
1 Bremner, R ‘Cutting edge
platforms’ Financial Times Auto-
motive World September (1999)
30–38

www.elsevier.com/locate/destud
0142-694X/01 $ - see front matter Design Studies 22 (2001) 409–424
PII: S0142-694X(01)00004-7 409
 2001 Elsevier Science Ltd All rights reserved Printed in Great Britain

Modular product architecture

Jeffrey B. Dahmus, Javier P. Gonzalez-Zugasti and Kevin N. Otto,
Center for Innovation in Product Development, Massachusetts Institute
of Technology, Cambridge, MA 02139, USA

This paper presents an approach to architecting a product family that
shares inter-changeable modules. Rather than a fixed product platform
upon which derivative products are created through substitution of add-
on modules, the approach here permits the platform itself to be one of
several possible options. We first develop function structures for each
product. After comparing function structures for common and unique
functions, rules are applied to determine possible modules. This process
defines possible architectures. Each architecture is represented using a
matrix of functions versus products, with shared/unique function levels
indicated. This provides a systematic approach to generating
architectures. �c 2001 Elsevier Science Ltd. All rights reserved.

Keywords: design methodology, product development, conceptual design,
product platforms

Determining product architecture is one of the key activities of any
industrial product development activity. Volkswagen claims to
save $1.7 billion annually on development and production costs

through effective product architecture1. Volkswagen is able to take advan-
tage of platform and component commonality by sharing between its four
major brands, namely VW, Audi, Skoda, and Seat. These different auto-
mobiles share car platforms, which in Volkswagen’s case includes front
axles, rear axles, front ends, rear ends, exhaust systems, brake systems,
and numerous other elements1. However, Volkswagen also claims that all
vehicles on this shared common platform can be effectively differentiated
in the eyes of the customer. Interestingly, Ford Motor Company has similar
shared platform ambitions within its new Generic Architecture Process pro-
gram. However, Ford defines its platform, which will be shared between
several car models, to consist of common welding lines, suspension sys-
tems, and drivetrains1. Ford has similar expectations of large monetary
savings in development and production costs while maintaining the ability
to effectively differentiate the platformed cars in price and performance.

410 Design Studies Vol 22 No. 5 September 2001

Surprisingly, Volkswagen and Ford’s definitions as to what constitutes a
platform are vastly different.

This example highlights the fact that the product architecting process,
despite being a key determining factor in both cost savings and in the
ability to offer product variety, is not well understood. System engineering
and architecting remains an activity relegated to heuristics. Such activities
are often only completed by experienced systems engineers who have
gained an understanding of the various objectives that must be considered
when architecting a product line. In this paper, we will develop a system-
atic methodology to architecting a product portfolio.

System architecting involves clustering various components in a product
such that the resulting modules are effective for the company. An ideal
architecture is one that partitions the product into practical and useful mod-
ules. Some successfully designed modules can be easily updated on regular
time cycles, some can be made in multiple levels to offer wide market
variety, some can be easily removed as they wear, and some can be easily
swapped to gain added functionality. These virtues of effective product
modularity are multiplied when identical modules are used in various dif-
ferent products. For example, the VersaPak rechargeable battery pack
module is used across dozens of Black and Decker products.

As elsewhere, we define product modules as sub-systems within a product
that are bundled as a unit, and which serve identifiable functions. The
product module is the pair, both the subsystem and the functions. We define
portfolio modules as product modules that are used in multiple products.
Deciding over what makes effective modules, both for each product and
for the portfolio as a whole, is the topic of this paper. Modularization
decisions can be made after restricting the portfolio to a physical principle
(such as DC battery powered, AC electrically powered, compressed-air
powered, etc.). At this point, much freedom remains in determining how
a family should be constructed. Modularity decisions can also be made at
the technology research and development phase, when decisions are
reached about which physical principles should be explored. This paper
focuses on the former, where modularity decisions are made after selecting
a physical principle.

