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D Y N A M I C S  O F  I N D U S T R I A L  R O B O T  M A N I P U L A T O R S  

TADEUSZ SZKODNY 
Institute of Automation of Silesian Technical University. Gliwice. Poland 

Abstract--The paper presents formulas connecting driving forces of actuators with natural coordinates 
describing motion dynamics of manipulators. The formulas are useful for any drive of manipulators, i.e. 
for actuators installed in axes of kinematic pair joining links and beyond them. 

N O M E N C L A T U R E  

Ai--homogeneous transformation describing the relation i - 1st link and the ith link 
C~--coefficient [see system equations (20a-20b)] 
D,--coefficient represents the effect of gravity forces on the ith link 
D~/--coefficient represents the effect of the j th link inertia forces on the ith link 

D~ k-coefficient represents the effect of Coriolis forces, resulting from relative motion between j th and k th links, or, 
centripetal forces (for j = k), on the ith link 

3p~.--Kronecker delta 
Eo--potential energy 
F, - - i th  link reactive force 

Ed,~--driving force generated by the ith actuator 
E, ifm--ith actuator's Coulomb motion friction 
E, if~--ith actuator's Coulomb starting friction 

g--homogeneous form of gravitation vector g 
$~--ith link pseudoinertia matrix 

3~--i th actuator effector pseudoinertia matrix 
~0q--pseudoinertia matrix o f j th  element of ith group transmitting drive from the ith actuator to the ith link 
L--Lagrangian function 

mi--mass of the ith link 
m~,--mass of the ith actuators 
mq--mass o f j th  element of ith drive unit transmitting drive from the ith actuator to the ith link 
N--number of natural link coordinates 
N,--number of elements of drive unit transmitting drive from ith actuator to ith link 
q~--ith link natural coordinates 

q~,--ith actuator natural coordinates 
~.~--homogeneous form of vector describing gravity centres of the ith actuator effector in x~j),~,z~, coordinate system 
~--homogeneous form of vector describing gravity centres of the ith link in x~),~z, coordinate system 

~x--homogeneous form of vector describing gravity centres of the ith element of the ith drive unit 
~,--homogeneous transformation describing the relation between ith link and base link 
Tq--homogeneous transformation describing the relation between j th  element of ith drive unit and link 
~-.,--homogeneous transformation describing the relation between ith actuator effector and ith link 
~-0~--homogeneous transformation describing the relation between lth element of ith drive unit and base link 

x.~yj~,, --coordinate system associated with ith actuator effector 
x~y; , - -coordinate  system associated with ith link 

x!y~/z~,--coordinate system associated with j th element of ith drive unit 
AD,--change D i 
AD,i--change Dq 

AD~--change D.t 
Aq,--change q~ 
At--change t 

1. INTRODUCTION 
In further considerations an IRM abbreviation will stand for manipulators of industrial robots. 
In the present paper, IRM will be considered in the form of  kinematic series chains [1, 2]. The initial 
link is an IRM base, whereas the final link is a link to which a manipulator effector is fixed. An 
IRM effector may be a task, jaws clasping a welding electrode, and the like. Industrial robots are 
most often equipped with manipulators with V class kinematic pairs. The present paper will 
therefore deal solely with kinematic pairs of this type. 

Right-handed rectangular coordinate systems associated with particular IRM elements will be 
used to describe the IRM kinematics. To describe a position and orientation of the systems, 
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homogeneous transformations will be used [3-6]. These transformations afford a possibility for a 
joint description of the position and orientation, which is an inestimable advantage in describing 
kinematics, and, especially dynamics of IRM. 

A number of the V class kinematic pairs connecting links, or, a number of the natural 
coordintes of links will be called a number of IRM degrees of freedom. The coordinates describing 
a relative motion of links will be called link natural coordinates[6, 7]. Auxiliary kinematic 
pairs of IRM effector, making its functioning possible (e.g. movement of task fingers) will be 
ignored. 

One of the major problems in industrial robots control is to design algorithms planning 
optimal reference trajectories and servos which would be able to meet relevant require- 
ments [7]. 

Effectiveness of trajectory planning algorithms which optimize quality coefficients, corresponding 
with IRM motion dynamics, depends largely on the accuracy of the dynamics models. Particularly 
important is the accuracy of models of IRM motion dynamics for algorithms simulating the work 
of robot control systems. 

By accurate model of motion dynamics we mean a model respecting principal physics laws. These 
laws are described by Newton equations [1, 3, 8-10], or Lagrange equations [3-5, 8-12]. 

With Newton equations, forces and torques of IRM elements interaction can be determined. The 
interactions render a possibility for determining stresses and strains of IRM elements. However, 
the equations do not allow to determine a general analytic formula for an effective inertia of 
actuators [13] a significant parameter which makes possible designing and selecting of servo 
controller settings. 

Lagrange equations allow to determine driving forces and torques which should be applied in 
kinematic pairs of links. A significant advantage of Lagrange equations is that general formulas, 
connecting driving forces with the first and second derivatives of IRM natural coordinates, can be 
derived from them. Due to this, a description of IRM as a controlled plant is possible. It is done 
by means of state equations, thus enabling control system synthesis [14, 15]. Another important 
advantage of these equations is that general analytic formulas can be easily derived from them for 
effective inertia of actuators [13]. 

A general model of IRM motion dynamics, resulting from Newton equations, has been presented 
in the works [1, 3, 16, 17]. However, only interaction of IRM neighbouring links has been taken 
into account. Therefore these equations are useful for IRM with drive in the axes of kinematic 
joints, with the gravitation being taken into account. A general model of IRM motion dynamics, 
resulting from Lagrange equations, can be found in the handbook [4]. This model, however, is 
useful only for IRM with drive in the axes of kinematic pairs of links. Due to the model it is possible 
to derive correct analytic formulas determining effective inertia of the actuators, installed in the 
axes of kinematic pairs joining links. In the papers [11, 12] all factories connected with actuators 
move are omitted. 

