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Abstract-The fundamental problem in industrial robots control concerns algorithms generating 
reference trajectories. 

References [l-4] suggest generating algorithms of a reference trajectory, which are baaed on an 
arbitrary discretization of the manipulator’s internal coordinates. Each point of discretization in 
the external space approximating a reference trajectory corresponds to known discretized internal 
coordinates of the manipulator. 

In [5-71, iteration methods of determining the internal coordinates corresponding to external coor- 
dinates of the reference trajectory point have been suggested. In this method of internal coordinates, 
determining the point of the reference trajectory is being approached in successive steps of an iter- 
ative computation. In [5], a modified iterative method of generation of a straight segment reference 
trajectory has been presented. 

Analytic formulae, which are the solution of an inverse problem of manipulator kinematics, enable 
design of trajectory generating algorithms which compute, in one step only, the internal coordinates 
of points lying exactly on the reference trajectory, with the accuracy resulting from the computer 
register length. 

In this paper, the author has presented an original PLAN2 computer algorithm generating reference 
trajectories of motion for a task. The kinematics of those trajectories is defined at selected points 
through which a task is to be passed, the distances between them being optional. The algorithm 
is based on formulae which are analytic solutions to an inverse problem for an IRb-6 manipulator 

kinematics. 

Keywords-Planning of reference trajectory of manipulators motion. 

NOMENCLATURE 
AT discretization time along reference & longest effective turning radius of 

trajectory segment the task 

+ ref, %fr Qref reference external coordinates of ei natural coordinate of ith link 

orientation % natural coordinate of ith actuator 

k4, ks transmission ratios in the fourth T reference time of the consecutive 
and fifth degree of freedom of an 
IRb6 manipulator 

main fulcrums 

16, x6 kinematic parameters describing 
the task 

1. INTRODUCTION 

To simplify the description, the abbreviation IRM will be used for ‘industrial robot manipul& 

tar.’ The IRM external space is described by its external coordinates of position qef, graf, zref, 

and orientation aref, &, Qref (Euler angles). The coordinates describe the task in relation to 
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a chosen reference coordinate system, itTespective of the IRM kinematic structure. The internal 
space of the IRM is described by its internal coordiites, which are the natural coordinates of 
links and actuators 181. Reference values of actuator natural coordinates result either from ed- 
ucation of a robot [9], or from trajectory computing tier, cooperating with a camera or another 

sensor of the scene. 
One of the major problems of industrial robot control is designing of reference trajectory 

generating algorithms. In [l-4], reference trajectory generating algorithms, based on arbitrary 
discretization of the IRM internal coordinates have been proposed. A discretized description of 
the IRM external space is obtained from a diiscretized description of the IRM internai space. 
Reference trajectory in the external space is approximated by using the IRM external space 
description discretized in this way. Each ~~eti~tion point in the external space approximat- 
ing the reference trajectory corresponds to known discretized IR?cii internal coordinates. Some 
disadvantages of those algorithms are: a large memory is required; big sets, being a discretized 
internal space description, must be searched; and it is not possible to reduce the approximation 
error which results from arbitrary discretization of the IRM internal space. 

In [5-71, iterative methods for determining internal coordinates corresponding to external co- 
ordinates of a reference trajectory point are proposed. In this method of determining internal 
coordinates, a reference trajectory point is being approached in consecutive steps of an iterative 
computation. A step of internal coordinates discretization, in a set of consecutive steps of the 
iterative computation, depends on the error of external coordinates in the previous step of iter- 
ation. Iterative methods do not require large memories because computing is carried out only 
for the reference trajectory appr~mating points. Although the error in the reference trajec- 
tory approximation may be reduced in these methods, the number of iterative computing steps 
increases. In [S], a modified iterative method of a reference trajectory rectilinear segment gener- 
ation has been presented. The modification consists of arbitrarily accepting an error distributian 
in the external space, which reduces a number of iterative computing steps. However, such an 
error distribution is only useful for short segments. It is not possible to determine their length 
limits, which would guarantee the errors to be bound for an arbitrary IRM configuration. A 
disadvantage of the iterative methods is the necessity of multiple iterative computations. An 
advantage of both the methods, bssed upon arbitrary ~scretization of the internal spaces and 
iterative methods, is the simplicity of computing when only equations of IRM direct kinematics 
are used. The advantage may, however, turn out to be a trap for those computer programmers 
who did not consider the IW kinematic singularities [S]. 

