
Teaching PID Tuning with IMC Design for Dynamic Systems using ScicosLab

Aline A. Franca*, Antonio S. Silveira*, Antonio A. R. Coelho*, Francisco J. Gomes**, Carlos B. Meza***

* Federal University of Santa Catarina, Department o f Automation and Systems, 88040900,
Florianópolis, SC, Brazil (e-mail: aline@das.ufsc.br, toninho@das.ufsc.br, aarc@das.ufsc.br)

** Federal University of Juiz de Fora, Faculty of Engineering, 36036-330, Juiz de Fora, MG, Brazil,
(e-mail: chico.gomes@ufjf.edu.br)

*** Costa Rica Institute of Technology, Electronics Engineering Department, Cartago, Costa Rica,
(e-mail: cmeza@ietec.org)

Abstract: In industrial processes a control loop problem is how to choose a suitable set of PID
parameters because of their influence on the system asymptotic stability. This paper aims to show the
advantages of using Free Open Source Software in control education. A PID control algorithm based on
Internal Model Control design for linear plants, in the discrete-time domain, is derived. Some examples
for simulating typical control systems and a real-time physical plant are given to explore not only the
controller tuning, closed-loop dynamics, robustness in the presence of practical constraints, time-varying
parameters and disturbances, but also the strategy by using ScicosLab as a suitable free software tool to
be used for learning in process control and to integrate with the data acquisition board MCC 1208LS.
Keywords: Control education, teaching, software tools, PID control, laboratory, control system analysis.

1. INTRODUCTION

In process control education, computer simulations of
dynamic systems considerably help the students to
understand and to apply theoretical concepts taught in the
classroom. Effectively, teaching the basic controller design
procedures (modeling, analysis, controller synthesis,
implementation) can not be done only through theoretical
lectures with little or no practical essays (Grzegorz et al.,
2008; Meza et al., 2009).

Extensive use of numerical simulation examples, case studies
and practical experiments using computer-based tools have
been implemented at an elective course, Introduction for
Identification and Adaptive Control, of the Department of
Automation and Systems (DAS) at the Federal University of
Santa Catarina. The course encompasses one semester
spanning 18 weeks, each one of 3 hours and lectures ranging
from: i) classical and advanced modeling, ii) control system
design including pole placement, PID, IMC and GMV, iii)
auto-tuning and self-tuning techniques for modeling and
digital control, iv) numerical and real-time control
experiments using ScicosLab, a Free Open Source Software.

Free Open Source Software (FOSS) for control systems has
achieved a sufficient maturity such that it can be considered
as an alternative to proprietary software to be used in
universities both in educational and research environments.
ScicosLab is a freely distributed tool that is based on Scilab
but with a more stable and powerful version of Scicos
(ScicosLab, 2010). Unlike ScicosLab, similar commercial
software for use in control simulation environments, such as
Matlab and LabView, run into cost issues in universities and
industries (Bucher and Balemi, 2005; Coelho, 2010). In

addition, the cost of a commercial software package for
analysis and implementation of control systems is out of the
reach in Latin American universities.

This paper discusses, besides the combination of the Internal
Model Control (IMC) design, aspects to tune a digital PID,
the numerical implementation of two nonlinear processes and
a real-time system essay through the free software ScicosLab
as an attempt to use it in control education.

Many methodologies to adjust the gains and to increase PID
control performance have been developed in the process
control literature. The increasing number of case studies and
publications related to PID controller and its hybridization
with advanced methods have been reported showing the
importance of this type of controller to the industry (Tan and
Li, 2001; Åström and Hägglund, 2006; Li et al., 2009).

2. LECTURE OF THE DIGITAL IMC DESIGN

The main idea of IMC is to connect the plant model with the
real plant in a parallel form and the controller approaches the
model of the inverse plant dynamic. For SISO control
systems, IMC uses the inverse of the minimum phase part of
the model and adds a low-pass filter to guarantee not only the
physical implementation of the control but also the stability
and robustness (to modeling errors, ensuring adequate closed-
loop behavior for setpoint tracking and disturbance rejection)
(Morari and Zafiriou, 1989; Li et al, 2009).

