

Quality Information Framework (QIF) – An Integrated Model for Manufacturing Quality Information

QIF Version 3.0 ANSI/DMSC QIF 3.0 - 2018 Digital Metrology Standards Consortium, Inc. (DMSC)

QIF 3.0

Prepared and Published by: Digital Metrology Standards Consortium, Inc. (DMSC) 1350 Alsbury Blvd., #514 Burleson, Texas 76028 Tel: (817) 461-1092 email: support@qifstandards.org

www.QIFStandards.org

All rights reserved worldwide.

Copyright by the DMSC. Permission is hereby granted, free of charge, to make copies of this document and use the content in any manner as long as this copyright notice and permission notice are included in every copy.

Contents

F	oreword	xxiii	
Ir	ntroduction		
1	Scope	of the integrated model and fundamental principles1	
	1.1 Co	ntents of this document	
	1.2 Sc	ope of the QIF Version 3.0 information model1	
	1.3 Co	nformance	
2		tive references	
3	lerms	and definitions	
	3.1 Te	rms defined in ISO 22093:2011 and ANSI/DMIS 105.3-2016, Part 16	
	3.1.1	actual6	
	3.1.2	dimensional measuring equipment (DME)6	
	3.1.3	nominal6	
	3.1.4	measurement	
	3.1.5	part coordinate system (PCS)6	
		rms defined in XML Schema Part 0: Primer Second Edition, W3C Recommendation er 2004	
	3.2.1	attribute	
	3.2.2	complexType	
	3.2.3	element	
	3.2.4	instance file7	
		rms defined in XML Schema Part 1: Structures Second Edition, W3C endation 28 October 20047	
	3.3.1	attribute information item7	
	3.3.2	element information item7	
	3.3.3	enumeration7	
	3.3.4	extension7	
	3.3.5	key	
	3.3.6	keyref	
	3.3.7	schema (or XML schema)8	

3.3.8	8 schema document (or schema file)
3.3.9	9 simple type
3.3.1	10 string
3.3.1	11 token
3.4	Terms defined in the QIF standard
3.4.1	1 accuracy test
3.4.2	2 action
3.4.3	3 action group
3.4.4	4 action method
3.4.	5 actual component
3.4.6	6 actual component set
3.4.7	7 application area
3.4.8	3 articulating arm CMM
3.4.9	9 aspect
3.4.1	10 definition aspect
3.4.1	11 nominal aspect
3.4.1	12 item aspect
3.4.1	13 measured aspect10
3.4.1	14 assembly10
3.4.1	15 assembly path10
3.4.1	16 assignable cause10
3.4.1	17 attribute characteristic10
3.4.1	18 attribute data10
3.4.1	19 autocollimator
3.4.2	20 bias10
3.4.2	21 bill of characteristics (BoC)10
3.4.2	22 boolean condition10
3.4.2	23 calibration11
3.4.2	24 caliper11
3.4.2	25 capability11
3.4.2	26 capacitive sensor
3.4.2	27 carriage11
3.4.2	28 Cartesian CMM11

3.4.29	characteristic	11
3.4.30	characteristic item	11
3.4.31	charge coupled device camera sensor	11
3.4.32	checked	11
3.4.33	clipping plane	11
3.4.34	complex tactile probe sensor	11
3.4.35	component	12
3.4.36	composite feature	12
3.4.37	computed tomography	12
3.4.38	confocal chromatic sensor	12
3.4.39	constructed feature	12
3.4.40	control limits	12
3.4.41	control points	12
3.4.42	coordinate measuring machine	12
3.4.43	control polygon	12
3.4.44	corrective action	12
3.4.45	corrective action plan	12
3.4.46	data/information quality	13
3.4.47	datum definition	13
3.4.48	datum reference frame	13
3.4.49	dial caliper	13
3.4.50	digital caliper	13
3.4.51	digital micrometer	13
3.4.52	draw wire sensor	13
3.4.53	DVRT sensor	13
3.4.54	eddy current sensor	13
3.4.55	entity	13
3.4.56	evaluation	14
3.4.57	event	14
3.4.58	external product definition	14
3.4.59	feature	14
3.4.60	file unit	14
3.4.61	fixture	14

3.4.62	gage	14
3.4.63	gage repeatability and reproduceability (gage R&R)	14
3.4.64	generatrix	15
3.4.65	generic feature	15
3.4.66	geometric	15
3.4.67	geometric characteristic	15
3.4.68	inspection	15
3.4.69	inspection traceability	15
3.4.70	internal product definition	15
3.4.71	item	15
3.4.72	key characteristic	16
3.4.73	knot vector	16
3.4.74	laser radar	16
3.4.75	laser tracker	16
3.4.76	laser triangulation sensor	16
3.4.77	light pen CMM	16
3.4.78	linearity	16
3.4.79	Long Term Archiving and Retrieval	16
3.4.80	LVDT sensor	16
3.4.81	magneto-inductive sensor	17
3.4.82	manufacturing traceability	17
3.4.83	measurand	17
3.4.84	measure feature method	17
3.4.85	measurement	17
3.4.86	measurement device	17
3.4.87	measurement plan	17
3.4.88	measurement resource	17
3.4.89	measurement result	17
3.4.90	measurement room	18
3.4.91	mesh	18
3.4.92	micrometer	18
3.4.93	microscope	18
3.4.94	multiple carriage CMM	18

3.4.95	non-dimensional quality data18
3.4.96	normal
3.4.97	normal vector
3.4.98	notable event
3.4.99	note
3.4.100	noted event18
3.4.101	optical comparator18
3.4.102	parallel link CMM19
3.4.103	part19
3.4.104	persistent identifier19
3.4.105	plan element19
3.4.106	plan note19
3.4.107	plan root19
3.4.108	point sampling strategy19
3.4.109	process variation19
3.4.110	product19
3.4.111	product and manufacturing information (PMI)19
3.4.112	production20
3.4.113	QIF persistent identifier (QPId)20
3.4.114	qualification20
3.4.115	rule20
3.4.116	sampling category20
3.4.117	sampling method20
3.4.118	sensor20
3.4.119	sensor qualification20
3.4.120	set20
3.4.121	simple tactile probe21
3.4.122	sine bar21
3.4.123	stability21
3.4.124	standard deviation21
3.4.125	statistical study plan21
3.4.126	statistical study results21
3.4.127	structured light sensor21

	3.4	.128	tactile probe sensor	21
	3.4	.129	theodolite	21
	3.4	.130	thread specification	22
	3.4	.131	tolerance	22
	3.4	.132	tool	22
	3.4	.133	touch probe	22
	3.4	.134	traceability	22
	3.4	.135	trimming contour	22
	3.4	.136	ultrasonic sensor	22
	3.4	.137	universal length measuring machine	22
	3.4	.138	version	22
	3.4	.139	weld characteristic	22
	3.4	.140	weld symbol	22
	3.4	.141	wire-frame	23
	3.4	.142	work instruction	23
	3.4	.143	workpiece	23
4	l Syr	nbols	and abbreviated terms	24
5	5 Ove	erview	of the Quality Information Framework (QIF) information model	26
	5.1	Purp	ose	26
	5.2	Mode	el based definition manufacturing quality workflow	26
	5.3	QIF	design requirements	29
	5.4	QIF I	Data Quality	30
	5.4	.1	XML implementation	30
	5.4		Redundancy Checks	
	5.4		Product Data Quality	
	5.4	.4	Digital Signature	34
	5.4	.5	Long Term Archiving and Retrieval	35
	5.5		nanufacturing functional requirements	
	5.6		and STEP	
	5.7		nformation model design guidelines	
	5.8		view of XML schema file modularity	
			-	

5.9	Dat	ta structures	
5.9	.1	The QIFDocument element	
5.9	.2	Four aspects of features data	43
5.9	.3	Four aspects of characteristics	49
5.9	.4	Default tolerances and characteristics	52
5.9	.5	Relationships between the aspects	54
5.10	Hie	rarchy of required information	59
5.1	0.1	QIF use of optional elements	59
5.1	0.2	Example: diameter characteristic	60
5.1	0.3	ScaleCoefficient	63
5.11	Act	ual parts and assemblies	63
5.12	Che	ecking connections between data objects	65
5.13	Tra	cking information through the product lifecycle	68
5.1	3.1	Persistent Identifiers	69
5.1	3.2	UUIDs and QPIds	69
5.1	3.3	External File References	69
5.1	3.4	QIF data flow	71
5.1	3.5	Using QPIds in QIF	72
5.14	Linl	king PMI information to product shape models	75
5.15	We	Iding Characteristics and Symbols	77
5.1	5.1	Base parameters	78
5.1	5.2	Location Significance parameter	78
5.1	5.3	Weld Characteristic parameters	79
5.1	5.4	Supplementary parameters	81
5.1	5.5	Non-Destructive Testing types	81
5.1	5.6	Compound Welds	82
5.16	QIF	handling of transforms, transformations, and coordinate systems	82
5.1	6.1	Coordinate Spaces	82
5.1	6.2	Transformation matrix	82
5.1	6.3	Transforms	
5.1	6.4	Coordinate systems	

5.16.5	CAD coordinate systems	92
5.16.6	Coordinate system lists	92
5.17 Fea	ature control frames	93
5.17.1	Geometric tolerance characteristic types	93
5.17.2	Tolerance zone size	94
5.17.3	Zone shape	95
5.17.4	Zone extents	95
5.17.5	Other zone modifiers	96
5.17.6	Datum reference frames	97
5.18 QIF	⁻ handling of units	98
5.18.1	Introduction	98
5.18.2	PMI units	100
5.18.3	Default units	101
5.18.4	Other units	101
5.19 Mo	deling slots in QIF	101
5.19.1	Introduction	101
5.19.2	Internal and external	102
5.19.3	Location and size	102
5.19.4	End types	104
5.19.5	Bottom types	107
5.19.6	Taper	107
5.19.7	Draft	108
5.19.8	Feature measurement	108
5.20 Mo	deling cones and conical segments in QIF	109
5.20.1	Introduction	109
5.20.2	Location, orientation and angle	109
5.20.3	Linear extents	111
5.21 Mo	deling pattern features in QIF	114
5.21.1	Circular pattern feature	115
5.21.2	Circular arc pattern feature	117
5.21.3	Linear pattern feature	117
5.21.4	Parallelogram pattern feature	118

5.22	Мо	deling threads in QIF	119
5.2	2.1	Thread specification types	119
5.23	Fea	ature measurement determination	120
5.2	3.1	Checked and set features	120
5.2	3.2	Measurement and construction	120
5.2	3.3	Measurement points	120
5.2	3.4	Construction methods	120
5.24	Ch	aracteristicDesignators - encoding "balloon" numbers in QIF	123
5.25	Attı	ributes and Part Notes	124
5.26	Def	tailed requirements	126
5.2	26.1	XML naming and design rules (NDR)	126
5.2	6.2	Annotation conventions	128
6 QI	F Lib	rary	130
6.1	Intr	oduction	130
6.1	.1	Changes in the QIF Library from QIF Version 2.1	131
6.2	Au	xiliary.xsd	132
6.3	Ch	aracteristics.xsd	132
6.3	8.1	Characteristics element	132
6.3	8.2	Characteristic definitions, nominals, items, and measurements	133
6.3	8.3	DefaultCharacteristicDefinitions	137
6.3	8.4	DefaultToleranceDefinitions	137
6.3	8.5	CharacteristicGroups	137
6.3	8.6	Constraint checking for characteristics	138
6.3	8.7	ToleranceZones	138
6.3	8.8	Substitution groups in Characteristics.xsd	138
6.4	Exp	pressions.xsd	139
6.4	.1	Types Defined in Expressions.xsd	139
6.4	.2	Substitution groups in Expressions.xsd	140
6.5	Fea	atures.xsd	140
6.5	5.1	Features element	140

6.5.2	Feature types	140
6.5.3	Constraint checking for features	144
6.5.4	Feature construction methods	145
6.5.5	Substitution groups for features	145
6.6 Ger	nericExpressions.xsd	146
6.6.1	Arithmetic Expressions	146
6.6.2	String Expressions	146
6.6.3	Boolean Expressions	147
6.7 Geo	ometry.xsd	147
6.8 Inte	rmediatesPMI.xsd	149
6.9 Prir	nitives.xsd	150
6.10 Prir	nitivesPD.xsd	151
6.11 Prir	nitivesPMI.xsd	151
6.12 Sta	tistics.xsd	151
6.12.1	Basic Statistics Types	151
6.12.2	Characteristic Statistics Evaluation Types	153
6.13 Тор	ology.xsd	156
6.14 Tra	ceability.xsd	157
6.14.1	InspectionTraceabilityType	157
6.14.2	PreInspectionTraceabilityType	158
6.14.3	ProductTraceabilityType	158
6.14.4	ActualProductTraceabilityType	159
6.14.5	ManufacturingProcessTraceabilityType	159
6.15 Uni	ts.xsd	160
6.15.1	FileUnits	160
6.15.2	Conversions	162
6.15.3	FileUnitsExample	163
6.15.4	Instance File Example Using Units	164
6.16 Visi	ualization.xsd	165
7 QIF Mod	del Based Definition (MBD) information model	168

	7.1	For	eword	168
	7.2	Intr	oduction	168
	7.3	Sco	ppe	169
	7.3.	1	Contents of this clause	169
	7.3.	2	QIF MBD Information Model Application Architecture	169
	7.4	QIF	MBD information model requirements	171
	7.5	Ove	erview of the product data model	171
	7.5.	1	Design principles	171
	7.5.	2	Geometry	180
	7.5.	3	Topology	260
	7.5.	4	Product structure	292
	7.5.	5	Transformations	308
	7.5.	6	Auxiliary data	309
	7.5.7 7.5.8		Visualization data	314
			Validation properties	363
	7.5.	9	High level description of the product data	368
8	QIF	Pla	ns information model	370
	8.1	For	eword	370
	8.2	Intr	oduction	371
	8.3	Sco	ppe	372
	8.3.1		Contents of this clause	372
	8.3.	2	Workflow of QIF Plans data for manufacturing quality	372
	8.3.	3	QIF Plans information model	373
	8.3.4		QIF Plans scope	373
	8.3.	5	QIF Plans use cases	374
	8.3.	6	QIF Plans product definition support	376
	8.4	Dat	a types and <i>element</i> s of the QIF Plans information model	377
	8.4.	1	Plan	377
	8.4.	2	PlanElement	377
	8.4.	3	Action	377

	8.	4.4	Action Groups	
	8.	4.5	Nesting of Action Groups	
8.4.6		4.6	Action Group Functions	
	8.4.7		Measurand	
	8.	4.8	Action Method	
	8.	4.9	Measure Feature Method	
	8.	4.10	Work Instruction	
	8.5	Tra	acking information through the product lifecycle	
	8.6	QII	F Plans data flow to results	
	8.7	QII	F Results reference to QIF Plans	
	8.8	Iter	m tracking and persistence between QIF Plans and QIF Results	
	8.9	Hig	h level description of QIF Plans.xsd	
	8.	9.1	High level structure of the QIF Plans schema	
	8.	9.2	Major <i>elements</i>	
	8.	9.3	Simplified relationships <i>element</i> s	
	8.	9.4	Conditional Action Groups	
	8.	9.5	Plan Variables	
9	Q	IF Re	sources information model	
	9.1	Fo	reword	
	9.2	Inti	roduction	
	9.3	Sc	оре	
	9.	3.1	Contents of this clause	
	9.4	QII	F Resources Requirements	
	9.5	Th	e QIF Resources data model	
	9.	5.1	QIF Resources Instance Data	
	9.	5.2	MeasurementResourceBaseType	
	9.	5.3	Measurement Devices	
	9.	5.4	Coordinate Measuring Machine (CMM)	
	9.	5.5	Sensors and Tools	401
	9.	5.6	Rotary Table	403

9.5.7	Resolution Types
9.5.8	Working Volumes
9.5.9	Axis Types404
9.5.10	Environmental Data404
9.5.11	Calibrations404
9.5.12	MeasurementRoomType404
10 QIF R	ules information model405
10.1 Intro	oduction405
10.1.1	Why405
10.1.2	What405
10.1.3	How406
10.1.4	Changes from QIF 2.1407
10.2 Des	sign principles of QIF Rules407
10.2.1	Structure of a Rule
10.2.2	Feature Rules
10.2.3	DME Selection Rules
10.3 QIF	Rules schema files410
10.4 QIF	Rules <i>element</i> s and data types411
10.4.1	QIF Rules top level411
10.4.2	Feature Rules411
10.4.3	DME Selection Rules414
11 QIF R	esults information model421
11.1 For	eword421
11.2 Intro	oduction421
11.3 Scc	ppe421
11.3.1	Workflow of QIF Results data for manufacturing quality421
11.3.2	Design guidelines for the QIF Results information model
11.4 The	e QIFResults.xsd schema file423
11.4.1	High level structure of the QIF Results schema423
11.5 Dat	a dictionary: QIFResults.xsd428

2 QIF Statistics information model	429
12.1 Foreword	429
12.2 Introduction	429
12.3 Scope	430
12.3.1 Contents of this clause	430
12.4 Requirements	431
12.4.1 QIF Statistics quality metrology activity diagram	431
12.5 The QIF Statistics data model	434
12.5.1 Design principles of QIF Statistics	434
12.5.2 QIF Statistics data sets	434
12.5.3 Statistical and summary values	437
12.5.4 Statistical study criteria	444
12.5.5 Data groups and subgroups	445
12.5.6 High level structure of the QIF Statistics schema	451
12.5.7 Referencing measurement results	452
12.6 QIF Statistics samples	453
12.6.1 Typical quality data examples	453
12.6.2 Typical quality study type examples	460
Annex A – Graphical conventions of the data dictionary	490
nnex B – Sample QIF instance files	493
nnex C – ISO GPS support in QIF 3.0	531
Annex D – DMSC Volunteer Agreement	536
Bibliography	537

Figures

Figure 1 – QIF version 3.0 information architecture	2
Figure 2 – QIF Model-Based Quality Workflow	27
Figure 3 – QIF XML schema directory structure	38
Figure 4 – Structure of the QIFDocument element	40
Figure 5 – Reference connections among feature data objects in a QIF XML instance file	43

Figure 6 – A plate with four holes	43
Figure 7 – A plate with four holes and GD&T	44
Figure 8 – A plate with four holes with names.	46
Figure 9 – References among characteristic data objects in a QIF XML instance file	50
Figure 10 – A plate with ballooned tolerances.	50
Figure 11 – Connections at the PMI Stage	58
Figure 12 – Connections at the Planning Stage	58
Figure 13 – Connections at the post-measurement stage	
Figure 14 – QIF id and reference types	
Figure 15 – <i>QPIdType</i> elements	73
Figure 16 – QPIdFullReferenceType elements	74
Figure 17 – Weld Characteristics Hierarchy	77
Figure 18 – Location Significance	79
Figure 19 – Weld Characteristic Parameters Hierarchy	79
Figure 20 – Weld Characteristic Parameters	79
Figure 21 – Melt Through	81
Figure 22 – Non-Destructive Testing with Multiple Reference Lines	81
Figure 23 – Compound Weld	
Figure 24 – Transformation matrix example	87
Figure 25 – An opposite parallel lines feature with round closed ends	
Figure 26 – An opposite parallel planes feature with flat closed ends	104
Figure 27 – A slot with non-tangent round ends	
Figure 28 – A flat-ended slot with rounded corners	106
Figure 29 – Opposite planes features with open ends	106
Figure 30 – A tapered slot (opposite angled lines)	107
Figure 31 – A slot with draft (opposite angled plane feature)	
Figure 32 – An unbounded cone located at a reference diameter and defined by its half a	
-	110
Figure 33 – An unbounded cone located at its vertex and defined by its full angle	110
Figure 34 – A bounded, truncated cone located at a reference diameter	112
Figure 35 – A bounded, truncated cone located at a virtual reference diameter	112
Figure 36 – A bounded, truncated cone located at its small end	
Figure 37 – A bounded, truncated cone located at its large end	113
Figure 38 – A bounded pointed cone located at its vertex	114
Figure 39 – A bounded truncated cone located at its vertex	114
Figure 40 – PatternFeatureCircle with FeatureDirection omitted	116
Figure 41 – PatternFeatureCircle with FeatureDirection	116
Figure 42 – PatternFeatureCircularArc	117
Figure 43 – PatternFeatureLinear	
Figure 44 – PatternFeatureParallelogram	
Figure 45 – Threaded features	
Figure 46 – Attributes element names and types	
Figure 47 – Types with Attributes element.	
Figure 48 – Characteristics element	

Figure 49 – Characteristic types	.137
Figure 50 – Tolerance zone types	.138
Figure 51 – Features element	.140
Figure 52 – Feature Types (below)	
Figure 53 – Comparison of feature definitions in QIF and DMIS	.144
Figure 54 – Individual geometry types	
Figure 55 – Geometry set types	.148
Figure 56 – Alignment operations	.149
Figure 57 – Datums and datum reference frames	.149
Figure 58 – ISO-specific types	.150
Figure 59 – Types with enumeration or user definition	.151
Figure 60 – Basic Statistics Types	.152
Figure 61 – CharacteristicStatsEval types (continued on next page)	.153
Figure 62 – Criterion Types	.155
Figure 63 – Summary Statistics Types	.155
Figure 64 – Individual topology types	.156
Figure 65 – Topology set types	.156
Figure 66 – Elements of InspectionTraceabilityType	.157
Figure 67 – Elements of PreInspectionTraceabilityType	.158
Figure 68 – Elements of ProductTraceabilityType	.159
Figure 69 – Elements of ActualProductTraceabilityType	.159
Figure 70 – Elements of <i>ManufacturingProcessTraceabilityType</i>	.160
Figure 71 – FileUnits element	.160
Figure 72 – Derivation hierarchy of values with units	
Figure 73 – Conversion of units	
Figure 74 – FileUnits snippet	.164
Figure 75 – Instance file snippets using units	
Figure 76 – VisualizationSet element	.166
Figure 77 – ViewSetType	
Figure 78 – Workflow of QIF MBD Information	.170
Figure 79 – Entity attributes	.176
Figure 80 – Geometry Types	.181
Figure 81 – Point	.182
Figure 82 – 2D Parametric Curve	.183
Figure 83 – 2D Curves Types	.183
Figure 84 – 2D Segment	.184
Figure 85 – 2D Polyline	.185
Figure 86 – 2D Circular Arc	.186
Figure 87 – 2D Circular Arc (turned)	.186
Figure 88 – 2D Conic Arc (form = PARABOLA)	
Figure 89 – 2D Conic Arc (form = PARABOLA, turned = true)	.188
Figure 90 – 2D Conic Arc (form = ELLIPSE)	
Figure 91 – 2D Conic Arc (form = ELLIPSE, turned = true)	
Figure 92 – 2D Conic Arc (form = HYPERBOLA)	.189

Figure 93 – 2D Conic Arc (form = HYPERBOLA, turned = true)	.190
Figure 94 – 2D Spline Curve	
Figure 95 – 2D NURBS Curve	.194
Figure 96 – 2D Aggregate Curve	
Figure 97 – 3D Parametric Curve	.198
Figure 98 – 3D Curve Types	.199
Figure 99 – 3D Segment	.200
Figure 100 – 3D Polyline	.200
Figure 101 – 3D Circular Arc	
Figure 102 – 3D Conic Arc (form = PARABOLA)	.203
Figure 103 – 3D Conic Arc (form = ELLIPSE)	.203
Figure 104 – 3D Conic Arc (form = HYPERBOLA)	.204
Figure 105 – 3D Spline Curve	.206
Figure 106 – 3D NURBS Curve	.208
Figure 107 – 3D Aggregate Curve	.210
Figure 108 – Parametric Surface	.212
Figure 109 – Parametric Surface Types	.213
Figure 110 – Scaling coefficient	.214
Figure 111 – Plane	.215
Figure 112 – Plane (Parameter Space)	.215
Figure 113 – Cylinder	
Figure 114 – Cylinder (turnedV = true)	.218
Figure 115 – Cylinder (Parametric Space)	
Figure 116 – Cone	
Figure 117 – Cone (turnedV = true)	.222
Figure 118 – Cone (Parametric Space)	.222
Figure 119 – Sphere	.225
Figure 120 – Sphere (turnedV = true)	.226
Figure 121 – Sphere (Parametric Space)	.226
Figure 122 – Torus	.229
Figure 123 – Torus (turnedV = true)	.230
Figure 124 – Torus (Parametric Space)	.230
Figure 125 – Extrude Surface	
Figure 126 – Extrude Surface (Parametric Space)	.234
Figure 127 – Ruled Surface	.236
Figure 128 – Ruled Surface (turnedSecondCurve = true)	.237
Figure 129 – Ruled Surface (Parametric Space)	.237
Figure 130 – Surface Of Revolution	.239
Figure 131 – Surface Of Revolution (turned Generatrix)	.240
Figure 132 – Surface Of Revolution (Parametric Space)	.240
Figure 133 – Spline Surface	.242
Figure 134 – Spline Surface (Parameter Space)	.242
Figure 135 – NURBS Surface	.246
Figure 136 – NURBS Surface (Parameter Space)	.246

