Spatial Descriptions and Transformations

December 14, 2006

Representing positions and orientations

- Define coordinate systems and develop conventions for representation
- A universe coordinate system

Coordinate System

A system for specifying points using coordinates measured in some specified way. Depending on the type of problem under consideration, coordinate systems possessing special properties may allow particularly simple solution.

Cartesian (or rectangular) Coordinates

■ The simplest coordinate system consisting of coordinate axes oriented perpendicularly to each other.

Cylindrical Coordinates

$$r = \sqrt{x^2 + y^2}, \quad r \in [0, \infty)$$

$$\theta = \tan^{-1}\left(\frac{y}{x}\right), \ \theta \in [0,2\pi)$$

$$z = z, \quad z \in (-\infty, \infty)$$

$$x = r \cos \theta$$

$$y = r \sin \theta$$

$$z = z$$

Spherical Coordinates

$$r = \sqrt{x^2 + y^2 + z^2}, \quad r \in [0, \infty)$$

$$\theta = \tan^{-1}\left(\frac{y}{x}\right), \ \theta \in [0,2\pi)$$

$$\phi = \cos^{-1}\left(\frac{z}{r}\right), \quad \phi \in [0, \pi)$$

$$x = r \sin \phi \cos \theta$$

$$y = r \sin \phi \sin \theta$$

$$z = r \cos \phi$$

Description of a position

Location

- A 3 x 1 position vector
- A leading superscript indicates the coordinate system

$$^{A}P = \begin{bmatrix} p_x \\ p_y \\ p_z \end{bmatrix}$$

Description of an orientation

Positions of points are described with vectors and orientations of bodies are described with an attached coordinate system.

Description of an orientation

- In order to describe the orientation of a body, we will attach a coordinate system to the body and then give a description of this coordinate system relative to the reference system.
- One way to describe the body-attached coordinate system, $\{B\}$, is to write the unit vectors of its three principal axes in terms of the coordinate system $\{A\}$. $A\hat{X}_{R}, A\hat{Y}_{R}, A\hat{Z}_{R}$

Rotation matrix

$${}_{B}^{A}R = \begin{bmatrix} {}^{A}\hat{X}_{B} & {}^{A}\hat{Y}_{B} & {}^{A}\hat{Z}_{B} \end{bmatrix} = \begin{bmatrix} r_{11} & r_{12} & r_{13} \\ r_{21} & r_{22} & r_{23} \\ r_{31} & r_{32} & r_{33} \end{bmatrix}.$$

The orientation of a body is represented with a matrix.

Note that the components of any vector are simply the *projections* of that vector onto the unit directions of its reference frame.

$$_{B}^{A}R = \begin{bmatrix} \hat{X}_{B} \cdot \hat{X}_{A} & \hat{Y}_{B} \cdot \hat{X}_{A} & \hat{Z}_{B} \cdot \hat{X}_{A} \\ \hat{X}_{B} \cdot \hat{Y}_{A} & \hat{Y}_{B} \cdot \hat{Y}_{A} & \hat{Z}_{B} \cdot \hat{Y}_{A} \\ \hat{X}_{B} \cdot \hat{Z}_{A} & \hat{Y}_{B} \cdot \hat{Z}_{A} & \hat{Z}_{B} \cdot \hat{Z}_{A} \end{bmatrix}.$$

Direction cosines

$${}_{B}^{A}R = \begin{bmatrix} \hat{X}_{B} \cdot \hat{X}_{A} & \hat{Y}_{B} \cdot \hat{X}_{A} & \hat{Z}_{B} \cdot \hat{X}_{A} \\ \hat{X}_{B} \cdot \hat{Y}_{A} & \hat{Y}_{B} \cdot \hat{Y}_{A} & \hat{Z}_{B} \cdot \hat{Y}_{A} \\ \hat{X}_{B} \cdot \hat{Z}_{A} & \hat{Y}_{B} \cdot \hat{Z}_{A} & \hat{Z}_{B} \cdot \hat{Z}_{A} \end{bmatrix}.$$

