Inverse Manipulator Kinematics

December 21, 2009

Inverse Kinematics

- Given the desired position and orientation of the tool relative to the station, how do we compute the set of joint angles which will achieve this desired result?
- **First, frame transformations are performed to** find the wrist frame, { *W* }, relative to the base frame, {B}, and then the inverse kinematics are used to solve for the joint angles.

Solvability

Given the numerical value of $\int_{N}^{0}T$ we attempt to find values of $\theta_1, \theta_2, \cdots, \theta_n$.

The PUMA 560: Given $\int_{6}^{0}T$ as 16 numerical values, solve (3.14) for 6 joint angles, $\theta_1, \theta_2, \cdots, \theta_6$. 12 equations and 6 unknowns 6 equations and 6 unknowns ^q *Exponential*, *trigonometric functions Not algebraic*, (*nonlinear, transcendental equations*)

Solvability

$$
{}_{6}^{0}T = {}_{1}^{0}T(\theta_{1}){}_{2}^{1}T(\theta_{2}){}_{3}^{2}T(\theta_{3}){}_{4}^{3}T(\theta_{4}){}_{5}^{4}T(\theta_{5}){}_{6}^{5}T(\theta_{6}) = \begin{bmatrix} r_{11} & r_{12} & r_{13} & p_{x} \\ r_{21} & r_{22} & r_{23} & p_{y} \\ r_{31} & r_{32} & r_{33} & p_{z} \\ 0 & 0 & 0 & 1 \end{bmatrix}
$$

\n
$$
r_{11} = c_{1}[c_{23}(c_{4}c_{5}c_{6} - s_{4}s_{5}) - s_{23}s_{5}c_{5}] + s_{1}(s_{4}c_{5}c_{6} + c_{4}s_{6}),
$$

\n
$$
r_{21} = \cdots
$$

\n
$$
\vdots
$$

\n
$$
p_{y} = \cdots
$$

\n
$$
p_{z} = -a_{3}s_{23} - a_{2}s_{2} - d_{4}c_{23}.
$$

\n
$$
p_{z} = -a_{3}s_{23} - a_{2}s_{2} - d_{4}c_{23}.
$$

\n
$$
r_{3} = Position Matrix
$$

\n
$$
p_{4} = -a_{4}s_{4s_{3}} - a_{4}c_{3s_{4}}
$$

\n
$$
p_{5} = -a_{5}c_{4s_{4}} - a_{4}c_{3s_{5}}.
$$

\n
$$
r_{4} = c_{4}c_{5s_{4}} - s_{4}c_{5s_{5}}.
$$

Existence of solutions

In the forward kinematics problem, each set of input joint parameters gave a unique output pose. However, in the inverse kinematics, a given pose may be satisfied with several different sets of input angles.

> N^{T} must be in the workspace of the manipulator. 0

Workspace

- The volume of the space which the end-effector of the manipulator can reach.
- *Dextrous* workspace (DW): reachable with all orientations
- *Reachable* workspace (*RW*): reachable in at least one orientation

How to maximize the dexterous workspace? DW is a subset of R W

Two-link manipulator link

Three-link manipulator: Multiple link solutions

Self-motion - The robot can be moved without moving the end-effector from the goal

> *A second possible configuration in which the same end-effector position and orientation are achieved.*

Possible Problems

- Multiple solutions
- **Infinitely many solutions**
- No solutions
- No closed-form (analytical) solutions

This only works if the number of kinematic constraints is only number the same as the number of degrees-of-freedom of the robot.

Multiple solutions

- We need to able to calculate all the possible solutions.
- The system has to be able to choose one.
- **The closest solution: the solution which** minimizes the amount that each joint is required to move.

The closest solution in joint space

 Weights might be applied: moving small joints (*wrist*) instead of moving large joints (*Shoulder/ Elbo w*)

The presence of obstacles

Two possible solutions

Eight solutions of the PUMA 560

Number of solutions vs. nonzero *a i*

A 6R ip ^l ^t Li ^k ^l th manip u la

The more the link length parameters are nonzero, the bigger the maximum number of solutions!