Figure 137 – Offset Surface	.249
Figure 138 – Offset Surface (Parametric Space)	.250
Figure 139 – The edge 'w' of triangle 't'	.252
Figure 140 – Triangulation Path	.253
Figure 141 – Two sewn triangles	.255
Figure 142 – Triangle Mesh	.256
Figure 143 – Triangle Mesh with special normals	.257
Figure 144 – Topology Types	.261
Figure 145 – Boundary Representation	.262
Figure 146 – Vertex	.263
Figure 147 – Edge	.264
Figure 148 – Loop	.266
Figure 149 – Co-Edge	.268
Figure 150 – Outer Loop	.269
Figure 151 – Inner Loop	.270
Figure 152 – Slit Loop	.271
Figure 153 – Vertex Loop	.272
Figure 154 – Mesh Loop	.273
Figure 155 – Mesh Co-Edge	.275
Figure 156 – Face	.276
Figure 157 – Mesh Face	.278
Figure 158 – Mesh Face (Triangle Visibility and Color)	.279
Figure 159 – Shell	.281
Figure 160 – Shell Faces	.282
Figure 161 – Body	.283
Figure 162 – Cloud of Points	.285
Figure 163 – Cloud of Point with Defined Normals	.286
Figure 164 – Point Cloud (Point Visibility and Color)	.287
Figure 165 – Sewn Faces (normals of the underlying surfaces are conformed: Turned ₀ =	
Turned ₁ = FALSE)	.289
Figure 166 – Sewn Faces (normals of the underlying surfaces are not conformed: Turned ₀	
(FALSE) ≠ Turned₁ (TRUE))	.290
Figure 167 – Tolerant Edges and Vertices	.291
Figure 168 – Product directed acyclic graph	.292
Figure 169 – Unfolded product tree	.294
Figure 170 – Reference of a part entity within an assembly	.296
Figure 171 – Multiple representations for parts and assemblies	.299
Figure 172 – Point	.309
Figure 173 – Line	
Figure 174 – Reference Plane	
Figure 175 – Coordinate System	
Figure 176 – Annotation View	
Figure 177 – Text	
Figure 178 – Balloons	

Figure 179 – Leader	.324
Figure 180 – Double head leader	.326
Figure 181 – Extended leader	.327
Figure 182 – Double head extended leader	.328
Figure 183 – Circular leader	.329
Figure 184 – Double head circular leader	.330
Figure 185 – Witness Lines	.331
Figure 186 – Circular Witness Line	.332
Figure 187 – Rectangular frame	
Figure 188 – Circular frame	.334
Figure 189 – Flag frame	.335
Figure 190 – Triangular form frame	
Figure 191 – Pentagonal form frame	
Figure 192 – Hegaxonal form frame	
Figure 193 – Octagonal form frame	
Figure 194 – Weld Symbol frame	
Figure 195 – Irregular form frame	.340
Figure 196 – Graphic presentation	
Figure 197 – Saved view	
Figure 198 – Simplified Representation	
Figure 199 – Exploded View	
Figure 200 – Display Style	
Figure 201 – Zone Section with one section plane	
Figure 202 – Zone Section with three section planes	
Figure 203 – Positions of the section planes	
Figure 204 – The result of Section Plane 1 AND Section Plane 2	
Figure 205 – The result of (Section Plane 1 AND Section Plane 2) OR Section Plane 3	
Figure 206 – Logical operations tree	
Figure 207 – Sections of wire, sheet and solid bodies	
Figure 208 – Hatching Pattern	
Figure 209 – Combination of patterns	
Figure 210 – Orthographic Camera	
Figure 211 – Perspective Camera	
Figure 212 – High level view of QIF MBD highest level <i>elements</i>	
Figure 213 – Measurement Scope (e.g., Bill of Characteristics) with QIF Plans	
Figure 214 – Inspection Process Planning with QIF Plans	
Figure 215 – Sub- <i>element</i> s of the Plan data type	
Figure 216 – QIF Plans Major <i>Elements</i> with Simplified Relations	
Figure 217 – QIF Resources instance data high level view	
Figure 218 – <i>MeasurementResourceBaseType</i>	
Figure 219 – <i>MeasurementResourceBaseType</i>	
Figure 220 – <i>MeasurementResourceBaseType</i> derived type inheritance diagram: tool with	
integrated sensor close-up	
Figure 221 – <i>MeasurementDeviceType</i> overview	

Figure 222 – CMM type inheritance diagram	399
Figure 223 – Cartesian CMM geometry types	400
Figure 224 – Method 1 for mounting a sensor on a universal device	401
Figure 225 – Method 2 for mounting a sensor on a universal device	402
Figure 226 – Rules element and QIFRulesType	411
Figure 227 – FeatureRules element and FeatureRulesType	411
Figure 228 – DMESelectionRules element and DMESelectionRulesType	415
Figure 229 – DMEThen element and DMEThenType	416
Figure 230 – DMEDecisionClass element and DMEDecisionClassType	417
Figure 231 – DMEDecisionId element and DMEDecisionIdType	419
Figure 232 – DMEDecisionMakeModel element	420
Figure 233 – Example of QIF Results information flow	422
Figure 234 – The Results element	424
Figure 235 – High level view of the MeasurementResults element	426
Figure 236 – The ActualComponentType data type	428
Figure 237 – QIF Statistics workflow	431
Figure 238 - Highest level QIF Statistics elements.	451
Figure 239 - Sample QIF widget	453

TABLES

Table 1 – XSLT Checks	31
Table 2 – Weld Parameters	80
Table 3 – Material Condition Values	94
Table 4 – Binary Arrays	174
Table 5 – Binary Representation	174
Table 6 – Line Styles	
Table 7 – Special Symbols	318
Table 8 – Leader Head Types	326
Table 9 - Statistical values and their associated mnemonics	
Table 10 - Statistical summary values and their associated mnemonics.	
Table 11 - Subgroup statistical values and their associated mnemonics.	449

Foreword

The Digital Metrology Standards Consortium (DMSC, Inc.) is an American National Standards Institute (ANSI) accredited standards developing organization, as well as an A-Liaison to the International Organization for Standardization (ISO) Technical Committee (TC) 184. The mission of the DMSC is to identify urgently needed digital standards in the field of dimensional metrology, and to promote, foster, and encourage the development and interoperability of these standards, along with related and supporting standards that will benefit the industry as a whole. More information about the DMSC can be found at <u>www.dmsc-inc.org</u>.

The Quality Information Framework (QIF) was developed by domain experts from the manufacturing quality community representing a wide variety of industries and quality measurement needs. Contributors to this version 3.0 of the QIF standard include:

- Capvidia
- Datapixel
- Honeywell Federal Manufacturing and Technology
- John Deere
- Metrosage
- Mitutoyo America
- National Institute of Standards and Technology
- Origin International
- QIF Solutions
- The Manufacturing Technology Centre
- University of North Carolina at Charlotte

This document was written by the QIF Working Group, and given final approval for ANSI review by the DMSC's Quality Measurement Standards (QMS) Committee. More information about DMSC's QIF effort can be found at <u>www.gifstandards.org</u>.

The QIF standard, version 3.0, consists of the following subject areas under the general title *Quality Information Framework (QIF)* — *An Integrated Model for Manufacturing Quality Information*:

Overview and Fundamental Principles QIF Library Information Model QIF Model Based Definition (MBD) Information Model QIF Plans Information Model QIF Resources Information Model QIF Rules Information Model QIF Results Information Model QIF Statistics Information Model The Overview and Library clauses describe the overview and central concepts of the QIF standard. The following clauses describe information models for the six *application areas* of QIF; Model Based Design, Plans, Resources, Rules, Results, and Statistics.

This version of QIF, designated ANSI/QIF 3.0 - 2018, is a revision of the previous QIF standard, version 2.1, which was published in 2015. This document comprises the fourth release of the QIF suite of standards, denoted version 3.0. This QIF version 3.0 document cancels and replaces all documents of version 2.1. QIF version 3.0 is solely a product of the DMSC and its committees and working groups.

Each major release of the QIF standard from 1.0 through 2.1 was composed of eight Parts documents, namely, Part 1 Overview, Part 2 QIF Library, Part 3 MBD, Part 4 Plans, Part 5 Resources, Part 6 Rules, Part 7 Results, and Part 8 Statistics. Version 3.0 of QIF dispenses with the separate Parts format and includes all subject area clauses in a single document.

HTML-based data model viewer

The DMSC will make available an html-file based data dictionary for the entire QIF information model as an aid to understanding QIF. This data dictionary is non-normative material, but describes the normative content of the QIF data model. The html files facilitate viewing the complete data model, including all six application areas and Library content, using pictures and text. A user has the ability, through an internet browser, to follow navigation links forward and backward through the data model description using mouse clicks.

Introduction

This Quality Information Framework (QIF) standard defines an integrated set of information models which enable the effective exchange of metrology data throughout the entire manufacturing quality measurement process - from product design to inspection planning to execution to analysis and reporting. This clause of the QIF standard introduces the purpose and design approach behind QIF, as well as its content. The QIF information models are contained in files written in the XML Schema Definition Language (XSDL). Additional constraints to ensure data quality are contained in files written in the EXtensible Stylesheet Transformation language (XSLT). The models for Version 3.0 consist of six application schema files plus a library of schema files containing information items used by all applications. The Library is described in Clause 6 of this standard. Clause 7 defines the Model Based Definition application model which deals with CAD data plus product manufacturing information (PMI). Clause 8 defines the QIF Plans application model, which deals with plans for quality measurement. Clause 9 defines the QIF Resources application model, which describes hardware and software resources used for inspection. Clause 10 defines the QIF Rules application model which describes practices to be used in an inspection. Clause 11 defines the QIF Results application model which deals with the results of part measurements. Clause 12 defines the QIF Statistics application model which conveys analysis of multiple part inspections.

The QIF models include quality characteristics and measurement features as defined in the ASME Geometric Dimensioning and Tolerancing (GD&T) related and ISO Geometrical Product Specifications (GPS) related specifications, and the Dimensional Measuring Interface Standard (DMIS). The QIF standard covers a wide variety of use cases including dimensional metrology inspection, first article inspection, reverse engineering, and discrete quality measurement.

Type face conventions for this document are:

Attribute and element names: bold

The words: "attribute", "element", "include", "key", and "keyref": *italicized* when they are formal terms of XSDL. In their other meanings, those words are not italicized.

Type names: **bold and italicized**

1 Scope of the integrated model and fundamental principles

1.1 Contents of this document

This clause describes the general content and structure of the entire QIF information model. It describes the highest level data structures of QIF, that are expanded in Clauses 6 through 12 using data dictionaries and XML schema files. All QIF XML schema files can be found at www.qifstandards.org.

This clause also describes practices for forming QIF instance files, called "documents," that support quality workflow scenarios. Its focus is to show how the QIF information model, and data formed into XML instance files, support the entire scope of model based definition manufacturing quality workflow. It describes how the information model is partitioned among the XML schema files and contains all terms used in the subject area clauses.

The purpose of this clause is to orient potential users of QIF to the organization of the information model to make their study of the details more rewarding and efficient. It should also help solution providers and users to evaluate QIF for their uses, without needing to go to the lowest technical details of the XML schemas. The information model narrative focuses on the approach to modeling the core data structures of QIF, which model the content of ASME GD&T and ISO GPS, and the plans and results data elements defined in Dimensional Measuring Interface Standards (DMSI) ISO 22093 and ANSI/DMSC DMIS 5.3. The material on XML practices describes consistent design practices to be used by QIF working groups who will be designing new schemas. It should also help data processing experts to write software that writes and reads manufacturing quality data using the XML schemas.

1.2 Scope of the QIF Version 3.0 information model

Figure 1 shows a high level view of the QIF information architecture for version 3.0 standardization. At the core of the QIF architecture is the reusable QIF library which contains definitions and components that are referenced by the application areas, thereby ensuring interoperability and extensibility. Around the QIF library core Figure 1 shows the six QIF application area information models, MBD, Plans, Resources, Rules, Results, and Statistics. The DMIS application, which references the DMSC's Dimensional Measuring Interface Standard (DMIS), is a placeholder for a future QIF execution model that is not a part of QIF. Each QIF application model reuses the QIF Library. QIF data is contained in a QIF Document. The order of generation of QIF data in an enterprise generally proceeds clockwise around the diagram, beginning with QIF MBD and ending with QIF Statistics. Use of the QIF information model does not place any requirements on a user's workflow architecture.

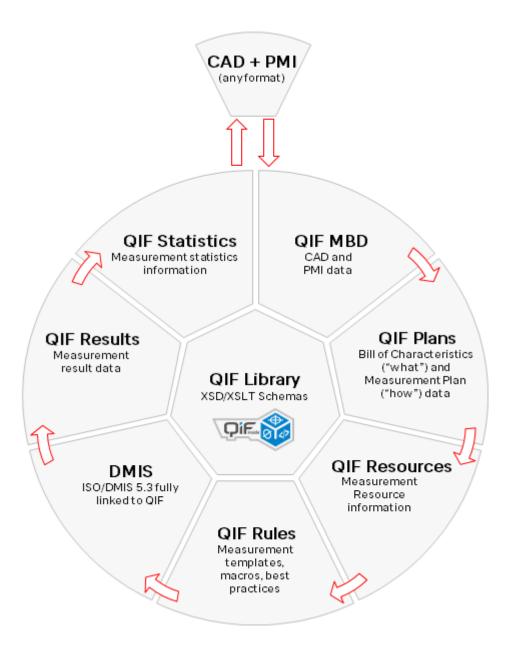


Figure 1 – QIF version 3.0 information architecture

The flow of QIF data typically starts with generation of CAD + PMI data exported as QIF MBD application data. Then Quality planning systems import the MBD and generate measurement requirements as part of the Plans of "what" to measure, then with import of Resources and Rules information, Plans generate an inspection plan on "how" to verify. Then Programming systems import Plans to generate DME-specific programs, or general instructions to guide inspection. Dimensional measurement equipment executes programs and evaluates characteristics of a single manufactured part or assembly and exports the measurements as Results. Analysis systems, typically performing statistical process control, import single parts Results and generate analysis of multiple part batches as QIF Statistics data.

Users of the QIF information model are not required to implement the entire model. Any of the six application models may be used singly for exchange of quality data in its specific application area between a software system that produces QIF data for that area and a software system that consumes QIF data for the area. Further, other data models and exchange formats can coexist in an enterprise with QIF data.

1.3 Conformance

Software programs that implement this specification to write QIF XML instance files must:

- follow the rules of XML when writing QIFDocument instance files
- generate instance files that validate against the QIFDocument schema
- generate instance files that validate against the Check.xsl XSLT constraints
- employ semantics of the information written that complies with the referenced standards and with the QIF data dictionaries in this specification.

Software programs that implement this specification to read QIF instance files must:

 be able to read any valid QIF XML instance file and extract all numerical and semantic data correctly.

2 Normative references

The following referenced documents are indispensable for the application of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

AIAG MSA Reference Manual 4th Edition, Automotive Industry Action Group *Measurement* Systems Analysis

AIAG SPC - Automotive Industry Action Group Statistical Process Control 2nd Edition

ANSI/DMIS 105.3, Part 1-2016, Dimensional Measuring Interface Standard, DMIS 5.3 Standard, Part 1

ISO DMIS: ISO 22093:2011 Industrial automation systems and integration -- Physical device control -- Dimensional Measuring Interface Standard (DMIS)

ASME B1.7 - 2006, Screw Threads: Nomenclature, Definitions, and Letter Symbols

ASME Y14.36 - 1996, Surface Texture Symbols

ASME Y14.6 - 2001, Screw Thread Representation

ASME Y14.5M-1994 (reaffirmed 2004), *Dimensioning and Tolerancing - Engineering Drawing and Related Documentation Practices*

ASME Y14.5-2009, Dimensioning and Tolerancing - Engineering Drawing and Related Documentation Practices

ASME Y14.41-2012, Digital Product Definition Data Practices

ASME B89.4.10360.2-2008 AcceptanceTest and Reverification Test for Coordinate Measuring Machines (CMMs) – Part 2: CMMs Used for Measuring Linear Dimensions

ASME B89.4.22-2004, *Methods for Performance Evalulation of Articulated Arm Coordinate Measuring Machines*

AWS A2.4:2012 Standard Symbols for Welding, Brazing, and Nondestructive Examination

Extensible Markup Language (XML) 1.0 (Fifth Edition), W3C Recommendation 26 November 2008

ISO/IEC 9834-8:2008. Information technology -- Open Systems Interconnection -- Procedures for the operation of OSI Registration Authorities: Generation and registration of Universally Unique Identifiers (UUIDs) and their use as ASN.1 Object Identifier components

ISO/IEC 11578:1996: Information technology - Open System Interconnection - Remote Procedure Call (RPC)

ISO/IEC JCGM 200 – International vocabulary of metrology – Basic and general concepts and associated terms (VIM)

ISO/IEC Guide 99:2007 (E/F) – International vocabulary of metrology – Basic and general concepts and associated terms (VIM)

SAE Aerospace Standard, AS9102B: Aerospace First Article Inspection Requirement. 2014.

ISO 1101:1983 Technical drawings -- Geometrical tolerancing -- Tolerancing of form, orientation, location and run-out -- Generalities, definitions, symbols, indications on drawings

ISO 1101:2017 Geometrical Product Specifications (GPS) -- Geometrical tolerancing --Tolerances of form, orientation, location and run-out

ISO 1302:2002 Geometrical product specifications (GPS) -- Indication of surface texture in technical product documentation

ISO 5459:2011 Geometrical Product Specifications (GPS) -- Geometrical tolerancing -- Datums and datum systems

ISO 14405-1:2016 Geometrical Product Specifications (GPS) — Dimensional tolerancing — Part 1: Linear sizes

ISO 14405-2:2016 Geometrical Product Specifications (GPS) — Dimensional tolerancing — Part 2: Dimensions other than linear sizes

ISO 14406:2010, Geometrical product specifications (GPS) – Extraction

ITU-T X.509 | ISO/IEC 9594-8 (10/2012) Public-key and attribute certificate frameworks

RFC 2045 MIME Part One: Format of Internet Message Bodies

XML Schema Part 1: Structures Second Edition, W3C Recommendation 28 October 2004

XML Schema Part 2: Datatypes Second Edition, W3C Recommendation 28 October 2004

XSL Transformations (XSLT) Version 2.0, W3C Recommendation 23 January 2007

3 Terms and definitions

For the purposes of this document, the following terms and definitions apply.

3.1 Terms defined in ISO 22093:2011 and ANSI/DMIS 105.3-2016, Part 1

3.1.1 actual

referring to features or tolerances, the actuals are the real-world, physical instances which can be measured creating feature and tolerance measurements.

Note 1 to entry: Referring to parts and assemblies, the actuals are physical instances called actual components.

3.1.2 dimensional measuring equipment (DME)

a class of equipment used to inspect parts and evaluate dimensions and tolerances

Note 1 to entry: DME includes, but is not limited to, coordinate measuring machines, video inspection equipment, optical comparators, robotic measuring devices, theodolites, photogrammetry, laser-based measuring devices, and manual measuring devices such as micrometer and caliper.

3.1.3 nominal

a target value of a dimension, feature, or characteristic

Note 1 to entry: A nominal is usually based on as designed engineering criteria.

Note 2 to entry: See also "nominal aspect" at subclause 3.4.11.

3.1.4 measurement

referring to a feature, dimension, or tolerance, an approximate representation or value inferred from the actual feature, dimension or tolerance by measurement with DME

Note 1 to entry: See also "measurement aspect" at subclause 3.4.11.

3.1.5 part coordinate system (PCS)

a datum reference frame associated with the part to be measured

3.2 Terms defined in XML Schema Part 0: Primer Second Edition, W3C Recommendation 28 October 2004

3.2.1 attribute

information represented as an XML attribute in an instance file, usually conforming to an *attribute* declaration in an XML schema

3.2.2 complexType

a value type that has elements or attributes

3.2.3 element

information represented as an XML element in an instance file, usually conforming to an *element* declaration in an XML schema

3.2.4 instance file

a file containing an information set intended to conform to an XML schema

3.3 Terms defined in XML Schema Part 1: Structures Second Edition, W3C Recommendation 28 October 2004

3.3.1 attribute information item

information modeled using an attribute declaration in an XML schema

Note 1 to entry: often shortened to "attribute." An attribute information item is a field of a data structure. The data type of the field must be a primitive type such as string or number. In an XML instance file, attributes are represented in the form attributeName="attributeValue".

3.3.2 element information item

information modeled using an element declaration in an XML schema

Note 1 to entry: often shortened to "element." An *element* information item may be a field of a data structure or an entire data structure. The data type of an *element* may be either a primitive type (such as string or number) or a structured type. In an XML instance file, *element*s are delimited by matching opening and closing tags.

3.3.3 enumeration

a term indicating that a single indivisible value follows

3.3.4 extension

a term in a complexType definition indicating that the type being defined is derived from a more general type

Note 1 to entry: Extension is the XSDL mechanism used in QIF for building hierarchies of complex types. XSDL also provides for restrictions of complex types, but that is not used in QIF.

3.3.5 key

a constraint requiring that selected data fields exist and be unique

Note 1 to entry: In XSDL, a key may require that a combination of data fields be unique, but QIF never uses more than a single data field.

3.3.6 keyref

a constraint requiring that there is a match between two sets of values in an instance file

3.3.7 schema (or XML schema)

a complete information model in the XML schema definition language

Note 1 to entry: A schema is defined by one or more schema files.

3.3.8 schema document (or schema file)

a file containing a well-formed XML schema declaration

Note 1 to entry: Such a file does not necessarily contain a complete information model; it may reference other schema files needed to make the model complete.

3.3.9 simple type

a value type that is indivisible or is a list of indivisible items

EXAMPLE number example: 10

EXAMPLE string example: 10 Downing Street

EXAMPLE list example: 10 34 -7

Note 1 to entry: In XSDL, *union* type is also simple, but it is not used in QIF.

3.3.10 string

a data type that is a sequence of Unicode characters

3.3.11 token

a string in which there is no leading or trailing white space, and the only white space occurring between visible characters is a single space character

3.4 Terms defined in the QIF standard

3.4.1 accuracy test

a defined process for determining conformance of a measurement device to specifications

3.4.2 action

a plan element that gives information about what to measure or validate

3.4.3 action group

a plan element that organizes sets of actions

Note 1 to entry: An action group can be an ordered group, unordered group, one-of group, partially ordered group, or pick-some group.

3.4.4 action method

a prescription of how an action is to be performed

Note 1 to entry: Actions with action methods form the core of a measurement plan.

3.4.5 actual component

a physical instance of a component

Note 1 to entry: By analogy to a car, the design of a wheel is a *part*, the design of the wheel placed at the front right of the design of a car is a *component*; the front right wheel of a physical car is an *actual component*.

3.4.6 actual component set

a set of actual components

3.4.7 application area

one of the six QIF workflow interface types, i.e., MBD, Plans, Resources, Rules, Results, and Statistics

3.4.8 articulating arm CMM

a coordinate measuring meachine with articulating links

3.4.9 aspect

one of four categories used to incrementally accumulate characteristic or feature data based on data source and data shareability

Note 1 to entry: In QIF there are four aspects of characteristics and features: definition, nominal, item, and measured.

3.4.10 definition aspect

the aspect of feature or characteristic data categorized by its shareability among different features or characteristics

3.4.11 nominal aspect

the aspect of feature or characteristic data particular to an individual feature or characteristic

3.4.12 item aspect

the aspect of feature or characteristic incremental data particular to an individual measurement of a feature or characteristic

3.4.13 measured aspect

the aspect of feature or characteristic data particular to the results of the measurement of a feature or characteristic

3.4.14 assembly

a number of parts or combination thereof that are joined together to perform a specific function and subject to disassembly without degradation of any of the parts

Note 1 to entry: In QIF, assembly means the design of an assembly, and a physical instance of an assembly is called an actual component.

3.4.15 assembly path

a sequence with an id of the ids of components

Note 1 to entry: An assembly path shows where in an assembly design a specific instance of a part design or a subassembly design is located

3.4.16 assignable cause

a cause of variation in a process which is not random and has some source which can be determined and perhaps eliminated

3.4.17 attribute characteristic

a characteristic described using attribute data, or using data that do not have numerical values

EXAMPLE color, malleability

3.4.18 attribute data

a result from a characteristic or property that is appraised only as to whether it does or does not conform to a given requirement (for example, go/no-go, accept/reject, pass/fail, etc.) [1]

3.4.19 autocollimator

an optical instrument for non-contact measurement of angles

3.4.20 bias

a measure of a gage's tendency toward specific values when compared to a master value

3.4.21 bill of characteristics (BoC)

a list of all the characteristics applied to a product.

3.4.22 boolean condition

a statement which can be unambiguously evaluated as true or false

EXAMPLE "The feature is a cylinder" would evaluate to "true" if and only if the feature in question is a cylinder feature.

3.4.23 calibration

a process that verifies instrument performance or develops correction values to assure claimed accuracy

3.4.24 caliper

a device used to measure distance between two points on a workpiece

3.4.25 capability

a measure of a process's stability and centralization against a nominal value and tolerance values, also, the ability of a process to produce acceptable parts

3.4.26 capacitive sensor

a non-contact instrument that uses change in capacitance to measure displacement

3.4.27 carriage

a mechanical element of a measurement device, generally a CMM, that functions as part of the tool-carrying structure

3.4.28 Cartesian CMM

a coordinate measuring machine with orthogonal axes

3.4.29 characteristic

a control placed on an element of a feature such as its size, location or form, which may be a specification limit, a nominal with tolerance, a feature control frame, or some other numerical or non-numerical control

3.4.30 characteristic item

a tolerance or specification applied to a feature or product that needs verification

3.4.31 charge coupled device camera sensor

a sensor that senses by means of using a charge coupled device camera

3.4.32 checked

refers to a measured feature or characteristic being measured directly or being constructed from previously measured or constructed data

3.4.33 clipping plane

a bounding plane surface which abbreviates the intended display of data to that portion which lies on one or the other side of the plane

3.4.34 complex tactile probe sensor

a touch probe with more than one stylus

3.4.35 component

an instance of a part or an assembly aligned to its parent's space

3.4.36 composite feature

a feature composed of two or more sub-features which act as a functional group and to which shared characteristics may be applied

3.4.37 computed tomography

an imaging procedure that uses special x-ray equipment to create detailed pictures, or scans, of areas inside the part.

