manufacturing processes overview

Part 1:mechanisms of geometry formation Part 2:performance (cost, variation, energy, rate)

> 2.810 T. Gutowski

Components of Cost

Ostwald

We will focus on $\Delta Cost$:

- Direct Recurring Costs (Variable C = VN): •Material
- •Labor
- •Equipment (rental)
- Direct Non-recurring costs (Fixed C = F):
- •Tooling, special equipment..

Indirect Costs

- •Plant level costs including indirect labor
- Sales, general and administrative expensesProfit

Unit cost: C/N =F/N + V

Serial processes take longer, larger variable costs Specialty mat'l add to variable Quicofifie ™ and a decompressor are needed to see this picture.

> Parallel processes require tooling, larger fixed costs, but short cycle time

But, Indirect costs..

- Become more important for <u>higher</u>
 <u>levels of automation</u>,
- Become more difficult to allocate as the <u>number of products</u> and variation <u>grows</u>.
- Use "Activity Based Costing" and other tools

Parametric models

- DFM and DFA: Boothroyd, Dewhurst & Knight
- Software -

Top10ER	PPage ERP So	ERP Software Systems index for Manufacturing Email his case Bookmark this case							
	Top 10: By	MFG. Modes By Industry	By Platform White P	Paper Library Case Stud	ly Library Advisory Council				
Side by Side Compariso	on for Discrete Manufactur	ing, Industrial Machinery, (Cloud-Based (Saas) resul	ited in 5 product(s)	Free Demos				
Use scroll bars to compa Management, Financial M	re product modules for Mate Management, Customer Rela	erials Management, Product ationship Management, Serv	ion Management, Sales ar ices and Support, and Add	d Order ditional Capabilities.	Best Pricing O New Comparison O				
	Remove 😜	Remove 🖓	Remove 🤤	Remove (Remove 😡				
Best Pricing Free Demos			sage	infor	45				
General Data	(The Darie O	(The balls of	(Placoulie O)	The Danie O	(THE DELIVERY)				
Product Name	Epicor ERP	Plex Systems	Sage ERP X3	Infor VISUAL	IFS Applications 8.0				
Version	9.05	Always Current	6.5	6.5.4	8.0				
Price Range	\$4K -500K	\$5K + per month-	\$2610/ user-	\$12K-100K	\$300K-2M				
Financing Options	Lease, Owner Financing, Lease to own	Subscription		Lease, Owner Financing, Lease to own	Lease, Owner Financing				
User Range	1-1000+	20-1000+	20-1000+	5-500	40-5000				
Multi Site	Yes	Yes	Yes	Yes	Yes				
Multi National	Yes	Yes	Yes	Yes	Yes				
Architecture	SOA	SaaS Multitenant SOA		SOA	SOA				
		MS SOL Sequer Progress							

- On-line
 - http://www.custompartnet.com/wu/die-casting
- Quotes-
- Parametric Models; Ostwald, Polgar

Energy & Environmental Science

RSCPublishing

ANALYSIS

View Article Online

Assessing the drivers of regional trends in solar photovoltaic manufacturing[†]

Cite this: DOI: 10.1039/c3ee40701b

Alan C. Goodrich,^{*a} Douglas M. Powell,^{*b} Ted L. James,^a Michael Woodhouse^a and Tonio Buonassisi^{*b}

Fig. 1 From 2008 to 2011, reductions in the average global prices of c-Si PV modules have been in line with experience, but the rise of module manufacturing in China and Taiwan has been striking.⁶

Fig. 4 Innovation and scale can lead to regional PV module manufacturing price parity.

FIGURE 22.14 The range of surface roughnesses obtained in various machining processes. Note the wide range within each group, especially in turning and boring. See also Fig. 26.4.

Roughness (R_a)

Kalpakjian & Schmid

Process Variation: Empirical

HGURE 27.4 Surface roughness and tolerances obtained in various machining processes; note the wide range within each process (see also Fig. 23.13). *Source:* Based on data from *Machining Data Handbook*, 3rd ed. Copyright 1980.

Kalpakjian and Schmid 7th ed

What is Process Variation? Process measurement reveals a distribution in output values.

