2.810

Time Analysis for Manufacturing Systems *Analytical Tools and Applications*

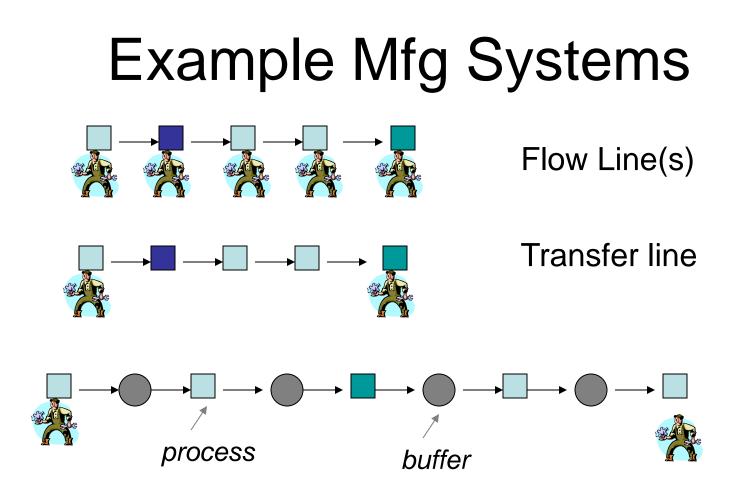
reference: *Manufacturing Systems Engineering* Prentice Hall 1994 By Stanley B. Gershwin

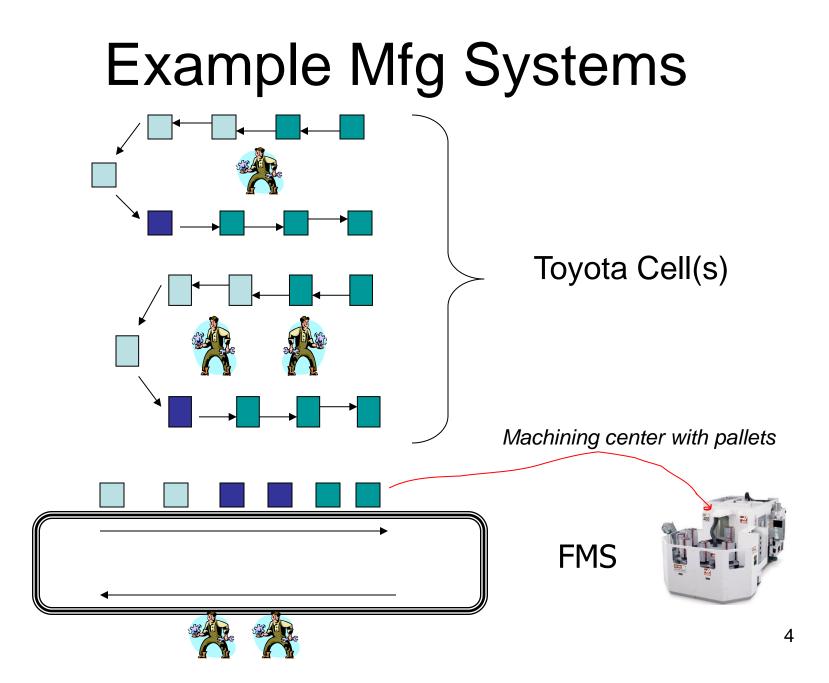
Outline

- 1. Tools from Operations Research
 - Little's Law
 - Unreliable Machine(s)
 - Buffers
 - M/M/1 Queue
- 2. Applications

. . .

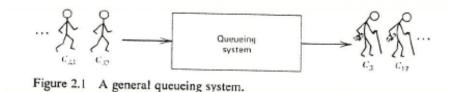
• Transfer Lines, FMS, TPS Cells, Push Vs Pull,



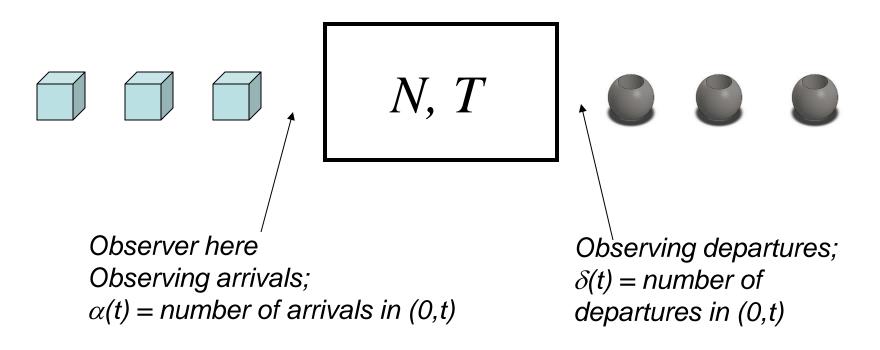


Little's Law $N = \lambda T$

N = Average parts in the system $\lambda =$ Average arrival rate T = Average time in the system Ref. L. Kleinrock, "Queueing System, Vol 1 Theory, Wiley, 1975