Note 1 to entry: It is also called computerized tomography.

3.4.38 confocal chromatic sensor

an optical sensor that takes advantage of chromatic aberration to carry out a chromatically coded distance detection of a target form the focusing lens

3.4.39 constructed feature

a feature that is computed from other features

Note 1 to entry: Contrast to a measured feature, which is computed from measured point data.

3.4.40 control limits

statistical limits that represent boundary conditions of a process that is in control

Note 1 to entry: Processes that are out of control are said to have unnatural causes or assignable causes of variation.

3.4.41 control points

a set of points that determine the shape of a NURBS object

3.4.42 coordinate measuring machine

a machine that measures a part by sensing 3D points on the surface of the part

3.4.43 control polygon

a polygon formed by the control points of a NURBS object

3.4.44 corrective action

a countermeasure that can be applied to an assignable cause of variation in order to reduce the likelihood of recurrence

3.4.45 corrective action plan

information related to the establishment of lists of assignable causes of variation and associated corrective actions in the manufacturing process

Note 1 to entry: In production statistical studies, a key aspect of manufacturing process control is the identification of assignable causes of variation that can occur. These special causes of variation are typically associated with corrective action plans that help the manufacturing operator with the ability to adjust processes to eliminate these unnatural causes of variation from occurring again thereby bringing the manufacturing process into a greater state of stability and control.

3.4.46 data/information quality

an assessment of the fitness of the data and information to serve its purpose in a given context

3.4.47 datum definition

definition of a datum label and optionally, its association with datum targets or feature instances

3.4.48 datum reference frame

three mutually perpendicular intersecting datum planes

Note 1 to entry: A datum reference frame establishes a coordinate system.

3.4.49 dial caliper

a caliper that has a dial that is read by a human

3.4.50 digital caliper

a caliper that is read electronically

3.4.51 digital micrometer

a micrometer that is read electronically

3.4.52 draw wire sensor

an instrument that measures distance by recording the length of wire drawn out of it using potientiometers or encoders

3.4.53 DVRT sensor

A system that detects the position of its core by measuring the differential reluctance in two coils surrounding the core

3.4.54 eddy current sensor

a non-contact sensing probe that uses magnetic field interaction and subsequent generation of eddy currents to measure displacement of a target

3.4.55 entity

the basic unit of information in a file

Note 1 to entry: The term applies to single items which may be individual elements of geometry, collections of annotations to form dimensions, or collections of entities to form structured entities.

3.4.56 evaluation

refers to the process by which the status of a characteristic measurement is determined from nominal, measured and specification limit information

3.4.57 event

an occurrence, usually unplanned, which may have an effect on the outcome of a measurement or inspection operation and which should be recorded

3.4.58 external product definition

a product shape definition not included in a QIFDocument

EXAMPLE a PDF file, a drawing, or a physical part.

3.4.59 feature

an aspect of a part which can be (1) a tangible portion of a physical part, (2) an element of a technical drawing, 3D model, or other abstract representation of the part, or (3) a derived, constructed, intangible portion of a part, such as a feature of size, minimum circumscribed sphere, maximum inscribed cylinder, axis, center plane, theoretically extended edge on a technical drawing, and projected point/line from the part.

3.4.60 file unit

a unit defined in the file units section of a QIF instance file

EXAMPLE radian, meter, inch

3.4.61 fixture

a device used for workpiece positioning and holding

3.4.62 gage

a measurement device that is used to measure one or more characteristics of a workpiece

Note 1 to entry: It may be a general purpose device, e.g. a ring gage, or it may be specially designed hardware dedicated to measuring a specific workpiece or family of workpieces.

3.4.63 gage repeatability and reproduceability (gage R&R)

a source of measurement variation based on the ability of a gage to repeat measurements on the same parts and the ability of two or more inspectors using this gage to achieve the same measurement results

3.4.64 generatrix

a curve to be swept to generate an extruded surface, or revolved to generate a surface of revolution

3.4.65 generic feature

a feature which can be referenced by a user-defined characteristic

Note 1 to entry: Usually, this is a portion of the surface of a part that is not correctly described by any other feature type.

3.4.66 geometric

related to shape information

EXAMPLE points, curves, surfaces, and volumes

3.4.67 geometric characteristic

a concept characterizing the size, form, orientation or location of a feature or of a component of a feature

EXAMPLE diameter, flatness, parallelism, or position.

3.4.68 inspection

a measurement of characteristics on a physical part to determine whether the features are within allowed tolerance, commonly in order to accept or reject the part

3.4.69 inspection traceability

information about the circumstances of a quality measurement process

3.4.70 internal product definition

a product shape definition contained in a QIFDocument

3.4.71 item

an aspect of a characteristic or feature, or an individual instance of an object.

3.4.72 key characteristic

a characteristic of a feature, material, process, or part whose variation has a significant influence on product fit/function, safety/compliance, performance, service life, or manufacturability

Note 1 to entry: A key characteristic can be identified by a designator and can have a criticality class.

3.4.73 knot vector

an increasing sequence of real numbers which divides the parametric space of a NURBS into intervals (called spans)

Note 1 to entry: The number of knots is equal to the number of control points plus the order. The knot vector is a uniform one if all knots are equally spaced and of multiplicity one.

3.4.74 laser radar

a large-scale-metrology instrument that measures the coordinates of a point on a part without using an optical target by directing a frequency modulated laser beam and heterodyne detection of the returned beam

3.4.75 laser tracker

an instrument that is typically used to measure large workpieces by determining the positions of optical targets held against the workpiece

3.4.76 laser triangulation sensor

a laser source and detector system that uses triangulation principle for non-contact measurement of displacement of a target

3.4.77 light pen CMM

a coordinate measuring machine that uses a light pen for measuring

3.4.78 linearity

the ability of a gage to accurately measure across a range of values

3.4.79 Long Term Archiving and Retrieval

defining and storing digital information models so that the information can be fully retrieved and the item corresponding to the model can be fully realized at any future time, even if the systems used to define and store the information are then obsolete

3.4.80 LVDT sensor

A non-contact sensor that uses electromagnetic coupling to measure the linear displacement of a core from its central or null position

3.4.81 magneto-inductive sensor

a non-contact positioning sensor that combines magnetic and inductive principles to determine the absolute distance to a permanent magnet fixed to a target

3.4.82 manufacturing traceability

information about the circumstances of a manufacturing process.

3.4.83 measurand

quantity intended to be measured

Note 1 to entry: An object, quantity, property, or condition to be measured for a specific purpose.

Note 2 to entry: Two examples of a measurand are the measurement of a shape feature to evaluate a specified characteristic (for example tolerance) and the measurement of a shape feature to establish a datum (for example primary datum) within the context of a datum reference frame. One could measure the same feature differently or apply a different substitute feature data fitting algorithm..

3.4.84 measure feature method

an action method for measuring a feature

3.4.85 measurement

an estimate of a dimension associated with a feature or features on a physical part generated using a physical device

3.4.86 measurement device

a measurement resource that provides an indication for a dimensional characteristic of a workpiece

Note 1 to entry: This indication may either be a value (variables) or simply conformance (attributes).

3.4.87 measurement plan

a complete plan that contains information on what and how to measure

3.4.88 measurement resource

a piece of dimensional metrology equipment that can be used to measure features and/or characteristics on a workpiece

3.4.89 measurement result

the measured value of an actual feature or characteristic

Note 1 to entry: A measurement result is obtained by measuring a feature or characteristic with a measurement resource.

3.4.90 measurement room

an environmentally controlled room in which measurements are made

3.4.91 mesh

a collection of vertices, edges, and facets linked together to form a 3D shape; the facets are typically triangular in shape, but quadrilateral representations are also possible

3.4.92 micrometer

a mechanical device for measuring very small distances based on the rotation of a finely threaded screw

3.4.93 microscope

an optical instrument used for viewing very small workpieces typically magnified several hundred times

3.4.94 multiple carriage CMM

a coordinate measuring machine with two or more carriages

3.4.95 non-dimensional quality data

data expressed as either attributes or variables, e.g., number of non-conformities like burrs or dents, color of paint, etc.

3.4.96 normal

perpendicular to a surface and pointing away from the surface material

3.4.97 normal vector

a unit vector perpendicular to a surface in 3 dimensions or a unit vector perpendicular to a curve in 2 dimensions

3.4.98 notable event

a description of a planned or unplanned event that inspection processes should monitor and should record if it occurs during inspection

3.4.99 note

an explanatory or descriptive statement in natural language

Note 1 to entry: In QIF, notes provide information in addition to that which is formally modeled.

3.4.100 noted event

an event occurring and reported during inspection

3.4.101 optical comparator

an optical instrument utilized for measuring

Note 1 to entry: It is also referred to as a profile projector or shadowgraph

3.4.102 parallel link CMM

a coordinate measuring with parallel links (e.g., Renishaw equator)

3.4.103 part

one item, or two or more items joined together, that is not normally subject to disassembly without destruction or impairment of designed use

Note 1 to entry: In QIF, part means the design of a part, and a physical instance of a part is called an actual component.

3.4.104 persistent identifier

a permanent, location and instance independent identifier for a digital object

3.4.105 plan element

an action or an action group

Note 1 to entry: A combination of actions and action groups can be structured in a directed hierarchical tree of actions.

3.4.106 plan note

descriptive information that applies to an entire measurement plan

3.4.107 plan root

the top level plan element (an action or action group) of a measurement plan

3.4.108 point sampling strategy

the geometric pattern that is used to distribute the measurement points on a given feature

Note 1 to entry: The range of possible values is taken from ISO-14406:2010. Examples include: an orthogonal grid, a helix, a "birdcage", etc.

3.4.109 process variation

the variation of a process in achieving the same characteristic values across time

3.4.110 product

a generic term for a part or an assembly

3.4.111 product and manufacturing information (PMI)

non-geometric attributes in 3D Computer Aided Design/Manufacturing/Inspection/Engineering (CAD/CAM/CAI/CAE) systems necessary for manufacturing product components or subsystems

Note 1 to entry: PMI may include geometric dimensions & tolerances (GD&T), 3D annotation (text) and dimensions, surface finish, and material specifications.

3.4.112 production

a manufacturing process or operation designed to produce goods

3.4.113 QIF persistent identifier (QPId)

a standard universally unique identifier used in QIF

3.4.114 qualification

a check on or the refinement of the calibration of a measurement device performed using a known artifact such as a tooling ball or gage block

3.4.115 rule

in the context of QIF Rules, a pair usually consisting of a Boolean condition and a specification of the type of measurement activity that should be carried out if the condition evaluates to true

Note 1 to entry: The Boolean condition is actually optional so that unconditional rules (i.e., actions that must or may always be taken) may be written.

Note 2 to entry: For example, if "the feature is a cylinder" evaluates to true, the corresponding action may be requested: "measure 13 points".

3.4.116 sampling category

a number representing a category of rules use

Note 1 to entry: The exact meaning of each category and the number of possible levels is meant to be defined and evaluated by the user. For example, the number 1 might represent first article inspection and the number 2 might represent process control.

3.4.117 sampling method

a statistical method of grouping manufactured products for measurement

Note 1 to entry: Key concepts include sample size (how many) and sampling frequency (how often).

3.4.118 sensor

a measurement resource that detects a surface or measurement feature of a workpiece

3.4.119 sensor qualification

the process of measuring a reference artifact to determine sensor attributes

Note 1 to entry: an example is measuring a reference sphere to determine stylus tip diameters and probe tip offsets for a touch probe on a CMM

3.4.120 set

refers to a measured feature or characteristic being set to its nominal without any measurement taking place

3.4.121 simple tactile probe

a touch probe with a single stylus

3.4.122 sine bar

a hardened, precision ground body with two precision ground cylinders used for measuring angles

3.4.123 stability

the ability of a gage to arrive at the same measurements against a master value over time

3.4.124 standard deviation

a measure of the dispersion or frequency distribution around a population mean or average

3.4.125 statistical study plan

information, defined in the QIF Statistics model, that provides a method for establishing the quality approach and criteria for data studies associated with measurement in manufacturing

Note 1 to entry: Statistical study plans provide a method for establishing the quality approach and criteria for data studies associated with measurement in manufacturing. A supplier may be provided with these plans from a customer in order to ensure the expectation that correct quality control information will be supplied with each manufactured lot.

Note 2 to entry: Statistical sStudy plans can contain the number of expected products to be inspected. They can also contain the expected quality conformance thresholds such as the characteristics to be measured and monitored, sample size, process capability, and gage repeatability and reproduceability requirements.

3.4.126 statistical study results

information that contains the measurement summary data that provides an overview of measured product quality

Note 1 to entry: Statistical study results contain the measurement summary data that provides an overview of product quality. From single first article inspection, to capability and production studies, statistical study information can include the measured process capability and performance quality indices that are commonly accepted in manufacturing.

3.4.127 structured light sensor

a non-contact optical measurement system that projects a known fringe pattern on a surface to characterize it using the distorted pattern recorded by the detector

3.4.128 tactile probe sensor

synonym for touch probe

3.4.129 theodolite

an instrument for measuring angles in the horizontal and vertical planes

3.4.130 thread specification

a description of the shape and size of a thread

Note 1 to entry: This is thread in the sense of the grooved/ridged portion of a nut or bolt.

3.4.131 tolerance

an upper and lower specification of a characteristic dimension

Note 1 to entry: A tolerance usually provides the allowable range for part acceptance based on designed engineering criteria for fit and function.

3.4.132 tool

a measurement resource that mounts one or more sensors to a measurement device

3.4.133 touch probe

a sensor that is actuated by physical contact with a workpiece

3.4.134 traceability

information about the circumstances of a quality measurement process or a manufacturing process

Note 1 to entry: QIF defines five types of traceability. None of these is the classical traceability of measurements from an international standard through intermediate steps to a specific measurement.

3.4.135 trimming contour

a 3D contour which is used for trimming a surface

3.4.136 ultrasonic sensor

a proximity sensor that uses time of flight of sound waves to determine the absolute distance to a target

3.4.137 universal length measuring machine

a one dimensional measuring device used in precision applications

3.4.138 version

a unique, non-trivial instance of a document or schema

3.4.139 weld characteristic

a characteristic that indicates a desired type of weld

3.4.140 weld symbol

a pictorial representation of a weld characteristic

3.4.141 wire-frame

a method of geometric modeling in which a two- or three-dimensional object is represented by object edges

3.4.142 work instruction

information that provides instructions about actions or action methods to be used in executing a measurement plan

3.4.143 workpiece

a physical artifact, real or virtual, intended for subsequent transformation within some manufacturing operation

4 Symbols and abbreviated terms

ANSI	American National Standards Institute				
ASCII	American Standard Code for Information Interchange				
ASME	American Society of Mechanical Engineers				
BREP	Boundary Representation				
CAD	Computer-Aided Design				
CAIPP	Computer-Aided Inspection Process Planning				
CAM	Computer-Aided Machining or Computer-Aided Manufacturing				
CAX	Computer-Aided Technologies				
СММ	Coordinate Measuring Machine				
CoP	Cloud of Points				
COTS	Commercial Off-The-Shelf				
DME	Dimensional Measuring Equipment				
DMIS	Dimensional Measuring Interface Standard				
DMSC	Digital Metrology Standards Consortium				
DRF	Datum Reference Frame				
ERP	Enterprise Resource Planning				
GD&T	Geometric Dimensioning and Tolerancing				
GPS	Geometrical Product Specifications				
GUID	Globally Unique Identifier				
ISO	International Organization for Standardization				
LOTAR	Long Term Archiving and Retrieval				
MBD	Model Based Definition				
MES	Manufacturing Execution Systems				
MRI	Measurement Resources Information				
MRP	Materials Resource Planning				

MSA	Measurement Systems Analysis
PDPMI	Product Definition with Product and Manufacturing Information
PMI	Product and Manufacturing Information
QIF	Quality Information Framework
QMS	Quality Measurement Standards (a DMSC committee)
QPId	QIF Persistent Identifier
R&R	Repeatability and Reproducibility
SI	The International Systems of Units
SPC	Statistical Process Control
SQC	Statistical Quality Control
STEP	Standard for the Exchange of Product model data (ISO 10303)
UUID	Universally Unique Identifier
W3C	World Wide Web Consortium
XML	eXtensible Markup Language
XSDL	XML Schema Definition Language
XSLT	eXtensible Stylesheet Language Transformation

5 Overview of the Quality Information Framework (QIF) information model

5.1 Purpose

The goal of the QIF specification is to facilitate interoperability of manufacturing quality data between system software components. Solving the metrology interoperability problem will benefit manufacturers by avoiding wasted resources spent on non-value-added costs of translating data between the different components of manufacturing quality systems. Users should gain flexibility in configuring quality systems and in choosing commercial components, and achieve effortless and accurate flow of data within their factory walls as well as with suppliers and customers. Solution providers should be able to eliminate their efforts previously spent in data translations, and there should be increased opportunities to sell their products and to improve and expand the features of their solutions.

System wide interoperability is achieved by partitioning the information model between a QIF Library of common, reusable components, and six information models for unique application areas. The reusable library components are referenced throughout the comprehensive quality information model thereby ensuring interoperability and extensibility between any data producer and consumer that implements the QIF formats in their software.

DMSC's goal is to write the QIF specifications such that conformity of commercial software products can be assessed by a manufacturer or supplier (first party), a user or purchaser (second party), or an independent body (third party). The ability of developers to test against conformance criteria, and of users to evaluate products for conformance, are key to establishing widespread interoperability of commercial off the shelf software solutions.

5.2 Model based definition manufacturing quality workflow

QIF includes information models for six application areas, as shown in Figure 1. Figure 2 shows a model-based quality workflow activity diagram and the use of QIF formats to convey information between computer-aided quality processes. The scope of QIF is all manufacturing design and quality information required to assess product quality. QIF is also intended to improve manufacturing processes and product design. The work flow model shows five major activities of the quality measurement process:

- Define Product
- Determine Measurement Requirements
- Define Measurement Process
- Execute Measurement Process
- Analyze & Report Quality Data

Activities export and/or import quality information formatted according to the QIF information model and XML encoding rules. The diagram does not show activities that generate manufacturing process information or that implement a manufacturing execution system. The

features of QIF facilitate efficient flow of enterprise quality data in a way that does not specify or constrain a user's system architecture.

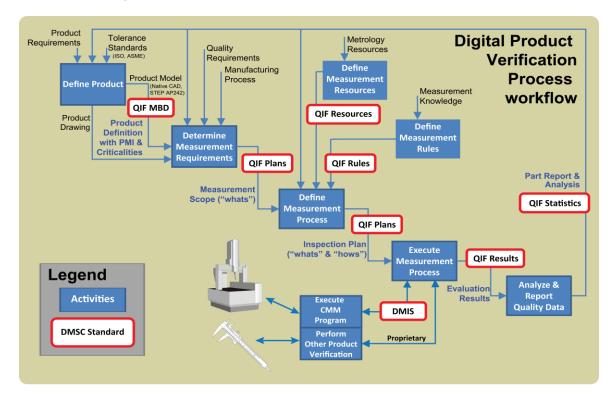


Figure 2 – QIF Model-Based Quality Workflow

The *Define Product* activity generates a model-based definition of a part that can support an enterprise's digital product verification. The product definition contains geometry information plus semantically linked product manufacturing information (PMI). PMI commonly includes geometric and dimensional tolerancing information, product characteristics with criticalities, material, surface texture, roughness, color and hardness. PMI typically includes associations between geometric elements of the product and dimensions, tolerances, and functional datums. The product definition is expressed using the QIF MBD information model.

The Determine Measurement Requirements activity imports QIF MBD information or its equivalent expressed in another format or formats. Based upon enterprise quality requirements and/or manufacturing process knowledge, measurement requirements for a part are generated as a set of measurement criteria also known as a bill of characteristic items (BOC). A characteristic item is typically a tolerance or specification applied to a feature or product that needs verification. The plan may also specify the measuring sequence and resources to be used, but is not required to do so. This BOC constitutes a high-level quality plan of "what" needs to be inspected or verified, expressed as a QIF Plans (whats) information packet.

The activity that generates QIF Resources information is *Define Measurement Resources*. This activity defines enterprise hardware and software resources available, either serial-number specific, or generic, that can be harnessed to meet inspection requirements for individual part

features. The QIF Resources data format can be used to specify resources required in an inspection plan, or the resources actually used in an inspection. The scope of the QIF Resources application model includes but is not limited to hardware, software, and human operators.

The *Define Measurement Rules* activity generates a QIF instance file that conforms to the QIF Rules information model and specifies inspection practices required by an enterprise to be used in-house or by contractors. Such a file defines, for some or all feature types on a part, information elements that constrain the measurement on that feature type. Measurement constraints may be applied to things like measurement point density, measurement point pattern, and feature fitting algorithm. Rules may be written for every QIF feature type. The QIF standard defines the generic format to express enterprise Rules, but does not contain specific rules. The instance file generated by the enterprise contains the specific rules. Information areas that are in scope include:

- product measurement point number or density and sampling method for each product feature type
- feature fitting algorithm for each feature type
- selection of measurement resources
- rule ID and corporate ownership.

The *Define Measurement Process* activity inputs resource and metrology knowledge, and the QIF Plans (what), and generates additional instructions on "how" to inspect or verify the bill of characteristic items. The completed inspection plan is output as QIF Plans (whats and hows). The scope of the QIF Plans 3.0 application model includes:

- dimensional product information, e.g., geometric features, measurement features, nominal dimensions, measurement features, and tolerance values
- non-dimensional product information, e.g., product IDs, customer information, key contact, temperature, and roughness
- product characteristics
- traceability values and pointers
- work instructions
- measurement resources to be used
- CAD entity relationships.

The downstream activity *Execute Measurement Process* activity imports the QIF Plan, and if needed, generates a detailed resource specific inspection program. The programs are machine-level measurement programs, formatted according to DMIS or some other measurement programming language, that provide equipment level commands to specific coordinate measuring machine (CMM) control units, to collect point data, fit features to data, and output feature and characteristic data. The workflow shows the export of non-QIF format subsequently translated according to the QIF Results information model. Measurement processes that adopt QIF will likely export results directly without translation. Measurement Execution can also include software solutions that issue instructions to human operators using calipers, go/no-go gauges, and specialized inspection equipment, and generate results data. Actual measurement values may be numerical or non-numerical. Measurement results may include not only raw

measurement values, but also summary statistical or derived results (e.g., cylinder radius with standard deviation). Measurement results may also include description of the algorithmic means (e.g., least squares) by which the derived results are calculated. All necessary nominal (as designed) target values may also be included to allow reanalysis. Any other information relevant to the measurements is also in scope. This includes information called inspection traceability, which includes the shift, the equipment operator's name, a description of the item measured, the date and time of the measurement, etc.

Finally, the measurement results for two or more parts are collected, analyzed, and reported by the activity *Analyze & Report Quality Data*. The output, expressed using the QIF Statistics model, is generally an analysis of a multi-part batch. QIF Statistics is designed to carry information to transport statistical quality control plans, corrective action plans and detailed summary quality statistics. It builds on the QIF Results framework through supporting multi-part measurement results that can apply to a number of quality study types beyond single or first article inspection. It is designed to haul information in an unambiguous form for pre-production, capability, and production quality studies. In addition it supports the full extent of measurement systems analysis studies including Gage R&R.

Quality information generated in QIF format can be used as input by many other quality and manufacturing management components not shown in Figure 2, including, but not limited to, first article inspection plan and report (FAIR) generation, statistical process control (SPC), materials resource planning (MRP), measurement systems analysis (MSA), manufacturing execution systems (MES), and computer aided manufacturing (CAM).

The digital interface between Execute Measurement Process and the DME (dimensional measurement equipment) has been satisfied by the Dimensional Measuring Interface Standard (DMIS), ANSI/DMIS 105.3 Part 1-2016. DMIS can also be used as a numerical control part program for DMEs such as coordinate measuring machines (CMM).

An example of user-defined flow of QIF information not shown in Figure 2 is the direct use by a human inspector of a QIF Plans file to inspect a part. The operator makes the decisions of Measurement Programming, like selecting the inspection device (e.g., caliper, fixtures, go / no-go gages) and generating the inspection instruction details (e.g., number of points, placement of measurements).

5.3 QIF design requirements

There are four categories of requirements on the content of the QIF information model, and on how the data are encoded for exchange:

 Business case functional requirements. The design of the QIF information model is driven by the functional requirements of activities that import, process, and export manufacturing quality data. Requirements are expressed via natural language rules, scenarios, use-case notation, identification of specifications and/or standards, and examples. The DMSC began with a baseline requirement to model ANSI/ASME Y14.5-1994, and the plans and results information in DMIS 5.2. QIF 3.0 extends its coverage of ISO GPS. The requirements list is evolving as the members of the quality community identify more workflow requirements. Functional requirements involve engineering data and workflow details, as well as business case justifications and requirements.

