
CONCURRENT ENGINEERING: Research and Applications

Product Node Architecture: A Systematic Approach to Provide Structured
Flexibility in Distributed Product Development

Charles Chan-Woo Chung,1 Jun-Ki Choi,1,* Karthik Ramani1 and Harshal Patwardhan2

1PRECISE, School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907, USA
2School of Industrial Engineering, Purdue University, West Lafayette, IN 47907, USA

Abstract: Representation of the product/project information throughout the design life cycle is a critical aspect in engineering activities.

The article begins with a discussion of the background research wherein the existing methodologies, which deal with product information

representation, are reviewed. The article then proceeds to propose a new methodology for product management by presenting all the details of

the system architecture. Product node (PN), which is introduced in this article, has a database-centric system at its core and an application built

around it to support the various functions necessary to efficiently manage a distributed project environment. To aid the design life cycle, the

system also enables distributed collaboration among people from different teams to support concurrent design activities. Effective management

of product data using user-based control is also discussed. The detailed logic behind the system architecture and the practical implementation

of the system are shown.

Key Words: product modeling, product life cycle management, product node, product and project management, concurrent engineering.

1. Introduction

The globalization of the manufacturing industry
has caused companies to restructure their processes to
become more efficient. To efficiently manage product
data throughout its life cycle, many large companies
have started to use information technology (IT) tools
extensively. Rapid advances in related technologies,
such as the Internet, databases, and advanced program-
ming languages have further fueled the trend of IT
usage by companies. Email and FTP are the most
widespread and easy-to-use means of communication.
Today, more complicated web-based or application-
based solutions are becoming more common. Various
solutions for the effective management of product
data, collaboration, and project management have
been suggested [1–3,21]. Product life cycle management
(PLM) concepts represent a vision for solving the
problems associated with the management of a com-
pany. Although new, the PLM/PDM (product data
management) market generated revenues worth several
billion dollars in 2001 and is expected to grow at a rate
of 20–30% annually [4,5]. However, the PLM systems
currently available on the market are still faced with
many unsolved issues. Limited flexibility to expand to

any type of product definition and compatibility
problems in data exchange are the most common
problems. The internal processes of a company are,
in general, very complex, so it takes a lot of time for
PLM vendors to analyze these processes to provide
a customized service/solution. Eliminating the lead-
time in the implementation requires identification of the
common denominators of the system, thus accelerating
the customization process. During the product design
process, managing the digital formats throughout the
process among multiple team members is very impor-
tant. The design details of the product node (PN) system
will be presented after an introduction of the important
concepts related to the product and project modeling.
As will be shown throughout this article, the database-
based structure of the PN system shows ‘structured
flexibility,’ enabling dynamic handling for the design
processes. The later sections give the details of the PN
structure and its implementation.

2. Product Model

2.1 Static System and Dynamic System

Present-day project and process management need a
complete plan before initialization. If a plan must be
completed before initialization of a project, this results
in delays between the starting time and the actual
runtime of the project. Elimination of the gap between

*Author to whom correspondence should be addressed.
E-mail: jkchoi@purdue.edu

Volume 13 Number 3 September 2005 219
1063-293X/05/03 0219–14 $10.00/0 DOI: 10.1177/1063293X05056472

� 2005 Sage Publications

the starting time and the actual runtime, and the
synchronization of many processes from the concept
generation stage to the lifetime management of the
project are important issues since they are directly
related to the revenue of a company. Unlike a parallel
process, the asynchronous or serial process, in general,
cannot use all the resources efficiently in time. Such
inefficiency characterizes a static system in the product
design process [6]. In a real world design process,
constant modifications of individual products and
process parameters take place. Such modifications
happen more frequently in distributed design environ-
ments because more interactions often create more
ideas for enhancement of the design. The evolutionary
development of product parameters is intuitive, and
creative solutions are possible in a changeable environ-
ment (dynamic system) where mistakes are acceptable
[6]. The configurations of such changeable systems are
those built up from manageably small modules, each of
which is as far as possible independent of one another
[7]. Enabling dynamic changes of the product break-
down structure (PBS) throughout the life cycle of a
product will resolve the issues caused by the strict
constraints of the system.

2.2 Product Family Classification Trees

Any product definition can be categorized in product
family classification trees (PFCT). Similar to a class
structure of object-oriented programming languages,
it has characteristics, such as inheritance and general-
ization. The relationship from lower to upper level
is ‘a kind of ’ since the modules in the lower level
of the tree structure inherit all the characteristics of
the module in the upper level, i.e., a class of product is
a kind of the superclass of product. A product defini-
tion can be treated as one of the instances in the
class structure where instances are units stored in
a database table. Allocating a product definition in
PFCT will allow users to systematically classify and
store product data and ease the effort for future
use by searching through the organized data. Figure 1
shows the structure of a general PFCT [8]. A design
repository structure based on the PFCT is shown in [9].