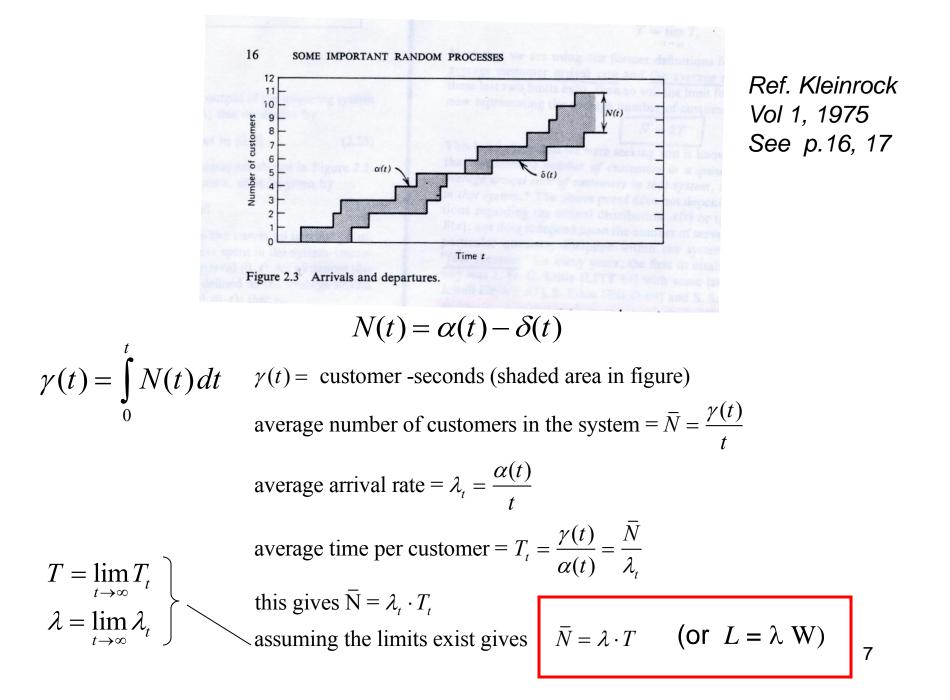


Queueing Systems



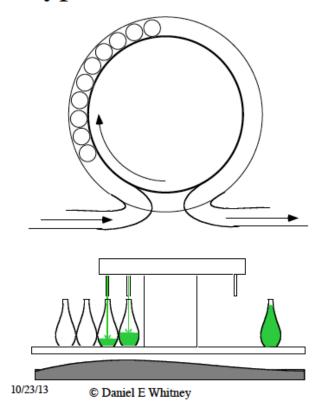
 $N(t) = \alpha(t) - \delta(t)$

Number in the system, parts or customers



 $N = \lambda \cdot T$

Typical Dial Machine



Q. You want a high

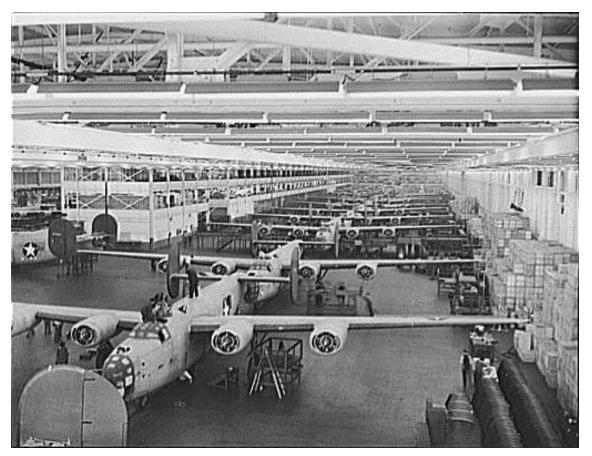
rate of production λ , but if you fill too fast the liquid comes out. What do you do?

A. Fill while the bottle is moving making *T* long enough to avoid losing any liquid.

This results in long lines and large factories $\overline{N} = \lambda \cdot T$

Ford's Willow Run Factory

Moving assembly line production of B-24s



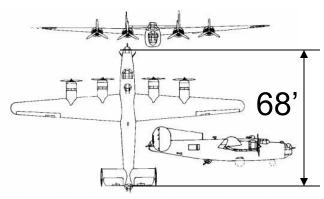
Ford's Willow Run plant - 10 mo delay, but in 1944 produced 453 airplanes in 468 hrs **About 1 plane every hour!** 9 How long did they work on assembly?

 Production rate when fully running was about 1 plane very hour How long did they work on assembly?

- Production rate when fully running was about 1 plane very hour
- Little's Law: L = λ W
- $\lambda = 1$ plane/hr
- L = ? "Assembly line was over one mile"
- W = ?

How long did they work on assembly?