- Interoperability requirements. This is primarily the requirement on the QIF standard that developers from different companies should be enabled, without cooperation, to develop software applications that will successfully exchange QIF data packages. This requirement is essential because solutions are developed globally by diverse developers, but also because QIF information must flow between companies, between original equipment manufacturers and contractors, and between primary vendors and their subcontractors. Interoperability requirements are met primarily through complete and accurate semantic annotations embedded within the XML schema files, and by publishing specifications and usage documents. QIF also includes data structures that allow writers of instance files to insert customized data, which should only be used when their data does not match a defined QIF data type.
- **Computational requirements**. These are good practices of computer science that lead to efficient code and efficient use of computation resources. Examples include the use of class inheritance, and schema design practices that minimize the size of instance files.
- Data/information quality requirements. The meaning of many information elements in the QIF standard is preserved by constraints and validation tools provided by XML schema language and XSLT stylesheet language transformations, including redundancy checks, data elements to store the results of product data quality checks, and a digital signature with a hash value to detect unauthorized editing or accidental corruption of a QIF document.

5.4 QIF Data Quality

QIF data quality refers to the state wherein all data/information in the QIF standard are defined correctly, completely, and unambiguously and wherein all implementations of the QIF standard employ and interpret the information as explicitly defined in the QIF standard.

The QIF standard is not only a data structure but also a set of formal rules for data interaction with that structure. By virtue of its implementation in XML schema language and standard checks available in the XSLT language standard, QIF transfers much of the burden of data/information quality from the application implementer to the standard itself. If a QIF instance file passes all XML and XSLT software checks, it is valid to the QIF standard in all syntactical and many semantic elements.

5.4.1 XML implementation

The XML implementation of the QIF data model provides a number of benefits to QIF users.

First, the QIF data model is implemented in XML Schema Definition Language which allows for automatic syntax and consistency checking of the standard itself, using widely available free or low-cost software tools.

Second, software implementations of the standard can take advantage of free or low-cost automatic source code generation tools. These tools provide computer language code which automatically consumes and produces QIF document instance files in XML format consistent with the syntax of the standard.

Third, QIF document instance files in XML format can be checked against the standard schemas with free or low-cost automatic tools. These tools will check that the structure of an instance file conforms to the QIF model. They will also check the validity of internal references in a file using *keys* and *keyrefs* as described in subclause 5.12.

Fourth, checks of the quality of information in QIF document instance files are available through the use of XSLT (Extensible Stylesheet Language Transformations) language checks. The XSLT checks are a normative part of the QIF specification. The XSLT checks can be performed by a number of widely available free tools (and by low-cost tools). The XSLT checks address both the integrity and semantics of individual instance files and the validity of references between linked instance files. Moreover, when there is tree of linked instance files, applying the XSLT checks to the file at the root of the tree results in the checks being applied to all files in the tree. Applying the XSLT checks results in an error report being generated as an XML file.

The files that contain the XSLT checks are arranged in a small tree of six files with Check.xsl at the root. Check.xsl imports CheckDocuments.xsd, CheckFormat.xsl, CheckQuality.xsl, and CheckSemantic.xsl. Each of those four imported files imports CheckLibrary.xsl. The Check.xsl file triggers the use of the CheckDocuments.xsd file, which triggers the use of the other three.

The XSLT checks are parameterized. For example, the tolerance on the number of segments in a polyline is given by the MaxNumSegments parameter. Values of the parameters are set in the CheckParameters.xml file, which is accessed by the CheckLibrary.xsl file. A user may reset the parameters by editing CheckParameters.xml. Processing of linked instance files may be activated by the parameter CheckLinkedDocuments in CheckParamaters.xml, where MaxRecursionLevel defines the maximum recursion level. Format, quality and semantic checks may be activated by parameters CheckFormat, CheckQuality and CheckSemantic.

The XSLT checks in QIF are shown in Table 1.

XSLT Check	Category	Purpose
Maximum recursion level	General	The recursion level of linked documents must not exceed the specified level.
Number of <i>element</i> s	Format	The number of <i>elements</i> in sets/arrays must be equal to the value specified in the attribute 'n'.
Maximal id of model objects	Format	The object id s must be less than or equal to idMax.
Link to an external QIF document	Format	The specified external QIF document must be found and its QPId must match the one given.
Link to an external object	Format	The specified entity must be found in an external document.

Table 1 – XSLT Checks

Link to a specific type of external object	Format	The specified entity in an external document must be the right type of entity (over 300 cases).
NURBS curve	Format	The number of control points must be equal to the number of knots minus the curve order.
NURBS surface	Format	The number of control points must be equal to ('nKtU' - 'ordU')*('nKtV' - 'ordV').
Feature nominal	Semantic	Feature nominals must be connected to topology entities.
Position characteristic definition	Semantic	If the ToleranceValue in a Position characteristic definition is 0 then the MaterialCondition must be MAXIMUM.
High degree curve	Quality	Excessively high-degree curves (G-CU-HD) must not be used.
Free edge	Quality	Free edges (G-SH-FR) must not be used.
Over-used edge	Quality	Over-used edges (G-SH-NM) must not be used.
Fragmented curve	Quality	Fragmented curves (G-CU-FG) must not be used.
Unit vector length	Quality	The length of a unit vector must be close to 1.

Parameters:

Parameter	Туре	Purpose
CheckFormat	boolean	Enable/disable the format checks.
CheckQuality	boolean	Enable/disable the quality checks.
CheckSemantic	boolean	Enable/disable the semantic checks.
CheckLinkedDocuments	boolean	Enable/disable processing of linked
		documents.
MaxRecursionLevel	unsigned integer	Maximum recursion level of linked documents.
G-CU-HD/MaxDegree	unsigned integer	Maximum NURBS curve/surface degree.
G-CU-FG/MaxNumSegments	unsigned integer	Maximum number of curve fragments.
unitVectorLength	two doubles	Maximum and Minimum unit vector length.

The XSLT checks are performed via four .xsl files, namely, CheckDocument.xsl, CheckFormat.xsl, CheckQuality.xsl, and CheckSemantic.xsl. The checks performed by each of these files are described in the following subclauses.

5.4.1.1 CheckDocument.xsl

The Check Document.xsl file is used to trigger the use of CheckFormat.xsl, CheckQuality.xsl, and CheckSemantic.xsl.

In addition, it contains over 300 checks between linked files that a reference from one aspect of a feature or characteristic to another aspect of the same type of feature or characteristic does indeed do that. For example, if a circle feature measurement in a QIF results file intends to reference a circle feature item in an external QIF plan file, there is a check that the referenced object is a circle feature item and not anything else (such as a flatness definition or a torus feature item). The same set of checks is made within single instance files by key/keyref pairs, but key and keyref apply only within a single file and cannot be used with linked files.

Finally, CheckDocument.xsl checks that the recursion depth of checking does not exceed the MaxRecursionLevel parameter.

5.4.1.2 CheckFormat.xsl

The CheckFormat.xsd file is used to make the following checks.

1. number of *elements* in list - Several dozen types of lists of *elements* are defined in QIF, for example, the **PartSet** in a **Product** is a list of **Parts**. Each of these lists has an **n** *attribute* giving the number of *elements* in the list. It is checked that the actual count of *elements* in the list is equal to **n**. This check is performed on every list of *elements* containing an **n** *attribute*.

2. external references - A QIF document **D** may contain references to *element*s in external QIF documents. To do this, **D** must include the Uniform Resource Identifier (URI) and QPId of each external document. It is checked that, for each external QIF document of **D**:

- a. A file E exists with the URI given in D, and E has a QIFDocument element in it
- b. The QPId of the **QIFDocument** in **E** is the one given in **D**
- c. Every external entity reference in **D** that is supposed to be in **E** is, in fact, in **E**.

3. NURBS curves - It is checked that in any 2D or 3D NURBS curve, the number of control points equals the number of knots minus the order of the curve.

4. NURBS surfaces - It is checked that for any NURBS surfaces the number of control points equals the product of (**nKtU** - **ordU**) and (**nKtV** - **ordV**).

5.4.1.3 CheckQuality.xsl

The CheckQuality.xsl file is used to make the following checks.

1. It is checked that there are no NURBS surfaces of excessively high degree. The maximum degree is a parameter that may be set in CheckParameters.xml.

2. It is checked that there are no free edges. A free edge is an edge that is used by only one face in a shell.

3. It is checked that there are no overused edges. A overused edge is an edge that is used by more than two faces in a shell.

4. It is checked that 2D and 3D polylines do not have excessively many segments. The maximum number of segments is a parameter that may be set in CheckParameters.xml.

5.4.1.4 CheckSemantic.xsl

The CheckSemantic.xsl file is used to make the following checks.

1. It is checked that a FeatureNominal is connected to an entity (which should be a topology entity). This check is optional and is inactive by default. It can be activated via CheckParamaters.xml. If the connection is to an internal entity, a separate *key/keyref* check ensures that the entity is a topology entity. If the connection is to an external entity, its type is not checked.

2. It is checked that in any position characteristic definition, if the tolerance is zero, the material condition must be maximum.

5.4.2 Redundancy Checks

QIF contains redundancy checks at two levels.

At the low level, each type of *element* describing a list, set, or collection includes a required *attribute* "n," which is the number of items contained in the list, set, or collection. If any of the low level "n" counts do not match the actual number of items in a list, set, or collection, or the optional **ValidationCounts** *element* is present and indicates the presence of a list or item which is not present, or indicates a number of items in a list which does not match the actual number of items in that list, or a top level list or item is present but not indicated as such in the **ValidationCounts** *element* if it is present, then there is an internal inconsistency in the QIF document and the document is not valid.

At the high level, the root level of a QIF document has an optional *element* ValidationCounts, which can be used to indicate the presense and number of items in key, top level QIF document lists and items.

5.4.3 Product Data Quality

QIF defines an optional **ProductDataQuality** *element* of type **ProductDataQualityType**, which contains information about product data quality (PDQ) requirements and a list of checks performed on the QIF document. PDQ information includes the declaration of product data quality along with Boolean *element*s indicating if checks have been approved and if checks have been done.

Each PDQ check listed in the optional ProductDataQualityChecks *element* contains information on the type of check, its description, requirements, status, and results statement. Optionally, the source requiring the check, the software application used for the check, and the URL of any XSLT used in the check, can be specified.

5.4.4 Digital Signature

A QIF document can include a digital signature in the optional **Signature** *element* of **SignatureType** defined in the **xmldsig-core-schema.xsd** schema, which can be found at **http://www.w3.org/TR/2002/REC-xmldsig-core-20020212**, and which implements data elements to the ITU-T X.509 | ISO/IEC 9594-8 (10/2012) Public-key and attribute certificate frameworks standard.

This digital signature's features include a certificate containing:

- Signature version
- Serial number of the certificate
- Algorithm id
- Certificate issuer name
- Validity period
- Certificate subject name
- Subject public key information

- Optional extensions
- The certificate signature algorithm
- The certificate signature

Included in the certificate signature is a hash value, which can be used to detect unauthorized editing or accidental corruption of the QIF document.

5.4.5 Long Term Archiving and Retrieval

LOng Term Archiving and Retrieval (LOTAR) of product and technical data is an important standard describing a product lifecycle for many products, particularly in aerospace and military applications. In this context, "Long Term" means long enough for information to be affected by changing technologies, including support for new media and data formats, or a changed user community. Similarly, "Archival storage" refers to the process that ensures data remains available for access. The LOTAR goal is to define and store digital information models in such a manner that the information can be fully retrieved, and data files corresponding to the model can be fully realized at any future time, even if the systems used to define and store the information are then obsolete. LOTAR International is the official name of the consortium that generated the LOTAR standard.

The following requirements are required of the QIF standard for it to be suitable for LOTAR:

- It must be an open data standard
- Ingest must be correct
- Retrieve must be accurate
- A unique persistent identifier or identification scheme must exist

Therefore, if a part is modeled in QIF, all relevant information, including measurement-related CAD with associated GD&T part information, part measurement plans, and required resources and rules can all be retrieved and utilized no matter what software and manufacturing systems are available at some far future date.

This claim can be made largely because QIF is an open, non-proprietary standard information model. This gives a strong probability of accurate information retrieval in the far distant future, particularly compared to proprietary, non-standard, quality measurement digital information exchange models.

In particular, the QIF model has been developed in close collaboration with the LOTAR International group to further ensure the archival suitability of QIF. The express objective of LOTAR International is "to develop, test, publish and maintain standards for long-term archiving (LTA) of digital data, such as 3D CAD and PDM data. These standards will define auditable archiving and retrieval processes. Use of the standard series by other branches of industry such as the automotive or shipbuilding industry is possible. The results are harmonized with e.g. the Recommendation 4958 for long-term archiving of the German Association of the Automotive Industry (VDA) and are based on the ISO 14721, Open Archival Information System (OAIS) Reference Model. The documents for the standard are published as the EN9300 series and, in cooperation with the AIA, also as the National Aerospace Standard (NAS)." (http://www.lotar-international.org/).

5.5 QIF manufacturing functional requirements

Requirements that have been validated by inspection and examples in QIF include ASME GD&T, ISO GPS, ISO 22093, and ANSI/DMIS 105.3. Functional requirements met in QIF include the following:

- Information requirements for QIF encompass the principles of geometric dimensioning and tolerancing as described in ASME GD&T and ISO GPS, as well as workflow practices and quality management functions.
- QIF encompasses all planning and results information defined in ANSI/DMIS 105.3. QIF also includes device, tool, and sensor data.
- QIF instance files support all information defined for first article inspection reports as defined in the standard AS9102B [1].
- The neutral data format specifications are accompanied by fully defined semantics derived where applicable from other standards like ANSI/DMIS 105.3, and AS9102B. The semantics ensure that data cannot be misinterpreted between sender and receiver of QIF instance files.
- Inspection results data formatted as QIF Results can be used both for a reverse engineering process where actual measurement data is stored without the presence of nominal information, and for a conventional measurement process where inspection is planned using nominal part feature data.
- QIF facilitates traceability of quality results to inspection and measurement processes, including identification of measurement devices and operators, software applications, and CAD models.
- QIF facilitates traceability of quality results to manufacturing processes by maintaining links, so that inspection data can be used to monitor, control, and improve manufacturing processes. The QIF scope includes support of manufacturing process and product validation testing.
- QIF Results data can be written to facilitate re-analysis of measured point data.
- QIF data supports quality systems based on model based definition, as well as systems that implement 2D drawing-based processes.

5.6 QIF and STEP

The ISO 10303 family of standards is informally known as the "Standard for the Exchange of Product model data" or "STEP." QIF has relevance to several of the STEP standards, especially STEP AP203, "Configuration controlled 3D designs of mechanical parts and assemblies", STEP AP242, "Managed model based 3d engineering," and STEP AP219, "Dimensional inspection

information exchange." The relationship and harmonization between QIF and the relevant STEP standards will be addressed in other documents outside this standard.

5.7 QIF information model design guidelines

A QIF design principle is to follow a decoupled normalized relationship model. As such, many relations between data elements (also known as instanced types) in the QIF schemas are made using identifiers rather than allowing a parent type to directly contain a child type (as you would find in a strictly hierarchical model). Each "object" or "instanced type" that needs to be referenced by another type is given a unique identification designator (id). The referencing object may then establish a relation by calling out the id rather than redefining the entire data element within itself. By decoupling the child from the parent we introduce the ability to reuse components of the relationship without duplicating definitions. This concept of decoupling is one of the pillars of QIF extensibility. It also leads to reducing instance file size compared to purely hierarchical design, and may lead to better data integrity because the risk of duplicating errors is reduced.

The QIF models represent measurement features and characteristic objects with four aspects: item, definition, nominal, and measurement. The relationships between data objects of each aspect type in an instance file are implemented using a relationship scheme described in more detail in subclause 5.9. Because the scope of QIF covers the entire workflow of enterprise quality systems, the aspects allow QIF instance files to describe nominal and measured GD&T quality data, as well as express the relationships and other data generated during the workflow of planning, execution, reporting, and analysis.

We will use the terms "data object" and "object" to mean a grouping of information in a QIF XML instance file, defined by elements of the QIF information model.

5.8 Overview of XML schema file modularity

A complete model built using XML Schema Definition Language (XSDL) is called a *schema*. However, the complete model may consist of information items from several different *schema* files. Typically, the complete model will be defined using a top level (or root) *schema* file which will use subordinate *schema* files. In XSDL, using definitions in other files is indicated by an *include* directive. The top level file *include*s subordinate files, and those subordinates may *include* other subordinates.

For example, **QIFDocument** is a complete application *schema*. The top-level *schema* file is QIFDocument.xsd. It includes the primary *schema* file for each of the six QIF application areas, and each of those *includes* subordinate files collected in the QIF Library. The net effect is that the **QIFDocument** *schema* contains everything defined in all the QIF *schema* files.

An XML data file conforming to an XML *schema* is called an instance file. Every instance file conforming to the QIF model will have **QIFDocument** as the root of a hierarchy of information.

The XML schema file hierarchy of QIF is shown in Figure 3.

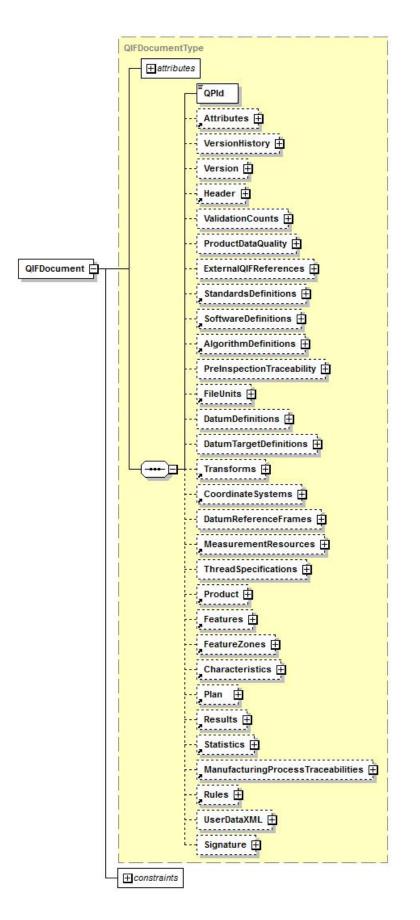
QIF (directory)		
QIFApplications (directory)		
QIFDocument.xsd		
QIFMeasurementResources.xsd		
QIFPlan.xsd		
QIFProduct.xsd		
QIFResults.xsd		
QIFRules.xsd		
QIFStatistics.xsd		
QIFLibrary (directory)		
Auxiliary.xsd		
Characteristics.xsd		
Expressions.xsd		
Features.xsd		
GenericExpressions.xsd		
Geometry.xsd		
IntermediatesPMI.xsd		
Primitives.xsd		
PrimitivesPD.xsd		
PrimitivesPMI.xsd		
Statistics.xsd		
Topology.xsd		
Traceability.xsd		
Units.xsd		
Visualization.xsd		

Figure 3 – QIF XML schema directory structure

The QIF Library is modularized by grouping related *type* and *element* definitions together in a *schema* file. Some of the *schema* files in the QIF Library serve multiple applications, and some serve only a single application:

- Expressions.xsd and GenericExpressions.xsd serve only QIFRules and QIFPlan.
- Auxiliary.xsd, Geometry.xsd, Topology.xsd, and Visualization.xsd serve primarily QIFProduct (though QIFMeasurementResources also uses the first three of those).
- Statistics.xsd serves only QIFStatistics.

The QIF application models are each described in a separate subject area clause (QIF Clauses 7 through 12). Clause 6 of the QIF standard describes the contents of each *schema* file in the QIF Library.


5.9 Data structures

5.9.1 The QIFDocument element

QIFDocument is the highest level *element* of all QIF instance files. Its structure is illustrated in Figure 4. QIFDocument can be used to generate many different sorts of instance files. Such a file may include information from one or more application areas. For example, a **QIFDocument** instance file defining QIF Rules will typically have only identifying information and a **Rules** *element*. On the other hand, if a product has been modeled in the **Product** *element* of a **QIFDocument**, an instance file containing a plan for that product is likely to have the same **Product** *element* and a **Plan** *element* in the **QIFDocument**.

A QIF Statistics instance file is likely to have at least a **Product** *element*, a **Results** *element*, and a **Statistics** *element*.

However, a user has the option of putting related application information in a single instance file or keeping that information in separate instance files. A QIF Statistics instance file might contain only identifying information and a **Statistics** *element*. The product information referenced in the **Statistics** *element* might be in a second instance file that was generated when the product was designed, and the measurement results information referenced in the **Statistics** *element* might be in a second when an instance of the product was measured. When related information from different applications is in a single file, it is connected using identifiers (ids) that are local to the file. When that information is in separate files, it is connected using a combination of local ids and QIF Persistent Identifiers (**QPIds**), which are universally unique.

A brief description of all sub-*element*s of the QIF Document *element* follows. All *element*s other than the required **QPId** *element* are optional; however, it is recommended that a **QIFDocument** contains at least a **Header** and one or more of the **MeasurementResources**, **Product**, **Plan**, **Results**, **Rules**, and **Statistics** application areas. It is strongly suggested that every QIFDocument also have **Version** and **FileUnits**.

- QPId the QIF persistent identifier for the document. This is a universally unique identifier. QPIds are discussed in subclause 5.13.2. *QPIdType* is defined in Primitives.xsd.
- Attributes provides the user with opportunity to attach typed information that is not modeled in QIF. It is described further in subclause 5.25. The *AttributesType* and Attributes global *element* are defined in Primitives.xsd.
- VersionHistory version history information about the file. The VersionHistoryType is defined in Intermediates.xsd.
- Version version information about the file, including **TimeCreated** and **Signoffs**.
- Header identification of the source of the file and the scope of the file. The *QIFDocumentHeaderType* and *Header* global *element* are defined in QIFDocument.xsd.
- ValidationCounts the size of each of about 50 lists of QIF *elements*. This is provided so that an application can check the integrity of the document by checking the counts against the actual numbers of *elements* in the lists. Each count is optional. If a count is omitted for a list, it does not imply that there are zero *elements* in the list.
- **ProductDataQuality** a description of quality checks applied to the document. Quality checks are discussed in subclause 5.4.3.
- ExternalQIFReferences a list of external QIF documents referenced in the document, with a local id for each external document. External QIF references are discussed in subclause 5.13.3.
- StandardsDefinitions a list of standards referenced in the document.
- **SoftwareDefinitions** a list of software systems referenced in the document.
- AlgorithmDefinitions a list of algorithm definitions referenced in the document.
- **PreInspectionTraceability** information about the provenance of the file before inspection has occurred. The *PreInspectionTraceabilityType* is defined in Traceability.xsd. Preinspection traceability is discussed briefly in subclause 6.14.2.
- **FileUnits** information about the units used in the file. Units are discussed in subclause 5.18 and in more detail in subclause 6.15. The *FileUnitsType* and *FileUnits* global *element* are defined in Units.xsd.
- **DatumDefinitions** a list of datum definitions. Datum definitions are discussed in subclause 5.17.6.1. *DatumDefinitionsType* is defined in IntermediatesPMI.xsd.
- **DatumTargetDefinitions** a list of datum targets. Datum target types are listed in subclause 6.8. The **DatumTargetDefinitionsType** and the various datum target types are defined in IntermediatesPMI.xsd.
- Transforms a list of transforms. Transforms are discussed in subclause 5.16.3. The TransformListType and Transform global *element* are defined in IntermediatesPMI.xsd.

- CoordinateSystems a list of coordinate systems. Coordinate systems are discussed in subclauses 5.16.4, 5.16.5, and 5.16.6. The *CoordinateSystemType*, *CoordinateSystemListType* and CoordinateSystems global *element* are defined in IntermediatesPMI.xsd.
- DatumReferenceFrames a list of datum reference frames. Datum reference frames are discussed in subclause 5.17.6. The *DatumReferenceFramesType* and the *DatumReferenceFrameType* are defined in IntermediatesPMI.xsd.
- MeasurementResources information about measurement resources. Measurement resources are discussed in Clause 9. The *MeasurementResourcesType*, MeasurementResources global *element*, and other measurement resource types are defined in QIFMeasurementResources.xsd.
- **ThreadSpecifications** a list of thread specifications. Thread specifications are discussed in subclause 5.22. Thread specification types are defined in IntermediatesPMI.xsd. Thread characteristics and features are defined in Characteristics.xsd and Features.xsd, respectively.
- **Product** information about parts and assemblies, both designs and physical instances of the designs. These are discussed in subclause 5.11 and in more detail in Clause 7 and subclauses 6.2, 6.7, 6.10, 6.13, and 6.16. The *ProductType* and *Product* global *element* are defined in QIFProduct.xsd.
- Features information about features. Features are discussed in subclause 5.9.2, 5.9.5, 5.19, 5.20, and 5.23, and in subclause 6.5. The *FeaturesAspectsListsType* and Features global *element* are defined in Features.xsd.
- **FeatureZones** information about feature zones. A feature zone defines a portion of a feature and is used to define characteristic tolerance zones or datum target areas or to specify the meaning of a characteristic.
- Characteristics information about characteristics. Characteristics are discussed in subclauses 5.9.3, 5.9.4, 5.9.5, and 5.24 and in subclause 6.3. The *CharacteristicAspectsListsType* and Characteristics global *element* are defined in Characteristics.xsd.
- **Plan** information about a measurement plan. Measurement plans are discussed briefly in subclause 5.2 and in more detail in Clause 8. The *PlanType* and **Plan** global *element* are defined in QIFPlan.xsd.
- Results information about one or more measurement results. Each measurement results includes all information associated with a single product measurement such as measured feature, characteristic, and coordinate system transform information. Measurement results are discussed briefly in subclause 5.13.4 and in detail in Clause 11. The *ResultsType* and *Results* global *element* are defined in QIFResults.xsd.
- **Statistics** information about quality statistics aimed primarily at process control; both plans and results are included. Statistics is discussed briefly in subclause 5.2 and subclause 6.12. Statistics is discussed in detail in Clause 12. The *StatisticsType* and **Statistics** global *element* are defined in QIFStatistics.xsd.
- **ManufacturingProcessTraceabilities** information about manufacturing processes. Manufacturing process traceability is discussed briefly in subclause 6.14.5. The

ManufacturingProcessTraceabilitiesType and the

ManufacturingProcessTraceabilities global *element* are defined in Traceability.xsd.

