
HAL for Integrators

13th February 2005

Contents

1 Introduction 5
1.1 What is HAL? . 5

HAL is based on traditional system design techniques . 5

Part Selection . 5

Interconnection Design . 6

Implementation . 6

Testing . 6

Summary . 6

1.2 HAL Concepts . 7

1.3 HAL components . 8

External programs with HAL hooks . 8

Internal Components . 9

Hardware drivers . 9

Utilities . 9

1.4 Tinkertoys, Erector Sets, Legos and the HAL . 9

Tower . 9

Erector Sets . 10

Tinkertoys . 10

A Lego Example . 11

1.5 Timing Issues In HAL . 12

1.6 Dynamic Linking and Configuration . 13

2 HAL Configuration 14
2.1 Before we start . 14

Notation . 14

Root Privilges . 14

The RTAPI environment . 15

2.2 A Simple Example . 15

Loading a realtime component . 15

Examining the HAL . 16

Making realtime code run . 17

1

CONTENTS 2

Changing parameters . 18

Saving the HAL configuration . 19

Restoring the HAL configuration . 19

2.3 Looking at the HAL with halmeter . 20

Starting halmeter . 20

Using halmeter . 20

2.4 A slightly more complex example. 23

Installing the components . 23

Connecting pins with signals . 24

Setting up realtime execution - threads and functions . 26

Setting parameters . 27

Run it! . 27

2.5 Taking a closer look with halscope. 28

Starting Halscope . 28

Hooking up the “scope probes” . 31

Capturing our first waveforms . 32

Vertical Adjustments . 33

Triggering . 33

Horizontal Adjustments . 35

More Channels . 36

3 Detailed Description of Internal Components 37
3.1 General Information . 37

Notation . 37

Names . 37

3.2 Stepgen . 38

Installing . 38

Removing . 38

Pins . 38

Parameters . 40

Step Types . 41

Functions . 45

3.3 Freqgen . 46

Installing . 46

Removing . 46

Pins . 46

Parameters . 48

Step Types . 48

Functions . 49

3.4 Encoder . 50

Installing . 50

CONTENTS 3

Removing . 51
Pins . 51
Parameters . 51
Functions . 51

3.5 PID . 52
Installing . 52
Removing . 52
Pins . 52
Parameters . 54
Functions . 55

3.6 Debounce . 56
Installing . 56
Removing . 56
Pins . 56
Parameters . 56
Functions . 57

3.7 Blocks . 57
Installing . 57
Removing . 57
Pins . 58
Parameters . 58
Functions . 59

3.8 Siggen . 59
Installing . 59
Removing . 59
Pins . 59
Parameters . 60
Functions . 60

3.9 Supply . 60

4 Detailed Description of Hardware Drivers 61
4.1 Parport . 61

Installing . 61
Removing . 62
Pins . 62
Parameters . 64
Functions . 64

5 Detailed Description of Utility Components 65
5.1 Halcmd . 65

Usage . 65
Options . 65

CONTENTS 4

5.2 Halgui . 69

5.3 Halmeter . 69

5.4 Halscope . 69

Chapter 1

Introduction

1.1 What is HAL?

HAL stands for Hardware Abstraction Layer. At the highest level, it is simply a way to allow a
number of“building blocks” to be loaded and interconnected to assemble a complicated system.
The“Hardware” part is because HAL was originally designed to make it easier to configure EMC for
a wide variety of hardware devices. Many of the building blocks are drivers for hardware devices.
However, HAL can do more than just configure hardware drivers.

HAL is based on traditional system design techniques

HAL is based on the same principles that are used to design hardware circuits and systems, so it is
useful to examine those principles first.

Any system (including a CNC machine), consists of interconnected components. For the CNC ma-
chine, those components might be the main controller, servo amps or stepper drives, motors, en-
coders, limit switches, pushbutton pendants, perhaps a VFD for the spindle drive, a PLC to run a
toolchanger, etc. The machine builder must select, mount and wire these pieces together to make a
complete system.

Part Selection

The machine builder does not need to worry how each individual part works. He treats them as
black boxes. During the design stage, he decides which parts he is going to use - steppers or
servos, which brand of servo amp, what kind of limit switches and how many, etc. The integrator’s
decisions about which specific components to use is based on what that component does and the
specifications supplied by the manufacturer of the device. The size of a motor and the load it must
drive will affect the choice of amplifier needed to run it. The choice of amplifier may affect the kinds
of feedback needed by the amp and the velocity or position signals that must be sent to the amp
from a control.

In the HAL world, the integrator must decide what HAL components (section 1.2) are needed. Usu-
ally every interface card will require a driver. Additional components may be needed for software
generation of step pulses, PLC functionality, and a wide variety of other tasks.

5

CHAPTER 1. INTRODUCTION 6

Interconnection Design

The designer of a hardware system not only selects the parts, he also decides how those parts will
be interconnected. Each black box has terminals, perhaps only two for a simple switch, or dozens
for a servo drive or PLC. They need to be wired together. The motors get connected to the servo
amps. The limit switches connect to the controller, and so on. As the machine builder works on the
design, he creates a large wiring diagram that shows how all the parts should be interconnected.

When using HAL, components are interconnected by signals (section 1.2). The designer must decide
which signals are needed, and what they should connect.

Implementation

Once the wiring diagram is complete it is time to build the machine. The pieces need to be acquired
and mounted, and then they are interconnected according to the wiring diagram. In a physical sys-
tem, each interconnection is a piece of wire, that needs to be cut and connected to the appropriate
terminals.

HAL provides a number of tools to help “build” a HAL system. Some of the tools allow you to
“connect” (or disconnect) a single “wire”. Other tools allow you to save a complete list of all the
parts, wires, and other information about the system, so that it can be “rebuilt” with a single
command.

Testing

Very few machines work right the first time. While testing the builder may use an meter to see if
a limit switch is working, or to measure the DC voltage going to a servo motor. He may hook up
an oscilliscope to check the tuning of a drive, or to look for electrical noise. He may find a problem
that requires the wiring diagram to be changed - perhaps a part needs to be connected differently
or replaced with something completely different.

HAL provides the software equivalent of a voltmeter, oscilliscope, signal generator, and other tools
for testing and tuning a system. The same commands used to build the system can be used to make
changes as needed.

Summary

This document is aimed at people who already know how to do this kind of hardware system inte-
gration, but who do not know how to connect the hardware to EMC.

The traditional hardware design as described above ends at the edge of the main control. Outside
the control is a bunch of relatively simple boxes, connected together to do whatever is needed.
Inside, the control is a big mystery – one huge black box that we hope works.

HAL extends this traditional hardware design method to the inside of the big black box. It makes
device drivers and even some internal parts of the controller into smaller black boxes, that can be
interconnected and even replaced just like the external hardware. It allows the "system wiring dia-
gram" to show part of the internal controller, rather than just a big black box. And most importantly
it allows the integrator to test and modify the controller using the same methods he would use on
the rest of the hardware.

Terms like motors, amps, and encoders are familiar to most machine integrators. When we talk
about using extra flexible eight conductor shielded cable to connect an encoder to the servo input
board in the computer, the reader immediately understands what it is and is led to the question,

CHAPTER 1. INTRODUCTION 7

“what kinds of connectors will I need to make up each end.” The same sort of thinking is essential
for the HAL but the specific train of thought may take a bit to get on track. Using HAL words may
seem a bit strange at first, but the concept of working from one connection to the next is the same.
This idea of extending the wiring diagram to the inside of the controller is what HAL is all about. If
you are comfortable with the idea of interconnecting hardware black boxes, you will probably have
little trouble using HAL to interconnect software black boxes.

1.2 HAL Concepts

This section is a glossary that defines key HAL terms but it is a bit different than a traditional
glossary because these terms are not arranged in alphabetical order. They are arranged by their
relationship or flow in the HAL way of things.

Component: When we talked about hardware design, we referred to the individual pieces as "parts",
"building blocks", "black boxes", etc. The HAL equivalent is a "component" or "HAL component".
(This document uses "HAL component" when there is likely to be confusion with other kinds
of components, but normally just uses "component".) A HAL component is a piece of software
with well defined inputs, outputs, and behaviour, that can be installed and interconnected as
needed.

Parameter: Many hardware components have adjustments that are not connected to any other
components but still need to be accessed. For example, servo amps often have trim pots
to allow for tuning adjustments, and test points where a meter or scope can be attached to
view the tuning results. HAL components also can have such items, which are referred to
as "parameters". There are two types of parameters. Input parameters are equivalent to trim
pots - they are values that can be adjusted by the user, and remain fixed once they are set.
Output parameters cannot be adjusted by the user - they are equivalent to test points that
allow internal signals to be monitored.

Pin: Hardware components have terminals which are used to interconnect them. The HAL equiva-
lent is a "pin" or "HAL pin". ("HAL pin" is used when needed to avoid confusion.) All HAL pins
are named, and the pin names are used when interconnecting them. HAL pins are software
entities that exist only inside the computer.

Physical_Pin: Many I/O devices have real physical pins or terminals that connect to external hard-
ware, for example the pins of a parallel port connector. To avoid confusion, these are referred
to as "physical pins". These are the things that “stick out” into the real world.

Signal: In a physical machine, the terminals of real hardware components are interconnected by
wires. The HAL equivalent of a wire is a "signal" or "HAL signal". HAL signals connect HAL pins
together as required by the machine builder. HAL signals can be disconnected and reconnected
at will (even while the machine is running).

Type: When using real hardware, you would not connect a 24 volt relay output to the +/-10V
analog input of a servo amp. HAL pins have the same restrictions, which are based upon their
type. Both pins and signals have types, and signals can only be connected to pins of the same
type. Currently there are 8 types1, as follows:

• BIT - a single TRUE/FALSE or ON/OFF value

1There has been some discussion about whether we really need all the integer types. Maybe they will be reduced or
eliminated later. Most signals and pins will be either floats or bits.

CHAPTER 1. INTRODUCTION 8

• FLOAT - a 32 bit floating point value, with approximately 24 bits of resolution and over 200 bits
of dynamic range.

• U8 - an 8 bit unsigned integer, legal values are 0 to +255

• S8 - an 8 bit signed integer, legal values are -128 to +127

• U16 - a 16 bit unsigned integer, legal values are 0 to +65535

• S16 - a 16 bit signed integer, legal values are -32768 to +32767

• U32 - a 32 bit unsigned integer, legal values are 0 to +4294967295

• S32 - a 32 bit signed integer, legal values are -2147483648 to +2147483647

Function: Real hardware components tend to act immediately on their inputs. For example, if
the input voltage to a servo amp changes, the output also changes automatically. However
software components cannot act "automatically". Each component has specific code that must
be executed to do whatever that component is supposed to do. In some cases, that code simply
runs as part of the component. However in most cases, especially in realtime components, the
code must run in a specific sequence and at specific intervals. For example, inputs should be
read before calculations are performed on the input data, and outputs should not be written
until the calculations are done. In these cases, the code made available to the system in
the form of one or more "functions". Each function is a block of code that performs a specific
action. The system integrator can use "threads" to schedule a series of functions to be executed
in a particular order and at specific time intervals.

Thread: A "thread" is a list of functions that runs at specific intervals as part of a realtime task.
When a thread is first created, it has a specific time interval (period), but no functions. Func-
tions can be added to the thread, and will be executed every time the thread runs.

For now a quick example will help get the concept across. We have a parport component named
hal_parport. That component defines one or more HAL pins for each physical pin. The pins are
described in that component’s doc section - their names, how each pin relates to the physical pin,
are they inverted, can you change polarity, etc. But that alone doesn’t get the data from the HAL
pins to the physical pins. It takes code to do that, and that is where functions come into the picture.
The parport component has at least two functions. One reads physical input pins and updates the
HAL pins, the other takes data from the HAL pins and writes it to the physical output pins. But
these functions are part of the parport driver.

1.3 HAL components

Each HAL component is a piece of software with well defined inputs, outputs, and behaviour, that
can be installed and interconnected as needed. This section lists available component and a brief
description of what they do. Complete details for each component are available later in this docu-
ment.

External programs with HAL hooks

motion A realtime module that accepts NML motion commands and interacts with HAL

iotask? A user space module that accepts NML I/O commands and interacts with HAL

classicladder A PLC using HAL for all I/O

CHAPTER 1. INTRODUCTION 9

Internal Components

stepgen Software step pulse generator. See section 3.2

encoder Software based encoder counter. See section 3.4

pid Proportional/Integral/Derivative control loops. See section 3.5

siggen A sine/cosine/triangle/square wave generator for testing. See section 3.8

supply a simple source for testing

Hardware drivers

hal_parport PC parallel port. See section 4.1

hal_stg Servo To Go card (not implemented yet)

hal_usc Pico Systems Universal Stepper Controller (not implemented yet)

Utilities

halcmd Command line tool for configuration and tuning. See section 5.1

halgui GUI tool for configuration and tuning (not implemented yet).

halmeter A handy multimeter for HAL signals. See section 5.3

halscope A full featured digital storage oscilliscope for HAL signals. See section 5.4

Each of these building blocks is described in detail in later chapters.

1.4 Tinkertoys, Erector Sets, Legos and the HAL

A first introduction to HAL concepts can be mind boggling. Building anything with blocks can be a
challenge but some of the toys that we played with as kids can be an aid to building things with the
HAL.

Tower

I’m watching as my son and his six year old daughter build a tower from a box full of
random sized blocks, rods, jar lids and such. The aim is to see how tall they can make
the tower. The narrower the base the more blocks left to stack on top. But the narrower
the base, the less stable the tower. I see them studying both the next block and the shelf
where they want to place it to see how it will balance out with the rest of the tower.

The notion of stacking cards to see how tall you can make a tower is a very old and honored way
of spending spare time. At first read, the integrator may have gotten the impression that building a
HAL was a bit like that. It can be but with proper planning an integrator can build a stable system
as complex as the machine at hand requires.

CHAPTER 1. INTRODUCTION 10

Erector Sets2

What was great about the sets was the building blocks, metal struts and angles and plates, all with
regularly spaced holes. You could design things and hold them together with the little screws and
nuts.

