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Foreword

Case Studies Are for Communication and Collaboration

Data mining or data analysis in general has become more and more important, since large
amounts of data are available and open up new opportunities for enhanced empirical sci-
ences, planning and control, and targeted marketing and information services. Fortunately,
theoretically well-based methods of data analysis and their algorithmic implementations are
available. Experienced analysts put these programs to good use in a broad variety of applica-
tions. However, the successful application of algorithms is an art! There is no mapping from
application tasks to algorithms, which could determine the appropriate chain of operators
leading from the given data to the desired result of the analysis—but there are examples of
such processes. Case studies are an easy way of communicating smart application design.
This book is about such case studies in the field of data analysis.

Analysts are interested in the work of others and curiously inspect new solutions in
order to stay up to date. Case studies are an excellent means to communicate best-practice
compositions of methods to form a successful process. Cases are also well-suited to storing
results for further use. A case is then used as a blueprint for further applications'. This
eases the development of an application to quite some extent.

Another good use of case studies is to ease the communication between application do-
main experts and data mining specialists. The case shows what could already be achieved
and inspire future cases?. This allows to frame new applications and to illustrate possi-
ble results. For those experts who want to set up a data mining project, it is a valuable
justification.

Finally, teaching means communication. Teaching data mining is not complete without
reference to case studies, either. Rapid-I offers at their website, http://rapid-i.com, video
tutorials (webinars), white papers, manuals—a large variety of documentation with many
illustrations. Offering case studies is now a further step into communicating not only the
facilities of the system, but its use in real-world applications. The details of complex data
analysis processes help those who want to become data analysts.

In summary, case studies support the collaboration of data analysts among themselves,
the communication of data analysts and application experts, the interaction between ex-
perienced and beginners. Now, how can complex data mining processes be communicated,
exchanged, and illustrated? An easy-to-understand view of the process is to abstract away
the programming details. As is explained in the following, RapidMiner offers this.

IT. Euler. Publishing operational models of data mining case studies. In B. Kitts, G. Melli, and K. Rexer,
editors, Procs. of the 1st Workshop on Data Mining Case Studies, held at IEEE ICDM, pages 99-106, 2005.

2G. Melli, X Wu, P. Beinat, F. Bonchi, L. Cao, Rong Dan, C. Faloutsos, B. Kitts, B. Goethals, G.
McLachlan, J. Pei, A. Srivastava, and O. Zaiane. Topl0O data mining case studies. Int. J. Information
Technology and Decision Making, 11(2):389-400, 2012.
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RapidMiner

RapidMiner is a system which supports the design and documentation of an overall
data mining process. It offers not only an almost comprehensive set of operators, but also
structures that express the control flow of the process.

Nesting operator chains were characteristic of RapidMiner (Yale) from the very be-
ginning. This allows us to have a small number of operators at one level, each being
expanded at the level below by simply clicking on the lower right area of the operator
box.

An example set can be multiplied for different processes that are executed in parallel
and then be unified again. Sets of rows of different example sets of the same set of
attributes can be appended. Hence, the example set that is used by some learning
method can flexibly be modified.

The cross validation is one of the most popular nested operators. The training set is
split into n parts and, in a loop, n — 1 parts are put to training and the remaining
part to testing, so that the performance on the test set can be averaged over a range
of different example sets from the same domain. The operator X-VALIDATION is used
in most of the case studies in order to achieve sensible performance evaluations.

Several loop operators can be specified for an application. The LOOP PARAMETERS
operator repeatedly executes some other operators. The parameters of the inner oper-
ators as well as conditions controlling the loop itself tailor the operator to the desired
control flow.

Wrapper approaches wrap a performance-based selection around a learning operator.
For instance, those feature sets are selected for which a learner’s performance is best.
The wrapper must implement some search strategy for iterating over sets and for each
set call a learning algorithm and its evaluation in terms of some performance measure.

These structures are similar to notions of programming languages, but no programming
is necessary — it is just drag, drop, and click! Visually, the structures are shown by boxes
which are linked or nested. This presentation is easy to understand.

Only a small (though decisive) part of an overall data mining process is about model
building. Evaluating and visualizing the results is the concluding part. The largest part is
the pre-processing.

It starts with reading in the data and declaring the meta data. RapidMiner sup-
ports many data formats and offers operators for assigning not only value domains of
attributes (attribute type), but also their role in the learning process.

The inspection of the data through diverse plots is an important step in developing
the case at hand. In many case studies, this step is not recorded, since after the
exploration it is no longer necessary. The understanding of the analysis task and the
data leads to the successful process.

Operators that change the given representation are important to bridge the gap be-
tween the given data and the input format that a learner needs. Most analysts have a
favorite learning method and tweak the given data until they suit this algorithm well.
If frequent set mining is the favorite, the analyst will transform m nominal values of



one attribute into m binomial attributes so that frequent set mining can be applied. If
the attribute type requirements of a learner are not yet fulfilled, RapidMiner proposes
fixes.

e The discretization of real-valued attributes into nominal- or binomial-valued attributes
is more complex and, hence, RapidMiner offers a variety of operators for this task.

e Beyond type requirements, features extraction and construction allow learners to find
interesting information in data which otherwise would be hidden. A very large col-
lection of operators offers the transformation of representations. The text processing
plug-in, the value series plug-in, and the image processing plug-in are specifically made
for the pre-processing of texts, time series or value series in general, and images.

e The feature selection plug-in automatically applies user-specified criteria to design the
best feature set for a learning task. Moreover, it evaluates the selected features with
respect to stability. For real-world applications, it is important that good performance
is achieved at any sample of data. It is not sufficient that the selected features allow a
good performance on average in the cross-validation runs, but it must be guaranteed
that the features allow a sufficiently good performance on every data sample.

