Massachusetts Institute of Technology Department of Mechanical Engineering 2.810 Manufacturing Processes and Systems Sheet Forming Homework

Problem 1 Fundamentals of Sheet Forming

- a) What causes burrs? How can they be reduced or eliminated?
- b) Describe the cutting process that takes place when a pair of scissors cuts through aluminum foil.
- c) Identify the material and process variables that influence the punch force in shearing ad explain how each of these affects this force.
- d) Explain why spring back in bending depends on yield stress, elastic modulus, sheet thickness, and bend radius.
- e) What is the significance of the size of the circles in the grid patterns used to observed forming limits?
- f) Why are the beads in Fig. 16.36b placed in those particular locations? (Fig. 16.36b applies to all editions of text).
- g) Why is the bending force, *P*, proportional to the square of the sheet thickness?
- h) Examine some of the products in your home that are made of sheet metal and discuss the process or combination of processes by which you think they were made.

Problem 2. Rank the metals in Table 2.2 (all versions) in terms of spring back, listing those with the largest spring back first).

Problem 3. Consider the manufacture of the bracket shown in Figure 1 from sheet steel (available in 4 in. wide strips) using a manual brake press or presses. Assume UTS = 70,710 psi.

We are interested in estimating the unit cost to make these brackets. Please use the following assumptions.

- 1. the sheet materials costs \$.25/lb.
- 2. the cost of a press is (Press Cost [\$] = $2[\frac{\$}{lb}]$ (Force Capacity [lb])
- 3. all operations take the same length of time, with no breakdowns or unusual delays between steps.
- 4. labor costs \$30/hr.
- 5. equipment has a life of 10 years, tools 1 year.

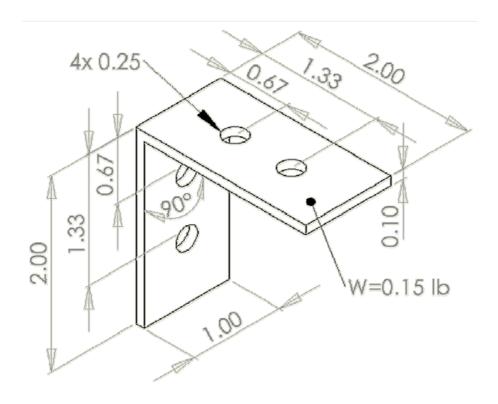


Figure 1. Sheet metal bracket

- a) Describe the sequence operations needed to make this bracket, including materials, tools, machines and operators.
- b) Estimate the size and cost of the equipment needed to make this part.
- c) Estimate the time required to make one of these (ignore waiting time)
- d) Estimate the cost per bracket (materials, labor, and equipment). State any assumptions, beyond those given, explicitly.
- e) Estimate the minimum bend radius for the part.
- f) If the part is formed to 90 ±, make a rough estimate of the resulting angle due to the spring back. Use 1.5 x (your minimum bend radius). How would this change if the bracket material was aluminum, or titanium (rough answer ok). How would you compensate for spring back? (list at least 3 ways).