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FORWARD AND INVERSE KINEMATICS OF
IRb-6 MANIPULATOR

TADEUSZ SZKODNY

Institute of Automation of Silesian Technical University, Gliwice, Poland

Abstract—The paper presents equations of links and actuator kinematics of the IRb-6 manipulator in
matrix form. Also solution of equations of link kinematics as well as formulae joining link and actuator
natural coordinates of the manipulator have been presented.

NOMENCLATURE

A,—homogeneous transformation describing the relation between i — Ist link and ith link
o, 1;, A,, @, —Hartenberg-Denavit parameters
E—homogeneous transformation describing the relation between task and (5th) working link
@, @, ¥ —external coordinates of orientation (Euler angles)
hy, by, ky, ky, ks—kinematic parameters of driving units of IRb-6 manipulator
T-—homogeneous transformation describing the relation between 5Sth link and base line
T,—homogeneous transformation describing the relation between ith actuator effector and ith link
@ —natural coordinate of ith link
6 ,,—natural coordinate of ith actuator
x, y, z—external coordinates of position
X, VaZs—coordinate system associated with ith actuator effector
X, VwZm—Ccoordinate system associated with the body of the ith actuator

1. INTRODUCTION

To describe the manipulator kinematics, dekstrorotary coordinate system associated with particu-
lar components of the manipulator will be used. To describe the position and orientation of the
systems homogeneous transform [1-4] will be used. Due to this transform a joint description of
the position and orientation is possible, which is essential while describing kinematics, and
particularly dynamics of manipulators.

Natural coordinates of links will be called those describing relative motion of adjacent
links [4—6].

External space of the manipulator is described by its external coordinates of position x, y, z and
orientation @, @, ¥ (z—y—z Euler angles). These coordinates describe the manipulator effector in
relation to a selected relative system regardless of the manipulator kinematic structure. The
manipulator internal space is described by its internal coordinates. These are natural coordinates
of links and actuators [4].

Industrial robots are most often equipped with manipulators with V class kinematic pairs and
only such are regarded in the paper.

The fundamental problem in industrial robots control concerns algorithms generating reference
trajectories.

Papers [7-10] suggest generating algorithms of a reference trajectory, which are based on an
arbitrary discretization of the manipulators internal coordinates. A discretized description of the
manipulator external space results from the discretized description of its internal space. A reference
trajectory in the external space is approximated using a discretized description of the manipulator
external space. Each point of discretization in the external space approximating a reference
trajectory is corresponded by a known discretized internal coordinate of the manipulator. The
disadvantage of these algorithms is that they demand large memory, big sets, being a discretized
description of the internal space, have to be searched, and there is no possibility to reduce the
approximation error, resulting from arbitrary discretization of the manipulator internal space.
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In papers [11-13] iteration methods of determining the internal coordinates corresponding to
external coordinates of the reference trajectory point have been suggested. In this method of
internal coordinates determining the point of the reference trajectory is being approached in
successive steps of iterative computation. Discretization step of the internal coordinates in
successive steps of iterative computation depends on the error of external coordinates in the
preceding iteration step. Large memories are not demanded in iteration methods as computation
is carried on only for reference trajectory approximating points. In these methods a reference
trajectory approximation error may be reduced though a number of iterative computation steps
is thus increased. In paper [11] a modified iterative method of a reference trajectory straight segment
generating has been presented. The modification consists in arbitrary accepting of error distribution
in the external space, thus reducing the number of iterative computation steps. The accepted error
distribution is right with only short segments, though.

A disadvantage of iterative methods is the necessity of multiple iterative computation. Whereas
the advantage of methods based on arbitrary discretization of internal spaces as well as iterative
methods is the simplicity of computation which lies in using only equations of the manipulator
forward kinematics. This advantage however may be a catch for those computer programmers who
have not considered kinematic singularities of the manipulator [4].