Method of solution

Closed form solutions: based on analytic expressions or on the solution of a polynomial of degree 4 or less Algebraic/geometric

Numerical solutions: all systems with revolute and prismatic joints having ^a total of 6 degrees of freedom in a single chain are solvable. *Much slower*

Closed-form solutions form

- П Analytical solution to system of equations
- Can be solved in a fixed number of operations (therefore, computationally fast/known speed)
- \blacksquare Results in all possible solutions to the manipulator kinematics
- Often difficult or impossible to find
- e
Ma Most desirable for real-time control
- e
P Most desirable overall

6R Manipulator: Three neighboring joint axes intersect at a point.

 $\frac{1}{N}T(\theta_1,\theta_2,\ldots,\theta_N)$ = $\frac{1}{N}T$ *A* given desired pose of the tool (numbers!)

A function of the joint variables (equation!): found by solving the forward kinematics

Numerical solutions

- п Results in a numerical, iterative solution to system of equations, for example Newton/Raphson techniques
- п Unknown number of operations to solve
- П Only returns a single solution
- п Accuracy is dictated by user
- П Because of these reasons, this is much less desirable than a closed-form solution
- п Can be applied to all robots.

Algebraic solution (Fig. 4.7)

$$
{}_{0}^{0}T = \begin{bmatrix} c\theta_{1} & -s\theta_{1} & 0 & a_{0} \\ s\theta_{1}c\alpha_{0} & c\theta_{1}c\alpha_{0} & -s\alpha_{0} & -s\alpha_{0}d_{1} \\ s\theta_{1}s\alpha_{0} & c\theta_{1}s\alpha_{0} & c\alpha_{0} & c\alpha_{0}d_{1} \\ 0 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} c\theta_{1} & -s\theta_{1} & 0 & 0 \\ s\theta_{1} & c\theta_{1} & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}
$$

$$
{}_{2}^{1}T = \begin{bmatrix} c\theta_{2} & -s\theta_{2} & 0 & L_{1} \\ s\theta_{2} & c\theta_{2} & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \qquad {}_{3}^{2}T = \begin{bmatrix} c\theta_{3} & -s\theta_{3} & 0 & L_{2} \\ s\theta_{3} & c\theta_{3} & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}
$$

$$
{}_{W}^{B}T = {}_{3}^{0}T = {}_{1}^{0}T \, {}_{2}^{1}T \, {}_{3}^{2}T
$$

$$
\begin{aligned}\n\,^B T &= \begin{bmatrix}\nc_{123} & -s_{123} & 0.0 & l_1 c_1 + l_2 c_{12} \\
s_{123} & c_{123} & 0.0 & l_1 s_1 + l_2 s_{12} \\
0.0 & 0.0 & 1.0 & 0.0 \\
0 & 0 & 0 & 1\n\end{bmatrix} \\
\frac{F}{\sqrt{n}} T &= \begin{bmatrix}\nc_{\phi} & -s_{\phi} & 0.0 & x \\
s_{\phi} & c_{\phi} & 0.0 & y \\
0.0 & 0.0 & 1.0 & 0.0 \\
0 & 0 & 0 & 1\n\end{bmatrix} \\
\frac{F}{\sqrt{n}} T &= \begin{bmatrix}\nc_{\phi} & -s_{\phi} & 0.0 & y \\
s_{\phi} & c_{\phi} & 0.0 & y \\
0.0 & 0 & 0 & 1\n\end{bmatrix} \\
\frac{F}{\sqrt{n}} T &= \begin{bmatrix}\nc_{\phi} & -s_{\phi} & 0.0 & 0 \\
s_{\phi} & 0.0 & 0 & 0 \\
0 & 0 & 0 & 1\n\end{bmatrix} \\
\frac{F}{\sqrt{n}} T &= \begin{bmatrix}\nc_{\phi} & -s_{\phi} & 0.0 & 0 \\
s_{\phi} & 0.0 & 0 & 0 \\
0 & 0 & 0 & 1\n\end{bmatrix} \\
\frac{F}{\sqrt{n}} T &= \begin{bmatrix}\nc_{\phi} & -s_{\phi} & 0.0 & 0 \\
s_{\phi} & 0.0 & 0 & 0 \\
0 & 0 & 0 & 1\n\end{bmatrix} \\
\frac{F}{\sqrt{n}} T &= \begin{bmatrix}\nc_{\phi} & -s_{\phi} & 0.0 & 0 \\
s_{\phi} & 0.0 & 0 & 0 \\
0 & 0 & 0 & 1\n\end{bmatrix} \\
\frac{F}{\sqrt{n}} T &=
$$

