
1 Copyright © 2000 by ASME

Proceedings of DETC ’00:
ASME Design Engineering Technical Conferences

and Computers and Information in Engineering Conference
September 10-13, 2000 – Baltimore, Maryland

DETC2000/DTM-14565

MODULAR PRODUCT ARCHITECTURE

Jeffrey B. Dahmus
Graduate Research Assistant

Javier P. Gonzalez-Zugasti
Graduate Research Assistant

Kevin N. Otto
Associate Professor

Center for Innovation in Product Development
Massachusetts Institute of Technology

Cambridge, MA 02139

ABSTRACT
This paper presents an approach to architecting a family

of products that share inter-changeable modules. Rather than
a fixed product platform upon which derivative products are
created through substitution of various add-on modules, the
approach here permits the platform itself to be one of several
possible sizes or types. Thus, the system is a collection of
modules, each of which can be one of several types. We begin
by developing function structures of each product in the
portfolio, where each embodies a specific physical principle
underlying the common technology. Different function
structure systems can be used for each physical principle under
consideration. These function structures are then compared to
determine common and unique modules. Product modularity
rules (i.e. dominant flow, branching, and conversion) are then
applied to determine further possible modules. Application of
any consistent set of modularity rules defines a feasible
portfolio architecture. Each portfolio architecture is
represented using a modularity matrix of functions versus
products, with shared/unique function levels indicated in the
matrix. Possible product modules are indicated with boxes
while possible portfolio modules are indicated with shading.
This method provides a systematic approach to generating
possible portfolio architectures and serves as a communication
aid for design team deliberations.

INTRODUCTION
Determining product architecture is one of the key

activities of any industrial product development activity.
Volkswagen claims to save $1.7 billion annually on
development and production costs through effective product

architecture (Bremner, 1999). Volkswagen is able to take
advantage of platform and component commonality by sharing
between its four major brands, namely VW, Audi, Skoda, and
Seat. These different automobiles share car platforms, which
in Volkswagen’s case includes front axles, rear axles, front
ends, rear ends, exhaust systems, brake systems, and numerous
other elements (Bremner, 1999). However, Volkswagen also
claims that all vehicles on this shared common platform can be
effectively differentiated in the eyes of the customer.
Interestingly, Ford Motor Company has similar shared
platform ambitions within its new Generic Architecture
Process program. However, Ford defines its platform, which
will be shared between several car models, to consist of
common welding lines, suspension systems, and drivetrains
(Bremner, 1999). Ford has similar expectations of large
monetary savings in development and production costs while
maintaining the ability to effectively differentiate the
platformed cars in price and performance. Suprisingly,
Volkswagen and Ford's definitions as to what constitutes a
platform are vastly different.

This example highlights that the product architecting
process, despite being a key determining factor in both cost
savings and in the ability to offer product variety, is not well
understood. System engineering and architecting remains an
activity relegated to heuristics. Such activities are often only
completed by experienced systems engineers who have gained
an understanding of the various objectives that must be
considered when architecting a product line. In this paper, we
will develop a systematic methodology to architecting a
product portfolio.

2 Copyright © 2000 by ASME

System architecting involves clustering various
components in a product such that the resulting modules are
effective for the company. An ideal architecture is one that
partitions the product into practical and useful modules. Some
successfully designed modules can be easily updated on regular
time cycles, some can be made in multiple levels to offer wide
market variety, some can be easily removed as they wear, and
some can be easily swapped to gain added functionality. These
virtues of effective product modularity are multiplied when
identical modules are used in various different products. For
example, the VersaPak™ rechargeable battery system is used
across dozens of Black & Decker® products.

As elsewhere, we define product modules as sub-systems
within a product that are bundled as a unit, and which serve
identifiable functions. The product module is the pair, both the
subsystem and the functions. We define portfolio modules as
product modules that are used in multiple products. Deciding
over what makes effective modules, both for each product and
for the portfolio as a whole, is the topic of this paper.
Modularization decisions can be made after restricting the
portfolio to a physical principle (such as DC battery powered,
AC electrically powered, compressed air powered, etc.). At
this point, much freedom remains in determining how a family
should be constructed. Modularity decisions can also be made
at the technology research and development phase, when
decisions are reached about which physical principles should
be explored. This paper focuses on the former, where
modularity decisions are made after selecting a physical
principle.

