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1
INTRODUCTION

Robotics is a relatively young field of modern technology that crosses tra-
ditional engineering boundaries. Understanding the complexity of robots and
their applications requires knowledge of electrical engineering, mechanical engi-
neering, systems and industrial engineering, computer science, economics, and
mathematics. New disciplines of engineering, such as manufacturing engineer-
ing, applications engineering, and knowledge engineering have emerged to deal
with the complexity of the field of robotics and factory automation.

This book is concerned with fundamentals of robotics, including kinematics,
dynamics, motion planning, computer vision, and control. Our goal is
to provide a complete introduction to the most important concepts in these
subjects as applied to industrial robot manipulators, mobile robots, and other
mechanical systems. A complete treatment of the discipline of robotics would
require several volumes. Nevertheless, at the present time, the majority of robot
applications deal with industrial robot arms operating in structured factory
environments so that a first introduction to the subject of robotics must include
a rigorous treatment of the topics in this text.

The term robot was first introduced into our vocabulary by the Czech play-
wright Karel Capek in his 1920 play Rossum’s Universal Robots, the word
robota being the Czech word for work. Since then the term has been applied to
a great variety of mechanical devices, such as teleoperators, underwater vehi-
cles, autonomous land rovers, etc. Virtually anything that operates with some
degree of autonomy, usually under computer control, has at some point been
called a robot. In this text the term robot will mean a computer controlled
industrial manipulator of the type shown in Figure 1.1. This type of robot is
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2 INTRODUCTION

Fig. 1.1 The ABB IRB6600 Robot. Photo courtesy of ABB.

essentially a mechanical arm operating under computer control. Such devices,
though far from the robots of science fiction, are nevertheless extremely com-
plex electro-mechanical systems whose analytical description requires advanced
methods, presenting many challenging and interesting research problems.

An official definition of such a robot comes from the Robot Institute of
America (RIA): A robot is a reprogrammable multifunctional manipulator
designed to move material, parts, tools, or specialized devices through variable
programmed motions for the performance of a variety of tasks.

The key element in the above definition is the reprogrammability of robots.
It is the computer brain that gives the robot its utility and adaptability. The
so-called robotics revolution is, in fact, part of the larger computer revolution.

Even this restricted version of a robot has several features that make it at-
tractive in an industrial environment. Among the advantages often cited in
favor of the introduction of robots are decreased labor costs, increased preci-
sion and productivity, increased flexibility compared with specialized machines,
and more humane working conditions as dull, repetitive, or hazardous jobs are
performed by robots.

The robot, as we have defined it, was born out of the marriage of two ear-
lier technologies: teleoperators and numerically controlled milling ma-
chines. Teleoperators, or master-slave devices, were developed during the sec-
ond world war to handle radioactive materials. Computer numerical control
(CNC) was developed because of the high precision required in the machining
of certain items, such as components of high performance aircraft. The first
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robots essentially combined the mechanical linkages of the teleoperator with
the autonomy and programmability of CNC machines.

The first successful applications of robot manipulators generally involved
some sort of material transfer, such as injection molding or stamping, where
the robot merely attends a press to unload and either transfer or stack the
finished parts. These first robots could be programmed to execute a sequence
of movements, such as moving to a location A, closing a gripper, moving to a
location B, etc., but had no external sensor capability. More complex appli-
cations, such as welding, grinding, deburring, and assembly require not only
more complex motion but also some form of external sensing such as vision,
tactile, or force-sensing, due to the increased interaction of the robot with its
environment.

It should be pointed out that the important applications of robots are by no
means limited to those industrial jobs where the robot is directly replacing a
human worker. There are many other applications of robotics in areas where
the use of humans is impractical or undesirable. Among these are undersea and
planetary exploration, satellite retrieval and repair, the defusing of explosive
devices, and work in radioactive environments. Finally, prostheses, such as
artificial limbs, are themselves robotic devices requiring methods of analysis
and design similar to those of industrial manipulators.

1.1 MATHEMATICAL MODELING OF ROBOTS

While robots are themselves mechanical systems, in this text we will be pri-
marily concerned with developing and manipulating mathematical models for
robots. In particular, we will develop methods to represent basic geometric as-
pects of robotic manipulation, dynamic aspects of manipulation, and the various
sensors available in modern robotic systems. Equipped with these mathematical
models, we will be able to develop methods for planning and controlling robot
motions to perform specified tasks. Here we describe some of the basic ideas
that are common in developing mathematical models for robot manipulators.

1.1.1 Symbolic Representation of Robots

Robot Manipulators are composed of links connected by joints to form a kine-
matic chain. Joints are typically rotary (revolute) or linear (prismatic). A
revolute joint is like a hinge and allows relative rotation between two links. A
prismatic joint allows a linear relative motion between two links. We denote
revolute joints by R and prismatic joints by P, and draw them as shown in
Figure 1.2. For example, a three-link arm with three revolute joints is an RRR
arm.

Each joint represents the interconnection between two links. We denote the
axis of rotation of a revolute joint, or the axis along which a prismatic joint
translates by zi if the joint is the interconnection of links i and i + 1. The
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Prismatic
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Revolute

Fig. 1.2 Symbolic representation of robot joints.

joint variables, denoted by θ for a revolute joint and d for the prismatic joint,
represent the relative displacement between adjacent links. We will make this
precise in Chapter 3.

1.1.2 The Configuration Space

A configuration of a manipulator is a complete specification of the location
of every point on the manipulator. The set of all possible configurations is
called the configuration space. In our case, if we know the values for the
joint variables (i.e., the joint angle for revolute joints, or the joint offset for
prismatic joints), then it is straightforward to infer the position of any point
on the manipulator, since the individual links of the manipulator are assumed
to be rigid, and the base of the manipulator is assumed to be fixed. Therefore,
in this text, we will represent a configuration by a set of values for the joint
variables. We will denote this vector of values by q, and say that the robot
is in configuration q when the joint variables take on the values q1 · · · qn, with
qi = θi for a revolute joint and qi = d1 for a prismatic joint.

An object is said to have n degrees-of-freedom (DOF) if its configuration
can be minimally specified by n parameters. Thus, the number of DOF is equal
to the dimension of the configuration space. For a robot manipulator, the num-
ber of joints determines the number DOF. A rigid object in three-dimensional
space has six DOF: three for positioning and three for orientation (e.g., roll,
pitch and yaw angles). Therefore, a manipulator should typically possess at
least six independent DOF. With fewer than six DOF the arm cannot reach
every point in its work environment with arbitrary orientation. Certain appli-
cations such as reaching around or behind obstacles may require more than six
DOF. A manipulator having more than six links is referred to as a kinemat-
ically redundant manipulator. The difficulty of controlling a manipulator
increases rapidly with the number of links.
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1.1.3 The State Space

A configuration provides an instantaneous description of the geometry of a
manipulator, but says nothing about its dynamic response. In contrast, the
state of the manipulator is a set of variables that, together with a description
of the manipulator’s dynamics and input, are sufficient to determine any future
state of the manipulator. The state space is the set of all possible states.
In the case of a manipulator arm, the dynamics are Newtonian, and can be
specified by generalizing the familiar equation F = ma. Thus, a state of the
manipulator can be specified by giving the values for the joint variables q and
for joint velocities q̇ (acceleration is related to the derivative of joint velocities).
We typically represent the state as a vector x = (q, q̇)T . The dimension of the
state space is thus 2n if the system has n DOF.

1.1.4 The Workspace

The workspace of a manipulator is the total volume swept out by the end-
effector as the manipulator executes all possible motions. The workspace is
constrained by the geometry of the manipulator as well as mechanical con-
straints on the joints. For example, a revolute joint may be limited to less
than a full 360◦ of motion. The workspace is often broken down into a reach-
able workspace and a dexterous workspace. The reachable workspace is
the entire set of points reachable by the manipulator, whereas the dexterous
workspace consists of those points that the manipulator can reach with an ar-
bitrary orientation of the end-effector. Obviously the dexterous workspace is a
subset of the reachable workspace. The workspaces of several robots are shown
later in this chapter.

1.2 ROBOTS AS MECHANICAL DEVICES

There are a number of physical aspects of robotic manipulators that we will not
necessarily consider when developing our mathematical models. These include
mechanical aspects (e.g., how are the joints actually implemented), accuracy
and repeatability, and the tooling attached at the end effector. In this section,
we briefly describe some of these.

1.2.1 Classification of Robotic Manipulators

Robot manipulators can be classified by several criteria, such as their power
source, or way in which the joints are actuated, their geometry, or kinematic
structure, their intended application area, or their method of control. Such
classification is useful primarily in order to determine which robot is right for
a given task. For example, a hydraulic robot would not be suitable for food
handling or clean room applications. We explain this in more detail below.
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Power Source. Typically, robots are either electrically, hydraulically, or pneu-
matically powered. Hydraulic actuators are unrivaled in their speed of response
and torque producing capability. Therefore hydraulic robots are used primar-
ily for lifting heavy loads. The drawbacks of hydraulic robots are that they
tend to leak hydraulic fluid, require much more peripheral equipment (such as
pumps, which require more maintenance), and they are noisy. Robots driven
by DC- or AC-servo motors are increasingly popular since they are cheaper,
cleaner and quieter. Pneumatic robots are inexpensive and simple but cannot
be controlled precisely. As a result, pneumatic robots are limited in their range
of applications and popularity.

Application Area. Robots are often classified by application into assembly
and non-assembly robots. Assembly robots tend to be small, electrically
driven and either revolute or SCARA (described below) in design. The main
nonassembly application areas to date have been in welding, spray painting,
material handling, and machine loading and unloading.

Method of Control. Robots are classified by control method into servo and
non-servo robots. The earliest robots were non-servo robots. These robots
are essentially open-loop devices whose movement is limited to predetermined
mechanical stops, and they are useful primarily for materials transfer. In fact,
according to the definition given previously, fixed stop robots hardly qualify
as robots. Servo robots use closed-loop computer control to determine their
motion and are thus capable of being truly multifunctional, reprogrammable
devices.

Servo controlled robots are further classified according to the method that the
controller uses to guide the end-effector. The simplest type of robot in this class
is the point-to-point robot. A point-to-point robot can be taught a discrete
set of points but there is no control on the path of the end-effector in between
taught points. Such robots are usually taught a series of points with a teach
pendant. The points are then stored and played back. Point-to-point robots
are severely limited in their range of applications. In continuous path robots,
on the other hand, the entire path of the end-effector can be controlled. For
example, the robot end-effector can be taught to follow a straight line between
two points or even to follow a contour such as a welding seam. In addition, the
velocity and/or acceleration of the end-effector can often be controlled. These
are the most advanced robots and require the most sophisticated computer
controllers and software development.

Geometry. Most industrial manipulators at the present time have six or fewer
degrees-of-freedom. These manipulators are usually classified kinematically on
the basis of the first three joints of the arm, with the wrist being described
separately. The majority of these manipulators fall into one of five geometric
types: articulated (RRR), spherical (RRP), SCARA (RRP), cylindri-
cal (RPP), or Cartesian (PPP). We discuss each of these below.
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Each of these five manipulator arms are serial link robots. A sixth distinct
class of manipulators consists of the so-called parallel robot. In a parallel
manipulator the links are arranged in a closed rather than open kinematic
chain. Although we include a brief discussion of parallel robots in this chapter,
their kinematics and dynamics are more difficult to derive than those of serial
link robots and hence are usually treated only in more advanced texts.

1.2.2 Robotic Systems

A robot manipulator should be viewed as more than just a series of mechanical
linkages. The mechanical arm is just one component in an overall Robotic
System, illustrated in Figure 1.3, which consists of the arm, external power

Sensors

��

Power supply

��
Input device

or
teach pendant

oo // Computer
controller

oo //

OO

��

Mechanical
arm

OO

��
Program
storage

or network

End-of-arm
tooling

Fig. 1.3 Components of a robotic system.

source, end-of-arm tooling, external and internal sensors, computer
interface, and control computer. Even the programmed software should
be considered as an integral part of the overall system, since the manner in
which the robot is programmed and controlled can have a major impact on its
performance and subsequent range of applications.

1.2.3 Accuracy and Repeatability

The accuracy of a manipulator is a measure of how close the manipulator can
come to a given point within its workspace. Repeatability is a measure of
how close a manipulator can return to a previously taught point. The primary
method of sensing positioning errors in most cases is with position encoders
located at the joints, either on the shaft of the motor that actuates the joint or
on the joint itself. There is typically no direct measurement of the end-effector
position and orientation. One must rely on the assumed geometry of the manip-
ulator and its rigidity to infer (i.e., to calculate) the end-effector position from
the measured joint positions. Accuracy is affected therefore by computational
errors, machining accuracy in the construction of the manipulator, flexibility
effects such as the bending of the links under gravitational and other loads,
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gear backlash, and a host of other static and dynamic effects. It is primarily
for this reason that robots are designed with extremely high rigidity. Without
high rigidity, accuracy can only be improved by some sort of direct sensing of
the end-effector position, such as with vision.

Once a point is taught to the manipulator, however, say with a teach pen-
dant, the above effects are taken into account and the proper encoder values
necessary to return to the given point are stored by the controlling computer.
Repeatability therefore is affected primarily by the controller resolution. Con-
troller resolution means the smallest increment of motion that the controller
can sense. The resolution is computed as the total distance traveled by the
tip divided by 2n, where n is the number of bits of encoder accuracy. In this
context, linear axes, that is, prismatic joints, typically have higher resolution
than revolute joints, since the straight line distance traversed by the tip of a
linear axis between two points is less than the corresponding arc length traced
by the tip of a rotational link.

In addition, as we will see in later chapters, rotational axes usually result
in a large amount of kinematic and dynamic coupling among the links with a
resultant accumulation of errors and a more difficult control problem. One may
wonder then what the advantages of revolute joints are in manipulator design.
The answer lies primarily in the increased dexterity and compactness of revolute
joint designs. For example, Figure 1.4 shows that for the same range of motion,

d
d

Fig. 1.4 Linear vs. rotational link motion.

a rotational link can be made much smaller than a link with linear motion. Thus
manipulators made from revolute joints occupy a smaller working volume than
manipulators with linear axes. This increases the ability of the manipulator to
work in the same space with other robots, machines, and people. At the same
time revolute joint manipulators are better able to maneuver around obstacles
and have a wider range of possible applications.

1.2.4 Wrists and End-Effectors

The joints in the kinematic chain between the arm and end effector are referred
to as the wrist. The wrist joints are nearly always all revolute. It is increasingly
common to design manipulators with spherical wrists, by which we mean
wrists whose three joint axes intersect at a common point. The spherical wrist
is represented symbolically in Figure 1.5.
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Yaw

RollPitch

Fig. 1.5 Structure of a spherical wrist.

The spherical wrist greatly simplifies the kinematic analysis, effectively al-
lowing one to decouple the positioning and orientation of the end effector. Typ-
ically therefore, the manipulator will possess three degrees-of-freedom for posi-
tion, which are produced by three or more joints in the arm. The number of
degrees-of-freedom for orientation will then depend on the degrees-of-freedom
of the wrist. It is common to find wrists having one, two, or three degrees-of-
freedom depending of the application. For example, the SCARA robot shown
in Figure 1.14 has four degrees-of-freedom: three for the arm, and one for the
wrist, which has only a rotation about the final z-axis.

It has been said that a robot is only as good as its hand or end-effector.
The arm and wrist assemblies of a robot are used primarily for positioning
the end-effector and any tool it may carry. It is the end-effector or tool that
actually performs the work. The simplest type of end-effectors are grippers,
which usually are capable of only two actions, opening and closing. While
this is adequate for materials transfer, some parts handling, or gripping simple
tools, it is not adequate for other tasks such as welding, assembly, grinding,
etc. A great deal of research is therefore devoted to the design of special pur-
pose end-effectors as well as to tools that can be rapidly changed as the task
dictates. There is also much research on the development of anthropomorphic
hands. Such hands have been developed both for prosthetic use and for use
in manufacturing. Since we are concerned with the analysis and control of the
manipulator itself and not in the particular application or end-effector, we will
not discuss end-effector design or the study of grasping and manipulation.

1.3 COMMON KINEMATIC ARRANGEMENTS OF MANIPULATORS

Although there are many possible ways use prismatic and revolute joints to
construct kinematic chains, in practice only a few of these are commonly used.
Here we briefly describe several arrangements that are most typical.
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1.3.1 Articulated manipulator (RRR)

The articulated manipulator is also called a revolute, or anthropomorphic
manipulator. The ABB IRB1400 articulated arm is shown in Figure 1.6. A

Fig. 1.6 The ABB IRB1400 Robot. Photo courtesy of ABB.

common revolute joint design is the parallelogram linkage such as the Mo-
toman SK16, shown in Figure 1.7. In both of these arrangements joint axis

Fig. 1.7 The Motoman SK16 manipulator.

z2 is parallel to z1 and both z1 and z2 are perpendicular to z0. This kind of
manipulator is known as an elbow manipulator. The structure and terminology
associated with the elbow manipulator are shown in Figure 1.8. Its workspace
is shown in Figure 1.9.

The revolute manipulator provides for relatively large freedom of movement
in a compact space. The parallelogram linkage, although typically less dexterous
than the elbow manipulator manipulator, nevertheless has several advantages
that make it an attractive and popular design. The most notable feature of the
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Fig. 1.8 Structure of the elbow manipulator.

θ3

θ2

SideTop

θ1

Fig. 1.9 Workspace of the elbow manipulator.

parallelogram linkage manipulator is that the actuator for joint 3 is located on
link 1. Since the weight of the motor is born by link 1, links 2 and 3 can be
made more lightweight and the motors themselves can be less powerful. Also
the dynamics of the parallelogram manipulator are simpler than those of the
elbow manipulator, thus making it easier to control.

1.3.2 Spherical Manipulator (RRP)

By replacing the third or elbow joint in the revolute manipulator by a pris-
matic joint one obtains the spherical manipulator shown in Figure 1.10. The
term spherical manipulator derives from the fact that the spherical coor-
dinates defining the position of the end-effector with respect to a frame whose
origin lies at the intersection of the three z axes are the same as the first three
joint variables. Figure 1.11 shows the Stanford Arm, one of the most well-
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z1

z0

θ2

θ1

d3

z2

Fig. 1.10 The spherical manipulator.

known spherical robots. The workspace of a spherical manipulator is shown in

Fig. 1.11 The Stanford Arm. Photo courtesy of the Coordinated Science Lab, Univer-
sity of Illinois at Urbana-Champaign.

Figure 1.12.

1.3.3 SCARA Manipulator (RRP)

The SCARA arm (for Selective Compliant Articulated Robot for Assembly)
shown in Figure 1.13 is a popular manipulator, which, as its name suggests, is
tailored for assembly operations. Although the SCARA has an RRP structure,
it is quite different from the spherical manipulator in both appearance and in its
range of applications. Unlike the spherical design, which has z0 perpendicular
to z1, and z1 perpendicular to z2, the SCARA has z0, z1, and z2 mutually
parallel. Figure 1.14 shows the Epson E2L653S, a manipulator of this type.
The SCARA manipulator workspace is shown in Figure 1.15.
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Fig. 1.12 Workspace of the spherical manipulator.

θ1

z0

z1 z2

θ2

d3

Fig. 1.13 The SCARA (Selective Compliant Articulated Robot for Assembly).

1.3.4 Cylindrical Manipulator (RPP)

The cylindrical manipulator is shown in Figure 1.16. The first joint is revolute
and produces a rotation about the base, while the second and third joints
are prismatic. As the name suggests, the joint variables are the cylindrical
coordinates of the end-effector with respect to the base. A cylindrical robot, the
Seiko RT3300, is shown in Figure 1.17, with its workspace shown in Figure 1.18.
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Fig. 1.14 The Epson E2L653S SCARA Robot. Photo Courtesy of Epson.

Fig. 1.15 Workspace of the SCARA manipulator.

1.3.5 Cartesian manipulator (PPP)

A manipulator whose first three joints are prismatic is known as a Cartesian
manipulator, shown in Figure 1.19.

For the Cartesian manipulator the joint variables are the Cartesian coordi-
nates of the end-effector with respect to the base. As might be expected the
kinematic description of this manipulator is the simplest of all manipulators.
Cartesian manipulators are useful for table-top assembly applications and, as
gantry robots, for transfer of material or cargo. An example of a Cartesian
robot, from Epson-Seiko, is shown in Figure 1.20. The workspace of a Carte-
sian manipulator is shown in Figure 1.21.
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θ1

d3

z2

z0

z1

d2

Fig. 1.16 The cylindrical manipulator.

Fig. 1.17 The Seiko RT3300 Robot. Photo courtesy of Seiko.

1.3.6 Parallel Manipulator

A parallel manipulator is one in which some subset of the links form a closed
chain. More specifically, a parallel manipulator has two or more independent
kinematic chains connecting the base to the end-effector. Figure 1.22 shows the
ABB IRB 940 Tricept robot, which is a parallel manipulator. The closed chain
kinematics of parallel robots can result in greater structural rigidity, and hence
greater accuracy, than open chain robots. The kinematic description of parallel
robots is fundamentally different from that of serial link robots and therefore
requires different methods of analysis.
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Fig. 1.18 Workspace of the cylindrical manipulator.

d2

z1

z0
d1

d3

z2

Fig. 1.19 The Cartesian manipulator.

1.4 OUTLINE OF THE TEXT

A typical application involving an industrial manipulator is shown in Fig-
ure 1.23. The manipulator is shown with a grinding tool that it must use
to remove a certain amount of metal from a surface. In the present text we are
concerned with the following question: What are the basic issues to be resolved
and what must we learn in order to be able to program a robot to perform such
tasks?

The ability to answer this question for a full six degree-of-freedom manip-
ulator represents the goal of the present text. The answer is too complicated
to be presented at this point. We can, however, use the simple two-link planar
mechanism to illustrate some of the major issues involved and to preview the
topics covered in this text.
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Fig. 1.20 The Epson Cartesian Robot. Photo courtesy of Epson.

Fig. 1.21 Workspace of the Cartesian manipulator.

Suppose we wish to move the manipulator from its home position to position
A, from which point the robot is to follow the contour of the surface S to the
point B, at constant velocity, while maintaining a prescribed force F normal
to the surface. In so doing the robot will cut or grind the surface according
to a predetermined specification. To accomplish this and even more general
tasks, a we must solve a number of problems. Below we give examples of these
problems, all of which will be treated in more detail in the remainder of the
text.

Forward Kinematics

The first problem encountered is to describe both the position of the tool and
the locations A and B (and most likely the entire surface S) with respect to a
common coordinate system. In Chapter 2 we give some background on repre-
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Fig. 1.22 The ABB IRB940 Tricept Parallel Robot. Photo courtesy of ABB.

B

F
A

S

Home

Camera

Fig. 1.23 Two-link planar robot example.

sentations of coordinate systems and transformations among various coordinate
systems.

Typically, the manipulator will be able to sense its own position in some
manner using internal sensors (position encoders located at joints 1 and 2) that
can measure directly the joint angles θ1 and θ2. We also need therefore to
express the positions A and B in terms of these joint angles. This leads to the
forward kinematics problem studied in Chapter 3, which is to determine
the position and orientation of the end-effector or tool in terms of the joint
variables.

It is customary to establish a fixed coordinate system, called the world or
base frame to which all objects including the manipulator are referenced. In
this case we establish the base coordinate frame o0x0y0 at the base of the robot,
as shown in Figure 1.24. The coordinates (x, y) of the tool are expressed in this
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y0

x0
θ1

x1

x2

θ2

y1

y2

Fig. 1.24 Coordinate frames for two-link planar robot.

coordinate frame as

x = x2 = α1 cos θ1 + α2 cos(θ1 + θ2) (1.1)
y = y2 = α1 sin θ1 + α2 sin(θ1 + θ2) (1.2)

in which α1 and α2 are the lengths of the two links, respectively. Also the
orientation of the tool frame relative to the base frame is given by the
direction cosines of the x2 and y2 axes relative to the x0 and y0 axes, that is,

x2 · x0 = cos(θ1 + θ2); x2 · y0 = − sin(θ1 + θ2)
y2 · x0 = sin(θ1 + θ2); y2 · y0 = cos(θ1 + θ2)

which we may combine into an orientation matrix[
x2 · x0 y2 · x0

x2 · y0 y2 · y0

]
=

[
cos(θ1 + θ2) − sin(θ1 + θ2)
sin(θ1 + θ2) cos(θ1 + θ2)

]
(1.3)

Equations (1.1), (1.2) and (1.3) are called the forward kinematic equa-
tions for this arm. For a six degree-of-freedom robot these equations are quite
complex and cannot be written down as easily as for the two-link manipula-
tor. The general procedure that we discuss in Chapter 3 establishes coordinate
frames at each joint and allows one to transform systematically among these
frames using matrix transformations. The procedure that we use is referred to
as the Denavit-Hartenberg convention. We then use homogeneous coor-
dinates and homogeneous transformations to simplify the transformation
among coordinate frames.

Inverse Kinematics

Now, given the joint angles θ1, θ2 we can determine the end-effector coordinates
x and y. In order to command the robot to move to location A we need the
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inverse; that is, we need the joint variables θ1, θ2 in terms of the x and y
coordinates of A. This is the problem of inverse kinematics. In other words,
given x and y in the forward kinematic Equations (1.1) and (1.2), we wish to
solve for the joint angles. Since the forward kinematic equations are nonlinear,
a solution may not be easy to find, nor is there a unique solution in general.
We can see in the case of a two-link planar mechanism that there may be no
solution, for example if the given (x, y) coordinates are out of reach of the
manipulator. If the given (x, y) coordinates are within the manipulator’s reach
there may be two solutions as shown in Figure 1.25, the so-called elbow up

elbow up

elbow down

Fig. 1.25 Multiple inverse kinematic solutions.

and elbow down configurations, or there may be exactly one solution if the
manipulator must be fully extended to reach the point. There may even be an
infinite number of solutions in some cases (Problem 1-25).

Consider the diagram of Figure 1.26. Using the Law of Cosines we see that

x

c

α1

α2

θ1

θ2

y

Fig. 1.26 Solving for the joint angles of a two-link planar arm.
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the angle θ2 is given by

cos θ2 =
x2 + y2 − α2

1 − α2
2

2α1α2
:= D (1.4)

We could now determine θ2 as

θ2 = cos−1(D) (1.5)

However, a better way to find θ2 is to notice that if cos(θ2) is given by
Equation (1.4) then sin(θ2) is given as

sin(θ2) = ±
√

1−D2 (1.6)

and, hence, θ2 can be found by

θ2 = tan−1 ±
√

1−D2

D
(1.7)

The advantage of this latter approach is that both the elbow-up and elbow-
down solutions are recovered by choosing the positive and negative signs in
Equation (1.7), respectively.

It is left as an exercise (Problem 1-19) to show that θ1 is now given as

θ1 = tan−1(y/x)− tan−1

(
α2 sin θ2

α1 + α2 cos θ2

)
(1.8)

Notice that the angle θ1 depends on θ2. This makes sense physically since
we would expect to require a different value for θ1, depending on which solution
is chosen for θ2.

Velocity Kinematics

In order to follow a contour at constant velocity, or at any prescribed velocity,
we must know the relationship between the velocity of the tool and the joint
velocities. In this case we can differentiate Equations (1.1) and (1.2) to obtain

ẋ = −α1 sin θ1 · θ̇1 − α2 sin(θ1 + θ2)(θ̇1 + θ̇2) (1.9)
ẏ = α1 cos θ1 · θ̇1 + α2 cos(θ1 + θ2)(θ̇1 + θ̇2)

Using the vector notation x =
[
x
y

]
and θ =

[
θ1
θ2

]
we may write these

equations as

ẋ =
[
−α1 sin θ1 − α2 sin(θ1 + θ2) −α2 sin(θ1 + θ2)
α1 cos θ1 + α2 cos(θ1 + θ2) α2 cos(θ1 + θ2)

]
θ̇ (1.10)

= Jθ̇
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The matrix J defined by Equation (1.10) is called the Jacobian of the
manipulator and is a fundamental object to determine for any manipulator. In
Chapter 4 we present a systematic procedure for deriving the Jacobian for any
manipulator in the so-called cross-product form.

The determination of the joint velocities from the end-effector velocities is
conceptually simple since the velocity relationship is linear. Thus the joint
velocities are found from the end-effector velocities via the inverse Jacobian

θ̇ = J−1ẋ (1.11)

where J−1 is given by

J−1 =
1

α1α2sθ2

[
α2cθ1+θ2 α2sθ1+θ2

−α1cθ1 − α2cθ1+θ2 −α1sθ1 − α2sθ1+θ2

]
(1.12)

in which cθ and sθ denote respectively cos θ and sin θ. The determinant of the
Jacobian in Equation (1.10) is α1α2 sin θ2. The Jacobian does not have an in-
verse, therefore, when θ2 = 0 or π, in which case the manipulator is said to be
in a singular configuration, such as shown in Figure 1.27 for θ2 = 0. The

θ1

y0

x0

θ2 = 0α1

α2

Fig. 1.27 A singular configuration.

determination of such singular configurations is important for several reasons.
At singular configurations there are infinitesimal motions that are unachiev-
able; that is, the manipulator end-effector cannot move in certain directions.
In the above cases the end effector cannot move in the positive x2 direction
when θ2 = 0. Singular configurations are also related to the nonuniqueness
of solutions of the inverse kinematics. For example, for a given end-effector
position, there are in general two possible solutions to the inverse kinematics.
Note that a singular configuration separates these two solutions in the sense
that the manipulator cannot go from one configuration to the other without
passing through a singularity. For many applications it is important to plan
manipulator motions in such a way that singular configurations are avoided.
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Path Planning and Trajectory Generation

The robot control problem is typically decomposed hierarchically into three
tasks: path planning, trajectory generation, and trajectory tracking. The path
planning problem, considered in Chapter 5, is to determine a path in task
space (or configuration space) to move the robot to a goal position while avoid-
ing collisions with objects in its workspace. These paths encode position and
orientation information without timing considerations, i.e. without considering
velocities and accelerations along the planned paths. The trajectory generation
problem, also considered in Chapter 5, is to generate reference trajectories that
determine the time history of the manipulator along a given path or between
initial and final configurations.

Dynamics

A robot manipulator is primarily a positioning device. To control the position
we must know the dynamic properties of the manipulator in order to know how
much force to exert on it to cause it to move: too little force and the manipulator
is slow to react; too much force and the arm may crash into objects or oscillate
about its desired position.

Deriving the dynamic equations of motion for robots is not a simple task
due to the large number of degrees of freedom and nonlinearities present in the
system. In Chapter 6 we develop techniques based on Lagrangian dynamics for
systematically deriving the equations of motion of such a system. In addition
to the rigid links, the complete description of robot dynamics includes the
dynamics of the actuators that produce the forces and torques to drive the
robot, and the dynamics of the drive trains that transmit the power from the
actuators to the links. Thus, in Chapter 7 we also discuss actuator and drive
train dynamics and their effects on the control problem.

Position Control

In Chapters 7 and 8 we discuss the design of control algorithms for the execution
of programmed tasks. The motion control problem consists of the Tracking
and Disturbance Rejection Problem, which is the problem of determining
the control inputs necessary to follow, or track, a desired trajectory that has
been planned for the manipulator, while simultaneously rejecting disturbances
due to unmodeled dynamic effects such as friction and noise. We detail the stan-
dard approaches to robot control based on frequency domain techniques. We
also introduce the notion of feedforward control and the techniques of com-
puted torque and inverse dynamics as a means for compensating the com-
plex nonlinear interaction forces among the links of the manipulator. Robust
and adaptive control are introduced in Chapter 8 using the Second Method
of Lyapunov. Chapter 10 provides some additional advanced techniques from
nonlinear control theory that are useful for controlling high performance robots.
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Force Control

Once the manipulator has reached location A. it must follow the contour S
maintaining a constant force normal to the surface. Conceivably, knowing the
location of the object and the shape of the contour, one could carry out this
task using position control alone. This would be quite difficult to accomplish
in practice, however. Since the manipulator itself possesses high rigidity, any
errors in position due to uncertainty in the exact location of the surface or
tool would give rise to extremely large forces at the end-effector that could
damage the tool, the surface, or the robot. A better approach is to measure the
forces of interaction directly and use a force control scheme to accomplish the
task. In Chapter 9 we discuss force control and compliance along with common
approaches to force control, namely hybrid control and impedance control.

Vision

Cameras have become reliable and relatively inexpensive sensors in many robotic
applications. Unlike joint sensors, which give information about the internal
configuration of the robot, cameras can be used not only to measure the position
of the robot but also to locate objects external to the robot in its workspace.
In Chapter 11 we discuss the use of computer vision to determine position and
orientation of objects.

Vision-based Control

In some cases, we may wish to control the motion of the manipulator relative
to some target as the end-effector moves through free space. Here, force control
cannot be used. Instead, we can use computer vision to close the control loop
around the vision sensor. This is the topic of Chapter 12. There are several
approaches to vision-based control, but we will focus on the method of Image-
Based Visual Servo (IBVS). This method has become very popular in recent
years, and it relies on mathematical development analogous to that given in
Chapter 4.

1.5 CHAPTER SUMMARY

In this chapter, we have given an introductory overview of some of the basic
concepts required to develop mathematical models for robot arms. We have
also discussed a few of the relevant mechanical aspects of robotic systems. In
the remainder of the text, we will address the basic problems confronted in
sensor-based robotic manipulation.

Many books have been written about these and more advance topics, in-
cluding [1][3] [6][10][16][17][21] [23][30][33][41] [44][49][50][51] [59][63][67][70][77]
[42][13]. There is a great deal of ongoing research in robotics. Current research
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results can be found in journals such as IEEE Transactions on Robotics (pre-
viously IEEE Transactions on Robotics and Automation), IEEE Robotics and
Automation Magazine, International Journal of Robotics Research, Robotics
and Autonomous Systems, Journal of Robotic Systems, Robotica, Journal of In-
telligent and Robotic Systems, Autonomous Robots, Advanced Robotics. and
in proceedings from conferences such as IEEE International Conference on
Robotics and Automation, IEEE International Conference on Intelligent Robots
and Systems, Workshop on the Algorithmic Foundations of Robotics, Interna-
tional Symposium on Experimental Robotics, and International Symposium on
Robotics Research.
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Problems

1-1 What are the key features that distinguish robots from other forms of
automation such as CNC milling machines?

1-2 Briefly define each of the following terms: forward kinematics, inverse
kinematics, trajectory planning, workspace, accuracy, repeatability, reso-
lution, joint variable, spherical wrist, end effector.

1-3 What are the main ways to classify robots?

1-4 Make a list of robotics related magazines and journals carried by the
university library.

1-5 Make a list of 10 robot applications. For each application discuss which
type of manipulator would be best suited; which least suited. Justify your
choices in each case.

1-6 List several applications for non-servo robots; for point-to point robots,
for continuous path robots.

1-7 List five applications that a continuous path robot could do that a point-
to-point robot could not do.

1-8 List five applications where computer vision would be useful in robotics.

1-9 List five applications where either tactile sensing or force feedback control
would be useful in robotics.

1-10 Find out how many industrial robots are currently in operation in the
United States. How many are in operation in Japan? What country
ranks third in the number of industrial robots in use?

1-11 Suppose we could close every factory today and reopen then tomorrow
fully automated with robots. What would be some of the economic and
social consequences of such a development?

1-12 Suppose a law were passed banning all future use of industrial robots.
What would be some of the economic and social consequences of such an
act?

1-13 Discuss possible applications where redundant manipulators would be use-
ful.

1-14 Referring to Figure 1.28, suppose that the tip of a single link travels a
distance d between two points. A linear axis would travel the distance d
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�

�θ

d

Fig. 1.28 Diagram for Problem 1-15

while a rotational link would travel through an arc length `θ as shown.
Using the law of cosines show that the distance d is given by

d = `
√

2(1− cos(θ))

which is of course less than `θ. With 10-bit accuracy and ` = 1m, θ = 90◦

what is the resolution of the linear link? of the rotational link?

1-15 A single-link revolute arm is shown in Figure 1.28. If the length of the
link is 50 cm and the arm travels 180? what is the control resolution
obtained with an 8-bit encoder?

1-16 Repeat Problem 1.15 assuming that the 8-bit encoder is located on the
motor shaft that is connected to the link through a 50:1 gear reduction.
Assume perfect gears.

1-17 Why is accuracy generally less than repeatability?

1-18 How could manipulator accuracy be improved using direct endpoint sens-
ing? What other difficulties might direct endpoint sensing introduce into
the control problem?

1-19 Derive Equation (1.8).

1-20 For the two-link manipulator of Figure 1.24 suppose α1 = α2 = 1. Find
the coordinates of the tool when θ1 = π

6 and θ2 = π
2 .

1-21 Find the joint angles θ1, θ2 when the tool is located at coordinates
(

1
2 ,

1
2

)
.

1-22 If the joint velocities are constant at θ̇1 = 1, θ̇2 = 2, what is the velocity
of the tool? What is the instantaneous tool velocity when θ1 = θ2 = π

4 ?

1-23 Write a computer program to plot the joint angles as a function of time
given the tool locations and velocities as a function of time in Cartesian
coordinates.

1-24 Suppose we desire that the tool follow a straight line between the points
(0,2) and (2,0) at constant speed s. Plot the time history of joint angles.
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1-25 For the two-link planar manipulator of Figure 1.24 is it possible for there
to be an infinite number of solutions to the inverse kinematic equations?
If so, explain how this can occur.



2
RIGID MOTIONS AND

HOMOGENEOUS
TRANSFORMATIONS

A large part of robot kinematics is concerned with the establishment of
various coordinate systems to represent the positions and orientations of rigid
objects, and with transformations among these coordinate systems. Indeed, the
geometry of three-dimensional space and of rigid motions plays a central role in
all aspects of robotic manipulation. In this chapter we study the operations of
rotation and translation, and introduce the notion of homogeneous transforma-
tions.1 Homogeneous transformations combine the operations of rotation and
translation into a single matrix multiplication, and are used in Chapter 3 to
derive the so-called forward kinematic equations of rigid manipulators.

We begin by examining representations of points and vectors in a Euclidean
space equipped with multiple coordinate frames. Following this, we introduce
the concept of a rotation matrix to represent relative orientations among co-
ordinate frames. Then we combine these two concepts to build homogeneous
transformation matrices, which can be used to simultaneously represent the
position and orientation of one coordinate frame relative to another. Further-
more, homogeneous transformation matrices can be used to perform coordinate
transformations. Such transformations allow us to represent various quantities
in different coordinate frames, a facility that we will often exploit in subsequent
chapters.

1Since we make extensive use of elementary matrix theory, the reader may wish to review
Appendix B before beginning this chapter.

29
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Fig. 2.1 Two coordinate frames, a point p, and two vectors v1 and v2.

2.1 REPRESENTING POSITIONS

Before developing representation schemes for points and vectors, it is instructive
to distinguish between the two fundamental approaches to geometric reasoning:
the synthetic approach and the analytic approach. In the former, one reasons
directly about geometric entities (e.g., points or lines), while in the latter, one
represents these entities using coordinates or equations, and reasoning is per-
formed via algebraic manipulations.

Consider Figure 2.1. This figure shows two coordinate frames that differ in
orientation by an angle of 45◦. Using the synthetic approach, without ever as-
signing coordinates to points or vectors, one can say that x0 is perpendicular to
y0, or that v1×v2 defines a vector that is perpendicular to the plane containing
v1 and v2, in this case pointing out of the page.

In robotics, one typically uses analytic reasoning, since robot tasks are often
defined using Cartesian coordinates. Of course, in order to assign coordinates
it is necessary to specify a coordinate frame. Consider again Figure 2.1. We
could specify the coordinates of the point p with respect to either frame o0x0y0
or frame o1x1y1. In the former case, we might assign to p the coordinate vector
(5, 6)T , and in the latter case (−2.8, 4.2)T . So that the reference frame will
always be clear, we will adopt a notation in which a superscript is used to
denote the reference frame. Thus, we would write

p0 =
[

5
6

]
, p1 =

[
−2.8

4.2

]
Geometrically, a point corresponds to a specific location in space. We stress

here that p is a geometric entity, a point in space, while both p0 and p1 are
coordinate vectors that represent the location of this point in space with respect
to coordinate frames o0x0y0 and o1x1y1, respectively.
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Since the origin of a coordinate system is just a point in space, we can assign
coordinates that represent the position of the origin of one coordinate system
with respect to another. In Figure 2.1, for example, we have

o01 =
[

10
5

]
, o10 =

[
−10.6

3.5

]
In cases where there is only a single coordinate frame, or in which the refer-

ence frame is obvious, we will often omit the superscript. This is a slight abuse
of notation, and the reader is advised to bear in mind the difference between the
geometric entity called p and any particular coordinate vector that is assigned
to represent p. The former is independent of the choice of coordinate systems,
while the latter obviously depends on the choice of coordinate frames.

While a point corresponds to a specific location in space, a vector specifies
a direction and a magnitude. Vectors can be used, for example, to represent
displacements or forces. Therefore, while the point p is not equivalent to the
vector v1, the displacement from the origin o0 to the point p is given by the
vector v1. In this text, we will use the term vector to refer to what are sometimes
called free vectors, i.e., vectors that are not constrained to be located at a
particular point in space. Under this convention, it is clear that points and
vectors are not equivalent, since points refer to specific locations in space, but
a vector can be moved to any location in space. Under this convention, two
vectors are equal if they have the same direction and the same magnitude.

When assigning coordinates to vectors, we use the same notational conven-
tion that we used when assigning coordinates to points. Thus, v1 and v2 are
geometric entities that are invariant with respect to the choice of coordinate
systems, but the representation by coordinates of these vectors depends directly
on the choice of reference coordinate frame. In the example of Figure 2.1, we
would obtain

v0
1 =

[
5
6

]
, v1

1 =
[

7.77
0.8

]
, v0

2 =
[
−5.1

1

]
, v1

2 =
[
−2.89

4.2

]
Coordinate Convention
In order to perform algebraic manipulations using coordinates, it is essential
that all coordinate vectors be defined with respect to the same coordinate frame.
In the case of free vectors, it is enough that they be defined with respect to
“parallel” coordinate frames, i.e. frames whose respective coordinate axes are
parallel, since only their magnitude and direction are specified and not their
absolute locations in space.

Using this convention, an expression of the form v1
1 + v2

2 , where v1
1 and v2

2

are as in Figure 2.1, is not defined since the frames o0x0y0 and o1x1y1 are not
parallel. Thus, we see a clear need, not only for a representation system that
allows points to be expressed with respect to various coordinate systems, but
also for a mechanism that allows us to transform the coordinates of points that
are expressed in one coordinate system into the appropriate coordinates with
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o0, o1

y0

y1

θ

x1

sin θ

cos θ

x0

Fig. 2.2 Coordinate frame o1x1y1 is oriented at an angle θ with respect to o0x0y0.

respect to some other coordinate frame. Such coordinate transformations and
their derivations are the topic for much of the remainder of this chapter.

2.2 REPRESENTING ROTATIONS

In order to represent the relative position and orientation of one rigid body
with respect to another, we will rigidly attach coordinate frames to each body,
and then specify the geometric relationships between these coordinate frames.
In Section 2.1 we saw how one can represent the position of the origin of one
frame with respect to another frame. In this section, we address the problem
of describing the orientation of one coordinate frame relative to another frame.
We begin with the case of rotations in the plane, and then generalize our results
to the case of orientations in a three dimensional space.

2.2.1 Rotation in the plane

Figure 2.2 shows two coordinate frames, with frame o1x1y1 being obtained by
rotating frame o0x0y0 by an angle θ. Perhaps the most obvious way to represent
the relative orientation of these two frames is to merely specify the angle of
rotation, θ. There are two immediate disadvantages to such a representation.
First, there is a discontinuity in the mapping from relative orientation to the
value of θ in a neighborhood of θ = 0. In particular, for θ = 2π−ε, small changes
in orientation can produce large changes in the value of θ (i.e., a rotation by ε
causes θ to “wrap around” to zero). Second, this choice of representation does
not scale well to the three dimensional case.

A slightly less obvious way to specify the orientation is to specify the coor-
dinate vectors for the axes of frame o1x1y1 with respect to coordinate frame



REPRESENTING ROTATIONS 33

o0x0y0
2:

R0
1 =

[
x0

1|y0
1

]
where x0

1 and y0
1 are the coordinates in frame o0x0y0 of unit vectors x1 and

y1, respectively. A matrix in this form is called a rotation matrix. Rotation
matrices have a number of special properties that we will discuss below.

In the two dimensional case, it is straightforward to compute the entries of
this matrix. As illustrated in Figure 2.2,

x0
1 =

[
cos θ
sin θ

]
, y0

1 =
[
− sin θ

cos θ

]
which gives

R0
1 =

[
cos θ − sin θ
sin θ cos θ

]
(2.1)

Note that we have continued to use the notational convention of allowing the
superscript to denote the reference frame. Thus, R0

1 is a matrix whose column
vectors are the coordinates of the (unit vectors along the) axes of frame o1x1y1
expressed relative to frame o0x0y0.

Although we have derived the entries for R0
1 in terms of the angle θ, it is not

necessary that we do so. An alternative approach, and one that scales nicely
to the three dimensional case, is to build the rotation matrix by projecting the
axes of frame o1x1y1 onto the coordinate axes of frame o0x0y0. Recalling that
the dot product of two unit vectors gives the projection of one onto the other,
we obtain

x0
1 =

[
x1 · x0

x1 · y0

]
, y0

1 =
[
y1 · x0

y1 · y0

]
which can be combined to obtain the rotation matrix

R0
1 =

[
x1 · x0 y1 · x0

x1 · y0 y1 · y0

]
Thus the columns of R0

1 specify the direction cosines of the coordinate axes
of o1x1y1 relative to the coordinate axes of o0x0y0. For example, the first
column (x1 ·x0, x1 · y0)T of R0

1 specifies the direction of x1 relative to the frame
o0x0y0. Note that the right hand sides of these equations are defined in terms
of geometric entities, and not in terms of their coordinates. Examining Figure
2.2 it can be seen that this method of defining the rotation matrix by projection
gives the same result as was obtained in Equation (2.1).

If we desired instead to describe the orientation of frame o0x0y0 with respect
to the frame o1x1y1 (i.e., if we desired to use the frame o1x1y1 as the reference
frame), we would construct a rotation matrix of the form

R1
0 =

[
x0 · x1 y0 · x1

x0 · y1 y0 · y1

]

2We will use xi, yi to denote both coordinate axes and unit vectors along the coordinate axes
depending on the context.
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Table 2.2.1: Properties of the Matrix Group SO(n)

• R ∈ SO(n)

• R−1 ∈ SO(n)

• R−1 = RT

• The columns (and therefore the rows) of R are mutually orthogonal

• Each column (and therefore each row) of R is a unit vector

• detR = 1

Since the inner product is commutative, (i.e. xi · yj = yj · xi), we see that

R1
0 = (R0

1)
T

In a geometric sense, the orientation of o0x0y0 with respect to the frame
o1x1y1 is the inverse of the orientation of o1x1y1 with respect to the frame
o0x0y0. Algebraically, using the fact that coordinate axes are always mutually
orthogonal, it can readily be seen that

(R0
1)
T = (R0

1)
−1

The column vectors of R0
1 are of unit length and mutually orthogonal (Prob-

lem 2-4). Such a matrix is said to be orthogonal. It can also be shown
(Problem 2-5) that detR0

1 = ±1. If we restrict ourselves to right-handed coor-
dinate systems, as defined in Appendix B, then detR0

1 = +1 (Problem 2-5). It
is customary to refer to the set of all such n×n matrices by the symbol SO(n),
which denotes the Special Orthogonal group of order n. The properties of
such matrices are summarized in Table 2.2.1.

To provide further geometric intuition for the notion of the inverse of a rota-
tion matrix, note that in the two dimensional case, the inverse of the rotation
matrix corresponding to a rotation by angle θ can also be easily computed
simply by constructing the rotation matrix for a rotation by the angle −θ:

[
cos(−θ) − sin(−θ)
sin(−θ) cos(−θ)

]
=

[
cos θ sin θ
− sin θ cos θ

]
=

[
cos θ − sin θ
sin θ cos θ

]T
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2.2.2 Rotations in three dimensions

The projection technique described above scales nicely to the three dimensional
case. In three dimensions, each axis of the frame o1x1y1z1 is projected onto
coordinate frame o0x0y0z0. The resulting rotation matrix is given by

R0
1 =

 x1 · x0 y1 · x0 z1 · x0

x1 · y0 y1 · y0 z1 · y0
x1 · z0 y1 · z0 z1 · z0



As was the case for rotation matrices in two dimensions, matrices in this
form are orthogonal, with determinant equal to 1. In this case, 3 × 3 rotation
matrices belong to the group SO(3). The properties listed in Table 2.2.1 also
apply to rotation matrices in SO(3).

Example 2.1

y0

z0, z1

x0

y1

cos θ

sin θ
θ

cos θ

x1

sin θ

Fig. 2.3 Rotation about z0 by an angle θ.

Suppose the frame o1x1y1z1 is rotated through an angle θ about the z0-axis,
and it is desired to find the resulting transformation matrix R0

1. Note that by
convention the positive sense for the angle θ is given by the right hand rule; that
is, a positive rotation by angle θ about the z-axis would advance a right-hand
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threaded screw along the positive z-axis3. From Figure 2.3 we see that

x1 · x0 = cos θ, y1 · x0 = − sin θ,
x1 · y0 = sin θ, y1 · y0 = cos θ

and

z0 · z1 = 1

while all other dot products are zero. Thus the rotation matrix R0
1 has a par-

ticularly simple form in this case, namely

R0
1 =

 cos θ − sin θ 0
sin θ cos θ 0

0 0 1

 (2.2)

�

The Basic Rotation Matrices

The rotation matrix given in Equation (2.2) is called a basic rotation matrix
(about the z-axis). In this case we find it useful to use the more descriptive
notation Rz,θ instead of R0

1 to denote the matrix. It is easy to verify that the
basic rotation matrix Rz,θ has the properties

Rz,0 = I (2.3)
Rz,θRz,φ = Rz,θ+φ (2.4)

which together imply (
Rz,θ

)−1 = Rz,−θ (2.5)

Similarly the basic rotation matrices representing rotations about the x and
y-axes are given as (Problem 2-8)

Rx,θ =

 1 0 0
0 cos θ − sin θ
0 sin θ cos θ

 (2.6)

Ry,θ =

 cos θ 0 sin θ
0 1 0

− sin θ 0 cos θ

 (2.7)

which also satisfy properties analogous to Equations (2.3)-(2.5).

Example 2.2

3See also Appendix B.
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Consider the frames o0x0y0z0 and o1x1y1z1 shown in Figure 2.4. Projecting
the unit vectors x1, y1, z1 onto x0, y0, z0 gives the coordinates of x1, y1, z1 in

the o0x0y0z0 frame. We see that the coordinates of x1 are
(

1√
2
, 0, 1√

2

)T
, the

coordinates of y1 are
(

1√
2
, 0, −1√

2

)T
and the coordinates of z1 are (0, 1, 0)T . The

rotation matrix R0
1 specifying the orientation of o1x1y1z1 relative to o0x0y0z0

has these as its column vectors, that is,

R0
1 =

 1√
2

1√
2

0
0 0 1
1√
2

−1√
2

0

 (2.8)

z0

x1

y1

y0, z1

45◦x0

Fig. 2.4 Defining the relative orientation of two frames.

�

2.3 ROTATIONAL TRANSFORMATIONS

Figure 2.5 shows a rigid object S to which a coordinate frame o1x1y1z1 is
attached. Given the coordinates p1 of the point p (i.e., given the coordinates of
p with respect to the frame o1x1y1z1), we wish to determine the coordinates of
p relative to a fixed reference frame o0x0y0z0. The coordinates p1 = (u, v, w)T

satisfy the equation
p = ux1 + vy1 + wz1

In a similar way, we can obtain an expression for the coordinates p0 by project-
ing the point p onto the coordinate axes of the frame o0x0y0z0, giving

p0 =

 p · x0

p · y0
p · z0


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y1

z1

z0

x0

x1

o y0

S

p

Fig. 2.5 Coordinate frame attached to a rigid body.

Combining these two equations we obtain

p0 =

 (ux1 + vy1 + wz1) · x0

(ux1 + vy1 + wz1) · y0
(ux1 + vy1 + wz1) · z0


=

 ux1 · x0 + vy1 · x0 + wz1 · x0

ux1 · y0 + vy1 · y0 + wz1 · y0
ux1 · z0 + vy1 · z0 + wz1 · z0


=

 x1 · x0 y1 · x0 z1 · x0

x1 · y0 y1 · y0 z1 · y0
x1 · z0 y1 · z0 z1 · z0

 u
v
w


But the matrix in this final equation is merely the rotation matrix R0

1, which
leads to

p0 = R0
1p

1 (2.9)

Thus, the rotation matrix R0
1 can be used not only to represent the orien-

tation of coordinate frame o1x1y1z1 with respect to frame o0x0y0z0, but also
to transform the coordinates of a point from one frame to another. If a given
point is expressed relative to o1x1y1z1 by coordinates p1, then R0

1p
1 represents

the same point expressed relative to the frame o0x0y0z0.
We can also use rotation matrices to represent rigid motions that correspond

to pure rotation. Consider Figure 2.6. One corner of the block in Figure 2.6(a) is
located at the point pa in space. Figure 2.6(b) shows the same block after it has
been rotated about z0 by the angle π. In Figure 2.6(b), the same corner of the
block is now located at point pb in space. It is possible to derive the coordinates
for pb given only the coordinates for pa and the rotation matrix that corresponds
to the rotation about z0. To see how this can be accomplished, imagine that
a coordinate frame is rigidly attached to the block in Figure 2.6(a), such that
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z0

x0 x0

z0

pb
y0 y0

(a) (b)

pa

Fig. 2.6 The block in (b) is obtained by rotating the block in (a) by π about z0.

it is coincident with the frame o0x0y0z0. After the rotation by π, the block’s
coordinate frame, which is rigidly attached to the block, is also rotated by π.
If we denote this rotated frame by o1x1y1z1, we obtain

R0
1 = Rz,π =

 −1 0 0
0 −1 0
0 0 1


In the local coordinate frame o1x1y1z1, the point pb has the coordinate rep-
resentation p1

b . To obtain its coordinates with respect to frame o0x0y0z0, we
merely apply the coordinate transformation Equation (2.9), giving

p0
b = Rz,πp

1
b

The key thing to notice is that the local coordinates, p1
b , of the corner of the

block do not change as the block rotates, since they are defined in terms of
the block’s own coordinate frame. Therefore, when the block’s frame is aligned
with the reference frame o0x0y0z0 (i.e., before the rotation is performed), the
coordinates p1

b = p0
a, since before the rotation is performed, the point pa is

coincident with the corner of the block. Therefore, we can substitute p0
a into

the previous equation to obtain

p0
b = Rz,πp

0
a

This equation shows us how to use a rotation matrix to represent a rotational
motion. In particular, if the point pb is obtained by rotating the point pa as
defined by the rotation matrix R, then the coordinates of pb with respect to
the reference frame are given by

p0
b = Rp0

a
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y0

z0

x0

�v1

�v0

π
2

Fig. 2.7 Rotating a vector about axis y0.

This same approach can be used to rotate vectors with respect to a coordinate
frame, as the following example illustrates.

Example 2.3
The vector v with coordinates v0 = (0, 1, 1)T is rotated about y0 by π

2 as
shown in Figure 2.7. The resulting vector v1 has coordinates given by

v0
1 = Ry,π

2
v0 (2.10)

=

 0 0 1
0 1 0
−1 0 0

 0
1
1

 =

 1
1
0

 (2.11)

�
Thus, as we have now seen, a third interpretation of a rotation matrix R is

as an operator acting on vectors in a fixed frame. In other words, instead of
relating the coordinates of a fixed vector with respect to two different coordinate
frames, Equation (2.10) can represent the coordinates in o0x0y0z0 of a vector
v1 that is obtained from a vector v by a given rotation.

Summary
We have seen that a rotation matrix, either R ∈ SO(3) or R ∈ SO(2), can be
interpreted in three distinct ways:

1. It represents a coordinate transformation relating the coordinates of a
point p in two different frames.

2. It gives the orientation of a transformed coordinate frame with respect to
a fixed coordinate frame.

3. It is an operator taking a vector and rotating it to a new vector in the
same coordinate system.
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The particular interpretation of a given rotation matrix R that is being used
must then be made clear by the context.

2.3.1 Similarity Transformations

A coordinate frame is defined by a set of basis vectors, for example, unit vec-
tors along the three coordinate axes. This means that a rotation matrix, as a
coordinate transformation, can also be viewed as defining a change of basis from
one frame to another. The matrix representation of a general linear transfor-
mation is transformed from one frame to another using a so-called similarity
transformation4. For example, if A is the matrix representation of a given
linear transformation in o0x0y0z0 and B is the representation of the same linear
transformation in o1x1y1z1 then A and B are related as

B = (R0
1)
−1AR0

1 (2.12)

whereR0
1 is the coordinate transformation between frames o1x1y1z1 and o0x0y0z0.

In particular, if A itself is a rotation, then so is B, and thus the use of similarity
transformations allows us to express the same rotation easily with respect to
different frames.

Example 2.4
Henceforth, whenever convenient we use the shorthand notation cθ = cos θ,

sθ = sin θ for trigonometric functions. Suppose frames o0x0y0z0 and o1x1y1z1
are related by the rotation

R0
1 =

 0 0 1
0 1 0
−1 0 0


as shown in Figure 2.4. If A = Rz,θ relative to the frame o0x0y0z0, then,
relative to frame o1x1y1z1 we have

B = (R0
1)
−1A0R0

1 =

 1 0 0
0 cθ sθ
0 −sθ cθ


In other words, B is a rotation about the z0-axis but expressed relative to the
frame o1x1y1z1. This notion will be useful below and in later sections.
�

4See Appendix B.
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y0

z0

x0

�v1

�v0

π
2

Fig. 2.8 Coordinate Frames for Example 2.4.

2.4 COMPOSITION OF ROTATIONS

In this section we discuss the composition of rotations. It is important for
subsequent chapters that the reader understand the material in this section
thoroughly before moving on.

2.4.1 Rotation with respect to the current frame

Recall that the matrix R0
1 in Equation (2.9) represents a rotational transfor-

mation between the frames o0x0y0z0 and o1x1y1z1. Suppose we now add a
third coordinate frame o2x2y2z2 related to the frames o0x0y0z0 and o1x1y1z1
by rotational transformations. A given point p can then be represented by co-
ordinates specified with respect to any of these three frames: p0, p1 and p2. The
relationship among these representations of p is

p0 = R0
1p

1 (2.13)
p1 = R1

2p
2 (2.14)

p0 = R0
2p

2 (2.15)

where each Rij is a rotation matrix. Substituting Equation (2.14) into Equation
(2.13) results in

p0 = R0
1R

1
2p

2 (2.16)

Note that R0
1 and R0

2 represent rotations relative to the frame o0x0y0z0 while
R1

2 represents a rotation relative to the frame o1x1y1z1. Comparing Equa-
tions (2.15) and (2.16) we can immediately infer

R0
2 = R0

1R
1
2 (2.17)

Equation (2.17) is the composition law for rotational transformations. It states
that, in order to transform the coordinates of a point p from its representation
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z0

x0

y0, y1x1

y2

φ

+ =

z0

x0

z1

x1

φ

y1
x2

y2
x1

y0, y1

z1, z2z1, z2

x2

θθ

Fig. 2.9 Composition of rotations about current axes.

p2 in the frame o2x2y2z2 to its representation p0 in the frame o0x0y0z0, we may
first transform to its coordinates p1 in the frame o1x1y1z1 using R1

2 and then
transform p1 to p0 using R0

1.
We may also interpret Equation (2.17) as follows. Suppose initially that all

three of the coordinate frames coincide. We first rotate the frame o2x2y2z2
relative to o0x0y0z0 according to the transformation R0

1. Then, with the frames
o1x1y1z1 and o2x2y2z2 coincident, we rotate o2x2y2z2 relative to o1x1y1z1 ac-
cording to the transformation R1

2. In each case we call the frame relative to
which the rotation occurs the current frame.

Example 2.5
Suppose a rotation matrix R represents a rotation of angle φ about the current

y-axis followed by a rotation of angle θ about the current z-axis. Refer to
Figure 2.9. Then the matrix R is given by

R = Ry,φRz,θ (2.18)

=

 cφ 0 sφ
0 1 0
−sφ 0 cφ

 cθ −sθ 0
sθ cθ 0
0 0 1


=

 cφcθ −cφsθ sφ
sθ cθ 0
−sφcθ sφsθ cφ


�

It is important to remember that the order in which a sequence of rotations
are carried out, and consequently the order in which the rotation matrices are
multiplied together, is crucial. The reason is that rotation, unlike position,
is not a vector quantity and so rotational transformations do not commute in
general.

Example 2.6
Suppose that the above rotations are performed in the reverse order, that is,

first a rotation about the current z-axis followed by a rotation about the current
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y-axis. Then the resulting rotation matrix is given by

R′ = Rz,θRy,φ (2.19)

=

 cθ −sφ 0
sθ cθ 0
0 0 1

 cφ 0 sφ
0 1 0
−sφ 0 cφ


=

 cθcφ −sθ cθsφ
sθcφ cθ sθsφ
−sφ 0 cφ


Comparing Equations (2.18) and (2.19) we see that R 6= R′.
�

2.4.2 Rotation with respect to the fixed frame

Many times it is desired to perform a sequence of rotations, each about a
given fixed coordinate frame, rather than about successive current frames. For
example we may wish to perform a rotation about x0 followed by a rotation
about y0 (and not y1!). We will refer to o0x0y0z0 as the fixed frame. In this
case the composition law given by Equation (2.17) is not valid. It turns out
that the correct composition law in this case is simply to multiply the successive
rotation matrices in the reverse order from that given by Equation (2.17). Note
that the rotations themselves are not performed in reverse order. Rather they
are performed about the fixed frame instead of about the current frame.

To see why this is so, suppose we have two frames o0x0y0z0 and o1x1y1z1
related by the rotational transformation R0

1. If R ∈ SO(3) represents a rotation
relative to o0x0y0z0 we know from Section 2.3.1 that the representation for R
in the current frame o1x1y1z1 is given by (R0

1)
−1RR0

1. Therefore, applying the
composition law for rotations about the current axis yields

R0
2 = R0

1

[
(R0

1)
−1RR0

1

]
= RR0

1 (2.20)
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Fig. 2.10 Composition of rotations about fixed axes.

Example 2.7
Referring to Figure 2.10, suppose that a rotation matrix R represents a ro-

tation of angle φ about y0 followed by a rotation of angle θ about the fixed z0.
The second rotation about the fixed axis is given by Ry,−φRz,θRy,φ, which

is the basic rotation about the z-axis expressed relative to the frame o1x1y1z1
using a similarity transformation. Therefore, the composition rule for rotational
transformations gives us

p0 = Ry,φp
1

= Ry,φ
[
Ry,−φRz,θRy,φ

]
p2 (2.21)

= Rz,θRy,φp
2

It is not necessary to remember the above derivation, only to note by comparing
Equation (2.21) with Equation (2.18) that we obtain the same basic rotation
matrices, but in the reverse order.
�
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Summary
We can summarize the rule of composition of rotational transformations by
the following recipe. Given a fixed frame o0x0y0z0 a current frame o1x1y1z1,
together with rotation matrix R0

1 relating them, if a third frame o2x2y2z2 is
obtained by a rotation R performed relative to the current frame then post-
multiply R0

1 by R = R1
2 to obtain

R0
2 = R0

1R
1
2 (2.22)

If the second rotation is to be performed relative to the fixed frame then
it is both confusing and inappropriate to use the notation R1

2 to represent this
rotation. Therefore, if we represent the rotation by R, we premultiply R0

1 by
R to obtain

R0
2 = RR0

1 (2.23)

In each case R0
2 represents the transformation between the frames o0x0y0z0 and

o2x2y2z2. The frame o2x2y2z2 that results in Equation (2.22) will be different
from that resulting from Equation (2.23).

Using the above rule for composition of rotations, it is an easy matter to
determine the result of multiple sequential rotational transformations.

Example 2.8
Suppose R is defined by the following sequence of basic rotations in the order

specified:

1. A rotation of θ about the current x-axis

2. A rotation of φ about the current z-axis

3. A rotation of α about the fixed z-axis

4. A rotation of β about the current y-axis

5. A rotation of δ about the fixed x-axis

In order to determine the cumulative effect of these rotations we simply begin
with the first rotation Rx,θ and pre- or post-multiply as the case may be to obtain

R = Rx,δRz,αRx,θRz,φRy,β (2.24)

�

2.5 PARAMETERIZATIONS OF ROTATIONS

The nine elements rij in a general rotational transformation R are not inde-
pendent quantities. Indeed a rigid body possesses at most three rotational
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Fig. 2.11 Euler angle representation.

degrees-of-freedom and thus at most three quantities are required to specify its
orientation. This can be easily seen by examining the constraints that govern
the matrices in SO(3): ∑

i

r2ij = 1, j ∈ {1, 2, 3} (2.25)

r1ir1j + r2ir2j + r3ir3j = 0, i 6= j (2.26)

Equation (2.25) follows from the fact the the columns of a rotation matrix
are unit vectors, and Equation (2.26) follows from the fact that columns of a
rotation matrix are mutually orthogonal. Together, these constraints define six
independent equations with nine unknowns, which implies that there are three
free variables.

In this section we derive three ways in which an arbitrary rotation can be
represented using only three independent quantities: the Euler Angle repre-
sentation, the roll-pitch-yaw representation, and the axis/angle representa-
tion.

2.5.1 Euler Angles

A common method of specifying a rotation matrix in terms of three independent
quantities is to use the so-called Euler Angles. Consider the fixed coordinate
frame o0x0y0z0 and the rotated frame o1x1y1z1 shown in Figure 2.11. We can
specify the orientation of the frame o1x1y1z1 relative to the frame o0x0y0z0 by
three angles (φ, θ, ψ), known as Euler Angles, and obtained by three successive
rotations as follows: First rotate about the z-axis by the angle φ. Next rotate
about the current y-axis by the angle θ. Finally rotate about the current z-axis
by the angle ψ. In Figure 2.11, frame oaxayaza represents the new coordinate
frame after the rotation by φ, frame obxbybzb represents the new coordinate
frame after the rotation by θ, and frame o1x1y1z1 represents the final frame,
after the rotation by ψ. Frames oaxayaza and obxbybzb are shown in the figure
only to help you visualize the rotations.
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In terms of the basic rotation matrices the resulting rotational transformation
R0

1 can be generated as the product

RZY Z = Rz,φRy,θRz,ψ

=

 cφ −sφ 0
sφ cφ 0
0 0 1

 cθ 0 sθ
0 1 0
−sθ 0 cθ

 cψ −sψ 0
sψ cψ 0
0 0 1


=

 cφcθcψ − sφsψ −cφcθsψ − sφcψ cφsθ
sφcθcψ + cφsψ −sφcθsψ + cφcψ sφsθ
−sθcψ sθsψ cθ

 (2.27)

The matrix RZY Z in Equation (2.27) is called the ZY Z-Euler Angle Trans-
formation.

The more important and more difficult problem is the following: Given a
matrix R ∈ SO(3)

R =

 r11 r12 r13
r21 r22 r23
r31 r32 r33


determine a set of Euler angles φ, θ, and ψ so that

R = RZY Z (2.28)

This problem will be important later when we address the inverse kinematics
problem for manipulators. In order to find a solution for this problem we break
it down into two cases.

First, suppose that not both of r13, r23 are zero. Then from Equation (2.28)
we deduce that sθ 6= 0, and hence that not both of r31, r32 are zero. If not both
r13 and r23 are zero, then r33 6= ±1, and we have cθ = r33, sθ = ±

√
1− r233 so

θ = atan2
(
r33,

√
1− r233

)
(2.29)

or

θ = atan2
(
r33,−

√
1− r233

)
(2.30)

where the function atan2 is the two-argument arctangent function defined
in Appendix A.

If we choose the value for θ given by Equation (2.29), then sθ > 0, and

φ = atan2(r13, r23) (2.31)
ψ = atan2(−r31, r32) (2.32)

If we choose the value for θ given by Equation (2.30), then sθ < 0, and

φ = atan2(−r13,−r23) (2.33)
ψ = atan2(r31,−r32) (2.34)
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Thus there are two solutions depending on the sign chosen for θ.
If r13 = r23 = 0, then the fact that R is orthogonal implies that r33 = ±1,

and that r31 = r32 = 0. Thus R has the form

R =

 r11 r12 0
r21 r22 0
0 0 ±1

 (2.35)

If r33 = 1, then cθ = 1 and sθ = 0, so that θ = 0. In this case Equation (2.27)
becomes cφcψ − sφsψ −cφsψ − sφcψ 0

sφcψ + cφsψ −sφsψ + cφcψ 0
0 0 1

 =

 cφ+ψ −sφ+ψ 0
sφ+ψ cφ+ψ 0

0 0 1


Thus the sum φ+ ψ can be determined as

φ+ ψ = atan2(r11, r21) (2.36)
= atan2(r11,−r12)

Since only the sum φ + ψ can be determined in this case there are infinitely
many solutions. In this case, we may take φ = 0 by convention. If r33 = −1,
then cθ = −1 and sθ = 0, so that θ = π. In this case Equation (2.27) becomes −cφ−ψ −sφ−ψ 0

sφ−ψ cφ−ψ 0
0 0 −1

 =

 r11 r12 0
r21 r22 0

0 0 −1

 (2.37)

The solution is thus

φ− ψ = atan2(−r11,−r12) (2.38)

As before there are infinitely many solutions.

2.5.2 Roll, Pitch, Yaw Angles

A rotation matrix R can also be described as a product of successive rotations
about the principal coordinate axes x0, y0, and z0 taken in a specific order.
These rotations define the roll, pitch, and yaw angles, which we shall also
denote φ, θ, ψ, and which are shown in Figure 2.12.

We specify the order of rotation as x − y − z, in other words, first a yaw
about x0 through an angle ψ, then pitch about the y0 by an angle θ, and finally
roll about the z0 by an angle φ5. Since the successive rotations are relative to

5It should be noted that other conventions exist for naming the roll, pitch and yaw angles.
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x0

Yaw

Roll

y0

z0

Pitch

Fig. 2.12 Roll, pitch, and yaw angles.

the fixed frame, the resulting transformation matrix is given by

RXY Z = Rz,φRy,θRx,ψ

=

 cφ −sφ 0
sφ cφ 0
0 0 1

 cθ 0 sθ
0 1 0
−sθ 0 cθ

 1 0 0
0 cψ −sψ
0 sψ cψ


=

 cφcθ −sφcψ + cφsθsψ sφsψ + cφsθcψ
sφcθ cφcψ + sφsθsψ −cφsψ + sφsθcψ
−sθ cθsψ cθcψ

 (2.39)

Of course, instead of yaw-pitch-roll relative to the fixed frames we could also
interpret the above transformation as roll-pitch-yaw, in that order, each taken
with respect to the current frame. The end result is the same matrix as in
Equation (2.39).

The three angles, φ, θ, ψ, can be obtained for a given rotation matrix using a
method that is similar to that used to derive the Euler angles above. We leave
this as an exercise for the reader.

2.5.3 Axis/Angle Representation

Rotations are not always performed about the principal coordinate axes. We
are often interested in a rotation about an arbitrary axis in space. This pro-
vides both a convenient way to describe rotations, and an alternative parame-
terization for rotation matrices. Let k = (kx, ky, kz)T , expressed in the frame
o0x0y0z0, be a unit vector defining an axis. We wish to derive the rotation
matrix Rk,θ representing a rotation of θ about this axis.

There are several ways in which the matrix Rk,θ can be derived. Perhaps the
simplest way is to note that the axis define by the vector k is along the z-axis
following the rotational transformation R0

1 = Rz,αRy,β . Therefore, a rotation
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about the axis k can be computed using a similarity transformation as

Rk,θ = R0
1Rz,θR

0
1
−1

(2.40)

= Rz,αRy,βRz,θRy,−βRz,−α (2.41)

β
θ

x0

y0

z0

kx

ky

kz

k

α

Fig. 2.13 Rotation about an arbitrary axis.

From Figure 2.13, we see that

sinα =
ky√
k2
x + k2

y

(2.42)

cosα =
kx√
k2
x + k2

y

(2.43)

sinβ =
√
k2
x + k2

y (2.44)

cosβ = kz (2.45)

Note that the final two equations follow from the fact that k is a unit vector.
Substituting Equations (2.42)-(2.45) into Equation (2.41) we obtain after some
lengthy calculation (Problem 2-17)

Rk,θ =

 k2
xvθ + cθ kxkyvθ − kzsθ kxkzvθ + kysθ

kxkyvθ + kzsθ k2
yvθ + cθ kykzvθ − kxsθ

kxkzvθ − kysθ kykzvθ + kxsθ k2
zvθ + cθ

 (2.46)

where vθ = vers θ = 1− cθ.
In fact, any rotation matrix R ∈ S0(3) can be represented by a single rotation

about a suitable axis in space by a suitable angle,

R = Rk,θ (2.47)
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where k is a unit vector defining the axis of rotation, and θ is the angle of rota-
tion about k. The matrix Rk,θ given in Equation (2.47) is called the axis/angle
representation of R. Given an arbitrary rotation matrix R with components
rij , the equivalent angle θ and equivalent axis k are given by the expressions

θ = cos−1

(
Tr(R)− 1

2

)
(2.48)

= cos−1

(
r11 + r22 + r33 − 1

2

)
where Tr denotes the trace of R, and

k =
1

2 sin θ

 r32 − r23
r13 − r31
r21 − r12

 (2.49)

These equations can be obtained by direct manipulation of the entries of the
matrix given in Equation (2.46). The axis/angle representation is not unique
since a rotation of −θ about −k is the same as a rotation of θ about k, that is,

Rk,θ = R−k,−θ (2.50)

If θ = 0 then R is the identity matrix and the axis of rotation is undefined.

Example 2.9
Suppose R is generated by a rotation of 90◦ about z0 followed by a rotation

of 30◦ about y0 followed by a rotation of 60◦ about x0. Then

R = Rx,60Ry,30Rz,90 (2.51)

=

 0 −
√

3
2

1
2

1
2 −

√
3

4 − 3
4√

3
2

1
4

√
3

4


We see that Tr(R) = 0 and hence the equivalent angle is given by Equation
(2.48) as

θ = cos−1

(
−1

2

)
= 120◦ (2.52)

The equivalent axis is given from Equation (2.49) as

k =
(

1√
3
,

1
2
√

3
− 1

2
,

1
2
√

3
+

1
2

)T
(2.53)

�
The above axis/angle representation characterizes a given rotation by four

quantities, namely the three components of the equivalent axis k and the equiv-
alent angle θ. However, since the equivalent axis k is given as a unit vector only
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TO APPEAR

Fig. 2.14 Homogeneous transformations in two dimensions.

two of its components are independent. The third is constrained by the condi-
tion that k is of unit length. Therefore, only three independent quantities are
required in this representation of a rotation R. We can represent the equivalent
axis/angle by a single vector r as

r = (rx, ry, rz)T = (θkx, θky, θkz)T (2.54)

Note, since k is a unit vector, that the length of the vector r is the equivalent
angle θ and the direction of r is the equivalent axis k.

Remark 2.1 One should be careful not to interpret the representation in Equa-
tion (2.54) to mean that two axis/angle representations may be combined using
standard rules of vector algebra as doing so would imply that rotations commute
which, as we have seen, in not true in general.

2.6 RIGID MOTIONS

We have seen how to represent both positions and orientations. We combine
these two concepts in this section to define a rigid motion and, in the next
section, we derive an efficient matrix representation for rigid motions using the
notion of homogeneous transformation.

Definition 2.1 A rigid motion is an ordered pair (d,R) where d ∈ R3 and
R ∈ SO(3). The group of all rigid motions is known as the Special Euclidean
Group and is denoted by SE(3). We see then that SE(3) = R3 × SO(3).a

aThe definition of rigid motion is sometimes broadened to include reflections, which cor-
respond to detR = −1. We will always assume in this text that detR = +1, i.e. that
R ∈ SO(3).

