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Inverse Kinematics

= Given the desired position and orientation of
the tool relative to the station, how do we
compute the set of joint angles which will
achieve this desired result?

= First, frame transformations are performed to
find the wrist frame, {W}, relative to the base
frame, {B}, and then the inverse kinematics are
used to solve for the joint angles.




Solvability

Given the numerical value of M we attempt to
find values of [z NEEne)

nl

The PUMA 560:

Given ﬂ as 16 numemcal values, solve (3.14) for
an

es

12 equations and 6 unknowns

\1/ Not algebraic,
6 equations and 6 unknowns ' Excponential, trigonometric functions

0 joint

(nonlinear, transcendental equations)




Solvability
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Existence of solutions

= In the forward kinematics problem, each set of
input joint parameters gave a unique output
pose. However, in the inverse kinematics, a
oiven pose may be satisfied with several
different sets of input angles.

ST st be in the workspace of the manipulator.




Workspace

= The volume of the space which the end-effector
of the manipulator can reach.

m Dextrous workspace (DW): reachable with all

orientations

m Reachable workspace (RW): reachable in at least
one orientation




How to maximize the dexterous workspace?

DW is a subset of RW

7%&':; workspace

reachable workspace

reachable workspace

the set of all possible positions of the end-effector:
the total volume swept out by the end-effector
as the manipulator executes all possible motions




Two-link manipulator

"‘ RW a disk of radius 21,
> DW ithe origin

|, =1,

RW

a ring of outer radin |y +1,
imner radius “ — |2‘

When joint limits are a subset of the full 360 degrees, then the workspace
15 correspondingly reduced.




solutions

Self-motion - The robot can be moved without
moving the end-effector from the goal

" ——

=~ ~& | A second possible configuration in
which the same end-effector position
and orientation are achieved.




Possible Problems

= Multiple solutions
m Infinitely many solutions
m No solutions

m No closed-form (analytical) solutions

This only works if the number of kinematic constraints is
the same as the number of degrees-of-freedom of the robot.




Multiple solutions

= We need to able to calculate all the possible
solutions.

m The system has to be able to choose one.

® The closest solution: the solution which
minimizes the amount that each joint is required
to move.




The closest solution in joint space

= Weights might be applied: moving small joints

(wrist) instead of moving large joints (Shoulder/
E/lbow)

= The presence of obstacles




T'wo possible solutions




Eight solutions of the PUMA 560

Another solution

6, =0, +180°,

Left Arm Elbow Down Right Arm Elbow Down g, . 9
5~ Y5

6, = 6, +180".

Left Arm Elbow Up Right Arm Elbow Up




Number of solutions vs. nonzero a;

A OR manipulator Link length
<

The more the link length parameters are nonzero,
the bigger the maximum number of solutions!




Method of solution

m Closed form solutions: based on analytic

expressions or on the solution of a polynomial

of degree 4 or less PRV 70T

m Numerical solutions: all systems with revolute

TA A4

and PIlbI natic ] i‘lt havin ng a total of 6 ucgfé‘:c“:
CS

olvable.

of freedom in hain ar




Closed-form solutions

Analytical solution to system of equations

Can be solved 1n a fixed number of operations
(therefore, computationally fast/known speed)

Results in all possible solutions to the
manipulator kinematics

Often difficult or impossible to find
Most desirable for real-time control
Most desirable overall

OR Manipulator: Three neighboring joint axes intersect at a point.




Robot — 6 DOF
Single Series Chain

Revolute and Prismatic Joints

Analytic Solution Numeric Solution

(Iterative Solution)

Closed Form Solution
Industrial Sufficient Condition
Three adjacent axes
(revolute or prismatic)
must intersect

Non
Real-Time




(8,,0,,...,0,)=3.T

N\
\ A given desired pose of the tool (numbers!)
A function of the joint variables (equation!): found by

solving the forward kinematics




Numerical solutions

Results in a numerical, iterative solution to system of
equations, for example Newton/Raphson techniques

Unknown number of operations to solve
Only returns a single solution
Accuracy 1s dictated by user

Because of these reasons, this is much less desirable
than a closed-form solution

Can be applied to all robots.