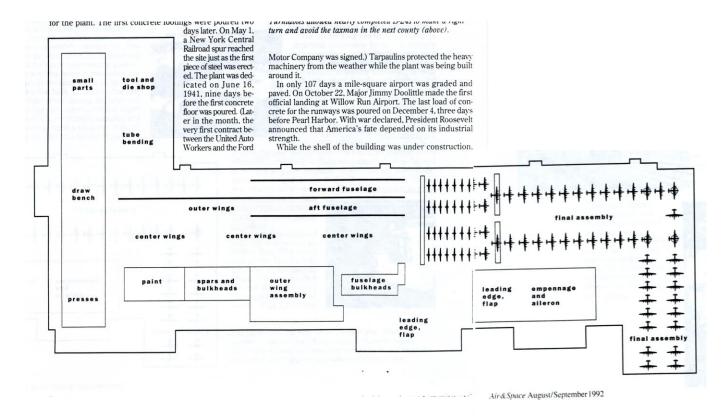
- Production rate when fully running was about 1 plane very hour
- Little's Law: L = λ W
- $\lambda = 1$ plane/hr
- L = 5280'/68' = 78 planes, (if heel to toe for one mile)
- W = L/ $\lambda \approx 78$ hours



Willow Run

Two lines converge into one

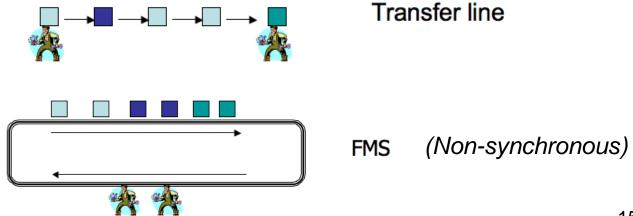
Ford's Willow Run Factory



Assembly Line, L ~ 81 planes, implies around 81 hrs/plane

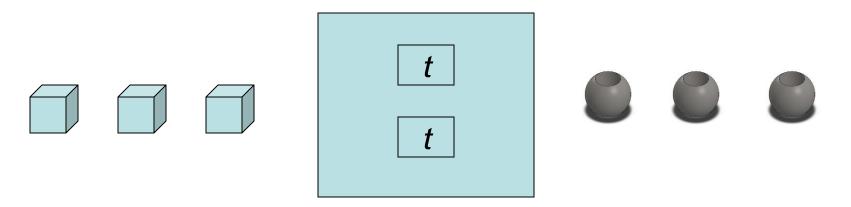
Applying Little's Law

- Boundaries are arbitrary, but you must specify eg. waiting time + service time
- Internal details are not considered eg. first in first out, flow patterns etc..



Confusion when talking about time

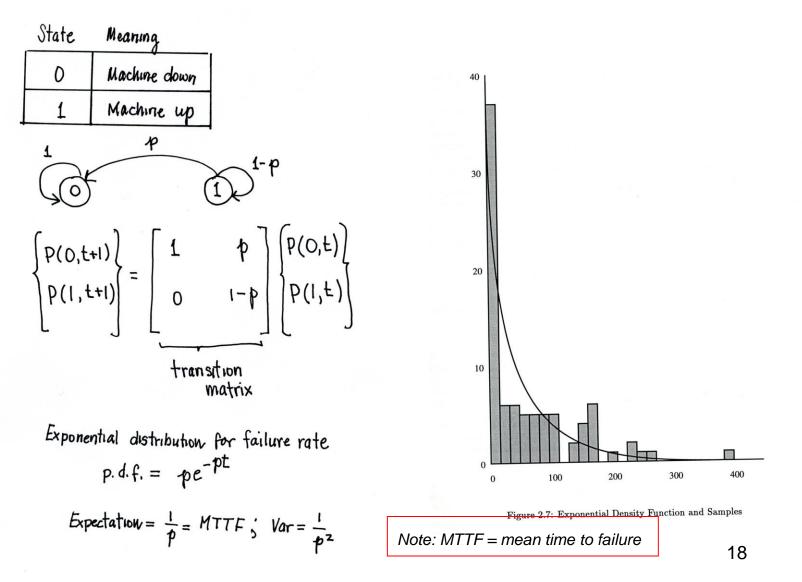
Time to process one part = t What is the cycle time? a) t, or b) t/2?



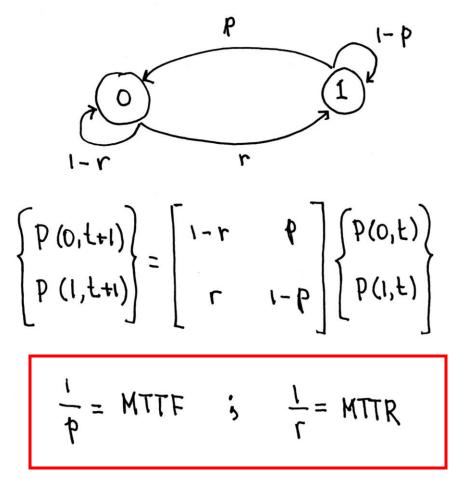
Unreliable Machine

- Ref S. B. Gershwin (handout see web)
- Preliminaries: conditional probability and Markov chains - transition probabilities
- Probability machine is down exponential distribution

Exponential distribution



Unreliable Machine with Repair



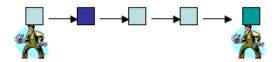
Operation dependent e.i. machine can only fail when it is operating

Consider a long time interval T,
say there are mi failures for machine i
: Total downtime =
$$D = \sum_{i=1}^{k} mi MTTRi = \sum_{i=1}^{k} \frac{mi}{r_i}$$

Total up time $U = T - D$
failures = mi = $\frac{U}{MTTFi} = p_i U$
MTTF:
this gives $U = T - U \sum_{i=1}^{k} \frac{p_i}{r_i}$
or $\frac{U}{T} = \frac{1}{1 + \sum_{i=1}^{k} \frac{p_i}{r_i}}$
Note: MTBF = mean time between failures = MTTF + MTTR
for one machine
 $\frac{U}{T} = \frac{r_i}{r_i + p_i} = \frac{MTTF_i}{MTTF_i + MTTR_i}$