A rigid motion is a pure translation together with a pure rotation. Referring
to Figure 2.14 we see that if frame o1x1y1z1 is obtained from frame o0x0y0z0 by
first applying a rotation specified by R0

1 followed by a translation given (with
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respect to o0x0y0z0) by d0
1, then the coordinates p0 are given by

p0 = R0
1p

1 + d0
1 (2.55)

Two points are worth noting in this figure. First, note that we cannot simply
add the vectors p0 and p1 since they are defined relative to frames with different
orientations, i.e. with respect to frames that are not parallel. However, we are
able to add the vectors p1 and R0

1p
1 precisely because multiplying p1 by the

orientation matrix R0
1 expresses p1 in a frame that is parallel to frame o0x0y0z0.

Second, it is not important in which order the rotation and translation are
performed.

If we have the two rigid motions

p0 = R0
1p

1 + d0
1 (2.56)

and

p1 = R1
2p

2 + d1
2 (2.57)

then their composition defines a third rigid motion, which we can describe by
substituting the expression for p1 from Equation (2.57) into Equation (2.56)

p0 = R0
1R

1
2p

2 +R0
1d

1
2 + d0

1 (2.58)

Since the relationship between p0 and p2 is also a rigid motion, we can equally
describe it as

p0 = R0
2p

2 + d0
2 (2.59)

Comparing Equations (2.58) and (2.59) we have the relationships

R0
2 = R0

1R
1
2 (2.60)

d0
2 = d0

1 +R0
1d

1
2 (2.61)

Equation (2.60) shows that the orientation transformations can simply be mul-
tiplied together and Equation (2.61) shows that the vector from the origin o0
to the origin o2 has coordinates given by the sum of d0

1 (the vector from o0
to o1 expressed with respect to o0x0y0z0) and R0

1d
1
2 (the vector from o1 to o2,

expressed in the orientation of the coordinate system o0x0y0z0).

2.7 HOMOGENEOUS TRANSFORMATIONS

One can easily see that the calculation leading to Equation (2.58) would quickly
become intractable if a long sequence of rigid motions were considered. In this
section we show how rigid motions can be represented in matrix form so that
composition of rigid motions can be reduced to matrix multiplication as was
the case for composition of rotations.
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In fact, a comparison of Equations (2.60) and (2.61) with the matrix identity[
R0

1 d0
1

0 1

] [
R1

2 d2
1

0 1

]
=

[
R0

1R
1
2 R0

1d
2
1 + d0

1

0 1

]
(2.62)

where 0 denotes the row vector (0, 0, 0), shows that the rigid motions can be
represented by the set of matrices of the form

H =
[
R d
0 1

]
;R ∈ SO(3), d ∈ R3 (2.63)

Transformation matrices of the form given in Equation (2.63) are called ho-
mogeneous transformations. A homogeneous transformation is therefore
nothing more than a matrix representation of a rigid motion and we will use
SE(3) interchangeably to represent both the set of rigid motions and the set of
all 4× 4 matrices H of the form given in Equation (2.63)

Using the fact that R is orthogonal it is an easy exercise to show that the inverse
transformation H−1 is given by

H−1 =
[

RT −RT d
0 1

]
(2.64)

In order to represent the transformation given in Equation (2.55) by a matrix
multiplication, we must augment the vectors p0 and p1 by the addition of a
fourth component of 1 as follows,

P 0 =
[
p0

1

]
(2.65)

P 1 =
[
p1

1

]
(2.66)

The vectors P 0 and P 1 are known as homogeneous representations of the
vectors p0 and p1, respectively. It can now be seen directly that the trans-
formation given in Equation (2.55) is equivalent to the (homogeneous) matrix
equation

P 0 = H0
1P

1 (2.67)

A set of basic homogeneous transformations generating SE(3) is given
by

Transx,a =


1 0 0 a
0 1 0 0
0 0 1 0
0 0 0 1

 ; Rotx,α =


1 0 0 0
0 cα −sα 0
0 sα cα 0
0 0 0 1

 (2.68)
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Transy,b =


1 0 0 0
0 1 0 b
0 0 1 0
0 0 0 1

 ; Roty,β =


cβ 0 sβ 0
0 1 0 0

−sβ 0 cβ 0
0 0 0 1

 (2.69)

Transz,c =


1 0 0 0
0 1 0 0
0 0 1 c
0 0 0 1

 ; Rotx,γ =


cγ −sγ 0 0
sγ cγ 0 0
0 0 1 0
0 0 0 1

 (2.70)

for translation and rotation about the x, y, z-axes, respectively.
The most general homogeneous transformation that we will consider may be

written now as

H0
1 =


nx sx ax dx
ny sy ay dy
nz sx az dz
0 0 0 1

 =
[
n s a d
0 0 0 1

]
(2.71)

In the above equation n = (nx, ny, nz)T is a vector representing the direction of
x1 in the o0x0y0z0 system, s = (sx, sy, sz)T represents the direction of y1, and
a = (ax, ay, az)T represents the direction of z1. The vector d = (dx, dy, dz)T

represents the vector from the origin o0 to the origin o1 expressed in the frame
o0x0y0z0. The rationale behind the choice of letters n, s and a is explained in
Chapter 3.

Composition Rule for Homogeneous Transformations
The same interpretation regarding composition and ordering of transformations
holds for 4 × 4 homogeneous transformations as for 3 × 3 rotations. Given a
homogeneous transformation H0

1 relating two frames, if a second rigid motion,
represented by H ∈ SE(3) is performed relative to the current frame, then

H0
2 = H0

1H

whereas if the second rigid motion is performed relative to the fixed frame, then

H0
2 = HH0

1

Example 2.10
The homogeneous transformation matrix H that represents a rotation by

angle α about the current x-axis followed by a translation of b units along the
current x-axis, followed by a translation of d units along the current z-axis,
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followed by a rotation by angle θ about the current z-axis, is given by

H = Rotx,αTransx,bTransz,dRotz,θ

=


cθ −sθ 0 b

cαsθ cαcθ −sα −dsα
sαsθ sαcθ cα dcα

0 0 0 1


�

The homogeneous representation given in Equation (2.63) is a special case of
homogeneous coordinates, which have been extensively used in the field of com-
puter graphics. There, one is interested in scaling and/or perspective transfor-
mations in addition to translation and rotation. The most general homogeneous
transformation takes the form

H =

[
R3×3 d3×1

f1×3 s1×1

]
=

[
Rotation Translation

perspective scale factor

]
(2.72)

For our purposes we always take the last row vector of H to be (0, 0, 0, 1),
although the more general form given by (2.72) could be useful, for example,
for interfacing a vision system into the overall robotic system or for graphic
simulation.

2.8 CHAPTER SUMMARY

In this chapter, we have seen how matrices in SE(n) can be used to represent
the relative position and orientation of two coordinate frames for n = 2, 3. We
have adopted a notional convention in which a superscript is used to indicate a
reference frame. Thus, the notation p0 represents the coordinates of the point
p relative to frame 0.

The relative orientation of two coordinate frames can be specified by a rota-
tion matrix, R ∈ SO(n), with n = 2, 3. In two dimensions, the orientation of
frame 1 with respect to frame 0 is given by

R0
1 =

[
x1 · x0 y1 · x0

x1 · y0 y1 · y0

]
=
[

cos θ − sin θ
sin θ cos θ

]
in which θ is the angle between the two coordinate frames. In the three dimen-
sional case, the rotation matrix is given by

R0
1 =

 x1 · x0 y1 · x0 z1 · x0

x1 · y0 y1 · y0 z1 · y0
x1 · z0 y1 · z0 z1 · z0


In each case, the columns of the rotation matrix are obtained by projecting an
axis of the target frame (in this case, frame 1) onto the coordinate axes of the
reference frame (in this case, frame 0).
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The set of n× n rotation matrices is known as the special orthogonal group
of order n, and is denoted by SO(n). An important property of these matrices
is that R−1 = RT for any R ∈ SO(n).

Rotation matrices can be used to perform coordinate transformations be-
tween frames that differ only in orientation. We derived rules for the composi-
tion of rotational transformations as

R0
2 = R0

1R

for the case where the second transformation, R, is performed relative to the
current frame and

R0
2 = RR0

1

for the case where the second transformation, R, is performed relative to the
fixed frame.

In the three dimensional case, a rotation matrix can be parameterized using
three angles. A common convention is to use the Euler angles (φ, θ, ψ), which
correspond to successive rotations about the z, y and z axes. The corresponding
rotation matrix is given by

R(φ, θ, ψ) = Rz,φRy,θRz,ψ

Roll, pitch and yaw angles are similar, except that the successive rotations are
performed with respect to the fixed, world frame instead of being performed
with respect to the current frame.

Homogeneous transformations combine rotation and translation. In the three
dimensional case, a homogeneous transformation has the form

H =
[
R d
0 1

]
;R ∈ SO(3), d ∈ R3

The set of all such matrices comprises the set SE(3), and these matrices can
be used to perform coordinate transformations, analogous to rotational trans-
formations using rotation matrices.

The interested reader can find deeper explanations of these concepts in a
variety of sources, including [4] [18] [29] [62] [54] [75].
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1. Using the fact that v1 · v2 = vT1 v2, show that the dot product of two free
vectors does not depend on the choice of frames in which their coordinates
are defined.

2. Show that the length of a free vector is not changed by rotation, i.e., that
‖v‖ = ‖Rv‖.

3. Show that the distance between points is not changed by rotation i.e.,
that ‖p1 − p2‖ = ‖Rp1 −Rp2‖.

4. If a matrix R satisfies RTR = I, show that the column vectors of R are
of unit length and mutually perpendicular.

5. If a matrix R satisfies RTR = I, then
a) show that detR = ±1
b) Show that detR = ±1 if we restrict ourselves to right-handed coordi-
nate systems.

6. Verify Equations (2.3)-(2.5).

7. A group is a set X together with an operation ∗ defined on that set such
that

• x1 ∗ x2 ∈ X for all x1, x2 ∈ X
• (x1 ∗ x2) ∗ x3 = x1 ∗ (x2 ∗ x3)

• There exists an element I ∈ X such that I ∗ x = x ∗ I = x for all
x ∈ X.

• For every x ∈ X, there exists some element y ∈ X such that x ∗ y =
y ∗ x = I.

Show that SO(n) with the operation of matrix multiplication is a group.

8. Derive Equations (2.6) and (2.7).

9. Suppose A is a 2 × 2 rotation matrix. In other words ATA = I and
detA = 1. Show that there exists a unique θ such that A is of the form

A =
[

cos θ − sin θ
sin θ cos θ

]
10. Consider the following sequence of rotations:

(a) Rotate by φ about the world x-axis.

(b) Rotate by θ about the current z-axis.

(c) Rotate by ψ about the world y-axis.

Write the matrix product that will give the resulting rotation matrix (do
not perform the matrix multiplication).
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11. Consider the following sequence of rotations:

(a) Rotate by φ about the world x-axis.

(b) Rotate by θ about the world z-axis.

(c) Rotate by ψ about the current x-axis.

Write the matrix product that will give the resulting rotation matrix (do
not perform the matrix multiplication).

12. Consider the following sequence of rotations:

(a) Rotate by φ about the world x-axis.

(b) Rotate by θ about the current z-axis.

(c) Rotate by ψ about the current x-axis.

(d) Rotate by α about the world z-axis.

Write the matrix product that will give the resulting rotation matrix (do
not perform the matrix multiplication).

13. Consider the following sequence of rotations:

(a) Rotate by φ about the world x-axis.

(b) Rotate by θ about the world z-axis.

(c) Rotate by ψ about the current x-axis.

(d) Rotate by α about the world z-axis.

Write the matrix product that will give the resulting rotation matrix (do
not perform the matrix multiplication).

14. Find the rotation matrix representing a roll of π
4 followed by a yaw of π

2
followed by a pitch of π

2 .

15. If the coordinate frame o1x1y1z1 is obtained from the coordinate frame
o0x0y0z0 by a rotation of π

2 about the x-axis followed by a rotation of
π
2 about the fixed y-axis, find the rotation matrix R representing the
composite transformation. Sketch the initial and final frames.

16. Suppose that three coordinate frames o1x1y1z1, o2x2y2z2 and o3x3y3z3
are given, and suppose

R1
2 =

 1 0 0
0 1

2 −
√

3
2

0
√

3
2

1
2

 ;R1
3 =

 0 0 −1
0 1 0
1 0 0


Find the matrix R2

3.

17. Verify Equation (2.46).
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18. If R is a rotation matrix show that +1 is an eigenvalue of R. Let k be
a unit eigenvector corresponding to the eigenvalue +1. Give a physical
interpretation of k.

19. Let k = 1√
3
(1, 1, 1)T , θ = 90◦. Find Rk,θ.

20. Show by direct calculation that Rk,θ given by Equation (2.46) is equal to
R given by Equation (2.51) if θ and k are given by Equations (2.52) and
(2.53), respectively.

21. Compute the rotation matrix given by the product

Rx,θRy,φRz,πRy,−φRx,−θ

22. Suppose R represents a rotation of 90◦ about y0 followed by a rotation of
45◦ about z1. Find the equivalent axis/angle to represent R. Sketch the
initial and final frames and the equivalent axis vector k.

23. Find the rotation matrix corresponding to the set of Euler angles
{
π
2 , 0,

π
4

}
.

What is the direction of the x1 axis relative to the base frame?

24. Section 2.5.1 described only the Z-Y-Z Euler angles. List all possible sets
of Euler angles. Is it possible to have Z-Z-Y Euler angles? Why or why
not?

25. Unit magnitude complex numbers (i.e., a + ib such that a2 + b2 = 1)
can be used to represent orientation in the plane. In particular, for the
complex number a + ib, we can define the angle θ = atan2(a, b). Show
that multiplication of two complex numbers corresponds to addition of
the corresponding angles.

26. Show that complex numbers together with the operation of complex mul-
tiplication define a group. What is the identity for the group? What is
the inverse for a+ ib?

27. Complex numbers can be generalized by defining three independent square
roots for −1 that obey the multiplication rules

−1 = i2 = j2 = k2,

i = jk = −kj,
j = ki = −ik,
k = ij = −ji

Using these, we define a quaternion by Q = q0 + iq1 + jq2 + kq3, which
is typically represented by the 4-tuple (q0, q1, q2, q3). A rotation by θ
about the unit vector n = (nx, ny, nz)T can be represented by the unit
quaternion Q =

(
cos θ2 , nx sin θ

2 , ny sin θ
2 , nz sin θ

2

)
. Show that such a

quaternion has unit norm, i.e., that q20 + q21 + q22 + q23 = 1.
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28. Using Q =
(
cos θ2 , nx sin θ

2 , ny sin θ
2 , nz sin θ

2

)
, and the results from Section

2.5.3, determine the rotation matrix R that corresponds to the rotation
represented by the quaternion (q0, q1, q2, q3).

29. Determine the quaternion Q that represents the same rotation as given
by the rotation matrix R.

30. The quaternion Q = (q0, q1, q2, q3) can be thought of as having a scalar
component q0 and a vector component = (q1, q2, q3)T . Show that the
product of two quaternions, Z = XY is given by

z0 = x0y0 − xT y
z = x0y + y0x+ x× y,

Hint: perform the multiplication (x0+ix1+jx2+kx3)(y0+iy1+jy2+ky3)
and simplify the result.

31. Show that QI = (1, 0, 0, 0) is the identity element for unit quaternion
multiplication, i.e., that QQI = QIQ = Q for any unit quaternion Q.

32. The conjugate Q∗ of the quaternion Q is defined as

Q∗ = (q0,−q1,−q2,−q3)

Show that Q∗ is the inverse of Q, i.e., that Q∗Q = QQ∗ = (1, 0, 0, 0).

33. Let v be a vector whose coordinates are given by (vx, vy, vz)T . If the
quaternion Q represents a rotation, show that the new, rotated coor-
dinates of v are given by Q(0, vx, vy, vz)Q∗, in which (0, vx, vy, vz) is a
quaternion with zero as its real component.

34. Let the point p be rigidly attached to the end effector coordinate frame
with local coordinates (x, y, z). If Q specifies the orientation of the end
effector frame with respect to the base frame, and T is the vector from
the base frame to the origin of the end effector frame, show that the
coordinates of p with respect to the base frame are given by

Q(0, x, y, z)Q∗ + T (2.73)

in which (0, x, y, z) is a quaternion with zero as its real component.

35. Compute the homogeneous transformation representing a translation of
3 units along the x-axis followed by a rotation of π

2 about the current
z-axis followed by a translation of 1 unit along the fixed y-axis. Sketch
the frame. What are the coordinates of the origin O1 with respect to the
original frame in each case?

36. Consider the diagram of Figure 2.15. Find the homogeneous transfor-
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Fig. 2.15 Diagram for Problem 2-36.
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Fig. 2.16 Diagram for Problem 2-37.

mations H0
1 ,H

0
2 ,H

1
2 representing the transformations among the three

frames shown. Show that H0
2 = H0

1 ,H
1
2 .

37. Consider the diagram of Figure 2.16. A robot is set up 1 meter from a
table. The table top is 1 meter high and 1 meter square. A frame o1x1y1z1
is fixed to the edge of the table as shown. A cube measuring 20 cm on a
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side is placed in the center of the table with frame o2x2y2z2 established at
the center of the cube as shown. A camera is situated directly above the
center of the block 2m above the table top with frame o3x3y3z3 attached
as shown. Find the homogeneous transformations relating each of these
frames to the base frame o0x0y0z0. Find the homogeneous transformation
relating the frame o2x2y2z2 to the camera frame o3x3y3z3.

38. In Problem 37, suppose that, after the camera is calibrated, it is rotated
90◦ about z3. Recompute the above coordinate transformations.

39. If the block on the table is rotated 90◦ about z2 and moved so that its
center has coordinates (0, .8, .1)T relative to the frame o1x1y1z1, compute
the homogeneous transformation relating the block frame to the camera
frame; the block frame to the base frame.

40. Consult an astronomy book to learn the basic details of the Earth’s rota-
tion about the sun and about its own axis. Define for the Earth a local
coordinate frame whose z-axis is the Earth’s axis of rotation. Define t = 0
to be the exact moment of the summer solstice, and the global reference
frame to be coincident with the Earth’s frame at time t = 0. Give an
expression R(t) for the rotation matrix that represents the instantaneous
orientation of the earth at time t. Determine as a function of time the
homogeneous transformation that specifies the Earth’s frame with respect
to the global reference frame.

41. In general, multiplication of homogeneous transformation matrices is not
commutative. Consider the matrix product

H = Rotx,αTransx,bTransz,dRotz,θ

Determine which pairs of the four matrices on the right hand side com-
mute. Explain why these pairs commute. Find all permutations of these
four matrices that yield the same homogeneous transformation matrix,
H .



3
FORWARD AND

INVERSE KINEMATICS

In this chapter we consider the forward and inverse kinematics for serial link
manipulators. The problem of kinematics is to describe the motion of the ma-
nipulator without consideration of the forces and torques causing the motion.
The kinematic description is therefore a geometric one. We first consider the
problem of forward kinematics, which is to determine the position and orien-
tation of the end-effector given the values for the joint variables of the robot.
The inverse kinematics problem is to determine the values of the joint variables
given the end-effector position and orientation.

3.1 KINEMATIC CHAINS

As described in Chapter 1, a robot manipulator is composed of a set of links
connected together by joints. The joints can either be very simple, such as
a revolute joint or a prismatic joint, or they can be more complex, such as a
ball and socket joint. (Recall that a revolute joint is like a hinge and allows
a relative rotation about a single axis, and a prismatic joint permits a linear
motion along a single axis, namely an extension or retraction.) The difference
between the two situations is that, in the first instance, the joint has only a
single degree-of-freedom of motion: the angle of rotation in the case of a revolute
joint, and the amount of linear displacement in the case of a prismatic joint. In
contrast, a ball and socket joint has two degrees-of-freedom. In this book it is
assumed throughout that all joints have only a single degree-of-freedom. This
assumption does not involve any real loss of generality, since joints such as a ball

65
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and socket joint (two degrees-of-freedom) or a spherical wrist (three degrees-of-
freedom) can always be thought of as a succession of single degree-of-freedom
joints with links of length zero in between.

With the assumption that each joint has a single degree-of-freedom, the ac-
tion of each joint can be described by a single real number; the angle of rotation
in the case of a revolute joint or the displacement in the case of a prismatic
joint. The objective of forward kinematic analysis is to determine the cumula-
tive effect of the entire set of joint variables, that is, to determine the position
and orientation of the end effector given the values of these joint variables. The
objective of inverse kinematic analysis is, in contrast, to determine the values
for these joint variables given the position and orientation of the end effector
frame.

A robot manipulator with n joints will have n + 1 links, since each joint
connects two links. We number the joints from 1 to n, and we number the links
from 0 to n, starting from the base. By this convention, joint i connects link
i− 1 to link i. We will consider the location of joint i to be fixed with respect
to link i − 1. When joint i is actuated, link i moves. Therefore, link 0 (the
first link) is fixed, and does not move when the joints are actuated. Of course
the robot manipulator could itself be mobile (e.g., it could be mounted on a
mobile platform or on an autonomous vehicle), but we will not consider this
case in the present chapter, since it can be handled easily by slightly extending
the techniques presented here.

With the ith joint, we associate a joint variable, denoted by qi. In the case
of a revolute joint, qi is the angle of rotation, and in the case of a prismatic
joint, qi is the joint displacement:

qi =
{
θi if joint i is revolute
di if joint i is prismatic (3.1)

To perform the kinematic analysis, we attach a coordinate frame rigidly
to each link. In particular, we attach oixiyizi to link i. This means that,
whatever motion the robot executes, the coordinates of each point on link i
are constant when expressed in the ith coordinate frame. Furthermore, when
joint i is actuated, link i and its attached frame, oixiyizi, experience a resulting
motion. The frame o0x0y0z0, which is attached to the robot base, is referred to
as the inertial frame. Figure 3.1 illustrates the idea of attaching frames rigidly
to links in the case of an elbow manipulator.

Now suppose Ai is the homogeneous transformation matrix that expresses
the position and orientation of oixiyizi with respect to oi−1xi−1yi−1zi−1. The
matrix Ai is not constant, but varies as the configuration of the robot is changed.
However, the assumption that all joints are either revolute or prismatic means
that Ai is a function of only a single joint variable, namely qi. In other words,

Ai = Ai(qi) (3.2)

Now the homogeneous transformation matrix that expresses the position and
orientation of ojxjyjzj with respect to oixiyizi is called, by convention, a trans-
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Fig. 3.1 Coordinate frames attached to elbow manipulator

formation matrix, and is denoted by T ij . From Chapter 2 we see that

T ij =


Ai+1Ai+2 . . . Aj−1Aj if i < j
I if i = j

(T ji )−1 if j > i
(3.3)

By the manner in which we have rigidly attached the various frames to the
corresponding links, it follows that the position of any point on the end-effector,
when expressed in frame n, is a constant independent of the configuration of
the robot. Denote the position and orientation of the end-effector with respect
to the inertial or base frame by a three-vector o0n (which gives the coordinates
of the origin of the end-effector frame with respect to the base frame) and the
3× 3 rotation matrix R0

n, and define the homogeneous transformation matrix

H =
[
R0
n o0n

0 1

]
(3.4)

Then the position and orientation of the end-effector in the inertial frame are
given by

H = T 0
n = A1(q1) · · ·An(qn) (3.5)

Each homogeneous transformation Ai is of the form

Ai =
[
Ri−1
i oi−1

i

0 1

]
(3.6)

Hence

T ij = Ai+1 · · ·Aj =
[
Rij oij
0 1

]
(3.7)
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The matrix Rij expresses the orientation of ojxjyjzj relative to oixiyizi and
is given by the rotational parts of the A-matrices as

Rij = Rii+1 · · ·R
j−1
j (3.8)

The coordinate vectors oij are given recursively by the formula

oij = oij−1 +Rij−1o
j−1
j (3.9)

These expressions will be useful in Chapter 4 when we study Jacobian matrices.
In principle, that is all there is to forward kinematics; determine the functions

Ai(qi), and multiply them together as needed. However, it is possible to achieve
a considerable amount of streamlining and simplification by introducing further
conventions, such as the Denavit-Hartenberg representation of a joint, and this
is the objective of the next section.

3.2 FORWARD KINEMATICS: THE DENAVIT-HARTENBERG

CONVENTION

In this section we develop the forward or configuration kinematic equa-
tions for rigid robots. The forward kinematics problem is concerned with the
relationship between the individual joints of the robot manipulator and the po-
sition and orientation of the tool or end-effector. The joint variables are the
angles between the links in the case of revolute or rotational joints, and the link
extension in the case of prismatic or sliding joints.

We will develop a set of conventions that provide a systematic procedure
for performing this analysis. It is, of course, possible to carry out forward
kinematics analysis even without respecting these conventions, as we did for
the two-link planar manipulator example in Chapter 1. However, the kinematic
analysis of an n-link manipulator can be extremely complex and the conventions
introduced below simplify the analysis considerably. Moreover, they give rise
to a universal language with which robot engineers can communicate.

A commonly used convention for selecting frames of reference in robotic
applications is the Denavit-Hartenberg, or DH convention. In this convention,
each homogeneous transformation Ai is represented as a product of four basic
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transformations

Ai = Rotz,θi
Transz,di

Transx,ai
Rotx,αi

(3.10)

=


cθi −sθi 0 0
sθi

cθi
0 0

0 0 1 0
0 0 0 1




1 0 0 0
0 1 0 0
0 0 1 di
0 0 0 1



×


1 0 0 ai
0 1 0 0
0 0 1 0
0 0 0 1




1 0 0 0
0 cαi

−sαi
0

0 sαi
cαi

0
0 0 0 1



=


cθi

−sθi
cαi

sθi
sαi

aicθi

sθi cθicαi −cθisαi aisθi

0 sαi cαi di
0 0 0 1


where the four quantities θi, ai, di, αi are parameters associated with link i
and joint i. The four parameters ai, αi, di, and θi in (3.10) are generally given
the names link length, link twist, link offset, and joint angle, respectively.
These names derive from specific aspects of the geometric relationship between
two coordinate frames, as will become apparent below. Since the matrix Ai is a
function of a single variable, it turns out that three of the above four quantities
are constant for a given link, while the fourth parameter, θi for a revolute joint
and di for a prismatic joint, is the joint variable.

From Chapter 2 one can see that an arbitrary homogeneous transformation
matrix can be characterized by six numbers, such as, for example, three numbers
to specify the fourth column of the matrix and three Euler angles to specify the
upper left 3 × 3 rotation matrix. In the DH representation, in contrast, there
are only four parameters. How is this possible? The answer is that, while frame
i is required to be rigidly attached to link i, we have considerable freedom in
choosing the origin and the coordinate axes of the frame. For example, it is not
necessary that the origin, oi, of frame i be placed at the physical end of link i.
In fact, it is not even necessary that frame i be placed within the physical link;
frame i could lie in free space — so long as frame i is rigidly attached to link
i. By a clever choice of the origin and the coordinate axes, it is possible to cut
down the number of parameters needed from six to four (or even fewer in some
cases). In Section 3.2.1 we will show why, and under what conditions, this can
be done, and in Section 3.2.2 we will show exactly how to make the coordinate
frame assignments.

3.2.1 Existence and uniqueness issues

Clearly it is not possible to represent any arbitrary homogeneous transformation
using only four parameters. Therefore, we begin by determining just which
homogeneous transformations can be expressed in the form (3.10). Suppose we
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Fig. 3.2 Coordinate frames satisfying assumptions DH1 and DH2

are given two frames, denoted by frames 0 and 1, respectively. Then there exists
a unique homogeneous transformation matrix A that takes the coordinates from
frame 1 into those of frame 0. Now suppose the two frames have the following
two additional features.

DH Coordinate Frame Assumptions

(DH1) The axis x1 is perpendicular to the axis z0.

(DH2) The axis x1 intersects the axis z0.

These two properties are illustrated in Figure 3.2. Under these conditions, we
claim that there exist unique numbers a, d, θ, α such that

A = Rotz,θTransz,dTransx,aRotx,α (3.11)

Of course, since θ and α are angles, we really mean that they are unique to
within a multiple of 2π. To show that the matrix A can be written in this form,
write A as

A =
[
R0

1 o01
0 1

]
(3.12)

If (DH1) is satisfied, then x1 is perpendicular to z0 and we have x1 · z0 = 0.
Expressing this constraint with respect to o0x0y0z0, using the fact that the first
column of R0

1 is the representation of the unit vector x1 with respect to frame
0, we obtain

0 = x0
1 · z0

0

= [r11, r21, r31]

 0
0
1

 = r31
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Since r31 = 0, we now need only show that there exist unique angles θ and α
such that

R0
1 = Rx,θRx,α =

 cθ −sθcα sθsα
sθ cθcα −cθsα
0 sα cα

 (3.13)

The only information we have is that r31 = 0, but this is enough. First, since
each row and column of R0

1 must have unit length, r31 = 0 implies that

r211 + r221 = 1,
r232 + r233 = 1

Hence there exist unique θ and α such that

(r11, r21) = (cθ, sθ), (r33, r32) = (cα, sα)

Once θ and α are found, it is routine to show that the remaining elements of
R0

1 must have the form shown in (3.13), using the fact that R0
1 is a rotation

matrix.
Next, assumption (DH2) means that the displacement between o0 and o1

can be expressed as a linear combination of the vectors z0 and x1. This can be
written as o1 = o0 + dz0 + ax1. Again, we can express this relationship in the
coordinates of o0x0y0z0, and we obtain

o01 = o00 + dz0
0 + ax0

1

=

 0
0
0

+ d

 0
0
1

+ a

 cθ
sθ
0


=

 acθ
asθ
d


Combining the above results, we obtain (3.10) as claimed. Thus, we see that

four parameters are sufficient to specify any homogeneous transformation that
satisfies the constraints (DH1) and (DH2).

Now that we have established that each homogeneous transformation matrix
satisfying conditions (DH1) and (DH2) above can be represented in the form
(3.10), we can in fact give a physical interpretation to each of the four quantities
in (3.10). The parameter a is the distance between the axes z0 and z1, and is
measured along the axis x1. The angle α is the angle between the axes z0 and
z1, measured in a plane normal to x1. The positive sense for α is determined
from z0 to z1 by the right-handed rule as shown in Figure 3.3. The parameter
d is the perpendicular distance from the origin o0 to the intersection of the x1

axis with z0 measured along the z0 axis. Finally, θ is the angle between x0 and
x1 measured in a plane normal to z0. These physical interpretations will prove
useful in developing a procedure for assigning coordinate frames that satisfy
the constraints (DH1) and (DH2), and we now turn our attention to developing
such a procedure.
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Fig. 3.3 Positive sense for αi and θi

3.2.2 Assigning the coordinate frames

For a given robot manipulator, one can always choose the frames 0, . . . , n in
such a way that the above two conditions are satisfied. In certain circumstances,
this will require placing the origin oi of frame i in a location that may not be
intuitively satisfying, but typically this will not be the case. In reading the
material below, it is important to keep in mind that the choices of the various
coordinate frames are not unique, even when constrained by the requirements
above. Thus, it is possible that different engineers will derive differing, but
equally correct, coordinate frame assignments for the links of the robot. It is
very important to note, however, that the end result (i.e., the matrix T 0

n) will
be the same, regardless of the assignment of intermediate link frames (assuming
that the coordinate frames for link n coincide). We will begin by deriving the
general procedure. We will then discuss various common special cases where it
is possible to further simplify the homogeneous transformation matrix.

To start, note that the choice of zi is arbitrary. In particular, from (3.13),
we see that by choosing αi and θi appropriately, we can obtain any arbitrary
direction for zi. Thus, for our first step, we assign the axes z0, . . . , zn−1 in an
intuitively pleasing fashion. Specifically, we assign zi to be the axis of actuation
for joint i + 1. Thus, z0 is the axis of actuation for joint 1, z1 is the axis of
actuation for joint 2, etc. There are two cases to consider: (i) if joint i + 1 is
revolute, zi is the axis of revolution of joint i+ 1; (ii) if joint i+ 1 is prismatic,
zi is the axis of translation of joint i + 1. At first it may seem a bit confusing
to associate zi with joint i+ 1, but recall that this satisfies the convention that
we established above, namely that joint i is fixed with respect to frame i, and
that when joint i is actuated, link i and its attached frame, oixiyizi, experience
a resulting motion.

Once we have established the z-axes for the links, we establish the base frame.
The choice of a base frame is nearly arbitrary. We may choose the origin o0 of
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the base frame to be any point on z0. We then choose x0, y0 in any convenient
manner so long as the resulting frame is right-handed. This sets up frame 0.

Once frame 0 has been established, we begin an iterative process in which
we define frame i using frame i− 1, beginning with frame 1. Figure 3.4 will be
useful for understanding the process that we now describe.

Fig. 3.4 Denavit-Hartenberg frame assignment

In order to set up frame i it is necessary to consider three cases: (i) the axes
zi−1, zi are not coplanar, (ii) the axes zi−1, zi intersect (iii) the axes zi−1, zi are
parallel. Note that in both cases (ii) and (iii) the axes zi−1 and zi are coplanar.
This situation is in fact quite common, as we will see in Section 3.2.3. We now
consider each of these three cases.

(i) zi−1 and zi are not coplanar: If zi−l and zi are not coplanar, then there exists
a unique line segment perpendicular to both zi−1 and zi such that it connects
both lines and it has minimum length. The line containing this common normal
to zi−1 and zi defines xi, and the point where this line intersects zi is the origin
oi. By construction, both conditions (DH1) and (DH2) are satisfied and the
vector from oi−1 to oi is a linear combination of zi−1 and xi. The specification of
frame i is completed by choosing the axis yi to form a right-handed frame. Since
assumptions (DH1) and (DH2) are satisfied the homogeneous transformation
matrix Ai is of the form (3.10).

(ii) zi−1 is parallel to zi: If the axes zi−1 and zi are parallel, then there are
infinitely many common normals between them and condition (DH1) does not
specify xi completely. In this case we are free to choose the origin oi anywhere
along zi. One often chooses oi to simplify the resulting equations. The axis
xi is then chosen either to be directed from oi toward zi−1, along the common



74 FORWARD AND INVERSE KINEMATICS

normal, or as the opposite of this vector. A common method for choosing oi
is to choose the normal that passes through oi−1 as the xi axis; oi is then the
point at which this normal intersects zi. In this case, di would be equal to zero.
Once xi is fixed, yi is determined, as usual by the right hand rule. Since the
axes zi−1 and zi are parallel, αi will be zero in this case.

(iii) zi−1 intersects zi: In this case xi is chosen normal to the plane formed
by zi and zi−1. The positive direction of xi is arbitrary. The most natural
choice for the origin oi in this case is at the point of intersection of zi and zi−1.
However, any convenient point along the axis zi suffices. Note that in this case
the parameter ai equals 0.

This constructive procedure works for frames 0, . . . , n− 1 in an n-link robot.
To complete the construction, it is necessary to specify frame n. The final
coordinate system onxnynzn is commonly referred to as the end-effector or
tool frame (see Figure 3.5). The origin on is most often placed symmetrically
between the fingers of the gripper. The unit vectors along the xn, yn, and zn
axes are labeled as n, s, and a, respectively. The terminology arises from fact
that the direction a is the approach direction, in the sense that the gripper
typically approaches an object along the a direction. Similarly the s direction is
the sliding direction, the direction along which the fingers of the gripper slide
to open and close, and n is the direction normal to the plane formed by a and
s.

Note: currently rendering

a 3D gripper...

y
n
≡ s

O
n

O0

z0

y0

x0

x
n
≡ n

z
n
≡ a

Fig. 3.5 Tool frame assignment

In most contemporary robots the final joint motion is a rotation of the end-
effector by θn and the final two joint axes, zn−1 and zn, coincide. In this case,
the transformation between the final two coordinate frames is a translation
along zn−1 by a distance dn followed (or preceded) by a rotation of θn about
zn−1. This is an important observation that will simplify the computation of
the inverse kinematics in the next section.

Finally, note the following important fact. In all cases, whether the joint in
question is revolute or prismatic, the quantities ai and αi are always constant
for all i and are characteristic of the manipulator. If joint i is prismatic, then
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θi is also a constant, while di is the ith joint variable. Similarly, if joint i is
revolute, then di is constant and θi is the ith joint variable.

3.2.3 Examples

In the DH convention the only variable angle is θ, so we simplify notation by
writing ci for cos θi, etc. We also denote θ1 + θ2 by θ12, and cos(θ1 + θ2) by c12,
and so on. In the following examples it is important to remember that the DH
convention, while systematic, still allows considerable freedom in the choice of
some of the manipulator parameters. This is particularly true in the case of
parallel joint axes or when prismatic joints are involved.

Example 3.1 Planar Elbow Manipulator

y0

x0

θ1

x1

x2

θ2

y1

y2

a1

a2

Fig. 3.6 Two-link planar manipulator. The z-axes all point out of the page, and are
not shown in the figure

Consider the two-link planar arm of Figure 3.6. The joint axes z0 and z1
are normal to the page. We establish the base frame o0x0y0z0 as shown. The
origin is chosen at the point of intersection of the z0 axis with the page and
the direction of the x0 axis is completely arbitrary. Once the base frame is
established, the o1x1y1z1 frame is fixed as shown by the DH convention, where
the origin o1 has been located at the intersection of z1 and the page. The final
frame o2x2y2z2 is fixed by choosing the origin o2 at the end of link 2 as shown.
The DH parameters are shown in Table 3.1. The A-matrices are determined
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Table 3.1 Link parameters for 2-link planar manipulator

Link ai αi di θi

1 a1 0 0 θ∗1
2 a2 0 0 θ∗2

∗ variable

from (3.10) as

A1 =


c1 −s1 0 a1c1
s1 c1 0 a1s1
0 0 1 0
0 0 0 1



A2 =


c2 −s2 0 a2c2
s2 c2 0 a2s2
0 0 1 0
0 0 0 1


The T -matrices are thus given by

T 0
1 = A1

T 0
2 = A1A2 =


c12 −s12 0 a1c1 + a2c12
s12 c12 0 a1s1 + a2s12
0 0 1 0
0 0 0 1


Notice that the first two entries of the last column of T 0

2 are the x and y
components of the origin o2 in the base frame; that is,

x = a1c1 + a2c12

y = a1s1 + a2s12

are the coordinates of the end-effector in the base frame. The rotational part of
T 0

2 gives the orientation of the frame o2x2y2z2 relative to the base frame.
�

Example 3.2 Three-Link Cylindrical Robot Consider now the three-link
cylindrical robot represented symbolically by Figure 3.7. We establish o0 as
shown at joint 1. Note that the placement of the origin o0 along z0 as well as
the direction of the x0 axis are arbitrary. Our choice of o0 is the most natural,
but o0 could just as well be placed at joint 2. The axis x0 is chosen normal
to the page. Next, since z0 and z1 coincide, the origin o1 is chosen at joint 1
as shown. The x1 axis is normal to the page when θ1 = 0 but, of course its
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Table 3.2 Link parameters for 3-link cylindrical manipulator

Link ai αi di θi

1 0 0 d1 θ∗1
2 0 −90 d∗2 0
3 0 0 d∗3 0

∗ variable

direction will change since θ1 is variable. Since z2 and z1 intersect, the origin
o2 is placed at this intersection. The direction of x2 is chosen parallel to x1

so that θ2 is zero. Finally, the third frame is chosen at the end of link 3 as
shown. The DH parameters are shown in Table 3.2. The corresponding A and

d3

d2

y3

x3

z3

O3

y2

y0

y1

O0

O1

O2

z1

z2

x2

x1

x0

z0

θ1

Fig. 3.7 Three-link cylindrical manipulator
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T matrices are

A1 =


c1 −s1 0 0
s1 c1 0 0
0 0 1 d1

0 0 0 1



A2 =


1 0 0 0
0 0 1 0
0 −1 0 d2

0 0 0 1



A3 =


1 0 0 0
0 1 0 0
0 0 1 d3

0 0 0 1



T 0
3 = A1A2A3 =


c1 0 −s1 −s1d3

s1 0 c1 c1d3

0 −1 0 d1 + d2

0 0 0 1

 (3.14)

�

Example 3.3 Spherical Wrist

θ5

θ4

z5

x4

z4

θ6

To gripper

x5

z3,

Fig. 3.8 The spherical wrist frame assignment

The spherical wrist configuration is shown in Figure 3.8, in which the joint
axes z3, z4, z5 intersect at o. The DH parameters are shown in Table 3.3. The
Stanford manipulator is an example of a manipulator that possesses a wrist of
this type.

We show now that the final three joint variables, θ4, θ5, θ6 are the Euler
angles φ, θ, ψ, respectively, with respect to the coordinate frame o3x3y3z3. To
see this we need only compute the matrices A4, A5, and A6 using Table 3.3 and
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Table 3.3 DH parameters for spherical wrist

Link ai αi di θi

4 0 −90 0 θ∗4
5 0 90 0 θ∗5
6 0 0 d6 θ∗6

∗ variable

the expression (3.10). This gives

A4 =


c4 0 −s4 0
s4 0 c4 0
0 −1 0 0
0 0 0 1



A5 =


c5 0 s5 0
s5 0 −c5 0
0 −1 0 0
0 0 0 1



A6 =


c6 −s6 0 0
s6 c6 0 0
0 0 1 d6

0 0 0 1


Multiplying these together yields

T 3
6 = A4A5A6

=
[
R3

6 o36
0 1

]

=


c4c5c6 − s4s6 −c4c5s6 − s4c6 c4s5 c4s5d6

s4c5c6 + c4s6 −s4c5s6 + c4c6 s4s5 s4s5d6

−s5c6 s5s6 c5 c5d6

0 0 0 1

 (3.15)

Comparing the rotational part R3
6 of T 3

6 with the Euler angle transformation
(2.27) shows that θ4, θ5, θ6 can indeed be identified as the Euler angles φ, θ and
ψ with respect to the coordinate frame o3x3y3z3.
�

Example 3.4 Cylindrical Manipulator with Spherical Wrist
Suppose that we now attach a spherical wrist to the cylindrical manipulator

of Example 3.2 as shown in Figure 3.9. Note that the axis of rotation of joint 4
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d3

θ1

d2

θ5

θ4 θ6 n s

a

Fig. 3.9 Cylindrical robot with spherical wrist

is parallel to z2 and thus coincides with the axis z3 of Example 3.2. The impli-
cation of this is that we can immediately combine the two previous expression
(3.14) and (3.15) to derive the forward kinematics as

T 0
6 = T 0

3 T
3
6 (3.16)

with T 0
3 given by (3.14) and T 3

6 given by (3.15). Therefore the forward kine-
matics of this manipulator is described by

T 0
6 =


r11 r12 r13 dx
r21 r22 r23 dy
r31 r32 r33 dz
0 0 0 1

 (3.17)
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Note: the shoulder (prismatic joint) is mounted wrong.

Fig. 3.10 DH coordinate frame assignment for the Stanford manipulator

in which

r11 = c1c4c5c6 − c1s4s6 + s1s5c6

r21 = s1c4c5c6 − s1s4s6 − c1s5c6
r31 = −s4c5c6 − c4s6
r12 = −c1c4c5s6 − c1s4c6 − s1s5c6
r22 = −s1c4c5s6 − s1s4s6 + c1s5c6

r32 = s4c5c6 − c4c6
r13 = c1c4s5 − s1c5
r23 = s1c4s5 + c1c5

r33 = −s4s5
dx = c1c4s5d6 − s1c5d6 − s1d3

dy = s1c4s5d6 + c1c5d6 + c1d3

dz = −s4s5d6 + d1 + d2

Notice how most of the complexity of the forward kinematics for this manip-
ulator results from the orientation of the end-effector while the expression for
the arm position from (3.14) is fairly simple. The spherical wrist assumption
not only simplifies the derivation of the forward kinematics here, but will also
greatly simplify the inverse kinematics problem in the next chapter.
�

Example 3.5 Stanford Manipulator
Consider now the Stanford Manipulator shown in Figure 3.10. This manip-

ulator is an example of a spherical (RRP) manipulator with a spherical wrist.
This manipulator has an offset in the shoulder joint that slightly complicates
both the forward and inverse kinematics problems.
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Table 3.4 DH parameters for Stanford Manipulator

Link di ai αi θi

1 0 0 −90 θ?

2 d2 0 +90 θ?

3 d? 0 0 0
4 0 0 −90 θ?

5 0 0 +90 θ?

6 d6 0 0 θ?

∗ joint variable

We first establish the joint coordinate frames using the DH convention as
shown. The DH parameters are shown in the Table 3.4.

It is straightforward to compute the matrices Ai as

A1 =


c1 0 −s1 0
s1 0 c1 0
0 −1 0 0
0 0 0 1

 (3.18)

A2 =


c2 0 s2 0
s2 0 −c2 0
0 1 0 d2

0 0 0 1

 (3.19)

A3 =


1 0 0 0
0 1 0 0
0 0 1 d3

0 0 0 1

 (3.20)

A4 =


c4 0 −s4 0
s4 0 c4 0
0 −1 0 0
0 0 0 1

 (3.21)

A5 =


c5 0 s5 0
s5 0 −c5 0
0 −1 0 0
0 0 0 1

 (3.22)

A6 =


c6 −s6 0 0
s6 c6 0 0
0 0 1 d6

0 0 0 1

 (3.23)



FORWARD KINEMATICS: THE DENAVIT-HARTENBERG CONVENTION 83

T 0
6 is then given as

T 0
6 = A1 · · ·A6 (3.24)

=


r11 r12 r13 dx
r21 r22 r23 dy
r31 r32 r33 dz
0 0 0 1

 (3.25)

where

r11 = c1[c2(c4c5c6 − s4s6)− s2s5c6]− d2(s4c5c6 + c4s6)
r21 = s1[c2(c4c5c6 − s4s6)− s2s5c6] + c1(s4c5c6 + c4s6)
r31 = −s2(c4c5c6 − s4s6)− c2s5c6
r12 = c1[−c2(c4c5s6 + s4c6) + s2s5s6]− s1(−s4c5s6 + c4c6)
r22 = −s1[−c2(c4c5s6 + s4c6) + s2s5s6] + c1(−s4c5s6 + c4c6)
r32 = s2(c4c5s6 + s4c6) + c2s5s6

r13 = c1(c2c4s5 + s2c5)− s1s4s5
r23 = s1(c2c4s5 + s2c5) + c1s4s5

r33 = −s2c4s5 + c2c5

dx = c1s2d3 − s1d2 + +d6(c1c2c4s5 + c1c5s2 − s1s4s5)
dy = s1s2d3 + c1d2 + d6(c1s4s5 + c2c4s1s5 + c5s1s2)
dz = c2d3 + d6(c2c5 − c4s2s5)

�

Example 3.6 SCARA Manipulator
As another example of the general procedure, consider the SCARA manipula-

tor of Figure 3.11. This manipulator, which is an abstraction of the AdeptOne
robot of Figure 1.14, consists of an RRP arm and a one degree-of-freedom wrist,
whose motion is a roll about the vertical axis. The first step is to locate and
label the joint axes as shown. Since all joint axes are parallel we have some
freedom in the placement of the origins. The origins are placed as shown for
convenience. We establish the x0 axis in the plane of the page as shown. This is
completely arbitrary and only affects the zero configuration of the manipulator,
that is, the position of the manipulator when θ1 = 0.

The joint parameters are given in Table 3.5, and the A-matrices are as fol-
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Fig. 3.11 DH coordinate frame assignment for the SCARA manipulator

Table 3.5 Joint parameters for SCARA

Link ai αi di θi

1 a1 0 0 θ?

2 a2 180 0 θ?

3 0 0 d? 0
4 0 0 d4 θ?

∗ joint variable

lows.

A1 =


c1 −s1 0 a1c1
s1 c1 0 a1s1
0 0 1 0
0 0 0 1

 (3.26)

A2 =


c2 s2 0 a2c2
s2 −c2 0 a2s2
0 0 −1 0
0 0 0 1

 (3.27)

A3 =


1 0 0 0
0 1 0 0
0 0 1 d3

0 0 0 1

 (3.28)

A4 =


c4 −s4 0 0
s4 c4 0 0
0 0 1 d4

0 0 0 1

 (3.29)
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The forward kinematic equations are therefore given by

T 0
4 = A1 · · ·A4

=


c12c4 + s12s4 −c12s4 + s12c4 0 a1c1 + a2c12
s12c4 − c12s4 −s12s4 − c12c4 0 a1s1 + a2s12

0 0 −1 −d3 − d4

0 0 0 1

 (3.30)

�

3.3 INVERSE KINEMATICS

In the previous section we showed how to determine the end-effector position
and orientation in terms of the joint variables. This section is concerned with
the inverse problem of finding the joint variables in terms of the end-effector
position and orientation. This is the problem of inverse kinematics, and it
is, in general, more difficult than the forward kinematics problem.

In this chapter, we begin by formulating the general inverse kinematics prob-
lem. Following this, we describe the principle of kinematic decoupling and how
it can be used to simplify the inverse kinematics of most modern manipula-
tors. Using kinematic decoupling, we can consider the position and orientation
problems independently. We describe a geometric approach for solving the po-
sitioning problem, while we exploit the Euler angle parameterization to solve
the orientation problem.

3.3.1 The General Inverse Kinematics Problem

The general problem of inverse kinematics can be stated as follows. Given a
4× 4 homogeneous transformation

H =
[
R o
0 1

]
∈ SE(3) (3.31)

with R ∈ SO(3), find (one or all) solutions of the equation

T 0
n(q1, . . . , qn) = H (3.32)

where

T 0
n(q1, . . . , qn) = A1(q1) · · ·An(qn) (3.33)

Here, H represents the desired position and orientation of the end-effector,
and our task is to find the values for the joint variables q1, . . . , qn so that
T 0
n(q1, . . . , qn) = H.
Equation (3.32) results in twelve nonlinear equations in n unknown variables,

which can be written as

Tij(q1, . . . , qn) = hij , i = 1, 2, 3, j = 1, . . . , 4 (3.34)
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where Tij , hij refer to the twelve nontrivial entries of T 0
n and H, respectively.

(Since the bottom row of both T 0
n and H are (0,0,0,1), four of the sixteen

equations represented by (3.32) are trivial.)

Example 3.7
Recall the Stanford manipulator of Example 3.3.5. Suppose that the desired

position and orientation of the final frame are given by

H =


0 1 0 −0.154
0 0 1 0.763
1 0 0 0
0 0 0 1

 (3.35)

To find the corresponding joint variables θ1, θ2, d3, θ4, θ5, and θ6 we must solve
the following simultaneous set of nonlinear trigonometric equations:

c1[c2(c4c5c6 − s4s6)− s2s5c6]− s1(s4c5c6 + c4s6) = 0
s1[c2(c4c5c6 − s4s6)− s2s5c6] + c1(s4c5c6 + c4s6) = 0

−s2(c4c5c6 − s4s6)− c2s5c6 = 1
c1[−c2(c4c5s6 + s4c6) + s2s5s6]− s1(−s4c5s6 + c4c6) = 1
s1[−c2(c4c5s6 + s4c6) + s2s5s6] + c1(−s4c5s6 + c4c6) = 0

s2(c4c5s6 + s4c6) + c2s5s6 = 0
c1(c2c4s5 + s2c5)− s1s4s5 = 0
s1(c2c4s5 + s2c5) + c1s4s5 = 1

−s2c4s5 + c2c5 = 0
c1s2d3 − s1d2 + d6(c1c2c4s5 + c1c5s2 − s1s4s5) = −0.154
s1s2d3 + c1d2 + d6(c1s4s5 + c2c4s1s5 + c5s1s2) = 0.763

c2d3 + d6(c2c5 − c4s2s5) = 0

If the values of the nonzero DH parameters are d2 = 0.154 and d6 = 0.263,
one solution to this set of equations is given by:

θ1 = π/2, θ2 = π/2, d3 = 0.5, θ4 = π/2, θ5 = 0, θ6 = π/2.

Even though we have not yet seen how one might derive this solution, it is
not difficult to verify that it satisfies the forward kinematics equations for the
Stanford arm.
�

The equations in the preceding example are, of course, much too difficult to
solve directly in closed form. This is the case for most robot arms. Therefore,
we need to develop efficient and systematic techniques that exploit the partic-
ular kinematic structure of the manipulator. Whereas the forward kinematics
problem always has a unique solution that can be obtained simply by evaluating
the forward equations, the inverse kinematics problem may or may not have a
solution. Even if a solution exists, it may or may not be unique. Furthermore,
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because these forward kinematic equations are in general complicated nonlin-
ear functions of the joint variables, the solutions may be difficult to obtain even
when they exist.

In solving the inverse kinematics problem we are most interested in finding a
closed form solution of the equations rather than a numerical solution. Finding
a closed form solution means finding an explicit relationship:

qk = fk(h11, . . . , h34), k = 1, . . . , n (3.36)

Closed form solutions are preferable for two reasons. First, in certain applica-
tions, such as tracking a welding seam whose location is provided by a vision
system, the inverse kinematic equations must be solved at a rapid rate, say ev-
ery 20 milliseconds, and having closed form expressions rather than an iterative
search is a practical necessity. Second, the kinematic equations in general have
multiple solutions. Having closed form solutions allows one to develop rules for
choosing a particular solution among several.

The practical question of the existence of solutions to the inverse kinematics
problem depends on engineering as well as mathematical considerations. For
example, the motion of the revolute joints may be restricted to less than a full
360 degrees of rotation so that not all mathematical solutions of the kinematic
equations will correspond to physically realizable configurations of the manip-
ulator. We will assume that the given position and orientation is such that at
least one solution of (3.32) exists. Once a solution to the mathematical equa-
tions is identified, it must be further checked to see whether or not it satisfies
all constraints on the ranges of possible joint motions. For our purposes, we
henceforth assume that the given homogeneous matrix H in (3.32) corresponds
to a configuration within the manipulator’s workspace with an attainable ori-
entation. This guarantees that the mathematical solutions obtained correspond
to achievable configurations.

3.3.2 Kinematic Decoupling

Although the general problem of inverse kinematics is quite difficult, it turns out
that for manipulators having six joints, with the last three joints intersecting at
a point (such as the Stanford Manipulator above), it is possible to decouple the
inverse kinematics problem into two simpler problems, known respectively, as
inverse position kinematics, and inverse orientation kinematics. To put
it another way, for a six-DOF manipulator with a spherical wrist, the inverse
kinematics problem may be separated into two simpler problems, namely first
finding the position of the intersection of the wrist axes, hereafter called the
wrist center, and then finding the orientation of the wrist.

For concreteness let us suppose that there are exactly six degrees-of-freedom
and that the last three joint axes intersect at a point oc. We express (3.32) as
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two sets of equations representing the rotational and positional equations

R0
6(q1, . . . , q6) = R (3.37)
o06(q1, . . . , q6) = o (3.38)

where o and R are the desired position and orientation of the tool frame, ex-
pressed with respect to the world coordinate system. Thus, we are given o and
R, and the inverse kinematics problem is to solve for q1, . . . , q6.

The assumption of a spherical wrist means that the axes z3, z4, and z5
intersect at oc and hence the origins o4 and o5 assigned by the DH-convention
will always be at the wrist center oc. Often o3 will also be at oc, but this is
not necessary for our subsequent development. The important point of this
assumption for the inverse kinematics is that motion of the final three links
about these axes will not change the position of oc, and thus, the position of
the wrist center is thus a function of only the first three joint variables.

The origin of the tool frame (whose desired coordinates are given by o) is
simply obtained by a translation of distance d6 along z5 from oc (see Table 3.3).
In our case, z5 and z6 are the same axis, and the third column of R expresses
the direction of z6 with respect to the base frame. Therefore, we have

o = o0c + d6R

 0
0
1

 (3.39)

Thus in order to have the end-effector of the robot at the point with coordinates
given by o and with the orientation of the end-effector given by R = (rij), it is
necessary and sufficient that the wrist center oc have coordinates given by

o0c = o − d6R

 0
0
1

 (3.40)

and that the orientation of the frame o6x6y6z6 with respect to the base be given
by R. If the components of the end-effector position o are denoted ox, oy, oz
and the components of the wrist center o0c are denoted xc, yc, zc then (3.40)
gives the relationship  xc

yc
zc

 =

 ox − d6r13
oy − d6r23
oz − d6r33

 (3.41)

Using Equation (3.41) we may find the values of the first three joint variables.
This determines the orientation transformation R0

3 which depends only on these
first three joint variables. We can now determine the orientation of the end-
effector relative to the frame o3x3y3z3 from the expression

R = R0
3R

3
6 (3.42)



INVERSE KINEMATICS 89

as

R3
6 = (R0

3)
−1R = (R0

3)
TR (3.43)

As we shall see in Section 3.3.4, the final three joint angles can then be found
as a set of Euler angles corresponding to R3

6. Note that the right hand side of
(3.43) is completely known since R is given and R0

3 can be calculated once
the first three joint variables are known. The idea of kinematic decoupling is
illustrated in Figure 3.12.

d6Rk

d
c

0

d
6

0

Fig. 3.12 Kinematic decoupling

3.3.3 Inverse Position: A Geometric Approach

For the common kinematic arrangements that we consider, we can use a ge-
ometric approach to find the variables, q1, q2, q3 corresponding to o0c given by
(3.40). We restrict our treatment to the geometric approach for two reasons.
First, as we have said, most present manipulator designs are kinematically
simple, usually consisting of one of the five basic configurations of Chapter 1
with a spherical wrist. Indeed, it is partly due to the difficulty of the gen-
eral inverse kinematics problem that manipulator designs have evolved to their
present state. Second, there are few techniques that can handle the general in-
verse kinematics problem for arbitrary configurations. Since the reader is most
likely to encounter robot configurations of the type considered here, the added
difficulty involved in treating the general case seems unjustified. The interested
reader can find more detailed treatment of the general case in [32] [34] [61] [72].

In general the complexity of the inverse kinematics problem increases with
the number of nonzero link parameters. For most manipulators, many of the
ai, di are zero, the αi are 0 or ±π/2, etc. In these cases especially, a geometric
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approach is the simplest and most natural. The general idea of the geometric
approach is to solve for joint variable qi by projecting the manipulator onto the
xi−1 − yi−1 plane and solving a simple trigonometry problem. For example, to
solve for θ1, we project the arm onto the x0 − y0 plane and use trigonometry
to find θ1. We will illustrate this method with two important examples: the
articulated and spherical arms.

3.3.3.1 Articulated Configuration Consider the elbow manipulator shown in
Figure 3.13, with the components of o0c denoted by xc, yc, zc. We project oc
onto the x0 − y0 plane as shown in Figure 3.14.
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x0
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θ3

Fig. 3.13 Elbow manipulator
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Fig. 3.14 Projection of the wrist center onto x0 − y0 plane
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We see from this projection that

θ1 = atan2(xc, yc) (3.44)

in which atan2(x, y) denotes the two argument arctangent function defined in
Chapter 2.

Note that a second valid solution for θ1 is

θ1 = π + atan2(xc, yc) (3.45)

Of course this will, in turn, lead to different solutions for θ2 and θ3, as we will
see below.

These solutions for θ1, are valid unless xc = yc = 0. In this case (3.44) is un-
defined and the manipulator is in a singular configuration, shown in Figure 3.15.
In this position the wrist center oc intersects z0; hence any value of θ1 leaves oc

z0

Fig. 3.15 Singular configuration

fixed. There are thus infinitely many solutions for θ1 when oc intersects z0.
If there is an offset d 6= 0 as shown in Figure 3.16 then the wrist center

cannot intersect z0. In this case, depending on how the DH parameters have
been assigned, we will have d2 = d or d3 = d. In this case, there will, in general,
be only two solutions for θ1. These correspond to the so-called left arm and
right arm configurations as shown in Figures 3.17 and 3.18. Figure 3.17 shows
the left arm configuration. From this figure, we see geometrically that

θ1 = φ− α (3.46)



92 FORWARD AND INVERSE KINEMATICS

d

Fig. 3.16 Elbow manipulator with shoulder offset

θ1

α

y
c

y0

x
c

x0

r

φd

Fig. 3.17 Left arm configuration

where

φ = atan2(xc, yc) (3.47)

α = atan2
(√

r2 − d2, d
)

(3.48)

= atan2
(√

x2
c + y2

c − d2, d
)
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Fig. 3.18 Right arm configuration

The second solution, given by the right arm configuration shown in Figure 3.18
is given by

θ1 = atan2(xc, yc) + atan2
(
−
√
r2 − d2,−d

)
(3.49)

To see this, note that

θ1 = α+ β (3.50)
α = atan2(xc, yc) (3.51)
β = γ + π (3.52)

γ = atan2(
√
r2 − d2, d) (3.53)

which together imply that

β = atan2
(
−
√
r2 − d2,−d

)
(3.54)

since cos(θ + π) = − cos(θ) and sin(θ + π) = − sin(θ).
To find the angles θ2, θ3 for the elbow manipulator, given θ1, we consider the

plane formed by the second and third links as shown in Figure 3.19. Since the
motion of links two and three is planar, the solution is analogous to that of the
two-link manipulator of Chapter 1. As in our previous derivation (cf. (1.7) and
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r

θ2

θ3

s

z0

a2

a3

Fig. 3.19 Projecting onto the plane formed by links 2 and 3

(1.8)) we can apply the law of cosines to obtain

cos θ3 =
r2 + s2 − a2

2 − a2
3

2a2a3
(3.55)

=
x2
c + y2

c − d2 + (zc − d1)2 − a2
2 − a2

3

2a2a3
:= D

since r2 = x2
c + y2

c − d2 and s = zc − d1. Hence, θ3 is given by

θ3 = atan2
(
D,±

√
1−D2

)
(3.56)

The two solutions for θ3 correspond to the elbow-up position and elbow-down
position, respectively.

Similarly θ2 is given as

θ2 = atan2(r, s)− atan2(a2 + a3c3, a3s3) (3.57)

= atan2
(√

x2
c + y2

c − d2, zc − d1

)
− atan2(a2 + a3c3, a3s3)

An example of an elbow manipulator with offsets is the PUMA shown in
Figure 3.20. There are four solutions to the inverse position kinematics as
shown. These correspond to the situations left arm-elbow up, left arm–elbow
down, right arm–elbow up and right arm–elbow down. We will see that there
are two solutions for the wrist orientation thus giving a total of eight solutions
of the inverse kinematics for the PUMA manipulator.

3.3.3.2 Spherical Configuration We next solve the inverse position kinematics
for a three degree of freedom spherical manipulator shown in Figure 3.21. As
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Fig. 3.20 Four solutions of the inverse position kinematics for the PUMA manipulator
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Fig. 3.21 Spherical manipulator

in the case of the elbow manipulator the first joint variable is the base rotation
and a solution is given as

θ1 = atan2(xc, yc) (3.58)

provided xc and yc are not both zero. If both xc and yc are zero, the configu-
ration is singular as before and θ1 may take on any value. As in the case of the
elbow manipulator, a second solution for θ1 is given by

θ1 = π + atan2(xc, yc). (3.59)

The angle θ2 is given from Figure 3.21 as

θ2 = atan2(r, s) +
π

2
(3.60)

where r2 = x2
c + y2

c , s = zc − d1.
The linear distance d3 is found as

d3 =
√
r2 + s2 =

√
x2
c + y2

c + (zc − d1)2 (3.61)

The negative square root solution for d3 is disregarded and thus in this case
we obtain two solutions to the inverse position kinematics as long as the wrist
center does not intersect z0. If there is an offset then there will be left and right
arm configurations as in the case of the elbow manipulator (Problem 3-25).
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Table 3.6 Link parameters for the articulated manipulator of Figure 3.13

Link ai αi di θi

1 0 90 d1 θ∗1
2 a2 0 0 θ∗2
3 a3 0 0 θ∗3

∗ variable

3.3.4 Inverse Orientation

In the previous section we used a geometric approach to solve the inverse posi-
tion problem. This gives the values of the first three joint variables correspond-
ing to a given position of the wrist origin. The inverse orientation problem is
now one of finding the values of the final three joint variables corresponding to
a given orientation with respect to the frame o3x3y3z3. For a spherical wrist,
this can be interpreted as the problem of finding a set of Euler angles corre-
sponding to a given rotation matrix R. Recall that equation (3.15) shows that
the rotation matrix obtained for the spherical wrist has the same form as the
rotation matrix for the Euler transformation, given in (2.27). Therefore, we can
use the method developed in Section 2.5.1 to solve for the three joint angles of
the spherical wrist. In particular, we solve for the three Euler angles, φ, θ, ψ,
using Equations (2.29) – (2.34), and then use the mapping

θ4 = φ

θ5 = θ

θ6 = ψ

Example 3.8 Articulated Manipulator with Spherical Wrist
The DH parameters for the frame assignment shown in Figure 3.13 are sum-

marized in Table 3.6. Multiplying the corresponding Ai matrices gives the ma-
trix R0

3 for the articulated or elbow manipulator as

R0
3 =

 c1c23 −c1s23 s1
s1c23 −s1s23 −c1
s23 c23 0

 (3.62)

The matrix R3
6 = A4A5A6 is given as

R3
6 =

 c4c5c6 − s4s6 −c4c5s6 − s4c6 c4s5
s4c5c6 + c4s6 −s4c5s6 + c4c6 s4s5
−s5c6 s5s6 c5

 (3.63)

The equation to be solved for the final three variables is therefore

R3
6 = (R0

3)
TR (3.64)
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and the Euler angle solution can be applied to this equation. For example, the
three equations given by the third column in the above matrix equation are given
by

c4s5 = c1c23r13 + s1c23r23 + s23r33 (3.65)
s4s5 = −c1s23r13 − s1s23r23 + c23r33 (3.66)
c5 = s1r13 − c1r23 (3.67)

Hence, if not both of the expressions (3.65), (3.66) are zero, we obtain θ5 from
(2.29) and (2.30) as

θ5 = atan2
(
s1r13 − c1r23,±

√
1− (s1r13 − c1r23)2

)
(3.68)

If the positive square root is chosen in (3.68), then θ4 and θ6 are given by (2.31)
and (2.32), respectively, as

θ4 = atan2(c1c23r13 + s1c23r23 + s23r33,

−c1s23r13 − s1s23r23 + c23r33) (3.69)
θ6 = atan2(−s1r11 + c1r21, s1r12 − c1r22) (3.70)

The other solutions are obtained analogously. If s5 = 0, then joint axes z3 and
z5 are collinear. This is a singular configuration and only the sum θ4 + θ6 can
be determined. One solution is to choose θ4 arbitrarily and then determine θ6
using (2.36) or (2.38).
�

3.3.5 Examples

Example 3.9 Elbow Manipulator - Complete Solution
To summarize the geometric approach for solving the inverse kinematics

equations, we write give here one solution to the inverse kinematics of the six
degree-of-freedom elbow manipulator shown in Figure 3.13 which has no joint
offsets and a spherical wrist.

Given

o =

 ox
oy
oz

 ; R =

 r11 r12 r13
r21 r22 r23
r31 r32 r33

 (3.71)

then with

xc = ox − d6r13 (3.72)
yc = oy − d6r23 (3.73)
zc = oz − d6r33 (3.74)
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a set of DH joint variables is given by

θ1 = atan2(xc, yc) (3.75)

θ2 = atan2
(√

x2
c + y2

c − d2, zc − d1

)
− atan2(a2 + a3c3, a3s3) (3.76)

θ3 = atan2
(
D,±

√
1−D2

)
,

where D =
x2
c + y2

c − d2 + (zc − d1)2 − a2
2 − a2

3

2a2a3
(3.77)

θ4 = atan2(c1c23r13 + s1c23r23 + s23r33,

−c1s23r13 − s1s23r23 + c23r33) (3.78)

θ5 = atan2
(
s1r13 − c1r23,±

√
1− (s1r13 − c1r23)2

)
(3.79)

θ6 = atan2(−s1r11 + c1r21, s1r12 − c1r22) (3.80)

The other possible solutions are left as an exercise (Problem 3-24).
�

Example 3.10 SCARA Manipulator
As another example, we consider the SCARA manipulator whose forward

kinematics is defined by T 0
4 from (3.30). The inverse kinematics solution is

then given as the set of solutions of the equation

T 1
4 =

[
R o
0 1

]

=


c12c4 + s12s4 s12c4 − c12s4 0 a1c1 + a2c12
s12c4 − c12s4 −c12c4 − s12s4 0 a1s1 + a2s12

0 0 −1 −d3 − d4

0 0 0 1

 (3.81)

We first note that, since the SCARA has only four degrees-of-freedom, not
every possible H from SE(3) allows a solution of (3.81). In fact we can easily
see that there is no solution of (3.81) unless R is of the form

R =

 cα sα 0
sα −cα 0
0 0 −1

 (3.82)

and if this is the case, the sum θ1 + θ2 − θ4 is determined by

θ1 + θ2 − θ4 = α = atan2(r11, r12) (3.83)

Projecting the manipulator configuration onto the x0− y0 plane immediately
yields the situation of Figure 3.22. We see from this that

θ2 = atan2
(
c2,±

√
1− c2

)
(3.84)
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Fig. 3.22 SCARA manipulator

where

c2 =
o2x + o2y − a2

1 − a2
2

2a1a2
(3.85)

θ1 = atan2(ox, oy)− atan2(a1 + a2c2, a2s2) (3.86)

We may then determine θ4 from (3.83) as

θ4 = θ1 + θ2 − α (3.87)
= θ1 + θ2 − atan2(r11, r12)

Finally d3 is given as

d3 = oz + d4 (3.88)

�

3.4 CHAPTER SUMMARY

In this chapter we studied the relationships between joint variables, qi and
the position and orientation of the end effector. We begain by introducing
the Denavit-Hartenberg convention for assigning coordinate frames to the links
of a serial manipulator. We may summarize the procedure based on the DH
convention in the following algorithm for deriving the forward kinematics for
any manipulator.

Step l: Locate and label the joint axes z0, . . . , zn−1.

Step 2: Establish the base frame. Set the origin anywhere on the z0-axis. The
x0 and y0 axes are chosen conveniently to form a right-handed frame.
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For i = 1, . . . , n− 1, perform Steps 3 to 5.

Step 3: Locate the origin oi where the common normal to zi and zi−1 intersects
zi. If zi intersects zi−1 locate oi at this intersection. If zi and zi−1 are
parallel, locate oi in any convenient position along zi.

Step 4: Establish xi along the common normal between zi−1 and zi through
oi, or in the direction normal to the zi−1−zi plane if zi−1 and zi intersect.

Step 5: Establish yi to complete a right-handed frame.

Step 6: Establish the end-effector frame onxnynzn. Assuming the n-th joint
is revolute, set zn = a along the direction zn−1. Establish the origin on
conveniently along zn, preferably at the center of the gripper or at the
tip of any tool that the manipulator may be carrying. Set yn = s in the
direction of the gripper closure and set xn = n as s × a. If the tool is
not a simple gripper set xn and yn conveniently to form a right-handed
frame.

Step 7: Create a table of link parameters ai, di, αi, θi.

ai = distance along xi from oi to the intersection of the xi and zi−1 axes.

di = distance along zi−1 from oi−1 to the intersection of the xi and zi−1

axes. di is variable if joint i is prismatic.

αi = the angle between zi−1 and zi measured about xi.

θi = the angle between xi−1 and xi measured about zi−1. θi is variable
if joint i is revolute.

Step 8: Form the homogeneous transformation matrices Ai by substituting
the above parameters into (3.10).

Step 9: Form T 0
n = A1 · · ·An. This then gives the position and orientation of

the tool frame expressed in base coordinates.

This DH convention defines the forward kinematics equations for a manipu-
lator, i.e., the mapping from joint variables to end effector position and orienta-
tion. To control a manipulator, it is necessary to solve the inverse problem, i.e.,
given a position and orientation for the end effector, solve for the corresponding
set of joint variables. In this chapter, we have considered the special case of
manipulators for which kinematic decoupling can be used (e.g., a manipulator
with a sperical wrist). For this class of manipulators the determination of the
inverse kinematics can be summarized by the following algorithm.

Step 1: Find q1, q2, q3 such that the wrist center oc has coordinates given by

o0c = o − d6R

 0
0
1

 (3.89)
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Step 2: Using the joint variables determined in Step 1, evaluate R0
3.

Step 3: Find a set of Euler angles corresponding to the rotation matrix

R3
6 = (R0

3)
−1R = (R0

3)
TR (3.90)

In this chapter, we demonstrated a geometric approach for Step 1. In par-
ticular, to solve for joint variable qi, we project the manipulator (including the
wrist center) onto the xi−1 − yi−1 plane and use trigonometry to find qi.

3.5 NOTES AND REFERENCES

Kinematics and inverse kinematics have been the subject of research in robotics
for many years. Some of the seminal work in these areas can be found in [9]
[14] [20] [22] [43] [44] [60] [71] [35] [76] [2] [32] [34] [44] [45] [60] [61] [66] [72].
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Problems

1. Verify the statement after Equation (3.14) that the rotation matrix R has
the form (3.13) provided assumptions DH1 and DH2 are satisfied.

2. Consider the three-link planar manipulator shown in Figure 3.23. Derive

Fig. 3.23 Three-link planar arm of Problem 3-2

the forward kinematic equations using the DH-convention.

3. Consider the two-link cartesian manipulator of Figure 3.24. Derive the

Fig. 3.24 Two-link cartesian robot of Problem 3-3

forward kinematic equations using the DH-convention.

4. Consider the two-link manipulator of Figure 3.25 which has joint 1 revo-
lute and joint 2 prismatic. Derive the forward kinematic equations using
the DH-convention.

5. Consider the three-link planar manipulator of Figure 3.26 Derive the for-
ward kinematic equations using the DH-convention.

6. Consider the three-link articulated robot of Figure 3.27. Derive the for-
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Fig. 3.25 Two-link planar arm of Problem 3-4

Fig. 3.26 Three-link planar arm with prismatic joint of Problem 3-5

Fig. 3.27 Three-link articulated robot

ward kinematic equations using the DH-convention.

7. Consider the three-link cartesian manipulator of Figure 3.28. Derive the
forward kinematic equations using the DH-convention.

8. Attach a spherical wrist to the three-link articulated manipulator of Prob-
lem 3-6. as shown in Figure 3.29. Derive the forward kinematic equations
for this manipulator.
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Fig. 3.28 Three-link cartesian robot

Fig. 3.29 Elbow manipulator with spherical wrist

9. Attach a spherical wrist to the three-link cartesian manipulator of Prob-
lem 3-7 as shown in Figure 3.30. Derive the forward kinematic equations
for this manipulator.

10. Consider the PUMA 260 manipulator shown in Figure 3.31. Derive the
complete set of forward kinematic equations, by establishing appropriate
DH coordinate frames, constructing a table of link parameters, forming
the A-matrices, etc.

11. Repeat Problem 3-9 for the five degree-of-freedom Rhino XR-3 robot
shown in Figure 3.32. (Note: you should replace the Rhino wrist with
the sperical wrist.)

12. Suppose that a Rhino XR-3 is bolted to a table upon which a coordi-
nate frame osxsyszs is established as shown in Figure 3.33. (The frame
osxsyxzs is often referred to as the station frame.) Given the base frame
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Fig. 3.30 Cartesian manipulator with spherical wrist

that you established in Problem 3-11, find the homogeneous transforma-
tion T s0 relating the base frame to the station frame. Find the homo-
geneous transformation T s5 relating the end-effector frame to the station
frame. What is the position and orientation of the end-effector in the
station frame when θ1 = θ2 = · · · = θ5 = 0?

13. Consider the GMF S-400 robot shown in Figure 3.34 Draw the symbolic
representation for this manipulator. Establish DH-coordinate frames and
write the forward kinematic equations.

14. Given a desired position of the end-effector, how many solutions are
there to the inverse kinematics of the three-link planar arm shown in
Figure 3.35? If the orientation of the end-effector is also specified, how
many solutions are there? Use the geometric approach to find them.

15. Repeat Problem 3-14 for the three-link planar arm with prismatic joint
of Figure 3.36.

16. Solve the inverse position kinematics for the cylindrical manipulator of
Figure 3.37.

17. Solve the inverse position kinematics for the cartesian manipulator of
Figure 3.38.
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Fig. 3.31 PUMA 260 manipulator
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Fig. 3.32 Rhino XR-3 robot

18. Add a spherical wrist to the three-link cylindrical arm of Problem 3-16
and write the complete inverse kinematics solution.

