Control of Manufacturing Processes

David Hardt

October 30, 2013

Topics for Today

- Physical Origins of Variation
 Process Sensitivities
- Statistical Models and Interpretation
 - Process as a Random Variable(s)
 - Diagnosis of Problems
- Shewhart Charts
- Process Capability
- Next Steps: Optimization and Control

Process Objectives?

- Rate
- Quality
- Cost
- Flexibility

Process Control Objectives?

- Rate
- Quality
 - Conformance to Specifications wrt
 - Geometry
 - Properties
- Cost
- Flexibility

CNC Turning

Critical Dimension:

Shaft Diameter

Brake Bending

Critical Dimension:

Part Angle

Injection Molding

Critical Dimension:

Thermoforming

Critical Dimension:

Other Related Problems: Cost, Rate and Flexibility:

- 100% inspection with high scrap rates
 - low throughput
 - high costs
- 100% Inspection with frequent rework
 - low throughput
 - high costs
- High Variability at changeover
 - Reluctance to changeover
 - low flexibility

Manufacturing Processes

- How are they defined?
- How to they do their thing?
- How can they be categorized?
- Why don't they always get it right?

Origins of Variation

The Process Components

What Causes Variation in the Process Output?

- Material Variations
 - Properties, Initial Geometry
- Equipment Variations
 - Non-repeatable, long term wear, deflections
- Operator Variations
 - Inconsistent control, excessive "tweaking"
- "Environment" Variations
 - Temperature and Handling inconsistencies

Can We Rank These?

- Likelihood of Variation?
- Frequency of Variation?
- Magnitude of Variation?
- Sensitivity to Variation?

Can We Rank These?

- Equipment
 - Fixed "Iron"
 - Can be Automated (Controlled) to Keep Energy States as Desired
- Material
 - "Flows" Through the Process
 - Constantly Changing
 - Energy Transfer from Equipment Variable

Process Control Hierarchy

Identify and Reduce Disturbances

- Good Housekeeping (Ops Management)
- Standard Operations (SOP's)
- Statistical Analysis and Identification of Sources
- Feedback Control of Machines
- Reduce Sensitivity (Process Optimization or Robustness)
- Measure Sensitivities via Designed Experiments
- Adjust "free" parameters to minimize
- Measure output and manipulate inputs
 - Feedback control of Output(s)

Why not Always "Process Output Control"?

- Lack of Measurements
 - Shape not accessible
- Lack of Spatial Resolution

 Complex shape, simple control u
- Cost/Benefit vs. Other Methods
- Sufficiency of Equipment Control – e.g. numerical control

Modeling Variation

Applying Statistics to Manufacturing: The Shewhart Approach (circa 1925)*

- All Physical Processes Have a Degree of Natural Randomness
- A Manufacturing Process is a Random Process if all "Assignable Causes" (identifiable disturbances) are eliminated
- A Process is "In Statistical Control" if only "Common Causes" (Purely Random Effects) are present.

W.A. Shewhart, "The Applications of Statistics as an Aid in Maintaining Quality of a Manufactured Product", Journal of the American Statistical Association, <u>20</u>, No.. 152, Dec. 1925.

Shewhart Applied to Manufacturing

- Measure and Plot the Process Output
- Look for Any Sign of Non-Random (Deterministic) Behavior

- Out of Statistical Control

- Identify the Cause of that Behavior and Reduce or Eliminate it
- Verify That the Process is NowPurely Random
 - In Statistical Control

MITMECHE

Statistical Models for Manufacturing

Consdier: Turning Process

10/30/13 2.810 Manufacturing Processes and Systems

Observations from Experiments

Randomness + Deterministic Changes

10/30/13 2.810 Manufacturing Processes and Systems

Brake Bending of Sheet

10/30/13 2.810 Manufacturing Processes and Systems

Bending Process

Observations from Bending Process

- Clear Input-Output Effects (Deterministic)
- Also Randomness as well

Observations from Injection Molding

Consider: No Effective Changes $(\partial Y / \partial u = 0)$

Injection Molding Entire Run

10/30/13 2.810 Manufacturing Processes and Systems

Injection Molding (S' 2003)

^{10/30/13 2.810} Manufacturing Processes and Systems

How To Model to Distinguish these Effects?