I got my first erector set for my fourth birthday. I know the box suggested a much older
age than I was. Perhaps my father was really giving himself a present. I had a hard time
with the little screws and nuts. I really needed four arms, one each for the screwdriver,
screw, parts to be bolted together, and nut. Perseverence, along with father’s eventual
boredom, got me to where I had built every project in the booklet. Soon I was lusting
after the bigger sets that were also printed on that paper. Working with those regular
sized pieces opened up a world of construction for me and soon I moved well beyond the
illustrated projects.

Hal components are not all the same size and shape but they allow for grouping into larger units
that will do useful work.In this sense they are like the parts of an Erector set. Some components
are long and thin. They essentially connect high level commands to specific physical pins. Other
components are more like the rectangular platforms upon which whole machines could be built. An
integrator will quickly get beyond the brief examples and begin to bolt together components in ways
that are unique to them.

Tinkertoys3

Wooden Tinker toys had a more humaine feel that the cold steel of Erector Sets. The heart
of construction with Tinker Toys was a round connector with eight holes equally spaced
around the circumference. It also had a hole in the center that was perpendicular to all
the holes around the hub.

Hubs were connected with rods of several different lengths. Builders would make large
wheels by using these rods as spokes sticking out from the center hub.

My favorite project was a rotating space station. Short spokes radiated from all the holes
in the center hub and connected with hubs on the ends of each spoke. These outer hubs
were connected to each other with longer spokes. I’d spend hours dreaming of living in
such a device, walking from hub to hub around the outside as it slowly rotated producing
near gravity in weightless space. Supplies traveled through the spokes in elevators that
transfered them to an from rockets docked at the center hub while they transfered their
precious cargos.

The idea of one pin or component being the hub for many connections is also an easy concept
within the HAL. Examples two and four (see section 2) connect the meter and scope to signals that
are intended to go elsewhere. Less easy is the notion of a hub for several incoming signals but that
is also possible with proper use of functions within that hub component that handle those signals
as they arrive from other components.

Another thought that comes forward from this toy is a mechanical representation of HAL threads. A
thread might look a bit like a centipede, catepillar, or earwig. A backbone of hubs, HAL components,
strung together with rods, HAL signals. Each component takes in it own parameters and input

2The Erector Set was an invention of AC Gilbert
3Tinkertoyő is a registered trademark of the Playscool company.

CHAPTER 1. INTRODUCTION 11

pins and passes on output pins and parameters to the next component. Signals travel along the
backbone from end to end and are added to or modified by each component in turn.
Threads are all about timing and doing a set of tasks from end to end. A mechanical representation
is available with Tinkertoys also when we think of the length of the toy as a measure of the time
taken to get from one end to the other. A very different thread or backbone is created by connecting
the same set of hubs with different length rods. The total length of the backbone can be changed
by the length of rods used to connect the hubs. The order of operations is the same but the time to
get from beginning to end is very diferent.

A Lego Example4

When Lego blocks first arrived in our stores they were pretty much all the same size and shape.
Sure there were half sized one and a few quarter sized as well but that rectangular one did most of
the work. Lego blocks interconnected by snapping the holes in the underside of one onto the pins
that stuck up on another. By overlapping layers, the joints between could be made very strong,
even around corners or tees.

I watched my children and grandchildren build with legos – the same legos. There are a
few thousand of them in an old ratty but heavy duty cardboard box that sits in a corner
of the recreation room. It stays there in the open because it was to much trouble to put
the box away and then get it back out for every visit and it is always used during a visit.
There must be Lego parts in there from a couple dozen different sets. The little booklets
that came with them are long gone but the magic of building with interlocking pieces all
the same size is something to watch.

Notice the following description of building a set of motion components in the HAL and how much
like a wall of lego blocks it is.

The motion module exports a pin for each axis in cartesean space, and another pin for
each axis in joint space. When it is loaded, it automatically creates a "jumper" signal for
each axis, and automatically connects those signals from the joint pin to the cartesean
pin. So you automatically have "trivkins" as soon as you load the motion module. (trivkins
– trivial kinematics is the case where each motor moves a single axis at 90 degrees to the
others)

The motion module is like a pair of legos in a line end to end. Trivkins is just like a single block
overlapping the two. The in and out motion pins are plugged into each other by the block resting
above. But the parallel goes on.

If you need some other kinematics, you then load a specific kins component. This com-
ponent "knows" the names of the pins that the motion module uses for each axis, both
joint and cartesean. When the module loads, it again automatically creates signals and
connects its own pins to the motion module’s pins (which will disconnect the "jumpers").
It could also know the thread names used by the motion module, and could automatically
add it’s own functions to those threads.

Trivkins is removed so that the motion blocks can be spread apart and by using other blocks, a
different bridge is built between input and output pins. In Lego terms, trivkins might be a gray
block and xxkins might be a yellow block.

4The Lego name is a trademark of the Lego company.

CHAPTER 1. INTRODUCTION 12

So the net result is that 24 HAL signals and two HAL functions are configured, with no
action needed by the integrator other than loading the module. (24 signals are from 6
axis * 2 because we have joint and cartesean * 2 because we have forward and inverse
kinematics. Two functions because we have forward and inverse.) Because these HAL
signals exist, they can be metered or scoped or whatever for testing. But because both
modules know their names and know how to automatically connect them, the integrator
doesn’t have to know or care.

This kind of automatic HAL configuration is possible because all kinematics modules "plug in" the
same way.

1.5 Timing Issues In HAL

Threads is going to take a major intellectual push because unlike the physical wiring models be-
tween black boxes that we have said that HAL is based upon, simply connecting two pins with a
hal-signal falls far short of the action of the physical case.

True relay logic consists of relays connected together, and when a contact opens or closes, current
flows (or stops) immediately. Other coils may change state, etc, and it all just "happens". But in
PLC style ladder logic, it doesn’t work that way. Usually in a single pass thru the ladder, each rung
is evaluated in the order in which it appears, and only once per pass. A perfect example is a single
rung ladder, with a NC contact in series with a coil. The contact and coil belong to the same relay.

If this was a conventional relay, as soon as the coil is energized, the contacts begin to open and
de-energize it. That means the contacts close again, etc, etc. The relay becomes a buzzer.

With a PLC, if the coil is OFF and the contact is closed when the PLC begins to evaluate the rung,
then when it finishes that pass, the coil is ON. The fact that turning on the coil opens the contact
feeding it is ignored until the next pass. On the next pass, the PLC sees that the contact is open, and
de-energizes the coil. So the relay still switches rapidly between on and off, but at a rate determined
by how often the PLC evaluates the rung.

In HAL, the function is the code that evaluates the rung(s). In fact a HAL-aware realtime version
of ClassicLadder would export a function to do exactly that. Meanwhile, a thread is the thing that
runs the function at specific time intervals. Just like you can choose to have a PLC evaluate all its
rungs every 10mS, or every second, you can define HAL threads with different periods.

What distinguishes one thread from another is _not_ what the thread does - that is determined by
which functions are connected to it. The real distinction is simply how often a thread runs.

In EMC we might have a 15uS thread, a 1mS thread, and a 10mS thread. These would be created
based on "Period", "ServoPeriod", and "TrajPeriod" respectively - the actual times would depend on
the ini. That is one part of the config process, and although it could be done manually, it would
normally be automatic.

The next step is to decide what each thread needs to do. Some of those decisions would also be
automatic - the motion module would automatically connect its "PlanTrajectory" function to the
TrajPeriod thread, and its "ControlMotion" function to the ServoPeriod thread.

Other connections would be made by the integrator (at least the first time). These might include
hooking the STG driver’s encoder read and DAC write functions to the servo thread, or hooking
stepgen’s function to the fast thread, along with the parport function(s) to write the steps to the
port.

CHAPTER 1. INTRODUCTION 13

1.6 Dynamic Linking and Configuration

It is indeed possible to configure HAL with a form of dynamic linking. But it is different than DLLs
as used by Microsoft(tm) or shared libraries as used in Linux. Both DLLs and shared libraries
essentially say "Here I am, I have this code you might want to use", where "you" is other modules.
Then when those other modules or programs are loaded, they say "I need a function called ’X’, is
there one?" and if the answer is YES, they link to it.

With HAL, a component still says "Here I am, I have this code you might want to use", but "you"
is the system integrator. The integrator gets to decide what functions are used and doesn’t have to
worry about another module needing "function X" and not finding it.

HAL can follow the normal DLL model as well. Although most components will simply export pins,
functions, and parameters, and then wait for the integrator (or a saved file) to interconnect them, we
can write modules that (attempt to) make connections when they are installed. One specific place
where this would work well is kinematics as illustrated in the Lego section 1.4 .

Chapter 2

HAL Configuration

2.1 Before we start

Configuration moves from theory to device – HAL device that is. For those who have had just a bit of
computer programming, this section is the “Hello World” of the HAL. As noted above halcmd can be
used to create a working system. It is a command line or text file tool for configuration and tuning.
The following examples illustrate its setup and operation.

Notation

Command line examples are presented in bold typewriter font. Responses from the computer
will be in typewriter font. Text inside square brackets [like-this] is optional. Text inside
angle brackets <like-this> represents a field that can take on different values, and the adjacent
paragraph will explain the appropriate values. Text items separated by a vertical bar means that
one or the other, but not both, should be present. All command line examples assume that you are
in the emc2/ directory, and paths will be shown accordingly when needed.

Root Privilges

Because HAL uses kernel modules to do much of it’s work, and because it also can access hardware
directly, many commands will require root privileges. Note that it is usually safer to avoid doing
day-to-day work as root. Here is an example of what happens when you don’t have root privileges:

emc2$ bin/hal_parport 0278
PARPORT: ERROR: could not get I/O permission
emc2$

As an alternative to logging in as root, you can use the sudo command or the su -c command.
The sudo command is very convenient to use, and does not require you to know the root password.
However, it needs to be configured by someone who does know the root password. The configuration
determines who may use sudo , and what commands they can use it for. We will not discuss sudo
configuration here, try man sudo and/or talk to your system administrator. If sudo is properly
configured, here is what happens:

14

CHAPTER 2. HAL CONFIGURATION 15

emc2$ sudo bin/hal_parport 0278
Password: <enter your password>
PARPORT: installed driver for 1 ports
emc2$

As an added convenience, sudo remembers your password for a short time, so if you enter another
sudo command within the time limit (usually 5 minutes) you don’t have to type your password
again.
The su -c command does not require configuration, but does require you to know the root pass-
word, and to type it in for every command. You also must put quotes around the command you are
trying to run:

emc2$ su -c "bin/hal_parport 0278"
Password: <enter root password>
PARPORT: installed driver for 1 ports
emc2$

To avoid cluttering up the examples, we will not show sudo or su -c . Instead, commands that
require root privileges will be preceded by #, and other commands will be preceded by by $.

emc2$ ls bin
emc2# bin/hal_parport 0278

The RTAPI environment

RTAPI stands for Real Time Application Programming Interface. Many HAL components work in
realtime, and all HAL components store data in shared memory so realtime components can ac-
cess it. Normal Linux does not support realtime programming or the type of shared memory that
HAL needs. Fortunately there are realtime operating systems (RTOS’s) that provide the neccessary
extensions to Linux. Unfortunately, each RTOS does things a little differently.
To address these differences, the EMC team came up with RTAPI, which provides a consistent way
for programs to talk to the RTOS. If you are a programmer who wants to work on the internals of
EMC, you may want to study emc2/src/rtapi/rtapi.h to understand the API. But if you are a
normal person all you need to know about RTAPI is that it (and the RTOS) needs to be loaded into
the memory of your computer before you do anything with HAL.
For this tutorial, we are going to assume that you have successfully compiled the emc2/ source
tree. In that case, all you need to do is load the required RTOS and RTAPI modules into memory.
Just run the following command (needs root privileges):

emc2# scripts/realtime start

With the realtime OS and RTAPI loaded, we can move into the first example.

2.2 A Simple Example

Loading a realtime component

For the first example, we will use a HAL component called siggen , which is a simple signal genera-
tor. A complete description of the siggen component can be found in section 3.8 of this document.

CHAPTER 2. HAL CONFIGURATION 16

It is a realtime component, implemented as a Linux kernel module and located in the directory
emc2/rtlib/ . To load siggen use the insmod command:

emc2# /sbin/insmod rtlib/siggen.o fp_period=1000000
emc2#

Examining the HAL

Now that the module is loaded, it is time to introduce halcmd , the command line tool used to config-
ure the HAL. This tutorial will introduce some halcmd features, for a more complete description try
man halcmd , or see the halcmd reference in section 5.1 of this document . The first halcmd feature
is the show command. This command displays information about the current state of the HAL. To
show all installed components:

emc2$ bin/halcmd show comp
Loaded HAL Components:
ID Type Name
02 User halcmd
01 RT siggen
emc2$

Since halcmd itself is a HAL component, it will always show up on the list. The list also shows the
siggen component that we installed in the previous step. The “RT” under indicates that siggen is
a realtime component.

Next, let’s see what pins siggen makes available:

emc2$ bin/halcmd show pin
Component Pins:
Owner Type Dir Value Name

02 float -W 0.00000e+00 siggen.0.cosine
02 float -W 0.00000e+00 siggen.0.sine
02 float -W 0.00000e+00 siggen.0.square
02 float -W 0.00000e+00 siggen.0.triangle

emc2$

This command displays all of the pins in the HAL - a complex system could have dozens or hundreds
of pins. But right now there are only four pins. All four of these pins are floating point, and all four
carry data out of the siggen component. Since we have not yet executed the code contained within
the component, the value of all the pins is zero.

The next step is to look at parameters:

emc2$ bin/halcmd show param
Parameters:
Owner Type Dir Value Name

02 float -W 1.00000e+00 siggen.0.amplitude
02 float -W 1.00000e+00 siggen.0.frequency
02 float -W 0.00000e+00 siggen.0.offset

emc2$

CHAPTER 2. HAL CONFIGURATION 17

The show param command shows all the parameters in the HAL. Right now each parameter has
the default value it was given when the component was loaded. Note the column labeled Dir . The
parameters labeled -W are writeable ones that are never changed by the component itself, instead
they are meant to be changed by the user to control the component. We will see how to do this later.
Parameters labeled R- are read only parameters. They can be changed only by the component.
Finally, parameter labeled RWare read-write parameters. That means that thay are changed by the
component, but can also be changed by the user.
Most realtime components export one or more functions to actually run the realtime code they
contain. Let’s see what function(s) siggen exported:

emc2$ bin/halcmd show funct
Exported Functions:
Owner CodeAddr Arg FP Users Name

02 C48E31C4 C48D2054 YES 0 siggen.0.update
emc2$

The siggen component exported a single function. It requires floating point. It is not currently linked
to any threads, so “users” is zero1.