The dynamics models presented in the papers [1,4, 5, 16, 17] are not useful for the IRM with 
drives installed beyond the axes of kinematic pairs of links. This means the models cannot be used 
to design algorithms for minitime and mini-cost trajectories planning, or, for simulating of servos 
work in such IRM IRb-6 and IRb-60 robots are equipped with the manipulators of this type. 
Choice of settings of controllers for manipulators is possible due to effective inertia of actuators. 
A description of IRb-6 and IRb-60 manipulators motion dynamics--as used in Poland so far--has 
been based on simplified models, in which the two last links are ignored. Their masses have been 
included in the mass of the 3rd link. The simplifications being introduced, the IRb-6 manipulator 
motion dynamics have been described by coefficients without a physical interpretation, which had 
been determined through identification research [18, 19]. 

The present author has worked out models of kinematics and dynamics [6] of IRM with actuators 
installed beyond and in the axes of pairs of links. Let us assume that all the IRM elements are 
rigid. 

In the second section, Lagrange equations rendering possibilities for determining of driving 
forces of IRM actuators will be presented. The third section will contain results of exemplary 
computing, illustrating changes of natural coordinates of actuators caused by known currents of 
the IRb-6 actuators. The fourth section will contain conclusions. 
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2. L A G R A N G E  E Q U A T I O N  FOR I R M  

The basic work task of IRM actuators [6] is generating such forces or torques in kinematic pairs 
which can ensure a manipulation object's motion along a reference trajectory with reference 
kinematics and dynamics. The forces or torques generated by actuators will be further called 
driving forces of actuators. The corresponding forces affecting links will be called driving forces 
of links. 

Formulas will be derived for driving forces as functions of q~ link natural coordinates and their 
derivatives 0~ and (7i. 

To determine driving forces of links, methods of analytic mechanics, with Lagrange 
equations [8, 9], will be used. We will consider IRM with: 

(a) actuators installed beyond pairs of links; 
(b) actuators installed within pairs of links. 

To calculate driving forces of links by means of Lagrange method, one must know L Lagrangian 
function. First, IRM with actuators installed beyond the link pairs will be considered. Lagrangian 
function is the difference between Ek total kinetic energy and Ep total potential energy of IRM. 
These energies are the sums of corresponding Eki and Epi energies of IRM links. Ekg and Ep~ energies 
are, in turn, sums of corresponding energies: Etk~ and Etpi of the ith link along with the elements 
fixed and immobile towards it, E~ak~ and Et,,pi of a drive unit of elements transmitting drive from 
the ith actuator to the ith link, E,,k~ and E,p~ of the ith actuator [6]. Figures 1 and 2 show a 

.Z~ ~ LJ~j - /  _ 
OC rqe 

0 o ~ .  Ioi.j [ j-4:h ELE/14ENT 
1 - 

×. 
Fig, 2. Description of thej th  element of a drive unit transmitting drive of the ith degree of IRM freedom. 
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description of links, driving groups and actuators, used in computing of Lagrangian function L. 
It follows from [6], that: 

= 1 ~  { (~t 'Trace  ~ ]  N[Trace(~_t, 7 3 Tv d-l]-~'] L = E k - E  p 2,=1 = 

q]'ijJiJ~t'- q]'Ti)~- Trace~-~- ,D,, -~-)jdT/~\] 

+ Trace(@/ T d7/~\ Trace(~t,. d 7 :  

( ~ t  ~, d7aV"~'~ g T ~  (m,,,+jN~ ) + Trace J ~ , - ~ - j j  + .= 7, = m,jT,fi,j. + rn~7,,L, . (1) 

N, is a number of elements of drive units transmitting drive from the ith actuator to the ith link. 
When an actuator of the kth link is installed in the axis of kinematic pair, then Nk = 0, and the 
sum after j for i = k in formula (1) is being ignored. 

~,, is a homogeneous form of vector describing gravity centres of the ith actuator effector in 
x.~y,iz,, coordinate system (associated with ith actuator effector). L and i,je are homogeneous forms 
of vector describing gravity centres of the elements shown in Figs 1 and 2. The g appearing in 
formula (1) is a homogeneous form of a gravitation vector g [4, 6] shown in Fig. 2. V,, ~-,j, Y., 
matrices describe reciprocal position and orientation coordinates systems associated as in Figs 1 
and 2. 

In IRM, the mass of elements driving units transmitting drive is usually small, as compared to 
the mass of links. Actuator frames are usually fixed and immobile towards any links. These 
elements and the actuator frame velocities can be compared to the velocities of links. Velocities 
of the actuator effectors are usually very high as compared to the velocity of links. The element 
velocity to link velocity ratio corresponds to the transmission ratio. The transmission ratio is 
usually high, and, for planetary gear, for instance, it may reach up to 10 5 [7]. It follows from the 
above that in further considerations the elements transmitting drive and actuator frames energy 
may be ignored. Due to the reductions we obtain: 

L ~ [ ~  [ ] [ d 7  i dq]-~\ (~ - t  ' 7 'n d~J~ q] 'T)at  ~--- , = 1  Trace\-~- Ji ~ - / +  Trace . , _ ~ .  

1 //'ffai ~ Trace{ ~t, d T ; \  x _-1 

Differentiation of time is described in the following formulae: 

(2) 

d-IF, ~ d-I]-, . d7 . ,_  ~, dV.~ 
~dt -j=l dqjqJ' ~ i~, d~qj ~j" (3) 

The 7, derivative depends on natural coordinates of q~-qi links; it is a product of AL-A, matrices 
describing reciprocal position and orientation of neighbouring links. As it follows from the 
paper [4, 6], each A, matrix is dependent only on a correspondent natural coordinate of q, link. 
1-~ coordinate, generally, depends on all natural coordinates of ql--qu links. 