We find there are four main influences on a system engineer when
determining product partitioning modules that will be used across a product
family. These four general types of objectives must be considered when
making up-front system architecting decisions. The first is traditional mar-

2 Meyer, M and Lehnerd, A
The Power of Product Platforms
The Free Press, New York
(1997)
3 Sanderson, S and Uzumeri,
M ‘Managing product families:
the case of the Sony Walkman’
Research Policy Vol 24 (1995)
761–782
4 Henderson, R and Clark, K
‘Architectural innovation: the
reconfiguration of existing pro-
duct technologies and the failure
of established firms’ Administrat-
ive Science Quarterly Vol 35
(1990) 9–30
5 Wheelwright, S and Clark, K
‘Creating project plans to focus
product development’ Harvard
Business Review Mar–Apr
(1992) 70–82
6 Erens, F and Verhulst, K
‘Architectures for product famil-
ies’, in WDK workshop on Pro-
duct Structuring Delft University
of Technology, Delft, The
Netherlands (1996)
7 Robertson, D and Ulrich, K
‘Planning for product platforms’
Sloan Management Review Vol
39 No 4 (1998) 19–31
8 Pedersen, P ‘Organisational
impacts of platform based pro-
duct development’ International
Conference on Engineering
Design Munich, Germany Vol 3
(1999) 1507–1512
9 Pulkkinen, A, Lehtonen, T
and Riitahuhta, A ‘Design for
configuration—methodology for
product family development’
International Conference on
Enginnering Design Munich,
Germany Vol 3 (1999) 1495–
1500
10 Martin, M and Ishii, K
‘Design for variety: development
of complexity indices and design
charts,’ in ASME Design Engin-
eering Technical Conferences
Sacramento, California, USA
(1997) DFM-4359
11 Kota, S and Sethuraman,
K ‘Managing variety in product
families through design for com-
monality,’ in ASME Design
Engineering Technical Confer-
ences Atlanta, Georgia, USA
(1998) DTM-5651
12 Simpson, T, Maier, J and
Mistree, F ‘A product platform
concept exploration method for
product family design,’ in ASME
Design Engineering Technical
Conferences Las Vegas, Nev-
ada, USA (1999) DTM-8761
13 Conner, C, De Kroon, J
and Mistree, F ‘A product var-
iety tradeoff evaluation method

411Modular product architecture

ket variance—how variety is needed on each customer concern, as meas-
ured by the variance from customer to customer, segment to segment, or
brand to brand, for example. The second is usage variance—how a product
purchaser needs variety after the purchase is made. This variance, typically
neglected in market science literature and research, is critical to under-
standing what product offerings are needed, be it multiple fixed product
offerings, swappable modules on a standard interface, or an easily adjust-
able platform. The third influence is technology change—how fast the vari-
ous modules change before a product design update is required. The last
type of influence we call Design for X—how design, production, supply,
and lifecycle criteria factor into consideration when determining product
partitioning.

1 Related work
The development of product families built on product platforms and shared
modules has been the subject of much recent research. Meyer and Lehnerd2

have done extensive case studies on platforms, pointing out their advan-
tages and challenges, and demonstrating their ability to save costs. Other
researchers such as Sanderson and Uzumeri3 and Henderson and Clark4

have also shown that the use of platforms has given companies an edge
on the number of products they can offer and on their profitability over
their competitors. Other management research has shown different
approaches on managing the planning and use of platforms5–9.

In the product design literature, one can find several design and manufac-
turing strategies for offering variety that begin with commonality met-
rics10,11. There are also several model-based approaches to designing differ-
ent kinds of product platforms. Simpson et al.12 and Conner et al.13 use a
Decision Support Problem formulation to design families of products based
on scalable platforms. A similar approach is used by Ortega et al.14 to
show tradeoffs among multiple life-cycle objectives for a product family.
Krishnan et al.15 developed network models to design families of products
that are measured along a single performance criterion. Siddique and
Rosen16 use a graph-grammar approach to design commonality into a fam-
ily of products. Finally, optimization approaches have been developed by
Gonzalez-Zugasti et al.17 and Nelson et al.18 to design product platforms
and families of variants. Another optimization approach is used by Fujita et
al.19 for designing a family of products from catalogs of existing swappable
modules. These optimization formulations require system equations relat-
ing performance to configuration variables, thereby yielding an architec-
ture. We explore here upstream work to identify effective architectures that
these aforementioned methods can then evaluate among.