Making realtime code run

To actually run the code contained in the function siggen.0.update , we need a realtime thread.
When we loaded the component we used the fp_period parameter to request a thread with a period
of 1mS (1000000nS). Let’s see if that worked:

emc2$ bin/halcmd show thread
Realtime Threads:

Period FP Name
999849 YES siggen.thread

emc2$

It did. The period is not exactly 1000000nS because of hardware limitations, but we have a thread
that runs at approximately the correct rate, and which can handle floating point functions. The
next step is to connect the function to the thread:

emc2$ bin/halcmd addf siggen.0.update siggen.thread
emc2$

Up till now, we’ve been using halcmd only to look at the HAL. However, this time we used the
addf (add function) command to actually change something in the HAL. We told halcmd to add the
function siggen.1.update to the thread siggen.thread , and if we look at the thread list again,
we see that it succeeded:

emc2$ bin/halcmd show thread
Realtime Threads:

Period FP Name
999849 YES siggen.thread

1 siggen.0.update
emc2$

1The codeaddr and arg fields were used in development, and should probably be removed from the halcmd listing.

CHAPTER 2. HAL CONFIGURATION 18

There is one more step needed before the siggen component starts generating signals. When the
HAL is first started, the thread(s) are not actually running. This is to allow you to completely
configure the system before the realtime code starts. Once you are happy with the configuration,
you can start the realtime code like this:

emc2$ bin/halcmd start
emc2$

Now the signal generator is running. Let’s look at it’s output pins:

emc2$ bin/halcmd show pin
Component Pins:
Owner Type Dir Value Name

02 float -W -8.21251e-01 siggen.0.cosine
02 float -W 5.65397e-01 siggen.0.sine
02 float -W -1.00000e+00 siggen.0.square
02 float -W -6.17446e-01 siggen.0.triangle

emc2$ bin/halcmd show pin
Component Pins:
Owner Type Dir Value Name

02 float -W -6.94009e-01 siggen.0.cosine
02 float -W 7.19966e-01 siggen.0.sine
02 float -W -1.00000e+00 siggen.0.square
02 float -W -4.88315e-01 siggen.0.triangle

emc2$

We did two show pin commands in quick succession, and you can see that the outputs are no
longer zero. The sine, cosine, and triangle outputs are changing constantly. The square output is
also working, however it simply switches from +1.0 to -1.0 every cycle, and it happened to be at -1.0
for both commands.

Changing parameters

The real power of HAL is that you can change things. For example, we can use the setp command
to set the value of a parameter. Let’s change the amplitude of the signal generator from 1.0 to 5.0:

emc2$ bin/halcmd setp siggen.0.amplitude 5
emc2$

Check the parameters and pins again:

emc2$ bin/halcmd show param
Parameters:
Owner Type Dir Value Name

02 float -W 5.00000e+00 siggen.0.amplitude
02 float -W 1.00000e+00 siggen.0.frequency
02 float -W 0.00000e+00 siggen.0.offset

emc2$ bin/halcmd show pin
Component Pins:
Owner Type Dir Value Name

CHAPTER 2. HAL CONFIGURATION 19

02 float -W -2.52580e+00 siggen.0.cosine
02 float -W 4.31513e+00 siggen.0.sine
02 float -W -5.00000e+00 siggen.0.square
02 float -W -1.68567e+00 siggen.0.triangle

emc2$ bin/halcmd show pin
Component Pins:
Owner Type Dir Value Name

02 float -W -4.94738e+00 siggen.0.cosine
02 float -W -7.54523e-01 siggen.0.sine
02 float -W 5.00000e+00 siggen.0.square
02 float -W -4.45782e+00 siggen.0.triangle

emc2$

Note that the value of parameter siggen.0.amplitude has changed to 5.000, and that the pins
now have larger values. The square wave output now switches from +5.0 to -5.0, and we happened
to catch it switching.

Saving the HAL configuration

Most of what we have done with halcmd so far has simply been viewing things with the show
command. However two of the commands actually changed things. As we design more complex
systems with HAL, we will use many commands to configure things just the way we want them.
HAL has the memory of an elephant, and will retain that configuration until we shut it down. But
what about next time? We don’t want to manually enter a bunch of commands every time we want
to use the system. We can save the configuration of the entire HAL with a single command:

emc2$ bin/halcmd save
signals
links
parameter values
setp siggen.0.amplitude 5.00000e+00
setp siggen.0.frequency 1.00000e+00
setp siggen.0.offset 0.00000e+00
realtime thread/function links
addf siggen.0.update siggen.thread
emc2$

The output of the save command is a sequence of HAL commands. If you start with an “empty” HAL
and run all these commands, you will get the configuration that existed when the save command
was issued. To save these commands for later use, we simply redirect the output to a file:

emc2$ bin/halcmd save >saved.hal
emc2$

Restoring the HAL configuration

To restore the HAL configuration stored in saved.hal , we need to execute all of those HAL com-
mands. To do that, we use halcmd -f <filename> which reads commands from a file:

emc2$ bin/halcmd -f saved.hal
emc2$

CHAPTER 2. HAL CONFIGURATION 20

2.3 Looking at the HAL with halmeter

You can build very complex HAL systems without ever using a graphical interface. However there
is something satisfying about seeing the result of your work. The first and simplest GUI tool for
the HAL is halmeter. It is a very simple program that is the HAL equivalent of the handy Fluke
multimeter (or Simpson analog meter for the old timers).

We will use the siggen component again to check out halmeter. If you just finished the previous
example, then siggen is already loaded. If not, we can load it just like we did before:

emc2# scripts/realtime start
emc2# /sbin/insmod rtlib/siggen.o fp_period=1000000
emc2$ bin/halcmd addf siggen.0.update siggen.thread
emc2$ bin/halcmd start
emc2$ bin/halcmd setp siggen.0.amplitude 5
emc2$

Starting halmeter

At this point we have the siggen component loaded and running. It’s time to start halmeter. Since
halmeter is a GUI app, X must be running. We can start halmeter in the background by following
it’s name with a ’&’:

emc2$ bin/halmeter &
[1] 22093
emc2$

Since we started halmeter in the background, Linux prints its process id [1] 22093 and immedi-
ately returns to the shell prompt. At the same time, a halcmd window opens on your screen, looking
something like figure 2.1. Note that you don’t have to run halmeter in the background. If you omit
’&’, it will start and behave exactly the same, but you won’t get your shell prompt back until you exit
from halmeter.

Figure 2.1: Halmeter at startup, nothing selected

Using halmeter

The meter in figure 2.1 isn’t very useful, because it isn’t displaying anything. To change that, click
on the ’Select’ button, which will open the probe selection dialog (figure 2.2).

This dialog has three tabs. The first tab displays all of the HAL pins in the system. The second one
displays all the signals, and the third displays all the parameters. We would like to look at the pin

CHAPTER 2. HAL CONFIGURATION 21

Figure 2.2: Halmeter source selection dialog

Figure 2.3: Halmeter displaying the value of a pin

CHAPTER 2. HAL CONFIGURATION 22

siggen.0.triangle first, so click on it then click the ’OK’ button. The probe selection dialog will
close, and the meter looks something like figure 2.3.

You should see the value changing as siggen generates its triangle wave. Halmeter refreshes its
display about 5 times per second.

If you want to quickly look at a number of pins, you can use the ’Accept’ button in the source
selection dialog. Click on ’Select’ to open the dialog again. This time, click on another pin, like
siggen.0.cosine, and then click ’Accept’. When you click ’Accept’, the meter immediately begins to
display the newly selected item, but the dialog does not close. Try displaying a parameter instead of
a pin. Click on the ’Parameters’ tab, then select a parameter and click ’Accept’ again. You can very
quickly move the “meter probes” from one item to the next with a couple of clicks.

To shut down halmeter, just click the exit button.

If you want to look at more than one pin, signal, or parameter at a time, you can just start more
halmeters. The halmeter window was intentionally made very small so you could have a lot of them
on the screen at once. 2

2Halmeter is due for a rewrite, probably right after NAMES is over. The rewrite will do a number of things to make it nicer.
Scientific notation will go away - it is a pain to read. Some form of ranging (including autoranging) will be added to allow
it to display a wide range of numbers without using scientific notation. An “analog bar graph” display will also be added to
give a quick indication of trends. When the rewrite is done, these screenshots and the accompanying text will be revised to
match the new version.

CHAPTER 2. HAL CONFIGURATION 23

2.4 A slightly more complex example.

Up till now we have only loaded one HAL component. But the whole idea behind the HAL is to allow
you to load and connect a number of simple components to make up a complex system. The next
example will use two components.
Before we can begin building this new example, we want to start with a clean slate. If you just
finished one of the previous examples, we need to remove the siggen component and reload the
RTAPI and HAL libraries:

emc2# /sbin/rmmod siggen
emc2# scripts/realtime restart
emc2$

Installing the components

Now we are going to load the step pulse generator component. For a detailed description of this
component refer to section 3.3. For now, we can skip the details, and just run the following com-
mand:

emc2# /sbin/insmod rtlib/freqgen.o cfg="0 0" period=50000
emc2$

This command loads two step generators, both configured to generate stepping type 0. It also creates
a 50 micro-second thread. Next we load our old friend siggen, the signal generator component, and
create a 1 millisecond thread:

emc2# /sbin/insmod rtlib/siggen.o fp_period=1000000
emc2$

As before, we can use halcmd show to take a look at the HAL. This time we have a lot more pins
and parameters than before:

emc2$ bin/halcmd show pin
Component Pins:
Owner Type Dir Value Name

03 float -W 0.00000e+00 siggen.0.cosine
03 float -W 0.00000e+00 siggen.0.sine
03 float -W 0.00000e+00 siggen.0.square
03 float -W 0.00000e+00 siggen.0.triangle
02 s32 -W 0 freqgen.0.counts
02 bit -W FALSE freqgen.0.dir
02 float -W 0.00000e+00 freqgen.0.position
02 bit -W FALSE freqgen.0.step
02 float R- 0.00000e+00 freqgen.0.velocity
02 s32 -W 0 freqgen.1.counts
02 bit -W FALSE freqgen.1.dir
02 float -W 0.00000e+00 freqgen.1.position
02 bit -W FALSE freqgen.1.step
02 float R- 0.00000e+00 freqgen.1.velocity

emc2$ bin/halcmd show param

CHAPTER 2. HAL CONFIGURATION 24

Parameters:
Owner Type Dir Value Name

03 float -W 1.00000e+00 siggen.0.amplitude
03 float -W 1.00000e+00 siggen.0.frequency
03 float -W 0.00000e+00 siggen.0.offset
02 u8 -W 1 (01) freqgen.0.dirhold
02 u8 -W 1 (01) freqgen.0.dirsetup
02 float R- 0.00000e+00 freqgen.0.frequency
02 float -W 0.00000e+00 freqgen.0.maxaccel
02 float -W 1.00000e+15 freqgen.0.maxfreq
02 float -W 1.00000e+00 freqgen.0.position-scale
02 s32 R- 0 freqgen.0.rawcounts
02 u8 -W 1 (01) freqgen.0.steplen
02 u8 -W 1 (01) freqgen.0.stepspace
02 float -W 1.00000e+00 freqgen.0.velocity-scale
02 u8 -W 1 (01) freqgen.1.dirhold
02 u8 -W 1 (01) freqgen.1.dirsetup
02 float R- 0.00000e+00 freqgen.1.frequency
02 float -W 0.00000e+00 freqgen.1.maxaccel
02 float -W 1.00000e+15 freqgen.1.maxfreq
02 float -W 1.00000e+00 freqgen.1.position-scale
02 s32 R- 0 freqgen.1.rawcounts
02 u8 -W 1 (01) freqgen.1.steplen
02 u8 -W 1 (01) freqgen.1.stepspace
02 float -W 1.00000e+00 freqgen.1.velocity-scale

emc2$

Connecting pins with signals

What we have is two step pulse generators, and a signal generator. Now it is time to create some HAL
signals to connect the two components. We are going to pretend that the two step pulse generators
are driving the X and Y axis of a machine. We want to move the table in circles. To do this, we will
send a cosine signal to the X axis, and a sine signal to the Y axis. The siggen module creates the
sine and cosine, but we need “wires” to connect the modules together. In the HAL, “wires” are called
signals. We need to create two of them. We can call them anything we want, for this example they
will be X_vel and Y_vel . To create them we use the the newsi g command. We also need to specify
the type of data that will flow through these “wires”, in this case it is floating point:

emc2$ bin/halcmd newsig X_vel float
emc2$ bin/halcmd newsig Y_vel float
emc2$

To make sure that worked, we can look at all the signals:

emc2$ bin/halcmd show sig
Signals:
Type Value Name
float 0.00000e+00 X_vel
float 0.00000e+00 Y_vel
emc2$

CHAPTER 2. HAL CONFIGURATION 25

The next step is to connect the signals to component pins. The signal X_vel is intended to run from
the cosine output of the signal generator to the velocity input of the first step pulse generator. The
first step is to connect the signal to the signal generator output. To connect a signal to a pin we use
the linksp command.

emc2$ bin/halcmd linksp X_vel siggen.0.cosine
emc2$

To see the effect of the linksp command, we show the signals again:

emc2$ bin/halcmd show sig
Signals:
Type Value Name
float 0.00000e+00 X_vel

<== siggen.0.cosine
float 0.00000e+00 Y_vel
emc2$

When a signal is connected to one or more pins, the show command lists the pins immediately
following the signal name. The “arrow” shows the direction of data flow - in this case, data flows
from pin siggen.0.cosine to signal X_vel . Now let’s connect the X_vel to the velocity input of a
step pulse generator:

emc2$ bin/halcmd linksp X_vel freqgen.0.velocity
emc2$

We can also connect up the Y axis signal Y_vel . It is intended to run from the sine output of the
signal generator to the input of the second step pulse generator:

emc2$ bin/halcmd linksp Y_vel siggen.0.sine
emc2$ bin/halcmd linksp Y_vel freqgen.1.velocity
emc2$

Now let’s take a final look at the signals and the pins connected to them:

emc2$ bin/halcmd show sig
Signals:
Type Value Name
float 0.00000e+00 X_vel

<== siggen.0.cosine
==> freqgen.0.velocity

float 0.00000e+00 Y_vel
<== siggen.0.sine
==> freqgen.1.velocity

emc2$

The show sig command makes it clear exactly how data flows through the HAL. For example, the
X_vel signal comes from pin siggen.0.cosine , and goes to pin freqgen.0.velocity .