Given the long operator chains and nested processes in data mining, the aspect of docu-
mentation becomes indispensable. The chosen parameters of, e.g., discretization, the partic-
ular feature transformations, and the criteria of feature selection are stored with the Rapid-
Miner process. The metadata characterize the data at any state in the process. Hence, its
result is explainable and reproducible.

In this book, case studies communicate how to analyze databases, text collections, and
image data. The favorite learning tasks are classification and regression with the favorite
learning method being support vector machines followed by decision trees. How the given
data are transformed to meet the requirements of the method is illustrated by pictures
of RapidMiner. The RapidMiner processes and datasets described in the case studies are
published on the companion web page of this book. The inspiring applications may be used
as a blueprint and a justification of future applications.

Prof. Dr. Katharina Morik (TU Dortmund, Germany)






Preface

Data and the ability to make the best use of it are becoming more and more crucial for
today’s and tomorrow’s companies, organizations, governments, scientists, and societies to
tackle everyday challenges as well as complex problems and to stay competitive. Data min-
ing, predictive analytics, and business analytics leverage these data, provide unprecedented
insights, enable better-informed decisions, deliver forecasts, and help to solve increasingly
complex problems. Companies and organizations collect growing amounts of data from all
kinds of internal and external sources and become more and more data-driven. Powerful
tools for mastering data analytics and the know-how to use them are essential to not fall be-
hind, but to gain competitive advantages, and to increase insights, effectiveness, efficiency,
growth, and profitability.

This book provides an introduction to data mining and business analytics, to the most
powerful and flexible open source software solutions for data mining and business analytics,
namely RapidMiner and RapidAnalytics, and to many application use cases in scientific
research, medicine, industry, commerce, and diverse other sectors. RapidMiner and Rap-
idAnalytics and their extensions used in this book are all freely available as open source
software community editions and can be downloaded from
http://www.RapidMiner.com

Each chapter of this book describes an application use case, how to approach it with
data mining methods, and how to implement it with RapidMiner and Rapid Analytics. These
application-oriented chapters do not only provide you with the necessary analytics know-
how to solve these problems and tasks, but also with easy-to-follow reproducible step-by-step
descriptions for accomplishing this with RapidMiner and RapidAnalytics. The datasets and
RapidMiner processes used in this book are available from the companion web page of this
book:
http://wuw.RapidMinerBook. com

This application-oriented analytics use case collection will quickly enable you to solve
similar problems effectively yourself. The case studies can serve as blue prints for your own
data mining applications.

What Is Data Mining? What Is It Good for, What Are Its Appli-
cations, and What Does It Enable Me to Do?

While technology enables us to capture and store ever larger quantities of data, finding
relevant information like underlying patterns, trends, anomalies, and outliers in the data
and summarizing them with simple understandable and robust quantitative and qualitative
models is a grand challenge. Data mining helps to discover underlying structures in the data,
to turn data into information, and information into knowledge. Emerged from mathematics,
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statistics, logic, computer science, and information theory, data mining and machine learning
and statistical learning theory now provide a solid theoretical foundation and powerful
methods to master this challenge. Data mining is the extraction of implicit, previously
unknown, and potentially useful information from data. The automatically extracted models
provide insight into customer behavior and into processes generating data, but can also
be applied to, for example, automatically classify objects or documents or images into
given categories, to estimate numerical target variables, to predict future values of observed
time series data, to recommend products, to prevent customer churn, to optimize direct
marketing campaigns, to forecast and reduce credit risk, to predict and prevent machine
failures before they occur, to automatically route e-mail messages based on their content
and to automatically detect e-mail spam, and to many other tasks where data helps to
make better decisions or even to automate decisions and processes. Data mining can be
applied not only to structured data from files and databases, but text mining extends the
applicability of these techniques to unstructured data like texts from documents, news,
customer feedback, e-mails, web pages, Internet discussion groups, and social media. Image
mining, audio mining, and video mining apply these techniques to even further types of
data.

Why Should I read This Book? Why Case Studies? What Will I
learn? What Will I Be Able to Achieve?

This book introduces the most important machine learning algorithms and data min-
ing techniques and enables you to use them in real-world applications. The open source
software solutions RapidMiner and RapidAnalytics provide implementations for all of these
algorithms and a powerful and flexible framework for their application to all kinds ana-
lytics tasks. The book and these software tools cover all relevant steps of the data mining
process from data loading, transformation, integration, aggregation, and visualization via
modeling, model validation, performance evaluation, model application and deployment, to
automated feature selection, automated parameter and process optimization, and integra-
tion with other tools like, for example, the open source statistics package R or into your I'T
infrastructure via web services. The book and the tools also extensively cover the analysis
of unstructured data including text mining and image mining.

The application-oriented focus of this book and the included use cases provide you with
the know-how and blueprints to quickly learn how to efficiently design data mining processes
and how to successfully apply them to real-world tasks. The book not only introduces you
to important machine learning methods for tasks like clustering, classification, regression,
association and recommendation rule generation, outlier and anomaly detection, but also
to the data preprocessing and transformation techniques, which often are at least as crucial
for success in real-world applications with customer data, product data, sales data, trans-
actional data, medical data, chemical molecule structure data, textual data, web page data,
image data, etc. The use cases in this book cover domains like retail, banking, marketing,
communication, education, security, medicine, physics, and chemistry and tasks like di-
rect marketing campaign optimization, product affinity scoring, customer churn prediction
and prevention, automated product recommendation, increasing sales volume and profits by
cross-selling, automated video lecture recommendation, intrusion detection, fraud detection,
credit approval, automated text classification, e-mail and mobile phone text message spam
detection, automated language identification, customer feedback and hotel review analysis,
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image classification, image feature extraction, automated feature selection, clustering stu-
dents in higher education and automated study program recommendation, ranking school
applicants, teaching assistant evaluation, pharmaceutical molecule activity prediction, med-
ical research, biochemical research, neutrino physics research, and data mining research.

