Overview of TRIZ

VIEWING INSTRUCTIONS:

View

Page Display

Check only "ENABLE SCROLLING"

Uncheck "Show Gaps Between Pages"

[&]quot;Innovation is not the product of logical thought, although the result is tied to logical structure." - Albert Einstein

- Objective
- Background
- Levels of inventions

Agenda

- Inventive problem
- Patterns of invention

- Inventive problem
- Patterns of invention
- Laws in the theory of TRIZ
- TRIZ Tools
- Interaction with Six Sigma
- Appendix

Objective

Provide an overview to

- TRIZ
- Enrich innovation skills
- Solving problems encountered during the innovation process

- Solving problems encountered during the innovation process
- (I)TRIZ approach & methodology

Background

TRIZ, (pronounced as treez) - "Theoria Resheneyva Isobretatelskehuh Zadach," or "Theory of Solving Problems Inventively." is a Russian acronym for the theory of inventive problem solving

Problem solving method based on technology rather than

Problem solving method based on technology rather than psychology

- Invented by Genrich Altshuller, Russian inventor, in 1946
 - Worked in the patent department of the Soviet navy.
 - Primary responsibility was to assist inventors in filing patents
- Ideation TRIZ (ITRIZ)
- Successfully tested over the past 60 years

Background

The Added Value of TRIZ

Traditional Innovation Process

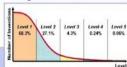
Traditional Innovation Process Formulate Develop Concepts Problem

Background

 Screened approximately 200,000 patent abstracts, fewer than 40,000 of these patents represented inventive solutions and four key findings resulted out of that.

Levels of Invention

- Levels of Invention
- Inventive problem defined
- Patterns of invention
- Patterns of Evolution



Levels of Invention

- I-TRIZ, inventions are categorized into five levels
 - Level 1 Routine design problems solved by methods well known within the specialty. Usually no invention needed.
 - Level 2 Minor improvements to an existing system using methods known within the industry.

- Level 2 Minor improvements to an existing system using methods known within the industry.
- Level 3 Fundamental improvement to an existing system using methods known outside the industry.
- Level 4 A new generation of a system that entails a new principle for performing the system's primary functions. Solutions are found more often in science than technology.
- Level 5 A rare scientific discovery or pioneering invention of an essentially a new system.

 #Level 5 A rare scientific discovery or pioneering invention of an essentially a new system.

Inventive problem

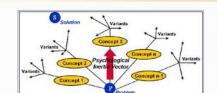
- There are two groups of problems people face:
 - Those with generally known solutions, it can be usually solved by information found in books, technical journals, or with subject matter experts
 - b) Those with unknown solutions, also called as inventive problem
- An inventive problem is a problem that:

Those with unknown solutions, also called as inventive problem

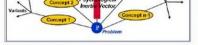
An inventive problem is a problem that:

- Suggests no known means for solution
- Especially prone to psychological inertia
- Involves one or more contradictions.

	Known Problem	New Problem
Existing Knorneage	Example: All tasks with generally known solutions.	We are dealing with an inventive problem
Existing Knowledge	Existing knowledge applied to known problems.	Existing knowledge does not provide satisfactory solution.
New Knowledge	problems. Example: New plastics provide strong, lightweight products.	problems. Example: Various uses for lasers (surgery, etc).
	New knowledge applied to known	New knowledge applied to new



Inventive problem


Psychological Inertia

P = problem.

S = solution

o - colution

The table below explains why inventive problems are especially difficult to solve.

Levels	Degree of inventiveness	% of solutions	Source of knowledge	Approximate # of trials
1	Apparent solution	68.3%	Personal knowledge	10
2	Minor improvement	27.1%	Knowledge within the company	100
3	Major improvement	4.3%	Knowledge within the industry	1000
4	New paradigm	0.24%	Knowledge outside the industry	100,000
5	Discovery	0.06%	All that is knowable	1,000,000

Inventive problem

Contradictions

The situation where an attempt to improve one feature of a system causes another feature to degrade is called a contradiction.

Examples When t

When the strength of a mechanical object is increased, its weight increases as

Examples

- When the strength of a mechanical object is increased, its weight increases as well.
- Increased acceleration in an automobile also increases fuel consumption.