Discrete probability distribution based upon measurements

Continuous "Normal" distribution

In general if the randomness is due to many different factors, the distribution of the means will tend toward a "normal" distribution. (Central Limit Theorem) If the dimension "X" is a random variable, the mean is given by

$$\mu = E(X) \tag{1}$$

and the variation is given by

$$Var(x) = E[(x - \mu)^2] = \sigma^2$$
 (2)

both of these can be obtained from the probability density function p(x).

For a discrete pdf, the expectation operation is:

$$E(X) = \sum_{i} x_{i} p(x_{i}) |_{(3)}$$

Sample calculation of $E(x) = \mu$, and $Var(x) = \sigma^2$

Comparing the variation with the specifications

Goals: $6\sigma < (USL-LSL)$ and mean centered

STANDARD NORMAL CURVE AREAS

This table gives areas under the standard normal distribution ϕ between 0 and $t \ge 0$ in steps of 0.01.

t	0	1	2	3	4	5	6	7	8	9
0.0	.0000	.0040	.0080	.0120	.0160	.0199	.0239	.0279	.0319	.0359
0.1	.0398	.0438	.0478	.0517	.0557	.0596	.0636	.0675	.0714	.0754
0.2	.0793	.0832	.0871	.0910	.0948	.0987	.1026	.1064	.1103	.1141
0.3	.1179	.1217	.1255	.1293	.1331	.1368	.1406	.1443	.1480	.1517
0.4	.1554	.1591	.1628	.1664	.1700	.1736	.1772	.1808	.1844	.1879
0.5	1915	1950	1985	2019	2054	2088	2123	2157	2190	.2224
0.6	2258	2201	2324	2357	2389	2422	2454	2486	2518	2549
0.7	2580	2612	2642	2673	2704	2734	2764	2794	2823	2852
0.9	9881	2010	2030	2067	2006	3023	3051	3078	3106	3133
0.0	3150	3186	3919	2028	3264	3289	3315	3340	3365	3389
0.5	.3135	.5160	.0212	.0200	.0204	.0200	.5515	.0010	.0000	.0000
1.0	.3413	.3438	.3461	.3485	.3508	.3531	.3554	.3577	.3599	.3621
1.1	.3643	.3665	.3686	.3708	.3729	.3749	.3770	.3790	.3810	.3830
1.2	.3849	.3869	.3888	.3907	.3925	.3944	.3962	.3980	.3997	.4015
1.3	.4032	.4049	.4066	.4082	.4099	.4115	.4131	.4147	.4162	.4177
1.4	.4192	.4207	.4222	.4236	.4251	.4265	.4279	.4292	.4306	.4319
1.5	.4332	.4345	.4357	.4370	.4382	.4394	.4406	.4418	.4429	.4441
1.6	.4452	.4463	.4474	.4484	.4495	.4505	.4515	.4525	.4535	.4545
1.7	.4554	.4564	.4573	.4582	.4591	.4599	.4608	.4616	.4625	.4633
1.8	.4641	.4649	.4656	.4664	.4671	.4678	.4686	.4693	.4699	.4706
1.9	.4713	.4719	.4726	.4732	.4738	.4744	.4750	.4756	.4761	.4767
										—
2.0	.4772	.4778	.4783	.4788	.4793	.4798	.4803	.4808	.4812	.4817
2.1	.4821	4826	.4830	4834	.4838	.4842	.4846	.4850	.4854	.4857
2.2	.4861	4864	.4868	.4871	.4875	.4878	.4881	.4884	.4887	.4890
2.3	4893	4896	4898	4901	4904	4906	4909	.4911	.4913	.4916
2.4	4918	4920	4922	4925	4927	4929	.4931	.4932	.4934	.4936
										100000000
2.5	.4938	.4940	.4941	.4943	.4945	.4946	.4948	.4949	.4951	.4952
2.6	.4953	.4955	.4956	.4957	.4959	.4960	.4961	.4962	.4963	.4964
2.7	.4965	.4966	.4967	.4968	.4969	.4970	.4971	.4972	.4973	.4974
2.8	.4974	.4975	.4976	.4977	.4977	.4978	.4979	.4979	.4980	.4981
2.9	.4981	.4982	.4982	.4983	.4984	.4984	.4985	.4985	.4986	.4986
3.0	.4987	.4987	.4987	.4988	.4988	.4989	.4989	.4989	.4990	.4990
3.1	.4990	.4991	.4991	.4991	.4992	.4992	.4992	.4992	.4993	.4993
3.2	.4993	.4993	.4994	.4994	.4994	.4994	.4994	.4995	.4995	.4995
3.3	.4995	.4995	.4995	.4996	.4996	.4996	.4996	.4996	.4996	.4997
3.4	.4997	.4997	.4997	.4997	.4997	.4997	.4997	.4997	.4997	.4998
3.5	.4998	.4998	.4998	.4998	.4998	.4998	.4998	.4998	.4998	.4998
3.6	.4998	.4998	.4999	.4999	.4999	.4999	.4999	.4999	.4999	.4999
3.7	.4999	.4999	.4999	.4999	.4999	.4999	.4999	.4999	.4999	.4999
3.8	.4999	.4999	.4999	.4999	.4999	.4999	.4999	.4999	.4999	.4999
3.9	.5000	.5000	.5000	.5000	.5000	.5000	.5000	.5000	.5000	.5000
						1				