CHAPTER 2. HAL CONFIGURATION 26

Setting up realtime execution - threads and functions

Thinking about data flowing through “wires” makes pins and signals fairly easy to understand.
Threads and functions are a little more difficult. Functions contain the computer instructions that
actually get things done. Thread are the method used to make those instructions run when they
are needed. First let’s look at the functions available to us:

emc2$ bin/halcmd show funct
Exported Functions:
Owner CodeAddr Arg FP Users Name

03 D89051C4 D88F10FC YES 0 siggen.0.update
02 D8902868 D88F1054 YES 0 freqgen.capture_position
02 D8902498 D88F1054 NO 0 freqgen.make_pulses
02 D89026F0 D88F1054 YES 0 freqgen.update_freq

emc2$

In general, you will have to refer to the documentation for each component to see what its functions
do. In this case, the function siggen.0.update is used to update the outputs of the signal gen-
erator. Every time it is executed, it calculates the values of the sine, cosine, triangle, and square
outputs. To make smooth signals, it needs run at specific intervals.
The other three functions are related to the step pulse generators. The first one, freqgen.capture_position ,
is used for position feedback. It captures the value of an internal counter that counts the step pulses
as they are generated. Assuming no missed steps, this counter indicates the position of the motor.
The main function for the step pulse generator is freqgen.make_pulses . Every time make_pulses
runs it decides if it is time to take a step, and if so sets the outputs accordingly. For smooth step
pulses, it should run as frequently as possible. Because it needs to run so fast, make_pulses is
highly optimized and performs only a few calculations. Unlike the others, it does not need floating
point math.
The last function, freqgen.update_freq , is responsible for doing scaling and some other calcula-
tions that need to be performed only when the frequency command changes.
What this means for our example is that we want to run siggen.0.update at a moderate rate to
calculate the sine and cosine values. Immediately after we run siggen.0.update , we want to run
freqgen.update_freq to load the new values into the step pulse generator. Finally we need to
run freqgen.make_pulses as fast as possible for smooth pulses. Because we don’t use position
feedback, we don’t need to run freqgen.capture_position at all.
We run functions by adding them to threads. Each thread runs at a specific rate. Let’s see what
threads we have available:

emc2$ bin/halcmd show thread
Realtime Threads:

Period FP Name
1005720 YES siggen.thread

50286 NO freqgen.thread
emc2$

There are two threads (which were created when we insmod ’ed the components). The first one,
siggen.thread , runs every millisecond, and is capable of running floating point functions. We will
use it for siggen.0.update and freqgen.update_freq . The second thread is freqgen.thread ,
which runs every 50 microseconds, and does not support floating point. We will use it for freq-
gen.make_pulses . To connect the functions to the proper thread, we use the addf command. We
specify the function first, followed by the thread:

CHAPTER 2. HAL CONFIGURATION 27

emc2$ bin/halcmd addf siggen.0.update siggen.thread
emc2$ bin/halcmd addf freqgen.update_freq siggen.thread
emc2$ bin/halcmd addf freqgen.make_pulses freqgen.thread
emc2$

After we give these commands, we can run the show thread command again to see what happened:

emc2$ bin/halcmd show thread
Realtime Threads:

Period FP Name
1005720 YES siggen.thread

1 siggen.0.update
2 freqgen.update_freq

50286 NO freqgen.thread
1 freqgen.make_pulses

emc2$

Now each thread is followed by the names of the functions, in the order in which the functions will
run.

Setting parameters

We are almost ready to start our HAL system. However we still need to adjust a few parameters. By
default, the siggen component generates signals that swing from +1 to -1. For our example that is
fine, we want the table speed to vary from +1 to -1 inches per second. However the scaling of the step
pulse generator isn’t quite right. By default, it generates an output frequency of 1 step per second
with an input of 1.000. It is unlikely that one step per second will give us one inch per second of
table movement. Let’s assume instead that we have a 5 turn per inch leadscrew, connected to a 200
step per rev stepper with 10x microstepping. So it takes 2000 steps for one revolution of the screw,
and 5 revolutions to travel one inch. that means the overall scaling is 10000 steps per inch. We
need to multiply the velocity input to the step pulse generator by 10000 to get the proper output.
That is exactly what the parameter freqgen.n.velocity-scale is for. In this case, both the X and
Y axis have the same scaling, so we set the scaling parameters for both to 10000:

emc2$ bin/halcmd setp freqgen.0.velocity-scale 10000
emc2$ bin/halcmd setp freqgen.1.velocity-scale 10000
emc2$

This velocity scaling means that when the pin freqgen.0.velocity is 1.000, the step generator
will generate 10000 pulses per second (10KHz). With the motor and leadscrew described above, that
will result in the axis moving at exactly 1.000 inches per second. This illustrates a key HAL concept
- things like scaling are done at the lowest possible level, in this case in the step pulse generator.
The internal signal X_vel is the velocity of the table in inches per second, and other components
such as siggen don’t know (or care) about the scaling at all. If we changed the leadscrew, or motor,
we would change only the scaling parameter of the step pulse generator.

Run it!

We now have everything configured and are ready to start it up. Just like in the first example, we
use the start command:

CHAPTER 2. HAL CONFIGURATION 28

emc2$ bin/halcmd start
emc2$

Although nothing appears to happen, inside the computer the step pulse generator is cranking out
step pulses, varying from 10KHz forward to 10KHz reverse and back again every second. Later in
this tutorial we’ll see how to bring those internal signals out to run motors in the real world, but
first we want to look at them and see what is happening.

2.5 Taking a closer look with halscope.

The previous example generates some very interesting signals. But much of what happens is far
too fast to see with halmeter. To take a closer look at what is going on inside the HAL, we want an
oscilliscope. Fortunately HAL has one, called halscope.

Starting Halscope

Halscope has two parts - a realtime part that is loaded as a kernel module, and a user part that
supplied the GUI and display. Before starting the GUI you must load the realtime part:

emc2# /sbin/insmod rtlib/scope_rt.o
emc2$

Once the realtime part is loaded, we can start the GUI. Like halmeter, you can follow it with & so it
runs in the background and you get your shell prompt back immediately:

emc2$ bin/halscope &
[2] 3678
emc2$

The scope GUI window will open, immediately followed by a “Realtime function not linked” dialog
that looks like figure 2.43.

This dialog is where you set the sampling rate for the oscilliscope. For now we want to once per
millisecond, so click on the 1.03mS thread “siggen.thread”, and leave the multiplier at 1. We will
also leave the record length at 4047 samples, so that we can use up to four channels at one time.
When you select a thread and then click “OK”, the dialog disappears, and the scope window looks
something like figure 2.5.

3Several of these screen captures refer to pins, etc, as “stepgen.xxx” rather than “freqgen.xxx”. The original name of the
freqgen module was stepgen, and I haven’t gotten around to re-doing all the screen shots since it was renamed. The name
“stepgen” now refers to a different step pulse generator, one that accepts position instead of velocity commands. Both are
described in detail later in this document.

CHAPTER 2. HAL CONFIGURATION 29

Figure 2.4: “Realtime function not linked” dialog

CHAPTER 2. HAL CONFIGURATION 30

Figure 2.5: Initial scope window

CHAPTER 2. HAL CONFIGURATION 31

Hooking up the “scope probes”

At this point, Halscope is ready to use. We have already selected a sample rate and record length,
so the next step is to decide what to look at. This is equivalent to hooking “virtual scope probes” to
the HAL. Halscope has 16 channels, but the number you can use at any one time depends on the
record length - more channels means shorter records, since the memory available for the record is
fixed at approximately 16,000 samples.

The channel buttons run across the bottom of the halscope screen. Click button “1”, and you will
see the “Select Channel Source” dialog, figure 2.6. This dialog is very similar to the one used by
Halmeter. We would like to look at the signals we defined earlier, so we click on the “Signals” tab,
and the dialog displays all of the signals in the HAL (only two for this example).

Figure 2.6: Select Channel Source dialog

To choose a signal, just click on it. In this case, we want to use channel 1 to display the signal
“X_vel”. When we click on “X_vel”, the dialog closes and the channel is now selected. The channel 1
button is pressed in, and channel number 1 and the name “X_vel” appear below the row of buttons.
That display always indicates the selected channel - you can have many channels on the screen,
but the selected on is highlighted, and the various controls like vertical position and scale always
work on the selected one. To add a signal to channel 2, click the “2” button. When the dialog pops
up, click the “Signals” tab, then click on “Y_vel”.

We also want to look at the square and triangle wave outputs. There are no signals connected
to those pins, so we use the “Pins” tab instead. For channel 3, select “siggen.1.triangle” and for
channel 4, select “siggen.1.square”.

CHAPTER 2. HAL CONFIGURATION 32

Capturing our first waveforms

Now that we have several probes hooked to the HAL, it’s time to capture some waveforms. To start
the scope, click the “Normal” button in the “Run Mode” section of the screen (upper right). Since we
have a 4000 sample record length, and are acquiring 1000 samples for second, it will take halscope
about 2 seconds to fill half of its buffer. During that time a progress bar just above the main screen
will show the buffer filling. Once the buffer is half full, the scope waits for a trigger. Since we
haven’t configured one yet, it will wait forever. To manually trigger it, click the “Force” button in the
“Trigger” section at the top right. You should see the remainder of the buffer fill, then the screen
will display the captured waveforms. The result will look something like figure 2.7.

Figure 2.7: Captured Waveforms

The “Selected Channel box at the bottom tells you that the green trace is the currently selected one,
channel 4, which is displaying the value of the pin “siggen.1.square”. Try clicking channel buttons
1 thru 3 to highlight the other three traces.

CHAPTER 2. HAL CONFIGURATION 33

Vertical Adjustments

The traces are rather hard to distinguish since all four are on top of each other. To fix this, we
use the “Vertical” controls in the box to the right of the screen. These controls act on the currently
selected channel. When adjusting the gain, notice that it covers a huge range - unlike a real scope,
this one can display signals ranging from very tiny (pico-units) to very large (Tera-units). The
position control moves the displayed trace up and down over the height of the screen only. For
larger adjustments the offset button should be used (see the halscope reference in section 5.4 for
details).

Triggering

Using the “Force” button is a rather unsatisfying way to trigger the scope. To set up real triggering,
click on the “Source” button at the bottom right. It will pop up the “Trigger Source” dialog, which
is simply a list of all the probes that are currently connected (Figure 2.8). Select a probe to use for
triggering by clicking on it. For this example we will use channel 3, the triangle wave.

Figure 2.8: Trigger Source Dialog

After setting the trigger source, you can adjust the trigger level and trigger position using the sliders
in the “Trigger” box along the right edge. The level can be adjusted from the top to the bottom of the
screen, and is displayed below the sliders. The position is the location of the trigger point within the
overall record. With the slider all the way down, the trigger point is at the end of the record, and
halscope displays what happened before the trigger point. When the slider is all the way up, the
trigger point is at the beginning of the record, displaying what happened after it was triggered. The
trigger point is visible as a vertical line in the progress box above the screen. The trigger polarity
can be changed by clicking the button just below the trigger level display. Note that changing the
trigger position stops the scope, once the position is adjusted you restart the scope by clicking the
“Normal” button in the “Run Mode” box.

CHAPTER 2. HAL CONFIGURATION 34

Now that we have adjusted the vertical controls and triggering, the scope display looks something
like figure 2.9.

Figure 2.9: Waveforms with Triggering

CHAPTER 2. HAL CONFIGURATION 35

Horizontal Adjustments

To look closely at part of a waveform, you can use the zoom slider at the top of the screen to
expand the waveforms horizontally, and the position slider to determine which part of the zoomed
waveform is visible. However, sometimes simply expanding the waveforms isn’t enough and you
need to increase the sampling rate. For example, we would like to look at the actual step pulses
that are being generated in our example. Since the step pulses may be only 50uS long, sampling
at 1KHz isn’t fast enough. To change the sample rate, click on the button that displays the record
length and sample rate to bring up the “Select Sample Rate” dialog, figure . For this example, we
will click on the 50uS thread, “freqgen.thread”, which gives us a sample rate of about 20KHz. Now
instead of displaying about 4 seconds worth of data, one record is 4000 samples at 20KHz, or about
0.20 seconds.

Figure 2.10: Sample Rate Dialog

CHAPTER 2. HAL CONFIGURATION 36

More Channels

Now let’s look at the step pulses. Halscope has 16 channels, but for this example we are using only
4 at a time. Before we select any more channels, we need to turn off a couple. Click on the channel 2
button, then click the “Off” button at the bottom of the “Vertical” box. Then click on channel 3, turn
if off, and do the same for channel 4. Even though the channels are turned off, they still remember
what they are connected to, and in fact we will continue to use channel 3 as the trigger source.
To add new channels, select channel 5, and choose pin “freqgen.1.dir”, then channel 6, and select
“freqgen.1.step”. Then click run mode “Normal” to start the scope, and adjust the horizontal zoom
to 5mS per division. You should see the step pulses slow down as the velocity command (channel
1) approaches zero, then the direction pin changes state and the step pulses speed up again. You
might want to increase the gain on channel 1 to about 20m per division to better see the change in
the velocity command. The result should look like figure 2.11.