Object-oriented approaches for product design have also
been suggested by [10,11].

2.3 Product Breakdown Structure

Product breakdown structure (PBS) is a type of
structure that can represent the hierarchy of a product
[20]. It has ‘a part of ’ relationship from the lower
level modules to the upper level module. The upper level
module includes all the definitions in the lower level
module(s), and it has a ‘has’ relationship from the upper
level modules to the lower level modules. Figure 2 shows
the graphical interpretation of such a structure. The
building process of PBS closely resembles the human
thinking process of designing a product when it grows
from the root to the leaves. We can start from an
abstract definition of a product and go down further for
details because this structure can be built by breaking
a whole body into smaller modules. The process of
building a PBS can be said to be a top-down process
in contrast to a bottom-up design. The use of such
breakdown structures is expected to increase the
traceability of information throughout the product life
cycle. Project breakdown structures have been found to
be beneficial for engineering data management in large-
scale projects [12].

2.4 System Modeling with Multiple
Types of Interactions

Often the simple notation of an interaction is not
enough to represent the many different types of
interactions. For example, if there are multiple types
of interactions, such as force and energy among
components, they are hard to represent in a binary
matrix [13]. In this case, multiple matrices must be used
to show the relationships. Furthermore, there is a need
to indicate to the users ‘the property of interaction’
clearly. Database definition of such a relationship can
represent such a relationship among components.

: New design, project

: Subsystems, modules, components

: ‘a part of’ realationship

Figure 2. Product breakdown structure (modified after [8]).

: Superclass of product
: Class of product

: Design instances
: ‘a part of’ realationship

Figure 1. Product family classification tree (modified after [8]).

220 C. C.-W. CHUNG ET AL.

Figure 3 shows a PBS of a simplified R/C (remote
control) car model. There are functional interactions
among components in addition to the physical structure
of the model. The binary matrix of the functional
relationships is shown in Figure 4. Since the model was
built based on the structural diagram from Figure 3,
a permutation process is not necessary in this case. The
flow of material is similarly defined in Figure 4, but
in this case, there are two types of material flow, i.e.,
electronic current and mechanical force.

Figure 4 shows that from Component 1 to 5, the
dominant flow is electronic current, while from
Component 6 to 11, the dominant flow is mechanical
force. The relational diagram of this interaction is

shown in Figure 5, which shows two types of flow
indicated by different types of arrows.

The multiple relationships cannot be represented
in a single binary matrix model. The complex, possible
multiple relationships can be represented in database
relations (relation: table in a database system) relatively
easily [14].

3. Product Node Architecture

The design of a dynamic product node (PN) archi-
tecture was developed with the intention to simplify the
process of distributed project and product management.

1000000000011
1100000000010
011000000009
001100000008
000110000007
000011000006
000001100005
000000110004
000000011003
000000001102
000000000111

1110987654321

1000000000011
1100000000010
011000000009
001100000008
000110000007
000011000006
000001100005
000000110004
000000011003
000000001102
000000000111

1110987654321

Mechanical
force/contact

Electronic
current/contact

E
le

ct
ro

ni
c

cu
rr

en
t/

co
nt

ac
t

M
ec

ha
ni

ca
l

fo
rc

e/
co

nt
ac

t

C1

C2

C3

C4

L1

L2

L3

* C1, C2, C3, and C4 are functional subgroups (subsystems) in modeling
* L1, L2, and L3 are the links among the subgroups

Figure 4. Binary matrix of R/C car model.

R/C car

Drive
train

Frame Exterior

Power
assy

Battery Connector

Control
units

Servo
Spd ctrl

unit

Driving
unit

Motor Gearbox Differential

Wheel

Spoke Tire

Axle
head

Diff.
gear

Case

(1) (2) (3) (4) (5) (6) (7)

(8) (9)

(10) (11)

Figure 3. Product structure of an R/C car model.

Product Node Architecture to Provide Structured Flexibility 221

The PN structure is a customized representation and
specialized use of PBS and is introduced to represent the
project and product structure. Using the PN architec-
ture, a company can manage the data related to a
product with enhanced flexibility. With the use of
efficiently designed database relations and the dynamic
structure, the manipulation, expansion, change, or
history tracking of the design data are realized. In
addition to the flexible manipulation of the structure
itself, the ability to add any product-related information
around the structure enables companies to expand their
product definition. An individual PN can have any
information necessary to perform product development
activities. PN architecture can be implemented in any
database system in conjunction with any computer
programming languages; JavaTM programming lan-
guage and ORACLETM database system are used
in our work. Since the PN is defined in a database
system to set as a relationship between each node, it can
expand its contents by associating more relations with it
without having restrictions. Evolution of the PN
structure occurs by creating, copying, and removing
the PNs. Any addition or change of a specific PN occurs
by controlling the records in the database table,
PRODUCTNODE (PRODUCTNODE: a database
table definition to represent PN). Another advantage
of this type of structure is the ease in arranging and
searching for any data systematically with the help of
the database manipulation that is often performed with
the use of structured query language (SQL). The major
difference between the PN structure and other tree-type
structures is that the PN structure treats any level of PN
as a complete entity, so it allows any PN unit to contain
any data whenever necessary. Recent developments
in various fields have necessitated modeling schemes,
which extend beyond the part geometry and include
relevant information regarding the product [15].
However, most CAD or PDM systems still focus
mainly on managing the CAD parts geometry of a
product. Similar to the traditional role of drawings, they
provide tools to mimic the paper drawings and to put in