$$
c_{\phi} = c_{123}
$$
\n
$$
s_{\phi} = s_{123}
$$
\n
$$
A \text{ set of 4 nonlinear equation that must be solved for } \theta_1, \theta_2, \theta_3
$$
\n
$$
x = l_1 c_1 + l_2 c_{12}
$$
\n
$$
y = l_1 s_1 + l_2 s_{12}
$$
\n
$$
x^2 + y^2 = l_1^2 + l_2^2 + 2l_1 l_2 c_2
$$
\n
$$
\Rightarrow c_2 = \frac{x^2 + y^2 - l_1^2 - l_2^2}{2l_1 l_2}
$$
\n
$$
\Rightarrow s_2 = \pm \sqrt{1 - c_2^2} \Rightarrow \theta_2 = A \tan 2(s_2, c_2).
$$
\nElbow-up or elbow-down

$$
\overbrace{x = k_1 c_1 - k_2 s_1, y = k_1 s_1 + k_2 c_1}_{k_1 = l_1 + l_2 c_2, k_2 = l_2 s_2}^{x = k_1 s_1 + k_2 s_2}
$$

$$
r = \sqrt{k_1^2 + k_2^2}, \quad \gamma = A \tan 2(k_2, k_1),
$$

\n
$$
k_1 = r \cos \gamma, \quad k_2 = r \sin \gamma.
$$

x

 $\overline{}$

$$
\frac{x}{r} = \cos \gamma \cos \theta_1 - \sin \gamma \sin \theta_1 = \cos(\gamma + \theta_1),
$$

$$
\frac{y}{r} = \cos \gamma \sin \theta_1 + \sin \gamma \cos \theta_1 = \sin(\gamma + \theta_1).
$$

$$
\gamma + \theta_1 = A \tan 2(\frac{y}{r}, \frac{x}{r}) = A \tan 2(y, x),
$$

$$
\theta_1 = A \tan 2(y, x) - A \tan 2(k_2, k_1).
$$

$$
\theta_1 + \theta_2 + \theta_3 = A \tan 2(s_\phi, c_\phi) = \phi.
$$

Some Inverse-Kinematic Formulas

The single equation

$$
\sin \theta = a \tag{1}
$$

has two solutions, given by

$$
\theta = \pm A \tan 2\left(\sqrt{1 - a^2}, a\right)
$$

Likewise, given $\cos\theta = b$, $\left(b,\pm\sqrt{1-b^{2}}\right)$ (2) there are two solutions: $\theta = A \tan 2(b, \pm \sqrt{1-b^2})$ If both (1) and (2) are given, then there is a unique solution given by

$$
\theta = A \tan 2(a, b).
$$

The transcendental equation

$$
a\cos\theta + b\sin\theta = 0
$$

has two solutions

$$
\theta = A \tan 2(a, -b)
$$

and

$$
\theta = A \tan 2(-a, b)
$$

The equation

$$
a\cos\theta + b\sin\theta = c
$$

is also solved by

$$
\theta = A \tan 2(b, a) \pm A \tan 2\left(\sqrt{a^2 + b^2 - c^2}, c\right)
$$

The set of equations q

 $a\cos\theta - b\sin\theta = c$,

 $a\sin\theta + b\cos\theta = d$

also is solved by $\theta = A \tan 2(ad - bc, ac + bd)$.

