

2.810

T. Gutowski

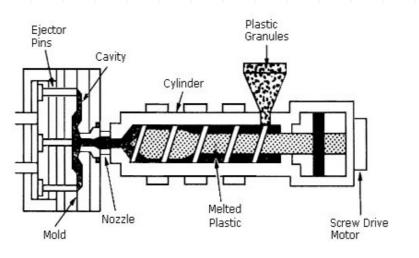


Diagram of a typical injection molding process. (Image taken from the OSHA Technical Manual.)

D. Roylance

Short history of plastics

1862 first synthetic plastic

1866 Celluloid

1891 Rayon

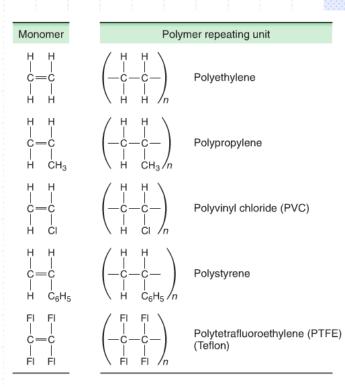
1907 Bakelite

1913 Cellophane

1926 PVC

1933 Polyethylene

1938 Teflon


1939 Nylon stockings

1957 velcro

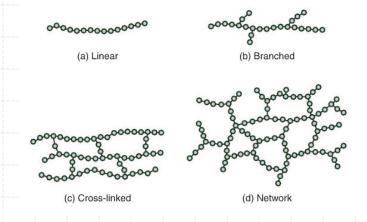

1967 "The Graduate"

FIGURE 7.2 Molecular structure of various polymers. These are examples of the basic building blocks for plastics.

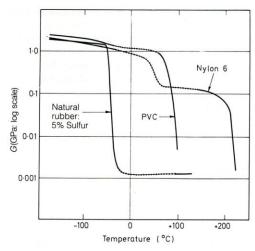


FIGURE 7.3 Examples of polymerization. (a) Condensation polymerization of nylon 6,6 and (b) addition polymerization of polyethylene molecules from ethylene mers.

TABLE 7.2

of Some Polymers		
Material	T_g (°C)	T_m (°C)
Nylon 6,6	57	265
Polycarbonate	150	265
Polyester	73	265
Polyethylene		
High density	-90	137
Low density	-110	115
Polymethylmethacrylate	105	_
Polypropylene	-14	176
Polystyrene	100	239
Polytetrafluoroethylene	-90	327
Polyvinyl chloride	87	212
Rubber	-73	_

Glass-transition and Melting Temperatures

4.21 Dependence of the shear modulus on temperature for three representative engineering polymers: natural rubber (cross-linked); PVC (essentially amorphous and not cross-linked); and nylon 6 (crystalline). The temperatures at which these polymers are used in technology are indicated (•-----) (after Wolf).

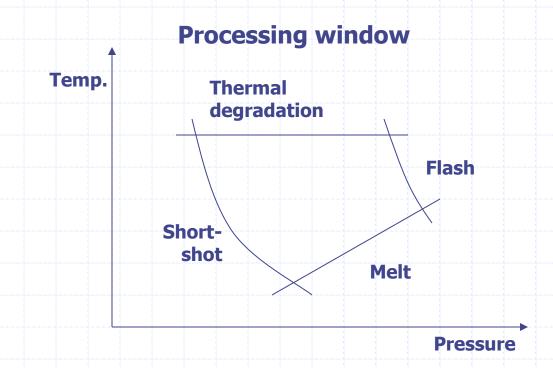
McCrum, Buckley, Buckknall

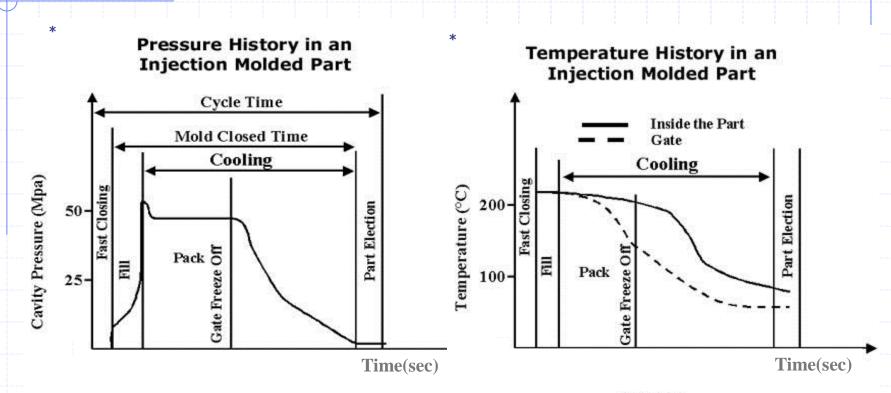
Outline

- Basic operation
- Cycle time and heat transfer
- Flow and solidification
- Part design
- Tooling
- New developments
- Environment

30 ton, 1.5 oz (45 cm3) Engel

Injection Molding Machine for wheel fabrication

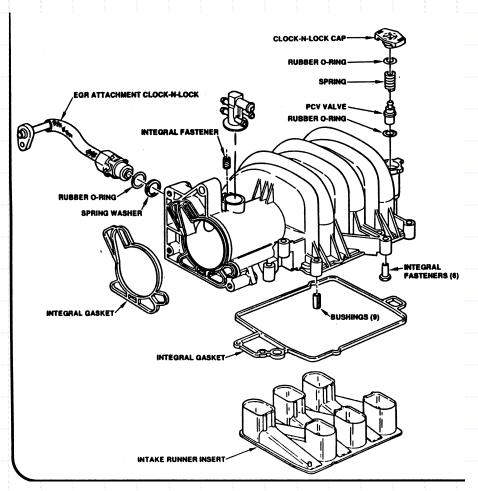

Process & machine schematics


Schematic of thermoplastic Injection molding machine

Process Operation

- Temperature: barrel zones, tool, die zone
- Pressures: injection max, hold
- Times: injection, hold, tool opening
- Shot size: screw travel

Typical pressure/temperature cycle



Cooling time generally dominates cycle time

$$t_{cool} = \frac{\text{(half thickness)}^2}{\alpha}$$

 $\alpha = 10^{-3} \text{ cm}^2/\text{sec for polymers}$

* Source: http://islnotes.cps.msu.edu/trp/inj/inj time.html

Calculate clamp force, & shot size

$$F=P X A = 420 tons$$

$$3.8 \text{ lbs} = 2245 \text{ cm}^3$$

= 75 oz

Actual; 2 cavity 800 ton

Clamp force and machine cost

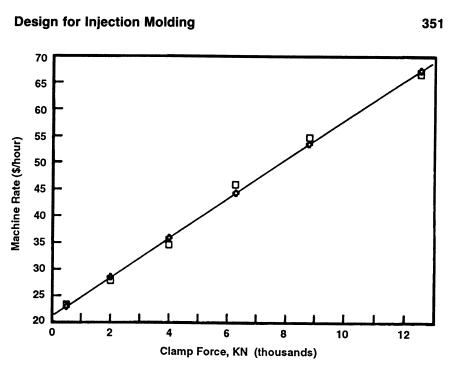


Figure 8.9 National average injection molding machine rates.