19. Repeat Problem 3-16 for the cartesian manipulator of Problem 3-17.

20. Write a computer program to compute the inverse kinematic equations for
the elbow manipulator using Equations (3.75)-(3.80). Include procedures
for identifying singular configurations and choosing a particular solution
when the configuration is singular. Test your routine for various special
cases, including singular configurations.

21. The Stanford manipulator of Example 3.3.5 has a spherical wrist. There-
fore, given a desired position O and orientation R of the end-effector,

a) Compute the desired coordinates of the wrist center O0
c .

b) Solve the inverse position kinematics, that is, find values of the first
three joint variables that will place the wrist center at Oc. Is the
solution unique? How many solutions did you find?
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Fig. 3.33 Rhino robot attached to a table. From: A Robot Engineering Textbook, by
Mohsen Shahinpoor. Copyright 1987, Harper & Row Publishers, Inc
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Fig. 3.34 GMF S-400 robot. (Courtesy GMF Robotics.)
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Fig. 3.35 Three-link planar robot with revolute joints.

Fig. 3.36 Three-link planar robot with prismatic joint

c) Compute the rotation matrix R0
3. Solve the inverse orientation prob-

lem for this manipulator by finding a set of Euler angles correspond-
ing to R3

6 given by (3.63).

22. Repeat Problem 3-21 for the PUMA 260 manipulator of Problem 3-9,
which also has a spherical wrist. How many total solutions did you find?

23. Solve the inverse position kinematics for the Rhino robot.

24. ). Find all other solutions to the inverse kinematics of the elbow manip-
ulator of Example 3.9.

25. . Modify the solutions θ1 and θ2 for the spherical manipulator given by
Equations (3.58) and (3.60) in the case of a shoulder offset.
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θ11m

d2

d31m

Fig. 3.37 Cylindrical configuration

d1

d3

d2

Fig. 3.38 Cartesian configuration



4
VELOCITY

KINEMATICS – THE
MANIPULATOR

JACOBIAN
In the previous chapter we derived the forward and inverse position equations
relating joint positions to end-effector positions and orientations. In this chapter
we derive the velocity relationships, relating the linear and angular velocities of
the end-effector to the joint velocities.

Mathematically, the forward kinematic equations define a function between
the space of cartesian positions and orientations and the space of joint posi-
tions. The velocity relationships are then determined by the Jacobian of this
function. The Jacobian is a matrix that can be thought of as the vector version
of the ordinary derivative of a scalar function. The Jacobian is one of the most
important quantities in the analysis and control of robot motion. It arises in
virtually every aspect of robotic manipulation: in the planning and execution
of smooth trajectories, in the determination of singular configurations, in the
execution of coordinated anthropomorphic motion, in the derivation of the dy-
namic equations of motion, and in the transformation of forces and torques
from the end-effector to the manipulator joints.

We begin this chapter with an investigation of velocities, and how to rep-
resent them. We first consider angular velocity about a fixed axis, and then
generalize this to rotation about an arbitrary, possibly moving axis with the
aid of skew symmetric matrices. Equipped with this general representation of
angular velocities, we are able to derive equations for both the angular velocity
and the linear velocity for the origin of a moving frame.

We then proceed to the derivation of the manipulator Jacobian. For an n-link
manipulator we first derive the Jacobian representing the instantaneous trans-
formation between the n-vector of joint velocities and the 6-vector consisting

113
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of the linear and angular velocities of the end-effector. This Jacobian is then
a 6 × n matrix. The same approach is used to determine the transformation
between the joint velocities and the linear and angular velocity of any point
on the manipulator. This will be important when we discuss the derivation of
the dynamic equations of motion in Chapter 6. We then discuss the notion of
singular configurations. These are configurations in which the manipulator
loses one or more degrees-of-freedom. We show how the singular configurations
are determined geometrically and give several examples. Following this, we
briefly discuss the inverse problems of determining joint velocities and accelera-
tions for specified end-effector velocities and accelerations. We end the chapter
by considering redundant manipulators. This includes discussions of the inverse
velocity problem, singular value decomposition and manipulability.

4.1 ANGULAR VELOCITY: THE FIXED AXIS CASE

When a rigid body moves in a pure rotation about a fixed axis, every point
of the body moves in a circle. The centers of these circles lie on the axis of
rotation. As the body rotates, a perpendicular from any point of the body to
the axis sweeps out an angle θ, and this angle is the same for every point of
the body. If k is a unit vector in the direction of the axis of rotation, then the
angular velocity is given by

ω = θ̇k (4.1)

in which θ̇ is the time derivative of θ.
Given the angular velocity of the body, one learns in introductory dynamics

courses that the linear velocity of any point on the body is given by the equation

v = ω × r (4.2)

in which r is a vector from the origin (which in this case is assumed to lie on
the axis of rotation) to the point. In fact, the computation of this velocity v
is normally the goal in introductory dynamics courses, and therefore, the main
role of an angular velocity is to induce linear velocities of points in a rigid body.
In our applications, we are interested in describing the motion of a moving
frame, including the motion of the origin of the frame through space and also
the rotational motion of the frame’s axes. Therefore, for our purposes, the
angular velocity will hold equal status with linear velocity.

As in previous chapters, in order to specify the orientation of a rigid object,
we attach a coordinate frame rigidly to the object, and then specify the orien-
tation of the attached frame. Since every point on the object experiences the
same angular velocity (each point sweeps out the same angle θ in a given time
interval), and since each point of the body is in a fixed geometric relationship to
the body-attached frame, we see that the angular velocity is a property of the
attached coordinate frame itself. Angular velocity is not a property of individ-
ual points. Individual points may experience a linear velocity that is induced
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by an angular velocity, but it makes no sense to speak of a point itself rotating.
Thus, in Equation (4.2) v corresponds to the linear velocity of a point, while ω
corresponds to the angular velocity associated with a rotating coordinate frame.

In this fixed axis case, the problem of specifying angular displacements is
really a planar problem, since each point traces out a circle, and since every
circle lies in a plane. Therefore, it is tempting to use θ̇ to represent the angular
velocity. However, as we have already seen in Chapter 2, this choice does not
generalize to the three-dimensional case, either when the axis of rotation is not
fixed, or when the angular velocity is the result of multiple rotations about
distinct axes. For this reason, we will develop a more general representation for
angular velocities. This is analogous to our development of rotation matrices in
Chapter 2 to represent orientation in three dimensions. The key tool that we
will need to develop this representation is the skew symmetric matrix, which is
the topic of the next section.

4.2 SKEW SYMMETRIC MATRICES

In Section 4.3 we will derive properties of rotation matrices that can be used
to compute relative velocity transformations between coordinate frames. Such
transformations involve derivatives of rotation matrices. By introducing the
notion of a skew symmetric matrix it is possible to simplify many of the com-
putations involved.

Definition 4.1 An n×n matrix S is said to be skew symmetric if and only
if

ST + S = 0 (4.3)

We denote the set of all 3× 3 skew symmetric matrices by so(3). If S ∈ so(3)
has components sij , i, j = 1, 2, 3 then Equation (4.3) is equivalent to the nine
equations

sij + sji = 0 i, j = 1, 2, 3 (4.4)

From Equation (4.4) we see that sii = 0; that is, the diagonal terms of S are
zero and the off diagonal terms sij , i 6= j satisfy sij = −sji. Thus S contains
only three independent entries and every 3× 3 skew symmetric matrix has the
form

S =

 0 −s3 s2
s3 0 −s1
−s2 s1 0

 (4.5)

If a = (ax, ay, az)T is a 3-vector, we define the skew symmetric matrix S(a) as

S(a) =

 0 −az ay
az 0 −ax
−ay ax 0


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Example 4.1
We denote by i, j and k the three unit basis coordinate vectors,

i =

 1
0
0

 ; j =

 0
1
0

 ; k =

 0
0
1


The skew symmetric matrices S(i), S(j), and S(k) are given by

S(i) =

 0 0 0
0 0 −1
0 1 0

 S(j) =

 0 0 1
0 0 0
−1 0 0


S(k) =

 0 −1 0
1 0 0
0 0 0


�

4.2.1 Properties of Skew Symmetric Matrices

Skew symmetric matrices possess several properties that will prove useful for
subsequent derivations.1 Among these properties are

1. The operator S is linear, i.e.,

S(αa+ βb) = αS(a) + βS(b) (4.6)

for any vectors a and b belonging to R3 and scalars α and β.

2. For any vectors a and p belonging to R3,

S(a)p = a× p (4.7)

where a × p denotes the vector cross product. Equation (4.7) can be
verified by direct calculation.

3. If R ∈ SO(3) and a, b are vectors in R3 it can also be shown by direct
calculation that

R(a× b) = Ra×Rb (4.8)

Equation (4.8) is not true in general unless R is orthogonal. Equa-
tion (4.8) says that if we first rotate the vectors a and b using the rotation
transformation R and then form the cross product of the rotated vectors

1These properties are consequences of the fact that so(3) is a Lie Algebra, a vector space with
a suitably defined product operation [8].
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Ra and Rb, the result is the same as that obtained by first forming the
cross product a× b and then rotating to obtain R(a× b).

4. For R ∈ SO(3) and a ∈ R3

RS(a)RT = S(Ra) (4.9)

This property follows easily from Equations (4.7) and (4.8) as follows. Let
b ∈ R3 be an arbitrary vector. Then

RS(a)RT b = R(a×RT b)
= (Ra)× (RRT b)
= (Ra)× b
= S(Ra)b

and the result follows.

As we will see, Equation (4.9) is one of the most useful expressions that we
will derive. The left hand side of Equation (4.9) represents a similarity trans-
formation of the matrix S(a). The equation says therefore that the matrix
representation of S(a) in a coordinate frame rotated by R is the same as the
skew symmetric matrix S(Ra) corresponding to the vector a rotated by R.

4.2.2 The Derivative of a Rotation Matrix

Suppose now that a rotation matrix R is a function of the single variable θ.
Hence R = R(θ) ∈ SO(3) for every θ. Since R is orthogonal for all θ it follows
that

R(θ)R(θ)T = I (4.10)

Differentiating both sides of Equation (4.10) with respect to θ using the product
rule gives

dR

dθ
R(θ)T +R(θ)

dRT

dθ
= 0 (4.11)

Let us define the matrix S as

S :=
dR

dθ
R(θ)T (4.12)

Then the transpose of S is

ST =
(
dR

dθ
R(θ)T

)T
= R(θ)

dRT

dθ
(4.13)

Equation (4.11) says therefore that

S + ST = 0 (4.14)
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In other words, the matrix S defined by Equation (4.12) is skew symmetric.
Multiplying both sides of Equation (4.12) on the right by R and using the fact
that RTR = I yields

dR

dθ
= SR(θ) (4.15)

Equation (4.15) is very important. It says that computing the derivative
of the rotation matrix R is equivalent to a matrix multiplication by a skew
symmetric matrix S. The most commonly encountered situation is the case
where R is a basic rotation matrix or a product of basic rotation matrices.

Example 4.2
If R = Rx,θ, the basic rotation matrix given by Equation (2.6), then direct

computation shows that

S =
dR

dθ
RT =

 0 0 0
0 − sin θ − cos θ
0 cos θ − sin θ

 1 0 0
0 cos θ sin θ
0 − sin θ cos θ


=

 0 0 0
0 0 −1
0 1 0

 = S(i)

Thus we have shown that
dRx,θ
dθ

= S(i)Rx,θ

Similar computations show that

dRy,θ
dθ

= S(j)Ry,θ and
dRz,θ
dθ

= S(k)Rz,θ (4.16)

�

Example 4.3
Let Rk,θ be a rotation about the axis defined by k as in Equation (2.46). Note

that in this example k is not the unit coordinate vector (0, 0, 1)T . It is easy to
check that S(k)3 = −S(k). Using this fact together with Problem 4-25 it follows
that

dRk,θ
dθ

= S(k)Rk,θ (4.17)

�

4.3 ANGULAR VELOCITY: THE GENERAL CASE

We now consider the general case of angular velocity about an arbitrary, pos-
sibly moving, axis. Suppose that a rotation matrix R is time varying, so that
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R = R(t) ∈ SO(3) for every t ∈ R. Assuming that R(t) is continuously dif-
ferentiable as a function of t, an argument identical to the one in the previous
section shows that the time derivative Ṙ(t) of R(t) is given by

Ṙ(t) = S(t)R(t) (4.18)

where the matrix S(t) is skew symmetric. Now, since S(t) is skew symmetric,
it can be represented as S(ω(t)) for a unique vector ω(t). This vector ω(t) is
the angular velocity of the rotating frame with respect to the fixed frame at
time t. Thus, the time derivative Ṙ(t) is given by

Ṙ(t) = S(ω(t))R(t) (4.19)

in which ω(t) is the angular velocity.
Equation (4.19) shows the relationship between angular velocity and the

derivative of a rotation matrix. In particular, if the instantaneous orientation
of a frame o1x1y1z1 with respect to a frame o0x0y0z0 is given by R0

1, then the
angular velocity of frame o1x1y1z1 is directly related to the derivative of R0

1

by Equation (4.19). When there is a possibility of ambiguity, we will use the
notation ωi,j to denote the angular velocity that corresponds to the derivative of
the rotation matrix Rij . Since ω is a free vector, we can express it with respect
to any coordinate system of our choosing. As usual we use a superscript to
denote the reference frame. For example, ω0

1,2 would give the angular velocity
that corresponds to the derivative of R1

2, expressed in coordinates relative to
frame o0x0y0z0. In cases where the angular velocities specify rotation relative to
the base frame, we will often simplify the subscript, e.g., using ω2 to represent
the angular velocity that corresponds to the derivative of R0

2.

Example 4.4
Suppose that R(t) = Rx,θ(t). Then Ṙ(t) is computed using the chain rule as

Ṙ =
dR

dt
=
dR

dθ

dθ

dt
= θ̇S(i)R(t) = S(ω(t))R(t) (4.20)

in which ω = iθ̇ is the angular velocity. Note, here i = (1, 0, 0)T .
�

4.4 ADDITION OF ANGULAR VELOCITIES

We are often interested in finding the resultant angular velocity due to the
relative rotation of several coordinate frames. We now derive the expressions
for the composition of angular velocities of two moving frames o1x1y1z1 and
o2x2y2z2 relative to the fixed frame o0x0y0z0. For now, we assume that the
three frames share a common origin. Let the relative orientations of the frames
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o1x1y1z1 and o2x2y2z2 be given by the rotation matrices R0
1(t) and R1

2(t) (both
time varying). As in Chapter 2,

R0
2(t) = R0

1(t)R
1
2(t) (4.21)

Taking derivatives of both sides of Equation (4.21) with respect to time yields

Ṙ0
2 = Ṙ0

1R
1
2 +R0

1Ṙ
1
2 (4.22)

Using Equation (4.19), the term Ṙ0
2 on the left-hand side of Equation (4.22)

can be written

Ṙ0
2 = S(ω0

0,2)R
0
2 (4.23)

In this expression, ω0
0,2 denotes the total angular velocity experienced by frame

o2x2y2z2. This angular velocity results from the combined rotations expressed
by R0

1 and R1
2.

The first term on the right-hand side of Equation (4.22) is simply

Ṙ0
1R

1
2 = S(ω0

0,1)R
0
1R

1
2 = S(ω0

0,1)R
0
2 (4.24)

Note that in this equation, ω0
0,1 denotes the angular velocity of frame o1x1y1z1

that results from the changing R0
1, and this angular velocity vector is expressed

relative to the coordinate system o0x0y0z0.
Let us examine the second term on the right hand side of Equation (4.22).

Using Equation (4.9) we have

R0
1Ṙ

1
2 = R0

1S(ω1
1,2)R

1
2 (4.25)

= R0
1S(ω1

1,2)R
0
1
T
R0

1R
1
2 = S(R0

1ω
1
1,2)R

0
1R

1
2

= S(R0
1ω

1
1,2)R

0
2. (4.26)

Note that in this equation, ω1
1,2 denotes the angular velocity of frame o2x2y2z2

that corresponds to the changingR1
2, expressed relative to the coordinate system

o1x1y1z1. Thus, the product R0
1ω

1
1,2 expresses this angular velocity relative to

the coordinate system o0x0y0z0, i.e., R0
1ω

1
1,2 gives the coordinates of the free

vector ω1,2 with respect to frame 0.
Now, combining the above expressions we have shown that

S(ω0
2)R0

2 = {S(ω0
0,1) + S(R0

1ω
1
1,2)}R0

2 (4.27)

Since S(a) + S(b) = S(a+ b), we see that

ω0
2 = ω0

0,1 +R0
1ω

1
1,2 (4.28)

In other words, the angular velocities can be added once they are expressed
relative to the same coordinate frame, in this case o0x0y0z0.
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The above reasoning can be extended to any number of coordinate systems.
In particular, suppose that we are given

R0
n = R0

1R
1
2 · · ·Rn−1

n (4.29)

Although it is a slight abuse of notation, let us represent by ωi−1
i the an-

gular velocity due to the rotation given by Ri−1
i , expressed relative to frame

oi−1xi−1yi−1zi−1. Extending the above reasoning we obtain

Ṙ0
n = S(ω0

0,n)R
0
n (4.30)

in which

ω0
0,n = ω0

0,1 +R0
1ω

1
1,2 +R0

2ω
2
2,3 +R0

3ω
3
3,4 + · · ·+R0

n−1ω
n−1
n−1,n (4.31)

= ω0
0,1 + ω0

1,2 + ω0
2,3 + ω0

3,4 + · · ·+ ω0
n−1,n (4.32)

4.5 LINEAR VELOCITY OF A POINT ATTACHED TO A MOVING

FRAME

We now consider the linear velocity of a point that is rigidly attached to a mov-
ing frame. Suppose the point p is rigidly attached to the frame o1x1y1z1, and
that o1x1y1z1 is rotating relative to the frame o0x0y0z0. Then the coordinates
of p with respect to the frame o0x0y0z0 are given by

p0 = R0
1(t)p

1. (4.33)

The velocity ṗ0 is then given by the product rule for differentiation as

ṗ0 = Ṙ0
1(t)p

1 +R0
1(t)ṗ

1 (4.34)
= S(ω0)R0

1(t)p
1 (4.35)

= S(ω0)p0 = ω0 × p0 (4.36)

which is the familiar expression for the velocity in terms of the vector cross
product. Note that Equation (4.35) follows from that fact that p is rigidly
attached to frame o1x1y1z1, and therefore its coordinates relative to frame
o1x1y1z1 do not change, giving ṗ1 = 0.

Now suppose that the motion of the frame o1x1y1z1 relative to o0x0y0z0 is
more general. Suppose that the homogeneous transformation relating the two
frames is time-dependent, so that

H0
1 (t) =

[
R0

1(t) o01(t)
0 1

]
(4.37)

For simplicity we omit the argument t and the subscripts and superscripts
on R0

1 and o01, and write

p0 = Rp1 + o (4.38)
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Differentiating the above expression using the product rule gives

ṗ0 = Ṙp1 + ȯ (4.39)
= S(ω)Rp1 + ȯ

= ω × r + v

where r = Rp1 is the vector from o1 to p expressed in the orientation of the
frame o0x0y0z0, and v is the rate at which the origin o1 is moving.

If the point p is moving relative to the frame o1x1y1z1, then we must add to
the term v the term R(t)ṗ1, which is the rate of change of the coordinates p1

expressed in the frame o0x0y0z0.

4.6 DERIVATION OF THE JACOBIAN

Consider an n-link manipulator with joint variables q1, . . . , qn . Let

T 0
n(q) =

[
R0
n(q) o0n(q)
0 1

]
(4.40)

denote the transformation from the end-effector frame to the base frame, where
q = (q1, . . . , qn)T is the vector of joint variables. As the robot moves about,
both the joint variables qi and the end-effector position o0n and orientation R0

n

will be functions of time. The objective of this section is to relate the linear and
angular velocity of the end-effector to the vector of joint velocities q̇(t). Let

S(ω0
n) = Ṙ0

n(R
0
n)
T (4.41)

define the angular velocity vector ω0
n of the end-effector, and let

v0
n = ȯ0n (4.42)

denote the linear velocity of the end effector. We seek expressions of the form

v0
n = Jvq̇ (4.43)
ω0
n = Jω q̇ (4.44)

where Jv and Jω are 3×n matrices. We may write Equations (4.43) and (4.44)
together as

ξ = Jq̇ (4.45)

in which ξ and J are given by

ξ =
[
v0
n

ω0
n

]
and J =

[
Jv
Jω

]
(4.46)
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The vector ξ is sometimes called a body velocity. Note that this velocity vector
is not the derivative of a position variable, since the angular velocity vector is
not the derivative of any particular time varying quantity. The matrix J is
called the Manipulator Jacobian or Jacobian for short. Note that J is a
6×n matrix where n is the number of links. We next derive a simple expression
for the Jacobian of any manipulator.

4.6.1 Angular Velocity

Recall from Equation (4.31) that angular velocities can be added as free vectors,
provided that they are expressed relative to a common coordinate frame. Thus
we can determine the angular velocity of the end-effector relative to the base
by expressing the angular velocity contributed by each joint in the orientation
of the base frame and then summing these.

If the i-th joint is revolute, then the i-th joint variable qi equals θi and the
axis of rotation is zi−1. Following the convention that we introduced above, let
ωi−1
i represent the angular velocity of link i that is imparted by the rotation of

joint i, expressed relative to frame oi−1xi−1yi−1zi−1. This angular velocity is
expressed in the frame i− 1 by

ωi−1
i = q̇iz

i−1
i−1 = q̇ik (4.47)

in which, as above, k is the unit coordinate vector (0, 0, 1)T .
If the i-th joint is prismatic, then the motion of frame i relative to frame

i− 1 is a translation and

ωi−1
i = 0 (4.48)

Thus, if joint i is prismatic, the angular velocity of the end-effector does not
depend on qi, which now equals di.

Therefore, the overall angular velocity of the end-effector, ω0
n, in the base

frame is determined by Equation (4.31) as

ω0
n = ρ1q̇1k + ρ2q̇2R

0
1k + · · ·+ ρnq̇nR

0
n−1k (4.49)

=
n∑
i−1

ρiq̇iz
0
i−1

in which ρi is equal to 1 if joint i is revolute and 0 if joint i is prismatic, since

z0
i−1 = R0

i−1k (4.50)

Of course z0
0 = k = (0, 0, 1)T .

The lower half of the Jacobian Jω, in Equation (4.46) is thus given as

Jω = [ρ1z0 · · · ρnzn−1] . (4.51)

Note that in this equation, we have omitted the superscripts for the unit vectors
along the z-axes, since these are all referenced to the world frame. In the
remainder of the chapter we occasionally will follow this convention when there
is no ambiguity concerning the reference frame.
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4.6.2 Linear Velocity

The linear velocity of the end-effector is just ȯ0n. By the chain rule for differen-
tiation

ȯ0n =
n∑
i=1

∂o0n
∂qi

q̇i (4.52)

Thus we see that the i-th column of Jv , which we denote as Jvi
is given by

Jvi =
∂o0n
∂qi

(4.53)

Furthermore this expression is just the linear velocity of the end-effector that
would result if q̇i were equal to one and the other q̇j were zero. In other words,
the i-th column of the Jacobian can be generated by holding all joints fixed but
the i-th and actuating the i-th at unit velocity. We now consider the two cases
(prismatic and revolute joints) separately.

(i) Case 1: Prismatic Joints

If joint i is prismatic, then it imparts a pure translation to the end-effector.
From our study of the DH convention in Chapter 3, we can write the T 0

n as the
product of three transformations as follows

[
R0
n o0n

0 1

]
= T 0

n (4.54)

= T 0
i−1T

i−1
i T in (4.55)

=
[
R0
i−1 o0i−1

0 1

] [
Ri−1
i oi−1

i

0 1

] [
Rin oin
0 1

]
(4.56)

=
[
R0
n R0

i o
i
n +R0

i−1o
i−1
i + o0i−1

0 1

]
, (4.57)

which gives

o0n = R0
i o
i
n +R0

i−1o
i−1
i + o0i−1 (4.58)

If only joint i is allowed to move, then both of oin and o0i−1 are constant.
Furthermore, if joint i is prismatic, then the rotation matrix R0

i−1 is also con-
stant (again, assuming that only joint i is allowed to move). Finally, recall
from Chapter 3 that, by the DH convention, oi−1

i = (aici, aisi, di)T . Thus,
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differentiation of o0n gives

∂o0n
∂qi

=
∂

∂di
R0
i−1o

i−1
i (4.59)

= R0
i−1

∂

∂di

 aici
aisi
di

 (4.60)

= ḋiR
0
i−1

 0
0
1

 (4.61)

= ḋiz
0
i−1, (4.62)

in which di is the joint variable for prismatic joint i. Thus, (again, dropping
the zero superscript on the z-axis) for the case of prismatic joints we have

Jvi
= zi−1 (4.63)

(ii) Case 2: Revolute Joints

If joint i is revolute, then we have qi = θi. Starting with Equation (4.58), and
letting qi = θi, since R0

i is not constant with respect to θi, we obtain

∂

∂θi
o0n =

∂

∂θi

[
R0
i o
i
n +R0

i−1o
i−1
i

]
(4.64)

=
∂

∂θi
R0
i o
i
n +R0

i−1

∂

∂θi
oi−1
i (4.65)

= θ̇iS(z0
i−1)R

0
i o
i
n + θ̇iS(z0

i−1)R
0
i−1o

i−1
i (4.66)

= θ̇iS(z0
i−1)

[
R0
i o
i
n +R0

i−1o
i−1
i

]
(4.67)

= θ̇iS(z0
i−1)(o

0
n − o0i−1) (4.68)

= θ̇iz
0
i−1 × (o0n − o0i−1) (4.69)

The second term in Equation (4.66) is derived as follows:

R0
i−1

∂

∂θi

 aici
aisi
di

 = R0
i−1

 −aisiaici
0

 θ̇i (4.70)

= R0
i−1S(kθ̇i)oi−1

i (4.71)

= R0
i−1S(kθ̇i)

(
R0
i−1

)T
R0
i−1o

i−1
i (4.72)

= S(R0
i−1kθ̇i)R

0
i−1o

i−1
i (4.73)

= θ̇iS(z0
i−1)R

0
i−1o

i−1
i (4.74)

Equation (4.71) follows by straightforward computation. Thus for a revolute
joint

Jvi
= zi−1 × (on − oi−1) (4.75)
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in which we have, following our convention, omitted the zero superscripts. Fig-
ure 4.1 illustrates a second interpretation of Equation (4.75). As can be seen
in the figure, on − oi−1 = r and zi−1 = ω in the familiar expression v = ω× r.

Oi−1

y0

x0

z0

On

θi

d0

i−1

r ≡ di−1

n

ω ≡ zi−1

Fig. 4.1 Motion of the end-effector due to link i.

4.6.3 Combining the Angular and Linear Jacobians

As we have seen in the preceding section, the upper half of the Jacobian Jv is
given as

Jv = [Jv1 · · · Jvn
] (4.76)

where the i-th column Jvi
is

Jvi
=
{
zi−1 × (on − oi−1) for revolute joint i

zi−1 for prismatic joint i (4.77)

The lower half of the Jacobian is given as

Jω = [Jω1 · · · Jωn
] (4.78)

where the i-th column Jωi
is

Jωi =
{
zi−1 for revolute joint i
0 for prismatic joint i (4.79)

Putting the upper and lower halves of the Jacobian together, we the Jacobian
for an n-link manipulator is of the form

J = [J1J2 · · · Jn] (4.80)



EXAMPLES 127

where the i-th column Ji is given by

Ji =
[
zi−1 × (on − oi−1)

zi−1

]
(4.81)

if joint i is revolute and

Ji =
[
zi−1

0

]
(4.82)

if joint i is prismatic.
The above formulas make the determination of the Jacobian of any manip-

ulator simple since all of the quantities needed are available once the forward
kinematics are worked out. Indeed the only quantities needed to compute the
Jacobian are the unit vectors zi and the coordinates of the origins o1, . . . , on. A
moment’s reflection shows that the coordinates for zi with respect to the base
frame are given by the first three elements in the third column of T 0

i while oi
is given by the first three elements of the fourth column of T 0

i . Thus only the
third and fourth columns of the T matrices are needed in order to evaluate the
Jacobian according to the above formulas.

The above procedure works not only for computing the velocity of the end-
effector but also for computing the velocity of any point on the manipulator.
This will be important in Chapter 6 when we will need to compute the velocity
of the center of mass of the various links in order to derive the dynamic equations
of motion.

4.7 EXAMPLES

We now provide a few examples to illustrate the derivation of the manipulator
Jacobian.

Example 4.5 Two-Link Planar Manipulator
Consider the two-link planar manipulator of Example 3.1. Since both joints

are revolute the Jacobian matrix, which in this case is 6× 2, is of the form

J(q) =
[
z0 × (o2 − o0) z1 × (o2 − o1)

z0 z1

]
(4.83)

The various quantities above are easily seen to be

o0 =

 0
0
0

 o1 =

 a1c1
a1s1

0

 o2 =

 a1c1 + a2c12
a1s1 + a2s12

0

 (4.84)

z0 = z1 =

 0
0
1

 (4.85)
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Performing the required calculations then yields

J =


−a1s1 − a2s12 −a2s12
a1c1 + a2c12 a2c12

0 0
0 0
0 0
1 1

 (4.86)

It is easy to see how the above Jacobian compares with Equation (1.1) derived
in Chapter 1. The first two rows of Equation (4.85) are exactly the 2 × 2
Jacobian of Chapter 1 and give the linear velocity of the origin o2 relative to
the base. The third row in Equation (4.86) is the linear velocity in the direction
of z0, which is of course always zero in this case. The last three rows represent
the angular velocity of the final frame, which is simply a rotation about the
vertical axis at the rate θ̇1 + θ̇2.
�

Example 4.6 Jacobian for an Arbitrary Point
Consider the three-link planar manipulator of Figure 4.2. Suppose we wish

v

ω

z0
x0

z1

x1

y0

y1

O
c

Fig. 4.2 Finding the velocity of link 2 of a 3-link planar robot.

to compute the linear velocity v and the angular velocity ω of the center of link 2
as shown. In this case we have that

J(q) =
[
z0 × (oc − o0) z1 × (oc − o1) 0

z0 z1 0

]
(4.87)

which is merely the usual the Jacobian with oc in place of on. Note that the
third column of the Jacobin is zero, since the velocity of the second link is
unaffected by motion of the third link2. Note that in this case the vector oc
must be computed as it is not given directly by the T matrices (Problem 4-13).

2Note that we are treating only kinematic effects here. Reaction forces on link 2 due to the
motion of link 3 will influence the motion of link 2. These dynamic effects are treated by the
methods of Chapter 6.
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Example 4.7 Stanford Manipulator
Consider the Stanford manipulator of Example 3.5 with its associated Denavit-

Hartenberg coordinate frames. Note that joint 3 is prismatic and that o3 = o4 =
o5 as a consequence of the spherical wrist and the frame assignment. Denoting
this common origin by o we see that the columns of the Jacobian have the form

Ji =
[
zi−1 × (o6 − oi−1)

zi−1

]
i = 1, 2

J3 =
[
z2
0

]

Ji =
[
zi−1 × (o6 − o)

zi−1

]
i = 4, 5, 6

Now, using the A-matrices given by Equations (3.18)-(3.23) and the T -
matrices formed as products of the A-matrices, these quantities are easily com-
puted as follows: First, oj is given by the first three entries of the last column
of T 0

j = A1 · · ·Aj, with o0 = (0, 0, 0)T = o1. The vector zj is given as

zj = R0
jk (4.88)

where R0
j is the rotational part of T 0

j . Thus it is only necessary to compute
the matrices T 0

j to calculate the Jacobian. Carrying out these calculations one
obtains the following expressions for the Stanford manipulator:

o6 =

 c1s2d3 − s1d2 + d6(c1c2c4s5 + c1c5s2 − s1s4s5)
s1s2d3 − c1d2 + d6(c1s4s5 + c2c4s1s5 + c5s1s2)

c2d3 + d6(c2c5 − c4s2s5)

 (4.89)

o3 =

 c1s2d3 − s1d2

s1s2d3 + c1d2

c2d3

 (4.90)
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The zi are given as

z0 =

 0
0
1

 z1 =

 −s1c1
0

 (4.91)

z2 =

 c1s2
s1s2
c2

 z3 =

 c1s2
s1s2
c2

 (4.92)

z4 =

 −c1c2s4 − s1c4−s1c2s4 + c1c4
s2s4

 (4.93)

z5 =

 c1c2c4s5 − s1s4s5 + c1s2c5
s1c2c4s5 + c1s4s5 + s1s2c5

−s2c4s5 + c2c5

 . (4.94)

The Jacobian of the Stanford Manipulator is now given by combining these
expressions according to the given formulae (Problem 4-19).
�

Example 4.8 SCARA Manipulator
We will now derive the Jacobian of the SCARA manipulator of Example 3.6.

This Jacobian is a 6 × 4 matrix since the SCARA has only four degrees-of-
freedom. As before we need only compute the matrices T 0

j = A1 . . . Aj, where
the A-matrices are given by Equations (3.26)-(3.29).

Since joints 1,2, and 4 are revolute and joint 3 is prismatic, and since o4−o3
is parallel to z3 (and thus, z3 × (o4 − o3) = 0), the Jacobian is of the form

J =
[
z0 × (o4 − o0) z1 × (o4 − o1) z2 0

z0 z1 0 z3

]
(4.95)

Performing the indicated calculations, one obtains

o1 =

 a1c1
a1s1

0

 o2 =

 a1c1 + a2c12
a1s1 + a2s12

0

 (4.96)

o4 =

 a1c1 + a2c12
a1s2 + a2s12
d3 − d4

 (4.97)

Similarly z0 = z1 = k, and z2 = z3 = −k. Therefore the Jacobian of the
SCARA Manipulator is

J =


−a1s1 − a2s12 −a2s12 0 0
a1c1 + a2c12 a2c12 0 0

0 0 −1 0
0 0 0 0
0 0 0 0
1 1 0 −1

 (4.98)
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4.8 THE ANALYTICAL JACOBIAN

The Jacobian matrix derived above is sometimes called the Geometric Jacobian
to distinguish it from the Analytical Jacobian, denoted Ja(q), considered in this
section, which is based on a minimal representation for the orientation of the
end-effector frame. Let

X =
[
d(q)
α(q)

]
(4.99)

denote the end-effector pose, where d(q) is the usual vector from the origin of
the base frame to the origin of the end-effector frame and α denotes a minimal
representation for the orientation of the end-effector frame relative to the base
frame. For example, let α = [φ, θ, ψ]T be a vector of Euler angles as defined in
Chapter 2. Then we look for an expression of the form

Ẋ =
[
ḋ
α̇

]
= Ja(q)q̇ (4.100)

to define the analytical Jacobian.
It can be shown (Problem 4-9) that, if R = Rz,ψRy,θRz,φ is the Euler angle

transformation then
Ṙ = S(ω)R (4.101)

in which ω, defining the angular velocity is given by

ω =

 cψsθφ̇− sψ θ̇
sψsθψ̇ + cψθ

ψ̇ + cθψ̇

 (4.102)

=

 cψsθ −sψ 0
sψsθ cψ 0
cθ 0 1

 φ̇

θ̇

ψ̇

 = B(α)α̇ (4.103)

The components of ω are called the nutation, spin, and precession, respectively.
Combining the above relationship with the previous definition of the Jacobian,
i.e. [

v
ω

]
=
[
ḋ
ω

]
= J(q)q̇ (4.104)

yields

J(q)q̇ =
[
v
ω

]
=
[

ḋ
B(α)α̇

]
(4.105)

=
[
I 0
0 B(α)

] [
ḋ
α̇

]
(4.106)

=
[
I 0
0 B(α)

]
Ja(q)q̇ (4.107)
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Thus the analytical Jacobian, Ja(q), may be computed from the geometric
Jacobian as

Ja(q) =
[
I 0
0 B(α)−1

]
J(q) (4.108)

provided detB(α) 6= 0.
In the next section we discuss the notion of Jacobian singularities, which are

configurations where the Jacobian loses rank. Singularities of the matrix B(α)
are called representational singularities. It can easily be shown (Problem 4-20)
that B(α) is invertible provided sθ 6= 0. This means that the singularities of
the analytical Jacobian include the singularities of the geometric Jacobian, J ,
as defined in the next section, together with the representational singularities.

4.9 SINGULARITIES

The 6× n Jacobian J(q) defines a mapping

ξ = J(q)q̇ (4.109)

between the vector q̇ of joint velocities and the vector ξ = (v, ω)T of end-
effector velocities. This implies that the all possible end-effector velocities are
linear combinations of the columns of the Jacobian matrix,

ξ = J1q̇1 + J2q̇2 · · ·+ Jnq̇n

For example, for the two-link planar arm, the Jacobian matrix given in Equation
(4.86) has two columns. It is easy to see that the linear velocity of the end-
effector must lie in the xy-plane, since neither column has a nonzero entry for
the third row. Since ξ ∈ R6, it is necessary that J have six linearly independent
columns for the end-effector to be able to achieve any arbitrary velocity (see
Appendix B).

The rank of a matrix is the number of linearly independent columns (or
rows) in the matrix. Thus, when rank J = 6, the end-effector can execute
any arbitrary velocity. For a matrix J ∈ R6×n, it is always the case that
rank J ≤ min(6, n). For example, for the two-link planar arm, we always have
rank J ≤ 2, while for an anthropomorphic arm with spherical wrist we always
have rank J ≤ 6.

The rank of a matrix is not necessarily constant. Indeed, the rank of the
manipulator Jacobian matrix will depend on the configuration q. Configurations
for which the rank J(q) is less than its maximum value are called singularities
or singular configurations. Identifying manipulator singularities is important
for several reasons.

1. Singularities represent configurations from which certain directions of motion
may be unattainable.

2. At singularities, bounded end-effector velocities may correspond to unbounded
joint velocities.
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3. At singularities, bounded end-effector forces and torques may correspond to
unbounded joint torques. (We will see this in Chapter 9).

4. Singularities usually (but not always) correspond to points on the boundary
of the manipulator workspace, that is, to points of maximum reach of the
manipulator.

5. Singularities correspond to points in the manipulator workspace that may
be unreachable under small perturbations of the link parameters, such as
length, offset, etc.

6. Near singularities there will not exist a unique solution to the inverse kine-
matics problem. In such cases there may be no solution or there may be
infinitely many solutions.

There are a number of methods that can be used to determine the singu-
larities of the Jacobian. In this chapter, we will exploit the fact that a square
matrix is singular when its determinant is equal to zero. In general, it is difficult
to solve the nonlinear equation det J(q) = 0. Therefore, we now introduce the
method of decoupling singularities, which is applicable whenever, for example,
the manipulator is equipped with a spherical wrist.

4.9.1 Decoupling of Singularities

We saw in Chapter 3 that a set of forward kinematic equations can be derived
for any manipulator by attaching a coordinate frame rigidly to each link in
any manner that we choose, computing a set of homogeneous transformations
relating the coordinate frames, and multiplying them together as needed. The
DH convention is merely a systematic way to do this. Although the resulting
equations are dependent on the coordinate frames chosen, the manipulator con-
figurations themselves are geometric quantities, independent of the frames used
to describe them. Recognizing this fact allows us to decouple the determination
of singular configurations, for those manipulators with spherical wrists, into two
simpler problems. The first is to determine so-called arm singularities, that
is, singularities resulting from motion of the arm, which consists of the first
three or more links, while the second is to determine the wrist singularities
resulting from motion of the spherical wrist.

For the sake of argument, suppose that n = 6, that is, the manipulator
consists of a 3-DOF arm with a 3-DOF spherical wrist. In this case the Jacobian
is a 6× 6 matrix and a configuration q is singular if and only if

det J(q) = 0 (4.110)

If we now partition the Jacobian J into 3× 3 blocks as

J = [JP | JO] =

[
J11

J21

J12

J22

]
(4.111)
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then, since the final three joints are always revolute

JO =
[
z3 × (o6 − o3) z4 × (o6 − o4) z5 × (o6 − o5)

z3 z4 z5

]
(4.112)

Since the wrist axes intersect at a common point o, if we choose the coordi-
nate frames so that o3 = o4 = o5 = o6 = o, then JO becomes

JO =
[

0 0 0
z3 z4 z5

]
(4.113)

In this case the Jacobian matrix has the block triangular form

J =
[
J11 0
J21 J22

]
(4.114)

with determinant

det J = det J11 det J22 (4.115)

where J11 and J22 are each 3×3 matrices. J11 has i-th column zi−1× (o−oi−1)
if joint i is revolute, and zi−1 if joint i is prismatic, while

J22 = [z3 z4 z5] (4.116)

Therefore the set of singular configurations of the manipulator is the union
of the set of arm configurations satisfying det J11 = 0 and the set of wrist
configurations satisfying det J22 = 0. Note that this form of the Jacobian does
not necessarily give the correct relation between the velocity of the end-effector
and the joint velocities. It is intended only to simplify the determination of
singularities.

4.9.2 Wrist Singularities

We can now see from Equation (4.116) that a spherical wrist is in a singular
configuration whenever the vectors z3, z4 and z5 are linearly dependent. Refer-
ring to Figure 4.3 we see that this happens when the joint axes z3 and z5 are
collinear. In fact, when any two revolute joint axes are collinear a singularity
results, since an equal and opposite rotation about the axes results in no net
motion of the end-effector. This is the only singularity of the spherical wrist,
and is unavoidable without imposing mechanical limits on the wrist design to
restrict its motion in such a way that z3 and z5 are prevented from lining up.

4.9.3 Arm Singularities

To investigate arm singularities we need only to compute J11, which is done
using Equation (4.77) but with the wrist center o in place of on.
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Fig. 4.3 Spherical wrist singularity.
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Fig. 4.4 Elbow manipulator.

Example 4.9 Elbow Manipulator Singularities
Consider the three-link articulated manipulator with coordinate frames at-

tached as shown in Figure 4.4. It is left as an exercise (Problem 4-14) to show
that

J11 =

 −a2s1c2 − a3s1c23 −a2s2c1 − a3s23c1 −a3c1s23
a2c1c2 + a3c1c23 −a2s1s2 − a3s1s23 −a3s1s23

0 a2c2 + a3c23 a3c23

 (4.117)

and that the determinant of J11 is

det J11 = a2a3s3(a2c2 + a3c23). (4.118)

We see from Equation (4.118) that the elbow manipulator is in a singular
configuration whenever

s3 = 0, that is, θ3 = 0 or π (4.119)

and whenever

a2c2 + a3c23 = 0 (4.120)
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θ3 = 0
◦ θ3 = 180

◦

Fig. 4.5 Elbow singularities of the elbow manipulator.

The situation of Equation (4.119) is shown in Figure 4.5 and arises when
the elbow is fully extended or fully retracted as shown. The second situation
of Equation (4.120) is shown in Figure 4.6. This configuration occurs when

z0

θ1

Fig. 4.6 Singularity of the elbow manipulator with no offsets.

the wrist center intersects the axis of the base rotation, z0. As we saw in
Chapter 3, there are infinitely many singular configurations and infinitely many
solutions to the inverse position kinematics when the wrist center is along this
axis. For an elbow manipulator with an offset, as shown in Figure 4.7, the wrist
center cannot intersect z0, which corroborates our earlier statement that points
reachable at singular configurations may not be reachable under arbitrarily small
perturbations of the manipulator parameters, in this case an offset in either the
elbow or the shoulder.
�
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z0

d

Fig. 4.7 Elbow manipulator with shoulder offset.
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Example 4.10 Spherical Manipulator
Consider the spherical arm of Figure 4.8. This manipulator is in a singular

θ1

z0

Fig. 4.8 Singularity of spherical manipulator with no offsets.

configuration when the wrist center intersects z0 as shown since, as before, any
rotation about the base leaves this point fixed.
�

Example 4.11 SCARA Manipulator
We have already derived the complete Jacobian for the the SCARA manip-

ulator. This Jacobian is simple enough to be used directly rather than deriving
the modified Jacobian as we have done above. Referring to Figure 4.9 we can
see geometrically that the only singularity of the SCARA arm is when the elbow
is fully extended or fully retracted. Indeed, since the portion of the Jacobian of
the SCARA governing arm singularities is given as

J11 =

 α1 α3 0
α2 α4 0
0 0 −1

 (4.121)

where

α1 = −a1s1 − a2s12 (4.122)
α2 = a1c1 + a2c12

α3 = −a1s12

α4 = a1c12 (4.123)
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z0

z1 z2

θ2 = 0
◦

Fig. 4.9 SCARA manipulator singularity.

we see that the rank of J11 will be less than three precisely whenever α1α4 −
α2α3 = 0. It is easy to compute this quantity and show that it is equivalent to
(Problem 4-16)

s2 = 0, which implies θ2 = 0, π. (4.124)

�

4.10 INVERSE VELOCITY AND ACCELERATION

The Jacobian relationship
ξ = Jq̇ (4.125)

specifies the end-effector velocity that will result when the joints move with
velocity q̇. The inverse velocity problem is the problem of finding the joint
velocities q̇ that produce the desired end-effector velocity. It is perhaps a bit
surprising that the inverse velocity relationship is conceptually simpler than
inverse position. When the Jacobian is square (i.e., J ∈ Rn×n) and nonsingular,
this problem can be solved by simply inverting the Jacobian matrix to give

q̇ = J−1ξ (4.126)

For manipulators that do not have exactly six links, the Jacobian can not
be inverted. In this case there will be a solution to Equation (4.125) if and
only if ξ lies in the range space of the Jacobian. This can be determined by the
following simple rank test. A vector ξ belongs to the range of J if and only if

rank J(q) = rank [J(q) | ξ] (4.127)

In other words, Equation (4.125) may be solved for q̇ ∈ Rn provided that the
rank of the augmented matrix [J(q) | ξ] is the same as the rank of the Jacobian
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J(q). This is a standard result from linear algebra, and several algorithms exist,
such as Gaussian elimination, for solving such systems of linear equations.

For the case when n > 6 we can solve for q̇ using the right pseudoinverse
of J . To construct this psuedoinverse, we use the following result from linear
algebra.

Proposition: For J ∈ Rm×n, if m < n and rank J = m, then (JJT )−1 exists.

In this case (JJT ) ∈ Rm×m, and has rank m. Using this result, we can regroup
terms to obtain

(JJT )(JJT )−1 = I

J
[
JT (JJT )−1

]
= I

JJ+ = I

Here, J+ = JT (JJT )−1 is called a right pseudoinverse of J , since JJ+ = I.
Note that, J+J ∈ Rn×n, and that in general, J+J 6= I (recall that matrix
multiplication is not commutative).

It is now easy to demonstrate that a solution to Equation (4.125) is given by

q̇ = J+ξ + (I − J+J)b (4.128)

in which b ∈ Rn is an arbitrary vector. To see this, siimly multiply both sides
of Equation (4.128) by J :

Jq̇ = J [J+ξ + (I − J+J)b]
= JJ+ξ + J(I − J+J)b
= JJ+ξ + (J − JJ+J)b
= ξ + (J − J)b
= ξ

In general, form < n, (I−J+J) 6= 0, and all vectors of the form (I−J+J)b lie
in the null space of J , i.e., if q̇′ is a joint velocity vector such that q̇′ = (I−J+J)b,
then when the joints move with velocity q̇′, the end effector will remain fixed
since Jq̇′ = 0. Thus, if q̇ is a solution to Equation (4.125), then so is q̇+ q̇′ with
q̇′ = (I−J+J)b, for any value of b. If the goal is to minimize the resulting joint
velocities, we choose b = 0. To see this, apply the triangle inequality to obtain

|| q̇ || = || J+ξ + (I − J+J)b ||
≤ || J+ξ ||+ || (I − J+J)b ||

It is a simple matter construct the right pseudoinverse of J using its singular
value decomposition (see Appendix B),

J+ = V Σ+UT
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in which

Σ+ =


σ−1

1

σ−1
2

.
.
σ−1
m

∣∣∣∣∣∣∣∣∣∣
0


T

We can apply a similar approach when the analytical Jacobian is used in
place of the manipulator Jacobian. Recall from Equation (4.100) that the joint
velocities and the end-effector velocities are related by the analytical Jacobian
as

Ẋ = Ja(q)q̇ (4.129)

Thus the inverse velocity problem becomes one of solving the system of linear
equations (4.129), which can be accomplished as above for the manipulator
Jacobian.

Differentiating Equation (4.129) yields the acceleration equations

Ẍ = Ja(q)q̈ +
(
d

dt
Ja(q)

)
q̇ (4.130)

Thus, given a vector Ẍ of end-effector accelerations, the instantaneous joint
acceleration vector q̈ is given as a solution of

b = Ja(q)q̈ (4.131)

where

b = Ẍ − d

dt
Ja(q)q̇ (4.132)

For 6-DOF manipulators the inverse velocity and acceleration equations can
therefore be written as

q̇ = Ja(q)−1Ẋ (4.133)

and

q̈ = Ja(q)−1b (4.134)

provided det Ja(q) 6= 0.

4.11 MANIPULABILITY

For a specific value of q, the Jacobian relationship defines the linear system
given by ξ = Jq̇. We can think of J a scaling the input, q̇, to produce the
output, ξ. It is often useful to characterize quantitatively the effects of this



142 VELOCITY KINEMATICS – THE MANIPULATOR JACOBIAN

scaling. Often, in systems with a single input and a single output, this kind of
characterization is given in terms of the so called impulse response of a system,
which essentially characterizes how the system responds to a unit input. In
this multidimensional case, the analogous concept is to characterize the output
in terms of an input that has unit norm. Consider the set of all robot joint
velocities q̇ such that

‖q̇‖ = (q̇21 + q̇22 + . . . q̇2m)1/2 ≤ 1 (4.135)

If we use the minimum norm solution q̇ = J+ξ, we obtain

‖q̇‖ = q̇T q̇

= (J+ξ)TJ+ξ

= ξT (JJT )−1ξ ≤ 1 (4.136)

The derivation of this is left as an exercise (Problem 4-26). This final inequality
gives us a quantitative characterization of the scaling that is effected by the
Jacobian. In particular, if the manipulator Jacobian is full rank, i.e., rank J =
m, then Equation (4.136) defines an m-dimensional ellipsoid that is known as
the manipulability ellipsoid. If the input (i.e., joint velocity) vector has unit
norm, then the output (i.e., end-effector velocity) will lie within the ellipsoid
given by Equation (4.136). We can more easily see that Equation (4.136) defines
an ellipsoid by replacing the Jacobian by its SVD J = UΣV T (see Appendix
B) to obtain

ξT (JJT )−1ξT = (UT ξ)TΣ−2
m (UT ξ) (4.137)

in which

Σ−2
m =


σ−2

1

σ−2
2

.
.
σ−2
m


The derivation of Equation (4.137) is left as an exercise (Problem 4-27). If we
make the substitution w = UT ξ, then Equation (4.137) can be written as

wTΣ−2
m w =

∑
σ−2
i w2

i ≤ 1 (4.138)

and it is clear that this is the equation for an axis-aligned ellipse in a new
coordinate system that is obtained by rotation according to the orthogonal
matrix U. In the original coordinate system, the axes of the ellipsoid are given
by the vectors σiui. The volume of the ellipsoid is given by

volume = Kσ1σ2 · · ·σm

in whichK is a constant that depends only on the dimension, m, of the ellipsoid.
The manipulability measure, as defined by Yoshikawa [78], is given by

µ = σ1σ2 · · ·σm (4.139)
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Note that the constant K is not included in the definition of manipulability,
since it is fixed once the task has been defined (i.e., once the dimension of the
task space has been fixed).

Now, consider the special case that the robot is not redundant, i.e., J ∈
Rm×m. Recall that the determinant of a product is equal to the product of the
determinants, and that a matrix and its transpose have the same determinant.
Thus, we have

det JJT = det J det JT

= det J det J
= (λ1λ2 · · ·λm)(λ1λ2 · · ·λm)
= λ2

1λ
2
2 · · ·λ2

m (4.140)

in which λ1 ≥ λ2 · · · ≤ λm are the eigenvalues of J . This leads to

µ =
√

det JJT = |λ1λ2 · · ·λm| = |det J | (4.141)

The manipulability, µ, has the following properties.

• In general, µ = 0 holds if and only if rank(J) < m, (i.e., when J is not
full rank).

• Suppose that there is some error in the measured velocity, ∆ξ. We can
bound the corresponding error in the computed joint velocity, ∆q̇, by

(σ1)−1 ≤ ||∆q̇||
||∆ξ||

≤ (σm)−1 (4.142)

Example 4.12 Two-link Planar Arm.
We can use manipulability to determine the optimal configurations in which

to perform certain tasks. In some cases it is desirable to perform a task in the
configuration for which the end effector has the maximum dexterity. We can
use manipulability as a measure of dexterity. Consider the two-link planar arm
and the task of positioning in the plane. For the two link arm, the Jacobian is
given by

J =
[
−a1s1 − a2s12 −a2s12
a1c1 + a2c12 a2c12

]
(4.143)

and the manipulability is given by

µ = |det J | = a1a2|s2|

Thus, for the two-link arm, the maximum manipulability is obtained for θ2 =
±π/2.

Manipulability can also be used to aid in the design of manipulators. For
example, suppose that we wish to design a two-link planar arm whose total link
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length, a1 + a2, is fixed. What values should be chosen for a1 and a2? If
we design the robot to maximize the maximum manipulability, the we need to
maximize µ = a1a2|s2|. We have already seen that the maximum is obtained
when θ2 = ±π/2, so we need only find a1 and a2 to maximize the product a1a2.
This is achieved when a1 = a2. Thus, to maximize manipulability, the link
lengths should be chosen to be equal.
�

4.12 CHAPTER SUMMARY

A moving coordinate frame has both a linear and an angular velocity. Linear
velocity is associated to a moving point, while angular velocity is associated
to a rotating frame. Thus, the linear velocity of a moving frame is merely
the velocity of its origin. The angular velocity for a moving frame is related
to the time derivative of the rotation matrix that describes the instantaneous
orientation of the frame. In particular, if R(t) ∈ SO(3), then

Ṙ(t) = S(ω(t))R(t) (4.144)

and the vector ω(t) is the instantaneous angular velocity of the frame. The
operator S gives a skew symmetrix matrix

S(ω) =

 0 −ωz ωy
ωz 0 −ωx
−ωy ωx 0

 (4.145)

The manipulator Jacobian relates the vector of joint velocities to the body
velocity ξ = (v, ω)T of the end effector,

ξ = Jq̇ (4.146)

This relationship can be written as two equations, one for linear velocity and
one for angular velocity,

v = Jvq̇ (4.147)
ω = Jω q̇ (4.148)

The i-th column of the Jacobian matrix corresponds to the i-th joint of the
robot manipulator, and takes one of two forms depending on whether the i-th
joint is prismatic or revolute

Ji =



[
zi−1 × (on − oi−1)

zi−1

]
if joint i is revolute

[
zi−1

0

]
if joint i is prismatic

(4.149)
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For a given parameterization of orientation, e.g. Euler angles, the analytical
Jacobian relates joint velocities to the time derivative of the pose parameters

X =
[
d(q)
α(q)

]
Ẋ =

[
ḋ
α̇

]
= Ja(q)q̇

iin which d(q) is the usual vector from the origin of the base frame to the origin
of the end-effector frame and α denotes a parameterization of rotation matrix
that specifies the orientation of the end-effector frame relative to the base frame.
For the Euler angle parameterization, the analytical Jacobian is given by

Ja(q) =
[
I 0
0 B(α)−1

]
J(q) (4.150)

in which

B(α) =

 cψsθ −sψ 0
sψsθ cψ 0
cθ 0 1


A configuration at which the Jacobian loses rank (i.e., a configuration q such

that rank J ≤ maxq rank J(q)) is called a singularity. For a manipulator with
a spherical wrist, the set of singular configurations includes singularites of the
wrist (which are merely the singularities in the Euler angle parameterization)
and singularites in the arm. The latter can be found by solving

det J11 = 0

with J11 the upper left 3× 3 block of the manipulator Jacobian.
For nonsingular configurations, the Jacobian relationship can be used to find

the joint velocities q̇ necessary to achieve a desired end-effector velocity ξ The
minimum norm solution is given by

q̇ = J+ξ

in which J+ = JT (JJT )−1 is the right pseudoinverse of J .
Manipulability is defined by µ = σ1σ2 · · ·σm in which σi are the singular

values for the manipulator Jacobian. The manipulatibility can be used to char-
acterize the range of possible end-effector velocities for a given configuration
q.
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Problems

4-1 Verify Equation (4.6) by direct calculation.

4-2 Verify Equation (4.7) by direct calculation.

4-3 Verify Equation (4.8) by direct calculation.

4-4 Verify Equation (4.16) by direct calculation.

4-5 Show that S(k)3 = −S(k). Use this and Problem 25 to verify Equa-
tion (4.17).

4-6 Given any square matrix A, the exponential of A is a matrix defined as

eA = I +A+
1
2
A2 +

1
3!
A3 + ·

Given S ∈ so(3) show that eS ∈ SO(3).

[Hint: Verify the facts that eAeB = eA+B provided that A and B commute,
that is, AB = BA, and also that det(eA) = eTr(A).]

4-7 Show that Rk,θ = eS(k)θ.

[Hint: Use the series expansion for the matrix exponential together with
Problems 25 and 5. Alternatively use the fact that Rk,θ satisfies the differ-
ential equation

dR

dθ
= S(k)R.

4-8 Use Problem 7 to show the converse of Problem 6, that is, if R ∈ SO(3)
then there exists S ∈ so(3) such that R = eS .

4-9 Given the Euler angle transformation

R = Rz,ψRy,θRz,φ

show that d
dtR = S(ω)R where

ω = {cψsθφ̇− sψ θ̇}i+ {sψsθφ̇+ cψ θ̇}j + {[̇si+ cθφ̇}k.

The components of i, j, k, respectively, are called the nutation, spin, and
precession.

4-10 Repeat Problem 9 for the Roll-Pitch-Yaw transformation. In other words,
find an explicit expression for ω such that d

dtR = S(ω)R, where R is given
by Equation (2.39).
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4-11 Two frames o0x0y0z0 and o1x1y1z1 are related by the homogeneous trans-
formation

H =


0 −1 0 1
1 0 0 −1
0 0 1 0
0 0 0 1

 .
A particle has velocity v1(t) = (3, 1, 0)T relative to frame o1x1y1z1. What
is the velocity of the particle in frame o0x0y0z0?

4-12 Three frames o0x0y0z0 and o1x1y1z1, and o2x2y2z2 are given below. If the
angular velocities ω0

1 and ω1
2 are given as

ω0
1 =

 1
1
0

 ; ω1
2 =

 2
0
1


what is the angular velocity ω0

2 at the instant when

R0
1 =

 1 0 0
0 0 −1
0 1 0

 .
4-13 ). For the three-link planar manipulator of Example 4.6, compute the

vector Oc and derive the manipulator Jacobian matrix.

4-14 Compute the Jacobian J11 for the 3-link elbow manipulator of Example 4.9
and show that it agrees with Equation (4.117). Show that the determinant
of this matrix agrees with Equation (4.118).

4-15 Compute the Jacobian J11 for the three-link spherical manipulator of Ex-
ample 4.10.

4-16 Show from Equation (4.122) that the singularities of the SCARA manipu-
lator are given by Equation (4.124).

4-17 Find the 6 × 3 Jacobian for the three links of the cylindrical manipulator
of Figure 3.7. Show that there are no singular configurations for this arm.
Thus the only singularities for the cylindrical manipulator must come from
the wrist.

4-18 Repeat Problem 17 for the cartesian manipulator of Figure 3.28.

4-19 Complete the derivation of the Jacobian for the Stanford manipulator from
Example 4.7.

4-20 Show that B(α) given by Equation (4.103) is invertible provided sθ 6= 0.

4-21 Verify Equation (4.7) by direct calculation.
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4-22 Prove the assertion given in Equation (4.8) that R(a × b) = Ra × Rb, for
R ∈ S0(3).

4-23 Suppose that a = (1,−1, 2)T and that R = Rx,90. Show by direct calcula-
tion that

RS(a)RT = S(Ra).

4-24 Given R0
1 = Rx,θRy,φ, compute ∂R0

1
∂φ . Evaluate ∂R0

1
∂φ at θ = π

2 , φ = φ
2 .

4-25 Use Equation (2.46) to show that

Rk,θ = I + S(k) sin(θ) + S2(k) vers(θ).

4-26 Verify Equation (4.136).

4-27 Verify Equation (4.137).



5
PATH AND

TRAJECTORY
PLANNING

In previous chapters, we have studied the geometry of robot arms, developing
solutions for both the forward and inverse kinematics problems. The solutions
to these problems depend only on the intrinsic geometry of the robot, and they
do not reflect any constraints imposed by the workspace in which the robot
operates. In particular, they do not take into account the possiblity of collision
between the robot and objects in the workspace. In this chapter, we address the
problem of planning collision free paths for the robot. We will assume that the
initial and final configurations of the robot are specified, and that the problem
is to find a collision free path for the robot that connects them.

The description of this problem is deceptively simple, yet the path planning
problem is among the most difficult problems in computer science. The compu-
tational complexity of the best known complete1 path planning algorithm grows
exponentially with the number of internal degrees of freedom of the robot. For
this reason, for robot systems with more than a few degrees of freedom, com-
plete algorithms are not used in practice.

In this chapter we treat the path planning problem as a search problem. The
algorithms we describe are not guaranteed to find a solution to all problems,
but they are quite effective in a wide range of practical applications. Further-
more, these algorithms are fairly easy to implement, and require only moderate
computation time for most problems.

1An algorithm is said to be complete if it finds a solution whenever one exists.

149
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Path planning provides a geometric description of robot motion, but it does
not specify any dynamic aspects of the motion. For example, what should be the
joint velocities and accelerations while traversing the path? These questions are
addressed by a trajectory planner. The trajectory planner computes a function
qd(t) that completely specifies the motion of the robot as it traverses the path.

We begin in Section 5.1 by introducing the notion of configuration space, and
describing how obstacles in the workspace can be mapped into the configuration
space. We then introduce path planning methods that use artificial potential
fields in Sections 5.2 and 5.3. The corresponding algorithms use gradient descent
search to find a collision-free path to the goal, and, as with all gradient descent
methods, these algorithms can become trapped in local minima in the potential
field. Therefore, in Section 5.4 we describe how random motions can be used
to escape local minima. In Section 5.5 we describe another randomized method
known as the Probabilistic Roadmap (PRM) method. Finally, since each of
these methods generates a sequence of configurations, we describe in Section
5.6 how polynomial splines can be used to generate smooth trajectories from a
sequence of configurations.

5.1 THE CONFIGURATION SPACE

In Chapter 3, we learned that the forward kinematic map can be used to deter-
mine the position and orientation of the end effector frame given the vector of
joint variables. Furthermore, the Ai matrices can be used to infer the position
and orientation of the reference frame for any link of the robot. Since each link
of the robot is assumed to be a rigid body, the Ai matrices can therefore be
used to infer the position of any point on the robot, given the values of the
joint variables. In the path planning literature, a complete specification of the
location of every point on the robot is referred to as a configuration, and the set
of all possible configurations is referred to as the configuration space. For our
purposes, the vector of joint variables, q, provides a convenient representation
of a configuration. We will denote the configuration space by Q.

For a one link revolute arm, the configuration space is merely the set of
orientations of the link, and thus Q = S1, where S1 represents the unit circle.
We could also say Q = SO(2). In fact, the choice of S1 or SO(2) is not
particularly important, since these two are equivalent representations. In either
case, we can parameterize Q by a single parameter, the joint angle θ1. For the
two-link planar arm, we have Q = S1 × S1 = T 2, in which T 2 represents the
torus, and we can represent a configuration by q = (θ1, θ2). For a Cartesian
arm, we haveQ = <3, and we can represent a configuration by q = (d1, d2, d3) =
(x, y, z).

Although we have chosen to represent a configuration by a vector of joint
variables, the notion of a configuration is more general than this. For example,
as we saw in Chapter 2, for any rigid two-dimensional object, we can specify the
location of every point on the object by rigidly attaching a coordinate frame
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to the object, and then specifying the position and orientation of this frame.
Thus, for a rigid object moving in the plane we can represent a configuration
by the triple q = (x, y, θ), and the configuration space can be represented by
Q = <2 × SO(2). Again, this is merely one possible representation of the
configuration space, but it is a convenient one given the representations of
position and orientation that we have learned in preceeding chapters.

A collision occurs when the robot contacts an obstacle in the workspace.
To describe collisions, we introduce some additional notation. We will denote
the robot by A, and by A(q) the subset of the workspace that is occupied by
the robot at configuration q. We denote by Oi the obstacles in the workspace,
and by W the workspace (i.e., the Cartesian space in which the robot moves).
To plan a collision free path, we must ensure that the robot never reaches a
configuration q that causes it to make contact with an obstacle in the workspace.
The set of configurations for which the robot collides with an obstacle is referred
to as the configuration space obstacle, and it is defined by

QO = {q ∈ Q | A(q) ∩ O 6= ∅}

Here, we define O = ∪Oi. The set of collision-free configurations, referred to
as the free configuration space, is then simply

Qfree = Q \ QO

Example 5.1 A Rigid Body that Translates in the Plane.

b2b3

V
O
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V
O
3

a3

V
A
2

a2

a1

V
A
1

V
A
3

b1b4

V
O
1

V
O
2

(a) (b)

Fig. 5.1 (a) a rigid body, A, in a workspace containing a single rectangular obstacle,
O, (b) illustration of the algorithm to construct QO, with the boundary of QO shown
as the dashed line
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Consider a simple gantry robot with two prismatic joints and forward kine-
matics given by x = d1, y = d2. For this case, the robot’s configuration space
is Q = <2, so it is particularly easy to visualize both the configuration space
and the configuration space obstacle region. If there is only one obstacle in the
workspace and both the robot end-effector and the obstacle are convex polygons,
it is a simple matter to compute the configuration space obstacle region, QO (we
assume here that the arm itself is positioned above the workspace, so that the
only possible collisions are between the end-effector and obstacles the obstacle).

Let V Ai denote the vector that is normal to the ith edge of the robot and V Oi
denote the vector that is normal to the ith edge of the obstacle. Define ai to be
the vector from the origin of the robot’s coordinate frame to the ith vertex of
the robot and bj to be the vector from the origin of the world coordinate frame
to the jth vertex of the obstacle. An example is shown in Figure 5.1(a). The
vertices of QO can be determined as follows.

• For each pair V Oj and V Oj−1, if V Ai points between −V Oj and −V Oj−1 then
add to QO the vertices bj − ai and bj − ai+1.

• For each pair V Ai and V Ai−1, if V Oj points between −V Ai and −V Ai−1 then
add to QO the vertices bj − ai and bj+1 − ai.

This is illustrated in Figure 5.1(b). Note that this algorithm essentially places
the robot at all positions where vertex-vertex contact between robot and obsta-
cle are possible. The origin of the robot’s local coordinate frame at each such
configuration defines a vertex of QO. The polygon defined by these vertices is
QO.

If there are multiple convex obstacles Oi, then the configuration space obsta-
cle region is merely the union of the obstacle regions QOi, for the individual
obstacles. For a nonconvex obstacle, the configuration space obstacle region can
be computed by first decomposing the nonconvex obstacle into convex pieces,
Oi, computing the C-space obstacle region, QOi for each piece, and finally,
computing the union of the QOi.
�

Example 5.2 A Two Link Planar Arm.
For robots with revolute joints, computation of QO is more difficult. Con-

sider a two-link planar arm in a workspace containing a single obstacle as shown
in Figure 5.2(a). The configuration space obstacle region is illustrated in 5.2(b).
The horizontal axis in 5.2(b) corresponds to θ1, and the vertical axis to θ2. For
values of θ1 very near π/2, the first link of the arm collides with the obstacle.
Further, when the first link is near the obstacle (θ1 near π/2), for some values
of θ2 the second link of the arm collides with the obstacle. The region QO shown
in 5.2(b) was computed using a discrete grid on the configuration space. For
each cell in the grid, a collision test was performed, and the cell was shaded
when a collision occured. Thus, this is only an approximate representation of
QO.
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(a) (b)

Fig. 5.2 (a) A two-link planar arm and a single polygonal obstacle. (b) The corre-
sponding configuration space obstacle region

�
Computing QO for the two-dimensional case of Q = <2 and polygonal ob-

stacles is straightforward, but, as can be seen from the two-link planar arm
example, computing QO becomes difficult for even moderately complex config-
uration spaces. In the general case (e.g., articulated arms or rigid bodies that
can both translate and rotate), the problem of computing a representation of
the configuration space obstacle region is intractable. One of the reasons for
this complexity is that the size of the representation of the configuration space
tends to grow exponentially with the number of degrees of freedom. This is
easy to understand intuitively by considering the number of n-dimensional unit
cubes needed to fill a space of size k. For the one dimensional case, k unit inter-
vals will cover the space. For the two-dimensional case, k2 squares are required.
For the three-dimensional case, k3 cubes are required, and so on. Therefore, in
this chapter we will develop methods that avoid the construction of an explicit
representation of Qfree.

The path planning problem is to find a path from an initial configuration
qinit to a final configuration qfinal, such that the robot does not collide with
any obstacle as it traverses the path. More formally, A collision-free path from
qinit to qfinal is a continuous map, τ : [0, 1] → Qfree, with τ(0) = qinit and
τ(1) = qfinal. We will develop path planning methods that compute a sequence
of discrete configurations (set points) in the configuration space. In Section 5.6
we will show how smooth trajectories can be generated from such a sequence.
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5.2 PATH PLANNING USING CONFIGURATION SPACE POTENTIAL

FIELDS

As mentioned above, it is not feasible to build an explicit representation ofQfree.
An alternative is to develop a search algorithm that incrementally explores
Qfree while searching for a path. Such a search algorithm requires a strategy
for exploring Qfree, and one of the most popular is to use an artificial potential
field to guide the search. In this section, we will introduce artificial potential
field methods. Here we describe how the potential field can be constructed
directly on the configuration space of the robot. However, as will become clear,
computing the gradient of such a field is not feasible in general, so in Section 5.3
we will develop an alternative, in which the potential field is first constructed
on the workspace, and then its effects are mapped to the configuration space.

The basic idea behind the potential field approaches is as follows. The robot
is treated as a point particle in the configuration space, under the influence of
an artificial potential field U . The field U is constructed so that the robot is
attracted to the final configuration, qfinal, while being repelled from the bound-
aries of QO. If U is constructed appropriately, there will be a single global
minimum of U at qfinal, and no local minima. Unfortunately, as we will discuss
below, it is often difficult to construct such a field.

In general, the field U is an additive field consisting of one component that
attracts the robot to qfinal and a second component that repels the robot from
the boundary of QO,

U(q) = Uatt(q) + Urep(q) (5.1)

Given this formulation, path planning can be treated as an optimization
problem, i.e., find the global minimum in U , starting from initial configuration
qinit. One of the easiest algorithms to solve this problem is gradient descent.
In this case, the negative gradient of U can be considered as a force acting on
the robot (in configuration space),

F (q) = −∇U(q) = −∇Uatt(q)−∇Urep(q) (5.2)

In the remainder of this section, we will describe typical choices for the
attractive and repulsive potential fields, and a gradient descent algorithm that
can be used to plan paths in this field.

5.2.1 The Attractive Field

There are several criteria that the potential field Uatt should satisfy. First,
Uatt should be monotonically increasing with distance from qfinal. The simplest
choice for such a field is a field that grows linearly with the distance from qfinal,
a so-called conic well potential. However, the gradient of such a field has unit
magnitude everywhere but the origin, where it is zero. This can lead to stability
problems, since there is a discontinuity in the attractive force at the origin. We
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prefer a field that is continuously differentiable, such that the attractive force
decreases as the robot approaches qfinal. The simplest such field is a field that
grows quadratically with the distance to qfinal. Let ρf (q) be the Euclidean
distance between q and qfinal, i.e., ρf (q) = ||q − qfinal||. Then we can define the
quadratic field by

Uatt(q) =
1
2
ζρ2
f (q) (5.3)

in which ζ is a parameter used to scale the effects of the attractive potential.
This field is sometimes referred to as a parabolic well. For q = (q1, · · · qn)T , the
gradient of Uatt is given by

∇Uatt(q) = ∇1
2
ζρ2
f (q)

= ∇1
2
ζ||q − qfinal||2

=
1
2
ζ∇
∑

(qi − qifinal)
2 (5.4)

= ζ(q1 − q1final, · · · , qn − qnfinal)
T

= ζ(q − qfinal)

Here, (5.4) follows since

∂

∂qj

∑
i

(qi − qifinal)
2 = 2(qj − qjfinal)

So, for the parabolic well, the attractve force, Fatt(q) = −∇Uatt(q) is a vector
directed toward qfinal with magnitude linearly related to the distance from q to
qfinal.

Note that while Fatt(q) converges linearly to zero as q approaches qfinal (which
is a desirable property), it grows without bound as q moves away from qfinal. If
qinit is very far from qfinal, this may produce an attractive force that is too large.
For this reason, we may choose to combine the quadratic and conic potentials
so that the conic potential attracts the robot when it is very distant from qfinal

and the quadratic potential attracts the robot when it is near qfinal. Of course
it is necessary that the gradient be defined at the boundary between the conic
and quadratic portions. Such a field can be defined by

Uatt(q) =


1
2
ζρ2
f (q) : ρf (q) ≤ d

dζρf (q)−
1
2
ζd2 : ρf (q) > d

(5.5)
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and in this case we have

Fatt(q) = −∇Uatt(q) =


−ζ(q − qfinal) : ρf (q) ≤ d

−dζ(q − qfinal)
ρf (q)

: ρf (q) > d
(5.6)

The gradient is well defined at the boundary of the two fields since at the
boundary d = ρf (q), and the gradient of the quadratic potential is equal to the
gradient of the conic potential, Fatt(q) = −ζ(q − qfinal).

5.2.2 The Repulsive field

There are several criteria that the repulsive field should satisfy. It should repel
the robot from obstacles, never allowing the robot to collide with an obstacle,
and, when the robot is far away from an obstacle, that obstacle should exert
little or no influence on the motion of the robot. One way to achieve this is to
define a potential that goes to infinity at obstacle boundaries, and drops to zero
at a certain distance from the obstacle. If we define ρ0 to be the distance of
influence of an obstace (i.e., an obstacle will not repel the robot if the distance
from the robot to the obstacle is greater that ρ0), one potential that meets
these criteria is given by

Urep(q) =


1
2
η

(
1
ρ(q)

− 1
ρ0

)2

: ρ(q) ≤ ρ0

0 : ρ(q) > ρ0

(5.7)

in which ρ(q) is the shortest distance from q to a configuration space obstacle
boundary, and η is a scalar gain coefficient that determines the influence of
the repulsive field. If QO consists of a single convex region, the corresponding
repulsive force is given by the negative gradient of the repulsive field,

Frep(q) =


η

(
1
ρ(q)

− 1
ρ0

)
1

ρ2(q)
∇ρ(q) : ρ(q) ≤ ρ0

0 : ρ(q) > ρ0

(5.8)

When QO is convex, the gradient of the distance to the nearest obstacle is given
by

∇ρ(q) =
q − b
||q − b||

(5.9)

in which b is the point in the boundary of QO that is nearest to q. The
derivation of (5.8) and (5.9) are left as exercises ??.

If QO is not convex, then ρ won’t necessarily be differentiable everywhere,
which implies discontinuity in the force vector. Figure 5.3 illustrates such a case.
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CB1
CB2

F rep

F rep

Fig. 5.3 Situation in which the gradient of the repuslive potential of (5.7) is not con-
tinuous

Here QO contains two rectangular obstacles. For all configurations to the left of
the dashed line, the force vector points to the right, while for all configurations
to the right of the dashed line the force vector points to the left. Thus, when
the configuration of the robot crosses the dashed line, a discontinuity in force
occurs. There are various ways to deal with this problem. The simplest of
these is merely to ensure that the regions of influence of distinct obstacles do
not overlap.

