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Abstract Nowadays, along with the application of new-
generation information technologies in industry and
manufacturing, the big data-driven manufacturing era is com-
ing. However, although various big data in the entire product
lifecycle, including product design, manufacturing, and ser-
vice, can be obtained, it can be found that the current research
on product lifecycle data mainly focuses on physical products
rather than virtual models. Besides, due to the lack of conver-
gence between product physical and virtual space, the data in
product lifecycle is isolated, fragmented, and stagnant, which
is useless for manufacturing enterprises. These problems lead
to low level of efficiency, intelligence, sustainability in prod-
uct design, manufacturing, and service phases. However,
physical product data, virtual product data, and connected data
that tie physical and virtual product are needed to support
product design, manufacturing, and service. Therefore, how
to generate and use converged cyber-physical data to better
serve product lifecycle, so as to drive product design,
manufacturing, and service to be more efficient, smart, and
sustainable, is emphasized and investigated based on our pre-
vious study on big data in product lifecycle management. In
this paper, a new method for product design, manufacturing,
and service driven by digital twin is proposed. The detailed
application methods and frameworks of digital twin-driven
product design, manufacturing, and service are investigated.
Furthermore, three cases are given to illustrate the future ap-
plications of digital twin in the three phases of a product
respectively.
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1 Introduction

Product lifecycle management (PLM) is the business activity
of managing, in the most effective way, a company’s products
all the way across their lifecycles, from the very first idea for a
product all the way through until it is retired and disposed of.
PLM is the activity that enables a company to grow revenues
by improving innovation, reducing time-to-market for new
products, and providing superb support and new services for
existing products, as well as enables better support of cus-
tomers’ use of products [1].

Nowadays, along with the application of new-generation
information technologies in industry and manufacturing, e.g.,
internet of things technology and devices are employed to col-
lect various data generated in the entire produce lifecycle [2],
cloud technology is used to realize the data management and
processing [3], and artificial intelligence is used for data mining
and realizing added-value [4], the big data-driven manufactur-
ing era is coming. For PLM, many researchers have carried out
numerous studies on product data management [5], product
information modeling [6], product information tracking [7],
integration framework [8], knowledge management [9],
supply-demandmatching on product manufacturing [10], prod-
uct assembly [11], and so on. However, although various big
data in the entire product lifecycle, including product design,
manufacturing, and service, can be obtained, it can be found
that several research gaps still exist in PLM as follows:

1. The current research on product lifecycle data mainly fo-
cuses on physical products rather than virtual models.
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2. Even if concerned with data from virtual models, there is
lack of convergence between product physical and virtual
space. Besides, due to the lack of the convergence, the
data in PLM is usually isolated, fragmented and stagnant.

3. On one hand, it is difficult for a company to keep control
when a product is at a customer location, on the other
hand, even realized control, it is difficult to response for
the upcoming demand or failure in advance and to guide
product design, manufacturing, and maintenance.

These problems lead to low level of efficiency, intelligence,
sustainability in product design, manufacturing, and service
phases. Therefore, new ways are needed to handle above
problems. Digital twin is an integrated multi-physics, multi-
scale, and probabilistic simulation of a complex product and
uses the best available physical models, sensor updates, etc.,
to mirror the life of its corresponding twin. The idea and con-
cept of digital twin, which is composed of physical product,
virtual product, and connected data that ties physical and vir-
tual product, can realize the convergence between product
physical and virtual space. Therefore, how to generate and
use converged cyber-physical data to better serve product
lifecycle, so as to drive product design, manufacturing, and
service to be more efficient, smart, and sustainable, is empha-
sized and investigated based on our previous study on big data
in product lifecycle management [5].

The remainder of this paper is organized as follows. In
Section 2, the concept of product lifecycle and related data
in PLM are introduced, and the existing shortness in PLM is
discussed. Section 3 introduces the concept of digital twin, as
well as its industrial application. The potential applications of
digital twin in the three phases of a product lifecycle, i.e., (1)
digital twin-driven product design, (2) digital twin-driven
product manufacturing, and (3) digital twin-driven product
service, are investigated in Section 4, as well as the case study
in each phase. Section 5 concludes this study and points out
the future works.

2 Product lifecycle and related data

2.1 Product lifecycle and data

The concept of product lifecycle was proposed by Dean [12]
in 1950 and was used in product marketing strategy research
by Levitt [13]. The product lifecycle initially referred to the
process from acceptance by the market to the final elimina-
tion. A biologically inspired lifecycle of the product was di-
vided into four stages, i.e., introduction, growth, maturity, and
decline [14]. With the rise of concurrent engineering [15], the
product lifecycle was extended to the engineering field. And
the product lifecycle was redefined to cover the entire process

from product demand analysis, design, manufacturing, sales,
and after-sales service to recycle [16].

When a specific product lifecycle is understood from the
perspective of the manufacturer [17], it refers to the whole
process from concept generation, design, procurement,
manufacturing to use, and recycle. As shown in Fig. 1, each
stage of the product lifecycle has its specific activities, in-
volves the relevant staff and departments, and generates large
amount of data [5].

1. Concept generation: Based on customers’ demands, mar-
ket information, investment planning, and other data, the
concept of new product or product design improvements
is defined, as well as the esthetics and main functions of
the product. At this stage, a variety of data needs to be
processed, such as various forms of customers’ demands
including comments, complaints and videos on the
Internet, market information including volume of product
sales, customer satisfaction, investment planning, and so
forth.