On taking into account the formulae (3), we obtain: 

Tracel~-J,-z-:-14j0,+ 25 2. ~ ' . -  / 07 ,_  . ~-L,~,_r~ 4A, = l r a c e / - -  U a i ~ a i -  L ~ \ cqj cqk/ ,= I j = I \ 8qj Oqk i=~j=,,=~ k=, 

i i "  ( N 
1 ~ Trace 69 T,/ ~0 TJ,~ ,,Tgq  S"'O-g) + 2 m,gTV, ,. (4) 

, = 1  / ' = 1  " i = 1  
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~ is the ith link pseudoinertia matrix, calculated in the x~y~z~ coordinate system as follows: 

IO ni f ~ 11 I~..= uvdm,  miffi = udm;  u ,v=xi .y~,z~.  (5) 

m~ is a mass of the ith link together with all the elements fixed to it. &q is a pseudoinertia matrix 
of the j th  element of m~ mass, calculated in the xqyqzq system. ~.~ is a pseudoinertia matrix of the 
ith actuator effector of m.~ mass, calculated in the x.~y,~z.~ coordinate system. 

Reaction forces of links are derived from Lagrange equations [8-10]: 

F,. = ~ c~q, (6) 

F~ are either torques (for rotary joints) or forces (for travelling joints), directed along z~_ ~ axis. In 
the Appendix, formulae for Fi have been determined. 

N N N 

F~= ~ Dq~/+ ~ ~ Dq~dl~dh + D~. (7) 
j = l  j = l k = l  

Dij= ~ Trace ~p + t r a c o - - ~ . p - - / .  (8) 
p . . . .  ( i , j)  • Oqj ] p=, \ t3q, c~qj ] 

D,~k = ~ T r a c e / - -  ~p + ~ T r a c e / - -  - " ~p - -  -l]-~ 
p . . . .  ~,./.k) \~qj ~qk ~qi I p = i \ 63qi ~3qk ~qj ) 

N Y F T v r TracJO p 0 .p .  c~ ~p ql-v'~ I- . . . .  /'e-[1-p ? V.p. O ~-.p -~ 2 U ~ , . ' - -  - -  O J a p - -  p /  - -  . , O . k , ~ / - -  - - -  d/ap - -  V T (9) .=,L \Oqi Oq, ?q, ] \ , q ,  Oq, Oq, PJ[' 
N 

D,= - r m gr~ "P~p. (10) ~.  P 3qi p=l 
These formulae are reduced for the actuators installed in kinematic pairs so, that 

? Y,~,/?qk = (? Y,~r,/~qk)6pk" Then Dq and Dq, coefficients have the following forms: 

N ['OqFo "~ / T T 
Dq= ~ Trace/---~ @ - - / +  6,, T r a c e / - -  d ~ , - - I  (11) 

p . . . .  (i,j) k Oq, Oqj } \ Oq, ~?q, } 

u T l" 02~p S ~-I[TX~ ll~VJ~aJ ~'~TaJ T\ D~j~ = ~ r a c e l - -  + 6/~ T r a c e l - -  - -  ~.j 2) 
p . . . .  (,,j,k, \dqjt~q, p Oq, } " \ Oqi Oq, ~ T, ),  (! 

where 6q and 6~ are Kronecker delta [8]. 
D~ coefficients are, as formerly, described by the formula (10). The second addent in the formula 

(1 1), multiplied by diq, is constant and equal Ia~ (actuator inertia [4]), and independent of natural 
coordinates. D~ coefficients represent the effect of the j th  link inertia forces on the ith link. Dq~ 
coefficients represent the effect of Coriolis forces, resulting from relative motion between j th  and 
kth links or, centripetal forces (for j = k), on the ith link. D~ coefficients represent the effect of 
gravity forces on the ith link. 

F, link reactive forces are corresponded by K,~ actuator reactive forces. If an actuator natural 
coordinate, describing changes of coordinate system x,~y,~z,~ (associated with an actuator effector) 
in relation to xN~yN~Zu~ (associated with the actuator body Fig. 1) has been denoted by q.~, 
then [6, 20]: 

- ~ ~q~ 
F~,-  F. . (13) 

S,= rir~am = L i,.... I 
L m,~, mi; , m,~-, m i J 

where: 
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For the actuator installed in the pairs so that 63qj/c3q,~ = (c3qj/63qai)6ii , 

c~q~ (14) F~i = Fi 63q~i" 

63qai/63qj correspond to transmission ratios of high values. It follows from the formula (13) that F.~ 
forces are inversely proportional to 63q,~/c3qj and directly proportional to ~ forces. The formula (7) 
describing Fj contains expressions with 8,--representing forces which result from links motion and 
expressions with ,~ai--representing forces which result from the motion of actuator effectors. The 
expressions with ~ai contain c3-~,~/63qj derivatives proportional to transmission ratios. So, when the 
ratio increases, the effect of links motion and gravity forces on the F.,i force decreases. With the 
transmission ratios rise, the effect of forces resulting from actuator effectors motion on F~g force 
may either be ratio independent (for expressions containing 8,~ with only one derivative (3 T,~/63qj), 
or, it may increase (for the expressions containing 8~g, with two derivatives t37ai/63qj ). Due to 
high transmission ratio in IRM, the present consideration proves the formula (1) reductions to be 
useful. 

