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Ch. 1 / Collection and Analysis of Information

Control Charts

Here we explain the basic idea behind control charts and discuss how to
construct and use such charts. The reasons these charts work so well will
become clear when we know more about the variability of sample statistics;
this discussion is taken up in Chapter 8.

All processes have some variation. When we manufacture a product, mea-
surements on the final product will show inevitable variation from uninten-
tional process changes as well as random variation. Many different factors
enter into a production process, and a change in each will cause some varia-
tion in the final product. This variation may come from differences among
machines, lot-to-lot variation, differences in suppliers and incoming raw
materials, and so on. Despite the fact that considerable effort is generally
directed toward controlling the variability in gach of these factors, there will
still be variability in the final product. In the end it is this variability that has
to be controlled.

Statistical control charts or, more generally, statistical process control
methods are procedures for monitoring the process variation and for gener-
ating information on the stability of the process. It is important to check the
stability of processes, since unstable processes will result in lost production,
defective products, poor quality, and, in general, loss of consumer confidence.
For example, in the production of integrated-circuit boards, which involves
several welding procedures, it may be the weld strength that is of importance.
Selecting a small sample of such boards at regular intervals and measuring the
weld strength by a certain pull test to destruction will provide valuable infor-
mation on the stability of the welding process. In the production of concrete
cylinders, it is the compressive strength that is of importance and that needs to
be controlled. Measurements on a small number of concrete cylinders, say
twice during each production shift, can give us valuable information on the
variability of this process. In the production of thin wafers for integrated-
circuit devices by high-temperature furnace oxide growth processes (see Exer-
cise 1.5-2), it is the thickness of these very thin wafers that needs to be
controlled. Measurements on the thickness of a few selected wafers from every
other furnace run indicate whether the thickness of the product is stable, Here
we have given only three examples. Many others can be found, and we encour-
age the reader to think of still others.

A control chart is a plot of a summary statistic from samples that are taken
sequentially in time. Usually, it is the sample mean and a measure of the
sample variability, such as the standard deviation or the range, that are
plotted on such control charts. The charts in Figures 1.5-1 and 1.5-2 are two
examples. The chart in Figure 1.5-1 shows the average compressive strengths
of concrete blocks from samples of size 5. Twice during each shift, five concrete
blocks were taken from the production line, their compressive strengths were
determined, and the average was entered on the chart. Since we plot averages,
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Figure 1.5-1 X-chart for the sample means in Table 1.5-1.

we call this an X-chart, In Figure 1.5-2 we display the varnability within the
samples over time, and plot the ranges; we call such a plot an R-chart.

Control charts also include bounds, or control limits, which help us deter-
mine whether a particular average (or range) is “ within acceptable limits” of
random variation. Through these limits, control charts try to distinguish
between the variation that can normally be expected and the variation that is
caused by unexpected changes. If one notices shifts in the process mean on the
x-chart and if the shifts are larger than those which can be expected under the
usual pattern, we conclude that something significant has happened to the
process. Similarly, if the process variation as measured on the R-chart changes
by more than would be expected under usual circumstances, we conclude that
the process variability is no longer stable.

The control limits are usually determined from past data that are collected
when the process is actually in control and when no significant changes have
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Figure 1.5-2 R-chart for the sample ranges in Table 1.5-1.
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taken place. The construction of the control limits is very simple. We take
samples of a few observations (usually, the sample size n is 4 or 5) at various
times. It is usually recommended that k = 10 to 20 such samples be obtained
before constructing the control limits. Depending on the application, these
samples can be taken every 4 hours (see the weld strength example), twice a
shift (compressive strength), from every other furnace run (wafer example),
every hour, from every tenth batch, and so on. The frequency of the sampling
depends on the stability of the process; the more stable the process, the longer
the time between samples. It also depends on the potential loss that is caused

‘when deteriorations of the process are not recognized on time, and of course

on the cost of the sampling inspection. From each sample we calculate the
average X = ) 7., x;/n and the range R = max (x,, ..., x,) — min (x,, ..., x,),
and enter these quantities on the X-chart and R-chart. From the k sample
averages and ranges, we compute the grand average (average of averages),

k

2 %,
j=1

X =

= —

and the average of the ranges,

R =

™=

le

-

i
These quantities form the respective centerlines in the x-chart and the R-chart.
The control limits (the lower control limit, LCL, and the upper control limit,

UCL) in the x-chart are given by
LCL=%—-A,R and UCL=3%+4,R.
The control limits in the R-chart are given by
LCL=D,R and VCL =D, K.

