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Abstract: In industrial processes a control loop problem is how to choose a suitable set of PID 
parameters because of their influence on the system asymptotic stability. This paper aims to show the 
advantages of using Free Open Source Software in control education. A PID control algorithm based on 
Internal Model Control design for linear plants, in the discrete-time domain, is derived. Some examples 
for simulating typical control systems and a real-time physical plant are given to explore not only the 
controller tuning, closed-loop dynamics, robustness in the presence of practical constraints, time-varying 
parameters and disturbances, but also the strategy by using ScicosLab as a suitable free software tool to 
be used for learning in process control and to integrate with the data acquisition board MCC 1208LS. 
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1. INTRODUCTION 

In process control education, computer simulations of 
dynamic systems considerably help the students to 
understand and to apply theoretical concepts taught in the 
classroom. Effectively, teaching the basic controller design 
procedures (modeling, analysis, controller synthesis, 
implementation) can not be done only through theoretical 
lectures with little or no practical essays (Grzegorz et al., 
2008; Meza et al., 2009). 

Extensive use of numerical simulation examples, case studies 
and practical experiments using computer-based tools have 
been implemented at an elective course, Introduction for 
Identification and Adaptive Control, of the Department of 
Automation and Systems (DAS) at the Federal University of 
Santa Catarina. The course encompasses one semester 
spanning 18 weeks, each one of 3 hours and lectures ranging 
from: i) classical and advanced modeling, ii) control system 
design including pole placement, PID, IMC and GMV, iii) 
auto-tuning and self-tuning techniques for modeling and 
digital control, iv) numerical and real-time control 
experiments using ScicosLab, a Free Open Source Software. 

Free Open Source Software (FOSS) for control systems has 
achieved a sufficient maturity such that it can be considered 
as an alternative to proprietary software to be used in 
universities both in educational and research environments. 
ScicosLab is a freely distributed tool that is based on Scilab 
but with a more stable and powerful version of Scicos 
(ScicosLab, 2010). Unlike ScicosLab, similar commercial 
software for use in control simulation environments, such as 
Matlab and LabView, run into cost issues in universities and 
industries (Bucher and Balemi, 2005; Coelho, 2010). In 

addition, the cost of a commercial software package for 
analysis and implementation of control systems is out of the 
reach in Latin American universities. 

This paper discusses, besides the combination of the Internal 
Model Control (IMC) design, aspects to tune a digital PID, 
the numerical implementation of two nonlinear processes and 
a real-time system essay through the free software ScicosLab 
as an attempt to use it in control education. 

Many methodologies to adjust the gains and to increase PID 
control performance have been developed in the process 
control literature. The increasing number of case studies and 
publications related to PID controller and its hybridization 
with advanced methods have been reported showing the 
importance of this type of controller to the industry (Tan and 
Li, 2001; Åström and Hägglund, 2006; Li et al., 2009). 

2. LECTURE OF THE DIGITAL IMC DESIGN 

The main idea of IMC is to connect the plant model with the 
real plant in a parallel form and the controller approaches the 
model of the inverse plant dynamic. For SISO control 
systems, IMC uses the inverse of the minimum phase part of 
the model and adds a low-pass filter to guarantee not only the 
physical implementation of the control but also the stability 
and robustness (to modeling errors, ensuring adequate closed-
loop behavior for setpoint tracking and disturbance rejection) 
(Morari and Zafiriou, 1989; Li et al, 2009). 

 
Fig. 1. Structure of the IMC controller. 
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Assuming that the closed-loop system is stable, the following 
relationship can be obtained: 

c p c m
r

c p m c p m

G (z)G (z) {1-G (z)G (z)}
y(t)= y (t)+ v(t)

1+G (z){G (z)-G (z)} 1+G (z){G (z)-G (z)}
 (1)

 
On the assumption of perfect modeling, 

p mG (z)=G (z) , and 

mG (z)  is a minimum phase model, then 
m

-1
cG (z)=G (z) . As can 

be seen in Fig. 1, there is no output steady-state error in the 
presence of reference changes and load disturbances. IMC 
control structure shows better dynamic response and 
robustness compared with traditional feedback control. 