- Rules information about rules to be used in inspection planning and/or programming. Rules are discussed briefly in subclause 5.2 and in detail in Clause 10. Rules types are defined in QIFRules.xsd.
- UserDataXML information in XML format modeled in some non-QIF namespace. The UserDataXMLType and the UserDataXML global *element* are defined in Primitives.xsd. This is intended to be used only for data that cannot be modeled in QIF.
- **Signature** an electronic signature that identifies the signer and contains a check code against which the signature will not verify if the file was changed after the signature was inserted.

5.9.2 Four aspects of features data

Feature information is defined in the QIF library using four aspects: definition, nominal, item, and measurement. In a QIF instance file each feature data object has a unique identifier, and relationships between objects are expressed by references to the identifiers as shown in Figure 5. These four library data types were designed to express quality information beyond the scope of solely inspection results reporting. The item aspect, in particular, includes information related to part design as well as information generated by planning activities.

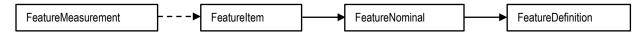


Figure 5 – Reference connections among feature data objects in a QIF XML instance file

Solid lines show required references, dashed lines show optional references.

The four aspects of feature data will be illustrated with the simple example of a plate with four holes as shown in Figure 6.

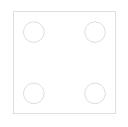


Figure 6 – A plate with four holes

This plate with holes can exist in several contexts: it may be a printed 2D drawing, it may be a 3D solid MBD, it may be a CMM inspection plan or program, it may be an actual physical part, it

may be a CMM results report, or it may exist as all of the above. Regardless, in QIF the four holes would be considered as cylinder features. In the MBD or drawing contexts, nominal information for these cylinders will exist. In the physical part context, information about the actual cylinders can exist if they are measured. So, one would assume that QIF would only need to contain objects that define feature nominal and feature measurement information. Such a simple approach can result in the redundant expression of data and may not mirror the design intent.

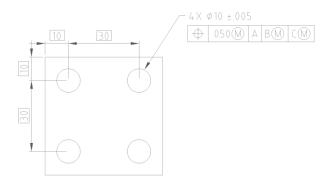


Figure 7 – A plate with four holes and GD&T

The design of the plate shown in Figure 7 illustrates that some nominal information about the holes is shared and some is not. Each cylinder has a unique nominal location defined by basic or theoretically exact dimensions but all have a shared nominal diameter. QIF therefore splits the nominal information between a shareable feature definition and a non-shareable feature nominal.

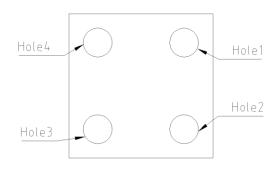
A **feature definition** data object is intended to be reusable, in that it includes information (e.g., cylinder: diameter) that is common to a feature type but independent of a specific instance of the feature (e.g., a specific hole in our example). A single feature definition can be referenced by many nominal feature objects. Only nominal feature objects may reference feature definition objects.

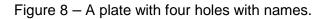
In the example, the cylinder definition with the shared diameter of the holes might look like this in a QIF XML instance file:

```
<CylinderFeatureDefinition id="22">
<Diameter>10</Diameter>
</CylinderFeatureDefinition>
```

A **feature nominal** data object adds additional feature information to the feature definition by defining information unique to a particular instance of a feature. For example, an instance of the **CylinderFeatureDefinitionType** provides the diameter for a cylinder, while an instance of the **CylinderFeatureNominalType** references the **CylinderFeatureDefinitionType**, and gives the

location point and the axis vector and optional target points on a specific cylinder on a part to be measured.


Feature nominal data is unique to a particular feature in the context of a simple part. But in the context of multiple instances of a part in an assembly it can be shared. In this case the feature item's (see below) reference to the nominal will include its assembly path. The feature nominal has optional *elements* for **Name** and **Description** which may be used to identify and describe the feature in the component part context perhaps as it appears in a CAD system feature tree.


If a part is measured, then each cylinder will have unique location and size information. No feature measurement data can be shared among feature instances.

The four holes in the example would have four feature nominals in a QIF XML file:

```
<CylinderFeatureNominal id="23">
  <FeatureDefinitionId>22</FeatureDefinitionId>
  <Axis>
    <AxisPoint>40 40 0</AxisPoint >
    <Direction>0 0 1</Direction>
  </Axis>
</CylinderFeatureNominal>
<CylinderFeatureNominal id="24">
  <FeatureDefinitionId>22</FeatureDefinitionId>
  <Axis>
    <AxisPoint>40 10 0</AxisPoint >
    <Direction>0 0 1</Direction>
  </Axis>
</CylinderFeatureNominal>
<CylinderFeatureNominal id="25">
  <FeatureDefinitionId>22</FeatureDefinitionId>
  <Axis>
    <AxisPoint>10 10 0</AxisPoint >
    <Direction>0 0 1</Direction>
  </Axis>
</CylinderFeatureNominal>
<CylinderFeatureNominal id="26">
  <FeatureDefinitionId>22</FeatureDefinitionId>
  <Axis>
    <AxisPoint>10 40 0</Z> </AxisPoint >
    <Direction>0 0 1</Direction>
  </Axis>
</CylinderFeatureNominal>
```

Each has a unique **id** and specifies a unique location but each references the same feature definition.

A **feature item** data object represents an instance of a feature at the planning stage of the metrology process. The feature item data object provides: the name assigned to the feature (as in Figure 8), optional links to upstream CAD data, reference to a part definition object **id**, and a required reference to a nominal feature object.

If the same feature on the same physical part is measured several times, it is expected that a feature item data object will be defined for each measurement. Some other examples of workflow that cause instantiation of a feature item object include: any process at any time that requires a named feature, planning inspection of a part, planning free-form measurement of a part for reverse engineering purposes, bringing a legacy CMM report into QIF, or mining a legacy CMM program for nominal features and characteristics.

A QIF XML instance file might have feature items like:

```
<CylinderFeatureItem id="27">

<FeatureNominalId>23</FeatureNominalId>

<FeatureName>Hole_1</FeatureName>

...

</CylinderFeatureItem>

<CylinderFeatureItem id="28">

<FeatureNominalId>24</FeatureNominalId>

<FeatureName>Hole_2</FeatureName>

...

</CylinderFeatureItem>

<CylinderFeatureItem id="29">

<FeatureNominalId>25</FeatureNominalId>

<FeatureName>Hole_3</FeatureName>

...

</CylinderFeatureItem>
```

```
<CylinderFeatureItem id="30">
<FeatureNominalId>26</FeatureNominalId>
<FeatureName>Hole_4</FeatureName>
...
</CylinderFeatureItem>
```

Each item references a single nominal and assigns a feature name (the ellipses ... indicate extra required *elements* outside the scope of this simple example).

Feature nominal objects can be defined at the whole product level in the global coordinate system or at the part or subassembly level in a local coordinate system whereas the feature item is always defined at the whole product level. The feature nominal can be referenced by several feature items, one for each part or subassembly instance in an assembly. When a feature item references such a feature nominal, the optional **asmPath** *attribute* on the **FeatureNominalId** *element* is used to unambiguously define the assembly path which takes the feature nominal from the part or subassembly context to the whole part context.

A QIF XML instance file of an assembly containing two instances of the 4-hole plate might have feature items like:

```
<CylinderFeatureItem id="27">
  <FeatureNominalId asmPath="6">23</FeatureNominalId>
  <FeatureName>Part1 Hole 1</FeatureName>
</CylinderFeatureItem>
<CylinderFeatureItem id="28">
  <FeatureNominalId asmPath="6">24</FeatureNominalId>
  <FeatureName>Part1 Hole 2</FeatureName>
</CylinderFeatureItem>
<CylinderFeatureItem id="29">
  <FeatureNominalId asmPath="6">25</FeatureNominalId>
  <FeatureName>Part1 Hole 3</FeatureName>
</CylinderFeatureItem>
<CylinderFeatureItem id="30">
  <FeatureNominalId asmPath="6">26</FeatureNominalId>
  <FeatureName>Part1 Hole 4</FeatureName>
</CylinderFeatureItem>
<CylinderFeatureItem id="31">
  <FeatureNominalId asmPath="8">23</FeatureNominalId>
  <FeatureName>Part2 Hole 1</FeatureName>
</CylinderFeatureItem>
<CylinderFeatureItem id="32">
  <FeatureNominalId asmPath="8">24</FeatureNominalId>
  <FeatureName>Part2_Hole_2</FeatureName>
```

```
</CylinderFeatureItem>
<CylinderFeatureItem id="33">
<FeatureNominalId asmPath="8">25</FeatureNominalId>
<FeatureName>Part2_Hole_3</FeatureName>
...
</CylinderFeatureItem>
<CylinderFeatureItem id="34">
<FeatureNominalId asmPath="8">26</FeatureNominalId>
<FeatureNominalId asmPath="8">26</FeatureNominalId>
...
</CylinderFeatureItem>
```

A **feature measurement** data object provides feature information that has been directly measured or constructed. For example, a *CylinderFeatureMeasurementType* will contain the measured location, orientation, and size of a cylinder. For an inspection that has been programmed from CAD data, the feature measurement data object contains a reference to the associated feature item (which must reference the related nominal feature object (which in turn, has a related feature definition object)). Feature measurement data generated during a reverse engineering process might not contain a reference to a feature item.

The four holes when measured might look like this in a QIF XML instance file:

```
<CylinderFeatureMeasurement id="31">
 <FeatureItemId>27</FeatureItemId>
 <Axis>
   <AxisPoint>40.002 39.994 0</AxisPoint>
   <Direction>-0.001 0 1</Direction>
 </Axis>
 <Diameter>10.003</Diameter>
</CylinderFeatureMeasurement>
<CylinderFeatureMeasurement id="32">
 <FeatureItemId>28</FeatureItemId>
 <Axis>
   <AxisPoint>39.967 10.011 0</AxisPoint>
   <Direction>0.009 -0.009 0.999</Direction>
 </Axis>
 <Diameter>10.005</Diameter>
</CylinderFeatureMeasurement>
<CylinderFeatureMeasurement id="33">
 <FeatureItemId>29</FeatureItemId>
 <Axis>
    <AxisPoint>10.002 10.013 0</AxisPoint>
   <Direction>0.001 0 1</Direction>
 </Axis>
 <Diameter>9.996</Diameter>
</CylinderFeatureMeasurement>
<CylinderFeatureMeasurement id="34">
 <FeatureItemId>30</FeatureItemId>
 <Axis>
    <AxisPoint>9.987 40.013 0</AxisPoint>
```

```
<Direction>0 -0.004 1</Direction>
</Axis>
<Diameter>10.007</Diameter>
</CylinderFeatureMeasurement>
```

Each measured hole is represented by a cylinder measurement that references the corresponding cylinder item, and each has a unique measurement result.

5.9.3 Four aspects of characteristics

As with features, characteristics have four aspects defined in the QIF library: definition, nominal, item, and measurement. This is shown in Figure 9. Data objects of each aspect type can be linked in a QIF XML instance file to express the semantics of GD&T and quality workflow using the scheme described in subclause 5.7. As with features, the aspects cover a quality workflow scope wider than solely results reporting.

The **characteristic definition** is the part of a characteristic that can be shared among different characteristics. An example would be a standard diameter tolerance; one manufacturer, for instance, has a standard diameter tolerance for sheet metal parts of $(\pm .25/-.04)$ mm regardless of the diameter. As another example, one often sees tolerances specified for dimensions based on the number of decimal places: dimensions to one decimal place are $\pm .2$ mm, those to two decimal places are $\pm .05$ mm, etc.

In the example shown in Figure 7, a QIF XML instance file representation of the diameter tolerance as a characteristic definition might look like:

```
<DiameterCharacteristicDefinition id="40">

<Tolerance>

<MaxValue>0.005</MaxValue>

<MinValue>-0.005</MinValue>

<DefinedAsLimit>false</DefinedAsLimit>

</Tolerance>

</DiameterCharacteristicDefinition>
```

The **characteristic nominal** is the part of a characteristic that is not shared among different characteristics, not to be confused with sharing a characteristic among several features. An example would be a diameter tolerance for a set of holes in a pattern all with the same diameter. That shared diameter becomes the target value in the nominal characteristic. Very often, each characteristic definition will only be referenced by a single characteristic nominal, the pair together representing one call-out on a print such as the diameter with tolerance in Figure 7.

In the example, an instance file containing the diameter characteristic nominal might look like:

```
<DiameterCharacteristicNominal id="41">
    <CharacteristicDefinitionId>40</CharacteristicDefinitionId>
    <TargetValue>10</TargetValue>
    </DiameterCharacteristicNominal>
```

This single diameter characteristic nominal can be shared among the four holes.

The **characteristic item** is the mechanism used to apply a tolerance to an individual feature. Our plate with holes would have one characteristic item for each hole because each hole will have an individual tolerance condition.

Figure 9 – References among characteristic data objects in a QIF XML instance file.

Each characteristic item references the single shared characteristic nominal, and in turn that characteristic nominal references a single characteristic definition which may or may not be referenced by other characteristic nominals. Characteristic items are required to reference a characteristic nominal.

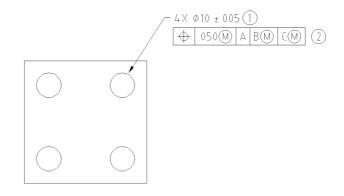


Figure 10 – A plate with ballooned tolerances.

The idea of a characteristic item may at first seem a bit redundant but it allows for a unique identifying name or key characteristic identifier to be assigned on a per-feature basis. Our diameter tolerance might be "ballooned" on the print (as in Figure 10) as key characteristic number 1, then each characteristic item could be labeled with key characteristics of 1A, 1B, 1C or 1_1, 1_2, 1_3 depending on company standards.

From the example, here is what a QIF XML instance file with key characteristics might look like:

```
<DiameterCharacteristicNominal id="41">
   <CharacteristicDefinitionId>40</CharacteristicDefinitionId>
   <CharacteristicDesignator>
      <Designator>1</Designator>
      <Criticality>
      <LevelEnum>KEY</LevelEnum>
```

```
</Criticality>
  </CharacteristicDesignator>
  <TargetValue>10</TargetValue>
</DiameterCharacteristicNominal>
<DiameterCharacteristicItem id="42">
  <Name>Hole 1 diam</Name>
  <CharacteristicDesignator>
    <Designator>1 1</Designator>
    <Criticality>
      <LevelEnum>KEY</LevelEnum>
    </Criticality>
  </CharacteristicDesignator>
  <CharacteristicNominalId>41</CharacteristicNominalId>
</DiameterCharacteristicItem>
<DiameterCharacteristicItem id="43">
  <Name>Hole 2 diam</Name>
  <CharacteristicDesignator>
    <Designator>1 2</Designator>
    <Criticality>
      <LevelEnum>KEY</LevelEnum>
    </Criticality>
  </CharacteristicDesignator>
  <CharacteristicNominalId>41</CharacteristicNominalId>
</DiameterCharacteristicItem>
<DiameterCharacteristicItem id="44">
  <Name>Hole 3 diam</Name>
  <CharacteristicDesignator>
    <Designator>1 3</Designator>
    <Criticality>
      <LevelEnum>KEY</LevelEnum>
    </Criticality>
  </CharacteristicDesignator>
  <CharacteristicNominalId>41</CharacteristicNominalId>
</DiameterCharacteristicItem>
<DiameterCharacteristicItem id="45">
  <Name>Hole 4 diam</Name>
  <CharacteristicDesignator>
    <Designator>1 4</Designator>
    <Criticality>
      <LevelEnum>KEY</LevelEnum>
    </Criticality>
  </CharacteristicDesignator>
  <CharacteristicNominalId>41</CharacteristicNominalId>
</DiameterCharacteristicItem>
```

The optional **CharacteristicDesignator** *element* on the characteristic nominal defines the shared characteristic designator (balloon number) from the call-out. The **CharacteristicDesignator** *elements* on each characteristic item define the individual

characteristic designators for the diameter of the four individual holes. The **Criticality** *element* of a characteristic item overrides the Criticality of the nominal, if the values differ.

The **characteristic measurement** is the evaluation of the characteristic based on direct measurement or from feature measurement data. Just as with feature measurement information, there is no shareable information among characteristic measurements.

For the example, an instance file with measurements might look like:

```
<DiameterCharacteristicMeasurement id="46">
 <Status>
    <CharacteristicStatusEnum>PASS</CharacteristicStatusEnum>
 </Status>
 <CharacteristicItemId>42</CharacteristicItemId>
 <Value>10.003</Value>
</DiameterCharacteristicMeasurement>
<DiameterCharacteristicMeasurement id="47">
 <Status>
    <CharacteristicStatusEnum>PASS</CharacteristicStatusEnum>
 </Status>
 <CharacteristicItemId>43</CharacteristicItemId>
 <Value>10.005</Value>
</DiameterCharacteristicMeasurement>
<DiameterCharacteristicMeasurement id="48">
 <Status>
    <CharacteristicStatusEnum>PASS</CharacteristicStatusEnum>
 </Status>
 <CharacteristicItemId>44</CharacteristicItemId>
 <Value>9.996</Value>
</DiameterCharacteristicMeasurement>
<DiameterCharacteristicMeasurement id="49">
 <Status>
    <CharacteristicStatusEnum>FAIL</CharacteristicStatusEnum>
 </status>
 <CharacteristicItemId>45</CharacteristicItemId>
 <Value>10.007</Value>
</DiameterCharacteristicMeasurement>
```

5.9.4 Default tolerances and characteristics

There are four types of dimension: a basic or theoretically exact dimension like 40.0 (a dimension to define the nominal location of a feature to which a geometric tolerance is applied), a reference or auxiliary dimension like (40.0) (a dimension which can be calculated from other dimensions but which is provided for easy reference), a directly toleranced dimension like 40.0 ± 0.1 (either as specification limits or as a bidirectional tolerance about a nominal value), and a dimension which is not directly toleranced like 40.0.

This latter dimension, although not explicitly toleranced, is often subject to an "unless otherwise specified" default tolerance. Such default tolerances are often called "box tolerances" because they can appear in a box at the corner of a drawing and often take the form:

Unless otherwise specified		
X.X	±.2 mm	
X.XX	±.05 mm	
X.XXX	±.005 mm	
XX°	±1°	

In QIF characteristics are explicitly typed; a length nominal cannot use a diameter definition to define its tolerance. Because these default tolerances cross type boundaries (the same tolerance may apply to a length, diameter, distance, coordinate etc.) QIF has a mechanism for storing and referencing un-typed default tolerances. Instead of defining a tolerance directly in a characteristic definition such as:

```
<DiameterCharacteristicDefinition id="40">

<Tolerance>

<MaxValue>0.005</MaxValue>

<MinValue>-0.005</MinValue>

<DefinedAsLimit>false</DefinedAsLimit>

</Tolerance>

</DiameterCharacteristicDefinition>
```

The tolerance values can be defined by reference to a default tolerance:

```
<DiameterCharacteristicDefinition id="40">
    <Tolerance>
        <DefinitionId>20</DefinitionId>
        <DefinedAsLimit>false</DefinedAsLimit>
        </Tolerance>
</DiameterCharacteristicDefinition>
```

where the **DefinitionId** *element* references a default tolerance found in the **DefaultToleranceDefinitions** *element*. Such a default tolerance has the form:

```
<LinearToleranceDefinition id="20">

<Tolerance>

<MaxValue>0.005</MaxValue>

<MinValue>-0.005</MinValue>

</Tolerance>

</LinearToleranceDefinition>
```

This tolerance can be referenced by any linear value characteristic. The default tolerance for angular value characteristics is defined in a separate *element*.

```
<AngularToleranceDefinition id="21">

<Tolerance>

<MaxValue>1</MaxValue>

<MinValue>-1</MinValue>

</Tolerance>

</AngularToleranceDefinition>
```

The relationship between a default tolerance definition and the box tolerance annotation can be made more explicit with a note contained in the optional **Attributes** *element*.

```
<LinearToleranceDefinition id="20">

<Attributes>

<AttributeStr name="Applicability", value="X.XXX"\>

<\Attributes>

<Tolerance>

<MaxValue>0.005</MaxValue>

<MinValue>-0.005</MinValue>

</Tolerance>

</LinearToleranceDefinition>
```

A similar concept is that of a default characteristic applied to all non-directly toleranced features of a part, for example, "Unless otherwise specified all surfaces \bigcirc 0.5 A B C". Such contextual tolerances are stored in a special **DefaultCharacteristicDefinitions** *element* which is a list of characteristic definitions.

At the PMI stage of design, default tolerances and characteristics can be indicated simply by their presence in the **DefaultToleranceDefinitions** *element* and the

DefaultCharacteristicDefinitions *element*. The connections between these tolerances and the features to which they apply can be made later at the metrology planning stage.

5.9.5 Relationships between the aspects

Three of the four aspects of characteristics are instantiated in the global **Characteristics** *element* of type **CharacteristicApectsListsType**. This type has an *element* for listing instances of each of the following aspects: **CharacteristicDefinitions**, **CharacteristicNominals**, and **CharacteristicItems**. The fourth, **CharacteristicMeasurements** is found on a per-measured-part basis in the **MeasurementResults** *element* of **Results**. This allows for multiple part measurements to be reported in a single QIF instance file. If more than one part has been measured then there will be more than one characteristic measurement referencing the same characteristic item.

To traverse all characteristics in a QIF XML instance file, the starting point would be the **CharacteristicItems** sub-*element* of the **Characteristics** *element*.

The four aspects of features are similarly instantiated in the global **Features** *element* of type *FeatureAspectsListsType* and in the **FeatureMeasurements** *element* on a per-measured-part basis in the **MeasurementResults** *element* of **Results**. *FeatureAspectsListsType* has an *element* for listing instances of **FeatureDefinitions**, **FeatureNominals**, and **FeatureItems**, all of which are optional. The feature item will come into existence either at the planning stage with reference to nominal (and definition) data or optionally come into existence during a reverse-engineering use case.

To traverse all features in a QIF XML instance file, the starting point would be the **FeatureItems** sub-*element* of the **Features** *element*.

5.9.5.1 Connecting characteristics and features

The connections among the four aspects for both characteristic aspects as a group and feature aspects as a group have been discussed earlier. In general, the measurement references an item, the item references a nominal, and the nominal references the definition. The connection between characteristics and features is accomplished with the **FeatureItemIds** *element* on the **CharacteristicItemBaseType** from which all characteristic item types are derived.

The **FeatureItemIds** *element* allows a characteristic item to reference the feature item or feature items of the feature or features to which it applies. When more than one feature is referenced by the **FeatureItemIds** *element* it is because more than one feature is required to evaluate the tolerance, such as a distance or angle between two features. To determine the characteristic-feature relationships in a QIF instance file, the starting point would be the **CharacteristicItems** sub-*element* of the **Characteristics** *element*.

There is a secondary method of connecting characteristics and features for use at the PMI design stage when neither feature items nor characteristic items yet exist. Product manufacturing information (characteristics) are attached to the model based definition (features) by the **FeatureNominalIds** *element* on the **CharacteristicNominalBaseType**.

Unlike the **FeatureItemsIds** *element* which references the minimum number of features necessary for the measurement of a single characteristic item, the **FeatureNominalIds** *element* can reference the many feature nominals to which the characteristic nominal applies. This one-to-many reference for a single characteristic nominal will give rise to as many characteristic items as there are features (or feature pairs, etc.).

From the example, in a QIF XML instance file containing both characteristics and features, the connections between characteristic items and feature items and characteristic nominals and feature nominals might look like this:

```
<DiameterCharacteristicNominal id="41">
<CharacteristicDefinitionId>40</CharacteristicDefinitionId>
<FeatureNominalIds n="4">
<Id>23</Id>
<Id>24</Id>
<Id>24</Id>
<Id>25</Id>
<Id>25</Id>
```

```
</FeatureNominalIds>
  <CharacteristicDesignator>
    <Designator>1</Designator>
    <Criticality>
      <LevelEnum>KEY</LevelEnum>
    </Criticality>
  </CharacteristicDesignator>
 <TargetValue>10</TargetValue>
</DiameterCharacteristicNominal>
<DiameterCharacteristicItem id="42">
  <Name>Hole 1 diam</Name>
  <FeatureItemIds n="1">
    <Id>27</Id>
  </FeatureItemIds>
  <CharacteristicNominalId>41</CharacteristicNominalId>
  </DiameterCharacteristicItem>
<DiameterCharacteristicItem id="43">
  <Name>Hole 2 diam</Name>
 <FeatureItemIds n="1">
   <Id>28</Id>
  </FeatureItemIds>
  <CharacteristicNominalId>41</CharacteristicNominalId>
</DiameterCharacteristicItem>
<DiameterCharacteristicItem id="44">
  <Name>Hole 3 diam</Name>
  <FeatureItemIds n="1">
    <Id>29</Id>
  </FeatureItemIds>
  <CharacteristicNominalId>41</CharacteristicNominalId>
</DiameterCharacteristicItem>
<DiameterCharacteristicItem id="45">
  <Name>Hole 4 diam</Name>
  <FeatureItemIds n="1">
    <Id>30</Id>
  </FeatureItemIds>
  <CharacteristicNominalId>41</CharacteristicNominalId>
</DiameterCharacteristicItem>
```

(Characteristic designators have been removed from the characteristic items in the above example.)