Fig. 1. Structure of the IMC controller.

Preprints of the 18th IFAC World Congress
Milano (Italy) August 28 - September 2, 2011

Copyright by the
International Federation of Automatic Control (IFAC)

8515

Assuming that the closed-loop system is stable, the following
relationship can be obtained:

c p c m
r

c p m c p m

G (z)G (z) {1-G (z)G (z)}
y(t)= y (t)+ v(t)

1+G (z){G (z)-G (z)} 1+G (z){G (z)-G (z)}
 (1)

On the assumption of perfect modeling,

p mG (z)=G (z) , and

mG (z) is a minimum phase model, then
m

-1
cG (z)=G (z) . As can

be seen in Fig. 1, there is no output steady-state error in the
presence of reference changes and load disturbances. IMC
control structure shows better dynamic response and
robustness compared with traditional feedback control.

Next, discrete IMC design and its relation with PID tuning
for SISO systems is derived. First, it is assumed a CAR
(Controlled Auto-Regressive) process model of the form

-1 -k -1A(z)y(t)=z B(z)u(t) (2)

where y(t) is the system output, u(t) is the control signal,
-1 -1 -na

1 naA(z)=1+a z +…+a z and -1 -1 -nb
0 1 nbB(z)=b +b z +…+b z

are related to open-loop poles and zeros, respectively, and
k 1≥ is the discrete time-delay. Factorizing (2) as in

-1
+ - -k

m m m -1

B(z)G (z)=G (z)G (z)=z
A(z)

 (3)

+
mG (z) is the non-minimum phase part including z-k and
-
mG (z) is the minimum phase part of the plant model. Then,

the transfer function of the IMC controller can be obtained as

c -
m

1G (z)=
G (z)

 (4)

Second, a digital low-pass filter F(z) is connected in series
with the IMC controller to ensure a causal structure and
closed-loop stability. Equation (4) can be rewritten as

c -
m

F(z)G (z)=
G (z)

 (5)

Assuming that Gp(z)=Gm(z), then equation (1) becomes

p c r c py(t)=G (z)G (z)y (t)+{1-G (z)G (z)}v(t) (6)

+ +
m r my(t)=F(z)G (z)y (t)+{1-F(z)G (z)}v(t) (7)

It can be observed from (7) that IMC provides time-delay
compensation, disturbance rejection and the filter imposes the
shape of the reference tracking (without offset).

2.1 PID Controller based on IMC Tuning

The IMC system diagram can be represented in an equivalent
form for a classical feedback control. Fig. 1 is rearranged in
these two following diagrams:

Fig. 2. Relationship between IMC and PID.

Comparing the control system diagrams from Fig. 2, the PID
controller assumes the form

c
PID

c m

G (z)
G (z)=

1-G (z)G (z)
 (8)

A first-order digital filter is selected and represented by
-1 -1

f
-1 -1

f

b z (1-α)zF(z)= =
(1-a z) (1-αz)

 (9)

where f sa =α=exp(-T /λ) , f fb =(1-a)=(1-α) and λ is the time
constant of the filter that is adjusted on-line by the user to
shape the speed of the closed-loop response. As the plant
model, it is adopted a discrete second-order model

1 2 0 1y(t)+a y(t-1)+a y(t-2)=b u(t-k-1)+b u(t-k-2) (10)

According to the IMC design procedure, the PID controller
transfer function is given by

- -1
c m

PID -1 +
c m m

G (z) {G (z)}
G (z)= =

1-G (z)G (z) F (z)-G (z)
 (11)

-1 -2
f 1 2

PID -1 -1 -k-1
0 1 f f

b (1+a z +a z)
G (z)=

(b +b z) (1-a z -b z)
 (12)

To obtain the PID tuning, the ideal PID controller is
considered (Bobál et al., 2005; Åström and Hägglund, 2006)

c d
i

1 de(t)u(t)=K e(t)+ e(t)dt+T
T dt

⎧ ⎫
⎨ ⎬
⎩ ⎭

∫ (13)

The discrete equation of the PID controller is
-1 -2

0 1 2
PID -1

q +q z +q zu(t)G (z)= =
e(t) (1-z)