We find there are four main influences on a system
engineer when determining product partitioning modules that
will be used across a product family. These four general types
of objectives must be considered when making up-front system
architecting decisions. The first is traditional market variance
- how variety is needed on each customer concern, as measured
by the variance from customer to customer. The second is
usage variance - how a product purchaser needs variety after
the purchase is made. This variance, typically neglected in
market science literature and research, is critical to
understanding what product offerings are needed, be it
multiple fixed product offerings, swappable modules on a
standard interface, or an easily adjustable platform. The third
influence is technology change - how fast the various modules
change before a product design update is required. The last
type of influence we call Design for X - how design,
production, supply and lifecycle criteria factor into
consideration when determining product partitioning.

RELATED WORK
The development of product families built on product

platforms and shared modules has been the subject of much
recent research. Meyer and Lehnerd (1997) have done
extensive case studies on platforms, pointing out their
advantages and challenges, and demonstrating their ability to
save costs. Other researchers such as Sanderson and Uzumeri
(1995) and Henderson and Clark (1990) have also shown that
the use of platforms has given companies an edge on the
number of products they can offer and on their profitability
over their competitors. Other management research has shown
different approaches on managing the planning and use of
platforms (Wheelwright and Clark, 1992; Erens and Verhulst,
1996; Robertson and Ulrich, 1998; Pedersen, 1999; Pulkkinen
et al., 1999).

In the product design literature, one can find several
design and manufacturing strategies for offering variety that
begin with commonality metrics (Martin and Ishii, 1997; Kota
and Sethuraman, 1998). There are also several model-based
approaches to designing different kinds of product platforms.
Simpson et al. (1999) and Conner et al. (1999) use a Decision
Support Problem formulation to design families of products
based on scalable platforms. A similar approach is used by
Ortega et al. (1999) to show tradeoffs among multiple life-
cycle objectives for a product family. Krishnan et al. (1998)
developed network models to design families of products that
are measured along a single performance criterion. Siddique
and Rosen (1999) use a graph-grammar approach to design
commonality into a family of products. Finally, optimization
approaches have been developed by Gonzalez-Zugasti et al.
(1998) and Nelson et al. (1999) to design product platforms
and families of variants. Another optimization approach is
used by Fujita et al. (1999) for designing a family of products
from catalogs of existing swappable modules. These
optimization formulations require system equations relating
performance to configuration variables, thereby yielding an
architecture. We explore here upstream work to identify
effective architectures that these aforementioned methods can
then evaluate among.

Less work has been done to develop tools to help the
system engineer partition systems into common modules.
Rechtin and Maier (1997) have developed many architecting
heuristics and checks for system engineers to consider when
partitioning systems. We have found that these rules of thumb
are all often true and all often conflict, making their use
limited. Nonetheless, the ideas are sound and influential in
practice. In this paper, we present a method for partitioning a
set of products into shared and individual modules based upon
functional modeling. Function structures developed by Pahl
and Beitz (1996) are used to model the products in the family.
Starting with these functional models, we then make use of
single product architecting rules as first developed by Stone et

3 Copyright © 2000 by ASME

al. (1998) and then further apply portfolio architecting rules as
developed by Zamirowski and Otto (1999). The result is a set
of possible product portfolio architectures. These fit into the
categorization of portfolio architectures shown by Yu et al.
(1999). The method shown here provides a means to select
among the possible architectures.

APPROACH
Our approach to architecting systems, which follows on

works of Stone et al. (1998) and Zamirowski and Otto (1999),
is outlined in Figure 1. Each step will be extensively covered
in the subsequent sections. We begin the process by
determining what underlying technologies should be utilized,
and by establishing the limits of the product family that must
share common modules. Each of these products is then
developed as relatively independent conceptual designs. If
multiple forms are possible for a product application, then one
has multiple concepts to consider in this process. The next
step is to develop function structures for each of the product
concepts. These function structures for each concept are then
unioned into a large family function structure. The family
function structure indicates the interrelationships of functions
for all the products in the family. We next introduce the idea
of the modularity matrix, which lists the functions in the
family versus the products in the family. Key specifications for
the functions, as used in each product, are entered into the
matrix. Together, the matrix elements form the architecting
decision space. For example, should identical targets be
established across products in the family? Should shared
modules be formed between different products in the family?
Modules within products are indicated with boxes, while
modules shared across products are indicated with shading.
By grouping different entries in the matrix, different
architectures are formed. The matrix thus provides a clear
means to describe each alternative portfolio architecture.
Architectures so generated can then be compared and
contrasted using a selection approach such as Pugh concept
selection (Pugh, 1991), more numerical forms such as decision
analysis (Thurston, 1990), or numerical metrics such as profit
to the firm.