Operation Dependent

• Multiple machines (Transfer line)



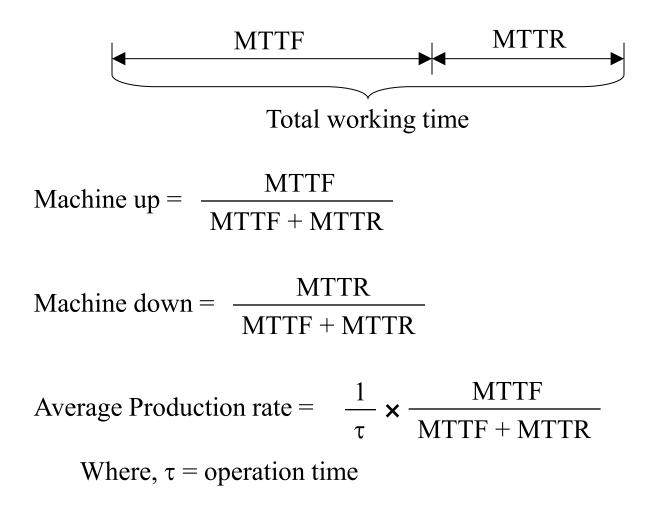
Buzacott's formula, $\mu = \frac{1}{\tau} \times \frac{1}{1 + \sum_{k=1}^{k} \frac{MTTR}{MTTF}}$

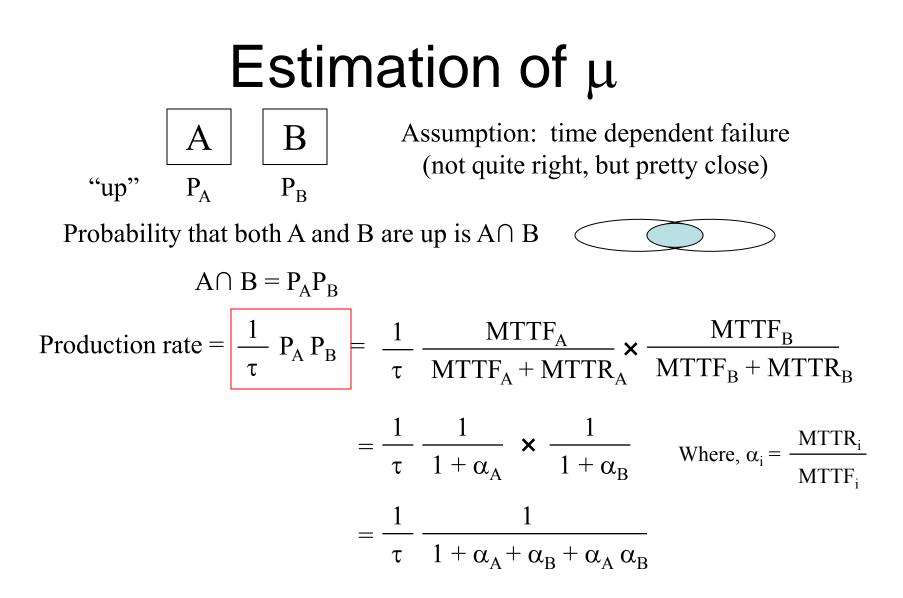
• Single Machine

$$\mu = \frac{1}{\tau} \times \frac{\text{MTTF}}{\text{MTTF} + \text{MTTR}}$$

 τ = service time without failures

Time dependent approach





Estimation of μ (continued) $= \frac{1}{\tau} \frac{1}{1 + \alpha_A + \alpha_B + \alpha_A \alpha_B} \quad \text{Note: } \alpha_A \alpha_B << 1$

Ignoring higher order terms, Same as Buzacott's result

$$\mu \approx \frac{1}{\tau} \frac{1}{1 + \sum_{i=1}^{2} \alpha_{i}}$$

Note: Buzacott's formula is also from an approximation: Doesn't take into account two simultaneous failures, nor buffer capacity in machine

Example:Transfer Line

infinite buffer $\mu_0 = (1/\tau \times p)_{bottleneck}$ zero buffer $\mu_{\infty} = 1/\tau \times p_A p_B \dots p_N$ example; transfer line, all p = 0.9

 $\begin{array}{ccc} \mu = (0.9)^{N} \ge 1/\tau \\ N=1 & \mu = .9 \ge 1/\tau \\ N=10 & \mu = .35 \ge 1/\tau \\ N=100 & \mu = .00003 \ge 1/\tau \\ Time \ dependent \end{array}$

 $\mu = (1/(1+0.111N)) \times 1/\tau$ N=1 $\mu = .9 \times 1/\tau$ N=10 $\mu = .47 \times 1/\tau$ N=100 $\mu = .0825 \times 1/\tau$ Operation dependent

Case Study Example

Hewlett-Packard Uses Operations Research to Improve the Design of a Printer Production Line