2. Product design: Product development team completes
product design work collaboratively through exchanging
and sharing design data and ideas. The data involved in
product design includes description of product function
and appearance, product configurations, design parameter
and test data, etc. And even historical fault data of similar
products will improve the product design.

3. Raw material procurement: At this stage, appropriate
procurement plan is drawn up for the purchasers by
analyzing the availability, quotations, substitutes, po-
tential suppliers of materials, or parts. The data consid-
ered at this stage includes manufacturer’s data, such as
the type, quantity, performance of raw materials, as
well as supplier data such as price, distance, inventory,
and so on.

4. Manufacturing: According to design specifications, the
raw materials or components are processed or assembled
into products, and then products are inspected through
quality testing. At this stage, the dynamic manufacturing
execution process needs to be monitored and managed.
Therefore, the attributes, performance, parameters, and
process conditions of production factors (e.g., human-ma-
chine-material-environment) are collected in real-time
and recorded to monitor the production process.

5. Transportation: After finishing the production, products
are transported to the point of sale in accordance with
market demand and orders. At the same time, after the
product is sold, delivery services are provided to users.
In order to transport products accurately and timely, logis-
tics arrangements must be optimized based on inventory
data, order data, location data, etc.

3564 Int J Adv Manuf Technol (2018) 94:3563–3576



6. Sales: At this stage, product launch and marketing are
carried out based on orders data, customers’ data, inven-
tory data and suppliers’ data. In the sale process, cus-
tomers’ preferences, preferences crowd, location distribu-
tion of orders and other information can improve product
design, production, logistics, and sale progress.

7. Utilization: Based on the information from user manual,
customer can operate product normally. During use-
phase, a large amount of data is generated, such as product
status data, operational environment data, user behavior
data. These data can be used not only for product mainte-
nance and repair but also to improve product design.

8. After-sales service: This stage is responsible for product
maintenance, service, and repair. According to the data
acquired from products, appropriate maintenance and ser-
vice solutions are generated and transmitted to manufac-
turers. As a result, efficient and accurate services are pro-
vided to users. In this process, failure data and causes,
maintenance data, component quality, and status data are
recorded and managed to predict product lifetime and
other product failures.

9. Recycle/disposal: When a product is recycled, the remain-
ing value of individual components are analyzed to deter-
mine when, how, where, and what to recycle or disposal
based on product status data and historical maintenance
data. In order to maximize product recycling benefits, the

cost of recycling and disassembly, the reusable state, val-
ue, and remaining time of components, needs to be
considered.

Product lifecycle engineering is an iterative process. At any
stage of the product lifecycle, a large amount of data is col-
lected, processed, and used, thus big data is formed [5].

2.2 Problems about product lifecycle data

The advances in information technology are driving the
manufacturing industry toward big data era. Data analysis
and mining are gradually playing a more and more significant
role in manufacturing enterprise management. Big data can
provide systematic guidance for related production activities
through effectively collecting and analyzing a variety of data
generated in the entire product lifecycle [5]. Furthermore, it
can help enterprises’ managers to solve the problems related
to operation and decision-making. The value of manufactur-
ing big data can be explored adequately to enhance the
manufacturing efficiency. At present, smart manufacturing is
driven by big data through three steps, which are association,
forecast and control [18]. It is to find the new value from
relationship and statistical characteristics of various data.

However, some problems affecting product data manage-
ment and application in PLM still exist as follows: (1) Due to

Fig. 1 The product lifecycle and
related data
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the different purposes and tasks, the data generated in various
phases of the entire product lifecycle may form the informa-
tion island between different phases of product lifecycle. (2)
There is a lot of duplicate data in different phases of product
lifecycle. These duplicate data may cause a lot of waste of
resources and data sharing problem. (3) The interaction and
iteration between big data analysis and various activities in the
entire product lifecycle are relatively absent. Therefore, the
big data analysis and the actual manufacturing process cannot
be compared in parallel. (4) The current applications of big
data prefer to put emphasis on the analysis of physical product
data rather than the data from virtual models.

In response to the above problem, digital twin is viewed as
an effective approach. The implementation of digital twin is a
mutual promotion process between virtual and physical space
of product lifecycle. Digital twin can directly compare and
analyze the theoretical values of big data and the real values
of product lifecycle activities. As a result, it can optimize
iteratively various activities in the entire product lifecycle. In
the virtual space of digital twin, various activities in the entire
product lifecycle can be simulated, monitored, optimized, and
verified. As well as, the seamless coordination of the entire
product lifecycle can be realized. Therefore, information
islands and data duplication can be effectively avoided.

3 Digital twin and its applications

3.1 Concept of digital twin

The concept of digital twin was firstly presented by Grieves at
one of his presentation about PLM in 2003 at University of
Michigan [19]. Up to now, several explanations and defini-
tions of digital twin have been proposed.

For example, Hochhalter et al. [20] believe that digital twin
is a life management and certification paradigm whereby
models and simulations consist of as-built vehicle state, as-
experienced loads and environments, and other vehicle-
specific history to enable high-fidelity modeling of individual
aerospace vehicles throughout their service lives. Reifsnider
andMajumdar [21] hold the view that the digital twin is a kind
of ultra-high fidelity simulation integrating with an on-board
health management system, maintenance history, and histori-
cal vehicle and fleet data. It can mirror the whole life of a
specific flying physical twin (or tail number), which enables
significant gains in safety and reliability.

