Design for Manufacturing

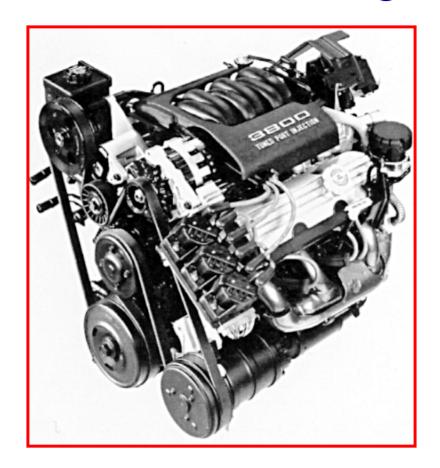
Teaching materials to accompany:

Product Design and Development Chapter 11

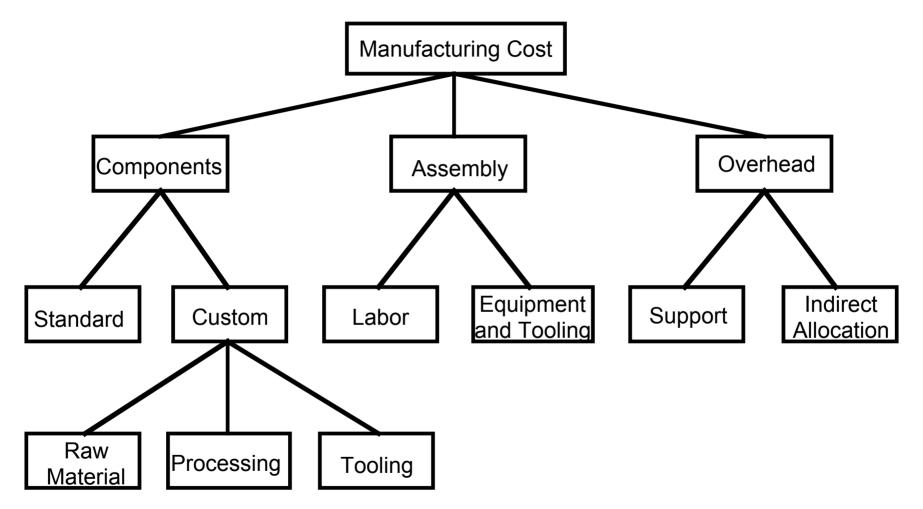
Karl T. Ulrich and Steven D. Eppinger 2nd Edition, Irwin McGraw-Hill, 2000.

Product Design and Development Karl T. Ulrich and Steven D. Eppinger 2nd edition, Irwin McGraw-Hill, 2000.

Chapter Table of Contents


- 1. Introduction
- 2. Development Processes and Organizations
- 3. Product Planning
- 4. Identifying Customer Needs
- 5. Product Specifications
- 6. Concept Generation
- 7. Concept Selection
- 8. Concept Testing
- 9. Product Architecture
- **10. Industrial Design**
- **11. Design for Manufacturing**
- 12. Prototyping
- **13. Product Development Economics**
- 14. Managing Projects

Product Development Process



How can we emphasize manufacturing issues throughout the development process?

Design for Manufacturing Example: GM 3.8-liter V6 Engine

Understanding Manufacturing Costs

Definition

- <u>Design for manufacturing</u> (DFM) is a development practice emphasizing manufacturing issues throughout the product development process.
- Successful DFM results in lower production cost without sacrificing product quality.

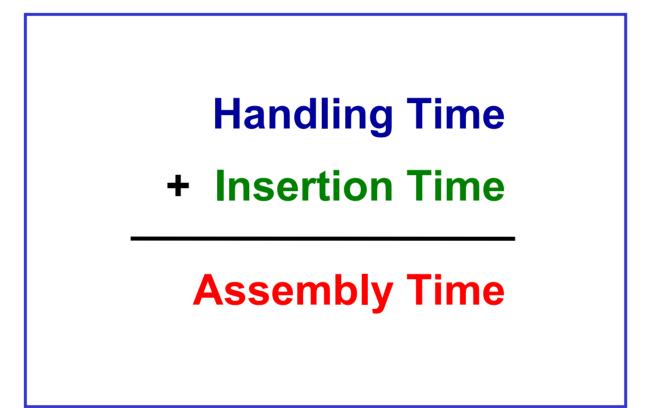
Three Methods to Implement DFM

1. Organization: Cross-Functional Teams

2. Design Rules: Specialized by Firm

3. CAD Tools: Boothroyd-Dewhurst Software

Design for Assembly Rules Example set of DFA guidelines from a computer manufacturer.

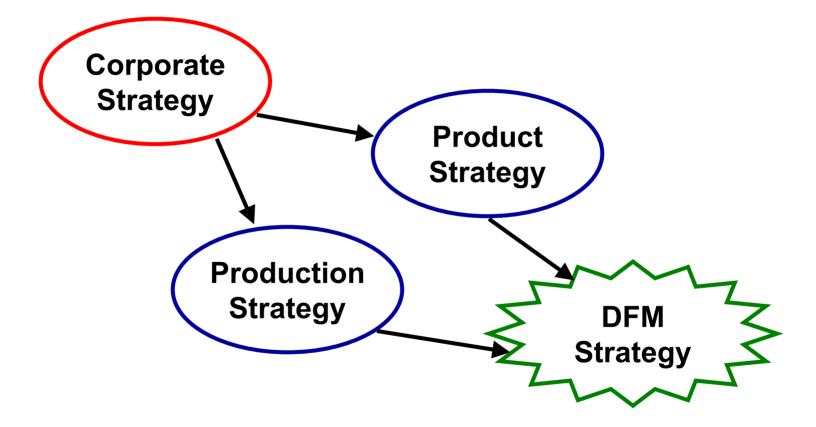

- 1. Minimize parts count.
- 2. Encourage modular assembly.
- **3.** Stack assemblies.
- 4. Eliminate adjustments.
- 5. Eliminate cables.
- 6. Use self-fastening parts.
- 7. Use self-locating parts.
- 8. Eliminate reorientation.
- 9. Facilitate parts handling.
- **10**. Specify standard parts.

Design for Assembly

- Key ideas of DFA:
 - -Minimize parts count
 - -Maximize the ease of handling parts
 - -Maximize the ease of inserting parts
- Benefits of DFA
 - -Lower labor costs
 - -Other indirect benefits
- Popular software developed by Boothroyd and Dewhurst.

-http://www.dfma.com

To Compute Assembly Time


Method for Part Integration

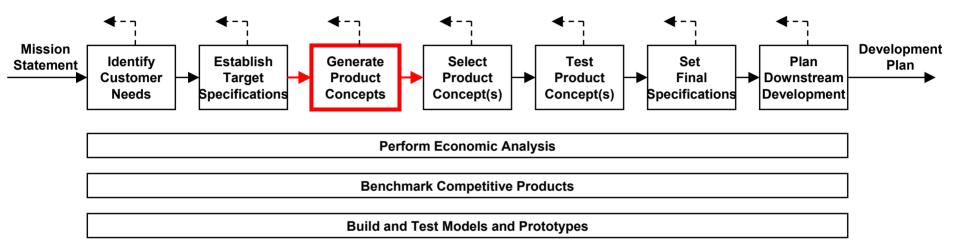
- Ask of each part in a candidate design:
 - 1. Does the part <u>need to move</u> relative to the rest of the device?
 - 2. Does it need to be of a <u>different material</u> because of fundamental physical properties?
 - 3. Does it need to be separated from the rest of the device to allow for assembly, access, or repair?
- If not, combine the part with another part in the device.

Videocassette DFM Exercise

- 2 billion worldwide annual volume
- 7 major producers of 1/2" cassette shells
- JVC licenses the VHS standard
 dimensions, interfaces, light path, etc
- VHS cassette shells cost ~\$0.25 each
- What is a \$0.01 cost reduction worth?

DFM Strategy is Contingent

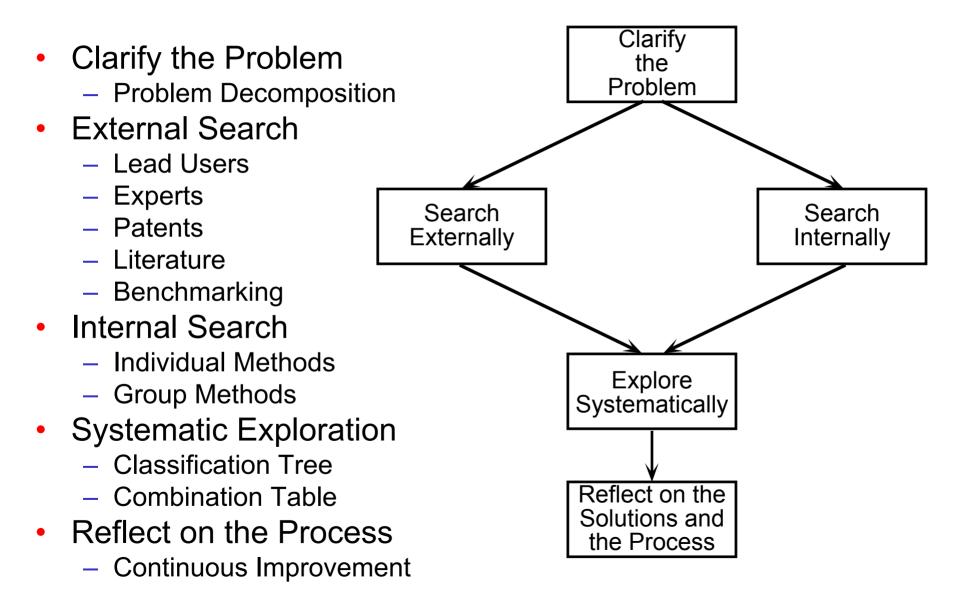
Concept Generation


Teaching materials to accompany:

Product Design and Development Chapter 6 Karl T. Ulrich and Steven D. Eppinger 2nd Edition, Irwin McGraw-Hill, 2000. **Product Design and Development** Karl T. Ulrich and Steven D. Eppinger 2nd edition, Irwin McGraw-Hill, 2000.