A Random Process + A Deterministic Process

Random Processes

 Consider the Output-only, "Black Box" view of the Run Chart

- How do We Characterize The Process?
 - Using Y(t) only
- WHY do we Characterize the Process
 - Using Y(t) only?

How to Describe Randomness?

- Look at a Frequency Histogram of the Data
- Estimates likelihood of certain ranges occurring:

 $-\Pr(y_1 < Y < y_2)$

- "Probability that a random variable Y falls between the limits y_1 and y_2 "

Analysis of Histograms

- Is there a consistent pattern?
- Is an underlying "parent" distribution suggested?

Process Outputs as a Random Variable

- The Histogram suggests a pdf
 - Parent or underlying behavior "sampled" by the process
- Standard Forms (There are many)
 - -e.g. The Uniform and Normal pdf's

Histogram for CNC Turning

10/30/13 2.810 Manufacturing Processes and Systems

Histogram for Bending (MIT 2002 data)

10/30/13 2.810 Manufacturing Processes and Systems
Histogram for Bending (MIT 2002 data)

10/30/13 2.810 Manufacturing Processes and Systems

Conclusion?

- When there are no input effect (no ∆u or ∂Y/∂u) a consistent histogram pattern can emerge
- How do we use knowledge of this pattern?
 - Predict behavior
 - Set limits on "normal" behavior
- Define analytical probability density functions

Underlying or "Parent" Probability

- A model of the "true", continuous behavior of the <u>random</u> process
- Can be thought of as a continuous random variable obeying a set of rules (the probability function)
- We can only glimpse into these rules by sampling the random variable (i.e. the process output)
- Underlying process can have
 - Continuous Values (e.g. geometry)
 - Discrete Values (e.g. defect occurrence)

The Uniform Distribution

p(x)

Standard Normal Distribution

Normal Probability Density Function for $s^2 = 1$, m=0 $p(x) = \frac{1}{S\sqrt{2p}} e^{-\frac{1}{2} \frac{a}{b} \frac{x - m\ddot{0}}{S}^{2}}$ 0.40.3 p(x) 0.2 $z = \frac{x - M}{S}$ 0.1 -2 1 3 -3 -1 2 -4 0 4 Ζ

Continuous Distribution: Normal or Gaussian

^{10/30/13 2.810} Manufacturing Processes and Systems

Properties of the Normal pdf

- Symmetric about mean
- Only two parameters: μ and σ^2 $n(r) = \frac{1}{2}$

- Superposition Applies:
 - sum of normal random variables has a normal distribution

Model Calibration

- For the Normal PDF, we need two parameters: μ and σ
- We have to **estimate** μ and σ using sample statistic based on samples of the output (i.e. measurements)

Sample Statistics

x(j) = samples of x(t) taken n times

$$\overline{x} = \frac{1}{n} \mathop{\text{a}}\limits_{j=1}^{n} x(j)$$
: Average or Sample Mean

$$S^{2} = \frac{1}{n-1} \mathop{\text{a}}_{j=1}^{n} (x(j) - \overline{x})^{2}$$
: Sample Variance

$$S = \sqrt{\frac{1}{n-1} \mathop{\text{a}}\limits_{j=1}^{n} (x(j) - \overline{x})^2} : \text{ Sample Std.Dev.}$$

Conclusions

- All Physical Processes Have a Degree of Natural Randomness
- We can Model this Behavior using Probability Distribution Functions
- We can Calibrate and Evaluate the Quality of this Model from Measurement Data using appropriate Sample Statistics

In-Control (Almost)

Not In-Control

Manufacturing

10/30/13

"Not In-Control"

"In-Control"

MITMECHE

"Not In-Control"

"Not In-Control"

Applying in Real-Time: Xbar and S Charts

- Shewhart:
 - Plot sequential average of process
 - Xbar chart
 - Distribution?
 - Plot sequential sample standard deviation
 - S chart