Heat transfer Note; $\alpha_{Tool} \ge \alpha_{polymer}$

1-dimensional heat conduction equation:

 $\mathbf{q}_{x} \longrightarrow \boxed{} \mathbf{q}_{x} + \Delta \mathbf{q}_{x} \qquad \frac{\partial}{\partial t} (\rho \cdot c \cdot T) \Delta x \Delta y = -\frac{\partial q_{x}}{\partial x} \Delta x \Delta y$

Fourier's law

$$q_x = -k \frac{\partial T}{\partial x}$$

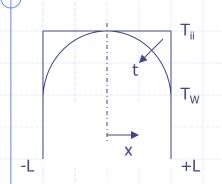
$$\rho \cdot c \cdot \frac{\partial T}{\partial t} = k \frac{\partial^2 T}{\partial x^2}$$
 or $\frac{\partial T}{\partial t} = \alpha \frac{\partial^2 T}{\partial x^2}$

Boundary Conditions:

1st kind

T(x = x') = constant

2nd kind


 $-k\frac{\partial T}{\partial x}(x=x') = \text{constant}$

3rd kind

$$-k\frac{\partial T}{\partial x}(x=x') = \overline{h}(T-T_{\infty})$$

The boundary condition of 1st kind applies to injection molding since the tool is often maintained at a constant temperature

Heat transfer

Let
$$L_{ch} = H/2$$
 (half thickness) = L; $t_{ch} = L^2/\alpha$; $\Delta T_{ch} = T_i - T_W$ (initial temp. – wall temp.)

Let
$$L_{ch} = H/2$$
 (half thickness) = L; $t_{ch} = L^2/\alpha$; $\Delta T_{ch} = T_i - T_W$ (initial temp. – wall temp.)

Non-dimensionalize: $\theta = \frac{T - T_W}{T_i - T_W}$; $\xi = \frac{x}{L} + 1$; $F_o = \frac{\alpha \cdot t}{L^2}$

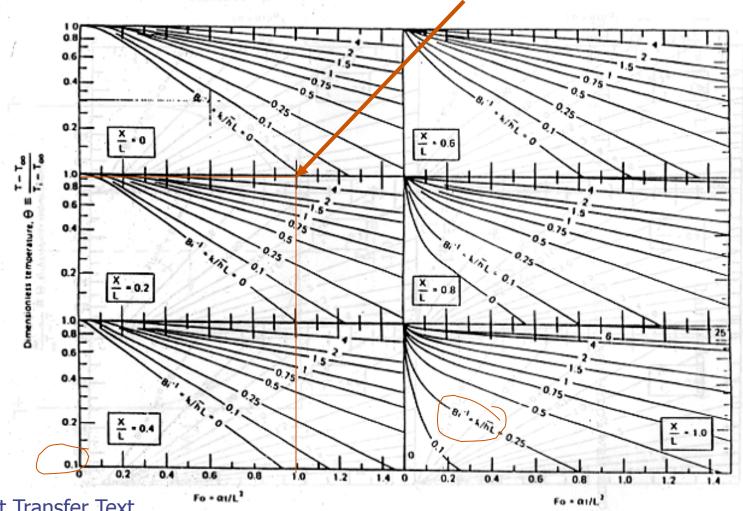
Dimensionless equation:

$$\frac{\partial \theta}{\partial F_o} = \frac{\partial^2 \theta}{\partial \xi^2}$$

Boundary condition

Initial condition
$$F_o = 0$$
 $\theta = 1$

$$\xi = 0$$
 $\theta = 0$


$$\xi = 2$$
 $\theta = 0$

Separation of variables; matching B.C.; matching I.C.

$$\theta(\xi, F_o) = \sum f(F_o)g(\xi)$$

Temperature in a slab

Centerline, $\theta = 0.1$, $F_o = \alpha t/L^2 = 1$

See Heat Transfer Text By Lienhard on line

FIGURE 5.7 The transient temperature distribution in a slab at six positions. x/L = 0 is the center; x/L = 1 is one outside boundary.

 $Bi^{-1} = k/hL$

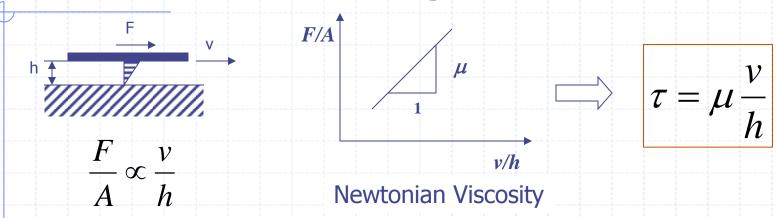
Reynolds Number

Reynolds Number:
$$Re = \frac{\rho \frac{V^2}{L}}{\mu \frac{V}{L^2}} \text{ viscous } \frac{\rho VL}{\mu}$$

For typical injection molding

$$\rho = 1g/cm^3 = 10^3 N/m^4/s^2$$
; $L_Z = 10^{-3} m$ thickness

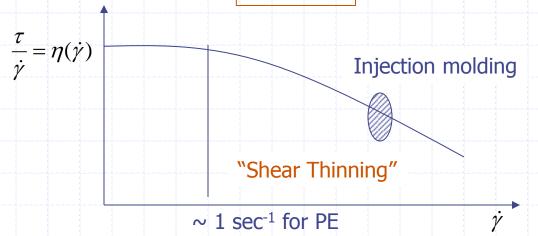
$$V \approx \frac{\text{Part length}}{\text{Fill time}} = \frac{10^{-1}}{1s}; \qquad \mu = 10^3 \, N \cdot s / m^2$$


