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Topics for Today 

• Physical Origins of Variation 

– Process Sensitivities 

• Statistical Models and Interpretation 

– Process as a Random Variable(s) 

– Diagnosis of Problems 

• Shewhart Charts 

• Process Capability 

• Next Steps: Optimization and Control 
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Manufacturing 

Process Objectives? 

• Rate 

• Quality 

• Cost 

• Flexibility 
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Manufacturing 

Process Control Objectives? 

• Rate 

• Quality 

– Conformance to Specifications wrt 

• Geometry 

• Properties 

• Cost 

• Flexibility 
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Lab Processes 

CNC Turning  

 

Critical Dimension: 

  

 Shaft Diameter 
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Lab Processes 

Brake Bending  

 

Critical Dimension: 

  

 Part Angle 
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Lab Processes 

Injection Molding  

 

Critical Dimension: 

  

 ? 
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Lab Processes 

Thermoforming  
 

Critical Dimension: 

  

  



Other Related Problems: 

Cost, Rate and Flexibility: 

• 100% inspection with high scrap rates 

– low throughput 

– high costs 

• 100% Inspection with frequent rework  

– low throughput 

– high costs 

• High Variability at changeover 

– Reluctance to changeover  

– low flexibility 
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Manufacturing Processes 

• How are they defined? 

• How to they do their thing? 

• How can they be categorized? 

 

• Why don’t they always get it right? 
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Origins of Variation 
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The Process Components 

Equipment 
Workpiece 

Material 

Operator Part 

• Etch bath 

• Injection Molder  

• Lathe 

• Draw Press 

• ... 

•Coated Silicon  

•Plastic Pellets 

• Bar stock 

• Sheet Metal 

• ... 

• Semiconductor 

•Connector Body 

•Shaft 

•Hood 

• ... 
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What Causes Variation  

in the Process Output? 

• Material Variations 

– Properties, Initial Geometry 

• Equipment Variations 

– Non-repeatable, long term wear, deflections 

• Operator Variations 

– Inconsistent control, excessive “tweaking” 

• “Environment” Variations 

– Temperature and Handling inconsistencies 
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Can We Rank These? 

• Likelihood of Variation? 

• Frequency of Variation? 

• Magnitude of Variation? 

• Sensitivity to Variation? 
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Manufacturing 

Can We Rank These? 

• Equipment 

– Fixed “Iron” 

– Can be Automated (Controlled) to Keep 

Energy States as Desired 

• Material 

– “Flows” Through the Process 

• Constantly Changing 

– Energy Transfer from Equipment 

Variable 
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Process Control Hierarchy 

• Identify and Reduce  Disturbances 
– Good Housekeeping  (Ops Management) 

– Standard Operations  (SOP’s) 

– Statistical Analysis and Identification of Sources  

– Feedback Control of Machines   

– Reduce Sensitivity (Process Optimization or 

Robustness) 

– Measure Sensitivities via Designed Experiments  

– Adjust “free” parameters to minimize 

• Measure output and manipulate inputs 
– Feedback control of Output(s) 
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Why not Always 

 “Process Output Control”? 

• Lack of Measurements 

– Shape not accessible 

• Lack of Spatial Resolution 

– Complex shape, simple control u 

• Cost/Benefit vs. Other Methods 

• Sufficiency of Equipment Control 

– e.g. numerical control 
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Modeling Variation 
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Applying Statistics to Manufacturing: 
The Shewhart Approach (circa 1925)* 

• All Physical Processes Have a Degree of Natural 

Randomness 

• A Manufacturing Process is a Random Process if all 

“Assignable Causes” (identifiable disturbances) are 

eliminated 

• A Process is “In Statistical Control” if only “Common 

Causes” (Purely Random Effects) are present. 

 

W.A. Shewhart, “The Applications of Statistics as an Aid in Maintaining Quality of a Manufactured 

Product”, Journal of the American Statistical Association, 20, No.. 152, Dec. 1925.  



