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Abstract 

When experimenting with pervasive systems consisting of numerous intercommunicating machines and sensors, it quickly 
becomes desirable to mix simulated virtual nodes and real world machines. This will enable the implementation of a test-bed 
where a large number of simulated nodes, instead of a potentially very expensive set of real prototype devices, are interacting 
with a smaller number of physical devices through real world physical network hardware. Such setups are referred to as 
"simulation-in-the-loop" systems, where it is possible to send and receive simulator generated packets on real world devices. This 
approach will also inherently ensure a certain degree of validity and realism of the simulation models as packets generated within 
the simulator must travel through a real network and be successfully received by a physical machine which, ideally, has no way 
of knowing if the packet originated from a simulated node or a real one. In this paper, we are presenting the design principles for 
an interconnected test-bed system for trialing the data handling capabilities of cloud-enabled sensor systems. 
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1. Introduction 

The implications of the recent advances in technologies related to pervasive sensor networks and the Internet of 
Things (IoT) are not only limited to the embedded technologies, wireless communication protocols and small 
devices that are becoming more and more ubiquitous in various aspects of our everyday lives and businesses. 
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Indeed, vast amounts of data are being generated each second by myriads of interconnected communicating devices 
and sensors already today, while an increasing number of small embedded devices of various kinds are being 
brought forth by the rise of the current IoT sensor revolution. To fully realize the potential benefits of these sensor 
systems, one key aspect will be harnessing the value of the information contained in the rapid, constantly incoming 
streams of machine-generated data. In order to meet these challenges and this vision to become a reality, the various 
kinds of sensor data coming in from the pervasive sensor applications must be managed with tools and processes 
that are arising from the fields of big data and cloud computing. This processing challenge of sensor data streams 
has been referred to as the "Analytics of Things"1. Scalable NoSQL databases2, distributed data processing engines 
and efficient tools for handling the huge number of streaming events and messages are but some examples of the 
necessary technologies for managing this ever growing onslaught of machine-generated big data. However, even 
before one can get to the point of actually being able to run complex analytics or machine learning algorithms on 
this data, there are many challenges that must be overcome to get the raw machine data marshaled and packaged in 
usable formats. There is still a wealth of untapped potential and technical challenges to be overcome in managing 
and processing machine-generated big data3 on such a scale. 

When studying these complex software intensive systems consisting of numerous intercommunicating sensors 
and machines it quickly becomes desirable to mix simulated virtual nodes with real world devices. This will enable 
the design and implementation of a testbed where a large number of simulated nodes, in place of a potentially very 
expensive set of hundreds of real prototype devices, are communicating and interacting with physical network 
hardware and a much smaller number of physical real world sensor devices. Such setups are referred to as 
"simulation-in-the-loop" systems4, where it is possible to send and receive simulator generated packets on real world 
network devices. This approach will also inherently ensure a certain degree of validity and realism pertaining to the 
simulation models being used due to the fact that the traffic generated within the simulator must travel through a real 
network. In this paper, we present the design for an interconnected testbed system to model the traffic and data 
generated by pervasive sensor systems and the Internet of Things for the purpose of trialing and experimenting with 
the data processing capabilities of data sinks such as different cloud-enabled back-end solutions.  

2. Sensor data formats and protocols for cloud-enabled IoT applications 

In order to extract value and insights from pervasive sensors and data streaming in from the Internet of Things 
(IoT), we must be able to collect and transfer any incoming data from those small devices or, in some cases, 
gateways to be stored and processed in in the cloud, typically with tools and technologies such as those based on 
Apache Hadoop5. While human generated big data is already being analysed and exploited with remarkable success 
by businesses such as Twitter, Facebook, LinkedIn6,7 to name a few, harnessing the untapped potential of machine-
generated big data is still a field largely left untouched3,8,9. 

The term machine-generated data has been defined by Curt Monash10 as follows: "data that was produced entirely 
by machines or data that is more about observing humans than recording their choices". To get some perception on 
the importance and scope of this kind of data, it has been estimated by IDC3 that the amount of machine-generated 
data will increase to 42 percent of all data by 2020. Furthermore, according to Gartner11 Internet of Things, 
excluding PCs, tablets and smartphones, will grow to 26 billion units of installed devices in 2020 thus representing 
an almost 30-fold increase from the 0.9 billion of 2009. In any case, it is clear that as the number of interconnected 
devices and sensors embedded into our everyday lives keeps increasing, so does the total amount of machine data 
being generated every moment. 

