manufacturing processes overview

Part 1:mechanisms of geometry formation Part 2:performance (cost, variation, energy, rate)

2.810 T. Gutowski

Components of Cost

Ostwald

We will focus on ∧Cost:

- Direct Recurring Costs (Variable $C = VN$): •Material
- •Labor
- •Equipment (rental)
- Direct Non-recurring costs (Fixed $C = F$):
- •Tooling, special equipment..

Indirect Costs

- •Plant level costs including indirect labor
- •Sales, general and administrative expenses •Profit

Unit cost: C/N =F/N + V

Qui**cΩStoe**™ and a decompressor are needed to see this picture. Serial processes take longer, larger variable costs Specialty mat'l add to variable

> Parallel processes require tooling, larger fixed costs, but short cycle time

But, Indirect costs..

- Become more important for higher levels of automation,
- Become more difficult to allocate as the number of products and variation grows.
- Use "Activity Based Costing" and other tools

Parametric models

- **DFM and DFA: Boothroyd, Dewhurst & Knight**
- Software -

- On-line
	- <http://www.custompartnet.com/wu/die-casting>
- Quotes-
- Parametric Models; Ostwald, Polgar

Energy & **Environmental Science**

RSCPublishing

ANALYSIS

View Article Online View Journal

Assessing the drivers of regional trends in solar photovoltaic manufacturing†

Cite this: DOI: 10.1039/c3ee40701b

Alan C. Goodrich,^{*a} Douglas M. Powell,^{*b} Ted L. James,^a Michael Woodhouse^a and Tonio Buonassisi^{*b}

Fig. 1 From 2008 to 2011, reductions in the average global prices of c-Si PV modules have been in line with experience, but the rise of module manufacturing in China and Taiwan has been striking.⁶

Fig. 4 Innovation and scale can lead to regional PV module manufacturing price parity.

FIGURE 22.14 The range of surface roughnesses obtained in various machining processes. Note the wide range within each group, especially in turning and boring. See also Fig. 26.4.

Roughness (R_a)

Kalpakjian & Schmid

Process Variation: Empirical

HGURE 27.4 Surface roughness and tolerances obtained in various machining processes; note the wide range within each process (see also Fig. 23.13). Source: Based on data from Machining Data Handbook, 3rd ed. Copyright 1980.

Kalpakjian and Schmid 7th ed

What is Process Variation? Process measurement reveals a distribution in output values.

Discrete probability distribution based upon measurements

Continuous "Normal" distribution

In general if the randomness is due to many different factors, the distribution of the means will tend toward a "normal" distribution. (Central Limit Theorem)

If the dimension "X" is a random variable, the mean is given by

$$
\mu = E(X) \tag{1}
$$

and the variation is given by

$$
\operatorname{Var}(x) = E[(x - \mu)^2] = \sigma^2 \qquad (2)
$$

both of these can be obtained from the probability density function $p(x)$.

For a discrete pdf, the expectation operation is:

$$
E(X) = \sum_{i} x_i p(x_i) \bigg| (3)
$$

Sample calculation of $E(x) = \mu$, and $Var(x) = \sigma^2$

Comparing the variation with the specifications

Goals: $6\sigma < (USL-LSL)$ and mean centered

STANDARD NORMAL CURVE AREAS

This table gives areas under the standard normal distribution ϕ between 0 and $t \ge 0$ in steps of 0.01.

If UCL-LCL = 6σ and the process mean is in the center, then The out of compliance parts are given by $2(0.500-\phi(3\sigma)) =$ $2(0.500 - 0.4987) =$ 0.0026 or 0.26% or 2600ppm

Some propose a process capability index C_p that compares the tolerance interval USL-LSL vs the process variation 6σ .

How big is 2600ppm?

 $10/100,000 = 100$ ppm

Mean drift

Mean on target, but large variation due to many random effects

Mean drift has assignable cause, tight grouping means small variation

Examples of mean drift in processing

- Cutting tool wears gradually
- Temperature in the room (and the work piece) changes gradually
- Machine adjusts as it is warming up
- New batch of materials have slightly different properties

But each of these can be controlled…

Observing changes in the mean and variance

- Use Statistical Process Control and Process Control Charts
- Kalpakjian & Schmid: section 36.8
- Handout by Hogg, and Ledolter

Sampling period

"Shewhart Control Charts"

Histogram for CNC Turning

From Dave Hardt

Schematic representation of how the distribution of a measurement may change with time

FIGURE 36.7 Illustration of processes that are (a) unstable or out of control and (b) stable or in control. Note in part (b) that all distributions have standard deviations that are lower than those of the distributions shown in part (a) and have means that are closer to the desired value. Source: Based on K. Crow.