$${}_{A}^{B}R = \begin{bmatrix} \hat{X}_{A} \cdot \hat{X}_{B} & \hat{Y}_{A} \cdot \hat{X}_{B} & \hat{Z}_{A} \cdot \hat{X}_{B} \\ \hat{X}_{A} \cdot \hat{Y}_{B} & \hat{Y}_{A} \cdot \hat{Y}_{B} & \hat{Z}_{A} \cdot \hat{Y}_{B} \\ \hat{X}_{A} \cdot \hat{Z}_{B} & \hat{Y}_{A} \cdot \hat{Z}_{B} & \hat{Z}_{A} \cdot \hat{Z}_{B} \end{bmatrix}.$$

$${}_{A}^{B}R = {}_{B}^{A}R^{T}$$

$${}_{A}^{A}R = \begin{bmatrix} {}_{A}\hat{X}_{B}^{T} \\ {}_{A}\hat{Y}_{B}^{T} \\ {}_{A}\hat{Z}_{B}^{T} \end{bmatrix} \begin{bmatrix} {}_{A}\hat{X}_{B} & {}_{A}\hat{Y}_{B} & {}_{A}\hat{Z}_{B} \end{bmatrix} = I_{3}$$

$${}^{A}_{B}R = {}^{B}_{A}R^{-1} = {}^{B}_{A}R^{T}.$$

The inverse of a matrix with orthonormal columns is equal to its transpose.

Description of a frame: graphical representation

For convenience, the point whose position we will describe is chosen as the origin of the body-attached frame.

A frame: a position and an orientation pair

- A set of four vectors giving position and orientation information.
- A position vector and a rotation matrix
- \blacksquare Frame $\{B\}$ is described by

$$\{B\} = \{{}^{A}_{B}R, \quad {}^{A}P_{BORG}\}.$$

Mapping

- Changing the description from one frame to another
- The quantity itself is not changed; only its description is changed.

$$^{B}P\rightarrow ^{A}P.$$

Mappings involving translated frames

Translational mapping

$$^{A}P=^{B}P+^{A}P_{BORG}$$

Both vectors are defined relative to frames of the same orientation.

Mappings involving rotated frames

Rotating the description of a vector

$$^{A}P=^{A}_{B}R^{B}P$$

The origins of the two frames are coincident.

Example 2.1

$${}_{B}^{A}R = \begin{bmatrix} 0.866 & -0.500 & 0.000 \\ 0.500 & 0.866 & 0.000 \\ 0.000 & 0.000 & 1.000 \end{bmatrix}$$

$${}^{B}P = \begin{bmatrix} 0.0 \\ 2.0 \\ 0.0 \end{bmatrix}$$

$${}^{A}P = {}^{A}R^{B}P = \begin{bmatrix} -1.000 \\ 1.732 \\ 0.000 \end{bmatrix}$$

Mappings involving general frames

General transform of a vector

$${}^{A}P = {}^{A}R^{B}P + {}^{A}P_{BORG}$$

$${}^{A}P = {}^{A}T^{B}P$$

an operator in matrix form

A Homogeneous Transform

Combines the operations of rotation and translation into a single matrix multiplication

$$\begin{bmatrix} {}^{A}P \\ \cdots \end{bmatrix} = \begin{bmatrix} & {}^{A}R & \vdots & {}^{A}P_{BORG} \\ \cdots & \cdots & \vdots & \cdots \\ 0 & 0 & 0 & \vdots & 1 \end{bmatrix} \begin{bmatrix} {}^{B}P \\ \cdots \\ 1 \end{bmatrix}$$

A Homogeneous Transformation

- Simultaneously represent the position and orientation of one coordinate frame relative to another.
- Can be used to perform coordinate transformations.

Example 2.2

Translating

- A translation moves a point in space a finite distance along a given vector direction.
- Only one coordinate system need be involved.

T operates on ${}^{A}P_{2}$ to create ${}^{A}P_{1}$.

Translational operators

Translating a point in space is accomplished with the same mathematics as mapping the point to a second frame.