Less work has been done to develop tools to help the system engineer

for a family of cordless drill trans-
missions,’ in ASME Design
Engineering Technical Confer-
ences Las Vegas, Nevada, USA
(1999) DAC-8625
14 Ortega, R, Kalyan-Seshu,
U and Bras, B ‘A decision sup-
port model for the life-cycle
design of a family of oil filters,’ in
ASME Design Engineering
Technical Conferences Las
Vegas, Nevada, USA (1999)
DAC-8612
15 Krishnan, V, Singh, R and
Tirupati, D ‘A model-based
approach for developing a family
of technology-based products’
The University of Texas at Austin
Management Department Work-
ing Paper (1998)
16 Siddique, Z and Rosen, D
‘Product platform design: a
graph grammar approach,’ in
ASME Design Engineering
Technical Conferences Las
Vegas, Nevada, USA (1999)
DTM-8762
17 Gonzalez-Zugasti, J, Otto,
K and Baker, J ‘A method for
architecting product platforms
with an application to the design
of interplanetary spacecraft,’ in
ASME Design Engineering
Technical Conferences Atlanta,
Georgia, USA (1998) DAC-5608
18 Nelson, S, Parkinson, M
and Papalambros, P ‘Multicri-
teria optimization in product plat-
form design,’ in ASME Design
Engineering Technical Confer-
ences Las Vegas, Nevada, USA
(1999) DAC-8676
19 Fujita, K, Sakaguchi, H
and Akagi, S ‘Product variety
deployment and its optimization
under modular architecture and
module commonalization,’ in
ASME Design Engineering
Technical Conferences Las
Vegas, Nevada, USA (1999)
DFM-8923
20 Rechtin, E and Maier, M The
Art of Systems Architecting CRC
Press, Boca Raton, FL (1997)
21 Pahl, G and Beitz, W
Engineering Design: A System-
atic Approach Springer Verlag,
London (1996)
22 Bischoff, W and Hansen, F
Rationelles Konstruieren Kon-
struktionsbücher Bd 5 VEB-Ver-
lag Technik, Berlin (1953)
23 Roth, K Konstruieren mit
Konstruktionskatalogen Springer
Verlag, Berlin (1982)
24 Rodenacker, W Method-
isches Konstruieren Konstruktions-
bucher Bd 27 Springer Verlag,
Berlin (1970)

412 Design Studies Vol 22 No. 5 September 2001

partition systems into common modules. Rechtin and Maier20 have
developed many architecting heuristics and checks for system engineers to
consider when partitioning systems. We have found that these rules of
thumb are all often true and all often conflict, making their use limited.
Nonetheless, the ideas are sound and influential in practice. In this paper,
we present a method for partitioning a set of products into shared and
individual modules based upon functional modeling. Function structures, as
described by Pahl and Beitz21 and based upon the rich history of functional
modeling, are used to model the products in the family22-24. Starting with
these functional models, we then make use of single product architecting
rules as first developed by Stone et al.25 and then further apply portfolio
architecting rules as developed by Zamirowski and Otto26. The result is a
set of possible product portfolio architectures. These fit into the categoriz-
ation of portfolio architectures shown by Yu et al.27 The method shown
here builds on the above works to provide a means to select among the
possible architectures.

2 Approach
Our approach to architecting systems is outlined in Figure 1. Each step
will be extensively covered in the subsequent sections. A design team
developing a completely new product portfolio, or perhaps augmenting an
existing product portfolio with additional product variants, would
implement the process outlined here. This would occur after possible pro-
ducts are selected for inclusion in the portfolio product line and after the
basic physical principles of each product are established. A design team
can then apply this architecting process. Obviously, exploratory iteration
is required to decide if some loosely related products should be included
in the portfolio, or perhaps rejected upon completion of the exploration as
outlined here.