A Geometric Approach

- For most manipulators, many of the a_i , d_i are zero, the $|\alpha_i|$ are 0 or $\pm \pi/2,$ etc.
- \blacksquare In these cases, a geometric approach is the simplest and most natural.
- The general idea is to decompose the spatial geometry of the arm into several plane-geometry problems: solving simple trigonometry problems

Geometric Solution: 3-link Planar

Pythagorean (*or Pythagoras'*) *theorem*

Geometric Solution: 3-link Planar

Elbow manipulator

Elbow Manipulator: Singular configuration

The wrist center $\boxed{P_c}$ intersects $\boxed{z_0}$; Hence, any value of $\bm{\theta}_1$ leaves P_c fixed. There are thus infinitely fixed. There are thus infinitely
many solutions for $\begin{array}{|c|c|}\hline \theta_1\end{array}$ when $\begin{array}{|c|c|}\hline P_c\end{array}$ intersects <mark>Z₀.</mark>

Elbow manipulator: Shoulder offset

There will, in general, be only two solutions for θ_1 .

These correspond to the so-called left arm and ri ght arm confi gurations.

$$
\theta_{\rm l} = \phi - \alpha
$$

$$
\phi = A \tan 2(y_c, x_c)
$$

\n
$$
\alpha = A \tan 2\left(d, \sqrt{r^2 - d^2}\right)
$$

\n
$$
= A \tan 2\left(d, \sqrt{x_c^2 + y_c^2 - d^2}\right)
$$

$$
\theta_1 = A \tan 2(y_c, x_c) + A \tan 2(-d, -\sqrt{r^2 - d^2})
$$

\n
$$
\theta_1 = \alpha + \beta
$$

\n
$$
\alpha = A \tan 2(y_c, x_c)
$$

\n
$$
\beta = \gamma + \pi
$$

\n
$$
\gamma = A \tan 2(d, \sqrt{r^2 - d^2})
$$

Homework #10 (1 pt.) Due Jan. 13

Find the angles θ_2, θ_3 for the elbow manipulator given θ_1 .

Homework #11 (1 pt.) Due Jan. 13

Solve the inverse position kinematics for a 3 DOF spherical manipulator.

Algebraic solution by reduction to polynomial

Tangent of the half angle substitution

$$
u = \tan \frac{\theta}{2},
$$

\n
$$
\cos \theta = \frac{1 - u^2}{1 + u^2},
$$

\n
$$
\sin \theta = \frac{2u}{1 + u^2}.
$$

Example 4.3

 $a\cos\theta + b\sin\theta = c$

$$
a(1 - u2) + 2bu = c(1 + u2)
$$

(a + c)u² - 2bu + (c - a) = 0

$$
u = \frac{b \pm \sqrt{b^{2} - a^{2} - c^{2}}}{a + c}
$$

$$
\theta = 2 \tan^{-1} \left(\frac{b \pm \sqrt{b^{2} - a^{2} - c^{2}}}{a + c} \right).
$$

Sine and Cosine of a Sum/Difference

 $cos(A+B)$ $=$ cos A cos B – sin A sin B $sin(A+B)$ $=$ sin $A \cos B + \cos A \sin B$

 $cos(A-B)$ $=$ cos A cos B + sin A sin B $sin(A-B)$ $=$ sin $A \cos B - \cos A \sin B$

 $A = \cos^2 A - \sin^2 A = 2\cos^2 A - 1 = 1 - 2\sin^2 A$ $\sin 2A = 2 \sin A \cos A$ $\cos 2A = \cos^2 A - \sin^2 A = 2\cos^2 A - 1 = 1 - 2\sin^2 A$

Tangent of a Double Angle

$$
\tan(2A) = \frac{2\tan A}{1-\tan^2 A}
$$

$$
\tan(2A) = \frac{\sin(2A)}{\cos(2A)} = \frac{2\sin A \cos A}{\cos^2 A - \sin^2 A}
$$