MITCHELL BURMAN	Analytics, Inc. 101 Rogers Street, Suite 216 Cambridge, Massachusetts 02142	
Stanley B. Gershwin	Massachusetts Institute of Technology 77 Massachusetts Avenue, Room 35-331 Cambridge, Massachusetts 02139	
Curtis Suyematsu	Hewlett-Packard Company PO Box 8906 Vancouver, Washington 98668-8906	

INTERFACES 28: 1 January-February 1998 (pp. 24-36)

HEWLETT-PACKARD

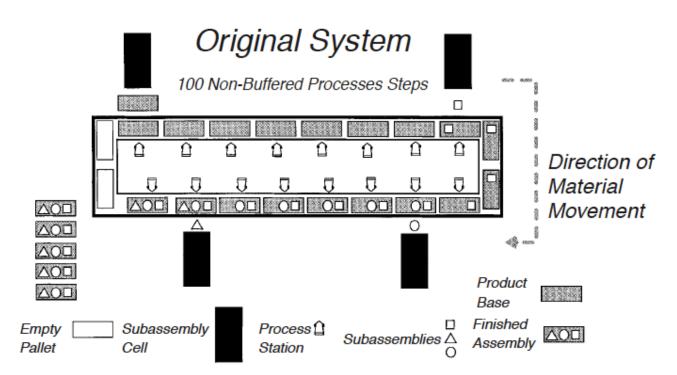


Figure 2: In the original system design, the base is assembled in the upper left subassembly cell (black rectangle). It is attached to a pallet and it moves clockwise on the main loop as various operations are performed. The first subassembly is added at the upper right. After additional operations take place and further subassemblies are added, the completed print mechanism is separated from the pallet. The pallet stays in the system and the completed assemblies are moved downstream. The main loop contains 30 automated work stations. Each subassembly cell does approximately as much work as four main loop stations. Essentially no in-process inventory space was designed in the system.

Issues

- Huge demand for printers
- 200,000 (manual) \rightarrow 300,000/mo
- Add automation
- Build one station: reliability 0.99 not 0.995
- $(0.995)^{100} = 0.6057; (0.99)^{100} = 0.366$
- Simulation Vs Analytical Models

HEWLETT-PACKARD

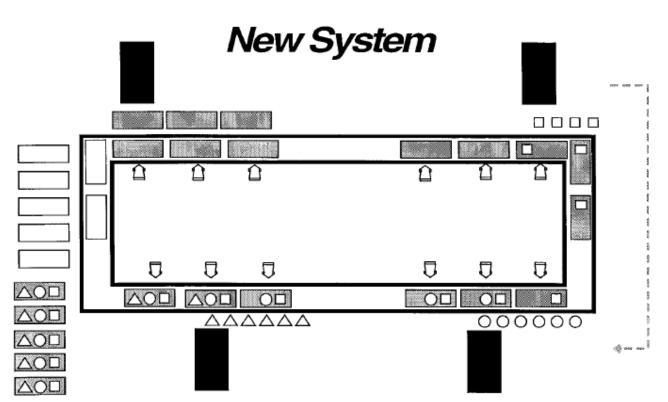
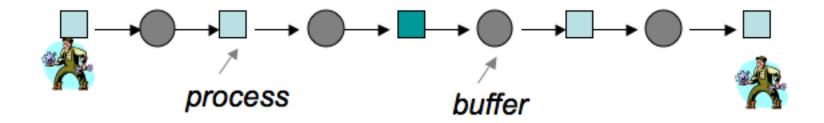


Figure 4: We recommended the addition of (1) an empty pallet buffer, (2) space for in-process inventory between the subassembly systems and the main line, and (3) space on the main line.

Summary: Production Rates

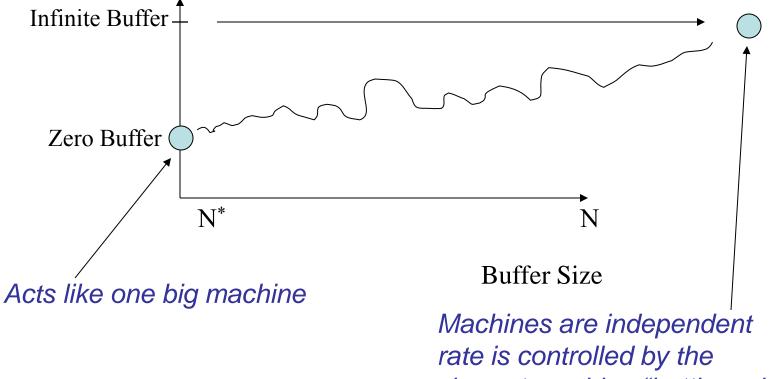
Zero Buffer:	1 1	T ();
Zelo Dullel.	$\tau \cdot \frac{1}{1 + \sum_{i=1}^{n} MTTR_{i}}$	Transfer line
	$1 + \sum_{i=1}^{n} \overline{MTTF_i}$	

Infinite Buffer:
$$\min(\frac{1}{\tau_i} \cdot \frac{MTTF_i}{MTTF_i + MTTR_i})$$
 Bottleneck



Finite Buffer Size

How do the two cases connect for finite buffers?



slowest machine "bottleneck"