As outlined in Figure 1, we begin the process by determining what underly-
ing technologies should be utilized, and by establishing the limits of the
product family that must share common modules. Each of these products
is then developed as relatively independent conceptual designs. If multiple
forms are possible for a product application, then one has multiple concepts
to consider in this process. The next step is to develop function structures
for each of the product concepts. These function structures for each concept
are then unioned into a large family function structure. The family function
structure indicates the interrelationships of functions for all the products
in the family.

We next introduce the idea of the modularity matrix, which lists the func-
tions in the family versus the products in the family. Key specifications

25 Stone, R, Wood, K and
Crawford, R ‘A heuristic method
to identify modules from a func-
tional description of a product,’ in
ASME Design Engineering
Technical Conferences Atlanta,
Georgia, USA (1998) DTM-5642
26 Zamirowski, E and Otto, K
‘Identifying product portfolio
architecture modularity using
function and variety heuristics,’
in ASME Design Engineering
Technical Conferences Las
Vegas, Nevada, USA (1999)
DTM-8760
27 Yu, J, Gonzalez-Zugasti, J
and Otto, K ‘Product architec-
ture definition based upon cus-
tomer demands’ Journal of
Mechanical Design Vol 121 No 3
(1999) 329–335

413Modular product architecture

Figure 1 Overview of the

portfolio architecting pro-

cess

for the functions, as used in each product, are entered into the matrix.
Together, the matrix elements form the architecting decision space. For
example, should identical targets be established across products in the fam-
ily? Should shared modules be formed between different products in the
family? Modules within products are indicated with boxes, while modules
shared across products are indicated with shading. By grouping different
entries in the matrix, different architectures are formed. The matrix thus
provides a clear means to describe each alternative portfolio architecture.

This modularity matrix approach provides a design team with a uniform
representation of multiple product and portfolio architectures, each with
different constitutive modules, yet each represented by a modularity matrix.
These matrices are a visual representation of possible modularity schemes,
and provide an indication of the design requirements for each module. That
is, each product may place slightly more stringent requirements on the
modules along different specification dimensions. The matrix serves as one
of the first indicators of this. Architectures generated by this method can
then be compared and contrasted using a selection approach such as Pugh

28 Pugh, S Total Design: Inte-
grated Methods for Successful
Product Engineering Addison-
Wesley, Wokingham, UK (1991)
29 Thurston, D ‘A formal
method for subjective design
evaluation with multiple attri-
butes’ Research in Engineering
Design Vol 3 No 2 (1990) 105–
122
30 Value Analysis, Value
Engineering, and Value Manage-
ment, Value Analysis Incorpor-
ated Clifton Park, NY (1993)
31 Hatley, D and Pirbhai, I
Strategies for Real-Time System
Specification Dorset House Pub-
lishing Company, New York
(1987)

414 Design Studies Vol 22 No. 5 September 2001

concept selection28, more numerical forms such as decision analysis29, or
numerical metrics such as profit to the firm.

We next present each of these steps in greater detail, in the context of
the Black and Decker VersaPak product portfolio. We review function
structure modeling and the rules for product and portfolio architecting. We
then introduce the modularity matrix in greater detail and present an
example of portfolio architecting using this tool. As an example, we will
develop an alternative architecture for the Black and Decker
VersaPak line.

2.1 Individual product function structures
Functional decomposition of products can be completed through various
methods. FAST30, Hatley and Pirbhai31, and other function-logic dia-
gramming methods all attempt to accurately describe what a product is to
do by mapping a system of functions for the product. The end result of
these function-logic diagrams is a clearer understanding of the set of related
functions necessary to allow the product to fulfill its overall intended func-
tion. Ideally, such a diagram is form-independent and identifies discrete,
indivisible functions.