⎡ ⎤
⎢ ⎥
⎣ ⎦

 (14)

s d
0 c

i s

T T
q =K (1+ +)

T T
 ; d

1 c
s

T
q =-K (1+2)

T
 ; d

2 c
s

T
q =K

T
 (15)

In order to guarantee the PID equation mask, the following
simplifications are implemented:

-1
0 1 0 1b +b z b +b≈ (16)

-1 -k-1 -1 -1
f f f

-k -1
f z=1 f

1-a z -(1-a)z =(1-z){[1+(1-a)z +...+

(1-a)z] } (1-z){1+k(1-a)}≈
 (17)

that are introduced to ensure the controller gain and to
remove the undesirable poles. The transfer function of the
PID controller is obtained from (8) as

-1 -2
f 1 2

PID -1
0 1 f

b (1+a z +a z)
G (z)=

(b +b) {1+k(1-a)}(1-z)
 (18)

Equations (14) and (18) are related to

f

0 1 f

b
K=

(b +b){1+k(1-a)}
 (19)

s d
c

i s

T T
K=K (1+ +)

T T
 ; d

1 c
s

T
Ka =-K (1+2)

T
 ; d

2 c
s

T
Ka =K

T
 (20)

Preprints of the 18th IFAC World Congress
Milano (Italy) August 28 - September 2, 2011

8516

and the equations for the PID controller tuning take the form

c 1 2K =-K(a +2a) ; 1 2 s
i

1 2

-(a +2a)T
T =

(1+a +a)
 ; 2 s

d
1 2

-a T
T =

(a +2a)
 (21)

2.2 Tasks for the PID-IMC Tuning Lab

It is asked to the students to realize the following tasks
related to IMC control design: (i) calibrate the closed-loop
dynamic of (9), in order to understand how it affects the
controlled plant behavior emphasizing industry conservatism
needs; ii) set α for the PID tuning using (21), according to
design specifications (rise time, settling time, zero steady-
state error for setpoint tracking and disturbance rejection); iii)
model a transfer function of order greater than two to observe
how (16) and (17) affect the gain of the controller and
remove undesirable poles of the controller transfer function;
iv) simplify the plant model to a discrete first-order equation
and to derive a PI controller for the case of slow stable plants.

3. SCICOSLAB FOR SIMULATIONS

Numerical computing software has a key role on control
system education not only for the purposes of numerical case
studies and real-time applications, but also for the
development of synoptic screen for the industry (operation
and tuning loops). However, the cost of a commercial
software for computer aided control system design for
analysis and implementation of control systems is out of the
reach for many universities in Latin America.

ScicosLab is a good software for modeling, simulation,
analysis and design, providing a large set of functions for
system engineering and scientific applications. It offers
almost all the functionalities provided by Matlab/Simulink.
ScicosLab has a large number of toolboxes that include
graphics functions, numerical integration, linear algebra,
optimization, among others. Developed and maintained by
the Institut National de Recherche en Informatique et en
Automatique, INRIA, through the Project METALAU
(Method, algorithmes et logiciels pour l'automatique) and
Ecole Nationale des Ponts et des Chaussées, ENPC, it can be
freely downloaded from the internet (Coelho, 2010).

Some features of ScicosLab are: high-level programming
language, dedicated editor, hundreds of mathematical
functions, ability to add programs from other languages (C,
Fortran), various toolboxes (linear algebra, polynomial,
statistics, classical control, identification, among others). The
syntax is similar to that of Matlab and the package includes a
simulator called Scicos as an alternative to Simulink.

ScicosLab is being developed since 1990, is compatible with
Microsoft Windows and Linux operational systems and this
work is aimed at the Windows version. The Windows version
of ScicosLab lacks drivers interfacing Data Acquisition
(DAQ) devices because most of the effort in this area is
headed towards the Linux version with Real-Time
Application Interface, or RTAI (Meza et al., 2009). Proper
modifications on Linux with RTAI grant hard real-time
DAQ. This has not been accomplished for the Windows
version yet and only a few number of DAQ devices are

supported in soft real-time mode. A parallel contribution of
this paper is to inform the development of a new driver for
the USB-1208LS DAQ (Measurement and Computing) to
work with Windows and ScicosLab, which can be found at
www.das.ufsc.br/~aarc/FOSS-ADCON/USB1208LS.rar.

