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0utline 
1. Tools from Operations Research 

• Little’s Law 

• Unreliable Machine(s) 

• Buffers 

• M/M/1 Queue 

2. Applications  

• Transfer Lines, FMS, TPS Cells, Push Vs Pull, 

… 
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Example Mfg Systems 

Flow Line(s) 

Transfer line 

 

process buffer 
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Example Mfg Systems 

Toyota Cell(s) 

 

FMS 

Machining center with pallets 
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Little’s Law 

N = l  
  N = Average parts in the system 

  l = Average arrival rate 

  T = Average time in the system 
Ref. L. Kleinrock, “Queueing System, Vol 1 Theory, 

Wiley, 1975 
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Queueing Systems 

N, T 

Observer here 

Observing arrivals; 

(t) = number of arrivals in (0,t) 

Observing departures; 

(t) = number of  

departures in (0,t) 

N(t)  (t)  (t) Number in the system, 

parts or customers 
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N(t)  (t)  (t)

 (t)   customer -seconds (shaded area in figure)

average number of customers in the system = N 
 (t)

t

average arrival rate = lt 
(t)

t

average time per customer = Tt 
 (t)

(t)

N

lt

this gives N = lt Tt

assuming the limits exist gives     N  l T

Ref. Kleinrock 

Vol 1, 1975 

See  p.16, 17 

(or  L = l W) 

T  lim
t
Tt

l  lim
t

lt

 (t)  N(t)dt
0

t


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N  l T Q. You want a high 

rate of production l, 
but if you fill too fast 

the liquid comes out. 

What do you do? 

A. Fill while the bottle 

is moving making T  

long enough to avoid 

losing any liquid. 

This results in long 

lines and large 

factories N  l T
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Ford’s Willow Run Factory 
Moving assembly line production of B-24s 

Ford’s Willow Run plant - 10 mo delay, but in 1944 produced 453 airplanes in 468 hrs 

 About 1 plane every hour! 
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How long did they work on assembly? 

• Production rate when fully running was 

about 1 plane very hour 
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How long did they work on assembly? 

• Production rate when fully running was 

about 1 plane very hour 

• Little’s Law: L = l W 

• l = 1 plane/hr 

• L = ? “Assembly line was over one mile” 

• W = ? 
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How long did they work on assembly? 

• Production rate when fully running was 

about 1 plane very hour 

• Little’s Law: L = l W 

• l = 1 plane/hr 

• L = 5280’/68’ = 78 planes, 

 (if heel to toe for one mile)  

• W = L/l ≈ 78 hours 

68’ 
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Willow Run 

Two lines converge into one 
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Ford’s Willow Run Factory 

Assembly Line, L ~ 81 planes, implies around 81 hrs/plane 
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Applying Little’s Law 

• Boundaries are arbitrary, but you must 

specify eg. waiting time + service time 

• Internal details are not considered eg. 

first in first out, flow patterns etc.. 

(Non-synchronous) 
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Confusion when talking about time 

t 

t 

Time to process one part = t 

What is the cycle time? 

 a) t,  or b) t/2? 



17 

Unreliable Machine 

• Ref S. B. Gershwin (handout - see web) 

• Preliminaries: conditional probability 

and Markov chains - transition 

probabilities 

• Probability machine is down - 

exponential distribution 
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Exponential distribution 

Note: MTTF = mean time to failure  
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Unreliable Machine with Repair 

Note: MTTR = mean time to repair 
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Note: MTBF = mean time between 

 failures = MTTF + MTTR 
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Operation Dependent 

• Multiple machines (Transfer line) 

 

 

 

 

 

• Single Machine 

Buzacott’s formula,    m = 
1 

 

1 
× 

1+  
MTTR 

MTTF 

k 

1 

1 

 

MTTF 

MTTF + MTTR 
× m = 

 = service time without failures 
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Time dependent approach 

MTTF MTTR 

Total working time 

Machine up = 
MTTF 

MTTF + MTTR 

Machine down = 
MTTR 

MTTF + MTTR 

Average Production rate = 
1 

 

MTTF 

MTTF + MTTR 
× 

Where,  = operation time 
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Estimation of m 
A B 

“up” PA PB 

Assumption:  time dependent failure 

(not quite right, but pretty close) 

Probability that both A and B are up is A∩ B 

Production rate = PA PB  = 
1 

 

MTTFB 

MTTFB + MTTRB 
× 

1 

 

MTTFA 

MTTFA + MTTRA 

= × 
1 

 

1 

1 + A 

1 

1 + B 
Where, i = 

MTTRi 

MTTFi 

= 
1 

 

1 

1 + A + B + A B  

A∩ B = PAPB 
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Estimation of m (continued) 

Note: A B << 1 

1 

 

1 

1+  i 
2 

1 

m  Ignoring higher order terms, 

Same as Buzacott’s result 

Note:  Buzacott’s formula is also from an approximation: 

 Doesn’t take into account two simultaneous failures,  

 nor buffer capacity in machine 

= 
1 

 

1 

1 + A + B + A B  
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Example:Transfer Line 

infinite buffer m0 = (1/ x p)bottleneck 

zero buffer    m∞ = 1/ x pApB…pN 

example; transfer line, all p = 
0.9 

  m =(0.9)N x 1/ 

 N=1  m = .9 x 1/ 

 N=10  m = .35 x 1/ 

 N=100 m = .00003 x 1/ 

 

A B N 

             m =(1/(1+0.111N)) x 
1/ 

N=1 m = .9 x 1/ 

N=10 m = .47 x 1/ 

N=100 m = .0825 x 1/ 
Time dependent Operation dependent 
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Case Study Example 
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Issues 

• Huge demand for printers 

• 200,000 (manual)  300,000/mo  

• Add automation 

• Build one station: reliability 0.99 not 

0.995 

• (0.995)100 = 0.6057; (0.99)100 = 0.366 

• Simulation Vs Analytical Models 
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Summary: Production Rates 

Zero Buffer:   
1




1

1
MTTRi

MTTFi1

n



Infinite Buffer:  min(
1

 i


MTTFi

MTTFi MTTRi
)

Transfer line 

Bottleneck 
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Finite Buffer Size 

R
at

e 

N N* 

Zero Buffer 

Infinite Buffer 

Buffer Size 

How do the two cases connect for finite buffers? 