some auxiliary information and ultimately try to replace
them. On the other hand, any node unit in the PN
structure has an association with the other project-
related information. For example, user management
and marketing information can be a part of a compo-
nent of a PN along with the parts information. The
information needs in a PN structure can vary from
company to company. The typical data that can be used
in PN is listed below:

. Name of the product node (PN)

. Part number or assembly number

. Duration, schedule, and progress (Gantt chart)

. Requirements, specifications, functional descriptions

. Drawings (conceptual, CAD, assembly)

. People involved (users)

. Test and analysis

. Manual and instruction

. Bill of material (BOM)

. Vendor information

. RFQ, quotation

. Manufacturing information

. Marketing research

. Budget

. Change request

. History of the design

. Other documents

3.1 Hierarchy of PN Architecture

The PN architecture has six levels in its hierarchy. The
global PN system itself stays at the top level with the
name of ROOT, and the GROUP comes next. GROUP
is a unit representing a small or medium enterprise
(SME) or a division of a big company. A GROUP is a
fundamental unit of the PN system in practice. Actual
PN units can exist within a GROUP domain. PROJECT
follows GROUP and is a unit of any actual project
(work). PRODUCT, PART, and COMPONENT can
be arbitrarily defined by the users to perform the

3

1

2

4 5

C1

C2

L2
L1

9
6

7C3

10 11

C4

8

L3

Electrical
current

Mechanical
force/contact

Figure 5. Relational diagram of R/C car model.

222 C. C.-W. CHUNG ET AL.

product design project. The schematic of the overall
hierarchy of the PN system is shown in Figure 6.

Users will only see the projects within the GROUP
domain that they are associated with since users do not
need to have system administrator privilege designed
to create group and administrators. PN system server
domain is only ‘ROOT’ for the GROUP domain.
Detailed transactions within the GROUP domain will
be explained in the next sections.

4. Types of Product Node

The creator of a PN determines its type. Type allows
users to know what type of PN they are working on.
There are PROJECT, PRODUCT, PART, and
COMPONENT in PN types. Table 1 shows a list of
the types of PN and their roles. A PN type, PROJECT,
is named and treated separately in the system since it is
the starting point of project and it is only parent-PN.
Although the structure of a PROJECT-PN is almost
identical to that of the other PN types, it forms the basis
of any design activity. An administrator or manager
with privilege can create a PROJECT-PN to initiate a
project.

4.1 Data Definition of Product Node

The PN has multiple attributes and include
field names, primary and foreign keys. The relation,
PRODUCTNODE, has basic fields needed since
other related information is linked to it by the use of
association tables (table: different name of relation).

The attributes and definition of the relation,
PRODUCTNODE, in the PN system are shown in
Table 2. ID is a Primary Key (Primary Key: a unique ID
of a database table; often shown with solid underline) of
the relation, PRODUCTNODE, to make an instance
(instance: a record of a database table) of the relation
a unique one. Other multiattributes concerning history
tracking, and reuse of a PN will be discussed in later
sections of this article with implementation examples.

5. Parent–Child Relationship

One of the attributes of a PRODUCTNODE is the
Foreign Key (Foreign Key: Index to the other table’s
Primary Key), ParentID

�������
, to link the current PN to the

Parent-PN. The parent–child relationship forms the
basis of the PN structure. The structure grows from one
parent (i.e., PROJECT-PN) by creating children-
PNs (i.e., PRODUCT-PN, PART-PN) underneath.
The relationship is shown in Figure 7.

Group domain
(SME or a depart of a

large company)

Prj 1

Prod 1 Prod 2 Prod 3

Prt 1 Cmp 1

Cmp 3Cmp 2

Prt 2

Cmp 5Cmp 4

Prj 2

Prod 3

Prt 2

Cmp 5Cmp 4

Prj 3

Create projects
and managers

Group
administrator

Prj N

PN system server domain

Create group and
administratorsSystem

administrator

Figure 6. Overall hierarchy structure of PN system.

Table 1. Types of product nodes in ‘NODETYPE’.