 $Re = 10^{-4}$

For Die casting

$$Re \approx \frac{3 \cdot 10^3 \times 10^{-1} \times 10^{-3}}{10^{-3}} = 300$$

^{*} Source: http://www.idsa-mp.org/proc/plastic/injection/injection_process.htm


Viscous Shearing of Fluids

Generalization:

$$au = \mu \dot{\gamma}$$

 $\dot{\gamma}$: shear rate

Typical shear rate for Polymer processes (sec)⁻¹

Extrusion $10^2 \sim 10^3$ Calendering $10 \sim 10^2$ Injection molding $10^3 \sim 10^4$ Comp. Molding $1 \sim 10$

Viscous Heating

Rate of Heating
= Rate of Viscous Work

$$\frac{P}{Vol} = \frac{F \cdot v}{Vol} = \frac{F}{A} \cdot \frac{v}{h} : \mu \left(\frac{v}{h}\right)^{2}$$

Rate of Temperature rise

$$\rho \cdot c_p \frac{dT}{dt} = \mu \left(\frac{v}{h}\right)^2 \quad \text{or} \quad \frac{dT}{dt} = \frac{\mu}{\rho \cdot c_p} \left(\frac{v}{h}\right)^2$$

Rate of Conduction out

$$\frac{dT}{dt} = \frac{k}{\rho \cdot c_p} \frac{d^2T}{dx^2} \sim \frac{k}{\rho \cdot c_p} \frac{\Delta T}{h^2}$$

$$\frac{\text{Viscous heating}}{\text{Conduction}} = \frac{\mu v^2}{k\Delta T}$$

Brinkman number

For injection molding, order of magnitude ~ 0.1 to 10

Non-Isothermal Flow

Péclet No.

Heat transfer rate: $1/t \sim a/(L/2)^2$

$$\frac{\text{Flow rate}}{\text{Heat xfer rate}} \sim \frac{V \cdot L_z^2}{4\alpha \cdot L_x} = \frac{1}{4} \frac{VL_z}{\alpha} \cdot \frac{L_z}{L_x}$$

Small value => Short shot

For injection molding

$$\frac{\text{Flow rate}}{\text{Heat xfer rate}} \sim \frac{1}{4} \frac{10cm/s \times 0.1cm}{10^{-3} cm^2/s} \cdot \frac{0.1cm}{10cm} = 2.5$$

For Die casting of aluminum

Flow rate
Heat xfer rate
$$\sim \frac{1}{4} \frac{10cm/s \times 0.1cm}{0.3cm^2/s} \cdot \frac{0.1cm}{10cm} \cong 10^{-2}$$

* Very small, therefore it requires thick runners

Non-Isothermal Flow

Péclet No.

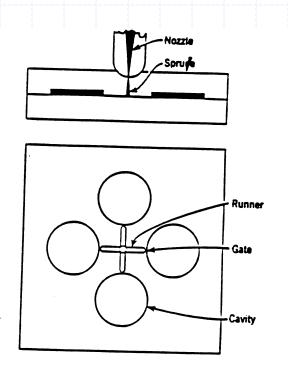
Small value

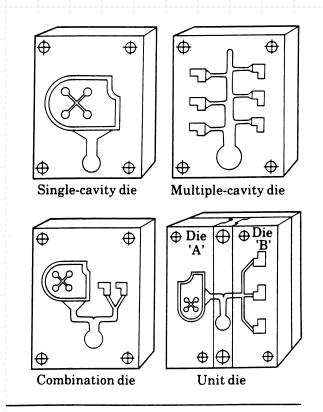
=> Short shot

Heat transfer rate: $1/t \sim a/(L_z/2)^2$

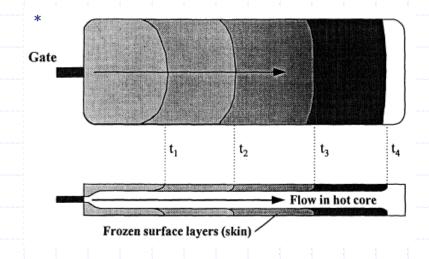
$$\frac{\text{Flow rate}}{\text{Heat xfer rate}} \sim \frac{V \cdot L_z^2}{4\alpha \cdot L_x} = \frac{1}{4} \frac{VL_z}{\alpha} \cdot \frac{L_z}{L_x}$$

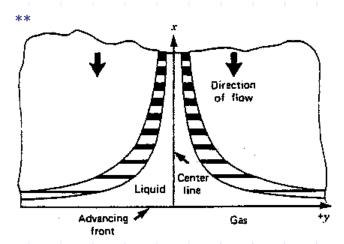
For injection molding

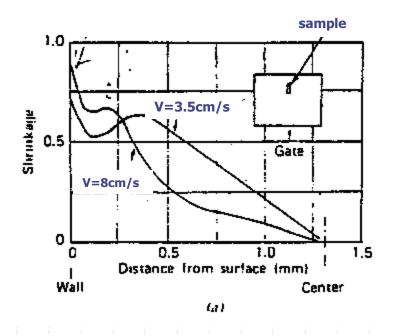

$$\frac{\text{Flow rate}}{\text{Heat xfer rate}} \sim \frac{1}{4} \frac{10cm/s \times 0.1cm}{10^{-3} cm^2/s} \cdot \frac{0.1cm}{10cm} = 2.5$$

