Sensor and Data Fusion 

 

404 

0, 0,limi nn
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and where the following conditions are satisfied, for all i = 1, …, m-1: 
Ii 0 and I 0 i exist (Ii 0 , I 0 i  < ∞) and 
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Then, denoting by x infinite generated sequences, we have from (Bansal et al 1986) the 
following results, regarding the centralized detection of a μ0 to μi shift : 
Defining the stopping variable 

{ }0
0 1( ) inf : ( )i n
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we have that, 
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_

0
0

logE ( ) ~ as 
Ei

i

i
i

N x
I

δ
μ

μ

δ δ →∞  (1) 

If the μi ; i = 0,1, ….,m-1 stochastic processes possess in addition Lai’s (1977) mixing 
conditions, then the stopping variable { }0 ( )iN xδ  can be closely approximated by the 

following stopping variable ' ( )N xδ  which possesses sequential properties while ( )N xδ does 
not.  
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1
' 1
0 10 1 0 1

( | )( ) max log
( | )

ln
i l

i lk n l k l

f x xN x
f x x

δ
−

−≤ ≤ = +

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
∑  

 '0 1 '0 1 1
1 1 1 1

0 1 1

( | )( ) max 0 , ( ) log
( | )

n
i n i n i n

n n n
n

f x xT x T x
f x x

+ +
+ +

+

⎛ ⎞
= +⎜ ⎟

⎝ ⎠
  (2) 

where   1 1

0 1 1

( | )log
( | )

n
i n

n
n

f x x
f x x

+

+

 represents the algorithmic updating step at time n+1. 

Denoting I i j as I 0 i , when μ0  and  μi  are respectively substituted by μi and μj , and assuming 
that Lai’s (1977) mixing conditions hold, we have from Burrell et al (1998): 

 
[ ]

⎪⎩

⎪
⎨
⎧

<≥

≥−
Ε∞→

−

−

−= jij

jijjij

j
ji x

II if ; 2

II  if ; logII~
:}|)({N ,  As

0
1

0
1

0

1-m ..., 1,=i
1m .., 1, 0,

'
0

δ

δ
μδ δ  (3)   

 { } { } [ ]
{ }⎪

⎩

⎪
⎨

⎧

<≠∀≥<

>≠∀−Ε<
Ε∞→

−

−
−

jijji

jijjijji
jjj

jixNE

jix
x

II:;2|)(

II:;logII~|)(N
:logI~|)(N, As

0
1'

0

0
1

0
'
01

0
'
0

δμ

δμ
δμδ

δ

δ
δ (4) 

Expressions (1), (3) and (4) represent the asymptotic performance of the centralized system, 
where m-1 parallel algorithms as in (2) operate, with a common threshold δ, and where the 
first algorithm to cross this threshold determines the system decision: if the μ0 →  μk 
algorithm first crosses the threshold, then a μ0 →  μk shift is decided and the algorithmic 
system stops.  

4. The algorithmic system 
We assume identical sensors collecting mutually independent local data. We denote by xn(i) 
the nth local datum at the ith sensor. We denote by n-1

1x ( )i the (n-1)th dimensional data 
sequence collected locally at senor i from time 1 to time n-1. The algorithms deployed by the 
sensors are identical, and utilize conditional densities or distributions. In addition to its local 
data, each sensor also utilizes the implicit fusion centers feedbacks {vk = 0 }k throughout its 
operation. Let ( )1

j 1 1 1( ), 0 | ( ),{ 0}n
n n k k nf x i v x i v−

≤ ≤ −= =  denote the conditional density or 
distribution of the data at sensors i, given that the acting data process is μj . It is clearly seen 
that the {Vn} sequence is a Markov Chain and that the data sequence n

1X ( )i  is independent of 
{Vn}. We can thus write,  

( )1
j 1 1 1( ), 0 | ( ),{ 0}n

n n k k nf x i v x i v−
≤ ≤ −= = =  

 ( ) ( )1
j 1 1 j 10 | 0, ( ) ) ( ) | ( )n n

n n nf v v x i f x i x i−
−= = =  (5) 

We observe that the {vk} sequence is based only on the { }( )i
ku  sequences of the sensor 

outputs rather than the data sequences collected by the sensors. We thus substitute 
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( )j 1 10 | 0, ( ))n
n nf v v x i−= =  by ( )( )

j 10 | 0, 0i
n n nf v v u−= = = . Since the sensors are identical we 

drop the index i and we write,    

( )1
j 1 1 1, 0 | ,{ }n

n n k k nf x v x v−
≤ ≤ −= =  

( ) ( )1
j 1 j 10 | , 0 | n

n n n nf v v u f x x −
−= = =  

 ( )
( ) ( )j 1

j 1
j 1

0 | 0
|

0 | 0
n n n

n
n n

f v u
f x x

f v u
−

−

= =
= =

  (6) 

( )
( )

1
j 1 1 1

1
0 1 1 1

, 0 | ,{ }
log

, 0 | ,{ }

n
n n k k n

n
n n k k n

f x v x v
f x v x v

−
≤ ≤ −

−
≤ ≤ −

=
=

=
 

 ( )
( )

( )
( )

( )
( )

1
j 1 j j 1

1
0 1 0 0 1

| 0 | 0 0 | 0
log log log

| 0 | 0 0 | 0

n
n n n n n

n
n n n n n

f x x f v u f v u
f x x f v u f v u

−
−

−
−

= = = =
+ −

= = = =
  (7) 

The expression in (7) represents the updating step of the μ0 →  μj shift detecting algorithm in 
(2) at time n, at any one of the M sensors, where n

1x  are the locally collected data. As 
compared to the centralized scheme, the terms  

( )
( )

( )
( )

j j 1

0 0 1

0 | 0 0 | 0
log and    -log

0 | 0 0 | 0
n n n n

n n n n

f v u f v u
f v u f v u

−

−

= = = =

= = = =
 

are added to the updating step. Due to the latter terms, the algorithmic systems across the 
different sensors are mutually dependent, while the locally collected data are mutually 
independent, instead.    
At the Fusion Center, m-1 parallel algorithms are operating, with a common threshold T, 
each monitoring a μ0 →  μj possible shift, for j = 1, … , m-1. These algorithms utilize the 

vectors 
__

(1) ( ),...,
Tm

n n nU u u= ⎡ ⎤⎣ ⎦ , where ( )i
nu  is the output of sensor i at time n. If at time n the 

sensor has not made a decision yet, then ( ) 0i
nu = . If at time n the senor decides in favor of the 

process shift μ0 →  μj , then ( )i
nu j= , and this value remains unchanged for all times after n. 

Due to the above discussed evolution of the { }( )i
nu  outputs, it is clear that the process { }__

nU  

is a Markov Chain. Thus,
__ __ __ __

1| ,1 1 |n k n nj jf U U k n f U U −
⎛ ⎞ ⎛ ⎞≤ ≤ − =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

, where, in addition, the 

conditional probability 
__ __

1|n njf U U −
⎛ ⎞
⎜ ⎟
⎝ ⎠

 is determined solely by the transitions of the zero-

valued components of  
__

1nU − . In fact, due to the identical nature of the sensors, 
__ __

1|n njf U U −
⎛ ⎞
⎜ ⎟
⎝ ⎠

 

is determined by the number of sensors whose algorithms are still running at time n-1, and 
among them, from the numbers which transition to the states un = 1, … , m-1, at time n. For 
sensor i, let us denote the variable ( )i

nd  as, ( ) 0i
nd =  if   ( ) 0i

nu =  and  ( ) 1i
nd =  if  ( ) 1,2,..., 1i

nu m= − . 
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Let 
__

nD  be the vector whose components are ( ) ; 1,2,...,i
nd i M= . Then, we can first write 

__ __

1|n njf U U −
⎛ ⎞
⎜ ⎟
⎝ ⎠

=
__ __

1| nnjf U D −
⎛ ⎞
⎜ ⎟
⎝ ⎠

=  
__ __ __

1| ,n nnjf U D D −
⎛ ⎞
⎜ ⎟
⎝ ⎠

 
__ __

1|n njf D D −
⎛ ⎞
⎜ ⎟
⎝ ⎠

and,  

 

__ __ __ __ __ __ __

1 11

__ __ __ __ __ __ __

1 110 0 0

| | , |
log log log

| | , |

n n n nn n nj j j

n n n nn n n

f U U f U D D f D D

f U U f U D D f D D

− −−

− −−

⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠= +
⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

  (8) 

From the discussion above, it is evident that the sufficient statistics for the term 
__ __

1

__ __

10

|
log

|

n nj

n n

f D D

f D D

−

−

⎛ ⎞
⎜ ⎟
⎝ ⎠
⎛ ⎞
⎜ ⎟
⎝ ⎠

 are 1 ( ) ( )
1

1
(1 )

M
i i

n n
i

M d d−
−

=

−∑  and 1 ( ) ( )
1

1
(1 )(1 )

n
i i

n n
i

M d d−
−

=

− −∑ . As to the conditional 

probability 
__ __ __

1| ,n nnjf U D D −
⎛ ⎞
⎜ ⎟
⎝ ⎠

, j=0,1, … , m-1, it represents the probability of the number of 

sensors deciding in favor of the 0 ; 1,.., 1k k mμ μ→ = −  shifts at time n, given that their 

algorithmic systems stop at time n; this probability equals 1 if m=2, since then,  
__ __

n nD U= .  

The sufficient statistics for the probability 
__ __ __

1| ,n nnjf U D D −
⎛ ⎞
⎜ ⎟
⎝ ⎠

 and the term log 

__ __ __

1| ,n nnjf U D D −
⎛ ⎞
⎜ ⎟
⎝ ⎠

/
__ __ __

10 | ,n nnf U D D −
⎛ ⎞
⎜ ⎟
⎝ ⎠

 in (8) are, 1 ( ) ( )
1

1
(1 )

M
i i

n n
i

M d d−
−

=

−∑  and 

1 ( ) ( ) ( )
1

1 1 1
(1 ) ( ) ;1

M
i i i

n n n
i k m

k l

M d d u k l m−
−

= ≤ ≤ −
≠

− − ≤ ≤∑ ∏ . The expression in (8) represents the updating step 

of the μ0 →  μj shift detecting algorithm in (1) and (2) at time n, as implemented by the fusion 
center. Let now us denote, 

j
n

j 1,...,m-1
p

=
:   The probability that the algorithmic system at a sensor stops at time n ( the common 

threshold is first crossed at time n), given that the data generating process is μj .  
j
n k

k,j ;1,...,m-1
p : The probability that, given the data generating process μj, the algorithmic system at 

a senor stops at time n, where the μ0 →  μk shift detecting algorithm is the one that 
first crosses the threshold at n.  

j
n

j 1,...,m-1
β

=
:  The probability that the algorithmic system at a sensor stops before or at time n, 

given that the data generating process is μj.  
αn: The probability that the algorithmic system at a senor stops before or at time n, 

given that the data generating process is μ0.   
We note that p pj j

n n k=  ; if m=2. Also,  1p j j j
n n nβ β −= −  ; j =1, …, m-1 and 0

1pn n nα α −= − . 
We now express a theorem, whose proof is in the Appendix. 
Theorem 1: 
Let the probabilities ( )j 0 | 0 ; 1,..., 1n nf v u j m= = = −  and ( )0 0 | 0n nf v u= =  be such that there 

exist constants 0n  , cj ; j=1, …, m-1 and c0 such that  
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 ( )j 0 | 0n nf v u= = /  ( )j 1 10 | 0n nf v u− −= = = cj ; j=1, …, m-1, 0n n∀ >  

 ( )0 0 | 0n nf v u= = /  ( )0 1 10 | 0n nf v u− −= = = co ; 0n n∀ >   (9) 

Then, the algorithmic systems across different scenarios are mutually independent for all 
0n n> . In addition, if the μj ; j=0,1, …,m-1 processes are stationary, ergodic and satisfying 

conditions (A) and (A’) in Section III, as well as (Lai’s 1977) mixing conditions, then the 
performances of the sensors algorithmic systems are asymptotically ( 0n n> ) identical and 
as in (3) and (4). Finally, the updating step of the μ0 → μj shift detecting algorithm at the 
fusion center in (8) takes then the following form : 

 
1

1 ( ) ( ) ( )
1 0 0

1 1 1 1

p / p( 2) (1 ) ( ) log
p / p

j jm M
n j i i i nl n
F S n n n

l i k m nl nk l

S U m M d d u k
−Δ

−
−

= = ≤ ≤ −
≠

= − − −∑ ∑ ∏  

1 ( ) ( ) 1 ( ) ( )1 1
1 10

1 11 1

p | (1 ) (1 ) | (1 )(1 ) log (1 )(1 ) log
p | (1 ) (1 ) | (1 )

j j j jM M
i i i in n n n

n n n n
i in n n n

M d d M d dβ β β
α α α

− −− −
− −

= =− −

− − −
+ − + − −

− − −
∑ ∑ ; 0n n>  (10) 

; where  
1 ; n  0 

U(n)  
0 ; n  0

>⎧
= ⎨ ≤⎩

                                                                                                               □ 

The expected value of the updating step in (10), subject to the data generating process being 
μi is found by straight substitution as follows:  

{ }
1

1
0 0

11,..., 1 1 1

| | (1 )| ( 2) log log
| 1 | (1 )

i j j i j jm
n j nl nl n n n n
F S i i i o

li m n nl n n n n

p p p p pE S U m
p p p p
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−
= − + +
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                           1

1 1

(1 ) (1 ) | (1 )log
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i
n n n

β β β
β α α
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{ }
0 01
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0 0 0 0

1 1 1

| | (1 )| ( 2) log log
| (1 ) | (1 )

j j j jm
n j nl nl n n n n
F S o

l n nl n n n n

p p p p pE S U m
p p p p
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∑  

                                        
)1(|)1(
)1(|)1(

log
)1(

)1(

1

1

1 −

−

−
−−

−−

−

−
+

nn

j
n

j
n

n

n
αα
ββ

α

α
0; nn >   (12)     

 

For asymptotically many sensors ( M → ∞), the updating step in (10) converges to the 
expected values in (11) and (12), depending on the acting data generating process. Let 
K(p|q) denote the Kullback-Leibler information number of a Bernoulli trial with parameter 
p, with respect to a Bernoulli trial with parameter q. Let 1 1 1 1K({p } |{q } )l l m l l m≤ ≤ − ≤ ≤ −  denote the 
Kullback-Leibler number of a distribution with probabilities 1 1{p }l l m≤ ≤ − , with respect to a 
distribution with probabilities 1 1{q }l l m≤ ≤ − . Then, from expressions (11) and (12), we easily 
deduce the expressions (13) and (14) below. 
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0 0
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E S U m
p p
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⎛ ⎞⎧ ⎫ ⎧ ⎫⎪ ⎪ ⎪ ⎪⎜ ⎟= − − −⎨ ⎬ ⎨ ⎬⎜ ⎟⎪ ⎪ ⎪ ⎪⎩ ⎭ ⎩ ⎭⎝ ⎠
 

                                                           
1 1

1 1K
1 1

j
n n

j
n n

α β
α β− −

⎛ ⎞− −
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We note that the quantities 
1 1

pi
nl
i
n l m

p
≤ ≤ −

⎧ ⎫⎪ ⎪
⎨ ⎬
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; i = 0,1, …, m-1, 
1

1
1

i
n
i
n

β
β −

−
−

; i = 1, …, m-1 and (1-αn) / (1-

αn-1) in expression (13) and (14)  all represent performance metrics per single sensor.  We 
now state a theorem whose proof is included in the Appendix. 
Theorem 2 

Let the sequences   
1 1

pi
nl
i
n l m

p
≤ ≤ −

⎧ ⎫⎪ ⎪
⎨ ⎬
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; i = 0,1, …, m-1, 
1

1
1

i
n
i
n

β
β −

−
−

 ; i = 1, …, m-1 and   (1-αn) / (1-αn-1) 

converge asymptotically. Then, the algorithmic system at the fusion center has the following 
asymptotic performance characteristics, where 0

T
jN  denotes the stopping variable of the 

0 jμ μ→ shift monitoring algorithm in the system when the common threshold is T, and 

where { } { }limj nj
FS k FS kn

E S E Sμ μ
Δ

→∞
= .   

                     { } { } { }
{ }⎪⎩

⎪
⎨
⎧

<≥
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0   E if                          ; T2 

 0    E if  ;TlogE~
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j
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i
S

SS
μ

μμ
μ  (15) 

                             { } { } jijj ≠∀<∞→ μμ T
0i

T
0j NENE,T As   (16) 

In addition, the conditions in Theorem 1 for mutual independence across the various 
sensors hold, for asymptotically many sensors.                                                                              □ 
From the results in Theorem 2, we clearly observe that the asymptotic performance of the 
algorithm deployed at the fusion center is determined by the performance of the algorithms 
deployed by the individual sensors, which are determined, in turn, by the Kullback-Leibler 
numbers among the various acting processes. Furthermore, each individual sensor may be 
viewed as a representation of a centralized system; thus, comparison between a decentralized 
and a centralized systems translates to comparison of the fusion center performance to that of 



 Sensor and Data Fusion 

 

410 

a single sensor.  The asymptotic performance of the fusion center is controlled by the limits of 
the expectations in expressions (13) and (14), which are, in turn, determined by the limits of 
Kullback-Leibler numbers among  power and false alarm quantities induced at a single sensor; 
the latter numbers are functions of the Kullback-Leibler numbers among the various acting 
processes. The asymptotic performance of a single sensor, on the other hand, is directly 
controlled by the Kullback-Leibler numbers among the acting processes. As the latter numbers 
increase, both sensor and fusion center performances enhance. 

5. Numerical evaluations 
In this section, we examine metrics for the non-asymptotic performance of the algorithms in 
the system. We first state the general experimental setup. Then, we present numerical 
results, for a specific scenario.      

5.1 Experimental setup 
In the construction of our experimental setup, we follow the steps listed below : 
1. We select specific processes, μ1,  … , μm-1.   
2. We construct the specific updating step for each of the parallel algorithms   

μ0 → μk; k = 1,..., m - 1that are ran at each sensor, as per expression (7) in Section IV. 
3. Via the construction in step 2, we compute numerically the quantities 0{P ( )}j

k n ,    

0{ ( )}j
k nβ and 0{ ( )}k nα  in a recursive fashion, where : 

0{P ( )}j
k n : Given that the data generating process is μj , the probability that the            

                0 kμ μ→  monitoring algorithm crosses the threshold at n. 

0 ( )k nα : 0
0

1
P ( )

n

k
l

l
=
∑  

0 ( )j
k nβ : 0

1
P ( ) , 1, ..., 1

n
j
k

l
l j m

=

= −∑  

4. Via the computed quantities in step 3, we compute the quantities P j
nk , P j

n , nα  and 
j

nβ defined in Section IV, as follows : 
j

n k
k,j ;1,...,m-1

P = ( )0 0
1 1

P ( ) 1 ( ) ; 0,1, ..., 1j j
k l

l m
l k

n n j mβ
≤ ≤ −
≠

− = −∏  

P j
n  = 

1

1
P ; 0,1, ... , 1

m
j

nk
k

j m
−

=

= −∑  

nα  =  0

1
P

n

l
l=
∑  

j
nβ  =  

1
P ; 1, ..., 1

n
j

l
l

j m
=

= −∑  

5. The quantities  computed in step 4 are used to compute the updating steps of the 
parallel algorithms ran by the Fusion Center, as the former are determined by 
expression (10) in Section IV. 