How to resolve contradiction?

- Compromise
- Trade-off

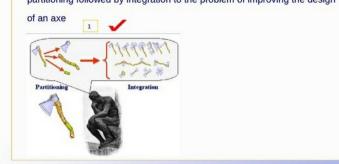
Patterns of invention

Analogical Thinking
Directions

Analogical Thinking
It is a form of inductive logic that emerges early in life and is gradually refine during the years between infancy and adulthood

It is a form of inductive logic that emerges early in life and is gradually refine during the years between infancy and adulthood

Using I-TRIZ method


- Step 1: Read the operator's recommendation and accompanying illustration relate it with the system you are working with
- Step 2 : Mentally map the relationship between the system and recommendation unless you get the required image
- Step 3: Write down any and all ideas (crazy & valuable) that result

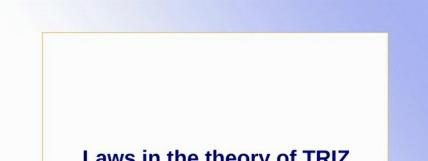
Patterns of invention

Analogical Thinking

Example: Figure 1 shown describes the process of applying the operator partitioning followed by integration to the problem of improving the design of an axe

Patterns of invention

Directions


Patterns of invention (operators) are grouped into Directions for changing the system

Example of Direction - Inversion: "Think the opposite." Invert

Example of Direction - Inversion: "Think the opposite." Invert

something in the system by applying the operators listed below.

- Make movable parts immobile
- Apply an opposite action
- Replace a sequence of operations
- Inside-out or upside-down
- Replace external action with internal
- Instead of heating use cooling

Laws in theory of TRIZ

Some of these laws briefly described:

- Law of Ideality. Systems evolve toward increasing Ideality.
 - An Ideal system being a system that requires no energy to operate, costs nothing to produce and occupies no space. It performs function without form.

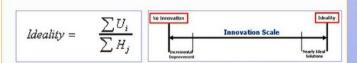
costs nothing to produce and occupies no space. It performs *function* without *form*.

Law of Transitioning to Microlevel using Energy Fields

 Systems will become smaller, replacing mechanical systems with alternative energy fields performing the required function.

Law of Dynamization

In the course of its evolution, systems develop from rigid structures into a flexible ones.

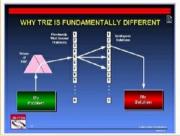


Law of increasing Ideality

Law of increasing Ideality

- Technical systems evolve toward increasing degrees of ideality, where ideality is defined as the quotient of the sum of the system's useful effects, Ui, divided by the sum of its harmful effects, Hi
- Useful effects (Ui) valuable results of the system's functioning,
- Harmful effects (Hi) undesired inputs such as cost, footprint, energy

- Useful effects (*Ui*) valuable results of the system's functioning,
- Harmful effects (Hj) undesired inputs such as cost, footprint, energy consumed, pollution, danger, etc
- The ideal state is one where there are only benefits and no harmful effects.



TRIZ approach to problem solving

- Step by step process
 - Step 1: Identify my problem
 - Step 2: Formulate the problem: the Prism of TRIZ
 - Step 3: Search for previously well-solved problem
 - Step 4: Look for Analogous Solutions and adapt to my solution

- Step 3: Search for previously well-solved problem
- Step 4: Look for Analogous Solutions and adapt to my solution

TRIZ tools

Directed Evolution

Systematic procedure for strategically evolving future generations of technological systems

Failure Analysis
Systematic procedure for identifying the root causes of

AFD TRIZ IPS

Systematic procedure for

Failure Analysis
Systematic procedure for identifying the root causes of a failure or other undesired phenomenon occurring in a system, and for correcting it in a timely manner
Failure Prediction

Failure Prediction
Systematic procedure for identifying beforehand and then preventing all dangerous or harmful events that might possibly be associated with the system

Control of Intellectual Property

Systematic procedure for increasing IP value and protection from infringement and circumvention Systematic procedure for surgical removal of tough technological problems. parameters and quality improvement, cost reduction, etc. for current product and/or technology generation

^{*} Inventive Problem solving (IPS), Anticipatory Failure Determination (AFD), Directed Evolution (DE) are trademarks of Ideation International Inc.