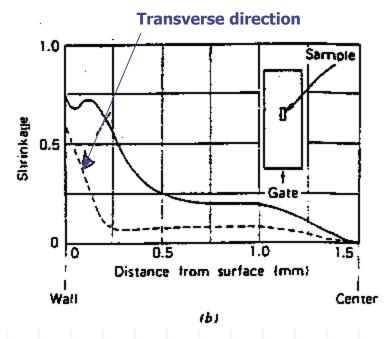

For Die casting of aluminum

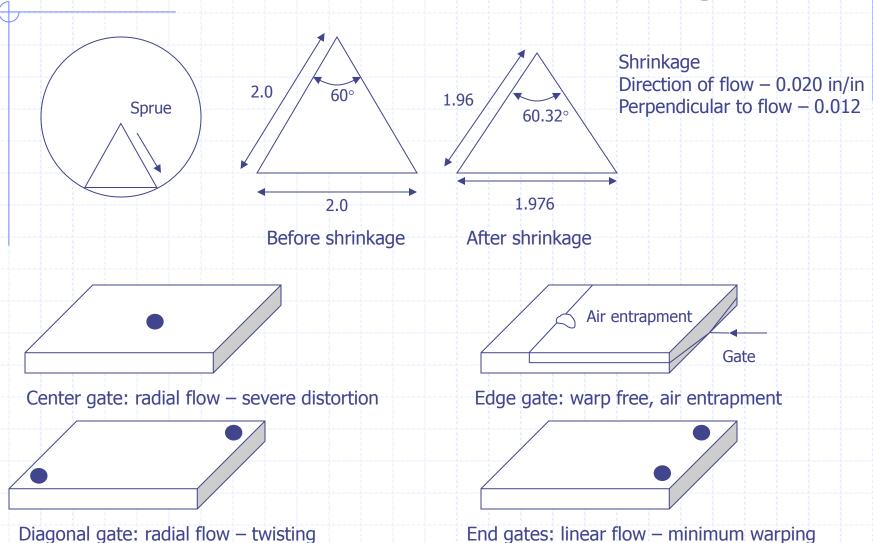
Flow rate
Heat xfer rate
$$\sim \frac{1}{4} \frac{10cm/s \times 0.1cm}{0.3cm^2/s} \cdot \frac{0.1cm}{10cm} \cong 10^{-2}$$


Very small value for aluminum requires thicker runners

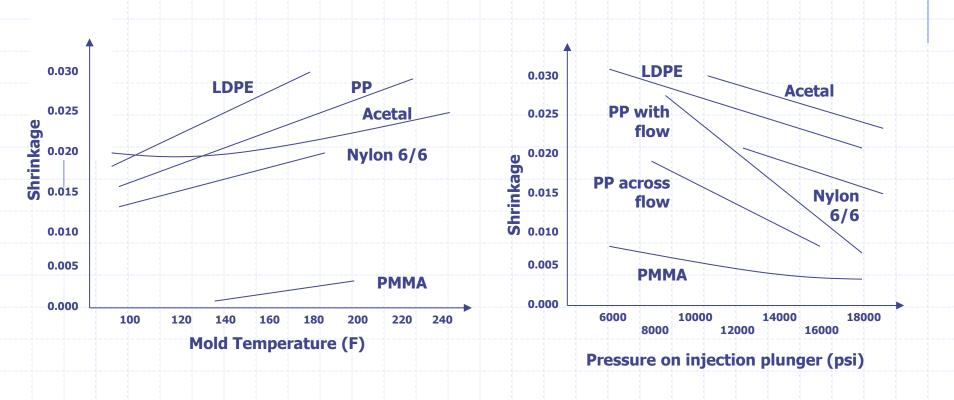

Injection mold die cast mold

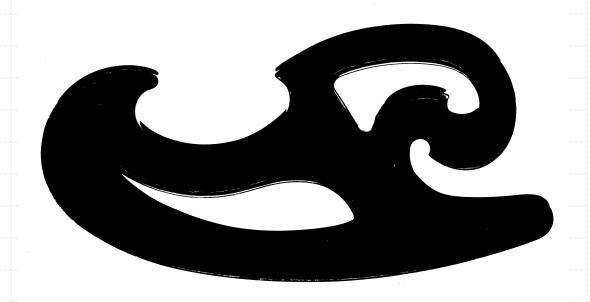

Fountain Flow

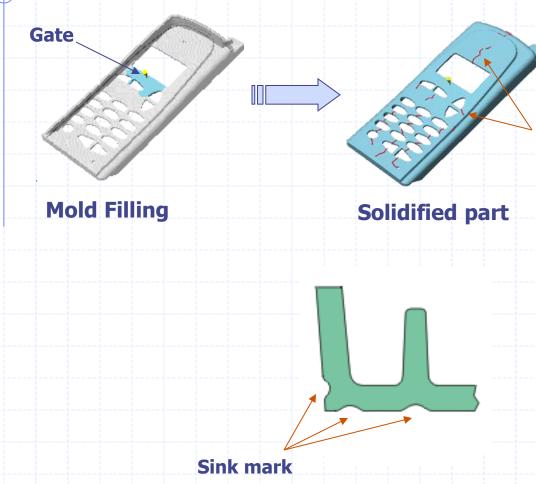


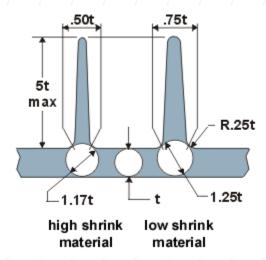

^{*} Source: http://islnotes.cps.msu.edu/trp/inj/flw_froz.html; ** Z. Tadmore and C. Gogos, "Principles of Polymer Processing"