A general definition of digital twin which has been recog-
nized and used by most people till now was given by
Glaessegen and Stargel in 2012 [22]: digital twin is an inte-
grated multi-physics, multi-scale, probabilistic simulation of a
complex product and uses the best available physical models,
sensor updates, etc., to mirror the life of its corresponding
twin. Meanwhile, digital twin consists of three parts: physical

product, virtual product, and connected data that tie the phys-
ical and virtual product.

According to these explanations and definitions of digital
twin, the following characteristics of digital twin are summa-
rized: (1) Real-time reflection. Two spaces exist in digital
twin, physical space and virtual space. The virtual space is
the real reflection of the physical space, and it can keep
ultra-high synchronization and fidelity with the physical
space. (2) Interaction and convergence. This characteristic
can be explained from three aspects. (a) Interaction and con-
vergence in physical space. Digital twin is a kind of full-flow,
full-element, and full-service integration. So the data generat-
ed in various phases in physical space can connect with each
other. (b) Interaction and convergence between historical data
and real-time data. Digital twin data is more comprehensive. It
not only depends on expert knowledge but also collects data
from all deployed systems real-timely. Therefore, the data can
be mined deeply and used more fully through the conver-
gence. (c) Interaction and convergence between physical
space and virtual space. The physical space and virtual space
are not isolated in digital twin. There exit smooth connection
channels between the two spaces, which makes them interact
easily [23]. (3) Self-evolution. Digital twin can update data in
real time, so that virtual models can undergo continuous im-
provement through comparing virtual space with physical
space in parallel [24].

3.2 Applications of digital twin

Since the concept of digital twin was proposed, it has been
applied in many industrial fields and has demonstrated its
great potential.

Structural Sciences Center at US Air Force Research
Laboratory employed digital twin to build a realistic high-
fidelity flight model and combine virtual model data with
physical data to make a more accurate fatigue life predic-
tion [24]. The Air Force Research Laboratory created a
framework, in which the model integrates various data
and has a high fidelity to physical space to simulate and
assess the confidence in aerothermal model predictions for
the coupled aero thermoelastic problem [25]. Bielefeldt
et al. [26] also established a model based on digital twin
to detect and monitor the damage in aircraft structure, and
they used the case of aircraft wings to prove that the
model was more effective. Hochhalter et al. [27] proposed
to combine digital twin with sensory particles technology
to realize real-time detection and aerospace vehicles’ in-
spection, repair, and replacement as necessary. Based on
digital twin, Tuegel [28] put forward the concept of
Airframe Digital Twin (ADT) to achieve the goal of de-
creasing aircrafts’ maintenance costs. And he also pointed
out the challenges during realization process. Cerrone
et al. [29] built the model of digital twin specimens and
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made the simulation implementation to solve crack path
ambiguity. Simulation result shows using digital twin can
reduce the inaccurate prediction under shear loading.
Besides, PTC is trying to establish a virtual space as
one-to-one representation of a unique physical product
to be used in the product design process. And many other
global famous companies (e.g., Dassault Systèmes,
Siemens PLM Software) also express great interests in
application of digital twin [30].

According to the applications of digital twin mentioned
above, digital twin currently is primarily applied to the
field of aeronautics and astronautics for failure prediction
and is mainly applied to product service and maintenance
phase. With the concluded characteristics of digital twin,
especially synchronous linkage and ultra-high fidelity be-
tween physical product and corresponding virtual product,
digital twin has high potential to solve above problems
existing in PLM. This paper will emphasize its potential
applications in product design, product manufacturing and
product service.

4 Digital twin-driven production design,
manufacturing, and service

4.1 Digital twin-driven product design

4.1.1 Existing product design processes

It is well known that the product design process refers to the
entire process of a specific design from start to finish and the
work steps of every stage it contains. Traditional product de-
sign process takes professional knowledge and experience of
the individual as the center. Under the circumstance, the de-
signers must carry out various tests to constantly prove the
validity and usability of the design at the designing stage. In
comparison, modern product design turns out to increasingly
trend to set the customers as the center and enhance the par-
ticipation of customers. Meanwhile, the product design pro-
cess becomes more and more virtualizing, networking, and
visualizing. Therefore, the modern big data-driven product
design process and cloud manufacturing come into being.

However, these processes definitely still have some prob-
lems. For instance, the big data-driven product design process
mainly puts emphasis on the analysis of physical data rather
than the data from virtual models, namely that the conver-
gence between product physical and virtual space is usually
absent. While the cloud manufacturing-based process cannot
make a quick response to the real-time changes due to lacking
of the interaction and iteration between big data analysis and
various activities. And the crowdsourcing-based process re-
quires users with professional knowledge to comment, but not
every user can participate in the review.

4.1.2 Digital twin-based product design

In allusion to the above problems, a new product design pro-
cess based on digital twin is put forward. Digital twin is an
integrated multi-physics, multi-scale, probabilistic simulation
of a complex product and uses the best available physical
models, sensor updates, etc., to mirror the life of its corre-
sponding twin. It can correctly map all kinds of physical data
of the product to a virtual space. The virtual product can reflect
the whole lifecycle process of the corresponding physical
product. Based on digital twin, the product design process
can be divided into conceptual design, detailed design, and
virtual verification, as shown in (Fig. 2).