What Are the Advantages of the Open Source Solutions RapidMiner
and RapidAnalytics Used in This Book?

RapidMiner and RapidAnalytics provide an integrated environment for all steps of the
data mining process, an easy-to-use graphical user interface (GUI) for the interactive data
mining process design, data and results visualization, validation and optimization of these
processes, and for their automated deployment and possible integration into more complex
systems. RapidMiner enables one to design data mining processes by simple drag and drop
of boxes representing functional modules called operators into the process, to define data
flows by simply connecting these boxes, to define even complex and nested control flows,
and all without programming. While you can seamlessly integrate, for example, R scripts
or Groovy scripts into these processes, you do not need to write any scripts, if you do not
want to. RapidMiner stores the data mining processes in a machine-readable XML format,
which is directly executable in RapidMiner with the click of a button, and which along
with the graphical visualization of the data mining process and the data flow serves as
an automatically generated documentation of the data mining process, makes it easy to
execute, to validate, to automatically optimize, to reproduce, and to automate.

Their broad functionality for all steps of the data mining process and their flexibility
make RapidMiner and RapidAnalytics the tools of choice. They optimally support all steps
of the overall data mining process and the flexible deployment of the processes and results
within their framework and also integrated into other solutions via web services, Java API,
or command-line calls. The process view of data mining eases the application to complex
real-world tasks and the structuring and automation of even complex highly nested data
mining processes. The processes also serve as documentation and for the reproducibility
and reusability of scientific results as well as business applications. The open source nature
of RapidMiner and RapidAnalytics, their numerous import and export and web service
interfaces, and their openness, flexibility, and extendibility by custom extensions, operators,
and scripts make them the ideal solutions for scientific, industrial, and business applications.
Being able to reproduce earlier results, to reuse previous processes, to modify and adapt
them or to extend them with customized or self-developed extensions means a high value for
research, educational training, and industrial and business applications. RapidMiner allows
you to quickly build working prototypes and also quickly deploy them on real data of all
types including files, databases, time series data, text data, web pages, social media, image
data, audio data, web services, and many other data sources.
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What Is the Structure of This Book and Which Chapters Should I
Read?

The first chapter of this book introduces the basic concepts of data mining and machine
learning, common terms used in the field and throughout this book, and the decision tree
modeling technique as a machine learning technique for classification tasks. The second
chapter gives you an introductory tour through the RapidMiner graphical user interface
(GUI) and how to use it to define data mining processes. In case you are already familiar
with data mining and RapidMiner, you can skip these two chapters. However, if you are a
novice in the field or regarding the software, these first two chapters are highly recommended
and will give you a quick start in both data mining and RapidMiner. All following chapters
provide a use case each and introduce additional data mining concepts and RapidMiner
operators needed to solve the task at hand.

The Chapters 3 to 6 describe classification use cases and introduce the k-nearest neigh-
bors (k-NN) and Naive Bayes learning algorithms. Chapter 3 applies k-NN for the evaluation
of teaching assistants. In Chapter 4 k-NN is used to classify different glass types based on
chemical components and the RapidMiner process is extended by Principal Component
Analysis (PCA) to better preprocess the data and to improve the classification accuracy.
Chapter 5 explains Naive Bayes as an algorithm for generating classification models and
uses this modeling technique to generate a credit approval model to decide whether a credit
loan for which a potential or existing customer applies should be approved or not, i.e.
whether it is likely that the customer will pay back the credit loan as desired or not. Chap-
ter 6 uses Naive Bayes to rank applications for nursery schools, introduces the RapidMiner
operator for importing Excel sheets, and provides further explanations of Naive Bayes.

Chapter 7 addresses the task of product affinity-based marketing and optimizing a direct
marketing campaign. A bank has introduced a new financial product, a new type of current
(checking) account, and some of its customers have already opened accounts of the new
type, but many others have not done so yet. The bank’s marketing department wants to
push sales of the new account by sending direct mail to customers who have not yet opted
for it. However, in order not to waste efforts on customers who are unlikely to buy, they
would like to address only those customers with the highest affinity for the new product.
Binary classification is used to predict for each customer, whether they will buy the product,
along with a confidence value indicating how likely each of them is to buy the new product.
Customers are then ranked by this confidence value and the 20% with the highest expected
probability to buy the product are chosen for the campaign.

Following the CRoss-Industry Standard Process for Data Mining (CRISP-DM) covering
all steps from business understanding and data understanding via data preprocessing and
modeling to performance evaluation and deployment, this chapter first describes the task,
the available data, how to extract characteristic customer properties from the customer data,
their products and accounts data and their transactions, which data preprocessing to apply
to balance classes and aggregate information from a customer’s accounts and transactions
into attributes for comparing customers, modeling with binary classification, evaluating
the predictive accuracy of the model, visualizing the performance of the model using Lift
charts and ROC charts, and finally ranking customers by the predicted confidence for a
purchase to select the best candidates for the campaign. The predictive accuracy of several
learning algorithms including Decision Trees, Linear Regression, and Logistic Regression
is compared and visualized comparing their ROC charts. Automated attribute weight and
parameter optimizations are deployed to maximize the prediction accuracy and thereby the
customer response, sales volume, and profitability of the campaign. Similar processes can
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be used for customer churn prediction and addressing the customers predicted to churn in
a campaign with special offers trying to prevent them from churning.