TRIZ tools

- ARIZ (Algorithm for Inventive Problem Solving)
 - A systematic procedure for identifying solutions without apparent contradictions
 - Depending on the nature of the problem, anywhere from five to sixty steps may be involved. From an unclear technical problem, the

- Depending on the nature of the problem, anywhere from five to sixty steps may be involved. From an unclear technical problem, the underlying technical problem can be revealed.
- Basic steps include
 - Formulate the problem.

Pormulate ideal solution.

- Transform the problem into a model.
- Analyze the model.
- Resolve physical contradictions.

20

Interaction with Six Sigma

I-TRIZ Is an advanced, productive enhancement to Six Sigma

 Advanced I-TRIZ methods and tools can be used for enhancing Six Sigma methodology (DMAIC and DMADV or DESS) especially when Advanced I-TRIZ methods and tools can be used for enhancing Six Sigma methodology (DMAIC and DMADV or DFSS) especially when Six Sigma methods and tools have proven to be inefficient and/or insufficient.

Integration of I-TRIZ tools with the Six Sigma methodology significantly improves the overall potential of Six Sigma

TRIZ Tools in Six Sigma Process Optimization (MAIC)

Six Sigma	TRIZ Tools
A. Recognize	Functional Analysis, Ideal Final Result
B. Define	Same as A
C. Measure	Measurement methods, instrumentation

B. Define Same as A C. Measure Measurement methods, instrumentation D. Analyze Understand interactions (FA, Su-F) Create new product, process, & service E. Improve concepts. The full Basic TRIZ tool set. F. Control Same as C G. Standardize "Reverse" TRIZ H. Integrate Same as E

TRIZ Tools and DFSS

TRIZ Tool
Technology Forecasting, Guided Evolution, Functional Analysis
Conflict Resolution for planning visits

Voice of Customer	Conflict Resolution for planning visits Ideal Final Result
Concept	All
Design	All
Optimize	Conflict Resolution, Trimming, Problem Solving
Validate/Implement	Same

ITRIZ Implementation

	Automotive	Industry
GM	Navistar	Dana Corporation
Ford	Peugiot	Rockwell Automotive
GM Ford Chrysler	Visteon	Dura Automotive
Valeo	Ecostar	TRW
	Chemical	Industry
Amoco Conoco	DuPont	Henkel (German)
Conoco	Solutia	Rohm and Haas
Cabot	S.C.Johnson	Techcominco
100000	Oil Ind	ustry
Amoco	Armco	British Petroleum
	Medical I	ndustry

Conoco	Solutia	Ronm and Haas			
Cabot	S.C.Johnson	Techcominco			
	Oil Indus	try			
Amoco	Armco	British Petroleum			
	Medical Ind	lustry			
LaRoche	Cardiovascular	Johnson & Johnson			
	Consumer Pr	oducts			
Bissel	Whirpul	Helen of Troy		Aviation Ind	istry
General Mills	Concept Solution	Henkel (US)	Boeing	Pratt & Whitney	McDonnel Douglas
			Allied Signal	Techspace Aero	Rockwell International
			BF Goodrich	NASA	Hughes Aircraft
			Litton	US government	Loral
			E	lectronicy Electrical/So	fiware Industry
			Honeywell	Motorola	Philips Electronics
			Xerox	Solarex	Northern Telecon
			LG Electronics	Rayovac	Rockwell Automation
			GE	Cybertek	National Semiconductor
			United Technology	Concept Solution	Tyco
				Others	
			Parsons	Knuf	Arthur Anderson
			Mercury Marine	Pico	Toeda
			Servend	Unisis	Mayfran
			Aero product	Cardil	Helix

Determinants

- Resistance that comes from
 - The Not Invented Here syndrome
 - Lack of management support
 - Poor presentation of ideas
 - Prejudice and hostility

- Poor presentation of ideas
- Prejudice and hostilityLack of salesmanship from the inventor

Take away

- Identify inventive problem
- Approach to solve inventive problem
 - Interaction with other Quality Frameworks/models
 - Six Sigma
- Where do I implement them Projects, personal life?