Conceptual design Conceptual design is the first and also the
most important step of product design process, in which de-
signers need to determine the future designing direction of the
entire product. In this stage, designers will define the concept,
esthetics, and the main functions of the new product.
Meanwhile, designers need to deal with various kinds of data
such as customer satisfaction, product sales, product compet-
itiveness, investment plans, and many other information.
These data is huge and scattered, which makes it difficult for
designers to collect. Through utilizing digital twin, which can
integrate all kinds of data in the product’s physical space and
easily integrate all the information [19], designers can make a
quick understand on where should be improved with its char-
acteristic of having single information source. What’s more,
digital twin is a faithful mapping of the physical product and
can make the communication between clients and designers
more transparent and faster by using the real-time transmis-
sion data. It can perfectly guide the improvement of the new
product by making full use of customers’ feedback and vari-
ous problems appeared in customers’ usage of the previous
generation.

Detailed design After finishing the conceptual design, the
next stage is detailed design. In this stage, designers should
complete the design and construction of the product prototype,
as well as the development of tools and equipment used in the
commercial production. Designers need to further refine the
product design scheme which includes product functions and
appearance, product configuration, design parameters, and
test data on the basis of the former stage. The detailed design
stage requires repeated simulation tests to ensure that product
prototype can achieve the desired performance. However, be-
cause of a lack of real-time data and environmental-impacted
data, the effect of simulation tests is not obvious. Fortunately,
digital twin technology can solve this problem well as it exists
in the whole lifecycle of physical objects and can always co-
evolve with them. It can record all data of the product and the
influence of environment. [31].
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Virtual verification The last stage is the virtual verification.
In the traditional model, the validity and feasibility of design
scheme cannot be evaluated until carrying out small batch
production after finishing product design. It will not only ex-
tend the production cycle but also greatly increase the cost of
time and money. If designers choose to use digital twin model,
any accessories’ quality will be predicted before they are ac-
tually produced by debugging and predicting directly in the
model of digital twin. Digital twin-driven virtual verification
can take full use of the data of equipment, environment, ma-
terial, customers’ physical characteristics, and history data of
the last generation. This method can test whether there is a
design defect and find the cause of it, and then the redesigning
will be fast and convenient. Also, it can greatly improve the
design efficiency by avoiding tedious verification and testing.

What’s more, digital twin cannot only describe the behav-
iors but also propose solutions related to the real system. In
other words, it can provide operation and service to optimize
the auxiliary system and predict the physical objects based on
virtual models. Therefore, by using digital twin technology,
designers can create vivid simulation scenarios to effectively
apply simulation tests on prototypes and accurately predict the
actual performance of the physical products as far as possible.

4.1.3 A case of bicycle design based on digital twin

A bicycle is taken as an example to illustrate one of the future
application modes of digital twin-driven product design. As
shown in Fig. 3, the prototype will be finally obtained after
going through three stages (conceptual design, detailed de-
sign, and virtual verification), and digital twin technology
takes effect throughout the entire process.

In conceptual design of the bicycle, designers can integrate
the physical properties of the bicycle such as color, material,
size, mechanical properties, and the various data of its envi-
ronment like temperature and geographic information by
using digital twin technology to install assembly sensor on
the bicycle. And it can correctly map all kinds of physical data
of the product to a virtual space. Further, designers can get the
riding habits of users and improve the design scheme by an-
alyzing the information integrated by digital twin, such as
riding speed, riding time, and braking habits. For the de-
signers, online customer reviews are also an important class
of reference information, which can no doubt support the con-
cept generation in esthetic design and market competition
strategy. At this stage, another important issue needs to be
determined is the product cost control, which is directly relat-
ed to corporate profits. With the help of the historical data
integrated by digital twin, designers can analysis the product
sales, market demand, user groups, and the characteristics of
the similar products in the market. Taking the investment plan
into consideration, designers can guide the product material
selection, manufacturing process and pricing, etc., so as to
ensure the maximization of profits.

In the detailed design stage, designers will further refine the
design scheme on the basis of customers’ feedback, test data,
and various problems appeared in consumers’ usage of the
previous generation. For example, designers can be led to
choose the appropriate color collocation to reduce the proba-
bility of accident by gathering the probability statistics of traf-
fic accidents on bicycles with different colors. Also, improve-
ment should be made according to the different usage habits,
frame materials, tire size, and braking performance. Designers
will choose appropriate frame form and frame size, relative
position between handlebars and seat, relative position
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Fig. 2 Digital twin-based product design
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between the cushion and pedal, width of the cushion, and
angle of the seat surface according to the heights and shape
characteristics of the riders. In detailed design stage, designers
always need to carry out simulation verification to ensure that
the design scheme is feasible, such as whether the parts can
cooperate well, whether the color collocation is beautiful,
whether the energy transmission system is effort-saving,
whether the setting of the velocity gradient is reasonable and
so forth. Designers can timely solve all these design defects
and provide a relatively mature product prototypes for the next
stage’s virtual test.