The analytic formulae, being solutions to an inverse problem of the IRM kinematics, afford 
possibilities for design of trajectory generation algorithms which compute the internal coordinates 
of the points situated precisely along the reference trajectory in one step and with the accuracy 
resulting from the computer registers length. The formulae force the programmers to provide 
alternative solutions for singular states of the IRM. The analytic formulae, solutions of an inverse 
problem of the six degrees of freedom IRM kinematics, are presented in [lO-121. The same 
formulae for the five degrees of freedom IRM were presented in fl3,14]. However, a constraint 
equation for a working link [8] has not been mentioned in [f4], This implies that the link can 
realize reference trajectories with six degrees of freedom, which IS impossible. The reviewed 
references [l-1,14] present models of kinematics which do not allow the design of accurate and 
simultaneously fast generation algorithms of the reference trajectory with a defined kinematics 
for the IRM less than six degrees of freedom. 

This author has worked out the kinematics models [8] of the IRM with less than six degrees 
of freedom. In [8], the models of direct and inverse kinematics with constraint equations far 
the IRMs PR-02, IRb-6, and IRb-60 have been presented. The models have been presented in 
continuous and differential form; kinematic singularities being taken into account. 

In Section 2 of this paper, an original generation algorithm of reference trajectories for the IRb-6 
manipulator has been described. The algorithm determines internal coordinates of the points 



situated precisely along the refersnce trajectory in a single step. It also affords possibilities for 
defining reference kinematics in the form of external coordinates of points that are freely distant 
from each other. Section 3 presents a description of a numerical example resulting from running 
the generation algorithm described in Section 2. The algorithm was written in FORTRAN 77 and 
run on a PVAX-3800 computer. Section 4 contains conclusions. 

2. RElFERENGE TRAJECTORY GENERATIVE 

The design of algorithms generating natural coordinates of actuators is based on formulae 
which are solutions to an inverse problem of IRM kinematics. The coordinates correspond to the 
m~ipulation object reference trajectory described in the robot i&err& space. The algorithms 
generating natural coordinates of s&uators form a tier of reference trajectory computations, 
which is an element of the functional structure of an intelligent robot control system [15]. These 
algorithms may be the indispensable programming tools with which to interconnect a vision tier 
with a drive control tier [9]. 

This author has designed the PLAN2 computer dgorithm generating trajectories for an IRb-6 
manipulator task. The reference external coordinates of the points through which a generated tra- 
jectory will pass, will be called main &lcrzlms (or coordinates of the main via points). Generation 
requires a preliminary description of the trajectory, in the form of values of external coordinates 
at least two main ~%&rmms, option~ly distant from each other. In erase of a kinematic singularity 
occurrence, the PLAN2 algorithm announces the state, gives the values of acceptable natural coor- 
dinates for the links, and asks the user which of the given values are to be accepted. The PLhN2 
algorithm generates additional ~1~~~ for, either defined or nondefined, kinematics between 
the successive main /?&rums. 

The algorithm for defined kinematics was described in [16], and the one for nondefined kine- 
matics in [17]. The present paper will describe the PLAN2 algorithm for defined kinematics of a 
reference trajectory. The algorithm comprises four basic segments; the computation, from there, 
is transmitted to 21 ancillary segments. The basic segments are: 

(a) a master segment, 
(b) the R9Zl segment, 
(c) the ROE2 segment, and 
(d) the ROZ3 segment. 