5.2.3 Gradient Descent Planning

Gradient descent is a well known approach for solving optimization problems.
The idea is simple. Starting at the initial configuration, take a small step in
the direction of the negative gradient (i.e., in the direction that decreases the
potential as quickly as possible). This gives a new configuration, and the process
is repeated until the final configuration is reached. More formally, we can define
a gradient descent algorithm as follows.

1. q0 ← qinit, i← 0
2. IF qi 6= qfinal

qi+1 ← qi + αi
F (qi)
||F (qi)||

i← i+ 1
ELSE return < q0, q1 · · · qi >

3. GO TO 2

In this algorithm, the notation qi is used to denote the value of q at the ith

iteration (not the ith componenent of the vector q) and the final path consists
of the sequence of iterates < q0, q1 · · · qi >. The value of the scalar αi deter-
mines the step size at the ith iteration; it is multiplied by the unit vector in the
direction of the resultant force. It is important that αi be small enough that
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qfinal

local minimum

qinit

Fig. 5.4 This figure illustrates the progress of a gradient descent algorithm from qinit

to a local minimum in the field U

the robot is not allowed to “jump into” obstacles, while being large enough that
the algorithm doesn’t require excessive computation time. In motion planning
problems, the choice for αi is often made on an ad hoc or empirical basis, per-
haps based on the distance to the nearest obstacle or to the goal. A number of
systematic methods for choosing αi can be found in the optimization literature
[7]. The constants ζ and η used to define Uatt and Urep essentially arbitrate
between attractive and repulsive forces. Finally, it is unlikely that we will ever
exactly satisfy the condition qi = qfinal. For this reason, this condition is often
replaced with the more forgiving condition ||qi−qfinal|| < ε, in which ε is chosen
to be sufficiently small, based on the task requirements.

The problem that plagues all gradient descent algorithms is the possible
existence of local minima in the potential field. For appropriate choice of αi,
it can be shown that the gradient descent algorithm is guaranteed to converge
to a minimum in the field, but there is no guarantee that this minimum will be
the global minimum. In our case, this implies that there is no guarantee that
this method will find a path to qfinal. An example of this situation is shown in
Figure 5.4. We will discuss ways to deal this below in Section 5.4.

One of the main difficulties with this planning approach lies in the evaluation
of ρ and ∇ρ. In the general case, in which both rotational and translational
degrees of freedom are allowed, this becomes even more difficult. We address
this general case in the next section.

5.3 PLANNING USING WORKSPACE POTENTIAL FIELDS

As described above, in the general case, it is extremely difficult to compute an
explicit representation of QO, and thus it can be extremely difficult to compute
ρ and ∇ρ. In fact, in general for a curved surface there does not exist a closed
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form expression for the distance from a point to the surface. Thus, even if
we had access to an explicit representation of QO, it would still be difficult
to compute ρ and ∇ρ in (5.8). In order to deal with these difficulties, in this
section we will modify the potential field approach of Section 5.2 so that the
potential function is defined on the workspace, W, instead of the configuration
space, Q. Since W is a subset of a low dimensional space (either <2 or <3), it
will be much easier to implement and evaluate potential functions overW than
over Q.

We begin by describing a method to define an appropriate potential field
on the workspace. This field should have the properties that the potential is
at a minimum when the robot is in its goal configuration, and the potential
should grow without bound as the robot approaches an obstacle. As above, we
will define a global potential field that is the sum of attractive and repulsive
fields. Once we have constructed the workspace potential, we will develop the
tools to map its gradient to changes in the joint variable values (i.e., we will
map workspace forces to changes in configuration). Finally, we will present a
gradient descent algorithm similar to the one presented above, but which can
be applied to robots with more complicated kinematics.

5.3.1 Defining Workspace Potential Fields

As before, our goal in defining potential functions is to construct a field that
repels the robot from obstacles, with a global minimum that corresponds to
qfinal. In the configuration space, this task was conceptually simple because the
robot was represented by a single point, which we treated as a point mass under
the influence of a potential field. In the workspace, things are not so simple;
the robot is an articulated arm with finite volume. Evaluating the effect of
a potential field over the arm would involve computing an integral over the
volume of the arm, and this can be quite complex (both mathematically and
computationally). An alternative approach is to select a subset of points on
the robot, called control points, and to define a workspace potential for each
of these points. The global potential is obtained by summing the effects of the
individual potential functions. Evaluating the effect a particular potential field
on a single point is no different than the evaluations required in Section 5.2,
but the required distance and gradient calculations are much simpler.

Let Aatt = {a1, a2 · · · an} be a set of control points used to define the at-
tractive potential fields. For an n-link arm, we could use the centers of mass
for the n links, or the origins for the DH frames (excluding the fixed frame 0).
We denote by ai(q) the position of the ith control point when the robot is at
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configuration q. For each ai ∈ Aatt we can define an attractive potential by

Uatti(q) =


1
2ζi||ai(q)− ai(qfinal)||2 : ||ai(q)− ai(qfinal)|| ≤ d

dζi||ai(q)− ai(qfinal)|| −
1
2
ζid

2 : ||ai(q)− ai(qfinal)|| > d

(5.10)
For the single point ai, this function is analogous the attractive potential defined
in Section 5.2; it combines the conic and quadratic potentials, and reaches
its global minimum when the control point reaches its goal position in the
workspace. If Aatt contains a sufficient number of independent control points
(the origins of the DH frames, e.g.), then when all control points reach their
global minimum potential value, the configuration of the arm will be qfinal.

With this potential function, the workspace force for attractive control point
ai is defined by

Fatt,i(q) = −∇Uatti(q) (5.11)

=


−ζi(ai(q)− ai(qfinal)) : ||ai(q)− ai(qfinal)|| ≤ d

−dζi(ai(q)− ai(qfinal))
||ai(q)−ai(qfinal)||

: ||ai(q)− ai(qfinal)|| > d

(5.12)

For the workspace repulsive potential fields, we will select a set of fixed con-
trol points on the robot Arep = {a1, · · · , am}, and define the repulsive potential
for aj as

Urepj(q) =


1
2
ηj

(
1

ρ(aj(q))
−

1
ρ0

)2

: ρ(aj(q)) ≤ ρ0

0 : ρ(aj(q)) > ρ0

(5.13)

in which ρ(aj(q)) is the shortest distance between the control point aj and
any workspace obstacle, and ρ0 is the workspace distance of influence in the
worksoace for obstacles. The negative gradient of each Urepj corresponds to a
workspace repulsive force,

Frep,j(q) =


ηj

(
1

ρ(aj(q))
− 1
ρ0

)
1

ρ2(aj(q))
∇ρ(aj(q)) : ρ(aj(q)) ≤ ρ0

0 : ρ(aj(q)) > ρ0

(5.14)
in which the notation ∇ρ(aj(q)) indicates the gradient ∇ρ(x) evaluated at x =
aj(q). If b is the point on the workspace obstacle boundary that is closest to
the repulsive control point aj , then ρ(aj(q)) = ||aj(q)− b||, and its gradient is

∇ρ(x)
∣∣∣∣ x=aj(q)

=
aj(q)− b
||aj(q)− b||

(5.15)
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A

E1
a1 a2

O

Fig. 5.5 The repulsive forces exerted on the robot vertices a1 and a2 may not be suffi-
cient to prevent a collision between edge E1 and the obstacle

i.e., the unit vector directed from b toward aj(q).
It is important to note that this selection of repulsive control points does not

guarantee that the robot cannot collide with an obstacle. Figure 5.5 shows an
example where this is the case. In this figure, the repulsive control points a1

and a2 are very far from the obstacle O, and therefore the repulsive influence
may not be great enough to prevent the robot edge E1 from colliding with the
obstacle. To cope with this problem, we can use a set of floating repulsive
control points, afloat,i, typically one per link of the robot arm. The floating
control points are defined as points on the boundary of a link that are closest
to any workspace obstacle. Obviously the choice of the afloat,i depends on the
configuration q. For the example shown in Figure 5.5, afloat would be located at
the center of edge E1, thus repelling the robot from the obstacle. The repulsive
force acting on afloat is defined in the same way as for the other control points,
using (5.14).

5.3.2 Mapping workspace forces to joint forces and torques

Above we have constrructed potential fields in the robot’s workspace, and these
fields induce artificial forces on the individual control points on the robot. In
this section, we describe how these forces can be used to drive a gradient descent
algorithm on the configuration space.

Suppose a force, F were applied to a point on the robot arm. Such a force
would induce forces and torques on the robot’s joints. If the joints did not
resist these forces, a motion would occur. This is the key idea behind mapping
artificial forces in the workspace to motions of the robot arm. Therefore, we
now derive the relationship between forces applied to the robot arm, and the
resulting forces and torques that are induced on the robot joints.
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Let F denote the vector of joint torques (for revolute joints) and forces (for
prismatic joints) induced by the workspace force. As we will describe in Chapter
6, the principle of virtual work can be used to derive the relationship between F
and F . Let (δx, δy, δz)T be a virtual displacement in the workspace and let δq
be a virtual displacement of the robot’s joints. Then, recalling that work is the
inner product of force and displacement, by applying the principle of virtual
work we obtain

F · (δx, δy, δz)T = F · δq (5.16)

which can be written as

FT (δx, δy, δz)T = FT δq (5.17)

Now, recall from Chapter 5.6 that δx
δy
δz

 = Jδq

in which J is the Jacobian of the forward kinematic map for linear velocity (i.e.,
the top three rows of the manipulator Jacobian). Substituting this into (5.16)
we obtain

FTJδq = FT δq (5.18)

and since this must hold for all virtual displacements δq, we obtain

FTJ = FT (5.19)

which implies that
JTF = F (5.20)

Thus we see that one can easily map forces in the workspace to joint forces and
torques using (5.20).

Example 5.3 A Force Acting on a Vertex of a Polygonal Robot.
Consider the polygonal robot shown in Figure 5.6. The vertex a has coordi-

nates (ax, ay)T in the robot’s local coordinate frame. Therefore, if the robot’s
configuration is given by q = (x, y, θ), the forward kinematic map for vertex a
(i.e., the mapping from q = (x, y, θ) to the global coordinates of the vertex a) is
given by

a(x, y, θ) =
[
x+ ax cos θ − ay sin θ
y + ax sin θ + ay cos θ

]
(5.21)

The corresponding Jacobian matrix is given by

Ja(x, y, θ) =
[

1 0 −ax sin θ − ay cos θ
0 1 ax cos θ − ay sin θ

]
(5.22)
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ax

yA

F

ay

xA

θ

a

Fig. 5.6 The robot A, with coordinate frame oriented at angle θ from the world frame,
and vertex a with local coordinates (ax, ay)

Therefore, the configuration space force is given by Fx
Fy
Fθ

 =

 1 0
0 1

−ax sin θ − ay cos θ ax cos θ − ay sin θ

[ Fx
Fy

]

=

 Fx
Fy

−Fx(ax sin θ − ay cos θ) + Fy(ax cos θ − ay sin θ)

 (5.23)

and Fθ corresponds to the torque exerted about the origin of the robot frame.
In this simple case, one can use basic physics to arrive at the same result. In

particular, recall that a force, F , exerted at point, a, produces a torque, τ , about
the point OA, and this torque is given by the relationship τ = r × F , in which
r is the vector from OA to a. Of course we must express all vectors relative
to a common frame, and in three dimensions (since torque will be defined as
a vector perpendicular to the plane in which the force acts). If we choose the
world frame as our frame of reference, then we have

r =

 ax cos θ − ay sin θ
ax sin θ + ay cos θ

0


and the cross product gives

τ = r ×F

=

 ax cos θ − ay sin θ
ax sin θ + ay cos θ

0

×
 FxFy

0


=

 0
0

−Fx(ax sin θ − ay cos θ) + Fy(ax cos θ − ay sin θ)

 (5.24)
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Thus we see that the more general expression JTF = F gives the same value
for torque as the expression τ = r ×F from mechanics. �

Example 5.4 Two-link Planar Arm
Consider a two-link planar arm with the usual DH frame assignment. If we

assign the control points as the origins of the DH frames (excluding the base
frame), the forward kinematic equations for the arm give

[
a1(θ1, θ2) a2(θ1, θ2)

]
=
[
l1 cos θ1 l1 cos θ1 + l2 cos(θ1 + θ2)
l1 sin θ1 l1 sin θ1 + l2 sin(θ1 + θ2)

]
in which li are the link lengths (we use li rather than ai to avoid confusion of
link lengths and control points). For the problem of motion planning, we require
only the Jacobian that maps joint velocities to linear velocities,[

ẋ
ẏ

]
= J

[
θ̇1
θ̇1

]
(5.25)

For the two-link arm, The Jacobian matrix for a2 is merely the Jacobian that
we derived in Chapter 4:

Ja2(θ1, θ2) =
[
−a1s1 − a2s12 −a2s12
a1c1 + a2c12 a2c12

]
(5.26)

The Jacobian matrix for a1 is similar, but takes into account that motion of
joint two does not affect the velocity of a1,

Ja1(θ1, θ2) =
[
−a1s1 0
a1c1 0

]
(5.27)

�
The total configuration space force acting on the robot is the sum of the

configuration space forces that result from all attractive and repulsive control
points

F (q) =
∑
i

Fatti(q) +
∑
i

Frepi(q)

=
∑
i

JTi (q)Fatt,i(q) +
∑
i

JTi (q)Frep,i(q) (5.28)

in which Ji(q) is the Jacobian matrix for control point ai. It is essential that the
addition of forces be done in the configuration space and not in the workspace.
For example, Figure 5.7 shows a case where two workspace forces, F1 and F2,
act on opposite corners of a rectang. It is easy to see that F1 + F2 = 0, but
that the combination of these forces produces a pure torque about the center
of the square.

Example 5.5 Two-link planar arm revisited. Consider again the two-link
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F2

F1

Fig. 5.7 This example illustrates why forces must be mapped to the configuration
space before they are added. The two forces illustrated in the figure are vectors of equal
magnitude in opposite directions. Vector addition of these two forces produces zero net
force, but there is a net moment induced by these forces

planar arm. Suppose that that the workspace repulsive forces are given by
Frep,i(θ1, θ2) = [Fx,i,Fy,i]T . For the two-link planar arm, the repulsive forces
in the configuration space are then given by

Frep(q) =
[
−a1s1 a1c1

0 0

] [
Fx,1
Fy,1

]
+
[
−a1s1 − a2s12 a1c1 + a2c12

−a2s12 a2c12

] [
Fx,2
Fy,2

]
(5.29)

�

5.3.3 Motion Planning Algorithm

Having defined a configuration space force, we can use the same gradient descent
method for this case as in Section 5.3. As before, there are a number of design
choices that must be made.

ζi controls the relative influence of the attractive potential for control point ai.
It is not necessary that all of the ζi be set to the same value. Typically, we
weight one of the control points more heavily than the others, producing
a “follow the leader” type of motion, in which the leader control point is
quickly attracted to its final position, and the robot then reorients itself
so that the other attractive control points reach their final positions.

ηj controls the relative influence of the repulsive potential for control point aj .
As with the ζi it is not necessary that all of the ηj be set to the same
value. In particular, we typically set the value of ηj to be much smaller
for obstacles that are near the goal position of the robot (to avoid having
these obstacles repel the robot from the goal).

ρ0 As with the ηj , we can define a distinct ρ0 for each obstacle. In particular, we
do not want any obstacle’s region of influence to include the goal position
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of any repulsive control point. We may also wish to assign distinct ρ0’s
to the obstacles to avoid the possibility of overlapping regions of influence
for distinct obstacles.

5.4 USING RANDOM MOTIONS TO ESCAPE LOCAL MINIMA

As noted above, one problem that plagues artificial potential field methods
for path planning is the existence of local minima in the potential field. In
the case of articulated manipulators, the resultant field U is the sum of many
attractive and repulsive fields defined over <3. This problem has long been
known in the optimization community, where probabilistic methods such as
simulated annealing have been developed to cope with it. Similarly, the robot
path planning community has developed what are known as randomized methods
to deal with this and other problems. The first of these methods was developed
specifically to cope with the problem of local minima in potential fields.

The first planner to use randomization to escape local minima was called
RPP (for Randomized Potential Planner). The basic approach is straightfor-
ward: use gradient descent until the planner finds itself stuck in a local mini-
mum, then use a random walk to escape the local minimum. The algorithm is
a slight modification of the gradient descent algorithm of Section 5.3.

1. q0 ← qinit, i← 0
2. IF qi 6= qfinal

qi+1 ← qi + αi
F (qi)
||F (qi)||

i← i+ 1
ELSE return < q0, q1 · · · qi >

3. IF stuck in a local minimum
execute a random walk, ending at q′

qi+1 ← q′

4. GO TO 2

The two new problems that must be solved are determining when the planner
is stuck in a local minimum and defining the random walk. Typically, a heuristic
is used to recognize a local minimum. For example, if several successive qi

lie within a small region of the configuration space, it is likely that there is a
nearby local minimum (e.g., if for some small positive ε we have ‖qi−qi+1‖ < ε,
‖qi − qi+2‖ < ε, and ‖qi − qi+3‖ < ε then assume qi is near a local minimum).

Defining the random walk requires a bit more care. The original approach
used in RPP is as follows. The random walk consists of t random steps. A
random step from q = (q1, · · · qn) is obtained by randomly adding a small fixed
constant to each qi,

qrandom−step = (q1 ± v1, · · · qn ± vn)
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with vi a fixed small constant and the probability of adding +vi or −vi equal to
1/2 (i.e., a uniform distribution). Without loss of generality, assume that q = 0.
We can use probability theory to characterize the behavior of the random walk
consisting of t random steps. In particular, the probability density function for
q′ = (q1, · · · , qn) is given by

pi(qi, t) =
1

vi
√

2πt
exp

(
−

q2i

2v2
i t

)
(5.30)

which is a zero mean Gaussian density function with variance v2
i t. This is a

result of the fact that the sum of a set of uniformly distributed random variables
is a Gaussian random variable.2 The variance v2

i t essentially determines the
range of the random walk. If certain characteristics of local minima (e.g., the
size of the basin of attraction) are known in advance, these can be used to
select the parameters vi and t. Otherwise, they can be determined empirically,
or based on weak assumptions about the potential field (the latter approach
was used in the original RPP).

5.5 PROBABILISTIC ROADMAP METHODS

The potential field approaches described above incrementally explore Qfree,
searching for a path from qinit to qfinal. At termination, these planners re-
turn a single path. Thus, if multiple path planning problems must be solved,
such a planner must be applied once for each problem. An alternative approach
is to construct a representation of Qfree that can be used to quickly generate
paths when new path planning problems arise. This is useful, for example,
when a robot operates for a prolonged period in a single workspace.

In this section, we will describe probabilistic roadmaps (PRMs), which are
one-dimensional roadmaps in Qfree that can be used to quickly generate paths.
Once a PRM has been constructed, the path planning problem is reduced to
finding paths to connect qinit and qfinal to the roadmap (a problem that is
typically much easier than finding a path from qinit to qfinal).

A PRM is a network of simple curve segments, or arcs, that meet at nodes.
Each node corresponds to a configuration. Each arc between two nodes cor-
responds to a collision free path between two configurations. Constructing a
PRM is a conceptually straightforward process. First, a set of random configu-
rations is generated to serve as the nodes in the network. Then, a simple, local
path planner is used to generate paths that connect pairs of configurations.

2A Gaussian density function is the classical bell shaped curve. The mean indicates the
center of the curve (the peak of the bell) and the variance indicates the width of the bell.
The probability density function (pdf) tells how likely it is that the variable qi will lie in a
certain interval. The higher the pdf values, the more likely that qi will lie in the corresponding
interval.
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(a) (b)

qinit

qfinal

(c) (d)

Fig. 5.8 (a) A two-dimensional configuration space populated with several random sam-
ples (b) One possible PRM for the given configuration space and random samples (c)
PRM after enhancement (d) path from qinit to qfinal found by connecting qinit and qfinal

to the roadmap and then searching the roadmap for a path from qinit to qfinal

Finally, if the initial network consists of multiple connected components3, it is
augmented by an enhancement phase, in which new nodes and arcs are added
in an attempt to connect disjoint components of the network. To solve a path
planning problem, the simple, local planner is used to connect qinit and qfinal

to the roadmap, and the resulting network is searched for a path from qinit to
qfinal. These four steps are illustrated in Figure 5.8. We now discuss these steps
in more detail.

3 A connected component is a maximal subnetwork of the network such that a path exists in
the subnetwork between any two nodes.
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2-norm in C-space: ‖q′ − q‖ =

[∑n
i=1(q

′
i − qi)2

] 1
2

∞-norm in C-space: maxn |q′i − qi|

2-norm in workspace:

[∑
p∈A

∥∥p(q′)− p(q)
∥∥2

] 1
2

∞-norm in workspace: maxp∈A
∥∥p(q′)− p(q)

∥∥
Table 5.1 Four commonly used distance functions

5.5.1 Sampling the configuration space

The simplest way to generate sample configurations is to sample the configu-
ration space uniformly at random. Sample configurations that lie in QO are
discarded. A simple collision checking algorithm can determine when this is the
case. The disadvantage of this approach is that the number of samples it places
in any particular region of Qfree is proportional to the volume of the region.
Therefore, uniform sampling is unlikely to place samples in narrow passages of
Qfree. In the PRM literature, this is refered to as the narrow passage prob-
lem. It can be dealt with either by using more intelligent sampling schemes, or
by using an enhancement phase during the construction of the PRM. In this
section, we discuss the latter option.

5.5.2 Connecting Pairs of Configurations

Given a set of nodes that correspond to configurations, the next step in building
the PRM is to determine which pairs of nodes should be connected by a simple
path. The typical approach is to attempt to connect each node to it’s k nearest
neighbors, with k a parameter chosen by the user. Of course, to define the
nearest neighbors, a distance function is required. Table 5.1 lists four distance
functions that have been popular in the PRM literature. For the equations in
this table, the robot has n joints, q and q′ are the two configurations corre-
sponding to different nodes in the roadmap, qi refers to the configuration of the
ith joint, and p(q) refers to the workspace reference point p of a set of reference
points of the robot, A, at configuration q. Of these, the simplest, and perhaps
most commonly used, is the 2-norm in configuraiton space.

Once pairs of neighboring nodes have been identified, a simple local planner is
used to connect these nodes. Often, a straight line in configuration space is used
as the candidate plan, and thus, planning the path between two nodes is reduced
to collision checking along a straight line path in the configuration space. If
a collision occurs on this path, it can be discarded, or a more sophisticated
planner (e.g., RPP discussed above) can be used to attempt to connect the
nodes.
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The simplest approach to collision detection along the straight line path is to
sample the path at a sufficiently fine discretization, and to check each sample
for collision. This method works, provided the discretization is fine enough, but
it is terribly inefficient. This is because many of the computations required to
check for collision at one sample are repeated for the next sample (assuming
that the robot has moved only a small amount between the two configurations).
For this reason, incremental collision detection approaches have been developed.
While these approaches are beyond the scope of this text, a number of collision
detection software packages are available in the public domain. Most developers
of robot motion planners use one of these packages, rather than implementing
their own collision detection routines.

5.5.3 Enhancement

After the initial PRM has been constructed, it is likely that it will consist of
multiple connected components. Often these individual components lie in large
regions of Qfree that are connected by narrow passages in Qfree. The goal of
the enhancement process is to connect as many of these disjoint components as
possible.

One approach to enhancement is to merely attempt to directly connect nodes
in two disjoint components, perhaps by using a more sophisticated planner such
as RPP. A common approach is to identify the largest connected component,
and to attempt to connect the smaller components to it. The node in the
smaller component that is closest to the larger component is typically chosen as
the candidate for connection. A second approach is to choose a node randomly
as candidate for connection, and to bias the random choice based on the number
of neighbors of the node; a node with fewer neighbors in the network is more
likely to be near a narrow passage, and should be a more likely candidate for
connection.

A second approach to enhancement is to add samples more random nodes to
the PRM, in the hope of finding nodes that lie in or near the narrow passages.
One approach is to identify nodes that have few neighbors, and to generate
sample configurations in regions around these nodes. The local planner is then
used to attempt to connect these new configurations to the network.

5.5.4 Path Smoothing

After the PRM has been generated, path planning amounts to connecting qinit

and qfinal to the network using the local planner, and then performing path
smoothing, since the resulting path will be composed of straight line segments
in the configuration space. The simplest path smoothing algorithm is to select
two random points on the path and try to connect them with the local planner.
This process is repeated until until no significant progress is made.
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5.6 TRAJECTORY PLANNING

A path from qinit to qfinal is defined as a continuous map, τ : [0, 1]→ Q, with
τ(0) = qinit and τ(1) = qfinal. A trajectory is a function of time q(t) such
that q(t0) = qinit and q(tf ) = qfinal. In this case, tf − t0 represents the amount
of time taken to execute the trajectory. Since the trajectory is parameterized
by time, we can compute velocities and accelerations along the trajectories by
differentiation. If we think of the argument to τ as a time variable, then a
path is a special case of a trajectory, one that will be executed in one unit of
time. In other words, in this case τ gives a complete specification of the robot’s
trajectory, including the time derivatives (since one need only differentiate τ to
obtain these).

As seen above, a path planning algorithm will not typically give the map
τ ; it will give only a sequence of points (called via points) along the path.
Further, there are other ways that the path could be specified. In some cases,
paths are specified by giving a sequence of end-effector poses, T 0

6 (k∆t). In this
case, the inverse kinematic solution must be used to convert this to a sequence
of joint configurations. A common way to specify paths for industrial robots is
to physically lead the robot through the desired motion with a teach pendant,
the so-called teach and playback mode. In some cases, this may be more
efficient than deploying a path planning system, e.g. in environments such as
the one shown in Figure 5.9. In this case, there is no need for calculation of
the inverse kinematics. The desired motion is simply recorded as a set of joint
angles (actually as a set of encoder values) and the robot can be controlled
entirely in joint space. Finally, in cases for which no obstacles are present, the
manipulator is essentially unconstrained. It is often the case that a manipulator
motion can be decomposed into a segments consisting of free and guarded
motions, shown in Figure 5.10, During the free motion, the manipulator can
move very fast, since no obstacles are near by, but at the start and end of the
motion, care must be taken to avoid obstacles.

We first consider point to point motion. In this case the task is to plan a
trajectory from q(t0) to q(tf ), i.e., the path is specified by its initial and final
configurations. In some cases, there may be constraints on the trajectory (e.g.,
if the robot must start and end with zero velocity). Nevertheless, it is easy to
realize that there are infinitely many trajectories that will satisfy a finite number
of constraints on the endpoints. It is common practice therefore to choose
trajectories from a finitely parameterizable family, for example, polynomials of
degree n, with n dependant on the number of constraints to be satisfied. This is
the approach that we will take in this text. Once we have seen how to construct
trajectories between two configurations, it is straightforward to generalize the
method to the case of trajectories specified by multiple via points.
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Fig. 5.9 Via points to plan motion around obstacles

Fig. 5.10 Guarded and free motions
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5.6.1 Trajectories for Point to Point Motion

As described above, the problem here is to find a trajectory that connects an
initial to a final configuration while satisfying other specified constraints at
the endpoints (e.g., velocity and/or acceleration constraints). Without loss of
generality, we will consider planning the trajectory for a single joint, since the
trajectories for the remaining joints will be created independently and in exactly
the same way. Thus, we will concern ourselves with the problem of determining
q(t), where q(t) is a scalar joint variable.

We suppose that at time t0 the joint variable satisfies

q(t0) = q0 (5.31)
q̇(t0) = v0 (5.32)

and we wish to attain the values at tf

q(tf ) = qf (5.33)
q̇(tf ) = vf (5.34)

Figure 5.11 shows a suitable trajectory for this motion. In addition, we may
wish to specify the constraints on initial and final accelerations. In this case we
have two the additional equations

q̈(t0) = α0 (5.35)
q̈(tf ) = αf (5.36)

5.6.1.1 Cubic Polynomial Trajectories Suppose that we wish to generate a tra-
jectory between two configurations, and that we wish to specify the start and
end velocities for the trajectory. One way to generate a smooth curve such as
that shown in Figure 5.11 is by a polynomial function of t. If we have four
constraints to satisfy, such as (5.31)-(5.33), we require a polynomial with four
independent coefficients that can be chosen to satisfy these constraints. Thus
we consider a cubic trajectory of the form

q(t) = a0 + a1t+ a2t
2 + a3t

3 (5.37)

Then the desired velocity is given as

q̇(t) = a1 + 2a2t+ 3a3t
2 (5.38)

Combining equations (5.37) and (5.38) with the four constraints yields four
equations in four unknowns

q0 = a0 + a1t0 + a2t
2
0 + a3t

3
0 (5.39)

v0 = a1 + 2a2t0 + 3a3t
2
0 (5.40)

qf = a0 + a1tf + a2t
2
f + a3t

3
f (5.41)

vf = a1 + 2a2tf + 3a3t
2
f (5.42)
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Fig. 5.11 Typical Joint Space Trajectory

These four equations can be combined into a single matrix equation
1 t0 t20 t30
0 1 2t0 3t20
1 tf t2f t3f
0 1 2tf 3t2f



a0

a1

a2

a3

 =


q0
v0
qf
vf

 (5.43)

It can be shown (Problem 5-1) that the determinant of the coefficient matrix
in Equation (5.43) is equal to (tf − t0)4 and, hence, Equation (5.43) always has
a unique solution provided a nonzero time interval is allowed for the execution
of the trajectory.

Example 5.6
Writing Equation (5.43) as

Ma = b (5.44)

where M is the coefficient matrix, a = [a0, a1, a2, a3]T is the vector of coeffi-
cients of the cubic polynomial, and b = [q0, v0, q1, v1]T is the vector of initial
data (initial and final positions and velocities), the Matlab script shown in Fig-
ure 5.12 computes the general solution as

a = M−1b (5.45)

�

Example 5.7



TRAJECTORY PLANNING 175

%%
%% cubic.m
%%
%% M-file to compute a cubic polynomial reference trajectory
%%
%% q0 = initial position
%% v0 = initial velocity
%% q1 = final position
%% v1 = final velocity
%% t0 = initial time
%% tf = final time
%%
clear
d = input(’ initial data = [q0,v0,q1,v1,t0,tf] = ’)
q0 = d(1); v0 = d(2); q1 = d(3); v1 = d(4);
t0 = d(5); tf = d(6);
t = linspace(t0,tf,100*(tf-t0));
c = ones(size(t));
M = [ 1 t0 t0^2 t0^3;

0 1 2*t0 3*t0^2;
1 tf tf^2 tf^3;
0 1 2*tf 3*tf^2];

%%
b = [q0; v0; q1; v1];
a = inv(M)*b;
%%
% qd = reference position trajectory
% vd = reference velocity trajectory
% ad = reference acceleration trajectory
%
qd = a(1).*c + a(2).*t +a(3).*t.^2 + a(4).*t.^3;
vd = a(2).*c +2*a(3).*t +3*a(4).*t.^2;
ad = 2*a(3).*c + 6*a(4).*t;

Fig. 5.12 Matlab code for Example 5.6
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As an illustrative example, we may consider the special case that the initial
and final velocities are zero. Suppose we take t0 = 0 and tf = 1 sec, with

v0 = 0 vf = 0 (5.46)

Thus we want to move from the initial position q0 to the final position qf in
1 second, starting and ending with zero velocity. From the Equation (5.43) we
obtain 

1 0 0 0
0 1 0 0
1 1 1 1
0 1 2 3



a0

a1

a2

a3

 =


q0
0
qf
0

 (5.47)

This is then equivalent to the four equations

a0 = q0 (5.48)
a1 = 0 (5.49)

a2 + a3 = qf − q0 (5.50)
2a2 + 3a3 = 0 (5.51)

These latter two can be solved to yield

a2 = 3(qf − q0) (5.52)
a3 = −2(qf − q0) (5.53)

The required cubic polynomial function is therefore

qi(t) = q0 + 3(qf − q0)t2 − 2(qf − q0)t3 (5.54)

Figure 5.13(a) shows this trajectory with q0 = 10◦, qf = −20◦. The cor-
responding velocity and acceleration curves are given in Figures 5.13(b) and
5.13(c).
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Fig. 5.13 (a) Cubic polynomial trajectory (b) Velocity profile for cubic polynomial
trajectory (c) Acceleration profile for cubic polynomial trajectory

�
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5.6.1.2 Quintic Polynomial Trajectories As can be seein in Figure 5.13, a cubic
trajectory gives continuous positions and velocities at the start and finish points
times but discontinuities in the acceleration. The derivative of acceleration is
called the jerk. A discontinuity in acceleration leads to an impulsive jerk, which
may excite vibrational modes in the manipulator and reduce tracking accuracy.
For this reason, one may wish to specify constraints on the acceleration as well
as on the position and velocity. In this case, we have six constraints (one each
for initial and final configurations, initial and final velocities, and initial and
final accelerations). Therefore we require a fifth order polynomial

q(t) = a0 + a1t+ a2t
2 + a3t

3 + a4t
4 + a5t

5 (5.55)

Using (5.31) - (5.36) and taking the appropriate number of derivatives we obtain
the following equations,

q0 = a0 + a1t0 + a2t
2
0 + a3t

3
0 + a4t

4
0 + a5t

5
0

v0 = a1 + 2a2t0 + 3a3t
2
0 + 4a4t

3
0 + 5a5t

4
0

α0 = 2a2 + 6a3t0 + 12a4t
2
0 + 20a5t

3
0

qf = a0 + a1tf + a2t
2
f + a3t

3
f + a4t

4
f + a5t

5
f

vf = a1 + 2a2tf + 3a3t
2
f + 4a4t

3
f + 5a5t

4
f

αf = 2a2 + 6a3tf + 12a4t
2
f + 20a5t

3
f

which can be written as

1 t0 t20 t30 t40 t50
0 1 2t0 3t20 4t30 5t40
0 0 2 6t0 12t20 20t30
1 tf t2f t3f t4f t5f
0 1 2tf 3t2f 4t3f 5t4f
0 0 2 6tf 12t2f 20t3f




a0

a1

a2

a3

a4

a5

 =


q0
v0
α0

qf
vf
αf

 (5.56)

Figure 5.14 shows the Matlab script that gives the general solution to this
equation.

Example 5.8
Figure 5.15 shows a quintic polynomial trajectory with q(0) = 0, q(2) = 40

with zero initial and final velocities and accelerations.
�

5.6.1.3 Linear Segments with Parabolic Blends (LSPB) Another way to gen-
erate suitable joint space trajectories is by so-called Linear Segments with
Parabolic Blends or (LSPB) for short. This type of trajectory is appropri-
ate when a constant velocity is desired along a portion of the path. The LSPB
trajectory is such that the velocity is initially “ramped up” to its desired value
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%%
%% quintic.m
&&
%% M-file to compute a quintic polynomial reference trajectory
%%
%% q0 = initial position
%% v0 = initial velocity
%% ac0 = initial acceleration
%% q1 = final position
%% v1 = final velocity
%% ac1 = final acceleration
%% t0 = initial time
%% tf = final time
%%
clear
d = input(’ initial data = [q0,v0,ac0,q1,v1,ac1,t0,tf] = ’)
q0 = d(1); v0 = d(2); ac0 = d(3);
q1 = d(4); v1 = d(5); ac1 = d(6);
t0 = d(7); tf = d(8);
t = linspace(t0,tf,100*(tf-t0));
c = ones(size(t));
M = [ 1 t0 t0^2 t0^3 t0^4 t0^5;

0 1 2*t0 3*t0^2 4*t0^3 5*t0^4;
0 0 2 6*t0 12*t0^2 20*t0^3;
1 tf tf^2 tf^3 tf^4 tf^5;
0 1 2*tf 3*tf^2 4*tf^3 5*tf^4;
0 0 2 6*tf 12*tf^2 20*tf^3];

%%
b=[q0; v0; ac0; q1; v1; ac1];
a = inv(M)*b;
%%
%% qd = position trajectory
%% vd = velocity trajectory
%% ad = acceleration trajectory
%%
qd = a(1).*c + a(2).*t +a(3).*t.^2 + a(4).*t.^3 +a(5).*t.^4 + a(6).*t.^5;
vd = a(2).*c +2*a(3).*t +3*a(4).*t.^2 +4*a(5).*t.^3 +5*a(6).*t.^4;
ad = 2*a(3).*c + 6*a(4).*t +12*a(5).*t.^2 +20*a(6).*t.^3;

Fig. 5.14 Matlab code to generate coefficients for quintic trajectory segment
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Fig. 5.15 (a) Quintic Polynomial Trajectory. (b) Velocity Profile for Quintic Polyno-
mial Trajectory. (c) Acceleration Profile for Quintic Polynomial Trajectory

and then “ramped down” when it approaches the goal position. To achieve this
we specify the desired trajectory in three parts. The first part from time t0 to
time tb is a quadratic polynomial. This results in a linear “ramp” velocity. At
time tb, called the blend time, the trajectory switches to a linear function.
This corresponds to a constant velocity. Finally, at time tf − tb the trajectory
switches once again, this time to a quadratic polynomial so that the velocity is
linear.
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Fig. 5.16 Blend times for LSPB trajectory

We choose the blend time tb so that the position curve is symmetric as shown
in Figure 5.16. For convenience suppose that t0 = 0 and q̇(tf ) = 0 = q̇(0). Then
between times 0 and tb we have

q(t) = a0 + a1t+ a2t
2 (5.57)

so that the velocity is

q̇(t) = a1 + 2a2t (5.58)
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The constraints q0 = 0 and q̇(0) = 0 imply that

a0 = q0 (5.59)
a1 = 0 (5.60)

At time tb we want the velocity to equal a given constant, say V . Thus, we
have

q̇(tb) = 2a2tb = V (5.61)

which implies that

a2 =
V

2tb
(5.62)

Therefore the required trajectory between 0 and tb is given as

q(t) = q0 +
V

2tb
t2 (5.63)

= q0 +
α

2
t2

q̇(t) =
V

tb
t = αt (5.64)

q̈ =
V

tb
= α (5.65)

where α denotes the acceleration.
Now, between time tf and tf − tb, the trajectory is a linear segment (corre-

sponding to a constant velocity V )

q(t) = a0 + a1t = a0 + V t (5.66)

Since, by symmetry,

q

(
tf
2

)
=

q0 + qf
2

(5.67)

we have

q0 + qf
2

= a0 + V
tf
2

(5.68)

which implies that

a0 =
q0 + qf − V tf

2
(5.69)

Since the two segments must “blend” at time tb we require

q0 +
V

2
tb =

q0 + qf − V tf
2

+ V tb (5.70)
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Fig. 5.17 (a) LSPB trajectory (b) Velocity profile for LSPB trajectory (c) Acceleration
for LSPB trajectory

which gives upon solving for the blend time tb

tb =
q0 − qf + V tf

V
(5.71)

Note that we have the constraint 0 < tb ≤ tf
2 . This leads to the inequality

qf − q0
V

< tf ≤
2(qf − q0)

V
(5.72)

To put it another way we have the inequality

qf − q0
tf

< V ≤ 2(qf − q0)
tf

(5.73)

Thus the specified velocity must be between these limits or the motion is not
possible.

The portion of the trajectory between tf−tb and tf is now found by symmetry
considerations (Problem 5-6). The complete LSPB trajectory is given by

q(t) =



q0 +
a

2
t2 0 ≤ t ≤ tb

qf + q0 − V tf
2

+ V t tb < t ≤ tf − tb

qf −
at2f
2

+ atf t−
a

2
t2 tf − tb < t ≤ tf

(5.74)

Figure 5.17(a) shows such an LSPB trajectory, where the maximum velocity
V = 60. In this case tb = 1

3 . The velocity and acceleration curves are given in
Figures 5.17(b) and 5.17(c), respectively.

5.6.1.4 Minimum Time Trajectories An important variation of this trajectory
is obtained by leaving the final time tf unspecified and seeking the “fastest”
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trajectory between q0 and qf with a given constant acceleration α, that is, the
trajectory with the final time tf a minimum. This is sometimes called a Bang-
Bang trajectory since the optimal solution is achieved with the acceleration at
its maximum value +α until an appropriate switching time ts at which time
it abruptly switches to its minimum value −α (maximum deceleration) from ts
to tf .

Returning to our simple example in which we assume that the trajectory
begins and ends at rest, that is, with zero initial and final velocities, symmetry
considerations would suggest that the switching time ts is just tf

2 . This is
indeed the case. For nonzero initial and/or final velocities, the situation is
more complicated and we will not discuss it here.

If we let Vs denote the velocity at time ts then we have

Vs = αts (5.75)

and also

ts =
q0 − qf + Vstf

Vs
(5.76)

The symmetry condition ts = tf
2 implies that

Vs =
qf − q0
ts

(5.77)

Combining these two we have the conditions

qf − q0
ts

= αts (5.78)

which implies that

ts =

√
qf − q0
α

(5.79)

5.6.2 Trajectories for Paths Specified by Via Points

Now that we have examined the problem of planning a trajectory between two
configuration, we generalize our approach to the case of planning a trajectory
that passes through a sequence of configurations, called via points. Consider
the simple of example of a path specified by three points, q0, q1, q2, such that
the via points are reached at times t0, t1 and t2. If in addition to these three
constraints we impose constraints on the initial and final velocities and accel-
erations, we obtain the following set of constraints,
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q(t0) = q0

q̇(t0) = v0

q̈(t0) = α0

q(t1) = q1

q(t2) = q2

q̇(t2) = v2

q̈(t2) = α2

which could be satisfied by generating a trajectory using the sixth order poly-
nomial

q(t) = a6t
6 + a5t

5 + a4t
4 + a3t

3 + a2t
2 + a1t

1 + a0 (5.80)

One advantage to this approach is that, since q(t) is continuously differen-
tiable, we need not worry about discontinuities in either velocity or acceleration
at the via point, q1. However, to determine the coefficients for this polynomial,
we must solve a linear system of dimension seven. The clear disadvantage to
this approach is that as the number of via points increases, the dimension of
the corresponding linear system also increases, making the method intractable
when many via points are used.

An alternative to using a single high order polynomial for the entire trajec-
tory is to use low order polynomials for trajectory segments between adjacent
via points. These polynomials sometimes refered to as interpolating polyno-
mials or blending polynomials. With this approach, we must take care that
continuity constraints (e.g., in velocity and acceleration) are satisfied at the via
points, where we switch from one polynomial to another.

Given initial and final times, t0 and tf , respectively, with

qd(t0) = q0 ; qd(tf ) = q1
q̇d(t0) = q′0 ; q̇d(tf ) = q′1

(5.81)

the required cubic polynomial qd(t) can be computed from

qd(t0) = a0 + a1(t− t0) + a2(t− t0)2 + a3(t− t0)3 (5.82)

where

a2 =
3(q1 − q0)− (2q′0 + q′1)(tf − t0)

(tf − t0)2
a3 =

2(q0 − q1) + (q′0 + q′1)(tf − t0)
(tf − t0)3

A sequence of moves can be planned using the above formula by using the
end conditions qf , vf of the i-th move as initial conditions for the i+1-st move.

Example 5.9 Figure 5.18 shows a 6-second move, computed in three parts
using (5.82), where the trajectory begins at 10◦ and is required to reach 40◦ at
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Fig. 5.18 (a) Cubic spline trajectory made from three cubic polynomials (b) Velocity
Profile for Multiple Cubic Polynomial Trajectory (c) Acceleration Profile for Multiple
Cubic Polynomial Trajectory
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Fig. 5.19 (a) Trajectory with Multiple Quintic Segments (b) Velocity Profile for Mul-
tiple Quintic Segments (c) Acceleration Profile for Multiple Quintic Segments

2-seconds, 30◦ at 4seconds, and 90◦ at 6-seconds, with zero velocity at 0,2,4,
and 6 seconds.
�

Example 5.10 Figure 5.19 shows the same six second trajectory as in Exam-
ple 5.9 with the added constraints that the accelerations should be zero at the
blend times.
�

5.7 HISTORICAL PERSPECTIVE

The earliest work on robot planning was done in the late sixties and early sev-
enties in a few University-based Artificial Intelligence (AI) labs [25, 28, 57].
This research dealt with high level planning using symbolic reasoning that was
much in vogue at the time in the AI community. Geometry was not often
explicitly considered in early robot planners, in part because it was not clear
how to represent geometric constraints in a computationally plausible manner.
The configuration space and its application to path planning were introduced in
[47]. This was the first rigorous, formal treatment of the geometric path plan-
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ning problem, and it initiated a surge in path planning research. The earliest
work in geometric path planning developed methods to construct volumetric
representations of the free configuration space. These included exact methods
(e.g., [65]), and approximate methods (e.g., [11, 36, 47]). In the former case,
the best known algorithms have exponential complexity and require exact de-
scriptions of both the robot and its environment, while in the latter case, the
size of the representation of C-space grows exponentially in the dimension of
the C-space. The best known algorithm for the path planning problem, giving
an upper bound on the amount of computation time required to solve the prob-
lem, appeared in [12]. That real robots rarely have an exact description of the
environment, and a drive for faster planning systems led to the development of
potential fields approaches [39, 40].

By the early nineties, a great deal of research had been done on the geometric
path planning problem, and this work is nicely summarized in the textbook
[42]. This textbook helped to generate a renewed interest in the path planning
problem, and it provided a common framework in which to analyze and express
path planning algorithms. Soon after, the research field of Algorithmic Robotics
was born at a small workshop in San Francisco [31].

In the early nineties, randomization was introduced in the robot planning
community [5], originally to circumvent the problems with local minima in
potential fields). Early randomized motion planners proved effective for a large
range of problems, but sometimes required extensive computation time for some
robots in certain environments [38]. This limitation, together with the idea that
a robot will operate in the same environment for a long period of time led to
the development of the probabilistic roadmap planners [37, 58, 38].

Finally, much work has been done in the area of collision detection in recent
years. [46, 52, 73, 74]. This work is primarily focused on finding efficient,
incremental methods for detecting collisions between objects when one or both
are moving. A number of public domain collision detection software packages
are currently available on the internet.
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Problems
MOTION PLANNING PROBLEMS TO BE WRITTEN

5-1 Show by direct calculation that the determinant of the coefficient matrix
in Equation (5.43) is (tf − t0)4.

5-2 Use Gaussian elimination to reduce the system (5.43) to upper triangular
form and verify that the solution is indeed given by Equation (5.82).

5-3 Suppose we wish a manipulator to start from an initial configuration at time
t0 and track a conveyor. Discuss the steps needed in planning a suitable
trajectory for this problem.

5-4 Suppose we desire a joint space trajectory q̇di (t) for the i-th joint (assumed
to be revolute) that begins at rest at position q0 at time t0 and reaches
position q1 in 2 seconds with a final velocity of 1 radian/sec. Compute a
cubic polynomial satisfying these constraints. Sketch the trajectory as a
function of time.

5-5 Compute a LSPB trajectory to satisfy the same requirements as in Prob-
lem 5-4. Sketch the resulting position, velocity, and acceleration profiles.

5-6 Fill in the details of the computation of the LSPB trajectory. In other
words compute the portion of the trajectory between times tf − tb and tf
and hence verify Equations (5.74).

5-7 Write a Matlab m-file, lspb.m, to generate an LSPB trajectory, given ap-
propriate initial data.

5-8 Rewrite the Matlab m-files, cubic.m, quintic.m, and lspb.m to turn them
into Matlab functions. Document them appropriately.



6
DYNAMICS

This chapter deals with the dynamics of robot manipulators. Whereas the
kinematic equations describe the motion of the robot without consideration of
the forces and torques producing the motion, the dynamic equations explicitly
describe the relationship between force and motion. The equations of motion
are important to consider in the design of robots, in simulation and animation
of robot motion, and in the design of control algorithms. We introduce the
so-called Euler-Lagrange equations, which describe the evolution of a me-
chanical system subject to holonomic constraints (this term is defined later
on). To motivate the Euler-Lagrange approach we begin with a simple deriva-
tion of these equations from Newton’s Second Law for a one-degree-of-freedom
system. We then derive the Euler-Lagrange equations from the principle of
virtual work in the general case.

In order to determine the Euler-Lagrange equations in a specific situation,
one has to form the Lagrangian of the system, which is the difference between
the kinetic energy and the potential energy; we show how to do this in sev-
eral commonly encountered situations. We then derive the dynamic equations
of several example robotic manipulators, including a two-link cartesian robot,
a two-link planar robot, and a two-link robot with remotely driven joints.

The Euler-Lagrange equations have several very important properties that
can be exploited to design and analyze feedback control algorithms. Among
these are explicit bounds on the inertia matrix, linearity in the inertia param-
eters, and the so-called skew symmetry and passivity properties. We discuss
these properties in Section 6.5.

187
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This chapter is concluded with a derivation of an alternate the formulation of
the dynamical equations of a robot, known as the Newton-Euler formulation
which is a recursive formulation of the dynamic equations that is often used for
numerical calculation.

6.1 THE EULER-LAGRANGE EQUATIONS

In this section we derive a general set of differential equations that describe
the time evolution of mechanical systems subjected to holonomic constraints,
when the constraint forces satisfy the principle of virtual work. These are called
the Euler-Lagrange equations of motion. Note that there are at least two
distinct ways of deriving these equations. The method presented here is based
on the method of virtual displacements; but it is also possible to derive the
same equations based on Hamilton’s principle of least action [?].

6.1.1 One Dimensional System

To motivate the subsequent derivation, we show first how the Euler-Lagrange
equations can be derived from Newton’s Second Law for a single degree of
freedom system consisting of a particle of constant mass m, constrained to
move in the y-direction, and subject to a force f and the gravitational force
mg, as shown in Figure 6.1. By Newton’s Second law, the equation of motion

Fig. 6.1 One Degree of Freedom System

of the particle is

mÿ = f −mg (6.1)

Notice that the left hand side of Equation (6.1) can be written as

mÿ =
d

dt
(mẏ) =

d

dt

∂

∂ẏ

(
1
2
mẏ2

)
=

d

dt

∂K
∂ẏ

(6.2)

where K = 1
2mẏ

2 is the kinetic energy. We use the partial derivative notation
in the above expression to be consistent with systems considered later when the
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kinetic energy will be a function of several variables. Likewise we can express
the gravitational force in Equation (6.1) as

mg =
∂

∂y
(mgy) =

∂P
∂y

(6.3)

where P = mgy is the potential energy due to gravity. If we define

L = K − P =
1
2
mẏ2 −mgy (6.4)

and note that

∂L
∂ẏ

=
∂K
∂ẏ

and
∂L
∂y

= −∂P
∂y

then we can write Equation (6.1) as

d

dt

∂L
∂ẏ
− ∂L
∂y

= f (6.5)

The function L, which is the difference of the kinetic and potential energy, is
called the Lagrangian of the system, and Equation (6.5) is called the Euler-
Lagrange Equation. The Euler-Lagrange equations provide a formulation of
the dynamic equations of motion equivalent to those derived using Newton’s
Second Law. However, as we shall see, the Lagrangian approach is advantageous
for more complex systems such as multi-link robots.

Example: 6.1 Single-Link Manipulator
Consider the single-link robot arm shown in Figure 6.2, consisting of a rigid
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Fig. 6.2 Single-Link Robot.

link coupled through a gear train to a DC-motor. Let θ` and θm denote the
angles of the link and motor shaft, respectively. Then θm = rθ` where r : 1 is
the gear ratio. The algebraic relation between the link and motor shaft angles
means that the system has only one degree-of-freedom and we can therefore
write the equations of motion using either θm or θ`. In terms of θ`, the kinetic
energy of the system is given by

K =
1
2
Jmθ̇

2
m +

1
2
J`θ̇

2
`

=
1
2
(r2Jm + J`)θ̇2` (6.6)
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where Jm, J` are the rotational inertias of the motor and link, respectively. The
potential energy is given as

P = Mg`(1− cos θ`) (6.7)

where M is the total mass of the link and ` is the distance from the joint axis
to the link center of mass. Defining J = r2Jm + J`, the Lagrangian L is given
by

L =
1
2
Jθ̇2` −Mg`(1− cos θ`) (6.8)

Substituting this expression into the Euler-Lagrange equations yields the equa-
tion of motion

Jθ̈` +Mg` sin θ` = τ` (6.9)

The generalized force τ` represents those external forces and torques that
are not derivable from a potential function. For this example, τ` consists of the
motor torque u = rτm, reflected to the link, and (nonconservative) damping
torques Bmθ̇m, and B`, θ̇`. Reflecting the motor damping to the link yields

τ = u−Bθ̇`

where B = rBm + B`. Therefore the complete expression for the dynamics of
this system is

Jθ̈` +Bθ̇` +Mg` sin θ` = u (6.10)

In general, for any system of the type considered, an application of the Euler-
Lagrange equations leads to a system of n coupled, second order nonlinear
ordinary differential equations of the form

Euler-Lagrange Equations

d

dt

∂L
∂q̇i
− ∂L
∂qi

= τi i = 1, . . . , n (6.11)

The order, n, of the system is determined by the number of so-called gener-
alized coordinates that are required to describe the evolution of the system.
We shall see that the n Denavit-Hartenberg joint variables serve as a set of
generalized coordinates for an n-link rigid robot.

6.1.2 The General Case

Now, consider a system of k particles, with corresponding position vectors
r1, . . . , rk. If these particles are free to move about without any restrictions,
then it is quite an easy matter to describe their motion, by noting that the
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rk
r1 : : :r2

Fig. 6.3 System of k particles

rate of change of the momentum of each mass equals the external force applied
to it. However, if the motion of the particles is constrained in some fashion,
then one must take into account not only the externally applied forces, but
also the so-called constraint forces, that is, the forces needed to make the
constraints hold. As a simple illustration of this, suppose the system consists
of two particles, which are joined by a massless rigid wire of length `. Then the
two coordinates r1 and r2 must satisfy the constraint

‖r1 − r2‖ = `, or (r1 − r2)T (r1 − r2) = `2 (6.12)

If one applies some external forces to each particle, then the particles experience
not only these external forces but also the force exerted by the wire, which is
along the direction r2 − r1 and of appropriate magnitude. Therefore, in order
to analyze the motion of the two particles, we can follow one of two options.
We can compute, under each set of external forces, what the corresponding
constraint force must be in order that the equation above continues to hold.
Alternatively, we can search for a method of analysis that does not require us
to know the constraint force. Clearly, the second alternative is preferable, since
it is in general quite an involved task to compute the constraint forces. The
contents of this section are aimed at achieving this latter objective.

First it is necessary to introduce some terminology. A constraint on the k
coordinates r1, . . . , rk is called holonomic if it is an equality constraint of the
form

gi(r1, . . . , rk) = 0, i = 1, . . . , ` (6.13)

and nonholonomic otherwise. The constraint (6.12) imposed by connecting
two particles by a massless rigid wire is a holonomic constraint. As as example of
a nonholonomic constraint, consider a particle moving inside a sphere of radius
p centered at the origin of the coordinate system. In this case the coordinate
vector r of the particle must satisfy the constraint

‖r‖ ≤ ρ (6.14)
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Note that the motion of the particle is unconstrained so long as the particle
remains away from the wall of the sphere; but when the particle comes into
contact with the wall, it experiences a constraining force.

If a system is subjected to ` holonomic constraints, then one can think in
terms of the constrained system having ` fewer degrees-of-freedom than the
unconstrained system. In this case it may be possible to express the coordinates
of the k particles in terms of n generalized coordinates q1, . . . , qn. In other
words, we assume that the coordinates of the various particles, subjected to the
set of constraints (6.13), can be expressed in the form

ri = ri(q1, . . . , qn), i = 1, . . . , k (6.15)

where q1, . . . , qn are all independent. In fact, the idea of generalized coordinates
can be used even when there are infinitely many particles. For example, a
physical rigid object such as a bar contains an infinity of particles; but since
the distance between each pair of particles is fixed throughout the motion of the
bar, only six coordinates are sufficient to specify completely the coordinates of
any particle in the bar. In particular, one could use three position coordinates
to specify the location of the center of mass of the bar, and three Euler angles
to specify the orientation of the body. To keep the discussion simple, however,
we assume in what follows that the number of particles is finite. Typically,
generalized coordinates are positions, angles, etc. In fact, in Chapter 3 we
chose to denote the joint variables by the symbols q1, . . . , qn precisely because
these joint variables form a set of generalized coordinates for an n-link robot
manipulator.

One can now speak of virtual displacements, which are any set, δr1, . . . , δrk,
of infinitesimal displacements that are consistent with the constraints. For ex-
ample, consider once again the constraint (6.12) and suppose r1, r2 are per-
turbed to r1 + δr1, r2 + δr2, respectively. Then, in order that the perturbed
coordinates continue to satisfy the constraint, we must have

(r1 + δr1 − r2 − δr2)T (r1 + δr1 − r2 − δr2) = `2 (6.16)

Now let us expand the above product and take advantage of the fact that
the original coordinates r1, r2 satisfy the constraint (6.12); let us also neglect
quadratic terms in δr1, δr2. This shows that

(r1 − r2)T (δr1 − δr2) = 0 (6.17)

Thus any perturbations in the positions of the two particles must satisfy the
above equation in order that the perturbed positions continue to satisfy the
constraint (6.12). Any pair of infinitesimal vectors δr1, δr2 that satisfy (6.17)
would constitute a set of virtual displacements for this problem.

Now the reason for using generalized coordinates is to avoid dealing with
complicated relationships such as (6.17) above. If (6.15) holds, then one can
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see that the set of all virtual displacements is precisely

δri =
n∑
j=1

∂ri
∂qj

δqj , i = 1, . . . , k (6.18)

where the virtual displacements δq1, . . . , δqn of the generalized coordinates are
unconstrained (that is what makes them generalized coordinates).

Next we begin a discussion of constrained systems in equilibrium. Suppose
each particle is in equilibrium. Then the net force on each particle is zero,
which in turn implies that the work done by each set of virtual displacements
is zero. Hence the sum of the work done by any set of virtual displacements is
also zero; that is,

k∑
i=1

FTi δri = 0 (6.19)

where F i is the total force on particle i. As mentioned earlier, the force F i
is the sum of two quantities, namely (i) the externally applied force f i, and
(ii) the constraint force f (a)

i . Now suppose that the total work done by the
constraint forces corresponding to any set of virtual displacements is zero, that
is,

k∑
i=1

(f (a)
i )T δri = 0 (6.20)

This will be true whenever the constraint force between a pair of particles is
directed along the radial vector connecting the two particles (see the discussion
in the next paragraph). Substituting (6.20) into (6.19) results in

k∑
i=1

fTi δri = 0 (6.21)

The beauty of this equation is that it does not involve the unknown constraint
forces, but only the known external forces. This equation expresses the prin-
ciple of virtual work, which can be stated in words as follows:

Principle of Virtual Work
The work done by external forces corresponding to any set of virtual displace-
ments is zero.

Note that the principle is not universally applicable, but requires that (6.20)
hold, that is, that the constraint forces do no work. Thus, if the principle of
virtual work applies, then one can analyze the dynamics of a system without
having to evaluate the constraint forces.

It is easy to verify that the principle of virtual work applies whenever the
constraint force between a pair of particles acts along the vector connecting the
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position coordinates of the two particles. In particular, when the constraints
are of the form (6.12), the principle applies. To see this, consider once again
a single constraint of the form (6.12). In this case the constraint force, if any,
must be exerted by the rigid massless wire, and therefore must be directed along
the radial vector connecting the two particles. In other words, the force exerted
on particle 1 by the wire must be of the form

f
(a)
1 = c(r1 − r2) (6.22)

for some constant c (which could change as the particles move about). By the
law of action and reaction, the force exerted on particle 2 by the wire must be
just the negative of the above, that is,

f
(a)
2 = −c(r1 − r2) (6.23)

Now the work done by the constraint forces corresponding to a set of virtual
displacements is

(f (a)
1 )T δr1 + (f (a)

2 )T δr2 = c(r1 − r2)T (δr1 − δr2) (6.24)

But (6.17) shows that for any set of virtual displacements, the above inner
product must be zero. Thus the principle of virtual work applies in a system
constrained by (6.12). The same reasoning can be applied if the system consists
of several particles, which are pairwise connected by rigid massless wires of
fixed lengths, in which case the system is subjected to several constraints of
the form (6.12). Now, the requirement that the motion of a body be rigid
can be equivalently expressed as the requirement that the distance between
any pair of points on the body remain constant as the body moves, that is,
as an infinity of constraints of the form (6.12). Thus the principle of virtual
work applies whenever rigidity is the only constraint on the motion. There are
indeed situations when this principle does not apply, typically in the presence
of magnetic fields. However, in all situations encountered in this book, we can
safely assume that the principle of virtual work is valid.

In (6.21), the virtual displacements δri are not independent, so we cannot
conclude from this equation that each coefficient F i individually equals zero. In
order to apply such reasoning, we must transform to generalized coordinates.
Before doing this, we consider systems that are not necessarily in equilibrium.
For such systems, D’Alembert’s principle states that, if one introduces a fic-
titious additional force −ṗi on particle i for each i, where pi is the momentum
of particle i, then each particle will be in equilibrium. Thus, if one modifies
(6.19) by replacing F i by F i − ṗi, then the resulting equation is valid for arbi-
trary systems. One can then remove the constraint forces as before using the
principle of virtual work. This results in the equations

k∑
i=1

fTi δri −
k∑
i=1

ṗTi δri = 0 (6.25)
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The above equation does not mean that each coefficient of δri is zero. For this
purpose, express each δri in terms of the corresponding virtual displacements
of generalized coordinates, as is done in (6.18). Then the virtual work done by
the forces f i is given by

k∑
i=1

fTi δri =
k∑
i=1

n∑
j=1

fTi
∂ri
∂qj

δqj =
n∑
j=1

ψjδqj (6.26)

where

ψj =
k∑
i=1

fTi
∂ri
∂qj

(6.27)

is called the j-th generalized force. Note that ψj need not have dimensions
of force, just as qj need not have dimensions of length; however, ψjδqj must
always have dimensions of work.

Now let us study the second summation in (6.25) Since pi = miṙi, it follows
that

k∑
i=1

ṗTi δri =
k∑
i=1

mir̈
T
i δri =

k∑
i=1

n∑
j=1

mir̈
T
i

∂ri
∂qj

δqj (6.28)

Next, using the product rule of differentiation, we see that

k∑
i=1

mir̈
T
i

∂ri
∂qj

=
k∑
i=1

{
d

dt

[
miṙ

T
i

∂ri
∂qj

]
−miṙ

T
i

d

dt

[
∂ri
∂qj

]}
(6.29)

Now differentiate (6.15) using the chain rule; this gives

vi = ṙi =
n∑
j=1

∂ri
∂qj

q̇j (6.30)

Observe from the above equation that

∂vi
∂q̇i

=
∂ri
∂qj

(6.31)

Next,

d

dt

[
∂ri
∂qj

]
=

n∑
`=1

∂2ri
∂qj∂q`

q̇` =
∂vi
∂qj

(6.32)

where the last equality follows from (6.30). Substituting from (6.31) and (6.32)
into (6.29) and noting that ṙi = vi gives

k∑
i=1

mir̈
T
i

∂ri
∂qj

=
k∑
i=1

{
d

dt

[
miv

T
i

∂vi
∂q̇j

]
−miv

T
i

∂vi
∂qj

}
(6.33)
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If we define the kinetic energy K to be the quantity

K =
k∑
i=1

1
2
miv

T
i vi (6.34)

then the sum above can be compactly expressed as

k∑
i=1

mir̈
T
i

∂ri
∂qj

=
d

dt

∂K

∂q̇j
− ∂K

∂qj
(6.35)

Now, substituting from (6.35) into (6.28) shows that the second summation in
(6.25) is

k∑
i=1

ṗTi δri =
n∑
j=1

{
d

dt

∂K

∂q̇j
− ∂K

∂qj

}
δqj (6.36)

Finally, combining (6.36) and (6.26) gives

n∑
j=1

{
d

dt

∂K

∂q̇j
− ∂K

∂qj
− ψj

}
δqj = 0 (6.37)

Now, since the virtual displacements δqj are independent, we can conclude that
each coefficient in (6.37) is zero, that is, that

d

dt

∂K

∂q̇j
− ∂K

∂qj
= ψj , j = 1, . . . , n (6.38)

If the generalized force ψj is the sum of an externally applied generalized force
and another one due to a potential field, then a further modification is possible.
Suppose there exist functions τj and a potential energy function P (q) such that

ψj = − ∂P
∂qj

+ τj (6.39)

Then (6.38) can be written in the form

d

dt

∂L
∂q̇j
− ∂L
∂qj

= τj (6.40)

where L = K−P is the Lagrangian and we have recovered the Euler-Lagrange
equations of motion as in Equation (6.11).

6.2 GENERAL EXPRESSIONS FOR KINETIC AND POTENTIAL

ENERGY

In the previous section, we showed that the Euler-Lagrange equations can be
used to derive the dynamical equations in a straightforward manner, provided
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one is able to express the kinetic and potential energy of the system in terms of a
set of generalized coordinates. In order for this result to be useful in a practical
context, it is therefore important that one be able to compute these terms
readily for an n-link robotic manipulator. In this section we derive formulas
for the kinetic energy and potential energy of a rigid robot using the Denavit-
Hartenberg joint variables as generalized coordinates.

To begin we note that the kinetic energy of a rigid object is the sum of two
terms: the translational energy obtained by concentrating the entire mass of
the object at the center of mass, and the rotational kinetic energy of the body
about the center of mass. Referring to Figure 6.4 we attach a coordinate frame
at the center of mass (called the body attached frame) as shown. The kinetic

r
yc

xc

zc

z0

y0

x0

Fig. 6.4 A General Rigid Body

energy of the rigid body is then given as

K =
1
2
mvT v +

1
2
ωTIω (6.41)

where m is the total mass of the object, v and ω are the linear and angular
velocity vectors, respectively, and I is a symmetric 3 × 3 matrix called the
Inertia Tensor.

6.2.1 The Inertia Tensor

It is understood that the linear and angular velocity vectors, v and ω, respec-
tively, in the above expression for the kinetic energy are expressed in the inertial
frame. In this case we know that ω is found from the skew symmetric matrix

S(ω) = ṘRT (6.42)

where R is the orientation transformation between the body attached frame and
the inertial frame. It is therefore necessary to express the inertia tensor, I, also
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in the inertial frame in order to compute the triple product ωTIω. The inertia
tensor relative to the inertial reference frame will depend on the configuration
of the object. If we denote as I the inertia tensor expressed instead in the body
attached frame, then the two matrices are related via a similarity transformation
according to

I = RIRT (6.43)

This is an important observation because the inertia matrix expressed in the
body attached frame is a constant matrix independent of the motion of the ob-
ject and easily computed. We next show how to compute this matrix explicitly.

Let the mass density of the object be represented as a function of position,
ρ(x, y, z). Then the inertia tensor in the body attached frame is computed as

I =

 Ixx Ixy Ixz
Iyx Iyy Iyz
Izx Izy Izz

 (6.44)

where

Ixx =
∫ ∫ ∫

(y2 + z2)ρ(x, y, z)dx dy dz

Iyy =
∫ ∫ ∫

(x2 + z2)ρ(x, y, z)dx dy dz

Izz =
∫ ∫ ∫

(x2 + y2)ρ(x, y, z)dx dy dz

Ixy = Iyx = −
∫ ∫ ∫

xyρ(x, y, z)dx dy dz

Ixz = Izx = −
∫ ∫ ∫

xzρ(x, y, z)dx dy dz

Iyz = Izy = −
∫ ∫ ∫

yzρ(x, y, z)dx dy dz

The integrals in the above expression are computed over the region of space
occupied by the rigid body. The diagonal elements of the inertia tensor, Ixx,
Iyy, Izz, are called the Principal Moments of Inertia about the x,y,z axes,
respectively. The off diagonal terms Ixy, Ixz, etc., are called the Cross Prod-
ucts of Inertia. If the mass distribution of the body is symmetric with respect
to the body attached frame then the cross products of inertia are identically
zero.

Example: 6.2 Uniform Rectangular Solid
Consider the rectangular solid of length, a, width, b, and height, c, shown in

Figure 6.5 and suppose that the density is constant, ρ(x, y, z) = ρ.
If the body frame is attached at the geometric center of the object, then by

symmetry, the cross products of inertia are all zero and it is a simple exercise
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Fig. 6.5 Uniform Rectangular Solid

to compute

Ixx =
∫ c/2

−c/2

∫ b/2

−b/2

∫ a/2

−a/2
(y2 + z2)ρ(x, y, z)dx dy dz = ρ

abc

12
(b2 + c2)

Likewise

Iyy = ρ
abc

12
(a2 + c2) ; Izz = ρ

abc

12
(a2 + b2)

and the cross products of inertia are zero.

6.2.2 Kinetic Energy for an n-Link Robot

Now consider a manipulator consisting of n links. We have seen in Chapter 4
that the linear and angular velocities of any point on any link can be expressed
in terms of the Jacobian matrix and the derivative of the joint variables. Since
in our case the joint variables are indeed the generalized coordinates, it follows
that, for appropriate Jacobian matrices Jvi and Jωi , we have that

vi = Jvi
(q)q̇, ωi = Jωi

(q)q̇ (6.45)

Now suppose the mass of link i is mi and that the inertia matrix of link i,
evaluated around a coordinate frame parallel to frame i but whose origin is at
the center of mass, equals Ii. Then from (6.41) it follows that the overall kinetic
energy of the manipulator equals

K =
1
2
q̇T

n∑
i=1

[
miJvi

(q)TJvi
(q) + Jωi

(q)TRi(q)IiRi(q)TJωi
(q)
]
q̇ (6.46)

In other words, the kinetic energy of the manipulator is of the form

K =
1
2
q̇TD(q)q̇ (6.47)
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where D(q) is a symmetric positive definite matrix that is in general configura-
tion dependent. The matrix D is called the inertia matrix, and in Section 6.4
we will compute this matrix for several commonly occurring manipulator con-
figurations.

6.2.3 Potential Energy for an n-Link Robot

Now consider the potential energy term. In the case of rigid dynamics, the only
source of potential energy is gravity. The potential energy of the i-th link can
be computed by assuming that the mass of the entire object is concentrated at
its center of mass and is given by

Pi = gT rcimi (6.48)

where g is vector giving the direction of gravity in the inertial frame and the
vector rci gives the coordinates of the center of mass of link i. The total potential
energy of the n-link robot is therefore

P =
n∑
i=1

Pi =
n∑
i=1

gT rcimi (6.49)

In the case that the robot contains elasticity, for example, flexible joints, then
the potential energy will include terms containing the energy stored in the
elastic elements.

Note that the potential energy is a function only of the generalized coor-
dinates and not their derivatives, i.e. the potential energy depends on the
configuration of the robot but not on its velocity.

6.3 EQUATIONS OF MOTION

In this section, we specialize the Euler-Lagrange equations derived in Section 6.1
to the special case when two conditions hold: first, the kinetic energy is a
quadratic function of the vector q̇ of the form

K =
1
2

n∑
i,j

dij(q)q̇iq̇j :=
1
2
q̇TD(q)q̇ (6.50)

where the n × n “inertia matrix” D(q) is symmetric and positive definite for
each q ∈ Rn, and second, the potential energy P = P (q) is independent of q̇.
We have already remarked that robotic manipulators satisfy this condition.

The Euler-Lagrange equations for such a system can be derived as follows.
Since

L = K − P =
1
2

∑
i,j

dij(q)q̇iq̇j − P (q) (6.51)
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we have that

∂L

∂q̇k
=

∑
j

dkj q̇j (6.52)

and

d

dt

∂L

∂q̇k
=

∑
i

dkj q̈j +
∑
j

d

dt
dkj q̇j

=
∑
j

dkj q̈j +
∑
i,j

∂dkj
∂qi

q̇iq̇j (6.53)

Also

∂L

∂qk
=

1
2

∑
i,j

∂dij
∂qk

q̇iq̇j −
∂P

∂qk
(6.54)

Thus the Euler-Lagrange equations can be written∑
j

dkj q̈j +
∑
i,j

{
∂dkj
∂qi

− 1
2
∂dij
∂qk

}
q̇iq̇j −

∂P

∂qk
= τk (6.55)

By interchanging the order of summation and taking advantage of symmetry,
we can show that∑

i,j

{
∂dkj
∂qi

}
q̇iq̇j =

1
2

∑
i,j

{
∂dkj
∂qi

+
∂dki
∂qj

}
q̇iq̇j (6.56)

Hence∑
i,j

{
∂dkj
∂qi

− 1
2
∂dij
∂qk

}
q̇iq̇j =

∑
i,j

1
2

{
∂dkj
∂qi

+
∂dki
∂qj

− ∂dij
∂qk

}
q̇iq̇j (6.57)

Christoffel Symbols of the First Kind

cijk :=
1
2

{
∂dkj
∂qi

+
∂dki
∂qj

− ∂dij
∂qk

}
(6.58)

The terms cijk in Equation (6.58) are known as Christoffel symbols (of the
first kind). Note that, for a fixed k, we have cijk = cjik, which reduces the effort
involved in computing these symbols by a factor of about one half. Finally, if
we define

φk =
∂P

∂qk
(6.59)

then we can write the Euler-Lagrange equations as∑
i

dkj(q)q̈j +
∑
i,j

cijk(q)q̇iq̇j + φk(q) = τk, k = 1, . . . , n (6.60)
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In the above equation, there are three types of terms. The first involve
the second derivative of the generalized coordinates. The second are quadratic
terms in the first derivatives of q, where the coefficients may depend on q. These
are further classified into two types. Terms involving a product of the type q̇2i
are called centrifugal, while those involving a product of the type q̇iqj where
i 6= j are called Coriolis terms. The third type of terms are those involving
only q but not its derivatives. Clearly the latter arise from differentiating the
potential energy. It is common to write (6.60) in matrix form as

Matrix Form of Euler-Lagrange Equations

D(q)q̈ + C(q, q̇)q̇ + g(q) = τ (6.61)

where the k, j-th element of the matrix C(q, q̇) is defined as

ckj =
n∑
i=1

cijk(q)q̇i (6.62)

=
n∑
i=1

1
2

{
∂dkj
∂qj

+
∂dki
∂qj

− ∂dij
∂qk

}
q̇i

Let us examine an important special case, where the inertia matrix is diag-
onal and independent of q. In this case it follows from (6.58) that all of the
Christoffel symbols are zero, since each dij is a constant. Moreover, the quan-
tity dkj is nonzero if and only if k = j, so that the Equations 6.60) decouple
nicely into the form

dkk q̈ − φk(q) = τk, k = 1, . . . , n (6.63)

In summary, the development in this section is very general and applies to
any mechanical system whose kinetic energy is of the form (6.50) and whose
potential energy is independent of q̇. In the next section we apply this discussion
to study specific robot configurations.

6.4 SOME COMMON CONFIGURATIONS

In this section we apply the above method of analysis to several manipulator
configurations and derive the corresponding equations of motion. The config-
urations are progressively more complex, beginning with a two-link cartesian
manipulator and ending with a five-bar linkage mechanism that has a particu-
larly simple inertia matrix.

Two-Link Cartesian Manipulator

Consider the manipulator shown in Figure 6.6, consisting of two links and two
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q2

q1

Fig. 6.6 Two-link cartesian robot.

prismatic joints. Denote the masses of the two links by m1 and m2, respec-
tively, and denote the displacement of the two prismatic joints by q1 and q2,
respectively. Then it is easy to see, as mentioned in Section 6.1, that these two
quantities serve as generalized coordinates for the manipulator. Since the gen-
eralized coordinates have dimensions of distance, the corresponding generalized
forces have units of force. In fact, they are just the forces applied at each joint.
Let us denote these by fi, i = 1, 2.

Since we are using the joint variables as the generalized coordinates, we know
that the kinetic energy is of the form (6.50) and that the potential energy is
only a function of q1 and q2. Hence we can use the formulae in Section 6.3
to obtain the dynamical equations. Also, since both joints are prismatic, the
angular velocity Jacobian is zero and the kinetic energy of each link consists
solely of the translational term.