A small amount of buffer space helps a lot, but too much is costly

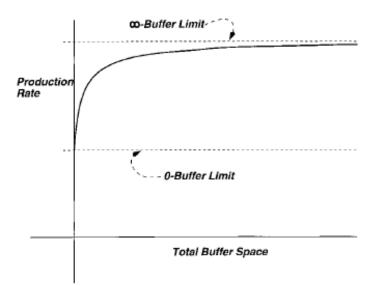
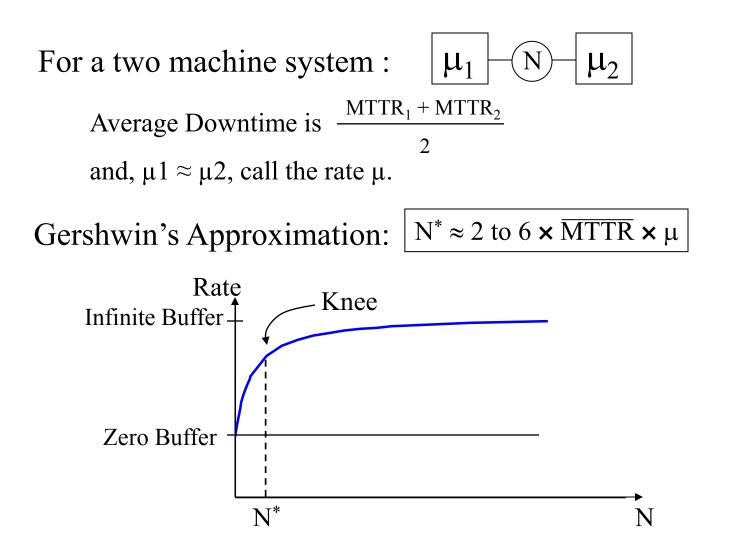
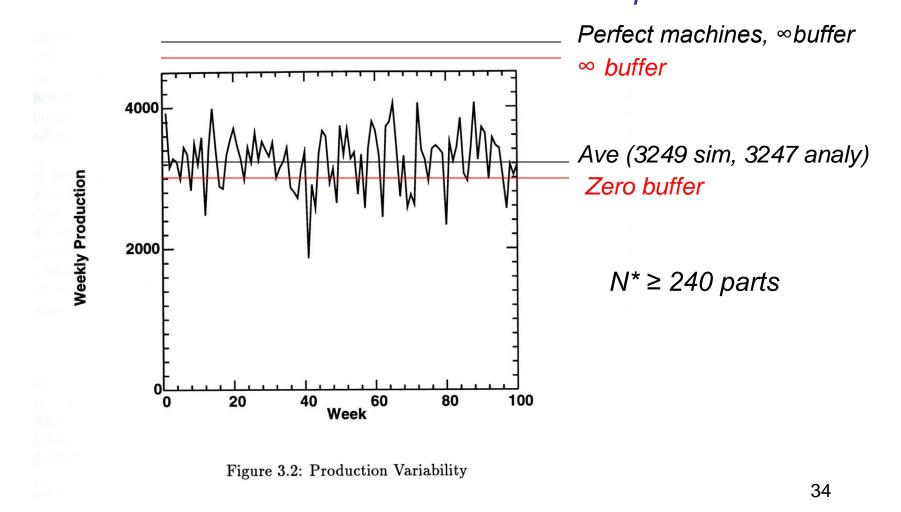


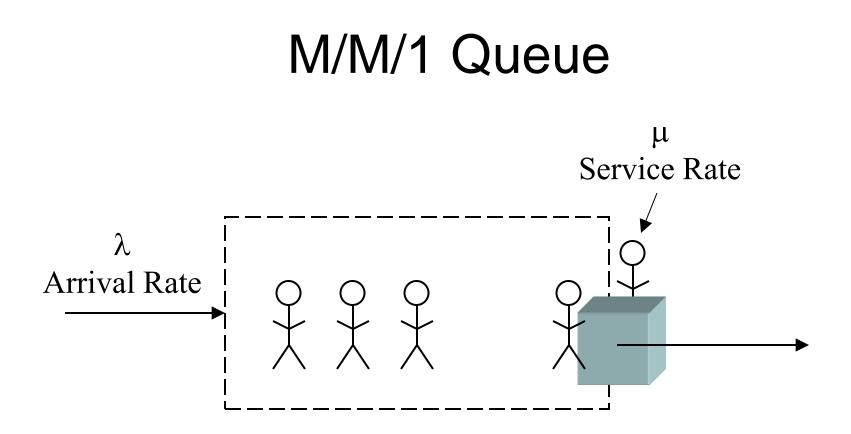
Figure 3: The production rate increases as inprocess inventory space increases. This increase is rapid at first and then small. The upper and lower limits are easy to calculate, but the rest of the curve requires the decomposition method.