4. CONTROL SYSTEM ANALYSIS WITH SCICOSLAB

The following control activities are asked to the students in
order to learn the ScicosLab language and gain background
knowledge in tasks of modeling, simulation, PID-IMC design
and implementation of real-time control applications.

4.1 PID-IMC Design for a Level Plant

The first numerical simulation is a nonlinear coupled liquid-
tank system as shown in Fig. 3 (Tan and Li, 2001). Level
control systems are common in the industry (chemical,
petrochemical, nuclear and cellulose). The equations that
characterize a second-order model of the level plant are

.

11 1 1 1 2A h (t)=u(t)-a c 2g{h (t)-h (t)}
.

22 1 1 1 2 2 2 2 0A h (t)=a c 2g{h (t)-h (t)}-a c 2g{h (t)-h }+d(t)

where h1(t) is an intermediate variable representing the liquid
level in tank 1, h0 = 3 cm is the liquid level of the reservoir,
A1 = A2 = 100 cm2 are the cross-section area of both tanks, a1
= a2 = 0.396 cm2 are the orifice areas, c1 = 0.53 and c2 =
0.63 are the discharge constants (of tank 1 and tank 2,
respectively) and g = 981cm/s2 is the gravitational constant.

The control objectives and operational constraints are: i) the
input u(t) is used to adjust the liquid level in tank 2, h2(t), at a
desired level, ranging from zero to 33.33 cm3/s, ii) the input
d(t) in tank 2 is used as a load disturbance of magnitude 8.33
cm3/s, added at t = 1200 s, iii) the level in tank 2 must be
regulated in two values from the nominal operation point, iv)
an overdamped behavior for h2(t) with low control variance,
disturbance rejection and zero steady-state error are the
closed-loop specifications to be achieved by the PID
controller tuned with the IMC technique.

Fig. 3. A nonlinear coupled level process.

The digital PID-IMC controller is implemented according to
Table 1 and simulation results are shown in Fig. 4.

Table 1. Parameterization of the level control system.

Discrete Linear Model

21

21

z461.0z437.11

z0023.0z0053.0
−−

−−

+−

+

Closed-Loop Dynamic λ = 25 s
Sampling Time 2 s

Numerical experiments illustrate that the responses meet the
performance specifications and the ultimate gains of the PID
controller are given by Kc = 5.21, Ti = 42.92, Td = 1.79. The

Preprints of the 18th IFAC World Congress
Milano (Italy) August 28 - September 2, 2011

8517

PID-IMC design is the closed-loop pole being associated
with the behavior of a first-order system and its adaptability
to various processes. The students can perform experiments
with different first-order tuning parameters.

Fig. 4. Dynamics of the level process with PID-IMC.

The corresponding code in ScicosLab of the PID controller
with the IMC tuning for the level plant is shown in Table 2.