It follows that the velocity of the center of mass of link 1 is given by

vc1 = Jvc1 q̇ (6.64)

where

Jvc1 =

 0 0
0 0
1 0

 , q̇ =
[
q̇1
q̇2

]
(6.65)

Similarly,

vc2 = Jvc2 q̇ (6.66)

where

Jvc2 =

 0 0
0 1
1 0

 (6.67)
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Hence the kinetic energy is given by

K =
1
2
q̇T
{
m1J

T
vc
Jvc1 +m2J

T
vc2
Jvc2

}
q̇ (6.68)

Comparing with (6.50), we see that the inertia matrix D is given simply by

D =
[
m1 +m2 0

0 m2

]
(6.69)

Next, the potential energy of link 1 is m1gq1, while that of link 2 is m2gq1,
where g is the acceleration due to gravity. Hence the overall potential energy is

P = g(m1 +m2)q1 (6.70)

Now we are ready to write down the equations of motion. Since the inertia
matrix is constant, all Christoffel symbols are zero. Further, the vectors φk are
given by

φ1 =
∂P

∂q1
= g(m1 +m2), φ2 =

∂P

∂q2
= 0 (6.71)

Substituting into (6.60) gives the dynamical equations as

(m1 +m2)q̈1 + g(m1 +m2) = f1

m2q̈2 = f2 (6.72)

Planar Elbow Manipulator

Now consider the planar manipulator with two revolute joints shown in Fig-
ure 6.7. Let us fix notation as follows: For i = 1, 2, qi denotes the joint angle,
which also serves as a generalized coordinate; mi denotes the mass of link i, `i
denotes the length of link i; `ci denotes the distance from the previous joint to
the center of mass of link i; and Ii denotes the moment of inertia of link i about
an axis coming out of the page, passing through the center of mass of link i.

We will make effective use of the Jacobian expressions in Chapter 4 in com-
puting the kinetic energy. Since we are using joint variables as the generalized
coordinates, it follows that we can use the contents of Section 6.7. First,

vc1 = Jvc1 q̇ (6.73)

where,

Jvc1 =

 −`c sin q1 0
`c1 cos q1 0

0 0

 (6.74)

Similarly,

vc2 = Jvc2 q̇ (6.75)
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Fig. 6.7 Two-link revolute joint arm.

where

Jvc2 =

 −`1 sin q1 − `c2 sin(q1 + q2) −`c2 sin(q1 + q2)
`1 cos q1 + `c2 cos(q1 + q2) `c2 cos(q1 + q2)

0 0

 (6.76)

Hence the translational part of the kinetic energy is

1
2
m1v

T
c1vc1 +

1
2
m2v

T
c2vc2 =

1
2
q̇
{
m1J

T
vc1
Jvc1 +m2J

T
vc2
Jvc2

}
q̇ (6.77)

Next we deal with the angular velocity terms. Because of the particularly
simple nature of this manipulator, many of the potential difficulties do not arise.
First, it is clear that

ω1 = q̇1k, ω2 = (q̇1 + q̇2)k (6.78)

when expressed in the base inertial frame. Moreover, since ωi is aligned with
k, the triple product ωTi Iiωi reduces simply to (I33)i times the square of the
magnitude of the angular velocity. This quantity (I33)i is indeed what we have
labeled as Ii above. Hence the rotational kinetic energy of the overall system is

1
2
q̇T
{
I1

[
1 0
0 0

]
+ I2

[
1 1
1 1

]}
q̇ (6.79)

Now we are ready to form the inertia matrix D(q). For this purpose, we
merely have to add the two matrices in (6.77) and (6.79), respectively. Thus

D(q) = m1J
T
vc1
Jvc1 +m2J

T
vc2
Jvc2 +

[
I1 + I2 I2
I2 I2

]
(6.80)
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Carrying out the above multiplications and using the standard trigonometric
identities cos2 θ + sin2 θ = 1, cosα cosβ + sinα sinβ = cos(α− β) leads to

d11 = m1`
2
c1 +m2(`21 + `2c2 + 2`1`2c2 + 2`1`c2 cos q2) + I1 + I2

d12 = d21 = m2(`2c2 + `1`c2 cos q2) + I2

d22 = m2`
2
c2 + I2 (6.81)

Now we can compute the Christoffel symbols using the definition (6.58). This
gives

c111 =
1
2
∂d11

∂q1
= 0

c121 = c211 =
1
2
∂d11

∂q2
= −m2`1`c2 sin q2 =: h

c221 =
∂d12

∂q2
− 1

2
∂d22

∂q1
= h

c112 =
∂d21

∂q1
− 1

2
∂d11

∂q2
= −h (6.82)

c122 = c212 =
1
2
∂d22

∂q1
= 0

c222 =
1
2
∂d22

∂q2
= 0

Next, the potential energy of the manipulator is just the sum of those of the
two links. For each link, the potential energy is just its mass multiplied by the
gravitational acceleration and the height of its center of mass. Thus

P1 = m1g`c1 sin q1
P2 = m2g(`1 sin q1 + `c2 sin(q1 + q2))
P = P1 + P2 = (m1`c1 +m2`1)g sin q1 +m2`c2g sin(q1 + q2) (6.83)

Hence, the functions φk defined in (6.59) become

φ1 =
∂P

∂q1
= (m1`c1 +m2`1)g cos q1 +m2`c2g cos(q1 + q2) (6.84)

φ2 =
∂P

∂q2
= m2`c2 cos(q1 + q2) (6.85)

Finally we can write down the dynamical equations of the system as in (6.60).
Substituting for the various quantities in this equation and omitting zero terms
leads to

d11q̈1 + d12q̈2 + c121q̇1q̇2 + c211q̇2q̇1 + c221q̇
2
2 + φ1 = τ1

d21q̈1 + d22q̈2 + c112q̇
2
1 + φ2 = τ2 (6.86)

In this case the matrix C(q, q̇) is given as

C =
[

hq̇2 hq̇2 + hq̇1
−hq̇1 0

]
(6.87)
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Planar Elbow Manipulator with Remotely Driven Link

Now we illustrate the use of Lagrangian equations in a situation where the
generalized coordinates are not the joint variables defined in earlier chapters.
Consider again the planar elbow manipulator, but suppose now that both joints
are driven by motors mounted at the base. The first joint is turned directly by
one of the motors, while the other is turned via a gearing mechanism or a timing
belt (see Figure 6.8). In this case one should choose the generalized coordinates

Fig. 6.8 Two-link revolute joint arm with remotely driven link.

as shown in Figure 6.9, because the angle p2 is determined by driving motor

y0

x0

x2y2

p2

p1

Fig. 6.9 Generalized coordinates for robot of Figure 6.4.

number 2, and is not affected by the angle p1. We will derive the dynamical
equations for this configuration, and show that some simplifications will result.

Since p1 and p2 are not the joint angles used earlier, we cannot use the
velocity Jacobians derived in Chapter 4 in order to find the kinetic energy of
each link. Instead, we have to carry out the analysis directly. It is easy to see
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that

vc1 =

 −`c1 sin p1

`c1 cos p1

0

 ṗ1, vc2 =

 `1 sin p1 −`c2 sin p2

`1 cos p1 `c2 cos p2

0 0

[ ṗ1

ṗ2

]
(6.88)

ω1 = ṗ1k, ω2 = ṗ2k (6.89)

Hence the kinetic energy of the manipulator equals

K =
1
2
ṗTD(p)ṗ (6.90)

where

D(p) =
[

m1`
2
c1 +m2`

2
1 + I1 m2`1`c2 cos(p2 − p1)

m2`1`c2 cos(p2 − p1) m2`
2
c2 + I2

]
(6.91)

Computing the Christoffel symbols as in (6.58) gives

c111 =
1
2
∂d11

∂p1
= 0

c121 = c211 =
1
2
∂d11

∂p2
= 0

c221 =
∂d12

∂p2
− 1

2
∂d22

∂p1
= −m2`1`c2 sin(p2 − p1) (6.92)

c112 =
∂d21

∂p1
− 1

2
∂d11

∂p2
= m2`1`c2 sin(p2 − p1)

c212 = = c122 =
1
2
∂d22

∂p1
= 0

c222 =
1
2
∂d22

∂p2
= 0

Next, the potential energy of the manipulator, in terms of p1 and p2, equals

P = m1g`c1 sin p1 +m2g(`1 sin p1 + `c2 sin p2) (6.93)

Hence the gravitational generalized forces are

φ1 = (m1`c1 +m2`1)g cos p1

φ2 = m2`c2g cos p2

Finally, the equations of motion are

d11p̈1 + d12p̈2 + c221ṗ
2
2 + φ1 = τ1

d21p̈1 + d22p̈2 + c112ṗ
2
1 + φ2 = τ2 (6.94)

Comparing (6.94) and (6.86), we see that by driving the second joint remotely
from the base we have eliminated the Coriolis forces, but we still have the
centrifugal forces coupling the two joints.
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Fig. 6.10 Five-bar linkage

Five-Bar Linkage

Now consider the manipulator shown in Figure 6.10. We will show that, if the
parameters of the manipulator satisfy a simple relationship, then the equations
of the manipulator are decoupled, so that each quantity q1 and q2 can be con-
trolled independently of the other. The mechanism in Figure 6.10 is called a
five-bar linkage. Clearly there are only four bars in the figure, but in the
theory of mechanisms it is a convention to count the ground as an additional
linkage, which explains the terminology. In Figure 6.10, it is assumed that the
lengths of links and 3 are the same, and that the two lengths marked `2 are the
same; in this way the closed path in the figure is in fact a parallelogram, which
greatly simplifies the computations. Notice, however, that the quantities `c1,
and `c3 need not be equal. For example, even though links 1 and 3 have the
same length, they need not have the same mass distribution.

It is clear from the figure that, even though there are four links being moved,
there are in fact only two degrees-of-freedom, identified as q1 and q2. Thus, in
contrast to the earlier mechanisms studied in this book, this one is a closed
kinematic chain (though of a particularly simple kind). As a result, we cannot
use the earlier results on Jacobian matrices, and instead have to start from
scratch. As a first step we write down the coordinates of the centers of mass of
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the various links as a function of the generalized coordinates. This gives[
xc1
yc1

]
=

[
`c1 cos q1
`c1 sin q1

]
(6.95)[

xc2
yc2

]
=

[
`c2 cos q2
`c2 sin q2

]
(6.96)[

xc3
yc3

]
=

[
`c2 cos q1
`c2 sin q2

]
+
[
`c3 cos q1
`c3 sin q1

]
(6.97)[

xc4
yc4

]
=

[
`1 cos q1
`1 sin q1

]
+
[
`c4 cos(q2 − π)
`c4 sin(q2 − π)

]
=

[
`1 cos q1
`1 sin q1

]
−
[
`c4 cos q2
`c4 sin q2

]
(6.98)

Next, with the aid of these expressions, we can write down the velocities of
the various centers of mass as a function of q̇1 and q̇2. For convenience we drop
the third row of each of the following Jacobian matrices as it is always zero.
The result is

vc1 =
[
−`c1 sin q1 0
`c1 cos q1 0

]
q̇

vc2 =
[

0 −`c2 sin q2
0 `c2 cos q2

]
q̇

vc3 =
[
−`c3 sin q1 −`2 sin q2
`c3 cos q1 `2 cos q2

]
q̇ (6.99)

vc4 =
[
−`1 sin q1 `c4 sin q2
`1 cos q1 `c4 cos q2

]
q̇

Let us define the velocity Jacobians Jvci , i ∈ {1, . . . , 4} in the obvious fashion,
that is, as the four matrices appearing in the above equations. Next, it is clear
that the angular velocities of the four links are simply given by

ω1 = ω3 = q1k, ω2 = ω4 = q̇2k. (6.100)

Thus the inertia matrix is given by

D(q) =
4∑
i=1

miJ
T
vcJvc +

[
I1 + I3 0

0 I2 + I4

]
(6.101)

If we now substitute from (6.99) into the above equation and use the standard
trigonometric identities, when the dust settles we are left with

d11(q) = m1`
2
c1 +m3`

2
c3 +m4`

2
1 + I1 + I3

d12(q) = d21(q) = (m3`2`c3 −m4`1`c4) cos(q2 − q1) (6.102)
d22(q) = m2`

2
c2 +m3`

2
2 +m4`

2
c4 + I2 + I4
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Now we note from the above expressions that if

m3`2`c3 = m4`1`c4 (6.103)

then d12 and d21 are zero, i.e. the inertia matrix is diagonal and constant.
As a consequence the dynamical equations will contain neither Coriolis nor
centrifugal terms.

Turning now to the potential energy, we have that

P = g
4∑
i=1

yci

= g sin q1(m1`c1 +m3`c3 +m4`1) (6.104)
+ g sin q2(m2`c2 +m3`2 −m4`c4)

Hence

φ1 = g cos q1(m1`c1 +m3`c3 +m4`1)
φ2 = g cos q2(m2`c2 +m3`2 −m4`c4) (6.105)

Notice that φ1 depends only on q1 but not on q2 and similarly that φ2 depends
only on q2 but not on q1. Hence, if the relationship (6.103) is satisfied, then the
rather complex-looking manipulator in Figure 6.10 is described by the decoupled
set of equations

d11q̈1 + φ1(q1) = τ1, d22q̈2 + φ2(q2) = τ2 (6.106)

This discussion helps to explain the popularity of the parallelogram configu-
ration in industrial robots. If the relationship (6.103) is satisfied, then one can
adjust the two angles q1 and q2 independently, without worrying about inter-
actions between the two angles. Compare this with the situation in the case of
the planar elbow manipulators discussed earlier in this section.

6.5 PROPERTIES OF ROBOT DYNAMIC EQUATIONS

The equations of motion for an n-link robot can be quite formidable especially
if the robot contains one or more revolute joints. Fortunately, these equations
contain some important structural properties which can be exploited to good
advantage in particular for developing control algorithms. We will see this
in subsequent chapters. Here we will discuss some of these properties, the
most important of which are the so-called skew symmetry property and the
related passivity property, and the linearity in the parameters property.
For revolute joint robots, the inertia matrix also satisfies global bounds that
are useful for control design.



212 DYNAMICS

6.5.1 The Skew Symmetry and Passivity Properties

The Skew Symmetry property refers to an important relationship between
the inertia matrix D(q) and the matrix C(q, q̇) appearing in (6.61) that will be
of fundamental importance for the problem of manipulator control considered
in later chapters.

Proposition: 6.1 The Skew Symmetry Property
Let D(q) be the inertia matrix for an n-link robot and define C(q, q̇) in terms of
the elements of D(q) according to Equation (6.62). Then the matrix N(q, q̇) =
Ḋ(q) − 2C(q, q̇) is skew symmetric, that is, the components njk of N satisfy
njk = −nkj.

Proof: Given the inertia matrix D(q), the kj-th component of Ḋ(q) is given
by the chain rule as

ḋkj =
n∑
i=1

∂dkj
∂qi

q̇i (6.107)

Therefore, the kj-th component of N = Ḋ − 2C is given by

nkj = ḋkj − 2ckj (6.108)

=
n∑
i=1

[
∂dkj
∂qi

−
{
∂dkj
∂qi

+
∂dki
∂j
− ∂dij
∂qk

}]
q̇i

=
n∑
i=1

[
∂dij
∂qk

− ∂dki
∂qj

]
q̇i

Since the inertia matrix D(q) is symmetric, that is, dij = dji, it follows from
(6.108) by interchanging the indices k and j that

njk = −nkj (6.109)

which completes the proof.
It is important to note that, in order for N = Ḋ−2C to be skew-symmetric,

one must define C according to Equation (6.62). This will be important in later
chapters when we discuss robust and adaptive control algorithms.

Related to the skew symmetry property is the so-called Passivity Property
which, in the present context, means that there exists a constant, β ≥ 0, such
that

The Passivity Property∫ T

0

q̇T (ζ)τ(ζ)dζ ≥ −β, ∀ T > 0 (6.110)

The term q̇T τ has units of power and therefore the expression
∫ T
0
q̇T (ζ)τ(ζ)dζ

is the energy produced by the system over the time interval [0, T ]. Passivity
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therefore means that the amount of energy dissipated by the system has a
lower bound given by −β. The word passivity comes from circuit theory where
a passive system according to the above definition is one that can be built
from passive components (resistors, capacitors, inductors). Likewise a passive
mechanical system can be built from masses, springs, and dampers.

To prove the passivity property, let H be the total energy of the system, i.e.,
the sum of the kinetic and potential energies,

H =
1
2
q̇TD(q)q̇ + P (q) (6.111)

Then, the derivative Ḣ satisfies

Ḣ = q̇TD(q)q̈ +
1
2
q̇T Ḋ(q)q̇ + q̇T

∂P

∂q
(6.112)

= q̇T {τ − C(q, q̇)− g(q)}+
1
2
q̇T Ḋ(q)q̇ + q̇T

∂P

∂q

where we have substituted for D(q)q̈ using the equations of motion. Collecting
terms and using the fact that g(q) = ∂P

∂q
yields

Ḣ = q̇T τ +
1
2
q̇T {Ḋ(q)− 2C(q, q̇)}q̇ (6.113)

= q̇T τ

the latter equality following from the skew-symmetry property. Integrating
both sides of (6.113) with respect to time gives,∫ T

0

q̇T (ζ)τ(ζ)dζ = H(T )−H(0) ≥ −H(0) (6.114)

since the total energy H(T ) is non–negative, and the passivity property there-
fore follows with β = H(0).

6.5.2 Bounds on the Inertia Matrix

We have remarked previously that the inertia matrix for an n-link rigid robot is
symmetric and positive definite. For a fixed value of the generalized coordinate
q, let 0 < λ1(q) ≤ . . . ,≤ λn(q) denote the n eigenvalues of D(q). These
eigenvalues are positive as a consequence of the positive definiteness of D(q).
As a result, it can easily be shown that

Bounds on the Inertia Matrix

λ1(q)In×n ≤ D(q) ≤ λn(q)In×n (6.115)

where In×n denotes the n × n identity matrix. The above inequalities are
interpreted in the standard sense of matrix inequalities, namely, if A and B are
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n × n matrices, then B < A means that the matrix A − B is positive definite
and B ≤ A means that A−B is positive semi-definite.

If all of the joints are revolute then the inertia matrix contains only bounded
functions of the joint variables, i.e., terms containing sine and cosine functions.
As a result one can find constants λm and λM that provide uniform (indepen-
dent of q) bounds in the inertia matrix

λmIn×n ≤ D(q) ≤ λMIn×n <∞ (6.116)

6.5.3 Linearity in the Parameters

The robot equations of motion are defined in terms of certain parameters, such
as link masses, moments of inertia, etc., that must be determined for each
particular robot in order, for example, to simulate the equations or to tune
controllers. The complexity of the dynamic equations makes the determination
of these parameters a difficult task. Fortunately, the equations of motion are
linear in these inertia parameters in the following sense. There exists an n× `
function, Y (q, q̇, q̈), which we assume is completely known, and an `-dimensional
vector Θ such that the Euler-Lagrange equations can be written

The Linearity in the Parameters Property

D(q) + C(q, q̇)q̇ + g(q) =: Y (q, q̇, q̈)Θ = τ (6.117)

The function, Y (q, q̇, q̈), is called the Regressor and Θ is the Parameter
vector. The dimension of the parameter space, R`, i.e., the number of param-
eters needed to write the dynamics in this way, is not unique. In general, a
given rigid body is described by ten parameters, namely, the total mass, the
six independent entries of the inertia tensor, and the three coordinates of the
center of mass. An n-link robot then has a maximum of 10n dynamics pa-
rameters. However, since the link motions are constrained and coupled by the
joint interconnections, there are actually fewer than 10n independent parame-
ters. Finding a minimal set of parameters that can parametrize the dynamic
equations is, however, difficult in general.

Example: 6.3 Two Link Planar Robot
Consider the two link, revolute joint, planar robot from section 6.4 above. If

we group the inertia terms appearing in Equation 6.81 as

Θ1 = m1`
2
c1 +m2(`21 + `2c2) + I1 + I2 (6.118)

Θ2 = m2`1`c2 (6.119)
Θ3 = m2`1`c2 (6.120)

then we can write the inertia matrix elements as

d11 = Θ1 + 2Θ2 cos(q2) (6.121)
d12 = d21 = Θ3 + Θ2 cos(q2) (6.122)
d22 = Θ3 (6.123)
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No additional parameters are required in the Christoffel symbols as these are
functions of the elements of the inertia matrix. The gravitational torques require
additional parameters, in general. Setting

Θ4 = m1`c1 +m2`1 (6.124)
Θ5 = m2`2 (6.125)

we can write the gravitational terms, φ1 and φ2 as

φ1 = Θ4g cos(q1) + Θ5g cos(q1 + q2) (6.126)
φ2 = Θ5 cos(q1 + q2) (6.127)

Substituting these into the equations of motion it is straightforward to write
the dynamics in the form (6.117) where

Y (q, q̇, q̈) = (6.128)[
q̈1 cos(q2)(2q̈1 + q̈2) + sin(q2)(q̇21 − 2q̇1q̇2) q̈2 g cos(q1) g cos(q1 + q2)
0 cos(q2)q̈1 + sin(q2)q̇21 q̈2 0 g cos(q1 + q2)

]
and the parameter vector Θ is given by

Θ =


Θ1

Θ2

Θ3

Θ4

Θ5

 =


m1`

2
c1 +m2(`21 + `2c2) + I1 + I2

m2`1`c2
m2`1`c2

m1`c1 +m2`1
m2`2

 (6.129)

Thus, we have parameterized the dynamics using a five dimensional parameter
space. Note that in the absence of gravity, as in a SCARA configuration, only
three parameters are needed.

6.6 NEWTON-EULER FORMULATION

In this section, we present a method for analyzing the dynamics of robot ma-
nipulators known as the Newton-Euler formulation. This method leads
to exactly the same final answers as the Lagrangian formulation presented in
earlier sections, but the route taken is quite different. In particular, in the
Lagrangian formulation we treat the manipulator as a whole and perform the
analysis using a Lagrangian function (the difference between the kinetic energy
and the potential energy). In contrast, in the Newton-Euler formulation we
treat each link of the robot in turn, and write down the equations describing
its linear motion and its angular motion. Of course, since each link is coupled
to other links, these equations that describe each link contain coupling forces
and torques that appear also in the equations that describe neighboring links.
By doing a so-called forward-backward recursion, we are able to determine all
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of these coupling terms and eventually to arrive at a description of the ma-
nipulator as a whole. Thus we see that the philosophy of the Newton-Euler
formulation is quite different from that of the Lagrangian formulation.

At this stage the reader can justly ask whether there is a need for another
formulation, and the answer is not clear. Historically, both formulations were
evolved in parallel, and each was perceived as having certain advantages. For
instance, it was believed at one time that the Newton-Euler formulation is better
suited to recursive computation than the Lagrangian formulation. However, the
current situation is that both of the formulations are equivalent in almost all
respects. Thus at present the main reason for having another method of analysis
at our disposal is that it might provide different insights.

In any mechanical system one can identify a set of generalized coordinates
(which we introduced in Section 6.1 and labeled q) and corresponding gen-
eralized forces (also introduced in Section 6.1 and labeled τ). Analyzing the
dynamics of a system means finding the relationship between q and τ . At this
stage we must distinguish between two aspects: First, we might be interested
in obtaining closed-form equations that describe the time evolution of the
generalized coordinates, such as (6.87) for example. Second, we might be inter-
ested in knowing what generalized forces need to be applied in order to realize
a particular time evolution of the generalized coordinates. The distinction is
that in the latter case we only want to know what time dependent function τ(·)
produces a particular trajectory q(·) and may not care to know the general func-
tional relationship between the two. It is perhaps fair to say that in the former
type of analysis, the Lagrangian formulation is superior while in the latter case
the Newton-Euler formulation is superior. Looking ahead to topics beyond the
scope of the book, if one wishes to study more advanced mechanical phenomena
such as elastic deformations of the links (i.e., if one no longer assumes rigidity
of the links), then the Lagrangian formulation is clearly superior.

In this section we present the general equations that describe the Newton-
Euler formulation. In the next section we illustrate the method by applying
it to the planar elbow manipulator studied in Section 6.4 and show that the
resulting equations are the same as (6.86).

The facts of Newtonian mechanics that are pertinent to the present discussion
can be stated as follows:

1. Every action has an equal and opposite reaction. Thus, if body 1 applies a
force f and torque τ to body 2, then body 2 applies a force of −f and
torque of −τ to body 1.

2. The rate of change of the linear momentum equals the total force applied to
the body.

3. The rate of change of the angular momentum equals the total torque applied
to the body.
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Applying the second fact to the linear motion of a body yields the relationship

d(mv)
dt

= f (6.130)

where m is the mass of the body, v is the velocity of the center of mass with
respect to an inertial frame, and f is the sum of external forces applied to the
body. Since in robotic applications the mass is constant as a function of time,
(6.130) can be simplified to the familiar relationship

ma = f (6.131)

where a = v̇ is the acceleration of the center of mass.
Applying the third fact to the angular motion of a body gives

d(I0ω0)
dt

= τ0 (6.132)

where I0 is the moment of inertia of the body about an inertial frame whose
origin is at the center of mass, ω0 is the angular velocity of the body, and τ0
is the sum of torques applied to the body. Now there is an essential difference
between linear motion and angular motion. Whereas the mass of a body is
constant in most applications, its moment of inertia with respect an inertial
frame may or may not be constant. To see this, suppose we attach a frame
rigidly to the body, and let I denote the inertia matrix of the body with respect
to this frame. Then I remains the same irrespective of whatever motion the
body executes. However, the matrix I0 is given by

I0 = RIRT (6.133)

where R is the rotation matrix that transforms coordinates from the body
attached frame to the inertial frame. Thus there is no reason to expect that I0
is constant as a function of time.

One possible way of overcoming this difficulty is to write the angular motion
equation in terms of a frame rigidly attached to the body. This leads to

Iω̇ + ω × (Iω) = τ (6.134)

where I is the (constant) inertia matrix of the body with respect to the body
attached frame, ω is the angular velocity, but expressed in the body attached
frame, and τ is the total torque on the body, again expressed in the body at-
tached frame. Let us now give a derivation of (6.134) to demonstrate clearly
where the term ω × (Iω) comes from; note that this term is called the gyro-
scopic term.

Let R denote the orientation of the frame rigidly attached to the body w.r.t.
the inertial frame; note that it could be a function of time. Then (6.133) gives
the relation between I and I0. Now by the definition of the angular velocity,
we know that

ṘRT = S(ω0) (6.135)
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In other words, the angular velocity of the body, expressed in an inertial frame,
is given by (6.135). Of course, the same vector, expressed in the body attached
frame, is given by

ω0 = Rω, ω = RTω0 (6.136)

Hence the angular momentum, expressed in the inertial frame, is

h = RIRTRω = RIω (6.137)

Differentiating and noting that I is constant gives an expression for the rate of
change of the angular momentum, expressed as a vector in the inertial frame:

ḣ = ṘIω +RIω̇ (6.138)

Now

S(ω0) = ṘRT , Ṙ = S(ω)R (6.139)

Hence, with respect to the inertial frame,

ḣ = S(ω0)RIω +RIω̇ (6.140)

With respect to the frame rigidly attached to the body, the rate of change of
the angular momentum is

RT ḣ = RTS(ω0)RIω + Iω̇

= S(RTω0)Iω + Iω̇

= S(ω)Iω + Iω̇ = ω × (Iω) + Iω̇ (6.141)

This establishes (6.134). Of course we can, if we wish, write the same equation
in terms of vectors expressed in an inertial frame. But we will see shortly that
there is an advantage to writing the force and moment equations with respect
to a frame attached to link i, namely that a great many vectors in fact reduce
to constant vectors, thus leading to significant simplifications in the equations.

Now we derive the Newton-Euler formulation of the equations of motion of
an n-link manipulator. For this purpose, we first choose frames 0, . . . , n, where
frame 0 is an inertial frame, and frame i is rigidly attached to link i for i ≥ 1.
We also introduce several vectors, which are all expressed in frame i. The first
set of vectors pertain to the velocities and accelerations of various parts of the
manipulator.

ac,i = the acceleration of the center of mass of link i
ae,i = the acceleration of the end of link i (i.e., joint i+ 1)
ωi = the angular velocity of frame i w.r.t. frame 0
αi = the angular acceleration of frame i w.r.t. frame 0
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The next several vectors pertain to forces and torques.

gi = the acceleration due to gravity (expressed in frame i )
fi = the force exerted by link i− 1 on link i
τi = the torque exerted by link i− 1 on link i

Ri+1
i = the rotation matrix from frame i+ 1 to frame i

The final set of vectors pertain to physical features of the manipulator. Note
that each of the following vectors is constant as a function of q. In other
words, each of the vectors listed here is independent of the configuration of the
manipulator.

mi = the mass of link i
Ii = the inertia matrix of link i about a frame parallel

to frame i whose origin is at the center of mass of link i
ri,ci = the vector from joint i to the center of mass of link i

ri+1,ci = the vector from joint i+ 1 to the center of mass of link i
ri,i+1 = the vector from joint i to joint i+ 1

Now consider the free body diagram shown in Figure 6.11; this shows link i

Fig. 6.11 Forces and moments on link i

together with all forces and torques acting on it. Let us analyze each of the
forces and torques shown in the figure. First, fi is the force applied by link
i − 1 to link i. Next, by the law of action and reaction, link i + 1 applies a
force of −fi+1 to link i, but this vector is expressed in frame i+ 1 according to
our convention. In order to express the same vector in frame i, it is necessary
to multiply it by the rotation matrix Ri+1

i . Similar explanations apply to the
torques τi and −Ri+1

i τi+1. The force migi is the gravitational force. Since all
vectors in Figure 6.11 are expressed in frame i, the gravity vector gi is in general
a function of i.
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Writing down the force balance equation for link i gives

fi −Ri+1
i fi+1 +migi = miac,i (6.142)

Next we write down the moment balance equation for link i. For this purpose, it
is important to note two things: First, the moment exerted by a force f about
a point is given by f × r, where r is the radial vector from the point where
the force is applied to the point about which we are computing the moment.
Second, in the moment equation below, the vector migi does not appear, since
it is applied directly at the center of mass. Thus we have

τi −Ri+1
i τi+1 + fi × ri,ci − (Ri+1

i fi+1)× ri+1,ci (6.143)
= αi + ωi × (Iiωi)

Now we present the heart of the Newton-Euler formulation, which consists
of finding the vectors f1, . . . , fn and τ1, . . . , τn corresponding to a given set of
vectors q, q̇, q̈. In other words, we find the forces and torques in the manip-
ulator that correspond to a given set of generalized coordinates and first two
derivatives. This information can be used to perform either type of analysis,
as described above. That is, we can either use the equations below to find
the f and τ corresponding to a particular trajectory q(·), or else to obtain
closed-form dynamical equations. The general idea is as follows: Given q, q̇, q̈,
suppose we are somehow able to determine all of the velocities and accelerations
of various parts of the manipulator, that is, all of the quantities ac,i, ωi and
αi. Then we can solve (6.142) and (6.143) recursively to find all the forces and
torques, as follows: First, set fn+l = 0 and τn+1 = 0. This expresses the fact
that there is no link n+ 1. Then we can solve (6.142) to obtain

fi = Ri+1
i fi+1 +miac,i −migi (6.144)

By successively substituting i = n, n− 1, . . . , 1 we find all forces. Similarly, we
can solve (6.143) to obtain

τi = (6.145)
Ri+1
i τi+1 − fi × ri,ci + (Ri+1

i fi+1)× ri+1,ci + αi + ωi × (Iiωi)

By successively substituting i = nm n− 1, . . . , 1 we find all torques. Note that
the above iteration is running in the direction of decreasing i.

Thus the solution is complete once we find an easily computed relation be-
tween q, q̇, q̈ and ac,i, ωi and αi. This can be obtained by a recursive procedure
in the direction of increasing i. This procedure is given below, for the case
of revolute j oint s; the corresponding relation ships for prismatic joints are
actually easier to derive.

In order to distinguish between quantities expressed with respect to frame
i and the base frame, we use a superscript (0) to denote the latter. Thus, for
example, ωi denotes the angular velocity of frame i expressed in frame i, while
ω

(0)
i denotes the same quantity expressed in an inertial frame.
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Now from Section ?? we have that

ω
(0)
i = ω

(0)
i−1 + zi−1q̇i (6.146)

This merely expresses the fact that the angular velocity of frame i equals that
of frame i−1 plus the added rotation from joint i. To get a relation between ωi
and ωi−1, we need only express the above equation in frame i rather than the
base frame, taking care to account for the fact that ωi and ωi−1 are expressed
in different frames. This leads to

ωi = (Rii−1)
Tωi−1 + biq̇i (6.147)

where

bi = (Ri0)
T zi−1 (6.148)

is the axis of rotation of joint i expressed in frame i.
Next let us work on the angular acceleration αi. It is vitally important to

note here that

αi = (Ri0)
T ω̇

(0)
i (6.149)

In other words, αi is the derivative of the angular velocity of frame i, but
expressed in frame i. It is not true that αi = ω̇i! We will encounter a similar
situation with the velocity and acceleration of the center of mass. Now we see
directly from (6.146) that

ω̇
(0)
i = ω̇

(0)
i−1 + zi−1q̈i + ω

(0)
i × zi−1q̇i (6.150)

Expressing the same equation in frame i gives

αi = (Rii−1)
Tαi−1 + biq̈i + ωi × biq̇i (6.151)

Now we come to the linear velocity and acceleration terms. Note that, in
contrast to the angular velocity, the linear velocity does not appear anywhere in
the dynamic equations; however, an expression for the linear velocity is needed
before we can derive an expression for the linear acceleration. From Section ??,
we get that the velocity of the center of mass of link i is given by

v
(0)
c,i = v

(0)
e,i−1 + ω

(0)
i × r

(0)
i,ci (6.152)

To obtain an expression for the acceleration, we use (??), and note that the
vector r(0)i,ci is constant in frame i. Thus

a
(0)
c,i = a

(0)
e,i−1 × r

(0)
i,ci + ω

(0)
i × (ω(0)

i × r
(0)
i,ci) (6.153)

Now

ac,i = (Ri0)
Ta

(0)
c,i (6.154)
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Let us carry out the multiplication and use the familiar property

R(a× b) = (Ra)× (Rb) (6.155)

We also have to account for the fact that ae,i−1 is expressed in frame i− 1 and
transform it to frame i. This gives

ac,i = (Rii−1)
Tae,i−1 + ω̇i × ri,ci + ωi × (ωi × ri,ci) (6.156)

Now to find the acceleration of the end of link i, we can use (6.156) with ri,i+1

replacing ri,ci. Thus

ae,i = (Rii−1)
Tae,i−1 + ω̇i × ri,i+1 + ωi × (ωi × ri,i+1) (6.157)

Now the recursive formulation is complete. We can now state the Newton-Euler
formulation as follows.

1. Start with the initial conditions

ω0 = 0, α0 = 0, ac,0 = 0, ae,0 = 0 (6.158)

and solve (6.147), (6.151), (6.157) and (6.156) (in that order!) to compute
ωi, αi and ac,i for i increasing from 1 to n.

2. Start with the terminal conditions

fn+1 = 0, τn+1 = 0 (6.159)

and use (6.144) and (6.145) to compute fi and τi for i decreasing from n
to 1.

6.7 PLANAR ELBOW MANIPULATOR REVISITED

In this section we apply the recursive Newton-Euler formulation derived in Sec-
tion 6.6 to analyze the dynamics of the planar elbow manipulator of figure 6.8,
and show that the Newton-Euler method leads to the same equations as the
Lagrangian method, namely (6.86).

We begin with the forward recursion to express the various velocities and
accelerations in terms of q1, q2 and their derivatives. Note that, in this simple
case, it is quite easy to see that

ω1 = q̇1k, α1 = q̈1k, ω2 = (q1 + q2)k, α2 = (q̈1 + q̈2)k (6.160)

so that there is no need to use (6.147) and (6.151). Also, the vectors that are
independent of the configuration are as follows:

r1,c1 = `c1i, r2,c1 = (`1 − `c1)i, r1,2 = `1i (6.161)
r2,c2 = `c2i, r3,c2 = (`2 − `c2)i, r2,3 = `2i (6.162)
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Forward Recursion link 1

Using (6.156) with i = 1 and noting that ae,0 = 0 gives

ac,1 = q̈1k × `c1i+ q̇1k × (q̇1k × `c1i)

= `c1q̈1j − `c1q̇21i =

 −`c1q̇21`cq̈1
0

 (6.163)

Notice how simple this computation is when we do it with respect to frame 1.
Compare with the same computation in frame 0! Finally, we have

g1 = −(R1
0)
T gj = g

 sin q1
− cos q1

0

 (6.164)

where g is the acceleration due to gravity. At this stage we can economize a
bit by not displaying the third components of these accelerations, since they
are obviously always zero. Similarly, the third component of all forces will be
zero while the first two components of all torques will be zero. To complete the
computations for link 1, we compute the acceleration of end of link 1. Clearly,
this is obtained from (6.163) by replacing `c1 by `1. Thus

ae,1 =
[
−`1q̇21
`1q̈1

]
(6.165)

Forward Recursion: Link 2

Once again we use (6.156) and substitute for (o2 from (6.160); this yields

αc,2 = (R2
1)
Tae,1 + [(q̈1 + q̈2)k]× `c2i+ (q̇1 + q̇2)k × [(q̇1 + q̇2)k × `c2i](6.166)

The only quantity in the above equation which is configuration dependent is
the first one. This can be computed as

(R2
1)
Tae,1 =

[
cos q2 sin q2
− sin q2 cos q2

] [
−`1q̇21
`1q̈1

]
=

[
−`1q̇21 cos q2 + `1q̈1 sin q̇2
`1q̇

2
1 sin q2 + `1q̈1 cos q2

]
(6.167)

Substituting into (6.166) gives

ac,2 =
[
−`1q̇21 cos q2 + `1q̈1 sin q2 − `c2(q̇1 + q̇2)2

`1q̇
2
1 sin q2 + `1q̈1 cos q2 − `c2(q̈1 + q̈2)

]
(6.168)

The gravitational vector is

g2 = g

[
sin(q1 + q2)
− cos(q1 + q2)

]
(6.169)

Since there are only two links, there is no need to compute ae,2. Hence the
forward recursions are complete at this point.
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Backward Recursion: Link 2

Now we carry out the backward recursion to compute the forces and joint
torques. Note that, in this instance, the joint torques are the externally applied
quantities, and our ultimate objective is to derive dynamical equations involving
the joint torques. First we apply (6.144) with i = 2 and note that f3 = 0. This
results in

f2 = m2ac,2 −m2g2 (6.170)
τ2 = I2α2 + ω2 × (I2ω2)− f2 × `c2i (6.171)

Now we can substitute for ω2, α2 from (6.160), and for ac,2 from (6.168). We
also note that the gyroscopic term equals zero, since both ω2 and I2ω2 are
aligned with k. Now the cross product f2 × `c2i is clearly aligned with k and
its magnitude is just the second component of f2. The final result is

τ2 = I2(q̈1 + q̈2)k + [m2`1`c2 sin q2q̇21 +m2`1`c2 cos q2q̈1
+m2`

2
c2(q̈1 + q̈2) +m)2`c2g cos(q1 + q2)]k (6.172)

Since τ2 = τ2k, we see that the above equation is the same as the second
equation in (6.87).

Backward Recursion: Link 1

To complete the derivation, we apply (6.144) and (6.145) with i = 1. First, the
force equation is

f1 = m1ac,1 +R2
1f2 −m1g1 (6.173)

and the torque equation is

τ1 = R2
1τ2 − f1 × `c,1i− (R2

1f2)× (`1 − `c1)i (6.174)
+I1α1 + ω1 × (I1ω1)

Now we can simplify things a bit. First, R2
1τ2 = τ2, since the rotation matrix

does not affect the third components of vectors. Second, the gyroscopic term
is the again equal to zero. Finally, when we substitute for f1 from (6.173) into
(6.174), a little algebra gives

τ1 = τ2 −m1ac,1 × `c1i+m1g1 × `c1i− (R2
1f2) (6.175)

×`1i+ I1i+ I1α1

Once again, all these products are quite straightforward, and the only difficult
calculation is that of R2

1f2. The final result is:

τ1 = τ2 +m1`
2
c1 +m1`c1g cos q1 +m2`1g cos q1 + I1q̈1 (6.176)

+m2`
2
1q̈1 −m1`1`c2(q̇1 + q̇2)2 sin q2 +m2`1`c2(q̈1 + q̈2) cos q2

If we now substitute for τ1 from (6.172) and collect terms, we will get the first
equation in (6.87); the details are routine and are left to the reader.
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Problems

6-1 Consider a rigid body undergoing a pure rotation with no external forces
acting on it. The kinetic energy is then given as

K =
1
2
(Ixxω2

x + Iyyω
2
y + Izzω

2
z)

with respect to a coordinate located at the center of mass and whose
coordinate axes are principal axes. Take as generalized coordinates the
Euler angles φ, θ, ψ and show that the Euler-Lagrange equations of motion
of the rotating body are

Ixxω̇x + (Izz − Iyy)ωyωz = 0
Iyyω̇y + (Ixx − Izz)ωzωx = 0
Izzω̇z + (Iyy − Ixx)ωxωy = 0.

6-2 Verify the expression (??).

6-3 Find the moments of inertia and cross products of inertia of a uniform
rectangular solid of sides a, b, c with respect to a coordinate system with
origin at the one corner and axes along the edges of the solid.

6-4 Given the cylindrical shell shown, show that

Ixx =
1
2
mr2 +

1
12
m`2

Ix1x1 =
1
2
mr2 +

1
3
m`2

Iz = mr2.

6-5 Given the inertia matrix D(q) defined by (6.81) show that detD(q) 6= 0
for all q.

6-6 Consider a 3-link cartesian manipulator,

a) Compute the inertia tensor Ji for each link i = 1, 2, 3 assuming that
the links are uniform rectangular solids of length 1, width 1

4 , and
height 1

4 , and mass 1.

b) Compute the 3× 3 inertia matrix D(q) for this manipulator.

c) Show that the Christoffel symbols cijk are all zero for this robot. In-
terpret the meaning of this for the dynamic equations of motion.

d) Derive the equations of motion in matrix form:

D(q)q̈ + C(q, q̇)q̇ + g(q) = u.
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6-7 Derive the Euler-Lagrange equations for the planar RP robot in Figure ??.

6-8 Derive the Euler-Lagrange equations for the planar PR robot in Figure ??.

6-9 Derive the Euler-Lagrange equations of motion for the three-link RRR
robot of Figure ??. Explore the use of symbolic software, such as Maple or
Mathematica, for this problem. See, for example, the Robotica package [?].

6-10 For each of the robots above, define a parameter vector, Θ, compute the
Regressor, Y (q, q̇, q̈) and express the equations of motion as

Y (q, q̇, q̈)Θ = τ (6.177)

6-11 Recall for a particle with kinetic energy K = 1
2mẋ

2, the momentum is
defined as

p = mẋ =
dK

dẋ
.

Therefore for a mechanical system with generalized coordinates q1, . . . , qn,
we define the generalized momentum pk as

pk =
∂L

∂q̇k

where L is the Lagrangian of the system. With K = 1
2 q̇
TD(q)q̇, and

L = K − V , prove that

n∑
k=1

q̇kpk = 2K.

6-12 There is another formulation of the equations of motion of a mechanical
system that is useful, the so-called Hamiltonian formulation: Define the
Hamiltonian function H by

H =
n∑
k−1

q̇kpk − L.

a) Show that H = K + V .

b) Using Lagrange’s equations, derive Hamilton’s equations

q̇k =
∂H

∂pk

ṗk = −∂H
∂qk

+ τk

where τk is the input generalized force.
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c) For two-link manipulator of Figure 6.7 compute Hamiltonian equations
in matrix form. Note that Hamilton’s equations are a system of first
order differential equations as opposed to second order system given
by Lagrange’s equations.

6-13 Given the Hamiltonian H for a rigid robot, show that

dH

dt
= q̇T τ

where τ is the external force applied at the joints. What are the units of
dH
dt ?





7
INDEPENDENT JOINT

CONTROL

7.1 INTRODUCTION

The control problem for robot manipulators is the problem of determining
the time history of joint inputs required to cause the end-effector to execute
a commanded motion. The joint inputs may be joint forces and torques, or
they may be inputs to the actuators, for example, voltage inputs to the motors,
depending on the model used for controller design. The commanded motion is
typically specified either as a sequence of end-effector positions and orientations,
or as a continuous path.

There are many control techniques and methodologies that can be applied
to the control of manipulators. The particular control method chosen as well
as the manner in which it is implemented can have a significant impact on the
performance of the manipulator and consequently on the range of its possible
applications. For example, continuous path tracking requires a different control
architecture than does point-to-point control.

In addition, the mechanical design of the manipulator itself will influence
the type of control scheme needed. For example, the control problems en-
countered with a cartesian manipulator are fundamentally different from those
encountered with an elbow type manipulator. This creates a so-called hard-
ware/software trade-off between the mechanical structure of the system and
the architecture/programming of the controller.

Technological improvements are continually being made in the mechanical
design of robots, which in turn improves their performance potential and broad-
ens their range of applications. Realizing this increased performance, however,

229
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requires more sophisticated approaches to control. One can draw an analogy to
the aerospace industry. Early aircraft were relatively easy to fly but possessed
limited performance capabilities. As performance increased with technological
advances so did the problems of control to the extent that the latest vehicles,
such as the space shuttle or forward swept wing fighter aircraft, cannot be flown
without sophisticated computer control.

As an illustration of the effect of the mechanical design on the control prob-
lem, compare a robot actuated by permanent magnet DC motors with gear
reduction to a direct-drive robot using high-torque motors with no gear reduc-
tion. In the first case, the motor dynamics are linear and well understood and
the effect of the gear reduction is largely to decouple the system by reducing the
inertia coupling among the joints. However, the presence of the gears introduces
friction, drive train compliance and backlash.

In the case of a direct-drive robot, the problems of backlash, friction, and
compliance due to the gears are eliminated. However, the coupling among the
links is now significant, and the dynamics of the motors themselves may be much
more complex. The result is that in order to achieve high performance from
this type of manipulator, a different set of control problems must be addressed.

In this chapter we consider the simplest type of control strategy, namely,
independent joint control. In this type of control each axis of the manipulator is
controlled as a single-input/single-output (SISO) system. Any coupling effects
due to the motion of the other links is treated as a disturbance. We assume, in
this chapter, that the reader has had an introduction to the theory of feedback
control systems up to the level of say, Kuo [?].

The basic structure of a single-input/single-output feedback control system
is shown in Figure 7.1. The design objective is to choose the compensator in

Disturbance

+��
Reference
trajectory +//⊕ // Compensator // Power

amplifier
+//⊕ // Plant

Output//

ooSensor

−OO

Fig. 7.1 Basic structure of a feedback control system.

such a way that the plant output “tracks” or follows a desired output, given
by the reference signal. The control signal, however, is not the only input
acting on the system. Disturbances, which are really inputs that we do not
control, also influence the behavior of the output. Therefore, the controller
must be designed, in addition, so that the effects of the disturbances on the
plant output are reduced. If this is accomplished, the plant is said to ”reject”
the disturbances. The twin objectives of tracking and disturbance rejection are
central to any control methodology.
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7.2 ACTUATOR DYNAMICS

In Chapter 6 we obtained the following set of differential equations describing
the motion of an n degree of freedom robot (cf. Equation (6.61))

D(q)q̈ + C(q, q̇)q̇ + g(q) = τ (7.1)

It is important to understand exactly what this equation represents. Equa-
tion (7.1) represents the dynamics of an interconnected chain of ideal rigid
bodies, supposing that there is a generalized force τ acting at the joints. We
can assume that the k-th component τk of the generalized force vector τ is a
torque about the joint axis zk−1 if joint k is revolute and is a force along the
joint axis zk−1 if joint k is prismatic. This generalized force is produced by
an actuator, which may be electric, hydraulic or pneumatic. Although Equa-
tion (7.1) is extremely complicated for all but the simplest manipulators, it
nevertheless is an idealization, and there are a number of dynamic effects that
are not included in Equation (7.1). For example, friction at the joints is not
accounted for in these equations and may be significant for some manipulators.
Also, no physical body is completely rigid. A more detailed analysis of robot
dynamics would include various sources of flexibility, such as elastic deformation
of bearings and gears, deflection of the links under load, and vibrations. In this
section we are interested mainly in the dynamics of the actuators producing
the generalized force τ . We treat only the dynamics of permanent magnet DC-
motors, as these are the simplest actuators to analyze. Other types of motors,
in particular AC-motors and so-called Brushless DC-motors are increasingly
common in robot applications (See [?] for details on the dynamics of AC drives.

A DC-motor works on the principle that a current carrying conductor in a
magnetic field experiences a force F = i× φ, where φ is the magnetic flux and
i is the current in the conductor. The motor itself consists of a fixed stator
and a movable rotor that rotates inside the stator, as shown in Figure 7.2. If
the stator produces a radial magnetic flux φ and the current in the rotor (also
called the armature) is i then there will be a torque on the rotor causing it to
rotate. The magnitude of this torque is

τm = K1φia (7.2)

where τm is the motor torque (N −m), φ is the magnetic flux (webers), ia is
the armature current (amperes), and K1 is a physical constant. In addition,
whenever a conductor moves in a magnetic field, a voltage Vb is generated across
its terminals that is proportional to the velocity of the conductor in the field.
This voltage, called the back emf, will tend to oppose the current flow in the
conductor.

Thus, in addition to the torque τm in (7.2), we have the back emf relation

Vb = K2φωm (7.3)

where Vb denotes the back emf (Volts), ωm is the angular velocity of the rotor
(rad/sec), and K2 is a proportionality constant.
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Fig. 7.2 Cross-sectional view of a surface-wound permanent magnet DC motor.

DC-motors can be classified according to the way in which the magnetic field
is produced and the armature is designed. Here we discuss only the so-called
permanent magnet motors whose stator consists of a permanent magnet. In
this case we can take the flux, φ, to be a constant. The torque on the rotor is
then controlled by controlling the armature current, ia.

Consider the schematic diagram of Figure 7.3 where

+
−

L

Vb

+

−

R

V (t)

φia

τm, θm, τ`

Fig. 7.3 Circuit diagram for armature controlled DC motor.
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V = armature voltage
L = armature inductance
R = armature resistance
Vb = back emf
ia = armature current
θm = rotor position (radians)
τm = generated torque
τ` = load torque
φ = magnetic flux due to stator

The differential equation for the armature current is then

L
dia
dt

+Ria = V − Vb. (7.4)

Since the flux φ is constant the torque developed by the motor is

τm = K1φia = Kmia (7.5)

where Km is the torque constant in N −m/amp. From (7.3) we have

Vb = K2φωm = Kbωm = Kb
dθm
dt

(7.6)

where Kb is the back emf constant.
We can determine the torque constant of the DC motor using a set of torque-

speed curves as shown in Figure 7.4 for various values of the applied voltage

Fig. 7.4 Typical torque-speed curves of a DC motor.

V . When the motor is stalled, the blocked-rotor torque at the rated voltage is
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denoted τ0. Using Equation (7.4) with Vb = 0 and dia/dt = 0 we have

Vr = Ria =
Rτ0
Km

(7.7)

Therefore the torque constant is

Km =
Rτ0
Vr

(7.8)

The remainder of the discussion refers to Figure 7.5 consisting of the DC-motor

Fig. 7.5 Lumped model of a single link with actuator/gear train.

in series with a gear train with gear ratio r : 1 and connected to a link of the
manipulator. The gear ratio r typically has values in the range 20 to 200 or
more. Referring to Figure 7.5, we set Jm = Ja + Jg, the sum of the actuator
and gear inertias. The equation of motion of this system is then

Jm
d2θm
dt2

+Bm
dθm
dt

= τm − τ`/r (7.9)

= Kmia − τ`/r

the latter equality coming from (7.5). In the Laplace domain the three equations
(7.4), (7.6) and (7.9) may be combined and written as

(Ls+R)Ia(s) = V (s)−KbsΘm(s) (7.10)
(Jms2 +Bms)Θm(s) = KiIa(s)− τ`(s)/r (7.11)

The block diagram of the above system is shown in Figure 7.6. The transfer
function from V (s) to Θm(s) is then given by (with τ` = 0)

Θm(s)
V (s)

=
Km

s [(Ls+R)(Jms+Bm) +KbKm]
(7.12)
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τl/r

−��V (s) +//⊕ // 1
Ls+R

Ia(s) // Ki
+//⊕ // 1

Jms+Bm

//

oo

1
s

θm(s)
//

Kb

−OO

Fig. 7.6 Block diagram for a DC motor system

The transfer function from the load torque τ`(s)/r to Θm(s) is given by (with
V = 0)

Θm(s)
τ`(s)

=
−(Ls+R)

s [(Ls+R)(Jms+Bm) +KbKm]
(7.13)

Frequently it is assumed that the “electrical time constant” L
R is much

smaller than the “mechanical time constant” Jm
Bm

. This is a reasonable as-
sumption for many electro-mechanical systems and leads to a reduced order
model of the actuator dynamics. If we now divide numerator and denominator
of Equations (7.12) and (7.13) by R and neglect the electrical time constant by
setting L

R equal to zero, the transfer functions in Equations (7.12) and (7.13)
become, respectively,

Θm(s)
V (s)

=
Km/R

s(Jms+Bm +KbKm/R)
. (7.14)

and

Θm(s)
τ`(s)

= − 1
s(Jm(s) +Bm +KbKm/R)

(7.15)

In the time domain Equations (7.14) and (7.15) represent, by superposition,
the second order differential equation

Jmθ̈m(t) + (Bm +KbKm/R)θ̇m(t) = (Km/R)V (t)− τ`(t)/r (7.16)

The block diagram corresponding to the reduced order system (7.16) is shown
in Figure 7.7.

If the output side of the gear train is directly coupled to the link, then the
joint variables and the motor variables are related by

θmk
= rkqk ; k = 1, . . . , n (7.17)

where rk is the k-th gear ratio. Similarly, the joint torques τk given by (7.1)
and the actuator load torques τ`k are related by

τ`k = τk ; k = 1, . . . , n. (7.18)
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τl/r

−��V (s) +//⊕ Im // Ki/R
+//⊕ // 1

Jms+Bm

//

oo

1
s

θm(s)
//

Kb

−OO

Fig. 7.7 Block diagram for reduced order system.

However, in manipulators incorporating other types of drive mechanisms such
as belts, pulleys, chains, etc., θmk

need not equal rkqk. In general one must
incorporate into the dynamics a transformation between joint space variables
and actuator variables of the form

qk = fk(θs1 , . . . , θsn
) ; τ`k = fk(τ1, . . . , τn) (7.19)

where θsk
= θmk

/rk.

Example 7.2.1

Consider the two link planar manipulator shown in Figure 7.8, whose actuators

Fig. 7.8 Two-link manipulator with remotely driven link.

are both located on link 1. In this case we have,

q1 = θs1 ; q2 = θs1 + θs2 . (7.20)
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Similarly, the joint torques τi and the actuator load torques τ`, are related by

τ`1 = τ1 ; τ`2 = τ1 + τ2. (7.21)

The inverse transformation is then

θs1 = q1 ; θs2 = q2 − q1 (7.22)

and

τ1 = τ`1 ; τ2 = τ`2 − τ`1 . (7.23)

7.3 SET-POINT TRACKING

In this section we discuss set-point tracking using a PD or PID compensator.
This type of control is adequate for applications not involving very fast motion,
especially in robots with large gear reduction between the actuators and the
links. The analysis in this section follows typical engineering practice rather
than complete mathematical rigor. For the following discussion, assume for
simplicity that

qk = θsk
= θmk

/rk and (7.24)
τ`k = τk.

Then, for k = 1, . . . , n, the equations of motion of the manipulator can be
written as

n∑
j=1

djk(q)q̈j +
n∑

i,j=1

cijk(q)q̇iqj + gk(q) = τk (7.25)

Jmk
θ̈mk

+ (Bmk
+Kbk

Kmk
/Rk)θ̇mk

= Kmk
/RkVk − τk/rk (7.26)

Combining these equations yields

(Jmk
+

1
r2k
dkk(q))θ̈mk

+ (Bmk
+Kbk

Kmk
/Rk)θ̇mk

= Kmk
/RkVk − dk (7.27)

where dk is defined by

dk :=
1
rk

∑
j 6=k

q̈j +
∑
i,j

cijkq̇iq̇j + gk. (7.28)

Note that the coefficient of θ̈mk
in the above expression is a nonlinear function

of the manipulator configuration, q. However, large gear reduction, i.e. large
values of rk, mitigates the influence of this term and one often defines a constant
average, or effective inertia Jeffk

as an approximation of the exact expression
Jmk

+ 1
r2k
dkk(q). If we further define

Beffk
= Bmk

+Kbk
Kmk

/Rk and uk = Kmk
/RkVk (7.29)



238 INDEPENDENT JOINT CONTROL

we may write (7.26) as

Jeffk
θ̈mk

+Beffk
θ̇mk

= uk − dk (7.30)

The advantage of this model is its simplicity since the motor dynamics repre-
sented by (7.26) are linear. The effect of the nonlinear coupling terms is treated
as a disturbance dk, which may be small for large gear reduction provided the
velocities and accelerations of the joints are also small.

Henceforth we suppress the subscript k representing the particular joint and
represent (7.30) in the Laplace domain by the block diagram of Figure 7.9. The

d

−��u +//⊕ // 1
Jeffs+Beff

// 1
s

θm//

Fig. 7.9 Block diagram of simplified open loop system with effective inertia and damp-
ing.

set-point tracking problem is now the problem of tracking a constant or step
reference command θd while rejecting a constant disturbance, d.

7.3.1 PD Compensator

As a first illustration, we choose a so-called PD-compensator. The resulting
closed loop system is shown in Figure 7.10. The input U(s) is given by

d

−��θdm +//⊕ // KP
+//⊕U(s)

// K
+//⊕ // 1

Jeffs+Beff
//

oo

1
s

θm//
−OO

KD

−OO

Fig. 7.10 Closed loop system with PD-control.

U(s) = Kp(Θd(s)−Θ(s))−KDsΘ(s) (7.31)

where Kp, KD are the proportional (P) and derivative (D) gains, respectively.
Taking Laplace transforms of both sides of (7.30) and using the expression

(7.31) for the feedback control V (s), leads to the closed loop system

Θm(s) =
KKp

Ω(s)
Θd(s)− 1

Ω(s)
D(s) (7.32)
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where Ω(s) is the closed loop characteristic polynomial

Ω(s) = Jeffs
2 + (Beff +KKD)s+KKp (7.33)

The closed loop system will be stable for all positive values of Kp and KD and
bounded disturbances, and the tracking error is given by

E(s) = Ωd(s)−Θm(s) (7.34)

=
Jeffs

2 + (Beff +KKD)s
Ω(s)

Θd(s) +
1

Ω(s)
D(s)

For a step reference input

Θd(s) =
Ωd

s
(7.35)

and a constant disturbance

D(s) =
D

s
(7.36)

it now follows directly from the final value theorem [4] that the steady state
error ess satisfies

ess = lim
s→0

sE(s) (7.37)

=
−D
KKp

(7.38)

Since the magnitude D of the disturbance is proportional to the gear reduction
1
r we see that the steady state error is smaller for larger gear reduction and can
be made arbitrarily small by making the position gain Kp large, which is to be
expected since the system is Type 1.

We know, of course, from (7.28) that the disturbance term D(s) in (7.34)
is not constant. However, in the steady state this disturbance term is just the
gravitational force acting on the robot, which is constant. The above analysis
therefore, while only approximate, nevertheless gives a good description of the
actual steady state error using a PD compensator assuming stability of the
closed loop system.

7.3.2 Performance of PD Compensators

For the PD-compensator given by (7.31) the closed loop system is second order
and hence the step response is determined by the closed loop natural frequency
ω and damping ratio ζ. Given a desired value for these quantities, the gains
KD and Kp can be found from the expression

s2 +
(Beff +KKD)

Jeff
s+

KKp

Jeff
= s2 + 2ζωs+ ω2 (7.39)
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Table 7.1 Proportional and Derivative Gains for the System 7.11 for Various Values of
Natural Frequency ω

Natural Proportional Derivative
Frequency (ω) Gain KP Gain KD

4 16 7
8 64 15
12 144 23

as

Kp =
ω2Jeff
K

, KD =
2ζωJeff −Beff

K
(7.40)

It is customary in robotics applications to take ζ = 1 so that the response is
critically damped. This produces the fastest non-oscillatory response. In this
context ω determines the speed of response.

Example 7.1 Consider the second order system of Figure 7.11. The closed

d

+��θd +//⊕ // KP +KDs
+//⊕ // 1

s(s+1)
θ//

−OO

Fig. 7.11 Second Order System with PD Compensator

loop characteristic polynomial is

p(s) = s2 + (1 +KD)s+Kp (7.41)

Suppose θd = 10 and there is no disturbance (d = 0). With ζ = 1, the required
PD gains for various values of ω are shown in Table 7.1. The corresponding
step responses are shown in Figure 7.12.

Now suppose that there is a constant disturbance d = 40 acting on the sys-
tem. The response of the system with the PD gains of Table 7.1 are shown in
Figure 7.13. We see that the steady state error due to the disturbance is smaller
for large gains as expected. �

7.3.3 PID Compensator

In order to reject a constant disturbance using PD control we have seen that
large gains are required. By using integral control we may achieve zero steady
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Fig. 7.12 Critically damped second order step responses.

state error while keeping the gains small. Thus, let us add an integral term
KI

s to the above PD compensator. This leads to the so-called PID control
law, as shown in Figure 7.14. The system is now Type 2 and the PID control
achieves exact steady tracking of step (and ramp) inputs while rejecting step
disturbances, provided of course that the closed loop system is stable.

With the PID compensator

C(s) = Kp +KDs+
KI

s
(7.42)

the closed loop system is now the third order system

Θm(s) =
(KDs

2 +Kps+KI)
Ω2(s)

Θd(s)− rs

Ω2(s)
D(s) (7.43)

where

Ω2 = Jeffs
3 + (Beff +KKD)s2 +KKps+KKI (7.44)

Applying the Routh-Hurwitz criterion to this polynomial, it follows that the
closed loop system is stable if the gains are positive, and in addition,

KI <
(Beff +KKD)Kp

Jeff
(7.45)

Example 7.2 To the previous system we have added a disturbance and an
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Fig. 7.13 Second order system response with disturbance added.

KI

s

+��

d

−��θd +//⊕ //
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KP
+//⊕ +//⊕ // 1

Jeffs+Beff
//

oo

1
s

θm//
−OO

KD

−OO

Fig. 7.14 Closed loop system with PID control.

integral control term in the compensator. The step responses are shown in Fig-
ure 7.15. We see that the steady state error due to the disturbance is removed.
�

7.3.4 Saturation

In theory, one could achieve arbitrarily fast response and arbitrarily small steady
state error to a constant disturbance by simply increasing the gains in the PD or
PID compensator. In practice, however, there is a maximum speed of response
achievable from the system. Two major factors, heretofore neglected, limit the
achievable performance of the system. The first factor, saturation, is due to
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Fig. 7.15 Response with integral control action.

limits on the maximum torque (or current) input. Many manipulators, in fact,
incorporate current limiters in the servo-system to prevent damage that might
result from overdrawing current. The second effect is flexibility in the motor
shaft and/or drive train. We illustrate the effects of saturation below and drive
train flexibility in section 7.5.

Example 7.3 Consider the block diagram of Figure 7.16, where the satura-

Saturation Plant

θd +//⊕ // KP +KDs //

−50

+50
// 1
s(s+1)

θ//
−OO

Fig. 7.16 Second order system with input saturation.

tion function represents the maximum allowable input. With PD control and
saturation the response is below. �

The second effect to consider is the joint flexibility. Let kr be the effective
stiffness at the joint. The joint resonant frequency is then ω4 =

√
kr/Jeff . It is

common engineering practice to limit ω in (7.40) to no more than half of ωr to
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Fig. 7.17 Response with Saturation and PD Control

avoid excitation of the joint resonance. We will discuss the effects of the joint
flexibility in more detail in section 7.5.

These examples clearly show the limitations of PID-control when additional
effects such as input saturation, disturbances, and unmodeled dynamics must
be considered.

7.4 FEEDFORWARD CONTROL AND COMPUTED TORQUE

In this section we introduce the notion of feedforward control as a method to
track time varying trajectories and reject time varying disturbances.

Suppose that r(t) is an arbitrary reference trajectory and consider the block
diagram of Figure 7.18, where G(s) represents the forward transfer function of

F (s)

+��r +//

//

⊕ // H(s)
+//⊕ // G(s)

y//
−OO

Fig. 7.18 Feedforward control scheme.
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a given system and H(s) is the compensator transfer function. A feedforward
control scheme consists of adding a feedforward path with transfer function
F (s) as shown.

Let each of the three transfer functions be represented as ratios of polyno-
mials

G(s) =
q(s)
p(s)

H(s) =
c(s)
d(s)

F (s) =
a(s)
b(s)

(7.46)

We assume that G(s) is strictly proper and H(s) is proper. Simple block dia-
gram manipulation shows that the closed loop transfer function T (s) = Y (s)

R(s) is
given by (Problem 7-9)

T (s) =
q(s)(c(s)b(s) + a(s)d(s))
b(s)(p(s)d(s) + q(s)c(s))

(7.47)

The closed loop characteristic polynomial of the system is then b(s)(p(s)d(s)+
q(s)c(s)). For stability of the closed loop system therefore we require that the
compensator H(s) and the feedforward transfer function F (s) be chosen so that
the polynomials p(s)d(s) + q(s)c(s) and b(s) are Hurwitz. This says that, in
addition to stability of the closed loop system the feedforward transfer function
F (s) must itself be stable.

If we choose the feedforward transfer function F (s) equal to 1
G(s)′ the inverse

of the forward plant, that is, a(s) = p(s) and b(s) = q(s), then the closed loop
system becomes

q(s)(p(s)d(s) + q(s)c(s))Y (s) = q(s)(p(s)d(s) + q(s)c(s))R(s) (7.48)

or, in terms of the tracking error E(s) = R(s)− Y (s),

q(s)(p(s)d(s) + q(s)c(s))E(s) = 0 (7.49)

Thus, assuming stability, the output y(t) will track any reference trajectory
r(t). Note that we can only choose F (s) in this manner provided that the
numerator polynomial q(s) of the forward plant is Hurwitz, that is, as long as
all zeros of the forward plant are in the left half plane. Such systems are called
minimum phase.

If there is a disturbance D(s) entering the system as shown in Figure 7.19,
then it is easily shown that the tracking error E(s) is given by

E(s) =
q(s)d(s)

p(s)d(s) + q(s)c(s)
D(s) (7.50)

We have thus shown that, in the absence of disturbances the closed loop system
will track any desired trajectory r(t) provided that the closed loop system is
stable. The steady state error is thus due only to the disturbance.

Let us apply this idea to the robot model of Section 7.3. Suppose that
θd(t) is an arbitrary trajectory that we wish the system to track. In this case
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Fig. 7.19 Feedforward control with disturbance.
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Fig. 7.20 Feedforward compensator for second order system.

we have from (7.30) G(s) = K
Jeffs2+Beffs

together with a PD compensator
H(s) = Kp + KDs. The resulting system is shown in Figure 7.20. Note that
G(s) has no zeros at all and hence is minimum phase. Note also that G(s)−1 is
not a proper rational function. However, since the derivatives of the reference
trajectory θd are known and precomputed, the implementation of the above
scheme does not require differentiation of an actual signal. It is easy to see
from (7.50) that the steady state error to a step disturbance is now given by
the same expression (7.37) independent of the reference trajectory. As before, a
PID compensator would result in zero steady state error to a step disturbance.
In the time domain the control law of Figure 7.20 can be written as

V (t) =
Jeff
K

θ̈d +
Beff
K

θ̇d +KD(θ̇d − θ̇m) +Kp(θd − θm) (7.51)

= f(t) +KD ė(t) +Kpe(t)

where f(t) is the feedforward signal

f(t) =
Jeff
K

θ̈d +
Beff
K

θ̇d (7.52)

and e(t) is the tracking error θd(t)− θ(t). Since the forward plant equation is

Jeff θ̈m +Beff θ̇m = KV (t)− rd(t)

the closed loop error e(t) = θm− θd satisfies the second order differential equa-
tion

Jeff ë+ (Beff +KKD)ė+KKpe(t) = −rd(t) (7.53)
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Remark 7.6.1

We note from (7.53) that the characteristic polynomial of the closed loop sys-
tem is identical to (7.33). The system now however is written in terms of the
tracking error e(t). Therefore, assuming that the closed loop system is stable,
the tracking error will approach zero asymptotically for any desired joint space
trajectory in the absence of disturbances, that is, if d = 0.

Computed Torque Disturbance Cancellation

We see that the feedforward signal (7.52) results in asymptotic tracking of any
trajectory in the absence of disturbances but does not otherwise improve the
disturbance rejection properties of the system. However, although the term
d(t) in (7.53) represents a disturbance, it is not completely unknown since d
satisfies (7.28). Thus we may consider adding to the above feedforward signal,
a term to anticipate the effects of the disturbance d(t). Consider the diagram
of Figure 7.21. Given a desired trajectory, then we superimpose, as shown, the

qd1..n
q̇d1..n
q̈d1..n

 //
Computed

torque
(7.3.7)

+

��

Jeffs
2 +Beffs

��5
55

55
55

5 rD(s)

−��		
		
		
		

θd +//

//

⊕ // KP +KDs
+

+
//⊕ // 1

Jeffs2+Beffs

θm//
−OO

Fig. 7.21 Feedforward computed torque compensation.

term

dd :=
∑

djk(qd)q̈dj +
∑

cijk(qd)q̇di q̇
d
j + gk(qd) (7.54)

since dd has units of torque, the above feedforward disturbance cancellation
control is called the method of computed torque. The expression (7.54) thus
compensates in a feedforward manner the nonlinear coupling inertial, coriolis,
centripetal, and gravitational forces arising due to the motion of the manipu-
lator. Although the difference ∆d := dd − d is zero only in the ideal case of
perfect tracking (θ = θd) and perfect computation of (7.54), in practice, the
goal is to reduce ∆d to a value smaller than d (say, in the usual Euclidean norm
sense). Hence the computed torque has the advantage of reducing the effects
of d. Note that the expression (7.54) is in general extremely complicated so
that the computational burden involved in computing (7.54) is of major con-
cern. Since only the values of the desired trajectory need to be known, many of
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these terms can be precomputed and stored off-line. Thus there is a trade-off
between memory requirements and on-line computational requirements. This
has led to the development of table look up schemes to implement (7.54) and
also to the development of computer programs for the automatic generation
and simplification of manipulator dynamic equations.

7.5 DRIVE TRAIN DYNAMICS

In this section we discuss in more detail the problem of joint flexibility. For many
manipulators, particularly those using harmonic drives1 for torque transmission,
the joint flexibility is significant. In addition to torsional flexibility in the gears,
joint flexibility is caused by effects such as shaft windup, bearing deformation,
and compressibility of the hydraulic fluid in hydraulic robots.

Consider the idealized situation of Figure 7.22 consisting of an actuator con-

Fig. 7.22 Idealized model to represent joint flexibility.

nected to a load through a torsional spring which represents the joint flexibility.
For simplicity we take the motor torque u as input. The equations of motion are
easily derived using the techniques of Chapter 6, with generalized coordinates
θ` and θm, the link angle, and the motor angle, respectively, as

J`θ̈` +B`θ̇` + k(θ` − θm) = 0 (7.55)
Jmθ̈m +Bmθ̇m − k(θ` − θm) = u (7.56)

1Harmonic drives are a type of gear mechanism that are very popular for use in robots due to
their low backlash, high torque transmission and compact size. However, they also introduce
unwanted friction and flexibility at the joints.
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where J`, Jm are the load and motor inertias, B` and Bm are the load and
motor damping constants, and u is the input torque applied to the motor shaft.
In the Laplace domain we can write this as

p`(s)Θ`(s) = kΘm(s) (7.57)
pm(s)Θm(s) = kΘ`(s) + U(s) (7.58)

where

p`(s) = J`s
2 +B`s+ k (7.59)

pm(s) = Jms
2 +Bms+ k (7.60)

This system is represented by the block diagram of Figure 7.23.

Fig. 7.23 Block diagram for the system (7.57)-(7.58).

The output to be controlled is, of course, the load angle θ`. The open loop
transfer function between U and Θ` is given by

Θ`(s)
U(s)

=
k

p`(s)pm(s)− k2
(7.61)

The open loop characteristic polynomial is

J`Jms
4 + (J`Bm + JmB`)s3 + (k(J` + Jm) +B`Bm)s2 + k(B` +Bm)s (7.62)

If the damping constants B` and Bm are neglected, the open loop characteristic
polynomial is

J`Jms
4 + k(J` + Jm)s2 (7.63)

which has a double pole at the origin and a pair of complex conjugate poles
at s = ±jω where ω2 = k

(
1
J`

+ 1
Jm

)
. Assuming that the open loop damping
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constants B` and Bm are small, then the open loop poles of the system (7.57)-
(7.58) will be in the left half plane near the poles of the undamped system.

Suppose we implement a PD compensator C(s) = Kp +KDs. At this point
the analysis depends on whether the position/velocity sensors are placed on
the motor shaft or on the load shaft, that is, whether the PD-compensator is
a function of the motor variables or the load variables. If the motor variables
are measured then the closed loop system is given by the block diagram of
Figure 7.24. Set Kp +KDs = KD(s+ a); a = Kp/KD. The root locus for thes  +.1s+602

1
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Fig. 7.24 PD-control with motor angle feedback.

closed loop system in terms of KD is shown in Figure 7.25.
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Fig. 7.25 Root locus for the system of Figure 7.24.

We see that the system is stable for all values of the gain KD but that
the presence of the open loop zeros near the jω axis may result in poor over-
all performance, for example, undesirable oscillations with poor settling time.
Also the poor relative stability means that disturbances and other unmodeled
dynamics could render the system unstable.

If we measure instead the load angle θ`, the system with PD control is
represented by the block diagram of Figure 7.26. The corresponding root locus
is shown in Figure 7.27. In this case the system is unstable for large KD. The
critical value of KD, that is, the value of KD for which the system becomes
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Fig. 7.26 PD-control with load angle feedback.
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Fig. 7.27 Root locus for the system of Figure 7.22.

unstable, can be found from the Routh criterion. The best that one can do in
this case is to limit the gain KD so that the closed loop poles remain within
the left half plane with a reasonable stability margin.

Example 7.4 Suppose that the system (7.55)-(7.56) has the following param-
eters (see [1])

k = 0.8Nm/rad Bm = 0.015Nms/rad (7.64)
Jm = 0.0004Nms2/rad B` = 0.0Nms/rad
J` = 0.0004Nm2/rad

If we implement a PD controller KD(s + a) then the response of the system
with motor (respectively, load) feedback is shown in Figure 7.28 (respectively,
Figure 7.29). �

7.6 STATE SPACE DESIGN

In this section we consider the application of state space methods for the control
of the flexible joint system above. The previous analysis has shown that PD
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Fig. 7.28 Step response – PD-control with motor angle feedback.

control is inadequate for robot control unless the joint flexibility is negligible or
unless one is content with relatively slow response of the manipulator. Not only
does the joint flexibility limit the magnitude of the gain for stability reasons,
it also introduces lightly damped poles into the closed loop system that result
in unacceptable oscillation of the transient response. We can write the system
(7.55)-(7.56) in state space by choosing state variables

x1 = θ` x2 = θ̇` (7.65)
x3 = θm x4 = θ̇m.