Transmission ratios of high values minimize the effect of links together with a manipu- 
lation object motion on the actuators load. With the ratios of high values, in D~j and D~jk 
coefficients [described by the formulae (8)-(12)] the most significant are expressions containing 

~ai " 
The handbook [4] contains equations of F~ forces, derived by R. Paul for the situation when all 

the actuators are installed in the axis of kinematic pairs joining appropriate links. However, in the 
formula describing D~jk coefficients, an expression with ~a~ was omitted. In the same handbook (p. 
180, Tables 6.5 and 6.6) mechanical parameters for the Stanford robot were mentioned. It can be 
seen in Table 6.6 that, for the majority of freedom degrees, actuator effectors motion energy is by 
one order higher than the energy of links motion. For the fourth degree of freedom, the energy 
of actuator effector is as much as 100 times higher than the energy of the fourth link motion. The 
same inaccuracies appeared in the handbook [5]. 

If dynamic interaction of elements of drive unit transmitting are to be taken into consideration, 
then D~j, D~jk and Di coefficients must be completed with the following corrections: 

ADij=,=I ~ Trace . Ji,~-~-qj ) ,  (15a) 

ADijk = ~ T //63 2q]-Oil a q]-~)il\ ,=, race~c~qjc3q-- ~ ~i , -~qi) ,  (15b) 

U,' 63Toi1 AD~ = -- ~, gr 
- -  mitritc. (1 5c) 

I= ! 63qi 

To~t matrix describes a coordinate system associated with the lth element of a driving unit of the 
ith link towards the base coordinate system (see Fig. 2). 

Change of coefficients of dynamics equations (7) is also caused by grasping of a manipulation 
object. This leads to a change of matrix of a working link pseudoinertia by ASs [6]. It implies the 
following changes of force equations coefficients [6]: 

63v  
ADij = Trace(63ql-N\ 63qi AJN -~qj ) ,  (16a) 

/ 632~ N A ° 63T~'~ ADu~ = T r a c e / - -  (1 6b) \ 63 q j 63 q k * N -~q ~ ),  

071-N ~e (1 6c) A D i = - m e g  x cOq~ " 
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mp and ~e are respectively mass and homogeneous form of vector describing the centre of gravity 
of a manipulation object towards xNyNZN coordinate system. 

In our previous considerations, friction was ignored. It is difficult to give an analytical 
description of energy dissipated while overcoming friction. Interaction of Coulomb friction forces 
will be considered in relation to IRM actuators effectors. F,~ resultant driving force of the 
ith actuator is a difference of/~'~id driving force generated by the actuator and Coulomb friction 
force. 

[ 0  for q. i  = 0 and IF.~al ~< F~ir~, 
F . , ,  = " ~ F a i  d - F~r~ sgn(Faid) for 0.~ = 0 and IF.aid ] > Fail~, (17) 

t F.ia - F~ifm sgn(q~,) for (¢.i :A 0. 

F,,f., and F,~rm are the ith actuator's Coulomb starting and motion friction respectively. These 
parameters may be experimentally estimated [4, 6]. If 4., = 0, the motion start (4ai 4: 0) depends on 
the relation between E~jd deriving force and F.~fs starting friction force. F,.zr forces are equal to Fa~ 
reaction forces described in the formulae (13). Apart from Coulomb friction forces already taken 

[ A ]  
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Fig. 3(a). i,t ( t)  armature current o f  first actuator. 
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into account, there is also viscous friction in IRM. Energy loss caused by this friction occurs, first 
of all, when noting elements move at high relative speed, e.g. in planetary gears. This kind of 
friction will be also considered in relation to actuator effectors. Therefore F.dir~ resultant described 
by formula (18) the Faer described in formula (17) decreased by viscous friction. 

l~ '~aire = F a i  r - -  k v a / ( l a  i • ( 1 8 )  

kv~i is a coefficient of transmission viscous friction. The xoYoZo base system associated with the IRM 
base has been assumed so far to be immobile, or, more precisely--inertial [21] or Galilean [22]. Only 
in such a coordinate system the formulas describing L Lagrangian function is useful. For IRM with 
a mobile base, the dynamics of its motion must be described in relation to another inertial (or 
Galilean) reference system. If  a base system may be described in relation to inertial reference system 
by means of one coordinate q0, then: an additional T O = ~0 matrix is created, -11-,0 and 3~o of an 
actuator driving the base is determined, IRM kinematics is modified (-~i= ~ 0 ~ 2 . . . / ~ i )  and 
hitherto existing formulae can be used. Similarly, To~ ~ matrices in the formulas (15a-c) are modified. 
Summation indices will, naturally, change not from number one but from zero. 

[ A ]  

k 

L 
I ! 1 I I i I I I I I 1 1 I I I I 

-6 

I 

I- 

I 

f °l 

..f%'.. 

[ I I 

I I I I I I I I I I [ I I I I 
0 . 4  0 .8  i . 2  1 .6  

t [ - , : tee . ]  

Fig. 3(b). ia2(t ) armature current of second actuator. 

I I I I -12 

.I 

m I . . . . . . . . . . .  • . . . . . . . . . . . . . .  , . . . . . . . . . . . . . . .  • . . . . . . . . . . . . . . . . . . . . . . . . . . .  
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3 .  E X A M P L E  

Making use of the dynamics models described in the formulae (1)-(18), one can solve direct as 
well as inverse problems of  IRM drives. An inverse problem of IRM drive dynamics consists in 
determining of  Faid driving forces of  actuators for the known natural coordinates of the actuators. 
A direct problem of  IRM drive dynamics consists in determining of  actuator natural coordinates 
for the known Fai d forces. 

The direct problem of  IRM drive dynamics can be solved as follows: 

(a) link driving forces are determined from the formula: 

F~d = 
c~qai 

j=, ff~qj F~re; (19) 

(b) for reference initial values of natural coordinates and their first derivatives, link natural 
coordinates and their first derivatives, link natural coordinates are determined from the system 
differential equations (7); 

(c) natural coordinates of  actuators are determined. 

[A] 

t21 l I l J 
P 

8 ......... i 

. . . . . .  