Chapters 8 to 10 describe three different approaches to building recommender systems.
Product recommendations in online shops like Amazon increase the sales volume per cus-
tomer by cross-selling, i.e., by selling more products per customer by recommending prod-
ucts that the customer may also like and buy.

The recommendations can be based on product combinations frequently observed in
market baskets in the past. Products that co-occurred in many purchases in the past are
assumed to be also bought together frequently in the future. Chapter 8 describes how to
generate such association rules for product recommendations from shopping cart data using
the FP-Growth algorithm. Along the way, this chapter also explains how to import product
sales data from CSV files and from retailers’ databases and how to handle data quality
issues and missing values.

Chapter 9 introduces the RapidMiner Extension for Recommender Systems. This ex-
tension allows building more sophisticated recommendation systems than described in the
previous chapter. The application task in this chapter is to recommend appropriate video
lectures to potential viewers. The recommendations can be based on the content of the
lectures or on the viewing behavior or on both. The corresponding approaches are called
content-based, collaborative, and hybrid recommendation, respectively. Content-based rec-
ommendations can be based on attributes or similarity and collaborative recommendation
systems deploy neighborhoods or factorization. This chapter explains, evaluates, and com-
pares these approaches. It also demonstrates how to make RapidMiner processes available
as RapidAnalytics web services, i.e., how to build a recommendation engine and make it
available for real-time recommendations and easy integration into web sites, online shops,
and other systems via web services.

A third way of building recommender systems in RapidMiner is shown in Chapter 10,
where classification algorithms are used to recommend the best-fitting study program for
higher-education students based on their predicted success for different study programs at
a particular department of a particular university. The idea is an early analysis of students’
success on each study program and the recommendation of a study program where a student
will likely succeed. At this university department, the first year of study is common for
all students. In the second year, the students select their preferred study program among
several available programs. The attributes captured for each graduate student describe their
success in the first-year exams, their number of points in the entrance examination, their
sex, and their region of origin. The target variable is the average grade of the student at
graduation, which is discretized into several categories. The prediction accuracy of several
classification learning algorithms, including Naive Bayes, Decision Trees, Linear Model Tree
(LMT), and CART (Classification and Regression Trees), is compared for the prediction
of the student’s success as measured by the discretized average grade. For each student,
the expected success classes for each study program is predicted and the study program
with the highest predicted success class is recommended to the student. An optimization
loop is used to determine the best learning algorithm and automated feature selection is
used to find the best set of attributes for the most accurate prediction. The RapidMiner
processes seamlessly integrate and compare learning techniques implemented in RapidMiner
with learning techniques implemented in the open source data mining library Weka, thanks
to the Weka extension for RapidMiner that seamlessly integrates all Weka learners into
RapidMiner.

Chapter 11 provides an introduction to clustering, to the k-Means clustering algorithm,
to several cluster validity measures, and to their visualizations. Clustering algorithms group
cases into groups of similar cases. While for classification, a training set with examples with
predefined categories is necessary for training a classifier to automatically classify new cases
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into one of the predefined categories, clustering algorithms need no labeled training exam-
ples with predefined categories, but automatically group unlabeled examples into clusters of
similar cases. While the predictive accuracy of classification algorithms can be easily mea-
sured by comparing known category labels of known examples to the categories predicted
by the algorithm, there are no labels known in advance in the case of clustering. Hence it
is more difficult to achieve an objective evaluation of a clustering result. Visualizing cluster
validity measures can help humans to evaluate the quality of a set of clusters. This chapter
uses k-Means clustering on a medical dataset to find groups of similar E-Coli bacteria with
regards to where protein localization occurs in them and explains how to judge the quality
of the clusters found using visualized cluster validity metrics. Cluster validity measures im-
plemented in the open source statistics package R are seamlessly integrated and used within
RapidMiner processes, thanks to the R extension for RapidMiner.

Chapter 12 applies clustering to automatically group higher education students. The
dataset corresponds to the one already described in Chapter 10, but now the task is to
find groups of similarly performing students, which is achieved with automated clustering
techniques. The attributes describing the students may have missing values and different
scales. Hence data preprocessing steps are used to replace missing values and to normalize
the attribute values to identical value ranges. A parameter loop automatically selects and
evaluates the performance of several clustering techniques including k-Means, k-Medoids,
Support Vector Clustering (SVC), and DBSCAN.

Chapters 13 to 15 are about text mining applications. Chapter 13 gives an introduction
to text mining, i.e., the application of data mining techniques like classification to text doc-
uments like e-mail messages, mobile phone text messages (SMS = Short Message Service) or
web pages collected from the World-Wide Web. In order to detect text message spam, pre-
processing steps using the RapidMiner text processing extension transform the unstructured
texts into document vectors of equal length, which make the data applicable to standard
classification techniques like Naive Bayes, which is then trained to automatically separate
legitimate mobile phone text messages from spam messages.