Chapter Table of Contents

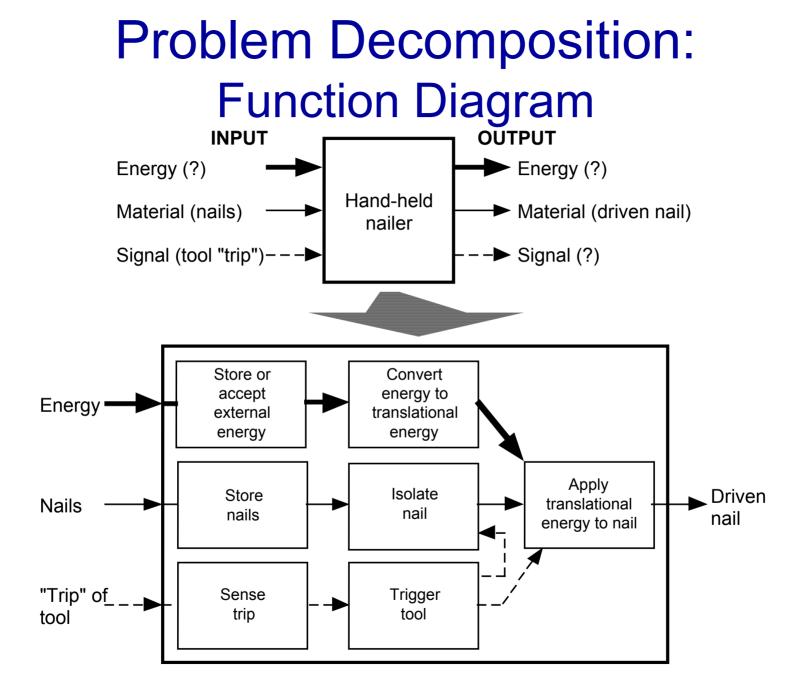
- 1. Introduction
- 2. Development Processes and Organizations
- 3. Product Planning
- 4. Identifying Customer Needs
- 5. Product Specifications
- 6. Concept Generation
- 7. Concept Selection
- 8. Concept Testing
- 9. Product Architecture
- **10. Industrial Design**
- 11. Design for Manufacturing
- 12. Prototyping
- **13. Product Development Economics**
- 14. Managing Projects


Concept Development Process

Concept Generation Example: Power Nailer

Concept Generation Process

Concept Generation Exercise: Vegetable Peelers



Vegetable Peeler Exercise: Voice of the Customer

- "Carrots and potatoes are very different."
- "I cut myself with this one."
- "I just leave the skin on."
- "I'm left-handed. I use a knife."
- "This one is fast, but it takes a lot off."
- "How do you peel a squash?"
- "Here's a rusty one."
- "This looked OK in the store."

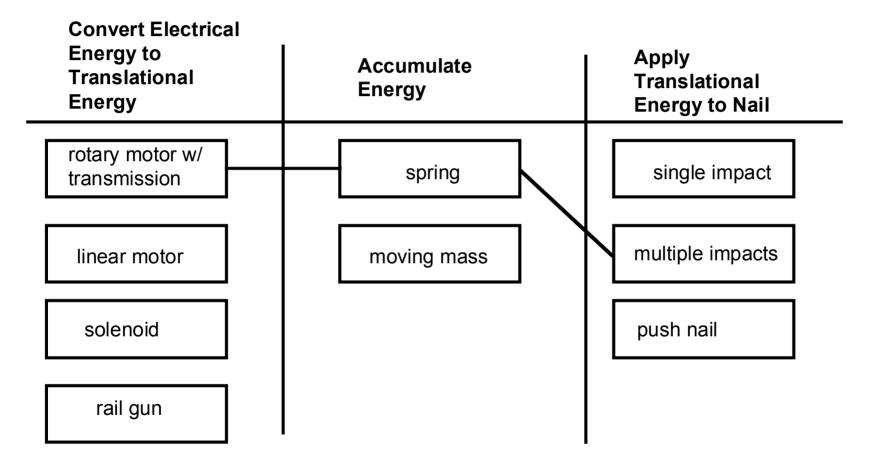
Vegetable Peeler Exercise: Key Customer Needs

- 1. The peeler peels a variety of produce.
- 2. The peeler can be used ambidextrously.
- 3. The peeler creates minimal waste.
- 4. The peeler saves time.
- 5. The peeler is durable.
- 6. The peeler is easy to clean.
- 7. The peeler is safe to use and store.
- 8. The peeler is comfortable to use.
- 9. The peeler stays sharp or can be easily sharpened.

External Search: Hints for Finding Related Solutions

- Lead Users
 - benefit from improvement
 - innovation source
- Benchmarking
 - competitive products
- Experts
 - technical experts
 - experienced customers
- Patents
 - search related inventions
- Literature
 - technical journals
 - trade literature

Capture Innovation from Lead Users: Utility Light Example

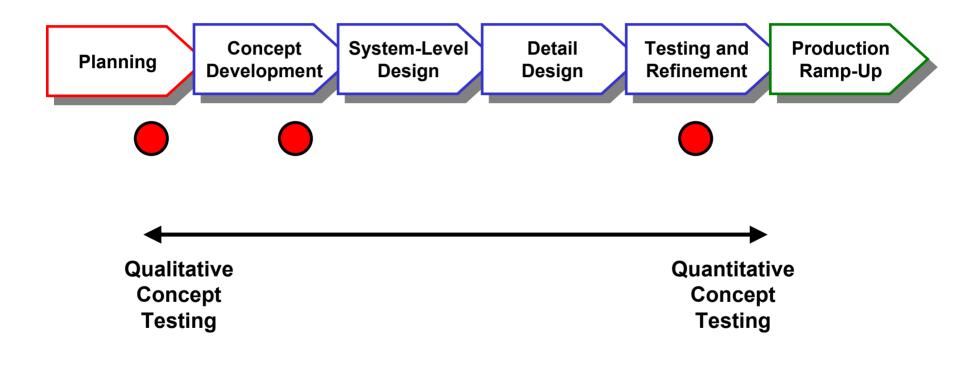

Capture Innovation from Lead Users: Utility Light Example

Internal Search: Hints for Generating Many Concepts

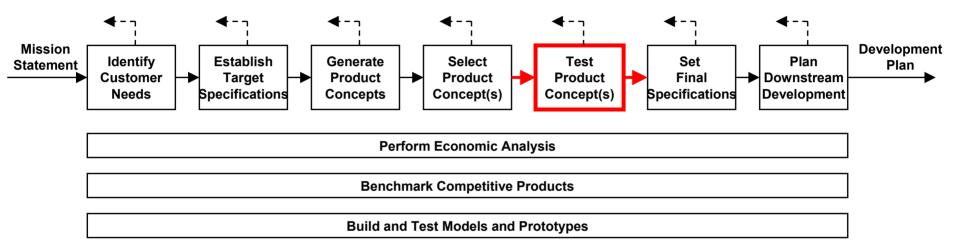
- Suspend judgment
- Generate a lot of ideas
- Infeasible ideas are welcome
- Use graphical and physical media
- Make analogies
- Wish and wonder
- Solve the conflict
- Use related stimuli
- Use unrelated stimuli
- Set quantitative goals
- Use the gallery method
- Trade ideas in a group

Systematic Exploration: Concept Combination Table

Concept Testing


Teaching materials to accompany:

Product Design and Development Chapter 8 Karl T. Ulrich and Steven D. Eppinger 2nd Edition, Irwin McGraw-Hill, 2000. **Product Design and Development** Karl T. Ulrich and Steven D. Eppinger 2nd edition, Irwin McGraw-Hill, 2000.


Chapter Table of Contents

- 1. Introduction
- 2. Development Processes and Organizations
- 3. Product Planning
- 4. Identifying Customer Needs
- 5. Product Specifications
- 6. Concept Generation
- 7. Concept Selection
- 8. Concept Testing
- 9. Product Architecture
- **10. Industrial Design**
- 11. Design for Manufacturing
- 12. Prototyping
- **13. Product Development Economics**
- 14. Managing Projects

Product Development Process

Concept Development Process

Concept Testing is Used for Several Purposes

- Go/no-go decisions
- What market to be in?
- Selecting among alternative concepts
- Confirming concept selection decision
- Benchmarking
- Soliciting improvement ideas
- Forecasting demand
- Ready to launch?