Table 2. ScicosLab code for the level plant.
clear; xdel(0:1); clc;
// ----- Constants of the level plant
ts = 2; d = 8; niter = 800;
A1 = 100; a1 = 0.396; c1 = 0.53; A2 = 100; a2 = 0.396; c2 = 0.63;
// ----- Initial conditions
h1(1:d) = 3; h2(1:d) = 3; h0 = 3; g = 981; umin = 0; umax = 33.33;
pert(1:600) = 0; pert(601:niter) = 8.33; u(1:d) = 12; erro(1:d) = 0;
// ----- Design parameters
lambda = 25; alfa = exp(-ts/lambda);
a1e = -1.437; a2e = 0.461; b0e = 0.0053; b1e = 0.0023;delay = 0;
// ----- Reference signal
yr(1:400) = 8; yr(401:niter) = 5;
// ----- Simulation
for k = d:niter
// ------- Output
 h1(k) = h1(k-1)+(ts/A1)*(u(k-1)-a1*c1*sqrt(2*g*(h1(k-1)-h2(k-1))));
 h2(k) = h2(k-1)+(ts/A2)*(pert(k-1)+a1*c1*sqrt(2*g*(h1(k-1)-h2(k-1)))-...
 a2*c2*sqrt(2*g*(h2(k-1)-h0)));
 erro(k) = yr(k) - h2(k);
 kaux = (1 - alfa)/((b0e + b1e)*(1 + delay*(1 - alfa)));
 kc = -kaux*(a1e + 2*a2e);
 ti = -((a1e + 2*a2e)*ts)/(1 + a1e + a2e);
 td = -(a2e*ts)/(a1e + 2*a2e);
 u(k) = u(k-1)+(kc*(1+ts/ti+td/ts))*erro(k)-(kc*(1+2*td/ts))*erro(k-1)+...
 (kc*(td/ts))*erro(k-2);
 if u(k) <= umin; u(k) = umin; elseif u(k) >= umax; u(k) = umax; end
end
// ----- Results
t = 0:ts:niter*ts-ts;t = t';
subplot(2,1,1),plot(t,h2,t,yr),ylabel('Level-Tank 2 (cm)'),xlabel('Time (s)');
subplot(2,1,2),plot(t,u),ylabel('Input Flow (cm3/s)'),xlabel('Time (s)');

4.2 PID-IMC Design for a DC Motor Plant

The second numerical simulation considers the DC motor
model for velocity control activities, as shown in Fig. 5 (this
plant shows a dynamic that is significantly faster than the
coupled tank system).

The DC motor is an electromechanical transducer that
converts DC voltage applied at its terminals in mechanical
movement of its axis. Typical applications of
servomechanisms are: machine tools, industrial robots,
positioning systems and conveyors. To control the velocity or

position it is necessary to control the voltage applied to the
armature terminal. This simplicity makes the DC motor an
important component for control systems applications in
industrial and domestic environments. The variables of
interest are: R is the armature resistance, L is the armature
inductance, I is the armature current, v(t) is the armature
voltage (input), ea(t) is the back emf, w(t) is the angular
velocity (output), T is the torque developed by the motor, J is
the equivalent moment of inertia of the motor and load
referred to the motor shaft, and B is the equivalent viscous-
friction coefficient of the motor and load referred to the
motor shaft.

Fig. 5. DC motor process.

The differential equation fitting the open-loop behavior of the
DC motor process is given by (Tan and Li, 2001)

2
T

2

Kd w(t) JR+BL dw(t) BR+ + w(t)= v(t)
JL dt JL JLdt

⎛ ⎞⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠

where v(t) ∈ [-5 V , 5 V], KT = 13.5 Nm/A, R = 9.2 Ω, L =
0.25 H and J = 0.001 kgm2. To assess performance aspects,
robustness and control activity, a parametric variation in the
friction coefficient is simulated. Initially with B = 2.34x10-3
Nms then switches to B = 1.34x10-3 Nms and returns to B =
2.34x10-3 Nms at t = 3 s and t = 8 s, respectively.

The objective of the control loop is to obtain a controller
which provides a closed-loop step response with a minimum
rise time and zero steady-state error. The reference signal is
given by yr(t) = 91(t) - 4.51(t-5) rps, where 1(t) is the unit
step signal, and the experiment takes a total of 100 samples
for a sampling time of 10 ms.

The digital PID-IMC is implemented according to Table 3
and simulation results are shown in Fig. 6.

The results of the numerical experiments illustrate that the
dynamic responses are appropriate from the viewpoints of
settling time and control energy, and meeting the
performance specifications for reference and parametric
changes. PID-IMC gains are given by Kc = 0.0046, Ti =
0.4529 and Td = 0.0213.

4.3 PID-IMC Design for a Damped Pendulum Plant

In order to show the ScicosLab platform in a real-time
control application it is employed a damped pendulum, Fig.
7, for modeling and digital control essays. This practical
process belongs to the positional control set of plants
developed at DAS/Federal University of Santa Catarina.

Practical systems are of vital importance to control
engineering students since control systems are real systems.

Preprints of the 18th IFAC World Congress
Milano (Italy) August 28 - September 2, 2011

8518

Table 3. Parameterization of the DC motor system.