6. The number of sensors is selected. Data are independently generated at each senor by 
the same process μl, where μl is one of the processed selected in step 1. Given μl, the 
overall system-sensors/fusion center – is simulated, where the system algorithmic 
thresholds have been a priori selected. The performance metrics computed are metrics 
at the Fusion Center. In particular, the computed metrics for each given μl are:   
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k n
1 k m-1
h l

≤ ≤

: Given that the data at the sensors are generated by the process μl, the percentage 

of simulated runs that led the Fusion Center to decided at time n that μk started acting. 
k 

1 k m-1
T l

≤ ≤

: The average time to decided in favor of process μk, given  that the data 

generating process is μl, where the decision is by the Fusion Center. 
k nr l : Given that the data generating process at the sensors is μl, the probability that the 

Fusion Center decides in favor of process μk before or at time n.   
where,  

k nr l  =  
n

k n
p 1

h l

=
∑   and  kT l =

n

k n
p 1

n  h l

=

⋅∑  

m-1 sets of simulations are ran, each corresponding to one of the processes μl; l = 1, … , m-1 
that generate the actual data at each sensor. □ 
In step 6, we stated that the algorithm thresholds of the system are a priori selected. The 
methodology for this selection is as follows. 
A. The thresholds across different sensors are identical, since the sensors are considered 

identical. Per sensor, we test a number of different thresholds, 1 ,..., pδ δ . For each given 
threshold, iδ , we evaluate numerically the metrics 0{ ( )}k nα  and 0 1 1{ ( )}k

k k mnβ ≤ ≤ − , where 
the latter metrics are defined in step 3. Given iδ , we plot the m-1 pairs of curves  

0{ ( )k nα , 0 1( )}k
k n Nnβ ≤ ≤  for some pre-selected N. We then decide on a value no and select 

a lower bound βo for powers and a upper-bound  αo for false alarms. We select as the 
operational algorithmic threshold, the minimum among the tested thresholds such that 
all powers at  are above βo and all false alarms at no are below αo. That is, operational 
selected thresholds attains :  

0 0 01 1
min ( )k

kk m
nβ β

≤ ≤ −
≥  and   0 0 01 1

max ( )kk m
nα α

≤ ≤ −
≤ . 

B. The thresholds for the Fusion Center are evaluated and selected, as in (A). 

5.2  Specific simulation scenario 
We selected homogeneous Poisson processes μ0 ,  … , μm-1 with specific different rates. The 
simplification of the updating step in (7), Section 4, in this case, as well as the computation 
of the quantities 0{P ( )}j

k n  , 0{ ( )}j
k nβ  and 0{ ( )}k nα  in Step 3, Section 5.1, was included in 

(Burrell et. al. 1998a) and is also included in the Appendix. 
We specifically selected six homogenous Poisson processes, μ0 , μ1 , μ2 , μ3 , μ4 , μ5 , with 
corresponding rates per unit time : r0 = 0.1, r1 = 0.25, r2 = 0.35, r3 = 0.5, r4 = 0.65, r5 = 0.8. We 
tested several thresholds for the algorithm systems ran by the sensors, and finally selected a 
common threshold equal to 300. For the latter threshold, all induced powers attained values 
above 0.97 at time 200 and all false alarms remained below the value 0.005 at the same time.   
We simulated the overall system, for 30 and 50 sensors and for fusion center threshold 
values 10, 20, 100 and 300.  To exemplify our results, we plot some power and false alarm 
curves in Figures 2 and 3 below.  Specifically, in Figure 2, we plot the power and false alarm 
curves induced by the algorithm that monitors a change from Poisson rate 0.1 to Poisson 
rate 0.25 at the fusion center, when the number of sensors is 30 and the algorithmic 
threshold values are 10. 20, 100 and 300.  In Figure 3, we plot the same curves when the 
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number of sensors is 50.  From studying the two figures, we observe that, as the number of 
sensors increases from 30 to 50, low false alarm and high power are simultaneously attained 
for less than 100 data, when the threshold value at the fusion center is 10.  
 

 
Fig. 2. Power & False Alarm Curves for 0.1 → 0.25 Monitoring Algorithm at the Fusion 
Center, for 30 Sensors. Legend:  2 | 1 : False Alarm 2 | 2 : Power 

 
Fig. 3. Power & False Alarm Curves for 0.1 → 0.25 Monitoring Algorithm at the Fusion 
Center, for 50 Sensors.  Legend : 2 | 1 : False Alarm 2 | 2 : Power 
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In Tables 1 and 2 below, we include our computed  kT l  values for 30 and 50 sensors 
respectively, for the Poisson model explained above, and for fusion center threshold values 
10, 20, 100 and 300.  From the values in the tables, we note that the system approaches its 
expected asymptotic performance, as the number of sensors increases from 30 to 50, and for 
fusion threshold value 10. 
 

 k \ l 1 2 3 4 5 6  Diagonal 
T- Files          

Threshold 300 2 0 0 0 0 0.0008 0.0077  0 
Sensors = 30 3 0 0.0037 0.0073 0.0527 0.1207 0.2117  0.0073 

 4 514.26 3.8112 0.2629 0.4904 0.4103 0.2794  0.4904 
 5 1290.03 36.1046 1.1842 0.8225 0.4612 0.2874  0.4612 
 6 27.0723 13.2926 2.4171 1.311 0.5245 0.2861  0.2861 
          
 k \ l 1 2 3 4 5 6  Diagonal 

T- Files          
Threshold  100 2 0 0.0003 0.0044 0.026 0.0541 0.1286  0.0003 

Sensors = 30 3 0 0.0779 0.2877 0.4659 0.3382 0.2296  0.2877 
 4 398.395 2.5276 0.7833 0.7369 0.3909 0.2342  0.7369 
 5 1049.44 23.7907 2.892 1.1396 0.4044 0.2441  0.4044 
 6 247.986 33.4387 4.1832 1.207 0.4336 0.2378  0.2378 
          
 k \ l 1 2 3 4 5 6  Diagonal 

T- Files          
Threshold  20 2 0.741587 0.2708 0.662 0.5768 0.305 0.2103  0.2708 
Sensors = 30 3 5.93519 7.8534 2.0764 0.927 0.3568 0.2206  2.0764 

 4 344.015 7.3547 3.1896 0.9682 0.3356 0.2115  0.9682 
 5 865.765 7.1572 3.2217 0.9998 0.3564 0.2233  0.3564 
 6 380.923 11.6246 3.2076 0.9974 0.3569 0.2035  0.2035 
          
 k \ l 1 2 3 4 5 6  Diagonal 

T- Files          
Threshold  10 2 9.00174 1.422 1.7969 0.8834 0.3555 0.2188  1.422 
Sensors = 30 3 23.6324 7.3706 2.453 0.9198 0.3502 0.2176  2.453 

 4 364.822 7.7948 3.3048 1.002 0.357 0.2125  1.002 
 5 809.686 4.6126 2.8298 1.0032 0.3709 0.2204  0.3709 
 6 379.928 4.4201 2.8206 0.9947 0.3622 0.2112  0.2112 

 

Table 1. k T l Values at the Fusion Center for 30 Sensors 
Legend:  
1: Rate 0.1        2: Rate 0.25 
3: Rate 0.35      4: Rate 0.5 
5: Rate 0.65      6: Rate 0.8 
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 k \ l 1 2 3 4 5 6  Diagonal 
T- Files          

Threshold 300 2 0 0 0 0 0 0.0013  0 
Sensors 50 3 0 0 0.0037 0.017 0.0642 0.1898  0.0037 

 4 493.968 3.2876 0.1555 0.2853 0.2617 0.2593  0.2853 
 5 1783.71 43.4664 1.1773 0.6799 0.4089 0.282  0.4089 
 6 11.1052 10.7968 2.069 1.1099 0.4433 0.2776  0.2776 
          
 k \ l 1 2 3 4 5 6  Diagonal 

T- Files          
Threshold  100 2 0 0 0.0001 0.0072 0.0539 0.1522  0 

Sensors 50 3 0.972617 0.0393 0.1549 0.234 0.1958 0.207  0.1549 
 4 545.46 1.6381 0.8906 0.6919 0.3144 0.2224  0.6919 
 5 1247.48 20.5153 2.3331 0.7516 0.321 0.2155  0.321 
 6 220.568 39.1443 4.8733 1.0118 0.3317 0.2109  0.2109 
          
 k \ l 1 2 3 4 5 6  Diagonal 

T- Files          
Threshold  20 2 1.19472 0.1307 0.3722 0.3605 0.2338 0.2041  0.1307 

Sensors 50 3 5.97928 5.2579 1.3822 0.5765 0.2408 0.1975  1.3822 
 4 382.187 7.9517 2.6174 0.6448 0.2468 0.2036  0.6448 
 5 1012.35 5.0408 2.5545 0.7314 0.2501 0.21  0.2501 
 6 396.057 8.7207 2.6216 0.7072 0.2418 0.1933  0.1933 
          
 k \ l 1 2 3 4 5 6  Diagonal 

T- Files          
Threshold  10 2 4.34465 0.8419 1.1619 0.545 0.2322 0.2034  0.8419 

Sensors 50 3 10.8702 4.293 1.7951 0.6618 0.2538 0.2085  1.7951 
 4 362.561 6.9178 2.5261 0.6414 0.2377 0.1919  0.6414 
 5 889.308 4.4505 2.1631 0.6447 0.2438 0.1974  0.2438 
 6 469.714 3.7693 2.215 0.6622 0.2446 0.2073  0.2073 

Table 2. k T l Values at the Fusion Center for 50 Sensors 
Legend: 
1: Rate 0.1       2: Rate 0.25 
3: Rate 0.35     4: Rate 0.5 
5: Rate 0.65     6: Rate 0.8 

6. Conclusions 
We studied a fusion center structure, for the detection of change in the underlying data generating 
process. We established the pertinent algorithms and stated conditions for the asymptotic 
optimality of the overall system. In general terms, we showed that the relevant algorithms 
converge in logarithmic time. We also established metrics for the study of non-asymptotic 
performance and presented numerical results for a specific Poisson data traffic scenario. 
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APPENDIX:  
Proof of Theorem 1 
When the conditions in (9) hold, the two last terms in the updating step in (7) reduce to a 
constant, for all 0n n> . The sensor algorithmic system becomes then identical to that of a 
centralized system, when no implicit feedback from the fusion center exists. The latter 
sensor systems are mutually independent, since the local data are. The performance of these 
independent systems are then as in (Bansal et al 1989) and (Burrell et al 1998). The 
expression in (10) is derived from (8) in a straight forward fashion, via the mutual 
independence of the sensors and the sufficient statistics at the fusion center.       
Proof of Theorem 2 

When the sequences in the Theorem converge, the Markov Chain { }__

nU  becomes 

asymptotically stationary, and the algorithmic system is optimal in the sense of (Bansal et al 
1989); expression (15) is a direct consequence of this optimality. A direct inspection of 
expression (13) leads to the conclusion expressed by (16) in a straight forward fashion. When 
the number of sensors is asymptotically large, the updating steps of the algorithms at the 
fusion converge to the expected values in (13) and (14). Via the assumptions in the Theorem, 
the latter values converge asymptotically to constants. The latter fact leads directly to the 
satisfaction of the assumptions in Theorem 1. 
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The Computation of Useful Probabilities  
In this part of the Appendix, we express the useful quantities needed in the simulation 
scenario of Section 5.2. 
Consider the algorithm which monitors a change from μ0 to μk , where the process   μ0 and 
μk homogeneous Poisson, with respective rates r0 to rk. Then, be dividing both threshold   
and the updating step of the monitoring algorithm by the scaling factor | ln (rk / r0) |, we 
obtain the following simplified form of the updating step in (7), Section 4, for 

1 ; 0
sgn

1 ; 0
x

x
x

Δ >⎧
= ⎨− <⎩

    :    k

0

r(m s-t) sgn  ln 
r

⎛ ⎞
⋅ ⎜ ⎟

⎝ ⎠
 

where 
m  : number of arrivals within a time unit. 
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0

t
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k

k

r r
r r
−

≈  < 1 ,   t, s, natural numbers. 

Let us denote by v the (without loss in generality) integer threshold value of the 0 kμ μ→  
monitoring algorithm. If V0 is an integer common threshold for the algorithmic system, then 

v = 0

k 0

V
(ln (r / r ))
⎢ ⎥
⎢ ⎥
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. Let us define : 

j
0kP (y,n) : Given that all data are generated by the Poisson process with rate rj, the probability 

that at time n the 0 kμ μ→  monitoring algorithm has the  value y and it has not 
crossed its threshold before or at n-1. 

We can then express the time/value evolution of the probabilities { j
0kP (y,n)  } as follows: 
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Then, the quantities  0P ( )j
k n  , 0 ( )j

k nβ  and 0 ( )k nα   are computed as follows :  
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1. Introduction 
In this contribution the basic elements of sequential detection theory are presented and 
some applications to sensor networks are then addressed. Sequential detection was basically 
introduced by A. Wald in 1947 and deals with hypothesis testing problems assuming that 
the number of observations made available to the detector is virtually unbounded, hence not 
fixed in advance as it is the case of the more classical and well-known detection paradigms. 
From a conceptual view point, a sequential decision procedure is stopped when the specific 
realization of the data available to the detector is sufficiently informative to make a decision 
that satisfies prescribed error probability bounds. To compare with the Neyman-Pearson 
paradigm, note that for this latter the false alarm probability is prescribed, and the goal is to 
achieve the best detection probability, given a fixed number of samples available. In Wald’s 
hypothesis test, instead, we are given both the false alarm and detection probabilities, and 
the attempt is to make a decision, compatible with those performance levels, using the 
minimum number of samples. Sequential tests outperform the classical decision procedures. 
This notwithstanding, they are less known to non specialists, and perhaps less used in 
practical implementations. In part, this is due to the fact that sequential tests are less easy to 
be analyzed when the data are non independent and/or non identically distributed, 
although recent advances in that direction are available. 
However, and this is relevant for the present work, there exist many applicative scenarios 
where the sequential paradigm naturally arises as a suitable framework. This is the case, for 
instance, of certain sensor network architectures where a mobile agent sequentially queries 
the nodes of the network, in order to retrieve data or local inferences stored at those sensors. 
Here the mobile nature of the agent implies that the data are made available to it in a 
sequential fashion. In addition, the typical dimensions of certain sensor networks make the 
assumption of an unbounded stream of data available for sampling, a reasonable 
mathematical model of the physical scenario. 
This work is made of two parts. The first presents the theoretical background and tools of 
sequential detection, while the second addresses some practical applications. In presenting 
the basic elements of sequential analysis we are neither exhaustive nor mathematically 
advanced, beyond the typical tools of an electrical engineer. Rather, we hope to collect the 
main results for easy reference, and basic understanding of the applicative case studies. In 
discussing the applications to the sensor network, again, we have no pretence at all of 
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exhaustiveness. Rather, we focus on some recent applications of sequential sampling to 
sensor networks, as investigated by our research group. 

2. Basic elements of sequential detection 
2.1 Martingales 
The modern theory of martingales is due to Doob [2] that still remains the basic reference. 
Below, we only present the basic concepts and results. A random process {Xn}  is a 
martingale if, for n = 1, 2, . . ., we have 

 (1) 

The term martingale was introduced in France to denote a gambling scheme in which the 
gambler doubles his bet at each step of the play, until he finally wins. More in general, a 
martingale is intended as a betting scheme designed to improve one’s fortune. In effect, if 
we interpret Xn as the fortune of the gambler at step n, the above definition of martingale 
random process states that the gambler’s fortune on the next play is, on the average, the 
same of his current fortune, irrespectively of the previous history; therefore, the martingale 
models a fair game [3–5]. 
The perhaps simplest examples of martingales are the sum Xn = Σ Wi of independent 

random variables Wi’s satisfying the first of (1) and having zero mean, and the product 
Xn = Π Wi of independent random variables Wi’s with unit mean (again, if the first of (1) is 
satisfied). 
A slightly general definition of martingale is as follows. The random process {Xn}  is a 
martingale with respect to the random process {Yn}  if, for n = 1, 2, . . ., 

 (2) 

With the above definitions, the so-called Doob martingale can be introduced by considering 
an arbitrary random process {Yn} , and a random variable X with E[│X│] < ∞. In fact, the 
process 

 (3) 

is easily shown to be a martingale with respect to {Yn} . Doob’s martingale has important 
applications in various fields, including estimation theory since the sequence of optimal (in 
the mean square sense) estimators of a random variable X, given observations Y1, . . . Yn, is 
the conditional mean E[X│Y1, . . . , Yn] which, therefore, is noting but a Doob martingale. 
In the sequential sampling framework that we are interested in, the concept of stopping time 
is key. A random variable N taking values in {1, 2, . . . ,∞} is a random time for the process 
{Xn} , if the event {N = n} is determined by X1,X2, . . . ,Xn. This means that we can decide if 
N = n or N ≠ n, by only observing the process Xi up to time n, while the samples Xn+1,Xn+2, ... 
are irrelevant for that. A random time N is called stopping time for the process {Xn} if  
Pr{N < ∞} = 1. Therefore, N is a stopping time for {Xn} if the event {N = n} conditioned on 
knowing the past of the process {Xn} , does not depend upon what {Xn} does in the 
future. Indeed, a more general formal definition of stopping time can be given just in terms 
conditional independence, which is relevant in cases where the sequence of random 
variables {Xn}  is only one actor of a more general probabilistic experiment [6]. 
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Consider now a stopping time for the process {Xn} , and define the associated stopped 
process [5]: for n = 1, 2, . . ., 

 
(4) 

It can be shown that, if {Xn} is a martingale, then the associated stopped process { X n}  
is a martingale too. 
By definition of martingale, taking the expectation to both the sides of the second equation 
in (1), we have E[Xn+1] = E[Xn], ∀n ≥1, and consequently, 

 
for all n. Since { X n}  is a martingale too, we also have E[ X n] = E[ X 1] = E[X1] (note that 
always X 1 = X1). Since the stopping time is finite with probability one, the original process 
{Xn}  will be eventually stopped, that is to say, there must exists a (sufficiently large) 
value of n such that X n = XN. From that value of n on, the stopped process remains 
constant, implying that limn X n = XN. Taking the expectation 

 
If we could exchange the limit with the statistical expectation operator, we would get the 
following important result 

 (5) 

Indeed, under appropriate technical conditions the above exchange is legitimate and this 
result is known as the martingale optional stopping theorem, which states the following (see 
e.g., [4, 5]): Equation (5) holds true, provided that at least one of the following conditions is 
met 
• the random variables { X n} are uniformly bounded; 
• the stopping time N is bounded, i.e., Pr{N ≤k} = 1, for some k ≥ 1; 
• E[N] < ∞ and E[│Xn+1 - Xn│ │X1, . . . ,Xn] < k < ∞, for some k ≥ 1. 