Analytic formulae which are the solution of an inverse problem of manipulator kinematics enable
designing of trajectory generating algorithms which compute in one step only internal coordinates
of points lying exactly on the reference trajectory, with the accuracy resulting from the computer
register length. These formulae make the programmers forsee alternative solutions for manipulator
kinematic singularities. Analytic formulae as solutions of an inverse problem of kinematics of
the 6 degrees of freedom manipulators have been presented in papers|l, 2, 14, 15]. The same
formulae for the N <6 degrees of freedom manipulators have been presented in papers [1, 16].
However a contrains equation of an effector link [4] has not been presented in the paper [16]. It
suggests that the link is able to realize the reference trajectories with 6 degrees of freedom, which
is not possible.

What follows from the foregoing review is that the kinematics models as presented in
papers [7-13, 16] do not allow to design accurate and at the same time fast reference trajec-
tory generating algorithms with defined kinematics for the under 6 degrees of freedom manipula-
tors.

In the second paragraph equations of forward kinematics of IRb-6 manipulator links have been
presented. The third paragraph contains formulae being the solution of inverse problem of links
kinematics. Then follow equations of actuator kinematics which are vital for dynamic analysis of
the IRb-6 manipulator. The fifth paragraph presents the example illustrating the usage of the
formulae presented in Section 3. The sixth section contains the conclusion.

2. EQUATIONS OF LINKS KINEMATICS

IRb-6 manipulator (Fig. 1) has 5 links joined by rotational kinematic pairs. Figure 2 shows a
homogeneous transform graph describing the manipulator kinematics. Number of links in Fig. 1
have been circled. Coordinate systems have been associated with links after Hartenberg—Denavit
notation. Hartenberg—Denavit parameters describing this manipulator are shown in Table 1 [4].

The following modification of angles will be introduced to facilitate solution of the inverse
problem of kinematics [4]):

@;=0,-90°, 5=60,—-90°, 0;=0,+90°, @,=60,—-90°, O;=0;. 1)
Table 1.
Link number o;[] {;[m] 4;[m] e,

1 90 0 0.70 90-430

2 0 0.45 0 50130

3 0 0.67 0 —130--50

4 90 0 0 —25--220

S 0 0 0.095 A@; =360
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Fig. I. IRb-6 robot manipulator.

Ranges of change of these angles are as follows [4]:
0° < O] < 340°,
—40° < @;<40°,
—40° - 0;<0;<40° for —40°<O,< 15,
—40°—-0:;<0;<25-0; for —15°<60:<0°,
—-40°<0;<25° - 0@; for 0°< O <40,
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Ts

Fig. 2. Homogeneous transform graph of IRb-6 manipulator.

-90°—-0;,-0;<0,<90° - 0;—- 0],
=270° + k(@54 0O+ 0) <O, <90° + k' (O5+ O3+ OF), ks'=32/19. )
To simplify the notation, the following designation will be used:
sin@;=3S8,, cos@;=C,;, sin(@/+0O;)=S5;, cos(@;+0O;)=C; etc.

In further consideration it will be assumed that the angles ®{—@; are natural coordinates of links.

A,—A; and E transform matrices have the following forms {4]:

_Sl O Cl 0 _S2 ‘—Cz 0 “le2
a— | C 08 0| 4 |G -5 0 LG
0 1 0 4 o 0 1 o |’
0 0 0 1 0o 0 0 1
(s, ¢, 0 LS, S5, 0 C, 0
a— |-G S 0 <LG| a4 _| G 0 s 0]
0o 0 1 0 0 1 0 0
o 0 0 1 0 0 0 I
(¢, -5, 0 0 100 I
A~ |S G 00| g o100l (3)
0 0 1 i 00 1 4
0 0 0 1 000 0

T, and X matrix describing the wrist of an effector link and task as shown in Fig. 1
the following forms [4]:

S1S234C5+CISS _SIS234S5+C1C5 _SICZJA lZSlSZ-IBSlCZB—’{SSlCZM

Ts=| -C S3Cs+ 88, €8S+ 8 Cs CiChu —hLCS+5LCCxr+AC Cyy
Cra Cs —Cy3y Ss S A LC+ LS+ A58y,
0 0 0 1