Figure 2.11: Looking at Step Pulses

Chapter 3

Detailed Description of Internal
Components

3.1 General Information

Each HAL component is described here in detail. This detail includes the input pins used and output
pins generated by the component, the parameters accepted and generated by the component, and
the functions available when the component is installed.

Notation

Command line examples are presented in bold typewriter font. Responses from the computer
will be in typewriter font. Commands that require root privileges will be preceded by #, others by
$. Text inside square brackets [like-this] is optional. Text inside angle brackets <like-this>
represents a field that can take on different values, and the adjacent paragraph will explain the
appropriate values. Text items separated by a vertical bar means that one or the other, but not
both, should be present. All command line examples assume that you are in the emc2/ directory,
and paths will be shown accordingly when needed.

Names

All HAL entities are accessed and manipulated by their names, so documenting the names of pins,
signals, parameters, etc, is very important. HAL names are a maximum of 31 characters long (as
defined by HAL_NAME_LEN in hal.h). Many names will be presented in a general form, with text
inside angle brackets <like-this> representing fields that can take on different values.
For example, a general description of a pin name might be parport.<portnum>.pin-<pinnum)-in,
where <portnum> and <pinnum> are specific numbers. So real names corresponding to this gen-
eral description might be parport.0.pin-10-in , and parport.1.pin-14-in . Fields like <port-
num> and <pinnum> will be explained in the adjacent text. When pins, signals, or parameters are
described for the first time, their names will be preceeded by their type and followed by a brief
description. A typical pin definition will look something like these examples:

• (B I T) parport.<portnum>.pin-<pinnum>-in – The HAL pin associated with input pin <pin-
num> on the 25 pin D-shell connector.

37

CHAPTER 3. DETAILED DESCRIPTION OF INTERNAL COMPONENTS 38

• (F L O A T) pid.<loopnum>.output – The output of the PID loop.

At times, a shortened version of a name may be used - for example the second pin above might be
referred to simply as .output when it can be done without causing confusion.

3.2 Stepgen

This component provides software based generation of step pulses in response to position com-
mands. It has a built in pre-tuned position loop, so PID tuning is not required. This component is
strongly recommended for stepper based EMC machines, since it eliminates the need to use (and
tune) a separate PID loop. It is a realtime component only, and depending on CPU speed, etc, is
capable of maximum step rates of 10kHz to perhaps 50kHz. Figure 3.1 shows three block diagrams,
each is a single step pulse generator. The first diagram is for step type ’0’, (step and direction). The
second is for step type ’1’ (up/down, or pseudo-PWM), and the third is for step types 2 thru 14
(various stepping patterns).

Installing

emc2# /sbin/insmod rtlib/stepgen.o cfg=”<config-
string>” [period=<nsec>] [fp_period=<nsec>]

<config-string> is a series of space separated decimal integers. Each number causes a single step
pulse generator to be loaded, the value of the number determines the stepping type. For example:

emc2# /sbin/insmod rtlib/stepgen.o cfg=”0 0 2”

will install three step generators, two with step type ’0’ (step and direction) and one with step type
’2’ (quadrature). The default value for <config-string> is “0 0 0” which will install three type ’0’
(step/dir) generators. The maximum number ofstep generators is 8 (as defined by MAX_CHAN in
stepgen.c). Each generator is independent, but all are updated by the same function(s) at the same
time. In the following descriptions, <chan> is the number of a specific generator. The first generator
is number 0.

If period is specified, the component will create a realtime thread. The period of the thread will be
<nsec> nano-seconds. If fp_period is specified, the component will create a floating point capable
realtime thread. By default, no threads are created.

Removing

emc2# /sbin/rmmod stepgen

Pins

Each step pulse generator will have only some of these pins, depending on the step type selected.

• (F L O A T) stepgen.<chan>.position-cmd – Desired motor position, in position units (inches,
mm, etc).

• (S32) stepgen.<chan>.count – Feedback position in counts, updated by capture_position() .

CHAPTER 3. DETAILED DESCRIPTION OF INTERNAL COMPONENTS 39

position-cmd

position-cmd

position-cmd

phase-B

phase-E

phase-D

down

step

phase-A

phase-C

up

dir

counts

counts

counts

position-fb

position-fb

position-fb

maxaccel

maxaccel

maxaccel

maxfreq

maxfreq

maxfreq

frequency
generator

frequency
generator

frequency
generator

state
counter

lookup
table

ramp

ramp

ramp

latch

latch

latch

counter

counter

counter

step/dir
logic
and

timing

vel-err

vel-err

vel-err

pos-err

pos-err

pos-err

frequency

frequency

frequency

stepspace

dirsetup

dirhold

steplen

rawcounts

rawcounts

rawcounts

position-scale

position-scale

position-scale

d

d

d

dT

dT

dT

up/dn

up/dn

up/dn

up/dn

up/dn

up/dn

count

count

count

count

count

count

make_pulses()

make_pulses()

make_pulses()

STEP TYPE = 1

STEP TYPE = 2 - 14

STEP TYPE = 0

update_freq()

update_freq()

update_freq()

capture_position()

capture_position()

capture_position()

stepgen.0

stepgen.0

stepgen.0

1/x

1/x

1/x

1 count

1 count

1 count

control
equation

control
equation

control
equation

Figure 3.1: Step Pulse Generator Block Diagram

CHAPTER 3. DETAILED DESCRIPTION OF INTERNAL COMPONENTS 40

• (F L O A T) stepgen.<chan>.position-fb – Feedback position in position units, updated by
capture_position() 1.

• (B I T) stepgen.<chan>.step – Step pulse output (step type 0 only).

• (B I T) stepgen.<chan>.dir – Direction output (step type 0 only).

• (B I T) stepgen.<chan>.up – UP pseudo-PWM output (step type 1 only).

• (B I T) stepgen.<chan>.down – DOWN pseudo-PWM output (step type 1 only).

• (B I T) stepgen.<chan>.phase-A – Phase A output (step types 2-14 only).

• (B I T) stepgen.<chan>.phase-B – Phase B output (step types 2-14 only).

• (B I T) stepgen.<chan>.phase-C – Phase C output (step types 3-14 only).

• (B I T) stepgen.<chan>.phase-D – Phase D output (step types 5-14 only).

• (B I T) stepgen.<chan>.phase-E – Phase E output (step types 11-14 only).

Parameters

• (F L O A T) stepgen.<chan>.position-scale – Steps per position unit. This parameter is used
for both output and feedback.

• (F L O A T) stepgen.<chan>.maxfreq – Maximum step rate, in steps per second. If 0.0, has no
effect.

• (F L O A T) stepgen.<chan>.maxaccel – Maximum accel/decel rate, in steps per second squared.
If 0.0, has no effect.

• (F L O A T) stepgen.<chan>.pos-err – The position error - difference between commanded and
actual position, in steps.

• (F L O A T) stepgen.<chan>.vel-err – The velocity error - in steps per second.

• (F L O A T) stepgen.<chan>.frequency – The current step rate, in steps per second. This is the
output of the position loop.

• (F L O A T) stepgen.<chan>.steplen – Length of a step pulse (step type 0 only).

• (F L O A T) stepgen.<chan>.stepspace – Minimum spacing between two step pulses (step type
0 only).

• (F L O A T) stepgen.<chan>.dirsetup – Minimum time from a direction change to the begin-
ning of the next step pulse (step type 0 only).

• (F L O A T) stepgen.<chan>.dirhold – Minmum time from the end of a step pulse to a direction
change (step type 0 only).

• (S32) stepgen.<chan>.rawcounts – The raw feedback count value, updated by make_pulses() .

The values of maxfreq and maxaccel are used by the internal position loop to avoid generating step
pulse trains that the motor cannot follow. When set to values that are appropriate for the motor,
even a large instantaneous change in commanded position will result in a smooth trapezoidal move
to the new location. The algorithm works by measuring both position error and velocity error, and
calculating an acceleration that attempts to reduce both to zero at the same time. For more details,
including the contents of the “control equation” box, consult the code.

1There will eventually be additional pins or parameters to preset or reset position-fb , for homing purposes.

CHAPTER 3. DETAILED DESCRIPTION OF INTERNAL COMPONENTS 41

Step Types

The step generator supports 15 different “step types”. Step type 0 is the most familiar, standard step
and direction. When configured for step type 0, there are four extra parameters that determine the
exact timing of the step and direction signals. See figure 3.2 for the meaning of these parameters.
The parameters are integers, and represent a number of calls to make_pulses() . For example,
if make_pulses() is called every 16uS, and steplen is 2, then the step pulses will be 2 x 16 =
32uS long. The default value for all four of the parameters is 1. Since one step requires steplen
periods high and stepspace periods low, the maximum frequency is the thread frequency divided
by (steplen+stepspace) . If maxfreq is set higher than that limit, it will be lowered automatically.
If maxfreq is zero, it will remain zero, but the output frequency will still be limited.

step lenstep len s tepspace
(min)

s tepspace
(min)

di rsetup
(min)

di rsetup
(min)

dirhold
(min)

s tep len

step

direct ion

Figure 3.2: Step and Direction Timing

Step type 1 has two outputs, up and down. Pulses appear on one or the other, depending on the
direction of travel. Each pulse is one thread period long, and the pulses are separated by at least
one thread period. As a result, the maximum step frequency is half of the thread rate. If maxfreq
is set higher than the limit it will be lowered. If maxfreq is zero, it will remain zero but the output
frequency will still be limited.

Step types 2 thru 14 are state based, and have from two to five outputs. On each step, a state
counter is incremented or decremented. Figures 3.3, 3.4, and 3.5 show the output patterns as a
function of the state counter. The maximum frequency is the same as the thread rate, and as in the
other modes, maxfreq will be lowered if it is above the limit.

CHAPTER 3. DETAILED DESCRIPTION OF INTERNAL COMPONENTS 42

0

0

0

1

1

1

2

2

2

1

4

0

0

3

3

2

5

1

0

0

2

1

1

3

2

2

0

0

3 4

STEP TYPE 3

STEP TYPE 4

STEP TYPE 2

phase-A

phase-A

phase-A

phase-B

phase-B

phase-B

phase-C

phase-C

Figure 3.3: Quadrature and Three Phase Step Types

CHAPTER 3. DETAILED DESCRIPTION OF INTERNAL COMPONENTS 43

0 0

0
0

0 0

1 1

1
1

1 1

2 2

2
2

2 2

0 0

0
0

4 4

3 3

3
3

3 3

1 1

1
1

5 5

2 2

2
2

6 6

3 3

3
3

7 7

0 0

0
0

0 0

S
TE

P
 T

Y
P

E
 5

S
TE

P
 T

Y
P

E
 6

S
TE

P
 T

Y
P

E
 7

S
TE

P
 T

Y
P

E
 8

S
TE

P
 T

Y
P

E
 9

S
TE

P
 T

Y
P

E
 1

0

ph
as

e-
A

ph
as

e-
A

ph
as

e-
A

ph
as

e-
A

ph
as

e-
A

ph
as

e-
A

ph
as

e-
B

ph
as

e-
B

ph
as

e-
B

ph
as

e-
B

ph
as

e-
B

ph
as

e-
B

ph
as

e-
C

ph
as

e-
C

ph
as

e-
C

ph
as

e-
C

ph
as

e-
C

ph
as

e-
C

ph
as

e-
D

ph
as

e-
D

ph
as

e-
D

ph
as

e-
D

ph
as

e-
D

ph
as

e-
D

Figure 3.4: Four-Phase Step Types

CHAPTER 3. DETAILED DESCRIPTION OF INTERNAL COMPONENTS 44

0

0

0

0

0

0

1

1

1

1

1

1

2

2

2

2

2

2

4

4

4

4

4

4

3

3

3

3

3

3

5

5

6

6

7

7

8

8

9

9

0

0

0

0

STEP TYPE 11

STEP TYPE 12

STEP TYPE 14

STEP TYPE 13

phase-A

phase-A

phase-A

phase-A

phase-B

phase-B

phase-B

phase-B

phase-C

phase-C

phase-C

phase-C

phase-D

phase-D

phase-D

phase-D

phase-E

phase-E

phase-E

phase-E

Figure 3.5: Five-Phase Step Types

CHAPTER 3. DETAILED DESCRIPTION OF INTERNAL COMPONENTS 45

Functions

The component exports three functions. Each function acts on all of the step pulse generators -
running different generators in different threads is not supported.

• (F U N C T) stepgen.make_pulses – High speed function to generate and count pulses (no float-
ing point).

• (F U N C T) stepgen.update_freq – Low speed function does position to velocity conversion,
scaling and limiting.

• (F U N C T) stepgen.capture_position – Low speed function for feedback, updates latches and
scales position.

The high speed function stepgen.make_pulses should be run in a very fast thread, from 10 to
50uS depending on the capabilities of the computer. That thread’s period determines the maximum
step frequency, and is also the time unit used by the length, space, setup, and hold parameters
(step type 0). The other two functions can be called at a much lower rate.

CHAPTER 3. DETAILED DESCRIPTION OF INTERNAL COMPONENTS 46

3.3 Freqgen

This component provides software based generation of step pulses from a frequency or velocity
command. EMC normally uses position commands, not velocity commands, and stepgen (described
in section 3.2 is more appropriate. However, there may be applications where velocity based pulses
are needed. Freqgen uses the same pulse generator core as stepgen, however it has no position
loop. It is a realtime component only, and depending on CPU speed, etc, is capable of maximum
step rates of 10kHz to perhaps 50kHz. Figure 3.6 shows three block diagrams, each is a single
step pulse generator. The first diagram is for step type ’0’, (step and direction). The second is for
step type ’1’ (up/down, or pseudo-PWM), and the third is for step types 2 thru 14 (various stepping
patterns).

Installing

emc2# /sbin/insmod rtlib/freqgen.o cfg=”<config-
string>” [period=<nsec>] [fp_period=<nsec>]

<config-string> is a series of space separated decimal integers. Each number causes a sin-
gle frequency generator to be loaded, the value of the number determines the stepping type. For
example:

emc2# /sbin/insmod rtlib/freqgen.o cfg=”0 0 2”

will install three frequency generators, two with step type ’0’ (step and direction) and one with
step type ’2’ (quadrature). The default value for <config-string> is “0 0 0” which will install
three type ’0’ (step/dir) generators. The maximum number of frequency generators is 8 (as defined
by MAX_CHAN in freqgen.c). Each generator is independent, but all are updated by the same
function(s) at the same time. In the following descriptions, <chan> is the number of a specific
generator. The first generator is number 0.