For electromechanical systems, a technique to create diagrams known as
function structures is widely employed21. A function structure is a set of
sub-functions interconnected by flows. Identifying these flows proves
effective for helping to partition products into modules. For example, sub-
functions with large sets of inter-connecting flows are not good candidates
for separation into individual modules. The flows connecting sub-functions
are identified as information, material, or energy flows. An example of a
function structure for a VersaPak cordless screwdriver is shown in Figure
2. Note that only product functions are shown; human and other systems
used as a part of inserting or removing screws are not shown. Only the
things the device actually interfaces with are part of the function structure.
Things outside this system are shown as flows into and out of the structure.

As compared with general function structure use as in Pahl and Beitz21, we
restrict the function structure to only product functions. We also generally
consider a particular phase of product development. Function structures
can be used in very preliminary research and development efforts to con-
ceive and develop new technologies that are not physically embodied in
the current product lines or in any competing product lines. The ability of
function models to be form independent and thereby allow a team to con-
ceive alternative forms, is often used as a reason for functional modeling.

32 Otto, K and Wood, K ‘Pro-
duct evolution: a reverse engin-
eering and redesign method-
ology’ Research in Engineering
Design Vol 10 No 4 (1998)
226–243

415Modular product architecture

Figure 2 Function structure for a VersaPak cordless screwdriver

We will take a different view on this statement, though, that requires expla-
nation.

As is the case in most modern product development efforts at major cor-
porations, we split concept generation into two phases, a phase involving
research and development of technology and a phase involving technology
deployment into product lines. For example, with the Black and Decker
VersaPak line, one could also generate new technology concepts that use
a different physical principle, such as compressed-air powered devices.
Functional modeling can be used to describe requirements at a level of
detail generic to both physical principles. We are not concerned with this
problem here.

Rather, we focus upon the deployment of technology most effectively into
product lines. We address how to make modules such that they should or
should not be shared across products. This is a different problem for which
functional modeling, and function structures in particular, is ideally suited.
A technology concept has been selected and developed to the point of
feasibility, and now the question centers on how to deploy this into sev-
eral products.

The function structure in Figure 2 shows various distinct product sub-func-
tions, each in its own box. Arrows between the boxes show the various
flows. The system boundaries, where the user interacts with the product,
exist where these flows enter and exit the system.

To develop a function structure for any given product, Otto and Wood32

416 Design Studies Vol 22 No. 5 September 2001

present an approach based upon tracing flows. For every customer need,
a flow is identified. This flow is then traced through the product, as it
would flow during use, through a sequence of sub-functions that change
the flow. The point of view of the product is always considered, hence
hands, batteries, and tooling are passed through the product, not vice versa.
These independent chains are then merged into a complete function struc-
ture network that is minimally comprehensive of the customer needs.

Function structures are so generated for each product concept. Later, we
will consider how to cluster sub-functions into modules for any one of the
products. These modules form the modular architecture of an individual
product.

2.2 Family function structure
Once the function structures for each product in the family have been
developed, they must be unioned into the family function structure. The
union of the function structures yields a single diagram that has every
function of every product on it, complete with their flow interactions. For
a VersaPak family of products consisting of a cordless screwdriver,
multipurpose saw, ScumBuster scrubber, 2-speed drill, and Wizard
rotary tool, the family function structure is shown in Figure 3.

Note that different information is attained if one considers the intersection

Figure 3 Family function structure for a VersaPak portfolio of products

417Modular product architecture

of the function structure diagrams. For example, in Figure 3, the intersec-
tion is shown as the unshaded functions. These are the candidate functions
to possibly modularize into a common platform. On the other hand, this
is incomplete as not all functions in the family are represented. Often, a
function is performed by all of the variants, but with drastically different
flows. For example, the ‘Transmit Power’ function conveys rotational or
linear motion, depending on which variants are considered. Therefore, this
function could not be platformed across the entire portfolio. However, the
same function might be platformed across a subset of the products, such
as the 2-speed drill, ScumBuster scrubber, and Wizard rotary tool.
Thus, a more sophisticated view of platforming must be employed.