Manufacturing 

Shewhart Applied to Manufacturing 

• Measure and Plot the Process Output 

• Look for Any Sign of Non-Random 

(Deterministic) Behavior  

– Out of Statistical Control 

• Identify the Cause of that Behavior 

and Reduce or Eliminate it 

• Verify That the Process is NowPurely 

Random 

– In Statistical Control 
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Manufacturing 

Statistical Models for 

Manufacturing  
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Consdier: Turning Process 
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random or 

unknown 

 Da 

Observations from Experiments 

• Randomness + Deterministic Changes 
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Brake Bending of Sheet 

Output: 

Angle 
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Bending Process 

Springback 
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Angle 

changes 

with depth 

DY -> Du 

Observations from  

Bending Process 

• Clear Input-Output Effects (Deterministic) 

• Also Randomness as well 
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Observations  

from Injection Molding 

2/3/05 50
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Consider:  

No Effective Changes   (Yu= 0) 

• Injection Molding Entire Run 
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Injection Molding (S’2003) 

0

5

10

15

20

25

30

35

40

65.4 65.5 65.5 65.6 65.6 65.7 65.7 65.8 65.8 65.9 65.9 66 66

F
r
e
q
u
e
n
c
y

65.2

65.4

65.6

65.8

66

66.2

66.4

1 8 15 22 29 36 43 50 57 64 71 78 85 92 99 106 113 120 127



2.810 Manufacturing Processes and Systems 

30 

10/30/13 

Process

Disturbances
(Reducible)

Irreducible
Disturbances

Ouputs 
+ 
"Noise"

Inputs 

A Random Process + A Deterministic Process 

How To Model  

to Distinguish these Effects? 
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• Consider the Output-only,  “Black Box” view of the 
Run Chart 

 

 

 

• How do We Characterize The Process? 
– Using Y(t) only 

• WHY do we Characterize the Process 
– Using Y(t) only? 

 

Process 
Y(t) 

Random Processes 
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How to Describe Randomness? 

• Look at a Frequency Histogram of the Data 

• Estimates likelihood of certain ranges occurring: 

 

– Pr(y1 < Y <y2) 

 

– “Probability that a random variable Y falls 
between the limits y1 and y2” 

 
 



2.810 Manufacturing Processes and Systems 

33 

10/30/13 

Analysis of Histograms 

• Is there a consistent pattern? 

• Is an underlying “parent” distribution 

suggested? 



2.810 Manufacturing Processes and Systems 

34 

10/30/13 

Process Outputs as a Random Variable 

• The Histogram suggests a pdf 

– Parent or underlying behavior “sampled” 
by the process 

• Standard Forms (There are many) 

– e.g. The Uniform and Normal pdf’s  

.
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Histogram for CNC Turning 
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0.3 in depth only 

Histogram for Bending 
(MIT 2002 data) 
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0.6 in depth only 

Histogram for Bending 
(MIT 2002 data) 
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Conclusion? 

• When there are no input effect (no Du 
or Yu) a consistent histogram 
pattern can emerge 

• How do we use knowledge of this 
pattern? 

– Predict behavior 

– Set limits on “normal” behavior 

• Define analytical probability density 
functions 
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Underlying or “Parent” 
Probability 

• A model of the “true”, continuous behavior 
of the random process 

• Can be thought of as a continuous random 
variable obeying a set of rules (the 
probability function) 

• We can only glimpse into these rules by 
sampling the random variable (i.e. the 
process output) 

• Underlying process can have 
– Continuous Values (e.g. geometry) 

– Discrete Values (e.g. defect occurrence) 
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The Uniform Distribution 

r x 

p(x) 

1/r 

   

p(x) =
1

r
   Þ x1 < x < x2

p(x) = 0   Þ x < x1    x > x2

x1 x2 
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Standard Normal Distribution 
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Continuous Distribution: Normal or 

Gaussian 

cdf 

0 

0.16 

0.5 

0.84 

1 

pdf 
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Properties of the Normal pdf 