(4a)
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”v\' 0.\‘ a\ p.\‘

X = n, 0)‘ a, py , (4b)
n o_' a p:
0 0 0 1

where n.—n., 0.—0., a,—a. are identical with T; matrix elements. Elements in the last column are
the following:

P =088 — 5,8, Cyy — A58, Cryg + (S 85234 Cs + C,85) — 465, Cyay,
pr=—hLC S+ LC Cy+ AsC  Coyy + i (— C 853, Cs + 8, S5) + 46 C, Cosa,

P-=A+ LG+ LS+ AsSya + e Ciuu Cs + A6 Sy

T, and X matrices enable both solving of the forward problem of kinematics of the manipulator
and determining of the work space [17].

3. SOLUTION OF LINK KINEMATICS EQUATIONS

The solution of the inverse problem of IRb-6 manipulator kinematics will be expressed by means
of elements of Ts; = X, E~' matrix whose form is:

TSref = xreflE_I = Trans(xref’ Vrefs Zref)EUIer(¢reh @refa 'Pref)IE#I

1 0 0 x. cos P.cos @ ,cos ¥ . —sin P ,sin ¥,
_ 10 1 0 ye sin @, ;cos @ cos ¥+ cos D, sin ¥V

0 0 1 =z, —sin @ cos ¥V

00 0 1 0

—cos P ;cos O sin ¥, ;—sin P rcos ¥y cos D sin®,; 0
—sin @,;cos @ Sin ¥ s+ cos P08 ¥y sin D 5in @,y 0
sin @ sin ¥ cos O 0
0 0 1

I 0 0 - n, o, a, p.

010 O _|n o a p,

0 0 1 —4i n. o. a p.|’
000 I L 00 0 1

n, = cos ®,cos @ cos ¥ —sin P sin ¥,

n,= —sin @, cos @,,cos ¥ ;4 cos D sin ¥,
n.= —sin O cos ¥,

0, = —C08 @, COs @ sin ¥, — sin D ,cos ¥,
0, = —sin @ ;cos O sin ¥ ;+ cos D cos ¥,

0.=sin O sin ¥,
a,=cos ¢ ,sin O,
a, = sin @ sin O
a.=cos O,

p.\'=xrcl‘~n.\'l6—-a.\'}"6’ p,|'=yref_n,\'l6_a_\'}"65 pzzzref—n:lé_a:}"(n (5)
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where: Xoer, Veers Zrers Prers @rers Pior are the task required external coordinates and /;, 4, are the task
kinematic parameters.

The IRb-6 manipulator has 5 degrees of freedom and this implies one constrains equation of
the effector link wrist. The kinematic structure of the manipulator hinders the rotation of effector
link around the z, axis of the base coordinate system [4], and this is represented by the equation:

a.\'p,\' - a_\'px =0 (6)

which must be satisfied by elements of T, matrix in each point of the reference trajectory. It is
one of the necessary conditions for the reference trajectory to be realized. The formulae being the
solution of the inverse problem of kinematics for the T, matrix in the form (5) are as follows
W or for p.<p, 20,
@ ={0F+180° for p, <0,
©F+360° for p,>0ip. >0,

6% = arc tg(l‘-’i>. (7a)
2 2__(j24 2
@§=arctg§, S3=W1+W2 (12+13), Cy=(1 — S, (7b)
S, W, 5C—w (5,83 + 1) _wihG+wa(h S5+ 1)

@/= -, = ? - ’
y=arctg Cz Sz I%C§+(I3Sz+12)2 2 I§C§+(lgs3+12)2

w,= _Slp.\' + Clp_r + ’15 Sl a,— '15 Cl ays

Wy =p, — A — Asa.. (7c)
AN for 1;Cy, 20,
O, ={0%+180° for A4S, > 0ii;C,, <0,
@%—180° for A;S;, <0ii;Cy, <0,