2.3 Modularity rules
When considering a single product, Stone et al.25 identified a set of three
heuristics that can be used to identify product modules on a function struc-
ture. The heuristic methods applied to modularize product function struc-
tures are divided into three types: dominant flow, branching flows, and
conversion–transmission.

The dominant flow heuristic examines flows through a function structure,
following flows until they either exit from the system or are transformed
into another flow. The sub-functions through which a flow can be traced,
define a module. More succinctly, a set of sub-functions through which a
flow passes, from initial entry or formation of the flow in the system,
through final exit or conversion of the flow within the system, define a
module.

The branching flow heuristic examines flows that branch into or converge
from parallel function chains. Each branch of a flow can become a module.
Each of these modules interfaces with the product through the point at
which the flow branches or converges.

The conversion–transmission module examines flows which are converted
from one type of flow to another. A conversion–transmission module con-
verts an energy or material into another form, then transmits that new form
of energy or material. In many instances, this conversion–transmission
module is already housed as a module, as in the case of an electric motor.

When considering the entire portfolio, an additional set of rules can be
applied to aid in module identification26. The heuristic methods applied to
modularize portfolio function structures are divided into two types: shared
functions and unique functions.

Shared functions can be used as a means to define portfolio modules. Func-

418 Design Studies Vol 22 No. 5 September 2001

tional groups that share similar flows and functions, and that appear mul-
tiple times in a comprehensive portfolio function structure, should be
grouped into a single module. This module can then be reused throughout
the portfolio of products.

Unique functions are those that are specific to a single product or subset
of products. Such functions should be grouped into a module. Isolating
variety in this way echoes the idea of delayed differentiation in design
for variety10.

2.4 Modularity matrix
The family function structure is an effective tool to visualize the interac-
tions of flows and candidate modular partitions. For example, partitioning
lines that cross many flows will define a module that may be difficult to
design since it will require much communication with the groups
developing the adjoining modules. On the other hand, it is difficult to sim-
ultaneously visualize the partitions for multiple products in a family. A
further difficulty occurs when labeling different sized modules. That is,
while some functions are grouped into a module, there will be several sizes
offered of that module to create multiple product variants. Thus, a single
platform concept, shared across all product variants, is not sufficient to
think about platforming.

To deal with this complexity, we define here the modularity matrix, which
aids in the application of the modularity rules, both for products and for
product portfolios. A modularity matrix lists the possible functions from a
family function structure as rows in the matrix, then lists the possible pro-
ducts from that family as columns. Each matrix element contains a value
that represents the function specification level required. Ideally, a single
value is used, though some functions are sufficiently complex that multiple
specifications may be required. A modularity matrix for a VersaPak fam-
ily of products is shown in Figure 4.

The specification values entered in the matrix represent targets for the func-
tions on each product. These various values form the architecting space
that will define possible product and portfolio architectures. That is, a
design team must select specification values for each function in each pro-
duct. The extent to which a product’s set of specifications is compatible
defines how well the individual product will work. The extent to which a
function has the same targets established across products defines how well
modules can be shared. Thus, the architecture for each product and for the
product family is laid clear.

419Modular product architecture

Figure 4 Modularity matrix for a VersaPak portfolio of products

3 Portfolio architecting
In this section, we describe the how to use the modularity matrix, family
function structure, and modularity rules to develop the portfolio architec-
ture. The approach described was used to analyze modules for the Black
and Decker VersaPak portfolio of products. Separate function struc-
tures were developed for each individual product, and a family function
structure, as shown in Figure 3, was created. This family function structure
takes into account all functions that the portfolio products must satisfy.
Some functions clearly overlap, while others are unique to individual pro-
ducts.

Once the family function structure for the portfolio was created, various
architectures could be developed by changing the targets within the matrix
and utilizing the modularity rules. There are two aspects to this: developing
the individual product architecture for each product and developing any
shared modules within the portfolio architecture.

3.1 Product modules
First, we can consider the architecture of an individual product. This can
be done by forming groupings of functions using the architecting rules on
the function structure of each individual product. These groupings of func-
tions can then be displayed within the modularity matrix using boxes in
the product’s column, as shown in Figure 5. Figure 5 shows the modules
for the products as currently designed by Black and Decker.