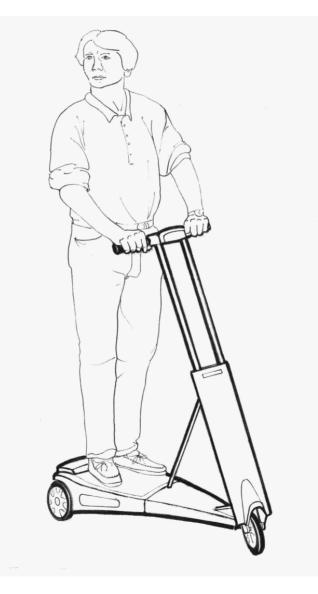
Concept Testing Process

- Define the purpose of the test
- Choose a survey population
- Choose a survey format
- Communicate the concept
- Measure customer response
- Interpret the results
- Reflect on the results and the process

Concept Testing Example: emPower Electric Scooter

Scooter Example

- Purpose of concept test:
 - What market to be in?
- Sample population:
 - College students who live 1-3 miles from campus
 - Factory transportation
- Survey format:
 - Face-to-face interviews

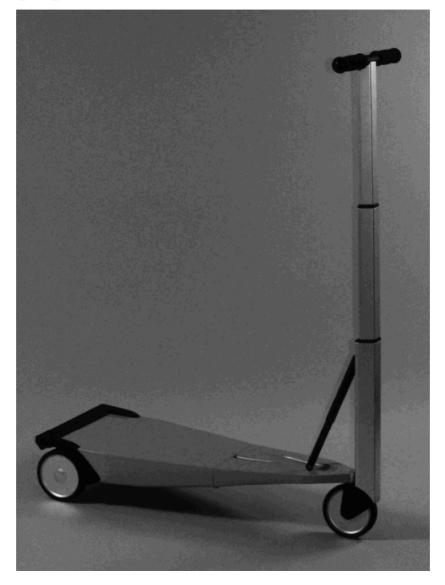

Communicating the Concept

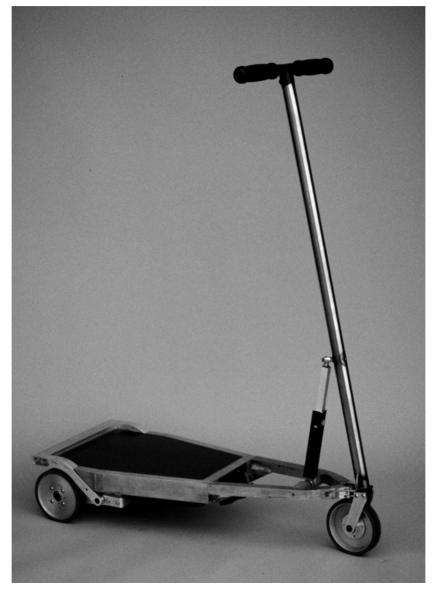
- Verbal description
- Sketch
- Photograph or rendering
- Storyboard
- Video
- Simulation
- Interactive multimedia
- Physical appearance model
- Working prototype

Verbal Description

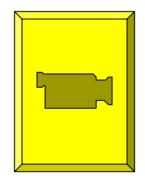
- The product is a lightweight electric scooter that can be easily folded and taken with you inside a building or on public transportation.
- The scooter weighs about 25 pounds. It travels at speeds of up to 15 miles per hour and can go about 12 miles on a single charge.
- The scooter can be recharged in about two hours from a standard electric outlet.
- The scooter is easy to ride and has simple controls
 just an accelerator button and a brake.

Rendering


Storyboard


3D Solid CAD Model

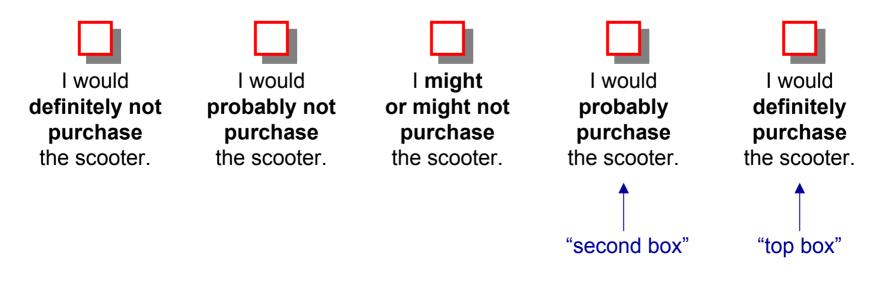
Appearance Model


Working Prototype

Beta Prototype

Video Animation Interactive Multimedia Live Demonstration

Survey Format


PART 1, Qualification

- How far do you live from campus?
 - <If not 1-3 miles, thank the customer and end interview.>
- How do you currently get to campus from home?
- How do you currently get around campus?
- PART 2, Product Description
 - <Present the concept description.>

Survey Format

PART 3, Purchase Intent

 If the product were priced according to your expectations, how likely would you be to purchase the scooter within the next year?

Survey Format

PART 4, Comments

- What would you expect the price of the scooter to be?
- What concerns do you have about the product concept?
- Can you make any suggestions for improving the product concept?
- Thank you.

Interpreting the Results: Forecasting Sales $Q = N \times A \times P$

- Q = sales (annual)
- N = number of (annual) purchases
- A = awareness x availability (fractions)
- P = probability of purchase (surveyed)


Forecasting Example: College Student Market

- N = off-campus grad students (200,000)
- A = 0.2 (realistic) to 0.8 (every bike shop)
- P = 0.4 x *top-box* + 0.2 x *second-box*
- Q =
- Price point \$795

Forecasting Example: Factory Transport Market

- N = current bicycle and scooter sales to factories (150,000)
- A = 0.25 (single distributor's share)
- P = 0.4 x *top-box* + 0.2 x *second-box*
- Q = 150,000 x 0.25 x [0.4 x 0.3 + 0.2 x 0.2]
 = 6000 units/yr
- Price point \$1500

emPower's Market Decision: Factory Transportation

Production Product

Sources of Forecast Error

- Word-of-Mouth Effects
- Quality of Concept Description
- Pricing
- Level of Promotion
- Competition

Discussion

- Why do respondents typically overestimate purchase intent?
 - Might they ever underestimate intent?
- How to use price in surveys?
- How much does the way the concept is communicated matter?
 - When shouldn't a prototype model be shown?
- How do you increase sales, Q?
- How does early (qualitative) concept testing differ from later (quantitative) testing?

Managing Complex System Development Projects

Prof. Steven D. Eppinger Massachusetts Institute of Technology Sloan School of Management Engineering Systems Division Leaders for Manufacturing Program System Design and Management Program

©2002 Steven D. Eppinger

http://web.mit.edu/dsm

Session Outline

- Motivation: Managing Project Structure
 - Concurrent Engineering in the Large

Design Structure Matrix

- Information Flow Modeling
- Task-Based DSMs
- Sequencing Analysis
- Example: Semiconductor Development

Managing Design Iterations

- Solving Coupled Issues Faster
- Example: Instrument Cluster

Systems Integration

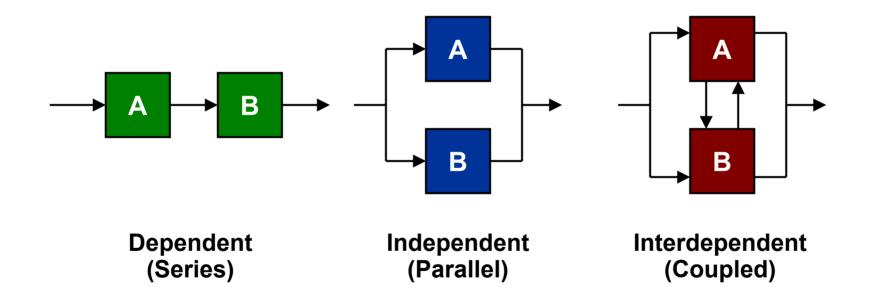
- Organization-Based DSM
- System Architecture-Based DSM
- Example: Engine Development
- DSM Web Site

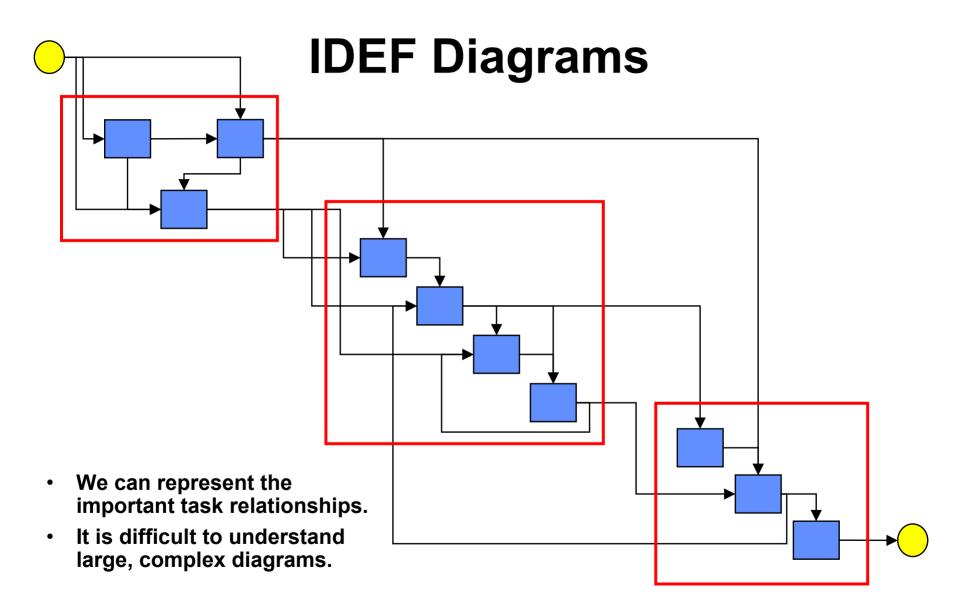
Industrial Examples and Research Sponsors

VOLVO AERO

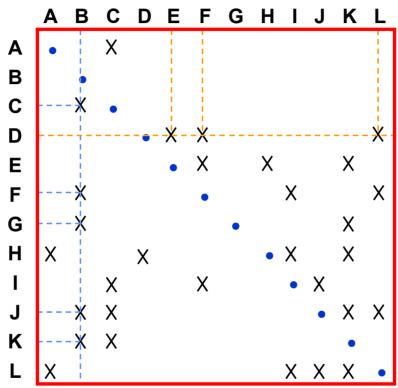
ITT Industries

Concurrent Engineering in the Small

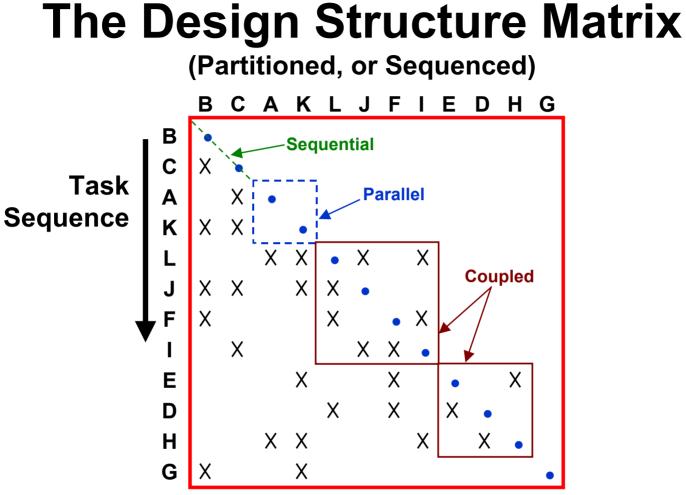

- Projects are executed by a cross-disciplinary team (5 to 20 people).
- Teams feature <u>high-bandwidth</u> technical communication.
- Tradeoffs are resolved by mutual understanding.
- "Design and production" issues are considered simultaneously.