Next, discrete IMC design and its relation with PID tuning 
for SISO systems is derived. First, it is assumed a CAR 
(Controlled Auto-Regressive) process model of the form 

-1 -k -1A(z )y(t)=z B(z )u(t)                          (2) 

where y(t) is the system output, u(t) is the control signal, 
-1 -1 -na

1 naA(z )=1+a z +…+a z  and -1 -1 -nb
0 1 nbB(z )=b +b z +…+b z  

are related to open-loop poles and zeros, respectively, and 
k 1≥  is the discrete time-delay. Factorizing (2) as in 

-1
+ - -k

m m m -1

B(z )G (z)=G (z)G (z)=z
A(z )

                    (3) 

+
mG (z)  is the non-minimum phase part including z-k and 
-
mG (z)  is the minimum phase part of the plant model. Then, 

the transfer function of the IMC controller can be obtained as 

c -
m

1G (z)=
G (z)

                                 (4) 

Second, a digital low-pass filter F(z) is connected in series 
with the IMC controller to ensure a causal structure and 
closed-loop stability. Equation (4) can be rewritten as 

c -
m

F(z)G (z)=
G (z)

                                 (5) 

Assuming that Gp(z)=Gm(z), then equation (1) becomes 

p c r c py(t)=G (z)G (z)y (t)+{1-G (z)G (z)}v(t)            (6) 

+ +
m r my(t)=F(z)G (z)y (t)+{1-F(z)G (z)}v(t)             (7) 

It can be observed from (7) that IMC provides time-delay 
compensation, disturbance rejection and the filter imposes the 
shape of the reference tracking (without offset). 

2.1  PID Controller based on IMC Tuning 

The IMC system diagram can be represented in an equivalent 
form for a classical feedback control. Fig. 1 is rearranged in 
these two following diagrams: 

 
Fig. 2. Relationship between IMC and PID. 

Comparing the control system diagrams from Fig. 2, the PID 
controller assumes the form 

c
PID

c m

G (z)
G (z)=

1-G (z)G (z)
                          (8) 

A first-order digital filter is selected and represented by 
-1 -1

f
-1 -1

f

b z (1-α)zF(z)= =
(1-a z ) (1-αz )

                       (9) 

where f sa =α=exp(-T /λ) , f fb =(1-a )=(1-α)  and λ is the time 
constant of the filter that is adjusted on-line by the user to 
shape the speed of the closed-loop response. As the plant 
model, it is adopted a discrete second-order model 

1 2 0 1y(t)+a y(t-1)+a y(t-2)=b u(t-k-1)+b u(t-k-2)      (10) 

According to the IMC design procedure, the PID controller 
transfer function is given by 

- -1
c m

PID -1 +
c m m

G (z) {G (z)}
G (z)= =

1-G (z)G (z) F (z)-G (z)
           (11) 

-1 -2
f 1 2

PID -1 -1 -k-1
0 1 f f

b (1+a z +a z )
G (z)=

(b +b z ) (1-a z -b z )
            (12) 

To obtain the PID tuning, the ideal PID controller is 
considered (Bobál et al., 2005; Åström and Hägglund, 2006) 

c d
i

1 de(t)u(t)=K e(t)+ e(t)dt+T
T dt

⎧ ⎫
⎨ ⎬
⎩ ⎭

∫             (13) 

The discrete equation of the PID controller is 
-1 -2

0 1 2
PID -1

q +q z +q zu(t)G (z)= =
e(t) (1-z )

⎡ ⎤
⎢ ⎥
⎣ ⎦

               (14) 

s d
0 c

i s

T T
q =K (1+ + )

T T
 ; d

1 c
s

T
q =-K (1+2 )

T
 ; d

2 c
s

T
q =K

T
 (15) 

In order to guarantee the PID equation mask, the following 
simplifications are implemented: 

-1
0 1 0 1b +b z b +b≈                              (16) 

-1 -k-1 -1 -1
f f f

-k -1
f z=1 f

1-a z -(1-a )z =(1-z ){[1+(1-a )z +...+

(1-a )z ] } (1-z ){1+k(1-a )}≈
 (17) 

that are introduced to ensure the controller gain and to 
remove the undesirable poles. The transfer function of the 
PID controller is obtained from (8) as 

-1 -2
f 1 2

PID -1
0 1 f

b (1+a z +a z )
G (z)=

(b +b ) {1+k(1-a )}(1-z )
           (18) 

Equations (14) and (18) are related to 

f

0 1 f

b
K=

(b +b ){1+k(1-a )}
                      (19) 

s d
c

i s

T T
K=K (1+ + )

T T
 ; d

1 c
s

T
Ka =-K (1+2 )