Algebraic solution (Fig. 4.7)
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sésa, COSa, Ca, Cayd, 0
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0.0 1.0 0.0
0

, 0.0

C, 0.0

0.0 0.0 1.0

Cp, =CCy =55,
S, = 56, G5,




C; = Cia3

A set of 4 nonlinear equation that must be
S = S123 solved for 6,,6,,0,

X“+y?=17+12+2l1c,
XAy =l =1
211,

— s, =H/1-c’ =0, = Atan 2(s,,c,).

Elbow-#p ot elbow-down




kl — Il + |2C2, k2 = IZSZ'

r = \/klz + k22, y = Atan 2(k,, k,),

k,=rcosy, k,=rsiny.

=C0Sycosd, —sinysing, = cos(y +6,),

=C0SySIn g, +sin ycosd, =sin(y +6,).




y +6, = Atan Z(X,i) = Atan 2(y, x),
rr

6, = Atan 2(y, x) — Atan 2(k,, k,).

0, +0, +0;|= Atan 2(s,,c,) = ¢.




Some Inverse-Kinematic Formulas

The single equation

»

has two solutions, given by

0 = £ Atan 2(\/@, a)

Likewise, given

there are two solutions:




If both (1) and (2) are given, then there is a unique solution

given by

0 = Atan 2(a,b).

The transcendental equation

acos@+bsingd=0

has two solutions

6 = Atan 2(a,—Db)
0 = Atan 2(—a,Db)

and




The equation

is also solved by

0 = Atan2(b,a) = Atan Z(a2 +b*—c? ,c)

The set of equations

acos@d—-bsin@d =c,
asingd+bcoséd =d

ARt 0 = Atan 2(ad —bc,ac+bd).




A Geometric Approach

= For most manipulators, many of the mQ.re

zero, the m areﬂ or VM ctc.

= In these cases, a geometric approach 1s the
simplest and most natural.

m The general idea is to decompose the spatial
geometry of the arm into several plane-geometry
problems: solving simple trigonometry problems




Geometric Solution: 3-link Planar

L.aw of cosines

X°+y° =17 +17-2L1, cos(8, —180)

Pythagorean (or Pythagoras’) theorem



Geometric Solution: 3-link Planar

L= Atan2(y, x)

L.aw of cosines




Elbow manipulator

6, = Atan2(y,_, X.)
6, =7+ Atan2(y., X,




L1IDOW Vlar

configuration

The wrist center
Hence, any value of

ntrar] ’_F]A N4 N N
L1IACUL. 1L 1IClIC a4

many solutions for
intersects 4g




Elbow manipulator: Shoulder offset

There will, in general, be only two

solutions for

These correspond to the so-called
left arm and right arm configurations.




6

¢ = Atan2(y,, x,)
a = Atanz(d,\/r2 —d2)

- Atan2(d,\/xf+yf—d2)

6, = Atan 2(y,,x_ )+ Atan 2(— d,—\r*— d2)
G=a+pf

a = Atan2(y., X.)

B=r+n

;/:Atanz(d,\/rz—dz)

Right arm confignration




Homework #10 (1 pt.) — Due Jan. 13

Find the angles (74478 for the elbow manipulator given §o%

LT




Homework #11 (1 pt.) — Due Jan. 13

Solve the inverse position kinematics for a 3 DOF spherical
manipulator.




