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The coefficient of p(0,1) is 0 because, in this system, there is no way of going from 0 to 1.

Then, ;‘
dp{lst) — H
& = pp(1,t). (2.31) 3
The solution to (2.27), (2.31) is
p(0,t) = 1-e™P, ' (2.32)
p(1,t) = e™™. (2.33)

Recall that once the system makes the transition from 1 to 0 it can never go back, in this
model. The probability that the transition takes place in [t,t 4 6t] is

prob [a(t + 6t) =0 and aft) = 1] = e P'pét. ‘?\TSt w W Y\%M E%u

The time of the transition from 1 to 0 is said to be ezponentially distributed with rate p.
The expected transition time is 1/p. The exponential distribution is widely used because of
its analytic tractability. In later sections, we typically assume that an operational machine’s
time to failure is exponentially distributed with parameter p, and that a failed machine’s
time to repair is exponentially distributed with parameter r.

2.3.4 The meaning of it all

Before we go further, now is a good time to reflect on the meaning of the models and as-
sumptions that we have introduced, and to establish the connection with the real world.
Many people find such models to be overly simplistic, not representative of the real com-
plexities that are found in factories and elsewhere. How useful will all these mathematical
calisthenics prove to be?

Figure 2.7 is a graph of e P*p, and, superimposed on it, is a set of samples of failure times
of 2 machire. Lhey are organized as a set of bars, so that the height of each bar represents
the number of times the failure time fell within the width of that bar. Note that the bars
generally follow the exponential curve, but some are above and some are below. Had we
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taken more samples, and performed sophisticated statistical tests, we could say that, with
some confidence, the machine fails according to an exponential distribution, or that it does
not.
Note that the exponential density function decreases but does not'go to zero as t goes
to co. That is, prob[t > T] > 0 for all ¢ > 0. There is a very smail probability of a very
large outcome. ;

For most purposes, the details of the shape of the curve are not as important as its
gross features. The most important features of a probability distribution are its mean, its
variance?, and its general shape: whether the density has one, two, or more local maximums.
If we made a small change to the curve in Figure 2.7 without changing its mean, variance,
and general shape, the samples would fit about equally well. Consequently, the effect of the
failures of this machine on other machines, material flow, and the overall performance of
the system would not be greatly affected.

It is important to remember that we have not postulated any reason why a distribution
should be exponential. Certainly it is desirable that it is, because it greatly simplifies
the mathematics. Certainly, however, not everything is exponentially distributed. The
practitioner must observe the system, and see whether this or any other distribution is at
least a plausible representation of the observations. In many cases, the memoryless property
of the exponential distribution is a statement of ignorance: the fact that the system has
gone so long without a transition gives us no information about whether a transition is any
more likely. In many cases, there may be many independent reasons for a transition to
occur. Each may be distributed according to some non-exponential distribution, but it may
be uncertain whether each will actually occur, or, among those that do, which will occur
first. The effect of all this uncertainty may be to produce a distribution close to exponential.

2.3.5 Example: unreliable machine

This is similar to the discrete time, discrete state unreliable machine. A machine can be in

two states: up or down. The probability that an operation is completed during an interval

r———) [t,t + 6t] while the machine is up is uét. The probability that a failure occurs during an

interval [t, ¢ + 6t] while the machine is up is pét. The probability that a repair is completed

during an interval [t,t + 6t] while the machine is down is ré¢. What is the long run average
production rate of the machine?

The graph of this Markov process is shown in Figure 2.8. Note that the directed links

are labeled with probability rates, not probabilities, and that the so-called self-loops, the

links leading from a state back to itself, are not drawn. The probability distribution satisfies

p(0,t + 6t) = p(0,t)(1 — rét) + p(1,t)pdt + o(6t)

3The wariance of a scalar random variable z is E(z — E(z))?, where E is the expectation operation. The
standard deviation is the square root of the variance. In a graph like Figure 2.7, the variance and standard
deviation are indicators of how widely spread the density funetion is. Variance and standard deviation
are very important.concepts, but they are defined in a footnote because they are not used very much in
this book. This is unfortunate because variation and deviation (and their reduction) are very important to
manufacturers. They play a small role here because, frankly, the variances of the processes described in this
book have been little studied. This neglect should be remedied. See Section 3.2.
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Figure 2.8: Graph of Markov Chain for Continuous Time Unreliable Machine Model

p(1,t+ ét) = p(0, tl)rét +p(1,2)(1 - pbt) + ot)

or
dp(0, ¢t
—Ef;t—) = —-p(0,t)r +p(1,t)p
dp(1,t
_g%t_) = p(0,t)r — p(1,t)p.