• Symmetric about mean 

• Only two parameters: 

  m and s2 

 

 

 

• Superposition Applies: 

– sum of normal random variables has a 

normal distribution 
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Interpretation of the PDF: 

Confidence Intervals 

68% 

95% 

99.7% 

• Probability that |x| >m+3s = 3/1000 



Manufacturing 

Model Calibration 

• For the Normal PDF, we need two 

parameters: m and s 

• We have to estimate m and s using 

sample statistic based on samples of 

the output (i.e. measurements) 
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Sample Statistics 

x =
1

n
x( j)

j=1

n

å :   Average or Sample Mean

x( j) = samples of x(t) taken n times

S2 =
1

n - 1
(x( j)

j =1

n

å - x )2 :   Sample Variance

S =
1

n - 1
(x( j)

j =1

n

å - x )2 :   Sample Std.Dev.
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 Conclusions 

• All Physical Processes Have a Degree 
of Natural Randomness 

• We can Model this Behavior using 
Probability Distribution Functions 

• We can Calibrate and Evaluate the 
Quality of this Model from Measurement 
Data using appropriate Sample 
Statistics 
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In-Control (Almost) 
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Not In-Control 
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“Not In-Control” 
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“In-Control” 

i 

i+1 

i+2 

... 

The Parent Distribution 

Does Not Change with 

Time 
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“Not In-Control” 

i 

i+1 

i+2 

... 

The Parent 

Distribution 

Changes with Time 
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“Not In-Control” 

... 

Mean Shift 

Mean Shift + Variance Change 

Variance Increase 
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Applying in Real-Time: 

Xbar and S Charts 

• Shewhart: 

– Plot sequential average of process  

• Xbar chart 

• Distribution? 

 

– Plot sequential sample standard 

deviation 

• S chart 
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n measurements 

at sample j 

sample interval DT 

Data Sampling and Sequential 

Averages 

• Given a sequence of process outputs 

xi: j       j+1  j+2          ... 

•A sequential sample of size n 

•Take at intervals DT  

•Sample index j 
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sample j  mean 

sample  j variance 

Data Sampling 

n measurements 

at sample j 

sample interval DT 

j       j+1  j+2          ... 
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Plot of xbar and S 
Random Data n=5 

xbar 

S 
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Overall Statistics 

Grand Mean x =
1

N
x j

i =1

N

å

S =
1

N
Sj

i =1

N

å Grand Standard Deviation 
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Setting Chart Limits 

 Expected Ranges 

 

 Confidence Intervals 

 Intervals of + n Standard Deviations 

 Most Typical is + 3s  
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Chart Limits - Xbar 

• If we knew sx then: 

 

 

• But Since we Estimate the Sample 

Standard Deviation, then 

    

s x =
1

n
s x

E(S j) = C4s x 

where    C4 =
2

n -1

æ 
è 

ö 
ø 

1/ 2
G(n / 2)

G((n -1) / 2)

(Sj is a biased estimator) 
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Chart Limits xbar chart 

UCL = x + 3
S 

C4 n
LCL = x -3

S 

C4 n

The estimate of True Sample Mean  Variance 

(variance of the mean) is biased 

To remove this bias for the xbar ± 3s limits 

we use: 

For the example n=5  C4 = 0.5( )
1/ 2 G(2.5)

G(2)
= 0.707

1.33

1
= 0.94
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The variance of the estimate of S can be shown 

to be: sS = s 1 - C4

2

UCL = S + 3
S 

C4

1 - C4

2

LCL = S - 3
S 

C4

1 - C4

2

So we get the chart limits: 

Chart Limits S 
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Example xbar 

UCL 

LCL 

Grand 

Mean 
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Example S 

UCL 

LCL 

Grand S 
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Detecting Problems 

 from Running Data 

 Appearance of data 

 

 Confidence Intervals  

 

 Frequency of extremes 

 

 Trends 
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Western Electric Rules  