Rotational Operators: Example 2.3

Transformation operators: Example 2.4

The transform that rotates by R and translates by Q is the same as the transform that describes a frame rotated by R and translated by Q relative to the reference frame.

$$^{A}P_{2}=T^{A}P_{1}$$

Compound transformations

$${}^{B}P = {}^{B}T^{C}P,$$

$${}^{A}P = {}^{A}T^{B}P.$$

$${}^{A}P = {}^{A}T^{C}T^{C}P,$$

$${}^{A}T = {}^{A}T^{C}T^{C}.$$

$${}_{C}^{A}T = \begin{bmatrix} & {}_{B}^{A}R {}_{C}^{B}R & \vdots & {}_{B}^{A}R^{B}P_{CORG} + {}^{A}P_{BORG} \\ & \cdots & \cdots & \vdots & \cdots \\ & 0 & 0 & 0 & \vdots & 1 \end{bmatrix}$$

Inverting a transform

$${}_{A}^{B}T = {}_{B}^{A}T^{-1}$$

$${}^{B}_{A}R = {}^{A}_{B}R^{T}$$

$${}^{A}P = {}^{A}_{B}R^{B}P + {}^{A}P_{BORG}$$

$${}^{B}_{A}({}^{A}P_{BORG}) = {}^{B}_{A}R^{A}P_{BORG} + {}^{B}P_{AORG}$$

$${}^{B}P_{AORG} = -{}^{B}_{A}R^{A}P_{BORG} = -{}^{A}_{B}R^{T} {}^{A}P_{BORG}$$

$${}_{A}^{B}T = \begin{bmatrix} & {}_{A}^{A}R^{T} & \vdots & {}_{B}^{A}R^{T} A P_{BORG} \\ \cdots & \cdots & \vdots & \cdots \\ 0 & 0 & 0 & \vdots & 1 \end{bmatrix}$$

Example 2.5

Transform equations

Example of a transform equation

$${}_{C}^{U}T = {}_{A}^{U}T {}_{A}^{D}T^{-1}{}_{C}^{D}T,$$

$$_{C}^{U}T=_{B}^{U}T_{C}^{B}T.$$

$$_{A}^{U}T = _{B}^{U}T_{C}^{B}T_{C}^{D}T_{C}^{-1}D_{A}^{D}T.$$

Example 2.6: Manipulator reaching for a bolt ${}^{T}_{G}T$

Proper orthonormal matrices

- Rotation matrices are special in that all columns are mutually orthogonal and have unit magnitude.
- The determinant of a rotation matrix is always equal to +1.

Special Orthogonal group of order n

For any
$$R \in SO(n)$$
 the following properties hold.

$$R^T = R^{-1} \in SO(n)$$

The columns (and therefore the rows) of R are mutually orthogonal.

Each column (and therefore each row) of R is a unit vector.

 $\det R = 1$.

For any proper orthonormal matrix R, there exists a skew-symmetric matrix such that

$$R = (I_3 - S)^{-1}(I_3 + S),$$

$$S = \begin{bmatrix} 0 & -s_x & s_y \\ s_x & 0 & -s_z \\ -s_y & s_z & 0 \end{bmatrix}$$

Any 3 x 3 rotation matrix can be specified by just three parameters.

Proper orthonormal matrices

Six constraints on the nine matrix elements:

$$\begin{vmatrix} \hat{X} | = 1, |\hat{Y}| = 1, |\hat{Z}| = 1, \\ \hat{X} \cdot \hat{Y} = 0, \hat{X} \cdot \hat{Z} = 0, \hat{Y} \cdot \hat{Z} = 0.$$

Each is a unit vector, and all three must be mutually perpendicular.

Example 2.7

$$R_z(30) = \begin{bmatrix} 0.866 & -0.500 & 0.000 \\ 0.500 & 0.866 & 0.000 \\ 0.000 & 0.000 & 1.000 \end{bmatrix}$$

$$R_x(30) = \begin{bmatrix} 1.000 & 0.000 & 0.000 \\ 0.000 & 0.866 & -0.500 \\ 0.000 & 0.500 & 0.866 \end{bmatrix}$$

$$R_z(30)R_x(30) \neq R_x(30)R_z(30)$$

Rotations don't generally commute.