The constants 4,, D,, and D, can be found in Table C.1 in Appendix C; they
depend on the sample size n. These constants are chosen such that almost all
future averages x and ranges R will fall within the respective control limits,
provided that the process has stayed in control (which means that the level has
not shifted and the variability has not changed). The precise meaning of
"almost all” and the construction of the values in Table C.1 are explained
later. For now it is sufficient to understand that the natural variability in the
process leads to variability among the sample averages and ranges. If the
process is stable, it is very rare that a sample average and range fall outside
the control limits. On the other hand, if there are shifts and drifts in the
process, the averages and/or the ranges will probably exceed the limits and
generate an alarm.

Consider the data in Table 1.5-1, in which we list the compressive strength
measurements from k = 10 samples of size n = 5. The process was sampled
twice during each production shift, and the observations were taken while the
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Y~ take : Table 1.5-1 Compressive Strength of Concrete (kg/cm?)
rous ; -
obisined . Sample Compressive Strength x R
on, these 1 91 88 88 90 83 88.0 §
» Iwice a 2 84 89 80 79 87 838 10
:xample), 3 93 90 87 89 85 88.8 8
sampling Samples 4 76 84 82 79 82 80.6 8
1e longer used to 5 83 85 81 80 86 83.0 6
s caused determine 6 84 84 90 79 83 84.0 11
o s the control 7 83 89 80 82 9I 85.0 1
ate thi limits 8 78 79 90 81 85 826 12
s %) 9 82 &1 87 86 79 83.0 8
oot 10 88 90 83 84 87 86.4 7
sample
2s), Mean X = 8452 R=89
11 79 87 82 85 83 832 8
12 72 .79 76 77 78 76.4 [
process was under control, or at least thought to be under control. Withn = 5
observations in each sample, we find from Table C.l that the constants are
: A, = 0.577,D; = 0,and D, = 2.115. Thus the control limits for the x-chart are
{-chart. LCL =% — A, R = 84.52 — (0.577)(8.9) = 79.38
ol limit,
and
UCL =X + A, R = 84.52 + (0.577)(8.9) = 89.66.
The limits on the R-chart are LCL=D;R=(089)=0 and
UCL = D R = (2.115)(8.9) = 18.82. These are the limits that are shown in
Figures 1.5-1 and 1.5-2. We see that the averages and ranges of all 10 samples
are within these limits. We could have expected this because we were told that
; they the process was in control when these observations were taken. But let us plot
ost all the results of the next two samples, also given in Table 1.5-1, on these charts.
There we find that the twelfth average x = 76.4 is smaller than the lower

limits,
el has : control limit on the x-chart. This fact should alert the user that this particular
sample represents an unusual event. This should lead to an investigation (ic.,

ng of

ained discussions with workers on the production line, checking whether there were

in the changes in raw materials, looking for any other unusual condition) that will

If the identify an assignable cause for this event. Finally, these causes should be

1tside eliminated.

n the Control charts are very useful methods that help us assess whether a

i and process is stable. They alert the user to situations in which something has
shifted. A point outside the control limits forces us to find an assignable cause

:ngth for this unusual event and, more important, to make certain changes in the

ipled process that prevent such conditions from happening again. Control charts

: the will uncover many external sources that lead to shifts in the mean level and in
[
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the variability of the process. Their graphical simplicity makes them a very
valuable instrument for process control. The requirement to identify assign-
able causes and to eliminate them forces management and workers to take an
aggressive attitude toward maintaining the quality of their work.

Control charts are not only useful for averages and ranges, but also for
proportions, such as the proportion of defectives. Also, these charts are useful
not just for manufacturing applications, but also in other areas, such as the
service industry. In fact, they can be applied to virtually all situations in which
data are taken sequentially in time.

Assume, for example, that we simply judge whether or not a manufactured
item is satisfactory. That is, although we prefer to take more accurate mea-
surements, here we just check an item on a pass-fail basis, whether it is within
or outside specifications. Assume that an inspector at the production line
checks a sample of n items at certain stated periods (hour, half-day, day, etc.,
depending on the numbers of items produced each day) and observes the
number of defectives, say 4, in these n items. If this is done for k periods, we
obtain d,, d,, ..., d, defectives, respectively. The average fraction of defectives

1S

o d]+d2+"'+dk
p= .
nk

Statistical theory (as discussed in subsequent sections) assures us that if there
are no changes in the process, almost all of the future fraction defectives, d/n,

will be between the respective lower and upper control limits:

o, [B1=P)
LCL=p-3 a—
UCL=5+3 /‘-’“—;@.