To simplify the description, the following abbreviations will be used: MRF-main fulerecm and 
AFP-additional filcrum. 

After starting, the PLAN2 algorithm asks about the /a and Xe parameters describing the task (see 
Figure 1). Then, it asks about the number (MFP< 50) of external coordinates and the reference 
time T for the consecutive MFP, and whether the consecutive MFP orientation is defined. If the 
orientation is defined, the algorithm asks if it is to be computed. If so, the next question is in what 
coordinate system it is to be computed; Cartesian, cylindrical or spherical. After the required 
coordinate system has been set, Euler angles are determined, describing the orientation of a 
given MFP. The angles are shown in Figure 1. If the defined orientation is not to be computed, 
a question about MFP Euler angles appears. For a nondefined MFP orientation, the tk,f angle 
is being set arbitrarily. The @,f and %J angles are computed from the ztef, g=f, z,,f external 
coordinates (describing the present MFP position). 

For the so determined zrref, ‘yretr zref, 4&f, C&f, Qref external coordinates, describing the consec- 
utive MFP, the algorithm determines the Tsref matrix [S], checks whether the constraint equation 
is satisfied [S], and derives 0l,--0& natural coordinates from the formulae, which are an analytic 
solution to an inverse problem of IRb-6 IRM kinematics. Then, the algorithm asks about a co- 
ordinate system describing the shape of a trajectory segment between the consecutive MFP. For 
a rectilinear segment, a Cartesian coordinate system should be chosen; for a curvilinear segment, 
either a cylindrical or spherical system should be chosen. The next question the algorithm asks is 
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Figure 1. Euler angles in the coordinate system. 

(c) spherical 

about the discretization time AT along the present reference trajectory segment. After the shapes 
and diicretization times along each segment between the consecutive MFP have been defined, the 
algorithm asks about the admissible DP error of position and the DF error of orientation of the 
task. If an optional task orientation was set earlier, the algorithm arbitrarily accepts DF= 360”. 

The next question the algorithm asks concerns the kind of trajectory generation, which may be 
set as: free, rough or accurate. When either rough or accurate generation has been set, a question 
about an admissible DFW error of orientation is being asked. This parameter is necessary 
for the IRh4 internal space discretization. For a free generation, the ~gorithm determines the 
AFP external coordinates coming from the pre-set DP, DF, and AT parameters, which ensure 
the declared shape of the trajectory segment in the external space. So determined AFPs are 
illustrated in Figure 2. If the length of a trajectory segment between the (i - l)th and the ith 
MFP is denoted by 1, then Alj, the length of a trajectory segment between the consecutive AFPs 
may be expressed as follows: 

Alj = min 
2DF 2DF 

I@‘i,ref - %l,refl I9 I@i,ref - %l,refl 1Y 

where iPi,ref, 4Pi_i,ref, Bi,ref, @_r,ref, !l!\Ili,ref, Qi_i,,ef are the Euler angles of the ith and (i - I)th 
MFP; Al and d, parameters illustrated in Figure 2; AZ(d) is the length of a trajectory segment 
between consecutive AFPs dependent on the cl distance, illustrated in Figure 2; d is the distance 
of the AI trajectory segment center from the straight line counting the (j - l)th and jth AFP. 

It follows from Figure 2 that the smaller d, the smaller AL With such a length of trajectory 
segments, it may be assumed that none of the trajectory points described by the coordinates 
within the ranges corresponding to neighboring AFPs will go beyond the “tube” of diameter DP, 
formed by the successive cylinders illustrated in Figure 2. To determine the AFP orientation, 
the algorithm assumes a linear change of two Euler angles along the trajectory. The third angle 
results from the constraint equation [8]. The AFP time is linearly dependent on the length E. 
When the consecutive MFPs differ in orientation only, the function of length 1 is taken over by 

ma Wi,ref - @i-befly l%f - Qi-l,refl, IQi,ref - Q\Lli-l,refl) . 