If period is specified, the component will create a realtime thread. The period of the thread will be
<nsec> nano-seconds. If fp_period is specified, the component will create a floating point capable
realtime thread. By default, no threads are created.

Removing

emc2# /sbin/rmmod freqgen

Pins

Each frequency generator will have only some of these pins, depending on the step type selected.

• (B I T) freqgen.<chan>.velocity – Desired velocity, in arbitrary units.

• (B I T) freqgen.<chan>.step – Step pulse output (step type 0 only).

• (B I T) freqgen.<chan>.dir – Direction output (step type 0 only).

• (B I T) freqgen.<chan>.up – UP pseudo-PWM output (step type 1 only).

• (B I T) freqgen.<chan>.down – DOWN pseudo-PWM output (step type 1 only).

CHAPTER 3. DETAILED DESCRIPTION OF INTERNAL COMPONENTS 47

velocity

velocity

velocity

phase-B

phase-E

phase-D

down

step

phase-A

phase-C

up

dir

counts

counts

counts

position

position

position

maxfreq

maxfreq

maxfreq

frequency
generator

frequency
generator

frequency
generator

state
counter

lookup
table

ramp

ramp

ramp

latch

latch

latch

counter

counter

counter

step/dir
logic
and

timing

maxaccel

maxaccel

maxaccel

frequency

frequency

frequency

stepspace

dirsetup

dirhold

steplen

rawcounts

rawcounts

rawcounts

velocity-scale

velocity-scale

velocity-scale

position-scale

position-scale

position-scale

up/dn

up/dn

up/dn

up/dn

up/dn

up/dn

count

count

count

count

count

count

make_pulses()

make_pulses()

STEP TYPE = 1

STEP TYPE = 2 - 14

STEP TYPE = 0

make_pulses()

update_freq()

update_freq()

update_freq()

capture_position()

capture_position()

capture_position()

freqgen.0

freqgen.0

freqgen.0

Figure 3.6: Step Pulse Generator Block Diagram

CHAPTER 3. DETAILED DESCRIPTION OF INTERNAL COMPONENTS 48

• (B I T) freqgen.<chan>.phase-A – Phase A output (step types 2-14 only).

• (B I T) freqgen.<chan>.phase-B – Phase B output (step types 2-14 only).

• (B I T) freqgen.<chan>.phase-C – Phase C output (step types 3-14 only).

• (B I T) freqgen.<chan>.phase-D – Phase D output (step types 5-14 only).

• (B I T) freqgen.<chan>.phase-E – Phase E output (step types 11-14 only).

• (S32) freqgen.<chan>.count – Feedback position in counts, updated by capture_position() .

• (F L O A T) freqgen.<chan>.position-fb – Position feedback in arbitrary units updated by
capture_position() .

Parameters

• (F L O A T) freqgen.<chan>.velocity-scale – Scaling factor to convert from velocity units to
pulses per second (Hz).

• (F L O A T) freqgen.<chan>.maxfreq – Maximum frequency, in Hz. If 0.0, has no effect. If set
higher than internal limits, next call of update_freq() will set it to the internal limit.

• (F L O A T) freqgen.<chan>.frequency – The current frequency, in Hz. This is the value after
scaling and limiting.

• (F L O A T) freqgen.<chan>.maxaccel – Maximum accel/decel rate, in Hz per second. If 0.0,
has no effect.

• (F L O A T) freqgen.<chan>.steplen – Length of a step pulse (step type 0 only).

• (F L O A T) freqgen.<chan>.stepspace – Minimum spacing between two step pulses (step type
0 only).

• (F L O A T) freqgen.<chan>.dirsetup – Minimum time from a direction change to the begin-
ning of the next step pulse (step type 0 only).

• (F L O A T) freqgen.<chan>.dirhold – Minmum time from the end of a step pulse to a direction
change (step type 0 only).

• (S32) freqgen.<chan>.rawcounts – The raw feedback count value, updated by make_pulses() .

• (F L O A T) freqgen.<chan>.position-scale – The scale factor used to convert from feedback
counts to position units.

Step Types

The step generator supports 15 different “step types”. Except for stepping type 1, they are identical
those generated by the stepgen component (section 3.2). Refer to that section for more information.
Step type 1 has two outputs, up and down. Pulses appear on one or the other, depending on the
direction of travel. Each pulse is one thread period long. If you need a distinct pulse for each step,
the frequency needs to be limited to half of the thread rate, to allow for one low period between
pulses. However, freqgen allows higher frequencies, up to the thread rate. This allows step type
1 to be used as a pseudo-PWM source, or filtered to use as a D-to-A converter. At the maximum
frequency (equal to the thread rate), the up or down output will remain on constantly.

CHAPTER 3. DETAILED DESCRIPTION OF INTERNAL COMPONENTS 49

Functions

The component exports three functions. Each function acts on all of the step pulse generators -
running different generators in different threads is not supported.

• (F U N C T) freqgen.make_pulses – High speed function to generate and count pulses (no float-
ing point).

• (F U N C T) freqgen.update_freq – Low speed function to scale and limit velocity command.

• (F U N C T) freqgen.capture_position – Low speed function for feedback, updates latches and
scales position.

The high speed function freqgen.make_pulses should be run in a very fast thread, from 10 to
50uS depending on the capabilities of the computer. That thread’s period determines the maximum
step frequency, and is also the time unit used by the length, space, setup, and hold parameters
(step type 0). The other two functions can be called at a much lower rate.

CHAPTER 3. DETAILED DESCRIPTION OF INTERNAL COMPONENTS 50

3.4 Encoder

This component provides software based counting of signals from quadrature encoders. It is a
realtime component only, and depending on CPU speed, etc, is capable of maximum count rates of
10kHz to perhaps 50kHz. Figure 3.7 is a block diagram of one channel of encoder counter.

reset

index-enable phase-Z

phase-B

phase-A

counts

position

latch

counter

edge
detect

quad
decode

rawcounts

position-scale

up/dn

count

clear

update-counters()capture-position()

encoder.0

Figure 3.7: Encoder Counter Block Diagram

Installing

emc2# /sbin/insmod rtlib/encoder.o [num_chan=<counters>] [period=<nsec>]

<counters> is the number of encoder counters that you want to install. If numchan is not specified,
three counters will be installed. The maximum number of counters is 8 (as defined by MAX_CHAN
in encoder.c). Each counter is independent, but all are updated by the same function(s) at the same

CHAPTER 3. DETAILED DESCRIPTION OF INTERNAL COMPONENTS 51

time. In the following descriptions, <chan> is the number of a specific counter. The first counter is
number 0.

If period is specified, the component will create a realtime thread. The period of the thread will be
<nsec> nano-seconds. By default, no thread is created.

Removing

emc2# /sbin/rmmod encoder

Pins

• (B I T) encoder.<chan>.phase-A – Phase A of the quadrature encoder signal.

• (B I T) encoder.<chan>.phase-B – Phase B of the quadrature encoder signal.

• (B I T) encoder.<chan>.phase-Z – Phase Z (index pulse) of the quadrature encoder signal.

• (B I T) encoder.<chan>.reset – When TRUE, forces the counter to zero.

• (B I T) encoder.<chan>.index-enable – Enables reset to zero on phase Z rising edge.

• (S32) encoder.<chan>.count – Encoder value in counts, updated by capture-position() .

• (F L O A T) encoder.<chan>.position – Encoder value in position units, updated by capture-
position() .

The index-enable pin is bi-directional. When set TRUE by another component, the next rising
edge on phase-Z will reset the counter to zero. That rising edge will also reset index-enable to
FALSE, so that the counter will only be reset once.2

Parameters

• (S32) encoder.<chan>.raw-count – The raw count value, updated by count-pulses() .

• (F L O A T) encoder.<chan>.position-scale – The scale factor used to convert counts to po-
sition units.

Functions

The component exports two functions. Each function acts on all of the encoder counters - running
different counters in different threads is not supported.

• (F U N C T) encoder.update-counters – High speed function to count pulses (no floating point).

• (F U N C T) encoder.capture-position – Low speed function to update latches and scale posi-
tion.

2This behavior (and that of the reset input) may be changed based on discussions at NAMES.

CHAPTER 3. DETAILED DESCRIPTION OF INTERNAL COMPONENTS 52

3.5 PID

This component provides Proportional/Integeral/Derivative control loops. It is a realtime compo-
nent only. For simplicity, this discussion assumes that we are talking about position loops, however
this component can be used to implement other feedback loops such as speed, torch height, tem-
perature, etc. Figure 3.8 is a block diagram of a single PID loop.

Installing

emc2# /sbin/insmod rtlib/pid.o [num_chan=<loops>] [de-
bug=1] [fp_period=<nsec>]

<loops> is the number of PID loops that you want to install. If numchan is not specified, one loop
will be installed. The maximum number of loops is 16 (as defined by MAX_CHAN in pid.c). Each
loop is completely independent. In the following descriptions, <loopnum> is the loop number of a
specific loop. The first loop is number 0.
If debug=1 is specified, the component will export a few extra parameters that may be useful during
debugging and tuning. By default, the extra parameters are not exported, to save shared memory
space and avoid cluttering the parameter list.
If fp_period is specified, the component will create a realtime thread, capable of running floating
point functions. The period of the thread will be <nsec> nano-seconds. By default, no thread is
created.

Removing

emc2# /sbin/rmmod pid

Pins

The three most important pins are

• (F L O A T) pid.<loopnum>.command – The desired position, as commanded by another system
component.

• (F L O A T) pid.<loopnum>.feedback – The present position, as measured by a feedback device
such as an encoder.

• (F L O A T) pid.<loopnum>.output – A velocity command that attempts to move from the present
position to the desired position.

For a position loop, ’command’ and ’feedback’ are in position units. For a linear axis, this could
be inches, mm, metres, or whatever is relavent. Likewise, for a angular axis, it could be degrees,
radians, etc. The units of the ’output’ pin represent the change needed to make the feedback
match the command. As such, for a position loop ’Output’ is a velocity, in inches/sec, mm/sec,
degrees/sec, etc. Time units are always seconds, and the velocity units match the position units. If
command and feedback are in meters, then output is in meters per second.
Each loop has two other pins which are used to monitor or control the general operation of the
component.

• (F L O A T) pid.<loopnum>.error – Equals .command minus .feedback .

CHAPTER 3. DETAILED DESCRIPTION OF INTERNAL COMPONENTS 53

ou
tp

ut

en
ab

le

co
m

m
an

d

fe
ed

ba
ck

er
ro

r

m
ax

-c
m

dD
D

m
ax

-c
m

dD

m
ax

-e
rr

or
D

Pg
ai

n

FF
2

bi
as

FF
0

FF
1

D
ga

in

Ig
ai

n

m
ax

-e
rr

or
I

m
ax

-o
ut

pu
t

m
ax

-e
rr

or

de
ad

ba
nd

pi
d.

0

d

d

d

dT

dT

dT

Figure 3.8: PID Loop Block Diagram

CHAPTER 3. DETAILED DESCRIPTION OF INTERNAL COMPONENTS 54

• (B I T) pid.<loopnum>.enable – A bit that enables the loop. If .enable is false, all integrators
are reset, and the output is forced to zero. If .enable is true, the loop operates normally.

Parameters

The PID gains, limits, and other ’tunable’ features of the loop are implemented as parameters.

• (F L O A T) pid.<loopnum>.Pgain – Proportional gain

• (F L O A T) pid.<loopnum>.Igain – Integral gain

• (F L O A T) pid.<loopnum>.Dgain – Derivative gain

• (F L O A T) pid.<loopnum>.bias – Constant offset on output

• (F L O A T) pid.<loopnum>.FF0 – Zeroth order feedforward - output proportional to command
(position).

• (F L O A T) pid.<loopnum>.FF1 – First order feedforward - output proportional to derivative of
command (velocity).

• (F L O A T) pid.<loopnum>.FF2 – Second order feedforward - output proportional to 2nd deriva-
tive of command (acceleration)3.

• (F L O A T) pid.<loopnum>.deadband – Amount of error that will be ignored

• (F L O A T) pid.<loopnum>.maxerror – Limit on error

• (F L O A T) pid.<loopnum>.maxerrorI – Limit on error integrator

• (F L O A T) pid.<loopnum>.maxerrorD – Limit on error derivative

• (F L O A T) pid.<loopnum>.maxcmdD – Limit on command derivative

• (F L O A T) pid.<loopnum>.maxcmdDD – Limit on command 2nd derivative

• (F L O A T) pid.<loopnum>.maxoutput – Limit on output value

All of the max??? limits are implemented such that if the parameter value is zero, there is no limit.

If debug=1 was specified when the component was installed, four additional parameters will be
exported:

• (F L O A T) pid.<loopnum>.errorI – Integral of error.

• (F L O A T) pid.<loopnum>.errorD – Derivative of error.

• (F L O A T) pid.<loopnum>.commandD – Derivative of the command.

• (F L O A T) pid.<loopnum>.commandDD – 2nd derivative of the command.
3FF2 is not currently implemented, but it will be added. Consider this note a “FIXME” for the code

CHAPTER 3. DETAILED DESCRIPTION OF INTERNAL COMPONENTS 55

Functions

The component exports one function for each PID loop. This function performs all the calculations
needed for the loop. Since each loop has it’s own function, individual loops can be included in
different threads and execute at different rates.

• (F U N C T) pid.<loopnum>.do_pid_calcs – Performs all calculations for a single PID loop.

If you want to understand the exact algorithm used to compute the output of the PID loop, refer to
figure 3.8, the comments at the beginning of emc2/src/hal/components/pid.c , and of course to
the code itself. The loop calculations are in the C function calc_pid() .

CHAPTER 3. DETAILED DESCRIPTION OF INTERNAL COMPONENTS 56

3.6 Debounce

Debounce is a realtime component that can filter the glitches created by mechanical switch contacts.
It may also be useful in other applications where short pulses are to be rejected.