In virtual verification stage, the designer can use digital
twin technology to predict and test product performance di-
rectly by simulating design scheme, manufacturing process
and environmental factors. They can also give operation in-
structions on the basis of the actual production conditions. In
this stage, designers can use historical data to carry out simu-
lation test according to users’ body characteristics, and riding
habit, so as to improve the comfort and convenience in prac-
tical use, such as the relative height of the seat, the sensitivity
of the brake, and the position of the bells. This method can
accurately find the defect of design and take rapid changes, so
as to improve the design scheme efficiently and avoid tedious
verification and testing.

4.2 Digital twin-driven product manufacturing

Product manufacturing refers to the whole process from the
input of raw materials to the output of finished products.
During the process, three aspects are mainly included, namely

resource management, production plan, and process control.
Firstly, according to the target product, the resources such as
materials, equipment, tools, operators, etc. should be prepared
and allocated. Secondly, to achieve objectives like reducing
cost, shortening time, and improving quality, a production plan
should be devised to predefine the manufacturing process,
including machining, assembling, logistics, etc. Then in the
execution stage, real-time states, such as the production sched-
ule, material storage, product quality, and need to be moni-
tored and controlled to ensure the accuracy, stability, and high
efficiency of this process. To realize product manufacturing,
shop floor is the basic performer, which provides the resources
and organizes them orderly to yield the finished products.

Judging from the development of shop floor, it roughly
experienced three stages, including “everything depending
on physical space,” “information space appearing and being
stronger,” and “physical space and information space begin-
ning to interact” [32]. After these stages, the tie between phys-
ical space and information space is enhanced. However, due to
the lack of data in the two sides as well as the data fusion and
interaction, a series of problems still exist in shop floor, such
as the lack of global optimization capacity in resource man-
agement, the divergence between production plan and actual
production, and the inaccuracy in manufacturing process
control.

Digital twin is an emerging and effective method for real-
time interaction and further convergence between physical
space and information space. To solve the problems men-
tioned above, digital twin-driven product manufacturing will
be discussed in this section.
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4.2.1 Method of digital twin-driven product manufacturing
in shop floor

Based on digital twin, Digital Twin Shop Floor (DTS) [32], a
new paradigm for product manufacturing is proposed. As
shown in Fig. 4, DTS is composed of Physical Shop Floor
(PS), Virtual Shop Floor (VS), Shop Floor Service System
(SSS), and Shop Floor Digital Twin Data (SDTD). PS is an
objective entities set, responsible for receiving production
tasks and predefined orders and executing the orders strictly
to yield final products. VS, an ultra-high-fidelity and full-
digitalized mapping of PS, can carry out simulation and fore-
cast for the production plans and process, give optimization
strategies to SSS, and also monitor and regulate the
manufacturing process in real time. SSS is the set of service
systems, providing supports and services for the product
manufacturing. SDTD refers to all the data related to PS,
VS, and SSS, as well as the derived data through data fusion
of the above three parts, and provides driving force for DTS.

As shown in Fig. 4, through convergence of SDTD, the
three components of DTS (i.e., PS, VS, and SSS) interact with
each other to realize the iterative optimization for resource
management, production plan, and process control. To study
the operation mechanism of DTS in detail, the process is given
as follows.

1. When a new production task is coming, under the driving
of SDTD, initial resource allocation plans for the equip-
ment, materials, tools, human, etc. that meet the task re-
quirements and constraints are generated. Specifically,
SDTD involves data from PS (such as the capacity,

quantity, real-time states of resources), data from VS
(such as history records, simulation data, forecast data of
resources), data from various service systems (such as
enterprise plan data, product data), and the fusion data
through data association, mining, combination, etc.
Benefited from these data, the resource allocation plans
are produced from a more comprehensive and practical
perspective, which are related to the current state, the fu-
ture state of the resources, as well as the global interest of
the whole enterprise. The resource allocation plans can be
produced in the form of services which provide orders of
allocation, so as to set resources to appropriate states.
Meanwhile, due to the real-time changes in PS, the ser-
vices of resource allocation need an iterative adjustment
and optimization.

2. According to the resource allocation plans, services in
SSS generate production plans predefining the actual
product manufacturing process, like equipment machin-
ing plan, manual operation plan, and tools scheduling
plan. These plans are transmitted to VS, which is com-
prised of element models, behavior models and rule
models, etc. VS carries out simulations in virtual space
based on the plans and finds out the potential conflicts
before the actual manufacturing process. VS can also
feedback optimization strategies to services through ana-
lyzing simulation data, forecast data, and rule data gener-
ated by various models. Services in SSS make corrections
according to the optimization strategies and transmit the
revised plans back to VS for another verification. This
process is finished until the production plan is verified
completely by VS.

Fig. 4 The composition and operation mechanism of DTS [32]
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3. PS receives orders based on production plans from VS
and organizes the product manufacturing process strictly
in accordance with the orders. During manufacturing, PS
transmits the real-time state data to VS, which updates
itself to flow up the physical changes. Meanwhile, VS
compares the current production process with the
predefined plans in virtual space. If the actual production
is not inconsistent with the production plans, SSS can
provide services to find out the existing problems and
judge which part should be adjusted based on the physical
disturbance data, simulation conditions data, environment
data, etc. According to the results, VS can produce real-
time strategies to adjust the production plans or real-time
orders, so as to regulate the production process to ensure
the consistence of the two parts and realize the optimiza-
tion and precision of the process control. When the pro-
duction task is completed, the final products are yielded
and the shop floor prepares for the next operation.