Divide both parts of the fraction by cos² A

$$
an(A \pm B) = \frac{\tan A \pm \tan B}{1 \mp \tan A \tan B}
$$

Sine and Cosine of a Half Angle

 $\sin \theta = 2 \sin(\theta/2) \cos(\theta/2)$ $\cos\theta = \cos^2(\theta/2) - \sin^2(\theta/2) = 2\cos^2(\theta/2) - 1$ $\theta = \cos^2(\theta/2) - \sin^2(\theta/2) = 2\cos^2(\theta/2) 1-\cos\theta$ $(2\cos\theta$ $=1-2\sin^2(\theta/2)$ 2 $\sin(\theta/2) = \pm \sqrt{1 - \frac{20}{\epsilon^2}}$ 2 $\sin^2(\theta/2) = \frac{1-\cos\theta}{\cos\theta} \rightarrow \sin(\theta)$ \rightarrow sin(θ /2) = \pm ₁ $\frac{1}{\sqrt{2}}$ = ¹ 2 $\cos(\theta/2) = \pm \sqrt{\frac{1 + \cos(\theta/2)}{n}}$ $\theta/2$) = \pm , $\frac{|1+\cos\theta|}{\cos\theta}$ \rightarrow cos(θ /2) = \pm ₁ $\left| \frac{1+}{1+} \right|$

Tangent of a Half Angle

$$
\tan(\theta/2) = \frac{\sin(\theta/2)}{\cos(\theta/2)} = \pm \sqrt{\frac{1-\cos\theta}{1+\cos\theta}}
$$

$$
\tan(\theta/2) = \sqrt{\frac{(1-\cos\theta)(1+\cos\theta)}{(1+\cos\theta)^2}} = \frac{\sqrt{1-\cos^2\theta}}{1+\cos\theta}
$$

$$
= \frac{\sqrt{\sin^2\theta}}{1+\cos\theta} = \frac{\sin\theta}{1+\cos\theta} = \frac{1-\cos\theta}{\sin\theta}
$$

 $\sin \theta = -\sin(-\theta) = -\cos(\theta + 90^\circ) = \cos(\theta - 90^\circ)$ $\cos \theta = \cos(-\theta) = \sin(\theta + 90^\circ) = -\sin(\theta - 90^\circ)$ $=\cos(-\theta) = \sin(\theta + 90^\circ) = -\sin(\theta - 90^\circ)$

 $tan(90^\circ + \theta) = -cot \theta$ $\tan(-\theta) = -\tan\theta$ − ⁼ [−] $tan(\theta - 180^\circ) = tan \theta$

Pieper ^s s' solution when three axes intersect (*e.g.*, **spherical wrists)**

- A completely general robot with six degrees of freedom does not have a closed form solution.
- **The technique involves decoupling the position** and orientation problems. The position problem positions the wrist center, while the orientation problem completes the desired orientation.

When the last three axes intersect, the origins of link frames $\{4\}$, $\{5\}$, and {6} are all located at this point of intersection.

$$
{}^{0}P_{4ORG} = {}^{0}_{1}T\, {}^{1}_{2}T\, {}^{3}P_{4ORG} = \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix} = {}^{0}_{1}T\, {}^{1}_{2}T\, {}^{2}_{3}T \begin{bmatrix} a_{3} \\ -d_{4}S\alpha_{3} \\ d_{4}C\alpha_{3} \\ 1 \end{bmatrix} = {}^{0}_{1}T\, {}^{1}_{2}T \begin{bmatrix} f_{1}(\theta_{3}) \\ f_{2}(\theta_{3}) \\ f_{3}(\theta_{3}) \\ 1 \end{bmatrix}
$$

$$
{}^{i-1}_{i}T = \begin{bmatrix} c\theta_{i} & -s\theta_{i} & 0 & a_{i-1} \\ s\theta_{i}c\alpha_{i-1} & c\theta_{i}c\alpha_{i-1} & -s\alpha_{i-1} & -s\alpha_{i-1}d_{i} \\ s\theta_{i}s\alpha_{i-1} & c\theta_{i}s\alpha_{i-1} & c\alpha_{i-1} & c\alpha_{i-1}d_{i} \\ 0 & 0 & 0 & 1 \end{bmatrix}
$$

