Example 4.2 Kinematic model of simplified Puma

In our second example, we will attempt to solve the kinematic model for
simplified version of a popular industrial manipulator (Figure 4.19) using
homogeneous transforms (Lee, 1982). This robot includes two type 4 links
(see Figure 4.3). The axes of the two joints in these links intersect in the
proximal joint, not in the distal joint like the other links in the manipulators
discussed in earlier parts of the text. A consequence of this is that the two
coordinate frames coincide, even though in the actual robot there is a
physical distance between the two joints. In the analysis, this distance is
added to the distance between the joints of the link attached to the distal
joint.

The correct assignment of coordinate frames (following Algorithm
4.2) is shown in Figure 4.19(c). The zero position for kinematic analysis
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Figure 4.19
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(Figure 4.19(b) } is different from the zero position used by Paul e/ al. (1981},
where the left-arm position is used, which is the zero position used by the
Unimation controller. The algorithm for assigning coordinate frames does
not include a method for selecting the direction of the axis of a revolute joinl.
The choice of axis direction used here resulted in a right-arm configuratien,
where the choice used by Paul et al. (1981) resulted in a left-arm configu-
ration. This difference changes the sign of the twist angles between the links,
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and results in a kinematic model with the same components in the equations,
but with some components having different signs. Also, the zero position for
the kinematic model is different from the zero position used by the manufac-
turer to calibrate the robot - all links pointing in a vertical direction,

The six A matrices (Figure 4.20) are found by substituting the link
parameters for this robot into Equation 4.6, and the manipulator transform
is found by multiplying these matrices. A complete kinematic model of this
robot includes an /, parameter of 20.32mm due to asymmetry of the forearm.
The axes of joints 3 and 4 do not intersect. In the following analysis, the
robot kinematics are simplified by assuming a symmetric arm.

b R

RE, = A, AL AL AL AL A = i’ :’ i” E’ (4.93)

0 0 0 1
where the elements of the matrix are:

x, = C,[Coy(C.C,C, — 8,5 — 5,,5,C,) — 58,56 + C.S) (4.94)
= SICCCCq — 580 — 5118.C,) + Ci(5,C,C, + C,5)) (4.95)
x, = Sp{CiCCs — 8,5q) + C305:C (4.96)
¥, = C;[—C(C,Cs5; + 8,C) + 5,551 — 5(=5,C5, + CCy 4.97)
¥, = 5, [—GilCiCiSg + 5,C¢) + 5::5,5] + Ci(—8,Cs8, + C,C,) (4.98)
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= —5,,(C,C5, + 500 = Cy5:3 (4.99)
z, = —C[CsCy5y + 555Cs) + 55,5, {4.100)
W= =50, G5, + 5,50 — C,5.5, 4.101)
2, = =5,C5, + CuG, (4.102)

P = GI—CyydiCSy = SuldC, + d)) + 40 + S0, S45, + o) (4.103)
p, = 5[ —CandeC.5; — 5;y(dC; + d) + LCy] + C,[dS,S; + dy] (4.104)
b, = —SyydiCaSs + CosldiCs + d) + 1S + d, (4.105)

Using the solutions derived for the orientation transform (Secticn
4.9), we find the orientation of the coordinate frame located at the end of this
robot (frame &).

¢ = atan2(x,, &)
C.!C;J(C.'_C’,CI e S_.S'S} e S: ]S’CE]
” = 5,(5.C,C; + ;5
i : 4.106
SICHC.CSCe — 5459 — $,8:C.] b
+ Ci8:C.C + TS

= fan

§ = atan2[—x,, x,Cls) + x,S(6)]
_S:J{Cncsca . 5'434.} -G, 15;{:5

= w 4. 10
™ (e e T s ST CnCete - 550 -swcd|
H=S,C, + CSJS.CC, + €SI

- T s 8, (C.C.8, + 8.C) = {:z,s,sﬁ)
¥ = atan2(y, 2, = tan ( —8,C5, + Cuils {4.108)

The next step is to attempt to find the inverse transform using
Algorithm 4.4, The forward solution involves complex terms, and joint
variables are difficult to find, so we will premultiply both sides of the trans-
forrmation equation (Equation 4.93) by the inverse of the first matrix.

C, 5 0 0 By ¥o &y Fa
0 0 1 —d| %Y 5P
SI- _EI 0 0 E Yo & [+H
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Cy5{CLCCs — 8.8 — 515G — 213(CCsS, + 5,Cg) + 525555
s:s[c.cc!ca =58+ CHS,C, —SH{C.‘C,S; + 8,Co) = Cys55Cs
=84C:Cs — CSs 5.C55, — GG
0 0
—CC8; = 5,0 —CaytdgCiSs — Sus(dyCs + d) + G,
—5,,C.5, + C;,Cs —8,,d,C,S; + CyuldCs + d) + L5,
5,5 dg5,5; + dy
0 1

(4.109)

If we equate matrix elements (1, 4) and (3, 4) from the two matrices,
simplify the resulting equations using trigonometric identities, and divide the
squations, we can solve for the first joint variable 8.