Kalpakjian & Schmid

Statistical Control Methods

Strategy:

- 1. Determine *Centerline*, *UCL*, and *LCL* (from past data sampling when process is under control)
- 2. Monitor stability of process
- 3. Data outside of UCL/LCL indicates mean shift
- 4. Investigate and eliminate causes of shift

Statistical Control Methods

Factors that determine the appropriate sampling frequency:

- Stability of process
- Potential loss
- Cost of sampling inspection

"x-bar charts" Mean of the means

 $R =$ defined next slide

"R-charts" Range = high - low

• Standard Deviation can be estimated from R

R-chart for the sample ranges

Where, $n =$ sample size $k =$ number of samples D_3 , D_4 = constants from Table C.1

Estimate of standard deviation from range ref. P. Lyonnet

estimate for m , and if W is the range or spread of values in the sample, i.e. the difference between the greatest and least values, an estimate for σ is W/d_n , where *n* is the number of items in the sample and d_n is a known function (Table 3.3 gives values of d_n).

Size of each sample	$1/d_n$	d_n
2	0.886	1.128
3	0.591	1.693
4	0.486	2.059
5	0.430	2.326
6	0.395	2.534
	0.370	2.704
8	0.351	2.847
9	0.337	2.970
10	0.325	3.078
11	0.315	3.173
12	0.307	3.258

Table 3.3 Estimation of σ from range $W : \hat{\sigma} = W/d_n$

What causes variation in dimensions?

- Machine variation
	- e.g. bearing compression, thermal expansion, tool wear..
- Material variation
	- e.g.from supplier, during process
- Operator variation
	- Jim instead of Joe, or Alice instead of Mary
- Method variation
	- Mary always does it this way…

Process variation/tolerance

What are the most important variables?

FIGURE 35.20 Dimensional tolerances as a function of part size for various manufacturing processes; note that because many factors are involved, there is a broad range for tolerances.

Process variation/tolerance

FIGURE 35.20 Dimensional tolerances as a function of part size for various manufacturing processes; note that because many factors are involved, there is a broad range for tolerances.

FIGURE 35.20 Dimensional tolerances as a function of part size for various manufacturing processes; note that because many factors are involved, there is a broad range for tolerances.

Random variables

If the variables are independent:

$$
E(\delta) = E(\alpha)E(L)E(\Delta T)
$$

..and the variation is small:

$$
\left(\frac{\sigma_{\delta}}{\overline{\delta}}\right)^2 = \left(\frac{\sigma_L}{\overline{L}}\right)^2 + \left(\frac{\sigma_{\alpha}}{\overline{\alpha}}\right)^2 + \left(\frac{\sigma_{\Delta T}}{\overline{\Delta T}}\right)^2
$$

Ref: Lipschutz

Properties of the Expectation

1. If $Y = aX + b$;

where Y, X are random variables; a, b are constants,

$$
E(Y) = aE(X) + b \tag{4}
$$

2. If $X_1,...X_n$ are random variables,

$$
E(X_1 + ... + X_n) = E(X_1) + ... + E(X_n)
$$
 (5)

Properties of the Variance

1. For a and b constants,

$$
Var(aX + b) = a^2 Var(X)
$$
 (6)

2. If X_1, \ldots, X_n are <u>independent</u> random variables

$$
Var(X_1 + ... + X_n) = Var(X_1) + Var(X_2) + Var(X_n)
$$

(7)

Propagation of errors approach

examples

– Abbe error: $y \approx \theta x$

– thermal expansion: $\delta L = L \alpha \Delta T$

- Mean $E(y) = E(\theta) E(x)$, if <u>independent</u>, but $-Var (y) = ?$
- $-$ Linearize for small values of δx , $\delta \theta$

Propagation of errors
$$
y = \theta \cdot x
$$

\n
$$
y = \overline{y} + \delta y = (\overline{\theta} + \delta \theta)(\overline{x} + \delta x)
$$
\n
$$
\delta y \cong \overline{\theta} \delta x + \overline{x} \delta \theta
$$
\n
$$
Var(y) = E[(\delta y)^{2}]
$$
\n
$$
\delta y^{2} \cong (\overline{\theta} \delta x)^{2} + 2\overline{\theta} \delta x \cdot \overline{x} \delta \theta + (\overline{x} \delta \theta)^{2}
$$
\nrecall

\n
$$
E(x) = \sum x_{i} p(x_{i})
$$
\n
$$
Var(y) \cong \overline{\theta}^{2} Var(x) + \overline{x}^{2} Var(\theta)
$$

This gives…

• this result is called "quadrature",

in general, if $y=\theta x$, with θ , x independent random variables with small variation, then

with Var (x) = σ_{x}^2

$$
\left(\frac{\sigma_y}{\bar{y}}\right)^2 = \left(\frac{\sigma_\theta}{\bar{\theta}}\right)^2 + \left(\frac{\sigma_x}{\bar{x}}\right)^2
$$

A more general results is…

• for any relationship like $y=z^{\alpha}x^{\beta}$, with z, x independent random variables with small variation, then

$$
\left(\frac{\sigma_y}{\overline{y}}\right)^2 = \alpha^2 \left(\frac{\sigma_z}{\overline{z}}\right)^2 + \beta^2 \left(\frac{\sigma_x}{\overline{x}}\right)^2
$$