X-Y-Z fixed angles (roll-pitch-yaw)

$$\begin{bmatrix}
c\alpha & -s\alpha & 0 \\
s\alpha & c\alpha & 0 \\
0 & 1 & 0
\end{bmatrix}
\begin{bmatrix}
c\beta & 0 & s\beta \\
0 & c\gamma & -s\gamma \\
0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
c\alpha & -s\beta & 0 & c\beta \\
0 & c\gamma & -s\gamma \\
0 & s\gamma & c\gamma
\end{bmatrix}$$

$$= \begin{bmatrix}
c\alpha & c\beta & c\alpha & \beta & c\gamma \\
c\alpha & c\beta & s\alpha & \beta & c\gamma \\
c\alpha & c\beta & s\alpha & \beta & c\gamma \\
c\alpha & c\beta & c\alpha & c\beta & c\gamma
\end{bmatrix}$$

$$= \begin{bmatrix}
c\alpha & c\beta & c\alpha & c\beta & c\gamma \\
c\alpha & c\beta & c\alpha & c\beta & c\gamma
\end{bmatrix}$$

$$= \begin{bmatrix}
c\alpha & c\beta & c\alpha & c\beta & c\gamma \\
c\beta & c\alpha & c\beta & c\gamma
\end{bmatrix}$$

$$= \begin{bmatrix}
c\alpha & c\beta & c\alpha & c\beta & c\gamma
\end{bmatrix}$$

$$= \begin{bmatrix}
c\alpha & c\beta & c\alpha & c\beta & c\gamma
\end{bmatrix}$$

$$= \begin{bmatrix}
c\alpha & c\beta & c\alpha & c\beta & c\gamma
\end{bmatrix}$$

$$= \begin{bmatrix}
c\alpha & c\beta & c\alpha & c\beta & c\gamma
\end{bmatrix}$$

$$= \begin{bmatrix}
c\alpha & c\beta & c\alpha & c\beta & c\gamma
\end{bmatrix}$$

$$= \begin{bmatrix}
c\alpha & c\beta & c\alpha & c\beta & c\gamma
\end{bmatrix}$$

$$= \begin{bmatrix}
c\alpha & c\beta & c\alpha & c\beta & c\gamma
\end{bmatrix}$$

$$= \begin{bmatrix}
c\alpha & c\beta & c\alpha & c\beta & c\gamma
\end{bmatrix}$$

$$= \begin{bmatrix}
c\alpha & c\beta & c\alpha & c\beta & c\gamma
\end{bmatrix}$$

$$= \begin{bmatrix}
c\alpha & c\beta & c\alpha & c\beta & c\gamma
\end{bmatrix}$$

$$= \begin{bmatrix}
c\alpha & c\beta & c\alpha & c\beta & c\gamma
\end{bmatrix}$$

$$= \begin{bmatrix}
c\alpha & c\beta & c\alpha & c\beta & c\gamma
\end{bmatrix}$$

$$= \begin{bmatrix}
c\alpha & c\beta & c\alpha & c\beta & c\gamma
\end{bmatrix}$$

$$= \begin{bmatrix}
c\alpha & c\beta & c\alpha & c\beta & c\gamma
\end{bmatrix}$$

$$= \begin{bmatrix}
c\alpha & c\beta & c\alpha & c\beta & c\gamma
\end{bmatrix}$$

$$= \begin{bmatrix}
c\alpha & c\beta & c\alpha & c\beta & c\gamma
\end{bmatrix}$$

$$= \begin{bmatrix}
c\alpha & c\beta & c\alpha & c\beta & c\gamma
\end{bmatrix}$$

$$= \begin{bmatrix}
c\alpha & c\beta & c\alpha & c\beta & c\gamma
\end{bmatrix}$$