0 

-4 

-8 

o 

I I 1 I I '1 I I I I 't I I I 

"t 
J 

. k  • 

: \ ]a3 
. . . . . .  a . , , i  . . . . . . . . . . . . . . . . . . . .  • . . . . . . . . . . . . . . . . . . . . . . . . .  

I I I I I I I I I 1 I 1 I I I I I I 
0,4 r~ ", ~J,8 1,2 i , 6  

t [ s e c . ]  

Fig. 3(c). i~3(t) armature current of third actuator. 
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The system of equations (7) is transformed into: 
N 

D,jitj = C,, (20a) 

N N 

C~ = F~ d - ~ ~, D~j k q f h  - D,,  i = 1, 2 . . . . .  N. (20b) 
i = 1  k = l  

For the known natural coordinates and for their first initial derivatives, Dijk and Di coefficients 
appearing in the equations (20b) can be determined, followed by Dij and C~ coefficients which 
appear in the system of equations (20a). Solving the system equations of  the second derivatives 
of link natural coordinates are obtained: 

fjj = fj j(Ct,  C2 . . . . .  CN, D~, Dz . . . . .  ON, Fid, F2d . . . .  , ENd), j = 1, 2 . . . . .  N. (21) 

After the system of equations has been discretized (20a), natural coordinates and their first 
derivatives can be determined in the next discretization step, using the formulae 

Aqj = fLAt, Aflj = ?jjAt. (22) 

At is a time discretization step. 

[A] 

t 2~  I I I I I ! I I '! I 1 I 

F 

i . . . . . . . . . . . .  ~ . . . . . . . . . . . . . .  . . . . . . . . . . . . . . . .  . '  

--4 

-8 

-t2 
0 

I 1 I I 

[i 
l l l l  

ia 4 % 

. . . . . . . . . . . . .  ~ . . . . . . . . . . . . . .  . . . . . . . . . . . . . . . .  . .  ~ . . . . . .  ~ . . - - ~ . .  ~ . . . . . . . . . . . .  

-I 

- d  

I I I I I I I I I I I I I I I I 
0.4 0.8 i,2 i.G 

t [ a e c .  ] 

1 . 1 1 1  

Fig. 3(d). ia4(t) armature current of fourth actuator. 
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[A] 
12 

-4 

-8 

t I I I I I I i I I I t I I I [ I I I I / 

J 
I 

q 
! 

. ~ . . .  , .~ , . ,_  l a 6  

V 

-12 I I I I I I I I I I I I I I I I I I I I 

0 0,4 0.8 1,2 1,6 .2 

t [see.] 
Fig. 3(e). i=5(t) armature current of  fifth actuator, 

The formulas (20)-(22) are the basis for computer simulating of  servo controlled IRM 
motion [7]. They were used by the author to design the STER algorithm for computer simulation 
of  IRM IRb-6. 

In IRb-6 robot, d.c. motors generating driving force, which is a torque proportional to the 
armature current, are the robot's actuators. 

Figure 3 shows exemplary currents of  IRb-6 IRM motor armature. Use of  STER algorithm 
allows to obtain natural coordinates of  the actuators, shown in Fig. 4. 

It follows from Fig. 4 that the armature currents from Fig. 3 have resulted in the 
static state of  IRM IRb-6, w h e r e  q a ~ = = - 1 3 0 . 0 r a d ,  q a 2 ~ - 6 6 . 7 r a d ,  q ~ 3 - - 5 1 . 0 r a d ,  
q a 4 ~ - 1 9 9 . 0 r a d ,  q a s - - 1 9 9 r a d .  The state is maintained by currents i , I ~ 0 A ,  i~2~3.18A, 
i,3 Z - 0 . 7 3  A, i~4- 0A,  /as ~ 0 A .  Both Coulomb and viscous friction, described by formulae 
(17) and (18), have been taken into account in the computing. Time discretization step equalled 
0.001 s. 
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Fig. 4. q,~(t)-q,5(t) natural coordinates of actuators• 

4. C O N C L U S I O N  

The I R M  models presented in the paper make it possible to solve direct and inverse problems 
of IRM dynamics, with viscous friction, starting and kinetic Coulomb friction, gravity forces, mass 
distribution of particular IRM links and actuator effectors being taken into account. The models 
are useful for IRM with drives placed beyond the axes of  kinematic pairs joining links. Solution 
of these problems is a requisite of  design motion computer simulation algorithms for IRM 
controlled by continuous and discrete servos of  known structure. The present models of  dynamics 
render it possible to design algorithms for computer analysis of changes of  actuator effective 
iner t ia--a  parameter  due to which setting of servo-controllers can be determined [23, 24]. 
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APPENDIX 
Computing of Lagrangian L [determined by formula (4)] derivatives, appearing in formula (6), and F, reaction forces 

of links motion. 

T r a c e l - - ' ~ , ~ a 1 4 / O k +  ~ /ST,  d~aT~ T \ " . = T r a c e l - -  T . ~  L 2,=,j==k=t \aq: qk/I /~,~=,~=, \aq, ' ,~q T,)qiqk 

2., ~racet-- %--tq~q~ + ~ m/grV, L. 
+ ] , = , / = , , = 1  \ aq, aq,/I ,=,  

Der ivat ives d L  /aq~. 

~ -  = - T r a c e / -  - '  ,~ - " '  l q j  
dqp 2i=tk=l \ dq: q~ / ,=lk~l \ aq: ' aq: ] 

L Tracd - - 'T ,  3,, + Z E Trace /~"T, f l , ,  OT2'VT'~ " 
,=1~=1 \ t~q: ' d q k  ')q* ,=t/=l \dq~ tdqp ')q~ 

/V T N N T 1 _ / a T . ,  aT.,~ I _ _ / ' a T .  dT.~\ 
T r a c e / - - ~ - - l q ~  + -  ~ ~ Trace1- -~' ~ , - - / q j .  