For example, the 2-speed drill features two product modules, as illustrated
by the two boxes. The functions of register/unregister battery and transmit
electricity were bundled into a module that makes use of two batteries. The
second module in the 2-speed drill bundles the functions of register/release

420 Design Studies Vol 22 No. 5 September 2001

Figure 5 Modularity matrix showing current product modules for a VersaPak portfolio of products

tooling and secure/unlock tooling. In the case of the drill, a three-prong
chuck is used. A single module addresses both functions, and is thus shown
as a box on the modularity matrix.

To form such product modules for any column (product in the portfolio),
one must examine the function structure for the product, and apply the
modularity rules. For example, the 2-speed drill’s battery module was
defined by the dominant flow rule applied to the battery. The three-prong
chuck module was defined by the dominant flow rule applied to the bit.
Similar application of the modularity rules to the other products in the
portfolio (columns in the modularity matrix) forms other product modules.

3.2 Shared modules
Next, we explore the portfolio architecture by identifying shared functions
across the portfolio. By examining similarities across columns for a single
function in the modularity matrix, possible sharing can be considered.
When different products have common specification levels for a given
function or module, it can be shared. If specification levels are not common
between multiple products, then shared modules may not be feasible.

To establish shared modules, one can consider a function in the matrix,
and determine whether different products have similar specification targets.
If they are sufficiently close such that making them the same does not
overly impact performance, then the targets can be made the same. For
example, the convert electricity to motion function in the Versapak
modularity matrix has very similar targets for the cordless screwdriver,
Wizard rotary tool, and ScumBuster scrubber, and could reasonably
be made identical. Making them the same would permit all to use the same

421Modular product architecture

motor. Similar examination of other rows could permit other shared mod-
ules to be considered.

For the current VersaPak portfolio, one can see that there are few shared
modules, as highlighted in Figure 6. Only the battery system functions
share functional specification values across the products. Therefore, it is
only the battery pack module that is currently shared across products in
the family. For example, we might try and define a single battery sufficient
for all the variant products, thereby increasing commonality. Rather than
having each product have a unique motor, we might also try to use only
two sizes of motor for the convert electricity to motion function.

3.3 Simultaneous architecting
It should be clear that one cannot consider an individual product architec-
ture nor shared modules independently. They are coupled; configuring a
shared module impacts all products and changing a product architecture
impacts shared modules. Using the modularity matrix, alternate product
and portfolio architectures can be described. We can make new choices
for target specifications such that more groupings are possible. If we choose
the same target values across all or some products for a given function,
then that product module can be shared across the portfolio.

For example, one could develop a portfolio architecture for the VersaPak
line that maximally shares modules. One such portfolio architecture con-
cept is shown in Figure 7. Here, only two motor sizes are used across the
portfolio of products; the smaller powered products all use one size of
motor while the larger powered products all use another common motor.
The ScumBuster scrubber, 2-speed drill, and Wizard rotary tool share
a common means of registering/releasing and securing/unlocking tooling.

Figure 6 Modularity matrix showing current shared modules for a VersaPak portfolio of products

422 Design Studies Vol 22 No. 5 September 2001

Figure 7 Modularity matrix showing possible product and shared modules for a VersaPak portfolio of products

The other two products of the family, namely the cordless screwdriver
and multipurpose saw, do not share the same methods for these functions.
However, they do modularize these functions in a way similar to the modu-
larization shown by the other family members.

Note however, that determining a final ‘correct’ modularity matrix is not
trivial. One must consider both portfolio sharing concerns and individual
product concerns. Generally, these two can conflict. The portfolio consider-
ations lead one to specify average components that work across multiple
products. Product considerations lead one to specify individually tailored
components that will only work on one specific product.