$$= \begin{bmatrix}
c\alpha & c\beta & c\alpha & c\beta & c\gamma
\end{bmatrix}$$

$$= \begin{bmatrix}
c\alpha & c\beta & c\alpha & c\beta & c\gamma
\end{bmatrix}$$

$$= \begin{bmatrix}
c\alpha & c\beta & c\alpha & c\beta & c\gamma
\end{bmatrix}$$

$$= \begin{bmatrix}
c\alpha & c\beta & c\alpha & c\beta & c\gamma
\end{bmatrix}$$

$$= \begin{bmatrix}
c\alpha & c\beta & c\alpha & c\beta & c\gamma
\end{bmatrix}$$

$$= \begin{bmatrix}
c\alpha & c\beta & c\alpha & c\beta & c\gamma
\end{bmatrix}$$

$$= \begin{bmatrix}
c\alpha & c\beta & c\alpha & c\beta & c\gamma
\end{bmatrix}$$

$$= \begin{bmatrix}
c\alpha & c\beta & c\alpha & c\beta & c\gamma
\end{bmatrix}$$

$$= \begin{bmatrix}
c\alpha & c\beta & c\alpha & c\beta & c\gamma
\end{bmatrix}$$

$$= \begin{bmatrix}
c\alpha & c\beta & c\alpha & c\beta & c\gamma
\end{bmatrix}$$

$$= \begin{bmatrix}
c\alpha & c\beta & c\alpha & c\beta & c\gamma
\end{bmatrix}$$

$$= \begin{bmatrix}
c\alpha & c\beta & c\alpha & c\beta & c\gamma
\end{bmatrix}$$

$$= \begin{bmatrix}
c\alpha & c\beta & c\alpha & c\beta & c\gamma
\end{bmatrix}$$

$$= \begin{bmatrix}
c\alpha & c\beta & c\alpha & c\beta & c\gamma
\end{bmatrix}$$

$$= \begin{bmatrix}
c\alpha & c\beta & c\alpha & c\beta & c\gamma
\end{bmatrix}$$

$$= \begin{bmatrix}
c\alpha & c\beta & c\alpha & c\beta & c\gamma
\end{bmatrix}$$

$$= \begin{bmatrix}
c\alpha & c\beta & c\alpha & c\beta & c\gamma
\end{bmatrix}$$

$$= \begin{bmatrix}
c\alpha & c\beta & c\alpha & c\beta & c\gamma
\end{bmatrix}$$

$$= \begin{bmatrix}
c\alpha & c\beta & c\alpha & c\beta & c\gamma
\end{bmatrix}$$

$$= \begin{bmatrix}
c\alpha & c\beta & c\alpha & c\beta
\end{bmatrix}$$

$$= \begin{bmatrix}
c\alpha & c\beta & c\alpha & c\beta
\end{bmatrix}$$

$$= \begin{bmatrix}
c\alpha & c\beta & c\alpha & c\beta
\end{bmatrix}$$

$$= \begin{bmatrix}
c\alpha & c\beta & c\alpha & c\beta
\end{bmatrix}$$

$$= \begin{bmatrix}
c\alpha & c\beta & c\alpha & c\beta
\end{bmatrix}$$

$$= \begin{bmatrix}
c\alpha & c\beta & c\alpha & c\beta
\end{bmatrix}$$

$$= \begin{bmatrix}
c\alpha & c\beta & c\alpha & c\beta
\end{bmatrix}$$

$$= \begin{bmatrix}
c\alpha & c\beta & c\alpha & c\beta
\end{bmatrix}$$

$$= \begin{bmatrix}
c\alpha & c\beta & c\alpha & c\alpha
\end{bmatrix}$$

$$= \begin{bmatrix}
c\alpha & c\beta & c\alpha & c\alpha
\end{bmatrix}$$

$$= \begin{bmatrix}
c\alpha & c\beta & c\alpha & c\alpha
\end{bmatrix}$$

$$= \begin{bmatrix}
c\alpha & c\beta & c\alpha & c\alpha
\end{bmatrix}$$

$$= \begin{bmatrix}
c\alpha & c\beta & c\alpha & c\alpha
\end{bmatrix}$$

$$= \begin{bmatrix}
c\alpha & c\beta & c\alpha & c\alpha
\end{bmatrix}$$

$$= \begin{bmatrix}
c\alpha & c\beta & c\alpha & c\alpha
\end{bmatrix}$$

$$= \begin{bmatrix}
c\alpha & c\beta & c\alpha & c\alpha
\end{bmatrix}$$

$$= \begin{bmatrix}
c\alpha & c\beta & c\alpha$$

Inverse problem:

$${}_{B}^{A}R_{XYZ}(\gamma, \beta, \alpha) = \begin{bmatrix} r_{11} & r_{12} & r_{13} \\ r_{21} & r_{22} & r_{23} \\ r_{31} & r_{32} & r_{33} \end{bmatrix}.$$

$$\beta = \begin{bmatrix} A \tan 2 & -r_{31}, \sqrt{r_{11}^{2} + r_{21}^{2}}, \\ \alpha = A \tan 2(r_{21}/c\beta, r_{11}/c\beta), \\ \gamma = A \tan 2(r_{32}/c\beta, r_{33}/c\beta).$$

A two argument arc tangent function

Trigonometric Functions

Euler's Rotation Theorem

• An arbitrary rotation may be described by only three parameters (*angles*).

Euler angles

If the rotations are written in terms of rotation matrices B, C, and D, then a general rotation A can be written as A = BCD. The three angles giving the three rotation matrices are called <u>Euler angles</u>. There are several conventions for Euler angles, <u>depending on the axes</u> about which the rotations are carried out. [Appendix B]

Z-Y-X Euler angles

Each rotation is performed about an axis of the moving system {B} rather than one of the fixed reference {A}.

$${}_{B}^{A}R = {}_{B'}^{A}R {}_{B''}^{B'}R {}_{B}^{B''}R$$

$$\begin{array}{l}
{}^{A}_{B}R_{Z'YX'} = R_{Z}(\alpha)R_{Y}(\beta)R_{X}(\gamma) \\
= \begin{bmatrix} c\alpha & -s\alpha & 0 \\ s\alpha & c\alpha & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} c\beta & 0 & s\beta \\ 0 & s\beta \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & c\gamma & -s\gamma \\ 0 & s\gamma & c\gamma \end{bmatrix} \\
= \begin{bmatrix} c\alpha c\beta & c\alpha s\beta s\gamma - s\alpha c\gamma & c\alpha s\beta c\gamma + s\alpha s\gamma \\ s\alpha c\beta & s\alpha s\beta s\gamma + c\alpha c\gamma & s\alpha s\beta c\gamma - c\alpha s\gamma \\ -s\beta & c\beta s\gamma & c\beta c\gamma \end{bmatrix}.$$

Three rotations taken about fixed axes yield the same final orientation as the same three rotations taken in opposite order about the axes of moving frame.

Homework #5: Z-Y-Z Euler Angles (1 pt.) – Due Dec. 21

- Derive the rotational matrix
- Extract Z-Y-Z Euler angles

Rules for Composition of Rotational Transformations:

Relative to the current frame: postmultiply

Relative to fixed frame: premultiply

Suppose *R* is defined by the following sequence of basic rotations in order specified:

- 1. A rotation of θ about the current x-axis
- 2. A rotation of ϕ about the current z-axis
- 3. A rotation of α about the fixed z-axis
- 4. A rotation of β about the current y-axis
- 5. A rotation of δ about the fixed x-axis

$$R = R_{x}(\delta)R_{z}(\alpha)R_{x}(\theta)R_{z}(\phi)R_{y}(\beta)$$

Equivalent angle-axis representation

If the axis is a *general* direction, any orientation may be obtained through proper axis and orientation selection.