Shrinkage distributions



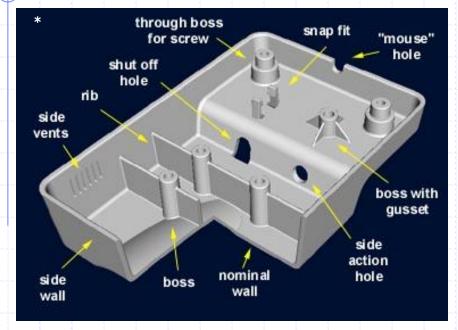

Gate Location and Warping

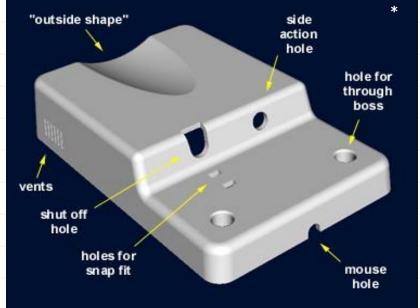

Effects of mold temperature and pressure on shrinkage

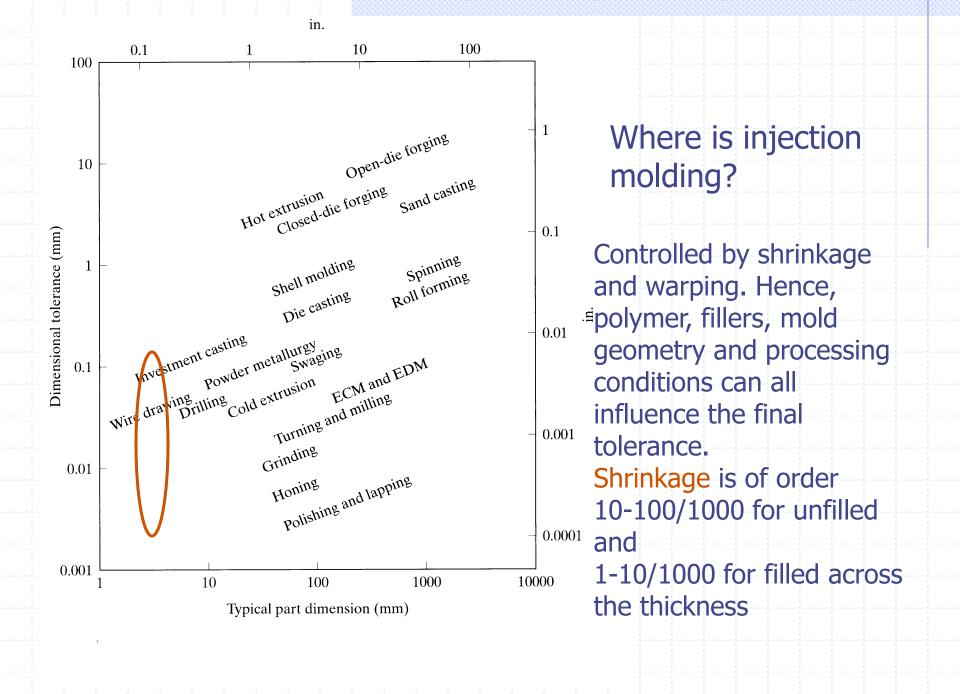


Where would you gate this part?

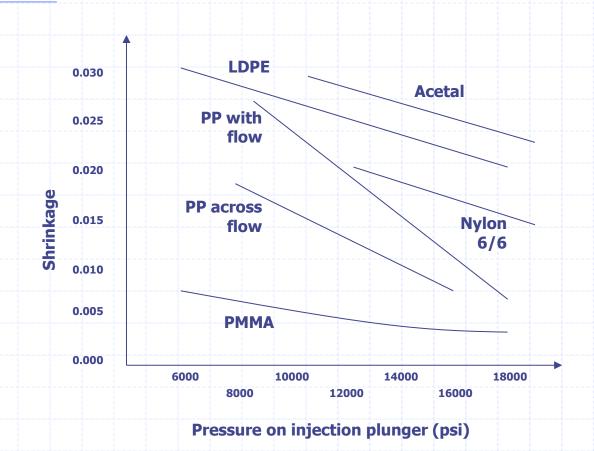
Weld line, Sink mark

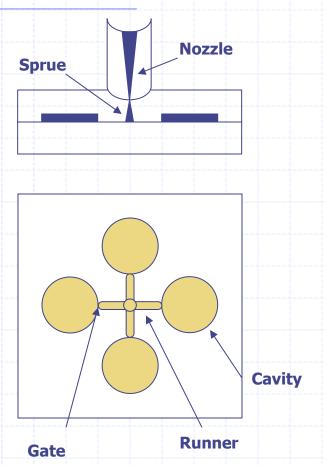


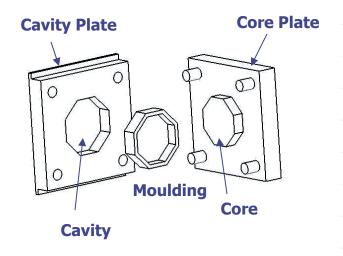

Weld line


Basic rules in designing ribs to minimize sink marks

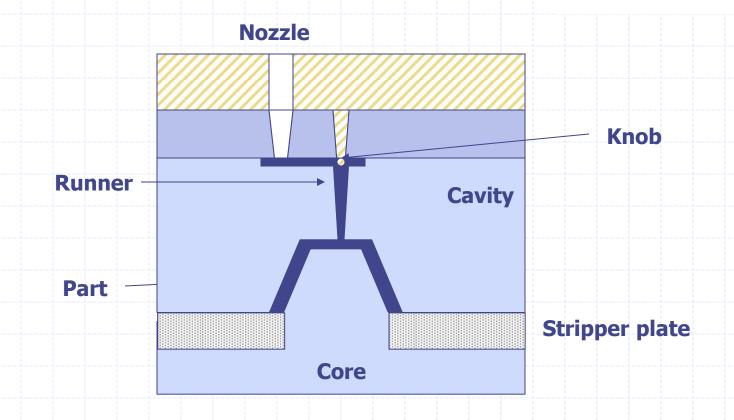
^{*} Source: http://www.idsa-mp.org/proc/plastic/injection/injection design 7.htm


Injection Molding

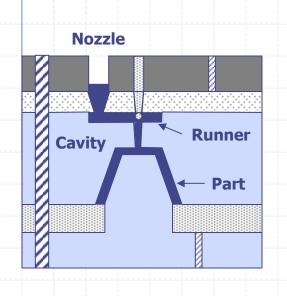


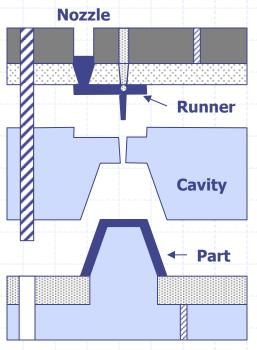

Effects of mold pressure on shrinkage

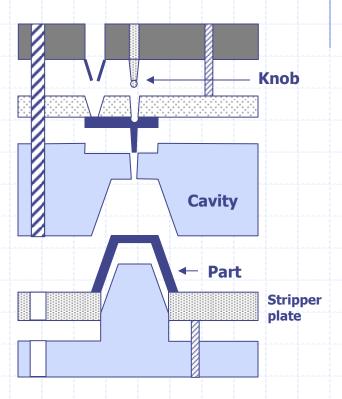
Tooling Basics



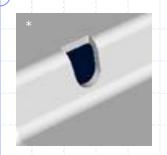
Basic mould consisting of cavity and core plate

