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Problem 1 

Consider a transfer line as shown in figure 1 below. 

 

Figure 1: Transfer line layout 

The machine parameters are as given in the table below. 

  M1 M2 M3 M4 M5 M6 

MTTF (hours) 30 40 20 20 10 50 

MTTR (hours) 1 1 1 1 1 1 

Processing time (hours) 1 1 1 1 1 1 

The buffer has infinite storage capacity. Assume operation-dependent failures. 

a. Line evaluation 

Estimate the production capacity of this system. Assume that the profit per part is $10 

and that you sell every part you make. Maintenance costs (not included in the profit 

calculation) are $1 per hour. Calculate the net profit for this system. 

 

Answer:  

The first three machines and the last three machines behave like zero-buffer three-

machine lines. We apply Buzzacott’s formula to calculate the production rate for each 

three-machine line.  

We get, 

P1 = 0.9022, and 

P2 = 0.8547. 

We can now treat these lines as two machines with an infinite buffer between them. 

Then, the production rate is the production rate of the bottleneck = P2 = 0.8547.  

Profit = 0.8547 (parts/hr)*10($/part) - 1($/hour) = 7.55 ($/hour). 

 



b. Line improvement: Part I 

Identify the bottleneck machine for this line. Suppose that you have a budget of $40,000 

to improve the line. Each $10,000 increases the MTTF of a machine by 10 hours. How 

will you allocate this budget so that you can achieve a production rate of 0.91? 

 

Answer: 

We improve the system by identifying the bottleneck and improving it by 10 units until it 

no longer is the bottleneck. One iteration can be as follows: 

1. Increase MTTF of machine M5 from 10 to 20. It is now tied with M4 as the 

bottleneck. The production rate of the second three-machine line (M4-M5-M6) is 

0.8928. 

2. Increase MTTF of machine M4 from 20 to 30. Now M5 is the bottleneck. The 

production rate of the second three-machine line (M4-M5-M6) is 0.9063. 

3. Increase MTTF of machine M5 from 20 to 30. The production rate of the second 

three-machine line (M4-M5-M6) is 0.9202.  

Now, this three-machine line is capable of meeting the required demand of 0.91 parts per 

hour. However, the M1-M2-M3 system has a production rate of 0.9022, which is less 

than the demand. We continue iterating as follows: 

4. Improve the MTTF of machine M3 from 20 to 30. It is now tied with M1 as the 

bottleneck. The production rate of the first three-machine line (M1-M2-M3) is 

0.916. 

Thus, this system now meets the required demand rate. The cost of these improvements 

is: $10,000 * 4 = $40,000. Thus, we are within our budget. 

 

c. Line improvement: Part II 

Each 0.005 units decrement in the failure rate of a machine increases the maintenance 

costs by 3%. Recall that the failure rate, p = 1/MTTF. For example, if you reduce the p-

value for machine M2 from (1/40 = 0.025) by 0.005 to 0.02, the maintenance costs would 

become 1.03 ($/hour). If you could improve only one machine, which machine would 

you apply this improvement to? Set up the equation for the profit of such a system, in 

terms of the number of decrements, n. What are the upper and lower limits on the value 

of n? Set up an optimization problem to find the value of n which maximizes profit.  

 

Extra credit: Plot the profit function, and find (manually or using software) the optimum 

value of n, the resulting failure probability rate for the chosen machine, and the maximum 

profit. 

 



Answer: 

M4-M5-M6 is the bottleneck three-machine line. We could pick any machine to apply the 

improvement to since the denominator simply consists of a sum of p-values. We focus 

our attention on machine M5. It has a failure rate, p5 of 0.1. Let n be the number of 0.005 

decrements we make to failure rate p5. We can write the production rate and profit of the 

system as a function of n as follows: 

 
 

Note that p5 is 0.1. Thus, n can be at most 20 so that p5 is non-negative, and n cannot be 

negative. Thus, n lies between 0 and 20.  

 

The maintenance cost increases by 3% for every n decrement in p5. That is, the 

maintenance cost can be written as (1.03)
n
. Then, the net profit function becomes: 

 

 
 

Extra Credit: 

The profit function is plotted in figure 2 below. 

Solving this problem gives n = 10.16 for which, p5 becomes 0.04917. The production 

rate becomes 0.8935 and the net profit is $7.58/hour. 

 

The function is concave in the region of interest for n in [0, 20]. Thus, we can have two 

values of n which give the same net profit. A higher value of n means that the failure rate 

is less. In that case, we would expect less inventory to accumulate in the buffer. 



 
Figure 2: The net profit as a function of n 

 

d. Inventory costs 

As the market matures, we are looking to cut our production costs. Inventory costs which 

were so far not considered in our profit calculations are now considered important. 

Inventory cost per part per hour is $0.01. You have estimated the production rates and 

average inventory in the system for various sizes of buffers. These are given in the table 

below. 

Buffer size Production rate Average inventory 

1 0.7866 0.611 

5 0.8006 3.077 

10 0.8127 6.218 

20 0.8274 12.74 

50 0.8449 34.345 

100 0.8522 76 

200 0.8545 170 

400 0.8547 370 

1. Considering the inventory costs, find the buffer size (out of the options in the table) 

which maximizes your profit. 

2. What answer would you get for the optimum buffer size using Gershwin’s 

Approximation? 



 

Answer: 

1.  

 

Buffer 

size 

(A) 

Prod 

rate 

(B) 

Avg. 

inventory 

(C) 

Profit not 

considering 

inventory costs 

(D = B*10 - $1/hr) 

Inventory 

costs based on 

$0.01/part/hr 

(E = 0.01*C) 

Net Profit ($/hr) 

(F = D – E) 

1 0.7866 0.611 6.866 0.00611 6.85989 

5 0.8006 3.077 7.006 0.03077 6.97523 

10 0.8127 6.218 7.127 0.06218 7.06482 

20 0.8274 12.74 7.274 0.1274 7.1466 

50 0.8449 34.345 7.449 0.34346 7.10554 

100 0.8522 76 7.522 0.76 6.762 

200 0.8545 170 7.545 1.7 5.845 

400 0.8547 370 7.547 3.7 3.847 

Based on the inventory costs, we find that a buffer of size 20 gives us the maximum net 

profit. 

 
Figure 3: Inventory costs and net profit 

 

 

Note: Here, we have the first three-machine line producing parts at a faster rate than the 

second three-machine line. Recall from the “Time and Rate” lecture [slide 37-38], that 

for an M/M/1 queue with λ > µ, the inventory in the system with an infinite buffer tends 

to infinity over time. In this part of the problem, we are considering finite buffers. Here, 

we witness the phenomenon called blocking. When the buffer gets full, the upstream 

three-machine line gets “blocked” and can only make parts at the rate at which the 
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downstream three-machine line can process parts from the buffer. Thus, we expect the 

upstream three-machine line to be idle quite often. Because of the assumption of 

operation-dependent failures, the upstream three-machine line fails less frequently than 

it would without blocking. 

 

2. Let us now use Gershwin’s Approximation to find the optimum buffer size. As per 

the approximation,  

               ̅̅ ̅̅ ̅̅ ̅̅     

 

Here, MTTR1 = 1 and MTTR2 = 1. Thus, the mean MTTR is 1. Also, µ for each 

three-machine line is 1. Thus, we get, N* to be between 2 to 6. 