T
 ; d

2 c
s

T
Ka =K

T
  (20) 
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and the equations for the PID controller tuning take the form 

c 1 2K =-K(a +2a )  ; 1 2 s
i

1 2

-(a +2a )T
T =

(1+a +a )
 ; 2 s

d
1 2

-a T
T =

(a +2a )
    (21) 

2.2  Tasks for the PID-IMC Tuning Lab 

It is asked to the students to realize the following tasks 
related to IMC control design: (i) calibrate the closed-loop 
dynamic of (9), in order to understand how it affects the 
controlled plant behavior emphasizing industry conservatism 
needs; ii) set α for the PID tuning using (21), according to 
design specifications (rise time, settling time, zero steady-
state error for setpoint tracking and disturbance rejection); iii) 
model a transfer function of order greater than two to observe 
how (16) and (17) affect the gain of the controller and 
remove undesirable poles of the controller transfer function; 
iv) simplify the plant model to a discrete first-order equation 
and to derive a PI controller for the case of slow stable plants. 

3. SCICOSLAB FOR SIMULATIONS 

Numerical computing software has a key role on control 
system education not only for the purposes of numerical case 
studies and real-time applications, but also for the 
development of synoptic screen for the industry (operation 
and tuning loops). However, the cost of a commercial 
software for computer aided control system design for 
analysis and implementation of control systems is out of the 
reach for many universities in Latin America. 

ScicosLab is a good software for modeling, simulation, 
analysis and design, providing a large set of functions for 
system engineering and scientific applications. It offers 
almost all the functionalities provided by Matlab/Simulink. 
ScicosLab has a large number of toolboxes that include 
graphics functions, numerical integration, linear algebra, 
optimization, among others. Developed and maintained by 
the Institut National de Recherche en Informatique et en 
Automatique, INRIA, through the Project METALAU 
(Method, algorithmes et logiciels pour l'automatique) and 
Ecole Nationale des Ponts et des Chaussées, ENPC, it can be 
freely downloaded from the internet (Coelho, 2010). 

Some features of ScicosLab are: high-level programming 
language, dedicated editor, hundreds of mathematical 
functions, ability to add programs from other languages (C, 
Fortran), various toolboxes (linear algebra, polynomial, 
statistics, classical control, identification, among others). The 
syntax is similar to that of Matlab and the package includes a 
simulator called Scicos as an alternative to Simulink. 

ScicosLab is being developed since 1990, is compatible with 
Microsoft Windows and Linux operational systems and this 
work is aimed at the Windows version. The Windows version 
of ScicosLab lacks drivers interfacing Data Acquisition 
(DAQ) devices because most of the effort in this area is 
headed towards the Linux version with Real-Time 
Application Interface, or RTAI (Meza et al., 2009). Proper 
modifications on Linux with RTAI grant hard real-time 
DAQ. This has not been accomplished for the Windows 
version yet and only a few number of DAQ devices are 

supported in soft real-time mode. A parallel contribution of 
this paper is to inform the development of a new driver for 
the USB-1208LS DAQ (Measurement and Computing) to 
work with Windows and ScicosLab, which can be found at 
www.das.ufsc.br/~aarc/FOSS-ADCON/USB1208LS.rar. 

4.  CONTROL SYSTEM ANALYSIS WITH SCICOSLAB 

The following control activities are asked to the students in 
order to learn the ScicosLab language and gain background 
knowledge in tasks of modeling, simulation, PID-IMC design 
and implementation of real-time control applications. 

4.1  PID-IMC Design for a Level Plant 

The first numerical simulation is a nonlinear coupled liquid-
tank system as shown in Fig. 3 (Tan and Li, 2001). Level 
control systems are common in the industry (chemical, 
petrochemical, nuclear and cellulose). The equations that 
characterize a second-order model of the level plant are 

.

11 1 1 1 2A h (t)=u(t)-a c 2g{h (t)-h (t)}  
.

22 1 1 1 2 2 2 2 0A h (t)=a c 2g{h (t)-h (t)}-a c 2g{h (t)-h }+d(t)  

where h1(t) is an intermediate variable representing the liquid 
level in tank 1, h0 = 3 cm is the liquid level of the reservoir, 
A1 = A2 = 100 cm2 are the cross-section area of both tanks, a1 
= a2 = 0.396 cm2 are the orifice areas, c1 = 0.53 and c2 = 
0.63 are the discharge constants (of tank 1 and tank 2, 
respectively) and g = 981cm/s2 is the gravitational constant. 