2.2 Sequential probability ratio test 
With the concepts introduced above, we can now elaborate on the likelihood ratio to derive 
the basic design formulas for the sequential test proposed by Wald. Let us consider the 
binary test between two simple hypotheses: 

 
(6) 

where f0,1(y) are two known probability density functions of Yi, under hypothesis 0, 1, and 
where the data Yi, i = 1, 2, . . . are iid (independent, identically distributed), for simplicity. As 
distinct feature, the number of such observations is not determined in advance but it can be 
virtually unbounded. Wald’s test, also known as SPRT (Sequential Probability Ratio Test) 
prescribes to proceed as follows. Let Λn be the likelihood ratio pertaining to the above 
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statistical test, using the first n samples Y1, . . . , Yn, available, that is: Λn = Π f1(yi)/f0(yi). 
We have [1] 

 

(7) 

As it is clear from this formulation, the actual number of samples processed in order to 
make a decision is not fixed and is instead a random quantity, whose actual value will 
depend on the specific realization of the observation process {Yn} . The detection and 
false alarm probabilities of the test are defined as usual: 

 (8) 

 (9) 

and there is an amazing simple relationship relating the pair (Pd, Pf ) to the thresholds of the 
test (γ0, γ1), as we shall promptly see. 
Let us assume that hypothesis 0 is actually in force. Given the observations Y1, . . . , Yn, let 
us consider the random process build upon the likelihood ratio 

 
(10)

Under mild regularity conditions (i.e., assuming E[│Λn│ │ 0] < ∞, ∀n), the process {Λn}  

is a martingale with respect to the observation process {Yn} . Indeed, we have 

 

(11)

Let us define the random time (with γ0 < 0 and γ1 > 0) 

 (12)

and assume that Pr{N < ∞} = 1, i.e., that N is actually a stopping time for the process {Yn} . 
The associated stopped process can be defined as in (4), and we can invoke (under suitable 
regularity conditions, see above) the martingale optional stopping theorem, yielding 

 
(13)

Neglecting the excess over the boundaries (this is also known as Wald’s approximation), yields 
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 (14)

 (15)

that underly many of the approximate design formulas for sequential detectors. We 
therefore get 

 (16)

Reasoning in the same way under hypothesis 1, but using as martingale the the inverse of 
the likelihood ratio 1/Λn, we get 

 (17)

Putting together eqs. (16) and (17), immediately yields1 

 
(18)

 
(19)

We reiterate that the approximation involved follows from having neglected the excess over 
the boundaries2. 
Equations (18) and (19) relate the error probability of the SPRT to the thresholds and are 
therefore used to set the thresholds of the test, given prescribed performance level. 
Intriguingly, note that we can set the thresholds without knowing the statistics of the 
observations; clearly, the likelihood ratio does depend on these statistics. 
Once that the desired error probabilities have been fixed, and that the thresholds are 
accordingly set, the main performance figure of the Wald’s test is the average sample 
number (ASN) E[N]. This is the expected number of samples needed to make a decision, and 
is also referred to as the (averaged) decision delay. To characterize E[N] let us start from 
what is known in the literature as Wald’s identity. Let Wi, i = 1, 2, . . . be a sequence of iid 
random variables, and let Xn = Σ Wi their cumulative sum. Also, let 

 (20)

Introducing the semi-invariant moment generating function of the random variableWi, that 
is , and assuming that Γ(r) is finite in an open interval Ω around the 
origin r = 0, we have that, for r ∈ Ω, 

                                                 
1 Logarithms are to natural base. 
2 The approximation involved in the above relationships is often accurate for practical 
purposes, but one can also resort to certain bounds. Specifically, let Pda and Pfa the actual 
detection and false alarm probabilities that one gets by setting the thresholds according to 
eqs. (18) and (19) in which the nominal values Pd and Pf of those probability are used. Then, 
see e.g. [7]: 
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 (21)

Differentiating both sides of Wald’s identity (21) and evaluating the result at r = 0, the so-
called Wald’s equality is obtained: 

 (22)

(Clearly, the above equality can be also proved more directly, without resorting to Wald’s 
identity, see, e.g., [5].) On the other hand, the second derivative evaluated at r = 0 gives 

 (23)

which is useful in sequential analysis whenever E[W] = 0, in which case Wald’s equality is of 
limited use. 
Suppose now that the true hypothesis is 0, and let us replace the generic Xn with Ln, the 
log-likelihood ratio of hypothesis test (6): 

 
(24)

With this assumption, it should be clear that the stopping time N in eq. (20) is exactly that 
defined in (12), and we are in fact faced with the earlier discussed sequential test. Clearly, Ln 

is the cumulative sum of the sequence of iid random variables log [f1(yi)/f0(yi)], whence 
application of Wald’s equality yields 

 
(25)

The numerator can be expanded by conditioning, and then approximated by Wald’s 
approximations: 

 

 
 
 
 
 

(26)

where the last approximation follows from eqs. (18) and (19). 
Defining the binary divergence (measured in nats) Db(α││β) between two probability mass 
functions (pmf) [α, 1 - α] and [β, 1 - β] as [8] 

 
the numerator of (25) can be expressed (within the stated approximation) as follows 
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The divergence between two arbitrary probability density functions (pfds) f0(y) and f1(y) is 
defined as [8] 

 

implying that the denominator of (25) is -D(f0││f1). We finally get  
Elaborating exactly in the same way, assuming 1 true, we can compute E[N│ 0]. 
Therefore, the final result is 

 
(27)

 
(28)

Roughly speaking, the above approximations become tighter and tighter for small error 
probabilities Pf , 1 - Pd << 1, namely, when the no decision region between the thresholds is 
large: γ0 << 1 and γ1 >> 1. Otherwise stated, the approximations are fair when the average 
number of samples collected is large enough. 
It is worth noting how Wald popularized these formulas in 1947 in a form that did not 
involve the divergences, and in fact the divergence was defined by Kullback [9] in the 
context of information theory, a theory born just one year later, in 1948, with the work by 
Shannon. 

2.3 Sequential detection with general test statistics 
The fundamental results presented in the previous section trace the route for implementing 
the SPRT, as well as for computing simple approximations for performance evaluation. Of 
course, since the pioneering work by Wald, these results have been extended in many 
different directions, including, among many other, the case of dependent and non-
identically distributed observations [10], sequential tests with arbitrary detection statistics 
[6], asymptotic results for vanishing signal-to-noise ratio [11], refined approximations for 
the excesses over boundaries [12], and so on. An exhaustive review of these concepts is 
clearly beyond the scope of the present work. In this section, we limit ourselves to consider a 
setting which slightly extends the classical SPRT framework. The mathematical results, 
which are perhaps less intuitive than the classicalWald’s formulas, turn out to be useful 
from an engineering perspective, as we next show in the sections devoted to sensor network 
applications. 
Let Tn = Σ  t(Yi), with Yi iid random variables, and with t(· ) being a certain transformation, 
in general different from the log-likelihood ratio. We consider the case that a sequential test 
is implemented, based upon the above Tn. More specifically, let N be the smallest n for 
which either Tn ≥ γ1 or Tn ≤ γ0. For concreteness, we assume that the t(Yi) has positive 
expectation under 1 and negative expectation under 0, and that the two thresholds 
accordingly obey γ0 < 0 < γ1. This problem can be cast in the more general framework of 
random walks with two thresholds [6, 13, 14]. 
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In order to assess the test performances, we need setting the thresholds in order to meet the 
prescribed false alarm and detection probabilities. To fix ideas, let us consider the case that 
E[t(Yi)] < 0, that is, for our purposes, we are under 0. Assuming that the semi-invariant 
moment generating function Γ(r) of the random variable t(Yi) is finite in an open interval Ω 
around the origin, and that has a root r* > 0, we can use Wald’s identity with r = r*, that is, 

, which is equivalent to 

 (29)

Note that, if Tn is the log-likelihood ratio, r*= 1, and eq. (29) essentially translates into eq. 
(13), which, incidentally, was obtained by resorting to the theory of martingales. 
Now, different bounds and approximations can be derived from (29). One option is to 
neglect the overshoots, as previously done for the log-likelihood ratio, obtaining 

 (30)

which is the counterpart of eq. (16). 
The above technique gives also a direct way to derive upper bounds on the threshold 
crossing probabilities. Indeed, conditional on  and being all terms 
on the right-hand-side of eq. (29) non-negative, we easily have 

 (31)

A positive threshold crossing can be considered, under the assumption that E[t(Yi)] < 0, as 
an event becoming rare as γ1 grows, and this is consistent with the obtained exponential 
bound. All the reasoning can be applied to the random walk with E[t(Yi)] > 0 (that is, under 

1), obtaining the two formulas: 

 (32)

and 

 
 

where the non-zero root of Γ(r) is now negative, ans is denoted by r**. We note explicitly 
that these exponential bounds do not work for the case that the random walk is zero-mean. 
Before concluding this section, we would like to report another useful tool, which extends 
the previous results to the characterization of the joint distribution of the stopping time N 
and the barriers. Assuming again that E[t(Yi)] < 0 and Γ(r*) = 0 for some r* > 0, the following 
two bounds can be derived [6]: 

 
and 



Elements of Sequential Detection with Applications to Sensor Networks 

 

425 

 
In some sense, the above bounds furnish an interpretation of the value n* = γ1/Γ’(r*) as the 
typical value of the stopping time N conditional on the upper threshold crossing. 
This concludes our survey of the basic tools and results of sequential detection. In the 
following, we apply and extend these results by addressing several case studies. 

3. Selected applications 
We now present some applications of the sequential sampling theory, whose basic elements 
have been summarized in the previous sections; the applications are selected from the 
authors’ recent works on the subject, which are somehow related to sensor networks. In the 
first example (Sect. 3.1) the decentralized architecture of the sensor network is key, and we 
take a genuine cross-layer perspective of the whole system that merges the detection layer 
with the (many-to-one) communication layer. The last two examples (Sects. 3.3 and 3.2) 
focus on the signal processing at the sensor level designed for improving the detection 
performances of the fusion center, and are therefore exploitable even in certain non 
decentralized systems. Whenever appropriate, for easy reference, we try to maintain the 
notation as close as possible to that of the original works to which we refer for more general 
discussion, in-depth description, and for many technicalities which are deliberately 
neglected in this presentation. 

3.1 SENMA detection with censoring nodes [15] 
Suppose that a WSN designed for solving a binary hypothesis test is made of many tiny 
remote units uniformly deployed over the surveyed area, and of a Mobile Agent (MA) 
having the role of fusion center. The remote units sense the environment and collect data 
relevant to the detection task, while the MA travels across the network domain and 
sequentially polls the sensors. Indeed, in the SENMA (SEnsor Network with Mobile Agents) 
architecture proposed in [16], see also [17–19], at each successive MA’s snapshot the nodes 
falling within its field of view are queried for delivering their data. Oppositely to the 
intrinsic nature of the remote units, the MA can be a very reliable device with large power 
capabilities and adequate communication/computational properties. In addition, its mobile 
nature greatly simplifies the sensors/MA communication tasks, thus making the SENMA 
architecture particularly suited for many practical applications being scalable, robust and 
simple to implement. In addition, as one might expect, the more important advantage of the 
SENMA over alternative network structures (e.g., ad-hoc system) is in terms of energy 
saving for communications, a key parameter for sensor networks. 
The MA collects the data delivered from the sensors and, as soon as a new observation is 
made available to it, this is included in the computed detection statistic. We assume that 
such a statistic is the cumulative sum of the log-likelihood ratios, resulting in the Wald’s 
SPRT [1], discussed previously in this work. 
The specific viewpoint taken in [15] is that the remote units do not necessarily deliver their 
data to the MA when they fall in its field of view. In order to further economize the energy 
burden, a censoring protocol is implemented [20–23]. Data are delivered only if they are 
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sufficiently informative: the sensor transmission is inhibited if the the locally computed log-
likelihood of the measured data does not exceed (in modulus) a certain threshold level. In 
this way a communication session is activated, and the correspondent energy is spent by the 
sensor, only if the local observation is expected to contribute in a meaningful way to the 
final decision. Otherwise, such data will be never received by the MA and do not play any 
role in building the final statistics. A trade off clearly emerges between detection 
performances and energy consumption. 

3.1.1 Network performances 
Let us suppose that data collected by the remote units of the network are M-vectors of iid 
(independent and identically distributed) observations, and that different nodes observe iid 
data, as well. If we label with an index n = 1, 2, . . . , the (virtually, infinitely many) remote 
units, the basic hypothesis test under study is as follows 

 
(33)

where 1 represents a vector of all 1s. The vectors wn = [wn1,wn2, . . . ,wnM] have iid 
components picked from a continuous random variable, whose probability density function 
(pdf) is φ(w), and is here assumed to be an even function with domain the whole real axis. 
The known parameter μ rules the amount of shift in mean that distinguishes the two 
alternative hypotheses. 
Denoting by xnm the mth observation taken at the nth sensor, the local log-likelihood is 

 
and, in absence of censoring, the SPRT would be (see eq.(7)) 

 

(34)

Due to the censoring, when polled by the MA, the nth sensor of the network actually delivers 
data only if L(xn) ∉[-δ, δ], where δ is the level of censoring. The delivering probability can be 
found to be 

 (35)

where Fi(y) is the CDF of the log-likelihood L(xn), under hypothesis i = 0, 1. 
Let Nt be the random number of sensors that actually deliver data to the MA, as opposed to 
Nv, the number nodes encountered by the MA in its travel across the surveyed area. 
Denoting by I(· ) the indicator function, we have  where Nv 

is a valid stopping time [6], so that Wald’s equality (22) yields 

 (36)
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It makes sense to adopt Nt as a proxy of the energy consumption, and Nv as a proxy of 
detection performance in terms of detection delay for achieving a desired level of error 
probabilities. Therefore, the above relationship emphasize the trade off between detection 
performances (more data yield better performances) and energy saving, tuned by the 
censoring level δ. 
We need now to introduce the following quantity: 

 
(37)

Denoting by Pd and Pf the desired detection and false alarm probabilities set at the design 
stage, see eqs. (8) and (9), in [15] the framework of sequential analysis earlier discussed is 
exploited, to show that (via proper modification of the the techniques leading to eqs. (27) 
and (28)): 

 
and 

 
 

It can be also shown that s(δ) is monotonically increasing in δ, while the product pt(δ)s(δ) 
monotonically decreases with δ. This implies that the larger is δ, the more energy the 
network saves but the larger is the detection delay. 

3.1.2 Optimization 
To compare our censored system with respect to the absence of censoring, let us define E [N] 
as the average number of sensors resulting from assuming δ = 0 (no censoring). The 
following quantities can be introduced 

 
(38)

and 

 
(39)

Now, let us consider the single-sample local log-likelihood L(xn) and let us denote by a and 
b2 its mean and variance: 

 (40)

 (41)

Also let 

 
(42)
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Fig. 1. Performance of the designed censored system, ηt and ηv, as function of the parameter 
Δ for different values of ρ. 

An approximate analysis providing amenable formulas for system performances can be 
made by using the Central Limit Theorem, see [15], yielding: 

 

(43)

 
(44)

where Q(· ) is the standard Gaussian complementary CDF. 
By drawing ηt and ηv as functions of Δ for different values of ρ, we get the curves for the 
system optimization, as depicted in Fig. 1, from which the desired system operative point in 
terms of detection delay and sensors energy consumption can be decided. Figure 2 provides 
the same information and insight of Fig. 1. 
An interesting behavior is also observed when the sensors, provided that their observations 
are informative enough, can only send to the MA the hard decisions (i.e., a binary value) 
taken at a local level. In this case, different from the previous case that the censored log-
likelihood are transmitted, it is possible to prove that an optimal censoring level exists, 
minimizing the detection delay. Examples of applications, as well as detailed discussions of 
the above aspects, are addressed in [15], to which the reader is referred for details. 

3.2 Pre-processing at sensor level for detection after transmission over noisy 
channels 
Suppose that the sensors of a network are connected by dedicate channels (parallel 
architecture) to a fusion center, i.e., some unit devoted to the task of data fusion, and assume 
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Fig. 2. Performance of the designed censored system, ηt and ηv, as function of the parameter 
ρ for different values of Δ. 

also that such channels are noisy. The issue is to understand if some processing of the data 
measured at the sensor would increase the detection capabilities of the fusion center. 
Specifically, we are faced with a detection problem in which remotely observed data are 
delivered to a fusion center through a certain channel. The fusion center is designed to 
decide between two mutually exclusive statistical hypotheses, basing its decision upon the 
received data whose statistical distribution is determined by the underlying hypothesis. 
Should the observations made at the remote sensor be somehow processed before delivering 
them over the channel? 
We assume that the fusion center implements a sequential test. Motivated by eqs. (27) and 
(28), it makes sense to choose as a measure of the detection performances the divergence 
between the distributions under the two hypotheses since this directly impacts the average 
sample number, i.e., the detection delay. Therefore, the above question can be rephrased in 
terms of divergence: can we increase the divergence at the output of a noisy channel, by 
elaborating on its input? It is obvious that, if the channel were ideal (noiseless) the answer is 
certainly negative in view of the data processing inequality. On the other hand, for noisy 
channels, the answer is in some case affirmative. Let us limit the following discussion to the 
case where the noisy channel has binary input and output alphabets, and let us model the 
sought sensor processing as a further channel having as input the original measured data 
and whose output are the transformed data, to be sent over the physical noisy channel. 
Formally, we consider the statistical test 

 
(45)

where p and q are two arbitrary pmfs (column vectors) with alphabet {1, 2}, that rule the 
random variable I modeling the (iid) sensor observations. The sensor delivers data to the 
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fusion center by a discrete memoryless channel, J → K, whose input may be different from I. 
Indeed a possible sensor processing may take place, which is also modeled as a channel  
I → J. The physical channel is 

 
(46)

where Ckj = Pr{K = k│J = j}, k, j = 1, 2, while the processing channel is 

 
(47)

where Hji = Pr{J = j│I = i}, j, i = 1, 2. A convenient, self-explaining, notation is as follows 

 (48)

where C is given, while the task is to find a matrix H that maximizes the detection 
performance at the remote site that observes K. 
Let x and y be the pmfs of J under the two hypotheses, and, similarly, let w and z be the 
pmfs of K. We have: 

 (49)

The described problem can be cast in the form of an optimization 

 (50)

and the following claim can be proved by elementary convex analysis tools: only the 
following four matrices are candidates for solving the posed optimization problem 

 
Clearly, the last two matrices should be ignored since they both lead to zero divergence in 
terms of the variable K. Given that the first matrix is the identity, the only possibility for 
improving the detection performance based on K is to try with the upper-right matrix, that 
is to say, to try with a symbol flipping: if I = 1 is observed, then J = 2 is presented at the 
input of the physical channel C, and vice versa. 
To elaborate, let us assume that the original detection problem is “difficult”, in the sense that 
the hypotheses p and q are very close each other. For instance: 

 (51)

where │ │ is small enough. Expanding in series around  = 0, we can find 
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If we want that  we must have that 

 
The conclusion is that the sensor pre-processing improves the final detection performances 
if and only if 

 
(52)

We are currently working on extensions of the topic here briefly described, with a more 
general formulation, including non binary observations and channels. For the time being, it 
is important to emphasize that for binary and symmetric physical channels (i.e., C11 = C22) 
there is no way of improving the performances. We have evidences, however, that for non 
binary cases the problem exhibits much more structure and provides more useful insights 
from a practical perspective. What remains true in more general settings, however, is that 
the optimal pre-processing is deterministic, in the sense that given the input I the output J 
can be determined with probability one, a circumstance with a precise physical meaning. 