Concurrent Engineering in the Large

- Large projects are organized as a network of teams (100 to 1000 people).
- Large projects are decomposed into many smaller projects.
- Large projects may involve development activities dispersed over multiple sites.
- The essential challenge is to integrate the separate pieces into a *system* solution.
- The needs for integration depend upon the technical interactions among the subproblems.


Sequencing Tasks in Projects

Three Possible Sequences for Two Tasks


The Design Structure Matrix: An Information Exchange Model

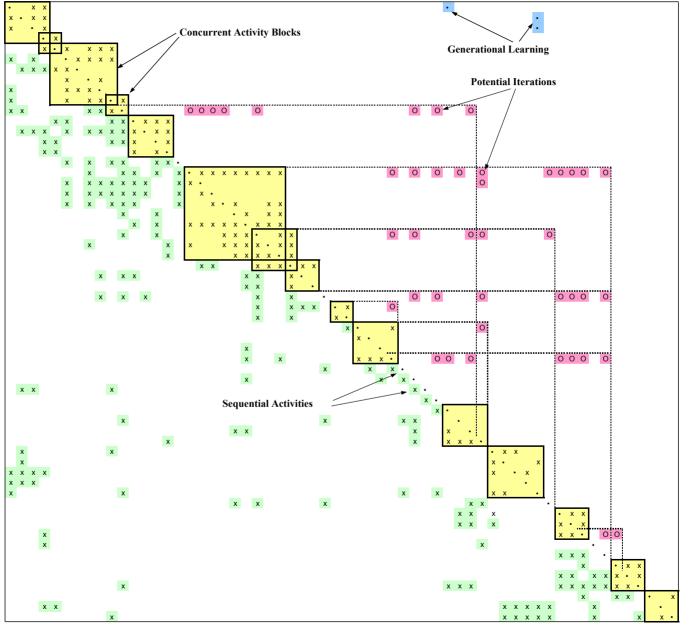
Interpretation:

- Task D requires information from tasks E, F, and L.
- Task B transfers information to tasks C, F, G, J, and K. Note:
- Information flows are easier to capture than work flows.
- Inputs are easier to capture than outputs.

Donald V. Steward, Aug. 1981 IEEE Trans. on Eng'g Mgmt.

Note:

Coupled tasks can be identified uniquely.


The display of the matrix can be manipulated to emphasize certain features of the process flow.

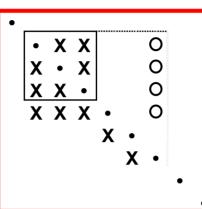
Semiconductor Development Example

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

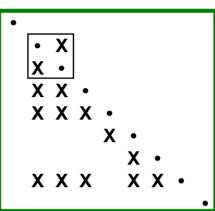
How to Create a Task-Based Design Structure Matrix Model

- **1.** Select a process or sub-process to model.
- 2. Identify the tasks of the process, who is responsible for each one, and the outputs created by each task.
- **3.** Lay out the square matrix with the tasks in the order they are nominally executed.
- 4. Ask the process experts what inputs are used for each task.
- 5. Insert marks representing the information inputs to each task.
- 6. Optional: Analyze the DSM model by re-sequencing the tasks to suggest a new process.
- 7. Draw solid boxes around the coupled tasks representing the planned iterations.
- 8. Draw dashed boxes around groups of parallel (uncoupled) tasks.
- 9. Highlight the unplanned iterations.

Design Iteration


- Product development is fundamentally iterative — yet iterations are hidden.
- Iteration is the repetition of tasks due to the availability of new information.
 - changes in input information (upstream)
 - update of shared assumptions (concurrent)
 - discovery of errors (downstream)
- Engineering activities are repeated to improve product quality and/or to reduce cost.
- To understand and accelerate iterations requires
 - visibility of iterative information flows
 - understanding of the inherent process coupling

Instrument Cluster Development


<u>Delco</u>

Casing Design Wiring Layout Lighting Details Tooling Hard Prototype Testing

Casing Design Lighting Details Wiring Layout Soft Prototype Testing Revision Hard Tooling

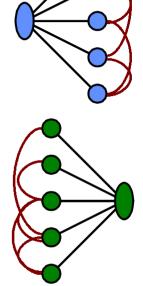
Slower Design Process

Several planned iterations Usually one unplanned iteration

Faster Design Process

Fewer planned iterations Planned revision cycle No unplanned iterations

Lessons Learned: Iteration


- Development is inherently iterative.
- An understanding of the coupling is essential.
- Not everything should be concurrent in concurrent engineering.
- Iteration results in improved quality.
- Iteration can be accelerated through:
 - information technology (faster iterations)
 - coordination techniques (faster iterations)
 - decreased coupling (fewer iterations)
- There are two fundamental types of iteration:
 - planned iterations (getting it right the first time)
 - unplanned iterations (fixing it when it's not right)

Decomposition, Architecture, and Integration

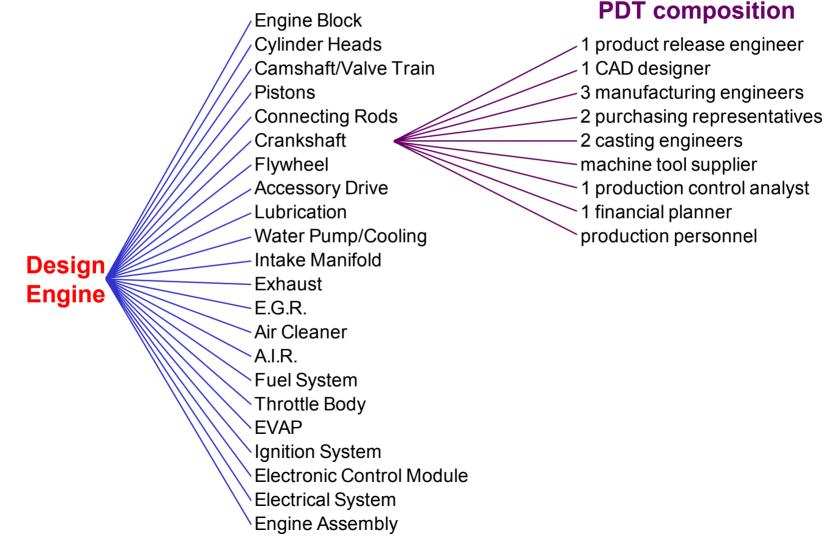
Decomposition is the process of splitting a complex system into sub-systems and/or components.

System architecture is the resulting set of interactions among the components.

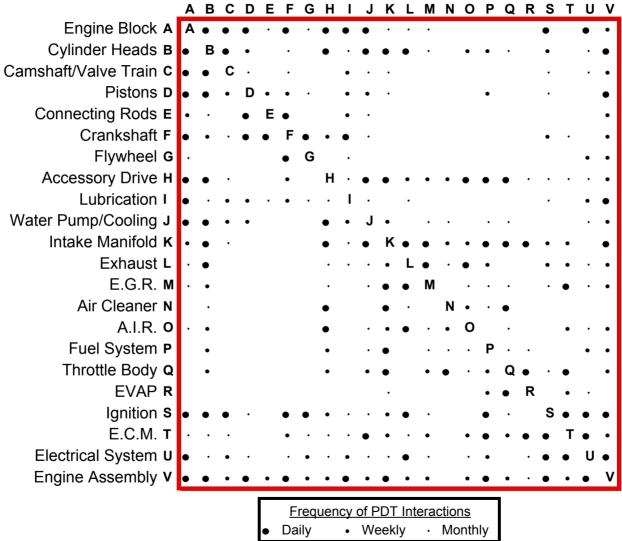
Integration is the process of combining these sub-systems to achieve an overall solution.

System integration needs are determined by the chosen decomposition and its resulting architecture.

We map the structure of interactions in order to plan for integration.

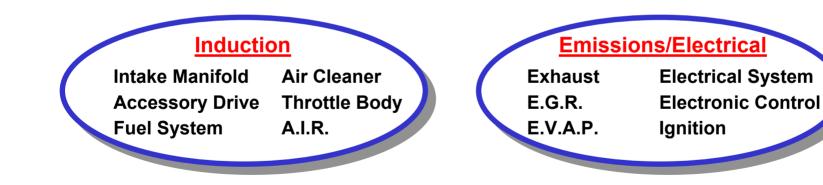

Organization DSM Application: Engine Development

- Site: General Motors Powertrain Division
- Product: "new-generation" engine
- Structure: 22 PDTs involved simultaneously

