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Introduction

= Static positioning problems in Chapters 3 and 4

m Linear and angular velocity of a rigid body

m Static forces acting on a rigid body




RARM_JOINT[0]
RARM_JOINT[1]
RARM JOINT[2]

b

AJONTE] 4

_JOINT[4] g
vy M

RLEG JOINT[1] 2 Gl o z 8]
RLEG_JOINT[2]
RLEG JOINT[3]

I z
RLEG _JOINT[4] _(
YoM

X X
P I
RLEG_JOINT[5]

RLEG_JOINT[6]

RLEG_JOINTI[0]
LLEG_JOINTI[0]

LARM JOINT[4]

Y 3] LLEG_JOINT[1
LLEG JOINT[2
LLEG_JOINTI[3!

LLEG JOINT[4]

LLEG_JOINTI[5]
LLEG_JOINT[6]




Differentiation of position vectors
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A fixced universal frame
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Angular velocity vector

. axis o] ro:arion
The rotation of

frame {B}
relative to {A}

The angular velocity of
frame {B} relative to {A}

expressed in terms of

frame {C}




m Whereas linear velocity describes an attribute of
a point, angular velocity describes an attribute of

a body.

Since we always attach a frame to the bodies we

consider, we can also think of angular velocity as




{A} Fixed, ;R constant

{A]}




Rotational velocity of a rigid body

A C .
B R changing in time
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Coincident origins,
Z.ero linear relative

velocity
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velocity

Wo="Vsora+R Vy+'Qpx;R°Q.

Origins are not cotncident.




IA Property of the derivative of _

an orthonormal matrix

RR" =1
RR" +RR" =0,
RR" +(RR")" =0,

S =RRT

S+ST = 0, S a skew-symmetric matrix

S =RR™




IVelocity of a point due to rotating reference frame .

AP:;RBP B P a fixed vector
1p=/R"P
V,=,R"P
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Angular-velocity matrix




I Skew-symmetric matrices and _

the vector cross-product

Angular-velocity vector

Any arbitrary vector
SP=QxP

The vector cross product

AVP — QBxAP




Motion of the links of a robot
The linear (angular) velocity of the origin of link frame {i}

written in_frame {1}

At any instant, each link of a robot in motion has some linear and
angular velocity.




Velocity propagation from link to link

= We can compute the velocities of each link in
order, starting from the base.

® The velocity of link 741 will be that of link 7
plus whatever new velocity component were

added by joint 7+1.




= Remember that linear velocity is associated with
a point (the origin of the link frame), and angular
velocity is associated with a body (#e /ink).

m The angular velocity of link 7+1 is the same as

that of link 7 plus a new component caused by

rotational velocity at joint 7+1.




Velocity vectors of neighboring links
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m The linear velocity of the origin of frame {/+1}

is the same as that of the origin of frame {7}
plus a new component caused by rotational
velocity of link 2.
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For

the case that joint 7+1 1s prismatic;
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= Applying those previous equations successively
from link to link, we can compute the rotational
and linear velocities of the last link.
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Example 5.3

A 2-link manipulator with rotational joints




x=1,c0s6,+L,cos(6,+6,)
y=Lsing +L,sin(6,+6,)

x=—L;siné,-6,—L,sin(6,+6,)(6,+6,)
y=1,c0s6,-0,+L,cos(d, +6,)(6,+6,)

, [—Llsin 6, —L,sin(6,+0,) —Lzsin(91+6’2)wé
X =
| L,cos@ +L,cos(6,+6,) L,cos(6,+6,) |
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Jacobians

= f1 (X5, X5, X4, X5, Xg),

Nonlinear
— fZ(xlix2’x31x41x5ax6)1

= [ (0, X5, X3, X, X, X ), Y = F(X).

oy, :%5x1+%5x2+---+%5x6,

0x; Ox, OXg

oy, =%5x1+%5x2+~-+%5x6, Chain rule

Ox, Ox, Oxg

OV = s —=0x, + I =0, + = T OxX,

Ox; Ox, OX¢
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of a vector-valued function

, If n=m, JS is a square matrix.

J need not be a square matrix!




oy, oy oy
Ox, 0Ox, Ox,
y, . :
Ox,

PDa Vs
Ox, Ox,

1
0
0

| x, COS X,

0
0
8x,

0

0

5

—2
sinx, |




— Linear transformations q

Y =J(X)X.