• Points outside limits 

• 2-3 consecutive points outside 2 sigma 

• Four of five consecutive points beyond 

1 sigma 

• Run of 8 consecutive points on one side 

of center 
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Test for “Out of Control” 

• Extreme Points 

– Outside ±3s 

• Improbable Points 

– 2 of 3 >±2s  

– 4 of 5 >± 1s 

– All points inside ±1s 
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Tests for “Out of Control” 

• Consistently above or below 
centerline 

– Runs of 8 or more 

• Linear Trends 

– 6 or more points in consistent direction 

• Bi-Modal Data 

– 8 successive points outside ±1s  
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Applying Shewhart Charting 

 Find a run of 25-50 points that are “in-

control” 

 Compute chart centerlines and limits 

 Begin Plotting subsequent xbarj and Sj 

 Apply rules, or look for trends, 

improbable events or extremes. 

 If these occur, process is “out of 

control” 
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Real-Time 

Historical Data The “Future” 
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Out of Control 

• Data is not Stationary  

(m or s are not constant) 

• Process Output is being “caused” by a disturbance (common 

cause) 

• This disturbance can be identified and eliminated 

– Trends indicate certain types 

– Correlation with know events 

• shift changes 

• material changes 
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“In-Control” 

i 

i+1 

i+2 

... 

What will chart 

look like? 
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“Not In-Control” 

i 

i+1 

i+2 

... 

What will chart 

look like? 
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Another Use of the  

Statistical Process Model:  
The Manufacturing -Design Interface 

• We now have an empirical model of the 

process 

m +3s -3s 

How “good” is the 

process? 

Is it capable of 

producing what we 

need? 
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Process Capability 

• Assume Process is In-control 

• Described fully by xbar and s 

• Compare to Design Specifications 

– Tolerances 

– Quality Loss 
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• Tolerances: Upper and Lower Limits 

 

 

 Characteristic 

Dimension 

Target 

    x* 
Upper 

Specification 

Limit 

USL 

Lower 

Specification 

Limit 

LSL 

Design Specifications 
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 Quality Loss: Penalty for Any 

Deviation from Target 

Design Specifications 

QLF = L*(x-x*)2 

x*=target 

How to 

Calibrate? 
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m +3s -3s 

x* USL LSL 

Use of Tolerances: 

 Process Capability 

• Define Process using a Normal Distribution 

• Superimpose x*, LSL and USL 

• Evaluate Expected Performance 
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Process Capability 

 Definitions 

 

 

 

 Compares ranges only 

 No effect of a mean shift: 

Cp =
(USL - LSL)

6s
=

tolerance range

99.97% confidence range
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    = Minimum of the normalized         
deviation from the mean 

•  Compares effect of offsets 

   

Cpk = min
(USL - m)

3s
,
(LSL - m)

3s

æ 
è 

ö 
ø 

Process Capability: Cpk 



2.810 Manufacturing Processes and Systems 

81 

10/30/13 

Cp = 1; Cpk = 1 
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Cp = 1; Cpk = 0 
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Cp = 2; Cpk = 1 
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Cp = 2; Cpk = 2 
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Effect of Changes 

 In Design Specs 

 In Process Mean 

 In Process Variance 

 

 What are good values of Cp and Cpk? 
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Cpk Table   

Cpk z P<LS  or 

P>USL 

1 3 1E-03 

1.33 5 3E-07 

1.67 4 3E-05 

2 6 1E-09 
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The “6 Sigma” problem 

+3s* -3s* USL LSL 

6s 

P(x > 6s) = 18.8x10-10 Cp=2 

Cpk=2 
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The 6 s problem: Mean Shifts  
 

 

USL LSL 

4s 

P(x>4s) = 31.6x10-6 Cp=2 

Cpk=4/3 
Even with a mean shift of 2s 

we have only 32 ppm out of 

spec 
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QLF = L(x) =k*(x-x*)2 

Given L(x) and p(x) what is E{L(x)}? 