Node type Role

Project Fundamental unit in PN structure,
starting point of any project in a
company (group level)

Product Unit of a product within a project
Part Part, combination of zero to many

components
Component A unit component which cannot be

divided any further, leaf node

Product Node Architecture to Provide Structured Flexibility 223

Among the many types of PN, only PROJECT-PN
can exist without having any Parent-PN associated since
PROJECT-PN is the starting point of any project. In the
system level (internal logic of the software), GROUP
plays the role as the parent of any PROJECT-PN within
the group. Figure 8 shows the detailed relationships
between parent and child-PNs at the database level. The
foreign key, PID

���
, of a child-PN refers to the primary key

ID of a parent-PN.

6. Manipulation of PNs

Dynamic project management entails many changes
in the product structure. Based on manipulations
(adding, changing, and removing) of the PN structure,
the product definition will grow or shrink. After a
PROJECT-PN is created by an administrator to initiate

a project at the GROUP domain level, additional
functional menus to input other critical information,
such as users and tasks, will be available to the users
based on the privileges given. Creating a PN is the same
as adding one conceptual unit or a physical part in the
PN structure. From any location of the PN system,
users can create a child-PN of it. With the command to
create, the PN system will ask the user to input some
attributes of the relation, PRODUCTNODE. Name,
StartDate, EndDate, NodeType, and Description are
the input needed by the system, and other attributes
will automatically be assigned in the table,
PRODUCTNODE. An ID will be assigned with a
unique number and the Version will start from 1.0. After
confirming the transaction, a new child Node will show
up in the PN structure. As shown in Figure 8, the
foreign key ParentID

�������
will point to the ID of the parent-

PN after the creation.

6.1 History Tracking of PN

Previous design information is a critical resource for
companies and often differentiates a company with a
long history from new start-ups. The problem is that
a big portion of the company knowledge exists in the
heads of company employees and not within a company
repository. So, as employees leave or retire from the
company, the design know-how also gets lost. More
than 50% of designers and manufacturing designers will
leave their companies over the next decade [17]. Most
companies are trying their best to maintain all their
design and related documentation, but in many cases,
they fail due to lack of proper tools. PN structure
provides a means to store design-related information
along with various other functionalities, thus easing
the maintenance of this information for the users.

Table 2. Definition of PRODUCTNODE table.

Field name Definition

ID Node ID, Primary Key
Version Version of the Node in incremental Number
ParentID
�������

Parent Node’s ID, Foreign Key
PreviousID
���������

ID of a previous version Node, Foreign Key
NodeTypeID
�����������

Type of Node, Foreign Key

CurrentFlag Flag to indicate if the Node is the
current (latest) one or not. 1 (yes) or 0 (no)

Name Name of the Node, Optional
TimeBuilt The time PN was created
TimeStart Start time of the Node, Duration starting point

given by users
TimeEnd End time of the Node, Duration ending point

given by users
TimeInitiation Time of Initiation of a Node due to a new

version
TimeTermination Time of Termination of the Node due to a

new version
Description Description of the Node
KeyWord1 Key Word field to assist searching
KeyWord2 Key Word field to assist searching

(________): Primary Key; (
�������

): Foreign Key.

PN1

PN2

PN5PN4

ID: Primary key of a PN

PN3

PN6

ID

ID

PID

ID

PID

ID

PID

ID

PID

ID

PID
PN: Product node

PID: Parent PN’s ID
: Reference

Figure 8. Product node structure and parent–child relationship.

Parent PN: Can have
zero to many PNs as

children PNs

Child PN: Can have
only one parent node

Child–parent relationship

Figure 7. Parent–child relationship of PNs.

224 C. C.-W. CHUNG ET AL.

The reasons why companies have to keep a history of
the design data and related information are listed below:

. Viewing design history

. Reuse of the previous design

. Re-launching of old products [18]

. Retrieval of old information due to mistakes made in
the current design

. Training new employees

. Supporting managerial decision making

There are two ways to track the history of a PN. First,
users can select a PN while browsing through the
structure and retrieve the old versions of the Node to
view its history. Second, the users can indicate a specific
time to view the structure at that specific time in history.
Figure 9 shows the structural change on a portion of
the PN structure with time. Under Node ‘P,’ five child-
Nodes have been generated, one deleted, and two
modified with the progress of time. T1, T2, and T3
show the different structures to the users at different
points in time. The structure in the history is shown
based on the two attributes, TimeInitiation and
TimeTermination.