Maps velocities in X to those in Y

In the field of robotics, we generally speak of Jacobians

that relate joint velocities to

Cartesian velocities of the tip of the arm.
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RESQO ‘n“ggn

(RMRC)

= Proposed by D. E. Whitney (1969)

= The motions of the various joint motors are combined
and run simultaneously at different time-varying rates in
order to achieve steady end-effector motion along any
Cartesian coordinate axis.

The desired rate along the world coordinates




The RMRC block diagram

Joint
controller

PID

J(©)

Joint rates approach infinity as the singularity is approached.




RESQO ~d Motior

Control (RMAC)

Proposed by J. Y. S. Luh (1980)

Extends the concept of RMRC to include acceleration
control.

Presents an alternative position control which deals
directly with the position and orientation of the end-
etfector of a manipulator.

Assumes that the desired accelerations of a preplanned

end-effector motion are specified by the user.




Singular Value Decomposition
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MATLAB Syntax

[U,S,V]=svd(X)

U =
0.1525 0.8226 -0.3945 -0.3800
0.3499 0.4214  0.2428 0.8007
0.5474 0.0201 0.6979 -0.4614
0.7448 -0.3812 -0.5462 0.0407

S =
14.2691 0
0 0.6268
0 0
0 0

V=
0.6414 -0.7672
0.7672 0.6414







Computation of the Jacobian Matrix




J 1, Jl.eR6

n

(Revolute joint)

~ 3
z.eR

(Prismatic joint)




We see that 7~-th column of Wi . which we denote as 1S

given by

The linear velocity of the end-effector that wonld result
if . were equal to one and the other Wy . were ero










‘o = p6k+p,0, Rk+---+p 0 "Rk = ZpﬂOA

is equal to 1 if joint i is revolute and Q if joint i is prismatic.

Jo =Pz P12, p,2, ]




We revisit Example 5.3
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Jacobian for an Arbitrary Point on a Link

Wish to compute the linear velocity WMl and the angular velocity
of the center of link 2

The velocity of the second link is unaffected
by motion of the third link: Kinematic effects

Reaction forces on link 2due to the motion of
link 3 will influence the motion of link 2:
Dynamic effects




2 (2 pt.) — Due Jan. 20

Using the Robotics Toolbox for MATLAB,
make the PUMA 560 arm move in a straight line
from x=0.02m, y=-0.15m, z=0.86m

to x=0.02m, y=-0.15m, z=-0.86m.

Display a stick figure animation of the robot moving
along the path and submit a printed copy of your
MATILAB code.




Singularities

= Workspace boundary singularities: fully stretched
out or folded back on itself

= Workspace interior singularities: two or more joint
axes are lined up




Example 5.4
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6, =0° 180" — Workspace boundary singularities




Example 5.5
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Spherical Wrist Singularity

The joint axes P and V4 are collinear.




Fully extended or fully retracted




\Yi P

the Elbow

The wrist center intersects the axis of the base rotation.




Spherical Manipulator with no Offset

The wrist center intersects
Any rotation about the base leaves
this point fixed.




SCARA Manipulator Singularity




Manipulability

p=detJJ" =|44,--- 4| =|detJ]

The eigenvalues of J

Manipulability ellipsoids tor several configurations of a two-link arm




Static forces in manipulators

= How forces and
moments propagate
from one link to the
nextr

The robot is pushing on
something in the

environment with the /

:Egpi)ffz;g)z i)(fad at the ‘\&;,K\%‘j '# n_

hand.




Static forces in manipulators

fi = force exerted on link i by link i-1

n, = torque exerted on link i by link i-1




Solve for the joint torques that must be acting to keep the system
in static equilibrium.

o \
f _f+1’ No net forces, no net torques (moments)

l z+1+lP+1Xf+1 Zf — O1Zn =0

. . Static force propagation
fi =K +1f+11 from link to link:

] l+1 ] ]
R"n,_+'P_ Xf.

l+1 J 1

I

r.='n'Z.. Revolute joint

i T iry : .o
Tv.=f 'Z. Prismaticjoint




Example 5.7




Work-Energy Principle

= The change in the kinetic energy of an object is
equal to the net work done on the object.




Principle of virtual work

deformed body with
displacement u and
virtual displacement Hu

u(x,y,z)+du(x,y.z) ~——deformed body with
¥ displacement u(x,y,z)

original body

External virtual work equals the internal virtual strain energy.




Jacobians in the force domain
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O X © transformations map these quantities from one frame
to another.
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The forces and torques

applied at the tip
of the tool
@ T @ The output of the senso
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