Finite buffer approximation



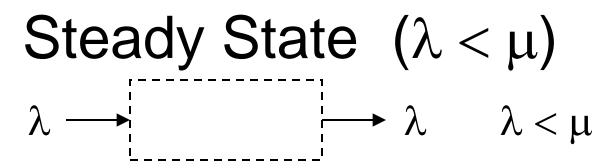
Simulation of a 20 machine, 19 buffer (cap = 10 parts) Transfer line. Each machine with one minute cycle time could produce 4800 parts per week. MTTF 3880 minutes, MTTR 120 minutes. See Gershwin p63-64





...how the inventory in the system grows as you approach capacity

($\lambda \& \mu$ vary according to exponential distribution)



Consider the deterministic case:

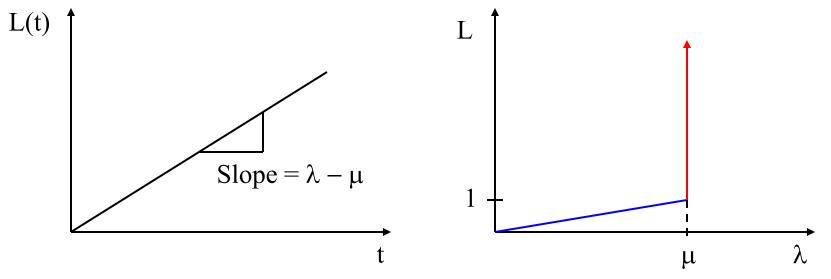
• How many people are in the system? A. $\begin{array}{c|c}
\lambda = 0 & L = 0 \\
0 < \lambda < \mu & 0 < L < 1 \\
\lambda = \mu & L = 1
\end{array}$ $\begin{array}{c|c}
L = \lambda / \mu \\
1 \\
\mu & \lambda
\end{array}$

Note: From Little's Law : Time in system, W = L / λ Since L = λ / μ for $\lambda < \mu \rightarrow W = 1 / \mu$

When $\lambda > \mu$

- What happens at $\lambda > \mu$?
- There is no steady state, parts in the system grow without limit.

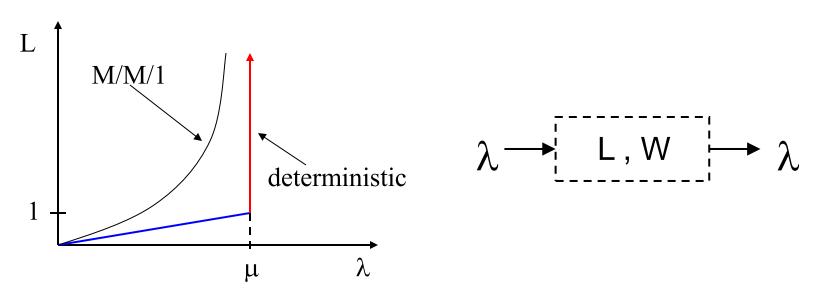
As $t \to \infty, L \to \infty$



M/M/1 Queue Result

Arrival rate = λ , Service rate = μ , where $\lambda \leq \mu$

L = "Inventory" = $\lambda / (\mu - \lambda)$ W = Time in system = $1 / (\mu - \lambda)$



See Notes: Principles needed to derive M/M/1 queue result - on website

example: two processes

Process A: never starved outputs parts at average rate λ with an exponential distribution Process B: with average process rate $\mu = (5/4) \lambda$ also with an exponential distribution

Parts in the system: deterministic: L = 4/5; M/M/1: L = 4

M/M/1 Queue interpretation

- Overly simplistic but tractable
- Arrivals (always "on") vs departures (stop when the queue is empty)
- Behavior as you approach capacity

G/G/1 Queue result

A more useful queueing result is for the G/G/1 queue times G => general distributions for arrival and service, with

Expectation (arrival) =
$$\frac{1}{N}$$
; $Exp(service) = \frac{1}{M}$
(Coef of variation) = $\frac{Variance}{mean^2}$ => c_N^2 and c_M^2

$$W_{q}^{=} \text{ Time in queue (approx)} = \left(\frac{c_{\Lambda}^{2} + c_{\mu}^{2}}{2}\right)\left(\frac{u}{1-u}\right)\left(\frac{1}{\mu}\right)$$

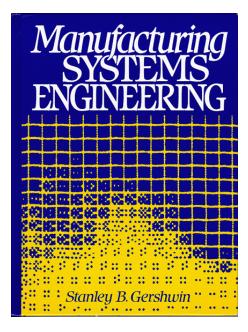
$$u = utilization = \frac{\lambda}{\mu}$$

$$\text{Limitations: } c_{\Lambda}^{2}, c_{\mu}^{2} \leq 1 ; \frac{\lambda}{\mu} < 0.95$$

Ref. Hopp & Spearman, Factory Physics p. 277 (this approximation used in several commercially available mfg queueing analysis packages) Note: $W = W_{\alpha} + 1/\mu$

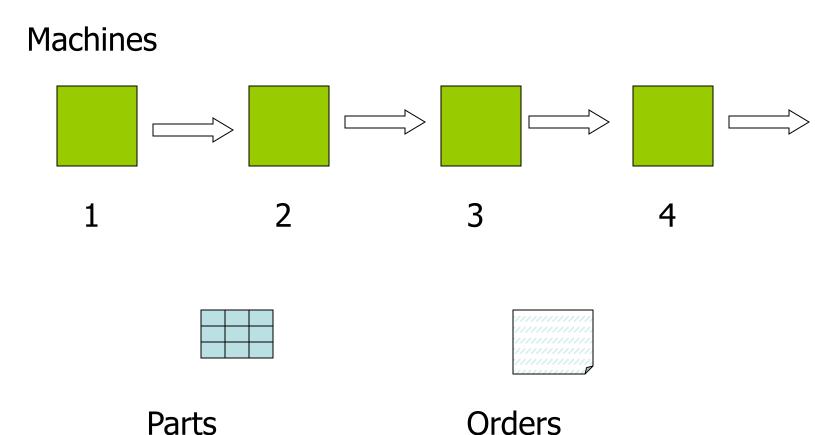
capacity as the M/M/1 queue did Note: this result shows the same nonlinear rise in W and L as the system approaches