Data Sampling and Sequential Averages

Given a sequence of process outputs

Data Sampling

Plot of xbar and S Random Data <u>n=5</u>

10/30/13 2.810 Manufacturing Processes and Systems

Overall Statistics

10/30/13 2.810 Manufacturing Processes and Systems

Setting Chart Limits

Expected Ranges

- Confidence Intervals
 - Intervals of <u>+</u> n Standard Deviations
 - Most Typical is $\pm 3\sigma$

Chart Limits - Xbar

• If we knew σ_x then:

$$S_{\overline{x}} = \sqrt{\frac{1}{n}}S_x$$

 But Since we *Estimate* the Sample Standard Deviation, then

E(S_j) = C₄S_{x̄} (S_j is a biased estimator) where $C_4 = \frac{a}{e} \frac{2}{n-1} \frac{\ddot{0}^{1/2}}{G((n-1)/2)} \frac{G(n/2)}{G((n-1)/2)}$

Chart Limits xbar chart

The estimate of *True* Sample Mean Variance (variance of the mean) is biased

To remove this bias for the xbar \pm 3 σ limits we use:

$$UCL = \overline{\overline{x}} + 3\frac{\overline{S}}{C_4\sqrt{n}} \qquad LCL = \overline{\overline{x}} - 3\frac{\overline{S}}{C_4\sqrt{n}}$$

For the example *n*=5 $C_4 = (0.5)^{1/2} \frac{G(2.5)}{G(2)} = 0.707 \frac{1.33}{1} = 0.94$

Chart Limits S

The variance of the estimate of S can be shown to be: $S_S = S\sqrt{1 - C_4^2}$

So we get the chart limits:

$$UCL = \overline{S} + 3\frac{\overline{S}}{C_4}\sqrt{1 - C_4^2}$$
$$LCL = \overline{S} - 3\frac{\overline{S}}{C_4}\sqrt{1 - C_4^2}$$

Example xbar

10/30/13 2.810 Manufacturing Processes and Systems

Example S

Detecting Problems from Running Data

• Appearance of data

Confidence Intervals

Frequency of extremes

Trends

10/30/13 2.810 Manufacturing Processes and Systems

Western Electric Rules

- Points outside limits
- 2-3 consecutive points outside 2 sigma
- Four of five consecutive points beyond
 1 sigma
- Run of 8 consecutive points on one side of center

Test for "Out of Control"

Extreme Points

– Outside $\pm 3\sigma$

- Improbable Points
 - $-2 \text{ of } 3 > \pm 2\sigma$
 - $-4 \text{ of } 5 > \pm 1\sigma$
 - All points inside $\pm 1\sigma$

Tests for "Out of Control"

- Consistently above or below centerline
 - Runs of 8 or more
- Linear Trends
 - 6 or more points in consistent direction
- Bi-Modal Data
 - 8 successive points outside $\pm 1\sigma$

Applying Shewhart Charting

- Find a run of 25-50 points that are "incontrol"
- Compute chart centerlines and limits
- Begin Plotting subsequent $xbar_i$ and S_i
- Apply rules, or look for trends, improbable events or extremes.
- If these occur, process is "out of control"

Real-Time

10/30/13 2.810 Manufacturing Processes and Systems

Out of Control

- Data is not Stationary
 - (μ or σ are not constant)
- Process Output is being "caused" by a disturbance (common cause)
- This disturbance can be identified and eliminated
 - Trends indicate certain types
 - Correlation with know events
 - shift changes
 - material changes

"Not In-Control"

Another Use of the Statistical Process Model: The Manufacturing -Design Interface

We now have an empirical model of the process

How "good" is the process?

Is it capable of producing what we need?