4.2.2 A case of digital twin-driven drive shaft manufacturing
in future

Drive shaft is a mechanical component for transmitting torque
and rotation, commonly applied in speed reducer. The raw ma-
terials of drive shaft are steel bars, which have different types,
reflecting in diameter, grade, strength, etc. Before machining,
the NC code should be edited to predefine the manufacturing
process. Duringmachining, themachine tool processes the steel
bars with center bore, groove, chamfering in accordance with
the NC code through lathing, milling, polishing, etc. The fin-
ished drive shaft should be tested on the aspects of dimensional
accuracy, surface roughness, balance, etc.

This section mainly discusses the future possible mode of
digital twin-driven product manufacturing, and takes the drive
shaft machining process as an example to illustrate the mode.
As shown in Fig. 5, the digital twin refers to the physical pro-
duction factors (i.e., steel bars, CNC machine, finished/semi-
finished drive shaft, machine operator, shop floor environ-
ment), their corresponding models (i.e., virtual production fac-
tors), and the digital twin data. Digital twin data includes the
physical data collected from sensors or numerical control sys-
tems installed in the physical machining shop floor, the virtual
data read from the virtual models as well as the existing infor-
mation systems (i.e.MES, ERP, PLM), and the data ties the two
parts together. The optimization of resource management, pro-
duction plan, and process control is discussed as follows:

Firstly, according to the production task of drive shaft, the
raw materials and machining equipment should be allocated.
The physical data, including the steel bars attributes, the CNC
machine process capacities, and availability, etc. can be col-
lected through RFID in real time. Virtual data, like the steel
bars mechanical/thermal analysis data, machine performance

prediction data, and failure statistical data can be achieved
from virtual models of steel bars as well as the CNCmachines.
And other virtual data, like the production task management
data, and enterprise interest data, can be read from information
systems. Driven by the above data, as well as the processed
data through association, clustering, regression, etc., services
from SSS can devise plan of allocating steel bars and CNC
machines for the current production task.

Secondly, based on resource allocation, services in SSS pro-
duce NC code as machining plan according to the machining
size, tolerance, characteristics, so as to predefine the machining
process, including the spindle speed, the feed rate, the position
of groove, etc. Before the actual execution, the plan is transmit-
ted to virtual CNC machine for verification. Through the sim-
ulation, the existing problems, such as the interference and
collision between the tools and workpiece, can be found out.
Meanwhile, as the simulation can be carried out repeatedly with
little cost, the machining plan can be optimized through itera-
tive test to achieve lower energy consumption, shorter process-
ing time, and higher machining accuracy, etc. Based on the
simulation results, services in SSS revise the machining plan.

Thirdly, driven by the machining plan, the CNC machine
starts to operate. During this process, the real-time state of
workpiece/tool position, spindle speed, feed rate, etc. can be
read from numerical control system. Meanwhile, the tool
wear, spindle vibration, workpiece surface roughness, etc.
can be collected from external sensors. Virtual models of
CNC machine and workpiece get these data to update their
states; meanwhile, the models compare the current states with
the predefined plan. If the inconsistence is existed, services in
SSS will evaluate the machining process to find out whether
problem is caused by physical disturbance, like the spindle
vibration, tool wear, material defect, or by unreasonable fac-
tors of plan simulation, like parameter setting and boundary
and initial conditions. Based on the result, virtual CNC ma-
chine will generate real-time order to regulate the machining
process or adjust the machining plan to ensure the consistence
between the two sides.

When the manufacturing process is completed, the finished
drive shaft should be tested in size, accuracy, balance, etc. If
they are satisfied with the indicators defined in virtual product,
the drive shaft is qualified, otherwise a repair is needed.

4.3 Digital twin-driven product service

The product service described in this paper refers to the phases
after sale, including product utilization and maintenance
phases. In the two phases, users are mainly concerned with
reliability and convenience of product, while manufacturers
are mainly concerned with real-time product operation state,
maintainability, when to maintain, what strategies to employ,
and so on.
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4.3.1 Method of digital twin-driven product service

For complex products, such as aircraft, automobile and elec-
tric power equipment, they are characterized by complex
structure, multiple parts, heterogeneous and multi-functional
materials, and inconsistent degradation of material function.
Any one of the defects and damages may lead to unnecessarily
malfunction of the product, even serious safety accidents.
Thus, it is particularly important for complex products to carry
out daily maintenance.

Current existing maintenance methodologies for complex
products are largely based on similitude and a heuristic under-
standing of the effects of operational and anomalous condi-
tions on the structural health, safety, and performance of a
complex product. The probabilistic or reliability methodolo-
gies are inadequate because they are based on assumed simil-
itude between the circumstances in which the underlying sta-
tistics are obtained and the environment in which the complex
product operates. However, the conventional approaches tend
to be reactive rather than proactive and are often based on
heuristic experience, worst-case scenarios rather than on the
specific material, structural configuration, and usage of an
individual complex product [22].

As the definition and characteristics of digital twin, it consists
of three parts: physical product, virtual product, and connected
data that tie the physical and virtual product, as shown in Fig. 6.