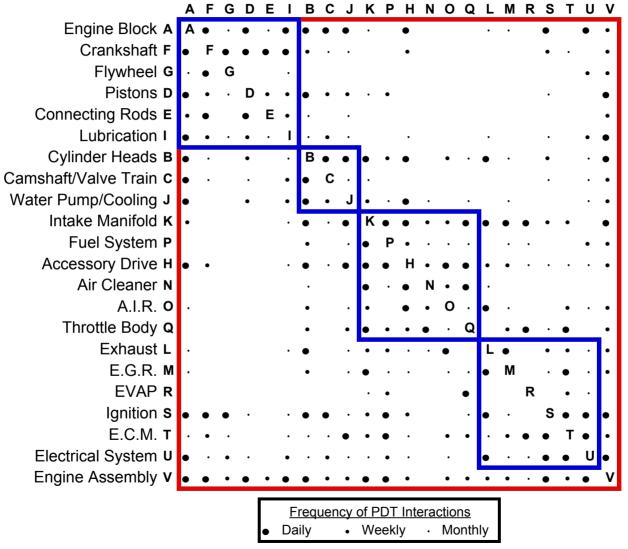


Decomposition of the Engine Development Project

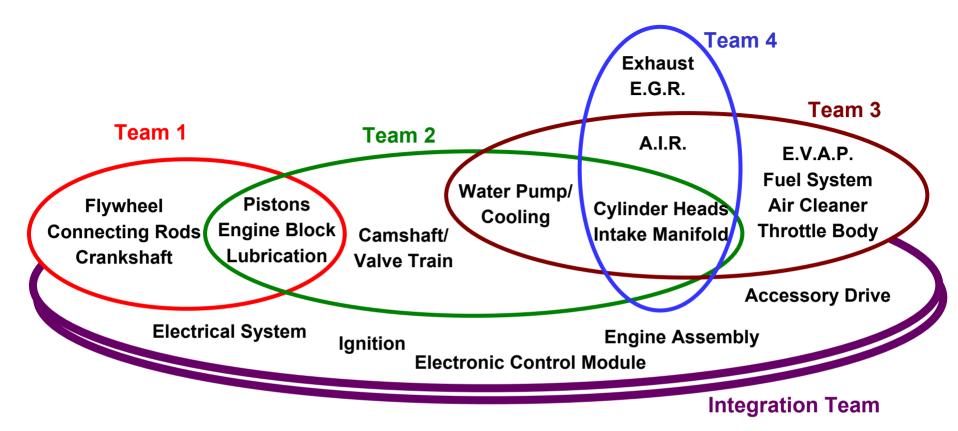
22 PDTs



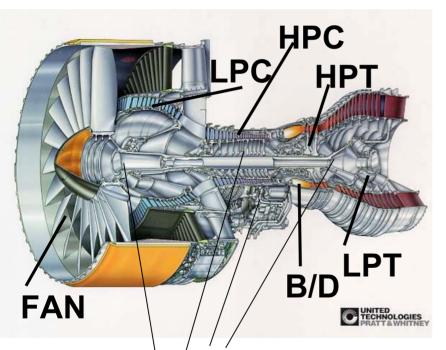
PDT Interactions



System Team Assignments

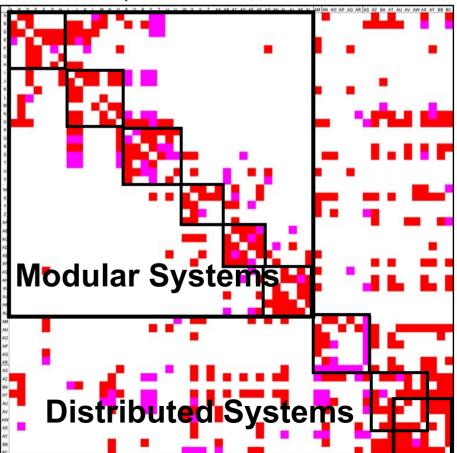


Existing System Teams

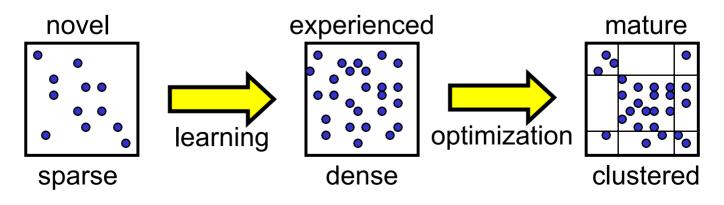

PDT-to-System-Team Assignments

Lessons Learned: Integration

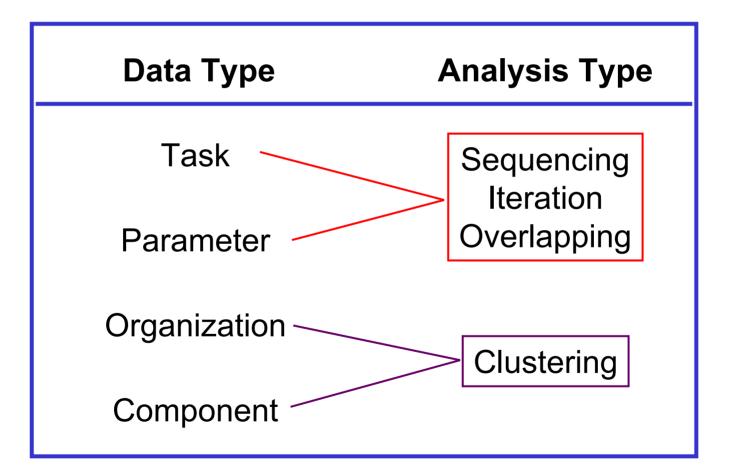
- Large development efforts require multiple activities to be performed in parallel.
- The many subsystems must be integrated to achieve an overall system solution.
- Mapping the information dependence reveals an underlying structure for system engineering.
- Organizations can be "designed" based upon this structure.


System Architecture Example: P&W 4098 Jet Engine

- •9 Systems
- •54 Components
- •569 Interfaces

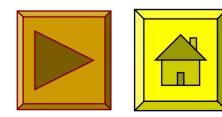

Mechanical Components Externals and Controls (2)

- Design Interfaces:
 - Spatial, Structural
 - •Energy, Materials
 - •Data, Controls



Lessons Learned: Product/System Architecture

- Hierarchical system decompositions are evident.
- System architecting principles are at work.
- There is a disparity between known interfaces and unknown interactions.
- Integrating elements may be functional and/or physical.
- Hypothesis: Density of known interactions–


Types of DSM Models and Analysis

MIT Design Structure Matrix Web Site

http://web.mit.edu/dsm

- Tutorial
- Publications
- Examples
- Software
- Contacts
- •Events

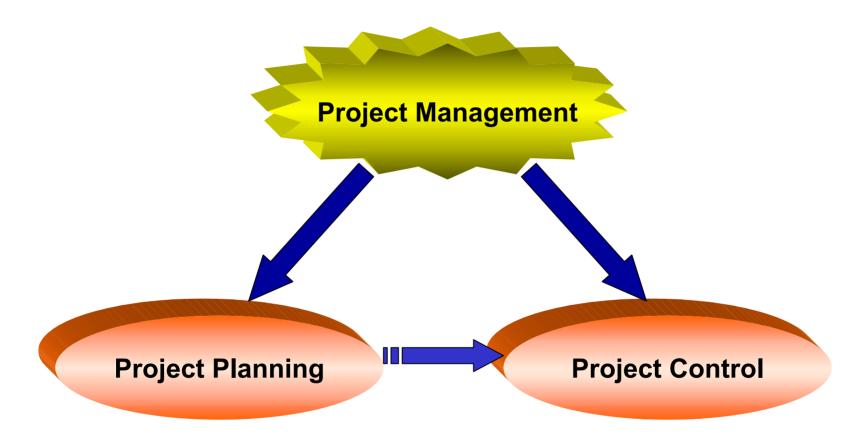
Managing Projects

Teaching materials to accompany:

Product Design and Development Chapter 14

Karl T. Ulrich and Steven D. Eppinger 2nd Edition, Irwin McGraw-Hill, 2000.

Product Development Process

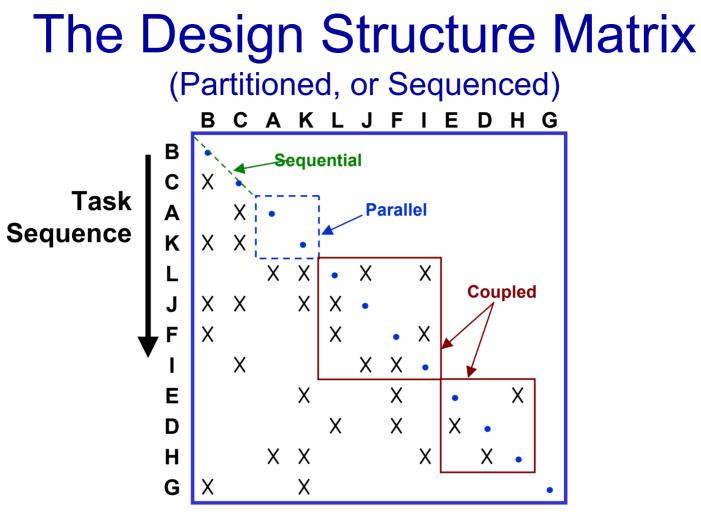

Project management is necessary throughout the development process.

Product Design and Development Karl T. Ulrich and Steven D. Eppinger 2nd edition, Irwin McGraw-Hill, 2000.