Capability from the Quality Loss 

Function 

x* 
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Expected Quality Loss 

E{L(x)}= E k(x - x*)2[ ]

= k E(x
2
) - 2E(xx*) + E(x *

2
)[ ]

= ks x

2
+ k(mx - x*)

2

Penalizes 

Variation 
Penalizes 

Deviation 
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Process Capability 

• The reality  (the process statistics) 

• The requirements (the design specs) 

• Cp - a measure of variance vs. 

tolerance 

• Cpk a measure of variance from target 

• Expected Loss- An overall measure of 

goodness 



Manufacturing 

• Identify and Reduce Causal Disturbances 
– Good Housekeeping 

– Standard Operations (SOP’s) 

– Feedback Control of Machines  
• Eliminate Equipment Variations 

– Statistical Analysis and Identification of Sources (SPC) 
• Eliminate Assignable Causes 

 

Process Control Hierarchy 

11/1/2013 Lecture 2  2.168 Fall 2012 © D.E.Hardt 
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• NEXT: Reduce Sensitivity to Disturbance 
– Measure Sensitivities via Designed Experiments (DOE) 
– Adjust “free” parameters to minimize variations 
 

Process Control Hierarchy 

11/1/2013 Lecture 2  2.168 Fall 2012 © D.E.Hardt 
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Simple Example:  Die Width for Air Bending (An 
adjustable equipment property): 
 
 

Example: Bending Sensitivity to Yield 

Stress 

11/1/2013 Lecture 2  2.168 Fall 2012 © D.E.Hardt 

94 

• Wide Die:   
• Low force,  
• high spring back,  
• high sensitivity to variations 

in yield stress 

• Narrow Die:   
• High force,  
• Higher material stress,   
• Lower spring back,  
• Lower sensitivity to 

variations in yield stress,  
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Final Step :“Output Control” 

Equipment Material 
E(t) Geometry 

& 

Properties 

“critical dimensions” 

C 

Desired  

Output
 

Examples: 

•  Web Thickness in Milling   

•  Sheet Thickness in Rolling 

•  Sheet Angle in Bending   

11/1/2013 

Manufactu

ring 

Process 

Control  

95 
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Implementing Product Feedback Control 

• Continuous In-Process Measurements 

– Regulate Process States In-Process 

• Sampling and Monitoring (SPC) 

– Measure After-Process and Diagnose 

• Part to Part Sampling and Control 

– Cycle to Cycle Control: Measure After each 

Cycle and Improve Process Capability 

11/1/2013 

Manufactu

ring 

Process 

Control  
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Conclusions:  Single Variable Case 

• Cycle to Cycle Control 

– Obeys Root Locus Prediction wrt 

Dynamics 

– Amplifies White Noise Disturbance 

Attenuates Colored Noise Disturbance 

– Can Reduce Mean Error (Zero if I-control) 

– Can Reduce “Open Loop” Expected Loss 

11/1/2013 

Manufactu

ring 

Process 

Control  
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T Lower Spec Upper Spec 
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Feedback Control Objectives 

Steady-State 

Error from Target 

Target 

Disturbance 

Rejection 

11/1/2013 
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ring 
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It Works!:   

Bending Step Disturbance 
• Effect of Material Change 

– Switch to a Stiffer Material – more springback.  

Manufactu

ring 

Process 

Control  
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Manufacturing Objective 

Process 

Design Goal 

LSL     T       USL 

Width 2 In)

1

1.005

1.01

1.015

1.02

1.025

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 76 79 82 85 88

Process   Output 

11/1/2013 

• Method?: 
• SPC 

• Optimization 

• Output Feedback 
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Conclusions 
 Shewhart Charts 

 Application of Statistics to Production 

 Plot Evolution of Sample Statistics    and S 

 Look for Deviations from Model 

 Process Capability 
 A measure of the process to meet a requirement 

 Includes variance and bias 

 Gets design and manufacturing talking  

 If That’s Not Good Enough 
 DOE/Optimization 

 Feedback Control 

 … 
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