If UCL-LCL = 6σ and the process mean is in the center, then The out of compliance parts are given by $2(0.500-\phi(3\sigma)) =$ 2(0.500-0.4987) =0.0026 or 0.26% or 2600ppm Some propose a process capability index C_p that compares the tolerance interval USL-LSL vs the process variation 6σ .

How big is 2600ppm?

10/100,000 = 100 ppm

Mean drift

Mean on target, but large variation due to many random effects

Mean drift has assignable cause, tight grouping means small variation

Examples of mean drift in processing

- Cutting tool wears gradually
- Temperature in the room (and the work piece) changes gradually
- Machine adjusts as it is warming up
- New batch of materials have slightly different properties

But each of these can be controlled...

Observing changes in the mean and variance

- Use Statistical Process Control and Process
 Control Charts
- Kalpakjian & Schmid: section 36.8
- Handout by Hogg, and Ledolter

Sampling period

"Shewhart Control Charts"

Histogram for CNC Turning

From Dave Hardt

Schematic representation of how the distribution of a measurement may change with time

FIGURE 36.7 Illustration of processes that are (a) unstable or out of control and (b) stable or in control. Note in part (b) that all distributions have standard deviations that are lower than those of the distributions shown in part (a) and have means that are closer to the desired value. *Source:* Based on K. Crow.

Statistical Control Methods

Strategy:

- Determine *Centerline*, *UCL*, and *LCL* (from past data sampling when process is under control)
- 2. Monitor stability of process
- 3. Data outside of UCL/LCL indicates mean shift
- 4. Investigate and eliminate causes of shift

Statistical Control Methods

Factors that determine the appropriate sampling frequency:

- Stability of process
- Potential loss
- Cost of sampling inspection

"x-bar charts" Mean of the means

R = defined next slide

"R-charts" Range = high - low

Standard Deviation can be estimated from R

R-chart for the sample ranges

Where, n = sample size k = number of samples D_3 , $D_4 =$ constants from Table C.1

Estimate of standard deviation from range ref. P. Lyonnet

estimate for m, and if W is the range or spread of values in the sample, i.e. the difference between the greatest and least values, an estimate for σ is W/d_n , where n is the number of items in the sample and d_n is a known function (Table 3.3 gives values of d_n).

Size of each sample	$1/d_n$	d_n
2	0.886	1.128
3	0.591	1.693
4	0.486	2.059
5	0.430	2.326
6	0.395	2.534
7	0.370	2.704
8	0.351	2.847
9	0.337	2.970
10	0.325	3.078
11	0.315	3.173
12	0.307	3.258

Table 3.3 Estimation of σ from range $W : \hat{\sigma} = W/d_n$

Observa	ber of ations in	Factors for	r ž-Charts	Fac for R-	tors Chart
San	nole.	Usine s	Using R		
		A3	A_2	D_3	D_4
	2	2.66	1.88	0	3.27
	3	1.95	1.02	0	2.57
	4	1.63	0.73	0	2.28
	5	1.43	0.58	0	2.11
	9	1.29	0.48	0	2.00
	7	1.18	0.42	0.08	1.92
	8	1.10	0.37	0.14	1.86
	6	1.03	0.34	0.18	1.82
1	0	0.98	0.31	0.22	1.78
1	1	0.93	0.29	0.26	1.74
1	2	0.89	0.27	0.28	1.72
1	3	0.85	0.25	0.31	1.69
1	4	0.82	0.24	0.33	1.67
1	5	0.79	0.22	0.35	1.65
1	9	0.76	0.21	0.36	1.64
1	7	0.74	0.20	0.38	1.62
1	8	0.72	0.19	0.39	1.61
1	6	0.70	0.19	0.40	1.60
5	0	0.68	0.18	0.41	1.59

What causes variation in dimensions?