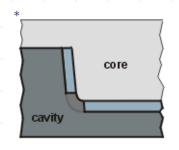

Tooling for a plastic cup

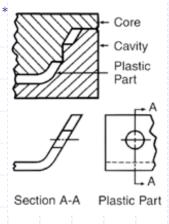


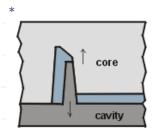


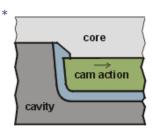
Tooling for a plastic cup

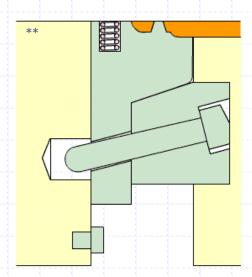


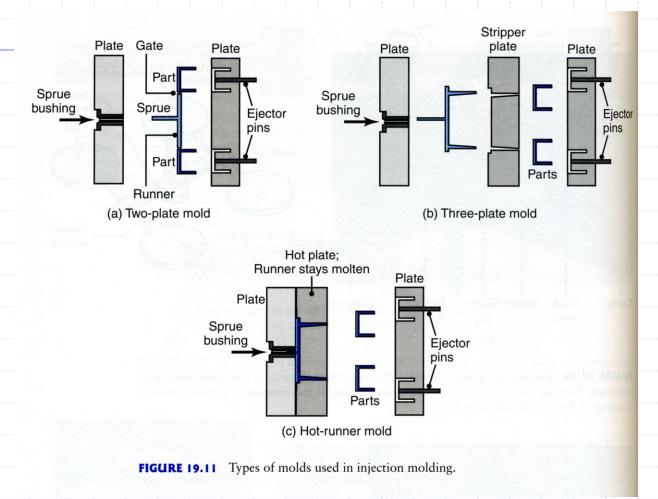





Tooling

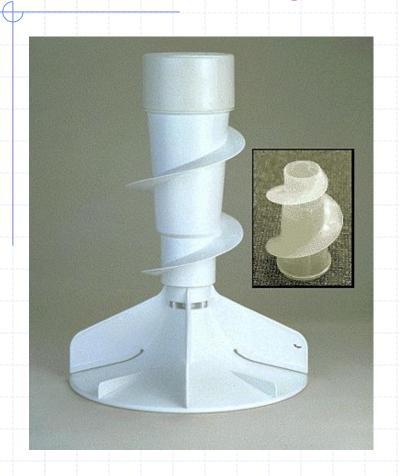


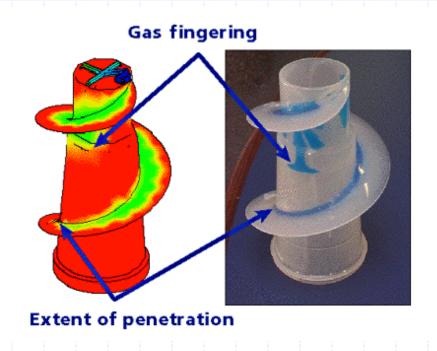




^{*} Source: http://www.hzs.co.jp/english/products/e trainer/mold/basic/basic.htm (E-trainer by HZS Co.,Ltd.)

Tooling Alternatives




Kalpakjian & Schmid

Part design rules

- Simple shapes to reduce tooling cost
 - No undercuts, etc.
- Draft angle to remove part
 - In some cases, small angles (1/4°) will do
 - Problem for gears
- Even wall thickness
- Minimum wall thickness ~ 0.025 in
- Avoid sharp corners
- Hide weld lines
 - Holes may be molded 2/3 of the way through the wall only, with final drilling to eliminate weld lines

New developments- Gas assisted injection molding

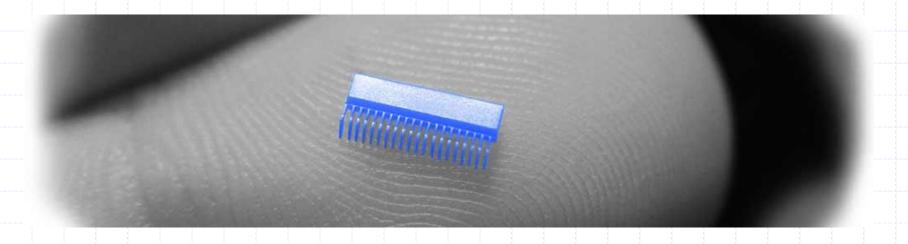
New developments; injection molding with cores

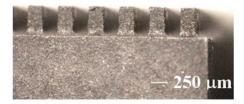
Injection Molded Housing

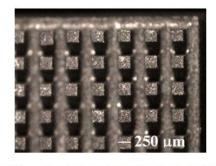
Cores used in Injection Molding

Cores and
Part Molded in Clear Plastic

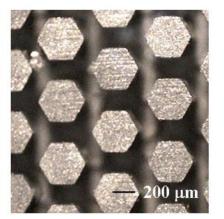
Micro injection molding

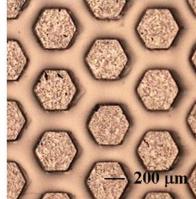




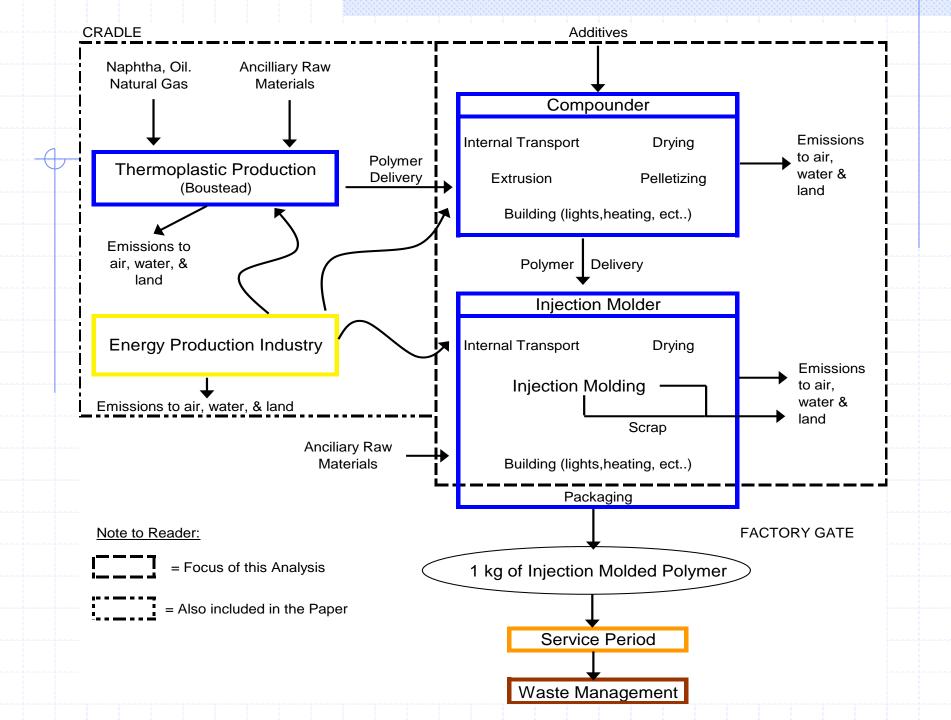


Micro embossing


Replacing serial processes with parallel processes at small scales



h) Side view of wire EDM stainless steel micro well embossing insert



k) Hexagonal micro well embossing insert (Mezzo Systems Inc.) and HDPE embossed hexagonal micro wells

B. Kim UMass

Environmental issues

- System boundaries
- Polymer production
- Compounding
- Machine types
- Out gassing & energy during processing

Polymer Production

Largest Player in the Injection Molding LCI

What is a polymer:

How much energy does it take to make 1 kg of polymer = a lot !!!