+ 2 ,=, ~ =~ \ aqp aqk / 2,~1 ~=1 \ dqj dqp /] 
Because 

/aT d~-T\ / d T ,  d T T \  T / d T  T a T T \  
Tracel y - '  ~ - - '  / = T r a c e / - -  J , - - /  = T r a c e /  - ' \ dq, aq. ) \ a+, aq. ) \ aq. aq, / 

= T r a c e / - -  after j exchanged into k we obtain: \ dqp "O, ~-q/ ) , . 

dL ~ ~ Trace(dT,~0 dTT'~. : r dtl~ = ,= , ,= ,  \ 'qv  ~q~ )qk + ~, ~ Trace(dTigaJ,idg~'TT~fl, 
~ = l \ dqp dqk ' ]  

+ L L Trace/- ' L.O.,--  + , \ aq. 
tdq .  : . _  

d fOLk N r 
T r a c e / - -  3 i - - '  /4k + ~ ~ /d  T ,T~, Try= - -  ~ Trace/- -' T~J~, k=, \dq:  aqk ,] ,=,k=, \aqp "' aq, ']q'~ 

+ ~ ~ Trace(g ' /  dT 2, ) t/dT]-,, dT~"~.. , = , , = ,  \ d q  T . , J . i~q -q  V~ ~/,+ ~ ~ T r a c e / - - ~ 0 ,  
,=,J,=, \ Oqp ' ~qk ) q' 

- - / T r a c e l - -  ~ Z 
/=,@,L \aq,,S'T-q,)J ¢¢+ ~ = l k = l  i = l k = l j = [  

9 1 -  / /d~r  i ' ' a  T' ~ ]  
x - - / T r a c e / - -  T , , J , -  q]-[J~4k4i 

aq/L \ dqp ' tdq~ 

- - / T r a c e / - -  T . i3 . .  - - "' Ti T qk q~ 
,=,~=,,=, dq/u \dq~, ' aq. 

/T race l  ~ - "' d .  - - / / q k q j .  
, : , , = , , - ,  cq :L  \ dqp ' @, )J  
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8L i N H 
- - / T r a c d - - J ~  ' I/qsqk+ ~' ~ ~' - - / T r a c d - - - T , ~ J . , - - T , / / q s q ,  
a r . T ,  aTnl r /aT, aT: 

,=, aq, L - \aqj  aqdj , . ,~ . , , . ,  aq, L \aqj 8q, ] j  
! ~ ~ ~ a r _  [ a T , , .  aTT '~- I . . .  ~ TAT,. 

+ = ~ 2. 2. ~-- / l racq --~-- a=i ~ Ilqjqk -I- 2.. m,g ~ r,. 
z ,  = t s - t k = I oqp L \ oq s oqA. } 1  , = i ql, 

After j exchanged into k and k into j we obtain: 

aL 1± ~ ~ a r / a T ,  aT,~1 ~ " a r /aT, aT~ T\-] 
' '  E E- - /Tracd- -T . , ' J . , -~ -a .  T, / /q ,  qJ 

~.,s=, ,=,~=,j.,aq, L \aq, qj )J 
N N N T N 1 _  _ _ a [- / a T . ,  aT~'~-I aT, f, 

z ,= = k = U= l Oqp L \ oql, oqj /_l .= aq,,, " 

F , = ~ - ~ - ~ . ) - ~ q  = =~,k=~,lracel-- , x - -=~ ,+  2. 2.. Trac TT qk 
\ aqp  8q,)"  /=,k=, T"'~" ~-qk 

L L TracdaT' aTT N N Trac¢~ ~ aT : \  +,=,.=, \aq. T':"N TT),. + Z z=, 
~ ± r a  /aT, aT~ l a  /aT, a ~ l  

+ Ix-- Trace|x-- a, __2_ ] _ ~ ~_ Trace(~- J.-x-:- I/o, q~ / .  
.=l/~=lj=lLOq. \oqp cq~.j zoqp \oqk oq//j 
N ~ ~ r a /aT, aTTi T~t ~ / a T  i aT T T \ 

+ ~ ~ ~ I-- Tracel-- T.,,~.~- T~ l - -- Tracd -- T.,,~.,- T, I 
,=,,=,~=,Laq~ \~gq, aqk ) aqp \ a q ,  aq~ ] 

a / a T ,  aT. T T\-] ~ ~ ~ r a /aT=, aTe,\ 
+~a  Trace(~a. T~'J=,~-a_ T,|lq~q~ + 2. 2. 2 . / - - T r a c d - - a ~ , - - !  

qs \ q~ qe . ] d  i = ,  k = I j = ,  Laqs \ aqe aq, ] 
1 a / a T , ,  a T T ~ - I  . ~ T a T /  
2aq Trac~-~q~ ~='~)Jq'q:,~_, re'g_ --"aqp 

The expression will be reduced: 

~ l - a  / a T ,  aTT~ i a , ' a T ,  aTn' l  
/ - -Tracel  - - . L - - - L  I - - - - T r a c d  - - ~ ,  ---~' l /  

N N 8~T, aT, = X X r T r a d - -  ~,aT'~ + M ~  ~---~-~'//aTi a2T T \ 
~=,j=IL -\Sq,~qp 8q.I Tra \oq~  "~' oq~ oq# 

- - T r a c d - -  $, ~ '  I - - T r a c d - -  J ,  - - l l  
2 \aqkaqp aq.] 2 \aq~ aq, aqjjj 

N N a2Ti aT, / a2T, aT/T~ 
= T. X rTracd'-- '~,aT'~+Traca-- '~, --~'l 

,=,s~, L \ a q j  aqp a q d  \aqiaqk aqp) 
1 / a~T, aTTi~ i / 8ZT' a aT~'~-I 

- 2  ce~aq, aqs aq~J 

= Y. V rTracd'--S,  aL~ + Tracd ' - -~ fTh]  
, o,~=--, L \aq~ aqp aqd \aqj aq, aq,)J 