The solution is

p(0,t) = ﬁ+[p{0,0)—-r—;} grirteRt (2.34)
p(1,t) = 1-p(0,t). (2.35)

Ast — oo , we have

p(0) = ip() = .

| w _ M

The average production rate is p(1)u or T p = S
|+ MTTR
| ‘ MITF
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2.3.6 The M/M/1 queue

This is the simplest queuing theory model. It has very few assumptions, and they are rarely
satisfied in reality. It is a good way to get into the subject, however, because anything more
realistic is much more complicated. In spite of its unreality, we can learn something from

it.

Consider a queuing system with an infinite amount of storage space. Parts arrive accord-
ing to a Poisson process. That is, the interarrival times are exponentially distributed, which
means that if a part arrives at time s, the probability that the next part arrives during the
interval [s 4 t,s +t + 6t] is e A6t + o(6t). A is the arrival rute. Similarly, the service
times are exponentially distributed, which means that if an operation ig completed at time
s and the buffer is not empty, the probability that the next operation is completed during

the interval [s + ¢, s +t + 6] is e7#*uét + o(8t). p is the service rate.
Let p(n,t) be the probability that there are n parts in the system at time t. Then,

p(n,t+ 6t) = p(n — 1,t)A6t + p(n + 1,t)ust + p(n, )(1 — (A6t + ubt)) + o(6t),
n > 0(2.36)

and

p(0, 1+ 6t) = p(1, t)ubt + p(0,t)(1 — A6t) + o(6t). E“b v, (2.37)
These equations are application of Equation (2.2)." In (2.36), A is the event {there are n
parts in the system at time t + 6t}, & is the event {there are n —1 parts in the system at
time t}, £ is the event {there are n + 1 parts in the system at time t}, and €3 is the event
{there are n parts in the system at time t}. In (2.37), A is the event {there is 1 part in the

system at time £ + 6t}, £; is the event {there are no parts in the system at time t}, and &
is the event {there is 1 part in the system at time t}. Equations (2.36) and (2.37) become

2008 _ p(n— 1,03+ pln + 1) = Bln, A + ), > 0

and

ap(0,
200 _ o1, - p(0, 0N

If a steady state distribution exists, it satisfies
0=pn—-1Ar+pr+1)p—pn)(A+pu),n>0
and
0 = p(1)u — p(0)A.
Let p = A\/p. These equations are satisfied by

p(n)=(1-p)p",n20 (2.38)

the probabulity fuat theve ave v pads w the sustew.
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if p < 1. The average number of parts in the system is

fi= ; np(n) = i——f—; = “—i-; ‘ (2.39)

From Little’s law, the average delay experienced by a part is

1
W—m‘

Figure 2.9 is a graph of W as a function of A, with p = 1.
Delay in a M/M/1 Queue
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Figure 2.9: Delay versus Arrival Rate

2.3.7 Interpretation

The most important characteristic of this system is that the arrival process is not affected
by the number of parts in the system, but the departure process is turned off when the
buffer is empty.

The conditioh p < 1 or A < p means that the rate at which parts arrive is less than the
rate at which parts can be processed. This means that if, at some time, there happen to
be many parts in the system, that number will probably decrease over time. On the other
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hand, if the system is empty, a part will arrive sooner or later. If, by chance, more parts
than average arrive during a period, the system may accumulate a few parts. Thus the
number of parts in the system will increase and decrease, but not get very far from 0 very
often.

On the other hand, if A > u , parts will tend to accumulate in the system. Parts arrive
faster than they can be processed, and the arrival mechanism is never turned off. In fact, if
the system is started empty at time 0, the number of parts in the system at time £ is close
to (A — u)t. The probability of finding the system empty approaches 0. In this case, there
is no steady state probability distribution.

The capacity of this system is p. This is the greatest rate at:which parts can enter
and leave the system. The delay and the average number of parts in the system increase
dramatically as the arrival rate approaches the capacity. These quantities are much harder
to calculate in other systems, but this behavior is characteristic of all systems with waiting.

There are only two ways of reducing delay: increase the capacity, or change the relation-
ship between throughput and delay. The first approach involves changing the manufacturing
process; the second involves scheduling.
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