- Machine variation
 - e.g. bearing compression, thermal expansion, tool wear..
- Material variation
 - e.g.from supplier, during process
- Operator variation
 - Jim instead of Joe, or Alice instead of Mary
- Method variation
 - Mary always does it this way...

Process variation/tolerance

What are the most important variables?

FIGURE 35.20 Dimensional tolerances as a function of part size for various manufacturing processes; note that because many factors are involved, there is a broad range for tolerances.

Process variation/tolerance

FIGURE 35.20 Dimensional tolerances as a function of part size for various manufacturing processes; note that because many factors are involved, there is a broad range for tolerances.

FIGURE 35.20 Dimensional tolerances as a function of part size for various manufacturing processes; note that because many factors are involved, there is a broad range for tolerances.

Random variables

If the variables are independent:

$$E(\delta) = E(\alpha)E(L)E(\Delta T)$$

..and the variation is small:

$$\left(\frac{\sigma_{\delta}}{\bar{\delta}}\right)^{2} = \left(\frac{\sigma_{L}}{\bar{L}}\right)^{2} + \left(\frac{\sigma_{\alpha}}{\bar{\alpha}}\right)^{2} + \left(\frac{\sigma_{\Delta T}}{\bar{\Delta}\bar{T}}\right)^{2}$$

Ref: Lipschutz

Properties of the Expectation

1. If
$$Y = aX + b$$
;

where Y, X are random variables; a, b are constants,

$$E(Y) = aE(X) + b$$
(4)

2. If X_1, \ldots, X_n are random variables,

$$E(X_1 + ... + X_n) = E(X_1) + ... + E(X_n)$$
 (5)

Properties of the Variance

1. For a and b constants,

$$Var(aX + b) = a^{2}Var(X)$$
 (6)

2. If X_1, \ldots, X_n are <u>independent</u> random variables

$$Var(X_1 + ... + X_n) = Var(X_1) + Var(X_2) + Var(X_n)$$

(7)

Propagation of errors approach

examples

– Abbe error: $y \approx \theta x$

– thermal expansion: $\delta L = L \alpha \Delta T$

- Mean $E(y) = E(\theta) E(x)$, if <u>independent</u>, but - Var (y) = ?
- Linearize for small values of δx , $\delta \theta$

Propagation of errors
$$y = \theta \cdot x$$

 $y = \overline{y} + \delta y = (\overline{\theta} + \delta \theta)(\overline{x} + \delta x)$
 $\delta y \cong \overline{\theta} \delta x + \overline{x} \delta \theta$
 $Var(y) = E[(\delta y)^2]$
 $\delta y^2 \cong (\overline{\theta} \delta x)^2 + 2\overline{\theta} \delta x \cdot \overline{x} \delta \theta + (\overline{x} \delta \theta)^2$
recall $E(x) = \sum x_i p(x_i)$
 $Var(y) \cong \overline{\theta}^2 Var(x) + \overline{x}^2 Var(\theta)$

This gives...

• this result is called "quadrature",

in general, if $y = \theta x$, with θ , x independent random variables with small variation, then

with Var (x) = σ_x^2

$$\left(\frac{\sigma_{y}}{\bar{y}}\right)^{2} = \left(\frac{\sigma_{\theta}}{\bar{\theta}}\right)^{2} + \left(\frac{\sigma_{x}}{\bar{x}}\right)^{2}$$

A more general results is...

 for any relationship like y=z^αx^β, with z, x independent random variables with small variation, then

$$\left(\frac{\sigma_y}{\bar{y}}\right)^2 = \alpha^2 \left(\frac{\sigma_z}{\bar{z}}\right)^2 + \beta^2 \left(\frac{\sigma_x}{\bar{x}}\right)^2$$

Hence for Thermal Expansion...