These control limits, together with the centerline at p, are plotted on a chart;
since we are plotting fraction defectives or percentages, we call it a p-chart. If
future points fall outside these limits, this strongly suggests that the process
has changed. In particular, a point exceeding the upper control limit indicates
that the process has deteriorated. As a consequence, we should look for pos-
sible reasons for the sudden increase in the number of defectives.

Example 1.5-1 Each hour n = 50 fuses are tested. For the first k = 20 hours
we find the following number of defectives:

113 0240012320111 3002

Thus, since nk = 1000,

g 027
P~ T000 ="
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Figure 1.5-3 p-chart for the data in Example 1.5-1.

is the average fraction of defectives. We must first decide if this is an accept-
able fraction for our particular process. If it is, then

LCL = 0.027 - 3\/992-%-0—% = —0.042,

et = 001 + 3 OO0 _ o0

Since LCL < 0, and since the fraction defective d/n can never be less than zero,
in such cases we usually plot the LCL at zero, or omit it entirely. In Figure
1.5-3 we have plotted these 20 values of the fraction defective together with six
more recent ones, those with d values of 1, 2, 2, 2, 4, and S. Additional values
would also be plotted as long as the process is “in control.” However, we find
that the sixth additional fraction defective is above the UCL. This suggests
that the process has become unstable and that corrective action should be
taken. In this example we have assumed that 2.7 percent defective is acceptable
and that we are willing to produce‘at this level; this may not be the case for

other items.

The c-chart is very similar to the p-chart except that here we count the
number of flaws or defectives for a certain unit (bolt of fabric, length of wire,
and so on) rather than the number of defectives in n items. Suppose that we
determine the number, ¢, of blemishes in 50 feet of a continuous strip of tin
plate. This is done each hour for k hours, resulting in Cyy €3y ..y ¢ With an
average of

T .

X |

¢ =



56

Ch. 1 / Collection and Analysis ol Information

The respective lower and upper control limits for the ¢-chart are
LCL = ¢ — 3,/¢,
UCL = ¢ + 3./,

which are plotted together with the centerline, C. If ¢ is a satisfactory average
for the process, the process is considered in control provided that future points

plot within these control limits.

Example 1.5-2 We observe k = 15 50-foot tin strips and obtain the following
numbers of blemishes:

> y 1052341200431

The average is ¢ = 26/15 = 1.73 and
LCL = 1.73 — 3./1.73 = =222, UCL = 1.73 + 3,/1.73 = 5.68.

These 15 points, together with the 10 additional observations

]

3110225012

are plotted on the c-chart in Figure 1.5-4. Of course, as long as the process is
in control, as with these 10 additional points, future points are plotted on this
c-chart. Occasionally, new control limits are calculated if the points continue
to fall within the control limits; thus the control limits may change slightly.
Points outside the control limits, however, indicate that the process has
become unstable. Assignable causes for these unusual events should be found

and eliminated.
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Figure 1.54 c-chart for the data in Example 1.5-2.
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Factors for Determining the 3¢ Control

App. C / Statistical Tables

Table C.7
Limits in x-Charts and R-Charts,
Number of Factors for x-Charts Factors
Observations in for R-Chart
Sample, Using § Using R

n A; ‘42 D3 D‘

2. 2.66 1.88 0 3.27

3 1.95 1.02 0 2.57

4 1.63 0.73 0 228

5 1.43 0.58 0 2.11

6 1.29 0.48 0 2.00

7 1.18 0.42 0.08 1.92

8 1.10 0.37 0.14 1.86

9 1.03 0.34 0.18 1.82

10 098 0.31 022 1.78

i1 093 0.29 0.26 1.74

12 0.89 027 0.28 1.72

13 0.85 0.25 031 1.69

14 0.82 0.24 0.33 1.67

15 0.79 0.22 0.35 1.65

16 0.76 0.21 036 1.64
17 0.74 0.20 0.38 1.62°

18 0.72 0.19 0.39 1.61

19 0.70 0.19 0.40 1.60

20 0.68 0.18 041 1.59

Source: Reproduced with permission from E. L. Grant, Srau‘ﬁr‘ral
Quality Control, 2nd ed. (New York: McGraw-Hill, 1952), pp. 513

and 514.

App. C /

Table C..
n X
2 0
1
2
3 0
1
2
4