As Sy =8,8,p.— C, SZP)‘ + Cop.— 4G =L - LS,
AsCy=~8,Cp.+ C, Gp,.+ S;p-— 28— 1Cs,

AsS
O =arctg /ISCM' (7d)
5334
0,=03,-0; (7e)

SS=CIn.\'+Sln)" C5=C|0_\.+S|0_‘,,

S
OF=arctg—. 7f
$=arctg (79
Omin and @4, boundary angles depended on @3;-@/ as well as @, —@ ;... = 360° angles [see
formulae (2)] and so S, and C; signs must be examined in order to determine @5 angle. The analysis
of the above formulae makes it clear that for explicitly determined elements of the T, matrix,

there may be two solutions for @;—0@ ;= @, or @;= @;,,. This is the kinematic singularity of
the first kind. There is no singularity of the second kind of the IRb-6 manipulator [4].

4. EQUATIONS OF ACTUATORS KINEMATICS

Driving kinematics has been illustrated in Figs 3-6. The transform matrices illustrated in these
figures have been taken from paper[17]. The x,,y,z,; coordinates are associated with the body of
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Fig. 3(a). The first degree of freedom drive unit.
Fig. 3(b). The first degree of freedom drive unit: A, =Roti(z, —8, + @+ 90°)Trans(0, 0, 4,,)
Rot(x, 90°), T,, = A"

the ith actuator. The x,,y,,2,, coordinates are associated with the rotor of the ith actuator. @, angle
of rotation of the x,y,z, system coordinates around the z,, axis is a natural coordinate of ith

actuator.
Formulae binding the @{-©§ natural coordinates of links to the &,-6  natural coordinates

of actuators are as follows [4, 17]:
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Fig. 4(b). The second degree of freedom drive unit: A ,, = Rot(z, —8,,), A, = Rot(z, 180°)Trans
(0,0, 4,;)Rot(x,90°),  A,,, = Rot(z, 90" — ¢, + @3)Trans(0, 0, 2, ) Trans(/,,, 0, 0)Rot(z, 90°)Trans(/;;,, 0,
0), Tpo = (A2 A App) ™

@{ :krI@(IIa

AB®+ BC — [4,C — (h2)0uF
2-AB - BC

®;= —arccos

s

DE?*+ EF?* — [DyF — (hy/27)0 3T

_@”
2-DE - EF +h z

@, = —arccos

O.i=k;'0,—(0:+ 07),
Oi=k;'k;'(O,—O,).
These formulae are corresponded by the following equations:
0, =ko;,
O, =Q2n/h){—[AB*+ BC*—2-AB - BC - cos(a — @3)]"* + 4,C},
O, =Qn/h){~[DE*+ EF*—2-DE - EF -cos(f — @5 — ©})]'"* + D, F},
O,=k(O:;+0;+0)),

O;5=k(O;+ 0+ 04) —kk; 5.

®)

®
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N

Fig. 5(a). The third degree of freedom drive unit.

AB?+ BC? — A4,C?

o = arc cos > 4B BC ,
§ = arc cos DE? + EF? — D, F?
B 2-DE-EF
The T,,—T, matrices describing the manipulator driving kinematics are in the form of [17):
-5, ¢, 0 0
0 0 1 -4,
—“-ul - Cw S(p O 0 H (]0a)
0 0 0 1
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Yo

(-}

Fig. 5(b). The third degree of freedom drive unit: A,;=Rot(z, —0,;), A,; = Rot(z, 180)Trans
0,0, A,;)Rot(x, 90), A,y; = Rot(z, 180° — ¢, + @3)Trans(0, 0, 15, + 43 )Trans(/;;, 0, 0)
Rot(z, —90° + @;)Trans(/3;, 0,0), T,z = (A A Aps) "

where S,, C,=sing, cosgp -9 =01—0,,.