If the variables are independent:

$$E(\delta) = E(\alpha)E(L)E(\Delta T)$$

..and the variation is small:

$$\left(\frac{\sigma_{\delta}}{\bar{\delta}}\right)^{2} = \left(\frac{\sigma_{L}}{\bar{L}}\right)^{2} + \left(\frac{\sigma_{\alpha}}{\bar{\alpha}}\right)^{2} + \left(\frac{\sigma_{\Delta T}}{\bar{\Delta}\bar{T}}\right)^{2}$$

Energy intensity of Mfg Processes

- 1. Machining
- 2. Grinding
- 3. Casting
- 4. Injection Molding
- 5. Abrasive Waterjet
- 6. EDM
- 7. Laser DMD
- 8. CVD
- 9. Sputtering
- 10. Thermal Oxidation

Electricity requirements for manufacturing processes MJ_{electricity}/kg_{processed}

Energy Requirements at the Machine Tool

Energy Use Breakdown by Type

Production Machining Center

Automated Milling Machine

From Toyota 1999, and Kordonowy 2002.

Injection Molding Machines

Thermal Oxidation, SiO₂

FIGURE 9. Energy consumption for growth of a 25-Å oxide layer as a function of equipment type (RTP vs vertical furnace), number of wafers processed per week, and total run time (production plus idle). The example shown is for 8-in. wafers.

Ref: Murphy et al es&t 2003

Power Requirements

TABLE 2. Averag Power Requireme Microprocessor \	e Numb ents for Nafer Fa	er of Fu a Hypot ab	nctions, hetical (Through).13-µM	puts, and	4	
	no. of fu	unctions			power		
unit operation	8-layer metal	6-layer metal	wafers/ run	wafers/ h	rocess	idle	
implant	16	16	25	20	27	15	
CVD	13	11	10	15	16	14	
wafer clean	35	31	50	150	8	7.5	
furnace	21	17	150	35	21	16	
furnace (RTP)	7	7	1	10	48	45	
photo (stepper)	27	23	1	60	115	48	
photo (coater)	27	23	1	60	90	37	
etch (pattern)	24	20	1	35	135	30	
etch (ash)	27	23	1	20	1	0.8	
metallization	11	9	1	25	150	83	
CMP	18	14	1	25	29	8	

Ref: Murphy et al es&t 2003

Process Name	Power Required		Process Rate			Electricity Required			References
Tiocess Name			cm ³ /s		The for the former of the form				
Injection Molding	10.76 ·	- 71.40	3.76	- 50.45	of polymer processed	1.75E+03	-	3.41E+03	[Thiriez 2006]
Machining	2.80 -	- 194.80	0.35	- 20.00	of material removed	3.50E+03	-	1.87E+05	[Dahmus 2004], [Morrow, Qi & Skerlos 2004] & [Time Estimation Booklet 1996]
Finish Machining	9	.59	2.05	E-03	of material removed	4.68E+06		+06	[Morrow, Qi & Skerlos 2004] & [Time Estimation Booklet 1996]
CVD	14.78 -	- 25.00	6.54E-05	- 3.24E-03	of material deposited on wafer area	4.63E+06	-	2.44E+08	[Murphy et al. 2003], [Wolf & Tauber 1986, p.170], [Novellus Concept One 1995b] & [Krishnan Communication 2005]
Sputtering	5.04 -	- 19.50	1.05E-05	- 6.70E-04	of material deposited on wafer area	7.52E+06	-	6.45E+08	[Wolf & Tauber 1986] & [Holland Interview]
Grinding	7.50 -	- 0.03	1.66E-02	- 2.85E-02	of material removed	6.92E+04	-	3.08E+05	[Baniszewski 2005] & [Chryssolouris 1991]
Waterjet	8.16 ·	- 16.00	5.15E-03	- 8.01E-02	of material removed	2.06E+05	-	3.66E+06	[Kurd 2004]
Wire EDM	6.60 ·	- 14.25	2.23E-03	- 2.71E-03	of material removed	2.44E+06	-	6.39E+06	[Sodick], [Kalpakjian & Schmid 2001], & [AccuteX 2005]
Drill EDM	2	63	1.70	E-07	of material removed	1.54E+10		+10	[King Edm 2005] & [McGeough, J.A. 1988]
Laser DMD	80	0.00	1.28	E-03	of material removed	6.24	IE-	+07	[Morrow, Qi & Skerlos 2004]
Thermal Oxidation	21.00 ·	- 48.00	4.36E-07	- 8.18E-07	of material deposited on wafer area	2.57E+10	-	1.10E+11	[Murphy et al. 2003]