In the context of a single part measurement this connection between the characteristic item and feature item would be sufficient to imply the connection between the single characteristic measurement and single feature measurement. But, if the results of more than one part measurement are included in a single QIF document this connection is no longer sufficient. Therefore, to explicitly make the connection between a characteristic measurement and the measured feature or features to which it applies the **FeatureMeasurementIds** *element* is used.

From the example, in a QIF XML instance file containing both characteristics and features, the connections between characteristic measurements and feature measurements might look like this:

```
<DiameterCharacteristicMeasurement id="46">
 <Status>
    <CharacteristicStatusEnum>PASS</CharacteristicStatusEnum>
 </Status>
 <CharacteristicItemId>42</CharacteristicItemId>
 <FeatureMeasurementIds n="1">
    <Id>31</Id>
 </FeatureMeasurementIds>
 <Value>10.003</Value>
</DiameterCharacteristicMeasurement>
<DiameterCharacteristicMeasurement id="47">
 <Status>
    <CharacteristicStatusEnum>PASS</CharacteristicStatusEnum>
 </Status>
 <CharacteristicItemId>43</CharacteristicItemId>
 <FeatureMeasurementIds n="1">
    <Id>32</Id>
 </FeatureMeasurementIds>
 <Value>10.005</Value>
</DiameterCharacteristicMeasurement>
<DiameterCharacteristicMeasurement id="48">
 <Status>
    <CharacteristicStatusEnum>PASS</CharacteristicStatusEnum>
 </Status>
 <CharacteristicItemId>44</CharacteristicItemId>
 <FeatureMeasurementIds n="1">
    <Id>33</Id>
 </FeatureMeasurementIds>
 <Value>9.996</Value>
</DiameterCharacteristicMeasurement>
<DiameterCharacteristicMeasurement id="49">
 <Status>
    <CharacteristicStatusEnum>FAIL</CharacteristicStatusEnum>
 </Status>
 <CharacteristicItemId>45</CharacteristicItemId>
 <FeatureMeasurementIds n="1">
    <Id>34</Id>
 </FeatureMeasurementIds>
 <Value>10.007</Value>
</DiameterCharacteristicMeasurement>
```

5.9.5.2 Connections at various stages of the metrology process

The diagrams in this clause illustrate the various possible connections among feature aspects, among characteristic aspects, and between characteristic aspects and feature aspects at various stages of the metrology process when feature data is present.

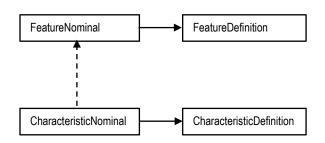


Figure 11 – Connections at the PMI Stage

Figure 11 shows the possible connections at the product manufacturing information stage of the metrology process. In this stage all information necessary to associate PMI (dimensions and tolerances, etc.) with features on a part is known. The dotted arrow between CharacteristicNominal and FeatureNominal indicates that the associated QIF *element* (**FeatureNominalIds**) is an optional *element*. It is nevertheless required for this use case in order to associate a characteristic with the feature or features to which it applies.

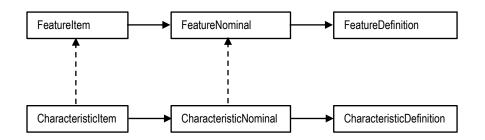
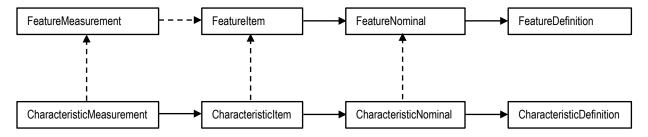



Figure 12 – Connections at the Planning Stage

Figure 12 shows the additional connections that come into being at the planning stage of metrology. Existing connections from the PMI stage persist and remain unchanged. Feature items and characteristic items which represent individual feature measurements and characteristic evaluations reference the data from the PMI stage. Again dotted arrows represent optional elements which are nonetheless required at the planning stage.

Figure 13 – Connections at the post-measurement stage

Figure 13 shows the new connections that arise at the post measurement stage. The feature and characteristic information and connections from the planning and PMI stages persist and remain unchanged and additional connections between measured characteristics and the measured features to which they apply and between measurements and their associated items are made. Again dotted arrows represent optional elements which are nonetheless required at the post-measurement stage.

Figure 13 shows the post-measurement connections when both feature and characteristic data are present. If only characteristic information is present then Figure 9 shows the connections between the four characteristic aspects at the post-measurement stage. Similarly, if only feature information, both nominal and measurement, is present then Figure 5 shows the connections between the four feature aspects at the post-measurement stage.

From the solid arrows in Figure 9 we see that characteristic nominal information is necessary when characteristic measurement information is present. The dotted arrow in Figure 5 and on the top row of Figure 13 shows that this is not the case with feature information. In the reverse engineering use case scenario, features may be measured without nominal information, often with the goal of creating a drawing or electronic model for a part where one does not exist.

5.9.5.3 Parent Features

The **FeatureItem** *element* (defined in the *FeatureItemBaseType*) contains an optional sub*element* called **ParentFeatureItemId**. The purpose of this *element* is to connect a feature item created after the initial planning stage with an existing feature in a measurement plan.

Occasionally, a feature item in a measurement plan cannot be measured when the plan is to be executed and a new derivative feature is measured in its place. Some examples include:

- A cylinder in a thin walled material, perhaps with break-away from a punching operation, is measured as a circle.
- A part rests on a datum feature making it inaccessible and the surface plate is measured to simulate the datum surface.
- The edge of a sheet-metal part is inaccessible with available probe configurations so a gage block is held against the edge and measured.
- A countersink is not measured directly but instead a spherical tooling ball is placed in the hole and measured.

5.10 Hierarchy of required information

5.10.1 QIF use of optional elements

The QIF information model contains many optional data elements. Sometimes these elements represent data for special cases which do not arise in most applications. But mostly, data elements have been made optional to allow for a variety of use-cases while avoiding the

possibility of the necessity to create fake or dummy data for a required data element that is outside the scope of a particular use case. For example, a caliper can only measure the size of an actual cylinder feature so required measured XYZ center location and IJK vector orientation elements for the actual cylinder would be outside the scope of the caliper-based use case.

There are situations where different use cases require that all data elements of a QIF type be optional. A caliper can measure the size of a hole but not the location or orientation, and a manual CMM with a conical hard probe can measure the location and orientation but not the size of a hole. Therefore, the location, orientation and size are all optional elements of the cylinder measurement in QIF. The presence of such optional data in the QIF information model in no way indicates that the optional data is unimportant.

Wherever possible, data elements in QIF that are co-requisite are placed together in a data type so that all the data that is required is mandatory. An *element* of that data type may be optional. The result is that either all or none of the data is present. The QIF feature and characteristic aspects which isolate sharable information like size from non-sharable information like location sometimes result in co-requisite information appearing in two different data types. In such cases the annotation describing the data type will make reference to any co-requisite data elements.

The hierarchies of required information for various aspects of the QIF information model are discussed in the individual subclauses pertaining to those aspects.

5.10.2 Example: diameter characteristic

Consider the measurement of the diameter of a hole. The diameter might have a nominal representation and an associated tolerance which needs to be evaluated: or the diameter might be measured for the purposes of reverse engineering. Several examples are provided to illustrate how various levels of detail can be accommodated in QIF.

Common to the examples where a diameter is specified with a tolerance are the characteristic nominal and definition. Consider the diameter specification from Figure 10: $Ø10\pm.005$. The tolerance is contained in the characteristic definition:

```
<DiameterCharacteristicDefinition id="40">
    <Tolerance>
        <MaxValue>0.005</MaxValue>
        <MinValue>-0.005</MinValue>
        <DefinedAsLimit>false</DefinedAsLimit>
        </Tolerance>
</DiameterCharacteristicDefinition>
```

and the nominal is contained in the characteristic nominal as described in subclause 5.9.3.

```
<DiameterCharacteristicNominal id="41">
<CharacteristicDefinitionId>40</CharacteristicDefinitionId>
<TargetValue>10</TargetValue>
</DiameterCharacteristicNominal>
```

5.10.2.1 Measurement with a hard gage

Suppose that a hard gage is used to determine the tolerance condition. The gage consists of two pins: a smaller pin which must fit in the hole and a larger pin that must not. The result of the inspection is a simple pass/fail evaluation.

The actual results of the measurement might appear as follows in a QIF XML instance file:

```
<DiameterCharacteristicMeasurement id="46">
        <Status>
            <CharacteristicStatusEnum>PASS</CharacteristicStatusEnum>
            </Status>
            <CharacteristicItemId>42</CharacteristicItemId>
        </DiameterCharacteristicMeasurement>
```

The actual diameter is not known and the optional **Value** *element* does not appear in the instance file.

5.10.2.2 Measurement with a caliper

If the same hole is measured with a caliper not only can the tolerance condition be determined but the actual diameter is available.

The actual results of the measurement might appear as follows in a QIF XML instance file:

```
<DiameterCharacteristicMeasurement id="46">
     <Status>
        <CharacteristicStatusEnum>PASS</CharacteristicStatusEnum>
     </Status>
     <CharacteristicItemId>42</CharacteristicItemId>
     <Value>10.003</Value>
</DiameterCharacteristicMeasurement>
```

5.10.2.3 Measurement with a coordinate measuring machine

If the same hole is measured with a coordinate measuring machine then even more data about the size can become available. In addition to the actual best-fit diameter, the minimum and maximum diameters might be reported.

The actual results of the measurement might appear as follows in a QIF XML instance file:

```
<DiameterCharacteristicMeasurement id="46">
        <Status>
        <CharacteristicStatusEnum>PASS</CharacteristicStatusEnum>
        </Status>
        <CharacteristicItemId>42</CharacteristicItemId>
        <Value>10.003</Value>
        <MaxValue>10.004</MaxValue>
        <MinValue>10.001</MinValue>
        </DiameterCharacteristicMeasurement>
```

5.10.2.4 Reverse engineering

If the same hole is measured with a caliper but no nominal information or tolerance information is available then the measurement results must be captured as a feature rather than as a characteristic.

The actual results of the measurement might appear as follows in a QIF XML instance file:

```
<CylinderFeatureMeasurement id="31">
<FeatureItemId>27</FeatureItemId>
<Diameter>10.003</Diameter>
</CylinderFeatureMeasurement>
```

In this example the optional **FeatureItemId** *element* is present. The feature item will contain the feature name and material disposition (inner or outer).

5.10.2.5 Limit dimensions

A characteristic may be described by specification limits like 10.005/9.995 in which case the example diameter characteristic definition might appear as follows in a QIF XML instance file:

```
<DiameterCharacteristicDefinition id="40">
    <Tolerance>
        <MaxValue>10.005</MaxValue>
        <MinValue>9.995</MinValue>
        <DefinedAsLimit>true</DefinedAsLimit>
        </Tolerance>
</DiameterCharacteristicDefinition>
```

Because the size is defined by the limits, the target nominal diameter need not be specified, in which case the example diameter characteristic nominal might appear as follows in a QIF XML instance file:

```
<DiameterCharacteristicNominal id="41">
<CharacteristicDefinitionId>40</CharacteristicDefinitionId>
</DiameterCharacteristicNominal>
```

Note that the optional **TargetValue** *element* is not present.

5.10.2.6 Basic or theoretically exact dimensions

A characteristic may be described with a basic or theoretically exact dimension like 10, a nominal without tolerance limits. If a basic or theoretically exact diameter is to be measured then the diameter characteristic definition might appear as follows in a QIF XML instance file:

```
<DiameterCharacteristicDefinition id="40">
   <DiameterCharacteristicDefinition id="40">
   <DiameterCharacteristicDefinition>
```

The diameter characteristic nominal target value would specify the basic or theoretically exact dimension:

```
<DiameterCharacteristicNominal id="41">
    <CharacteristicDefinitionId>40</CharacteristicDefinitionId>
    <TargetValue>10</TargetValue>
</DiameterCharacteristicNominal>
```

The diameter might be measured with a caliper but with no specification limits, no tolerance evaluation can be performed. The results of a measurement of a basic or theoretically exact diameter might appear as follows in a QIF XML instance file:

```
<DiameterCharacteristicMeasurement id="42">
     <Status>
        <CharacteristicStatusEnum>BASIC_OR_TED</CharacteristicStatusEnum>
     </Status>
     <CharacteristicNominalId>40</CharacteristicNominalId>
     <Value>10.003</Value>
</DiameterCharacteristicMeasurement>
```

5.10.3 ScaleCoefficient

If the **QIFDocument/QIFProduct/Header** portion of an instance file includes a **ScaleCoefficient** *element*, all elements representing distances in the

QIFDocument/QIFProduct and **QIFDocument/Features** portions of an instance file are scaled. The default value of the **ScaleCoefficient** is 1. The type of all values to be scaled is either *LinearValueType* or *xs:double*. To convert such values in an instance file to actual values, divide by the **ScaleCoefficient** value. To record actual values in an instance file, multiply the actual value by the **ScaleCoefficient** value.

5.11 Actual parts and assemblies

The QIF data model is able to represent both nominal models of products and actual instances of products. A detailed description of the QIF model for nominal product definition including parts and assemblies can be found in subclause 7.4 Product Structure. What follows is an overview of the QIF model structure for the purpose of connecting actual data to nominal product definitions. The nominal product model does not include "nominal" in the names of its terms. The terms used in the actual product model do include "actual". The nominal product model is in the **Product** *element* of the QIF document, while the actual model is in the **Results** *element*. The actual model includes references to the nominal model.

The QIF data model represents a (nominal) product as one or more (nominal) components. Conceptually, a component is a (nominal) instance of a part or assembly placed into the context of the final product or a higher order assembly. In the data structure, the component just references the part or assembly so that data is not needlessly duplicated. The root component represents the whole, final product and is the root of a tree of components representing the assembly structure. An assembly path defines the path from the root component to an individual component in a product design. This tree structure allows for each part or sub-assembly to be defined once and then be placed into the final product or sub–assembly with a transformation matrix. A product consisting of a single part will have one component.

Each assembly path has a real world counterpart in the actual product. For example the concept of a "right rear wheel" exists both in a (nominal) automobile design and on an actual automobile. Therefore when measured data is associated with the product definition it is by reference to this assembly path. An assembly path may be shared by many objects in a QIF document. Therefore, assembly paths are stored in one place: the **AsmPaths** *element*. Each assembly path has a QIF **id** by which it is referenced.

The simplest example showing the connection between an actual product and the product design is that of a single part. The product definition might be:

```
<Product>
  <PartSet n="1">
    <Part id="1">
      <Name>WING MIR REENF</Name>
      ....
    </Part>
  </PartSet>
  <ComponentSet n="1">
    <Component id="2">
      <Part>
        <Id>1</Id>
      </Part>
    </Component>
  </ComponentSet>
  <AsmPaths n="1">
    <AsmPath id="3">
      <ComponentIds n="1">
        <Id>2</Id>
      </ComponentIds>
    </AsmPath>
  </AsmPaths>
</Product>
```

A single part is defined which is used in a single component. The assembly path to that component contains one **id**.

It is the assembly path of the product design component that is associated with the actual component. Actual components are located in the **ActualComponentSet** *element* of the **Results** *element*.

```
<Results>

...

<ActualComponentSet n="1">

<ActualComponent id="4">

<SerialNumber>X124578-17</SerialNumber>

<Status>

<InspectionStatusEnum>PASS</InspectionStatusEnum>

</Status>

<AsmPathId>3</AsmPathId>

</ActualComponent>
```

```
</ActualComponentSet>
...
</Results>
```

Each actual component has a QIF **id** which allows it to be referenced by one or more measurement results (the same product sample may be measured more than once) and/or by individual feature measurements:

```
<Results>
   <MeasurementResults id="86">
      <MeasuredFeatures>
        <FeatureMeasurements>
          <PointFeatureMeasurement id="20">
            <FeatureItemId>19</FeatureItemId>
            <Location>2466.9 774.31 944.84</Location>
            <ActualComponentId>4</ActualComponentId>
          </PointFeatureMeasurement>
         ...
      </MeasuredFeatures>
      <ActualComponentIds n="1">
        <Id>4</Id>
      </ActualComponentIds>
   </MeasurementResults>
 </Results>
```

5.12 Checking connections between data objects

In QIF instance files, many connections between objects are made using an identifier and a reference to the identifier. For example the connection from a feature measurement to a feature item is made by putting an identifier in the feature item and a reference to the identifier in the feature measurement. The derivation hierarchy of ids and references to ids is shown in Figure 14.

xs:unsignedInt	
QIFIdAndReferenceBaseType	
QIFIdType	
QIFReferenceBaseType	
QIFReferenceSimpleType	
QIFReferenceType	
QIFReferenceActiveType	
QIFReferenceFullType	

Figure 14 – QIF id and reference types

All local (i.e. not significant outside the instance file) identifiers in the QIF schemas are of type *QIFIdType*. All references to local identifiers are derived from type *QIFReferenceBaseType*.

Both *QIFIdType* and *QIFReferenceBaseType* are unsigned positive integers without leading zeros. For example, 1 and 3079 are valid, but 001 and +3079 are not. For use between instance files, the *QIFReferenceType* and its derived types may have, in addition, an **xId** *attribute*. The *QIFReferenceActiveType* has, in addition, a boolean **active** *attribute* indicating whether the reference is active. The *QIFReferenceFullType* has an **asmPathId** *attribute*. References that are significant between instance files are discussed in the subclause 5.13.

Arrays of ids are defined in the **StatsArrayIdType**, **ArrayReferenceType**, **ArrayBinaryQIFReferenceType**, **ArrayReferenceActiveType**, **ArrayReferenceFullType**, and **ArrayBinaryQIFReferenceFullType**.

In a QIF XML instance file, the reference contains the same symbol as the identifier of the object being referenced. For example, if the value of the **id** attribute of an instance of *CylinderFeatureItemType* is 26 then the value of the **FeatureItemId** *element* of an instance of *CylinderFeatureMeasurementType* that uses that feature item is also 26.

QIF seeks to ensure that connections made using identifiers and references join the correct types of objects. For example, a reference from a cylinder feature measurement to its item must identify a cylinder feature item, not any other type of object such as a transformation or a cone feature definition.

To ensure that identifier/reference pairs make matches between objects of the correct types, the QIF schemas contain several hundred *key/keyref* pairs, one for each variety of identifier/reference pair. *Key* and *keyref* are standard parts of the XML schema definition language (XSDL). Readily available XML instance file checkers will check whether or not *key/keyref* constraints are satisfied in an instance file governed by an XML schema. A detailed description of how *key* and *keyref* work may be found in books about the XML schema language such as [2]. In simplistic terms, a *key/keyref* pair locates two places in an (upside down) tree of objects that must contain identical information items. The two places are identified by describing the two paths that go downward to them from a common starting point. The *key/keyref* pair is located in a schema file at the common starting point.

For example, the CylinderFeatureMeasurementToltemKeyref:

- is located in the **QIFDocument** *element* (the common starting point)
- references the CylinderFeatureItemKey
- has the xpath "t:Results/t:MeasurementResultsSet/t:MeasurementResults/ t:MeasuredFeatures/t:FeatureMeasurements/t:CylinderFeatureMeasurement"
- has the field **FeatureItemId**.

The "t:" used with each *element* name in the xpath is a prefix standing for the QIF namespace and is required by the rules of XSDL in xpaths in any schema that uses a namespace. The header of each QIF schema file declares that the "t:" prefix will be used for the http://qifstandards.org/xsd/qif3 namespace. Almost any other prefix would have worked as well; "t:" is nice and short.

The CylinderFeatureItemKey:

- is also located in the **QIFDocument** *element* (the common starting point)
- has the xpath "t:Features/t:FeatureItems/t:CylinderFeatureItem", and
- has the field @id

The @ sign means the id field is an attribute rather than an element.

This sounds complex, but if we look at an instance file, it's fairly straightforward. Here is a snippet from an abbreviated QIFDocument instance file.

```
<QIFDocument ...>
  ...
  <Results ...>
    <MeasurementResultsSet n="1">
      <MeasurementResults ...>
        <MeasuredFeatures>
          <FeatureMeasurements n="30">
            <CylinderFeatureMeasurement id="53">
              <FeatureItemId>26</FeatureItemId>
                <Axis> ... </Axis>
              <Diameter>2.5</Diameter>
            </CylinderFeatureMeasurement>
            <CylinderFeatureMeasurement id="54">
              <FeatureItemId>27</FeatureItemId>
              <Axis> ... </Axis>
              <Diameter>2.0</Diameter>
            </CylinderFeatureMeasurement>
          </FeatureMeasurements>
        </MeasuredFeatures>
      </MeasurementResults>
    <MeasurementResultsSet n="1">
  </Results>
  ...
  <Features>
    <FeatureItems n="30">
      <CvlinderFeatureItem id="26">
        <FeatureNominalId>33</FeatureNominalId>
        <FeatureName>top inner cylinder</FeatureName>
        ...
      </CylinderFeatureItem>
      <CylinderFeatureItem id="27">
        <FeatureNominalId>34</FeatureNominalId>
        <FeatureName>'dial' outer cylinder</FeatureName>
        ...
```

```
</CylinderFeatureItem>
</FeatureItems>
</Features>
...
</QIFDocument>
```

When a *key/keyref* checking system reads this instance file and comes to the <QIFDocument> part, it knows that it needs to check the **CylinderFeatureItemKey** and the **CylinderFeatureMeasurementToltemKeyref** (since they are located in the **QIFDocument**)

element). To check the *key*, the checker follows every

Features/FeatureItems/CylinderFeatureItem path down to the id attribute. In the snippet above, there are two such paths, one ending in "26", the other ending in "27". The checker puts the two ids into a collection of ids of CylinderFeatureItems, checking to make sure that each of these is different from those already in the collection. To check the *keyref*, the checker follows every Results/ MeasurementResultsSet/MeasurementResults/MeasuredFeatures/ FeatureMeasurements/CylinderFeatureMeasurement path down to the FeatureItemId *element*. In the snippet above, there are two such paths with *elements*, one with the value 26 and the other with value 27. The checker checks that each of the values is in its collection of ids of CylinderFeatureItems. The snippet above passes these checks.

The *key/keyref* pair mechanism catches errors in matching identifiers and references, but it is not foolproof. In all cases, when there are many objects of the same type, no automated check (such as *key/keyref*) will know which one is intended. For example, if an instance file has several instances of *CylinderFeatureItemType* and several instances of *CylinderFeatureItemType* (as in the snippet above), only the builder of the instance file will know which item (26 or 27 in the snippet) is supposed to go with which measurement. In other cases, there is no way to define a *key* that discriminates between similar types of object because they are mixed together at the same location (in a set of transformations containing both actual transformations and nominal transformations, for example).

The *key/keyref* mechanism is useful primarily within a single file. Most of the keyrefs in QIF allow a reference to the internal **id** of an external file as an alternative to the **id** of an internal object. This is described in the following subclause. In the case of a reference to an object in an external file, the *key/keyref* mechanism does not provide an effective check on the type of the object in the external file. The XSLT checks (as described in subclause 5.4.1) include a check that a referenced object with a given **id** exists in an external file, but that particular check does not include checking that the external object is of the correct type. In addition, all the connections between aspects of features in external files and between aspects of characteristics in external files are checked by the XSLT checks. It is planned to augment the XSLT files so that all *key/keyref* checks within a file have XSLT counterparts that check between files.

5.13 Tracking information through the product lifecycle

QIF is constructed to enable a seamless flow of information from upstream applications to downstream applications and to enable tracking information through a product's lifecycle.

5.13.1 Persistent Identifiers

The primary mechanism for identifying the same information independent of location and instance is by the use of permanent persistent identifiers (IDs). A persistent ID is an unchanging ID assigned to an object which can be used to identify the object unambiguously.

Any item in QIF that can have user defined attributes can also be assigned a persistent ID.

5.13.2 UUIDs and QPIds

Persistent IDs provide a mechanism for QIF to preserve connections to data objects in external QIF files and data objects in the world outside of QIF. The main QIF data object types can have persistent IDs added as user defined attribute data. The data types of user attributes applicable to persistent ID definition could include an integer value, a string value, or a QPId value. QPID (pronounced "cupid") is a short form of QIF Persistent Identifier. A QPId is the QIF implementation of a universally unique identifier (UUID), as standardized in ISO/IEC 9834-8. UUIDs have that name because the chance of randomly generating two identical UUIDs is exceedingly low (one chance in about 10³⁸). Computer libraries for generating UUIDs conforming to the standard are widely available in many computer languages.

Using UUIDs, non-communicating systems can identify information uniquely. That information can be combined later into a single application or database without needing to resolve identifier conflicts.