The control objectives and operational constraints are: i) the 
input u(t) is used to adjust the liquid level in tank 2, h2(t), at a 
desired level, ranging from zero to 33.33 cm3/s, ii) the input 
d(t) in tank 2 is used as a load disturbance of magnitude 8.33 
cm3/s, added at t = 1200 s, iii) the level in tank 2 must be 
regulated in two values from the nominal operation point, iv) 
an overdamped behavior for h2(t) with low control variance, 
disturbance rejection and zero steady-state error are the 
closed-loop specifications to be achieved by the PID 
controller tuned with the IMC technique. 

 
Fig. 3. A nonlinear coupled level process. 

The digital PID-IMC controller is implemented according to 
Table 1 and simulation results are shown in Fig. 4. 

Table 1.  Parameterization of the level control system. 

Discrete Linear Model
 

21

21

z461.0z437.11

z0023.0z0053.0
−−

−−

+−

+  

Closed-Loop Dynamic λ = 25 s 
Sampling Time 2 s 

Numerical experiments illustrate that the responses meet the 
performance specifications and the ultimate gains of the PID 
controller are given by Kc = 5.21, Ti = 42.92, Td = 1.79. The 
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PID-IMC design is the closed-loop pole being associated 
with the behavior of a first-order system and its adaptability 
to various processes. The students can perform experiments 
with different first-order tuning parameters. 

 
Fig. 4. Dynamics of the level process with PID-IMC. 

The corresponding code in ScicosLab of the PID controller 
with the IMC tuning for the level plant is shown in Table 2. 

Table 2.  ScicosLab code for the level plant. 
clear; xdel(0:1); clc; 
// ----- Constants of the level plant 
ts = 2; d = 8; niter = 800; 
A1 = 100; a1 = 0.396; c1 = 0.53; A2 = 100; a2 = 0.396; c2 = 0.63; 
// ----- Initial conditions 
h1(1:d) = 3; h2(1:d) = 3; h0 = 3; g = 981; umin = 0; umax = 33.33; 
pert(1:600) = 0; pert(601:niter) = 8.33; u(1:d) = 12; erro(1:d) = 0; 
// ----- Design parameters 
lambda = 25; alfa = exp(-ts/lambda); 
a1e = -1.437; a2e = 0.461; b0e = 0.0053; b1e = 0.0023;delay = 0; 
// ----- Reference signal 
yr(1:400) = 8; yr(401:niter) = 5; 
// ----- Simulation 
for k = d:niter 
// ------- Output 
   h1(k) = h1(k-1)+(ts/A1)*(u(k-1)-a1*c1*sqrt(2*g*(h1(k-1)-h2(k-1)))); 
   h2(k) = h2(k-1)+(ts/A2)*(pert(k-1)+a1*c1*sqrt(2*g*(h1(k-1)-h2(k-1)))-... 
                a2*c2*sqrt(2*g*(h2(k-1)-h0))); 
   erro(k) = yr(k) - h2(k); 
   kaux = (1 - alfa)/((b0e + b1e)*(1 + delay*(1 - alfa))); 
   kc = -kaux*(a1e + 2*a2e); 
   ti = -((a1e + 2*a2e)*ts)/(1 + a1e + a2e); 
   td = -(a2e*ts)/(a1e + 2*a2e); 
   u(k) = u(k-1)+(kc*(1+ts/ti+td/ts))*erro(k)-(kc*(1+2*td/ts))*erro(k-1)+... 
              (kc*(td/ts))*erro(k-2); 
   if  u(k) <= umin; u(k) = umin; elseif u(k) >= umax; u(k) = umax; end 
end 
// ----- Results 
t = 0:ts:niter*ts-ts;t = t'; 
subplot(2,1,1),plot(t,h2,t,yr),ylabel('Level-Tank 2 (cm)'),xlabel('Time (s)'); 
subplot(2,1,2),plot(t,u),ylabel('Input Flow (cm3/s)'),xlabel('Time (s)'); 

4.2  PID-IMC Design for a DC Motor Plant 

The second numerical simulation considers the DC motor 
model for velocity control activities, as shown in Fig. 5 (this 
plant shows a dynamic that is significantly faster than the 
coupled tank system). 