We next present each of these steps in greater detail, in the
context of the Black & Decker® VersaPak™ product portfolio.
We review function structure modeling and the rules for
product and portfolio architecting. We then introduce the
modularity matrix in greater detail and present an example of
portfolio architecting using this tool. As an example, we will
develop an alternative architecture for the Black & Decker®
VersaPak™ line.

Independently develop conceptual designs
for multiple products in a family.

Use the modularity matrix to aid in
constructing different possible product

and portfolio architectures.

Construct a modularity matrix using
functions from the family function structure

versus products in the family.

Union multiple product function structures
into a single family function structure.

Develop separate function structures
for each product concept.

Use a selection method to choose feasible
product and portfolio architectures.

Research and develop underlying technologies
embodying different physical principles.

Figure 1: Overview of the Portfolio Architecting Process.

BACKGROUND
Functional decomposition of products can be completed

through various methods. FAST (Value Analysis Incorporated,
1993), Hatley and Pirbhai (1987), and other function-logic
diagramming methods all attempt to accurately describe what
a product is to do by mapping a system of functions for the
product. The end result of these function-logic diagrams is a
clearer understanding of the set of related functions necessary
to allow the product to fulfill its overall intended function.
Ideally, such a diagram is form-independent and identifies
discrete, indivisible functions.

4 Copyright © 2000 by ASME

For electromechanical systems, a technique to create
diagrams known as function structures is widely employed
(Pahl and Beitz, 1996). A function structure is a set of sub-
functions interconnected by flows. Identifying these flows
proves effective for helping to partition products into modules.
For example, sub-functions with large sets of inter-connecting
flows are not good candidates for separation into individual
modules. The flows connecting sub-functions are identified as
information, material, or energy flows. An example of a
function structure for a VersaPak™ cordless screwdriver is
shown in Figure 2. Note that only product functions are
shown; human and other systems used as a part of inserting or
removing screws are not shown. Only the things the device
actually interfaces with are part of the function structure.
Things outside this system are shown as flows into and out of
the structure.

As compared with general function structure use as in
Pahl and Beitz (1984), we restrict the function structure to only
product functions (and not human functions, etc. required to
turn screws). We also generally consider a particular phase of
product development. Function structures can be used in very
preliminary research and development efforts to conceive and
develop new technologies that are not currently physically
embodied in the current product lines or in any competing
product lines. The ability of function models to be form
independent and thereby allow a team to conceive alternative

forms, is often used as a reason for functional modeling. We
will take a different view on this statement, though, that
requires explanation.

As is the case in most modern product development efforts
at major corporations, we split concept generation into two
phases, a phase involving research and development of
technology, and a phase involving technology deployment into
product lines. For example, with the Black & Decker®
VersaPak™ line, one could also generate new technology
concepts that use a different physical principle, such as
compressed air powered devices. Functional modeling can be
used to describe requirements at a level of detail generic to
both physical principles. We are not concerned with this
problem here.

Rather, we focus upon the deployment of technology most
effectively into product lines: how to make modules such that
they should or should not be shared across products. This is a
different problem for which functional modeling, and function
structures in particular, is ideally suited. A technology concept
has been selected and developed to the point of feasibility, and
now the question is over how to deploy this into several
products.

The function structure in Figure 2 shows various distinct
product sub-functions, each in its own box. Arrows between

Reaction force

Force into
opposite hand

Battery

Bit

Thumb

ThumbNoise

Screw

Hot turning screw

Hand Force

Hand

Hand Force

Noise, Heat

Battery

Hand force

Register
Bit

Secure
Bit

Transmit
Power

Permit
Bit

Positioning

Transform
(Τ,ω)

Convert
Electricity
to Motion

Switch
Power

Input
Signal

Unregister
Battery

3.6V DC

Un-lock
Bit

Force into
opposite hand

Bit

Transmit
Electricity

Register
Battery

Prevent
Back

Rotation
Hand torque

Torque

Input
Hand

Hand

Turn
Screw

Release
Bit

Bit
secure

Bit position

Figure 2: Function Structure for a VersaPak™ Cordless Screwdriver

5 Copyright © 2000 by ASME

the boxes show the various flows. The system boundaries,
where the user interacts with the product, exist where these
flows enter and exit the system.

To develop a function structure for any given product, Otto
and Wood (1998) present an approach based upon tracing
flows. For every customer need, a flow is identified. This flow
is then traced through the product, as it would flow during use,
as a sequence of sub-functions that change the flow. The point
of view of the product is always considered, hence hands,
batteries, and tooling are passed through the product, not vice
versa. These independent chains are then merged into a
complete function structure network that is minimally
comprehensive of the customer needs.