- -  2., ~ l r a c e =  - -  , ~ , - -  i = 2., 2" T r a c e l  - -  ,~, ~ I. 
~, = ,  j = ,  \aqs  aq. aqd ~ = ,  j = ,  \aq  s aq~ a q . )  

Similarly for the expressions in which T, will be replaced by T,, 
N N T / a ~ i  aT T T~ • - . . ~  r a  _ [ a T i T  j aT~,TT'~_ 8 2. ~./~-- lracel-~-- ., ,,,-~-- , /  ~a. TraceI--T~, '~=,--T,  / 

• = u = I L°qs \ oqt , oqk l q, \aqk aqj ] 

+ 8 T radOTi  aTTi ~ ~ [ a~Ti aT T, T'~ 

+ ~ ~ T r a c d  ~ ' ' - / T . , ~ . ,  ~" "' T T / / -  ~ ~ T r a c d - -  T . , a . , - -  Tt /  
~=,s=, LaqpaqA ~q, )J  k=U=, \aq...aq~ aq~ .] 

FaT,  a / C~Ta, 

.~,s~=, Laq~ aqp\ aq, i j  i 

a T  i a (9 ai T = L L F a T i a [  OTT' T\-I L L TT T r a c d - - - -  ' T . , ~ . , - -  T, l / - -  TracJ - - - - fL : . , - -  T,~] 
,=,s=, Laqpaq~\ aq, ) j  ,=,s=, Laq, aq,,\ Otis ) j  

~ a / a T ,  aT T T ~ 
• = = - -  Tracd - -  T=,,~=,-- T, / .  

+,El ,X I aqj \aq~, aqp ] 
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Consequently 

N a a ~  i T N 
F, ~ ~ Trace(~a_31~a,~Ch-+Yi  ~. ~ ( a T i  OT~ \ = T r a c e l - -  T = i J . , -  T / l # ,  

i = l k = l  \ q, q* ) '= I ~'= l Ik aq , Oq:,. ,I 

Z L / a L  OT~ ~\.. Z Z l O T . ,  aTe.\ + ~ ~, Tracel - -  T . i J . i - -  T./q, + >. ~ T racd - - ,~ , , -  - ~'/~, 
,=,,=, \ Oq, aq r ' )  ,=,,=, \ Oqp Oq, ] 
N N N / a2-~ - ,~-T~ N N N 

~Tracd-- -- [T~i,D~, -- T~II 
+ ~. ~ ~Trace[ f :, D,~o,}+k++,~] ,~ ~ f  \dq iaq ,  aqp.] r d T i a  / aT~ \-I 

,= = = . : = = j= ( k aq, aqj \ Oq, ]_J 
FaT, a [ aT. r, _\1 a I- / aT  aTZ \-1~ 

- .racek~-q, ~ t T J = 7 ~ q j  T')] + ~qj tTracet~q/T.,J., ~ T,.r)J~o. 0, 

N N 

Tracel-- 
+ /a2T=, aTy,.. ,  aT, 

. . . .  /=l \aqiOq,.'D"i-~;/)q'qY- .~"=l m'g ~qp "" 

The forces will be presented in the form: 
N 

k = l  k=li=l  

N F lOT OTT'\ T r a c e / d T , ~  _ OT~,_r" ~ _ /aT,  oT~ T \ /aT., OTT\q 
Dp,~ = ~ / T r a c e l -  - ' , ~ -  - ' 1 +  i - - % , o . , - - U , / + I r a c e / - - T , , 3 . , - - T , l + T r a c d - -  

,=IL \Oqp ' a q , )  \Oq: Oq, ] \Oqk aq, ) \ O q ,  "J""~q[)J" 
N TOT, 

D,= - , L  m,g Tq~q ~. 

N F / 02T a T T I  / /aT .  T X t Dpk / = ~-" l T r a c e /  v . ,  OT.~.0 O T., TT d], - - '  / + Trace/ -  - '  - - _ a ~ - -  ) ,=, L \Oqi Oqk Oqp ) \aqp Oq: Oq, 

_ (aT, a2Tr~, _\ lOT, OT~ 
+ I r a c e [ ~ -  T.jJ~ ~ T : / +  Tracel - -  OT~ 

\dqp 'Oqsaqk ) \ a q  T"~J"'~a-~qk aqs) 

leT, aT., av~, ) f a T ,  O->T~,_T ) 
- T r a c e l - -  - " "' "~.i - ""' T, T - T r a c d - -  T.fl . i  i L i 

\Oqj, Oq, Oq/ ] \ O q  k OqjOq, ) 

lOT, aTT.aT,~ _ / O2T. aT~ \ 
- -  Tracel--\aq, T~ ,~.,, - 0qs a, ,Oq,]l + T r a c e / ~ T . / , ~ . , \  qg Oqj -aq, " TT1] 

I'OT 02TT ir {0TOT.,  0T T, \ Tracel- -'T~,3., - ""' uT~ + Trace/ -  - '  - - "' J., - - "' TTI + 
\Oq~ aqj Oq, ) \Oq~ aqjaq, ') 

+ Trace(OT, OT~ aT~ (02T  T . a TT.\-I 
T . , J . ,  ~ - -  I + T r a c e l  - " "  3., - " " ' | /  

\Oqk 0% oq/) \OqjOq, aqp J J" 

After p changed to i, k into j, j into k, i into p as well as making use of the equation OT,/Oqj--O for i < j  we obtain 

i 0,,0; i i o,,+o,+ o, 
where j = I j = I k = 1 

Du = ~ _ ( 0  T, OTT\ ~ f a t  OT~ \ 
Tracel - - , L - - / +  Y T r a c d -  " '  T.pJ. - - " TT/ 

p . . . .  04) ~ ~qi I" Oqj/] ~'~=i ~ Oqi " Oqj P/] 