Sources	HDPE	LLDPE	LDPE	PP	PVC	PS	PC	PET
Boustead	76.56	77.79	73.55	72.49	58.41	86.46	115.45	77.14
Ashby	111.50		92.00	111.50	79.50	118.00		
Patel			64.60		53.20	70.80	80.30	59.40
Kindler/Nickles [Patel 1999]			71.00		53.00	81.00	107.00	96.00
Worrell et al. [Patel 1999]			67.80		52.40	82.70	78.20	
E ³ Handbook [OIT 1997]	131.65	121.18	136.07	126.07	33.24			
Energieweb	80.00		68.00	64.00	57.00	84.00		81.00

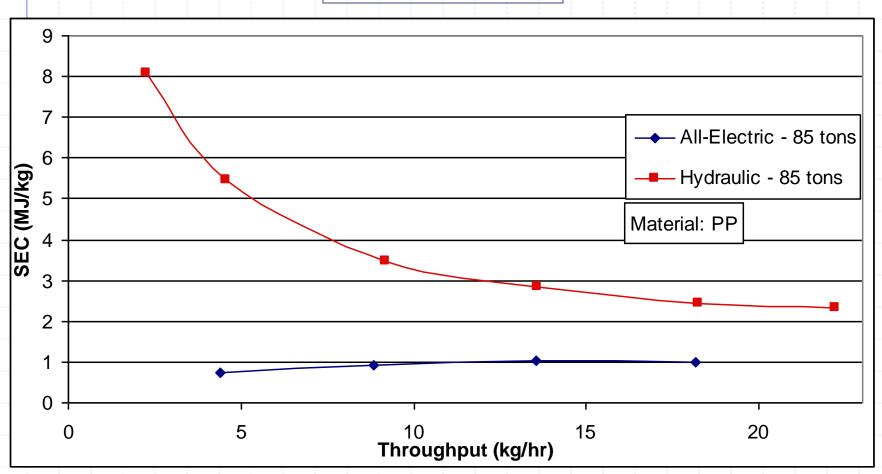
Compounding - extrusion

- An extruder is used to mix additives with a polymer base, to bestow the polymer with the required characteristics.
- Similar to an injection molding machine, but without a mold and continuous production.
- Thus it has a similar energy consumption profile.

Environmentally Unfriendly Additives:

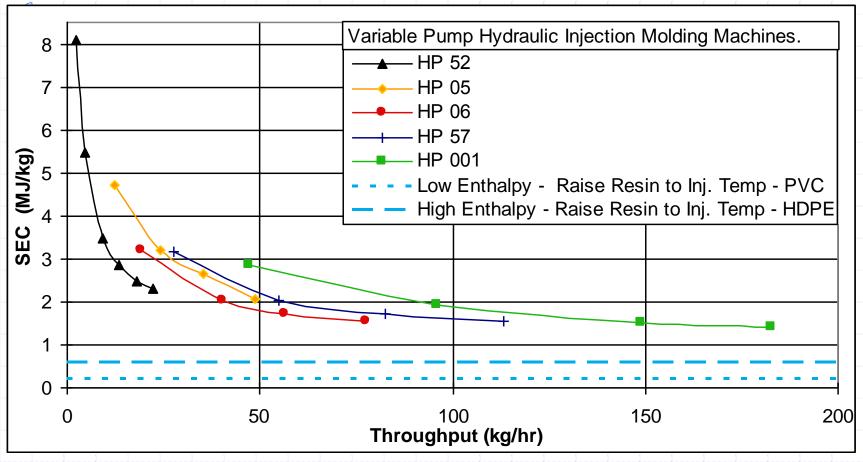
- Fluorinated blowing agents (GHG's)
- Phalates (some toxic to human liver, kidney and testicles)
- Organotin stabilizers (toxic and damage marine wildlife)

Injection Molding Process


Source:

http://cache.husky.ca/pdf/brochures/br-hylectric03a.pdf

Machine types: Hydraulic, electric, hydro-electric


All-electrics have very low fixed energy costs (small idling power). SEC is constant as throughput increases.

 $SEC \approx p_v$

Source: [Thiriez]

For Hydraulics and Hybrids as throughput increases, SEC \rightarrow k.

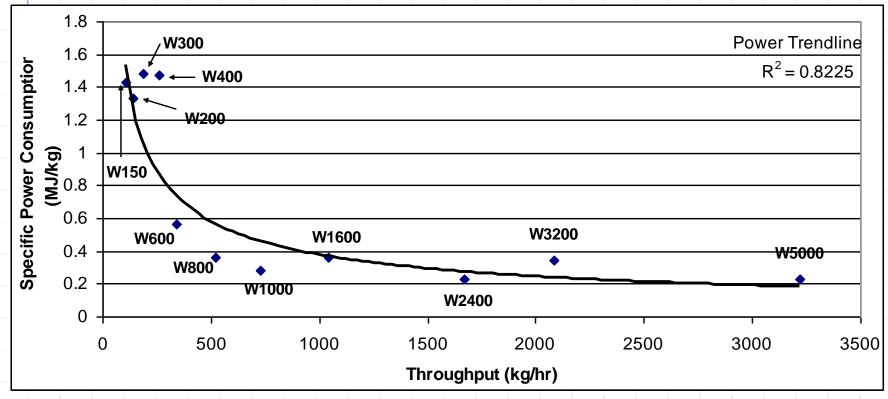


Does not account for the electric grid.

Source: [Thiriez]

Enthalpy value to melt plastics is just 0.1 to 0.7 MJ/kg !!!

All-electric vs. hvbrid



Source: [Thiriez]

The hydraulic plot would be even higher than the hybrid curve

Driers

- Used to dry internal moisture in hygroscopic polymers and external moisture in non-hygroscopic ones.
- ◆ It is done before extruding and injection molding.