3.3 Noise enhanced sequential detectors [24] 
Let us consider a fully decentralized sensor network without fusion center, designed for an 
inference task. In this typical architecture, each node senses the environment and collects 
data about a phenomenon to be monitored, think for instance of a binary detection problem 
where the challenge is to decide which of two possible statistical distributions actually rules 
the observations. The lack of fusion center is remediated by suitable inter-node 
communication protocols that allow the system to exchange data up to make the final 
decision. These data, due to often unavoidable physical constraints, are here assumed to be 
some nonlinear transformation t(· ) of the original observations. 
Specifically, the ith node of the network computes t(Xi), where Xi is the sensed sample, and 
delivers such a value to one of its neighbors, say node j. This latter computes t(Xi) + t(Xj) 
and delivers that to node k, and so on. The decision process is sequential: as soon as the 
value computed at some node exceeds given thresholds the decision is taken, and the task is 
terminated. 
With this model in mind, motivated by recent advances in noise enhanced and stochastic 
resonance detection, in [24] the question is posed if adding a “noise” sample, say Wi, to the 
measurement made at node i before computing the nonlinearity t(· ), could provide any 
benefit in terms of the final detection performances. This at first glance counterintuitive 
question may have (surprisingly?) a positive answer: there exist cases in which adding noise 
is beneficial! 
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3.3.1 Problem formalization 
Let us consider first the original shift-in-mean binary hypothesis test: 

 
Here i = 1, 2, . . . ,∞, represents the sensor number, Xi is the observation made at node i 
(observations are iid), and the pdf fX(x) is an even function. According to formulation (7), the 
SPRT for this problem would be 

 

(53)

but, in many cases of interest, implementing such an optimal SPRT is unfeasible [25]. 
Therefore, we consider sub-optimal sequential detectors and, as explained before, we also 
contaminate the original observations with iid noise: this latter effect amounts to consider 
the noise contaminated observables Yi = Xi + Wi, in place of the original Xi. The noise density 
is also assumed even-symmetric: fW(w) = fW(-w), and that of the contaminated samples 
becomes the convolution of the two: fY (y) = fX(x) * fW(w). 
The said sub-optimality of the detector amounts to work with a decision statistic in the form: 

 
(54)

where t(y) is a bounded and non-decreasing odd function. To simplify the analysis, let the 
error probabilities 1 - Pd and Pf of the sequential test, see eqs. (8) and (9), be equal, and 
denote by Pe such value. We have 

 
 

where the thresholds γ and -γ are symmetric as consequence of the assumed problem 
symmetries. 
The above test is not a standard SPRT, since Tn is not the log-likelihood. Therefore, the 
system performances can be obtained as discussed in Sect. 2.3. First, Wald’s equality (25), 
under hypothesis 1, yields, in the regime of small Pe, 

 
(55)

Furthermore, the exponential bound (31) is used: 

 (56)

where r* solves 
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(57)

The denominator of (55) can be written 

 
and, introducing the function 

 
(58)

yields 

 
Similarly, we have 

 
which, introducing the function 

 
(59)

yields 

 
The two above functions allow us to write compact formulas for the system analysis. 
Indeed, in [24] it is found that 

 

 
 

(60)

The optimal performance-enhancing noise density fW(w) must minimize the expected 
sample number, without increasing the error probability. Using our approximations and 
bounds, this amounts to 

 (61)

where  corresponds to the noise-free case. 

3.3.2 Example: sign detector 
Assume now that the nonlinearity is the sign function, which amounts to one-bit quantized 
observations 

 
The performance functions h1(w) and h2(w, r) can be found to be 
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 (62)

 (63)

where FX(· ) is the cumulative distribution function of the random variable X. By 
introducing the quantity 

 (64)

we finally get 

 

(65)
 

(66)

Enforcing EW[h2(W, r)] = 1 yields as solution 

 
(67)

Equation (61) requires a constrained maximization of EW[h1(W)] = 2p - 1, where the 
constraint is , with  being the value of r*corresponding to the absence 
of injected noise. However this can be shown to be equivalent to its unconstrained 
counterpart, which amounts to simply find the maximum achievable value of p. 
Remarkably, it is also possible to prove that the optimizing noise density can be chosen in 
the class of the coin flipping distributions: 

 
We report now the evidences of some numerical simulations aimed at checking the goodness 
of the found formulas, as well as the potential benefits of adding noise to the observations for 
detection purposes. We choose for the observation density a mixture of Gaussians: 

 
Moreover, we assume that the detection threshold γ is fixed in such a way to yield, in 
absence of noise, an error probability Pe0 ≈10-2. 
In Fig. 3, top plot, the ASN is displayed as function of different injected noise depth w0. The 
theoretical formulas reasonably match the simulation points, and an optimal value of w0 
minimizing the sample number is clearly present. To get the complete perspective, the 
actual error probability Pe is also displayed in the bottom plot of the same figure. It can be 
seen that, for any w0, while the ASN decreases, the error probability is kept below the value 
Pe0. Remarkably, in correspondence of the optimal w0, the actual Pe is in effect orders of 
magnitude smaller than the design value 10-2. 

4. Conclusions 
In many instances of Wireless Sensor Networks (WSNs) designed for detection purposes, 
the fusion center is a mobile device that sequentially queries the nodes of the network. Such 
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Fig. 3. Sequential detector with fixed threshold γ, for the sign nonlinearity. The expected 
sample number (top panel) and the error probability (bottom panel) of the proposed 
sequential detector are displayed as function of the injected noise depth w0. The simulation 
parameters are A = 1, μ = 5, and Pe0 = 10-2. Simulation points are obtained by 104 Monte 
Carlo trials and, in bottom panel, we draw only the simulation points that do not fall under 
the accuracy of the numerical procedure. 
a sequential architecture, known as the SENMA structure, fits well the sequential detection 
paradigms, i.e., the SPRT and its variants. Aside from the SENMA scenarios, the typical 
tools of sequential detection are exploited much more in general, in various guises, in a 
variety of WSN applications. This paper provides a succinct introduction to sequential 
analysis and presents several examples of applications to detection problems. 
The main aim of this paper is to introduce the reader to the very powerful tool of sequential 
analysis, providing the basic insights and useful entry points to some topical literature. The 
specific issues presented in the first part of this work are selected in order to provide the 
necessary theoretical background for the applicative examples discussed in the second part 
of the paper. These latter examples, on the other hand, reflect the authors’ recent research on 
the subject. As a consequence, neither the theory nor the applications are exhaustive or 
complete in any sense. However, the paper is rather self-consistent and can help in gain a 
first understanding of the topic. 
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1. Introduction 
With the recent development of low-cost, low-power, multi-functional sensor nodes, sensor 
networks have become an attractive emerging technology in a wide variety of applications 
including, but not limited to, military surveillance, civilian, industrial and environmental 
monitoring [1]–[5]. In most of these new applications sensor nodes are capable not only of 
sensing but also of data processing, wireless communications and networking. It can be 
argued that it is their ability of ad hoc wireless networking that has attracted much interest 
to wireless sensor networks in recent years. 
A typical sensor network may consist of a large number of spatially distributed nodes to 
make a decision on a Parameter of Interest (PoI). This can be detection, estimation or 
tracking of a target or multiple targets. Once the network is deployed, the network 
resources, such as node power and communication bandwidth, are limited in many 
situations. This is due to the fact that reinstalling and recharging the batteries might be 
difficult, or even impossible, once the network is deployed. A common question arising in 
such networks is how to effectively combine the information from all the nodes in the 
network to arrive at a final decision while consuming the resources in an optimum way. In a 
distributed sensor network, the distributed nodes make observations of PoI and process 
them locally to make a summary of their observations. The final decision is usually made by 
combining these locally processed data. 
Once local decisions are made at each individual sensor node, the natural questions are how 
to combine the local decisions and where the final decision is made. When there is a 
possibility that the sensor network can have a central node (generally called as the fusion 
center) with relatively high processing power compared to distributed nodes, the summary 
of the local observations can be sent to the fusion center. The fusion center combines all local 
decisions in an optimum way to arrive at a final decision in what is known as the centralized 
architecture. The disadvantage of such a system is that if there is a failure in the fusion 
center, the whole network fails. On the other hand, in some applications, it might be of 
interest that nodes communicate with each other to reach at a final decision without 
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depending on a central node. In this set-up the node that makes the final decision may 
change over time due to the dynamic nature of the sensor network and the PoI. This may 
lead to a more robust architecture compared to that with centralized architecture. 
Irrespective of the data fusion architecture, the local information from sensor nodes needs to 
be shared over a communication channel that, in general, can undergo both path loss 
attenuation and multipath fading. As a result, the received signal at a destination node, be it 
another distributed node or a central fusion center, is corrupted by both multiplicative and 
additive noise. The performance of the final decision will depend not only on measurement 
noise at the distributed nodes but also on channel quality of communication links. 
The performance of resource-constrained wireless sensor networks with communication 
and measurement noise has been addressed by many authors in different contexts. For 
example, performance of the sensor networks under power and bandwidth constraints are 
analyzed in [6]–[22] and [10], [11], [23]–[36], respectively. Collaborative signal processing, 
including sequential communication, is addressed in [15], [37]–[42]. 
In this chapter we address the problem of muti-sensor data fusion over noisy 
communication channels. The objective of the sensor network is to estimate a deterministic 
parameter. Distributed nodes make noisy observations of the PoI. Each node generates 
either an amplified version of its own observation or a quantized message based on its own 
observation, and shares it with other nodes over a wireless channel. The final decision can 
be made either at a central node (fusion center) or fully distributively. In the case of 
centralized architecture, the locally processed messages can be sent to the fusion center over 
a set of orthogonal channels or a multiple-access channel in which nodes share a common 
communication channel. In the fully distributive architecture, there is no explicit central 
fusion center and nodes communicate with each other to arrive at a final decision. There are 
several variations of this architecture: in one setting, nodes may communicate sequentially 
with neighbors to sequentially update an estimator (or a sufficient statistic for the 
parameter). The final decision can be declared by any node during this sequential updating 
process. On the other hand, it might sometimes be of interest for all nodes in the network to 
arrive at a common final decision. This leads to a distributed consensus estimation problem. 
Note that, here all nodes communicate with each other in contrast to the sequential 
communication architecture above until they reach an agreement. 
The rest of this chapter is organized as follows: Section 2 formulates the problem of 
parameter estimation over noisy communication channels in a distributed sensor network. 
Section 2-A presents the assumed observation model. The ideal centralized estimation is 
reviewed in Section 2-B. Ideal estimation is, of course, not possible in a wireless sensor 
network since communication is over a noisy channel and the network is constrained by 
available communication resources. By sharing only a summary of the observations with 
each other, the scarce communication resources can be efficiently utilized. Local processing 
schemes to achieve this goal are discussed in Section 2-C. 
Section 3 focuses on centralized estimation architecture with noisy communication channels 
between distributed nodes and the fusion center. Estimation performance with orthogonal 
channels is discussed in Section 3-A and that with non-orthogonal communication channels 
is discussed in Section 3-B. 
Sections 4 and 5 discuss the distributed estimation performance in a sensor network with 
collaborative information processing. Section 4 considers the distributed sensor network 
architecture with sequential communication where inter-sensor communication links are 
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assumed to be noisy. In Section 5 collaborative estimation with distributed consensus is 
addressed. Here, the nodes are allowed to communicate with a set of other nodes that are 
considered as their neighbors. Sections 5-A and 5-B address static parameters whereas 
section 5-C considers, time-varying parameters. Finally chapter summary is given in section 
6. 

2. Data fusion problem in a wireless sensor network 
Throughout, we consider a spatially distributed sensor network that is deployed to estimate 
a PoI. It is natural to expect that a final decision be obtained by combining the information 
from different nodes. In a distributed sensor network, nodes share summaries of their 
observations over noisy communication channels. Since network resources, in particular the 
node power and the communication bandwidth, are scarce it is important that the 
observations at each node are locally processed to reduce the observation to a concise 
summary. The final decision can then be made based on these local outputs that nodes share 
with each others and/or with a fusion center. 

A. Multi-sensor observation model 

We consider a situation in which multiple sensors observe a PoI. When these nodes form a 
sensor network, the final decision can be made in either a centralized or distributed way. In 
the centralized architecture, each node sends a summary of its observations to a central node 
called a fusion center. There is no inter-node communication. The fusion center combines all 
received information in an effective way to arrive at a final decision. In the distributed 
decision-making architecture, on the other hand, the nodes collaborate with each other to 
arrive at a final decision distributively, without the aid of a central fusion node. 
Irrespective of the architecture, communication between sensors and the fusion center, or 
among sensors, is over a noisy channel. Thus, the information sent sees distortion due to 
both additive as well as multiplicative noise. The multiplicative noise is due to path loss 
attenuation and multipath fading encountered, for example, in a wireless channel. In this 
section, we first consider the centralized architecture as shown in Fig. 1. The distributed 
architecture is covered in Sections 4 and 5. 
Consider a spatially distributed network of n sensors. Let us assume that the network is to 
estimate, in general, a vector parameter Θ where Θ is a p-vector. The observation at each 
node is related to the parameter Θ that we wish to estimate via the following observation 
model; 

 
where zk(t) is the observation at the k-th node at time t, fk : Rp

 →R is a function of the 
parameter vector Θ (in general, non-linear) and vk(t) is the additive observation noise at 
node k. In the special case of linear observation model, the joint observation vector at n 
nodes at time t can be written as 

 (1) 

where B is an n × p (known) matrix and v is the observation noise vector having a zero mean 
and a covariance matrix of Σv. In this chapter we focus mainly on scalar parameter 
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estimation (where we assume p = 1) although the techniques developed and the results can 
easily be extended to vector parameter estimation. For a scalar parameter, the observation 
vector (1) formed by observations at all n nodes reduces to, 

 (2) 

where we have suppressed the timing index t and e is the n-vector of all ones. 
 

 
Fig. 1. Distributed estimation with a central fusion center 
B. Ideal centralized data fusion 

When local observation vector z is directly available at the fusion center, the problem is 
termed the ideal centralized data fusion. The optimal final estimator and its mean-squared 
error performance are summarized in the following lemma: 
Lemma 1: [43] When the observation vector (2) is available at the fusion center, the best linear 
unbiased estimator (BLUE) for the scalar parameter θ is given by 

 
(3) 

where xT denotes the transpose of x. The corresponding mean squared error (MSE) achieved by (3) is 

 (4) 

where E{.} denotes the mathematical expectation. Further, if the local observations are i.i.d., so that 
 where I is the n × n identity matrix, the estimator in (3) simplifies to the sample mean of 

the observations, 
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with the corresponding MSE in (4) simplified to 
 

 
Since communication from distributed nodes to the fusion center is over noisy channels, in 
practice signals transmitted by the distributed nodes undergo distortion. Hence, direct 
access from a distant fusion center to the exact observations at distributed nodes may not be 
possible. However, the lemma 1 will serve as a benchmark for other schemes that we will 
discuss in this chapter. 
C. Local processing at sensor nodes 
To facilitate efficient utilization of node and network resources, each node in a sensor 
network locally processes its observation to generate a useful summary. The transmitted 
signal at the k-th node is then given by yk = gk(zk). In the following we consider two local 
processing schemes: 
1) Amplify-and-Forward (AF) local processing: In many practical situations where sensor 
observations are corrupted by additive noise, the amplify and forward strategy has been 
shown to perform well. In this method, each node directly amplifies its observation and 
sends it to the fusion center. The transmitted signal from node k is 

 
where gk is the amplifying gain at the k-th node. In order to save the node power, it is 
important to select the amplification gain gk for k = 1,..., n appropriately depending on the 
other network parameters such as channel quality and observation quality, etc.. If nodes are 
operated at the same power level, sometimes it may lead to an unnecessary usage of the 
network power especially when observation qualities of nodes and channel qualities are not 
the same for all nodes. Therefore, choosing gk’s in a meaningful way is an important issue to 
be addressed in designing resource-constrained sensor networks. This problem is discussed 
in section 3. 
With AF local processing, the received signal vector at the fusion center with noiseless 
communication is given by 

 (5) 

where G = diag(g1,..., gn) is the channel gain matrix. Then the Best Linear Unbiased 
Estimator and its corresponding mean squared error is given by the following lemma: 
Lemma 2: [34], [43] If the received signal at the fusion center is as given in (5), then the BLUE 
estimator based on the received signal vector is given by 

 
and the corresponding MSE is 

 
Further, if the local observations are i.i.d., so that  the MSE simplifies to 
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Fig. 2. Probabilistic quantization 

2) Quantized local processing: To save node energy and communication bandwidth, sensors 
can compress their observations before transmitting to the fusion center. In this set up, local 
nodes quantize their observations to generate finite-range messages mk(zk) where each mk is 
represented by Lk number of bits [9]. Based on the quantized messages received from nodes, 
the fusion center computes the final estimator 

 
where m̂ k’s are the corrupted versions of quantized messages mk’s received at the fusion 
center and Γ(.) is the final estimator mapping. 
There are several quantization schemes proposed in the literature each having its own 
advantages and disadvantages [9], [22], [21]. For simplicity, throughout this chapter we 
concentrate on the universal decentralized quantization scheme given in [9]. According to 
this scheme, each node locally quantizes its own observation zk into a discrete message 
mk(zk,Lk) of Lk bits. Due to the lack of knowledge of probability density function (pdf) of 
noise, the quantizer Qk : zk → mk(zk,Lk) at local nodes is designed to be a uniform randomized 
quantizer [9]. To that end, suppose the observation range of each sensor is [-W,W] where W 
is a known parameter determined by the physical properties of the sensor nodes. At each 
node the range [-W, W] is divided into -1 intervals of length Δk = 2W/(  - 1) each as 
shown in Fig. 2. The quantizer Qk rounds-off zk to the nearest endpoint of one of these 
intervals in a probabilistic manner. For example, suppose, iΔk ≤ zk < (i + 1)Δk where  
- -1 ≤ i ≤  -1. Then Qk will quantize zk into mk(zk,Lk) so that 

 
and 

 
where r ≡ (zk - iΔk)/Δk ∈ [0, 1]. Note that the quantizer noise qk(zk,Lk) = mk(zk,Lk)-zk is then a 
Bernoulli random variable taking values of qk(zk,Lk) = -rΔk and qk(zk,Lk) = (1 - r)Δk with 
probabilities 

 
and 

  
With this local processing scheme the quantized message at node k can be expressed as 

 (6) 
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where we have made use of (2). Note that the quantization noise qk and the observation 
noise vk in (6) will be assumed to be independent. Moreover, qk is independent across sensors 
since quantization is performed locally at each sensor. 
It can be easily shown that mk(zk,Lk) is an unbiased estimator of θ so that E{mk} = θ with the 
MSE (which is, in fact, the variance of the estimator) upper bounded as 

 
(7) 

where  Hereafter we use the short-hand notation mk to denote mk(zk,Lk), so 
that the transmitted signal yk at node k is yk = mk  for k = 1,..., n. 
With quantized processing, the received signal vector at the fusion center, with noiseless 
communication is 

 (8) 

where q = [q1,..., qn]T
 is the quantization noise vector and m = [m1,..., mn]T. The BLUE 

estimator at the fusion center and its performance are characterized in lemma 3 below. 
Lemma 3: [9] The BLUE estimator based on the received signal in (8) is given by 

 

where 2 2

1( , ..., ).ndiag δ δΣ =
q

 An upper bound for the MSE of above estimator can be found to be (using(7)) 

 (9) 

When local observations are i.i.d. the MSE upper bound (9) can be further simplified as 

 
(10)

Of course, in practice the above ideal estimators cannot be realized due to imperfect 
communications between distributed nodes and the fusion center. These imperfections can 
be due to multiplicative noise (caused by channel fading and path loss attenuation) and 
additive noise at the receiver. When the sensor system has to conform with resource 
constraints on node power and communication bandwidth, it is important to consider the 
minimum achievable error performance taking into account these channel imperfections. 
Parameter estimation under imperfect communications in a distributed sensor network is 
discussed in the next section. 

