
400 Congress Street | Portland, Maine 04101

+1 888-KEPWARE • www.kepware.com©2015 Kepware, Inc. All rights reserved.

IIoT Protocols to Watch

Aron Semle, R&D Lead

Introduction

IoT is alphabet soup. IIoT, IoE, HTTP, REST, JSON, MQTT, OPC UA, DDS, and the list
goes on. Conceptually, we’ve discussed IoT for a long time and understand the
basic idea and technical feasibility. Now we’re moving forward, identifying use
cases and building prototypes. So it’s about time to work on that alphabet.

A big challenge in IoT is interoperability. In a recent Nexus survey, 77% of
respondents stated that interoperability was their biggest challenge in IoT.
Connecting industrial devices to IT and IoT platforms is big business, and
it’s where a lot of the abbreviations come from. There are many protocols to
accomplish this: some that are proprietary and others that are open standards.
All are jockeying to be the one and only IoT protocol, but it’s clear this will never
be the case. These protocols will co-exist—each with their own strengths and
weaknesses—and it’s our job to understand where and when to use them.

This whitepaper focuses on the open standards for connecting industry to IT and
provides use cases for each.

Client/Server vs. Publish/Subscribe

For the purpose of this discussion, it’s important to group protocols into two
categories: client/server and publish/subscribe.

Client/server protocols require the client to connect to the server and make
requests. In this model, the server holds the data and responds to requests from
the client. For example, the client may read a temperature. This requires the
client to know about the server in advance and be able to connect.

Publish/subscribe protocols require the devices to connect and publish data
to a topic on an intermediary broker. Consumers can connect to the broker
and subscribe to data from the topic. For example, a device can sample the

Kepware Whitepaper

400 Congress Street | Portland, Maine 04101

+1 888-KEPWARE • www.kepware.com©2015 Kepware, Inc. All rights reserved.

temperature every minute and publish once an hour. An application subscribed
to the data stream receives an hour’s worth of one-minute samples every hour.
This model decouples the producer of the data from the consumer of the data.

Client/server protocols are best used when you understand your infrastructure.
For example, you know that your server in the field has an IP address of
55.55.55.55 and is listening on port 1234. The client can connect and make
requests.

Publish/subscribe protocols are a better fit when your infrastructure is
unknown. For example, if a remote device changes networks or has intermittent
connectivity, it’s easier for the device to call home when it’s online and publish
its data.

In terms of pros and cons, client/server protocols are more interoperable
and secure because they are based on point-to-point connections. They are,
however, less scalable, because point-to-point connections are harder to
manage and more resource intensive.

In contrast, publish/subscribe protocols are more scalable because the
decoupling of producers and consumers allows each to be added and removed
independently. That said, securing these protocols is more complex because
there are more pieces involved. They can also have interoperability issues given
the lose coupling of the producer and consumer. For example, changing the
message format that a producer sends requires all consumers to adapt to the
new message type.

Now that we understand the basic categories, let’s look at client/server and
publish/subscribe protocols in more detail.

Protocols

The protocols we’ll discuss have the potential to connect together industrial
devices with IoT platforms. It may go without saying, but if you’re trying to
connect two applications and both support HTTP, try HTTP first. If that doesn’t
work or if your environment doesn’t support it, keep reading. We’ll describe
each protocol and when to use it. Here is the short list that we’ll cover:

•	 OPC UA
•	 HTTP (REST/JSON)
•	 MQTT
•	 CoAP
•	 DDS
•	 AMQP

Client/server

protocols are best

used when you

understand your

infrastructure...

Publish/subscribe

protocols are a

better fit when your

infrastructure is

unknown.

400 Congress Street | Portland, Maine 04101

+1 888-KEPWARE • www.kepware.com©2015 Kepware, Inc. All rights reserved.

OPC UA

OPC Unified Architecture (OPC UA) is the next generation standard from the
OPC Foundation. Classic OPC is well known in the industrial space and provides
a standard interface to communicate with PLCs. OPC UA aims to expand OPC’s
interoperability to the device and enterprise levels.

OPC UA is a client/server protocol. Clients connect, browse, read, and write to
industrial equipment. UA defines communications from the application to the
transport layer, making it very interoperable between vendors. It’s also highly
secure, and uses two-way message signing and transport encryption.

OPC UA has a wide install base in the industrial space. It is a good solution for
tying PLC and sensor data into existing industrial applications like SCADA and
MES systems, where OPC and OPC UA connectivity are already available.

OPC UA is new to the IT space, however. Some people in IT are intimidated by
the complexity of UA compared to other IT protocols. A lot of this complexity is
a result of OPC UA being an industrial protocol, but this perception has led to
slow adoption by IoT platforms and the open source community.

Things are changing, however: recently, the OPC Foundation open sourced the
OPC UA standard to make it more accessible and help increase adoption.

For now, use OPC UA when you need to get PLC and sensor data into existing
SCADA and MES solutions, and keep an eye out for OPC UA adoption by IoT
platform providers and the open source community.

HTTP (REST/JSON)

Hypertext Transfer Protocol (HTTP) is a connectionless client/server protocol
ubiquitous in IT and the web. Because there are countless open source tools that
use HTTP, and every coding language has HTTP libraries, it is very accessible.

The focus on HTTP in IoT is around Representational State Transfer (REST),
which is a stateless model where clients can access resources on the server
via requests. In most cases, a resource is a device and the data that a device
contains.

HTTP provides a transport, but doesn’t define the presentation of the data. As
such, HTTP requests can contain HTML, JavaScript, JavaScript Object Notation
(JSON), XML, and so forth. In most cases, IoT is standardizing around JSON
over HTTP. JSON is similar to XML—without all the overhead and schema
validation—making it more lightweight and flexible. JSON is also supported by
most tools and programming languages.