ccC, -S.C, S, —ln—12,8,
el A AR (oo
0 0 0 1
where S,, C,=sin@,, cos O, S,, C,=sin@, cos @, ¢ =@, — O3,
R oy o
o=+ a;C, = 1, S,V + (dy — 1, C, — a0, 5, "]~
c¢s, -85, C, —lyh—15S—4i,C,
S e E T
0 0 0 1

MMT 30/7—H
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Fig. 6(a). The fourth and fifth degree of freedom drive unit.

where S,, C,=sing@, cos¢ - ¢ = @5+ O} — ¢,,

by—aySy
=arctg———2,
s gd3—a3C23

Ay = [(dy — a;Cy ) + (by — a, S» ).

=8, Co 0 138,—1,Cy

T. = 0 0 1 — (A + Aa2)
ad —

Co S, 0 —1yCi—1pSy |’

0 0 0 1

(10d)
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Fig. 6(b). The fourth degree of freedom drive unit.
where S,, C,=sin@, cos@ ¢ =03;4+0;+0;—~ 0y, I, =14.
-GS, GC, S l538,Cs — I5; C34 Cs — (ds; + 452)S5s
T. .- SsS, =8C, Cs —138,85+15,CySs— (A5 + 45,)C;s (10¢)
ST G S, 0 ~l53Cs — 1553 — As ’

0 0 0 1
where S,, C,=sing, cos@ ¢ =@;+ 03+ 0;— 0O, I, — 1.

Figures 4 and 5 illustrate the x3,93,023,0 cOOrdinates describing an element equilibrating, the third
link. Kinematics of this element are illustrated in Fig. 7. The T,;, matrix describing these
coordinates in relation to the base coordinate system has the form of:

=85Cy 8583 G0
CIC23 _CISZJ Sl 0

Ton = 1
031 s, Cn 0 A an
0 0 0 1
5. EXAMPLE

The formulae presented in Section 3 are the solution of inverse problem of IRb-6 manipulator
kinematics. On the basis of these formulae algorithms generating natural coordinates of actuators
are designed. The coordinates correspond to the reference trajectory of a manipulation object as
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Fig. 6(c). The fourth degree of freedom drive unit: A, =Rot(z, —O4), A,,=Rot(z,&;+

@3+ @)Trans(0, 0, 4,,), Ay = Rot(z, 90° + 45°)Trans(/,,, 0,0), A,y = Rot(z, ~45° — @3 — @})Trans

(-0,0), Ay, =Rot(z, @ ~90°)Trans(/,;,0,0), Ay, =Rot(z, =45+ @}), A, =Trans(ly,,0,0)
Rot(z, 45%), A = Rot(z, 90°)Trans(0, 0, 4,,)Rot(x, 90°), T,y = (A A 2 Ar3a Aras Agss Asea Agag) ™ L

described in the manipulator external space. The algorithms computing the actuators natural
coordinates form a reference trajectory generating tier which is a functional structure element of
the adaption robots control system. These algorithms are indispensable program means inter-
connecting vision tier and control drives tier [5].

The author of the paper has worked out a computer algorithm PLAN2 generating task
trajectories of the IRb-6 manipulator. Reference external coordinates of the points of a generated
trajectory will be called main fulcrums. No such generation is possible without an introductory
description of a trajectory in the form of external coordinates values of, at least, two main fulcrums
optionally distant from each other. PLAN2 algorithm generates additional fulcrums between
consecutive main fulcrums.

For the defined reference external coordinates X,e;, Vrers Zrer> Prers Orers ¥rer and the reference times
T describing consecutive main fulcrums the algorithm determines T, matrix, checks if constrains
equation is satisfied (6) and computes natural coordinates @ ~@ from the formulae (7). Then the
algorithm asks about a coordinate system describing the shape of trajectory segment between the
consecutive main fulcrums. For a straight segment, cartesian system should be set; for a curvilinear
segment either cylindrical or spherical coordinate system should be set. Once external coordinates
of all the main fulcrums have been set, the algorithm asks about parameters defining the accuracy
of generating the reference trajectory [18] and parameters /; and 4, describing the task. After input
parameters have read in, the algorithm determines additional fulcrums accepting a linear change
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K, 8,50y 6y-45°

Fig. 6(d). The fifth degree of freedom drive unit.

of external coordinates x, y, z, @, @, ¥ along a length of segment joining consecutive fulcrums.
@ angle is a result of the altered external coordinates and the constrains equation (6).