3. Optimal decision fusion over noisy communication channels 
The performance of a final estimator when locally processed data are transmitted to the 
destination over a noiseless channel was discussed in the latter part of Section 2. In this 
section we discuss the final estimator performance at a fusion center in the presence of noisy 
communication channels from distributed nodes to the fusion center. In the following we 
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consider two communication schemes where sensors transmit data over orthogonal or non-
orthogonal channels. 
A. Communication over orthogonal channels 
When locally processed sensor data are transmitted through orthogonal channels (either 
TDMA, FDMA or CDMA), the received signal vector at the fusion center can be written as 

 (11)

where Hc = diag(h1,..., hn) are the fading coefficients of each channel and w is the receiver noise 
vector with mean zero and the covariance matrix Σw. Note that in (11) we have assumed flat 
fading channels between sensors and the fusion center which can be a reasonable assumption 
in certain WSN’s but not all. When the channels are selective one can modify (11) by using a 
tapped-delay line model. The statistics of hk is determined by the type of fading distributions. 
Throughout this chapter we will assume that hk’s are Rayleigh distributed. 
1) AF local processing: With AF local processing and orthogonal communication channels, the 
received signal vector at the fusion center is given by 

 

 
(12)

where n = HcGv + w is the effective noise vector at the fusion center with mean zero and 
covariance matrix Σn = HcGΣvGHc + Σw, assuming that the receiver noise and the node 
observation noise are independent. In the following lemma we summarize the optimal 
estimator at the fusion center based on the received signal (12) and its performance: 
Lemma 4: [34] If the fusion center has the knowledge of channel fading coefficients, the BLUE 
estimator and the MSE based on the received signal (12) is given by 

 
(13)

and 

 (14)

In the special case when local observations and the receiver noise are both i.i.d. such that 
 the BLUE estimator (13) and the MSE (14) further simplify to 

 

(15)

and 

 
(16)

where  is the receiver noise power. 
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Fig. 3. Mean squared error performance vs. number of nodes: The total network power is 
constant. 
The performance of the BLUE estimator (15) is shown in Figs. 3 and 4 given that the total 
power in the network is constant. Note that in the both Figs. 3 and 4 the node power is the 
same at each sensor, so that gk = g for k = 1,..., n and each channel gain is unity (i.e. hk=1 for 
all k). Hence, if total network power is PT then the individual node power is given by  
g2 = PT /n. In this case, the MSE in (16) is further simplified to  The local 
SNR, γ0 is defined as  where Ps is the average power at local nodes. In the simulations 
we have let Ps = 1. It can be seen that when either the number of sensors or the total network 
power is increased, the performance of the BLUE estimator is floored: i.e.

 . The first of these limits is illustrated in Fig. 3 for a 

constant total network power, as parameterized by the local observation SNR γ0. It is seen 
from Figs. 3 and 4 that when local SNR is high the system shows better performance which 
intuitively makes sense. From Fig. 4, it can be seen that in the region of low local SNR, the 
performance of the system can be improved by increasing the number of nodes. But in high 
local SNR region, increasing the number of nodes may not affect the final performance 
much since ultimately the performance is limited by the channel quality between nodes and 
the fusion center. 
Allocating equal power for all nodes may not result in the best performance since all nodes 
may not have the same quality observations or communication channels. This is particularly 
true when one considers channel fading. Let us consider the power allocation among nodes 
such that the network consumes the minimum possible energy to achieve a desired 
performance. The optimization problem can be formulated as 

 
where ε1 is the required MSE threshold at the fusion center. If we assume that the local 
observations are independent, the optimization problem can be rewritten as 
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(17)

where we have defined . The optimal power allocation strategy is stated in the 
following lemma assuming that the channel state information (CSI) is available at the 
distributed nodes. 
 

 
Fig. 4. Performance of mean squared error vs. local SNR, γ0; The total network power is 
constant. 

Lemma 5: [34] When local observations are i.i.d., the optimal power allocation solution to (17) is 
given by 

 

(18)

where assuming, without loss of generality, h1 ≥ h2 ≥ ... ≥ hn, K1 is found such that s1(K1) < 1 
and s1(K1 + 1) ≥ 1 for 1 ≤ K1 ≤ n where

 
 for 1 ≤ k ≤ n. 

Lemma 5 says that the optimal power at each node depends on its observation quality, 
channel quality and the required MSE threshold at the fusion center. Note that letting 

 for s1(k) - 1 < 0 and n >  the optimal  can be written as 

. Hence, when CSI is available at distributed nodes, each node can 

determine its power using  as a side information that is provided by the fusion center. 
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Fig. 5. Optimal power allocation scheme vs. uniform power allocation scheme: The required 
optimal power to achieve a given MSE of ε1 as given in (18) is shown in the figure 
parameterized by local SNR γ0 for n=20 is shown. The comparison of the required uniform 
power to achieve the same MSE threshold is illustrated. 

Figure 5 shows the performance of the optimal power allocation scheme (18) in achieving a 
desired MSE performance at the fusion center. Figure 5 assumes that fading coefficients are 
drawn from a Rayleigh distribution with unity mean. It is seen that allocating power 
optimally as in (18) gives a significant power saving over the uniform power allocation only 
when either the local observation SNR is high or when the required MSE at the fusion center 
is not significantly low. This is not surprising since if local observation SNR is high node 
estimators are good enough on their own and thus perhaps collecting the local estimators 
from only those nodes with very good fading coefficients can save total power while also 
meeting the MSE requirement at the fusion center. Moreover, when the MSE required at the 
fusion center is not very demanding, we may meet it by only collecting local estimators of 
few nodes (and turning others off), so that the optimal power allocation, may lead to better 
power savings over the uniform power allocation scheme. 
2) Quantized local processing: Recall that with the quantization scheme presented in Section 2-
C2, an upper bound for the MSE at the fusion center is given by (9) when the 
communication between the sensors and the fusion center is noiseless. When discrete 
messages mk’s are transmitted over noisy communication channels, however, bit errors may 
occur in a resource constrained network with a finite power. 
Let us assume that the discrete messages are transmitted over a noisy channel where bit 
errors occur due to imperfect communication. Let m̂ k  and   be the decoded message at 
the fusion center corresponding to the transmitted message mk from the k-th node and the 
associate bit error probability, respectively. To compute the resulting MSE of the estimator 
θ̂  at the fusion center based on the decoded messages { m̂ 1,..., m̂ n}, the bit errors caused by 
the channel should be taken into account. For the quantization scheme presented in Section 
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2-C2, a complete analysis of the resulting MSE at the fusion center with noisy channels is 
given in [9]. According to [9], for i.i.d. local observations an upper bound for the MSE, when 
the messages are transmitted over a memoryless binary symmetric channel is given by the 
following lemma: 
Lemma 6: [9] If the bit error rates from node k is , then the MSE achieved by the fusion center 
based on the decoded messages { m̂ 1,..., m̂ n} is upper bounded by 

 
(19)

where  and p0 > 0 satisfies the following condition: 

 
By comparing (19) with (10) it is observed that the achievable MSE with imperfect 
communication deviates by that with noiseless communication by a constant factor. 
Let the communication channel between node k and the fusion center undergo path loss 
attenuation ak proportional to  where dk is the transmission distance from node k to fusion 
center and α is the path loss attenuation index. Assuming that node k sends Lk bits using 
quadrature amplitude modulation (QAM) with constellation size , at a bit error 
probability of  the transmission power spent by node k is Pk = BsEk, where Bs is the 
transmission symbol rate and Ek is the transmission energy per symbol, given by, 

 
(20)

with  = 2Nf N0Gd where Nf is the receiver noise figure, N0 is the single sided thermal noise 
spectral density and Gd is a system constant [9]. 

It can be easily seen from (20) that
 

. Thus, to determine the 

optimal number of  bits Lk to be allocated to node k in order to meet a desired MSE 
performance at the fusion center while minimizing the total network power, [9] solves the 
following optimization problem (assuming , Bs and  are the same for all nodes): 

 (21)

where  is the L2-norm of the power vector P = [P1,..., Pn]T, ε2 is the 
desired MSE threshold at the fusion center and the MSE is as given by (19). The optimal 
number of bits  to quantize the observations at node k, that is given by the solution to 
(21), are characterized in the following lemma. 
Lemma 7: [9] The optimal number of bits used to quantize the observations at the k-th node found by 
solving (21) is 
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where  and assuming, without loss of generality, a1 ≤ 
a2 ≤ ... ≤ an, K2 is found such that s2(K2) < 1 and s2(K2 + 1) ≥ 1 for 1 ≤ K2 ≤ n where 

 Then the optimal transmission power at the k-th node is 
given by 

 
where (x)+ equals to zero if x < 0 and equals to x otherwise. 
Note that again the optimal power at node k is determined by the observation quality, 
channel quality and the required MSE threshold as was the case with AF local processing 
we saw in lemma 5. Figure 6 shows the number of sensors that are active in the network to 
achieve a desired MSE threshold at the fusion center. In Fig. 6, the network size n = 1000 and 
α = 2. The distance from node k to fusion center, dk, is drawn from a uniform distribution on 
[1, 2]. It is observed that when the required MSE threshold increases the number of active 
sensors decreases greatly. That is, the network discards the observations at nodes with poor 
observation and channel quality. This is similar to what we observed in Fig. 5 earlier. 
 

 
Fig. 6. Number of active sensors in the network according to the optimal power allocation 
scheme given by lemma 7. The number of total sensors in the network is n = 1000 and α = 2 
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Figure 7 shows the energy saving due to the optimal power allocation scheme given in 
lemma 7 compared to the uniform power allocation scheme. Clearly Fig. 7 shows that 
significant energy savings are possible by optimally selecting number of bits, especially at 
moderate levels of desired MSE at the fusion center. 
 

 
Fig. 7. Performance of optimal power allocation scheme given in lemma 7 vs. uniform power 
allocation scheme: network size n = 20 
B. Communication over multiple access channels 

One of the disadvantages of using orthogonal channels to transmit local decisions is the 
large bandwidth consumption as the number of distributed nodes n increases. An 
alternative is to allow multiple sensor nodes to share a common channel. Such multiple 
access communication (MAC) in bandwidth constrained wireless sensor networks has been 
investigated in, among others, [10], [11], [17], [24], [25], [34], [36], [44]. For example, in [24], 
[25], [44] the authors proposed a type based multiple-access communication in which 
sensors transmit according to the type of their observation in a shared channel where the 
type is as defined in [45]. An analysis of both orthogonal and MAC channels for distributed 
detection in a sensor network was presented in [44]. MAC with correlated observations was 
considered in [34] and [46]. The use of CDMA signaling in distributed detection of 
deterministic and Gaussian signals under strict power constraints was presented in [10] and 
[11], respectively. When all sensor nodes communicate with the fusion center coherently, 
with amplify-and-forward local processing the estimator performance can be improved 
compared to that of orthogonal communication due to the coherent beam-forming gain [47], 
[46]. Performance of MAC communication with asynchronous transmissions was discussed 
in [48]. 
In the following we consider the form and performance of the final estimator at the fusion 
center when communications from distributed nodes to the fusion center is over noisy 
multiple-access channels. Assuming perfect synchronization among sensor transmissions, 
the received signal at the fusion center over a MAC can be written as 
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where w is the receiver noise with zero mean and variance of  and hk is the channel fading 
coefficient from node k to the fusion center, as defined earlier. For the AF local processing, 
substituting yk = gkzk, the resulting received signal is given by 

 
(22)

Fusion center computes the final estimator based on the received coherent signal r. The 
resulting BLUE estimator and its performance is given by the following lemma. 
Lemma 8: [34] The BLUE estimator and the resulting MSE based on the received signal (22) can be 
shown to be 

 
and 

 
With i.i.d. local observations the MSE simplifies to 

 
The MSE performance of the BLUE estimator under both orthogonal and multiple-access 
channels, with i.i.d. observations, is depicted in Fig. 8 as a function of total network power. 
Figure 8 assumes equal node powers and unity channel gains. Moreover, MAC 
communication is assumed to be perfectly synchronized among nodes. As seen from Fig. 8, 
when total network power is small, the MAC communication leads to a better MSE 
performance compared to that with orthogonal communication. But as total network power 
increases both schemes converge to the same performance level. This is because when the 
network can afford a large transmission power, irrespective of the communication scheme 
the overall estimator performance is only limited by the local observation quality and the 
effects of additive/multiplicative channel noise is mitigated by the large gain in the 
transmission. However, when a practical sensor network is power-constrained the MAC 
communication may be able to provide a much better performance over that of the 
orthogonal transmissions when nodes are perfectly synchronized. 
Figure 8 assumes equal transmission powers at all nodes. However, when the fusion center 
needs to achieve only a target estimator quality, say an MSE of ε3, one can consider non-
uniform power allocations such that, 

 
(23)

where MSE is as given in lemma 8. When the observations are i.i.d., a tractable analytical 
solution for the above optimization problem was given in [34] that is stated in the following 
lemma. 
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Fig. 8. Mean squared error performance vs. total network power for different network sizes 

 
Fig. 9. Performance of optimal power allocation scheme vs. uniform power allocation 
scheme 

Lemma 9: With i.i.d. local observations, the optimal power at node k, that solves the optimization 

problem in (23) with the MSE as given in lemma 8 is for k = 1, 2,..., n, where 

η0 and μ can be found numerically by solving the equations  and 

 where  



Parameter Estimation Over Noisy Communication Channels in Distributed Sensor Networks 

 

453 

It is observed that η0 has a feasible solution only when  [34]. The total power spent 
by the network with the above optimal power allocation scheme is given by 

 
Figure 9 shows the performance of the optimal power allocation scheme compared to that of 
uniform power allocation scheme for a network size of n = 20. Again, the optimal power 
scheduling scheme has a significant performance gain over the uniform power allocation 
scheme especially when local SNR is high or the required MSE threshold at the fusion center 
is moderate, similar to what was observed in Section 3-A in the case of orthogonal 
communication. 

C. Effects of synchronization errors on MAC 

To achieve coherent gain with MAC transmissions, it is important that the sensor 
transmissions are synchronized. For this discussion on node synchronization, we assume, 
i.i.d observations and AF local processing. Analysis would remain essentially the same for 
other network models as well. 
To achieve synchronization in node transmissions, one may assume that there is a master-
node (that can be taken as the fusion center itself, for simplicity) that broadcasts the carrier 
and timing signals to the distributed nodes [47]. Suppose that the k-th node is located at a 
distance of dk + δk from the fusion center, for k = 1, 2,..., n, where dk and δk are the nominal 
distance and the sensor placement error of the k-th node, respectively. The fusion center 
broadcasts a carrier signal cos(2πf0t) where f0 is the carrier frequency. The received carrier 
signal at the k-th node is a noisy version of  where 

. Each node employs a Phase Locked Loop (PLL) to lock onto 
the carrier. If each node precompensates for the difference in their nominal distances dk, by 
transmitting its locally processed and modulated observation with a proper delay and phase 
shift ψk, then the received signal at the fusion center is corrupted only by the phase shift due 
to the sensor placement error δk. Considering only the phase shift due to this sensor 
placement error, the received signal at the fusion center is given by 

 assuming AF local processing at sensor nodes. In the 
following lemma we assume that the placement error δk is Gaussian with zero mean and 
variance . 
Lemma 10: [34] Assuming that  << ι0 where  so that phase error  where 

 is small, the BLUE estimator at the fusion center when local observations are i.i.d. is 

 The resulting MSE with the phase synchronization errors is 

 
(24)

Figure 10 shows the MSE performance (24) of a sensor system in the presence of phase 
synchronization errors. It can be seen that the performance is robust against synchronization 
errors as long as the variance of the phase error  is sufficiently small. 
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4. Sequential communication 
In Section 3 it was assumed that the final decision on the PoI is made at a central fusion 
center, and all nodes were to send their locally processed data to this fusion center. In a 
distributed network, however, it might be desirable in some applications that the final 
decision be made fully distributively without depending on a central node. To achieve this 
goal, nodes may communicate with each other to reach at a final decision albeit at the cost of 
inter-sensor communications. One such architecture of distributed estimation is to 
communicate with nodes sequentially until the desired performance is reached. 
 

 
Fig. 10. Performance of optimal power allocation scheme with synchronization errors:  
n = 20, η0 = 10dB 

The basic problem of sequential detection for statistical hypotheses was first formulated by 
Wald in [49] who derived the sequential probability ratio test (SPRT). Analysis of SPRT and 
its comparison with fixed sample-size test for centralized detection of a constant signal was 
given in [50]. The decentralized version of the binary sequential detection problem was 
addressed by [41] and a more general formulation of the distributed sequential detection 
problem was presented in [40]. Decentralized sequential detection problem with multiple 
hypotheses was considered in [51] and [52]. 
Distributed estimation with sequential communication in wireless sensor networks has been 
addressed by several authors in recent years. For example, in [37]–[39], [53] information 
driven approaches for distributed sequential estimation of a source location have been 
investigated. In this architecture only one node communicates with another at a given time 
and the final decision can be made at any node once a required performance level is 
reached. However, it is worth mentioning that most of these are concerned with random 
parameters. To be consistent with our analysis in section 3, we, on the other hand, will 
consider non-random parameter estimation with sequential estimation, as considered, for 
example, in [42]. Thus, in the following, we consider the distributed sequential estimation of 
a non-random parameter where each node makes a local decision based on its own 
observation and the decision from the previous node. 
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A. Distributed sequential estimation 

Let us assume the same linear observation model (2) as in sections 2 and 3: 

 (25)

Let θ̂ k-1 be the local estimator at the (k - 1)-th node. The (k - 1)-th node sends its estimator to 
the k-th node over a noisy channel. Then the effective observation vector at node k is [42] 

 

(26)

with z1 = z1 where wk is the channel noise at inter-sensor communication link from node  
(k - 1) to node k and, as before, vk is the observation noise at the k-th node. Both v and w are 
assumed to be zero mean with covariance matrices Σv and Σw, respectively. Throughout this 
section we assume that the channel noise {wk}  is independent with the covariance matrix 

 Moreover the observation noise vk and the channel noise wk are 
assumed to be independent of each other. Given the effective observation vector zk the node 
k computes the BLUE estimator of parameter θ. In the following we consider the cases of 
independent and correlated observations, separately. 
1) Independent observations: When local observations are independent,  
The following lemma from [42] summarizes the BLUE estimator and its performance at the 
k-th node for independent observations. 
Lemma 11: [42] When observation noise is independent the BLUE estimator at the k-th node is given by 

 
(27)

where  and Pk is the MSE at k-th node which can be shown as 

 
(28)

For k=1, we have 

 (29)

with corresponding MSE of 

 (30)

It is seen from lemma 11 that the BLUE estimator at node k can be determined by 
observation vector at node k along with the variance of the estimator Pk-1 at the previous 
node. It is also interesting to see that as the inter-sensor communication link noise vanishes, 

 
(31)
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Fig. 11. Mean squared error at the k-th node: The observations are assumed to be i.i.d. with 

 for all k. Three instances of channel noise variance   are considered where 
case 1:  is i.i.d. with values of 0.01, 0.5 and 10; case 2: ’s are drawn from a uniform 
distribution in [0, 1]; case 3: no channel noise, i.e.  = 0 for all k 