In terms of these state variables the system (7.55)-(7.56) becomes

ẋ1 = x2 (7.66)

ẋ2 = − k

J`
x1 −

B`
J`
x2 +

k

J`
x3

ẋ3 = x4

ẋ4 =
k

Jm
x1 −

B`
Jm

x4 −
k

Jm
x3 +

1
Jm

u (7.67)

which, in matrix form, can be written as

ẋ = Ax+ bu (7.68)
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Fig. 7.29 Step response – PD control with load angle feedback.

where

A =


0 1 0 0
− k
J`
−B`

J`

k
J`

0
0 0 0 1
k
Jm

0 − k
Jm

Bm

Jm

 ; b =


0
0
0
1
Jm

 . (7.69)

If we choose an output y(t), say the measured load angle θ`(t), then we have
an output equation

y = x1 = cTx (7.70)

where

cT = [1, 0, 0, 0]. (7.71)

The relationship between the state space form (7.68)-(7.70) and the transfer
function defined by (7.61) is found by taking Laplace transforms of (7.68)-(7.70)
with initial conditions set to zero. This yields

G(s) =
Θ`(s)
U(s)

=
Y (s)
U(s)

= cT (sI −A)−1b (7.72)

where I is the n × n identity matrix. The poles of G(s) are eigenvalues of the
matrix A. In the system (7.68)–(7.70) the converse holds as well, that is, all of
the eigenvalues of A are poles of G(s). This is always true if the state space
system is defined using a minimal number of state variables [8].
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7.6.1 State Feedback Compensator

Given a linear system in state space form, such as (7.68), a linear state feed-
back control law is an input u of the form

u(t) = −kTx+ r (7.73)

= −
4∑
i=1

kixi + r

where ki are constants and r is a reference input. In other words, the control
is determined as a linear combination of the system states which, in this case,
are the motor and load positions and velocities. Compare this to the previous
PD-control, which was a function either of the motor position and velocity or
of the load position and velocity, but not both. The coefficients ki in (7.73) are
the gains to be determined. If we substitute the control law (7.73) into (7.68)
we obtain

ẋ = (A− bkT )x+ br. (7.74)

Thus we see that the linear feedback control has the effect of changing the poles
of the system from those determined by A to those determined by A− bkT .

In the previous PD-design the closed loop pole locations were restricted to
lie on the root locus shown in Figure 7.25 or 7.27. Since there are more free
parameters to choose in (7.73) than in the PD controller, it may be possible to
achieve a much larger range of closed loop poles. This turns out to be the case
if the system (7.68) satisfies a property known as controllability.

(i) Definition 7.4.2

A linear system is said to be completely state-controllable, or controllable
for short, if for each initial state x(t0) and each final state x(tf ) there is a control
input t → u(t) that transfers the system from x(t0) at time t − o to x(tf ) at
time tf .

The above definition says, in essence, that if a system is controllable we can
achieve any state whatsoever in finite time starting from an arbitrary initial
state. To check whether a system is controllable we have the following simple
test.

(ii) Lemma 7.4.3

A linear system of the form (7.68) is controllable if and only if

det[b, Ab,A2b, . . . , An−1b] 6= 0. (7.75)

The n×n matrix [b, Ab, . . . , An−1b] is called the controllability matrix for
the linear system defined by the pair (A, b). The fundamental importance of
controllability of a linear system is shown by the following
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(iii) Theorem 7.4.4

Let α(x) = sn + αns
n−1 + · · ·+ α2s+ α1 be an arbitrary polynomial of degree

n. Then there exists a state feedback control law (7.73) such that

det(sI −A+ bkT ) = α(s) (7.76)

if and only if the system (7.68) is controllable.
This fundamental result says that, for a controllable linear system, we may

achieve arbitrary2 closed loop poles using state feedback. Returning to the
specific fourth-order system (7.69) we see that the system is indeed controllable
since

det[b, Ab,A2b, A3b] =
k2

J4
mJ

2
`

(7.77)

which is never zero since k > 0. Thus we can achieve any desired set of closed
loop poles that we wish, which is much more than was possible using the pre-
vious PD compensator.

There are many algorithms that can be used to determine the feedback gains
in (7.73) to achieve a desired set of closed loop poles. This is known as the
pole assignment problem. In this case most of the difficulty lies in choosing
an appropriate set of closed loop poles based on the desired performance, the
limits on the available torque, etc. We would like to achieve a fast response
from the system without requiring too much torque from the motor. One way
to design the feedback gains is through an optimization procedure. This takes
us into the realm of optimal control theory. For example, we may choose as our
goal the minimization of the performance criterion

J =
∫ ∞

0

(xTQx+Ru2)dt (7.78)

where Q is a given symmetric, positive definite matrix and R > O.
Choosing a control law to minimize (7.78) frees us from having to decide

beforehand what the closed loop poles should be as they are automatically
dictated by the weighting matrices Q and R in (7.78). It is shown in optimal
control texts that the optimum linear control law that minimizes (7.78) is given
as

u = −k.Tx (7.79)

where

k. = R−1bTP (7.80)

2Since the coefficients of the polynomial a(s) are real, the only restriction on the pole locations
is that they occur in complex conjugate pairs.
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and P is the (unique) symmetric, positive definite n × n matrix satisfying the
so-called matrix Algebraic Riccatti equation

ATP + PA− PbR−1bTP +Q = 0. (7.81)

The control law (7.79) is referred to as a Linear Quadratic (LQ) Optimal
Control, since the performance index is quadratic and the control system is
linear.

(iv) Example 7.4.5

For illustration purposes, letQ andR in (7.78) be given asQ = diag{100, 0.1, 100, 0.1}
and R = 100. This puts a relatively large weighting on the position variables
and control input with smaller weighting on the velocities of the motor and
load. Figure 7.30 shows the optimal gains that result and the response of this

Fig. 7.30 Step response–Linear, Quadratic–Optimal (LQ) state feedback control.

LQ-optimal control for the system (7.66) with a unit step reference input r.

7.6.2 Observers

The above result is remarkable; however, in order to achieve it, we have had to
pay a price, namely, the control law must be a function of all of the states. In
order to build a compensator that requires only the measured output, in this
case θ`, we need to introduce the concept of an observer. An observer is a state
estimator. It is a dynamical system (constructed in software) that attempts to
estimate the full state x(t) using only the system model (7.68)-7.70) and the
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measured output y(t). A complete discussion of observers is beyond the scope
of the present text. We give here only a brief introduction to the main idea of
observers for linear systems.

Assuming that we know the parameters of the system (7.68) we could sim-
ulate the response of the system in software and recover the value of the state
x(t) at time t from the simulation. We could then use this simulated or esti-
mated state, call in x̂(t), in place of the true state in (7.79). However, since
the true initial condition x(t0) for (7.68) will generally be unknown, this idea
is not feasible. However the idea of using the model of the system (7.68) is a
good starting point to construct a state estimator in software. Let us, therefore,
consider an estimate x̂(t) satisfying the system

˙̂x = Ax̂+ bu+ `(y − cT x̂). (7.82)

Equation (7.82) is called an observer for (7.68) and represents a model of the
system (7.68) with an additional term `(y − cT x̂). This additional term is a
measure of the error between the output y(t) = cTx(t) of the plant and the
estimate of the output, cT x̂(t). Since we know the coefficient matrices in (7.82)
and can measure y directly, we can solve the above system for x̂(t) starting from
any initial condition, and use this x̂ in place of the true state x in the feedback
law (7.79). The additional term ` in (7.82) is to be designed so that x̂ → x as
t → ∞, that is, so that the estimated state converges to the true (unknown)
state independent of the initial condition x(t0). Let us see how this is done.

Define e(t) = x− x̂ as the estimation error. Combining (7.68) and (7.82),
since y = cTx, we see that the estimation error satisfies the system

ė = (A− `cT )e. (7.83)

From (7.83) we see that the dynamics of the estimation error are determined
by the eigenvalues of A − `cT . Since ` is a design quantity we can attempt to
choose it so that e(t) → 0 as t → ∞, in which case the estimate x̂ converges
to the true state x. In order to do this we obviously want to choose ` so that
the eigenvalues of A− `cT are in the left half plane. This is similar to the pole
assignment problem considered previously. In fact it is dual, in a mathematical
sense. to the pole assignment problem. It turns out that the eigenvalues of
A − `cT can be assigned arbitrarily if and only if the pair (A, c) satisfies the
property known as observability. Observability is defined by the following:

(i) Definition 7.4.6

A linear system is completely observable, or observable for short, if every
initial state x(t0) can be exactly determined from measurements of the output
y(t) and the input u(t) in a finite time interval t0 ≤ t ≤ tf .

To check whether a system is observable we have the following
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(ii) Theorem 7.4.7

The pair (A, c) is observable if and only if

det
[
c, AT c, . . . , At

n−1
c
]
6= 0. (7.84)

The n×n matrix [cT , cTAT , . . . , cTAT ] is called the observability matrix for
the pair (A, cT ). In the system (7.68)-(7.70) above we have that

det
[
c, AT c, AT

2
c, AT

3
c
]

=
k2

J2
`

(7.85)

and hence the system is observable. A result known as the Separation Prin-
ciple says that if we use the estimated state in place of the true state in (7.79),
then the set of closed loop poles of the system will consist of the union of the
eigenvalues of A − `cT and the eigenvalues of A − bkT . As the name suggests
the Separation Principle allows us to separate the design of the state feedback
control law (7.79) from the design of the state estimator (7.82). A typical pro-
cedure is to place the observer poles to the left of the desired pole locations of
A − bkT . This results in rapid convergence of the estimated state to the true
state, after which the response of the system is nearly the same as if the true
state were being used in (7.79).

The result that the closed loop poles of the system may be placed arbitrarily,
under the assumption of controllability and observability, is a powerful theoret-
ical result. There are always practical considerations to be taken into account,
however. The most serious factor to be considered in observer design is noise in
the measurement of the output. To place the poles of the observer very far to
the left of the imaginary axis in the complex plane requires that the observer
gains be large. Large gains can amplify noise in the output measurement and
result in poor overall performance. Large gains in the state feedback control law
(7.79) can result in saturation of the input, again resulting in poor performance.
Also uncertainties in the system parameters, nonlinearities such as a nonlinear
spring characteristic or backlash, will reduce the achievable performance from
the above design. Therefore, the above ideas are intended only to illustrate
what may be possible by using more advanced concepts from control theory.
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Problems

7-1 Using block diagram reduction techniques derive the transfer functions
(7.12) and (7.13).

7-2 Derive the transfer functions for the reduced order model (7.14)-(7.15).

7-3 Derive Equations (7.32), (7.33) and (7.34).

7-4 Derive Equations (7.43)-(7.44).

7-5 Derive Equations (7.61), (7.62), and (7.63).

7-6 Given the state space model (7.68) show that the transfer function

G(s) = cT (sI −A)−1b

is identical to (7.61).

7-7 Search the control literature (e.g., [8]) and find two or more algorithms for
the pole assignment problem for linear systems. Design a state feedback
control law for (7.68) using the parameter values given in Example 7.4.1
so that the poles are at s = −10. Simulate the step response. How does
it compare to the response of Example 7.4.1? How do the torque profiles
compare?

7-8 Design an observer for the system (7.68) using the parameter values of
Example 7.4.1. Choose reasonable locations for the observer poles. Sim-
ulate the combined observer/state feedback control law using the results
of Problem 7-7.

7-9 Derive (7.77) and (7.85).

7-10 Given a three-link elbow type robot, a three-link SCARA robot and a
three-link cartesian robot, discuss the differences in the dynamics of each
type of robot as they impact the control problem. Discuss the nature of
the coupling nonlinearities, the effect of gravity, and inertial variations
as the robots move about. For which manipulator would you expect PD
control to work best? worst?

7-11 Consider the two-link cartesian robot of Example 6.4.1. Suppose that each
joint is actuated by a permanent magnet DC-motor. Write the complete
dynamics of the robot assuming perfect gears.

7-12 Carry out the details of a PID control for the two-link cartesian robot of
Problem 11. Note that the system is linear and the gravitational forces
are configuration independent. What does this say about the validity of
this approach to control?
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7-13 Simulate the above PID control law. Choose reasonable numbers for the
masses, inertias, etc. Also place reasonable limits on the magnitude of
the control input. Use various methods, such as root locus, Bode plots,
etc. to design the PID gains.

7-14 Search the control literature (e.g., [6]) to find out what is meant by inte-
grator windup. Did you experience this problem with the PID control
law of Problem 13? Find out what is meant by anti-windup (or anti-
reset windup). Implement the above PID control with anti-reset windup.
Is the response better?

7-15 Repeat the above analysis and control design (Problems 11 – 14 for the
two-link elbow manipulator of Example 6.4.2. Note that you will have to
make some assumptions to arrive at a value of the effective inertias Jeff .

7-16 Repeat Problem 15 for the two-link elbow manipulator with remote drive
of Example 6.4.3.

7-17 Include the dynamics of a permanent magnet DC-motor for the system
(7.55)-(7.56). What can you say now about controllability and observ-
ability of the system?

7-18 Choose appropriate state variables and write the system (7.10)-(7.11) in
state space. What is the order of the state space?

7-19 Repeat Problem 7-18 for the reduced order system (7.16).

7-20 Suppose in the flexible joint system represented by (7.55)-(7.56) the fol-
lowing parameters are given

J` = 10 B` = 1 k = 100
Jm = 2 Bm = 0.5

(a) Sketch the open loop poles of the transfer functions (7.61).
(b) Apply a PD compensator to the system (7.61). Sketch the root locus

for the system. Choose a reasonable location for the compensator
zero. Using the Routh criterion find the value of the compensator
gain K when the root locus crosses the imaginary axis.

7-21 One of the problems encountered in space applications of robots is the
fact that the base of the robot cannot be anchored, that is, cannot be
fixed in an inertial coordinate frame. Consider the idealized situation
shown in Figure 7.31, consisting of an inertia J1 connected to the rotor of
a motor whose stator is connected to an inertia J2. For example, J1 could
represent the space shuttle robot arm and J2 the inertia of the shuttle
itself. The simplified equations of motion are thus

J1q̈1 = τ

J2q̈2 = τ
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Fig. 7.31 Coupled Inertias in Free Space

Write this system in state space form and show that it is uncontrollable.
Discuss the implications of this and suggest possible solutions.

7-22 Given the linear second order system[
ẋ1

ẋ2

]
=

[
1 −3
1 −2

] [
x1

x2

]
+
[

1
−2

]
u

find a linear state feedback control u = k1x1 + k2x2 so that the closed
loop system has poles at s = −2, 2.

7-23 Repeat the above if possible for the system[
ẋ1

ẋ2

]
=

[
−1 0

0 2

] [
x1

x2

]
+
[

0
1

]
u

Can the closed loop poles be placed at -2?
Can this system be stabilized? Explain.
[Remark: The system of Problem 7-23 is said to be stabilizable, which
is a weaker notion than controllability.]

7-24 Repeat the above for the system[
ẋ1

ẋ2

]
=

[
+1 0

0 2

] [
x1

x2

]
+
[

0
1

]
u

7-25 Consider the block diagram of Figure 7.18. Suppose that G(s) = 1
2s2+s′

and suppose that it is desired to track a reference signal r(t) = sin(t) +
cos(2t). If we further specify that the closed loop system should have
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a natural frequency less than 10 radians with a damping ratio greater
than 0.707, compute an appropriate compensator C(s) and feedforward
transfer function F (s).



8
MULTIVARIABLE

CONTROL

8.1 INTRODUCTION

In the previous chapter we discussed techniques to derive a control law for
each joint of a manipulator based on a single-input/single-output model. Cou-
pling effects among the joints were regarded as disturbances to the individual
systems. In reality, the dynamic equations of a robot manipulator form a com-
plex, nonlinear, and multivariable system. In this chapter, therefore, we treat
the robot control problem in the context of nonlinear, multivariable control.
This approach allows us to provide more rigorous analysis of the performance
of control systems, and also allows us to design robust and adaptive nonlinear
control laws that guarantee stability and tracking of arbitrary trajectories.

We first reformulate the manipulator dynamic equations in a form more
suitable for the discussion to follow. Recall the robot equations of motion
(7.25) and (7.26)

n∑
j=1

djk(q)q̈j +
n∑

i,j=1

cijk(q)q̇iq̇j + φk = τk (8.1)

Jmk
θ̈mk

+Bkθ̇mk
= Kmk

/RkVk − τk/rk. (8.2)

where Bk = Bmk
+ Kbk

Kmk
/Rk. Multiplying (8.2) by rk and using the fact

that

θmk
= rkqk (8.3)

263
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we write Equation (8.2) as

r2kJmq̈k + r2kBk q̇k = rkKmk
/RVk − τk (8.4)

Substituting (8.4) into (8.1) yields

r2kJmk
q̈k +

n∑
j−1

djkq̈j +
n∑

i,j=1

cijkq̇iq̇j + r2kBk q̇k + φk = rk
Km

R
Vk. (8.5)

In matrix form these equations of motion can be written as

M(q)q̈ + C(q, q̇)q̇ +Bq̇ + g(q) = u (8.6)

where M(q) = D(q) + J where J is a diagonal matrix with diagonal elements
r2kJmk

. The vector g(q) and the matrix C(q, q̇) are defined by (6.61) and (6.62),
respectively, and the input vector u has components

uk = rk
Kmk

Rk
Vk.

Note that uk has units of torque.
Henceforth, we will take B = 0 for simplicity in Equation (8.6) and use this

equation for all of our subsequent development. We leave it as an exercise for the
reader (cf:Problem X) to show that the properties of passivity, skew-symmetry,
bounds on the inertia matrix and linearity in the parameters continue to hold
for the system (8.6).

8.2 PD CONTROL REVISITED

It is rather remarkable that the simple PD-control scheme for set-point control
of rigid robots that we discussed in Chapter 7 can be rigorously shown to work
in the general case.1. An independent joint PD-control scheme can be written
in vector form as

u = KP q̃ −KD q̇ (8.7)

where q̃ = qd − q is the error between the desired joint displacements qd and
the actual joint displacements q, and KP ,KD are diagonal matrices of (pos-
itive) proportional and derivative gains, respectively. We first show that, in
the absence of gravity, that is, if g is zero in (8.6), the PD control law (8.7)
achieves asymptotic tracking of the desired joint positions. This, in effect, re-
produces the result derived previously, but is more rigorous, in the sense that
the nonlinear equations of motion (8.1) are not approximated by a constant
disturbance.

1The reader should review the discussion on Lyapunov Stability in Appendix C.
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To show that the above control law achieves zero steady state error consider
the Lyapunov function candidate

V = 1/2q̇TM(q)q̇ + 1/2q̃TKP q̃. (8.8)

The first term in (8.8) is the kinetic energy of the robot and the second term
accounts for the proportional feedback KP q̃. Note that V represents the total
kinetic energy that would result if the joint actuators were to be replaced by
springs with stiffnesses represented by KP and with equilibrium positions at qd.
Thus V is a positive function except at the “goal” q = qd, q̇ = 0, at which point
V is zero. The idea is to show that along any motion of the robot, the function
V is decreasing to zero. This will imply that the robot is moving toward the
desired goal configuration.

To show this we note that, since J and qd are constant, the time derivative
of V is given by

V̇ = q̇TM(q)q̈ + 1/2q̇T Ḋ(q)q̇ − q̇TKP q̃. (8.9)

Solving for M(q)q̈ in (8.6) with g(q) = 0 and substituting the resulting expres-
sion into (8.9) yields

V̇ = q̇T (u− C(q, q̇)q̇) + 1/2q̇T Ḋ(q)q̇ − q̇TKP q̃ (8.10)
= q̇T (u−KP q̃) + 1/2q̇T (Ḋ(q)− 2C(q, q̇))q̇
= q̇T (u−KP q̃)

where in the last equality we have used the fact (Theorem 6.3.1) that Ḋ − 2C
is skew symmetric. Substituting the PD control law (8.7) for u into the above
yields

V̇ = −q̇TKD q̇ ≤ 0. (8.11)

The above analysis shows that V is decreasing as long as q̇ is not zero. This,
by itself is not enough to prove the desired result since it is conceivable that the
manipulator can reach a position where q̇ = 0 but q 6= qd. To show that this
cannot happen we can use LaSalle’s Theorem (Appendix C). Suppose V̇ ≡ 0.
Then (8.11) implies that q̇ ≡ 0 and hence q̈ ≡ 0. From the equations of motion
with PD-control

M(q)q̈ + C(q, q̇)q̇ = −KP q̃ −KD q̇

must then have

0 = −KP q̃

which implies that q̃ = 0, q̇ = 0. LaSalle’s Theorem then implies that the
equilibrium is asymptotically stable.
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In case there are gravitational terms present in (8.6) Equation (8.10) must
be modified to read

V̇ = q̇T (u− g(q)−KP q̃). (8.12)

The presence of the gravitational term in (8.12) means that PD control alone
cannot guarantee asymptotic tracking. In practice there will be a steady state
error or offset. Assuming that the closed loop system is stable the robot con-
figuration q that is achieved will satisfy

KP (qd − q) = g(q). (8.13)

The physical interpretation of (8.13) is that the configuration q must be such
that the motor generates a steady state “holding torque” KP (qd − q) sufficient
to balance the gravitational torque g(q). Thus we see that the steady state
error can be reduced by increasing the position gain KP .

In order to remove this steady state error we can modify the PD control law
as

u = KP q̃ −KD q̇ + g(q). (8.14)

The modified control law (8.14), in effect, cancels the effect of the gravitational
terms and we achieve the same Equation (8.11) as before. The control law
(8.14) requires microprocessor implementation to compute at each instant the
gravitational terms g(q) from the Lagrangian equations. In the case that these
terms are unknown the control law (8.14) cannot be implemented. We will say
more about this and related issues later.

8.3 INVERSE DYNAMICS

We now consider the application of more complex nonlinear control techniques
for trajectory tracking of rigid manipulators. Consider again the dynamic equa-
tions of an n-link robot in matrix form from (8.6)

M(q)q̈ + C(q, q̇)q̇ + g(q) = u. (8.15)

The idea of inverse dynamics is to seek a nonlinear feedback control law

u = f(q, q̇, t) (8.16)

which, when substituted into (8.15), results in a linear closed loop system. For
general nonlinear systems such a control law may be quite difficult or impossible
to find. In the case of the manipulator dynamic equations (8.15), however, the
problem is actually easy. By inspecting (8.15) we see that if we choose the
control u according to the equation

u = M(q)aq + C(q, q̇)q̇ + g(q) (8.17)



INVERSE DYNAMICS 267

then, since the inertia matrix M is invertible, the combined system (8.15)-(8.17)
reduces to

q̈ = aq (8.18)

The term aq represents a new input to the system which is yet to be chosen.
Equation (8.18) is known as the double integrator system as it represents n
uncoupled double integrators. The nonlinear control law (8.17) is called the
inverse dynamics control2 and achieves a rather remarkable result, namely that
the “new” system (8.18) is linear, and decoupled. This means that each input
aqk

can be designed to control a scalar linear system. Moreover, assuming
that aqk

is a function only of qk and its derivatives, then aqk
will affect qk

independently of the motion of the other links.
Since aqk

can now be designed to control a linear second order system, the
obvious choice is to set

aq = −K0q −K1q̇ + r (8.19)

where K0 and K1 are diagonal matrices with diagonal elements consisting of
position and velocity gains, respectively. The closed loop system is then the
linear system

q̈ +K1q̇ +K0q = r. (8.20)

Now, given a desired trajectory

t → (qd(t), q̇d(t)). (8.21)

if one chooses the reference input r(t) as3

r(t) = q̈d(t) +K0q
d(t) +K1q̇

d(t) (8.22)

then the tracking error e(t) = q − qd satisfies

ë(t) +K1e(t) +K0e(t) = 0. (8.23)

A simple choice for the gain matrices K0 and K1 is

K0 = diag{ω2
1 , . . . , ω

2
n} (8.24)

K1 = diag{2ω1, . . . , 2ωn}

which results in a closed loop system which is globally decoupled, with each joint
response equal to the response of a critically damped linear second order system
with natural frequency ωi. As before, the natural frequency ωi determines the

2We should point out that in the research literature the control law (8.17) is frequently called
computed torque as well.
3Compare this with the feedforward expression (7.51).
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speed of response of the joint, or equivalently, the rate of decay of the tracking
error.

The inverse dynamics approach is extremely important as a basis for control
of robot manipulators and it is worthwhile trying to see it from alternative
viewpoints. We can give a second interpretation of the control law (8.17) as
follows. Consider again the manipulator dynamic equations (8.15). Since M(q)
is invertible for q ∈ Rn we may solve for the acceleration q̈ of the manipulator
as

q̈ = M−1{u− C(q, q̇)q̇ − g(q)}. (8.25)

Suppose we were able to specify the acceleration as the input to the system.
That is, suppose we had actuators capable of producing directly a commanded
acceleration (rather than indirectly by producing a force or torque). Then the
dynamics of the manipulator, which is after all a position control device, would
be given as

q̈(t) = aq(t) (8.26)

where aq(t) is the input acceleration vector. This is again the familiar double
integrator system. Note that (8.26) is not an approximation in any sense; rather
it represents the actual open loop dynamics of the system provided that the
acceleration is chosen as the input. The control problem for the system (8.26)
is now easy and the acceleration input aq can be chosen as before according to
(8.19).

In reality, however, such “acceleration actuators” are not available to us and
we must be content with the ability to produce a generalized force (torque) ui
at each joint i. Comparing equations (8.25) and (8.26) we see that the torque
u and the acceleration aq of the manipulator are related by

M−1{u(t)− C(q, q̇)q̇ − g(q)} = aq (8.27)

By the invertibility of the inertia matrix we may solve for the input torque u(t)
as

u = M(q)aq + C(q, q̇)q̇ + g(q) (8.28)

which is the same as the previously derived expression (8.17). Thus the inverse
dynamics can be viewed as an input transformation which transforms the prob-
lem from one of choosing torque input commands, which is difficult, to one of
choosing acceleration input commands, which is easy.

Note that the implementation of this control scheme requires the computa-
tion at each sample instant of the inertia matrixM(q) and the vector of Coriolis,
centrifugal, and gravitational. Unlike the computed torque scheme (7.53), how-
ever, the inverse dynamics must be computed on-line. In other words, as a
feedback control law, it cannot be precomputed off-line and stored as can the
computed torque (7.54). An important issue therefore in the control system
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implementation is the design of the computer architecture for the above com-
putations. As processing power continues to increase the computational issues
of real-time implementation become less important. An attractive method to
implement this scheme is to use a dedicated hardware interface, such as a DSP
chip, to perform the required computations in real time. Such a scheme is
shown in Figure 8.1.

ROBOT

LINEARIZED SYSTEM

INNER LOOP

CONTROLLERCONTROLLER

OUTER LOOP

PLANNER

TRAJECTORY
������ �

Fig. 8.1 Inner loop/outer control architecture.

Figure 8.1 illustrates the notion of inner-loop/outer-loop control. By this we
mean that the computation of the nonlinear control (8.17) is performed in an
inner loop, perhaps with a dedicated hardwire interface, with the vectors q, q̇,
and aq as its inputs and u as output. The outer loop in the system is then the
computation of the additional input term aq. Note that the outer loop control
aq is more in line with the notion of a feedback control in the usual sense of
being error driven. The design of the outer loop feedback control is in theory
greatly simplified since it is designed for the plant represented by the dotted
lines in Figure 8.1, which is now a linear or nearly linear system.

8.3.1 Task Space Inverse Dynamics

As an illustration of the importance of the inner loop/outer loop paradigm, we
will show that tracking in task space can be achieved by modifying our choice
of outer loop control q̈ in (8.18) while leaving the inner loop control unchanged.
Let X ∈ R6 represent the end-effector pose using any minimal representation
of SO(3). Since X is a function of the joint variables q ∈ C we have

Ẋ = J(q)q̇ (8.29)
Ẍ = J(q)q̈ + J̇(q)q̇. (8.30)
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where J = Ja is the analytical Jacobian of section 4.8. Given the double
integrator system, (8.18), in joint space we see that if aq is chosen as

aq = J−1
{
aX − J̇ q̇

}
(8.31)

the result is a double integrator system in task space coordinates

Ẍ = aX (8.32)

Given a task space trajectoryXd(t), satisfying the same smoothness and bound-
edness assumptions as the joint space trajectory qd(t), we may choose aX as

aX = Ẍd +KP (Xd −X) +KD(Ẋd − Ẋ) (8.33)

so that the Cartesian space tracking error, X̃ = X −Xd, satisfies

¨̃X +KD
˙̃X +KP X̃ = 0. (8.34)

Therefore, a modification of the outer loop control achieves a linear and decou-
pled system directly in the task space coordinates, without the need to compute
a joint space trajectory and without the need to modify the nonlinear inner loop
control.

Note that we have used a minimal representation for the orientation of the
end–effector in order to specify a trajectory X ∈ R6. In general, if the end–
effector coordinates are given in SE(3), then the Jacobian J in the above for-
mulation will be the geometric Jacobian J . In this case

V =
(

v
ω

)
=
(
ẋ
ω

)
= J(q)q̇ (8.35)

and the outer loop control

aq = J−1(q){
(
ax
aω

)
− J̇(q)q̇} (8.36)

applied to (8.18) results in the system

ẍ = ax ∈ R3 (8.37)
ω̇ = aω ∈ R3 (8.38)
Ṙ = S(ω)R, R ∈ SO(3), S ∈ so(3). (8.39)

Although, in this latter case, the dynamics have not been linearized to a double
integrator, the outer loop terms av and aω may still be used to defined control
laws to track end–effector trajectories in SE(3).

In both cases we see that non–singularity of the Jacobian is necessary to
implement the outer loop control. If the robot has more or fewer than six
joints, then the Jacobians are not square. In this case, other schemes have been
developed using, for example, the pseudoinverse in place of the inverse of the
Jacobian. See [?] for details.
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8.4 ROBUST AND ADAPTIVE MOTION CONTROL

A drawback to the implementation of the inverse dynamics control methodol-
ogy described in the previous section is the requirement that the parameters of
the system be known exactly. If the parameters are not known precisely, for
example, when the manipulator picks up an unknown load, then the ideal perfor-
mance of the inverse dynamics controller is no longer guaranteed. This section
is concerned with robust and adaptive motion control of manipulators. The
goal of both robust and adaptive control to maintain performance in terms of
stability, tracking error, or other specifications, despite parametric uncertainty,
external disturbances, unmodeled dynamics, or other uncertainties present in
the system. In distinguishing between robust control and adaptive control, we
follow the commonly accepted notion that a robust controller is a fixed con-
troller, static or dynamic, designed to satisfy performance specifications over a
given range of uncertainties whereas an adaptive controller incorporates some
sort of on-line parameter estimation. This distinction is important. For exam-
ple, in a repetitive motion task the tracking errors produced by a fixed robust
controller would tend to be repetitive as well whereas tracking errors produced
by an adaptive controller might be expected to decrease over time as the plant
and/or control parameters are updated based on runtime information. At the
same time, adaptive controllers that perform well in the face of parametric un-
certainty may not perform well in the face of other types of uncertainty such as
external disturbances or unmodeled dynamics. An understanding of the trade-
offs involved is therefore important in deciding whether to employ robust or
adaptive control design methods in a given situation.

Many of the fundamental theoretical problems in motion control of robot
manipulators were solved during an intense period of research from about the
mid-1980’s until the early-1990’s during which time researchers first began to
exploit fundamental structural properties of manipulator dynamics such as feed-
back linearizability, passivity, multiple time-scale behavior, and other properties
that we discuss below.

8.4.1 Robust Feedback Linearization

The feedback linearization approach relies on exact cancellation of nonlinear-
ities in the robot equations of motion. Its practical implementation requires
consideration of various sources of uncertainties such as modeling errors, un-
known loads, and computation errors. Let us return to the Euler-Lagrange
equations of motion

M(q)q̈ + C(q, q̇)q̇ + g(q) = u (8.40)

and write the inverse dynamics control input u as

u = M̂(q)aq + Ĉ(q, q̇)q̇ + ĝ(q) (8.41)
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where the notation (̂·) represents the computed or nominal value of (·) and
indicates that the theoretically exact feedback linearization cannot be achieved
in practice due to the uncertainties in the system. The error or mismatch
(̃·) = (·)− (̂·) is a measure of one’s knowledge of the system dynamics.

If we now substitute (8.41) into (8.40) we obtain, after some algebra,

q̈ = aq + η(q, q̇, aq) (8.42)

where

η = M−1(M̃aq + C̃q̇ + g̃) (8.43)

is called the Uncertainty. We note that

M−1M̃ = M−1M̂ − I =: E (8.44)

and so we may decompose η as

η = Eaq +M−1(C̃q̇ + g̃) (8.45)

We note that the system (8.42) is still nonlinear and coupled due to the uncer-
tainty η(q, q̇, aq). Thus we have no guarantee that the outer loop control given
by Equation (8.19) will satisfy desired tracking performance specifications. In
this chapter we discuss several design methods to modify the outer loop control
(??) to guarantee global convergence of the tracking error for the system (8.42).

8.4.1.1 Outer Loop Design via Lyapunov’s Second Method There are several
approaches to treat the robust feedback linearization problem outlined above.
We will discuss only one method, namely the so-called theory of guaran-
teed stability of uncertain systems, which is based on Lyapunov’s second
method. In this approach we set the outer loop control aq as

q̈ = q̈d(t) +KP (qd − q) +KD(q̇d − q̇) + δa (8.46)

In terms of the tracking error

e =
[
q̃
˙̃q

]
=
[
q − qd
q̇ − q̇d

]
(8.47)

we may write
ė = Ae+B{δa+ η} (8.48)

where

A =
[

0 I
−KP −KD

]
; B =

[
0
I

]
. (8.49)

Thus the double integrator is first stabilized by the linear feedback, −KP e −
KD ė, and δa is an additional control input that must be designed to overcome



ROBUST AND ADAPTIVE MOTION CONTROL 273

the potentially destabilizing effect of the uncertainty η. The basic idea is to
compute a time–varying scalar bound, ρ(e, t) ≥ 0, on the uncertainty η, i.e.,

||η|| ≤ ρ(e, t) (8.50)

and design the additional input term δa to guarantee ultimate boundedness of
the state trajectory x(t) in (8.48).

Returning to our expression for the uncertainty

η = Eq̈ +M−1(C̃q̇ + g̃) (8.51)
= Eδa+ E(q̈d −KP e−KD ė) +M−1(C̃q̇ + g̃) (8.52)

we assume a bound of the form

||η|| ≤ α||δa||+ γ1||e||+ γ2||e||2 + γ3 (8.53)

where α = ||E|| = ||M−1M̂ − I|| and γi are nonnegative constants. Assuming
for the moment that ||δa|| ≤ ρ(e, t), which must then be checked a posteriori,
we have

||η|| ≤ αρ(e, t) + γ1||e||+ γ2||e||2 + γ3 =: ρ(e, t) (8.54)

which defines ρ as

ρ(e, t) =
1

1− α
(γ1||e||+ γ2||e||2 + γ3) (8.55)

Since KP and KD are chosen in so that A in (8.48) is a Hurwitz matrix, we
choose Q > 0 and let P > 0 be the unique symmetric positive definite matrix
satisfying the Lyapunov equation,

ATP + PA = −Q. (8.56)

Defining the control δa according to

δa =


−ρ(e, t) BTPe

||BTPe|| ; if ||BTPe|| 6= 0

0 ; if ||BTPe|| = 0

(8.57)

it follows that the Lyapunov function V = eTPe satisfies V̇ ≤ 0 along solution
trajectories of the system (8.48). To show this result, we compute

V̇ = −eTQe+ 2eTPB{δa+ η} (8.58)

For simplicity, set w = BTPe and consider the second term, wT {δa+ η} in the
above expression. If w = 0 this term vanishes and for w 6= 0, we have

δa = −ρ w

||w||
(8.59)
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and (8.58) becomes, using the Cauchy-Schwartz inequality,

wT (−ρ w

||w||
+ η) ≤ −ρ||w||+ ||w||||η|| (8.60)

= ||w||(−ρ+ ||η||) ≤ 0 (8.61)

since ||η|| ≤ ρ and hence
V̇ < −eTQe (8.62)

and the result follows. Note that ||δa|| ≤ ρ as required.
Since the above control term δa is discontinuous on the manifold defined

by BTPe = 0, solution trajectories on this manifold are not well defined in
the usual sense. One may define solutions in a generalized sense, the so-called
Filipov solutions [?]. A detailed treatment of discontinuous control systems
is beyond the scope of this text. In practice, the discontinuity in the control
results in the phenomenon of chattering, as the control switches rapidly across
the manifold BTPe = 0. One may implement a continuous approximation to
the discontinuous control as

δa =


−ρ(e, t) BTPe

||BTPe|| ; if ||BTPe|| > ε

−ρ(e, t)ε BTPe ; if ||BTPe|| ≤ ε

(8.63)

In this case, since the control signal (8.63, a solution to the system (8.48) exists
and is uniformly ultimately bounded (u.u.b). Ssee Appendix C for the definition
of uniform ultimate boundedness.

Theorem 1 The origin of the system (8.48) is u.u.b. with respect to the set
S, defined below, using the continuous control law (8.63).

Proof: As before, choose V (e) = eTPe and compute

V̇ = −eTQe+ 2wT (δa+ η) (8.64)

≤ −eTQe+ 2wT (δa+ ρ
w

||w||
) (8.65)

with ||w|| = ||BTPe|| as above.
For ||w|| ≥ ε the argument proceeds as above and V̇ < 0. For ||w|| ≤ ε the

second term above becomes

2wT (−ρ
ε
w + ρ

w

||w||
)

= −2
ρ

ε
||w||2 + 2ρ||w||

This expression attains a maximum value of ερ2 when ||w|| = ε
2 . Thus we have

V̇ = −eTQe+ ε
ρ

2
< 0 (8.66)
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provided
−eTQe > ε

ρ

2
(8.67)

Using the relationship

λmin(Q)||e||2 ≤ eTQe ≤ λmax(Q)||e||2 (8.68)

where λmin(Q), λmax(Q) denote the minimum and maximum eigenvalues, re-
spectively, of the matrix Q, we have that V̇ < 0 if

λmin(Q)||e||2 ≥ ερ
2

(8.69)

or, equivalently

||e|| ≥
(

ερ

2λmin(Q)

) 1
2

=: δ (8.70)

Let Sδ denote the smallest level set of V containing B(δ), the ball of radius
δ and let Br denote the smallest ball containing Sδ. Then all solutions of the
closed loop system are u.u.b. with respect to S := Br. The situation is shown
in Figure 8.2. All trajectories will eventually enter the ball, Br; in fact, all
trajectories will reach the boundary of Sδ since V̇ is negative definite outside
of Sδ.

Fig. 8.2 Uniform Ultimate Boundedness Set

8.4.2 Passivity Based Robust Control

In this section we derive an alternative robust control algorithm which exploits
the passivity and linearity in the parameters of the rigid robot dynamics. This
methods are qualitatively different from the previous methods which were based
on feedback linearization. In the passivity based approach we modify the inner
loop control as

u = M̂(q)a+ Ĉ(q, q̇)v + ĝ(q)−Kr. (8.71)

where v, a, and r are given as

v = q̇d − Λq̃
a = v̇ = q̈d − Λ ˙̃q
r = q̇d − v = ˙̃q + Λq̃

withK, Λ diagonal matrices of positive gains. In terms of the linear parametriza-
tion of the robot dynamics, the control (8.71) becomes

u = Y (q, q̇, a, v)θ̂ −Kr (8.72)
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and the combination of (8.71) with (8.40) yields

M(q)ṙ + C(q, q̇)r +Kr = Y (θ − θ0). (8.73)

Note that, unlike the inverse dynamics control, the modified inner loop control
(8.40) does not achieve a linear, decoupled system, even in the known parameter
case θ̂ = θ.

In the robust passivity based approach of [?], the term θ̂ in (8.72) is chosen
as

θ̂ = θ0 + u (8.74)

where θ0 is a fixed nominal parameter vector and u is an additional control
term. The system (8.73) then becomes

M(q)ṙ + C(q, q̇)r +Kr = Y (a, v, q, q̇)(θ̃ + u) (8.75)

where θ̃ = θ0−θ is a constant vector and represents the parametric uncertainty
in the system. If the uncertainty can be bounded by finding a nonnegative
constant, ρ ≥ 0, such that

‖θ̃‖ = ‖θ0 − θ‖ ≤ ρ, (8.76)

then the additional term u can be designed according to the expression,

u =


−ρ Y T r
||Y T r|| ; if ||Y T r|| > ε

−ρε Y
T r ; if ||Y T r|| ≤ ε

(8.77)

The Lyapunov function

V =
1
2
rTM(q)r + q̃TΛKq̃ (8.78)

is used to show uniform ultimate boundedness of the tracking error. Calculating
V̇ yields

V̇ = rTMṙ +
1
2
rT Ṁr + 2q̃TΛK˙̃q (8.79)

= −rTKr + 2q̃TΛK ˙̃q +
1
2
rT (Ṁ − 2C)r + rTY (θ̃ + u) (8.80)

Using the passivity property and the definition of r, this reduces to

V̇ = −q̃TΛTKΛq̃ − ˙̃qTK ˙̃q + rTY (θ̃ + u) (8.81)

Defining w = Y T r and

Q =
[

ΛTKΛ 0
0 ΛK

]
(8.82)
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and mimicking the argument in the previous section, we have

V̇ = −eTQe+ wT (u+ θ̃) (8.83)

= −eTQe+ wT (u+ ρ
w

||w||
) (8.84)

Uniform ultimate boundedness of the tracking error follows with the control u
from (8.77) exactly as in the proof of Theorem 1.

Comparing this approach with the approach in the section (8.4.1), we see
that finding a constant bound ρ for the constant vector θ̃ is much simpler
than finding a time–varying bound for η in (8.43). The bound ρ in this case
depends only on the inertia parameters of the manipulator, while ρ(x, t) in
(8.50) depends on the manipulator state vector, the reference trajectory and,
in addition, requires some assumptions on the estimated inertia matrix M̂(q).

8.4.3 Passivity Based Adaptive Control

In the adaptive approach the vector θ̂ in (8.72) is taken to be a time-varying
estimate of the true parameter vector θ. Combining the control law (8.71) with
(8.40) yields

M(q)ṙ + C(q, q̇)r +Kr = Y θ̃ (8.85)

The parameter estimate θ̂ may be computed using standard methods such as
gradient or least squares. For example, using the gradient update law

˙̂
θ = −Γ−1Y T (q, q̇, a, v)r (8.86)

together with the Lyapunov function

V =
1
2
rTM(q)r + q̃TΛKq̃ +

1
2
θ̃TΓθ̃ (8.87)

results in global convergence of the tracking errors to zero and boundedness of
the parameter estimates.

To show this, we first note an important difference between the adaptive
control approach and the robust control approach from the previous section. In
the robust approach the state vector of the system is (q̃, ˙̃q)T . In the adaptive
control approach, the fact that θ̃ satisfies the differential equation (8.86)4 means
that the complete state vector now includes θ̃ and the state equations are given
by the couple system (8.85)-(8.86). For this reason we included the positive
definite term 1

2 θ̃
TΓθ̃ in the Lyapunov function (8.87).

If we now compute V̇ along trajectories of the system (8.85), we obtain

V̇ = −q̃TΛTKΛq̃ − ˙̃qTK ˙̃q + θ̃T {Γ ˙̂
θ + Y T r} (8.88)

4Note that
˙̃
θ =

˙̂
θ since the parameter vector θ is constant
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Substituting the expression for ˙̂
θ from gradient update law (8.86) into (8.88)

yields

V̇ = −q̃TΛTKΛq̃ − ˙̃qTK ˙̃q = −eTQe ≤ 0 (8.89)

where e and Q are defined as before, showing that the closed loop system is
stable in the sense of Lyapunov.

Remark 8.1 Note that we have claimed only that the Lyapunov function is
negative semi-definite, not negative definite since V̇ does not contain any terms
that are negative definite in θ̃. In fact, this situation is common in most gra-
dient based adaptive control schemes and is a fundamental reason for several
difficulties that arise in adaptive control such as lack of robustness to external
disturbances and lack of parameter convergence. A detailed discussion of these
and other problems in adaptive control is outside the scope of this text.

Returning to the problem at hand, although we conclude only stability in the
sense of Lyapunov for the closed loop system (8.85)–(8.86), further analysis will
allow to reach stronger conclusions. First, note that since V̇ is nonincreasing,
the value of V (t) can be no greater than its value at t = 0. Since V consists of
a sum of nonnegative terms, this means that each of the terms r, q̃, and t̃heta
are bounded as functions of time, t. Thus we immediately conclude that the
parameter estimation error is bounded.

With regard to the tracking error, q̃, ˙̃q, we also note that, V̇ is not simply
negative but also quadratic in the error vector e(t). Integrating both sides of
Equation (8.89) gives

V (t)− V (0) = −
∫ t

0

et(σ)Qe(σ)dσ <∞ (8.90)

As a consequence, V is a so-called square integrable function. Such functions,
under some mild additional restrictions must tend to zero as t → ∞. Specifi-
cally, we may appeal to the following lemma[?]

Lemma 8.1 Suppose f : R 7→ R is a square integrable function and further
suppose that its derivative ḟ is bounded. Then f(t)→ 0 as t→∞.

We note that, since both r = ˙̃q + Λq̃ and q̃ have already been shown to be
bounded, it follows that ˙̃q is also bounded. Therefore we have that q̃ is square
integrable and its derivative is bounded. Hence the tracking error q̃ → 0 as
t→∞.

To show that the velocity tracking error also converges to zero, one must
appeal to the equations of motion (8.85). From Equation (8.85) one may argue
(Problem ??) that the acceleration q̈ is bounded. The result will follow assuming
that the reference acceleration q̈d(t) is also bounded (Problem ??).
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Problems

8-1 Form the Lagrangian for an n-link manipulator with joint flexibility using
(??)-(??). From this derive the dynamic equations of motion (??)-(??).

8-2 Complete the proof of stability of PD-control for the flexible joint robot
without gravity terms using (??) and LaSalle’s Theorem.

8-3 Suppose that the PD control law (??) is implemented using the link vari-
ables, that is,

u = Kpq1 −KD q̇1.

What can you say now about stability of the system? Note: This is a
difficult problem. Try to prove the following conjecture: Suppose that
B2 = 0 in (??). Then with the above PD control law, the system is
unstable. [Hint: Use Lyapunov’s First Method, that is, show that the
equilibrium is unstable for the linearized system.]

8-4 Using the control law (??) for the system (??)-(??), what is the steady
state error if the gravity terms are present?

8-5 Simulate an inverse dynamics control law for a two-link elbow manipulator
whose equations of motion were derived in Chapter ??. Investigate what
happens if there are bounds on the maximum available input torque.

8-6 For the system of Problem 8-5 what happens to the response of the system
if the coriolis and centrifugal terms are dropped from the inverse dynamics
control law in order to facilitate computation? What happens if incorrect
values are used for the link masses? Investigate via computer simulation.

8-7 Add an outer loop correction term ∆v to the control law of Problem 8-6
to overcome the effects of uncertainty. Base your design on the Second
Method of Lyapunov as in Section ??.

8-8 Consider the coupled nonlinear system

ÿ1 + 3y1y2 + y2
2 = u1 + y2u2

ÿ2 + cos y1ẏ2 + 3(y1 − y2) = u2 − 3(cos y1)2y2u1

where u1, u2 are the inputs and y1, y2 are the outputs.

a) What is the dimension of the state space?
b) Choose state variables and write the system as a system of first order

differential equations in state space.
c) Find an inverse dynamics control so that the closed loop system is

linear and decoupled, with each subsystem having natural frequency
10 radians and damping ratio 1/2.





9
FORCE CONTROL

9.1 INTRODUCTION

In previous chapters we considered the problem of tracking motion trajectories
using a variety of basic and advanced control methods. Such position control
schemes are adequate for tasks such as materials transfer or spot welding where
the manipulator is not interacting significantly with objects in the workplace
(hereafter referred to as the environment). However, tasks such as assembly,
grinding, and deburring, which involve extensive contact with the environment,
are often better handled by controlling the forces1 of interaction between the
manipulator and the environment rather than simply controlling the position
of the end-effector. For example, consider an application where the manipula-
tor is required to wash a window, or to write with a felt tip marker. In both
cases a pure position control scheme is unlikely to work. Slight deviations of
the end-effector from a planned trajectory would cause the manipulator either
to lose contact with the surface or to press too strongly on the surface. For
a highly rigid structure such as a robot, a slight position error could lead to
extremely large forces of interaction with disastrous consequences (broken win-
dow, smashed pen, damaged end-effector, etc.). The above applications are
typical in that they involve both force control and trajectory control. In the
window washing application, for example, one clearly needs to control the forces
normal to the plane of the window and position in the plane of the window.

1Hereafter we use force to mean force and/or torque and position to mean position and/or
orientation.

281
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A force control strategy is one that modifies position trajectories based on
the sensed force. There are three main types of sensors for force feedback, wrist
force sensors, joint torque sensors, and tactile or hand sensors. A wrist force
sensor such as that shown in Figure 9.1 usually consists of an array of strain

Fig. 9.1 A Wrist Force Sensor.

gauges and can delineate the three components of the vector force along the
three axes of the sensor coordinate frame, and the three components of the
torque about these axes. A joint torque sensor consists of strain gauges located
on the actuator shaft. Tactile sensors are usually located on the fingers of the
gripper and are useful for sensing gripping force and for shape detection. For
the purposes of controlling the end-effector/environment interactions, the six-
axis wrist sensor usually gives the best results and we shall henceforth assume
that the manipulator is equipped with such a device.

9.2 COORDINATE FRAMES AND CONSTRAINTS

Force control tasks can be thought of in terms of constraints imposed by
the robot/environment interaction. A manipulator moving through free space
within its workspace is unconstrained in motion and can exert no forces since
there is no source of reaction force from the environment. A wrist force sensor
in such a case would record only the inertial forces due to any acceleration of
the end-effector. As soon as the manipulator comes in contact with the en-
vironment, say a rigid surface as shown in Figure 9.2, one or more degrees of
freedom in motion may be lost since the manipulator cannot move through the
environment surface. At the same time the manipulator can exert forces against
the environment.

In order to describe the robot/environment interaction, let V = (v, ω) rep-
resent the instantaneous linear and angular velocity of the end-effector and let
F = (f, n) represent the instantaneous force and moment. The vectors V and F
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Fig. 9.2 Robot End-Effector in contact with a Rigid Surface

are each elements of six dimensional vector spaces, which we denote byM and
F , the motion and force spaces, respectively. The vectors V and F are called
Twists and Wrenches in more advanced texts [?] although we will continue to
refer to them simply as velocity and force for simplicity. If e1, . . . , e6 is a basis
for the vector space so(3), and f1, . . . , f6 is a basis for so∗(3), we say that these
basis vectors are reciprocal provided

eifj = 0 if i 6= j

eifj = 1 if i = j

We can define the product of V ∈ so(3) and F ∈ so∗(3) in the usual way as

V · F = V TF = vT f + ωTn (9.1)

The advantage of using reciprocal basis vectors is that the product V TF is
then invariant with respect to a linear change of basis from one reciprocal
coordinate system to another. We note that expressions such as V T1 V2 or FT1 F2

for vectors Vi, Fi belonging to so(3) and so∗(3), respectively, are not necessarily
well defined. For example, the expression

V T1 V2 = vT1 v2 + ωT1 ω2 (9.2)

is not invariant with respect to either choice of units or basis vectors in so(3). It
is possible to define inner product like operations, i.e. symmetric, bilinear forms
on so(3) and so∗(3), which have the necessary invariance properties. These are
the so-called Klein Form, KL(V1, V2), and Killing Form, KI(V1, V2), defined
according to

KL(V1, V2) = vT1 ω2 + ωT1 v2 (9.3)
KI(V1, V2) = ωT1 ω2 (9.4)
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However, a detailed discussion of these concepts is beyond the scope of this text.
As the reader may suspect, the need for a careful treatment of these concepts
is related to the geometry of SO(3) as we have seen before in other contexts.
Example 9.1 [?] Suppose that

V1 = (1, 1, 1, 2, 2, 2)T

V2 = (2, 2, 2,−1,−1,−1)T

where the linear velocity is in meters/sec and angular velocity is in radians/sec.
The clearly, V T1 V2 = 0 and so one could infer that V1 and V2 are orthogonal
vectors in so(3). However, suppose now that the linear velocity is represented
in units of centimeters/sec. Then

V1 = (1× 102, 1× 102, 1× 102, 2, 2, 2)T

V2 = (2× 102, 2× 102, 2× 102,−1,−1,−1)T

and clearly V T1 V2 6= 0. Thus, usual notion of orthogonality is not meaningful
in so(3). It is easy to show that the equality KL(V1, V2) = 0 (respectively,
KI(V1, V2) = 0) is independent of the units or the basis chosen to represent
V1 and V2. For example, the condition KI(V1, V2) = 0 means that the axes of
rotation defining ω1 and ω2 are orthogonal. �

We shall see in specific cases below that the reciprocity relation (9.1) may
be used to design reference inputs to execute motion and force control tasks.

9.2.1 Natural and Artificial Constraints

In this section we discuss so-called Natural Constraints which are defined using
the reciprocity condition (9.1). We then discuss the notion of Artificial Con-
straints, which are used to define reference inputs for motion and force control
tasks.

We begin by defining a so-called Compliance Frame ocxcyczc (also called a
Constraint Frame) in which the task to be performed is easily described. For
example in the window washing application we can define a frame at the tool
with the zc-axis along the surface normal direction. The task specification would
then be expressed in terms of maintaining a constant force in the zc direction
while following a prescribed trajectory in the xc − yc plane. Such a position
constraint in the zc direction arising from the presence of a rigid surface is a
natural constraint. The force that the robot exerts against the rigid surface
in the zc direction, on the other hand, is not constrained by the environment.
A desired force in the zc direction would then be considered as an artificial
constraint that must be maintained by the control system.

Figure 9.3 shows a typical task, that of inserting a peg into a hole. With
respect to a compliance frame ocxcyczc as shown at the end of the peg, we may
take the the standard orthonormal basis in <6 for both so(3) and so∗(3), in
which case

V TF = vxfx + vyfy + vzfz + ωxnx + ωyny + ωznz (9.5)
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If we assume that the walls of the hole and the peg are perfectly rigid and there
is no friction, it is easy to see that

vx = 0 vy = 0 fz = 0
ωx = 0 ωy = 0 nz = 0 (9.6)

and thus the reciprocity condition V TF = 0 is satisfied. These relation-
ships (9.6) are termed Natural Constraints.

Fig. 9.3 Inserting a peg into a hole.

Examining Equation (9.5) we see that the variables

fx fy vz nx ny ωz (9.7)

are unconstrained by the environment, i.e. given the natural constraints (9.6),
the reciprocity condition V TF = 0 holds for all values of the above variables
(9.7). We may therefore assign reference values, called Artificial Constraints,
for these variables that may then be enforced by the control system to carry out
the task at hand. For example, in the peg-in-hole task we may define artificial
constraints as

fx = 0 fy = 0 vz = vd

nx = 0 ny = 0 ωz = 0 (9.8)

where vd is the desired speed of insertion of the peg in the z-direction.
Figures 9.4 and 9.5 show natural and artificial constraints for two additional

tasks, that of turning a crank and and turning a screw, respectively.

9.3 NETWORK MODELS AND IMPEDANCE

The reciprocity condition V TF = 0 means that the forces of constraint do no
work in directions compatible with motion constraints and holds under the ideal
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Fig. 9.4 Turning a crank

Fig. 9.5 Turning a screw.

conditions of no friction and perfect rigidity of both the robot and environment.
In practice, compliance and friction in the robot/environment interface will
alter the strict separation between motion constraints and force constraints. For
example, consider the situation in Figure 9.6. Since the environment deforms in
response to a force, there is clearly both motion and force in the same direction,
i.e. normal to the surface. Thus the product V (t)F (t) along this direction will
not be zero. Let k represent the stiffness of the surface so that f = kx. Then∫ t

0

V (u)F (u)du =
∫ t

0

ẋ(u)kx(u)du = k

∫ t

0

d

du

1
2
kx2(u)du =

1
2
k(x2(t)− x2(0))(9.9)

is the change of the potential energy. The environment stiffness, k, determines
the amount of force needed to produce a given motion. The higher the value of
k the more the environment “impedes” the motion of the end-effector.

In this section we introduce the notion of Mechanical Impedance which cap-
tures the relation between force and motion. We introduce so-called Network
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Fig. 9.6 Compliant Environment

Models, which are particularly useful for modeling the robot/environment inter-
action. We model the robot and environment as One Port Networks as shown
in Figure 9.7. The dynamics of the robot and environment, respectively, deter-
mine the relation between the Port Variables, Vr, Fr, and Ve, Fe, respectively.
Fr, Fe are known as Effort or Across variables while Vr, Ve are known as Flow
or Through variables. In a mechanical system, such as a robot, force and veloc-
ity are the effort and flow variables while in an electrical system, voltage and
current are the effort and flow variables, respectively. With this description,

Fig. 9.7 One-Port Networks

the “product” of the port variables, V TF , represents instantaneous power and
the integral of this product ∫ t

0

V T (σ)F (σ)dσ

is the Energy dissipated by the Network over the time interval [0, t].
The robot and the environment are then coupled through their interaction

ports, as shown in Figure 9.8, which describes the energy exchange between the
robot and the environment.
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Fig. 9.8 Robot/Environment Interaction

9.3.1 Impedance Operators

The relationship between the effort and flow variables may be described in terms
of an Impedance Operator. For linear, time invariant systems, we may utilize
the s-domain or Laplace domain to define the Impedance.

Definition 9.1 Given the one-port network 9.7 the Impedance, Z(s) is defined
as the ratio of the Laplace Transform of the effort to the Laplace Transform of
the flow, i.e.

Z(s) =
F (s)
V (s)

(9.10)

Example 9.2 Suppose a mass-spring-damper system is described by the dif-
ferential equation

Mẍ+Bẋ+Kx = F (9.11)

Taking Laplace Transforms of both sides (assuming zero initial conditions) it
follows that

Z(s) = F (s)/V (s) = Ms+B +K/s (9.12)

�

9.3.2 Classification of Impedance Operators

Definition 9.2 An impedance Z(s) in the Laplace variable s is said to be

1. Inertial if and only if |Z(0)| = 0

2. Resistive if and only if |Z(0)| = B for some constant 0 < B <∞

3. Capacitive if and only if |Z(0)| =∞

Thus we classify impedance operators based on their low frequency or DC-gain,
which will prove useful in the steady state analysis to follow.
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Example 9.3 Figure 9.9 shows examples of environment types. Figure 9.9(a)
shows a mass on a frictionless surface. The impedance is Z(s) = Ms, which is
inertial. Figure 9.9(b) shows a mass moving in a viscous medium with resistance
B. Then Z(s) = Ms+B, which is resistive. Figure 9.9(c) shows a linear spring
with stiffness K. Then Z(s) = K/s, which is capacitive. �

Fig. 9.9 Inertial, Resistive, and Capacitive Environment Examples

9.3.3 Thévenin and Norton Equivalents

In linear circuit theory it is common to use so-called Thévenin and Norton
equivalent circuits for analysis and design. It is easy to show that any one-port
network consisting of passive elements (resistors, capacitors, inductors) and
active current or voltage sources can be represented either as an impedance,
Z(s), in series with an effort source (Thévenin Equivalent) or as an impedance,
Z(s), in parallel with a flow source (Norton Equivalent). The independent

Fig. 9.10 Thévenin and Norton Equivalent Networks
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sources, Fs and Vs may be used to represent reference signal generators for
force and velocity, respectively, or they may represent external disturbances.

9.4 TASK SPACE DYNAMICS AND CONTROL

Since a manipulator task specification, such as grasping an object, or inserting
a peg into a hole, is typically given relative to the end- effector frame, it is
natural to derive the control algorithm directly in the task space rather than
joint space coordinates.

9.4.1 Static Force/Torque Relationships

Interaction of the manipulator with the environment will produce forces and
moments at the end-effector or tool. Let F = (Fx, Fy, Fz, nx, ny, nz)T repre-
sent the vector of forces and torques at the end-effector, expressed in the tool
frame. Thus Fx, Fy, Fz are the components of the force at the end-effector, and
nx, ny, nz are the components of the torque at the end-effector.

Let τ denote the vector of joint torques, and let δX represent a virtual end-
effector displacement caused by the force F . Finally, let δq represent the cor-
responding virtual joint displacement. These virtual displacements are related
through the manipulator Jacobian J(q) according to

δX = J(q)δq. (9.13)

The virtual work δw of the system is

δw = FT δX − τT δq. (9.14)

Substituting (9.13)) into (9.14) yields

δw = (FTJ − τT )δq (9.15)

which is equal to zero if the manipulator is in equilibrium. Since the generalized
coordinates q are independent we have the equality

τ = J(q)TF. (9.16)

In other words the end-effector forces are related to the joint torques by the
transpose of the manipulator Jacobian according to (9.16).

Example 9.4 Consider the two-link planar manipulator of Figure 9.11, with
a force F = (Fx, Fy)T applied at the end of link two as shown. The Jacobian
of this manipulator is given by Equation (4.86). The resulting joint torques



TASK SPACE DYNAMICS AND CONTROL 291

Fig. 9.11 Two-link planar robot.

τ = (τ1, τ2) are then given as

[
τ1
τ2

]
=

[
−a1s1 − a2s12 a1c1 + a2c12 0 0 0 1
−a2s12 a2c12 0 0 0 1

]

Fx
Fy
Fz
nx
ny
nz

 .(9.17)

�

9.4.2 Task Space Dynamics

When the manipulator is in contact with the environment, the dynamic equa-
tions of Chapter 6 must be modified to include the reaction torque JTFe cor-
responding to the end-effector force Fe. Thus the equations of motion of the
manipulator in joint space are given by

M(q)q̈ + C(q, q̇)q̇ + g(q) + JT (q)Fe = u (9.18)

Let us consider a modified inverse dynamics control law of the form

u = M(q)aq + C(q, q̇)q̇ + g(q) + JT (q)af (9.19)

where aq and af are outer loop controls with units of acceleration and force,
respectively. Using the relationship between joint space and task space variables
derived in Chapter 8

ẍ = J(q)q̈ + J̇(q)q̇ (9.20)
ax = J(q)aq + J̇(q)q̇ (9.21)
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we substitute (9.19)-(9.21) into (9.18) to obtain

ẍ = ax +W (q)(Fe − af ) (9.22)

where W (q) = J(q)M−1(q)JT (q) is called the Mobility Tensor. There is often
a conceptual advantage to separating the position and force control terms by
assuming that ax is a function only of position and velocity and af is a function
only of force [?]. However, for simplicity, we shall take af = Fe to cancel the
environment force, Fe and thus recover the task space double integrator system

ẍ = ax (9.23)

and we will assume that any additional force feedback terms are included in the
outer loop term ax. This entails no loss of generality as long as the Jacobian
(hence W (q)) is invertible. This will become clear later in this chapter.

9.4.3 Impedance Control

In this section we discuss the notion of Impedance Control. We begin with an
example that illustrates in a simple way the effect of force feedback
Example 9.5 Consider the one-dimensional system in Figure 9.12 consisting

Fig. 9.12 One Dimensional System

of a mass, M , on a frictionless surface subject to an environmental force F and
control input u. The equation of motion of the system is

Mẍ = u− F (9.24)

With u = 0, the object “appears to the environment” as a pure inertia with mass
M . Suppose the control input u is chosen as a force feedback term u = −mF .
Then the closed loop system is

Mẍ = −(1 +m)F =⇒ M

1 +m
ẍ = −F (9.25)
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Hence, the object now appears to the environment as an inertia with mass
M

1 +m . Thus the force feedback has the effect of changing the apparent inertia
of the system. �

The idea behind Impedance Control is to regulate the mechanical impedance,
i.e., the apparent inertia, damping, and stiffness, through force feedback as in
the above example. For example, in a grinding operation, it may be useful
to reduce the apparent stiffness of the end-effector normal to the part so that
excessively large normal forces are avoided.

We may formulate Impedance Control within our standard inner loop/outer
loop control architecture by specifying the outer loop term, ax, in Equation (9.23).
Let xd(t) be a reference trajectory defined in task space coordinates and let Md,
Bd, Kd, be 6× 6 matrices specifying desired inertia, damping, and stiffness, re-
spectively. Let e(t) = x(t) − xd(t) be the tracking error in task space and set

ax = ẍd −M−1
d (Bdė+Kde+ F ) (9.26)

where F is the measured environmental force. Substituting (9.26) into (9.23)
yields the closed loop system

Mdë+Bdė+Kde = −F (9.27)

which results in desired impedance properties of the end-effector. Note that
for F = 0 tracking of the reference trajectory, xd(t), is achieved, whereas for
nonzero environmental force, tracking is not necessarily achieved. We will ad-
dress this difficulty in the next section.

9.4.4 Hybrid Impedance Control

In this section we introduce the notion of Hybrid Impedance Control following
the treatment of [?]. We again take as our starting point the linear, decou-
pled system (9.23). The impedance control formulation in the previous section
is independent of the environment dynamics. It is reasonable to expect that
stronger results may be obtained by incorporating a model of the environment
dynamics into the design. For example, we will illustrate below how one may
regulate both position and impedance simultaneously which is not possible with
the pure impedance control law (9.26).

We consider a one-dimensional system representing one component of the
outer loop system (9.23)

ẍi = axi
(9.28)

and we henceforth drop the subscript, i, for simplicity. We assume that the
impedance of the environment in this direction, Ze is fixed and known, a pri-
ori. The impedance of the robot, Zr, is of course determined by the control
input. The Hybrid Impedance Control design proceeds as follows based on the
classification of the environment impedance into inertial, resistive, or capacitive
impedances:
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1. If the environment impedance, Ze(s), is capacitive, use a Norton network
representation. Otherwise, use a Thévenin network representation2.

2. Represent the robot impedance as the Dual to the environment impedance.
Thévenin and Norton networks are considered dual to one another.

3. In the case that the environment impedance is capacitive we have the
robot/environment interconnection as shown in Figure 9.13 where the

Fig. 9.13 Capacitive Environment Case

environment one-port is the Norton network and the robot on-port is the
Thévenin network. Suppose that Vs = 0, i.e. there are no environmental
disturbances, and that Fs represents a reference force. From the circuit
diagram it is straightforward to show that

F

Fs
=

Ze(s)
Ze(s) + Zr(s)

(9.29)

Then the steady state force error, ess, to a step reference force, Fs = Fd

s
is given by the Final Value Theorem as

ess =
−Zr(0)

Zr(0) + Ze(0)
= 0 (9.30)

since Ze(0) = ∞ (capacitive environment) and Zr 6= 0 (non-capacitive
robot).

The implications of the above calculation are that we can track a constant
force reference value, while simultaneously specifying a given impedance,
Zr, for the robot.

In order to realize this result we need to design outer loop control term ax
in (9.28) using only position, velocity, and force feedback. This imposes a
practical limitation on the the achievable robot impedance functions, Zr.

2In fact, for a resistive environment, either representation may be used
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Suppose Z−1
r has relative degree one. This means that

Zr(s) = Mcs+ Zrem(s) (9.31)

where Zrem(s) is a proper rational function. If we now choose

ax = − 1
Mc

Zremẋ+
1
mc

(Fs − F ) (9.32)

Substituting this into the double integrator system ẍ = ax yields

Zr(s)ẋ = Fs − F (9.33)

Thus we have shown that, for a capacitive environment, force feedback can
be used to regulate contact force and specify a desired robot impedance.

4. In the case that the environment impedance is inertial we have the robot/environment
interconnection as shown in Figure 9.14 where the environment one-port

Fig. 9.14 Inertial Environment Case

is a Thévenin network and the robot on-port is a Norton network. Sup-
pose that Fs = 0, and that Vs represents a reference velocity. From the
circuit diagram it is straightforward to show that

V

Vs
=

Zr(s)
Ze(s) + Zr(s)

(9.34)

Then the steady state force error, ess, to a step reference velocity com-
mand, Vs = V d

s is given by the Final Value Theorem as

ess =
−Ze(0)

Zr(0) + Ze(0)
= 0 (9.35)

since Ze(0) = 0 (inertial environment) and Zr 6= 0 (non-inertial robot).

To achieve this non-inertia robot impedance we take, as before,

Zr(s) = Mcs+ Zrem(s) (9.36)
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and set
ax = ẍd +

1
Mc

Zrem(ẋd − ẋ) +
1
Mc

F (9.37)

Then, substituting this into the double integrator equation, ẍ = ax, yields

Zr(s)(ẋd − x) = F (9.38)

Thus we have shown that, for a capacitive environment, position control
can be used to regulate a motion reference and specify a desired robot
impedance.
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Problems

9-1 Given the two-link planar manipulator of Figure 9.11, find the joint torques
τ1 and τ2 corresponding to the end-effector force vector (−1,−1)T .

9-2 Consider the two-link planar manipulator with remotely driven links shown
in Figure 9.15. Find an expression for the motor torques needed to bal-

Fig. 9.15 Two-link manipulator with remotely driven link.

ance a force F at the end-effector. Assume that the motor gear ratios are
r1, r2, respectively.

9-3 What are the natural and artificial constraints for the task of inserting a
square peg into a square hole? Sketch the compliance frame for this task.

9-4 Describe the natural and artificial constraints associated with the task of
opening a box with a hinged lid. Sketch the compliance frame.

9-5 Discuss the task of opening a long two-handled drawer. How would you go
about performing this task with two manipulators? Discuss the problem
of coordinating the motion of the two arms. Define compliance frames for
the two arms and describe the natural and artificial constraints.

9-6 Given the following tasks, classify the environments as either Inertial,
Capacitive, or Resistive according to Definition 9.2

1. Turning a crank

2. Inserting a peg in a hole

3. Polishing the hood of a car

4. Cutting cloth
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5. Shearing a sheep

6. Placing stamps on envelopes

7. Cutting meat



10
GEOMETRIC
NONLINEAR

CONTROL
10.1 INTRODUCTION

In this chapter we present some basic, but fundamental, ideas from geomet-
ric nonlinear control theory. We first discuss the notion of feedback lin-
earization of nonlinear systems. This approach generalizes the concept of
inverse dynamics of rigid manipulators discussed in Chapter 8. The basic idea
of feedback linearization is to construct a nonlinear control law as a so-called
inner loop control which, in the ideal case, exactly linearizes the nonlinear
system after a suitable state space change of coordinates. The designer can
then design a second stage or outer loop control in the new coordinates to
satisfy the traditional control design specifications such as tracking, disturbance
rejection, and so forth.

In the case of rigid manipulators the inverse dynamics control of Chapter 8
and the feedback linearizing control are the same. However, as we shall see,
the full power of the feedback linearization technique for manipulator control
becomes apparent if one includes in the dynamic description of the manipulator
the transmission dynamics, such as elasticity resulting from shaft windup and
gear elasticity.

We also give an introduction to modeling and controllability of nonholonomic
systems. We treat systems such as mobile robots and other systems subject to
constraints arising from conservation of angular momentum or rolling contact.
We discuss the controllability of a particular class of such systems, known as
driftless systems. We present a result known as Chow’s Theorem, which
gives a sufficient condition for local controllability of driftless systems.

299
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10.2 BACKGROUND

In this section we give some background from differential geometry that is
necessary to understand the results to follow. In recent years an impressive
volume of literature has emerged in the area of differential geometric methods
for nonlinear systems, treating not only feedback linearization but also other
problems such as disturbance decoupling, estimation, etc. The reader is referred
to [?] for a comprehensive treatment of the subject. It is our intent here to give
only that portion of the theory that finds an immediate application to robot
control, and even then to give only the simplest versions of the results.

The fundamental notion in differential geometry is that of a differentiable
manifold (manifold for short) which is a topological space that is locally dif-
feomorphic1 to Euclidean space, Rm. For our purposes here a manifold may be
thought of as a subset of Rn defined by the zero set of a smooth vector valued
function2 h =: Rn → Rp, for p < n, i.e.

h1(x1, . . . , xn) = 0
...

hp(x1, . . . , xn) = 0

We assume that the differentials dh1, . . . , dhp are linearly independent at each
point in which case the dimension of the manifold is m = n − p. Given an
m-dimensional manifold, M , we may attach at each point x ∈ M a tangent
space, TxM , which is an m-dimensional vector space specifying the set of
possible velocities (directinal derivatives) at x.

Definition 10.1 A smooth vector field on a manifold M is a function
f : M → TxM which is infinitely differentiable, represented as a column
vector,

f(x) =

 f1(x)
...

fm(x)


Another useful notion is that of cotangent space and covector field. The
cotangent space, T ∗xM , is the dual space of the tangent space. It is an m-
dimensional vector space specifying the set of possible differentials of functions
at x. Mathematically, T ∗xM is the space of all linear functionals on TxM , i.e.,
the space of functions from TxM to R.

1A diffeomorphism is simply a differentiable function whose inverse exists and is also dif-
ferentiable. We shall assume both the function and its inverse to be infinitely differentiable.
Such functions are customarily referred to as C∞ diffeomorphisms
2Our definition amounts to the special case of an embedded submanifold of dimension
m = n− p in Rn
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Definition 10.2 A smooth covector field is a function w : M → T ∗xM
which is infinitely differentiable, represented as a row vector,

w(x) =
[
w1(x) . . . wm(x)

]
Henceforth, whenever we use the term function, vector field, or covector field, it
is assumed to be smooth. Since TxM and T ∗xM arem-dimensional vector spaces,
they are isomorphic and the only distinction we will make between vectors and
covectors below is whether or not they are represented as row vectors or column
vectors.
Example 10.1 Consider the unit sphere, S2, in R3 defined by

h(x, y, z) = x2 + y2 + z2 − 1 = 0

S2 is a two-dimensional submanifold of R3. At points in the upper hemisphere,

Fig. 10.1 The sphere as a manifold in R3

z =
√

1− x2 − y2, the tangent space is spanned by the vectors

v1 = (1, 0,−x/
√

1− x2 − y2)T (10.1)

v2 = (0, 1,−y/
√

1− x2 − y2)T (10.2)

The differential of h is

dh = (2x, 2y, 2z) = (2x, 2y, 2
√

1− x2 − y2) (10.3)

which is easily shown to be normal to the tangent plane at x, y, z. �
We may also have multiple vector fields defined simultaneously on a given

manifold. Such a set of vector fields will fill out a subspace of the tangent space
at each point. Likewise, we will consider multiple covector fields spanning a
subspace of the cotangent space at each point. These notions give rise to so-
called distributions and codistributions.
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Definition 10.3
1. Let X1(x), . . . , Xk(x) be vector fields on M , which are linearly independent

at each point. By a Distribution ∆ we mean the linear span (at each
x ∈M)

∆ = span {X1(x), . . . , Xk(x)} (10.4)

2. Likewise, let w1(x), . . . , wk(x) be covector fields on M , which are linearly
independent at each point. By a Codistribution Ω we mean the linear
span (at each x ∈M)

Ω = span{w1(x), . . . , wk(x)} (10.5)

A distribution therefore assigns a vector space ∆(x) at each point x ∈ M ; a
k-dimensional subspace of the m-dimensional tangent space TxM . A codistri-
bution likewise defines a k-dimensional subspace at each x of the m-dimensional
cotangent space T ∗xM . The reader may consult any text on differential geome-
try, for example [?], for more details.

Vector fields are used to define differential equations and their associated
flows. We restrict our attention here to nonlinear systems of the form

ẋ = f(x) + g1(x)1u+ . . . gm(x)um
=: f(x) +G(x)u (10.6)

where G(x) = [g1(x), . . . , gm(x)], u = (u1, . . . , um)T , and f(x), g1(x), . . . , gm(x)
are vector fields on a manifold M . For simplicity we will assume that M = Rn.

Definition 10.4 Let f and g be two vector fields on Rn. The Lie Bracket of
f and g, denoted by [f, g], is a vector field defined by

[f, g] =
∂g

∂x
f − ∂f

∂x
g (10.7)

where ∂g
∂x

(respectively, ∂f
∂x

) denotes the n × n Jacobian matrix whose ij-th

entry is ∂gi
∂xj

(respectively, ∂fi
∂xj

).

Example 10.2 Suppose that vector fields f(x) and g(x) on R3 are given as

f(x) =

 x2

sinx1

x2
3 + x1

 g(x) =

 0
x2

2

0


Then the vector field [f, g] is computed according to (10.7) as

[f, g] =

 0 0 0
0 2x2 0
0 0 0

 x2

sinx1

x1 + x2
3

−
 0 1 0

cosx1 0 0
1 0 2x3

 0
x2

2

1


=

 −x2
2

2x2 sinx1

−2x3


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�
We also denote [f, g] as adf (g) and define adkf (g) inductively by

adkf (g) = [f, adk−1
f (g)] (10.8)

with ad0
f (g) = g.