Installing

emc2# /sbin/insmod rtlib/debounce.o cfg=”<config-string>”

<config-string> is a series of space separated decimal integers. Each number installs a group of
identical debounce filters, the number determines how many filters are in the group. For example:

emc2# /sbin/insmod rtlib/debounce.o cfg=”1 4 2”

will install three groups of filters. Group 0 contains one filter, group 1 contains four, and group
2 contains two filters. The default value for <config-string> is “1” which will install a single
group containing a single filter. The maximum number of groups 8 (as defined by MAX_GROUPS in
debounce.c). The maximum number of filters in a group is limited only by shared memory space.
Each group is completely independent. All filters in a single group are identical, and they are all
updated by the same function at the same time. In the following descriptions, <G> is the group
number and <F> is the filter number within the group. The first filter is group 0, filter 0.

Removing

emc2# /sbin/rmmod debounce

Pins

Each individual filter has two pins.

• (B I T) debounce.<G>.<F>.in – Input of filter <F> in group <G>.

• (B I T) debounce.<G>.<F>.out – Output of filter <F> in group <G>.

Parameters

Each group of filters has one parameter4.

• (S32) debounce.<G>.delay – Filter delay for all filters in group <G>.

The filter delay is in units of thread periods. The minimum delay is zero. The output of a zero delay
filter exactly follows it’s input - it doesn’t filter anything. As delay increases, longer and longer
glitches are rejected. If delay is 4, all glitches less than or equal to four thread periods will be
rejected.

4Each individual filter also has an internal state variable. There is a compile time switch that can export that variable as
a parameter. This is intended for testing, and simply wastes shared memory under normal circumstances.

CHAPTER 3. DETAILED DESCRIPTION OF INTERNAL COMPONENTS 57

Functions

Each group of filters has one function, which updates all the filters in that group “simultaneously”.
Different groups of filters can be called from different threads at different periods.

• (F U N C T) debounce.<G> – Updates all filters in group <G>.

3.7 Blocks

Blocks is a realtime HAL component containing a number of simple functional blocks. They are
primarily intended for testing and other offhand uses, but may prove useful for some EMC configu-
rations as well.

Installing

emc2# /sbin/insmod rtlib/blocks.o <blockname>=<number>

<blockname> is the name of one of the functional blocks that the component can provide, and
<number> is the desired quantity of that block. Multiple name/number pairs may be specified on
the command line to install a variety of different blocks. For example:

emc2# /sbin/indmod rtlib/blocks.o wcomp=2 sum2=1 comp=3

installs two window comparators (wcomp), one two-input summer (sum2), and three standard com-
parators (comp). The complete list of available blocks is as follows:

• constant – makes a parameter value available on a pin

• comp – standard 2-input comparator with adjustable hystersis

• wcomp – window comparator, output true when input is between adjustable upper and lower
limits

• sum2 – 2-input summer, output = in0 * gain0 + in1 * gain1

• mux2 – 2-input multiplexor, output = in0 if sel is false, output = in1 if sel is true

• integ – integrator, input of +1.0 produces an output ramp of +1.0 per second

• ddt – differentiator, input ramp of +1.0 per second produces output of +1.0

Removing

emc2# /sbin/rmmod siggen

CHAPTER 3. DETAILED DESCRIPTION OF INTERNAL COMPONENTS 58

Pins

The various blocks each have their own input and output pins. Each pin begins with the block
name, then the block number, and finally the pin function.

• (F L O A T) constant.<num>.out – Output of constant block, tracks the parameter value .

• (F L O A T) comp.<num>.in0 – Inverting input of 2-input comparator.

• (F L O A T) comp.<num>.in1 – Non-inverting input of 2-input comparator.

• (B I T) comp.<num>.out – Output, true if in1 > in0 .

• (F L O A T) wcomp.<num>.in –Input of window comparator.

• (B I T) wcomp.<num>.out – Output, TRUE if min < input < max.

• (F L O A T) comp.<num>.in0 – Inverting input of 2-input comparator.

• (F L O A T) sum2.<num>.in0 – First input of 2-input summer.

• (F L O A T) sum2.<num>.in1 – Second input of 2-input summer.

• (F L O A T) sum2.<num>.out – Output, equals in0 * gain0 + in1 * gain1 .

• (F L O A T) mux2.<num>.in0 – First input of 2-input multiplexor.

• (F L O A T) mux2.<num>.in1 –Second input of 2-input multiplexor.

• (B I T) mux2.<num>.sel – Control input of 2-input multiplexor.

• (F L O A T) mux2.<num>.out – Output, equals in0 if sel is FALSE, in1 if sel is TRUE.

• (F L O A T) integ.<num>.in – Input of integrator.

• (F L O A T) integ.<num>.out – Output of integrator.

• (F L O A T) ddt.<num>.in – Input of differentiator.

• (F L O A T) ddt.<num>.out – Output of differentiator.

Parameters

Some of the blocks have parameters that control and adjust the details of their operation. Like the
pin names, they begin with the block name and the block number, then the parameter name.

• (F L O A T) constant.<num>.value – The value to be written to the out pin, default value is 1.0.

• (F L O A T) comp.<num>.hyst – Hystersis for 2-input comparator, default is 0.0.

• (F L O A T) wcomp.<num>.min – Minimum threshold for window comparator, default is -1.0.

• (F L O A T) wcomp.<num>.max – Maximum threshold for window comparator, default is +1.0.

• (F L O A T) sum2.<num>.gain0 – Value by which in0 is multiplied, default is 1.0.

• (F L O A T) sum2.<num>.gain1 – Value by which in1 is multiplied, default is 1.0.

CHAPTER 3. DETAILED DESCRIPTION OF INTERNAL COMPONENTS 59

Functions

Each individual block has it’s own function. This allows complete control over when each block
executes. In general, blocks should execute in the order of signal flow. If the outputs of blocks A
and B are connected to inputs of block C, then the functions for A and B should be executed before
the function for C. Note that unless these functions are connected to a realtime thread so that they
execute, the blocks do nothing at all.

• (F U N C T) constant.<num> – Writes parameter value to pin out .

• (F U N C T) comp.<num> – Compares in0 and in1 (with hysteresis), writes result to out .

• (F U N C T) wcomp.<num> – Compares in to min and max, writes result to out .

• (F U N C T) sum2.<num> – Computes out = in0 * gain0 + in1 * gain1 .

• (F U N C T) mux2.<num> – If sel is TRUE, writes in1 to out , else writes in0 to out .

• (F U N C T) integ.<num> – Calculates integral of in , writes result to out .

• (F U N C T) constant.<num> – Calculates derivative of in , writes result to out .

3.8 Siggen

Siggen is a realtime component that generates square, triangle, and sine waves. It is primarily used
for testing.

Installing

emc2# /sbin/insmod rtlib/siggen.o [num_chan=<chans>] [fp_period=<nsec>]

<chans> is the number of signal generators that you want to install. If numchan is not specified,
one signal generator will be installed. The maximum number of generators is 16 (as defined by
MAX_CHAN in siggen.c). Each generator is completely independent. In the following descriptions,
<chan> is the number of a specific signal generator (the numbers start at 0).

If fp_period is specified, the component will create a realtime thread, capable of running floating
point functions. The period of the thread will be <nsec> nano-seconds. By default, no thread is
created.

Removing

emc2# /sbin/rmmod siggen

Pins

Each generator has four output pins.

• (F L O A T) siggen.<chan>.sine – Sine wave output.

• (F L O A T) siggen.<chan>.cosine – Cosine output.

CHAPTER 3. DETAILED DESCRIPTION OF INTERNAL COMPONENTS 60

• (F L O A T) siggen.<chan>.triangle – Triangle wave output.

• (F L O A T) siggen.<chan>.square – Square wave output.

All four outputs have the same frequency, amplitude, and offset.

Parameters

Each generator is controlled by three parameters.

• (F L O A T) siggen.<chan>.frequency – Sets the frequency in Hertz, default value is 1 Hz.

• (F L O A T) siggen.<chan>.amplitude – Sets the peak amplitude of the output waveforms, de-
fault is 1.

• (F L O A T) siggen.<chan>.offset – Sets DC offset of the output waveforms, default is 0.

For example, if siggen.0.amplitude is 1.0 and siggen.0.offset is 0.0, the outputs will swing
from -1.0 to +1.0. If siggen.0.amplitude is 2.5 and siggen.0.offset is 10.0, then the outputs
will swing from 7.5 to 12.5.

Functions

• (F U N C T) siggen.<chan>.update – Calculates new values for all four outputs.

3.9 Supply

Chapter 4

Detailed Description of Hardware
Drivers

4.1 Parport

Parport is a driver for the traditional PC parallel port. Each has a total of 17 physical pins. The
original parallel port divided those pins into three groups: data, control, and status. The data group
consists of 8 output pins, the control group consists of 4 output pins, and the status group is 5
input pins. In the early 1990’s, the bidirectional parallel port was introduced, which allows the data
group to be used for output or input. The HAL driver supports the bidirectional port, and allows the
user to set the data group as either input or output. If configured as output, a port provides a total
of 12 outputs and 5 inputs. If configured as input, it provides 4 outputs and 13 inputs. No other
combinations are supported, and a port cannot be changed from input to output once the driver
is installed. Figure 4.1 shows two block diagrams, one showing the driver when the data group is
configured for output, and one showing it configured for input.
There are actually two versions of the parport driver. One is a kernel module, and provides realtime
control of the parallel port. The other is a user space process, and is not realtime. The non-realtime
version is intended mainly for testing, and is not recommended for most applications. Using both
the realtime and non-realtime versions at the same time is a bad idea.
The parport driver can control up to 8 ports (defined by MAX_PORTS in hal_parport.c). The ports
are numbered starting at zero.

Installing

Realtime version:

emc2# /sbin/insmod rtlib/hal_parport.o cfg=”<config-string>”

Non-realtime version:

emc2# bin/hal_parport <config-string> &

The config string consists of a hex port address, followed by an optional direction, repeated for each
port. The direction is either “in” or “out” and determines the direction of the physical pins 2 thru
9. If a direction is not specified, the default is “out”. If the direction is not specified, the data group
defaults to output. For example:

61

CHAPTER 4. DETAILED DESCRIPTION OF HARDWARE DRIVERS 62

emc2# bin/hal_parport 278 378 in 20A0 out

This example installs drivers for one port at 0x0278, with pins 2-9 as outputs (by default, since
neither “in” nor “out” was specified), one at 0x0378, with pins 2-9 as inputs, and one at 0x20A0,
with pins 2-9 explicitly specified as outputs. Note that you must know the base address of the
parallel port to properly configure the driver. For ISA bus ports, this is usually not a problem,
since the port is almost always at a “well known” address, like 0278 or 0378. However PCI ports
may at nearly any address, and finding the address can be tricky1. There is no default address - if
<config-string> does not contain at least one address, it is an error.

Removing

Realtime version:

emc2# /sbin/rmmod hal_parport

Non-realtime version:

Remove the non-realtime version by sending SIGINT or SIGTERM.

Pins

• (B I T) parport.<portnum>.pin-<pinnum>-out – Drives a physical output pin.

• (B I T) parport.<portnum>.pin-<pinnum>-in – Tracks a physical input pin.

• (B I T) parport.<portnum>.pin-<pinnum>-in-not – Tracks a physical input pin, but in-
verted.

For each pin, <portnum> is the port number, and <pinnum> is the physical pin number in the 25
pin D-shell connector.

For each physical output pin, the driver creates a single HAL pin, for example parport.0.pin-14-
out . Pins 1, 14, 16, and 17 are always outputs. Pins 2 thru 9 are part of the data group and are
output pins if the port is defined as an output port. (Output is the default.) These HAL pins control
the state of the corresponding physical pins.

For each physical input pin, the driver creates two HAL pins, for example parport.0.pin-12-in
and parport.0.pin-12-in-not . Pins 10, 11, 12, 13, and 15 are always input pins. Pins 2 thru 9
are input pins only if the port is defined as an input port. The -in HAL pin is TRUE if the physical
pin is high, and FALSE if the physical pin is low. The -in-not HAL pin is inverted – it is FALSE
if the physical pin is high. By connecting a signal to one or the other, the user can determine the
polarity of the input.

1Perhaps a future version of this driver will attempt to auto-identify PCI port addresses - however, it is very important
that the user (or system integrator) makes sure the ports are configured correctly. Sending step and direction pulses to
a LaserJet by accident simply wastes paper, but spooling a print job to stepper or servo motors could cause unexpected
machine movement and possibly serious or fatal injuries.

CHAPTER 4. DETAILED DESCRIPTION OF HARDWARE DRIVERS 63

pi
n-

8-
in

-n
ot

pi
n-

8-
in

pi
n-

7-
in

-n
ot

pi
n-

7-
in

pi
n-

6-
in

-n
ot

pi
n-

6-
in

pi
n-

5-
in

-n
ot

pi
n-

5-
in

pi
n-

4-
in

-n
ot

pi
n-

4-
in

pi
n-

3-
in

-n
ot

pi
n-

3-
in

pi
n-

2-
in

-n
ot

pi
n-

2-
in

pi
n-

9-
in

-n
ot

pi
n-

9-
in

pi
n-

15
-in

-n
ot

pi
n-

15
-in

pi
n-

13
-in

-n
ot

pi
n-

13
-in

pi
n-

12
-in

-n
ot

pi
n-

12
-in

pi
n-

11
-in

-n
ot

pi
n-

11
-in

pi
n-

10
-in

-n
ot

pi
n-

10
-in

pi
n-

17
-o

ut
-in

ve
rt

pi
n-

17
-o

ut

pi
n-

16
-o

ut
-in

ve
rt

pi
n-

16
-o

ut

pi
n-

14
-o

ut
-in

ve
rt

pi
n-

14
-o

ut

pi
n-

1-
ou

t-
in

ve
rt

pi
n-

1-
ou

t

pi
n-

10
-in

-n
ot

pi
n-

10
-in

pi
n-

11
-in

-n
ot

pi
n-

11
-in

pi
n-

12
-in

-n
ot

pi
n-

12
-in

pi
n-

13
-in

-n
ot

pi
n-

13
-in

pi
n-

15
-in

-n
ot

pi
n-

15
-in

pi
n-

8-
ou

t-
in

ve
rt

pi
n-

8-
ou

t

pi
n-

7-
ou

t-
in

ve
rt

pi
n-

7-
ou

t

pi
n-

6-
ou

t-
in

ve
rt

pi
n-

6-
ou

t

pi
n-

5-
ou

t-
in

ve
rt

pi
n-

5-
ou

t

pi
n-

4-
ou

t-
in

ve
rt

pi
n-

4-
ou

t

pi
n-

3-
ou

t-
in

ve
rt

pi
n-

3-
ou

t

pi
n-

2-
ou

t-
in

ve
rt

pi
n-

2-
ou

t

pi
n-

9-
ou

t-
in

ve
rt

pi
n-

9-
ou

t

pi
n-

17
-o

ut
-in

ve
rt

pi
n-

17
-o

ut

pi
n-

16
-o

ut
-in

ve
rt

pi
n-

16
-o

ut

pi
n-

14
-o

ut
-in

ve
rt

pi
n-

14
-o

ut

pi
n-

1-
ou

t-
in

ve
rt

pi
n-

1-
ou

t

25
25

13
13

24
24

12
12

11
11

10
10

9
9

8
8

7
7

6
6

5
5

4
4

3
3

2
2

1
1

23
23

22
22

21
21

20
20

19
19

18
18

17
17

16
16

15
15

14
14

pa
rp

or
t.