Chapter Table of Contents

- 1. Introduction
- 2. Development Processes and Organizations
- 3. Product Planning
- 4. Identifying Customer Needs
- 5. Product Specifications
- 6. Concept Generation
- 7. Concept Selection
- 8. Concept Testing
- 9. Product Architecture
- **10. Industrial Design**
- 11. Design for Manufacturing
- 12. Prototyping
- **13. Product Development Economics**
- 14. Managing Projects

Two Phases of Project Management

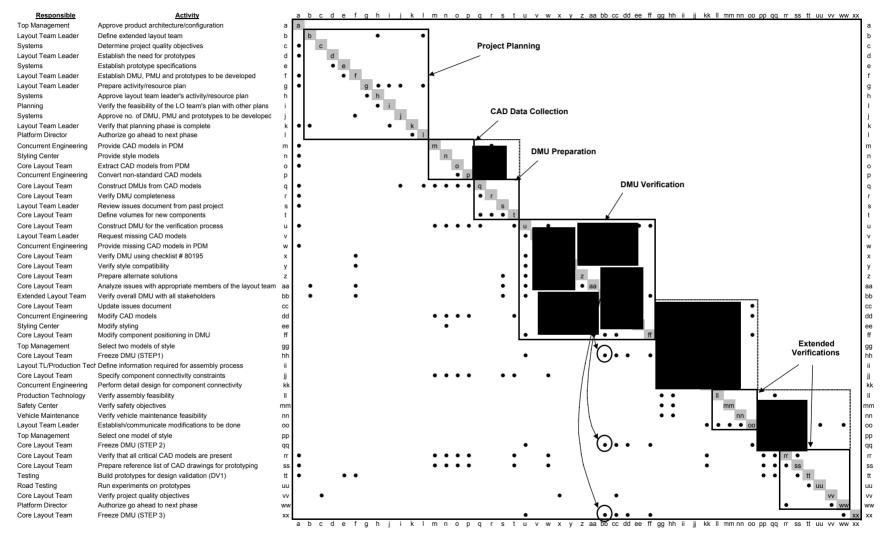


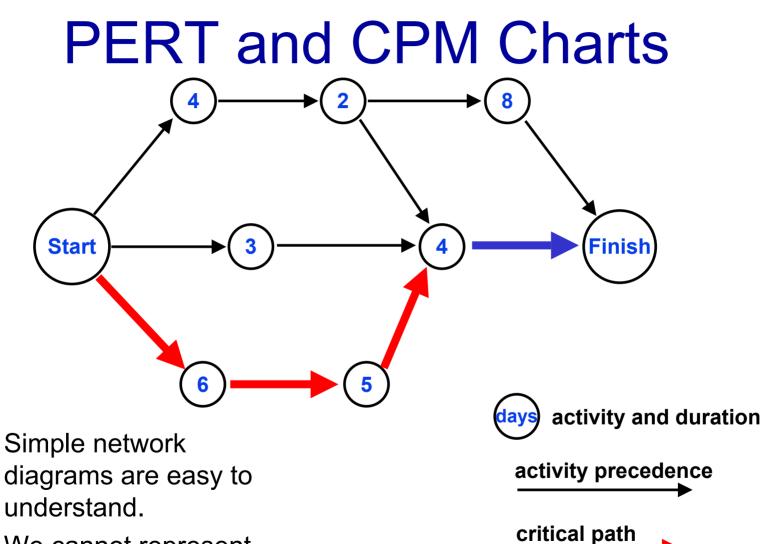
The Design Structure Matrix: An Information Exchange Model Ε G н Β С Π Х Α В С D Х Х Ε Х Х Х F G Х н • X Х Х Х I Х Х Х J Х ХХ Κ Х L XXX

Interpretation:

- Task D requires information from tasks E, F, and L.
- Task B transfers information to tasks C, F, G, J, and K.
 <u>Note:</u>
- Information flows are easier to capture than work flows.
- Inputs are easier to capture than outputs.

Donald V. Steward, Aug. 1981 IEEE Trans. on Eng'g Mgmt.

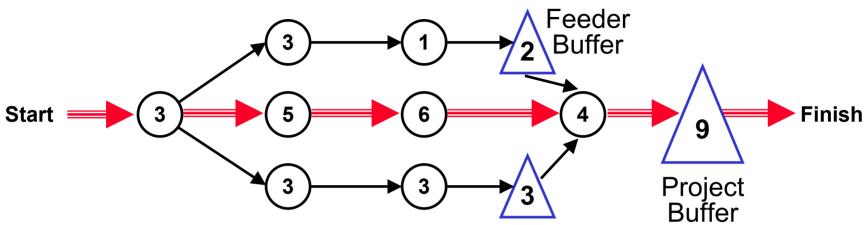



Note:

Coupled tasks can be identified uniquely.

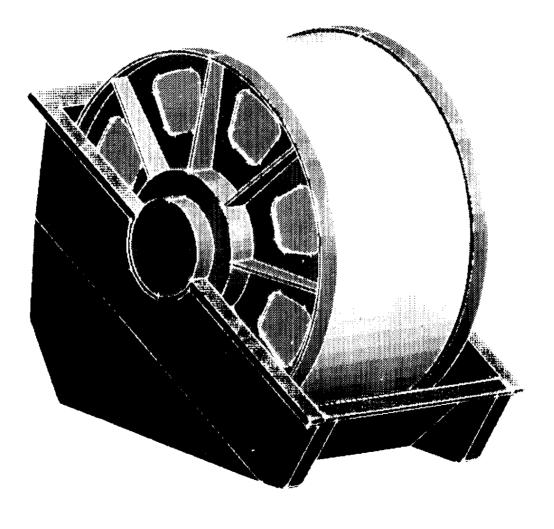
The display of the matrix can be manipulated to emphasize certain features of the process flow.

FIAT Auto – Digital Layout Process



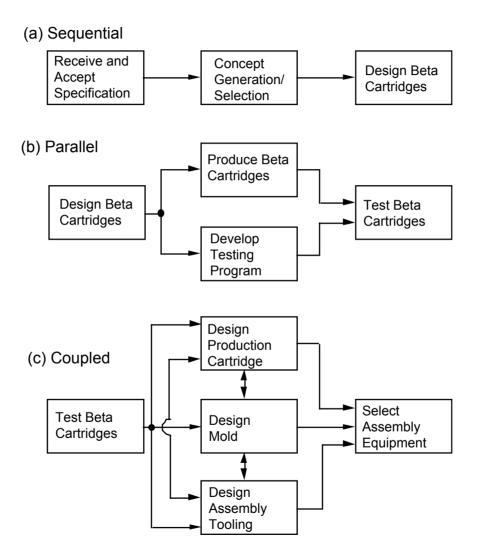
• We cannot represent the coupled/iterative task relationships.

•

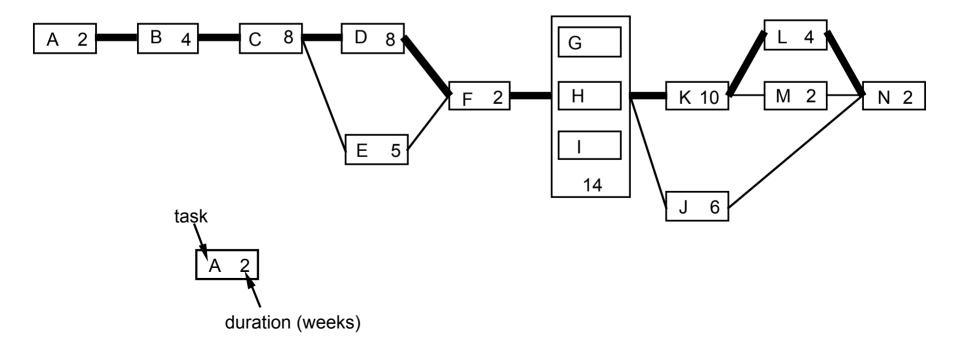


Probability of Task Duration Time

- Start with a sequential/parallel network.
- Use 50/50 task duration estimates. days
- Compute the critical path, noting resources.
- Insert feeder and project buffers as safety.
- Ideal buffers are 50% of path duration.
- Monitor buffer status.
- Reduce buffers when tasks overrun.

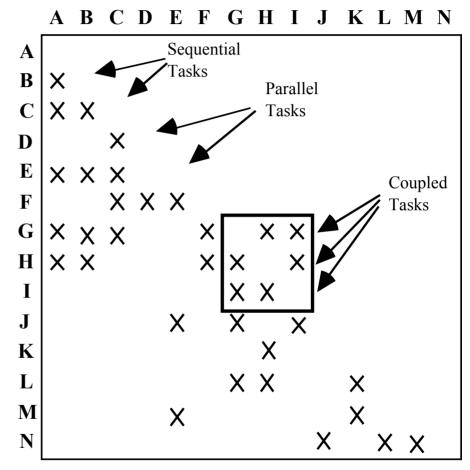

Ref: E.M. Goldratt, Critical Chain, North River Press, 1997.

Project Management Example: Kodak Cheetah Microfilm Cartridge


Three Fundamental Activity Relationships

Example: Kodak Cheetah Microfilm Cartridge

PERT Chart and Critical Path


А	Receive and Accept Specification	H Design Mold	
В	Concept Generation/Selection	I Design Assembly Tooling	
С	Design Beta Cartridges	J Purchase Assembly Equipment	
D	Produce Beta Cartridges	K Fabricate Molds	
E	Develop Testing Program	L Debug Molds	
F	Test Beta Cartridges	M Certify Cartridge	
G	Design Production Cartridge	N Initial Production Run	

Design Structure Matrix

TASK

Receive and Accept Specification Concept Generation/Selection Design Beta Cartridges Produce Beta Cartridges **Develop Testing Program** Test Beta Cartridges **Design Production Cartridge Design Mold Design Assembly Tooling** Purchase Assembly Equipment **Fabricate Molds Debug Molds** Certify Cartridge Initial Production Run

Example: Kodak Cheetah Microfilm Cartridge

Tasks for Cooking Dinner

Wash and cut salad vegetables (15 minutes) Toss the salad (2 minutes) Set the table (8 minutes) Start the rice cooking (2 minutes) Cook rice (25 minutes) Place the rice in a serving dish (1 minute) Mix casserole ingredients (10 minutes) Bake the casserole (25 minutes) Bring the food to the table (2 minutes) Call the family for dinner (1 minute)

Group Assignment

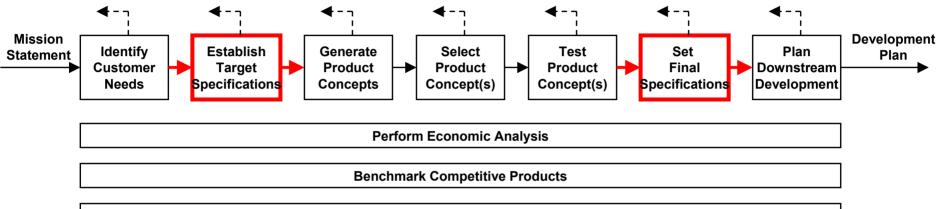
Part 1

- Prepare a baseline project schedule for cooking the dinner. Show the schedule in Gantt chart form.
- You will need to identify the dependencies among the tasks. State your assumptions.

