Manipulator Kinematics

December 16, 2009

Kinematics

- the science of motion that treats the subject (motion) without regard to the forces that cause it.
- the position, velocity, acceleration, and all higher order derivatives of the position variables w.r.t. time or any other variables

Kinematics of manipulators: static (Chapter 3)

- How the locations of the frames change as the mechanism articulates?
- A method to compute the position and orientation of the manipulator's end-effector relative to the base of the manipulator as a function of the joint variables

A Manipulator

- May be though of as a set of bodies (*links*) connected in a chain by *joints*.
- Without loss of generality, we will consider only manipulators which have joints with a single degree of freedom.
- A joint having *n* degrees of freedom can be modeled as *n* joints of one degree of freedom connected with *n*-1 links of zero length.

Revolute (Hinge) Joint

http://opende.sourceforge.net/wiki/index.php/Manual_(Joint_Types_and_Functions)

Hinge-2 Joint

Two hinges connected in series, with different hinge axes

Prismatic (Slider) Joint

Cylindrical (Piston) Joint

Rotation around the translation axis is possible!

Quiz #3–*Everyone please answer now?* What are the degrees of freedom of a screw joint?

Universal Joint

Spherical (Ball-and-Socket) Joint

Examples: Hip, Shoulder

Simplified Human Arm Kinematics

Homework #8 (1 pt.) – Due Jan. 13

Obtain a kinematic model of the lower limb. (Hint: 3 DOF hip joint, 1 DOF knee joint, 2 DOF ankle joint)

Degrees of Freedom (DOF)

The degrees of freedom of a rigid body is defined as the number of <u>independent</u> movements it has.

DOF of a Rigid Body

In a plane

In space

Gruebler's Equation

- Degrees of freedom of planar mechanism
- F = 3(n-1) 2l h
- F: degrees of freedom
- n: number of links
- *l*: number of lower pairs (one DOF)
- h: number of higher pairs (two DOF)

Lower pair (Surface-contact)

The connection between a pair of bodies when the relative motion is characterized by two surfaces sliding over one another

The six possible lower pair joints

Revolute

Prismatic

Cylindrical

Planar

Higher pair (Point-, line-, curvecontact)

A higher pair joint is one which contact occurs only at isolated points or along a line segments

Higher Pair Examples

Example

Kutzbach Criterion

- Calculates the mobility (the number of degrees of freedom of a mechanism)
- The mobility is the number of input parameters (usually pair variables) that must be independently controlled to bring the device into a particular position.
- In order to control a mechanism, <u>the number of</u> <u>independent input motions must equal the number of</u> <u>degrees of freedom of the mechanism</u>.

CMU Underactuated Manipulators

Less actuators than degrees of freedom

2-link underactuated manipulator with one passive joint

3-link underactuated manipulator with two passive joints

Redundant Manipulator

- Called *kinematically redundant* if the manipulator possesses more degrees of freedom than is necessary for performing a specified task.
- In the three-dimensional space, a manipulator with *seven or more* joints is redundant since six degrees of freedom are sufficient to position and orient the end-effector in any desired configuration.

Link description

- The links are numbered starting from the immobile base of the arm, which is link 0.
- The first moving body is link 1, and so on, out to the free end of the arm, which is link n.
- In order to position an end-effector generally in
 3-D space, a minimum of six joints is required.

Defining the relationship between two axes in space

- Link length
- Link twist

A link is considered only as a rigid body that defines the relationship between two neighboring joint axes of a manipulator.

Flexible link (Video)

Long Reach Space Manipulators

Lightweight, flexible, limited speed and dexterity

Link length

- Measured along a line which is mutually perpendicular to both axes.
- The mutually perpendicular always exists and is unique except when both axes are parallel.

Link twist

Project both axes *i*–1 and *i* onto the plane whose normal is the mutually perpendicular line, and measure the angle between them

Right-hand sense

Link length and link twist

Example 3.1: length and twist

Link connection

 Link offset: the distance along the common axis from one link to the next

Link angle: the amount of rotation about the common axis

Link offset and joint angle Neighboring links

Denavit-Hartenberg Notation

Any robot can be described kinematically by giving the values of four quantities for each link.
 One joint variable, three fixed link parameters

Affixing frames to links

Intermediate links in the chain

 \hat{Z}_i is coincident with the joint axis *i*.

The origin of frame $\{i\}$ is located where the a_i perpendicular intersects the joint i axis.

 \hat{X}_i points along a_i in the direction from joint i to i+1. In the case of $a_i = 0$, \hat{X}_i is normal to the plane of \hat{Z}_i and \hat{Z}_{i+1} .

First and last links in the chain

Frame {0}, the base of the robot is arbitrary.

It always simplifies matters to choose \hat{Z}_0 along axis 1 and to locate frame {0} so that it coincides with frame {1} when joint variable 1 is zero.

For joint n revolute, the direction of \hat{X}_N is chosen so that it aligns with \hat{X}_{N-1} when $\theta_n = 0.0$, and the origin of frame $\{N\}$ is chosen so that $d_n = 0.0$. Assign link frames so as to cause as many link parameters as possible to become zero!