The second text mining use case uses classification to automatically identify the language
of a text based on its characters, character sequences, and/or words. Chapter 14 discusses
character encodings of different European, Arabic, and Asian languages. The chapter de-
scribes different text representations by characters, by tokens like words, and by character
sequences of a certain length also called n-grams. The transformation of document texts
into document vectors also involves the weighting of the attributes by term frequency and
document frequency-based metrics like TF/IDF, which is also described here. The clas-
sification techniques Nalve Bayes and Support Vector Machines (SVM) are then trained
and evaluated on four different multi-lingual text corpora including for example dictionary
texts from Wikipedia and book texts from the Gutenberg project. Finally, the chapter shows
how to make the RapidMiner language detection available as web service for the automated
language identification of web pages via RapidAnalytics web services.

Chapter 15 analyses hotel review texrts and ratings by customers collected from the
TripAdvisor web page. Frequently co-occurring words in the review texts are found using
FP-Growth and association rule generation and visualized in a word-association graph. In
a second analysis, the review texts are clustered with k-Means, which reveals groups of
similar texts. Both approaches provide insights about the hotels and their customers, i.e.,
about topics of interest and of complaints, quality and service issues, likes, dislikes, and
preferences, and could similarly be applied to all kinds of textual reviews and customer
feedback.

Chapter 16 describes a data mining use case in astroparticle physics, the application of
automated classification and automated feature selection in neutrino astronomy to separate
a small number of neutrinos from a large number of background noise particles or signals
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(muons). One of the main scientific goals of neutrino telescopes is the detection of neutri-
nos originating from astrophysical sources as well as a precise measurement of the energy
spectrum of neutrinos produced in cosmic ray air showers in the Earth’s atmosphere. These
so-called atmospheric neutrinos, however, are hidden in a noisy background of atmospheric
muons produced in air showers as well. The first task in rejecting this background is the
selection of upward-going tracks since the Earth is opaque to muons but can be traversed
by neutrinos up to very high energies. This procedure reduces the background by roughly
three orders of magnitude. For a detailed analysis of atmospheric neutrinos, however, a
very clean sample with purity larger than 95% is required. The main source of remaining
background at this stage are muon tracks, falsely reconstructed as upward going. These
falsely reconstructed muon tracks still dominate the signal by three orders of magnitude
and have to be rejected by the use of straight cuts or multivariate methods. Due to the
ratio of noise (muons) and signal (neutrinos), about 10,000 particles need to be recorded
in order to catch about 10 neutrinos. Hence, the amount of data delivered by these experi-
ments is enormous and it must be processed and analyzed within a proper amount of time.
Moreover, data in these experiments are delivered in a format that contains more than 2000
attributes originating from various reconstruction algorithms. Most of these attributes have
been reconstructed from only a few physical quantities. The direction of a neutrino event
penetrating the detector at a certain angle can, for example, be reconstructed from a pat-
tern of light that is initiated by particles produced by an interaction of the neutrino close
to or even in the detector. Due to the fact that all of the 2000 reconstructed attributes are
not equally well suited for classification, the first task in applying data mining techniques
in neutrino astronomy lies in finding a good and reliable representation of the dataset in
fewer dimensions. This is a task which very often determines the quality of the overall data
analysis. The second task is the training and evaluation of a stable learning algorithm with
a very high performance in order to separate signal and background events. Here, the chal-
lenge lies in the biased distribution of many more background noise (negative) examples
than there are signals (positive) examples. Handling such skewed distributions is necessary
in many real-world problems. The application of RapidMiner in neutrino astronomy mod-
els the separation of neutrinos from background as a two-step process, accordingly. In this
chapter, the feature or attribute selection is explained in the first part and the training of
selecting relevant events from the masses of incoming data is explained in the second part.
For the feature selection, the Feature Selection Extension for RapidMiner is used and a
wrapper cross-validation to evaluate the performance of the feature selection methods. For
the selection of the relevant events, Random Forests are used as classification learner.

Chapter 17 provides an introduction to medical data mining, an overview of methods
often used for classification, regression, clustering, and association rules generation in this
domain, and two application use cases with data about patients suffering from carpal tunnel
syndrome and diabetes, respectively.

In the study of the carpal tunnel syndrome (CTS), thermographic images of hands were
collected for constructing a predictive classification model for CTS, which could be helpful
when looking for a non-invasive diagnostic method. The temperatures of different areas of a
patient’s hand were extracted from the image and saved in the dataset. Using a RapidMiner
preprocessing operator for aggregation, the temperatures were averaged for all segments
of the thermal images. Different machine learning algorithms including Artificial Neural
Network and Support Vector Machines (SVM) were evaluated for generating a classification
model capable of diagnosing CTS on the basis of very discrete temperature differences that
are invisible to the human eye in a thermographic image.

In the study of diabetes, various research questions were posed to evaluate the level
of knowledge and overall perceptions of diabetes mellitus type 2 (DM) within the older
population in North-East Slovenia. As a chronic disease, diabetes represents a substantial
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burden for the patient. In order to accomplish good self-care, patients need to be qualified
and able to accept decisions about managing the disease on a daily basis. Therefore, a
high level of knowledge about the disease is necessary for the patient to act as a partner
in managing the disease. Various research questions were posed to determine what the
general knowledge about diabetes is among diabetic patients 65 years and older, and what
the difference in knowledge about diabetes is with regard to the education and place of
living on (1) diet, (2) HbAlc, (3) hypoglycemia management, (4) activity, (5) effect of
illness and infection on blood sugar levels, and (6) foot care. A hypothesis about the level
of general knowledge of diabetes in older populations living in urban and rural areas was
predicted and verified through the study. A cross-sectional study of older (age >65 years),
non-insulin dependent patients with diabetes mellitus type 2 who visited a family physician,
DM outpatient clinic, a private specialist practice, or were living in a nursing home was
implemented. The Slovenian version of the Michigan Diabetes Knowledge test was then
used for data collection. In the data preprocessing, missing values in the data were replaced,
before k-means clustering was used to find groups of similar patients, for which then a
decision tree learner was used to find attributes discriminating the clusters and generate a
classification model for the clusters. A grouped ANOVA (ANalysis Of VAriances) statistical
test verified the hypothesis that there are differences in the level of knowledge about diabetes
in rural populations and city populations in the age group of 65 years and older.