Discrete Linear Model
 -1 -2

-1 -2
2.378z +2.087z

1-1.669z +0.676z

Closed-Loop Dynamic λ = 0.15 s
Sampling Time 0.01 s

Fig. 6. Dynamics of the DC motor plant with PID-IMC.

Fig. 7. The damped pendulum apparatus.

4.3.1 Damped Pendulum Identification

For oscillatory plants the following continuous model is
utilized where y(t) is the output, u(t) is the input, Kp is the
static gain, ζ is the damping factor and wn is the natural
frequency.

2
2 2

n n p n2

d y(t) dy(t)+2ζw +w y(t)=K w u(t)
dtdt

 (22)

The first part of the estimation task consists of the realization
of an open-loop essay, which means to obtain the step
response to measure, from Fig. 8, the period To of the
oscillation and the first two peaks a1 and a2.

Fig. 8. Estimation of a second-order oscillatory model.

Once these values are available, the estimated model
parameters are determined by

(){ }2
a2ζ=1 1+ 2π ln a1 ; 2

nω =2π To 1- ζ

To implement the linear modeling task a step input of 3 volts
is applied to the plant and the measurements of the angular
position are saved at a file called pam.dat. The fscanMat
function of the ScicosLab software is used to read an ASCII
text matrix from a file as in the code shown in Table 4.

Table 4. ScicosLab code for real-time data acquisition.
// Data Acquisition Task
clear; xdel; clc;
// Initialization
exec('loader.sce'); // Load USB-1208LS driver
nit = 100; ts = 0.1; u(1:nit) = 3; t = (0:ts:nit*ts-ts)';
realtimeinit(ts); // Sampling time
for k = 1:nit, // Open-loop
 y(k) = receive_data();
 send_data(u(k));
 realtime(k); // Sampling time hold
end
send_data(0); dados = [t y u];
savematfile('pam.dat','dados','-ascii'); // Save data
// End of real-time simulation

During the data acquisition activity the students learn real-
time programming with ScicosLab. Once measures are
available for the open-loop essay of the damped pendulum,
then the second-order classical estimator of Fig. 8 is
implemented based on Table 5.

On the second part of the identification, the students are
asked to implement a Scicos block diagram (Fig. 9) to
validate the second-order estimated model (num(s) = 8.51,
den(s) = s2 + 0.87s + 9.68). In this way, students are able to
verify that the dynamic response to a step of the estimated
model is similar to the measurements of the damped
pendulum applied to the second-order estimator. The students
also learn that an estimated model never exactly matches
reality (Fig. 10).

Table 5. ScicosLab code for modeling using real data.
clear; xdel; clc;
dados = fscanfMat('pam.dat'); // Load measurements
t = dados(:,1); // Time
y = dados(:,2); // Output
u = dados(:,3); // Input
n = length(y); // Number of samples
media_y = mean(y(n-0.1*n:n)); media_y = media_y*ones(n,1);
// Modelling
a1_y = max(y); a1 = vectorfind(y,a1_y,'r');
minimo = min(y(a1+1:n));
ind_min_tmp = vectorfind(y(a1+1:n),minimo,'r');
ind_minimo = a1 + ind_min_tmp;
a2_y = max(y(ind_minimo+1:n));
a2_tmp = vectorfind(y(ind_minimo:n),a2_y,'r');
a2 = ind_minimo + a2_tmp;
ts = 0.1; // Sampling time
To = (a2 - a1)*ts;
qsi = 1 / (sqrt(1+((2*%pi)/(log(a2/a1)))^2));
wn = 2*%pi / To*sqrt(1-(qsi)^2);
Kp = media_y(n) / 2.5; // Step u = 2.5;
// Estimated model
s = poly(0,'s'); G = Kp*(wn^2) / (s^2 + 2*qsi*wn*s + wn^2);

Fig. 9. Scicos for the open-loop damped pendulum dynamic.

Preprints of the 18th IFAC World Congress
Milano (Italy) August 28 - September 2, 2011

8519

Fig. 10. Open-loop step response of the real process and of
the second-order linear model.