In other words, when the inter-sensor communication links are very good we have Pk < Pk-1 

for k = 2,..., n irrespective of how the next node is selected. That implies that, sending the  
(k -1)-th node’s decision to the k-th node always improves the MSE performance. On the 
other hand, if the quality of inter-sensor communication links is poor, we get 

 
(32)

(32) implies that when the quality of inter-sensor communication links is poor, the MSE at 
the k-th node is not affected by the (k - 1)-th node’s decision. Therefore, in that case 
sequential communication will not improve the MSE performance. In fact, we can see that 
the above sequential estimation process gives improved performance only when the 
following condition is satisfied for the observation quality: 
Lemma 12: [42] If the current node’s MSE is Pk, then Pk ≤ Pk-1 if and only if the observation quality at 
the k-th node satisfies the following condition: 

 
(33)

For i.i.d. observations and channel noise (such that ) it can be 
shown that Pk  ≤ Pk-1 for all k ≥ 1 [42]. In this case, the MSE at the k-th node also simplifies to 

 
(34)
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As k→∞, the asymptotic variance converges to Pk = Pk-1 = P∞. Then from (34), it can be shown 
that [42] 

 
(35)

and we have  It is also of interest to see that 

 (36)

                             
(37)

Figure 11 shows the performance of the distributed sequential estimator for i.i.d. 
observation noise (i.e.  for k = 1,..., n). 
In Fig. 11 we have let = 0.4. If the channel noise variance is also i.i.d. so that , 
[42] has shown that Pk ≤ Pk-1 for all k≥1 which is illustrated in Fig. 11 as well. However, it is seen 
that in this case, when the channel noise variance  increases the MSE is limited by the 
observation noise variance  as predicted by (32). When channel noise variances are non-
identical, Fig. 11 depicts the MSE performance at node k with two different schemes for the 
next node selection. In one scheme, next node is selected randomly and in the other scheme the 
next node is chosen to be the node with the minimum distance to the current node (note that 
here we are assuming that ’s are in ascending order with k). As can be seen from Fig. 11, 
with random node selection, whenever the condition (33) in lemma 12 is satisfied, we have Pk < 
Pk-1. On the other hand, when the next node is selected to be the one at the minimum distance, 
it is seen from Fig. 11 that after a certain number of nodes, the MSE starts to monotonically 
increase. Therefore, with this scheme it is important to identify the node at which the MSE is 
minimum, and terminate the sequential updating process at the particular node. 
Fig. 11 only shows the MSE performance when the observations are i.i.d.. However, if the 
observations are not identical, it might be of interest to perform an information driven 
distributed sequential estimation process, in which the sequence of nodes are selected to 
capture the highest information gain as well as with the lowest communication cost. 
2) Correlated observations: When the observations are correlated, the covariance matrix of the 
effective received signal zk (26) at k-th node can be written as, 

 

(38)

where  With the covariance matrix in (38), the 
BLUE estimator and MSE are summarized in the following lemma. 
Lemma 13: [42] When local observations are correlated with the covariance matrix in (38), the BLUE 
estimator at k-th node is given as 

 
(39)
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where  and the corresponding MSE Pk, at k-th node is 

 
(40)

with  and rk,k-1 can be computed at node k using following recursion formula: 

 
(41)

In general, computing rk,k-1 from (41) needs a recursion that spans over all rj,j-m for m = 1,..., j 
for each j = k, k - 1,..., 1. In the special case where vk is wide sense stationary with identical 
variance  such that  [42] has shown that the recursion in (41) can be 
computed based at node k only on that is computed at node k - 1. Then the distributed 
sequential algorithm can be summarized as [42], 
1) Initialization 

 
2) For k = 2, 3,... 

 
The above algorithm implies that the sequential estimation process for correlated 
observations at node k can be performed with information received from node k - 1,  
( θ̂ k-1(zk-1), Pk-1 and rk,k-1) and its own information. 
Figure 12 shows the MSE performance at node k with the number of nodes assuming i.i.d. 
channel noise with  = 1. It is seen that, when the observation noise is highly correlated, 
the sequential estimation process does not give significant performance which intuitively 
makes sense. 

5. Distributed collaborative data fusion with consensus 
The specific topology of the network becomes an issue if all the participant nodes must 
collaborate to improve on their individual estimates, without a central fusion center that 
collects and processes all measurements as assumed in Section III. Still it is possible to 
 



Parameter Estimation Over Noisy Communication Channels in Distributed Sensor Networks 

 

459 

 
 

Fig. 12. MSE performance at k-th node with correlated observations 

obtain distributively a function of the observation vector such as the BLUE estimator, as we 
will detail later. In this section we assume that information is exchanged only locally with 
neighbors, and can reach distant nodes through an iterative process. 
For a proper characterization of the collaboration in such a network, it is necessary to make 
use of analytical tools which describe the topology of a sensor net. Thus we model the 
sensor network as a graph G = (V,E), with nodes (sensors) νk ∈ V and edges ekj ∈ E if there is 
a path from node νk to node νj . Note that a path exists in the network if transmissions from 
node νk reaches node νj . The elements of the adjacency matrix  are defined as [ ]kj = 1 if 
ejk ∈ E, otherwise [ ]kj = 0. If there is a sequence of edges to go from any node k to any other 
node j the graph is said to be connected. The degree matrix D of graph G is a diagonal 
matrix such that [D]kk is equal to the number of connections entering node k. With that, the 
Laplacian matrix L is defined as L = D - . Specifically, the elements [L]kj of the Laplacian 
matrix L are defined as 

 

(42)

It turns out that the eigenvalues {λk}  of L contain important information about the 
topology of the graph G. In fact, if they are ordered as λ1 ≤ λ2  ≤ ... ≤ λn, we always have that 
λ1 = 0 and λ2 > 0 for a connected graph (that is, a graph in which there exists a path 
connecting any two nodes). This second eigenvalue λ2 is known as the algebraic connectivity 
of the graph, and its value plays a major role in the speed at which information can be 
diffused through the network [55]. The corresponding eigenvectors are denoted by uk, with 
u1 = e where, as before, e is the n-vector of all ones. As an illustration, the four-node network 
in Fig. 13 has the following associated Laplacian matrix: 
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(43)

The connection between nodes k and j is symmetric if whenever node k sends data to node j 
it can also get data from node j. If all the connections were symmetric, the corresponding 
Laplacian matrix of the graph in Fig. 13 would look like as follows: 

 

(44)

Note that in this case the Laplacian matrix is also symmetric. In the first case the eigenvalues 
of L are given by {0, 1.5 ± 0.866j, 2}, whereas in the latter case, they are {0, 2, 4, 4}. Clearly the 
network is more strongly connected in the second case, and this fact is reflected in the 
magnitude of the second eigenvalue or, in other words, in the algebraic connectivity. 
 

 
Fig. 13. Four node graph 
A. Distributed estimation of static parameters 

We consider again the same observation model (2) at distributed nodes. However, now all 
sensors attempt to share information with everyone else in order to update each of their 
local estimators. Moreover, all sensors wish to agree on a common estimate for θ, in what is 
known as distributed consensus estimation. This cannot be achieved in one shot, however, 
due to the constraints imposed by the network topology, since sensors can only access 
information from other nodes corresponding to the non-zero entries in L after one exchange, 
in L2 after two exchanges, and so on. Nodes will have to iteratively keep updating and 
exchanging their local estimators to reach a consensus. Let z(i) denote the information vector 
of all nodes after the i-th information exchange with z(0) = z where z is as given in (2). If, for 
simplicity, we first consider ideal noiseless links, the following lemma shows how to lead all 
sensors to the same estimate. 
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Lemma 14: [55] The recursion 

 (45)

converges to the vector (uT z)e, where u = [u1, u2, ..., un]T denotes the left eigenvector of  L associated 
with the eigenvalue 0 normalized as Σ  uk = 1, provided that  . 
According to the recursion (45), at each iteration, the current estimates are exchanged with 
nodes defined by the active links of the Laplacian matrix L, and updated after weighting the 
neighbors contributions by γ. Thus, an agreement on the value uT z can be reached after 
convergence1. The convergence speed is a function of both γ and the algebraic connectivity 
of the graph. Hence sensor local estimates will converge faster in more densely connected 
networks. 
In many situations, however, it might be of interest to ensure that the network converges to 
an arbitrary final consensus value of cT z. We can indeed modify (45) to achieve this, so that 
the final asymptotic consensus estimator is given by (cT z)e. 
Lemma 15: The recursion 

 (46)

converges to the vector (cT z)e, where C and U are diagonal matrices such that C = diag(c) and  
U = diag(u). 
Note that the local exchange of values (peer-to-peer) serves to improve the individual 
estimates at nodes even not directly connected with each other, as the information is 
diffused through the network at each iteration. 
B. Robust consensus schemes 
Clearly, the assumption of ideal noiseless links is not valid in practice: exchanges contain 
additive noise, and it turns out that the recursion (45) does not converge to a consensus [56], 
unless some provision is taken2. One possible remedy is to use a decreasing sequence of 
positive steps γ(i) as suggested in [57]: 

 (47)

where Diag(A) denotes the vector formed by diagonal elements of A and Diag{(I - γ(i) 
C-1UL)W(i)} in (47) accounts for the channel noise leaking into the sensors. Note that the n × 
n matrix W(i) contains the links noise values wkj(i), as illustrated in Fig. 14 (if two different 
nodes are not connected, the corresponding value in W(i) is irrelevant). 
Lemma 16: [57] Asymptotic consensus is achieved in (47) as long as the positive sequence 
{γ(i)} is such that  for all i and satisfies the following conditions: 

 
(48)

                                                 
1 If the network is symmetric, that is, L = Lt, then u = e/n, and the consensus value is the 
average of the initial observations. 
2 If the noise is correlated with the exchanged values, as it is the case for quantization noise, 
the strategies to follow can be different from those presented here, which are more general. 
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In the noiseless case the asympotic consensus value is that corresponding to the constant 
step of previous section, which turns out to be independent of the convergence speed. This 
is no longer the case in the presence of noise. In fact, the stepsize sequence {γ(i)} should be 
designed to speed up convergence while minimizing the impact of channel noise, which will 
be proportional to the sequence-energy [58]. For instance, at each step each 
sensor could compute the BLUE estimator by combining what it receives from its neighbors 
with its own value, taking into account the exchange noise statistics in the analysis. 
Invariably, as the exchanges progress the estimates at different nodes become correlated 
even for initially independent observations. Hence the nodes should be able to estimate the 
degree of correlation among them for proper combining. On the other hand, it is also 
possible to use filtering to fight noise (see e.g. [59]) although this causes strict consensus not 
be achievable. 
 

 
Fig. 14. Four node graph with noisy links. 
 

 
                         (a) Noiseless case.                                                     (b) Noisy case. 

Fig. 15. Convergence curves towards consensus: (a) noiseless links, γ = 0.1, (b) noisy links, 
γ(i) = 0.5=i, i = 1, 2,...,  = 0.1. 

Figure 15 shows the evolution of the values in the four node network shown in Figs. 13 and 14, 
respectively. Clearly, consensus is achieved even in the noisy case, although the asymptotic 
estimate differs from the ideal case due to the noise. Observe the different horizontal axis 
scaling used in the two figures, due to the slower convergence in the noisy case. 
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C. Cooperative tracking: distributed Kalman filters 
Dynamic parameter estimation, including target tracking, using wireless sensor networks 
has been considered by many authors in the literature. Common methods used in dynamic 
parameter estimation (or target tracking) include Kalman filtering, Bayesian estimation 
methods, particle filtering and their variants. Kalman filtering for distributed parameter 
estimation or tracking has been studied by many authors, [60]–[65]. When the state-space 
model is nonlinear or non-Gaussian, authors in [66]–[70] have proposed the use of particle 
filters for the dynamic parameter estimation. In this section we discuss how cooperative 
tracking can be achieved when inter-node communication is possible. In this case, we 
assume that each node observes an underlying state which evolves, for instance, according 
to a classical Gauss-Markov model: 

 (49)

We denote the observation at node k at time instant t by zk(t), where 

 (50)

If a centralized observer collects observations from all nodes, it could run a Kalman filter, 
which is the optimum MSE estimator provided that the noise processes u(t) and vk(t), k = 
1,..., n, are jointly Gaussian (otherwise, optimality is still true only among linear estimators). 
The process noise u(t) and observation noise v(t) are assumed to be white, independent and 
have covariances Σu(t) and Σv(t) respectively, with 

 

(51)

However, if a central fusion center is not available, nodes can benefit from cooperation with 
neighbors. The degree of improvement as well as the performance degradation with respect 
to that of a central fusion center will depend on how close to an agreement the network can 
go before the next state update in (49). This statement can be made more clear after the 
formulation of the information form centralized Kalman filter for the recursive update of the 
linear estimator x̂ (t) of x(t) based on the observations up to time instant t [71]: 

 

 
(52)

with 

 
(53)

 
(54)
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and where P(t) = E{(x(t) - x̂ (t))2} is computed through the following updates: 

 (55)

 (56)

 

(57)

for an initial uncertainty P(-1). As observed in [61] the above equations show that each 
sensor would be able to emulate a central fusion center should it be able to compute the 
following quantities: 

 
(58)

 
(59)

As stated above, any linear combination of the initial sensor values can be asymptotically 
achieved in a distributed form via collaborative exchanges of local information, although in 
a time-varying setting the number of available exchanges will determine the level of 
alignment of the quantities (58) and (59). As expected, if the number of exchanges without 
channel noise goes to infinity, the performance of the network approaches that of a 
centralized observer [72]. Clearly, this requires the exchange of the observations as well as 
associated signal-to-noise ratios. 
As an illustration, let us consider in detail the setting with one hop exchanges in which each 
sensor has access to the (noisy) observations from its closest neighbors exclusively. From 
(58) and (59) we see that nodes must exchange  so 
the combined observations can be written as 

 

(60)

where we have defined the extended observation vector as 

 
(61)

If the weighting matrix is chosen, for simplicity, as A = I-γL, although more sophisticated 
weighthing coefficients can also be used, then the k-th element of the n-vector H (t) and the 
covariance matrix of the vector noise v (t) in (60) are given in the following lemma. 
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Lemma 17: The state-space model at the k-th node when merging observations as in (60) is given by 

 (62)

 (63)

for k = 1,..., n, with 

 
(64)

In addition, if the noise power  is the same for all communication links, then 

 
It is important to note that the covariance matrix of the vector noise v (t) containing the n 
components v k(t) in (17) is now a function of the original observation noise statistics, the 
weighting matrix used, and the communication noise. Each node can iterate the 
corresponding Kalman filter provided that the communication of  is 
noiseless (Note that, in practice, these values may change slowly making robust 
communication easier). As a consequence, after each measurement the corresponding values 
are exchanged with neighbors to assist the Kalman updating at each node. The weight γ 
should be chosen as a function of the channel noise, with a low value for highly unreliable 
channels [73]. 
It is also possible to exchange state estimates instead of the described observations merging, 
or combine both if enough bandwidth is available. In any case, the number of exchanges 
will determine the performance of the distributed Kalman filter. 

6. Chapter summary 
In this chapter, we discussed the fusion performance of estimation of a scalar parameter, be 
it static or dynamic by a distributed sensor network in the presence communication noise. 
The distributed nodes in the network make observations on a PoI and make local decisions 
based on the observations. Then by communicating the local summaries over wireless 
channels (to a central node or to their local neighbors), a final estimator is obtained. 
In section 2, the multi-sensor data fusion problem was formulated and two types of local 
processing schemes were discussed. Then these locally processed data was transmitted over 
wireless channels to a central node or shared among each other. The communication noise 
was allowed to be multiplicative (due to path loss attenuation and the multi-path fading) or 
additive (due to receiver noise). In section 3, the data fusion was analyzed when nodes 
communicate with a central node that forms the final estimator. 
When there is no central fusion center available in the network, nodes may communicate 
with each other to improve their local estimators by combining them with those of their 
neighbors. Sections 4 and 5 addressed this type of sensor nets in two different contexts. 
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Section 4 discussed the distributed sequential estimation in which nodes communicate 
sequentially to update their estimator and the final decision can be made at any distributed 
node. In Section 5, the distributed estimation with consensus was considered where all 
nodes try to reach a final decision that agrees with each other via inter-node communication 
among neighbors. 
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1. Introduction 
Most applications of wireless sensor networks (WSN) rely on the accurate localization of the 
network nodes [Patwari et al., 2005]. In particular, for network-based navigation and 
tracking applications it is usually assumed that the sensors, and possibly any data fusion 
centers (DFCs) in charge of processing the data collected by the network, are placed at a 
priori known locations. Alternatively, when the number of nodes is too large, WSNs are 
usually equipped with beacons that can be used as a reference to locate the remaining nodes 
[Sun et al., 2005]. In both scenarios, the accuracy of node localization depends on some 
external system that must provide the position of either the whole set of nodes or, at least, 
the beacons [Patwari et al., 2005]. Although beacon-free network designs are feasible [Sun et 
al., 2005, Ihler et al., 2005, Fang et al., 2005, Vemula et al., 2006], they usually involve 
complicated and energy-consuming local communications among nodes which should, 
ideally, be very simple. 
In this paper, we address the problem of tracking a maneuvering target that moves along a 
region monitored by a WSN whose nodes, including both the sensors and the DFCs, are 
located at unknown positions. Therefore, the target trajectory, its velocity and all node 
locations must be estimated jointly, without assuming the availability of beacons. We 
advocate an approach that consists of three stages: initialization of the WSN, target and 
node tracking, and data fusion. At initialization, the network collects a set of data related to 
the distances among nodes. These data can be obtained in a number of ways, but here we 
assume that each sensor node is able to detect, with a certain probability of error, other 
nodes located nearby and transmit this information to the DFCs. These data are then used 
by the DFCs to acquire initial estimates of the node positions. An effective tool to perform 
this computation is the accelerated random search (ARS) method of [Appel et al., 2003], 
possibly complemented with an iterated importances sampling procedure [Cappé et al., 
2004] to produce a random population of node positions approximately distributed 
according to their postrior probability distribution given the available data. This approach is 
appealing because it couples naturally with the algorithms in the tracking phase. 
We propose to carry out target tracking by means of sequential Monte Carlo (SMC) 
methods, also known as particle filters (PFs) [Doucet et al., 2000, 2001, Crisan & Doucet, 
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2002, Djurić et al., 2003, Ristić et al., 2004, Bolić et al., 2005], which recursively track the 
target position and velocity, as well as improve node positioning, with the generation of 
new data by the WSN. We should remark that the treatment of unknown (random) fixed 
parameters, such as the sensor positions are in our framework, using PFs is still an open 
problem. We propose two algorithms that tackle this dificulty. The first one is based on the 
auxiliary particle filtering (APF) methodology [Pitt & Shephard, 2001, Liu & West, 2001] and 
the second one follows the density-assisted strategy of [Djurić et al., 2004]. 
The data fusion stage deals with the combination of the outputs produced by different DFCs 
in order to produce improved estimates of both the target state and the WSN node locations. 
Again, we investigate two approaches. Both of them are aimed at the coherent combination 
of the estimates produced by individual DFCs but differ in the amount of information that 
they use and the requirements imposed on the WSN communication capabilities. The most 
complex technique theoretically yields asymptotically optimal Bayesian estimation of the 
target state and the node locations (hence, optimal fusion) with distributed computations, 
but at the expense of making all data available to all DFCs. It is based on the parallelization 
of PFs as addressed in [Bolić et al., 2005, Míguez, 2007]. 
The remaining of the paper is organized as follows. After a brief comment on notation, 
Section 2 is devoted to a formal description of the system moel. A general outline of the 
proposed scheme is given in Section 3. Sections 4, 5 and 6 are devoted to the procedures 
proposed for initialization, tracking and data fusion, respectively. In Section 7 we show 
some illustrative simulation results. Finally, the main results are summarized in Section 8. 