6.2 Version Control

There are two ways to manage the version of a model.
One way is to maintain different versions of the model

as a whole, and the second way is to maintain different
versions of the elements [16]. For a model having many
elements, it is usually not a good option to choose the
criteria of managing versions as a whole system since the
amount of data can grow dramatically, especially in a
dynamic system where the design changes so often. Also
for a model having a large amount of information, even
if the logic is simple, the size of the data is likely to
overwhelm the storage capacity of the computer system
in a short period of time. The holistic management of a
version can best be used for small individual elements.
In the cases when a system rarely changes, managing
versions in parts of a system can impose more loads on
the version management system than maintaining the
whole body of individual elements. Nonetheless, from
the maintenance point of view, it is better to maintain
whole copies of different versions when the capability
of storage allows. Maintaining versions based on partial
changes is in general more complicated because the
system has to track the changes according to the version
changes even at the component level. But for a large
model having many elements of data within, it is
necessary to have such a system. The PN system is a
dynamically evolving structure. So it needs to update the
version of each PN when critical changes occur in it. The
architecture of the PN structure uses a combination of
both holistic and partial maintenance of versions of a
model. The PN system applies a holistic maintenance
to the component level changes, and it applies partial

C C1 C2

A

B B1

D

E

P

T1 T2 T3

Deletion of node

Parent node

Creation

Creation

Creation

Creation

Creation Modification

Modification

Axis of time

P

A B D

T1:

P

A B1 C1

T2:

D

P

A B1 C2

T3:

E

Figure 9. Change in the node structure with time under the same parent-PN.

Product Node Architecture to Provide Structured Flexibility 225

maintenance for content having many subcomponents
(sub-PNs or data) within. The data history of any PN
should be maintained based on the version changes.
Figure 10 shows the changes in information related to a
PN when the version changes. Whenever a PN upgrades
its version, the system generates one more instance of
the associated information based on the new version.
In Figure 10, the first version shows a PN created with
a user and a file associated with it. The second version
shows the status when the associated user changes; and
the third version shows the record when an associated
file changes.

6.3 Design Reuses

One of the main advantages which the small and
medium enterprises (SMEs) and division of a big
company will get from using the PN structure is the
reuse of previous designs. As Figure 11 shows, 80% of
design knowledge can be reused in the design process [19].
In the context of the PN structure, reuse of previous

design history is equivalent to reusing the previous PN
in a current activity. Creating a PN is also equivalent to

creating a child-PN unless it is a PROJECT-PN. After
finding an appropriate PN using the search operation,
users can then copy this PN as a child of another PN,
instead of creating a new one. The procedure of reuse is

Feb. 04

Feb. 01

CF

1.0Version

1000ID

PN Re co rd

TOT

TOI

PN Record

1st version

Feb. 12TOT

Feb. 04TOI

CF

1.1Version

1001ID

PN Record

CF

PN Record

2nd version

NULLTOT

Feb. 12TOI

CF

1.2Version

1002ID

PN Re cordPN Record

New version

………
Mfg.DesignDept .
LeeJohnName

30033001ID
USER (Table)

………
Mfg.DesignDept .
LeeJohnName

USER (Table)

………
PPT01Doc0 4Name
50085004ID

FILE (Table)

………

FILE (Table)

……

True True

True

View

100210011000PN ID

300330033001US ER ID

US ER _P N_ AS SN (T ab le)

……

False

False False

100210011000PN ID

US ER _P N_ AS SN (T ab le)

……

100210011000PN ID

500850045004FI LEID

FI LE_P N_ASSN (T ab le)

……

FILE_PN_ASSN (Table)

3 new record sets generation
with 3 version changes

Figure 10. Changes in associated information based on upgrading versions of a PN.

20%

40%

New part
design

Complete reuse of
existing or externally

supplied parts

Slight modification
of existing parts

40%

Figure 11. Design reuse of parts in OEMs.

226 C. C.-W. CHUNG ET AL.

described in Figure 12. As can be seen from the figure,
when a user copies a PN, the system will generate a new
PN with a unique ID, and the attribute ParentID

�������
of

the new PN will be linked to the ID of the targeting PN
(2 in Figure 12). If this PN has children associated with
it, they will also be copied together with the copied PN.

The history of the copied PN can always be retrieved
from the previous one (1 in Figure 12). All the
information (i.e., database instances or files) associated
with the reused PN will be duplicated and the new ID
will be changed for the new PN (4 in Figure 12).

7. Management of Contents

7.1 User Management

There are two contradictory issues in product data
management concerning the access privilege control of
the user. It is a well-known fact that transparency and
easy access to product data will boost the understand-
ing of the product for all users and will increase the
productivity of the team. In real-world practice, how-
ever, most of the design data is company property and,
therefore, mostly confidential. But some information
is shared with suppliers on a need basis. When it comes
to a multicompany and multiuser project, successful

control between these two conflicting issues is one of
the key concerns. Hence, providing the means for a
precise control on access to information has been
an important consideration in the design of the PN
structure. The user is one piece of information
associated with a PN, which has information such as
name, email, and the company associated with it. In
general, there are many different types of users who
may use the PN system. For example, in a design team
at a manufacturing company, there is a leader, design
team members, and most likely, a supervisor. In each
division or department of a company, there are various
hierarchy-based roles for employees, who all have
different authority statuses. Well-defined roles and
privilege management are necessary not only in inter-
company collaboration processes but also in intracom-
pany processes. There are many users associated with
a PN and vice versa. In such a case, creating an
association table to link those two relations (i.e., USER
and PRODUCTNODE) is a general practice. Figure 13
shows the relationship between the USER table and the
PRODUCTNODE table.