The link parameters in terms of the link frames

$$a_{i} = \text{ the distance from } \hat{Z}_{i} \text{ to } \hat{Z}_{i+1} \text{ measured along } \hat{X}_{i}$$

$$\alpha_{i} = \text{ the angle between } \hat{Z}_{i} \text{ and } \hat{Z}_{i+1} \text{ measured about } \hat{X}_{i}$$

$$d_{i} = \text{ the distance from } \hat{X}_{i-1} \text{ to } \hat{X}_{i} \text{ measured along } \hat{Z}_{i}$$

$$\theta_{i} = \text{ the angle between } \hat{X}_{i-1} \text{ to } \hat{X}_{i} \text{ measured about } \hat{Z}_{i}$$

$$a_{i} > 0$$

$$\alpha_{i}, d_{i}, \theta_{i} : \text{ signed quantities}$$

Example 3.3 (RRR): link-frame assignments

Example 3.3: link parameters

Example 3.4 (RPR)

Example 3.4: link frame assignments

Example 3.5: non-planar manipulator

The nonuniqueness of frame assignment and of the D-H parameters

Axes 1 and 2 intersect. Axes 2 and 3 are parallel.

Example 3.5: link frame assignments

Example 3.5: link frame assignments

Link transformations

Transform that defines frame $\{i\}$ relative to the frame $\{i-1\}$

 ${}^{i-1}P = {}^{i-1}_{R}T {}^{R}_{Q}T {}^{Q}_{P}T {}^{P}_{i}T {}^{i}P$ ${}^{i-1}_{,T} = R_{X}(\alpha_{i-1})D_{X}(a_{i-1})R_{Z}(\theta_{i})D_{Z}(d_{i})$ = $Screw_{X}(a_{i-1}, \alpha_{i-1})Screw_{Z}(d_{i}, \theta_{i})$

$${}^{i-1}_{i}T = egin{bmatrix} c \, heta_i & -s \, heta_i & 0 & a_{i-1} \ s \, heta_i c \, lpha_{i-1} & c \, heta_i c \, lpha_{i-1} & -s \, lpha_{i-1} & -s \, lpha_{i-1} \ s \, heta_i s \, lpha_{i-1} & c \, heta_i s \, lpha_{i-1} & c \, lpha_{i-1} & c \, lpha_{i-1} \ 0 & 0 & 1 \ \end{bmatrix}.$$

Example 3.6

$${}^{0}_{1}T = \begin{bmatrix} c\theta_{1} & -s\theta_{1} & 0 & 0\\ s\theta_{1} & c\theta_{1} & 0 & 0\\ 0 & 0 & 1 & 0\\ 0 & 0 & 0 & 1 \end{bmatrix},$$
$${}^{1}_{2}T = \begin{bmatrix} 1 & 0 & 0 & 0\\ 0 & 0 & -1 & -d_{2}\\ 0 & 1 & 0 & 0\\ 0 & 0 & 0 & 1 \end{bmatrix},$$
$${}^{2}_{3}T = \begin{bmatrix} c\theta_{3} & -s\theta_{3} & 0 & 0\\ s\theta_{3} & c\theta_{3} & 0 & 0\\ 0 & 0 & 1 & l_{2}\\ 0 & 0 & 0 & 1 \end{bmatrix}.$$

Concatenating link transformations

Find the single transformation that relates frame $\{N\}$ to frame $\{0\}$

$${}^0_N T = {}^0_1 T \qquad {}^1_2 T \qquad {}^2_3 T \qquad \cdots \qquad {}^{N-1}_N T.$$

Mapping between kinematic descriptions

- Joint space: the spaces of all joint vectors is referred
- Cartesian space: position is measured along orthogonal axes; orientation is measured according to any of the conventions in Ch. 2
- Actuator space: the space of all actuator vectors is referred

Example (6R): The PUMA 560

i	$lpha_{i-1}$	a_{i-1}	d_i	$\theta_{_i}$
1	0	0	0	$\theta_{\!1}$
2	-90°	0	0	θ_2
3	0	a_2	d_3	θ_3
4	-90°	a_3	d_4	θ_4
5	90 °	0	0	θ_5
6	-90°	0	0	$\theta_{_6}$

Example: Yasukawa Motoman L-3 (Refer to the textbook.)

Lab #1 (5 pt.) – Due Feb. 10

Simulate the kinematics of a manipulator (PUMA 560, PA-10) with Open Dynamics Engine (ODE).

http://opende.sourceforge.net/wiki/index.php/Main_Page ODE Wiki Book: Robot Simulation - Robot Programming with ODE (in Japanese)

RRC K-1207i (Video)

Homework #9 (1 pt.) – Due Jan. 13 Find the forward kinematics using homogeneous matrices.

K-1207i Dexterous Manipulator 4.00 50.0" Reach from Shoulder Pitch Center to Tool Mounting Plate 7.00 35 LB. Payload at Load Point 4.15ø-4.50 Ø -4.50ø **→** 4.00 → 2.325 -8.000-21.50 21.50 47.500 13.64 -6.25ø 20.00 ÛĴ -6.75 ø 6.75₫-3.375 -8.00ø Robotics Research Corporation Copyright @1996

Standard Frames

Frames with Standard Names

- The base frame, {B}
- The station frame, {S}
- The wrist frame, {W}
- The tool frame, $\{T\}$
- The goal frame, {G}

Example of the assignment of standard frames

Where is the tool?

How to calculate the position and orientation of the tool w.r.t. a convenient coordinate system?

Quiz #4 – Due Dec. 21

3.3, 3.4, 3.8, 3.17, 3.20