1.1 Notation 
Scalar magnitudes are denoted as regular letters, e.g., Nx, . Vectors and matrices are 
denoted as lower-case and upper-case bold-face letters, respectively, e.g., vector x and 
matrix X. We use )(⋅p  to denote the probability density function (pdf) of a random 
magnitude. This is an argument-wise notation, i.e., )(xp  denotes the pdf of x and )(yp  is 
the pdf of y, possibly different. The conditional pdf of x given the observation of y is written 
as )|( yxp . Sets are denoted using calligraphic letters, e.g., Q . Specific sets built from 
sequences of elements are denoted by appropriate subscripts, e.g., },,{= 1:1 NN xxx … . 

2. System model 

We assume that the target moves along a 2-dimensional region 2C⊆C  (a compact subset 
of the complex plane) according to the linear model Gustafsson02  

 N∈+− tttt ,= 1 uAxx   (1) 

where 2],[= C∈Τ
ttt vrx  is the target state, which includes its position and its velocity at 

time t ( tr  and tv , respectively); 
1
0 1

T⎡ ⎤
= ⎢ ⎥
⎣ ⎦

A  is a transition matrix that depends on the 

observation period, T , and  

 )0,|(],[= ,, uttvtrt CNuu Cuu ∼Τ  (2) 
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is a complex Gaussian noise term, with zero mean and known covariance matrix  

 ,
0

0
4
1

=
2

4
2

⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡

T

T
uu σC  (3) 

that accounts for unknown acceleration forces. The initial target state, 0x , has a known prior 
probability density function (pdf), )()(=)( 000 vprpp x , and we assume 

)(0,=)( 2
,00 vCNvp σ , i.e., the prior pdf of the velocity random process is complex Gaussian 

with zero mean and variance, 2
,0vσ . 

The network consists of sN  sensors and cN  DFCs. Sensors are located at random unknown 

positions },,,{= 21:1 sNsN ssss … , C∈is , with independent and identical uniform prior 

pdf's, )(=)( CUsp i , sNi ,1,= … , on the 2-dimensional region monitored by the WSN. 
During the network startup, each sensor detects any other nodes located within a certain 
range, 0>uS . In particular, the n-th sensor builds up an 1×sN  vector of decisions, 

Τ],,[= ,,1 sNnnn bb …b , where (deterministically) 1=,nnb  while {1,0}, ∈knb , kn ≠ , is a 

binary random variable with probability mass function (pmf)  

 ),,(=)|1=( ,:1, u
s

kndsNkn Sdpsbp  (4) 

where |=|, kn
s

kn ssd −  is the distance between the n-th and k-th sensors and ),( ⋅⋅dp  is the 

function that yields the probability of detection. At time 0, these decisions are broadcast to 
the DFCs and we collect them altogether in the ss NN ×  matrix ],,[= 1 sNbb …B  for 

notational convenience. 
The locations of the cN  DFCs are denoted as 

cNcc ,,1 … , with C∈ic  i∀ . By convention, 

the first DFC is assumed to be located at the origin of the monitored region, i.e., 0=1c . The 
positions of the remaining DFCs are assumed random and unknown, with complex 
Gaussian prior pdf's ),|(=)( 2

c
c
iii cCNcp σμ , cNi ,2,= … . The physical implication of 

this model is that DFCs are deployed at locations which are only roughly known. The 
variance 2

cσ  indicates the uncertainty in this prior knowledge. 
During the normal operation of the network, the n-th sensor periodically measures some 
distance-dependent physical magnitude related to the target. The measurement obtained by 
the n -th sensor at discrete-time 1≥t  is denoted as ),(= ,,,

y
tntnstn dfy ε , where 

|=|, nttn srd −  is the distance between the target and the sensor, y
tn,ε  is a random 

perturbation with known pdf and ),( ⋅⋅sf  is the measurement function. We assume that not 

every sensor necessarily transmits its observation, tny , , at every time. Indeed, it is often 
convenient (in order to reduce energy consumption) that only a subset of sensors become 
active and transmit their measurements. The local decision of a sensor to transmit its data or 
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not depends on the comparison of the measurement, tny , , with some reference value, yS . 

We also introduce a certain probability of transmission failure, β . A failure can be caused, 
e.g., by a strong interference in the channel that prevents adequate reception of the 
communication signal at the DFC. Thus, at time t only an 1×tN  vector of observations, 

Τ],,[= ),((1), ttNtt yy κκ …y , where st NN ≤≤0  and },{1,)( sNi …∈κ , i∀ , is effectively 

broadcast to the DFCs (note that all DFCs collect the same data from the sensors). We 
assume that the likelihood ),,|( :1:1 cNsNtt csrp y  can be evaluated up to a proportionality 

constant. 
Each DFC has the capability to extract some distance-related magnitude from the 
communication signals transmitted by the sensors. For simplicity, we consider the same 
type of measurement carried out at the sensors, hence the n -th DFC also has available, at 
time t≥0, the 1×tN  data vector Τ],,[= ,),(,(1),, tntNtntn zz κκ …z , where ),(= ,,,,,,

z
tni

c
tnistni df εz , 

|=|,, ni
c

tni csd −  and z
tni ,,ε  is a random perturbation with known pdf, so that the likelihood 

),|( :1, nsNtn cszp  can be computed. Note that ,0nz  is defined (unlike 0y ), and has 

dimension N0=Ns, because during the network startup all sensors broadcast signals to the 
DFCs. 
We assume that the DFCs are equipped with communication devices more sophisticated 
than those at the sensor nodes and, as a consequence, it is feasible to exchange data among 
the DFCs. In particular, during network startup one DFC collects a set of 1)( −cc NN  

observations, ),(= 0
,

0
,, ninisni dfq ε , },{1,, cNni …∈  (but ni ≠ ), where |=|0

, nini ccd −  and 
0
,niε  is a random perturbation with known pdf, so that )|( :1, cNni cqp  can be evaluated. For 

conciseness, we define the set ni
cNniniq ≠

∈ },{1,,, }{= …Q . Moreover, during normal operation of 

the WSN, each DFC may receive sufficient information from the other fusion nodes to build 
the ct NN ×  matrix of observations [ ]tcNtt ,1, ,,= zzZ … . Essentially, this means that the 

DFCs may be capable of sharing data. 
The goal is to jointly estimate the target states },,{= 0:0 tt xxx … , the sensor locations, 

sNs :1  

and the uknown DFC positions, 
cNc :2 , from the decisions in B, the data in Q  and the 

sequences of observation vectors },,{= 1:1 tt yyy …  and },,{= 0:0 tt zzZ … . 

3. Proposed scheme 
The proposed method consists of three stages, that we outline below. 
Stage 1. Initialization: Using the data generated during the network startup, at this stage 
we compute maximum  a posteriori (MAP) estimates of the DFC locations, 

cNc :2 , that will be 

kept fixed during the WSN operation (including the tracking and fusion stages). We also 
compute marginally MAP estimates of the sensor locations, 

sNs :1 . The latter point estimates 

are employed to initializae an iterated importance sampling procedure that generates a 
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population of candidate positions at time 0=t , denoted )(
:0,1

i
sNs , Mi 1,...,= , 

approximately distributed according to the posterior pdf ),,,|( :10:1 cNsN csp ZBQ . This 

posterior sample is needed to start the tracking algorithms in stage 2. 
Stage 2. Tracking: We investigate two techniques. The first one is an APF algorithm for state 
estimation in dynamic systems with unknown fixed parameters derived according to [Liu & 
West, 2001]. A special feature of this technique is that it adaptively approximates the high 
dimensional posterior pdf of the sensor positions using a sequence of kernel mixtures. 
The second algorithm relies on the density-assisted (DA) approach of [Djurić et al., 2004] to 
approximate the posterior density of the sensor positions using a parametric familiy of pdf's. 
An advantage of this procedure is that it enables the analytical integration of the target 
velocity, thus reducing the sampling space dimension [Chen & Liu, 2000]. 
Stage 3. Fusion of estimates: Both the APF and the DA tracking algorithms can either be 
run independently in separate DFCs (an using only the data available at each DFC) or be 
designed as a single global algorithm (that needs to use all the data available through all 
DFCs) implemented in a distributed way. The computational complexity is similar in both 
cases but the second approach imposes stringent communication requirements on the 
network. 
If the tracking algorithms are run independently, using different observation sets at each 
DFC, we propose a mechanism for fusing the resulting Nc estimates that combines them  
coherently into a single point estimate. We must note that estimates produced by different 
DFCs with different data cannot by simply averaged because the available observations 
(both y1:t and Z0:t) are insensitive to the angles between the target and the sensors or the 
sensors and the DFCs. Therefore, it is necessary to take one track estimate as a reference 
(e.g., the one produced by DFC 1) and adjust the others by means of rotations only to minimize 
the mismatch. 
If the tracking algorithms use the same set of observations in all DFCs, then it is possible to 
apply methods por the implementation of a single PF whose computations are distributed 
(parallelized) among the available DFCs. This is done by applying the techniques in [Bolić et 
al., 2005] and [Míguez, 2007]. With this approach each DFC transmits its zn,t, n∈{1,..., Nc}, to 
all other DFCs but, in exchange, it theoretically guarantees an asymptotically optimal 
Bayesian estimation of the target state and sensor positions by a simple linear combination 
of the estimates produced by the Nc DFCs. 

4. Initialization 
4.1 Point estimation 
As a first step, we obtain point estimates of the node locations, including the DFCs, 

cNc :2  

(note that we assume c1=0), and the sensors, 
sNs :1 , given the information available at time 

t=0. An accurate estimation of the DFC positions is of utmost importance, since they will be 
kept fixed in subsequent stages. Therefore, we propose to compute MAP estimates of the 
locations 

cNc :2  by solving the nonlinear optimization problem  

}),|({maxarg=ˆ 0:2
:2

:2 ZQ
cN

cNccN cpc  
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 .),|(),|(maxarg= 2

2=
,

:2 ⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

∏∏
≠

c
c
jj

cN

j
kiki

kicNc
cCNccqp σμ  (5) 

Similarly, marginal MAP estimates of the sensor locations, conditional on 
cNcN cc :2:2 ˆ= , is 

achieved by solving  

{ })ˆ,|(maxarg=ˆ :20 cN
s

cZsps  

 ,)ˆ,|(maxarg= ,0,
1= ⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧
∏ nn

cN

ns
cszp   (6) 

for sN,1,= …  and 0==ˆ 11 cc  is  a priori known. We point out that addressing the 
estimation of each sensor individually we neglect the information in matrix B, but the 

dimensionality reduction accounts for this loss (searching for a global MAP solution in sNC  
turns out practically much harder). 
Problems (5) and (6) do not have closed form solutions in general. However, they can be 
numerically solved, with high accuracy, using the accelerated random search (ARS) 
algorithm [Appel et al., 2003]. ARS is a Monte Carlo technique for global optimization that 
enjoys a fast convergence rate and a simple implementation. The algorithm is described, for 
a general setup, in Table 1. 
 

 
Table 1. Iterative ARS algorithm for a maximization problem. Parameter α is possibly 
multidimensional (typically, nC∈α ). The algorithm is usually stopped after a given 
number of iterations without going changing αn. 

We assume the DFC positions known for all subsequent derivations, i.e., we treat 
cNc :2ˆ  as 

the true values and skip them from notation for conciseness. 
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4.2 Population Monte Carlo 
The PFs applied in the tracking stage need a sample of sensor positions drawn from the 
posterior pdf at time t=0, )|( 0:1 ZB,

sNsp  in order to start running. To generate this initial 

population, we propose an iterated importance sampling1 method called PMC [Cappé et al., 
2004]. In the first iteration, particles are drawn from independent complex Gaussian 
proposals built from the ARS estimates and a fixed variance, (0)2

sσ , i.e.,  

 ,,1,=,,1,=(0)),,ˆ|((0) 2)( MiNnssCNs ssnn
i

n ……σ∼  (7) 

with weights  

 .
(0)),ˆ|(0)(

(0))|((0))|(
=(0)

2)(

1=

)(
:1

)(
:10)(

sn
i

n

sN

n

i
sN

i
sNi

ssCN

spsp
w

σ∏

BZ
  (8) 

After the (k-1)-th iteration, the weighted particles are M
i

ii
sN

pmc
k kwks 1=

)()(
:11 1)}(,1)({= −−Ω −  

and importance sampling for the k-th iteration is performed as  

 1)),(1),(|()( 2
,

)()( −− kkssCNks ns
i

nn
i

n σ∼  (9) 

where  

1),(1)(=1)( )()(

1=
−−− ∑ kskwks i

n
i

M

i
n  

andksakasks n
i

n
i

n 1),()(11)(=1)( )()(
−−+−−  

2)()(

1=

22
, |1)(1)(|1)()(1=1)( −−−−−− ∑ kskskwak n

i
n

i
M

i
nsσ  

for some 0<a<1, i.e., we build the (k-1) -th kernel approximation of ),|( 0:1 BZ
sNsp  with 

shrinkage [Liu & West, 2001] for variance reduction. The corresponding weights are  

 .
1))(1),(|)((

))(|())(|(
=)(

2
,

)()(

1=

)(
:1

)(
:10)(

−−∏ kksksCN

kspksp
kw

ns
i

n
i

n

sN

n

i

sN
i

sNi

σ

BZ
 (10) 

If the algorithm is iterated N times, we obtain a sample of equally-weighted particles 
M
i

i
sNs 1=

)(
:0,1 }{ , with approximate pdf ),|( 0:1 BZ

sNsp  by resampling from pmc
NΩ . 

                                                 
1See, e.g., [DeGroot & Schervish, 2002] for a brief review of the importance sampling principle. 
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5. Tracking 
In the second stage, the aim is to track the sequence of target states, xt, and improve the 
estimation of the sensor positions, 

sNs :1 , recursively, as new observations yt and Zt are 

received. We introduce two PFs that attain this goal. We assume that each DFC runs a PF, 
but the algorithms are derived for the scenario where all data at time t, including both yt and 

],,[= ,1, tcNtt zzZ … , are available for the algorithm. This means that zn,t must be 

transmitted from DFC n, where it is collected, to all other DFCs. Note, however, that we can 
derive the proposed algorithms in the alternative scenario in which only zn,t is available at 
the n -th DFC by simply substituting Z0:t by zn,0:t in the proposed procedures. Indeed, we 
will assess the performance of the PFs in the two scenarios in Section 7. 

5.1 Auxiliary particle filter 
As a first approach, we propose to use an APF algorithm based on [Liu & West, 2001]. The 
APF is a recursive algorithm that generates a sequence of discrete probability measures, 
denoted M

i
i

tsNttt ws 1=
)(

:,1 },,{(= xΩ , that approximate the posterior pdf's of the unknowns, 

i.e., for },{1, cNn …∈ ,  

 ,),(),,|,( )(
:1

1=
:0:1:1

i
tsNti

M

i
ttsNt wssp xBZyx δ∑≈  (11) 

where ),( :1 sNti sxδ  is a delta measure centered at { )(
:,1

)( , i

sNt
i

t sx }. The samples, )(i
tx  and 

)(
:,1

i
sNts , for Mi 1,...,= , are called particles and the importance weights )(i

tw  are normalized 

to yield 1=)(
1=

i
t

M

i
w∑ . When at time t observations yt and Zt become available, tΩ  is 

recursively computed from 1−Ωt  as described in Table 2. 
The proposed APF algorithm is based on the relationship  

),|(),|,(),,|,( 1:1:1:1:0:1:1 −∝ tsNtsNtttttsNt spspsp yxxZyBZyx  

 ),,|( 1:01:1:1 BZy −−× ttsNsp  (12) 

and the approximations  

 )(
1:1

)(
1

1=
1:1:1 )()|(=),|( i

tsNi
i

tt

M

i
tsNtM wspsp −−− ∑ δxxyx  (13) 

 ),(=),,|( :1
)(
1

=1
10:1:1:1 sNi

i
t

M

i
ttsNM sKwsp −−− ∑BZy  (14) 

where )(⋅iK  is a symmetric kernel. For the latter, we have chosen  
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where  
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t
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t ss …μ  (16) 

 },,{= 2
1,

2
1,11 sNttt diag −−− σσ …Σ  (17) 

and (0,1)∈h  is a bandwidth factor. The kernel modes are calculated as  

 ,)(1= 1,
)(
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)(
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i
kt

i
kt saass −−− −+  (18) 

for 21= ha −  and  

 .= )(
1,

)(
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i
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i
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M

k
kt sws −−− ∑  (19) 

 
Table 2. Liu and West's APF algorithm for joint estimation of the target trajectory, x0:t, and 
the fixed node locations, 

sNs :1 , from the observations available at time t. 

The variances, in turn, are found as  

 ( ) .=
2

1,
)(
1,

)(
1

1=

2
1, kt

l
kt

l
t

M

l
tk ssw −−−− −∑σ  (20) 
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This choice of )(
1

i
t−μ  and 1−tΣ  ensures that the mean and marginal variance of every fixed 

parameter given by the kernel approximation (14) is equal to the corresponding mean and 
marginal variance given by the weights [Liu & West, 2001].. 
One difficulty with the approximations (13) and (14) is that they involve mixtures of a 
typically large number (M) of pdf's. We avoid this limitation by incorporating a discrete 
auxiliary random variable }{1,...,M∈  that indicates the terms in (13) and (14) to be 
selected. In particular, we define  

 ).()|(),|,(),,|,,( :1
)(
1

)(
1:1:0:1:1 sNtttsNtttttsNt sKwxxpsxZypBZysxp −−∝  (21) 

Using (21) we can easily draw particles and compute weights by applying the principle of 
importance sampling (IS) [DeGroot & Schervish, 2002].. In particular, we define a suitable 
importance function, or proposal pdf,  

 )|()|()(=),,( )(
1:1:1 −ttsNttsNtt xxpsqqsxq   (22) 

(see Table 2 for the details) that we use for drawing new particles and then update the 
weights as  

 .,1,=,
)),,((

),,|),,((
)(

:,1

:0:1
)(

:,1)( Mi
sq

sp
w i

sNttt

tt
i

sNtti
t …

x
BZyx

∝  (23) 

The auxiliary variables are discarded before proceeding to time t+1. 
We finally note that, given tΩ , it is straightforward to produce estimates of the target 
trajectory and the node locations. In particular, we can approximate the minimum mean 
square error (MMSE) estimate of tx  or 

sNs :1  at time t by simply computing the weighted 

mean of the particles in tΩ , as shown also in Table 2. 

5.2 Mixture Kalman filter 
For convenience of exposition, let us begin with the case in which the locations of the 
sensors, 

sNs :1 , are known. If we aim at the Bayesian estimation of the sequence of target 

positions r0:t conditional on the observations y1:t  (given 
cNc :1  and 

sNs :1 , Q , B and t:0Z  are 

not relevant for the estimation problem), all statistical information is contained in the 
posterior pdf ),|( :1:1:0 sNtt srp y , which can be approximated by means of a particle filter. 