As a number, a UUID is a 128 bit unsigned integer. As a text string in an instance file, a UUID is represented by 32 hexadecimal digits displayed in five groups separated by hyphens in the form 8-4-4-12 for a total of 36 characters (32 alphanumeric characters and four hyphens). An example of a UUID string is 550e8400-e29b-0518-a716-445664449c0b. The letters a through f are hexadecimal digits representing the numbers 10 through 15. Either lower case letters or upper case letters may be used in QIF for those digits.

The null UUID, which is equivalent in practice to no UUID since it is not unique, is one that has all 128 bits set to zero. In text form, that is written 00000000-0000-0000-0000-00000000000.

The **QPIdType** in QIF is required to have UUID format, and an instance of **QPIdType** must be created by a well known UUID generator. An *element* whose type is **QPIdType** is often named **QPId** or **UUID**. Where a QPId is used to identify a data object or a file, its data type is **QPIdType**. Where a QPId is used to reference a data object or a file, its data type is **QPIdReferenceType**, and it must match an existing QPId.

5.13.3 External File References

Typically, a persistent ID is assigned to an item in a QIF document as a link to an object in the world outside of QIF. A more lightweight method of referencing items inside a particular external QIF document is made available by external file references.

The external QIF file reference mechanism is enabled by the fact that each QIF document must have a QPId identifying the document and by the fact that all QIF **id**s within a document must be unique. Thus the document-QPId/item-QIF-**id** pair can be used to uniquely identify a QIF item.

In order 1) to avoid using the external document QPId in each reference, 2) to make the external QIF file reference mechanism light weight, and 3) to enable automated *key/keyref* checking and XSLT checking, an alias, which can be referenced by a simple QIF **id**, is defined in the **ExternalQIFReferences** *element* of the QIF document.

Each **ExternalQIFDocument** *element* of type **ExternalQIFDocumentReferenceType** captures the QPId of the external QIF document in the **QPId** *element* and has a QIF **id**. Optionally, the URL of the external file and/or its description can be specified.

External QIF file referencing is best illustrated by example. Consider a diameter characteristic measurement which must reference a diameter characteristic item. In a single QIF document this might look like:

```
<QIFDocument ...>
  <QPId>DF837194-1E55-441b-A5D9-9279F56BCBE9</QPId>
...
  <DiameterCharacteristicItem id="15">
...
  </DiameterCharacteristicItem>
...
  <DiameterCharacteristicMeasurement id="47">
  <CharacteristicItemId>15</CharacteristicItemId>
...
  </DiameterCharacteristicMeasurement id="47">
  </DiameterCharacteristicItemId>
...
  </DiameterCharacteristicMeasurement id="47">
  </DiameterCharacteristicMeasurement id="47">
  </DiameterCharacteristicItem>
...
  </DiameterCharacteristicMeasurement id="47">
  </DiameterCharacteristicMeasurement id="47">
  </DiameterCharacteristicMeasurement id="47">
  </DiameterCharacteristicItemId>
...
  </DiameterCharacteristicMeasurement id="47">
  </DiameterCharacteristicMeasurement id="47"</p>
```

In the snippet above, the measurement aspect references the item with **id** 15 in the same document.

Now, consider the case in the snippets below where the characteristic items are defined in an external QIF file. The external QIF file might include the following snippet.

```
<QIFDocument ...>
<QPId>D7258334-F9BF-4201-94FB-3D39EA74937B</QPId>
...
<DiameterCharacteristicItem id="15">
...
</DiameterCharacteristicItem>
...
```

To reference the item **id** in the external QIF document, first, an external document reference must be established and then the external item is referenced using the **xId** *attribute*:

```
<QIFDocument ...>
  <QPId>AFD08F25-CAE6-4647-9667-674D5D66033F</QPId>
  ...
  <ExternalQIFReferences n="1">
        </externalQIFReferences n="1"</externalQIFReferences n=
```

```
</ExternalQIFDocument>
</ExternalQIFReferences>
...
<DiameterCharacteristicMeasurement id="47">
<CharacteristicItemId xId="15">101</CharacteristicItemId>
...
</DiameterCharacteristicMeasurement>
...
```

The <ExternalQIFDocument id="101"> object identifies the external QIF file via its QPId and provides id 101 to enable referencing that file. The xId="15" in the diameter characteristic measurement then points to the item id in the external QIF document whose internal id is 101.

5.13.4 QIF data flow

Version 3.0 of QIF has six application areas. A **QIFDocument** instance file can contain any one of the applications or any combination of them. The most natural combinations in a single instance file are those that contain a sequence along the workflow shown in Figure 2, for example, a **Product** *element* from the Define Product activity, a **QIFPIan** *element* from the Define Measurement Process activity, and a **Results** *element* from the Execute Measurement Process activity. Those *element*s would reference information common to all three of them contained elsewhere in the **QIFDocument**, such as:

- file units
- datum definitions and datum reference frames
- measurement resources
- feature definitions, nominals, and items
- characteristics, definitions, nominals, and items

At the time a downstream process is started, (when measurements are starting to be taken, for example), a **QIFDocument** instance file containing the output of an upstream planning process is likely to exist; call it the QIFPlan file The plan file may have a **QIFDocument** with **Product** and **Plan** *elements* as shown in the following instance file snippet.

```
<QIFDocument ...>
  <QPId>AFD08F25-CAE6-4647-9667-674D5D66033F</QPId>
...
  <Product>
    product contents
  </Product>
    <Product>
    <plan>
        plan contents
  </Plan>
  </QIFDocument>
```

When measurements are taken and it is desired to put the data in a **QIFDocument** instance file, the data must not simply be added to the QIFPlan file. A new **QIFDocument** instance file (call it the QIFResults file) should be created containing a **Results** *element*. Most *element*s of the **QIFDocument** in the QIFPlan file may be copied without change into the **QIFDocument** in the

QIFResults file, but any **Version**, **VersionHistory**, or **Header** *element* must be new. The QIFResults file might appear as shown in the following snippet. Note the new **QPId**.

```
<QIFDocument ...>
  <QPId>AFD08F25-CAE6-4647-9667-674D5D66071A</QPId>
  ...
  <Product>
    product contents (same as in previous snippet)
  </Product>
    <Plan>
    plan contents (same as in previous snippet)
  </Plan>
  <Results>
    results data here
  </Results>
  </QIFDocument>
```

The way in which local identifiers (**id**s) are handled when a new downstream file is created from an old upstream file is up to the application building the new file. The local identifiers from the upstream process might be preserved or they might be changed. A simple method of preserving **id**s from the QIFPlan file is to start numbering new **id**s in the QIFResults file at a value larger than the maximum **id** value in the QIFPlan file. In any event, no system processing QIF instance files should rely on local identifiers remaining the same between files.

5.13.5 Using QPIds in QIF

To provide a method of uniquely identifying QIFDocument instance files and objects in them, QPIds may optionally be assigned to the **QIFDocument** *element* and *elements* representing the six QIF applications as shown in Figure 15. To avoid confusing QPIds with **id**s, QPIds are always given as *elements*, and **id**s are always given as *attributes*. The figure shows the *element* name. The value of each of the *elements* listed is of **QPIdType**. Where the *element* is in a base type, all of the derived types will also have the *element*.

QPIds used for interconnecting QIF information (in contrast to QPId user attribute identifiers) identify data on a coarse level: the whole document, or file sections describing a measurement plan, a measurements result, etc. The QIF **id** mechanism is used for identifying data at a fine level: an individual feature, characteristic, measurement point, etc.

QIFDocument
Required QPId element of the QIFDocumentType
UUID element of the CharacteristicDesignatorType at several places in the
Characteristics element
UUID element of feature nominals and feature items in the Features element
MeasurementResources
ThisInstanceQPId in the Version element of the MeasurementResourcesType
Plan
ThisInstanceQPId in the Version element of the PlanType
Product
ThisInstanceQPId in the Version element of the File element of the Header
<i>element</i> of the <i>ProductType</i>
ThisInstanceQPId in the Version element of the File element of the Header
<i>element</i> of the <i>PartType</i>
ThisInstanceQPId in the Version element of the File element of the Header
<i>element</i> of the AssemblyType
UUID element of the PartAssemblyBaseType and the ComponentType
Results
ThisInstanceQPId in the Version element of the ResultsType
ThisResultsInstanceQPId element of the MeasurementResultsType
Rules
ThisInstanceQPId in the Version element of the QIFRulesType
UUID element of the QIFRuleBaseType
Statistics
ThisInstanceQPId in the Version element of the StatisticalStudyPlanBaseType
ThisInstanceQPId in the Version element of the CorrectiveActionPlanType
ThisStatisticalStudyResultsInstanceQPId element of the
StatisticalStudyResultsBaseType

Figure 15 - **QPIdType** elements

All uses of QPIds are optional with the exception of the required **QPId** *element* of the *QIFDocumentType*. The document level QPId is required because uniquely identifying QIF documents is the only reliable method of connecting files across the workflow shown in Figure 2. Optional version QPIds may be used to strengthen connections. A *key* in QIFDocument.xsd (when applied by an instance file processor) checks that all instances of *QPIdType* in an instance file have the correct format and are unique within the file.

When a downstream QIF instance file is created from an upstream QIF instance file, although the **QPId** of the document itself must be new, the QPIds identifying coarse elements in the QIF document may remain unchanged if the measurement plan, resources, etc. they identify are unchanged. If *elements* such as **characteristics**, **features**, and **product** are copied into the downstream file, any QPIds they contain (in QPId user attribute data, for example) should be copied unchanged. If any part of a file section identified by a QPId (other than local **id**s) is changed after copying, the QPId should be changed, too. A changed local **id** should result in a changed QPId only if the local **id** change results in a change in the structure obtained when all local **id** references have been resolved.

QPIds uniquely identify QIF instance files and objects in the files. In addition, references to QPIds may be used to connect sections of QIF instance files (in different files or in the same file) as shown in Figure 16. Where QPIds are used in QIFPlan.xsd they indicate the rules that were used in developing the plan and/or the rules to be used in refining the plan. Where QPIds are used in QIFStatistics.xsd, they serve to identify results from external QIF instance files. Where QPIds are used in Traceability.xsd they serve to identify the plan that was used for **MeasurementResults** and for **Statistics**. A reference to a QPId is always made using an instance of **QPIdReferenceType**.

QIFPlan.xsd **RulesToUseQPId** in *PlanType* **RulesUsedQPId** in *PlanType* QIFStatistics.xsd **ResultsQPId** in *StatisticalStudyResultsBaseType* Traceability.xsd **ReferencedQIFPIanInstance** in *InspectionTraceabilityType* **ReferencedQIFPIanInstance** in *PreInspectionTraceabilityType*

Figure 16 - QPIdFullReferenceType elements

The references shown in Figure 16 are made using the *QPIdFullReferenceType* which has two *elements*, each of which is of *QPIdReferenceType*. The required **ItemQPId** *element* is the QPId of the referenced item. Each optional **DocumentQPId** *element* is the QPId (found in the **Version**) of a **QIFDocument** that contains the item. For example, the **RulesToUseQPId** in a measurement plan might be as follows.

```
<RulesToUseQPId>
<ItemQPId>ed43400a-29bf-4ec6-b96c-e2f846eb6f00</ItemQPId>
<DocumentQPId>fd43400a-29bf-4ec6-b96c-e2f846eb6ff6</DocumentQPId>
</RulesToUseQPId>
```

The **DocumentQPId** *element* is included so that the item will be easier to find. Adding an entry to the **ExternalQIFReferences** *element* associating the document QPId with its location defined by its URI further facilitates finding the item.

Another use of references to QPIds occurs in the **VersionHistory** of the **QIFDocumentType**, which may be used to describe earlier versions of a QIF document. The information given there for each earlier version has an optional **QPIdReference** *element* of type **QPIdReferenceType**.

5.14 Linking PMI information to product shape models

The QIF design provides for connecting detailed shape information in internal or external product models to features, characteristics, parts, and assemblies in a QIFDocument instance file. The *PartType* and the *AssemblyType* both have an optional **DefinitionInternal** *element* and an optional **DefinitionExternal** *element*.

Each part and assembly in a QIF instance file may correspond to an internal model. The internal model is as described in Clause 7.

Each part and assembly in a QIF instance file may correspond to multiple external models, for example, a CAD file and two drawings.

In the case of an external CAD model, the identifiers in the model must be at least minimally persistent in the sense that each time a given file is loaded into a system that can handle it, the same identifier should be attached to each information item as is attached any other time the file is loaded. It may be assumed that identifiers in a digital drawing that is not a CAD model are persistent.

QIF supports the following types of external models for parts and assemblies in the *element*s of the **DefinitionExternal** *element*.

Parts

PrintedDrawingType DigitalDrawingType DigitalModelType PhysicalModelType

Assemblies PrintedDrawingType DigitalDrawingType DigitalModelType PhysicalModelType

To connect digital drawing or digital model entities to QIF features and characteristics, the digital entities must be identified, and the association from a feature or characteristic to one or more digital entities must be made. Printed drawings and physical models do not have entity identifiers that could be connected to features or characteristics.

Identifying external digital entities is done in the **DefinitionExternal** *element*, which is of **DefinitionExternalType**. The **DigitalDrawing** and **DigitalModel** *element*s of the **DefinitionExternalType** each have a subordinate **Entities** *element* that is a list of **Entity**

QIF 3.0

elements of *EntityExternalType*. The *ExternalEntityType* has *EntityId*, *Name*, and *Description elements* and an *id attribute* of *QIFIdType*. The value of the *EntityId* is a string that is a persistent identifier in the external model. That string is created by the creator of the external model, not the author of the QIF file. The *id attribute* is used to identify the entity in other parts of the QIF instance file. For each information item in the external model that has a persistent identifier and is to be referenced elsewhere in the file, an *Entity* is defined.

The connection of an external digital entity to a feature or characteristic is made in the nominal feature or nominal characteristic, both of which contain an **EntityExternalIds** *element* that is a list of the QIF **id**s for the associated external entities.

Internal entities are connected to features and characteristics in exactly the same way, except that the **id**s of the internal entities are in an **EntityInternalIds** *element*.

An abbreviated **Part** section from a QIF instance file is shown below. It has one model (with **id** 64). The snippet shows two **Entitys** (with **id**s 68 and 69). One of those refers to the **EntityId** "TopDistanceRightPlane", and the other refers to the **EntityId** "TopDistanceLeftPlane".

```
<Part>

...

<DefinitionExternal>

...

<DigitalModel id="64">

...

<Entities n="2">

<Entity id="68">

<EntityId>TopDistanceRightPlane</EntityId>

</Entity>

<EntityId>TopDistanceLeftPlane</EntityId>

</Entity>

</Entity>

</Entity>

</Entities>

</DigitalModel>

</Part>
```

The association from a feature to one or more CAD entities is made in the **Features** section of a QIF instance file (and similarly for characteristics). This is done by listing the **EntityExternalIds** that correspond to each feature instance. Here is a snippet from a QIF instance file in which a single opposite parallel planes feature references the planes in the preceding snippet.

```
<Features>
...
<FeatureNominals n="30">
...
<OppositeParallelPlanesFeatureNominal id="34">
...
```

5.15 Welding Characteristics and Symbols

The QIF library contains a set of characteristic types that provide complete welding information on a model as shown in Figure 17.

Figure 17 – Weld Characteristics Hierarchy

The weld characteristic types are implemented in correspondence with the American Welding Society (AWS) standard A2.4:2012 "Standard Symbols for Welding, Brazing, and Nondestructive Evaluation". That standard describes both the symbols and their meaning. QIF models the meaning of the weld symbols in the AWS standard as characteristics. The appearance of the weld symbols in a graphical presentation of weld characteristics must be as prescribed in the AWS standard. The meanings of the weld characteristics are described in this subclause.

The appearance of the weld symbols is described here and also in subclause 7.5.7.5.16, which deals with the details of graphical presentation. A weld symbol consists of at least a horizontal reference line with an arrow angled 45 degrees up or down at one end, as shown in Figure 18, Figure 20, Figure 21, Figure 22, and Figure 23. The symbol may also have several other graphical devices and meaningfully placed text.

5.15.1 Base parameters

Field Name	Data Type	Description
AllAround	xs:boolean	This <i>element</i> instructs to weld on all sides of the joint.
Field	xs:boolean	This <i>element</i> instructs to weld on a job site, not in the welding shop.
Specification	xs:token	This <i>element</i> contains a specification that describes a specific welding process. This note should use the standard welding abbreviations such as AAW (Air Acetylene Welding), AB (Arc Blazing), AHW (Atomic Hydrogen Welding),, TC (Thermal Cutting).
WeldingProcess	WeldingProcessType	This optional <i>element</i> defines a welding process.
NonDestructiveTesting	ArrayNonDestructiveTestingType	This optional <i>element</i> contains an array of non-destructive tests.

In QIF, all weld characteristic types have the following base parameters:

5.15.2 Location Significance parameter

Location Significance defines the location of a weld. A weld characteristic can be one-sided (placed on the arrow side or on the other side of the reference line) or both-sided, as shown by the weld symbols in Figure 18. Each type of weld characteristic has a specific enumeration of the location significance values.

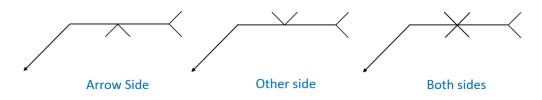


Figure 18 – Location Significance

5.15.3 Weld Characteristic parameters

The Weld characteristic parameters define welding dimension parameters (such as size, depth, pitch, length etc.) and finishing information (contour symbol and finishing designator). In QIF, the weld characteristic parameters are organized in the hierarchy shown in Figure 19.

	🛠 WeldSpotOneSideParametersType		
😤 WeldPlugOneSideParametersType 🚽	WeldOneSideParametersExtendType	🗏 😤 WeldOneSideParametersExtendSizeType 🚽	🛶 😤 WeldOneSideParametersBaseType
	WeldFilletOneSideInBothSidesType See WeldGrooveOneSideParametersType	K WeldFilletOneSideType	

Figure 19 – Weld Characteristic Parameters Hierarchy

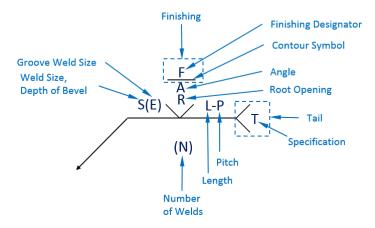


Figure 20 – Weld Characteristic Parameters

The weld characteristic parameters (from all types of weld characteristic parameters sets) and their meanings follow. Figure 20 shows where the parameter values are placed in a graphical presentation.

Parameter Name	Data Type	Description
Finishing	WeldFinishingType	This element defines finishing
	weidt misning type	parameters of the weld.
		This <i>element</i> defines a
	WeldContourSymbolEnumType	supplementary contour symbol
Finishing/ContourSymbol		that is used with the weld symbols
		to indicate how the face of the
		weld should be finished.
		This <i>element</i> defines a finishing
Finishing/FinishingDesignator	WeldFinishingDesignatorEnumType	designator that is used to indicate
		the method for forming the
		contour of the weld.
	FractionType	This <i>element</i> defines the
		size/strength of a one-sided weld.
Size		In case of the bevel weld this
		parameter should be interpreted as
		its depth.
Groove	FractionType	This <i>element</i> defines a groove weld
		size.
		This <i>element</i> defines a groove angle
Angle	AngularValueType	or the angle of countersink for a
		plug weld.
RootOpening	FractionType	This <i>element</i> defines a root opening
		or the fillet depth for a plug weld.
Length	LinearValueType	This element defines the length of
		the weld.
Pitch	LinearValueType	This <i>element</i> defines the pitch of
		the weld.
Depth	FractionType	This <i>element</i> defines the depth of
		the filling.

Example:

```
<WeldFilletCharacteristicNominal id="10302" label="WELD_FILLET_10302">

<FeatureNominalIds n="1">

<Id>9630</Id>

</FeatureNominalIds>

<LocationSignificance>BOTH_SIDE</LocationSignificance>

<BothSides>

<ArrowSide>

<Size>

<Numerator>5</Numerator>

<Denominator>16</Denominator>

</Size>

<LengthOfEachWeld>1</LengthOfEachWeld>

<Pitch>3</Pitch>

</ArrowSide>

<OtherSide>
```

5.15.4 Supplementary parameters

The following supplementary parameters may be added to the basic weld characteristics: spacer, back weld, melt through, consumable insert, removable backing. Figure 21 shows the graphical presentation of melt through. The figure is followed by a QIF instance file snippet giving an example of melt through.

Figure 21 – Melt Through

Example:

5.15.5 Non-Destructive Testing types

Non-Destructive Testing is defined by a set of non-destructive testing types. In a graphical presentation, it is placed on the reference line or on the second reference line when multiple reference lines are used, as shown in Figure 22.

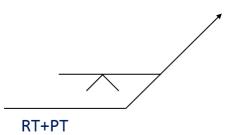


Figure 22 - Non-Destructive Testing with Multiple Reference Lines

5.15.6 Compound Welds

The Compound Weld characteristic defines a number of welds (up to 4) to be filled in the same welding operation sequence. An example of the graphic presentation is shown in Figure 23.

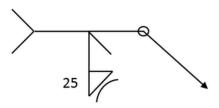


Figure 23 – Compound Weld

5.16 QIF handling of transforms, transformations, and coordinate systems

5.16.1 Coordinate Spaces

In QIF, the locations and orientations of all features, both nominal and measurements, are defined in three-dimensional, right-handed, Cartesian coordinate spaces.

The location and orientation of nominal features can be defined in the coordinate space of the product component to which they belong allowing nominal feature information to be defined once for a part and shared across multiple instances of the same part in an assembly. Components (parts and assemblies) are combined to form the product and in the process the nominal feature information undergoes coordinate transformations until it is in the coordinate space of the root component, i.e. that of the product itself. In many situations the product will consist of a single component in which case all nominal feature information is defined in a single coordinate system.

The coordinate space of the root component is analogous to the global or world coordinate system in a CAD system: it is the de facto Cartesian coordinate space to which all other Cartesian spaces can be related.

The location and orientation of measured features are defined in this root component coordinate space. Measured feature information can be transformed from this root component coordinate space into other coordinate spaces using transformation information stored in QIF.

5.16.2 Transformation matrix

A transformation matrix is used to map (X, Y, Z) coordinates and (I, J, K) unit vectors between Cartesian coordinate spaces. Component transformations map the location and orientation of a component to its location and orientation in an assembly.

In QIF a transformation matrix takes the form of a 4 by 3 matrix consisting of a 3 by 3 rotation matrix defining real number triplets representing the orientation of one coordinate space in another, and the origin of one coordinate space in another defined as a real number triplet. Both the rotation matrix and the origin are optional allowing for definions of rotation-only transforms,

translation-only transforms, and the identity transform (no rotation or translation) as well as combined rotation and translation transforms.

XYZ points, IJK direction vectors, and transformation matrices of local coordinate spaces can all be defined in a common coordinate system. The origin of the transform is the XYZ location of the local coordinate space in the common coordinate space. Each row of the rotation matrix is the direction of an axis of the local coordinate space in the common coordinate space.

Such a transformation matrix is defined by the *CoordinateSystemCoreType* which has two *elements* defining the rotation (as a 3x3 matrix) and the origin (as a triplet):

Rotation:	a 3x3	matrix representing the X, Y and Z axis directions of the local
	coord	inate space in the common coordinate space having 3 sub-
	eleme	ents:
XDirection:		a unit vector defining the IJK direction of the X-axis direction of the
		local coordinate space in the common coordinate space.
YDirection:		a unit vector defining the IJK direction of the Y-axis direction of the
		local coordinate space in the common coordinate space.
ZDirection:		a unit vector defining the IJK direction of the Z-axis direction of the
		local coordinate space in the common coordinate space.
Origin:	a poir	t defining the origin of the local coordinate space in the common
	coord	inate space.

The three vectors defined by the **XDirection**, **YDirection** and **ZDirection** *elements* are orthonormal: each is of unit length and each is perpendicular to the other two. Furthermore they are right-handed in the sense that the right-hand vector cross product of the vector defined by the **XDirection** *element* with the vector defined by the **YDirection** *element* is equal to the vector defined by **ZDirection** *element*, the right-hand vector cross product of the vector defined by the **YDirection** *element* with the vector defined by the **ZDirection** *element* with the vector defined by the **ZDirection** *element* with the vector defined by the **ZDirection** *element* is equal to the vector defined by **XDirection** *element*, and the right-hand vector cross product of the vector defined by the **ZDirection** *element* with the vector defined by the **ZDirection** *element* is equal to the vector defined by **XDirection** *element*. Or in short:

||Xdirection|| = 1
||Ydirection|| = 1
||ZDirection|| = 1
XDirection • YDirection = 0
YDirection • ZDirection = 0
ZDirection • XDirection = 0
XDirection × YDirection = ZDirection

YDirection × **ZDirection** = **XDirection**

ZDirection × XDirection = YDirection

This results in a transformation which can translate and rotate but neither skew nor scale axis systems.