Function structures are so generated for each product
concept. Later, we will consider how to cluster sub-functions
into modules for any one of the products. These modules form
the modular architecture of an individual product.

Once the function structures for each product in the family
have been developed, they must be unioned into the family

function structure. The union of the function structures yields
a single diagram that has every function of every product on it,
complete with their flow interactions. For a VersaPak™
family of products consisting of a cordless screwdriver,
multipurpose saw, ScumBuster™ scrubber, 2-speed drill, and
Wizard™ rotary tool, the family function structure is shown in
Figure 3.

Note that different information is attained if one considers
the intersection of the function structure diagrams. For
example, in Figure 3, the intersection is shown as the un-
shaded functions. These are the candidate functions to
possibly modularize into a common platform. On the other
hand, this is incomplete as not all functions in the family are
represented. Often, a function is performed by all of the
variants, but with drastically different flows. For example, the
“Transmit Power” function conveys rotational or linear
motion, depending on which variants are considered.
Therefore, this function could not be platformed across the
entire portfolio. However, the same function might be
platformed across a subset of the products, such as the drill,
ScumBuster™ , and Wizard™ . Thus, a more sophisticated

Switch
Power

Input
Signal

Heat in
Tooling

Hand force

liquid
liquid

Force into
opposite hand

Battery

Battery

Unseal
Battery

Unregister
BatterySeal

Battery
Register
Battery

Object

Schmutz

Object

Fluid
Act on
Object

Heat, Noise

Noise, Heat

Finger

FingerNoise
Hand

Input
Torque

Transmit
Power

Prevent
Back

Rotation

Transform
(Τ,ω)

Convert
Electricity
To Motion

Transform
Motion

DC voltage

Hand torque

Hand

Torque

Hand force

Reaction force

Permit
Tooling

Positioning

Tooling Position

Tooling

Hand Force

Register
Tooling

Release
Tooling

Force into
opposite hand

ToolingUn-lock
Tooling

Secure
Tooling

Tooling Secure

Shared Function
ScumBusterTM
Scrubber only
Cordless
Screwdriver only
Multipurpose
Saw only

Transmit
Electricity

Figure 3: Family function structure for a VersaPak™ portfolio of products.

6 Copyright © 2000 by ASME

view of platforming must be employed.

MODULARITY RULES
When considering a single product, Stone et al. (1998)

identified a set of three heuristics that can be used to identify
product modules on a function structure. The heuristic
methods applied to modularize product function structures are
divided into three types: dominant flow, branching flows, and
conversion-transmission.

The dominant flow heuristic examines flows through a
function structure, following flows until they either exit from
the system or are transformed into another flow. The sub-
functions through which a flow can be traced, define a module.
More succinctly, a set of sub-functions through which a flow
passes, from initial entry or formation of the flow in the
system, through final exit or conversion of the flow within the
system, define a module.

The branching flow heuristic examines flows that branch
into or converge from parallel function chains. Each branch of
a flow can become a module. Each of these modules interface
with the product through the point at which the flow branches
or converges.

The conversion-transmission module examines flows
which are converted from one type of flow to another. A
conversion-transmission module converts an energy or
material into another form, then transmits that new form of
energy or material. In many instances, this conversion-
transmission module is already housed as a module, as in the

case of an electric motor.

When considering the entire portfolio, an additional set of
rules can be applied to aid in module identification
(Zamirowski and Otto, 1999). The heuristic methods applied
to modularize portfolio function structures are divided into two
types: shared functions and unique functions.

Shared functions can be used as a means to define
portfolio modules. Functional groups that share similar flows
and functions, and that appear multiple times in a
comprehensive portfolio function structure, should be grouped
into a single module. This module can then be reused
throughout the portfolio of products.

Variant functions are those functions that are unique to a
single product or subset of products. Such functions should be
grouped into a module. Isolating variety in this way echoes the
idea of delayed differentiation in design for variety (Martin
and Ishii, 1997).

MODULARITY MATRIX
The family function structure is an effective tool to

visualize the interactions of flows and candidate modular
partitions. For example, partitioning lines that cross many
flows will define a module that may be difficult to design since
it will require much communication with the groups
developing the adjoining modules. On the other hand, it is
difficult to simultaneously visualize the partitions for multiple
products in a family. A further difficulty occurs when labeling
different sized modules. That is, while some functions are

Function Cordless Screwdriver Multipurpose Saw ScumBusterTM Scrubber 2-Speed Drill WizardTM Rotary Tool