For more details take 2.852



Push Vs Pull

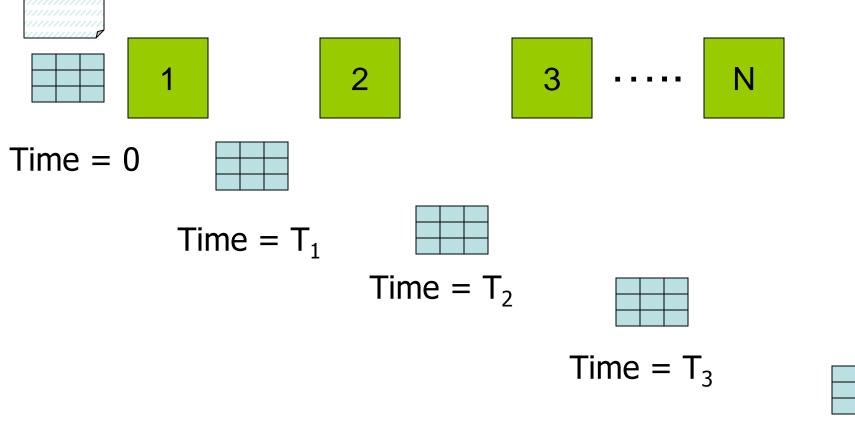
Push and Pull Systems



Push Systems –

Order (from centralized decision process) arrives at the front of the system and is produced in batches of size "B".

Q. How long does it take to get one part out of the system?



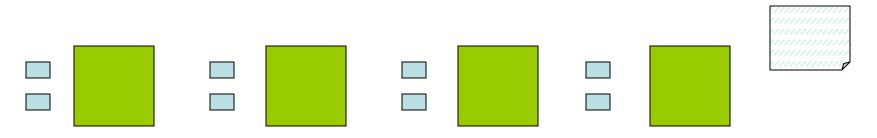
Time **≠**5 T_N



If the process time per part is "t" at each of "N" processes, and the batch size is "B", it takes time $T_N =$ "NBt" to get one part through the system.

Pull Systems-

The order arrives at the end of the line and is "pulled" out of the system. WIP between the machines allows quick completion.



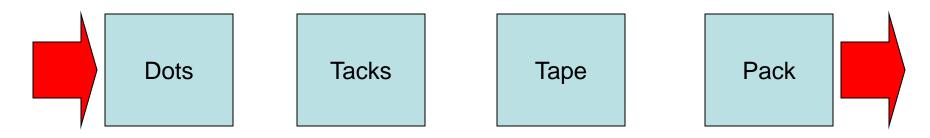
Q.How long does it take to pull out one part?

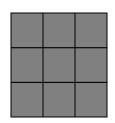
A.The time to finish the last operation "t".

Comparison between Push and Pull Systems Push system characteristics: Central decision making, local optimization of equipment utilization leads to large batches, large inventories and a sluggish system.

Pull system characteristics: Local decision making, emphasis on smooth flow, cooperative problem solving.

HP Video



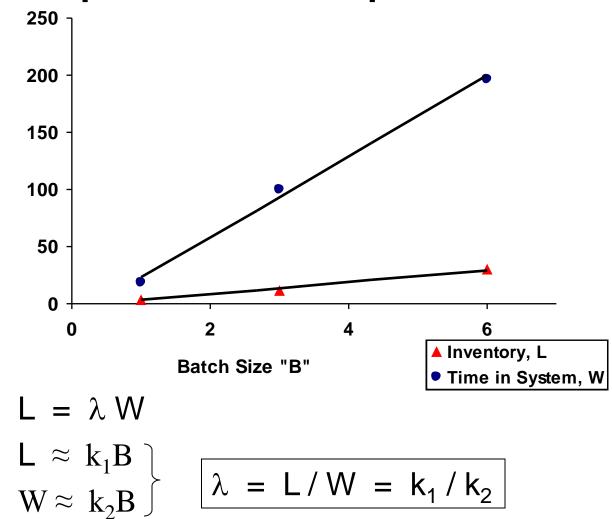


Inventory in the system = L

Time in the system = W

Little's Law L = λ W

Graphical Interpretation



HP Video Results

	Push system (6)	Pull (3)	Pull (1)
Space	2 Tables	2 Tables	1 Table
WIP	30	12	4
"Cycle time" = W	3:17	1:40	0:19
Rework Units ≈ WIP*	26	10	3
Quality Problem	Hidden	Visible	Visible
Production Rate λ = L* / W	7.9 parts/min	6 parts/min	9.4 parts/min

References

- Kleinrock (Little's Law)- handout
- Gershwin (exp dist, unreliable machine, M/M/1 queue) - webpage handout