The DC motor is an electromechanical transducer that 
converts DC voltage applied at its terminals in mechanical 
movement of its axis. Typical applications of 
servomechanisms are: machine tools, industrial robots, 
positioning systems and conveyors. To control the velocity or 

position it is necessary to control the voltage applied to the 
armature terminal. This simplicity makes the DC motor an 
important component for control systems applications in 
industrial and domestic environments. The variables of 
interest are: R is the armature resistance, L is the armature 
inductance, I is the armature current, v(t) is the armature 
voltage (input), ea(t) is the back emf, w(t) is the angular 
velocity (output), T is the torque developed by the motor, J is 
the equivalent moment of inertia of the motor and load 
referred to the motor shaft, and B is the equivalent viscous-
friction coefficient of the motor and load referred to the 
motor shaft. 

 
Fig. 5. DC motor process. 

The differential equation fitting the open-loop behavior of the 
DC motor process is given by (Tan and Li, 2001) 

2
T

2

Kd w(t) JR+BL dw(t) BR+ + w(t)= v(t)
JL dt JL JLdt

⎛ ⎞⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠

 

where v(t) ∈ [-5 V , 5 V], KT = 13.5 Nm/A, R = 9.2 Ω, L = 
0.25 H and J = 0.001 kgm2. To assess performance aspects, 
robustness and control activity, a parametric variation in the 
friction coefficient is simulated. Initially with B = 2.34x10-3 
Nms then switches to B = 1.34x10-3 Nms and returns to B = 
2.34x10-3 Nms at t = 3 s and t = 8 s, respectively. 

The objective of the control loop is to obtain a controller 
which provides a closed-loop step response with a minimum 
rise time and zero steady-state error. The reference signal is 
given by yr(t) = 91(t) - 4.51(t-5) rps, where 1(t) is the unit 
step signal, and the experiment takes a total of 100 samples 
for a sampling time of 10 ms. 

The digital PID-IMC is implemented according to Table 3 
and simulation results are shown in Fig. 6. 

The results of the numerical experiments illustrate that the 
dynamic responses are appropriate from the viewpoints of 
settling time and control energy, and meeting the 
performance specifications for reference and parametric 
changes. PID-IMC gains are given by Kc = 0.0046, Ti = 
0.4529 and Td = 0.0213. 

4.3  PID-IMC Design for a Damped Pendulum Plant 

In order to show the ScicosLab platform in a real-time 
control application it is employed a damped pendulum, Fig. 
7, for modeling and digital control essays. This practical 
process belongs to the positional control set of plants 
developed at DAS/Federal University of Santa Catarina. 

Practical systems are of vital importance to control 
engineering students since control systems are real systems. 
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Table 3.  Parameterization of the DC motor system. 

Discrete Linear Model
 -1 -2

-1 -2
2.378z +2.087z

1-1.669z +0.676z
 

Closed-Loop Dynamic λ = 0.15 s 
Sampling Time 0.01 s 

 
Fig. 6. Dynamics of the DC motor plant with PID-IMC. 

 
Fig. 7. The damped pendulum apparatus. 

4.3.1 Damped Pendulum Identification 

For oscillatory plants the following continuous model is 
utilized where y(t) is the output, u(t) is the input, Kp is the 
static gain, ζ is the damping factor and wn is the natural 
frequency. 

2
2 2

n n p n2

d y(t) dy(t)+2ζw +w y(t)=K w u(t)
dtdt

           (22) 

The first part of the estimation task consists of the realization 
of an open-loop essay, which means to obtain the step 
response to measure, from Fig. 8, the period To of the 
oscillation and the first two peaks a1 and a2.  

 
Fig. 8. Estimation of a second-order oscillatory model. 

Once these values are available, the estimated model 
parameters are determined by 

( ){ }2
a2ζ=1 1+ 2π ln a1  ; 2

nω =2π To 1- ζ  

To implement the linear modeling task a step input of 3 volts 
is applied to the plant and the measurements of the angular 
position are saved at a file called pam.dat. The fscanMat 
function of the ScicosLab software is used to read an ASCII 
text matrix from a file as in the code shown in Table 4. 

Table 4.  ScicosLab code for real-time data acquisition. 
// Data Acquisition Task 
clear; xdel; clc; 
// Initialization 
exec('loader.sce'); // Load USB-1208LS driver 
nit = 100; ts = 0.1; u(1:nit) = 3; t = (0:ts:nit*ts-ts)'; 
realtimeinit(ts); // Sampling time 
for k = 1:nit, // Open-loop 
   y(k) = receive_data(); 
   send_data(u(k)); 
   realtime(k); // Sampling time hold 
end 
send_data(0); dados = [t y u]; 
savematfile('pam.dat','dados','-ascii'); // Save data 
// End of real-time simulation

During the data acquisition activity the students learn real-
time programming with ScicosLab. Once measures are 
available for the open-loop essay of the damped pendulum, 
then the second-order classical estimator of Fig. 8 is 
implemented based on Table 5. 