Register Battery 1 2 1 2 1
Unregister Battery 1 2 1 2 1
Transmit Electricity 1 2 1 2 1
Seal Battery - - yes - -
Unseal Battery - - yes - -
Input Signal thumb finger finger finger thumb
Switch Power forward/reverse/off on/off/lock on/off forward/reverse/off/lock low speed/high speed/off
Convert Electricity to Motion motor A motor B motor C motor D motor E
Transform (T, ω) transmission A transmission B transmission C transmission D -
Transmit Power rotating shaft translational blade rotating shaft rotating shaft rotating shaft
Input Hand Torque yes - - - -
Prevent Back Rotation yes - - - -
Transform Motion - yes - - -
Register Tooling hexagonal hole blade carriage triangular hole three-prong chuck collet
Secure Tooling retaining clip set screw snap fit chuck housing collet nut
Permit Tool Positioning product shape handle handle trigger handle trigger handle
Act on Object rotate cut scrub drill/rotate grind

Figure 4: Modularity matrix for a VersaPak portfolio of products.

7 Copyright © 2000 by ASME

grouped into a module, there will be several sizes offered of
that module to create multiple product variants. Thus, a single
platform concept, shared across all product variants, is not
sufficient to think about platforming.

To deal with this complexity, we define here the
modularity matrix, which aids in the application of the
modularity rules, both for products and for product portfolios.
A modularity matrix lists the possible functions from a family
function structure as rows in the matrix, then lists the possible
products from that family as columns. Each matrix element
contains a value that represents the function specification level
required. Ideally, a single value is used, though some
functions are sufficiently complex that multiple specifications
may be required. A modularity matrix for a VersaPak™ family
of products is shown in Figure 4.

The specification values entered in the matrix represent
targets for the functions of each product. These various values
form the architecting space that will define possible product
and portfolio architectures. That is, a design team must select
specification values for each function in each product. The
extent to which a product’s set of specifications is compatible
defines how well the individual product will work. The extent
to which a function has the same targets established across
products defines how well functions can be satisfied through
shared modules. Thus, the architecting process for each
product and for the product family is laid clear. Completing

such activities is critical to the development process.

Laying out this information in a matrix allows
commonalties to be easily identified. These commonalties can
in turn lead to possible modules. First, we can form groupings
of functions column-wise, which incorporate multiple
functions all within one product. This highlights possible
product modules. These modules can be selected on the family
function structure using the rules of dominant flow, branching
flow, and conversion-transmission.

Second, we can form groupings of functions row-wise,
which incorporate the same functions into multiple products as
a single module. This highlights possible portfolio modules
that can be shared among multiple products. These modules
can be selected on the family function structure using the rules
of common and unique modules.

PORTFOLIO ARCHITECTING
The method described above was used to analyze modules

for the Black & Decker® VersaPak™ portfolio of products.
Once separate function structures were developed for each
individual product, a family function structure, as shown in
Figure 3, was created. This family function structure takes
into account all functions that the portfolio products must
satisfy. Some functions clearly overlap, while others are
unique to individual products.

Function Cordless Screwdriver Multipurpose Saw ScumBusterTM Scrubber 2-Speed Drill WizardTM Rotary Tool

Register Battery 1 2 1 2 1
Unregister Battery 1 2 1 2 1
Transmit Electricity 1 2 1 2 1
Seal Battery - - yes - -
Unseal Battery - - yes - -
Input Signal thumb finger finger finger thumb
Switch Power forward/reverse/off on/off/lock on/off forward/reverse/off/lock low speed/high speed/off
Convert Electricity to Motion motor A motor B motor C motor D motor E
Transform (T, ω) transmission A transmission B transmission C transmission D -
Transmit Power rotating shaft translational blade rotating shaft rotating shaft rotating shaft
Input Hand Torque yes - - - -
Prevent Back Rotation yes - - - -
Transform Motion - yes - - -
Register Tooling hexagonal hole blade carriage triangular hole three-prong chuck collet
Secure Tooling retaining clip set screw snap fit chuck housing collet nut
Permit Tool Positioning product shape handle handle trigger handle trigger handle
Act on Object rotate cut scrub drill/rotate grind

Figure 5: Modularity matrix showing current product modules for a VersaPak™ portfolio of products.

8 Copyright © 2000 by ASME

ESTABLISHING THE MODULARITY MATRIX
Once the family function structure for the portfolio of

products is created, various architectures can be abstracted
utilizing the modularity rules. First, grouping functions
column-wise identifies possible product modules. We do this
with boxes, as shown in Figure 5. This modularity matrix
shows the current product modules as designed by Black &
Decker®.

Next, we identify the portfolio architecture by identifying
shared functions across the product line. By examining
similarities across columns for a single function in the
modularity matrix, possible portfolio architectures can be
explored. When different products share specification levels
for a given function or module, module sharing across the
family is possible. If specification levels are not shared
between multiple products, shared modules may not be
feasible.