<u>Part 2</u>

- Prepare an accelerated project schedule.
- Explain why you believe that the accelerated project is feasible. What are the risks?

Product Specifications


Teaching materials to accompany:

Product Design and Development Chapter 5 Karl T. Ulrich and Steven D. Eppinger 2nd Edition, Irwin McGraw-Hill, 2000. **Product Design and Development** Karl T. Ulrich and Steven D. Eppinger 2nd edition, Irwin McGraw-Hill, 2000.

Chapter Table of Contents

- 1. Introduction
- 2. Development Processes and Organizations
- 3. Product Planning
- 4. Identifying Customer Needs
- 5. Product Specifications
- 6. Concept Generation
- 7. Concept Selection
- 8. Concept Testing
- 9. Product Architecture
- **10. Industrial Design**
- 11. Design for Manufacturing
- 12. Prototyping
- **13. Product Development Economics**
- 14. Managing Projects

Concept Development Process

Build and Test Models and Prototypes

Target Specs

Based on customer needs and benchmarking

Final Specs

Based on selected concept, feasibility, models, testing, and trade-offs

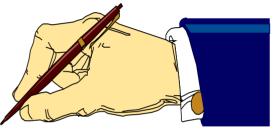
The Product Specs Process

- Set Target Specifications
 - Based on customer needs and benchmarks
 - Develop metrics for each need
 - Set ideal and acceptable values
- Refine Specifications
 - Based on selected concept and feasibility testing
 - Technical modeling
 - Trade-offs are critical
- Reflect on the Results and the Process

Critical for ongoing improvement

Product Specifications Example: Mountain Bike Suspension Fork

Start with the Customer Needs


#		NEED	Imp
1	The suspension	reduces vibration to the hands.	3
2	The suspension	allows easy traversal of slow, difficult terrain.	2
3	The suspension	enables high speed descents on bumpy trails.	5
4	The suspension	allows sensitivity adjustment.	3
5	The suspension	preserves the steering characteristics of the bike	. 4
6	The suspension	remains rigid during hard cornering.	4
7	The suspension	is lightweight.	4
8	The suspension	provides stiff mounting points for the brakes.	2
9	The suspension	fits a wide variety of bikes, wheels, and tires.	5
10	The suspension	is easy to install.	1
11	The suspension	works with fenders.	1
12	The suspension	instills pride.	5
13	The suspension	is affordable for an amateur enthusiast.	5
14	The suspension	is not contaminated by water.	5
15	The suspension	is not contaminated by grunge.	5
16	The suspension	can be easily accessed for maintenance.	3
17	The suspension	allows easy replacement of worn parts.	1
18		can be maintained with readily available tools.	3
19	The suspension	lasts a long time.	5
20	The suspension	is safe in a crash.	5

Establish Metrics and Units

ic #	s# p			
Metric	Need			
ž		Metric	Imp	Units
1	1,3	Attenuation from dropout to handlebar at 10hz	3	dB
2	2,6	Spring pre-load	3	N
3	1,3	Maximum value from the Monster	5	g
4	1,3	Minimum descent time on test track	5	S
5	4	Damping coefficient adjustment range	3	N-s/m
6	5	Maximum travel (26in wheel)	3	mm
7	5	Rake offset	3	mm
8	6	Lateral stiffness at the tip	3	kN/m
9	7	Total mass	4	kg
10	8	Lateral stiffness at brake pivots	2	kN/m
11		Headset sizes	5	in
12	9	Steertube length	5	mm
13	9	Wheel sizes	5	list
14	9	Maximum tire width	5	in
15	10	Time to assemble to frame	1	S
16	11	Fender compatibility	1	list
17		Instills pride	5	subj
18	13	Unit manufacturing cost	5	US\$
19	14	Time in spray chamber w/o water entry	5	S
20		Cycles in mud chamber w/o contamination	5	k-cycles
21	16,17	Time to disassemble/assemble for maintenance	3	S
22	17,18	Special tools required for maintenance	3	list
23	19	UV test duration to degrade rubber parts	5	hours
24		Monster cycles to failure	5	cycles
25	20	Japan Industrial Standards test	5	binary
26	20	Bending strength (frontal loading)	5	MN

Metrics Exercise: Ball Point Pen

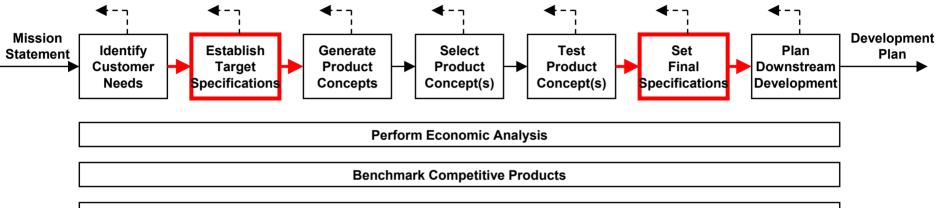
Customer Need: The pen writes smoothly.

Link Metrics to Needs

		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	<u> </u>		23	24	25	26
	Metric	Attenuation from dropout to handlebar at 10hz	Spring pre-load	Maximum value from the Monster	Minimum descent time on test track	Damping coefficient adjustment range	Maximum travel (26in wheel)	Rake offset	Lateral stiffness at the tip	Total mass	Lateral stiffness at brake pivots	Headset sizes	Steertube length		e width	Time to assemble to frame			Unit manufacturing cost	Time in spray chamber w/o water entry	tion	Time to disassemble/assemble for maintenance	Special tools required for maintenance	UV test duration to degrade rubber parts	Monster cycles to failure	Japan Industrial Standards test	Bending strength (frontal loading)
	Need	Ż	S				Σ	R	Ľ	Ĕ	Ľ	Т	Ś	<	Σ	F	ш	드		Ē	0	Ē	S	\supset	<u> </u>	<u> </u>	ă
1	reduces vibration to the hands	. •		•	•																				-+	\dashv	
2	allows easy traversal of slow, difficult terra		•	•	•				_	_							-	_				_			\rightarrow	\rightarrow	
3	enables high speed descents on bumpy trails	5. •	_	•	•	•											-								\rightarrow		
4	allows sensitivity adjustmen preserves the steering characteristics of the bik	<u></u>	_			•	•	•									-								\rightarrow		
6	remains rigid during hard cornerin		•	_			-	Ť	•	_					_	-	-	-	_		-	_			\rightarrow		
7	is lightweight.	<u>. </u>	-						-	•																	
8	provides stiff mounting points for the brake	s.									•														\neg	\neg	\neg
9	fits a wide variety of bikes, wheels, and tire											•	•	•	•												
10	is easy to instal															•											
11	works with fenders																•										
12	instills pride.																	•					_	_			
13	is affordable for an amateur enthusia	st.																	•								
14	is not contaminated by wate	·																		•							
15	is not contaminated by grunge																				•						
16	can be easily accessed for maintenand																					•			[\square	
17	allows easy replacement of worn par																					•	•				
18	can be maintained with readily available to	ls.																					•		\square	\square	
19	lasts a long time																							•	•	\square	
20	is safe in a crast	۱.																								•	•

Benchmark on Customer Needs

#	NEED	Imp	ST Tritrack	Maniray 2	Rox Tahx Quadra	Rox Tahx Ti 21	Tonka Pro	Gunhill Head Shox
1	The suspension reduces vibration to the hands.	3	•	••••	••	•••••	••	•••
2	The suspension allows easy traversal of slow, difficult terrain.	2	••	••••	•••	•••••	•••	••••
3	The suspension enables high speed descents on bumpy trails.	5	•	••••	••	•••••	••	•••
4	The suspension allows sensitivity adjustment.	3	•	••••	••	•••••	••	•••
5	The suspension preserves the steering characteristics of the bil		••••	••	•	••	•••	••••
6	The suspension remains rigid during hard cornering.	4	•	•••	•	•••••	•	••••
7	The suspension is lightweight.	4	•	•••	•	•••	••••	•••••
8	The suspension provides stiff mounting points for the brakes.	2	•	••••	•••	•••	••	••••
9	The suspension fits a wide variety of bikes, wheels, and tires.	5	••••	••••	•••	•••••	•••	•
10	The suspension is easy to install.	1	••••	••••	••••	••••	•••••	•
11	The suspension works with fenders.	1	•••	•	•	•	•	••••
12	The suspension instills pride.	5	•	••••	•••	•••••	•••	••••
13	The suspension is affordable for an amateur enthusiast.	5	••••	•	•••	•	•••	••
14	The suspension is not contaminated by water.	5	•	•••	••••	••••	••	••••
15	The suspension is not contaminated by grunge.	5	•	•••	•	••••	••	••••
16	The suspension can be easily accessed for maintenance.	3	••••	••••	••••	••••	•••••	•
17	The suspension allows easy replacement of worn parts.	1	••••	••••	••••	••••	•••••	•
18	The suspension can be maintained with readily available tools.	3	•••••	••••	•••••	••••	••	•
19	The suspension lasts a long time.	5	•••••	••••	••••	•••	•••••	•
20	The suspension is safe in a crash.	5	•••••	••••	••••	•••••	•••••	•••••