In General, over many manufacturing processes,

Idle Power $5kW \le P_o \le 50kW$ and

Material Process Rates $10^{-7} \text{ cm}^3/\text{sec} \le \dot{V} \le 1 \text{ cm}^3/\text{sec}$

* References: 1. Advanced Methods of Machining, J.A.McGeough, Chapman and Hall, 1988

2. Manufacturing Engineering and Technology, S. Kalpakjian, Addison-Wesley, 1992

3. Laser Machining, G. Chryssolouris, Springer-Verlag, 1991

Gutowski et al IEEE, ISEE 2007

QuickTime™ and a decompressor are needed to see this picture.

Why the two different distributions at Sony?

Figure 2.1 Distribution of color density in television sets. (Source: *The Asahi*, April 17, 1979).

Extra slides

Cost of Energy in Machining

Impact of energy efficiency on computer numerically controlled machining

Fig.2 Relative contribution of cost components. The right-hand panel shows the energy-related cost components for experiment E

Ref. Anderberg, Kara, Beno

The out of specification parts are $2(0.5-\phi(2\sigma))$ = 2(0.5 -0.4772) = 0.0456 or 4.56%

In general the mean and the target do not have to line up. In this case the C_p is misleading. A better question is, how many parts are out of

In this case an alternative process capability can be used called the $C_{\mbox{\scriptsize pk}}$

$$G_{pk} = \frac{\min(USL - \mu, \mu - LSL)}{3\sigma}$$

Comparison

Case 1 (μ on target) C_p = 4 $\sigma/6\sigma$ = 2/3 Case 2 (μ drift) C_p = 4 $\sigma/6\sigma$ = 2/3

 $C_{pk} = Min(2\sigma/3\sigma, 2\sigma/3\sigma) = 2/3$

 $C_{pk} = Min(1\sigma/3\sigma, 3\sigma/3\sigma) = 1/3$

Out of Spec = 4.55%

Out of Spec = 15.835%

"Tolerance Stack up", really about variance,

recall that

$$E(X_1 + ... + X_n) = E(X_1) + ... + E(X_n)$$

but how about

$$Var(X_1 + \ldots + X_n) = ?$$

If X_1 and X_2 are random variables and not necessarily independent, then

$$Var(X_1 + X_2) = Var(X_1) + Var(X_2) + 2Cov(X_1Y)$$
 (8)

this can be written using the standard deviation " σ ", and the correlation " ρ " as

(9)

$$\sigma_L^2 = \sigma_1^2 + \sigma_2^2 + 2\sigma_1\sigma_2\rho$$

where $L = X_1 + X_2$

If X_1 and X_2 are correlated ($\rho = 1$), then

$$\sigma_L^2 = \sigma_1^2 + \sigma_2^2 + 2\sigma_1\sigma_2 = (\sigma_1 + \sigma_2)^2$$
⁽¹⁴⁾

for
$$X_1 = X_2 = X_0$$

 $\sigma_L^2 = 4\sigma_0^2$
(15)

for N
$$\sigma_L^2 = N^2 \sigma_0^2$$
 (16)

(17)

or

$$\sigma_L = N\sigma_0$$

Now, if X_1 and X_2 are uncorrelated ($\rho = 0$) we get the result as in eq'n (7) or,

or
$$\sigma_L^2 = \sigma_1^2 + \sigma_2^2 \qquad (10)$$
and for N
$$\sigma_L^2 = \sum_{i=1}^N \sigma_i^2 \qquad (11)$$
If X₁=X=X₀

$$\sigma_L^2 = N\sigma_0^2 \qquad (12)$$
Or
$$\sigma_L = \sqrt{N}\sigma_0 \qquad (13)$$

As the number of variables grow so does the variation in the system; but when normalized...

Where $L = NL_o$