For the VersaPak™ portfolio, one can see that there are
currently few shared modules, as highlighted in Figure 6.
Basically, only the battery system functions are shared across
products in the family. As an alternative, we might try and
define a single battery sufficient for all the variant products,
thereby increasing commonality. We might also try to use only
two sizes of motors, rather than having each product have a
unique motor.

Notice that with a modularity matrix, one can define
shared modules for a subset of the entire portfolio. For
example, in the VersaPak™ portfolio, the battery system

functions are shared by the cordless screwdriver,
ScumBuster™ scrubber, and Wizard™ rotary tool as a one-
battery module. While the multipurpose saw and 2-speed drill
share the same battery system functions, these products utilize
a two-battery module. Sharing across some but not all of the
products in a portfolio can be easily represented using the
modularity matrix, as shown below.

SIMULTANEOUS ARCHITECTING
Using the modularity matrix, alternate product and

portfolio architectures can be described. We can make new
choices for target specifications such that more groupings are
possible. If we choose the same target values across all or
some products for a given function, then that product module
can be shared across the portfolio.

For example, one could develop portfolio architecture for
the VersaPak™ line that maximally shares modules. One such
portfolio architecture concept is shown in Figure 7. Here, only
two motor sizes are used across the portfolio of products, the
smaller powered products all use one size of motor, and the
larger powered products all use another common motor. The
ScumBuster™ scrubber, 2-speed drill, and Wizard™ rotary
tool share a common means of registering and securing
tooling. The other two products of the family, namely the
cordless screwdriver and multipurpose saw, do not share the
same methods for registering and securing tooling. However,
they do modularize these functions in a way similar to the
modularization shown by the other family members.

Note however, that determining a final “correct”

Function Cordless Screwdriver Multipurpose Saw ScumBusterTM Scrubber 2-Speed Drill WizardTM Rotary Tool

Register Battery 1 2 1 2 1
Unregister Battery 1 2 1 2 1
Transmit Electricity 1 2 1 2 1
Seal Battery - - yes - -
Unseal Battery - - yes - -
Input Signal thumb finger finger finger thumb
Switch Power forward/reverse/off on/off/lock on/off forward/reverse/off/lock low speed/high speed/off
Convert Electricity to Motion motor A motor B motor C motor D motor E
Transform (T, ω) transmission A transmission B transmission C transmission D -
Transmit Power rotating shaft translational blade rotating shaft rotating shaft rotating shaft
Input Hand Torque yes - - - -
Prevent Back Rotation yes - - - -
Transform Motion - yes - - -
Register Tooling hexagonal hole blade carriage triangular hole three-prong chuck collet
Secure Tooling retaining clip set screw snap fit chuck housing collet nut
Permit Tool Positioning product shape handle handle trigger handle trigger handle
Act on Object rotate cut scrub drill/rotate grind

Figure 6: Modularity matrix showing current portfolio modules for a VersaPak™ portfolio of products.

9 Copyright © 2000 by ASME

modularity matrix is not trivial. One must consider both
portfolio sharing concerns and individual product concerns.
Generally, these two can conflict. The portfolio considerations
leads one to specify average components that work across
multiple products. Product considerations leads one to specify
individually tailored components that will only work on one
specific product.

This ability of the modularity matrix to highlight both
product and portfolio concerns is well shown by the
ScumBuster™ scrubber. The ScumBuster™ can share the
register battery, unregister battery, and transmit electricity
functions with the cordless screwdriver and Wizard™ rotary
tool. If one were to look solely at portfolio architecture,
sharing these ScumBuster™ modules across the portfolio
would be an obvious choice. However, from the modularity
matrix, it is also apparent that the ScumBuster™ product
module could include these functions along with seal battery
and unseal battery. In this case, a decision must be made to
follow either product or portfolio modularity for the
ScumBuster™ . Knowing how an individual product fits into a
family of products on a modular level is critical to determining
successful product and portfolio architectures.

ARCHITECTURE EVALUATION
The work above all results in the generation of several

candidate modularizations, each expressed individually by a
modularity matrix. It is a concept generation exercise. Next, a
single modularity matrix must be selected. The most basic

approach is to use a Pugh concept selection approach, as
discussed in Gonzalez-Zugasti and Otto (2000). Even when
simplified to a Pugh style selection, the evaluation process is
difficult, as several product concepts must be compared on
multiple criteria, rather than just one product concept. The
result of a Pugh process is a subset of the platform alternatives,
each as represented with a modularity matrix. These selected
platforms should be developed further. For example, more
complex performance models might be developed of these
architectures, and numerical optimization completed to better
estimate performance (Gonzalez-Zugasti et al., 1999, Fujita et
al., 1999, Simpson et al., 1999). In real world applications,
business cases of each platforming scenario would also have to
then be developed (Gonzalez-Zugasti et al., 1999).