There are six main categories which have been defined
to represent different types of users. With a combination
of user types and accessibility to product data, the PN
system can simulate and generate roles of users similar
to those of real-world companies. Administrator (Group

Destination
(targeting PN)

Copying
object

(PN to reuse)

Children
nodes

New PN
structure

1 2 3

PN after reuse

4

Figure 12. Schematic diagram of reusing a product node.

USER
PRODUCT

NODE
Has HasUSER-NODE

ASSN

: Optional many

ID ID
UserID NodeID

: ReferenceFigure 13. ER diagram of user–node (PN) associations.

Product Node Architecture to Provide Structured Flexibility 227

Administrator) is a user who has all the privileges and
capabilities to control the users and projects in a group.
The user types and privileges are described in Table 3.
The user types are defined in a database table,
USERTYPE.

7.2 File and Document Management

One of the problems in a multiproject-oriented
business environment is streamlining the flow of
information through the course of a project. A majority
of product information exists in the form of documents.
As a project progresses, there are frequent exchanges of
documents between users and groups across companies
and also within a company.
In a paper-based system, it is difficult to system-

atically or concurrently maintain these paper documents
and make sure that the right document reaches the right
person at the right time. The file management system
is built on the PN structure. Most of the electronically
formed data can be represented as a file. File definition
in a database has a one-to-many relationship with a PN.
As can be seen from Figure 14, a file can have only one
PN related to it, but a PN can have many files associated
with it.
It is important to have a separate copy of the file

for each PN to prevent any possible problem since the
data can change dynamically as the project proceeds.
The relation, FILE, is defined in the database as shown
in Table 4. The file system built around the PN system
gives the users many advantages as listed below:

. Central management of files with the use of a
database system

. Linking files with a specific product definition

. Access control based on the user type and user–node
association relationship

. Systematic version control

Based on the assumption that the number of files to
be used could be very big and the size of each file is also

substantial, direct access to the file system was chosen in
our application to ease the problem of maintaining the
database and to use the database resources efficiently.
The database system plays the role of a bridge between
the users and the file system. The types of files are
defined in a separate database table, FILETYPE as in
Table 5. The table, FILETYPE, has a field to indicate
the type of the file and the description within to explain
the file. File type is used to identify where to locate the
file in each associated PN. FILETYPE table identifies

Table 3. Privilege of users and the scope of control.

User type Privilege Roles/description

Administrator þ Creation of projects, assign
managers on projects

Creation of users, creation of a project, assigning a manager to a project,
changing user type

Manager þ Creating and assigning users
on a project, changing privileges
of users assigned on the project

Manager is a user who manages a project in general. This user has a privilege
to read and write. Managers can assign users to a project from the list
of users. Managers also assign privileges to users of a project.

Designer þ Initial assignment to read a project,
viewing/finding users

Designers are the actual workforce in performing a design task. Initially,
they will be given viewing and change requesting rights on the node assigned

Vendor þ No initial privilege Vendors are people from outside a company. Manager can assign privileges
(up to a designer) to this user but no privilege is assigned initially.

Viewer þ Messaging with an account Users having minimum privilege, viewing privilege can be assigned to the user
Guest Limited messaging Potential users

þ Means that the privilege is transferring from the user type below.

Table 4. Definition of database table, FILE.

Field name Definition

ID ID, Primary Key
Version Version of the file
Name File Name; Saved as

[ID]_[Random number]_[Name].[Ext]
PreviousID
���������

ID of the Previous Version
NodeID
������

Associated Node’s ID, Foreign Key
CreatorID
��������

Creator’s ID, Foreign Key
FileTypeID ID of FILETYPE table, Foreign Key,

referencing from the table, ‘FILETYPE’
FileExtension File extension
FileLocation Physical location of the file
DateOfCreation Date of Creation
Description Description of the file
CurrentFlag Flag to indicate if the file is the current one

or not. 1 (yes) or 0 (no)
Keyword Keyword will be used in searching

(_________): Primary Key; (
�������

): Foreign Key.

PRODUCTNODE FILE

: Optional many
: Compulsory one

ID NodeID

: Reference

Figure 14. FILE and PRODUCTNODE.

228 C. C.-W. CHUNG ET AL.

the type of file stored in the system. Since most
information exists in the form of files, the table indicates
the kind of information the file has. Based on the
reference to the ID of the table, FILETYPE, the system
can identify the use of the files saved in the PN.