4.3.2 Damped Pendulum with PID-IMC Control

With the estimated parameters for the second-order linear
model of the damped pendulum, it is possible to design a
linear controller to stabilize the plant in different operational
points. The tuning parameter τMF regulates the settling time
and the control performance of the closed-loop system. The
synthesis of the digital controller is based on PID-IMC tuning
of Morari and Zafirou (1989). Table 6 shows the tuning
formula for the PID controller with a process with second-
order model and IMC design.

Table 6. IMC tuning for the PID.
Plant Model PID Tuning

p
2 2

K
τ s +2ζτs+1

 c
p MF

2ζτK =
K (τ)

 iT =2ζτ d
τT =

2ζ

The PID for the real-time control system structure for the
damped pendulum is shown in Fig. 11. By using the
estimated model obtained from Table 5, the tuning
parameters of the PID-IMC are Ts = 0.1 s, τMF = 1.5 s and,
for (14), num(z) = 0.93z2 - 1.63z + 0.78 and den(z) = z2 - z.
On Fig. 12 the demonstrative results for setpoint changes of
the experiment are shown.

Fig. 11. Scicos scheme for real-time PID control.

These examples described in this section show the possibility
of using ScicosLab/Scicos for control educational purposes.

5. CONCLUSIONS

Practical and numerical control systems are of great
importance in many industrial environments and offer an
opportunity to teach important concepts of process control
engineering education. ScicosLab grants no cost with high
quality and open source software that can be used on courses
of control theory as an alternative to Matlab. This paper has
shown the modeling, design, analysis and digital PID-IMC

Fig. 12. Damped pendulum response with PID controller.

implementation in three applications emphasizing aspects of
education, tuning efficiency and robustness in the presence of
dynamic uncertainties, disturbances and setpoint changes,
entirely done using FOSS. Programming procedures with
ScicosLab to perform PID-IMC control simulation studies
can help educators to exchange some lab experiences to
illustrate control ideas in the academia.

ACKNOWLEDGEMENTS

We would like to thank CNPq under grant 478828/2009-8.

REFERENCES

Åström, K.J. and Hägglund, T. (2006). Advanced PID
Control, ISA.

Bobál, V., Böhm, J., Fessl, J. and Machácek, J. (2005).
Digital Self-Tuning Controllers, Springer.

Bucher, R. and Balemi, S. (2005). Scilab/Scicos and Linux
RTAI - A Unified Approach, IEEE Conf. on Control
Applications, Toronto, Canada, pp. 1121-1126.

Coelho, A. A. R. (2010). Teaching Dynamic System
Identification with ScicosLab, 2st HeDiSC Workshop,
San Carlos, Costa Rica, Available at:
<http://hedisc.ietec.org/>.

Grzegorz, S., Tomasz, Z. and Andrzej, B. (2008). Rapid
Control Prototyping with Scilab/Scicos/RTAI for PC-
based and ARM-based Platforms, Int. Workshop on Real
Time Software, Wisla, Poland, pp. 739-744.

Li, D., Zeng, F., Jin, Q. and Pan, L. (2009). Applications of
an IMC based PID Controller Tuning Strategy in
Atmospheric and Vacuum Distillation Units, Nonlinear
Analysis: Real World App., vol. 10, pp. 2729-2739.

Meza, B.C., Romero, J.A.A., Bucher, R. and Balemi, S.
(2009). Free Open Source Software in Control
Engineering Education: A Case Study in the Analysis
and Control Design of a Rotatory Inverted Pendulum,
14th IEEE Int. Conf. on Emerging Technologies and
Automation Education, Palma de Mallorca, Spain.

Morari, M. and Zafiriou, E. (1989). Robust Process Control,
Prentice Hall.

ScicosLab Web Site, [Online] Available at:
<www.scicoslab.org>.

Tan, C.K. and Li, Y. (2001). Performance-based Control
System Design Automation via Evolutionary
Computing, Eng. App. of Artificial Intelligence, vol. 14,
pp. 473-486.

Preprints of the 18th IFAC World Congress
Milano (Italy) August 28 - September 2, 2011

8520

