

	Commercial low-cost sensors			
Microsoft Xbox Kinect	Active triangulation based plus speckle pattern decorrelation Nominal baseline 74 mm			
Fujifilm REAL 3D W1	Passive triangulation based Nominal baseline 77 mm			
A state of the sta	Standardized calibration procedures > Theoretical accuracy analysis > Characterization > Performance evaluation			

		Low-o	cost active sensors
Active - Microsoft Kinect	(ca 100 Eur)		
10 milioni di unita' ve	ndute in 5 mes	i dal Novembre 20	010 🚺 🚺
Nuvole di punti 3D fii	no a 30 fps alla	risoluzione VGA ((ca 300k points)
2 CMOS sensors + p	roiettore di luce	e strutturata	
Principio di misurazio di speckle pattern	one basato sull	a combinazione di	triangolazione e la decorrelazione
Distanze operative s	uggerite: 1.2-3.	.6 m	
3 brevetti alla base (Prime Sense L	TD):	
"Three-dimensi	onal sensing us	sing speckle patte	rns" - US Patent (2009)
 "Range mapping 	g using speckle	e decorrelation" - I	JS Patent (2008)
"Method and sy	stems for object	ct reconstruction"	- International Patent (2007)
F	GB camera	IR camera	
Sensor A	otina MT9M112	Aptina MT9M001	RGB IR
Sensor type	CMOS	CMOS	· · ·
Sensor size (active imager) 3.5	e (active imager) 3.58 mm x 2.87mm		
Pixel size	2.8 µm	5.2 µm	Projector (III)
Raw image format	1280x1024 px	1280x1024 px	T Reparter T T
Neminal food longth	2 0 mm	640X480 pX	anot S
FOV H	63 degrees	57 degrees	
FOV V	50 degrees	45 degrees	
		Fabio Menna	- Low Cost 3D: Sensori Algoritmi e Applicazioni

SINGAL MENDINGY		K	INECT c	haracte	rization
Calibration of the passi	ve imagin	g sensors			
		RGB c	amera	IR car	nera
		Value	Std	Value	Std
	f	2.9114 mm	0.003 mm	6.0792 mm	0.007 mm
	x ₀	0.0346 mm	0.0007 mm	0.0488 mm	0.005 mm
	y _o	-0.0315 mm	0.0008 mm	0.0480 mm	0.005 mm
P1 and P2	K1 k2	-2.310e-002	5.30-004	3.2536-003	1.86-004
not statistically significant	K2 k3	-8 246e-003	2.7 e-004 4 6e-005	-3.7200-004 1 347e-005	2.3e-005 9.7e-007
for the RGB sensor	P1	-		-2.708e-004	4.4e-005
	P2	-	-	-1.999e-004	4.2e-005
		Fa	bio Menna - Low Co	st 3D: Sensori Algor	itmi e Applicazioni

	liai i	ocariengui			
		LEFT camera		RIGHT camera	
at the second		Value	Std	Value	Std
	f	7.3469 mm	0.0005 mm	7.3655 mm	0.0005 mm
	x_0	-0.0121 mm	0.0006mm	-0.0787 mm	0.0006 mm
	y_0	-0.0974 mm	0.0006 mm	-0.0580 mm	0.0005 mm
	kl	1.707e-003	9.5e-006	1.805e-003	8.4e-006
All and the state of the state	k2	-1.282e-005	5.6e-007	-1.768e-005	5.1e-007
	k3	-	-	-	-
	PI	1.683e-004	3.8e-006	1.058e-003	3.2e-006
(11) 11年前間10月第2月7月27	P2	2.867e-004	3.4e-006	-1.735e-004	2.9e-006
· it hilds If	A	1.2466e-002	3.658e-005	1.2596e-002	8.677e-005
	S	-	-	-	-

- RMSE X,Y,Z = 0.048 mm, 0.042 mm, 0.062 mm (reference is Nikon D3X)

Fabio Menna - Low Cost 3D: Sensori Algoritmi e Ap

FUJIFILM characterization

ACCURACY IN 3D MEASUREMENTS:

Comparison with photogrammetry on the 3D calibration frame

- A stereo pair taken from a frontal position (1.5m) is used to forward triangulate the 3D points of the testfield.
- COMPARISONS:

=>< 🏶 3DOM

- IO and EO from a self calibration using only the single pair scale from MPO tag
- IO from EXIF, relative orientation, scaling from MPO tag
- IO and mean EO from the bundle adjustment with self cal
- IO from EXIF, relative orientation, scaling on the object
- IO from bundle adj, EO from relative orientation, scale from mean baseline
- IO and mean EO from the bundle adjustment with self cal (3 months before)

Fabio Menna - Low Cost 3D: Sensori Algoritmi e Appli

- Comparison after ICP alignment of the 2 datasets (std = 0.35 mm)

Conclusions
Different sensors and packages available to allow 3D recording and reconstruction in a low-cost mode
Low-cost concept is attracting many non-experts to the 3D market with
positive aspects: enlarge the use of 3D & continuous development/improvement
negative aspects: misuse of 3D, idea that everyone can get 3D models, neglect of theoretical fundaments, etc.
More investigations are needed to deliver definitive conclusions
Best practices required
More sensors and software are appearing on the market but ... don't use them as black boxes ©