8. Implementation

8.1 Representation of PN

The overall program architecture of the PN system is
shown in Figure 15. The prototype implementation was
made to test the feasibility and the basic operations
necessary to the PN system architecture. It consists of
three layers – application layer (front-end), middle layer,
and database layer. The information about the PN
structure is retrieved from the database and stored in a
neutral Extensible Markup Language (XML) format in
the middle layer. This information is then presented to
the user through the application layer consisting of Java
Server Pages (JSPTM), JavaScriptTM, and Hype-Text
Markup Language (HTML). The application layer
handles all the user interactions and updates its view
accordingly. The default view of the application
layer shows the root node (PROJECT-PN) with the
corresponding node details. The root node can then
be expanded to view the child-nodes associated with
the project. To get the required information about the
child-nodes, a query is made to the database with the

node ID (i.e., the Project ID) as the query parameter.
Subsequently, the information about the child-nodes
(i.e., the nodes which have the passed query parameter
(Project ID) as its parent ID) is then retrieved from the
database. For each such child-node, a query is again
made to the database system to find the nodes at the
next level (i.e., child’s child-node). This recursive query
traverses through the entire database until it reaches the
leaf-node (leaf-node: node having no child-node under).
This information is made available to the middle layer,
where the Microsoft� XML Parser (Microsoft� XML
Parser comes with Microsoft� Internet ExplorerTM)
puts all the retrieved information into XML format.
The application layer uses the node structure in the
XML format and then displays it in HTML format as
in Figure 16.

8.2 Basic Operation

A child node can be added to an existing node using
the ‘Add Node’ command as shown in Figure 16. The
user can fill in the details for the child-node. This will
then be added as a child to the node ‘Drive Train.’ Using
this ‘Modify’ functionality, the user can make changes
to the node details. The user first needs to select the
appropriate node on the left side frame and then
proceed to make the changes. The ‘File Management’
functionality allows the user to associate files with a
particular node. The files are stored in the server under a
folder structure, which reflects the node structure.

9. Conclusions

Various methodologies which deal with the represen-
tation of product information and their interactions
have been discussed. Based on an analysis of the existing

GUI interface, tree.jsp,
to show a project

node (i.e., RC-CAR
model)

Queries Product
information

DB

Result-set
first level product
node (DriveTrain,

frame, exterior,
wheels

XML
Data

All child node data
retrieved and written

in XML format

Uses Microsoft
XML parser to

convert data into
HTML format

Product node ID for RC-
CAR is used as a query

arameter to get information

tree.jsp treeNodeXML.jsp

Recursive queries to
DB with IDs of the

subsequent
PN entities

St
ar

t

Figure 15. Basic structure of the PN system.

Table 5. Definition of FILETYPE table.

Field name Definition

ID Primary Key
TypeName File Type

Product Node Architecture to Provide Structured Flexibility 229

systems, problems arising due to the static structure of
information representation as well as non-concurrent
operations have been identified. To address these issues,
a new methodology of PN has been introduced.
The dynamic structure of the PN system enables
the synchronization of a project initiation and the
actual progress of the project. Database structures of the
PN system and the logic of transactions of the use have
been shown in detail in this work. Manipulation of PN,
such as changing the product structure, history tracking,
reuse of previous design, file and document manage-
ment, and user management show the ‘structured
flexibility’ of the system. The prototype application
shows the basic functions required by the PN system
and the viability of the system structure.

Acknowledgments

The support of the 21st Century Research and
Technology Fund and the National Science Foundation
Partnership for the Innovation Award to PRECISE
(Purdue Research and Education Center for Infor-
mation in Engineering) is gratefully acknowledged.

References

1. Frank, A., Sellentin, J. and Mitschang, B. (2000).
TOGA – A Customizable Service for Data-centric
Collaboration, Information Systems, 25(2): 157–176.

2. Prasad, B., Wang, F. and Deng, J. (1997). Towards
a Computer-Supported Cooperative Environment for
Concurrent Engineering, Concurrent Engineering: Research
and Applications, 5(3): 233–251.

3. Qiang, L., Zhang, Y.F. and Nee, A.Y.C. (2001).
A Distributive and Collaborative Concurrent Product
Design System through the WWW/Internet, International
Journal of Advanced Manufacturing Technology, 17(5):
315–322.

4. Miller, E. and Koucky, S. (2002). Market Consolidation
Raises Executive Awareness of PLM, Machine Design,
74(14): 56.

5. Lingblom, M. (2001). EDS Forms Unit Devoted to PLM
Solutions, Computer Reseller News, 10/8/2001(966): 22.

6. Naumann, T., Vajna, S., Speck, H. and Ende, A. (2002).
Relationship Between Process and Product Structures – A
New and Flexible Approach for an Integrated Dynamic
Process Management, In: Proceedings of DETC ’02,
Montreal, Canada, September 29–October 2.

7. Gane, C. and Sarson, T. (1979). Structured Systems
Analysis: Tools and Techniques, New York, NY 10019:
Improved System Technologies, Inc.

Figure 16. Expanded structure and basic operation view of PN.