CONCLUSIONS
In this paper we have shown an approach towards

architecting a portfolio of products to take advantage of
possible commonality through the reuse of modules across the
family of products. The method is based on functional
modeling of the products using function structures. We begin
by creating the function structure for each desired individual
product. These function structures should embody a specific
physical principle. We then combine these individual
structures to construct a family function structure. This family
function structure is an effective tool to identify common and
unique functional modules in the product family. We then
arrange the identified functional modules into a modularity
matrix, which displays the desired functions and their levels

Function Cordless Screwdriver Multipurpose Saw ScumBusterTM Scrubber 2-Speed Drill WizardTM Rotary Tool

Register Battery 1 2 1 2 1
Unregister Battery 1 2 1 2 1
Transmit Electricity 1 2 1 2 1
Seal Battery - - yes - -
Unseal Battery - - yes - -
Input Signal thumb finger finger finger thumb
Switch Power forward/reverse/off on/off/lock on/off forward/reverse/off/lock low speed/high speed/off
Convert Electricity to Motion motor A motor B motor A motor B motor A
Transform (T, ω) transmission A transmission B transmission A transmission D -
Transmit Power rotating shaft translational blade rotating shaft rotating shaft rotating shaft
Input Hand Torque yes - - - -
Prevent Back Rotation yes - - - -
Transform Motion - yes - - -
Register Tooling hexagonal hole blade carriage three-prong chuck three-prong chuck three-prong chuck
Secure Tooling retaining clip set screw chuck housing chuck housing chuck housing
Permit Tool Positioning product shape handle handle trigger handle trigger handle
Act on Object rotate cut scrub drill/rotate grind

Figure 7: Modularity matrix showing possible product and portfolio modules for a VersaPak™ portfolio of products.

10 Copyright © 2000 by ASME

for each product in the family. The possible modules identified
through product and portfolio modularity rules can then be
visually displayed within the modularity matrix. The matrix
allows a design team to consider different partitioning schemes
for each product (product architecture) and for the portfolio as
a whole (portfolio architecture). Design teams can then use
the modularity matrix as a tool to select an architecture that
incorporates an appropriate amount of commonality. An
example showing the application of this method to the design
of a family of battery-powered hand tools has been presented.
The results show possible architectures for the individual tools
and for the tool family as a whole.

ACKNOWLEDGEMENTS
The research reported in this document was made possible

in part by the MIT Center for Innovation in Product
Development under NSF Cooperative Agreement Number
EEC-9529140. Any opinions, findings, or recommendations
are those of the authors and do not necessarily reflect the views
of the sponsors.

REFERENCES
[1] Bremner, R. (1999). "Cutting Edge Platforms."

Financial Times Automotive World. September 1999: 30-38
[2] Conner, C., De Kroon, J. and Mistree, F. (1999). "A

Product Variety Tradeoff Evaluation Method for a Family of
Cordless Drill Transmissions." 1999 ASME Design
Engineering Technical Conferences, Las Vegas, Nevada. DAC-
8625.

[3] Erens, F. J. and Verhulst, K. (1996). "Architectures for
product families." WDK workshop on Product Structuring,
Delft University of Technology

[4] Fujita, K., Sakaguchi, H. and Akagi, S. (1999).
"Product Variety Deployment and its Optimization under
Modular Architecture and Module Commonalization." 1999
ASME Design Engineering Technical Conferences, Las Vegas,
Nevada. DFM-8923.

[5] Gonzalez-Zugasti, J. P. and Otto, K. N. (2000).
"Platform-Based Spacecraft Design: A Formulation and
Implementation Procedure." 2000 IEEE Aerospace
Conference, Big Sky, Montana

[6] Gonzalez-Zugasti, J. P., Otto, K. N. and Baker, J. D.
(1998). "A Method for Architecting Product Platforms with an
Application to the Design of Interplanetary Spacecraft." 1998
ASME Design Engineering Technical Conferences, Atlanta,
Georgia. DAC-5608.

[7] Gonzalez-Zugasti, J. P., Otto, K. N. and Baker, J. D.
(1999). "Assessing Value for Product Family Design and
Selection." 1999 ASME Design Engineering Technical
Conferences, Las Vegas, Nevada. DAC-8613.

