Design Rules for Machining From "Product Design for Manufacture and Assembly" by G. Boothroyd et al. (Dekker, 1994)

Standardization

- 1. Utilize standard components as much as possible.
- 2. Pre-shape the workpiece, if appropriate, by casting, forging, welding, etc.
- 3. Utilize standard pre-shaped workpieces, if possible.
- 4. Employ standard machined features whenever possible.

Raw Material

- 5. Choose raw materials that will result in minimum component cost (including cost of production and cost of raw material).
- 6. Utilize raw material in the standard forms supplied.

Component Design

a. General

- 7. Try to design the component so that it can be machined on one machine tool only.
- 8. Try to design the component so that machining is not needed on the unexposed surfaces of the workpiece when the component is gripped in the work-holding device.
- 9. Avoid machined features the company is not equipped to handle.
- 10. Design the component so that the workpiece, when gripped in the work-holding device, is sufficiently rigid to withstand the machining forces.
- 11. Verify that when features are to be machined, the tool, toolholder, work, and work-holding device will not interfere with one another.
- 12. Ensure that auxiliary holes or main bores are cylindrical and have L/D ratios that make it possible to machine them with standard drills or boring tools.
- 13. Ensure that auxiliary holes are parallel or normal to the workpiece axis or reference surface and related by a drilling pattern.
- 14. Ensure that the ends of blind holes are conical, and in the case of a tapped blind hole, that the thread does not continue to the bottom of the hole.
- 15. Avoid bent holes or dogleg holes.

b. Rotational Components

- 16. Try to ensure that cylindrical surfaces are concentric, and plane surfaces are normal to the component axis.
- 17. Try to ensure that the diameters of external features increase from the exposed face of the workpiece.

- 18. Try to ensure that the diameters of internal features decrease from the exposed face of the workpiece.
- 19. For internal corners on the component, specify radii equal to the radius of a standard rounded tool corner.
- 20. Avoid internal features for long components.
- 21. Avoid components with very large or very small L/D ratios.

c. Nonrotational Components

- 22. Provide a base for work holding and reference.
- 23. If possible, ensure that the exposed surfaces of the component consist of a series of mutually perpendicular plane surfaces parallel to and normal to the base.
- 24. Ensure that internal corners normal to the base have a radius equal to a standard tool radius. Also ensure that for machined pockets, the internal corners normal to the base have as large a radius as possible.
- 25. If possible, restrict plane-surface machining (slots, grooves, etc.) to one surface of the component.
- 26. Avoid cylindrical bores in long components.
- 27. Avoid machined surfaces on long components by using work material preformed to the cross section required.
- 28. Avoid extremely long or extremely thin components.
- 29. Ensure that, in flat or cubic components, main bores are normal to the base and consist of cylindrical surfaces decreasing in diameter from the exposed face of the workpiece.
- 30. Avoid blind bores in large cubic components.
- 31. Avoid internal machined features in cubic boxlike components.

Assembly

- 32. Ensure that assembly is possible.
- 33. Ensure that each operating machined surface on a component has a corresponding machined surface on the mating component.
- 34. Ensure that internal corners do not interfere with a corresponding external corner on the mating component.

Accuracy and Surface Finish

- 35. Specify the widest tolerances and roughest surface that will give the required performance for operating surfaces.
- 36. Ensure that surfaces to be finish-ground are raised and never intersect to form internal corners.