To make this huge amount of data available to be used and processed by cloud-enabled applications, one must 
first understand the data and protocols behind it. Therefore, the major data formats, communication protocols and 
characteristics of sensor data and data communications in the internet of things must be studied. In this work, the 
focus will be kept on the data streaming in from sensors, IoT, pervasive environments or communication 
gateways12. Technical details on how and if the sensors communicate among themselves, with other nearby sensors, 
limited area networks or personal area networks via peer-to-peer technologies13, mobile Ad hoc networks14,15, 
wireless sensor networks16, or other short-range low power wireless protocols17 are left out of scope in this research. 

Sensor systems and the IoT are still a complex labyrinthine medley of competing protocols, platforms, data 
formats and technologies18,19. In order to future-proof the design of the sensor data testbed being built, it is important 
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to focus on and support the most promising and widely accepted sensor data protocols. Currently, the most essential 
sensor application and data protocols20,21 can be narrowed down to the following three: 

 
 Message Queuing Telemetry Transport: MQTT 22 is a lightweight publish/subscribe based message protocol 

especially well-suited for running on limited computational power and lean network connectivity. IBM and 
systems provider Eurotech were the first to develop MQTT before contributing the protocol to OASIS for 
standardisation. The protocol is already widely used the field within a wide variety of embedded applications. 

 Constrained Application Protocol: CoAP23 aims to be a generic web protocol for the special requirements of 
constrained sensor environments while easily integrating with HTTP and existing web technologies with a very 
low overhead. The CoAP protocol is designed specifically for machine-to-machine (M2M) applications such as 
smart energy and smart building- and energy automation. It also offers features desirable for sensor applications 
such as built-in discovery, multicast support, and asynchronous message exchange functionality. 

 Hypertext Transfer Protocol: HTTP24, the tried and true RESTful HTTP over TCP25, very familiar to us all from 
the web service world, is particularly attractive due to the universal availability and compatibility of the legacy 
HTTP-stack. The RESTful HTTP approach has found success in several smaller scale application scenarios and 
is also employed in some M2M-platforms26,27. 

 
There are many others19, of course, but these three major protocols will be the main focus in this work. 

Technologies related to the Representational State Transfer (REST) software architectural style, such as CoAP and 
HTTP, should be given special attention, as RESTful architectures are a very common approach employed in many 
contemporary IoT-platforms20,28. Furthermore, employing RESTful APIs will also give the advantage of easy 
integration with other web services29. 

When studying the data formats being widely used for sensor data in pervasive systems, we seem to find that, 
again, a handful of major ones can be easily identified to be the most essential ones. The data formats which are 
most commonly employed in most of the current existing sensor platform solutions20 are the following three: 

 
 JSON30 (JavaScript Object Notation) lightweight data-interchange format for storing and exchanging data. It is 

easy to read and write by both humans and machines. While JSON is a text-based format and language 
independent, it is a subset of the JavaScript programming language. 

 XML31:Extensible Markup Language (XML) is essentially a set of rules for encoding documents in a format 
which is readable for both man and machine. XML also acts as a basis for certain messaging protocols, such as 
XMPP32 and BitXML. 

 CSV33: Basic comma separated values are by far the simplest and most rudimentary of commonly used sensor 
data formats. It has, however, found success in many places due to its inherent simplicity and easy applicability.  

3. The ns-3 Simulator for a simulation-in-the-loop approach 

Running tests and experimenting with sensor data management scenarios with anything less than hundreds of 
nodes generating realistic data constantly is obviously non-relevant already when compared to some of the existing 
M2M and IoT solutions in the field today16,26,34, but especially so when taking into account the future potential and 
technological visions12,15,32,35–38 for the internet of things and pervasive sensor environments. On the other hand, 
experimenting exclusively with simulators does not provide results convincing and verifiable enough for scientific 
purposes. Therefore, a tool enabling the mixing and intercommunication of real and simulated networks and devices 
is required. The ns-339 is an open source project launched in 2006 for a discrete-event network simulator which has 
been developed by an open community primarily for the purposes research and educational use. The most common 
reasons to employ the ns-3 in research work are to perform experiments that are unfeasible to implement with real 
hardware and to study system behaviour in a controlled, reproducible environment. The ns-3 tool provides a set of 
models for how various packet data networks work and perform in addition to providing a simulation engine for 
users of the simulator to run their experiments. Also, compared to the legacy ns-2 simulator already familiar to many 
a researcher in the field of computer networks, ns-3 is an entirely new simulator that is not in any way backwards 
compatible with ns-240. The ns-3 simulator has built-in support for simulations consisting of both IP and non-IP 



360   Antti Iivari and Jussi Ronkainen  /  Procedia Computer Science   56  ( 2015 )  357 – 362 

based networks and includes a comprehensive library of models for a number of technologies such as the internet 
stack, ad hoc routing protocols, wireless radios, energy consumption, and mobility just to name a few. The key 
component and functionality provided by the ns-3 simulator for the purposes of the testbed work described in this 
paper is the ns-3 EMU net device, which essentially gives us the ability to inject traffic from the simulator4 and the 
virtual nodes therein to a real world network with real devices and vice versa. One such scenario is shown in figure 
1, where virtual ns-3 nodes communicate with each other by driving real testbed hardware. The ns-3 simulation 
platform is deployed as an integral part of the sensor data processing testbed proposed in this paper.  