Specifically, the dynamic model (1) is linear in rt conditional on vt, hence the recursive 
decomposition  

 ),|()|(),|(),|( :11:110:10::1:1:10: sNttttsNttsNtt srprrpsrpsrp −−−∝ yyy  (24) 

enables the application of the mixture Kalman filter (MKF) technique [Chen & Liu, 2000] to 
build a point-mass approximation of the posterior pdf,  
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i
sNtt rwsrp δy  (25) 

where iδ  is the delta measure centered at )(
1:0

i
tr −  and M

i
i

tw 1=
)( }{  are normalized importance 

weights [Doucet et al., 2000]. Given the set M
i

i
t

i
tt wr 1=

)(
1

)(
1:01 },{= −−−Ω , we can apply the 

sequential importance sampling (SIS) [Doucet et al., 2000]. algorithm to recursively compute 

tΩ . For Mi ,1,= … , the following steps are recursively applied:   

1.  Importance sampling: Draw )|( )(
1:0

)( i
tt

i
t rrpr −∼ .  

2.  Weight update:  
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i
t wwwandsrpww ∑− y  (26) 

Resampling steps must also be applied (although not necessarily at each t) to avoid weight 
degeneracy [Doucet et al., 2000]. Since the likelihood ),|( :1

)(

sN
i

tt srp y  can be computed, by 

assumption of the model, and several methods are available for resampling, the only 
difficulty in the application of this algorithm is sampling from the prior )|( 1:0 −tt rrp . The 
latter can be obtained from the Kalman filter (KF) equations [Kalman, 1960]. To be specific, 
let us note that the pair of equations jointly given by (1),  

 tvtt uvv ,1= +−  (27) 

 ,== ,11 trtttt uTvrr +−Δ −−  (28) 

where ttvtr uu u=],[ ,,
Τ  in (1), form a linear-Gaussian system. Hence, the posterior pdf of vt, 

given a specific sequence r0:t, is complex Gaussian, ),|(=),|( 2
,0:1 tv

v
tttt vCNrvp σμΔ , with 

posterior mean and variance, v
tμ  and 2

,tvσ , respectively, that can be recursively computed 
using the KF recursion [Haykin, 2001],  
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2
1|, Ttvttv +−− σσ  (29) 

 ,
4
1= 42

1|,
2 TTg ttvt +−σ  (30) 

 ( ),= 12
1|,1

t

v
tt

ttv
v
t

v
t g

TT −
−−

−Δ
+

μσμμ  (31) 

 ,1=
2

2
1|,

2
1|,

2
, ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
− −−

t
ttvttvtv g

Tσσσ  (32) 



 Sensor and Data Fusion 

 

482 

where gt is the Kalman gain and 2
1|, −ttvσ  is the variance of vt conditional on 1:1 −Δ t . Moreover, 

the normalization constant of ),|( 0:1 rvp tt Δ  is )|(=),|( 1:0101:1 −−− −ΔΔ ttttt rrrprp , which 
is also complex Gaussian and can be analytically found. In our specific model we obtain  

 ( ),,|=)|( 2
1|,111:0 −−−− + ttr

v
ttttt TrrCNrrp σμ  (33) 

where 42
1,

22
1|,

4

5= TT tvttr +−− σσ . 

Therefore, the outlined MKF algorithm can be implemented using a bank of M KFs, one per 
particle. Given )(

1:0
i
tr − , it is possible to (recursively and analytically) obtain )|( )(

1:0
i
tt rrp − , 

which can be easily sampled to draw )(i
tr  in the importance sampling step. Moreover, both 

rt and vt can be estimated (in the MMSE sense),  

 ,=ˆ,=ˆ
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1=

)()(

1=

iv
t

i
t

M

i
t

i
t

i
t

M

i
t wvrwr μ∑∑  (34) 

by combining the outputs of the KF's, hence the name MKF. This methodology was applied 
to generic tracking problems in [Gustafsson et al., 2002]. 
Unfortunately, the standard MKF algorithm does not provide means to properly handle the 
unknown sensor positions 

sNs :1 . To overcome this limitation, we resort to the DA-PF 

scheme of [Djurić et al., 2004]. The basic probabilistic relationship that we exploit to derive 
the new algorithm is obtained by means of the Bayes theorem and the repeated 
decomposition of conditional probabilities, namely  

)|()|(),|(),,|,( 1:0:1:1:0:1:1:0 −∝ ttsNtsNttttsNt rrpspsrpsrp ZyBZy  

                                ),,|()( 1:01:11:0:1 BZy −−−× tttsNt rpsρ  (35) 

                                                   )|()|(),|(= 1:0:1:1
1=

−∏ kksNksNkk

t

k
rrpspsrp Zy  

             ),,|()( 0:10 BZ
sNsprp×  (36) 

where  

 ),,,|(=)( 1:01:11:0:1:1 BZy −−− tttsNsNt rspsρ  (37) 

is the posterior pdf of 
sNs :1  at time t-1. 

Assume that we are able to draw samples from )( :1 sNt sρ . Then, (35) shows that a SMC 

algorithm can be used to recursively approximate ),,|,( :0:1:1:0 BZy ttsNt srp . Indeed, if at 

time t-1 the set of particles M
i

i
t

i

sNt
i
tt wsr 1=

)()(
:1,1

)(
1:01 },,{= −−−Ω  is available, then we can compute a 

point-mass approximation of the last factor in (35),  
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where the integrand in (38) is the approximation of ),,|,( 1:01:1:11:0 BZy −−− ttsNt srp  built from 

1−Ωt . Eq. (39) implies that we can start from the set M
i

i
t

i
tt wr 1=

)(
1

)(
1:01 },{= −−−Ω  and exploit (35) to 

build tΩ  via the MKF algorithm. Specifically,  
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Moreover, (36) explicitly shows that, in order to start the recursion, we need to draw initial 
populations not only from the prior p(r0), but also from the posterior ),|( 0:1 BZ

sNsp . 

MMSE estimates of rt and vt are computed in the same way shown by Eq. (34), while 
)()(

:,11=:,1 =ˆ i
t

i
sNt

M

isNt wss ∑ . 

To apply the MKF algorithm (40)-(42) we only need to specify how to approximate 
)( :1 sNt sρ . One of the simplest choices is to assume a Gaussian distribution built from the 

particles and weights at time t-1, i.e.,  

 ),,|()( 2
,1,1,

1=
:1 nstntn

sN

n
sNt ssCNs −−∏≈ σρ  (43) 

where )(
1,

)(
11=1, = i

nt
i

t
M

int sws −−− ∑  and ( )21,
)(
1,

)(
11=

2
,1, = nt

i
nt

i
t

M

inst ssw −−−− −∑σ . This approximation is 

easy to sample and still provides an acceptable performance, as will be numerically shown 
in Section 7. 

6. Fusion 
6.1 Point estimation 
Assume that the tracking algorithms, either the APF or the DA-MKF, run independently in 
the separate DFCs, using the same sequence of sensor observations2, t:0y , but different DFC 

                                                 
2This is not a requirement for fusion based on point estimation. The same technique could 
be applied if each DFC collected a different sequence tn :,1y , cNn 1,...,= . 
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observations, tn :,0z , cNn 1,...,= , instead of the whole set t:0Z . At any time t, the PF can 

yield an MMSE point estimate of the target and sensor positions. Let )(ˆ :0 nr t  and )(ˆ :1 ns
sN  

denote the estimates computed at the n-th DFC. We wish to combine all available estimates 
coherently to obtain an improved estimator. However, we must take into account the 
possibility that n -th DFC estimates may be rotated around the location cn, as a consequence 
of the insensitivity of the observations yt and zn,t to the angle between rt and sk, k=1,..., Ns, 
and the angle between sk and cn, respectively. 
In order to correct any possible rotation and gurantee the computation of a coherent average 
of the available estimates, we propose the following fusion rule for the overall target and 
sensor position estimator,  

 ( ) nj
ntn

cN

nc
t ecnrc

N
r φˆ)(ˆˆ1=ˆ

1=
−+∑  (44) 

 ( ) ,ˆ)(ˆˆ1=ˆ ,
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,
nj
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kt ecnsc

N
s φ−+∑  (45) 

where k=1,..., Ns and the correction angles 
cNφφ ,...,1  are selected to minimize the mismatch 

with respect to the estimates produced by DFC 1, which is (arbitrarily) chosen as a reference. 
Specifically,  
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nknk

t

tLtk
ecnrcr  (46) 

where Lt>0 is a delay lag and 1= −j . Problem (46) can be solved using the ARS 
algorithm described in Section 4. 

6.2 Distributed implementation of PFs 
In this section we describe how a centralized PF can be implemented in a distributed 
manner, such that each DFC updates a distinct subset of particles and generates individual 
estimates that can subsequently be combined optimally. For this approach to be formally 
sound, we require that all observations (in particular, the sequence Z0:t) be available to all 
DFCs. If this is not the case, the fusion tchnique described here can still be used, but it 
becomes an approximation and optimality cannot be claimed. 
We propose to use the resampling with non-proportional allocation (RNA) method of [Bolić 
et al., 2005, Míguez, 2007] 7 to distribute the MKF tracking algorithm over the Nc DFCs. Let 
us split the overall particle set tΩ  into Nc subsets, one per DFC, denoted as 

nM
i

n
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in
sNt

in
ttn Wwsr 1=

*)(),(),(
:,1

),(
:0, },,,{=Ω , cNn ,1,= … , and such that MM nn

=∑ . The 
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weights in tn,Ω  are normalized locally, i.e., 1=),(
1=

in
t

nM

i
w∑ , and the sum of the 

unnormalized weights, 
*),(

1=

*)( = in
t

nM

i
n

t wW ∑  are also kept in order to assess the relative 

value of each subset (the subsets tn,Ω  are not equally “good” in general). 
In the basic RNA scheme, an independent MKF algorithm (40)-(41) is run for each subset 

tn,Ω  (i.e., for each DFC). This means that resampling is carried out locally (using any 
desired method) at each DFC and estimates are also computed locally,  
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Optimal fusion is performed by combining the local estimates according to the sum-weights, 
*)(n

tW , i.e., global MMSE estimates are computed as  
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  (48) 

in such a way that only the local estimates and the sum-weights need to be transmitted to 
the DFC in charge of the fusion stage. 
One limitation of this approach is that when the subset sizes, Mn, n=1,..., Nc, are not large 
enough, some particle filters may get relatively impoverished [Míguez,2007], i.e., it may 

eventually happen that, for some n, 
*)(*)( << k

t
n

t WW , for all nk ≠ . In such a case, the 
corresponding n -th DFC becomes ‘useless’, since its local estimates are essentially irrelevant 
for the computation of the global estimates. A solution to this phenomenon (equivalent to 
the weight degeneracy in standard particle filters [Doucet et al., 2000]) is to periodically 
perform a local exchange (LE) of a small number of particles between pairs of DFCs. We 
propose a simple implementation of LE in which L<minn{Mn} particles from DFC n are 
transmitted to DFC n+1, for n=1,..., Nc -1 and L particles from DFC Nc are transmitted to 
DFC 1, i.e., particles are exchanged in a ring configuration. 

7. Simulations 
In order to provide illustrative numerical results, we have particularized the model of 
Section 2 to a network of power-aware sensors. Specifically, the measurement function 

),( ⋅⋅sf  has the form  

 )(,1log10=),( 210 dB
d

dfs εηε +⎟
⎠
⎞

⎜
⎝
⎛ +  (49) 

where 610= −η  accounts for the sensitivity of the measurement device (-60 dB). The n-th 
sensor transmits its measurement, tny , , only if it corresponds to a distance 50=<, ytn Sd  



 Sensor and Data Fusion 

 

486 

m (i.e., 33.97>, −tny  dB) and otherwise remains silent. A transmission failure can also 
occur, with probability 410= −β . The observational noise, ε , is zero mean Gaussian but, 
depending on whether the power observation is carried out at a sensor node or at a DFC 
node, its variance is assumed different. In particular (0,2), Ny

tn ∼ε , for sensors, and, for 
DFCs, z

tni ,,ε  and 0
,niε  are identically distributed according to the Gaussian pdf )(0,10 2−N . 

Therefore, the likelihoods, namely,  
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are Gaussian with known mean and variance. 
At time zero, the sensors detect all other nodes which are closer than Su=50 m. Since 
observations are obtained from function ),( ⋅⋅sf , with the parameters already described for 
the sensors, the probability of detection is  

 ,
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=),(
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where )(⋅ΦN  is the standard (zero mean, unit variance) Gaussian cumulative distribution 

function, ,0)(= ,,
s

knskn dfP , 33.97=,0)(= −usu SfP   dB and 210−  is the variance of the 
observational noise. 
The state priors are 0,5)|(=)( 00 rCNrp  and )0,10|(=)( 2

00
−vCNvp  and the state 

equation parameters are 
2
1=T  s and 

5
1=2

uσ . There are 4=cN  DFCs and 23=sN  

sensors in the network. We assume 0=1c , while the others have complex Gaussian priors 

with equal variance 25=2
cσ  and means 3550=2 jc +−μ , 3745=3 jc −μ  and 

4536=4 jc +μ  (where 1= −j ), respectively. This prior pdf's are used to randomly draw 
initial estimates of :42c  which are used as inputs to the ARS algorithm that solves (5), the 

other parameters being 2=ν , 15=maxR , 410= −
minR . The ARS algorithm for problem (6) 

receives as inputs a sensor position drawn from )(CU  (where C  is the square centered at 0 

with sides of length 160 m), 200=maxR , 410= −
minr  and 2=ν . The ARS procedures are 

iterated 3000 times for (5) and 300 times for each (6). The estimates 
sNs :1̂  are then used to 

build the first proposal pdf in the PMC procedure. The corresponding variance is 

2
1=(0)2

sσ  and the subsequent proposals are computed by shrinkage, with parameter 

0.7=a . We iterate the PMC algorithm 200 times with 1600 particles. 
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Resampling, via the RNA scheme, is performed every 5 time steps of the tracking 
algorithms. The latter are run with M=1600 particles and each DFC is assigned 

400=/= cn NMM  particles (for n=1,2,3,4). We assume a local exchange of particles every 
4 resampling steps, with L=8 particles being transmitted from DFC n to DFC n+1 and from 
DFC Nc to DFC 1. 
Figure 1 shows an example of estimation of the DFC and sensor positions, 

cNc :2  and 
sNs :1 , 

respectively, using the available data at time t=0 and the ARS algorithm. It is observed that 
MAP estimation using the obervations in the initialization stage can be very accurate. 
However, the simulation results also illustrate the ambiguity in position estimation that 
arises due to the insensitivity of the available measurements to rotations. The plot shows 
that the estimation of node locations near the origin (where angle errors have little effect) is 
clearly more accurate than for nodes placed far away from the 0 point, where rotation errors 
cause an apparent shift of the estimates with respect to the true values. 
 

 
Fig. 1. Example of node MAP position estimation at the initialization stage using the ARS 
algorithm. The phenomenon of rotation ambiguity (due to the angle insensitivity of the 
available measurements) can be clearly observed for nodes located far from the 0 (origin) 
point. 

Next we turn attention to the performance of the schemes that use independent PFs at 
separate DFCs and employ the proposed angle correction method to fuse the Nc available 
estimates coherently, as described in Section 6.1. We recall that, in this scenario, the 
observations available to the PF in the n-th DFC during the tracking stage are ty :1  and tnz :,1 . 

The ARS algorithm that approximates the solutions (correction angles) in problem 46 is 
iterated 100 times, with initial values 0=1>nφ  and time lag Lt=20 (for t>20, and Lt=t 
otherwise). 
Figure 2 (left) shows the mean absolute target position error attained with the APF and MKF 
algorithms in this scenario. These results are the average of 500 independent simulation 
trials. The APF technique turns out to be clearly superior and outperforms the MKF method 
by ≈0.6 m of accuracy. This means that the improved importance function employed by the 
APF algorithm (which takes into account yt and zn,t  when drawing the particles at time t) 
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provides an error reduction superior to the analytical integration of the velocity process 
carried out by the MKF method. We must remark that the position errors shown in this plot 
are corrected to remove the insensitivity, inherent to the proposed model, to rotations of the 
complete system (including the target and the nodes) around point 0, where DFC 1 is 
assumed to be located. 
 

 
Fig. 2. Averaged absolute error in the estimation of the target position, measured in meters 
(m).  Left: Tracking is carried out using independent APF and DA-MKF algorithms at each 
DFC and performing fusion by coherent combination of point estimates.  Right: Tracking is 
carried out using a distributed implementation of the APF and DA-MKF algorithms over the 
Nc=4 DFCs, by means of the RNA technique. 
Figure 3 (left) depicts the mean absolute error in the estimation of the sensor positions 
attained by the schemes built around the APF and MKF algorithms. Again, these results are 
the average of 500 independent simulation trials. In this case, more accurate results are 
obtained with the MKF algorithm. This means that the density-assisted approach to the 
estimation of fixed parameters in the MKF scheme is more efficient than the adaptive kernel 
approximation employed by the APF procedure. The difference, however, is small (≈0.06 m) 
and the superior sampling efficiency of the proposal function in the APF technique 
obviously has a dominant role in the overall performance of the tracker. 
Figures 2 (right) and 3 (right) show the results, for the absolute errors in the estimation of 
the target and sensors positions, obtained when we apply the RNA algorithm described in 
Section 6.2. The curves have been obtained by averaging the results of 500 independent 
simulation trials. In this scenario, the different DFCs cooperate to share the observtions zn,t, 
n=1,...,Nc, hence the matrix Zt is available for all DFCs at time t. Again, the APF tracker turns 
out more efficient than the MKF in turns of target positioning, whereas the MKF yields 
better estimates of the sensor locations. Both plots show a clear `step' shape. The reason is 
the sudden improvement in the estimates that occurs when a local exchange of particles is 
carried out as a part of the RNA procedure. This suggests the need to increase the number of 
exchanged particles (L=8 for this set of simulations) or even the number of particles assigned 
to each DFC, which seems too small to exploit the potential of the RNA scheme. Indeed, the 
accuracy of positioning when using coherent point estimation is superior (for the APF, there 
is an advantage of ≈0.8 meters in absolute error). This fact should be attributed to the 
averaging of the angle error that is carried out when selecting the correction angles 

cN:2φ  in 

Eq. (46). Nevertheless, our simulation results (not shown) indicate that RNA-based schemes 
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always outperform point-estimation methods when the system runs for ≈300 time steps or 
more. 
 

 
Fig. 3. Averaged absolute error in the estimation of the sensor positions, measured in 
meters/second (m).  Left: Estimation is carried out using independent APF and DA-MKF 
algorithms at each DFC and performing fusion by coherent combination of point estimates.  
Right: Estimation is carried out using a distributed implementation of the APF and DA-MKF 
algorithms over the Nc=4 DFCs, by means of the RNA technique. 

8. Summary 
We have proposed a novel scheme for joint node localization and target tracking in wireless 
sensor networks using Monte Carlo methods. The proposed approach does not require the 
aid of beacons in order to locate the network nodes. Instead, it resorts to a novel 
combination of Monte Carlo optimization and iterated sampling procedures in order to 
generate an initial population of node locations with sufficient quality. Starting from this 
population, we have described novel particle filtering algorithms that recursively track the 
target position  and sequentially generate new samples of node positions, as new data 
become available, in order to improve node positioning. For networks equipped with more 
than one data fusion center, we have also proposed two schemes that enable the 
combination of the estimates obtained by different fusion centers, possibly using different 
data. Computer simulation results have also been presented to illustrate the performance of 
the proposed techniques. 
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