Process Capability

- Assume Process is In-control
- Described fully by *xbar* and *s*
- Compare to Design Specifications
 - Tolerances
 - Quality Loss

Design Specifications

Tolerances: Upper and Lower Limits

Design Specifications

 Quality Loss: Penalty for Any Deviation from Target

Use of Tolerances: Process Capability

- Define Process using a Normal Distribution
- Superimpose x*, LSL and USL
- Evaluate Expected Performance

10/30/13 2.810 Manufacturing Processes and Systems

Process Capability

Definitions

$C_p = \frac{(USL - LSL)}{6S} = \frac{\text{tolerance range}}{99.97\%}$ confidence range

- Compares ranges only
- No effect of a mean shift:

Process Capability: C_{pk}

$$C_{pk} = \min_{\hat{e}}^{\mathscr{X}} \frac{(USL - m)}{3S}, \frac{(LSL - m)\ddot{0}}{3S}$$

= Minimum of the normalized deviation from the mean

Compares effect of offsets

Cp = 1; Cpk = 1

Cp = 1; Cpk = 0

Cp = 2; Cpk = 1

Cp = 2; Cpk = 2

Effect of Changes

- In Design Specs
- In Process Mean
- In Process Variance

What are good values of Cp and Cpk?

Cpk Table

Cpk	Z	P <ls or<="" th=""></ls>
		P>USL
1	3	1E-03
1.33	5	3E-07
1.67	4	3E-05
2	6	1E-09

The "6 Sigma" problem

The 6 σ problem: Mean Shifts

Capability from the Quality Loss Function

Given L(x) and p(x) what is E{L(x)}?

Expected Quality Loss

$$E\{L(x)\} = E[k(x - x^*)^2]$$

$$= k[E(x^2) - 2E(xx^*) + E(x^{*2})]$$

$$= kS_x^2 + k(M_x - x^*)^2$$
Penalizes
Penalizes
Penalizes
Deviation
Deviation

Process Capability

- The reality (the process statistics)
- The requirements (the design specs)
- Cp a measure of variance vs. tolerance
- Cpk a measure of variance from target
- Expected Loss- An overall measure of goodness

Process Control Hierarchy

- Identify and Reduce Causal Disturbances
 - Good Housekeeping
 - Standard Operations (SOP's)
 - Feedback Control of Machines
 - Eliminate Equipment Variations
 - Statistical Analysis and Identification of Sources (SPC)
 - Eliminate Assignable Causes

Process Control Hierarchy

- NEXT: Reduce <u>Sensitivity</u> to Disturbance
 - Measure Sensitivities via Designed Experiments (DOE)
 - Adjust "free" parameters to minimize variations

Example: Bending Sensitivity to Yield Stress

Simple Example: Die Width for Air Bending (An adjustable equipment property):

- Wide Die:
 - Low force,
 - high spring back,
 - <u>high sensitivity to variations</u> in yield stress

- Narrow Die:
 - High force,
 - Higher material stress,
 - Lower spring back,
 - <u>Lower sensitivity to</u> <u>variations in yield stress</u>,

Final Step : "Output Control"

Examples:

- Web Thickness in Milling
- Sheet Thickness in Rolling
- Sheet Angle in Bending

MITMECHE

Manufacturing

95

Implementing Product Feedback Control

- Continuous In-Process Measurements

 Regulate Process States In-Process
- Sampling and Monitoring (SPC)
 Measure After-Process and Diagnose
- Part to Part Sampling and Control
 - Cycle to Cycle Control: Measure After each
 Cycle and Improve Process Capability

11/1/2013

Conclusions: Single Variable Case

- Cycle to Cycle Control
 - Obeys Root Locus Prediction wrt Dynamics
 - Amplifies White Noise Disturbance
 Attenuates Colored Noise Disturbance
 - Can Reduce Mean Error (Zero if I-control)
 - Can Reduce "Open Loop" Expected Loss

11/1/2013

Lower Spec T Upper Spec

MITMECHE

Feedback Control Objectives

ring

It Works!: Bending Step Disturbance

- Effect of Material Change
 - Switch to a Stiffer Material more springback.

Manufacturing Objective

Conclusions

- Shewhart Charts
 - Application of Statistics to Production
 - Plot Evolution of Sample Statistics \overline{x} and S
 - Look for Deviations from Model
- Process Capability
 - A measure of the process to meet a requirement
 - Includes variance and bias
 - Gets design and manufacturing talking
- If That's Not Good Enough
 - DOE/Optimization
 - Feedback Control
 - ...