Same as

$$\frac{P}{\dot{m}} = \frac{E}{m} = SEC = \frac{P_0}{\dot{m}} + k$$

Source: [Thiriez]

LCI Summarized Results

ENERGY CONSUMPTION BY STAGE in MJ/kg of shot

Thermoplastic Production

								Generic b	y Amount	Ex	tras
_		HDPE	LLDPE	LDPE	PP	PVC	PS	Consumed	Inj. Molded	PC	PET
	avg	89.8	79.7	73.1	83.0	59.2	87.2	81.2	74.6	95.7	78.8
	low	77.9	79.7	64.6	64.0	52.4	70.8	69.7	62.8	78.2	59.4
	high	111.5	79.7	92.0	111.5	79.5	118.0	102.7	97.6	117.4	96.0

	avg	0.19
Polymer Delivery	low	0.12
	high	0.24

Compounder

	Internal				Building (lights,
	Transport	Drying	Extrusion	Pelletizing	heating, ect)
avg	0.09	0.70	3.57	0.16	0.99
low		0.30	1.82	0.06	
high		1.62	5.00	0.31	

Subtotal

avg	5.51
low	3.25
high	8.01

Polymer Delivery	avg	0.19
	low	0.12
	high	0.24

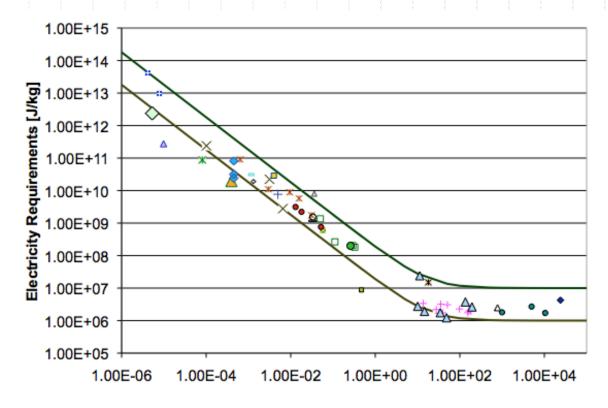
				Injection Molde	er	
		Internal Transport	Drying	Injection Molding (look below)	Scrap (Granulating)	Building (lights, heating, ect)
	avg	0.04	0.70	1	0.05	0.99
-	low		0.30		0.03	
1	high		1.62]	0.12	
J		_	_	<u> </u>		

		Injection Molding - Choose One				
		Hydraulic	Hybrid	All-Electric		
	avg	11.29	5.56	4.89		
	low	3.99	3.11	1.80		
	high	69.79	8.45	15.29		
Subtotal	avg	13.08	7.35	6.68		
	low	5.35	4.47	3.17		
	high	72.57	11.22	18.06		

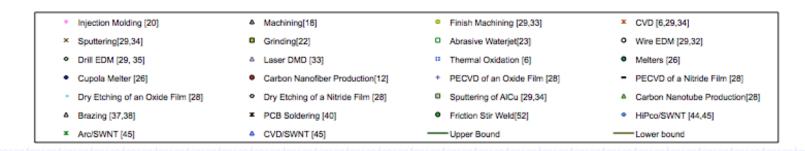
TOTAL w/ Generic Inj. Molded Polymer

	Hydraulic	Hybrid	All-Electric
avg	93.60	87.87	87.20
low	71.65	70.77	69.46
high	178.68	117.34	124.18

TOTAL w/o
Polymer Prod


avg	18.97	13.24	12.57
low	8.84	7.96	6.66
high	81.04	19.70	26.54

Notes Drying - the values presented assume no knowledge of the materials' hygroscopia. In order words, they are averages between hygroscopic and non-hygroscopic values. For hygroscopic materials such as PC and PET additional drying energy is needed (0.65 MJ/kg in the case of PC and 0.52 MJ/kg in the case of PET)


Pelletizing - in the case of pelletizing an extra 0.3 MJ/kg is needed for PP

Granulating - a scarp rate of 10 % is assumed

Source: [Thiriez]

Process Rate [kg/hr]

Energy Production Industry

United States Electricity Composition by Source						
						Waste/
Hydro	Nuclear	Other	Coal	Oil	Gas	Renewable
7.1%	19.6%	0.0%	50.7%	3.1%	16.7%	2.2%

The Grid is about 30% efficient

For every MJ of electricity we also get:

- \rightarrow 171.94 g of CO₂
- \rightarrow 0.76 g of SO₂
- \rightarrow 0.31 g of NO_x
- \rightarrow 6.24 g of CH₄
- → 0.0032 mg of Hg

Scale

	HDPE,
,	LDPE,
	LLDPE,
	PP, PS,
	PVC

Compounder and Injection		U.S.	Global
Molder		GJ/year	GJ/year
-	6 Main Thermoplastics	9.34E+07	4.01E+08
	All Plastics	2.06E+08	6.68E+08

The Injection Molding Industry in the U.S. consumes 6.19 x 10⁷ GJ of electricity (or 2.06 x 10⁸ GJ in total energy).

This is larger than the entire electric production of some small countries.

In such a scale imagine what a 0.1 % energy savings mean !!!

Do Polymers get recycled?

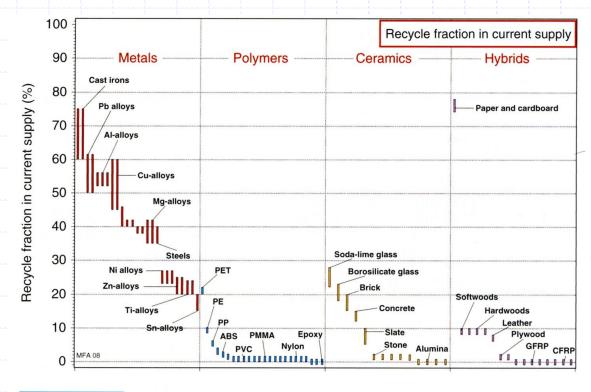


FIGURE 6.13 Recycle fraction bar chart.

The printer goes in the hopper...

And comes out....

Readings

- Tadmore and Gogos
 - Molding and Casting pp 584 -610
- Boothroyd Dewhurst
 - Design for Injection Molding pp 319 359
- Kalpakjian Ch 7 & 19
- Thiriez et al, "An Environmental Analysis of Injection Molding"
- "Injection Molding Case Study" (Gas Assist)