polynomial

Langent of the half angle substitution




Example 4.3

acos@+bhsin@=c

a(l—u®)+2bu=c(l+u?)
(a+c)u*=2bu+(c—a)=0

J b++/b? —a? —¢?
a+c

= 2tan1£

bi\/bz—az—czj

a+C




Sine and Cosine of a Sum/Difference

cos(A+B)=cosAcosB—-sin AsinB
sin(A+ B) =sin Acos B + cos Asin B

cos(A—B)=cos AcosB +sin AsinB
sin(A—B) =sin AcosB —cos Asin B

siIn2A = 2sIin Acos A
cos2A =cos* A—sin° A=2cos* A—1=1-2sin* A




Tangent of a Double Angle

2tan A

tan(2A) =
(2A) 1—tan® A

sin(2A)  2sin Acos A
cos(2A) cos® A—sin® A
Divide both parts of the fraction by cos* A

tan(2A) =

tan A+tan B
1+ tan Atan B

tan(A+B) =




Sine and Cosine of a Half Angle

sin @ = 2sin(6/2) cos(6/2)
cosé = cos®(6/2) —sin*(0/2) = 2cos’(8/2) -1
—1-2sin%(0/2)

0 . 1-cos
—>sin(0/2) = J_r\/ 5

. 1-cos 0
sin“(0/2) = ,

— €0s(0/2) =+

\/1+ cos 6




Tangent of a Half Angle

tan(0/2) = sin(6/2) _+\/1—cos(9
“cos(0/2) V1+cosd

(1-cosO)(L+cosd) J1-cos’ 6

tan(6/2) =\/
Vsin’  sind  1-cosé

T 1+cosd 1+cosd  sine

(1+ cos8)? 1+ cosé




sin @ = —sin(—0) = —cos(6+90°) = cos(d —90°)
cosd = cos(—60) =sin(@+90°) = —sin(6—90°)

tan(90° + @) = —cot &
tan(—0) =—tané@
tan(6 —-180°) =tan @




intersect (¢.g., spherical wrists)

= A completely general robot with six degrees of

freedom does not have a closed form solution.

® The technique involves decoupling the position

and orientation problems. The position

problem positions tl

he wrist center, while the

orientation problem completes the desired

orientation.




I W 5 I

hen the last three axes intersect, the origins of link frames {4}, {
and {6} are all located at this point of intersection.

X a, 1.(6,)
y —d,Sa f,(6,)
0P4ORG :%TgrirameG = . :Ongr?sT d;:a: :?LT;T fi(ﬁz)
_1_ ] 1 | i 1 |
e s 0 a,

_|sbca, clco, —so; —Sso 0
sOsa;, COsa, Copy;  Coyl
0 0 0 1




] | a || a,Cc, +d,sa,s, +a, ]
f.| ° | dca, | |asa,8,—d,50,50,C,+d,caCa,+dca,
1y | 1 ]| 1 |

g —sa
Slgl—l—Clgz 0,=C,f—s,f,+a
0 191 1392
Piore = 0 , 0, =scaf +ccof,—so f,—d,sa,
"13 0, =58, f +¢,sa,f, +ca,f,+d,ca,

r=x’+y’+z°=¢;+9; +9,

=f°+f +f +a’+d;+2d,f,+2a,(c,f,—s,f,)




r =(k,c, +k,s,)2a, +K,, Dependence on @y has been eliminated

z = (ks, —k,C,)set, +K,, Dependence on '@, takes a sinple form
\/ K, = f,,
93 ¢
K, =1,
K, = f2+f +f+a’+d; +2d,f,
K, = T,ca,+d,Cca,.
Three Cases:

a=0-—-r=Kk,
Sa, =0 z=k,

Otherwise, eliminate S, and |C,

0 Gaven
We can solve for ' 6,,6,,0,.= can compute , R‘ : T
6=0
4 _ 0p-1 0
6R9—0_4R 9—06R
4= 4=




Kinematic Decoupling

m Decouple the inverse kinematics problem into
two simpler problems: inverse position
kinematics, inverse orientation kinematics

= First finding the position of the intersection of
the wrist axes, then finding the orientation of
the wrist




Kinematic Decoupling

P. A function of only the first three joint variables °p(4,...,6,) = P,.

°R(6,,...,6,) =R

des

The direction of Zg w.r.t. {0}

P.=P+dR,|0

des™ ¢

Rdes :gR;R_);)RzgR_l I:zdes ::(%)RT R

des







Repeatability and Accuracy

= Repeatability: how precisely a manipulator can
return to a taught point?

= Accuracy: the precision with which a computed
point can be attained.