$$R_{K}(\theta) = \begin{bmatrix} k_{x}k_{x}v\theta + c\theta & k_{x}k_{y}v\theta - k_{z}s\theta & k_{x}k_{z}v\theta + k_{y}s\theta \\ k_{x}k_{y}v\theta + k_{z}s\theta & k_{y}k_{y}v\theta + c\theta & k_{y}k_{z}v\theta - k_{x}s\theta \\ k_{x}k_{z}v\theta - k_{y}s\theta & k_{y}k_{z}v\theta + k_{x}s\theta & k_{z}k_{z}v\theta + c\theta \end{bmatrix},$$

$$v\theta = 1 - \cos\theta$$

$$_{B}^{A}R_{K}(\theta) = \begin{bmatrix} r_{11} & r_{12} & r_{13} \\ r_{21} & r_{22} & r_{23} \\ r_{31} & r_{32} & r_{33} \end{bmatrix},$$
 Homework #6 (1 possible of the property of the equation).

$$\theta = A\cos\left(\frac{r_{11} + r_{22} + r_{33} - 1}{2}\right)$$

$$\hat{K} = \frac{1}{2\sin\theta} \begin{bmatrix} r_{32} - r_{23} \\ r_{13} - r_{31} \\ r_{21} - r_{12} \end{bmatrix}.$$

Homework #6 (1 pt.)

Change of Coordinates

An $n \times n$ matrix A represents a linear transformation from R^n to R^n in the sense that it takes a vector x to a new vector y according to

$$y = Ax$$

The vector *y* is called the image of *x* under the transformation *A*. If the vectors *x* and *y* are represented in terms of the standard unit vectors

$$e_1 = [1,0,\ldots,0]^T,\ldots,e_n = [0,0,\ldots,1]^T$$

then the column vectors of A represent the images of the basis vectors e_1, \ldots, e_n .

Change of Coordinates (cont'd)

Often it is desired to represent vectors with respect to a second coordinate frame with different basis vectors f_1, \ldots, f_n . In this case the matrix representing the same linear transformation as A, but relative to this new basis, is given by

$$A' = T^{-1}AT$$

where T is a nonsingular matrix with column vectors f_1, \ldots, f_n . The transformation $T^{-1}AT$ is called a similarity transformation of the matrix A.

The use of similarity transformations allows us to express the same rotation easily with respect to different frames.

Relative to frame {A} Frames {A} and {B} are related by

$$R_{z}(\theta) = \begin{bmatrix} \cos \theta & -\sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{bmatrix}, \quad T = {}_{B}^{A}R = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ -1 & 0 & 0 \end{bmatrix}$$

Relative to frames {B}, we have

$$R'_{z}(\theta) = T^{-1}R_{z}(\theta)T = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos\theta & \sin\theta \\ 0 & -\sin\theta & \cos\theta \end{bmatrix}$$
 A rotation about \hat{Z}_{A} but expressed relative to $\{B\}$

Rotation about an arbitrary axis

The rotational transformation $R = R_z(\alpha)R_y(\beta)$ bring the world z-axis into alignment with the vector K. Therefore, a rotation about the axis K can be computed using a similarity transformation as

$$R_{K}(\theta) = RR_{z}(\theta)R^{-1}$$

$$= R_{z}(\alpha)R_{y}(\beta)R_{z}(\theta)R_{y}(-\beta)R_{z}(-\alpha)$$

$$\sin \alpha = \frac{k_y}{\sqrt{k_x^2 + k_y^2}} \quad \cos \alpha = \frac{k_x}{\sqrt{k_x^2 + k_y^2}}$$
$$\sin \beta = \sqrt{k_x^2 + k_y^2} \quad \cos \beta = k_z$$

Suppose R is generated by a rotation of 90° about z_0 followed by a rotation of 30° about y_0 followed by a rotation of 60° about x_0 . Then

$$R = R_{x}(60)R_{y}(30)R_{z}(90)$$

$$= \begin{bmatrix} 0 & -\frac{\sqrt{3}}{2} & \frac{1}{2} \\ \frac{1}{2} & -\frac{\sqrt{3}}{4} & -\frac{3}{4} \\ \frac{\sqrt{3}}{2} & \frac{1}{4} & \frac{\sqrt{3}}{4} \end{bmatrix}$$

$$\theta = \cos^{-1}\left(-\frac{1}{2}\right) = 120^{\circ}$$

$$\hat{K} = \begin{bmatrix} \frac{1}{\sqrt{3}} \\ \frac{1}{2\sqrt{3}} - \frac{1}{2} \\ \frac{1}{2\sqrt{3}} + \frac{1}{2} \end{bmatrix}$$