Figure 8 shows a task rectilinear reference trajectory which is limited by the initial fulcrums P
and the final point K. The coordinates of these fulcrums are: xp= —0.60 m, yp.=0.60m,
Zoer = 1.0m, @p e =135° Op =179, Wpor=359°, Xger= —0.65m, Yy =0.60m, zpc=1.0m,
Drer = 137.29°, O r = 1°, ¥ or = 180°. The following input parameters of the PLAN2 algorithm,
defining kinematics of the trajectory as in Fig. 8, will be taken on: the task parameters /, = 0 and
4s=0.16 m; time assigned to point P T,=0; time assigned to point K T, =1.0s; trajectory
shape—straight line.

1283 additional fulcrums shown in Figs 9 and 10, have resulted from the generation. It follows
from Figs 9 and 10 that natural coordinates graphs of the links and actuators are similar. @3
coordinate undergoes a sudden alteration from the minimum to the maximum boundary value,
determined by the inequalities (2). It follows from the inequations that @ angle jump at t = 0.5s
time equals 360°. There is a similar change in the @, coordinate. The other coordinates graphs
are smooth.

The main fulcrum P is corresponded by the following natural coordinates: @ = 45°, @; = —25°,

1=377°, ©,=-102°, ©;=-181°, ©,=-7110°, ©,=-2567.5°, O,=1360.5°,
@, =11392°, @,,= —2364°.

The main fulcrum K is corresponded by the following natural coordinates: @; = 47.3°,
O;=-39°, @;=12° @,=116°, ©;=0°, ©,=-7472°, ©,= —3818.8°, @, = —2921.3°,
@,=—11392°, @,= —11392°
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Fig. 6(e). The fifth degree of freedom drive unit: A, s=Rot(z, ~0,), A,s=Rot

(2, k7@ ,4)Trans(0, 0, A5,), A5 = Rot(z, 90° + 45°)Trans(/s;, 0,0), Ay;=Rot(z, 0 —k;'0,—457)

Trans(l;,,0,0), Ays = Rot(z, @} — 90°)Trans(lsy, 0,0), A =Rot(z,k;'Oy5~0;— 0545, A=

Trans(ls,, 0, 0)Rot(z, 45°), Ay, = Rot(z,90° ~k;'0,s+ 63+ 8} + @ )Trans(0, 0, 4;;)Rot(x, 90°)Trans
(0, 0! }‘S)ROt(Z’ 12 g )’ TaS = (Aubi AI)IS A 125 AZJS AMS AJSS A565 AG'IS )_ ! .

Vost \ iz,

Fig. 7. Description of the third link equilibrator. Fig. 8. X, reference trajectory.
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Fig. 9. @(1)-©(¢) link natural coordinates.

6. CONCLUSIONS

The kinematics models as presented above allow one to:

(a) analyse reference trajectories graphs in the internal space of IRb-6 manipulator;

(b) determine analytic description of the IRb-6 manipulator work space [17];

(c) design reference trajectory generating algorithms for the IRb-6 manipulator (e.g. PLAN2
algorithm [18]);

(d) determine instantaneous advance and angular velocities of links and other elements of IRb-6
manipulator which is essential for their dynamics, stresses and strains analysis.

As the IRb-6, IRb-60, IRp-6, IRp-60 manipulators have similar kinematic structure, the

equations of kinematics in Section 2 may be well used to describe each of them.
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Fig. 10. @, (1)-0,(t) actuator natural coordinates.
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