Chapter 18 covers a use case relevant in chemistry and the pharmaceutical industry. The
RapidMiner Extension PaDEL (Pharmaceutical Data Exploration Laboratory) developed at
the University of Singapore is deployed to calculate a variety of molecular properties from
the 2-D or 3-D molecular structures of chemical compounds. Based on these molecular
property vectors, RapidMiner can then generate predictive models for predicting chemical,
biochemical, or biological properties based on molecular properties, which is a frequently
encountered task in theoretical chemistry and the pharmaceutical industry. The combination
of RapidMiner and PaDEL provides an open source solution to generate prediction systems
for a broad range of biological properties and effects.

One application example in drug design is the prediction of effects and side effects of a
new drug candidate before even producing it, which can help to avoid testing many drug
candidates that probably are not helpful or possibly even harmful and thereby help to focus
research resources on more promising drug candidates. With PaDEL and RapidMiner, prop-
erties can be calculated for any molecular structure, even if the compound is not physically
accessible. Since both tools are open source and can compute the properties of a molecular
structure quickly, this allows significant reduction in cost and an increase in speed of the
development of new chemical compounds and drugs with desired properties, because more
candidate molecules can be considered automatically and fewer of them need to be actually
generated and physically, chemically, or biologically tested.

The combination of data mining (RapidMiner) and a tool to handle molecules (PaDEL)
provides a convenient and user-friendly way to generate accurate relationships between
chemical structures and any property that is supposed to be predicted, mostly biologi-
cal activities. Relationships can be formulated as qualitative structure-property relation-
ships (SPRs), qualitative structure-activity relationships (SARs) or quantitative structure-
activity relationships (QSARs). SPR models aim to highlight associations between molecu-
lar structures and a target property, such as lipophilicity. SAR models correlate an activity
with structural properties and QSAR models quantitatively predict an activity. Models are
typically developed to predict properties that are difficult to obtain, impossible to measure,
require time-consuming experiments, or are based on a variety of other complex properties.
They may also be useful to predict complicated properties using several simple properties.
The PaDEL extension enables RapidMiner to directly read and handle molecular structures,
calculate their molecular properties, and to then correlate them to and generate predictive
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models for chemical, biochemical, or biological properties of these molecular structures. In
this chapter linear regression is used as a QSAR modeling technique to predict chemical
properties with RapidMiner based on molecular properties computed by PaDEL.

Chapter 19 describes a second Quantitative Structure-Activity Relationship (QSAR) use
case relevant in chemistry and the pharmaceutical industry, the identification of novel func-
tional inhibitors of acid sphingomyelinase (ASM). The use case in this chapter is based on
the previous chapter and hence you should first read Chapter 18 before reading this chapter.
In the data preprocessing step, the PaDEL (Pharmaceutical Data Ezploration Laboratory)
extension for RapidMiner described in the previous chapter is again used to compute molec-
ular properties from given molecular 2-D or 3-D structures. These properties are then used
to predict ASM inhibition. Automated feature selection with backward elimination is used
to reduce the number of properties to a relevant set for the prediction task, for which a
classification learner, namely Random Forests, generates the predictive model that captures
the structure- and property-activity relationships.

The process of drug design from the biological target to the drug candidate and, sub-
sequently, the approved drug has become increasingly expensive. Therefore, strategies and
tools that reduce costs have been investigated to improve the effectiveness of drug design.
Among them, the most time-consuming and cost-intensive steps are the selection, synthesis,
and experimental testing of the drug candidates. Therefore, numerous attempts have been
made to reduce the number of potential drug candidates for experimental testing. Several
methods that rank compounds with respect to their likelihood to act as an active drug
have been developed and applied with variable success. In silico methods that support the
drug design process by reducing the number of promising drug candidates are collectively
known as virtual screening methods. Their common goal is to reduce the number of drug
candidates subjected to biological testing and to thereby increase the efficacy of the drug
design process.

This chapter demonstrates an in silico method to predict biological activity based on
RapidMiner data mining work flows. This chapter is based on the type of chemoinfor-
matic predictions described in the previous chapter based on chemoinformatic descriptors
computed by PaDEL. Random Forests are used as a predictive model for predicting the
molecular activity of a molecule of a given structure, for which PaDEL is used to compute
molecular structural properties, which are first reduced to a smaller set by automated at-
tribute weighting and selecting the attributes with the highest weights according to several
weighting criteria and which are reduced to an even smaller set of attributes by automated
attribute selection using a Backward Elimination wrapper. Starting with a large number of
properties for the example set, a feature selection vastly reduces the number of attributes
before the systematic backward elimination search finds the most predictive model for the
feature generation. Finally, a validation is performed to avoid over-fitting and the benefits
of Y-randomization are shown.

Chapter 20 introduces the RapidMiner IMage Mining (IMMI) Extension and presents
some introductory image processing and image mining use cases. Chapter 21 provides more
advanced image mining applications.