Example 2.9

$${}^{A}T = \begin{bmatrix} 1.0 & 0.0 & 0.0 & 1.0 \\ 0.0 & 1.0 & 0.0 & 2.0 \\ 0.0 & 0.0 & 1.0 & 3.0 \\ 0.0 & 0.0 & 0.0 & 1.0 \end{bmatrix}, \ {}^{B'}BT = \begin{bmatrix} 1.0 & 0.0 & 0.0 & -1.0 \\ 0.0 & 1.0 & 0.0 & -2.0 \\ 0.0 & 0.0 & 1.0 & -3.0 \\ 0.0 & 0.0 & 1.0 & -3.0 \\ 0.0 & 0.0 & 0.0 & 1.0 \end{bmatrix}$$

$${}^{A'}T = \begin{bmatrix} 0.933 & 0.067 & 0.354 & 0.0 \\ 0.067 & 0.933 & -0.354 & 0.0 \\ -0.354 & 0.354 & 0.866 & 0.0 \\ 0.0 & 0.0 & 0.0 & 1.0 \end{bmatrix}$$

$${}^{A}T = {}^{A}T {}^{A'}T {}^{B'}T {}^{B'}T = \begin{bmatrix} 0.933 & 0.067 & 0.354 & -1.13 \\ 0.067 & 0.933 & -0.354 & 1.13 \\ 0.067 & 0.933 & -0.354 & 0.866 \\ 0.05 & 0.000 & 0.000 & 0.000 & 1.00 \end{bmatrix}.$$

A rotation about an axis that does not pass through the origin causes a change in position, plus the same final orientation as if the axis had passed through the origin.

Euler parameters

- The four parameters $\mathcal{E}_1, \mathcal{E}_2, \mathcal{E}_3$, and \mathcal{E}_4 describing a finite rotation θ about an arbitrary axis $\hat{K} = \begin{bmatrix} k_x & k_y & k_z \end{bmatrix}^T$
- Defined by

$$\varepsilon_1 = k_x \sin \frac{\theta}{2}, \varepsilon_2 = k_y \sin \frac{\theta}{2}, \varepsilon_3 = k_z \sin \frac{\theta}{2}$$

$$\varepsilon_4 = \cos \frac{\theta}{2}$$

Euler parameters (cont'd)

A quaternion in scalar-vector representation

$$(\varepsilon, \varepsilon_4) = \varepsilon_1 i + \varepsilon_2 j + \varepsilon_3 k + \varepsilon_4.$$

$$\varepsilon \cdot \varepsilon + \varepsilon_4^2 = \varepsilon_1^2 + \varepsilon_2^2 + \varepsilon_3^2 + \varepsilon_4^2 = 1.$$

An arbitrary rotation may be described by only three parameters, a relationship must exist between these four quantities.

Line vector

- Refers to a vector that is dependent on its line of action, along with direction and magnitude, for causing its effects.
- A force vector

Free vector

- Refers to a vector that may be positioned anywhere in space without loss or change of meaning, provided that magnitude and direction are preserved.
- A pure moment vector, the velocity of a point

Equal velocity vectors

Transforming velocities

Rigid motions

A rigid motion is an ordered pair of (d, R).

$$SE(3) = R^3 \times SO(3)$$

Special Euclidean Group

Quiz #2 — Due Today

- All the problems are from the course text.
 Unless otherwise indicated, each problem is worth 0.5 points.
- **2.27**, 2.28, 2.29, 2.30, 2.31, 2.33

Homework #7 – Dec. 21

2.4, 2.12, 2.13, 2.37