The focus on HTTP

in IoT is around

Representational

State Transfer

(REST), which is a

stateless model

where clients can

access resources

on the server via

requests.

400 Congress Street | Portland, Maine 04101

+1 888-KEPWARE • www.kepware.com©2015 Kepware, Inc. All rights reserved.

Industry has some experience using HTTP for device and product configuration,
but not for data access. As such, many IoT and IT platforms support consuming
and providing data in HTTP form, but few industrial platforms do. This is
changing as more gateways and PLCs begin to add native HTTP support.

Use HTTP for sending chunks of data, like one-minute temperature readings
every hour. Don’t use HTTP for streaming high-velocity data. HTTP can do
sub-second data, but 100 ms updates over HTTP are difficult. It has a lot of
overhead per message, so streaming small messages is inefficient. And always
secure communications with HTTPS. The overhead is minimal.

Be aware of interoperability issues with HTTP products. Just because two
products support HTTP/REST/JSON doesn’t mean they’ll work out of the box.
Often the JSON formats are different and require minimal integration to get
things working.

MQTT

Message Queuing Telemetry Transport (MQTT) is a publish/subscribe protocol
designed for SCADA and remote networks. It focuses on minimal overhead
(2 byte header) and reliable communications. It’s also very simple. Like HTTP,
MQTT’s payload is application specific, and most implementations use a custom
JSON or binary format.

MQTT isn’t as widely used as HTTP, but it still has a large market share in IT. There
are many open source clients/producers, brokers, projects, and examples in
every language. Many IoT platforms support HTTP and MQTT as their first two
inbound protocols for data.

Use MQTT when bandwidth is at a premium and you don’t know your
infrastructure. Make sure you or your vendor has an MQTT broker you can
publish data to—and always secure communication via Transport Layer Security
(TLS).

Does the end application not support MQTT? If so, there are a lot of open source
tools for getting MQTT data into databases and other formats like HTTP.

Beware of interoperability issues similar to HTTP. Just because two applications
support MQTT doesn’t mean they are interoperable. The topic and JSON formats
may need to be adjusted to make the two products interoperable.

Many IoT platforms

support HTTP and

MQTT as their

first two inbound

protocols for data.

400 Congress Street | Portland, Maine 04101

+1 888-KEPWARE • www.kepware.com©2015 Kepware, Inc. All rights reserved.

CoAP

The Constrained Application Protocol (CoAP) was created by the Internet
Engineering Task Force (IETF) to provide the interoperability of HTTP with
minimal overhead. CoAP is similar to HTTP, but uses UDP/multicast instead of
TCP. It also simplifies the HTTP header and reduces the size of each request.
CoAP is used in edge-based devices where HTTP would be too resource
intensive, and is often the third protocol supported by IoT platforms after HTTP
and MQTT. Similar to HTTPS, CoAP uses Datagram Transport Layer Security
(DTLS) to secure communications.

Use CoAP when HTTP is too bandwidth intensive. Keep in mind that CoAP’s
market adoption is not as large as HTTP, so it may limit your software and
hardware options. There are solutions for converting CoAP messages to and
from HTTP that make CoAP solutions more interoperable.

DDS

Data Distribution Service (DDS) is a publish/subscribe protocol that’s focused
on communication at the edge of the network. DDS is an open standard
managed by the Object Management Group (OMG). Unlike MQTT which
requires a centralized broker, DDS is decentralized. DDS nodes communicate
directly in peer-to-peer fashion using UDP multicast. This removes the need
for centralized network management and also makes DDS a faster protocol,
reaching sub-millisecond resolution.

DDS is a good solution for reliable, real-time data delivery at the edge. Use it for
fast M2M communications.

DDS supports brokers to integrate DDS networks with the enterprise, but in
practice it is not well positioned as the integration point between industry and
IT as brokers are often secondary to the DDS network.

AMQP

Advanced Message Queuing Protocol (AMQP) is another publish/subscribe
protocol that comes out of the financial services sector. It has a presence in IT,
but a limited presence in industry.

AMQP’s biggest benefit is its robust communications model that supports
transactions. Unlike MQTT, AMQP can guarantee transactions complete—which,
though useful, is not always required by IoT applications.

AMQP often gets grouped with IoT protocols and it is one—but its biggest con
is that it’s a heavy protocol. It was meant for backend IT systems, and not the
edge of the network.

DDS is a good

solution for

reliable, real-time

data delivery at

the edge. Use

it for fast M2M

communications.

400 Congress Street | Portland, Maine 04101

+1 888-KEPWARE • www.kepware.com©2015 Kepware, Inc. All rights reserved.

Conclusion

OPC UA, HTTP, MQTT, CoAP, DDS, and AMQP all have a place in IoT. Which
protocols take majority market share is unclear, but each has its pros and
cons. It’s important to pick the protocol that best fits your needs, and select
technology partners that can adapt to these protocols. This will ensure the
success of your IoT applications and protect you from the protocol wars.

Be sure to check out Kepware’s new IoT Gateway available in the KEPServerEX
version 5.19 release. We included support for REST and MQTT, allowing our
customers to get PLC data into new IoT platforms and open source tools like
Node-RED. Unlock your industrial data to the Internet of Things.

REST Server REST Client MQTT Client
Microsoft

APIs
IoT API

Scheduling

Analytics

Modeling

Connectivity

Big Data/Analytics

It’s important to

pick the protocol

that best fits your

needs, and select

technology partners

that can adapt to

these protocols.