With the digital twin methodology, degradation and anomalous
events can be understood, and unknowns can be foreseen pre-
viously. On this basis, relevant services about complex product
will be provided to product users and manufacturers, including
the following nine categories of services, as shown in Fig. 6.

1. Service of real-time state monitoring. Based on the meth-
odology of digital twin, advanced sensor and communica-
tion technology is employed to update the twin of physical
product in real time. Product’s real-time state data is trans-
mitted to the constructed virtual product model to realize
the synchronous linkage and ultra-high fidelity between
physical product and corresponding virtual product. The
real-time state data includes product position information,
energy consumption information, user operation and set-
ting data, product running information, material structure
information, parts wear information, and so on. With the
acquired real-time data and history data, product manufac-
turer can understand the operation state of the product in
real time, and following services can be conducted with the
extra virtual product data and connected data.

2. Service of energy consumption analysis and forecast.
With the ultra-high fidelity between physical product
and virtual product, the energy consumption

Fig. 5 The drive shaft
manufacturing based on digital
twin
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information of product or key parts can be monitored
in real time. Based on the real-time and history energy
consumption data, relevant statistical analysis can be
made, such as energy consumption proportion of each
key part, energy consumption per day/week/month.
Besides, with the forecast algorithm library and knowl-
edge library, future energy consumption can also be
forecasted. Considering the energy consumption anal-
ysis and forecast, relevant activities of PLM can be
carried out, such as green material selection [33] and
large-scale process planning [34].

3. Service of user management and behavior analysis. Each
user has its own operation habits. With the real-time mon-
itoring of digital twin, all the operations of users can be
obtained. Through analyzing the operation habits, the in-
fluence of poor operation on product performance and life
can be computed on the one hand, and on the other hand,
it can help manufacturers to update systems and improve
product performance.

4. Service of user operation guide.With the high-speed com-
puting in virtual product space, on the one hand, digital
twin-driven user operation guide can guide users to oper-
ate product, and on the other hand, it can correct the users’
poor habits in real time. Meanwhile, based on the analysis
of users’ operation habits, product health information,
system update, etc., the operation manual library will also
be updated in order to satisfy users’ different demand.

5. Service of intelligent optimization and update. The oper-
ating habits of users are different, as well as application
environment and service objects of each product. Through
analyzing users’ operation data and product behaviors da-
ta, and mining prediction/root-cause/evaluation/optimiza-
tion data, new product running modes which are more fit
the needs of users are proposed and can be loaded into the
product through rewriting the internal functional program.

6. Service of product failure analysis and prediction.
The virtual product model is not only composed of
geometric models of product parts but also includes
material properties, parts linkage coupling model,
parts mechanics/temperature/flow coupling model.
Through running relevant failure prediction algo-
rithms with the virtual product model, real-time state
data, and history data, product failure prediction is
provided to users and manufacturer.

7. Service of product maintenance strategy. With digital
twin technology, the ultra-high-fidelity virtual prod-
uct model can faithfully reflect the mechanical struc-
ture of parts and the coupling between each other.
When a fault occurs, faulty part can be detected with
the service of product failure analysis. Then, corre-
sponding maintenance strategy will be provided to
the manufacturer and users, such as the position of
faulty part, corresponding disassembly sequence, part
specifications that need to be replaced.

8. Service of product virtual maintenance. The virtual main-
tenance cannot be implemented without the constructed
ultra-high-fidelity virtual product model and virtual reali-
ty technology.While product failure occurs, and the main-
tenance strategy is provided, users or manufacturer can
carry out virtual maintenance based on virtual reality
and augmented reality technology, before conducting
practical maintenance.

9. Service of product virtual operation. As a complex prod-
uct often means complex operation, the operator needs a
long time training and learning. Based on the constructed
ultra-high-fidelity virtual product model and relevant da-
ta, the service of product virtual operation provides a plat-
form where training and learning can be performed, thus
shortening the train time, improving the training efficien-
cy and accuracy.

Fig. 6 Digital twin-driven
product service
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Under product digital twin circumstance, and based on the
physical product data, virtual product data, and connected data
that ties the physical and virtual product, above nine smart
services have the potential to improve the intelligence level
of product, reduce product failure rate, improve maintenance
effectiveness, and improve product utilization efficiency.

4.3.2 A case of digital twin-driven power transformer service

A power transformer is taken as an example to illustrate one of
the future application modes of digital twin-driven product
service, as shown in Fig. 7. The ultra-high-fidelity virtual
power transformer can be depicted through modeling material
properties, parts mechanics/temperature/flow coupling model
and updating real-time physical power transformer data.
Through adding sensors to the power transformer, as shown
in Fig. 7, data of real state of physical power transformer can
be fully synchronized to the virtual model. Meanwhile, rele-
vant performance, such as parts structure and conversion effi-
ciency, is employed to update knowledge library. Digital twin
can timely analyze and evaluate whether maintenance is need-
ed, whether it can bear the subsequent task and so on, accord-
ing to the existing performance situation and the knowledge.
The information of decision-making schemes is fed back to
the physical power transformer. Meanwhile, the decision-
making result can also be employed to update knowledge
library.