Definition 10.5 Let f : Rn → Rn be a vector field on Rn and let h : Rn → R
be a scalar function. The Lie Derivative of h, with respect to f , denoted Lfh,
is defined as

Lfh =
∂h

∂x
f(x) =

n∑
i=1

∂h

∂xi
fi(x) (10.9)

The Lie derivative is simply the directional derivative of h in the direction of
f(x), equivalently the inner product of the gradient of h and f . We denote by
L2
fh the Lie Derivative of Lfh with respect to f , i.e.

L2
fh = Lf (Lfh) (10.10)

In general we define

Lkfh = Lf (Lk−1
f h) for k = 1, . . . , n (10.11)

with L0
fh = h.

The following technical lemma gives an important relationship between the
Lie Bracket and Lie derivative and is crucial to the subsequent development.

Lemma 10.1 Let h : Rn → R be a scalar function and f and g be vector fields
on Rn. Then we have the following identity

L[f,g]h = LfLgh− LgLfh (10.12)

Proof: Expand Equation (10.12) in terms of the coordinates x1, . . . , xn and
equate both sides. The i-th component [f, g]i of the vector field [f, g] is given
as

[f, g]i =
n∑
j=1

∂gi
∂xj

fj −
n∑
j=1

∂fi
∂xj

gj

Therefore, the left-hand side of (10.12) is

L[f,g]h =
n∑
i=1

∂h

∂xi
[f, g]i

=
n∑
i=1

∂h

∂xi

 n∑
j=1

∂gi
∂xj

fj −
n∑
j=1

∂fi
∂xj

gj


=

n∑
i=1

n∑
j=1

∂h

∂xi

(
∂gi
∂xj

fj −
∂fi
∂xj

gj

)
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If the right hand side of (10.12) is expanded similarly it can be shown, with a
little algebraic manipulation, that the two sides are equal. The details are left
as an exercise (Problem 10-1).

10.2.1 The Frobenius Theorem

In this section we present a basic result in differential geometry known as the
Frobenius Theorem. The Frobenius Theorem can be thought of as an exis-
tence theorem for solutions to certain systems of first order partial differential
equations. Although a rigorous proof of this theorem is beyond the scope of this
text, we can gain an intuitive understanding of it by considering the following
system of partial differential equations

∂z

∂x
= f(x, y, z) (10.13)

∂z

∂y
= g(x, y, z) (10.14)

In this example there are two partial differential equations in a single dependent
variable z. A solution to (10.13)-(10.14) is a function z = φ(x, y) satisfying

∂φ

∂x
= f(x, y, φ(x, y)) (10.15)

∂φ

∂y
= g(x, y, φ(x, y)) (10.16)

We can think of the function z = φ(x, y) as defining a surface in R3 as in
Figure 10.2. The function Φ : R2 → R3 defined by

Fig. 10.2 Integral manifold in R3

Φ(x, y) = (x, y, φ(x, y)) (10.17)
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then characterizes both the surface and the solution to the system of Equa-
tions (10.13)-(10.14). At each point (x, y) the tangent plane to the surface is
spanned by two vectors found by taking partial derivatives of Φ in the x and y
directions, respectively, that is, by

X1 = (1, 0, f(x, y, φ(x, y)))T

X2 = (0, 1, g(x, y, φ(x, y)))T (10.18)

The vector fields X1 and X2 are linearly independent and span a two dimen-
sional subspace at each point. Notice that X1 and X2 are completely specified
by the system of Equations (10.13)-(10.14). Geometrically, one can now think
of the problem of solving the system of first order partial differential Equa-
tions (10.13)-(10.14) as the problem of finding a surface in R3 whose tangent
space at each point is spanned by the vector fields X1 and X2. Such a surface, if
it can be found, is called an integral manifold for the system (10.13)-(10.14).
If such an integral manifold exists then the set of vector fields, equivalently, the
system of partial differential equations, is called completely integrable.

Let us reformulate this problem in yet another way. Suppose that z = φ(x, y)
is a solution of (10.13)-(10.14). Then it is a simple computation (Problem 10-2)
to check that the function

h(x, y, z) = z − φ(x, y) (10.19)

satisfies the system of partial differential equations

LX1h = 0
LX2h = 0 (10.20)

Conversely, suppose a scalar function h can be found satisfying (10.20), and
suppose that we can solve the equation

h(x, y, z) = 0 (10.21)

for z, as z = φ(x, y).3 Then it can be shown that φ satisfies (10.13)-(10.14).
(Problem 10-3) Hence, complete integrability of the set of vector fields (X1, X2)
is equivalent to the existence of h satisfying (10.20). With the preceding dis-
cussion as background we state the following

Definition 10.6 A distribution δ = span{X1, . . . , Xm} on Rn is said to be
completely integrable if and only if there are n − m linearly independent
functions h1, . . . , hn−m satisfying the system of partial differential equations

LXihj = 0 for 1 ≤ i ≤ n ; 1 ≤ j ≤ m (10.22)

3The so-called bf Implicit Function Theorem states that (10.21) can be solved for z as long

as ∂h
∂z

6= 0.
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Definition 10.7 A distribution δ = span{X1, . . . , Xm} is said to be involu-
tive if and only if there are scalar functions αijk : Rn → R such that

[Xi, Xj ] =
m∑
k=1

αijkXk for all i, j, k (10.23)

Involutivity simply means that if one forms the Lie Bracket of any pair of
vector fields in ∆ then the resulting vector field can be expressed as a linear
combination of the original vector fields X1, . . . , Xm. Note that the coefficients
in this linear combination are allowed to be smooth functions on Rn. In the
simple case of (10.13)-(10.14) one can show that if there is a solution z = φ(x, y)
of (10.13)-(10.14) then involutivity of the set {X1, X2} defined by (10.22) is
equivalent to interchangeability of the order of partial derivatives of φ, that is,
∂2φ
∂x∂y

= ∂2φ
∂y∂x

. The Frobenius Theorem, stated next, gives the conditions for

the existence of a solution to the system of partial differential Equations (10.22).

Theorem 2 A distribution ∆ is completely integrable if and only if it is invo-
lutive.

Proof: See, for example, Boothby [?].

10.3 FEEDBACK LINEARIZATION

To introduce the idea of feedback linearization consider the following simple
system,

ẋ1 = a sin(x2) (10.24)
ẋ2 = −x2

1 + u (10.25)

Note that we cannot simply choose u in the above system to cancel the nonlinear
term a sin(x2). However, if we first change variables by setting

y1 = x1 (10.26)
y2 = a sin(x2) = ẋ1 (10.27)

then, by the chain rule, y1 and y2 satisfy

ẏ1 = y2
ẏ2 = a cos(x2)(−x2

1 + u) (10.28)

We see that the nonlinearities can now be cancelled by the input

u =
1

a cos(x2)
v + x2

1 (10.29)
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which result in the linear system in the (y1, y2) coordinates

ẏ1 = y2
ẏ2 = v

(10.30)

The term v has the interpretation of an outer loop control and can be de-
signed to place the poles of the second order linear system (10.30) in the coor-
dinates (y1, y2). For example the outer loop control

v = −k1y1 − k2y2 (10.31)

applied to (10.30) results in the closed loop system

ẏ1 = y2 (10.32)
ẏ2 = −k1y1 − k2y2

which has characteristic polynomial

p(s) = s2 + k2s+ k1 (10.33)

and hence the closed loop poles of the system with respect to the coordi-
nates (y1, y2) are completely specified by the choice of k1 and k2. Figure 10.3
illustrates the inner loop/outer loop implementation of the above control strat-

Fig. 10.3 Feedback linearization control architecture

egy. The response in the y variables is easy to determine. The corresponding
response of the system in the original coordinates (x1, x2) can be found by
inverting the transformation (10.26)-(10.27), in this case

x1 = y1
x2 = sin−1(y2/a) − a < y2 < +a (10.34)

This example illustrates several important features of feedback linearization.
The first thing to note is the local nature of the result. We see from (10.26)
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and (10.27) that the transformation and the control make sense only in the
region −∞ < x1 < ∞, −π2 < x2 <

π
2 . Second, in order to control the linear

system (10.30), the coordinates (y1, y2) must be available for feedback. This can
be accomplished by measuring them directly if they are physically meaningful
variables, or by computing them from the measured (x1, x2) coordinates using
the transformation (10.26)-(10.27). In the latter case the parameter a must be
known precisely.

In Section 10.4 give necessary and sufficient conditions under which a general
single-input nonlinear system can be transformed into a linear system in the
above fashion, using a nonlinear change of variables and nonlinear feedback as
in the above example.

10.4 SINGLE-INPUT SYSTEMS

The idea of feedback linearization is easiest to understand in the context of
single-input systems. In this section we derive the feedback linearization result
of Su [?] for single-input nonlinear systems. As an illustration we apply this
result to the control of a single-link manipulator with joint elasticity.

Definition 10.8 A single-input nonlinear system

ẋ = f(x) + g(x)u (10.35)

where f(x) and g(x) are vector fields on Rn, f(0) = 0, and u ∈ R, is said to be
feedback linearizable if there exists a diffeomorphism T : U → Rn, defined
on an open region U in Rn containing the origin, and nonlinear feedback

u = α(x) + β(x)v (10.36)

with β(x) 6= 0 on U such that the transformed variables

y = T (x) (10.37)

satisfy the linear system of equations

ẏ = Ay + bv (10.38)

where

A =


0 1 0 0
0 0 1 ·
· · · · ·
· · · · ·
· · · 1
0 0 · · 0 0

 b =


0
0
·
·
·
1

 (10.39)

Remark 10.1 The nonlinear transformation (10.37) and the nonlinear control
law (10.36), when applied to the nonlinear system (10.35), result in a linear
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controllable system (10.38). The diffeomorphism T (x) can be thought of as a
nonlinear change of coordinates in the state space. The idea of feedback lin-
earization is then that if one first changes to the coordinate system y = T (x),
then there exists a nonlinear control law to cancel the nonlinearities in the sys-
tem. The feedback linearization is said to be global if the region U is all of
Rn.

We next derive necessary and sufficient conditions on the vector fields f and
g in (10.35) for the existence of such a transformation. Let us set

y = T (x) (10.40)

and see what conditions the transformation T (x) must satisfy. Differentiating
both sides of (10.40) with respect to time yields

ẏ =
∂T

∂x
ẋ (10.41)

where ∂T
∂x

is the Jacobian matrix of the transformation T (x). Using (10.35)
and (10.38), Equation (10.41) can be written as

∂T

∂x
(f(x) + g(x)u) = Ay + bv (10.42)

In component form with

T =


T1

·
·
·
Tn

 A =


0 1 0 0
0 0 1 ·
· · · · ·
· · · · ·
· · · 1
0 0 · · 0 0

 b =


0
0
·
·
·
1

 (10.43)

we see that the first equation in (10.42) is

∂T1

∂x1
ẋ1 + · · ·+ ∂T1

∂xn
ẋn = T2 (10.44)

which can be written compactly as

LfT1 + LgT1u = T2 (10.45)

Similarly, the other components of T satisfy

LfT2 + LgT2u = T3

...
LfTn + LgTnu = v

(10.46)



310 GEOMETRIC NONLINEAR CONTROL

Since we assume that T1, . . . , Tn are independent of u while v is not independent
of u we conclude from (10.46) that

LgT1 = LgT2 = · · · = LgTn−1 = 0 (10.47)
LgTn 6= 0 (10.48)

This leads to the system of partial differential equations

LfTi = Ti+1 i = 1, . . . n− 1 (10.49)

together with

LfTn + LgTnu = v (10.50)

Using Lemma 10.1 and the conditions (10.47) and (10.48) we can derive a
system of partial differential equations in terms of T1 alone as follows. Using
h = T1 in Lemma 10.1 we have

L[f,g]T1 = LfLgT1 − LgLfT1 = 0− LgT2 = 0 (10.51)

Thus we have shown

L[f,g]T1 = 0 (10.52)

By proceeding inductively it can be shown (Problem 10-4) that

Ladk
fg
T1 = 0 k = 0, 1, . . . n− 2 (10.53)

Ladn−1
f gT1 6= 0 (10.54)

If we can find T1 satisfying the system of partial differential Equations (10.53),
then T2, . . . , Tn are found inductively from (10.49) and the control input u is
found from

LfTn + LgTnu = v (10.55)

as

u =
1

LgTn
(v − LfTn) (10.56)

We have thus reduced the problem to solving the system (10.53) for T1.
When does such a solution exist?

First note that the vector fields g, adf (g), . . . , adn−1
f (g) must be linearly

independent. If not, that is, if for some index i

adif (g) =
i−1∑
k=0

αkad
k
f (g) (10.57)
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then adn−1
f (g) would be a linear combination of g, adf (g), . . . , adn−2

f (g) and
(10.54) could not hold. Now by the Frobenius Theorem (10.53) has a solution
if and only if the distribution ∆ = span{g, adf (g), . . . , adn−2

f (g)} is involutive.
Putting this together we have shown the following

Theorem 3 The nonlinear system

ẋ = f(x) + g(x)u (10.58)

with f(x), g(x) vector fields, and f(0) = 0 is feedback linearizable if and only
if there exists a region U containing the origin in Rn in which the following
conditions hold:

1. The vector fields {g, adf (g), . . . , adn−1
f (g)} are linearly independent in U

2. The distribution span{g, adf (g), . . . , adn−2
f (g)} is involutive in U

Example 10.3 [?] Consider the single link manipulator with flexible joint
shown in Figure 10.4. Ignoring damping for simplicity, the equations of motion

Fig. 10.4 Single-Link Flexible Joint Robot

are

Iq̈1 +Mgl sin(q1) + k(q1 − q2) = 0
Jq̈2 + k(q2 − q1) = u

(10.59)

Note that since the nonlinearity enters into the first equation the control u
cannot simply be chosen to cancel it as in the case of the rigid manipulator
equations.

In state space we set

x1 = q1 x2 = q̇1
x3 = q2 x4 = q̇2

(10.60)
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and write the system (10.59) as

ẋ1 = x2

ẋ2 = −MgL
I sin(x1)− k

I (x1 − x3)
ẋ3 = x4

ẋ4 = k
J (x1 − x3) + 1

J u

(10.61)

The system is thus of the form (10.35) with

f(x) =


x2

−MgL
I sin(x1)− k

I (x1 − x3)
x4

k
J (x1 − x3)

 g(x) =


0
0
0
1
J

 (10.62)

Therefore n = 4 and the necessary and sufficient conditions for feedback lin-
earization of this system are that

rank
[
g, adf (g), ad2

f (g), ad
3
f (g)

]
= 4 (10.63)

and that the set

{g, adf (g), ad2
f (g)} (10.64)

be involutive. Performing the indicated calculations it is easy to check that
(Problem 10-6)

[g, adf (g), ad2
f (g), ad

3
f (g)] =


0 0 0 k

IJ

0 0 k
IJ 0

0 1
J 0 − k

J2
1
J 0 − k

J2 0

 (10.65)

which has rank 4 for k > 0, I, J < ∞. Also, since the vector fields {g, adf (g),
ad2
f (g)} are constant, they form an involutive set. To see this it suffices to note

that the Lie Bracket of two constant vector fields is zero. Hence the Lie Bracket
of any two members of the set of vector fields in (10.64) is zero which is trivially
a linear combination of the vector fields themselves. It follows that the system
(10.59) is feedback linearizable. The new coordinates

yi = Ti i = 1, . . . , 4 (10.66)

are found from the conditions (10.53), with n = 4, that is

LgT1 = 0
L[f,g]T1 = 0
Lad2fgT1 = 0
Lad3fgT1 = 0

(10.67)
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Carrying out the above calculations leads to the system of equations (Prob-
lem 10-9)

∂T1

∂x2
= 0 ;

∂T1

∂x3
= 0 ;

∂T1

∂x4
= 0 (10.68)

and

∂T1

∂x1
6= 0 (10.69)

From this we see that the function T1 should be a function of x1 alone. There-
fore, we take the simplest solution

y1 = T1 = x1 (10.70)

and compute from (10.49) (Problem 10-10)

y2 = T2 = LfT1 = x2

y3 = T3 = LfT2 = −MgL
I sin(x1)− k

I (x1 − x3)
y4 = T4 = LfT3 = −MgL

I cos(x1)− k
I (x2 − x4)

(10.71)

The feedback linearizing control input u is found from the condition

u =
1

LgT4
(v − LfT4) (10.72)

as (Problem 10-11)

u =
IJ

k
(v − a(x)) = β(x)v + α(x) (10.73)

where

a(x) :=
MgL

I
sin(x1)

(
x2

2 +
MgL

I
cos(x1) +

k

I

)
(10.74)

+
k

I
(x1 − x3)

(
k

I
+
k

J
+
MgL

I
cos(x1)

)
�

Therefore in the coordinates y1, . . . , y4 with the control law (10.73) the sys-
tem becomes

ẏ1 = y2
ẏ2 = y3
ẏ3 = y4
ẏ4 = v

(10.75)

or, in matrix form,

ẏ = Ay + bv (10.76)
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where

A =


0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0

 b =


0
0
0
1

 (10.77)

Remark 10.2 The above feedback linearization is actually global. In order to
see this we need only compute the inverse of the change of variables (10.70)-
(10.71). Inspecting (10.70)-(10.71) we see that

x1 = y1

x2 = y2

x3 = y1 +
I

k

(
y3 +

MgL

I
sin(y1)

)
(10.78)

x4 = y2 +
I

k

(
y4 +

MgL

I
cos(y1)y2

)
The inverse transformation is well defined and differentiable everywhere and,
hence, the feedback linearization for the system (10.59) holds globally. The
transformed variables y1, . . . , y4 are themselves physically meaningful. We see
that

y1 = x1 = link position
y2 = x2 = link velocity
y3 = ẏ2 = link acceleration
y4 = ẏ3 = link jerk

(10.79)

Since the motion trajectory of the link is typically specified in terms of these
quantities they are natural variables to use for feedback.

Example 10.4 One way to execute a step change in the link position while
keeping the manipulator motion smooth would be to require a constant jerk
during the motion. This can be accomplished by a cubic polynomial trajectory
using the methods of Chapter 5.6. Therefore, let us specify a trajectory

θd` (t) = yd1 = a1 + a2t+ a3t
2 + a4t

3 (10.80)

so that

yd2 = ẏd1 = a2 + 2a3t+ 3a4t
2

yd3 = ẏd2 = 2a3 + 6a4t

yd4 = ẏd3 = 6a4

Then a linear control law that tracks this trajectory and that is essentially equiv-
alent to the feedforward/feedback scheme of Chapter 8 is given by

v = ẏd4 − k1(y1 − yd1)− k2(y2 − yd2)− k3(y3 − yd3)− k4(y4 − yd4) (10.81)
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Applying this control law to the fourth order linear system (10.73) we see that
the tracking error e(t) = y1 − yd1 satisfies the fourth order linear equation

d4e

dt4
+ k4

d3e

dt3
+ k3

d2e

dt2
+ k2

de

dt
+ k1e = 0 (10.82)

and, hence, the error dynamics are completely determined by the choice of gains
k1, . . . , k4. �

Notice that the feedback control law (10.81) is stated in terms of the vari-
ables y1, . . . , y4. Thus, it is important to consider how these variables are to be
determined so that they may be used for feedback in case they cannot be mea-
sured directly. Although the first two variables, representing the link position
and velocity, are easy to measure, the remaining variables, representing link ac-
celeration and jerk, are difficult to measure with any degree of accuracy using
present technology. One could measure the original variables x1, . . . , x4 which
represent the motor and link positions and velocities, and compute y1, . . . , y4
using the transformation Equations (10.70)-(10.71). In this case the parameters
appearing in the transformation equations would have to be known precisely.
Another, and perhaps more promising, approach is to construct a dynamic
observer to estimate the state variables y1, . . . , y4.

10.5 FEEDBACK LINEARIZATION FOR N -LINK ROBOTS

In the general case of an n-link manipulator the dynamic equations represent
a multi-input nonlinear system. The conditions for feedback linearization of
multi-input systems are more difficult to state, but the conceptual idea is the
same as the single-input case. That is, one seeks a coordinate systems in which
the nonlinearities can be exactly canceled by one or more of the inputs. In the
multi-input system we can also decouple the system, that is, linearize the system
in such a way that the resulting linear system is composed of subsystems, each
of which is affected by only a single one of the outer loop control inputs. Since
we are concerned only with the application of these ideas to manipulator control
we will not need the most general results in multi-input feedback linearization.
Instead, we will use the physical insight gained by our detailed derivation of
this result in the single-link case to derive a feedback linearizing control both
for n-link rigid manipulators and for n-link manipulators with elastic joints
directly.

Example 10.5 We will first verify what we have stated previously, namely
that for an n-link rigid manipulator the feedback linearizing control is identical
to the inverse dynamics control of Chapter 8. To see this, consider the rigid
equations of motion (8.6), which we write in state space as

ẋ1 = x2

ẋ2 = −M(x1)−1(C(x1, x2)x2 + g(x1)) +M(x1)−1u
(10.83)
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with x1 = q; x2 = q̇. In this case a feedback linearizing control is found by
simply inspecting (10.83) as

u = M(x1)v + C(x1, x2)x2 + g(x1) (10.84)

Substituting (10.84) into (10.83) yields

ẋ1 = x2

ẋ2 = v
(10.85)

Equation (10.85) represents a set of n-second order systems of the form

ẋ1i = x2i

ẋ2i = vi, i = 1, . . . , n (10.86)

Comparing (10.84) with (8.17) we see indeed that the feedback linearizing control
for a rigid manipulator is precisely the inverse dynamics control of Chapter 8.
�

Example 10.6 If the joint flexibility is included in the dynamic description of
an n-link robot the equations of motion can be written as[?]

D(q1)q̈1 + C(q1, q̇1)q̇1 + g(q1) +K(q1 − q2) = 0
Jq̈2 −K(q1 − q2) = u

(10.87)

In state space, which is now R4n, we define state variables in block form

ẋ1 = q1 x2 = q̇1
ẋ3 = q2 x4 = q̇2

(10.88)

Then from (10.87) we have:

ẋ1 = x2

ẋ2 = −D(x1)−1{h(x1, x2) +K(x1 − x3)}
ẋ3 = x4

ẋ4 = J−1K(x1 − x3) + J−1u

(10.89)

ere we define h(x1, x2) = C(x1, x2)x2 + g(x1) for simplicity. This system is
then of the form

ẋ = f(x) +G(x)u (10.90)

In the single-link case we saw that the appropriate state variables with which
to define the system so that it could be linearized by nonlinear feedback were
the link position, velocity, acceleration, and jerk. Following the single-input
example, then, we can attempt to do the same thing in the multi-link case and
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derive a feedback linearizing transformation blockwise as follows: Set

y1 = T1(x1) := x1

y2 = T2(x) := ẏ1 = ẋ2

y3 = T3(x) := ẏ2 = ẋ2

= −D(x1)−1{h(x1, x2) +K(x1 − x3)}
y4 = T4(x) := ẏ3

= − d
dt [D(x1)−1]{h(x1, x2) +K(x1 − x3)} −D(x1)−1

{
∂h
∂x1

x2

+ ∂h
∂x2

[−D(x1)−1(h(x1, x2) +K(x1 − x3))] +K(x2 − x4)
}

:= a4(x1, x2, x3) +D(x1)−1Kx4

(10.91)

where for simplicity we define the function a4 to be everything in the definition
of y4 except the last term, which is D−1Kx4. Note that x4 appears only in this
last term so that a4 depends only on x1, x2, x3.

As in the single-link case, the above mapping is a global diffeomorphism. Its
inverse can be found by inspection to be

x1 = y1
x2 = y2
x3 = y1 +K−1(D(y1)y3 + h(y1, y2))
x4 = K−1D(y1)(y4 − a4(y1, y2, y3))

(10.92)

The linearizing control law can now be found from the condition

ẏ4 = v (10.93)

where v is a new control input. Computing ẏ4 from (10.91) and suppressing
function arguments for brevity yields

v = ∂a4
∂x1

x2 − ∂a4
∂x2

D−1(h+K(x1 − x3)) (10.94)

+ ∂a4
∂x3

x4 + d
dt [D

−1]Kx4 +D−1K(J−1K(x1 − x3) + J−1u)
=: a(x) + b(x)u

where a(x) denotes all the terms in (10.94) but the last term, which involves
the input u, and b(x) := D−1(x)KJ−1.

Solving the above expression for u yields

u = b(x)−1(v − a(x)) =: α(x) + β(x)v (10.95)

where β(x) = JK−1D(x) and α(x) = −b(x)−1a(x).
With the nonlinear change of coordinates (10.91) and nonlinear feedback

(10.95) the transformed system now has the linear block form

ẏ =


0 I 0 0
0 0 I 0
0 0 0 I
0 0 0 0

 y +


0
0
0
I

 v (10.96)

=: Ay +Bv
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where I = n×n identity matrix, 0 = n×n zero matrix, yT = (yT1 , y
T
2 , y

T
3 , y

T
4 ) ∈

R4n, and v ∈ Rn. The system (10.96) represents a set of n decoupled quadruple
integrators. The outer loop design can now proceed as before, because not only
is the system linearized, but it consists of n subsystems each identical to the
fourth order system (10.75). �

10.6 NONHOLONOMIC SYSTEMS

In this section we return to a discussion of systems subject to constraints. A
constraint on a mechanical system restricts its motion by limiting the set of
paths that the system can follow. We briefly discussed so-called holonomic
constraints in Chapter 6 when we derived the Euler-Lagrange equations of
motion. Our treatment of force control in Chapter 9 dealt with unilateral
constraints defined by the environmental contact. In this section we expand
upon the notion of systems subject to constraints and discuss nonholonomic
systems.

LetQ denote the configuration space of a given system and let q = (q1, . . . qn)T

∈ Q denote the vector of generalized coordinates defining the system configu-
ration. We recall the following definition.

Definition 10.9 A set of k < n constraints

hi(q1, . . . , qn) = 0 i = 1, . . . , k (10.97)

is called holonomic, where hi is a smooth mapping from Q 7→ R.

We assume that the constraints are independent so that the differentials

dh1 =
[
∂h1

∂q1
, . . . ,

∂h1

∂qn

]
...

dhk =
[
∂hk
∂q1

, . . . ,
∂hk
∂qn

]
are linearly independent covectors. Note that, in order to satisfy these con-
straints, the motion of the system must lie on the hypersurface defined by the
functions h1, . . . hk, i.e.

hi(q(t)) = 0 for all t > 0 (10.98)

As a consequence, by differentiating (10.98), we have

< dhi, q̇ >= 0 i = 1, . . . , k (10.99)

where < ·, · > denotes the standard inner product.
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It frequently happens that constraints are expressed, not as constraints on
the configuration, as in (10.97), but as constraints on the velocity

< wi, q̇ >= 0 i = 1, . . . , k (10.100)

where wi(q) are covectors. Constraints of the form (10.100) are known as
Pfaffian constraints. The crucial question in such cases is, therefore, when
can the covectors w1, . . . wk be expressed as differentials of smooth functions,
h1, . . . , hk? We express this as

Definition 10.10 Constraints of the form

< wi, q̇ >= 0 i = 1, . . . k (10.101)

are called holonomic if there exists smooth functions h1, . . . , hk such that

wi(q) = dhi(q) i = 1, . . . k (10.102)

and nonholonomic otherwise, i.e. if no such functions h1, . . . hk exist.

We can begin to see a connection with our earlier discussion of integrability and
the Frobenius Theorem if we think of Equation (10.102) as a set of partial differ-
ential equations in the (unknown) functions hi. Indeed, the term integrable
constraint is frequently used interchangeably with holonomic constraint for
this reason.

10.6.1 Involutivity and Holonomy

Now, given a set of Pfaffian constraints < wi(q), q̇ > i = 1, . . . k, let Ω be
the codistribution defined by the covectors w1, . . . , wk and let {g1, . . . , gm} for
m = n− k be a basis for the distribution ∆ that annihilates Ω, i.e. such that

< wi, gj >= 0 for each i, j (10.103)

We use the notation ∆ = Ω⊥ (This is pronounced “Ω perp”). Notice from
Equation (10.102) that

0 =< wi, gj >=< dhi, gj > for each i, j (10.104)

Using our previous notation for Lie Derivative, the above system of equations
may be written as

Lgj
hi = 0 i = 1, . . . , k; j = 1, . . . ,m (10.105)

The following theorem thus follows immediately from the Frobenius Theorem

Theorem 4 Let Ω be the codistribution defined by covectors w1, . . . , wk. Then
the constraints < wi, q̇ >= 0 i = 1, . . . , k are holonomic if and only if the
distribution ∆ = Ω⊥ is involutive.
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10.6.2 Driftless Control Systems

It is important to note that the velocity vector q̇ of the system is orthogonal to
the covectors wi according to (10.101) and hence lies in the distribution ∆ =
Ω⊥. In other words the system velocity satisfies

q̇ = g1(q)u1 + · · ·+ gm(q)um (10.106)

for suitable coefficients u1, . . . , um. In many systems of interest, the coeffi-
cients ui in (10.106) have the interpretation of control inputs and hence Equa-
tion (10.106) defines a useful model for control design in such cases. The system
(10.106) is called driftless because q̇ = 0 when the control inputs u1, . . . , um
are zero. In the next section we give some examples of driftless systems arising
from nonholonomic constraints, followed by a discussion of controllability of
driftless systems and Chow’s Theorem in Section 10.7.

10.6.3 Examples of Nonholonomic Systems

Nonholonomic constraints arise in two primary ways:

1. In so-called rolling without slipping constraints. For example, the
translational and rotational velocities of a rolling wheel are not indepen-
dent if the wheel rolls without slipping. Examples include

• A unicycle

• An automobile, tractor/trailer, or wheeled mobile robot

• Manipulation of rigid objects

2. In systems where angular momentum is conserved. Examples include

• Space robots

• Satellites

• Gymnastic robots

Example: 10.7 The Unicycle. The unicycle is equivalent to a wheel rolling
on a plane and is thus the simplest example of a nonholonomic system. Refering
to Figure 10.5 we see that the configuration of the unicycle is defined by the
variables x,y, θ and φ, where x and y denote the Cartesian position of the
ground contact point, θ denotes the heading angle and φ denotes the angle of
the wheel measured from the vertical. The rolling without slipping condition
means that

ẋ− r cos θφ̇ = 0

ẏ − r sin θφ̇ = 0
(10.107)
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φ

θ

x

y

Fig. 10.5 The Unicycle

where r is the radius of the wheel. These constraints can be written in the form
(10.101) with q = (x, y, θ, φ) and

w1 =
[

1 0 0 −r cos θ
]

w2 =
[

1 0 0 −r sin θ
] (10.108)

Since the dimension of the configuration space is n = 4 and there are two
constraint equations, we need to find two function g1, g2 orthogonal to w1, w2.
It is easy to see that

g1 =


0
0
1
0

 ; g2 =


r cos θ
r sin θ

0
1

 (10.109)

are both orthogonal to w1 and w2. Thus we can write

q̇ = g1(q)u1 + g2(q)u2 (10.110)

where u1 is the turning rate and u2 is the rate of rolling.

We can now check to see if rolling without slipping constraints on the unicycle
is holonomic or nonholonomic using Theorem 4. It is easy to show (Problem 10-
18) that the Lie Bracket

[g1, g2] =


−r sin θ
r cos θ

0
0

 (10.111)

which is not in the distribution ∆ = span{g1, g2}. Therefore the constraints on
the unicycle are nonholonomic. We shall see the consequences of this fact in
the next section when we discuss controllability of driftless systems.
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Example: 10.8 The Kinematic Car. Figure 10.6 shows a simple represen-
tation of a car, or mobile robot with steerable front wheels. The configuration

d

x

θ

y

φ

Fig. 10.6 The Kinematic Car

of the car can be described by q = [x, y, θ, φ]T , where x and y is the point at
the center of the rear axle, θ is the heading angle, and φ is the steering angle
as shown in the figure. The rolling without slipping constraints are found by
setting the sideways velocity of the front and rear wheels to zero. This leads to

sin θ ẋ− cos θ ẏ = 0
sin(θ + φ) ẋ− cos(θ + φ) ẏ − d cosφ θ̇ = 0

(10.112)

which can be written as[
sin θ cos θ 0 0

]
q̇ = < w1, q̇ > = 0[

sin(θ + φ) − cos(θ + φ) −d cosφ 0
]
q̇ = < w2, q̇ > = 0 (10.113)

It is thus straightforward to find vectors

g1 =


0
0
0
1

 ; g2 =


cos θ
sin θ

1
d tanφ

0

 (10.114)

orthogonal to w1 and w2 and write the corresponding control system in the
form (10.106). It is left as an exercise (Problem 19) to show that the above
constraints are nonholonomic.

Example: 10.9 A Hopping Robot. Consider the hopping robot in Figure 10.7
The configuration of this robot is defined by q = (ψ, `, θ), where

ψ = the leg angle
θ = the body angle
` = the leg extension
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Fig. 10.7 Hopping Robot

During its flight phase the hopping robot’s angular momentum is conserved.
Letting I and m denote the body moment of inertia and leg mass, respectively,
conservation of angular momentum leads to the expression

Iθ̇ +m(`+ d)2(θ̇ + ψ̇) = 0 (10.115)

assuming the initial angular momentum is zero. This constraint may be written
as

< w, q̇ >= 0 (10.116)

where w =
[
m(`+ d)2 0 I +m(`+ d)2

]
. Since the dimension of the con-

figuration space is three and there is one constraint, we need to find two in-
dependent vectors, g1 and g2 spanning the annihilating distribution ∆ = Ω⊥,
where Ω = span {w}. It is easy to see that

g1 =

 0
1
0

 and g2 =

 1
0

− m(`+d)2

I+m(`+d)2

 (10.117)

are linearly independent at each point and orthogonal to w. Checking involutiv-
ity of ∆ we find that

[g1, g2] =

 0
0

−2Im(`+d)
[I+m(`+d)2]2

 =: g3 (10.118)

Since g3 is not a linear combination of g1 and g2 it follows that ∆ is not an
involutive distribution and hence the constraint is nonholonomic.
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10.7 CHOW’S THEOREM AND CONTROLLABILITY OF DRIFTLESS

SYSTEMS

In this section we discuss the controllability properties of driftless systems of
the form

ẋ = g1(x)u1 + · · ·+ gm(x)um (10.119)

with x ∈ Rn, u ∈ Rm. We assume that the vector fields g1(x), . . . gm(x) are
smooth, complete4, and linearly independent at each x ∈ Rn.

We have seen previously that if the k < n Pfaffian constraints on the system
are holonomic then the trajectory of the system lies on a m = n−k-dimensional
surface (an integral manifold) found by integrating the constraints. In fact, at
each x ∈ R the tangent space to this manifold is spanned by the vectors g1(x),
. . . , gm(x). If we examine Equation (10.119) we see that any instantaneous
direction in this tangent space, i.e. any linear combination of g1, . . . , gm, is
achievable by suitable choice of the control input terms ui, i = 1, . . . ,m. Thus
every point on the manifold may be reached from any other point on the man-
ifold by suitable control input. However, points not lying on the manifold
cannot be reached no matter what control input is applied. Thus, for an initial
condition x0, only points on the particular integral manifold through x0 are
reachable.

What happens if the constraints are nonholonomic? Then no such integral
manifold of dimension m exists. Thus it might be possible to reach a space
(manifold) of dimension larger than m by suitable application of the control
inputs ui. It turns out that this interesting possibility is true. In fact, by
suitable combinations of two vector fields g1 and g2 it is possible to move in the
direction defined by the Lie Bracket [g1, g2]. If the distribution ∆ = span{g1, g2}
is not involutive, then the Lie Bracket vector field [g1, g2] defines a direction
not in the span of g1 and g2. Therefore, given vector fields g1, . . . , gm one
may reach points not only in the span of these vector field but in the span of
the distribution obtained by augmenting g1, . . . , gm with various Lie Bracket
directions.

Definition 10.11 Involutive Closure of a Distribution
The involutive closure, ∆̄, of a distribution ∆ = span{g1, . . . , gm} is the small-
est involutive distribution containing ∆. In other words, ∆̄ is an involutive
distribution such that if ∆0 is any involutive distribution satisfying ∆ ⊂ ∆0

then ∆̄ ⊂ ∆0.

Conceptually, the involutive closure of ∆ can be found by forming larger and
larger distributions by repeatedly computing Lie Brackets until an involutive

4A complete vector field is one for which the solution of the associated differential equation
exists for all time t
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distribution is found, i.e.

∆̄ = span{g1, . . . , gm, [gi, gj ] , [gk, [gi, gj ]] , . . . } (10.120)

The involutive closure ∆̄ in (10.120) is also called the Control Lie Algebra for
the driftless control system (10.119). Intuitively, if dim∆̄ = n then all points in
Rn should be reachable from x0. This is essentially the conclusion of Chow’s
Theorem.

Definition 10.12 Controllability
A driftless system of the form (10.106) is said to be Controllable if, for any x0

and x1 ∈ Rn, there exists a time T > 0 and a control input u = [u1, . . . , um]T :
[0, T ] → Rm such that the solution x(t) of (10.106) satifies x(0) = x0 and
x(T ) = x1.

Given an open set U ⊂ Rn, we let RεV (x0) denote the set of states x such
that there exists a control u : [0, ε] 7→ U with x(0) = x0, x(ε) = x and x(t) ∈ V
for 0 ≤ t ≤ ε. We set

RV,T (x0) = ∪0<ε≤TR
ε
V (x0) (10.121)

RV,T is the set of states reachable up to time T > 0.

Definition 10.13 We say that the system (10.106) is Locally Controllable
at x0 if RV,T (x0) contains an open neighborhood of x0 for all neighborhoods V
of x0 and T > 0.

The next result, known as Chow’s Theorem, gives a sufficient condition
for the system (10.106) to be locally controllability.

Theorem 5 The driftless system

ẋ = g1(x)u1 + · · ·+ gm(x)um (10.122)

is locally controllable at x0 ∈ Rn if rank∆̄(x0) = n.

The proof of Chow’s Theorem is beyond the scope of this text. The condition
rank∆̄(x0) = n is called the Controllability Rank Condition. Note that
Chow’s theorem tells us when a driftless system is locally controllability but
does not tell us how to find the control input to steer the system from x0 to x1.

Example: 10.10 Consider the system on R3 − {0}.

ẋ =

 x3

x2

0

u1 +

 0
0
x1

u2

= g1(x)u1 + g2(x)u2

(10.123)
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For x 6= 0 the distribution ∆ = span{g1, g2} has rank two. It is easy to compute
the Lie Bracket [g1, g2] as

[g1, g2] =

 −x1

0
x3


and therefore

rank[g1, g2, [g1, g2]] = rank

 x3 0 −x1

x2 0 0
0 x1 x3


which has rank three for x 6= 0. Therefore the system is locally controllable on
R3 − {0}. Note that the origin is an equilibrium for the system independent
of the control input, which is why we must exclude the origin from the above
analysis.

Example 10.11 Attitude Control of a Satellite
Consider a cylindrical satellite equipped with reaction wheels for control as
shown in Figure 10.8 Suppose we can control the angular velocity about the

Fig. 10.8 Satellite with Reaction Wheels

x1, x2, and x3 axes with controls u1, u2, and u3, respectively. The equations of
motion are then given by

ω̇ = ω × u

with

w =

 ω1

ω2

ω3

 u =

 u1

u2

u3


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Carrying out the above calculation, it is readily shown (Problem 10-20) that

ω̇ =

 0
ω3

−ω2

u1 +

 −ω3

0
ω1

u2 +

 ω2

−ω1

0

u3

= g1(ω)u1 + g2(ω)u2 + g3(ω)u3

(10.124)

It is easy to show (Problem 10-21) that the distribution ∆ = span{g1, g2, g3}
is involutive of rank 3 on R3 − {0}. A more interesting property is that the
satellite is controllable as long as any two of the three reaction wheels are func-
tioning. The proof of this strictly nonlinear phenomenon is left as a exercise
(Problem 10-22). �
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Problems

10-1 Complete the proof of Lemma 10.1 by direct calculation.

10-2 Show that the function h = z − φ(x, y) satisfies the system (10.20) if φ is
a solution of (10.13)-(10.14) and X1, X2 are defined by (10.18).

10-3 Show that if h(x, y, z) satisfies (10.20), then, if ∂h
∂z 6= 0, Equation (10.21)

can be solved for z as z = φ(x, y) where φ satisfies (10.13)-(10.14). Also
show that ∂h

∂z = 0 can occur only in the case of the trivial solution h = 0
of (10.20).

10-4 Verify the expressions (10.53) and (10.54).

10-5 Show that the system below is locally feedback linearizable.

ẋ1 = x3
1 + x2

ẋ2 = x3
2 + u

10-6 Derive the equations of motion (10.59) for the single-link manipulator
with joint elasticity of Figure 10.4 using Lagrange’s equations.

10-7 Repeat Problem 6 where there is assumed to be viscous friction both on
the link side and on the motor side of the spring in Figure 10.4.

10-8 Perform the calculations necessary to verify (10.65).

10-9 Derive the system of partial differential Equations (10.68) from the con-
ditions (10.67. Also verify (10.69).

10-10 Compute the change of coordinates (10.71).

10-11 Verify Equations (10.73)-(10.74).

10-12 Verify Equations (10.78).

10-13 Design and simulate a linear outer loop control law v for the system
(10.59) so that the link angle y1(t) follows a desired trajectory yd1(t) =
θd` (t) = sin 8t. Use various techniques such as pole placement, linear
quadratic optimal control, etc. (See reference [2] for some ideas.)

10-14 Consider again a single-link manipulator (either rigid or elastic joint).
Add to your equations of motion the dynamics of a permanent magnet
DC-motor. What can you say now about feedback linearizability of the
system?

10-15 What happens to the inverse coordinate transformation (10.78) as the
joint stiffness k → ∞? Give a physical interpretation. Use this to show
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that the system (10.59) reduces to the equation governing the rigid joint
manipulator in the limit as k →∞.

10-16 Consider the single-link manipulator with elastic joint of Figure 10.4 but
suppose that the spring characteristic is nonlinear, that is, suppose that
the spring force F is given by F = φ(q1 − q2), where φ is a diffeomor-
phism. Derive the equations of motion for the system and show that it
is still feedback linearizable. Carry out the feedback linearizing transfor-
mation. Specialize the result to the case of a cubic characteristic, i.e.,
φ = k(q1 − q2)3. The cubic spring characteristic is a more accurate de-
scription for many manipulators than is the linear spring, especially for
elasticity arising from gear flexibility.

10-17 Consider again the single link flexible joint robot given by (10.59) and
suppose that only the link angle, q1, is measurable. Design an observer
to estimate the full state vector, x = q1, q̇1, q2, q̇2)T .

Hint: Set y = q1 = Cx and show that the system can be written in state
state as

ẋ = Ax+ bu+ φ(y)

where φ(y) is a nonlinear function depending only on the output y. Then
a linear observer with output injection can be designed as

˙̂x = Ax̂+ bu+ φ(y) + L(y − Cx̂)

10-18 Fill in the details in Example 10.7 showing that the constraints are non-
holonomic.

10-19 Fill in the details in Example 10.8 necessary to derive the vector fields
g1 and g2 and show that the constraints are nonholonomic.

10-20 Carry out the calculations necessary to show that the equations of motion
for the satellite with reaction wheels is given by Equation 10.124.

10-21 Show that the distribution ∆ = span(g1, g2, g3) in for the satellite model
(10.124) is involutive of rank 3.

10-22 Using Chow’s Theorem, show that the satellite with reaction wheels
(10.124) is controllable as long as any two of the three reaction wheels
are functioning.





11
COMPUTER VISION

If a robot is to interact with its environment, then the robot must be able
to sense its environment. Computer vision is one of the most powerful sensing
modalities that currently exist. Therefore, in this chapter we present a number
of basic concepts from the field of computer vision. It is not our intention here
to cover the now vast field of computer vision. Rather, we aim to present a num-
ber of basic techniques that are applicable to the highly constrained problems
that often present themselves in industrial applications. The material in this
chapter, when combined with the material of previous chapters, should enable
the reader to implement a rudimentary vision-based robotic manipulation sys-
tem. For example, using techniques presented in this chapter, one could design
a system that locates objects on a conveyor belt, and determines the positions
and orientations of those objects. This information could then be used in con-
junction with the inverse kinematic solution for the robot, along with various
coordinate transformations, to command the robot to grasp these objects.

We begin by examining the geometry of the image formation process. This
will provide us with the fundamental geometric relationships between objects
in the world and their projections in an image. We then describe a calibra-
tion process that can be used to determine the values for the various camera
parameters that appear in these relationships. We then consider image segmen-
tation, the problem of dividing the image into distinct regions that correspond
to the background and to objects in the scene. When there are multiple objects
in the scene, it is often useful to deal with them individually; therefore, we
next present an approach to component labelling. Finally, we describe how to
compute the positions and orientations of objects in the image.

331
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11.1 THE GEOMETRY OF IMAGE FORMATION

A digital image is a two-dimensional array of pixels that is formed by focusing
light onto a two-dimensional array of sensing elements. A lens with focal length
λ is used to focus the light onto the sensing array, which is often composed of
CCD (charge-coupled device) sensors. The lens and sensing array are packaged
together in a camera, which is connected to a digitizer or frame grabber. In the
case of analog cameras, the digitizer converts the analog video signal that is
output by the camera into discrete values that are then transferred to the pixel
array by the frame grabber. In the case of digital cameras, a frame grabber
merely transfers the digital data from the camera to the pixel array. Associated
with each pixel in the digital image is a gray level value, typically between 0
and 255, which encodes the intensity of the light incident on the corresponding
sensing element.

In robotics applications, it is often sufficient to consider only the geometric
aspects of image formation. Therefore in this section we will describe only the
geometry of the image formation process. We will not deal with the photometric
aspects of image formation (e.g., we will not address issues related to depth of
field, lens models, or radiometry).

We will begin the section by assigning a coordinate frame to the imaging
system. We then discuss the popular pinhole model of image formation, and
derive the corresponding equations that relate the coordinates of a point in the
world to its image coordinates. Finally, we describe camera calibration, the
process by which all of the relevant parameters associated with the imaging
process can be determined.

11.1.1 The Camera Coordinate Frame

In order to simplify many of the equations of this chapter, it often will be useful
to express the coordinates of objects relative to a camera centered coordinate
frame. For this purpose, we define the camera coordinate frame as follows.
Define the image plane, π, as the plane that contains the sensing array. The
axes xc and yc form a basis for the image plane, and are typically taken to be
parallel to the horizontal and vertical axes (respectively) of the image. The
axis zc is perpendicular to the image plane and aligned with the optic axis of
the lens (i.e., it passes through the focal center of the lens). The origin of the
camera frame is located at a distance λ behind the image plane. This point
is also referred to as the center of projection. The point at which the optical
axis intersects the image plane is known as the principal point. This coordinate
frame is illustrated in Figure 11.1.

With this assignment of the camera frame, any point that is contained in the
image plane will have coordinates (u, v, λ). Thus, we can use (u, v) to parame-
terize the image plane, and we will refer to (u, v) as image plane coordinates.
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λ

Fig. 11.1 Camera coordinate frame.

11.1.2 Perspective Projection

The image formation process is often modeled by the pinhole lens approxima-
tion. With this approximation, the lens is considered to be an ideal pinhole, and
the pinhole is located at the focal center of the lens1. Light rays pass through
this pinhole, and intersect the image plane.

Let P be a point in the world with coordinates x, y, z (relative to the camera
frame). Let p denote the projection of P onto the image plane with coordinates
(u, v, λ). Under the pinhole assumption, P , p and the origin of the camera
frame will be collinear. This can is illustrated in Figure 11.1. Thus, for some
unknown positive k we have

k

 x
y
z

 =

 u
v
λ

 (11.1)

which can be rewritten as the system of equations:

kx = u, (11.2)
ky = v, (11.3)
kz = λ. (11.4)

1Note that in our mathematical model, illustrated in Figure 11.1, we have placed the pinhole
behind the image plane in order to simplify the model.
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This gives k = λ/z, which can be substituted into (11.2) and (11.3) to obtain

u = λ
x

z
, v = λ

y

z
. (11.5)

These are the well-known equations for perspective projection.

11.1.3 The Image Plane and the Sensor Array

As described above, the image is a discrete array of gray level values. We will
denote the row and column indices for a pixel by the coordinates (r, c). In order
to relate digital images to the 3D world, we must determine the relationship
between the image plane coordinates, (u, v), and indices into the pixel array of
pixels, (r, c).

We typically define the origin of this pixel array to be located at a corner of
the image (rather than the center of the image). Let the pixel array coordinates
of the pixel that contains the principal point be given by (or, oc). In general, the
sensing elements in the camera will not be of unit size, nor will they necessarily
be square. Denote the sx and sy the horizontal and vertical dimensions (respec-
tively) of a pixel. Finally, it is often the case that the horizontal and vertical
axes of the pixel array coordinate system point in opposite directions from the
horizontal and vertical axes of the camera coordinate frame2. Combining these,
we obtain the following relationship between image plane coordinates and pixel
array coordinates,

− u

sx
= (r − or), − v

sy
= (c− oc). (11.6)

which gives,
u = −sx(r − or), v = −sy(c− oc). (11.7)

Note that the coordinates (r, c) will be integers, since they are the discrete
indices into an array that is stored in computer memory. Therefore, it is not
possible to obtain the exact image plane coordinates for a point from the (r, c)
coordinates.

11.2 CAMERA CALIBRATION

The objective of camera calibration is to determine all of the parameters that
are necessary to predict the image pixel coordinates (r, c) of the projection of
a point in the camera’s field of view, given that the coordinates of that point
with respect to the world coordinate frame are know. In other words, given the
coordinates of P relative to the world coordinate frame, after we have calibrated

2This is an artifact of our choice to place the center of projection behind the image plane.
The directions of the pixel array axes may vary, depending on the frame grabber.
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the camera we will be able to predict (r, c), the image pixel coordinates for the
projection of this point.

11.2.1 Extrinsic Camera Parameters

To this point, in our derivations of the equations for perspective projection,
we have dealt only with coordinates expressed relative to the camera frame.
In typical robotics applications, tasks will be expressed in terms of the world
coordinate frame, and it will therefore be necessary to perform coordinate trans-
formations. If we know the position and orientation of the camera frame relative
to the world coordinate frame we have

xw = Rwc x
c +Owc (11.8)

or, if we know xw and wish to solve for xc,

xc = Rcw(xw −Owc ) (11.9)

In the remainder of this section, to simplify notation we will define

R = Rcw, T = −RcwOwc . (11.10)

Thus,
xc = Rxw + T (11.11)

Cameras are typically mounted on tripods, or on mechanical positioning
units. In the latter case, a popular configuration is the pan/tilt head. A pan/tilt
head has two degrees of freedom: a rotation about the world z axis and a
rotation about the pan/tilt head’s x axis. These two degrees of freedom are
analogous to the those of a human head, which can easily look up or down, and
can turn from side to side. In this case, the rotation matrix R is given by

R = Rz,θRx,α, (11.12)

where θ is the pan angle and α is the tilt angle. More precisely, θ is the angle
between the world x-axis and the camera x-axis, about the world z-axis, while α
is the angle between the world z-axis and the camera z-axis, about the camera
x-axis.

11.2.2 Intrinsic Camera Parameters

Using the pinhole model, we obtained the following equations that map the
coordinates of a point expressed with respect to the camera frame to the cor-
responding pixel coordinates:

r = − u

sx
+ or, c = − v

sy
+ oc, u = λ

x

z
v = λ

y

z
. (11.13)
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These equations can be combined to give

r = − λ

sx

x

z
+ or, c = − λ

sy

y

z
+ oc, (11.14)

Thus, once we know the values of the parameters λ, sx, or, sy, oc we can deter-
mine (r, c) from (x, y, z), where (x, y, z) are coordinates relative to the camera
frame. In fact, we don’t need to know all of λ, sx, sy; it is sufficient to know the
ratios

fx = − λ

sx
fy = − λ

sy
. (11.15)

These parameters, fx, or, fy, oc are known as the intrinsic parameters of the
camera. They are constant for a given camera, and do not change when the
camera moves.

11.2.3 Determining the Camera Parameters

The task of camera calibration is to determine the intrinsic and extrinsic pa-
rameters of the camera. We will proceed by first determining the parameters
associated with the image center, and then solving for the remaining parame-
ters.

Of all the camera parameters, or, oc (the image pixel coordinates of the
principal point) are the easiest to determine. This can be done by using the
idea of vanishing points. Although a full treatment of vanishing points is beyond
the scope of this text, the idea is simple: a set of parallel lines in the world will
project onto image lines that intersect at a single point, and this intersection
point is known as a vanishing point. The vanishing points for three mutually
orthogonal sets of lines in the world will define a triangle in the image. The
orthocenter of this triangle (i.e., the point at which the three altitudes intersect)
is the image principal point (a proof of this is beyond the scope of this text).
Thus, a simple way to compute the principal point is to position a cube in
the workspace, find the edges of the cube in the image (this will produce the
three sets of mutually orthogonal parallel lines), compute the intersections of
the image lines that correspond to each set of parallel lines in the world, and
determine the orthocenter for the resulting triangle.

Once we know the principal point, we proceed to determine the remaining
camera parameters. This is done by constructing a linear system of equations in
terms of the known coordinates of points in the world and the pixel coordinates
of their projections in the image. The unknowns in this system are the camera
parameters. Thus, the first step in this stage of calibration is to acquire a
data set of the form r1, c1, x1, y1, z1, r2, c2, x2, y2, z2, · · · rN , cN , xN , yN , zN , in
which ri, ci are the image pixel coordinates of the projection of a point in the
world with coordinates xi, yi, zi relative to the world coordinate frame. This
acquisition is often done manually, e.g., by having a robot move a small bright
light to known x, y, z coordinates in the world, and then hand selecting the
corresponding image point.



CAMERA CALIBRATION 337

Once we have acquired the data set, we proceed to set up the linear system
of equations. The extrinsic parameters of the camera are given by

R =

 r11 r12 r13
r21 r22 r23
r31 r32 r33

 , T =

 Tx
Ty
Tz

 . (11.16)

With respect to the camera frame, the coordinates of a point in the world are
thus given by

xc = r11x+ r12y + r13z + Tx (11.17)
yc = r21x+ r22y + r23z + Ty (11.18)
zc = r31x+ r32y + r33z + Tz. (11.19)

Combining this with (11.14) we obtain

r − or = −fx
xc

zc
= −fx

r11x+ r12y + r13z + Tx
r31x+ r32y + r33z + Tz

(11.20)

c− oc = −fy
yc

zc
= −fy

r21x+ r22y + r23z + Ty
r31x+ r32y + r33z + Tz

. (11.21)

Since we know the coordinates of the principal point, we an simplify these
equations by using the simple coordinate transformation

r ← r − or, c← c− oc. (11.22)

We now write the two transformed projection equations as functions of the
unknown variables: rij , Tx, Ty, Tz, fx, fy. This is done by solving each of these
equations for zc, and setting the resulting equations to be equal to one another.
In particular, for the data points ri, ci, xi, yi, zi we have

rify(r21xi + r22yi + r23zi + Ty) = cifx(r11xi + r12yi + r13zi + Tx). (11.23)

We define α = fx/fy and rewrite this as:

rir21xi + rir22yi + rir23zi + riTy − αcir11xi − αcir12yi − αcir13zi − αciTx = 0.
(11.24)

We can combine the N such equations into the matrix equation



r1x1 r1y1 r1z1 r1 −c1x1 −c1y1 −c1z1 −c1
r2x2 r2y2 r2z2 r2 −c2x2 −c2y2 −c2z2 −c2

...
...

...
...

...
...

...
...

rNxN rNyN rNzN rN −cNxN −cNyN −cNzN −cN





r21
r22
r23
Ty
αr11
αr12
αr13
αTx


= 0

(11.25)
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This is an equation of the form Ax = 0. As such, if x̄ = [x̄1, · · · , x̄8]T is a
solution, for (11.25) we only know that this solution is some scalar multiple of
the desired solution, x, i.e.,

x̄ = k[r21, r22, r23, Ty, αr11, αr12, αr13, αTx]T , (11.26)

in which k is an unknown scale factor.
In order to solve for the true values of the camera parameters, we can exploit

constraints that arise from the fact that R is a rotation matrix. In particular,

(x̄2
1 + x̄2

2 + x̄2
3)

1
2 = (k2(r221 + r222 + r223))

1
2 = |k|, (11.27)

and likewise

(x̄2
5 + x̄2

6 + x̄2
7)

1
2 = (α2k2(r221 + r222 + r223))

1
2 = α|k| (11.28)

(note that by definition, α > 0).
Our next task is to determine the sign of k. Using equations (11.14) we

see that r × xc < 0 (recall that we have used the coordinate transformation
r ← r − or). Therefore, to determine the sign of k, we first assume that k > 0.
If r(r11x + r12y + r13z + Tx) < 0, then we know that we have made the right
choice and k > 0; otherwise, we know that k < 0.

At this point, we know the values for k, α, r21, r22, r23, r11, r12, r13, Tx, TY ,
and all that remains is to determine Tz, fx, fy. Since α = fx/fy, we need only
determine Tz and fx. Returning again to the projection equations, we can write

r = −fx
xc

zc
= −fx

r11x+ r12y + r13z + Tx
r31x+ r32y + r33z + Tz

(11.29)

Using an approach similar to that used above to solve for the first eight param-
eters, we can write this as the linear system

r(r31x+ r32y + r33z + Tz) = −fx(r11x+ r12y + r13z + Tx) (11.30)

which can easily be solved for TZ and fx.

11.3 SEGMENTATION BY THRESHOLDING

Segmentation is the process by which an image is divided into meaningful com-
ponents. Segmentation has been the topic of computer vision research since
its earliest days, and the approaches to segmentation are far too numerous to
survey here. These approaches are sometimes concerned with finding features
in an image (e.g., edges), and sometimes concerned with partitioning the im-
age into homogeneous regions (region-based segmentation). In many practical
applications, the goal of segmentation is merely to divide the image into two
regions: one region that corresponds to an object in the scene, and one region
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For i = 0 to N − 1
H[i]← 0

For r = 0 to Nrows − 1
For c = 0 to Ncols − 1

Index← Image(r, c)
H[Index]← H[Index] + 1

Fig. 11.2 Pseudo-code to compute an image histogram.

that corresponds to the background. In many industrial applications, this seg-
mentation can be accomplished by a straight-forward thresholding approach.
Pixels whose gray level is greater than the threshold are considered to belong
to the object, and pixels whose gray level is less than or equal to the threshold
are considered to belong to the background.

In this section we will describe an algorithm that automatically selects a
threshold. This basic idea behind the algorithm is that the pixels should be
divided into two groups (background and object), and that the intensities of
the pixels in a particular group should all be fairly similar. To quantify this
idea, we will use some standard techniques from statistics. Thus, we begin the
section with a quick review of the necessary concepts from statistics and then
proceed to describe the threshold selection algorithm.

11.3.1 A Brief Statistics Review

Many approaches to segmentation exploit statistical information contained in
the image. In this section, we briefly review some of the more useful statistical
concepts that are used by segmentation algorithms.

The basic premise for most of these statistical concepts is that the gray level
value associated with a pixel in an image is a random variable that takes on
values in the set {0, 1, · · ·N − 1}. Let P (z) denote the probability that a pixel
has gray level value z. In general, we will not know this probability, but we
can estimate it with the use of a histogram. A histogram is an array, H, that
encodes the number of occurrences of each gray level value. In particular, the
entry H[z] is the number of times gray level value z occurs in the image. Thus,
0 ≤ H[z] ≤ Nrows×Ncols for all z. An algorithm to compute the histogram for
an image is shown in figure 11.2.

Given the histogram for the image, we estimate the probability that a pixel
will have gray level z by

P (z) =
H[z]

Nrows ×Ncols
. (11.31)

Thus, the image histogram is a scaled version of our approximation of P .
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Given P , we can compute the average, or mean value of the gray level values
in the image. We denote the mean by µ, and compute it by

µ =
N−1∑
z=0

zP (z). (11.32)

In many applications, the image will consist of one or more objects against
some background. In such applications, it is often useful to compute the mean
for each object in the image, and also for the background. This computation
can be effected by constructing individual histogram arrays for each object, and
for the background, in the image. If we denote by Hi the histogram for the ith

object in the image (where i = 0 denotes the background), the mean for the ith

object is given by

µi =
N−1∑
z=0

z
Hi[z]∑N−1
z=0 Hi[z]

, (11.33)

which is a straightforward generalization of (11.32). The term

Hi[z]∑N−1
z=0 Hi[z]

is in fact an estimate of the probability that a pixel will have gray level value
z given that the pixel is a part of object i in the image. For this reason, µi is
sometimes called a conditional mean.

The mean conveys useful, but very limited information about the distribution
of grey level values in an image. For example, if half or the pixels have gray value
127 and the remaining half have gray value 128, the mean will be µ = 127.5.
Likewise, if half or the pixels have gray value 255 and the remaining half have
gray value 0, the mean will be µ = 127.5. Clearly these two images are very
different, but this difference is not reflected by the mean. One way to capture
this difference is to compute the the average deviation of gray values from the
mean. This average would be small for the first example, and large for the
second. We could, for example, use the average value of |z − µ|; however, it
will be more convenient mathematically to use the square of this value instead.
The resulting quantity is known as the variance, which is defined by

σ2 =
N−1∑
z=0

(z − µ)2P (z). (11.34)

As with the mean, we can also compute the conditional variance, σ2
i for each

object in the image

σ2
i =

N−1∑
z=0

(z − µi)2
Hi[z]∑N−1
z=0 Hi[z]

. (11.35)
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11.3.2 Automatic Threshold Selection

We are now prepared to develop an automatic threshold selection algorithm.
We will assume that the image consists of an object and a background, and
that the background pixels have gray level values less than or equal to some
threshold while the object pixels are above the threshold. Thus, for a given
threshold value, zt, we divide the image pixels into two groups: those pixels
with gray level value z ≤ zt, and those pixels with gray level value z > zt. We
can compute the means and variance for each of these groups using the equations
of Section 11.3.1. Clearly, the conditional means and variances depend on the
choice of zt, since it is the choice of zt that determines which pixels will belong
to each of the two groups. The approach that we take in this section is to
determine the value for zt that minimizes a function of the variances of these
two groups of pixels.

In this section, it will be convenient to rewrite the conditional means and
variances in terms of the pixels in the two groups. To do this, we define qi(zt) as
the probability that a pixel in the image will belong to group i for a particular
choice of threshold, zt. Since all pixels in the background have gray value less
than or equal to zt and all pixels in the object have gray value greater than zt,
we can define qi(zt) for i = 0, 1 by

q0(zt) =
∑zt

z=0H[z]
(Nrows ×Ncols)

, q1(zt) =

∑N−1
z=zt+1H[z]

(Nrows ×Ncols)
. (11.36)

We now rewrite (11.33) as

µi =
N−1∑
z=0

z
Hi[z]∑N−1
z=0 Hi[z]

=
N−1∑
z=0

z
Hi[z]/(Nrows ×Ncols)∑N−1
z=0 Hi[z]/(Nrows ×Ncols)

Using again the fact that the two pixel groups are defined by the threshold zt,
we have

H0[z]
(Nrows ×Ncols)

=
P (z)
q0(zt)

, z ≤ zt and
H1[z]

(Nrows ×Ncols)
=

P (z)
q1(zt)

, z > zt.

(11.37)
Thus, we can write the conditional means for the two groups as

µ0(zt) =
zt∑
z=0

z
P (z)
q0(zt)

, µ1(zt) =
N−1∑
z=zt+1

z
P (z)
q1(zt)

. (11.38)

Similarly, we can write the equations for the conditional variances by

σ2
0(zt) =

zt∑
z=0

(z − µ0(zt))2
P (z)
q0(zt)

, σ2
1(zt) =

N∑
z=zt+1

(z − µ1(zt))2
P (z)
q1(zt)

. (11.39)

We now turn to the selection of zt. If nothing is known about the true values
of µi or σ2

i , how can we determine the optimal value of zt? To answer this
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question, recall that the variance is a measure of the average deviation of pixel
intensities from the mean. Thus, if we make a good choice for zt, we would
expect that the variances σ2

i (zt) would be small. This reflects the assumption
that pixels belonging to the object will be clustered closely about µ1, pixels
belonging to the background will be clustered closely about µ0. We could,
therefore, select the value of zt that minimizes the sum of these two variances.
However, it is unlikely that the object and background will occupy the same
number of pixels in the image; merely adding the variances gives both regions
equal importance. A more reasonable approach is to weight the two variances
by the probability that a pixel will belong to the corresponding region,

σ2
w(zt) = q0(zt)σ2

0(zt) + q1(zt)σ2
1(zt). (11.40)

The value σ2
w is known as the within-group variance. The approach that we will

take is to minimize this within-group variance.
At this point we could implement a threshold selection algorithm. The naive

approach would be to simply iterate over all possible values of zt and select
the one for which σ2

w(zt) is smallest. Such an algorithm performs an enormous
amount of calculation, much of which is identical for different candidate values of
the threshold. For example, most of the calculations required to compute σ2

w(zt)
are also required to compute σ2

w(zt + 1); the required summations change only
slightly from one iteration to the next. Therefore, we now turn our attention
to an efficient algorithm.

To develop an efficient algorithm, we take two steps. First, we will derive
the between-group variance, σ2

b , which depends on the within-group variance
and the variance over the entire image. The between-group variance is a bit
simpler to deal with than the within-group variance, and we will show that
maximizing the between-group variance is equivalent to minimizing the within-
group variance. Then, we will derive a recursive formulation for the between-
group variance that lends itself to an efficient implementation.

To derive the between-group variance, we begin by expanding the equation
for the total variance of the image, and then simplifying and grouping terms.
The variance of the gray level values in the image is given by (11.34), which
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can be rewritten as

σ2 =
N−1∑
z=0

(z − µ)2P (z)

=
zt∑
z=0

(z − µ)2P (z) +
N−1∑
z=zt+1

(z − µ)2P (z)

=
zt∑
z=0

(z − µ0 + µ0 − µ)2P (z) +
N−1∑
z=zt+1

(z − µ1 + µ1 − µ)2P (z)

=
zt∑
z=0

[(z − µ0)2 + 2(z − µ0)(µ0 − µ) + (µ0 − µ)2]P (z)

+
N−1∑
z=zt+1

[(z − µ1)2 + 2(z − µ1)(µ1 − µ) + (µ1 − µ)2]P (z). (11.41)

Note that the we have not explicitly noted the dependence on zt here. In
the remainder of this section, to simplify notation, we will refer to the group
probabilities and conditional means and variances as qi, µi, and σ2

i , without
explicitly noting the dependence on zt. This last expression (11.41) can be
further simplified by examining the cross-terms∑

(z − µi)(µi − µ)P (z) =
∑

zµiP (z)−
∑

zµP (z)−
∑

µ2
iP (z) +

∑
µiµP (z)

= µi
∑

zP (z)− µ
∑

zP (z)− µ2
i

∑
P (z) + µiµ

∑
P (z)

= µi(µiqi)− µ(µiqi)− µ2
i qi + µiµqi

= 0,

in which the summations are taken for z from 0 to zt for the background pixels
(i.e., i = 0) and z from zt + 1 to N − 1 for the object pixels (i.e., i = 1).
Therefore, we can simplify (11.41) to obtain

σ2 =
zt∑
z=0

[(z − µ0)2 + (µ0 − µ)2]P (z) +
N−1∑
z=zt+1

[(z − µ1)2 + (µ1 − µ)2]P (z)

= q0σ
2
0 + q0(µ0 − µ)2 + q1σ

2
1 + q1(µ1 − µ)2

= {q0σ2
0 + q1σ

2
1}+ {q0(µ0 − µ)2 + q1(µ1 − µ)2}

= σ2
w + σ2

b (11.42)

in which
σ2
b = q0(µ0 − µ)2 + q1(µ1 − µ)2. (11.43)

Since σ2 does not depend on the threshold value (i.e., it is constant for a spe-
cific image), minimizing σ2

w is equivalent to maximizing σ2
b . This is preferable

because σ2
b is a function only of the qi and µi, and is thus simpler to compute
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than σ2
w, which depends also on the σ2

i . In fact, by expanding the squares in
(11.43), using the facts that q1 = 1− q0 and µ = q1µ0 + q1µ1, we obtain

σ2
b = q0(1− q0)(µ0 − µ1)2. (11.44)

The simplest algorithm to maximize σ2
b is to iterate over all possible threshold

values, and select the one that maximizes σ2
b . However, as discussed above,

such an algorithm performs many redundant calculations, since most of the
calculations required to compute σ2

b (zt) are also required to compute σ2
b (zt+1).

Therefore, we now turn our attention to an efficient algorithm that maximizes
σ2
b (zt). The basic idea for the efficient algorithm is to re-use the computations

needed for σ2
b (zt) when computing σ2

b (zt + 1). In particular, we will derive
expressions for the necessary terms at iteration zt + 1 in terms of expressions
that were computed at iteration zt. We begin with the group probabilities, and
determine the recursive expression for q0 as

q0(zt + 1) =
zt+1∑
z=0

P (z) = P (zt + 1) +
zt∑
z=0

P (z) = P (zt + 1) + q0(zt). (11.45)

In this expression, P (zt + 1) can be obtained directly from the histogram ar-
ray, and q0(zt) is directly available because it was computed on the previous
iteration of the algorithm. Thus, given the results from iteration zt, very little
computation is required to compute the value for q0 at iteration zt + 1.

For the conditional mean µ0(zt) we have

µ0(zt + 1) =
zt+1∑
z=0

z
P (z)

q0(zt + 1)
(11.46)

=
(zt + 1)P (zt + 1)

q0(zt + 1)
+

zt∑
z=0

z
P (z)

q0(zt + 1)
(11.47)

=
(zt + 1)P (zt + 1)

q0(zt + 1)
+

q0(zt)
q0(zt + 1)

zt∑
z=0

z
P (z)
q0(zt)

(11.48)

=
(zt + 1)P (zt + 1)

q0(zt + 1)
+

q0(zt)
q0(zt + 1)

µ0(zt) (11.49)

Again, all of the quantities in this expression are available either from the
histogram, or as the results of calculations performed at iteration zt of the
algorithm.

To compute µ1(zt + 1), we use the relationship µ = q0µ0 + q1µ1, which can
be easily obtained using (11.32) and (11.38). Thus, we have

µ1(zt + 1) =
µ− q0(zt + 1)µ0(zt + 1)

q1(zt + 1)
=
µ− q0(zt + 1)µ0(zt + 1)

1− q0(zt + 1)
. (11.50)

We are now equipped to construct a highly efficient algorithm that automat-
ically selects a threshold value that minimizes the within-group variance. This
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(a) (b)

Fig. 11.3 (a) An image with 256 gray levels. (b) Thresholded version of the image in
(a).

(a) (b)

Fig. 11.4 (a) Histogram for the image shown in 11.3a (b) Within-group variance for
the image shown in 11.3a

algorithm simply iterates from 0 to N −1 (where N is the total number of gray
level values), computing q0, µ0, µ1 and σ2

b at each iteration using the recur-
sive formulations given in (11.45), (11.49), (11.50) and (11.44). The algorithm
returns the value of zt for which σ2

b is largest. Figure 11.3 shows a grey level
image and the binary, thresholded image that results from the application of
this algorithm. Figure 11.4 shows the histogram and within-group variance for
the grey level image.
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11.4 CONNECTED COMPONENTS

It is often the case that multiple objects will be present in a single image. When
this occurs, after thresholding there will be multiple connected components
with gray level values that are above the threshold. In this section, we will
first make precise the notion of a connected component, and then describe an
algorithm that assigns a unique label to each connected component, i.e., all
pixels within a single connected component have the same label, but pixels in
different connected components have different labels.

In order to define what is meant by a connected component, it is first neces-
sary to define what is meant by connectivity. For our purposes, it is sufficient
to say that a pixel, A, with image pixel coordinates (r, c) is adjacent to four
pixels, those with image pixel coordinates (r − 1, c), (r + 1, c), (r, c + 1), and
(r, c − 1). In other words, each image pixel A (except those at the edges of
the image) has four neighbors: the pixel directly above, directly below, directly
to the right and directly to the left of pixel A. This relationship is sometimes
referred to as 4-connectivity, and we say that two pixels are 4-connected if they
are adjacent by this definition. If we expand the definition of adjacency to in-
clude those pixels that are diagonally adjacent (i.e., the pixels with coordinates
(r − 1, c− 1), (r − 1, c+ 1), (r + 1, c− 1), and (r + 1, c+ 1)), then we say that
adjacent pixels are 8-connected. In this text, we will consider only the case of
4-connectivity.

A connected component is a collection of pixels, S, such that for any two
pixels, say P and P ′, in S, there is a 4-connected path between them and this
path is contained in S. Intuitively, this definition means that it is possible
to move from P to P ′ by “taking steps” only to adjacent pixels without ever
leaving the region S. The purpose of a component labeling algorithm is to
assign a unique label to each such S.

There are many component labeling algorithms that have been developed
over the years. Here, we describe a simple algorithm that requires two passes
over the image. This algorithm performs two raster scans of the image (note:
a raster scan visits each pixel in the image by traversing from left to right,
top to bottom, in the same way that one reads a page of text). On the first
raster scan, when an object pixel P , (i.e., a pixel whose gray level is above the
threshold value), is encountered, its previously visited neighbors (i.e., the pixel
immediately above and the pixel immediately to the left of P ) are examined,
and if they have gray value that is below the threshold (i.e., they are background
pixels), a new label is given to P . This is done by using a global counter that is
initialized to zero, and is incremented each time a new label is needed. If either
of these two neighbors have already received labels, then P is given the smaller
of these, and in the case when both of the neighbors have received labels, an
equivalence is noted between those two labels. For example, in Figure 11.5,
after the first raster scan labels (2,3,4) are noted as equivalent. In the second
raster scan, each pixel’s label is replaced by the smallest label to which it is
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0 0 0 0 0 0 0 0 0 0
0 X X X 0 0 0 0 0 0
0 X X X 0 0 0 0 0 0
0 X X X 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 X 0 0 X X 0
0 0 0 0 X 0 0 X X 0
0 0 0 0 X X X X X 0
0 X X X X X X X X 0
0 X X X X X X X X 0
0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0
0 1 1 1 0 0 0 0 0 0
0 1 1 1 0 0 0 0 0 0
0 1 1 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 2 0 0 3 3 0
0 0 0 0 2 0 0 3 3 0
0 0 0 0 2 2 2 2 2 0
0 4 4 4 2 2 2 2 2 0
0 4 4 4 2 2 2 2 2 0
0 0 0 0 0 0 0 0 0 0

(a) (b)

0 0 0 0 0 0 0 0 0 0
0 1 1 1 0 0 0 0 0 0
0 1 1 1 0 0 0 0 0 0
0 1 1 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 2 0 0 3 3 0
0 0 0 0 2 0 0 3 3 0
0 0 0 0 2 2 2 X 2 0
0 4 4 4 X 2 2 2 2 0
0 4 4 4 2 2 2 2 2 0
0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0
0 1 1 1 0 0 0 0 0 0
0 1 1 1 0 0 0 0 0 0
0 1 1 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 2 0 0 2 2 0
0 0 0 0 2 0 0 2 2 0
0 0 0 0 2 2 2 2 2 0
0 2 2 2 2 2 2 2 2 0
0 2 2 2 2 2 2 2 2 0
0 0 0 0 0 0 0 0 0 0

(c) (d)

Fig. 11.5 The image in (a) is a simple binary image. Background pixels are denoted by
0 and object pixels are denoted by X. Image (b) shows the assigned labels after the first
raster scan. In image (c), an X denotes those pixels at which an equivalence is noted
during the first raster scan. Image (d) shows the final component labelled image.

equivalent. Thus, in the example of Figure 11.5, at the end of the second raster
scan labels 3 and 4 have been replaced by the label 2.

After this algorithm has assigned labels to the components in the image,
it is not necessarily the case that the labels will be the consecutive integers
(1, 2, · · · ). Therefore, a second stage of processing is sometimes used to relabel
the components to achieve this. In other cases, it is desirable to give each
component a label that is very different from the labels of the other components.
For example, if the component labelled image is to be displayed, it is useful to
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Fig. 11.6 The image of Figure 11.3 after connected components have been labelled.

increase the contrast, so that distinct components will actually appear distinct
in the image (a component with the label 2 will appear almost indistinguishable
from a component with label 3 if the component labels are used as pixel gray
values in the displayed component labelled image). The results of applying this
process to the image in Figure 11.3 are shown in Figure 11.6.