0
pa

rp
or

t.
0

co
nf

ig
ur

ed
 a

s
in

pu
t

co
nf

ig
ur

ed
 a

s
ou

tp
ut

Figure 4.1: Parport Block Diagram

CHAPTER 4. DETAILED DESCRIPTION OF HARDWARE DRIVERS 64

Parameters

• (B I T) parport.<portnum>.pin-<pinnum>-out-invert – Inverts an output pin.

The -invert parameter determines whether an output pin is active high or active low. If -invert
is FALSE, setting the HAL -out pin TRUE drives the physical pin high, and FALSE drives it low. If
-invert is TRUE, then setting the HAL -out pin TRUE will drive the physical pin low.

Functions

• (F U N C T) parport.<portnum>.read – Reads physical input pins of port <portnum> and up-
dates HAL -in and -in-not pins.

• (F U N C T) parport.read_all 2 – Reads physical input pins of all ports and updates HAL -in
and -in-not pins.

• (F U N C T) parport.<portnum>.write – Reads HAL -out pins of port <portnum> and updates
that port’s physical output pins.

• (F U N C T) parport.write_all – Reads HAL -out pins of all ports and updates all physical
output pins.

The individual functions are provided for situations where one port needs to be updated in a very
fast thread, but other ports can be updated in a slower thread to save CPU time. It is probably not
a good idea to use both an -all function and an individual function at the same time.

The user space version of the driver cannot export functions, instead it exports parameters with
the same names. Then the driver sits in a loop checking the parameters. If they are zero, it does
nothing. If any parameter is greater than zero, the corresponding function runs once, then the
parameter is reset to zero. If any parameter is less than zero, the corresponding function runs on
every pass through the loop. The driver will loop forever, until it receives either SIGINT (ctrl-C) or
SIGTERM, at which point it cleans up and exits.

2These names should probably be changed from read_all to read-all .

Chapter 5

Detailed Description of Utility
Components

5.1 Halcmd

Halcmd is a command line tool for manipulating the HAL. Eventually this short paragraph will be
expanded into a complete tutorial on how to use it. Unfortunately that will take more time than I
have right now. However, in the meantime there is a rather complete man page for halcmd. If you
run “make install” for emc2, it should be installed on your system. Even if it isn’t installed in your
manpath, it is still accessible at as part of the emc2 CVS tree at “emc2/docs/man/man1/halcmd.1”.
Chapter 2 has a number of examples of halcmd usage, and is a good tutorial for halcmd, while this
section is a detailed reference listing all of the available commands.

Usage

halcmd [<options>] [<command>[<args>]]

Options

-f [<filename>]

File mode: Ignores commands on command line, takes input from <filename> instead. If <file-
name> is not specified, takes input from stdin .

-q

Quiet: Prints messages only when errors occur. This is the default.

-Q

Extra quiet: Prints nothing, executes commands silently. Note that some commands like show and
save do nothing except print some information. Giving the -Q option to one of those commands
prevents the information from being printed, making the command pointless.

-v

65

CHAPTER 5. DETAILED DESCRIPTION OF UTILITY COMPONENTS 66

Verbose: Prints messages showing the results of each command.

-V

Extra Verbose: Prints lots of debugging messages. Very messy, not normally used.

-h

Help: Prints a help screen and exits.

Commands

Commands tell halcmd what to do. If invoked without the -f option, halcmd reads the remainder of
the command line and treats it as a single command. If invoked with the -f option, halcmd reads
the specified file and treats each line as a command. The -f option allows you to very quickly execute
a whole series of commands, and is the most common way to configure the HAL.

#

Commands starting with ’#’ are considered to be comments, and are ignored by halcmd.

loadrt <compname> [<arg1>] [<arg2>]

Load realtime component: Loads the realtime HAL component <compname>, passing it configuration
arguments <arg1> , <arg2> , etc. Halcmd uses the system command insmod to load the module,
so it must be running as root to execute this command. If halcmd cannot find <compname> in the
directory that it expects to contain the components, the command will fail.

unloadrt <compname>

Unload realtime component: Unloads the realtime HAL component <compname>. Halcmd uses the
system command rmmod to load the module, so it must be running as root. If <compname> is not
loaded, the command will fail.

newsig <signame> <type>

New signal: Creates a new HAL signal called <signame> that may later be used to connect two or
more HAL pins. <type> is the data type of the new signal, and must be one of bit , s8 , u8, s16 ,
u16 , s32 , u32 , or float . If a signal of the same name already exists, the command will fail.

delsig <signame>

Delete signal: Deletes a HAL signal called <signame> . Any pins currently linked to the signal will
be unlinked. If a signal called <signame> does not exist, the command will fail.

linkps <pinname> <signame>
linkps <pinname> => <signame>
linkps <pinname> <= <signame>
linkps <pinname> <=> <signame>
linksp <signame> <pinname>
linksp <signame> => <pinname>
linksp <signame> <= <pinname>
linksp <signame> <=> <pinname>

CHAPTER 5. DETAILED DESCRIPTION OF UTILITY COMPONENTS 67

Link pin to signal; Link signal to pin: Establishes a link between a HAL component pin <pinname>
and a HAL signal <signame> . Any previous link to <pinname> will be broken. The “arrows”, =>, <=,
or <=>, are optional, and are ignored by halcmd. They should not be used on the command line, as
the shell is likely to mis-interpret them. However, when writing commands in a file, the arrows can
be used to indicate which direction data flows through the link. The future confusion they prevent
may be your own! The two forms linksp and linkps are provided for the same reason. Using the
appropriate one for the situation can make a file easier to understand, however they both have the
exact same effect. If either <pinname> or <signame> does not exist, or if their types don’t match,
the command will fail.

unlinkp <pinname>

Unlink pin: Breaks any previous link to <pinname> . If <pinname> does not exist, or does not have
a signal linked to it, the command will fail.

setp <paramname> <value>
<paramname> = <value>

Set parameter: Sets the value of parameter <paramname> to <value> . The second form of the
command has exactly the same effect, but is provided for use in files where it may make the file
more readable. The second form is not recommended on the command line, since the shell may
misinterpret the equal sign. If <paramname> does not exist, or if it is not writable, the command will
fail. It will also fail if <value> is not a legal value for <paramname> ’s data type. For example, 300
is not a legal u8 value, and TRUEis legal only for type bit . (Type bit will accept 0 and 1 as well as
TRUEand FALSE).

addf <functname> <threadname> [<position>]

Add function: Adds function <functname> to realtime thread <threadname> . <position> deter-
mines where in the thread the function is added, and thus in what order the thread’s functions
will execute. If <position> is positive, the function will be inserted in the corresponding location
relative to the beginning of the thread. Thus if <position> is 1, the function will be inserted at
the beginning of the thread, and if it is 3 it will be inserted as the third function in the thread. If
<position> is negative, the function will be inserted relative to the end of the thread. So -1 means
the last function, and -2 is next to last, etc. Zero is illegal. If no position is specified, -1 is assumed,
and the function is inserted at the end of the thread. If either <functname> or <threadname> does
not exist, the command will fail. It will also fail if the function requires floating point and the thread
does not support it, or if the function is non-reentrant and is already in a thread. It also fails if
<position> specifies something impossible, for example asking for position 3 when the thread only
has one function in it.

delf <functname> <threadname>

Delete function: Removes function <functname> from realtime thread <threadname> . The com-
mand will fail if either <functname> or <threadname> does not exist, or if <functname> is not
currently part of <threadname> . If the function appears in the thread more than once, only the first
instance is deleted.

newthread <threadname> <period>

CHAPTER 5. DETAILED DESCRIPTION OF UTILITY COMPONENTS 68

New thread: Creates a new realtime thread that can be used to execute HAL functions at specific
intervals. The thread is called <threadname> , and it executes every <period> nano-seconds. If a
thread of the same name already exists, the command will fail. 1

delthread <threadname>

Delete thread: Deletes a realtime thread called <threadname> . Any functions currently linked to
the thread will be unlinked. If a thread called <threadname> does not exist, the command will fail.
2

start

Start: Begins execution of realtime threads. When started, each thread runs at it’s specified period.
Each time the thread runs, it calls all of the functions that were added to it with the addf command.
The functions are called in the order that was specified by the <position> argument of the addf
command.

stop

Stop: Ends execution of realtime threads. The threads will no longer call their functions.

show [<item>]

Show info: Prints information about HAL items to stdout in human readable format. <item> can
be comp (components), pin , sig (signals), param (parameters), funct (functions), or thread , or
omitted. If <item> is omitted, show will print everything.

save [<item>]

Save info: Prints HAL items to stdout in the form of HAL commands. These commands can be
redirected to a file and later executed using halcmd -f to restore the saved configuration. <item>
can be one of the following: sig generates a newsig command for each signal, link and linka
both generate linkps commands for each link. (linka includes arrows, while link does not.) net
and neta both generate one newsig command for each signal, followed by linksp commands for
each pin linked to that signal. (neta includes arrows.) param generates one setp command for
each parameter. thread generates one addf command for each function in each realtime thread.3

If <item> is omitted, save does the equivalent of sig , link , param , and thread . 45

1This command is NOT currently implemented. It requires some complex user/kernel calling procedures, and may not
be working in time for the NAMES show and demonstration. At the present time, threads can only be created by kernel
modules, not by a user space process like halcmd. A number of the existing kernel module HAL components have provisions
for creating threads when they are insmod’ed.

2This command is NOT currently implemented. See note above.
3Once newthread is working, thread will be modified to generate a newthread command for each thread before generating

the addf commands.
4Halcmd cannot load components. As a result, the save command does not generate commands that can reload the

current set of components. It only generates commands to interconnect them once they are loaded. Eventually I would like
to extend halcmd so that it CAN load components, and save the list of loaded components in the form of commands that can
reload them later. Once challenge will be saving config info that was given to the components when they were insmod’ed. That
info is not visible to the HAL api or to the save command. Instead it remains inside the individual components. Technically
that is where it should be - since the config requirements of individual components can vary widely.

5Update Oct. 5, 2004: The loadrt and unloadrt commands now allow halcmd to load and unload realtime components.
However it is still impossible for halcmd to know about any arguements that were passed to the components when they were
loaded. Therefore it is still impossible to save the currently loaded components in a way that will allow them to be reloaded
correctly. In the long run, I intend to revise the way components are configured, such that they require fewer (ideally no)
configuration arguments at load time. At that time, it will probably be practical to save the entire state of the HAL, including
the list of loaded components.

CHAPTER 5. DETAILED DESCRIPTION OF UTILITY COMPONENTS 69

5.2 Halgui

Halgui is a program that doesn’t exist yet. It will be a GUI version of halcmd. Halcmd is a rather
thin wrapper over the core HAL api as described in emc2/src/hal/hal.h . If a GUI expert would
like to work on a more sophisticated wrapper, please contact me (jmkasunich at att dot net). I would
be happy to work with you on it. If nobody volunteers, I will do it eventually. However, GUI and
user interface coding are not areas in which I am talented, so it will take a while.

5.3 Halmeter

Halmeter is a “voltmeter” for the HAL. It lets you look at a pin, signal, or parameter, and displays the
current value of that item. It is pretty simple to use. Start it by typing “halmeter ” in a X windows
shell. Halmeter is a GUI application. It will pop up a small window, with two buttons labeled “Select”
and “Exit”. Exit is easy - it shuts down the program. Select pops up a larger window, with three
tabs. One tab lists all the pins currently defined in the HAL. The next lists all the signals, and
the last tab lists all the parameters. Click on a tab, then click on a pin/signal/parameter. Then
click on “OK”. The lists will disappear, and the small window will display the name and value of
the selected item. The display is updated approximately 10 times per second. If you click “Accept”
instead of “OK”, the small window will display the name and value of the selected item, but the
large window will remain on the screen. This is convenient if you want to look at a number of
different items quickly. You can have many halmeters running at the same time, if you want to
monitor several items. If you want to launch a halmeter without tying up a shell window, type
“halmeter & ” to run it in the background. You can also make halmeter start displaying a specific
item immediately, by adding “pin|sig|par[am] <name> ” to the command line. It will display the
pin, signal, or parameter <name> as soon as it starts. (If there is no such item, it will simply start
normally.)

Halmeter is due for a rewrite - the new version will have a nicer display, with autoranging, range
hold, and an analog bar graph to supplement the digital display. However it’s purpose will remain
the same - a handy software equivalent to DMM for basic testing and troubleshooting.

5.4 Halscope

Halscope is an “oscilliscope” for the HAL. It lets you capture the value of pins, signals, and param-
eters as a function of time. Complete operating instructions should be located here eventually. For
now, refer to section 2.5 in the tutorial chapter, which explains the basics.