Given a set of images in a file folder, the image processing task in the first use case
in Chapter 20 is to adjust the contrast in all images in the given folder and to store the
transformed images in another folder. The IMMI extension provides RapidMiner operators
for reading and writing images, which can be used within a RapidMiner loop iterating over all
files in the given directory, adjusting the contrast of each of these images, for example, using a
histogram equalization method. Then the chapter describes image conversions between color
and gray-scale images and different feature extraction methods, which convert image data
in unstructured form into a tabular form. Feature extraction algorithms for images can
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be divided into three basic categories: local-level, segment-level, and global-level feature
extraction.

The term local-level denotes that information is mined from given points (locations)
in the image. Local-level feature extraction is suitable for segmentation, object detection
or area detection. From each point in the image, it is possible to extract information like
pixel gray value, minimal or maximal gray value in a specified radius, value after applying
kernel function (blurring, edge enhancements). Examples of utilization of such data are the
trainable segmentation of an image, point of interest detection, and object detection.

The term segment-level denotes feature extraction from segments. Many different seg-
mentation algorithms exist, such as k-means, watershed, or statistical region merging. Seg-
ment level feature extraction algorithms extract information from the whole segments. Ex-
amples of such features are mean, median, lowest and highest gray value, circularity, and
eccentricity. In contrast to local-level features, it does not take into consideration only a
single point and its neighborhood, however, it considers the whole segment and its proper-
ties like shape, size, and roundness. With the use of knowledge about the size or shape of
target objects, it is for example possible to select or remove objects according to their size
or shape.

The global-level denotes feature extraction from the whole image, for example, mean
color, dominant color, maximal gray value, minimal gray value, variance of pixels, number
of edges etc. Unlike the local or segment level, the global level segmentation is not suitable
for points or areas identification or segmentation. Rather, it is suitable for classification of
images and determining properties of the image as a whole.

Chapter 20 provides examples demonstrating the use of local-level, segment-level, and
global-level feature extraction. Local-level feature extraction is used for trainable image seg-
mentation with radial-basis function (RBF) Support Vector Machines (SVM). Segment-level
feature extraction and trainable segment selection reveal interesting segment properties like
size and shape for image analysis. With the help of global-level feature extraction, images are
classified into pre-defined classes. In the presented use case, two classes of images are distin-
guished automatically: images containing birds and images containing sunsets. To achieve
this, global features like dominant color, minimal intensity, maximal intensity, percent of
edges, etc. are extracted and based on those, an image classifier is trained.

Chapter 21 presents advanced image mining applications using the RapidMiner IMage
Mining (IMMI) Extension introduced in the previous chapter. This chapter demonstrates
several examples of the use of the IMMI extension for image processing, image segmentation,
feature extraction, pattern detection, and image classification. The first application extracts
global features from multiple images to enable automated image classification. The second
application demonstrates the Viola-Jones algorithm for pattern detection. And the third
process illustrates the image segmentation and mask processing.

The classification of an image is used to identify which group of images a particular
image belongs to. An automated image classifier could, for example, be used to distinguish
different scene types like nature versus urban environment, exterior versus interior, images
with and without people, etc. Global features are usually used for this purpose. These
features are calculated from the whole image. The key to a correct classification is to find the
features that differentiate one class from other classes. Such a feature can be, for example,
the dominant color in the image. These features can be calculated from the original image
or from an image after pre-processing like Gaussian blur or edge detection.

Pattern detection searches known patterns in images in the images, where approximate
fits of the patterns may be sufficient. A good algorithm for detection should not be sensitive
to the size of the pattern in the image or its position or rotation. One possible approach is to
use a histogram. This approach compares the histogram of the pattern with the histogram
of a selected area in the image. In this way, the algorithm passes step by step through
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the whole image, and if the match of histograms is larger than a certain threshold, the
area is declared to be the sought pattern. Another algorithm, which is described in this
chapter, is the Viola-Jones algorithm. The classifier is trained with positive and negative
image examples. Appropriate features are selected using the AdaBoost algorithm. An image
is iterated during pattern detection using a window with increasing size. Positive detections
are then marked with a square area of the same size as the window. The provided example
application uses this process to detect the cross-sectional artery in an ultrasound image.
After detection, the images can be used to measure the patient’s pulse if taken from a video
or stream of time-stamped images.

The third example application demonstrates image segmentation and feature extraction:
Image segmentation is often used for the detection of different objects in the image. Its task
is to split the image into parts so that the individual segments correspond to objects in
the image. In this example, the identified segments are combined with masks to remove the
background and focus on the object found.

Chapter 22 introduces the RapidMiner Extension for Instance Selection and Prototype-
based Rule (ISPR) induction. It describes the instance selection and prototype construction
methods implemented in this extension and applies them to accelerate 1-NN classification on
large datasets and to perform outlier elimination and noise reduction. The datasets analyzed
in this chapter include several medical datasets for classifying patients with respect to cer-
tain medical conditions, i.e., diabetes, heart diseases, and breast cancer, as well as an e-mail
spam detection dataset. The chapter describes a variety of prototype selection algorithms
including k- Nearest-Neighbors (k-NN), Monte-Carlo (MC) algorithm, Random Mutation
Hill Climbing (RMHC) algorithm, Condensed Nearest-Neighbor (CNN), Edited Nearest-
Neighbor (ENN), Repeated ENN (RENN), Gabriel Editing proximity graph-based algo-
rithm (GE selection), Relative Neighbor Graph algorithm (RNG selection), Instance-Based
Learning (IBL) algorithm (IB3 selection), Encoding Length Heuristic (ELH selection), and
combinations of them and compares their performance on the datasets mentioned above.
Prototype construction methods include all algorithms that produce a set of instances at the
output. The family contains all prototype-based clustering methods like k-Means, Fuzzy C-
Means (FCM), and Vector Quantization (VQ) as well as the Learning Vector Quantization
(LVQ) set of algorithms. The price for the speed-up of 1-NN by instance selection is visu-
alized by the drop in predictive accuracy with decreasing sample size.