$$
\begin{bmatrix} f_1 \\ f_2 \\ f_3 \\ 1 \end{bmatrix} = \frac{2}{3}T \begin{bmatrix} a_3 \\ -d_4 s \alpha_3 \\ d_4 c \alpha_3 \\ 1 \end{bmatrix} = \begin{bmatrix} a_3 c_3 + d_4 s \alpha_3 s_3 + a_2 \\ a_3 c \alpha_2 s_3 - d_4 s \alpha_3 c \alpha_2 c_3 - d_4 s \alpha_2 c \alpha_3 - d_3 s \alpha_2 \\ a_3 s \alpha_2 s_3 - d_4 s \alpha_3 s \alpha_2 c_3 + d_4 c \alpha_2 c \alpha_3 + d_3 c \alpha_2 \\ 1 \end{bmatrix}
$$

$$
{}^{0}P_{4ORG} = \begin{bmatrix} c_1g_1 - s_1g_2 \\ s_1g_1 + c_1g_2 \\ g_3 \\ 1 \end{bmatrix}, \quad g_2 = s_2c\alpha_1f_1 + c_2c\alpha_1f_2 - s\alpha_1f_3 - d_2s\alpha_1 \\ g_3 = s_2s\alpha_1f_1 + c_2s\alpha_1f_2 + c\alpha_1f_3 + d_2c\alpha_1
$$

$$
r = x2 + y2 + z2 = g12 + g22 + g32
$$

= f₁² + f₂² + f₃² + a₁² + a₂² + 2d₂f₃ + 2a₁(c₂f₁ - s₂f₂)

$$
r = (k_1c_2 + k_2s_2)2a_1 + k_3,
$$

\n
$$
z = (k_1s_2 - k_2c_2) s\alpha_1 + k_4,
$$

\n
$$
k_1 = f_1,
$$

\n
$$
k_2 = -f_2,
$$

\n
$$
k_3 = f_1^2 + f_2^2 + f_3^2 + a_1^2 + d_2^2 + 2d_2f_3,
$$

\n
$$
k_4 = f_3c\alpha_1 + d_2c\alpha_1.
$$

\nThree Cases:
\n
$$
a_1 = 0 \rightarrow r = k_3
$$

\n
$$
s\alpha_1 = 0 \rightarrow z = k_4
$$

\nOtherwise, eliminate s_2 and c_2
\nWe can solve for $\theta_1, \theta_2, \theta_3 \Rightarrow$ can compute $\frac{^0R|_{\theta=0}}{^4R|_{\theta=0}}$.
\n
$$
\frac{^4R|_{\theta=0}}{^6R} = \frac{^0R^{-1}|_{\theta=0}}{^6R}
$$

Kinematic Decoupling

- **Decouple the inverse kinematics problem into** two simpler problems: inverse position kinematics , inverse orientation kinematics
- **First finding the position of the intersection of** the wrist axes, then finding the orientation of the wrist

Kinematic Decoupling

 P_c A function of only the first three joint variables ${}_{6}^{0}P(\theta_1, \ldots, \theta_6)$

$$
\int_{6}^{9} P(\theta_{1},...,\theta_{6}) = P_{des}
$$
\n
$$
\frac{^{0}R(\theta_{1},...,\theta_{6}) = R_{des}}{The direction of z_{6} w.r.t. \{0\}}
$$
\n
$$
P_{des} = {}_{c}^{0}P + d_{7}R_{des} \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}
$$
\n
$$
{}_{c}^{0}P = P_{des} - d_{7}R_{des} \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}
$$

$$
R_{7y} - d_7 r_{23} \Big|, \quad R_{des} = \frac{0}{3} R^3 R \longrightarrow \frac{3}{7} R = \frac{0}{3} R^{-1} R_{des} = \frac{0}{3} R^T R_{des}
$$

Example: PUMA 560 (Refer to the textbook)

Repeatability and Accuracy

- Repeatability: how precisely a manipulator can return to a taught point?
- \blacksquare Accuracy: the precision with which a computed point can be attained.