 

 

Figure 1. Simulated ns-3 applications attached to a testbed with real hardware via the emu netdevice. 

For the testbed discussed in this paper, an ns-3 application is written on top of the EMU net device, which 
generates traffic towards the real network using the protocol(s) for sensor data as discussed in the previous section. 

4. Design and structure of the sensor data testbed 

The main aim is to set up a testbed for generating realistic sensor data, real or emulated, from a combination of 
physical hardware sensor nodes and virtual simulated nodes in a simulation-in-the-loop environment connected to 
the real testbed network. Several embedded platforms, such as the Raspberry Pi and Arduino, were chosen as 
additional parts of the testbed system based on their proven flexibility and capabilities of running real world IoT 
applications and sensor protocols41. The first version of the testbed contains the following components: 

 
 Raspberry Pi Model B: Arm-based minicomputers with 512MB of Ram. 
 STMicroelectronics NUCLEO-F401RE: a development board based on the STM32 microcontroller. 
 Arduino UNO R3: Small microcontroller boards based on the ATmega328. 
 Android mobile devices: A set of smartphones and tablets based on the Android platform. 
 A Linux -desktop PC: An Intel i3-based multicore computer running the Ns3-simulation platform  
 A distributed server: A set of Linux-based PC's to act as distributed data sinks for the generated sensor data. 
 Networking hardware: Switches, adapters and routers required for interconnecting the components 

 
A diagram for the design of the sensor data testbed overviewing the main components is shown in figure 2. 
 

 

Figure 2. An overview and the main components of the sensor data testbed. 
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In order for the testbed to emulate the data and traffic generated by realistic IoT sensor environments, a hybrid 
approach is required where simulated virtual IoT nodes are injecting data traffic into a real network in combination 
with a significantly smaller amount of real hardware sensor nodes, which are also transmitting data towards a back-
end. The back-end is essentially all the tools and technologies for handling this machine-generated data, making up 
the data processing pipeline for whatever IoT or sensor application case under study. Further discussion on the 
details concerning the back-end is left as the subject matter for another paper, but typically such a pipeline would 
include components for data ingestion, stream processing, data storage, processing engines and visualization.  

5. Conclusions 

In this paper, we have presented the initial design, setup and components for an interconnected simulation-in-the-
loop data testbed to trial and experiment with pervasive sensor applications and management of large amounts of 
realistic machine-generated sensor data. The Internet-of-Things with its huge numbers of intercommunicating 
everyday objects and modern pervasive sensor environments is generating huge amounts of machine data, for which 
cloud-enabled back-end solutions capable of distributed big data processing and scalable data storage will be 
required. Such data management pipelines or sensor back-ends must be trialed and validated before deployment, 
preferably using realistic data and packet traffic patterns. But therein lies the very challenge; how do we generate 
realistic sensor data streaming in via state-of-the-art sensor applications and IoT communication protocols without 
relying exclusively on unconvincing methods of simulators and software tools or the unfeasible alternative of 
purchasing and setting up hundreds of potentially expensive hardware nodes? The simulation-in-the-loop based 
approach for the data testbed proposed in this paper was designed to meet this challenge by combining simulated 
virtual nodes that intercommunicate with real IoT sensors, devices and servers. This enables the implementation of a 
testbed setup where a large number of simulated nodes, instead of a potentially very expensive set of hundreds of 
real prototype devices, are interacting with a smaller number of physical devices through real world physical 
network hardware using the most relevant IoT message protocols and data formats. 

While the initial design for the data testbed is complete and has been presented and the first phase of setting up 
the test environment has been successfully carried out with promising results, there are still many steps and matters 
to be improved or enhanced which are left for future work phases. Furthermore, the deployments of the testbed 
presented in this paper against specific data processing backend solutions, and any related test results thereof, are the 
subject matter for another prospective paper. Some issues that will be considered for future phases of the work are as 
follows: the addition of more diverse set of hardware sensor nodes, more powerful network hardware (e.g. switches, 
routers), running the simulation part in parallel distributed mode to generate even more voluminous amounts of data 
and the added support of more IoT communication protocols and sensor data formats.  
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