Hence for Thermal Expansion…

If the variables are independent:

$$
E(\delta) = E(\alpha)E(L)E(\Delta T)
$$

..and the variation is small:

$$
\left(\frac{\sigma_{\delta}}{\overline{\delta}}\right)^2 = \left(\frac{\sigma_L}{\overline{L}}\right)^2 + \left(\frac{\sigma_{\alpha}}{\overline{\alpha}}\right)^2 + \left(\frac{\sigma_{\Delta T}}{\overline{\Delta T}}\right)^2
$$

Energy intensity of Mfg Processes

- 1. Machining
- 2. Grinding
- 3. Casting
- 4. Injection Molding
- 5. Abrasive Waterjet
- 6. EDM
- 7. Laser DMD
- 8. CVD
- 9. Sputtering
- 10. Thermal Oxidation

Electricity requirements for manufacturing processes MJ electricity/kg processed

Energy Requirements at the Machine Tool

Energy Use Breakdown by Type

Production Machining Center **Automated Milling Machine**

From Toyota 1999, and Kordonowy 2002.

Injection Molding Machines

Thermal Oxidation, SiO²

FIGURE 9. Energy consumption for growth of a 25-Å oxide layer as a function of equipment type (RTP vs vertical furnace), number of wafers processed per week, and total run time (production plus idle). The example shown is for 8-in. wafers.

Ref: Murphy et al es&t 2003

Power Requirements

Ref: Murphy et al es&t 2003

In General, over many manufacturing processes,

Idle Power $5kW \leq P_{o} \leq 50kW$ and

Material Process Rates 10^{-7} cm³/sec $\leq V \leq 1$ cm³/sec

* References: 1. Advanced Methods of Machining, J.A.McGeough, Chapman and Hall, 1988

2. Manufacturing Engineering and Technology, S. Kalpakjian, Addison-Wesley, 1992

3. Laser Machining, G. Chryssolouris, Springer-Verlag, 1991

2007 IEEE, ISEE 2007

QuickTime™ and a decompressor are needed to see this picture.

Why the two different distributions at Sony?

Figure 2.1 Distribution of color density in television sets. (Source: The Asahi, April 17, 1979).

Extra slides

Cost of Energy in Machining

Impact of energy efficiency on computer numerically controlled machining

Fig.2 Relative contribution of cost components. The right-hand panel shows the energy-related cost components for experiment E

Ref. Anderberg, Kara, Beno

The out of specification parts are $2(0.5-\phi(2\sigma))$ $= 2(0.5 - 0.4772) = 0.0456$ or 4.56%

In general the mean and the target do not have to line up. In this case the C_p is misleading. A better question is, how many parts are out of

In this case an alternative process capability can be used called the C_{pk}

$$
_{pk}=\frac{\min(USL-\mu,\mu-LSL)}{3\sigma}
$$

Comparison

Case 1 (μ on target) $C_p = 4\sigma/6\sigma = 2/3$

Case 2 (μ drift) $C_p = 4\sigma/6\sigma = 2/3$

 $C_{\rm pk}$ = $Min(2\sigma/3\sigma,2\sigma/3\sigma) = 2/3$

Out of $Spec = 4.55\%$

 $C_{\rm pk}$ = $Min(1\sigma/3\sigma,3\sigma/3\sigma)=1/3$

Out of Spec = 15.835%

"Tolerance Stack up", really about variance,

recall that

$$
E(X_1 + ... + X_n) = E(X_1) + ... + E(X_n)
$$

but how about

$$
Var(X_1 + \ldots + X_n) = ?
$$

If X_1 and X_2 are random variables and not necessarily independent, then

$$
\left| \text{Var}(X_1 + X_2) = \text{Var}(X_1) + \text{Var}(X_2) + 2\text{Cov}(X_1Y) \right| (8)
$$

this can be written using the standard deviation " σ ", and the correlation " ρ " as

(9)

$$
\sigma_L^2 = \sigma_1^2 + \sigma_2^2 + 2\sigma_1\sigma_2\rho
$$

where L = X₁ + X₂

If X_1 and X_2 are correlated ($\rho = 1$), then

$$
\sigma_L^2 = \sigma_1^2 + \sigma_2^2 + 2\sigma_1 \sigma_2 = (\sigma_1 + \sigma_2)^2
$$
 (14)

for
$$
X_1 = X_2 = X_0
$$

\n
$$
\sigma_L^2 = 4\sigma_0^2
$$
\n(15)

for N
$$
\sigma_L^2 = N^2 \sigma_0^2
$$
 (16)

$$
\sigma_L = N \sigma_0 \tag{17}
$$

Now, if X_1 and X_2 are uncorrelated ($\rho = 0$) we get the result as in eq'n (7) or,

$$
\sigma_L^2 = \sigma_1^2 + \sigma_2^2
$$
\nand for N\n
$$
\sigma_L^2 = \sum_{i=1}^N \sigma_i^2
$$
\n(10)\n
$$
\sigma_L^2 = N\sigma_0^2
$$
\n(11)\nIf X₁=X=X₀ $\sigma_L^2 = N\sigma_0^2$ \n(12)\n
$$
\sigma_L = \sqrt{N}\sigma_0
$$
\n(13)

"Tolerance Stack-up"

As the number of variables grow so does the variation in the system; but when normalized…

Where $L = NL_0$