Then, d is the distance between the center of the trajectory segment connecting consecutive 
MFPs, and the center of a sphere of diameter DP, coinciding with MFP. Formula (1) is still 
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Figure 2. Trajectory segment between the (i - l)th and ith MFPs. Al: length of 
a trajectory segment between the (j - l)th and jth AFPs; d: distance between the 
center of a trajectory segment of length Al and a straight line connecting the (j - l)th 
and jth AFPs; T;_l and Ti: times corresponding to the above illustrated MFP. 

useful. After having computed the AFP external coordinates, the algorithm checks whether this 

AFP belongs to the working space. In case that the checked AFP goes beyond the working space, 

its position, orientation, and time will be corrected. Then, the natural coordinates of the 0:-0k 

links and 0,i-0,s actuators corresponding to the AFP are being computed. 

For moderate demands regarding trajectory generation, the values of the DP, DF, and AT 

parameters are relatively high. Those values correspond to relatively long trajectory segments 

between neighboring AFPs. Then, with the trajectory generation set free, the assumption that 

all the points are situated within the “tube” mentioned before may be wrong. It follows from the 

fact that the trajectory is realized within the internal coordinates. To prevent the trajectory from 

going beyond the “tube” at relatively high DP, DF, and AT values, the user can set a trajectory 

rough generation, as well as a DFW parameter. In that case, the algorithm determines two 

groups offilcrums: additional external fulcrums and additional internal fulcrums. The additional 

external fulcrums are determined in the same way as in the case of trajectory free generation, 

and will be denoted as before, using the abbreviation AFP. Additional internal jUcmms result 

from the division of actuator natural coordinates (within ranges corresponding to consecutive 

AFPs), and will be denoted using the abbreviation AIFP. Figure 3 shows the way in which 

the AIFPs between the (j - l)th and j th AFP are computed. Each range of actuator natural 

coordinates corresponding to consecutive AFPs is divided into N + 1 parts, where N is described 

by formula (2). It is assumed in the formula that the minimal angular ratio for orientation errors 

is equal to I/Q (1 - Ics)l (/cd = -128, Its = 19/32, see [8,18]): 

N=E ,&$DFW, ( > ’ (2) 

XX = ma (I%k - Qslpl,. . . : Ps5k - %5pl), 

where E is the total part of an argument; Ic4 and kg are transmission ratios in the fourth and 

fifth degree of freedom of the IRb-6 manipulator. After the actuator natural coordinates of the 

first AIFP have been determined, the algorithm determines its external coordinates along the 

trajectory segment between the (j - l)th and jth AFPs, and checks if it is inside the cylinder of 

diameter DP (illustrated in Figure 3). If this AIFP is outside the cylinder, then the number N is 

increased by 2 and the external coordinates of the first AIFP are redetermined. The number N is 

increased by 2 until the AIFP finds itself within the cylinder. For such modified number N, the 

algorithm determines the external coordinates of the next AIFP. If the neighboring AFPs differ 

in orientation only, then the function of the cylinder (illustrated in Figure 3) is taken over by a 

sphere of diameter DP and the center coinciding with the AFP. The algorithm checks the position 
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Figure 3. Trajectory segment between the (j - l)th and jth AFPs. d: distance 
between the AIFP and a straight line connecting neighboring AFPs; Q)alp-E)a5p: ac- 
tuator natural coordinates corresponding to the (j - l)th AFP; @301k-@a5k: actuator 
natural coordinates corresponding to the jth AFP; Tj_1, T;: times corresponding 
of the 0 - lftk and jth AFPs. 

Figure 4. Co~~~urat~on of the Xftb-6 manipulator, with which the task effective 
turning radius R2 = 010s is the largest. 

of every AIFP in relation to the working space. If a checked AIFP goes beyond the working space, 
the correction of its position, orientation and actuator natural coordinates follows. To compute 
the AIFP time, the algorithm assumes its linear dependence on the natural coordinates of the 
actuators. 