( d i p  a T  T "~ N T r a c d O T . ,  j a  T O  T.,"~ + z.. T r a c e i - - T . , ~ 0 . , - ' T  T + 
, :/ t aqj aq, ) , : ,  \ Oq, " aqs ) '  

m,v'T',,. 
e =. Oq, 

D,i, = ~ { O2T, OT'T~ N lOT aT. OTT. \ 
T r a c e / - -  3 -  -I' I + 2 Trace{ -z -e-~A-r ,~. _ ~  T v]  

p . . . .  (i.j.k} \Oq~ Oqk Oq,.] , :, \ Vq, oq, P oq: "1 

Z faT:  O..T T, T~i N I"OTp aTTOTT~ 
+ L T r a c e / ~ - a  T . , J . , ~ T , ] +  Z T r a c d - - T . , . ~ . ,  

p = i \ q, qj qk / p . . . .  .,) \ de aq~ Oq, ) 

( a  T, O T., 0 TTa, T\ N [a T a T T 0 T ~  
- ~ Tracel - -  - -  J . ,  - -  T / - ~ Tracel-  - ' T.,,~., " - "p " " '  I 

p =: \ Oq/ Oq, Oq, P.] p . . . .  (i.j) k Oqj Oq, aq~) 

+ ~ l a~T ,~TT , N l O T ,  aT., aT T 
Trace[  - "' T. J ~ " " T T / +  ~ Tracd - - - -  J. T~ r 

. . . . .  (j.k) \Oqs Oq, " " aq~ ")  , : j  \ aq~ aq, , ) 
l eT ,  OTTOT~ = Trace(0-,T, ,-, r r + Z °T"/ \ "~-P=m~ax(J.k't~q/ Tap'a" ~#q# ~q'k) p=l \Oqiaq,  O~qi]" 
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After regrouping we obtain 

Du~.= ~ T r a c e l - - {  cT"~TP ,~p ¢3 ~-PTl ~ Trace[--/'c7 TP c7 ~-~rP 0 ~-'r'~ 
p . . . .  (,./.k k, c3qj Oq, ~ q ' ]  --o . . . .  (,,,) k ,  dq, 

+ Tracel-- T~p,~p -- --I 
, . . . .  ~ U.kl \ cTqi dqi Oqk J 

+ ~ [Trace( 8"-0' ~-a..~.? t3 Yl? TT/+  Tracel - -  ~-ap.~a. - -  
. . . . .  o.~,L \Oq/t3qk dq, : \ t~q/ 3qi ~ q , / j  

, =,L \ q, Oq# c~q, } \ q, Oqk q: 1_] 

+ ~ / T r a c e / - -  - -  J~e ~-pr _ T r a c e / - -  - -  ,D,: - -  ~pr 
.=/L t ~q/ dqk ~ \ c3qi aq, aqk 

+ ~ T r a c e ' l - - / "  8'~-a' d cnT"r~ 
.=i \cTq/dq,~ ap ~Zq i  J "  

Generally, masses of actuator effectors, together with transmission elements fixed to them, are small, and that is why 
3~ matrix elements are small as compared to the elements of ,~? matrix. However, due to high transmission ratio, some 
elements of d"¢~,:/dqj matrix are large. Therefore, in the above formulas, the expression with 2~ which do not contain two 
T~: derivatives, will be ignored. 

T r a c d - -  ~. - - / +  E Trace(d ~-:" ~ 8T/'~ D u 
p . . . .  z. <,.7) \ aq, aq/)  . =l \ aq i as, aq~ )'  

N T 

D,: = ~ T r a c e / - -  ~ - - / +  
p . . . .  {i.j,k) \aqjaq~ aq,/ ~ ,  \ aq, aq~ ~ aq: ~/ 

N FTrace(~3~- c3~- 8Y x \ 1 ~ -  ~3~" 8~ -r \ 3  
+ ~ P - ' P  d l . ? - "  ~ - ~ / - T r a c e / - ' - - ' ?  3 a p - "  qFTII, 

g 
D, = -- L mpg r - - -  

:=~ Oq, ?" 
If all actuators are installed in the axes of kinematic pairs so that ~el~q~ = (dT~/dq~)<$.~(fp~--Kronecker delta), then 

~. ~ ~ Trace(CTFet3TaPJa~O~-Te~-Tl= ~ ~ ~ Trace(O~OTaP6J t77fTp6 ~T I 
j =  l k =  l p ~  l ~ Oq, dq~ Sqi J ]=1 k=tp=l \" 6 ~q~ cq~ /' ~"' Oq, " "/ 

N N TracedO~Oq]- ° r ~ N {C77 c~-ai 87[T, T ~ 

j = l , ~ = l  \ ,t:. t ik I j = i  

- T r a c e I - -  ~ - . e  67i3a? - - ap ~:,k ~ : 1  

s=l*=, \c3qi ~-q 6,,~0~ ~ - q  7]-~) = s=El Trace/-\ aqs- '--<~'~a ] F a q ,  q, ,)1. 
Similar transformation having been performed, we obtain 

Du= T r a c e / - -  ~ ~ "  I + 6 u lrace~ - -  m. - - i ,  
p . . . . / - ' . . s )  \ aq, aq:] \ aq, ' aq, ) 

o,: E / a 2 "  a ' "  / a t  " • ) = T r a c e { ~  ~0, _ c |  + 6s~ T r a c e | : ~  d ~-,~ ~ ~ ~s  
p . . . .  (i.i.k) \vqicq~ cq, J \ cqi ~qi t~q/ 

D i = - S "  m -~ ~ reap. 