On this basis, the digital twin-driven power transformer
service is constructed with the physical transformer, virtual
transformer, and connected data that tie the physical and vir-
tual power transformer. After that, relevant services about the
power transformer are analyzed as follows: (1) Real-time state
monitoring of power transformer. Specific monitoring infor-
mation includes basic information of the power transformer,
equipment current status assessment score, power transmis-
sion capacity statistics, and contribution of each measuring
point. (2) Energy consumption of power transformer itself.
In addition to the power transmission and conversion capacity,
the energy consumption of transformer itself also needs to be
measured. Relevant statistics includes daily/weekly trans-
former self-consumption of energy, and follow-up energy con-
sumption forecast. (3) Output power quality prediction and
analysis. Power quality plays an important role in the opera-
tion of the power grid. Therefore, monitoring of real-time
output power quality is necessary. Multiple point information
is measured firstly, such as oil level, temperature, and pres-
sure. And then, based on the multi-points linkage-dynamic
bias threshold method, the bias of detection value is analyzed.
Meanwhile, a plane is created in real time, and a variable
dummy (evaluation value) for each measuring point with oth-
er measuring points is constructed. Based on the multiple non-
linear regression method, output power quality can be ana-
lyzed and predicted.

5 Key technologies and challenges ahead

The key technologies that need to be researched for
implementing digital twin-driven product design, manufactur-
ing, and service can be classified to the following five aspects:

1. Intelligent perception and connection. Related technolo-
gies to implement intelligent perception and connection
include heterogeneous resources real-time perception and
access technology, multi-source/modal data fusion and
encapsulation technology, multi-source data communica-
tion and distribution technology, sensor co-measurement,
and layout optimization technology.

2. Virtual modeling, running simulation and verification.
The following technologies need to be addressed: “fac-
tor-behavior-rule” multi-scale modeling technology, vir-
tual product running simulation technology, virtual pro-
duction operation simulation and verification technology,
virtual maintenance technology, virtual reality, and aug-
mented reality technology.

3. Digital twin data construction and management. Related
technologies include multi-granularity/scale data plan-
ning and cleaning technology, interpretable-operable-
traceable heterogeneous data fusion technology, data clus-
tering storage technology, virtual-real convergence and
data collaboration technology, and virtual-real bidirec-
tional mapping technology.

4. Digital twin-driven operation technology. The operation
of digital twin-driven product design, manufacturing and
service takes the following technologies as the prerequi-
site: high-performance computing technology, machine
learning technology, real-time virtual-real interactive
technology, self-organizing/adaptive dynamic scheduling
technology, production factors configuration, production
planning, and production process iterative operation and
optimization technology.

5. Smart production and precision service. Related technol-
ogies include smart production and operation optimiza-
tion services technology, collaborative production analy-
sis technology, material intelligent tracking and distribu-
tion technology, production factors failure prediction and
maintenance strategy technology, product lifecycle ener-
gy consumption optimization and forecasting technology,
and product quality real-time analysis technology.

Meanwhile, there are many challenges that need to be ad-
dressed before digital twin can be accepted as a viable choice
in product lifecycle, such as the following:

1. Ultra-high synchronization and fidelity between the virtu-
al and physical space needs the breakthrough of virtual
modeling technology and ultra-high-speed transmission
technology.
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2. High-performance computing and multi-physics/multi-
scale interdisciplinary need to be addressed and improved
to realize real-time smart analysis and prediction.

3. Deep learning in digital twin-driven product design,
manufacturing, and service is another challenge that ur-
gently needs to be addressed. And how to employ deep
learning to undergo continuous improvement through the
integration and convergence between virtual data and
physical data is also a huge challenge.

4. Regulation at the personal, enterprise, local, national, and
international level is another challenge hindering the im-
plementation of digital twin-driven product design,
manufacturing, and service, as well as the ideology con-
straints and cost limitations from part enterprise, especial-
ly small and medium enterprises. In addition, there is a
lack of standards and criteria.

6 Conclusion and future works

With the coming of big data-driven manufacturing era, many
new technologies, such as internet of things (IoT), big data,

service-oriented technology, and cloud computing, have been
employed in PLM. However, the current technologies mainly
focus on physical product data rather than the data from virtual
models. On the one hand, data generated in various phases of
the whole product lifecycle may form the information island
between different phases of product lifecycle. And on the
other hand, a lot of duplicate data exists in different phases
of product lifecycle and leads to resources waste and data
sharing inefficiency. Besides, the interaction and iteration be-
tween big data analysis and various activities in the whole
product lifecycle are relatively absent. To solve the problems,
digital twin, with the characteristics of ultra-high synchroni-
zation and fidelity, convergence between physical and virtual
product, etc., has high potential application in product design,
product manufacturing, and product service.

The main contributions of this paper are concluded as fol-
lows: (1) To solve the problems about data in product
lifecycle, a newmethod for digital twin-driven product design,
manufacturing and service is proposed. (2) The detailed appli-
cation methods and framework of digital twin-driven product
design, manufacturing, and service are investigated. (3) Three
cases are given to illustrate the practical applications of digital
twin driven the three phases of a product respectively.

Fig. 7 Digital twin-driven power
transformer services
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This paper preliminarily investigated the application
methods and frameworks of digital twin-driven product de-
sign, manufacturing, and service. At present, the research is in
the initial stage and still needs a lot of research work. Future
work will concentrate on the following aspect: (1) intelligent
perception and connection technology, (2) digital twin data
construction and management, (3) smart service analysis
method based on digital twin data, and (4) more applications
on digital twin-driven PLM.
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