This ability of the modularity matrix to highlight both product and portfolio
concerns is well shown by the ScumBuster scrubber. The ScumBuster
can share the register/unregister battery and transmit electricity functions
with the cordless screwdriver and Wizard rotary tool. If one were to look
solely at portfolio architecture, sharing these ScumBuster modules across
the portfolio would be an obvious choice. However, from the modularity
matrix, it is also apparent that the ScumBuster product module could
include these functions along with seal/unseal battery function. In this case,
a decision must be made to follow either product or portfolio modularity
for the ScumBuster. Knowing how an individual product fits into a fam-
ily of products on a modular level is critical to determining successful
product and portfolio architectures.

Notice that with a modularity matrix, one can define shared modules for
a subset of the entire portfolio. For example, in the VersaPak portfolio,
the battery system functions are shared by the cordless screwdriver,
ScumBuster scrubber, and Wizard rotary tool as a one-battery module.

33 Gonzalez-Zugasti, J and
Otto, K ‘Platform-based space-
craft design: a formulation and
implementation procedure’, in
IEEE Aerospace Conference Big
Sky, Montana, USA, Vol 1 (2000)
pp 455–463
34 Gonzalez-Zugasti, J, Otto,
K and Baker, J ‘Assessing value
for product family design and
selection’, in ASME Design
Engineering Technical Confer-
ences Las Vegas, Nevada, USA
(1999) DAC-8613

423Modular product architecture

The multipurpose saw and 2-speed drill share the same battery system
functions at the same level of power, size, and attachment, and thus both
utilize the same two-battery module. Sharing across some but not all of
the products in a portfolio can also be easily represented using the modu-
larity matrix, as shown in Figure 7.

Making use of the modularity matrix therefore provides structure to the
very difficult task of developing both the functional exclusion/inclusion
boundaries and specifications for modules that are shared across products.
The approach is to first develop possible product modularizations, then
compare these across products, seeking common scope of functions and
common specifications for shared modules.

3.4 Architecture evaluation
The work above is the heart of the approach outlined here, and results in
the generation of several candidate modularizations, each expressed indi-
vidually by a modularity matrix. It is a concept generation exercise. As
the next step not discussed here, a single modularity matrix must be selec-
ted. The most basic approach is to use a Pugh concept selection approach,
as discussed in Gonzalez-Zugasti and Otto33. Even when simplified to a
Pugh style selection, the evaluation process is difficult, as several product
concepts must be compared on multiple criteria, rather than just one pro-
duct concept. The result of a Pugh process is a subset of the platform
alternatives, each as represented with a modularity matrix. These selected
platforms should be developed further. For example, more complex per-
formance models might be developed of these architectures, and numerical
optimizations completed to better estimate performance12,19,34. In real world
applications, business cases of each platforming scenario would also have
to then be developed34.

4 Conclusions
In this paper we have shown an approach towards architecting a portfolio
of products to take advantage of possible commonality through the reuse of
modules across the family of products. The method is based on functional
modeling of the products using function structures. We begin by creating
the function structure for each desired individual product. These function
structures should embody a specific physical principle. We then combine
these individual structures to construct a family function structure. This
family function structure is an effective tool to identify possible modules
in the product family. To clarify amongst possible architectures, we then
arrange the identified functional modules into modularity matrices, which
display the desired functions and their levels for all products in each poss-
ible family. The possible modules identified through product and portfolio

424 Design Studies Vol 22 No. 5 September 2001

modularity rules can be visually displayed within the modularity matrix.
The matrix allows a design team to consider different partitioning schemes
for each product (product architecture) and for the portfolio as a whole
(portfolio architecture). Design teams can then use the modularity matrix
as a tool to select an architecture that incorporates an appropriate amount
of commonality. An example showing the application of this method to
the design of a family of battery-powered hand tools has been presented.
The results show possible architectures for the individual tools and for the
tool family as a whole.

Acknowledgements
The research reported in this document was made possible in part by the
MIT Center for Innovation in Product Development under NSF Cooperat-
ive Agreement Number EEC-9529140. Any opinions, findings, or rec-
ommendations are those of the authors and do not necessarily reflect the
views of the sponsors.