230 C. C.-W. CHUNG ET AL.

8. O’Donnell, F.J., MacCallum, K.J., Hogg, T.D. and Yu, B.
(1996). Product Structuring in a Small Manufacturing
Enterprise, Computers in Industry, 31(3): 281–292.

9. Szykman, S., Racz, J., Bochenek, C. and Sriram, R.D.
(2000). A Web-based System for Design Artifact
Modeling, Design Studies, 21(2): 145–165.

10. Gorti, S.R., Gupta, A., Kim, G.J., Sriram, R.D. and
Wong, A. (1998). An Object-oriented Representation for
Product and Design Processes, Computer Aided Design,
28(11): 489–501.

11. Liang, W.Y. and O’Grady, P. (1998). Design with Objects:
An Approach to Object-oriented Design, Computer Aided
Design, 30(12): 943–956.

12. Hameri, A.P. and Nitter, P. (2002). Engineering Data
Management through Different Breakdown Structures
in a Large-scale Project, International Journal of Project
Management, 20(5): 375–384.

13. Warfield, J.N. (1974). Structuring Complex Systems,
Battelle Memorial Institute, Columbus, Ohio.

14. Date, C.J. (2000). An Introduction to Database Systems,
Addison Wesley Longman, Inc., Boston, MA.

15. Kumar, V., Burns, D., Dutta, D. and Hoffmann, C.
(1999). A Framework for Object Modeling, Computer
Aided Design, 31(9): 541–556.

16. Proper, H.A. (1997). Data Schema Design as a Schema
Evolution Process, Data & Knowledge Engineering, 22(2):
159–189.

17. Crabb, H.C. (1998). The Virtual Engineer, 21st Century
Product Development, New York: SME/ASME Press.

18. Stock, J., Speh, T. and Shear, H. (2002). Many Happy
(Product) Returns, Harvard Business Review, pp. 16–18.

19. Rezayat, M. (2000). Knowledge-based Product
Development Using XML and KCs, Computer-Aided
Design, 32(5): 299–309.

20. Prasad, B. (1999). Concurrent Engineering Fundamentals:
Integrated Product and Process Organization, Vol. I,
New Jersey: Prentice Hall PTR.

21. Prasad, B., Wang, F. and Deng, J. (1998). A Concurrent
Workflow Management Process for Integrated Product
Development, Journal of Engineering Design, 9(2): 121–135.

Charles Chan-Woo Chung

Dr Chung received his PhD
in Mechanical Engineering
from the Purdue University.
As a graduate student, he
was a NSF/IGERT Fellow. He
received his MS from Yonsei
University, Korea in 1997.
His research focus was on
Rapid Tooling/Prototyping,
CAD, Product Informatics,
Product/Process Data Model-
ing, Knowledge Database

Modeling, Engineering Advisory Systems, and Product
Lifecycle Management System Design. Dr Chung is
currently a Senior Consultant at Samsung Data Systems
(SDS) in Korea.

Jun-Ki Choi

Jun-Ki Choi is Fredrik
Andrews Environmental
Fellow in the School of
Mechanical Engineering at
Purdue University. He
received his MS degree from
the University of Michigan,
Ann Arbor in 1999. He is a
PhD candidate in the School
of Mechanical Engineering at
Purdue University. His current
areas of research include

Design Methodology, Decision Making Analysis,
Design for Environment, Environmental Supply Chain
Management, and Collaborative product/process
design. His research backgrounds also include machin-
ing, manufacturing processes, rapid prototyping, and
tooling.

Harshal Patwardhan

Harshal Patwardhan
received his MS degree in
Industrial Engineering at
Purdue University in 2004.
He received his Bachelors
Degree in Mechanical
Engineering from Pune
University, India in 2000.
His current interests are in
the areas of Product and
Process Development, Cost
Estimation, Supply Chain

Management, and Logistics. He is currently working
at Alpha Sigma Consulting, LLC at Chicago as a
Consultant.

Karthik Ramani

Dr Ramani is a Professor
in the School of Mechanical
Engineering at Purdue
University. He earned his
BTech from the Indian
Institute of Technology,
Madras in 1985, an MS from
The Ohio State University in
1987, and a PhD from
Stanford University in 1991,
all in Mechanical Engineering.
He has been awarded the

Dupont Young Faculty Award, the National Science

Product Node Architecture to Provide Structured Flexibility 231

Foundation Research Initiation Award, the National
Science Foundation CAREER Award, the Ralph
Teetor Educational Award from the Society of
Automotive Engineers, the Outstanding Young
Manufacturing Engineer Award from the Society of
Manufacturing Engineers, and the Ruth and Joel Spira

Award for Outstanding Contributions to the
Mechanical Engineering Curriculum. Dr Ramani’s
current projects are in the area of product and process
design, information retrieval and management, and
rapid tooling for future design and manufacturing
systems.

232 C. C.-W. CHUNG ET AL.