Chapter 23 gives an overview of a large range of anomaly detection methods and intro-
duces the RapidMiner Anomaly Detection Extension. Anomaly detection is the process of
finding patterns in a given dataset which deviate from the characteristics of the majority.
These outstanding patterns are also known as anomalies, outliers, intrusions, exceptions,
misuses, or fraud. Anomaly detection identifies single records in datasets which significantly
deviate from the normal data. Application domains among others include network security,
intrusion detection, computer virus detection, fraud detection, misuse detection, complex
system supervision, and finding suspicious records in medical data. Anomaly detection for
fraud detection is used to detect fraudulent credit card transactions caused by stolen credit
cards, fraud in Internet payments, and suspicious transactions in financial accounting data.
In the medical domain, anomaly detection is also used, for example, for detecting tumors
in medical images or monitoring patient data (electrocardiogram) to get early warnings
in case of life-threatening situations. Furthermore, a variety of other specific applications
exists such as anomaly detection in surveillance camera data, fault detection in complex
systems or detecting forgeries in the document forensics. Despite the differences of the var-
ious application domains, the basic principle remains the same. Multivariate normal data
needs to be modeled and the few deviations need to be detected, preferably with a score
indicating their “outlierness”, i.e., a score indicating their extent of being an outlier. In case
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of a univariate data, such an outlier factor could for example be the number of standard
deviations by which an outlier differs from the mean of this variable.

The overview of anomaly detection method provided in this chapter distinguishes three
different types of anomalies, namely (1) point anomalies, which are single data records
deviating from others, (2) contextual anomalies, which occur with respect to their context
only, for example, with respect to time, and (3) collective anomalies, where a bunch of data
points causes the anomaly. Most anomaly detection algorithms detect point anomalies only,
which leads to the requirement of transforming contextual and collective anomalies to point
anomaly problems using an appropriate pre-processing and thus generating processable
data views. Furthermore, anomaly detection algorithms can be categorized with respect
to their operation mode, namely (1) supervised algorithms with training and test data
as used in traditional machine learning, (2) semi-supervised algorithms with the need of
anomaly-free training data for one-class learning, and (3) unsupervised approaches without
the requirement of any labeled data. Anomaly detection is, in most cases, associated with
an unsupervised setup, which is also the focus of this chapter. In this context, all available
unsupervised algorithms from the RapidMiner anomaly detection extension are described
and the most well-known algorithm, the Local Outlier Factor (LOF) is explained in detail
in order to get a deeper understanding of the approaches themselves. The unsupervised
anomaly detection algorithms covered in this chapter include Grubbs’ outlier test and noise
removal procedure, k-NN Global Anomaly Score, Local Outlier Factor (LOF'), Connectivity-
Based Outlier Factor (COF), Influenced Outlierness (INFLO), Local Outlier Probability
(LoOP), Local Correlation Integral (LOCI) and aLLOCI, Cluster-Based Local Outlier Factor
(CBLOF), and Local Density Cluster-Based Outlier Factor (LDCOF). The semi-supervised
anomaly detection algorithms covered in this chapter include a one-class Support Vector
Machine (SVM) and a two-step approach with clustering and distance computations for
detecting anomalies.

Besides a simple example consisting of a two-dimensional mixture of Gaussians, which
is ideal for first experiments, two real-world datasets are analyzed. For the unsupervised
anomaly detection the player statistics of the NBA, i.e., a dataset with the NBA regular-
season basketball player statistics from 1946 to 2009, are analyzed for outstanding players,
including all necessary pre-processing. The UCI NASA shuttle dataset is used for illustrating
how semi-supervised anomaly detection can be performed in RapidMiner to find suspicious
states during a NASA shuttle mission. In this context, a Groovy script is implemented for
a simple semi-supervised cluster-distance-based anomaly detection approach, showing how
to easily extend RapidMiner by your own operators or scripts.

Chapter 2/ features a complex data mining research use case, the performance evaluation
and comparison of several classification learning algorithms including Naive Bayes, k-NN,
Decision Trees, Random Forests, and Support Vector Machines (SVM) across many differ-
ent datasets. Nested process control structures for loops over datasets, loops over different
learning algorithms, and cross validation allow an automated validation and the selection
of the best model for each application dataset. Statistical tests like t-test and ANOVA test
(ANalysis Of VAriance) determine whether performance differences between different learn-
ing techniques are statistically significant or whether they may be simply due to chance.
Using a custom-built Groovy script within RapidMiner, meta-attributes about the datasets
are extracted, which can then be used for meta-learning, i.e., for learning to predict the
performance of each learner from a given set of learners for a given new dataset, which then
allows the selection of the learner with the best expected accuracy for the given dataset.
The performance of fast learners called landmarkers on a given new dataset and the meta-
data extracted from the dataset can be used for meta-learning to predict the performance
of another learner on this dataset. The RapidMiner Extension for Pattern Recognition En-
gineering (PaREn) and its Automatic System Construction Wizard perform this kind of



XxXx1ii

meta-learning for automated learner selection and a parameter optimization for a given
dataset.

The index at the end of the book helps you to find explanations of data mining concepts
and terms you would like to learn more about, use case applications you may be interested
in, or reference use cases for certain modeling techniques or RapidMiner operators you are
looking for. The companion web page for this book provides the RapidMiner processes and
datasets deployed in the use cases:
http://www.RapidMinerBook. com
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