In rough trajectory generation, while computing the actuator natural coordinates, the algorithm 
considers only parameter DFW (see formula (2)). After accurate trajectory generation has been 
set, each range of the actuator natural coordinates (ill~trated in Figure 3) is divided as in 
rough generation. The only difference is the way of computing the initial value of N divisions. 
In accurate trajectory generation, this number results from DP and DFW parameters in the 
following way: 

(3) 
R2 = [(I2 cos40”)’ + (ia sin40” + /a)s] l’s + [(X5 + Xs)’ + $1 i” ! 

where E is the total part of an argument; Rz is the longest effective turning radius of a task shifting 
by DPf2 in the external space. This is an arc length the task describes for de: = del, = de& = 
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Figure 5. (Part 1) PLAN2 algorithm block diagram. 

d@i = 0 and G?@!, N DP/(2&), with the manipulator configuration as in Figure 4. Further 
corrections of N as well as the AIFP generation is continued identically as for the previously 

described rough trajectory generation. 

The final result of the algorithm is to generate sets describing all the IRb-6 manipulator internal 

and external coordinates. 

Figure 5 illustrates a block diagram of the PLAN2 algorithm for the defined kinematics of the 

task reference trajectory. 
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Figure 5. (Part 2) PLAN2 algorithm block diagram. 

3. EXAMPLE 

Figure 6 illustrates an exemplary rectilinear task reference trajectory, confined between the 
initial point P and the final point K. Coordinates of these points are as follows: zp = -0.60m, 

YP = 0.60m, zp = l.Om, $, = I%‘, 0, = 359”, 5~ = -0.65m, yK = 0.60m, zK = l.Om, 

@K = 137.29, @K = lo, @K = 180’. The following PLAN2 algorithm input parameters will be 

assumed to define the kinematics of the trajectory as in Figure 6: task parameters, Zs = 0 and 

X =I: 0.16m; MFP number = 2 (points P and K); MFP external coordinates of points P and K; 

the first MFP time: Tp = 0 set, the second MFP time, TK = l.Osec; trajectory: shape-straight 
line; kind of generation: rough; discretiaation time, AT = 0.004 see; DP= 0.0002 m; DF= 60”, 
DFW= ZO. The generation has resulted in 1283 AFPs illustrated in Figures 7 and 8. 

The 21fef and zref coordinates generated by means of the PLAN2 algorithm have an error less 

than low4 cm. It follows from Figure 7b that the angle Qref changes abruptly for t N 0.5 sec. As 
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Figure 6. Xref reference trajectory of the task. 
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Figure 7a. Task position reference coordinates z&t), vref(t), z,,f(t). 

it is illustrated in Figure 8, the jump is caused by an abrupt change of the fifth actuator natural 

coordinate at that time. An abrupt change of 8 asref occurs between the AFPs numbered 377 

and 900, from -20,357.896” to 6,805.735”, causing the change of the @krer natural coordinate 

from the minimal to the maximal boundary value [8,18]. This jump of E$ equals 360°, because 

that is the difference between 8bref minimal and maximal boundary values. 

The example shows that a linear change of the angle XPlref between the reference trajectory 

between points P and I< is not possible, as in Figure 6. This is caused by singularities of the 

IRb-6 IRM kinematic structure. 
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The algorithm presented in this paper may be used as a computer tool for: 

(a) planning the IRb-6 IRM task reference trajectory, with a selected motion path shape and 

either a defined or optional orientation; 

(b) analysis of the kinematic possibilities of realization of trajectories set by the IRb-6 IRM, 

being a result of a designed robots work station; 

(c) generation of actuator natural coordinates corresponding to task reference trajectories, 

being also reference values of the IRb-6 IRM servo-control; and 

(d) design of a trajectory computing tier for IRb-6 and IRp-6 robots with identical manipu- 

lators. 

This algorithm is susceptible to modification: any obstacle can be avoided through modification 

of an ancillary segment defining the working space. 
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