Benchmark on Metrics

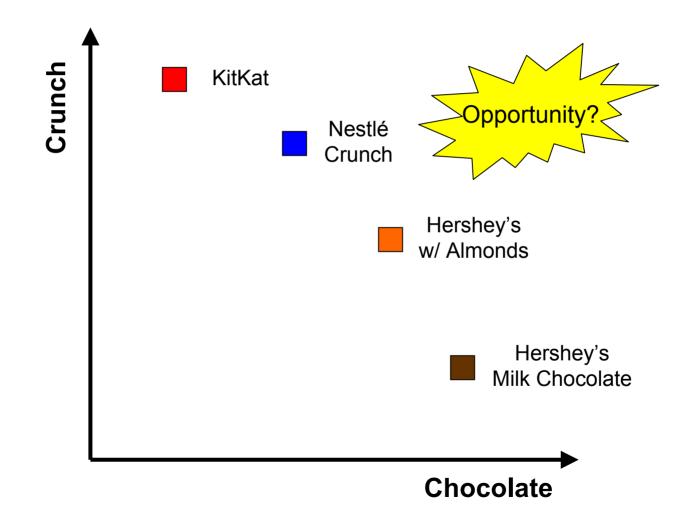
							dra			Gunhill Head Shox
							Rox Tahx Quadra	21		d S
					ъ	N	o x	Rox Tahx Ti	Pro	lea
#	Need #s				ST Tritrack	ay	ah	ah	E E	
Metric #	ed				μ	Maniray			Tonka I	4u
ž	¥	Metric	Imp	Units	ST	Ĕ	<u> </u>	X	<u> </u>	ษี
1		Attenuation from dropout to handlebar at 10hz	3	dB	8	15	10	15	9	13
2		Spring pre-load	3	N	550	760	500	710	480	680
3		Maximum value from the Monster	5	g	3.6	3.2	3.7	3.3	3.7	3.4
4		Minimum descent time on test track	5	S	13	11.3	12.6	11.2	13.2	11
5		Damping coefficient adjustment range	3	N-s/m	0	0	0	200	0	0
6		Maximum travel (26in wheel)	3	mm	28	48	43	46	33	38
7		Rake offset	3	mm	41.5	39	38	38	43.2	39
8		Lateral stiffness at the tip	3	kN/m	59	110	85	85	65	130
9		Total mass	4	kg	1.409	1.385	1.409	1.364	1.222	1.1
10	8	Lateral stiffness at brake pivots	2	kN/m	295	550	425	425	325	650
						1.000		1.000		
11	0	Headset sizes	5	in	1.000 1.125	1.125 1.250	1.000 1.125	1.125 1.250	1.000 1.125	NIA
	9	Tieduset sizes	5			1.230	1.125		1.125	NA
					150		150	150		
					180	140	150	170	150	
					210 230	165 190	170 190	190 210	190 210	
12	9	Steertube length	5	mm	255	215	210	230	220	NA
								26in		
13	9	Wheel sizes	5	list	26in	26in	26in		26in	26in
14		Maximum tire width	5	in	1.5	1.75	1.5	1.75	1.5	1.5
15		Time to assemble to frame	1	S	35	35	45	45	35	85
16	11	Fender compatibility	1	list	Zefal	none	none	none	none	all
17		Instills pride	5	subj	1	4	3	5	3	5
18	13	Unit manufacturing cost	5	US\$	65	105	85	115	80	100
19	14	Time in spray chamber w/o water entry	5	S	1300	2900	>3600	>3600	2300	>3600
20		Cycles in mud chamber w/o contamination	5	k-cycles	15	19	15	25	18	35
21	16,17	Time to disassemble/assemble for maintenance	3	S	160	245	215	245	200	425
										hex,
00	17 10	On a sight a sign wind for maintainan -		lint					long	pin
22		Special tools required for maintenance UV test duration to degrade rubber parts	3	list	hex 400+	hex 250	hex 400+	hex 400+	hex 400+	wrnch
23		· ·	5 5	hours					400+ 500k+	250
24		Monster cycles to failure Japan Industrial Standards test	5 5	cycles binary	500k+ pass	pass	500k+ pass	480k pass	pass	330k pass
25		Bending strength (frontal loading)	5	MN	55	9 pass	- pass 75	75 pass	pass 62	
20	20	Denuing Strength (nontai Ioduling)	10		55	09	10	13	02	102

Assign Marginal and Ideal Values

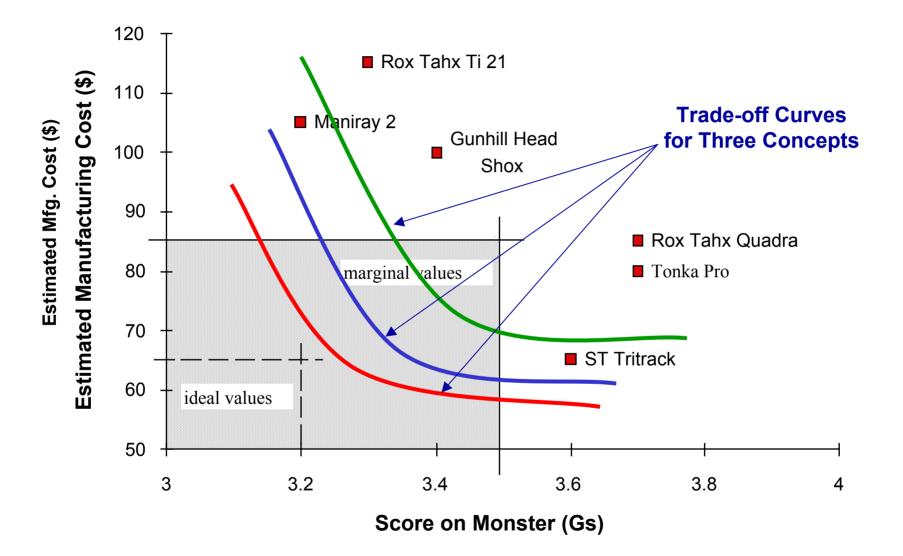
			Marginal Value	U
				deal Value
			gi	
	Metric	Units	Jar	des
	Attenuation from dropout to handlebar at 10hz	dB	>10	 >15
	Spring pre-load	N	480 - 800	
	Maximum value from the Monster	g	<3.5	<3.2
	Minimum descent time on test track	9	<13.0	<11.0
	Damping coefficient adjustment range	N-s/m	0	>200
	Maximum travel (26in wheel)	mm	33 - 50	45
	Rake offset	mm	37 - 45	38
8	Lateral stiffness at the tip	kN/m	>65	>130
9	Total mass	kg	<1.4	<1.1
10	Lateral stiffness at brake pivots	kN/m	>325	>650
				1.000
			1.000	1.125
11	Headset sizes	in	1.125	1.250
				150
			150	170
			170 190	190 210
12	Steertube length	mm	210	230
12			210	230 26in
13	Wheel sizes	list	26in	700c
14	Maximum tire width	in	>1.5	>1.75
15	Time to assemble to frame	S	<60	<35
	Fender compatibility	list	none	all
	Instills pride	subj	>3	>5
	Unit manufacturing cost	US\$	<85	<65
The second se	Time in spray chamber w/o water entry	S	>2300	>3600
	Cycles in mud chamber w/o contamination	k-cycles	>15	>35
	Time to disassemble/assemble for maintenance	S	<300	<160
	Special tools required for maintenance	list	hex	hex
	UV test duration to degrade rubber parts	hours	>250	>450
	Monster cycles to failure	cycles	>300k	>500k
	Japan Industrial Standards test	binary	pass	pass
26	Bending strength (frontal loading)	MN	>70	>100

Concept Development Process

Build and Test Models and Prototypes

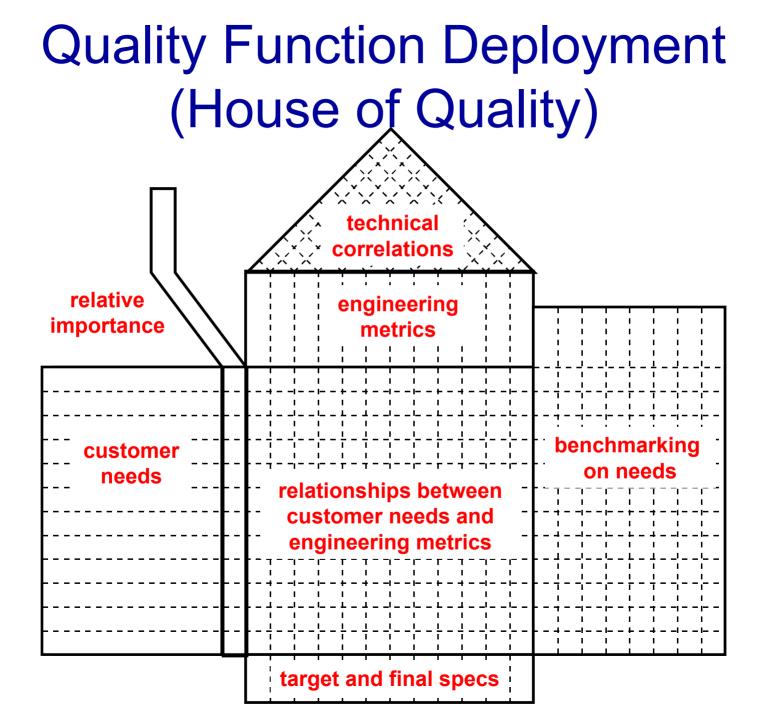

Target Specs

Based on customer needs and benchmarking


Final Specs

Based on selected concept, feasibility, models, testing, and trade-offs

Perceptual Mapping Exercise



Specification Trade-offs

Set Final Specifications

	METRIC	Units	Value
1	Attenuation from dropout to handlebar at 10hz	dB	>12
2		N	650
	Maximum value from the Monster	g	<3.4
4		s	<11.5
5		N-s/m	>100
6	Maximum travel (26in wheel)	mm	43
7	Rake offset	mm	38
8	Lateral stiffness at the tip	kN/m	>75
9	Total mass	kg	<1.4
10	Lateral stiffness at brake pivots	kN/m	>425
			1.000
11	Headset sizes	in	1.125
			150
			170
			190
10	Cteartube length		210
	Steertube length	mm	230
	Wheel sizes	list	26in
	Maximum tire width	in	>1.75
_	Time to assemble to frame	S	<45
	Fender compatibility	list	Zefal
17	Instills pride	subj	>4
18		US\$	<80
	Time in spray chamber w/o water entry	S	>3600
20		k-cycles	>25
21	Time to disassemble/assemble for maintenance	S	<200
	Special tools required for maintenance	list	hex
23		hours	>450
24		cycles	>500k
	Japan Industrial Standards test	binary	pass
26	Bending strength (frontal loading)	MN	>100