Acts like one big machine 
Machines are independent 

rate is controlled by the 

slowest machine “bottleneck” 
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A small amount of buffer space helps a 

lot, but too much is costly 
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Finite buffer approximation  

Average Downtime is 

N*  2 to 6 × MTTR × m 

m1 m2 N 

MTTR1 + MTTR2 

2 

For a two machine system : 

and, µ1 ≈ µ2, call the rate µ. 

Gershwin’s Approximation: 

Rate 

N N* 

Zero Buffer 

Infinite Buffer 
Knee 
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Simulation of a 20 machine, 19 buffer (cap = 10 parts) 

Transfer line. Each machine with one minute cycle time 

could produce 4800 parts per week. MTTF 3880 minutes, 

MTTR 120 minutes. See Gershwin p63-64  

Zero buffer 

∞ buffer 

Ave (3249 sim, 3247 analy) 

Perfect machines, ∞buffer 

N* ≥ 240 parts 
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M/M/1 Queue 

l 

Arrival Rate 

m 

Service Rate 

..how the inventory in the system grows as you approach capacity 

(l & m vary according to exponential distribution) 
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Steady State  (l < m) 

Consider the deterministic case: 

• How many people are in the system? 
A. 

l  0 L = 0 

0 < l < m 0 < L < 1 

l  m L = 1 

l l l < m 

Note: From Little’s Law :  Time in system, W = L / l 

  Since  L = l / m  for l < m     W = 1 / m 

L 

l 

1 

m 

L  l / m 
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When  l > m 

 What happens at  l > m ? 

 There is no steady state, parts in the 

system grow without limit. 

   As t → ∞, L → ∞ 

L(t) 

t 

Slope = l  m 

L 

l 

1 

m 
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M/M/1 Queue Result 
Arrival rate =  l ,  Service rate = m, where l ≤ m  

 

  L =  “Inventory”  =  l / (m  l) 

W  =  Time in system  =  1 / (m  l) 

l l L , W 

See Notes: Principles needed to derive M/M/1 queue result - on website 

L 

l 

1 

M/M/1 

deterministic 

m 
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example: two processes 

Process A: 
never starved 
outputs parts 
at average rate l 

with an exponential 
distribution 

Process B: 
with average process 
rate m = (5/4) l also 

with an exponential 
distribution 

Parts in the system: deterministic: L = 4/5;   M/M/1: L = 4 

? 

L 



40 

M/M/1 Queue interpretation 

• Overly simplistic but tractable 

• Arrivals (always “on”) vs departures 

(stop when the queue is empty) 

• Behavior as you approach capacity 
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G/G/1 Queue result 

queue Wq
= 

Note: W = Wq + 1/m 
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For more details take 2.852  
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Push Vs Pull 
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Push and Pull Systems 

Machines 

Parts Orders 

1 2 3 4 
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Push Systems – 
Order (from centralized decision process) arrives at the front of the 

system and is produced in batches of size “B”. 

Q. How long does it take to get one part out of the system? 

1 2 3 N 

Time = T3 

Time = T2 

Time = TN 

Time = T1 

Time = 0 

….. 
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Push Systems – 

Time = 0 

1 2 3 N 

Time 
= TN 

….. 

If the process time per part is “t” at each of  

“N” processes, and the batch size is “B”, 

it takes time TN = “NBt” to get  

one part through the system.  
 

Comment; Of course, this 

part can come from inventory 

in a much shorter time, but the  

point is that the push system  

is not very responsive. 
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Pull Systems- 
The order arrives at the end of the line and is “pulled” out of the 

system. WIP between the machines allows quick completion.  

Q.How long does it take to pull out 
one part?  

 A.The time to finish the last operation “t”. 
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Comparison between  

Push and Pull Systems 
Push system characteristics: Central 

decision making, local optimization of 

equipment utilization leads to large 

batches, large inventories and a sluggish 

system. 

Pull system characteristics: Local decision 

making, emphasis on smooth flow, 

cooperative problem solving. 

See HP Video 
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HP Video 

Dots Tacks Tape Pack 

Inventory in the system = L 

 

Time in the system = W 

 

Little’s Law L = l W 
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Graphical Interpretation 
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Time in System, W

L  =  l W 

L  ≈  k1B 

W ≈  k2B 
l  =  L / W  =  k1 / k2 
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Push system (6) Pull (3) Pull (1) 

Space 2 Tables 2 Tables 1 Table 

WIP 30 12 4 

“Cycle time” = W 3:17 1:40 0:19 

Rework Units ≈ 

WIP* 
26 10 3 

Quality Problem Hidden Visible Visible 

Production Rate 

l = L* / W 
7.9 parts/min 6 parts/min 9.4 parts/min 

HP Video Results 
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References 

• Kleinrock (Little’s Law)- handout 

• Gershwin ( exp dist, unreliable machine, 

M/M/1 queue) - webpage handout 

 