- Six Sigma
- Where do I implement them Projects, personal life?
 - Where ever new problem exists

Thank You

FEMA and AFD

Comparative Criteria	Traditional (Failure Mode and Effects Analysis)	Anticipatory Failure Determination
Purpose of the technique	Identify potential failure modes and to rate the severity of their effects Identify Critical and Significant Characteristics Rank order potential design and process deficiencies	Analyze previous failures and be able to understand how to "invent" such failures Identify an exhaustive list of potential failure scenarios as well as any negative, harmful or undesired effects or phenomenor Transform the process of problem analysis from asking why a failure occurred to how.

	Identify Critical and Significant Characteristics Rank order potential design and process deficiencies Help focus on elimination of product and process deficiencies.	failure scenarios as well as any negative, harmful or undesired effects or phenomenon . Transform the process of problem analysis from asking why a failure occurred to how can a failure be produced . To incorporate the full complement of TRIZ operators to develop innovative solutions
Scope of applicability	System design, product design, process design	System design, product design, process design
Analytical tools	Previous FMEAs, subject matter expertise, internal engineering and warranty data, logic of the FMEA process	Same as FMEA plus rigorous problem formulation and inventive analogs utilizing: Inventive Principles, Standard Solutions, incorporation of System and Environmental Resources

FEMA and AFD contd...

Comparative Criteria	Traditional (Failure Mode and Effects Analysis)	Anticipatory Failure Determination
Analytical tools	Previous FMEAs, subject matter expertise, internal engineering and warranty data, logic of the FMEA process	Same as FMEA plus rigorous problem formulation and inventive analogs utilizing: Inventive Principles, Standard Solutions, incorporation of System and Environmental Resources

	logic of the FMEA process	Inventive Principles, Standard Solutions, incorporation of System and Environmental Resources
Process for completion	Generally linear following design intent	Iterative and "inverted" or subversive by probing how failures can be deliberately created.
Thoroughness of the analysis	Fair to good, depending on the rigor of application and the knowledge level of the team/individual	Good to excellent because of the access to the AFD knowledge base, the TRIZ Inventive Principles, Problem Formulation and analysis of all resources

TRIZ Software

Software Name	Purpose
■Improver	Improve existing designs Improve manufacturing process Improve system performance Improve system quality Improve manufacturing cost Improve patent applications

	 Improve manufacturing cost Improve patent applications Improve product features
■Ideator	ARIZ helps you to create abstract models of a system, including the formulation of contradictions and envisioning of the ideal situation. Idealization is a process used to bring your system as close to ideal as possible.
	Innovation Mini-Guide contains approximately 100 technical applications of physical, chemical and geometrical effects.

TRIZ Software

Software Name	Purpose
Eliminator (Appetizer)	The Ideation Appetizer is designed to help you find truly elegant and innovative problem solutions without any drawbacks or trade-offs.
■Innovation	

	urawbacks of trade-oils.	
■Innovation Workbench TM (IWB)	-	

TRIZ Software

Consolidated offerings of ITRIZ

Five Key findings

- Definition of inventive problem
- Levels of invention

 Patterns of invention
- Patterns and lines of
- Exhaustive set of solutions

Eight Knowledge-Based tools

- Pattern/Lines of Evolution
- 40 Innovation principles & contradiction Table
- Contradiction Table
 Separation principles
- 76 Standard solutions
 - Effects

- Patterns and lines of evolution
- Exhaustive set of solutions

Three main premises

- Ideality and resources
- Contradictions
- System Approach

Four Analytical tools

- Ouestionnaire (ISO)
- Problem Formulator
 Algorithm for Inventive
- Problem Solving (IPS)

 Substance Field Analysis
 (Su-Field)

- Separation principles
- 76 Standard solutions Effects
- Selected Innovation
- Examples
 System of operators
 System of Lines
- Four main applications
 - Inventive Problem Solving (IPS)
 - Anticipatory Failure
 Determination (AFD)
 - Directed Evolution (DE)
 - IP Enhancement