[8] Hatley, D. and Pirbhai, I. (1987). Strategies for Real-
Time System Specification, Dorset House Publishing
Company.

[9] Henderson, R. M. and Clark, K. B. (1990). “
Architectural Innovation: The Reconfiguration of Existing
Product Technologies and the Failure of Established Firms.”
Administrative Science Quarterly 35.

[10] Kota, S. and Sethuraman, K. (1998). "Managing
Variety in Product Families through Design for Commonality."
1998 ASME Design Engineering Technical Conferences,
Atlanta, Georgia. DTM-5651.

[11] Krishnan, V., Singh, R. and Tirupati, D. (1998). "A
Model-Based Approach for Planning and Developing A Family
of Technology-Based Products.". Austin, The University of
Texas at Austin Management Department. April 1998.
Working Paper

[12] Martin, M. and Ishii, K. (1997). "Design for Variety:
Development of Complexity Indices and Design Charts." 1997
ASME Design Engineering Technical Conferences,
Sacramento, California. DFM-4359.

[13] Meyer, M. H. and Lehnerd, A. P. (1997). The Power
of Product Platforms. New York, The Free Press.

[14] Nelson, S., Parkinson, M. and Papalambros, P.
(1999). "Multicriteria Optimization in Product Platform
Design." 1999 ASME Design Engineering Technical
Conferences, Las Vegas, Nevada. DAC-8676.

[15] Ortega, R., Kalyan-Seshu, U. and Bras, B. (1999). "A
Decision Support Model for the Life-Cycle Design of a Family
of Oil Filters." 1999 ASME Design Engineering Technical
Conferences, Las Vegas, Nevada. DAC-8612.

[16] Otto, K. N. and Wood, K. (1998). “Product
Evolution: A Reverse Engineering and Redesign
Methodology.” Research in Engineering Design Volume
10(Number 4): pp. 226.

[17] Pahl, G. and Beitz, W. (1996). Engineering design : a
systematic approach. London ; New York, Springer.

[18] Pedersen, P. E. (1999). "Organisational Impacts of
Platform Based Product Development." International
Conference on Enginnering Design, Munich

[19] Pugh, S. (1991). Total design : Integrated methods for
successful product engineering. Wokingham, England ;
Reading, Mass., Addison-Wesley Pub. Co.

[20] Pulkkinen, A., Lehtonen, T. and Riitahuhta, A.
(1999). "Design for Configuration - Methodology for Product
Family Development." International Conference on
Engineering Design, Munich

[21] Rechtin, E. and Maier, M. (1997). The art of systems
architecting. Boca Raton, CRC Press.

[22] Robertson, D. and Ulrich, K. (1998). “Planning for
product platforms.” Sloan Management Review 39(4): 19-31.

[23] Sanderson, S. and Uzumeri, M. (1995). “Managing
Product Families: The Case of the Sony Walkman.” Research
Policy 24.

[24] Siddique, Z. and Rosen, D. (1999). "Product Platform
Design: A Graph Grammar Approach." 1999 ASME Design
Engineering Technical Conferences, Las Vegas, Nevada.
DTM-8762.

11 Copyright © 2000 by ASME

[25] Simpson, T., Maier, J. and Mistree, F. (1999). "A
Product Platform Concept Exploration Method for Product
Family Design." 1999 ASME Design Engineering Technical
Conferences, Las Vegas, Nevada. DTM-8761.

[26] Stone, R., Wood, K. and Crawford, R. (1998). "A
Heuristic Method to Identify Modules from a Functional
Description of a Product." 1998 ASME Design Engineering
Technical Conferences, Atlanta, Georgia. DTM-5642.

[27] Thurston, D. (1990). “A Formal Method for
Subjective Design Evaluation with Multiple Attributes.”
Research in Engineering Design 3(2): 105-122.

[28] Value Analysis Incorporated, Ed. (1993). Value
Analysis, Value Engineering, and Value Management. Clifton
Park, NY.

[29] Wheelwright, S. C. and Clark, K. B. (1992).
“Creating Project Plans to Focus Product Development.”
Harvard Business Review(March-April 1992).

[30] Yu, J., Gonzalez-Zugasti, J. P. and Otto, K. N. (1999).
“Product Architecture Definition Based Upon Customer
Demands.” Journal of Mechanical Design 121(3): 329.

[31] Zamirowski, E. and Otto, K. (1999). "Identifying
Product Portfolio Architecture Modularity Using Function and
Variety Heuristics." 1999 ASME Design Engineering Technical
Conferences, Las Vegas, Nevada. DTM-8760.