When there are multiple connected object components, it is often useful to
process each component individually. For example, we might like to compute
the sizes of the various components. For this purpose, it is useful to introduce
the indicator function for a component. The indicator function for component
i, denoted by Ii, is a function that takes on the value 1 for pixels that are
contained in component i, and the value 0 for all other pixels:

Ii(r, c) =
{

1 : pixel r, c is contained in component i
0 : otherwise . (11.51)

We will make use of the indicator function below, when we discuss computing
statistics associated with the various objects in the image.

11.5 POSITION AND ORIENTATION

The ultimate goal of a robotic system is to manipulate objects in the world.
In order to achieve this, it is necessary to know the positions and orientations
of the objects that are to be manipulated. In this section, we address the
problem of determining the position and orientation of objects in the image. If
the camera has been calibrated, it is then possible to use these image position
and orientations to infer the 3D positions and orientations of the objects. In
general, this problem of inferring the 3D position and orientation from image
measurements can be a difficult problem; however, for many cases that are
faced by industrial robots we an obtain adequate solutions. For example, when
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grasping parts from a conveyor belt, the depth, z, is fixed, and the perspective
projection equations can be inverted if z is known.

We begin the section with a general discussion of moments, since moments
will be used in the computation of both position and orientation of objects in
the image.

11.5.1 Moments

Moments are functions defined on the image that can be used to summarize
various aspects of the shape and size of objects in the image. The i, j moment
for the kth object, denoted by mij(k), is defined by

mij(k) =
∑
r,c

ricjIk(r, c). (11.52)

From this definition, it is evident that m00 is merely number of pixels in the
object. The order of a moment is defined to be the sum i + j. The first order
moments are of particular interest when computing the centroid of an object,
and they are given by

m10(k) =
∑
r,c

rIk(r, c), m01(k) =
∑
r,c

cIk(r, c). (11.53)

It is often useful to compute moments with respect to the object center of
mass. By doing so, we obtain characteristics that are invariant with respect to
translation of the object. These moments are called central moments. The i, j
central moment for the kth object is defined by

Cij(k) =
∑
r,c

(r − r̄)i(c− c̄)jIk(r, c), (11.54)

in which (r̄, c̄) are the coordinates for the center of mass, or centroid, of the
object.

11.5.2 The Centroid of an Object

It is convenient to define the position of an object to be the object’s center of
mass or centroid. By definition, the center of mass of an object is that point
(r̄, c̄) such that, if all of the object’s mass were concentrated at (r̄, c̄) the first
moments would not change. Thus, we have∑

r,c

r̄iIi(r, c) =
∑
r,c

rIi(r, c) ⇒ r̄i =

∑
r,c rIi(r, c)∑
r,c Ii(r, c)

=
m10(i)
m00(i)

(11.55)

∑
r,c

c̄iIi(r, c) =
∑
r,c

cIi(r, c) ⇒ c̄i =

∑
r,c cIi(r, c)∑
r,c Ii(r, c)

=
m01(i)
m00(i)

.(11.56)

Figure 11.7 shows the centroids for the connected components of the image of
Figure 11.3.
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Fig. 11.7 The segmented, component-labeled image of figure 11.3 showing the centroids
and orientation of each component.

11.5.3 The Orientation of an Object

We will define the orientation of an object in the image to be the orientation
of an axis that passes through the object such that the second moment of the
object about that axis is minimal. This axis is merely the two-dimensional
equivalent of the axis of least inertia.

For a given line in the image, the second moment of the object about that
line is given by

L =
∑
r,c

d2(r, c)I(r, c) (11.57)

in which d(r, c) is the minimum distance from the pixel with coordinates (r, c)
to the line. Our task is to minimize L with respect to all possible lines in the
image plane. To do this, we will use the ρ, θ parameterization of lines, and
compute the partial derivatives of L with respect to ρ and θ. We find the
minimum by setting these partial derivatives to zero.

With the ρ, θ parameterization, a line consists of all those points x, y that
satisfy

x cos θ + y sin θ − ρ = 0. (11.58)

Thus, (cos θ, sin θ) gives the unit normal to the line, and ρ gives the perpen-
dicular distance to the line from the origin. Under this parameterization, the
distance from the line to the point with coordinates (r, c) is given by

d(r, c) = r cos θ + c sin θ − ρ. (11.59)

Thus, our task is to find

L? = min
ρ,θ

∑
r,c

(r cos θ + c sin θ − ρ)2I(r, c) (11.60)
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We compute the partial derivative with respect to ρ as

d

dρ
L =

d

dρ

∑
r,c

(r cos θ + c sin θ − ρ)2I(r, c) (11.61)

= −2
∑
r,c

(r cos θ + c sin θ − ρ)I(r, c) (11.62)

= −2 cos θ
∑
r,c

rI(r, c)− 2 sin θ
∑
r,c

cI(r, c) + 2ρ
∑
r,c

I(r, c)(11.63)

= −2(cos θm10 + sin θm01 − ρm00) (11.64)
= −2(m00r̄ cos θ +m00c̄ sin θ − ρm00) (11.65)
= −2m00(r̄ cos θ + c̄ sin θ − ρ). (11.66)

Now, setting this to zero we obtain

r̄ cos θ + c̄ sin θ − ρ = 0. (11.67)

But this is just the equation of a line that passes through the point (r̄, c̄),
and therefore we conclude that the inertia is minimized by a line that passes
through the center of mass. We can use this knowledge to simplify the remaining
computations. In particular, define the new coordinates (r′, c′) as

r′ = r − r̄, c′ = c− c̄. (11.68)

The line that minimizes L passes through the point r′ = 0, c′ = 0, and therefore
its equation can be written as

r′ cos θ + c′ sin θ = 0. (11.69)

Before computing the partial derivative of L (expressed in the new coordinate
system) with respect to θ, it is useful to perform some simplifications.

L =
∑
r,c

(r′ cos θ + c′ sin θ)2I(r, c) (11.70)

= cos2 θ
∑
r,c

(r′)2I(r, c) + 2 cos θ sin θ
∑
r,c

(r′c′)I(r, c) + sin2 θ
∑
r,c

(c′)2I(r, c)(11.71)

= C20 cos2 θ + 2C11 cos θ sin θ + C02 sin2 θ (11.72)

in which the Cij are the central moments given in (11.54). Note that the central
moments depend on neither ρ nor θ.

The final set of simplifications that we will make all rely on the double angle
identities:

cos2θ =
1
2

+
1
2

cos 2θ (11.73)

sin2θ =
1
2
− 1

2
cos 2θ (11.74)

cosθ sin θ =
1
2

sin 2θ. (11.75)
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Substituting these into our expression for L we obtain

L = C20(
1
2

+
1
2

cos 2θ) + 2C11(
1
2

sin 2θ) + C02(
1
2
− 1

2
cos 2θ) (11.76)

=
1
2
(C20 + C02) +

1
2
(C20 − C02) cos 2θ +

1
2
C11 sin 2θ (11.77)

It is now easy to compute the partial derivative with respect to θ:

d

dθ
L =

d

dθ

1
2
(C20 + C02) +

1
2
(C20 − C02) cos 2θ +

1
2
C11 sin 2θ (11.78)

= −(C20 − C02) sin 2θ + C11 cos 2θ, (11.79)

and we setting this to zero we obtain

tan 2θ =
C11

C20 − C02
. (11.80)

Figure 11.7 shows the orientations for the connected components of the image
of Figure 11.3.
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Problems
TO BE WRITTEN





12
VISION-BASED

CONTROL

In Chapter 9 we described how feedback from a force sensor can be used to
control the forces and torques applied by the manipulator. In the case of force
control, the quantities to be controlled (i.e., forces and torques) are measured
directly by the sensor. Indeed, the output of a typical force sensor comprises
six electric voltages that are proportional to the forces and torques experienced
by the sensor. Force control is very similar to state-feedback control in this
regard.

In this chapter, we consider the problem of vision-based control. Unlike
force control, with vision-based control the quantities to be controlled cannot be
measured directly from the sensor. For example, if the task is to grasp an object,
the quantities to be controlled are pose variables, while the vision sensor, as we
have seen in Chapter 11, provides a two-dimensional array of intensity values.
There is, of course, a relationship between this array of intensity values and
the geometry of the robot’s workspace, but the task of inferring this geometry
from an image is a difficult one that has been at the heart of computer vision
research for many years. The problem faced in vision-based control is that of
extracting a relevant and robust set of parameters from an image and using
these to control the motion of the manipulator in real time.

Over the years, a variety of approaches have been taken to the problem
of vision-based control. These vary based on how the image data is used,
the relative configuration of camera and manipulator, choices of coordinate
systems, etc. In this chapter, we focus primarily on one specific approach:
image-based visual servo control for eye-in-hand camera configurations. We
begin the chapter with a brief description of this approach, contrasting it with

355
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other options. Following this, we develop the specific mathematical tools needed
for this approach, both design and analysis.

12.1 APPROACHES TO VISION BASED-CONTROL

There are several distinct approaches to vision-based control. These vary based
primarily on system configuration and how image data is used. In this section,
we give a brief description of these considerations.

12.1.1 Where to put the camera

Perhaps the first decision to be made when constructing a vision-based control
system is where to place the camera. There are essentially two options: the
camera can be mounted in a fixed location in the workspace, or it can be
attached to the manipulator. These are often referred to as fixed camera vs.
eye-in-hand configurations, respectively.

With a fixed camera configuration, the camera is positioned so that it can
observe the manipulator and any objects to be manipulated. There are several
advantages to this approach. Since the camera position is fixed, the field of
view does not change as the manipulator moves. The geometric relationship
between the camera and the workspace is fixed, and can be calibrated off line.
A disadvantage to this approach is that as the manipulator moves through the
workspace, it can occlude the camera’s field of view. This can be particularly
important for tasks that require high precision. For example, if an insertion task
is to be performed, it may be difficult to find a position from which the camera
can view the entire insertion task without occlusion from the end effector.

With an eye-in-hand system, the camera is often attached to the manipu-
lator above the wrist, i.e., the motion of the wrist does not affect the camera
motion. In this way, the camera can observe the motion of the end effector
at a fixed resolution and without occlusion as the manipulator moves through
the workspace. One difficulty that confronts the eye-in-hand configuration is
that the geometric relationship between the camera and the workspace changes
as the manipulator moves. The field of view can change drastically for even
small motion of the manipulator, particularly if the link to which the camera is
attached experiences a change in orientation. For example, a camera attached
to link three of an elbow manipulator (such as the one shown in Figure 3.1)
will experience a significant change in field of view when joint 3 moves.

For either configuration, motion of the manipulator will produce changes in
the images obtained by the camera. The analysis of the relationships between
manipulator motion and changes for the two cases are similar, and in this text
we will consider only the case of eye-in-hand systems.
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12.1.2 How to use the image data

There are two basic ways to approach the problem of vision-based control, and
these are distinguished by the way in the data provided by the vision system
is used. These two approaches can also be combined in various ways to yield
what are known as partitioned control schemes [?].

The first approach to vision-based control is known as position-based visual
servo control. With this approach, the vision data is used to build a partial
3D representation of the world. For example, if the task is to grasp an object,
the perspective projection equations from Chapter 11 can be solved to deter-
mine the 3D coordinates of the grasp points relative to the camera coordinate
frame. If these 3D coordinates can be obtained in real time, then they can be
provided as set points to the robot controller, and control techniques described
in Chapter 7 can be used. The main difficulties with position-based methods
are related to the difficulty of building the 3D representation in real time. In
particular, these methods tend to not be robust with respect to errors in cali-
bration. Furthermore, with position-based methods, there is no direct control
over the image itself. Therefore, a common problem with position-based meth-
ods is that camera motion can cause the object of interest to leave the camera
field of view.

A second method known as image-based visual servo control directly uses
the image data to control the robot motion. An error funtion is defined in
terms of quantities that can be directly measured in an image (e.g., image
coordinates of points, the orientation of lines in an image), and a control law is
constructed that maps this error directly to robot motion. To date, the most
common approach has been to use easily detected points on an object as feature
points. The error function is then the vector difference between the desired and
measured locations of these points in the image. Typically, relatively simple
control laws are used to map the image error to robot motion. We will describe
image-based control in some detail in this chapter.

Finally, these two approaches can be combined by using position-based meth-
ods to control certain degrees of freedom of the robot motion and using image-
based methods to control the remaining degrees of freedom. Such methods
essentially partition the set of degrees of freedom into disjoint sets, and are
thus known as partitioned methods. We briefly describe a partitioned method
in Section 12.6.

12.2 CAMERA MOTION AND INTERACTION MATRIX

As mentioned above, image-based methods map an image error function di-
rectly to robot motion without solving the 3D reconstruction problem. Recall
the inverse velocity problem discussed in Chapter 4. Even though the inverse
kinematics problem is difficult to solve and often ill posed (because the solution
is not unique), the inverse velocity problem is typically fairly easy to solve:
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one merely inverts the manipulator Jacobian matrix (assuming the Jacobian is
nonsingular). This can be understood mathematically by noting that while the
inverse kinematic equations represent a nonlinear mapping between possibly
complicated geometric spaces (e.g., even for the simple two-link planar arm the
mapping is from <2 to the torus), the mapping of velocities is a linear map
between linear subspaces (in the two-link example, a mapping from <2 to a
plane that is tangent to the torus). Likewise, the relationship between vectors
defined in terms of image features and camera velocities is a linear mapping
between linear subspaces. We will now give a more rigorous explanation of this
basic idea.

Let s(t) denote a vector of feature values that can be measured in an image.
Its derivative, ṡ(t) is referred to as to as an image feature velocity. For
example, if a single image point is used as a feature, we would have s(t) =
(u(t), v(t))T . In this case, ṡ(t) would be the image plane velocity of the image
point.

The image feature velocity is linearly related to the camera velocity. Let the
camera velocity ξ consist of linear velocity v and angular velocity ω,

ξ =
[
v
ω

]
, (12.1)

i.e., the origin of the camera frame is moving with linear velocity v, and the
camera frame is rotating about the axis ω which is rooted at the origin of the
camera frame as shown in Figure 12.1. The relationship between ṡ and ξ is
given by

ṡ = L(s, q)ξ. (12.2)

Here, the matrix L(s, q) is known as the interaction matrix or image Jacobian
matrix. It was first introduced in [64], where it was referred to it as the feature
sensitivity matrix. In [27] it was to as a Jacobian matrix (subsequently referred
to in the literature as the image Jacobian), and in [24] it was given the name
interaction matrix, the term that we will use. Note that the interaaction matrix
is a function of both the configuration of the robot (as was also true for the
manipulator Jacobian discribed in Chatper 4) and of the image feature values,
s.

The specific form of the interaction matrix depends on the features that are
used to define s. The simplest features are coordinates of points in the image,
and we will focus our attention on this case.

12.2.1 Interaction matrix vs. Image Jacobian

The interaction matrix L is often referred to in the visual servo community
by the name image Jacobian matrix. This is due, at least in part, to the
analogy that can be drawn between the manipulator Jacobian discussed in
Chapter 4 and the interaction matrix. In each case, a velocity ξ is related
to the variation in a set of parameters (either joint angles or image feature
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Figure showing the linear and angular
velocity vectors for the camera frame.

to be created

Fig. 12.1 Camera velocity

velocities) by a linear transformation. Strictly speaking, the interaction matrix
is not a Jacobian matrix, since ξ is not actually the derivative of some set of
pose parameters. However, using techniques analogous to those used to develop
the analytic Jacobian in Section 4.8, it is straightforward to construct an actual
Jacobian matrix that represents a linear transformation from the derivatives of
a set of pose parameters to the image feature velocities (which are derivatives
of the image feature values).

12.3 THE INTERACTION MATRIX FOR POINTS

In this section we derive the interaction matrix for the case of a moving camera
observing a point that is fixed in space. This scenario is useful for postioning a
camera relative to some object that is to be manipulated. For exaple, a camera
can be attached to a manipulator arm that is to grasp a stationary object.
Vision-based control can then be used to bring the manipulator to a grasping
configuration that may be defined in terms of image features. In section 12.3.4
we extend the development to the case of multiple feature points.

At time t, the orientation of the camera frame is given by a rotation matrix
R0
c = R(t), which specifies the orientation of the camera frame at time t rel-

ative to the fixed frame. We denote by O(t) the position of the origin of the
camera frame relative to the fixed frame. We denote by p the fixed point in the
workspace, and s = (u, v)T is the feature vector corresponding to the projection
of this point in the image.

Our goal in this section is to derive the interaction matrix L that relates the
velocity of the camera ξ to the derivatives of the coordinates of the projection
of the point in the image ṡ. We begin by finding an expression for the relative
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velocity of the point p to the moving camera. We then use the perspective
projection equations to relate this velocity to the image velocity ṡ. Finally,
after a bit of algebraic manipulations we arrive to the interaction matrix that
satisfies ṡ = Lξ.

12.3.1 Velocity of a fixed point relative to a moving camera

We denote by p0 the coordinates of p relative to the world frame. Note that
p0 does not vary with time, since p is fixed with respect to the world frame. If
we denote by p(t) the coordinates of p relative to the moving camera frame at
time t, we have

p0 = R(t)p(t) +O(t). (12.3)

Thus, at time t we can solve for the coordinates of p relative to the camera
frame by

p(t) = RT (t)p0 −RT (t)O(t), (12.4)

which is merely the time varying version of Equation (2.55). Now, to find
the velocity of the point p relative to the moving camera frame, we merely
differentiate this equation (as in Chapter 4). We will drop the explicit reference
to time in these equations to simplify notation, but the reader is advised to
bear in mind that both the rotation matrix R and the location of the origin of
the camera frame O are time varying quantities. The derivative is computed as
follows

d

dt
p(t) =

d

dt

[
RT p0

]
− d

dt

[
RTO

]
=

[
d

dt
R

]T
p0 −

[
d

dt
R

]T
O −RT d

dt
O

=
[
d

dt
R

]T (
p0 −O

)
−RT Ȯ (12.5)

In this equation, the quantity p0 − O is merely the vector from the origin
of the moving frame to the fixed point p, expressed in coordinates relative to
the fixed frame, and thus RT (p0 − O) = p is the vector from the origin of the
moving frame to the point p expressed relative to the moving frame. Using
Equation (4.19), we can write the derivative of R as Ṙ = S(ω)R, which allows
us to write Equation (12.5) as

= [S(ω)R]T
(
p0 −O

)
−RT Ȯ

= RTST (ω)
(
p0 −O

)
−RT Ȯ

= RT
[
S(−ω)

(
p0 −O

)]
−RT Ȯ

= −RTω ×RT
(
p0 −O

)
−RT Ȯ

The vector ω gives the angular velocity vector for the moving frame expressed
relative to the fixed frame, i.e., ω = ω0. Therefore, RTω = Rc0ω

0 = ωc gives
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the angular velocity vector for the moving frame relative to the moving frame.
Similarly, note that RT Ȯ = Ȯc. Using these conventions, we can immediately
write the equation for the velocity of p relative to the moving camera frame

ṗ = −ωc × p− Ȯc (12.6)

It is interesting to note that this velocity of a fixed point relative to a moving
frame is merely −1 times the velocity of a moving point (i.e., a point attached
to a moving frame) relative to a fixed frame.

Example 12.1 Camera motion in the plane
TO BE WRITTEN: camera motion is in the plane parallel to the image

plane (i.e., rotation about optic axis, translation parallel to camera x-y axes).
Compute the velocity of a fixed point relative to the camera frame
�

12.3.2 Constructing the Interaction Matrix

To simplify notation, we define the coordinates for p relative to the camera frame
as p = (x, y, z)T . By this convention, the velocity of p relative to the moving
frame is merely the vector ṗ = (ẋ, ẏ, ż)T . We will denote the coordinates
for the angular velocity vector by ωc = (ωx, ωy, ωz)T = RTω. To further
simplify notation, we assign coordinates RT Ȯ = (vx, vy, vz)T = Ȯc. Using
these conventions, we can write Equation (12.6) as ẋ

ẏ
ż

 = −

 ωx
ωy
ωz

×
 x
y
z

−
 vx
vy
vz


which can be written as the system of three equations

ẋ = yωz − zωy − vx (12.7)
ẏ = zωx − xωz − vy (12.8)
ż = xωy − yωx − vz (12.9)

Assuming that the imaging geometry can be modeled by perspective pro-
jection as given by Equation (11.5), we can express x and y in terms of image
coordinates u, v of the projection of p in the image and the depth z as

x =
uz

λ
, y =

vz

λ

Substituting these into Equations (12.7)-(12.9) we obtain

ẋ =
vz

λ
ωz − zωy − vx (12.10)

ẏ = zωx −
uz

λ
ωz +−vy (12.11)

ż =
uz

λ
ωy −

vz

λ
ωx − vz (12.12)



362 VISION-BASED CONTROL

These equations express the velocity ṗ in terms of the image coordinates u, v
the depth of the point p, and the angular and linear velocity of the camera.
Our goal is to derive an expression that relates the image velocity (u̇, v̇)T to the
angular and linear velocity of the camera frame. Therefore, we will now find
expressions for (u̇, v̇)T and then combine these with Equations (12.10)-(12.12).

Using the quotient rule for differentiation with the equations of perspective
projection we obtain

u̇ =
d

dt

λx

z
= λ

zẋ− xż
z2

Substituting Equations (12.10) and (12.12) into this expression gives

u̇ =
λ

z2

(
z
[vz
λ
ωz − zωy − vx

]
− uz

λ

[uz
λ
ωy −

vz

λ
ωx − vz

])
= −λ

z
vx +

u

z
vz +

uv

λ
ωx −

λ2 + u2

λ
ωy + vωz (12.13)

We can apply the same technique for v̇

v̇ =
d

dt

λy

z
= λ

zẏ − yż
z2

and substituting Equations (12.11) and (12.12) into this expression gives

v̇ =
λ

z2

(
z
[
−uz
λ
ωz + zωx − vy

]
− vz

λ

[uz
λ
ωy −

vz

λ
ωx − vz

])
= −λ

z
vy +

v

z
vz +

λ2 + v2

λ
ωx −

uv

λ
ωy − uωz (12.14)

Equations (12.13) and (12.14) can be combined and written in matrix form
as

[
u̇
v̇

]
=

 −
λ

z
0

u

z

uv

λ
−λ

2 + u2

λ
v

0 −λ
z

v

z

λ2 + v2

λ
−uv
λ

−u



vx
vy
vz
ωx
ωy
ωz

 (12.15)

The matrix in this equation is the interaction matrix for a point. It relates
the velocity of the camera to the velocity of the image prjection of the point.
Note that this interaction matrix is a function of the image coordinates of the
point, u and v, and of the depth of the point with respect to the camera frame,
z. Therefore, this equation is typically written as

ṡ = Lp(u, v, z)ξ (12.16)

Example 12.2 Camera motion in the plane (cont.)
TO BE WRITTEN: Give specific image coordinates to continue the previous

example and compute the image motion as a function of camera velocity.
�
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12.3.3 Properties of the Interaction Matrix for Points

Equation (12.16) can be decomposed and written as

ṡ = Lv(u, v, z)v + Lω(u, v)ω (12.17)

in which Lv(u, v, z) contains the first three columns of the interaction matrix,
and is a function of both the image coordinates of the point and its depth,
while Lω(u, v) contains the last three columns of the interaction matrix, and is
a function of only the image coordinates of the point (i.e., it does not depend
on depth). This can be particularly beneficial in real-world situations when
the exact value of z may not be known. In this case, errors in the value of z
merely cause a scaling of the matrix Lv(u, v, z), and this kind of scaling effect
can be compensated for by using fairly simple control methods. This kind of
decomposition is at the heart of the partitioned methods that we discuss in
Section 12.6.

The camera velocity ξ has six degrees-of-freedom, while only two values, u
and v, are observed in the image. Thus, one would expect that not all camera
motions case observable changes in the image. More precisely, L ∈ R2×6 and
therefore has a null space of dimension 4, i.e., the system

0 = L(s, q)ξ

has soltion vectors ξ that lie in a four-dimensional subspace of R6. For the case
of a single point, it can be shown that the null space of the interaction matrix
given in (12.15) is spanned by the four vectors

u
v
λ
0
0
0




0
0
0
u
v
λ




uvz

−(u2 + λ2)z
λvz
−λ2

0
uλ




λ(u2 + v2 + λ2)z

0
−u(u2 + v2 + λ2)z

uvλ
−(u2 + λ2)z

uλ2


The first two of these vectors have particularly intuitive interpretations. The
first corresponds to motion of the camera frame along the projection ray that
contains the point p, and the second corresponds to rotation of the camera
frame about a projection ray that contains p.

12.3.4 The Interaction Matrix for Multiple Points

It is straightforward to generalize the development above the case in which
several points are used to define the image feature vector. Consider the case for
which the feature vector vector consists of the coordinates of n image points.
Here, the ith feature point has an associated depth, zi, and we define the feature
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vector s and the vector of depth values, z by

s =


u1

v1
...
un
vn

 and z =

 z1
...
zn



For this case, the composite interaction matrix Lc that relates camera ve-
locity to image feature velocity is a function of the image coordinates of the n
points, and also of the n depth values,

ṡ = Lc(s, z)ξ

This interaction matrix is thus obtained by stacking the n interaction matrices
for the individual feature points,

Lc(s, z) =

 L1(u1, v1, z1)
...

Ln(un, vn, zn)



=



− λ
z1

0
u1

z1

u1v1
λ

−λ
2 + u2

1

λ
v1

0 − λ
z1

v1
z1

λ2 + v2
1

λ
−u1v1

λ
−u1

...
...

...
...

...
...

− λ

zn
0

un
zn

unvn
λ

−λ
2 + u2

n

λ
vn

0 − λ

zn

vn
zn

λ2 + v2
n

λ
−unvn

λ
−un


Thus, we have Lc ∈ R2n×6 and therefore three points are sufficient to solve

for ξ given the image measurements ṡ.

12.4 IMAGE-BASED CONTROL LAWS

With image-based control, the goal configuration is defined by a desired con-
figuration of image features, denoted by sd. The image error function is then
given by

e(t) = s(t)− sd.
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The image-based control problem is to find a mapping from this error function
to a commanded camera motion, u(t). As we have seen in previous chapters,
there are a number of control approaches that can be used to determine the
joint-level inputs to achieve a desired trajectory. Therefore, in this chapter
we will treat the manipulator as a kinematic positioning device, i.e., we will
ignore manipulator dynamics and develop controllers that compute desired end
effector trajectories. The underlying assumption is that these trajectories can
then be tracked by a lower level manipulator controller.

The most common approach to image-based control is to compute a desired
camera velocity and use this as the control u(t) = ξ. Relating image feature
velocities to the camera velocity ξ is typically done by solving Equation (12.2).
Solving this equation will give a desired camera velocity. In some cases, this
can be done simply by inverting the interaction matrix, but in other cases the
pseudoinverse must be used, as described below.

12.4.1 Computing Camera Motion

For the case of k feature values and m components of the camera body velocity
ξ, we have L ∈ <k×m. In general we will have m = 6, but in some cases
we may have m < 6, for example if the camera is attached to a SCARA arm
used to manipulate objects on a moving conveyor. When L is full rank (i.e.,
rank(L) = min(k,m)), it can be used to compute ξ from ṡ. There are three
cases that must be considered: k = m, k > m, and k < m. We now discuss
each of these.

When k = m and L is full rank, L is nonsingular, and L−1 exists. Therefore,
in this case, ξ = L−1ṡ.

When k < m, L−1 does not exist, and the system is underconstrained. In
the visual servo application, this implies that the we are not observing enough
feature velocities to uniquely determine the camera motion ξ, i.e., there are
certain components of the camera motion that can not be observed. In this
case we can compute a solution given by

ξ = L+ṡ+ (I − L+L)b

where L+ is the pseudoinverse for L given by

L+ = LT (LLT )−1

and b ∈ Rk is an arbitrary vector. Note the similarity between this equation
and Equation (4.128) which gives the solution for the inverse velocity problem
(i.e., solving for joint velocities to achieve a desired end-effector velocity) for
redundant manipulators.

In general, for k < m, (I−LL+) 6= 0, and all vectors of the form (I−LL+)b
lie in the null space of L, which implies that those components of the camera
velocity that are unobservable lie in the null space of L. If we let b = 0, we
obtain the value for ξ that minimizes the norm
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‖ṡ− Lξ‖

When k > m and L is full rank, we will typically have an inconsistent system
(especially when ṡ is obtained from measured image data). In the visual servo
application, this implies that the we are observing more feature velocities than
are required to uniquely determine the camera motion ξ. In this case the rank
of the null space of L is zero, since the dimension of the column space of L
equals rank(L). In this situation, we can use the least squares solution

ξ = L+ṡ (12.18)

in which the pseudoinverse is given by

L+ = (LTL)−1LT (12.19)

12.4.2 Proportional Control Schemes

Many modern robots are equipped with controllers that accept as input a com-
mand velocity ξ for the end effector. Thus, we define our control input as
u(t) = ξ. Using the results above, we can define a proportional control law as

u(t) = −KL+e(t). (12.20)

in which K is an m×m diagonal, positive definine gain matrix.
The derivative of the error function is given by

ė(t) =
d

dt
(s(t)− sd) = ṡ(t) = Lξ

and substituting Equation (12.20) for ξ we obtain

ė(t) = −KLL+e(t) (12.21)

If k = m and L has full rank, then L+ = L−1, and we have

ė(t) = −Ke(t)

From linear system theory, we know that this system is stable when the eigen
values ofK are positive, which motivates the selection ofK as a positive definite
matrix.

When k > m, as is typically the case for visual servo systems, a sufficient
condition for stability is that the matrix product KLL+ is positive definite.
This is easily demonstrated using the Lyapunov function

V (t) =
1
2
‖e(t)‖2 =

1
2
eT e
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Using Equation (12.21) the derivative V̇ is given by

V̇ =
d

dt

1
2
eT e

= eT ė

= −eT
(
KLL+

)
e

and we see that V̇ < 0 when KLL+ is positive definite.
In practice, we will not know the exact value of L or L+ since these depend

on knowledge of depth information that must be estimated by the computer
vision system. In this case, we will have an estimate for the interaction matrix
L̂+ and we can use the control u(t) = −KL̂+e(t). It is easy to show, by a
proof analogous to the one above, that the resutling visual servo system will
be stable when KLL̂+ is positive definite. This helps to explain the robustness
of image-based control methods to calibration errors in the computer vision
system.

12.5 THE RELATIONSHIP BETWEEN END EFFECTOR AND

CAMERA MOTIONS

The output of a visual servo controller is a camera velocity ξc, typically expresed
in coordinates relative to the camera frame. If the camera frame were coincident
with the end effector frame, we could use the manipulator Jacobian to determine
the joint velocities that would achieve the desired camera motion as described
in Section 4.10. In most applications, the camera frame is not coincident with
the end effector frame, but is rigidly attached to it. In this case, the two frames
are related by the constant homogeneous transformation

T 6
c =

[
R6
c d6

c

0 1

]
(12.22)

Our goal is to find the relationship betweent the body velocity of the cam-
era fame ξc = (vc, ωc)T and the body velocity of the end effector frame ξ6 =
(v6, ω6)T . Furthermore, we will assume that the camera velocity is given with
respect to the camera frame (i.e., we are given the coordinates ξcc), and that
we wish to determine the end effector velocity relative to the end effector frame
(i.e., we wish to find the coordinates ξ66). Once we obtain ξ66 , it is a simple
matter to express ξ = (v6, ω6)T with respect to the base frame, as we will see
below.

Since the two frames are rigidly attached, the angular velocity of the end
effector frame is the same as the angular velocity for the camera frame. An
easy way to show this is by computing the angular velocities of each frame by
taking the derivatives of the appropriate rotation matrices (such as was done
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in Chapter 4). The derivation is as follows,

R0
c = R0

6R
6
c

d

dt
R0
c =

d

dt
R0

6R
6
c

Ṙ0
c = Ṙ0

6R
6
c

S(ω0
c )R

0
c = S(ω0

6)R0
6R

6
c

S(ω0
c ) = S(ω0

6)

Thus, we have ω0
c = ω0

6 , and it is clear that the angular velocity of the end
effector is identical to the angular velocity of the camera frame, ω6 = ωc. If the
coordinates of this angular velocity are given with respect to the camera frame
and we wish to express the angular velocity with respect to the end effector
frame, we merely use the rotational coordinate transformation

ω6
6 = R6

cω
c
c (12.23)

If the camera is moving with body velocity ξ = (vc, ωc)T , then the linear
velocity of the origin of the end effector frame (which is rigidly attached to the
camera frame) is given by vc + ωc × r, with r the vector from the origin of the
camera frame to the origin of the end effector frame. From Equation (12.22),
d6
c gives the coordinates of the origin of the camera frame with respect to the

end effector frame, and therefore we can express r in coordinates relative to the
camera frame as rc = −Rc6d6

c . Thus, we write ωc × r in the coordinates with
respect to the camera frame as

ωcc × (−Rc6d6
c) = Rc6d

6
c × ωcc

Now to express this free vector with respect to the end effector frame, we
merely apply a rotation transformation,

R6
c

(
Rc6d

6
c × ωcc

)
= d6

c ×R6
cω

c
c

= S(d6
c)R

6
cω

c
c (12.24)

Expressing vc relative to the end effector frame is also accomplished by a
simple rotational transformation,

v6
c = R6

cv
c
c (12.25)

Combining Equations (12.23), (12.24), and (12.25) into a single matrix equa-
tion, we obtain

ξ66 =
[

R6
c S(d6

c)R
6
c

03×3 R6
c

]
ξcc

If we wish to express the end effector velocity with respect to the base frame,
we merely apply a rotational transformation to the two free vectors v6 and ω6,
and this can be written as the matrix equation

ξ06 =
[

R0
6 03×3

03×3 R0
6

]
ξ66
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Example 12.3 Eye-in-hand system with SCARA arm
TO BE WRITTEN: This example will show the required motion of the SCARA

arm to cause a pure rotation about the optic axis of the camera, for the camera
attached to the end effector, optic axis of the camera parallel to world z-axix.
�

12.6 PARTITIONED APPROACHES

TO BE REVISED
Although imgae-based methods are versatile and robust to calibration and

sensing errors, they sometimes fail when the required camera motion is large.
Consider, for example, the case when the required camera motion is a large
rotation about the optic axis. If point features are used, a pure rotation of
the camera about the optic axis would cause each feature point to trace a
trajectory in the image that lies on a circle. Image-based methods, in contrast,
would cause each feature point to move in a straight line from its current image
position to its desired position. The induced camera motion would be a retreat
along the optic axis, and for a required rotation of π, the camera would retreat
to z = −∞, at which point detL = 0, and the controller would fail. This
problem is a consequence of the fact that image-based control does not explicitly
take camera motion into acount. Instead, image-based control determines a
desired trajector in the image feature space, and maps this trajectory, using
the interaction matrix, to a camera velocity.

To combat this problem, a number of partitioned methods have been
introduced. These methods use the interaction matrix to control only a subset
of the camera degrees of freedom, using other methods to control the remaining
degrees of freedom. Consider Equation (12.15). We can write this equation as

[
u̇
v̇

]
=

 −
λ

z
0

uv

λ
−λ

2 + u2

λ

0 −λ
z

λ2 + v2

λ
−uv
λ



vx
vy
ωx
ωy

+


u

z
v

v

z
−u

[ vz
ωz

]

If we genaralize this to k feature points, we stack the resulting interaction
matrices as in Section 12.3.4, and the resulting relationship is given by

ṡ = Lxyξxy + Lzξz (12.26)
= ṡxy + ṡz (12.27)

In Equation (12.27), ṡz = Lzξz gives the component of ṡ due to the camera
motion along and rotation about the optic axis, while ṡxy = Lxyξxy gives the
component of ṡ due to velocity along and rotation about the camera x and y
axes.
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TO APPEAR

Fig. 12.2 Feature used to determine ωz.

Equation (12.26) allows us to partition the control u into two components,
uxy = ξxy and uz = ξz. Suppose that we have established a control scheme to
determine the value ξz = uz. Using an image-based method to find uxy, we
would solve Equation (12.26) for ξxy,

ξxy = L+
xy {ṡ− Lzξz} (12.28)

= L+
xy {ṡ− ṡz} (12.29)

This equation has an intuitive explanation. −L+
xyLzξz is the required value of

ξxy to cancel the feature motion ṡz. The control uxy = ξxy = L+
xy ṡ gives the

velocity along and rotation about the camera x and y axes that produce the
desired ṡ once image feature motion due to ξz has been accounted for.

In [15], ξz, is computed using two image features that are simple and com-
putationally inexpensive to compute. The image feature used to determine ωz
is θij , with 0 ≤ θij < 2π the angle between the horizontal axis of the image
plane and the directed line segment joining feature points two feature point.
This is illustrated in Figure 12.2. For numerical conditioning it is advantageous
to select the longest line segment that can be constructed from the feature
points, and allowing that this may change during the motion as the feature
point configuration changes. The value for ωz is given by

ωz = γωz
(θdij − θij)

in which θdij is the desired value, and γωz
is a scalar gain coefficient. This form

allows explicit control over the direction of rotation, which may be important
to avoid mechanical motion limits. For example if a hard stop exists at θs then

ωz = γωz sgn(θdij − θs)sgn(θij − θs)
[
θdij − θij

]
will avoid motion through that stop.

The image feature used to determine vz is the square root of the area of the
regular polygon enclosed by the feature points. If we denote the area of the
polygon by σ2, we determine vz as

vz = γvz
ln(

σd

σ
) (12.30)
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TO APPEAR

Fig. 12.3 Feature used to determine vz.

TO APPEAR

Fig. 12.4 Proposed partitioned IBVS for pure target rotation (πrad). (a) Image-plane
feature motion (initial location is ◦, desired location is •), (b) Feature error trajectory,
(c) Cartesian translation trajectory.

The advantages of this approach are that (1) it is a scalar; (2) it is rotation
invariant thus decoupling camera rotation from Z-axis translation. (3) it can
be cheaply computed.

Figure 12.4 shows the performance of the proposed partitioned controller for
the case of desired rotation by π about the optic axis. The important features
are that the camera does not retreat since σ is constant at σ = 0. The rotation
θ monotonically decreases and the feature points move in a circle. The feature
coordinate error is initially increasing, unlike the classical IBVS case in which
feature error is monotonically decreasing.

An example that involves more complex translational and rotational motion
is shown in Figure 12.5. The new features decrease monotonically, but the error
in s does not decrease monotonically and the points follow complex curves on
the image plane. Figure 12.6 compares the Cartesian camera motion for the two
IBVS methods. The proposed partitioned method has eliminated the camera
retreat and also exhibits better behavior for the X- and Y-axis motion. However
the consequence is much more complex image plane feature motion that admits
the possibility of the points leaving the field of view.

Other partitioned methods have been propose in [48, 19, 53], but these rely
on advanced concepts from projective geometry, and are beyond the scope of
this text.
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TO APPEAR

Fig. 12.5 Proposed partitioned IBVS for general target motion. (a) Image-plane feature
motion (dashed line shows straight line motion for classical IBVS), (b) Feature error
trajectory.

TO APPEAR

Fig. 12.6 Comparison of Cartesian camera motion for classic and new partitioned IBVS
for general target motion.

12.7 MOTION PERCEPTIBILITY

Recall the that notion of manipulability described in Section 4.11 gave a quan-
titative measure of the scaling from joint velocities to end-effector velocities.
Motion pereptibility [69, 68] is an analogous concept that relates camera
velocity to the velocity of features in the image. The notion of resolvability
introduced in [55, 56] is similar. Intuitively, motion perceptibility quantifies the
magnitude of changes to image features that result from motion of the camera.

Consider the set of all robot tool velocities ξ such that

‖ξ‖ = (ξ21 + ξ22 + . . . ξ2m)1/2 ≤ 1. (12.31)

As above, there are three cases to consider. Suppose that k > m (i.e., there are
redundant image features). We may use Equation (12.18) to obtain

‖ξ‖ = ξT · ξ

= (L+ṡ)T (L+ṡ)

= ṡT (L+TL+)ṡ ≤ 1 (12.32)

Now, consider the singular value decomposition of L, given by

L = UΣV T . (12.33)
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in which
U = [u1u2 . . . uk] , V = [v1v2 . . . vm] (12.34)

are orthogonal matrices, and Σ ∈ <k×m with

Σ =


σ1

σ2

.
.
σm

0

 (12.35)

and the σi are the singular values of L, and σ1 ≥ σ2 . . . ≥ σm.
For this case, the pseudoinverse of the image Jacobian, L+, is given by

Equation (12.19). Using this with Equations (12.32) and (12.33) we obtain

ṡTU


σ−2

1

σ−2
2

.
.
σ−2
m

0

U
T ṡ ≤ 1 (12.36)

Consider the orthogonal transformation of ṡ given by

˜̇s = UT ṡ (12.37)

Substituting this into Equation (12.36) we obtain

m∑
i=1

1
σ2
i

˜̇si ≤ 1 (12.38)

Equation (12.38) defines an ellipsoid in an m-dimensional space. We shall refer
to this ellipsoid as the motion perceptibility ellipsoid. We may use the volume
of the m-dimensional ellipsoid given in (12.38) as a quantitative measure of the
perceptibility of motion. The volume of the motion perceptibility ellipsoid is
given by

K
√

det(LTL), (12.39)

in which K is a scaling constant that depends on the dimension of the ellipsoid,
m. Because the constantK depends only onm, it is not relevant for the purpose
of evaluating motion perceptibility (since m will be fixed for any particular
problem). Therefore, we define the motion perceptibility, which we shall denote
be wv, as

wv =
√

det(LTL) = σ1σ2 · · ·σm. (12.40)
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The motion perceptibility measure, wv, has the following properties, which
are direct analogs of properties derived by Yoshikawa for manipulability [78].

• In general, wv = 0 holds if and only if rank(L) < min(k,m), (i.e., when
L is not full rank).

• Suppose that there is some error in the measured visual feature velocity,
∆ṡ. We can bound the corresponding error in the computed camera
velocity, ∆ξ, by

(σ1)−1 ≤ ||∆ξ||
||∆ṡ||

≤ (σm)−1. (12.41)

There are other quantitative methods that could be used to evaluate the per-
ceptibility of motion. For example, in the context of feature selection, Feddema
[26] has used the condition number for the image Jacobian, given by ‖L‖‖L−1‖.

12.8 CHAPTER SUMMARY

TO APPEAR
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Problems
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Appendix A
Geometry and
Trigonometry

A.1 TRIGONOMETRY

A.1.1 Atan2

The function θ = A tan(x, y) computes the arc tangent function, where x and
y are the cosine and sine, respectively, of the angle θ. This function uses the
signs of x and y to select the appropriate quadrant for the angle θ. Specifically,
A tan(x, y) is defined for all (x, y) 6= (0, 0) and equals the unique angle θ such
that

cos θ =
x

(x2 + y2)
1
2
, sin θ =

y

(x2 + y2)
1
2
. (A.1)

For example, A tan(1,−1) = −π4 , while A tan(−1, 1) = + 3π
4 . Note that if both

x and y are zero, A tan is undefined.
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A.1.2 Reduction formulas

sin(−θ) = − sin θ sin(π2 + θ) = cos θ

cos(−θ) = cos θ tan(π2 + θ) = − cot θ

tan(−θ) = − tan θ tan(θ − π) = tan θ

A.1.3 Double angle identitites

sin(x± y) = sinx cos y ± cosx sin y
cos(x± y) = cosx cos y ∓ sinx sin y

tan(x± y) =
tanx± y

1∓ tanx tan y

A.1.4 Law of cosines

If a triangle has sides of length a, b and c, and θ is the angle opposite the side
of length a, then

a2 = b2 + c2 − 2bc cos θ (A.2)



Appendix B
Linear Algebra

In this book we assume that the reader has some familiarity with basic proper-
ties of vectors and matrices, such as matrix addition, subtraction, multiplica-
tion, matrix transpose, and determinants. These concepts will not be defined
here. For additional background see [4].

The symbol R will denote the set of real numbers, and Rn will denote the
usual vector space on n-tuples over R. We use lower case letters a, b, c, x, y, etc.,
to denote scalars in R and vectors in Rn. Uppercase letters A, B, C, R, etc.,
denote matrices. Unless otherwise stated, vectors will be defined as column
vectors. Thus, the statement x ∈ Rn means that

x =

 x1

...
xn

 , xi ∈ R. (B.1)

The vector x is thus an n-tuple, arranged in a column with components x1, . . . , xn.
We will frequently denote this as

x = [x1, . . . , xn]T (B.2)

where the superscript T denotes transpose. The length or norm of a vector
x ∈ Rn is

‖x‖ = (x2
1 + · · ·+ x2

n)
1
2 . (B.3)
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The scalar product, denoted 〈x, y〉, or xT y of two vectors x and y belonging
to Rn is a real number defined by

〈x, y〉 = xT y = x1y1 + · · ·+ xnyn. (B.4)

Thus,

‖x‖ = 〈x, x〉 12 (B.5)

The scalar product of vectors is commutative, that is,

〈x, y〉 = 〈y, x〉. (B.6)

We also have the useful inequalities,

|〈x, y〉| ≤ ‖x‖ ‖y‖ (Cauchy-Schwartz) (B.7)
‖x+ y‖ ≤ ‖x‖ + ‖y‖ (Triangle Inequality) (B.8)

For vectors in R3 the scalar product can be expressed as

|〈x, y〉| = ‖x‖ ‖y‖ cos(θ) (B.9)

where θ is the angle between the vectors x and y.
The outer product of two vectors x and y belonging to Rn is an n × n

matrix defined by

xyT =


x1y1 · · x1yn
x2y1 · · x2yn
· · · ·

xny1 · · xnyn

 . (B.10)

From (B.10) we can see that the scalar product and the outer product are
related by

〈x, y〉 = xT y = Tr(xyT ) (B.11)

where the function Tr(·) denotes the trace of a matrix, that is, the sum of the
diagonal elements of the matrix.

We will use i, j and k to denote the standard unit vectors in R3

i =

 1
0
0

 , j =

 0
1
0

 , k =

 0
0
1

 . (B.12)

Using this notation a vector x = [x1, x2, x3]T may be written as

x = x1i+ x2j + x3k. (B.13)



DIFFERENTIATION OF VECTORS 381

Fig. B.1 The right hand rule.

The vector product or cross product x × y of two vectors x and y be-
longing to R3 is a vector c defined by

c = x× y = det

 i j k
x1 x2 x3

y1 y2 y3

 (B.14)

= (x2y3 − x3y2)i+ (x3y1 − x1y3)j + (x1y2 − x2y1)k.(B.15)

The cross product is a vector whose magnitude is

‖c‖ = ‖x‖ ‖y‖ sin(θ) (B.16)

where θ is the angle between x and y and whose direction is given by the right
hand rule shown in Figure B.1.

A right-handed coordinate frame x − y − z is a coordinate frame with axes
mutually perpendicular and that also satisfies the right hand rule as shown
in Figure B.2. We can remember the right hand rule as being the direction of
advancement of a right-handed screw rotated from the positive x axis is rotated
into the positive y axis through the smallest angle between the axes. The cross
product has the properties

x× y = −y × x
x× (y + z) = x× y + x× z (B.17)
α(x× y) = (αx)× y = x× (αy) (B.18)

B.1 DIFFERENTIATION OF VECTORS

Suppose that the vector x(t) = (x1(t), . . . , xn(t))T is a function of time. Then
the time derivative ẋ of x Is just the vector

ẋ = (ẋ1(t), . . . , ẋn(t))T (B.19)
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Fig. B.2 The right-handed coordinate frame.

that is, the vector can be differentiated coordinate wise. Likewise, the derivative
dA/dt of a matrix A = (aij) is just the matrix (ȧij). Similar statements hold
for integration of vectors and matrices. The scalar and vector products satisfy
the following product rules for differentiation similar to the product rule for
differentiation of ordinary functions.

d

dt
〈x, y〉 = 〈dx

dt
, y〉+ 〈x, dy

dt
〉 (B.20)

d

dt
(x× y) =

dx

dt
× y + x× dy

dt
. (B.21)

B.2 LINEAR INDEPENDENCE

A set of vectors {x1, . . . , xn} is said to linearly independent if and only if

n∑
i=1

αixi = 0 (B.22)

implies

xj = 0 for all i. (B.23)

The rank of a matrix A is the the largest number of linearly independent rows
(or columns) of A. Thus the rank of an n ×m matrix can be no greater than
the minimum of n and m.
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B.3 CHANGE OF COORDINATES

A matrix can be thought of as representing a linear transformation from Rn to
Rn in the sense that A takes a vector x to a new vector y according to

y = Ax (B.24)

y is called the image of x under the transformation A. If the vectors x and y are
represented in terms of the standard unit vectors i, j, and k, then the columns
of A are themselves vectors which represent the images of the basis vectors i, j,
k. Often it is desired to represent vectors with respect to a second coordinate
frame with basis vectors e, f , and g. In this case the matrix representing the
same linear transformation as A, but relative to this new basis, is given by

A′ = T−1AT (B.25)

where T is a non-singular matrix with column vectors e, f , g. The transforma-
tion T−1AT is called a similarity transformation of the matrix A .

B.4 EIGENVALUES AND EIGENVECTORS

The eigenvalues of a matrix A are the solutions in s of the equation

det(sI −A) = O. (B.26)

The function, det(sI−A) is a polynomial in s called the characteristic poly-
nomial of A. If se is an eigenvalue of A, an eigenvector of A corresponding to
se is a nonzero vector x satisfying the system of linear equations

(seI −A) = 0. (B.27)

or, equivalently,

Ax = sex. (B.28)

If the eigenvalues s1, . . . , sn of A are distinct, then there exists a similar-
ity transformation A′ = T−1AT , such that A′ is a diagonal matrix with the
eigenvalues s1, . . . , sn on the main diagonal, that is,

A′ = diag[s1, . . . , sn]. (B.29)

B.5 SINGULAR VALUE DECOMPOSITION (SVD)

For a square matrices, we can use tools such as the determinant, eigenvalues and
eigenvectors to analyze their properties. However, for nonsquare matrices these
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tools simply do not apply. Their generalizations are captured by the Singular
Value Decomposition (SVD) of a matrix, which we now introduce.

As we described above, for J ∈ Rm×n, we have JJT ∈ Rm×m. This square
matrix has eigenvalues and eigenvectors that satisfy

JJTui = λiui (B.30)

in which λi and ui are corresponding eigenvalue and eigenvector pairs for JJT .
We can rewrite this equation to obtain

JJTui − λiui = 0
(JJT − λiI)ui = 0. (B.31)

The latter equation implies that the matrix (JJT −λiI) is singular, and we can
express this in terms of its determinant as

det(JJT − λiI) = 0. (B.32)

We can use Equation (B.32) to find the eigenvalues λ1 ≥ λ2 · · · ≥ λm ≥ 0 for
JJT . The singular values for the Jacobian matrix J are given by the square
roots of the eigenvalues of JJT ,

σi =
√
λi. (B.33)

The singular value decomposition of the matrix J is then given by

J = UΣV T , (B.34)

in which

U = [u1u2 . . . um] , V = [v1v2 . . . vn] (B.35)

are orthogonal matrices, and Σ ∈ Rm×n.

Σ =


σ1

σ2

.
.
σm

∣∣∣∣∣∣∣∣∣∣
0

 . (B.36)

We can compute the SVD of J as follows. We begin by finding the singular
values, σi, of J using Equations (B.32) and (B.33). These singular values can
then be used to find the eigenvectors u1, · · ·um that satisfy

JJTui = σ2
i ui. (B.37)

These eigenvectors comprise the matrix U = [u1u2 . . . um]. The system of equa-
tions (B.37) can be written as

JJTU = UΣ2
m (B.38)
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if we define the matrix Σm as

Σm =


σ1

σ2

.
.
σm

 .
Now, define

Vm = JTUΣ−1
m (B.39)

and let V be any orthogonal matrix that satisfies V = [Vm | Vn−m] (note that
here Vn−m contains just enough columns so that the matrix V is an n × n
matrix). It is a simple matter to combine the above equations to verify Equation
(B.34):

UΣV T = U [Σm | 0]
[

V Tm
V Tn−m

]
(B.40)

= UΣmV Tm (B.41)

= UΣm
(
JTUΣ−1

m

)T
(B.42)

= UΣm(Σ−1
m )TUTJ (B.43)

= UΣmΣ−1
m UTJ (B.44)

= UUTJ (B.45)
= J. (B.46)

Here, Equation (B.40) follows immediately from our construction of the matri-
ces U , V and Σm. Equation (B.42) is obtained by substituting Equation (B.39)
into Equation (B.41). Equation (B.44) follows because Σ−1

m is a diagonal ma-
trix, and thus symmetric. Finally, Equation (B.46) is obtained using the fact
that UT = U−1, since U is orthogonal.





Appendix C
Lyapunov Stability

We give here some basic definitions of stability and Lyapunov functions and
present a sufficient condition for showing stability of a class of nonlinear sys-
tems. For simplicity we treat only time-invariant systems. For a more general
treatment of the subject the reader is referred to [?].

Definition C.1 Consider a nonlinear system on Rn

ẋ = f(x) (C.1)

where f(x) is a vector field on Rn and suppose that f(0) = 0. Then the origin
in Rn is said to be an equilibrium point for (C.1).

If initially the system (C.1) satisfies x(t0) = 0 then the function x(t0) ≡ 0 for
t > t0 can be seen to be a solution of (C.1) called the null or equilibrium
solution. In other words, if the system represented by (C.1) starts initially at
the equilibrium, then it remains at the equilibrium thereafter. The question of
stability deals with the solutions of (C.1) for initial conditions away from the
equilibrium point. Intuitively, the null solution should be called stable if, for
initial conditions close to the equilibrium, the solution remains close thereafter
in some sense. We can formalize this notion into the following.
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Definition C.2 The null solution x(t) = 0 is stable if and only if, for any
ε > 0 there exist δ(ε) > 0 such that

‖x(t0)‖ < δ implies ‖x(t)‖ < ε for all t > t0. (C.2)

This situation is illustrated by Figure C.1 and says that the system is stable

Fig. C.1 Illustrating the definition of stability.

if the solution remains within a ball of radius ε around the equilibrium, so long
as the initial condition lies in a ball of radius δ around the equilibrium. Notice
that the required δ will depend on the given ε. To put it another way, a system
is stable if “small” perturbations in the initial conditions, results in “small”
perturbations from the null solution.

Definition C.3 The null solution x(t) = 0 is asymptotically stable if and only
if there exists δ > 0 such that

‖x(t0)‖ < δ implies ‖x(t)‖ → 0 as t→∞. (C.3)

In other words, asymptotic stability means that if the system is perturbed away
from the equilibrium it will return asymptotically to the equilibrium. The above
notions of stability are local in nature, that is, they may hold for initial condi-
tions “sufficiently near” the equilibrium point but may fail for initial conditions
farther away from the equilibrium. Stability (respectively, asymptotic stability)
is said to be global if it holds for arbitrary initial conditions.

We know that a linear system

ẋ = Ax (C.4)

will be globally asymptotically stable provided that all eigenvalues of the matrix
A lie in the open left half of the complex plane. For nonlinear systems stability
cannot be so easily determined.
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Another important notion related to stability is the notion of uniform ul-
timate boundedness of solutions.

Definition C.4 A solution x(t) : [t0,∞] → Rn (C.1) with initial condition
x(t0) = x0 is said to uniformly ultimately bounded (u.u.b.) with respect
to a set S if there is a nonnegative constant T (x0, S) such that

x(t) ∈ S for all t ≥ t0 + T.

Uniform ultimate boundedness says that the solution trajectory of (C.1))
beginning at x0 at time to will ultimately enter and remain within the set S.
If the set S is a small region about the equilibrium, then uniform ultimate
boundedness is a practical notion of stability, which is useful in control system
design.

C.0.1 Quadratic Forms and Lyapunov Functions

Definition C.5 Given a symmetric matrix P = (pij) the scalar function

V (x) = xTPx =
n∑

i,j=1

pijxixi (C.5)

is said to be a quadratic form. V (x), equivalently the quadratic form, is said
to be positive definite if and only if

V (x) > 0 (C.6)

for x 6= 0.

Note that V (0) = 0. V (x) will be positive definite if and only if the matrix P
is a positive definite matrix, that is, has all eigenvalues positive.

The level surfaces of V , given as solutions of V (x) = constant are ellipsoids
in Rn. A positive definite quadratic form is like a norm. In fact, given the usual
norm ‖x‖ on Rn, the function V given as

V (x) = xTx = ‖x‖2 (C.7)

is a positive definite quadratic form.

Definition C.6 Let V (x) : Rn → R be a continuous function with continuous
first partial derivatives in a neighborhood of the origin in Rn. Further suppose
that V is positive definite, that is, V (0) = 0 and V > 0 for x 6= 0. Then V is
called a Lyapunov Function Candidate (for the system (C.1).

The positive definite function V is also like a norm. For the most part we
will be utilizing Lyapunov function candidates that are quadratic forms, but
the power of Lyapunov stability theory comes from the fact that any function
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may be used in an attempt to show stability of a given system provided it is a
Lyapunov function candidate according to the above definition.

By the derivative of V along trajectories of (C.1), or the derivative of V in
the direction of the vector field defining (C.1), we mean

V̇ (t) = 〈dV, f〉 =
∂V

∂x1
f1(x) + · · ·+ ∂V

∂xn
fn(x). (C.8)

Suppose that we evaluate the Lyapunov function candidate V at points along
a solution trajectory x(t) of (C.1) and find that V (t) is decreasing for increasing
t. Intuitively, since V acts like a norm, this must mean that the given solution
trajectory must be converging toward the origin. This is the idea of Lyapunov
stability theory.

C.0.2 Lyapunov Stability

Theorem 6 The null solution of (C.1) is stable if there exists a Lyapunov func-
tion candidate V such that V̇ is negative semi-definite along solution trajectories
of (C.1), that is, if

V̇ = 〈dV, f(x)〉 = dV T f(x) ≤ 0. (C.9)

Equation (C.9) says that the derivative of V computed along solutions of (C.1)
is nonpositive, which says that V itself is nonincreasing along solutions. Since
V is a measure of how far the solution is from the origin, (C.9) says that the
solution must remain near the origin. If a Lyapunov function candidate V
can be found satisfying (C.9) then V is called a Lyapunov Function for the
system (C.1). Note that Theorem 6 gives only a sufficient condition for stability
of (C.1). If one is unable to find a Lyapunov function satisfying (C.9) it does
not mean that the system is unstable. However, an easy sufficient condition for
instability of (C.1) is for there to exist a Lyapunov function candidate V such
that V̇ > 0 along at least one solution of the system.

Theorem 7 The null solution of (C.1) is asymptotically stable if there exists
a Lyapunov function candidate V such that V̇ is strictly negative definite along
solutions of (C.1), that is,

V̇ (x) < 0. (C.10)

The strict inequality in (C.10) means that V is actually decreasing along solu-
tion trajectories of (C.1) and hence the trajectories must be converging to the
equilibrium point.

Corollary C.1 Let V be a Lyapunov function candidate and let S be any level
surface of V , that is,

S(c0) = {x ∈ Rn|V (x) = c0} (C.11)
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Fig. C.2 Illustrating ultimate boundedness.

for some constant c0 > 0. Then a solution x(t) of (C.1) is uniformly ultimately
bounded with respect to S if

V̇ = 〈dV, f(x)〉 < 0 (C.12)

for x outside of S.

If V̇ is negative outside of S then the solution trajectory outside of S must be
pointing toward S as shown in Figure C.2. Once the trajectory reaches S we
may or may not be able to draw further conclusions about the system, except
that the trajectory is trapped inside S.

C.0.3 Lyapunov Stability for Linear Systems

Consider the linear system (C.4) and let

V (x) = xTPx (C.13)

be a Lyapunov function candidate, where P is symmetric and positive definite.
Computing V̇ along solutions of (C.4) yields

V̇ = ẋTPx+ xTPẋ (C.14)
= xT (ATP + PA)x
= −xTQx

where we have defined Q as

ATP + PA = −Q. (C.15)

Theorem C.8 now says that if Q given by (C.15) is positive definite (it is
automatically symmetric since P is) then the linear system (C.4) is stable. One
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approach that we can now take is to first fix Q to be symmetric, positive definite
and solve (C.15), which is now called the matrix Lyapunov equation, for P .
If a symmetric positive definite solution P can be found to this equation, then
(C.4) is stable and xTPx is a Lyapunov function for the linear system (C.4).
The converse to this statement also holds. In fact, we can summarize these
statements as

Theorem 8 Given an n× n matrix A then all eigenvalues of A have negative
real part if and only if for every symmetric positive definite n×n matrix Q, the
Lyapunov equation (C.11) has a unique positive definite solution P .

Thus, we can reduce the determination of stability of a linear system to the
solution of a system of linear equations, namely, (C.11), which is certainly
easier than finding all the roots of the characteristic polynomial and, for large
systems, is more efficient than, say, the Routh test.

The strict inequality in (C.7) may be difficult to obtain for a given system
and Lyapunov function candidate. We therefore discuss LaSalle’s Theorem
which can be used to prove asymptotic stability even when V is only negative
semi-definite.

C.0.4 LaSalle’s Theorem

Given the system (C.1) suppose a Lyapunov function candidate V is found such
that, along solution trajectories

V̇ ≤ 0. (C.16)

Then (C.1) is asymptotically stable if V does not vanish identically along any
solution of (C.1) other than the null solution, that is, (C.1) is asymptotically
stable if the only solution of (C.1) satisfying

V̇ ≡ 0 (C.17)

is the null solution.



Appendix D
State Space Theory of

Dynamical Systems

Here we give a brief introduction to some concepts in the state space theory of
linear and nonlinear systems.

Definition D.1 A vector field f is a continuous function f : IRn → IRn.

We can think of a differential equation

ẋ(t) = f(x(t)) (D.1)

as being defined by a vector field f on IRn. A solution t→ x(t) of (D.1) with
x(t0) = x0 is then a curve C in IRn, beginning at x0 parametrized by t, such
that at each point of C, the vector field f(x(t)) is tangent to C. IRn is then
called the state space of the system (D.1). For two dimensional systems, we
can represent

t →
[
x1(t)
x2(t)

]
(D.2)

by a curve C in the plane.
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Fig. D.1 Phase portrait for Example B.1

Example D.1 Consider the two-dimensional system

ẋ1 = x2 x1(0) = x10 (D.3)
ẋ2 = −x1 x2(0) = x20 (D.4)

In the phase plane the solutions of this equation are circles of radius

r = x2
10 + x2

20 (D.5)

To see this consider the equation

x2
1(t) + x2

2(t) = r. (D.6)

Clearly the initial conditions satisfy this equation. If we differentiate (D.6) in
the direction of the vector field f = (x2,−x1)T that defines (D.3)-(D.4) we
obtain

2x1ẋ1 + 2x2ẋ2 = 2x1x2 − 2x2x1 = 0. (D.7)

Thus f is tangent to the circle. The graph of such curves C in the x1−x2 plane
for different initial conditions are shown in Figure D.1. �

The x1 − x2 plane is called the phase plane and the trajectories of the
system (D.3)-(D.4) form what is called the phase portrait. For linear systems
of the form

ẋ = Ax (D.8)

in R2 the phase portrait is determined by the eigenvalues and eigenvectors of
A . For example, consider the system

ẋ1 = x2 (D.9)
ẋ2 = x1. (D.10)
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Fig. D.2 Phase portrait for Example B.2.

In this case

A =
[

0 1
1 0

]
. (D.11)

The phase portrait is shown in Figure D.2. The lines `1 and `2 are in the
direction of the eigenvectors of A and are called eigen-subspaces of A.

D.0.5 State Space Representation of Linear Systems

Consider a single-input/single-output linear control system with input u and
output y of the form

an
dny

dtn
+ an−1

dn−1y

dtn−1
+ · · ·+ a+ 1

dy

dt
+ a0y = u. (D.12)

The characteristic polynomial, whose roots are the open loop poles, is given as

p(s) = ans
n + an−1s

n−1 + · · ·+ a0. (D.13)

For simplicity we suppose that p(x) is monic, that is, an = 1. The stan-
dard way of representing (D.12) in state space is to define n state variables
x1, x2, . . . , xn as

x1 = y

x2 = ẏ = ẋ1

x3 = ÿ = ẋ2

... (D.14)

xn =
dn−1y

dtn−1
= ẋn−1
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and express (D.12) as the system of first order differential equations

ẋ1 = x2 (D.15)
ẋ2 = x3

ẋn−1 = xn

ẋn =
dny

dtn
= −a0y − a1

dy

dt
− · · · − an−1

dn − y
dtn

+ u

= −a0x1 − a1x2 − · · · − an−1xn + u.

In matrix form this system of equations is written as

 ẋ1

...
ẋn

 =


0 1 · · 0
0 0 1 · 0

· ·
1

−a0 · · · −an−1


 x1

...
xn

+


0
0

0
1

 (D.16)

or

ẋ = Ax+ bu x ∈ Rn.

The output y can be expressed as

y = [1, 0, . . . , 0]x (D.17)
= cTx.

It is easy to show that

det(sI −A) = sn + an−1s
n−1 + · · ·+ a1s+ a0 (D.18)

and so the last row of the matrix A consists of precisely the coefficients of the
characteristic polynomial of the system, and furthermore the eigenvalues of A
are the open loop poles of the system.

In the Laplace domain, the transfer function Y (s)
U(s) is equivalent to

Y (s)
U(s)

= cT (sI −A)−1b. (D.19)
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Across Variable, 287
Actuator Dynamics, 231
Angle, 69
Angular momentum, 320, 323

conservation of, 299
Angular velocity, 119
Anthropomorphic, 10
Anti-windup, 260
Apparent Damping, 293
Apparent Inertia, 293
Apparent Stiffness, 293
Application area, 6
Approach, 74
Arbitrary, 255
Arm, 7
Armature, 231
Arm singularity, 133
Articulated (RRR), 6
Artificial Constraint, 284–285
Assembly, 6
Atan2, 48
Atan, 377
Average, 237
Axis/Angle, 47
Axis/angle representation, 52
Back emf, 231
Back emf Constant, 233
Bang-Bang, 182
Base, 18

Basic homogeneous transformation, 55
Basic rotation matrix, 36
Basis, 283
Bilinear Form, 283
Blend time, 179
Capacitive, 288
Capacitive Environment, 288
Cartesian (PPP), 6
Centrifugal, 202
Characteristic polynomial, 307
Chow’s theorem, 299, 325
Christoffel symbol, 201
Closed-form equations, 216
Closing, 9
Codistribution, 301
Compensator, 230
Completely integrable, 305
Completely observable, 257
Completely state-controllable, 254
Compliance Frame, 284
Computed torque, 23, 267
Computer interface, 7
Configuration, 4
Configuration kinematic equation, 68
Configuration space, 4
Conservation of angular momentum, 323
Constraint, 282
Constraint Frame, 284
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Constraint
holonomic, 319

Constraint
Nonholonomic, 191

Constraint
nonholonomic, 299
Pfaffian, 319
rolling, 320

Constraints
Holonomic, 188

Continous Path Tracking, 229
Continuous path, 6
Control, 1
Control computer, 7
Control

Independent Joint, 230
Control

inner loop/outer loop, 307
Control

inverse dynamic, 267
Controllability, 254
Controllability, 325
Controllability matrix, 254
Controllability rank condition, 325
Controllable, 254
Controller resolution, 8
Control

outer loop, 307
Coordinates

Generalized, 190
Generalized, 192

Coriolis, 202
Cotangent space, 300
Covector field, 300
Cross-product form, 22
Current

Armature, 233
Current frame, 43, 46
Cylindrical (RPP), 6
D’Alembert’s Principle, 194
Damping

Apparent, 293
DC-gain, 288
DC-Motor, 189
Decoupled, 211
Degrees-of-freedom, 4
Denavit-Hartenberg, 19
Dexterous workspace, 5
Diffeomorphism, 300, 309, 317
Direct Drive Robot, 230
Directional derivative, 303
Displacement

Virtual, 192
Distribution, 301

Involutive, 306
Disturbance, 230
Disturbance Rejection, 230

Double integrator system, 267
Driftless system, 320, 325
Driftless systems, 299
Dual vector space, 300
Dynamics, 1, 187

In task space, 291
Newton-Euler Formulation, 188

Effective inertia, 237
Effort, 287
End-effector, 9, 74
End-of-arm tooling, 7
Energy, 287

Kinetic, 187–188
Potential, 187, 189

Environment, 281
Capacitive, 288
Classification of, 293
Inertial, 288
Resistive, 288

Environment Stiffness, 286
Equation

Euler-Lagrange, 187
Euler-Lagrange, 188

Estimation error, 257
Euler Angle, 47
Euler Angles, 47, 192
Euler-Lagrange equation, 188
External and internal sensor, 7
External power source, 7
Eye-in-hand configuration, 356
Feedback linearizable, 308
Feedback linearization, 299

global, 314
Feedforward control, 23, 244
Five-bar linkage, 209
Fixed-camera configuration, 356
Fixed frame, 44, 46
Flow, 287
Force, 281
Force control, 24
Force Control, 281
Force

Generalized, 190
Generalized, 195
Gravitational, 189

Forward, 68
Forward kinematic equation, 19
Forward kinematics problem, 18
Frame

compliance, 284
constraint, 284

Frame
current, 46
fixed, 46

Frobenius theorem, 304, 311
Gear Train, 189
Generalized Coordinates, 190, 192
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Generalized Force, 190, 195
Geometric nonlinear control, 299
Global feedback linearization, 309
Gradient, 303
Group, 59
Guarded motion, 171
Gyroscopic term, 217
Hand, 9
Hardware/Software trade-off, 229
Holonomic constraint, 319
Home, 17
Homogeneous coordinate, 19
Homogeneous representation, 55
Homogeneous transformation, 19, 55
Hybrid control, 24
Hybrid Impedance Control, 293
Image-based visual servo control, 357
Image feature velocity, 358
Image Jacobian, 358
Impedance, 286
Impedance, 288
Impedance control, 24
Impedance Control, 292

Hybrid, 293
Impedance

Dual, 294
Impedance Operator, 288
Implicit function theorem, 305
Independent Joint Control, 230
Inductance

Armature, 233
Inertia

Apparent, 293
Inertial, 288
Inertial Environment, 288
Inertia matrix, 200
Inertia Tensor, 197
Inner-loop, 269
Inner loop control, 299
Inner product, 303
Integrability

complete, 305
Integral manifold, 304–305, 324
Integrator windup, 260
Interaction matrix, 358–359
Invariant, 283
Inverse dynamics, 23
Inverse Dynamics, 291
Inverse dynamics, 299
Inverse dynamics control, 267
Inverse Kinematics, 20
Inverse kinematics, 85
Inverse orientation kinematic, 87
Inverse position kinematic, 87
Involutive, 306
Involutive closure, 324
Jacobian, 22, 113, 123, 290

Jacobian matrix, 302
Joint flexibility, 299, 311
Joints, 3
Joint torque sensor, 282
Joint variable, 4
Killing Form, 283
Kinematically redundant, 4
Kinematic chain, 3
Kinematics, 1
Kinetic Energy, 187–188
Klein Form, 283
Lagrangian, 187, 189, 196
Laplace Domain, 288
Laplace Transform, 288
Law of Cosines, 20
Left arm, 91
Length, 69
Lie bracket, 302, 306
Lie derivative, 303
Linear Quadratic (LQ) Optimal Control, 256
Linear Segments with Parabolic Blends, 177
Linear state feedback control law, 254
Links, 3
LSPB, 177
Magnetic Flux, 231
Manifold, 300, 302
Manipulation, 320
Manipulator Jacobian, 123
Manipulator

spherical, 11
Matrix Algebraic Riccatti equation, 256
Matrix

inertia, 200
transformation, 67

Mechanical Impedance, 286
Method of computed torque, 247
Method of control, 6
Minimum phase, 245
Mobile robot, 320
Mobile robots, 299
Mobility Tensor, 292
Motion

guarded, 171
Motion pereptibility, 372
Motor

AC, 231
Brushless DC, 231
DC, 230–231
Rotor, 231
Stator, 231

Natural Constraint, 284–285
Network Model, 287
Newton-Euler formulation, 215
Newton’s Second Law, 188
Non-assembly, 6
Nonholonomic constraint, 299, 319
Non-servo, 6
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Normal, 74
Norton Equivalent, 289
Norton Network, 289
Numerically controlled milling machines, 2
Observability, 257
Observability matrix, 258
Observable, 257
Observer, 256–257
Offset, 69
One-Port, 287
One-Port Network, 287
Opening, 9
Operator

Impedance, 288
Orientation, 4
Orientation matrix, 19
Orientation of the tool frame, 19
Orthogonal, 34, 284
Orthonormal Basis, 284
Outer-loop, 269
Outer Loop, 291
Outer loop control, 299, 307
Parallelogram linkage, 10
Partitioned methods, 369
Permanent magnet, 232
Permanent Magnet DC Motor, 230
Perspective projection, 334
Pfaffian constraint, 319
Pitch, 49
Planning, 1
Point-to-point, 6
Point to point, 171
Point-to-Point Control, 229
Port Variable, 287
Position, 281
Position-based visual servo control, 357
Positioning, 4
Post-multiply, 46
Potential Energy, 187, 189
Power, 287
Power source, 6
Premultiply, 46
Principle

D’Alembert, 194
Principle of Virtual Work, 188, 193
Prismatic, 3
Quaternion, 61
Reachable workspace, 5
Reciprocal Basis, 283
Reciprocity, 284
Reciprocity Condition, 285
Rejecting, 23
Repeatability, 7
Representation

axis/angle, 52
homogeneous, 55

Resistance

Armature, 233
Resistive, 288
Resistive Environment, 288
Resolvability, 372
Reverse order, 44
Revolute, 10, 3
Right arm, 91
Robot, 1
Robota, 1
Robot

Direct Drive, 230
Robot

flexible joint, 311
Robotic System, 7
Robot Institute of America, 2
Robot

mobile, 299
mobile, 320

Roll, 49
Rolling constraint, 320
Rolling contact, 299
Roll-pitch-yaw, 47
Rotation matrix, 33
Rotor, 231
Satellite, 326
Saturation, 242
SCARA, 12
SCARA (RRP), 6
Second Method of Lyapunov, 23
Separation Principle, 258
Servo, 6
Set-point tracking problem, 238
Singular configuration, 22, 132
Singular configurations, 114
Singularity, 132
Skew symmetric, 115
Sliding, 74
Spherical manipulator, 11
Spherical (RRP), 6
Spherical wrists, 8
State, 5
State space, 5
Stator, 231
Stiffness

Apparent, 293
Strain gauge, 282
Switching time, 182
Symbol

Christoffel, 201
System

double integrator, 267
System

driftless, 320
driftless, 325

Tactile sensor, 282
Tangent plane, 305
Tangent space, 300, 324
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Task Space, 290
Task Space Dynamics, 291
Teach and playback mode, 171
Teleoperators, 2
Theorem

Frobenius, 304
Thévenin Equivalent, 289
Thévenin Network, 289
Through Variable, 287
Tool frame, 74
Torque

computed, 267
Torque Constant, 233
Track, 23
Tracking, 230
Tracking and Disturbance Rejection

Problem, 23
Trajectory, 171
Trajectory Control, 281
Transformation

basic homogeneous, 55
homogeneous, 55

Transformation matrix, 67
Transpose, 290
Twist, 69
Two-argument arctangent function, 48
Two link manipulator, 290

Unicycle, 320
Vector field

complete, 324
smooth, 300

Velocity
angular, 119

Via points, 171
Via points, 182
Virtual displacement, 192
Virtual Displacement, 290
Virtual Displacements, 188
Virtual Work, 187, 290
Vision, 1
Voltage

Armature, 233
Workspace, 5

dexterous, 5
reachable, 5

Work
Virtual, 187
Virtual, 290

World, 18
Wrist, 8
Wrist center, 87
Wrist force sensor, 282
Wrist singularity, 133
Yaw, 49
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