& =tan"'(p,/p.) r=+vpi+p; (4.110)
where p, = rsin(g) p, = rcos(d) (4.111)
C,p, + Sip, = C,rcos(¢) + S, rsin(g) = rcos(f, — @) (4.112)
= = CyydC.S;s — SyldeCs + d)) + 1,C; [element 1, 4] (4.113)
S,p, = Cp, = S,rcos(g) — €, rsin(d) = rsin(d, — ¢) = —dSS; +d, (4.114)
rsin(d, — @) —d,S.5, + d;
— ! =tan(f, — @)= (4.115)
reos@, =0 TP T TG G, — SuldiCs + d) + IC,
- = —d5,5, + d,

8, = tan™! E) +t *( . ) 11

Aat (p: AT G, ACS, — SaldiCs + d)) + 1C, el

Premultiply the transformation equation again:

I-I'E;IDA-TIRTH =3ﬂi,a“.'ﬂjiﬁn

CilCyx, + 8;x) + SaK, C,(Cyy, + S.y,) + 52y,
_| -stem sy +Cxy —SACH Sy, + G
Six:-clx'r 51FI-C|!?'1
0 0

CyiCiz, + Siz,) + 852,  CiCyp, + 5;p) + Syp, — d))
—8,(Ciz, + 5,2) + Gz, —SiCp, + Sip,) + Cilp, — di)
5.z, — Gy Sip—Cipy— dh

0 l
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cjc-lclci — G858, — S&S!Ci =G C.CS — C:SACI- + 5;5,5;
SJCIIG!C‘ = 5,85+ C8,.C, —5,C G5 — 5:545, = Cy5+5,
-5|C5C5 == C.;S; E‘icisi e crl-':ﬁ
0 0
=C,CSs— S!C:- —C,d,c.‘S! = Syl Cs + dy)
—8,C.8; + CiCs —5,dyC.Sq + Cy{diCs + dy)
S5, S5
0 1

G(Cyp, + Sip,) + Silp, — d)) = =CidiC.S; — 5,(a,C; + d,) (4.118)
=5,{Cip, + 5,py) + Cilp, — d,) = —8,dgC,Sy + Cy(dsC; + d,) (4.119)
(p. — d)[—Cyd,C,S, — S,(d,C, + d)
il + [5,4,C, S + CyldC;s + dJ{C,p, + SIP!-)
[(Cp, + Slpyr]: +(p,— dl}j:

(4.117)

(4.120)

f, = sin™

Two equations involving #; and f,, have been obtained with no
obvious way of solving for either angle in terms of the atan2 function. A
solution for 8, is calculated using the inverse sine function, and a solution for
6, can be found in a similar way, but it is not independent of ;. If we pre-
multiply the transformation equation again, we can solve for 0,:

1h;| Lﬁ;'“ﬂrr.‘TE':!AJ‘-*S:AG [411]]

Equating elements (3, 1) and (3, 2) gets:

SICAC,y, + Siv,) + 3, — CiSy,— Gy, ) @.122)
—=5,[C{Cx, + 8x,) + S;x,] + Cs(S;x, — C;x,) d

B, = tan™" (
Premultiplying the transformation again, to solve for 8, and 8;:
1MI!A_'|_1 IA;IU&I-IHTH-JA!SM {4‘113]
Equating elements (1, 4) and (2, 4) to get:

= CICACHC,p, + Sipy) + Sylp, — d))]
+ 5,(—54(C,p, + 8;p,) + Cilp, — dy))] + 5,(S;p, — C,p, — dil
SICCip, + Sip,) + Silp, — dy]
— C|=S,(Cip, + Sipy) + Cilp, — d)] — d,

8, =tan

(4.124)
By equating element (3, 4) we get:




5p. — Cl.p:r — dy
Cy[CHCyp, + Sipy) + S.p.— d))]
s SJ[_Sl{[:[p: + Slpy! -+ ci‘.F'; = dl}l

-1

#, = tan (4.125)

Equations have now been found for all the joint angles, but they are of
liitle use because all of the equations involve other joint angles. No equations
have been found for any joint angle in terms of the Cartesian space descrip-
tion only. To find values for the joint coordinates an iterative algorithm
must be used (Window 4.3). Discussion of such algorithms is beyond the
scope of this book. The unsolvability of the manipulator is due to its
geometric design, where a deliberate attempt was made to mimic a human,
There are three places where redundant configurations can occur: the
shoulder can be a left or a right shoulder, the elbow can be up or down, and
the wrist pitch can be up or down (see Figure 2.23). Thus, the manipulator
has eight solutions, but only six joint variables. Also the wrist configuration
has a degeneracy of the type shown in Figured.14.

Paul ef al. (1981) simplify the equations by shifting the first and last
displacements (d, and d,) out of the manipulator transform into the trans-
forms on either side. There is some justification for doing this with dy,
becausc the Puma controller locates the origin of the world coordinate
system at the point where the shoulder and waist axes intersect.

p, = CySyydy + LTy} + 5,y (4.126)
Py = 51(Sqyd, + 1) = C,d, (4.127)
p, = —Cpdy + 15, {4.128)

Lee (1983) calculates an inverse solution for this manipulator by divid-
ing it into two 3 link manipulators, and solving for them separately. First, he
solves a transform form the basc to the wrist (end of link 3), given a vector
from the wrist to the hand, to find equations for the first three joint angles,
and then he uses this solution in conjunction with the transform from the
wrist to the hand, His solution also handles the decisions which have Lo be
made between different configurations. The details of this method of inverse
kinematics are beyond the scope of this book. Manseur and Doty (1988)
obtain a reduced set of equations by choosing the same frames as Paul ef al.
{1981) and applying rotational orthogonality. A manipulator is termed
‘orthogonal® when all twist angles are 0° or 90°. They decompose the for-
ward transform into a position vector and a rotation transform. Using the
fact that dot products are invariant under rotation transforms, because
rotation transforms are orthogonal, they obtain a set of four inverse equa-
tions. This method is a simplification of previous work by Tsai and Morgan
(1984).
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Pieper (1968) shows that one advantage of a spherical wrist (a wrist
design where the three axes intersect at a point) is that it has a closed form
solution. However, the above solutions only handle the case of a perfectly
manufactured robot. As soon as a signature for the particular robot is used,
the errors in the kinematics significantly complicate the model, again requir-
ing the use of iterative solutions.