On the second part of the identification, the students are 
asked to implement a Scicos block diagram (Fig. 9) to 
validate the second-order estimated model (num(s) = 8.51, 
den(s) = s2 + 0.87s + 9.68). In this way, students are able to 
verify that the dynamic response to a step of the estimated 
model is similar to the measurements of the damped 
pendulum applied to the second-order estimator. The students 
also learn that an estimated model never exactly matches 
reality (Fig. 10). 

Table 5.  ScicosLab code for modeling using real data. 
clear; xdel; clc; 
dados = fscanfMat('pam.dat'); // Load measurements 
t = dados(:,1); // Time 
y = dados(:,2); // Output 
u = dados(:,3); // Input 
n = length(y); // Number of samples 
media_y = mean(y(n-0.1*n:n)); media_y = media_y*ones(n,1); 
// Modelling 
a1_y = max(y); a1 = vectorfind(y,a1_y,'r'); 
minimo = min(y(a1+1:n)); 
ind_min_tmp = vectorfind(y(a1+1:n),minimo,'r'); 
ind_minimo = a1 + ind_min_tmp; 
a2_y = max(y(ind_minimo+1:n)); 
a2_tmp = vectorfind(y(ind_minimo:n),a2_y,'r'); 
a2 = ind_minimo + a2_tmp; 
ts = 0.1; // Sampling time 
To = (a2 - a1)*ts; 
qsi = 1 / (sqrt(1+((2*%pi)/(log(a2/a1)))^2)); 
wn = 2*%pi / To*sqrt(1-(qsi)^2); 
Kp = media_y(n) / 2.5; // Step u = 2.5; 
// Estimated model 
s = poly(0,'s'); G = Kp*(wn^2) / (s^2 + 2*qsi*wn*s + wn^2);

 
Fig. 9. Scicos for the open-loop damped pendulum dynamic. 
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Fig. 10. Open-loop step response of the real process and of 
the second-order linear model. 

4.3.2 Damped Pendulum with PID-IMC Control 

With the estimated parameters for the second-order linear 
model of the damped pendulum, it is possible to design a 
linear controller to stabilize the plant in different operational 
points. The tuning parameter τMF regulates the settling time 
and the control performance of the closed-loop system. The 
synthesis of the digital controller is based on PID-IMC tuning 
of Morari and Zafirou (1989). Table 6 shows the tuning 
formula for the PID controller with a process with second-
order model and IMC design.  

Table 6.  IMC tuning for the PID. 
Plant Model PID Tuning 

p
2 2

K
τ s +2ζτs+1

 c
p MF

2ζτK =
K (τ )

 iT =2ζτ  d
τT =

2ζ
 

The PID for the real-time control system structure for the 
damped pendulum is shown in Fig. 11. By using the 
estimated model obtained from Table 5, the tuning 
parameters of the PID-IMC are Ts = 0.1 s, τMF = 1.5 s and, 
for (14), num(z) = 0.93z2 - 1.63z + 0.78 and den(z) = z2 - z. 
On Fig. 12 the demonstrative results for setpoint changes of 
the experiment are shown. 

 
Fig. 11. Scicos scheme for real-time PID control. 

These examples described in this section show the possibility 
of using ScicosLab/Scicos for control educational purposes. 

5. CONCLUSIONS 

Practical and numerical control systems are of great 
importance in many industrial environments and offer an 
opportunity to teach important concepts of process control 
engineering education. ScicosLab grants no cost with high 
quality and open source software that can be used on courses 
of control theory as an alternative to Matlab. This paper has 
shown the modeling,  design,  analysis  and  digital  PID-IMC  

 
Fig. 12. Damped pendulum response with PID controller. 

implementation in three applications emphasizing aspects of 
education, tuning efficiency and robustness in the presence of 
dynamic uncertainties, disturbances and setpoint changes, 
entirely done using FOSS. Programming procedures with 
ScicosLab to perform PID-IMC control simulation studies 
can help educators to exchange some lab experiences to 
illustrate control ideas in the academia. 
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