To map (or transform) a point in a local space with coordinates (x, y, z) to a point in the common space with coordinates (X, Y, Z) where the local space is defined by the transformation matrix with both rotation and translation:

 $\begin{bmatrix} X_i & X_j & X_k \\ Y_i & Y_j & Y_k \\ Z_i & Z_j & Z_k \\ O_x & O_y & O_z \end{bmatrix}$

the following calculations are used:

$$\begin{split} X &= (X_i)x + (Y_i)y + (Z_i)z + O_x, \\ Y &= (X_j)x + (Y_j)y + (Z_j)z + O_y, \quad (1) \\ Z &= (X_k)x + (Y_k)y + (Z_k)z + O_z. \end{split}$$

The mapping of vectors between common and local spaces is similar. To map the vector with components (i, j, k) in local space to the vector with components (I, J, K) in common space the following calculations are used:

$$I = (X_i)i + (Y_i)j + (Z_i)k,$$

$$J = (X_j)i + (Y_j)j + (Z_j)k,$$
 (2)

$$K = (X_k)i + (Y_k)j + (Z_k)k.$$

Conversely, to map points from common space into local space the inverse transformation is used. To map the point (X, Y, Z) in common space to the point (x, y, z) in local space the following calculations are used:

$$\begin{aligned} x &= (X_i) (X - O_x) + (X_j) (Y - O_y) + (X_k) (Z - O_z), \\ y &= (Y_i) (X - O_x) + (Y_j) (Y - O_y) + (Y_k) (Z - O_z), \\ z &= (Z_i) (X - O_x) + (Z_j) (Y - O_y) + (Z_k) (Z - O_z). \end{aligned}$$

And to map the vector (I, J, K) in common space to the vector (i, j, k) in local space the following calculations are used:

$$i = (X_i)I + (X_j)J + (X_k)K,$$

$$j = (Y_i)I + (Y_j)J + (Y_k)K, \quad (4)$$

 $k = (Z_i)I + (Z_j)J + (Z_k)K.$

A transformation matrix with both rotation and translation might look like this in a QIF instance file:

```
<Transform id="2">

<Rotation>

<XDirection>0.8660254037844 0 -0.5</XDirection>

<YDirection>0 1 0</YDirection>

<ZDirection>0.5 0 0.8660254037844</ZDirection>

</Rotation>

<Origin>5.5179491924311 0.5 3</Origin>

</Transform>
```

If the transformation matrix is a rotation only matrix then the optional **Origin** *element* is missing. In this case, the origin offset is $O_x = O_y = O_z = 0.0$ and formula (1) simplifies to:

 $X = (X_i)x + (Y_i)y + (Z_i)z,$ $Y = (X_j)x + (Y_j)y + (Z_j)z, \quad (1a)$ $Z = (X_k)x + (Y_k)y + (Z_k)z.$

Formula (2) for the mapping of vectors between common and local spaces is unchanged.

Formula (3) for the mapping points from common space into local space simplifies to:

And formula (4) for mapping the vector (I, J, K) in common space to the vector (i, j, k) in local space remains unchanged.

A rotation-only transformation matrix might look like this in a QIF instance file:

```
<Transform id="2">

<Rotation>

<XDirection>0.8660254037844 0 -0.5</XDirection>

<YDirection>0 1 0</YDirection>

<ZDirection>0.5 0 0.8660254037844</ZDirection>

</Rotation>

</Transform>
```

If the transformation matrix is a translation only matrix then the optional **Rotation** *element* is missing. In this case, the rotation matrix is the 3 by 3 identity matrix and formula (1) simplifies to:

$$X = x + O_x,$$

$$Y = y + O_y$$
, (1b)
 $Z = z + O_z$.

If there is no rotation then vectors remain unchanged and formula (2) simplifies to:

Formula (3) for mapping points from common space into local space simplifies to:

$$\begin{aligned} x &= X - O_x, \\ y &= Y - O_y, \qquad (3b) \\ z &= Z - O_z. \end{aligned}$$

Because vectors remain unchanged and formula (4) simplifies to:

$$i = I,$$

 $j = J,$ (4b)
 $k = K.$

A translation-only transformation matrix might look like this in a QIF instance file:

```
<Transform id="2">
<Origin>5.5179491924311 0.5 3</Origin>
</Transform>
```

If the transformation matrix has neither translation nor rotation then both the optional **Origin** and **Rotation** *elements* are missing and points and vectors remain unchanged in the transformation:

Formula (1) simplifies to:

$$X = x,$$

$$Y = y, (1c)$$

$$Z = z.$$

Formula (3) simplifies to:

$$x = X,$$

y = Y, (3c)

z = Z.

And the vector transformations are described by formulas (2b) and (4b).

A transformation matrix with neither rotation or translation might look like this in a QIF instance file:

```
<Transform id="2"/>
```

5.16.2.1 Transformation matrix example

Figure 24 shows a part with two Cartesian axis systems for the common space and a local space. The Cartesian coordinates and axis vector direction of a hole center are shown in both the common and local spaces.

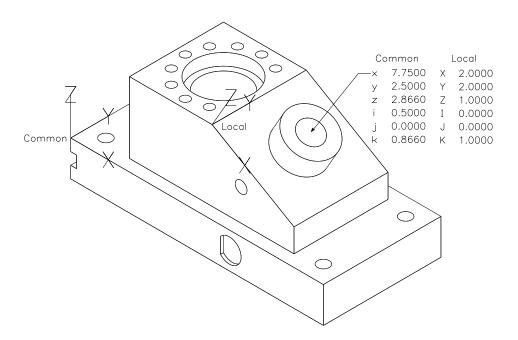


Figure 24 – Transformation matrix example

The origin of the local space in common space coordinates is ($O_x = 5.5179$, $O_y = 0.5000$, $O_z = 3.0000$). The X-axis of the local space in terms of common space is ($X_i = 0.8660$, $X_j = 0.0000$, $X_k = -0.5000$), the Y-axis of the local space in terms of common space is ($Y_i = 0.0000$, $Y_j = 1.0000$, $Y_k = 0.0000$), and the Z-axis of the local space in terms of common space is ($Z_i = 0.5000$, $Z_j = 0.0000$, $Z_k = 0.8660$) giving the 4x3 transformation matrix:

- 0.8660 0.0000 -0.5000
- 0.0000 1.0000 0.0000
- 0.5000 0.0000 0.8660
- 5.5179 0.5000 3.0000

To transform the hole center in local coordinates (2.000, 2.000, 1.000) to coordinates in the common space the formula set (1) is used:

$$X = (0.8660)(2.0000) + (0.0000)(2.0000) + (0.5000)(1.000) + 5.5179 = 7.7500$$
$$Y = (0.0000)(2.0000) + (1.0000)(2.0000) + (0.0000)(1.000) + 0.5000 = 2.5000$$

$$Z = (-0.5000)(2.0000) + (0.0000)(2.0000) + (0.8660)(1.000) + 3.0000 = 2.8660$$

To transform the hole axis vector in local coordinates (0.000, 0.000, 1.000) to coordinates in the common space the formula set (2) is used:

I = (0.8660)(0.0000) + (0.0000)(0.0000) + (0.5000)(1.000) = 0.5000J = (0.0000)(0.0000) + (1.0000)(0.0000) + (0.0000)(1.000) = 0.0000K = (-0.5000)(0.0000) + (0.0000)(0.0000) + (0.8660)(1.000) = 0.8660

The transform of the hole center from common space coordinates (7.7500, 2.500, 2.8660) to local coordinates uses formula set (3):

 $\mathsf{x} = (0.8660)(7.7500 - 5.5179) + (0.0000)(2.5000 - 0.5000) + (-0.5000)(2.8660 - 3.0000) = 2.0000$

 $\mathsf{y} = (0.0000)(7.7500 - 5.5179) + (1.0000)(2.5000 - 0.5000) + (0.0000)(2.8660 - 3.0000) = 2.0000$

z = (0.5000)(7.7500-5.5179) + (0.0000)(2.5000-0.5000) + (0.8660)(2.8660-3.0000) = 1.0000

And the transform of the hole axis vector from common space coordinates (0.5000, 0.0000, 0.8660) to local coordinates uses formula set (4):

i = (0.8660)(0.5000) + (0.0000)(0.0000) + (-0.5000)(0.8660) = 0.0000

j = (0.0000)(0.5000) + (1.0000)(0.0000) + (0.0000)(0.8660) = 0.0000

 $\mathsf{k} = (0.5000)(0.5000) + (0.0000)(0.0000) + (0.8660)(0.8660) = 1.0000$

5.16.3 Transforms

The **CoordinateSystemCoreType** provides the minimum mathematical description for a coordinate transformation. The **TransformMatrixType** is derived from the

CoordinateSystemCoreType adding the ability to define the units, accuracy, etc. of the origin point.

The *TransformInstanceType* is derived from the *TransformMatrixType* and so contains the 4x3 transformation matrix information but in addition has an **id** *attribute*, and **Name** and **Attributes** *elements*.

The **id** *attribute* allows the transform to be referenced and therefore allows a single transformation matrix to be shared by several objects.

The optional **Name** and **Attributes** *elements* allow for the transform to be identified, have arbitrary information and data added.

5.16.4 Coordinate systems

The **CoordinateSystemType** defines a coordinate axis system on a measurement device. A coordinate system on a measurement device typically involves aligning measured features on a real part to their nominal counterparts either using a holding fixture that physically interfaces with the measured alignment features, or by measuring the alignment features and performing the alignment mathematics in software.

In addition to aligning measured features to their nominal counterparts a coordinate system on a measurement device establishes a coordinate axis system and coordinate origin associated with the alignment. This results in two transformation matrices: one which defines the axis system on the nominal part with respect to the common space, and one which defines the axis system on the actual part with respect to the common space. The nominal and actual transformation matrices are stored in separate types to allow for multiple actual part measurements to share the same nominal transformation information.

A single coordinate system can coincide with the coordinate space of the root component. This coordinate system can be identified with the optional **CommonCoordinateSystemId** *element* of the **CoordinateSystemListType**.

5.16.4.1 Nominal and actual transforms

The **CoordinateSystemType** has an optional *element*, **NominalTransform** and the **CoordinateSystemActualTransformType** has an *element* **ActualTransform** both of **TransformMatrixType**, which hold the nominal and actual versions of the transformation matrix. The actual transform is stored separately on a per measurement results basis and is associated with the corresponding nominal coordinate system by **id**.

The meaning of and differences between these two transformation matrices is perhaps best illustrated by example.

The example in Figure 24 shows two Cartesian axis systems. In the context of QIF, if these two axis systems are established by aligning to measured features, they can become coordinate systems. The coordinate system labelled "common" is established by a set of actual part features and coincides with the root component space. Both the nominal and actual

transformation matrices for this coordinate system will be the identity rotation matrix with a (0, 0, 0) origin offset:

```
<CoordinateSystem id="87">
    <NominalTransform>
      <Rotation>
        <XDirection>1 0 0</XDirection>
        <YDirection>0 1 0</YDirection>
        <ZDirection>0 0 1</ZDirection>
      </Rotation>
      <Origin>0 0 0</Origin>
    </NominalTransform>
  </CoordinateSystem>
...
  <Transform>
    <ActualTransform>
      <Rotation>
        <XDirection>1 0 0</XDirection>
        <YDirection>0 1 0</YDirection>
        <ZDirection>0 0 1</ZDirection>
      </Rotation>
      <Origin>0 0 0</Origin>
    </ActualTransform>
   <CoordinateSystemId>87</CoordinateSystemId>
  </Transform>
```

or equivalently (using the ability to omit the optional **Rotation** *element* if there is no rotation, and omit the optional **Origin** *element* if there is no origin offset):

```
<CoordinateSystem id="87">
<NominalTransform/>
...
</CoordinateSystem>
...
<Transform>
<ActualTransform/>
<CoordinateSystemId>87</CoordinateSystemId>
</Transform>
```

If the coordinate system labelled "local" is established by a different set of measured features than those used to establish the coordinate system labelled "common" then (unless the actual part is a perfect representation of the nominal part) the actual transformation will not exactly match the nominal transformation:

```
<CoordinateSystem id="88">
<NominalTransform>
<Rotation>
<XDirection>0.866025 0 -0.5</XDirection>
```

```
<YDirection>0 1 0</YDirection>
      <ZDirection>0.5 0 0.866025</ZDirection>
    </Rotation>
    <Origin>5.517949 0.5 3</origin>
 </NominalTransform>
</CoordinateSystem>
 <Transform>
   <ActualTransform>
   <Rotation>
      <XDirection>0.867865 0.009721 -0.496705</XDirection>
      <YDirection>-0.009058 0.999952 0.003743</YDirection>
      <ZDirection>0.496717 0.001251 0.867912</ZDirection>
    </Rotation>
    <Origin>5.517937 0.499941 2.999991</origin>
 </ActualTransform>
  <CoordinateSystemId>88</CoordinateSystemId>
</Transform>
```

5.16.4.2 Alignment operations

A coordinate system on a measurement device is established using nominal and measured features by performing a set of alignment operations. This set is represented in the *CoordinateSystemType* by the *AlignmentOperations element*, which is of *AlignmentOperationsType*. The *AlignmentOperationsType* is a list of *AlignmentOperation elements*, each of which is nominally of *AlignmentOperationBaseType*. However, the *AlignmentOperation element* is the head of a substitution group of *elements* (described in the following subclause) that are of more specific types of alignmentOperation. *Elements* that are members of the substitution group must be used instead of *AlignmentOperationBaseType* which has the required *element* SequenceNumber used to order alignment operations.

Any number of alignment operations can exist in a coordinate system. Only the transformation matrices (nominal and actual) of the accumulated effect of all alignment operations is stored on the coordinate system. If the transformation matrix information is required for the individual steps in a real alignment process, then a QIF coordinate system instance must be generated for each step.

5.16.4.2.1 Alignment operation types

The **PrimaryAlignment** *element* (which is of **PrimaryAlignmentOperationType)** is used to describe an alignment operation where a coordinate axis is made to align exactly with an alignment feature normal or axis.

The **SecondaryAlignment** *element* (which is of **SecondaryAlignmentOperationType)** is used to describe an alignment operation where a coordinate axis is made to align with an alignment feature normal or axis as exactly as possible with the constraint that a previously defined primary axis remains unchanged. In best practice the feature normal or axis of the secondary

alignment feature is often nominally orthogonal to the primary axis but need not be so as long as it is not parallel to the primary axis.

The **ActualOffset** *element* (which is of **ActualOffsetAlignmentOperationType)** is used to describe the establishment of coordinate origins based on the location of alignment features.

The **NominalOffset** *element* (which is of *NominalOffsetAlignmentOperationType*) is used to describe the offset of a coordinate origin by a nominal numerical value.

The **NominalRotation** *element* (which is of *NominalRotationAlignmentOperationType*) is used to describe the rotation about a specified axis by a nominal numerical angle.

The **DatumPrecedence** *element* (which is of **DatumPrecedenceAlignmentOperationType)** is used to describe an alignment based on datum precedence and degrees-of-freedom rule.

The **BestFitAlignment** *element* (which is of **BestFitAlignmentOperationType)** is used to describe a best-fit alignment from a set of alignment features.

The **Machine** *element* (which is of *MachineCoordinateSystemOperationType*) is used to describe a switch to the integral coordinate system of a measurement device.

5.16.5 CAD coordinate systems

The **CADCoordinateSystemType** which has a **CoordinateSystemCore** *element* of type **CoordinateSystemCoreType** is used to define a coordinate system graphical element in a model based definition. These coordinate systems can have graphical representations and may be used for user interface purposes transforming between local and CAD global coordinates and to define sketch planes.

A CAD coordinate system may be associated with a PMI coordinate system by populating the **InternalCADCoordinateSystemId** *element* of the **CoordinateSystemType** with the id of an instance of **CADCoordinateSystemType**. A similar link to a coordinate system defined in a CAD file using a non-QIF format can be established by using the **ExternalCADCoordinateSystemId** *element*.

5.16.6 Coordinate system lists

Coordinate systems representing alignments for metrology purposes are collected as a list of **CoordinateSystem** *elements* (of type **CoordinateSystemType**) in the **CoordinateSystemListType**. It is this type that also contains the **CommonCoordinateSystemId** *element* which identities the single coordinate system which matches the root component coordinate system equivalent to the CAD global coordinate system.

The actual transforms associated with these coordinate systems are collected as a list of **Transform** *elements* (of type **CoordinateSystemActualTransformType**) in the **CoordinateSystemsActualTransformsType**. Each **MeasurementResults** *element* has a sub*element* **CoordinateSystemsActualTransforms** (of type *CoordinateSystemsActualTransformsType*) which holds the actual transform list; the results of a single product measurement.

CAD coordinate systems representing CAD user interface coordinate system graphical elements are collected as a list of **CoordinateSystem** elements (of type **CADCoordinateSystemType**) in the **CoordinateSystemSetType**.

5.17 Feature control frames

A feature control frame like $(\ \phi \ 0.05 \otimes \ A \ B \otimes \ C \otimes \)$ typically consists of several components: the characteristic type defined by the GD&T symbol $(\ \phi \)$; the tolerance zone size with zone shape, material condition and other modifiers $(\ 0.05 \otimes \)$; and a datum reference frame consisting of datum labels with material condition or material boundary modifiers $(\ A \ B \otimes \ C \otimes \)$. Feature control frames for form tolerances do not include a datum reference frame. The meaning of the feature control frame can be further refined using other symbols, notes or leader line modifiers like φ .

5.17.1 Geometric tolerance characteristic types

The GD&T symbol contained in the leftmost box of the feature control frame of a geometric tolerance defines which QIF types are to be used to describe the characteristic. The defined types follow; *XXX* in a type name represents *Definition*, *Nominal*, *Measurement*, or *Item*,

Form characteristics:

- O CircularityCharacteristicXXXType
- CylindricityCharacteristicXXXType
- FlatnessCharacteristicXXXType
- StraightnessCharacteristicXXXType

Location characteristics:

- CoaxialityCharacteristicXXXType (ISO specific)
- ConcentricityCharacteristicXXXType
- PositionCharacteristicXXXType
- SymmetryCharacteristicXXXType

Orientation characteristics:

AngularityCharacteristicXXXType

- ParallelismCharacteristicXXXType
- PerpendicularityCharacteristicXXXType

Profile charactertistics:

LineProfileCharacteristicXXXType

SurfaceProfileCharacteristicXXXType

Runout charactertistics:

CircularRunoutCharacteristicXXXType

TotalRunoutCharacteristicXXXType

In addition there is a *PointProfileCharacteristicXXXType* to implement a vector tolerance at a single measured point. Several point profile characteristics can be placed in a characteristic grouping to be evaluated simultaneously.

5.17.2 Tolerance zone size

The size of the tolerance zone is defined in the definition base type for all geometric tolerance characteristics: *GeometricCharacteristicDefinitionBaseType*.

Depending on the characteristic type, the size of the tolerance zone may be subject to a bonus tolerance. This is indicated in the feature control frame by the use of a material condition modifier symbol which indicates the material condition at which the tolerance zone applies. When a particular characteristic type allows for the use of a material condition modifier, the required **MaterialCondition** *element* must be used. The **MaterialCondition** *element* can have one of six values:

REGARDLESS	(Y14,5 1983 specific) when the S symbol appears after the tolerance (RFS)
LEAST	when the symbol appears after the tolerance (LMC)
MAXIMUM	when the widebox symbol appears after the tolerance (MMC)
LEAST_RPR	(ISO specific) when the ① symbol appears after the
	tolerance followed by the reciprocity requirement symbol ®
MAXIMUM_RPR	(ISO specific) when the w symbol appears after the
	tolerance followed by the reciprocity requirement symbol ®
NONE	when no material condition modifier symbol appears after the tolerance

Table 3 – Material Condition Values

In the case of orientation characteristics, the amount of bonus applied to the tolerance zone may be limited by defining the maximum tolerance size in the feature control frame. For

A tolerance zone which varies in size must use the optional **ZoneLimit** *element* to define the limiting points for the variable tolerance zone. The tolerance zone starts with a value of **ToleranceValue** at the **FromPoint** and changes linearly in size to the value of **ToPointToleranceValue** at the **ToPoint**.

5.17.3 Zone shape

The shape of the tolerance zone is defined by symbols preceding the tolerance zone size in the feature control frame. These fall into three broad categories:

Ø.05	Diametrical (cylindrical)
SØ.05	Spherical
	Non-diametrical

The orientation of a tolerance zone implied by the orientation of the feature to which a feature control frame is applied, or by the placement of a feature control frame on a drawing, or by a combination of the two, can be explicitly defined by the optional **ZoneOrientationVector** *element*.

The application of a position characteristic diametrical zone to an elongated feature like the round ends of a slot is indicated with the optional **ElongatedZone** *element*.

The application of a position characteristic non-diametrical zone to the boundary of a feature by use of a BOUNDARY note on the feature control frame is indicated with the optional **BoundaryZone** *element*.

A position characteristic diametrical or non-diametrical zone may apply either to a threedimensional feature or to a two-dimensional feature (a planar section of a real three-dimensional feature). The dimensionality of the zone is defined by the optional **Dimensionality** *element*. A spherical zone is always three dimensional; so when used on a spherical zone the value of the **Dimensionality** *element* is fixed.

5.17.4 Zone extents

The extents of the tolerance zone in a feature control frame are naturally defined by the extents of the feature to which the feature control frame applies. This default behavior can be modified in the following ways: using a projected tolerance zone, defining the upper disposition of the

tolerance zone, using chain lines on a drawing to define the extents of the tolerance zone, using a note like $A \leftrightarrow B$ and point identifiers on the drawing, using other standard notes, or using a leader line modifier like \wp .

The use of a projected tolerance zone indicated by the **P** symbol in a feature control frame, is defined by the optional **ProjectedToleranceZone** *element*. Regardless of whether the length of the projected tolerance zone is defined numerically in the feature control frame or as a dimension on the drawing, the **ProjectedToleranceZone** *element* defines the length of the projected tolerance zone.

A profile characteristic tolerance zone is by default centered on the nominal feature to which it is applied. This behavior may be modified by chain lines on the drawing or by using the upper disposition symbol (1) in the feature control frame. Both these methods are defined by the optional **OuterDisposition** *element* which defines the size of the tolerance zone outside the material which can vary from zero to the whole tolerance zone.

Zone limits defined by chain lines or by identified points used in notes like $A \leftrightarrow B$ are both implemented in QIF with the optional **ZoneLimit** *element*. This *element* contains two sub*elements*: **FromPoint** and **ToPoint** which together define the extents of the tolerance zone. The plane in which the zone limits are defined is given by the **NormalDirection** *element* which is the vector normal to the drawing view. Any ambiguity about the path to follow between the frompoint and to-point around the part is removed by the **StartDirection** *element*. When the frompoint and to-point are identified by labels on a drawing for use in a $A \leftrightarrow B$ style note the optional **Name** sub-*element* on the **FromPoint** and **ToPoint** *elements* is used.

EACH ELEMENTEachElement elementEACH RADIAL ELEMENTEachRadialElement elementALL AROUND OR &
ALLAROUNDExtentType element with ExtentEnum sub-element set to
ALLAROUNDALL OVERExtentType element with ExtentEnum sub-element set to
ALLOVERALLOVERExtentType element with ExtentEnum sub-element set to
ALLOVER

Standard feature control frame notes or leader line modifiers which control the zone extents are handled by various optional *elements* in QIF:

5.17.5 Other zone modifiers

Other tolerance zone modifiers defined by GD&T symbols are shown below with their corresponding optional QIF *element*:

ST> statistical tolerance	StatisticalCharacteristic
© free state	FreeState

5.17.6 Datum reference frames

The datum reference frame is defined by the required **DatumReferenceFrameId** *element* on all geometric tolerance characteristic types except for form characteristics. Because the same datum reference frame may be found in several feature control frames, a datum reference frame is instantiated from the **DatumReferenceFrameType** with a QIF **id**, placed in the **DatumReferenceFrames** *element*, and referenced by the feature control frame via its QIF **id**.

The datum reference frame which the **DatumReferenceFrameld** *element* references contains a hierarchy of information to define datum labels, material condition or boundary modifiers and datum precedence. In cases where a non-form geometric tolerance characteristic has no datum reference frame, the **DatumReferenceFrameld** *element* must still be present but the datum reference frame it references will be empty.

5.17.6.1 Datum definitions

A datum definition defines a datum label and optionally associates it with datum targets or feature items. Because datum definitions can be shared among several datum reference frames or used in coordinate systems they are instantiated from the *DatumDefinitionType* with a QIF **id**, placed in the **DatumDefinitions** *element*, and referenced by their **id**s.

The datum label is defined by the **DatumLabel** *element*. This is typically meant to be a single datum identifier like \blacktriangleright A used to identify a datum feature on a part. Compound datums like $\boxed{A-B}$ that use two or more datum identifiers are only found in feature control frames and are handled in QIF with the *CompoundDatumType*. In practice, a compound datum may be handled with the *GroupFeatureXXXType* or as a constructed feature, in which case a datum label like A-B may be assigned to the compound feature.

The optional **FeatureNominalIds** *element* is used to reference the feature or features which comprise the datum. The optional **DatumTargetIds** *element* is used to reference the datum target or targets associated with the datum.

5.17.6.2 Datum with precedence

The *DatumWithPrecedenceType* is the mechanism by which a datum reference frame is composed of datums. Each framed box in a datum reference frame corresponds to a **Datum** *element* of type *DatumWithPrecedenceType*.

The *DatumWithPrecedenceType* has the required **Precedence** *element* which is used to order datums, simple or compound, or datum features into a datum reference frame. The first datum in a datum reference frame will use the **PrecedenceEnum** *element* with a value set to PRIMARY, the second datum will used SECONDARY, the third TERTIARY, etc.

If a simple datum like A is used, then the **SimpleDatum** *element* of **DatumType** is chosen which references the QIF **id** of a datum definition with the **DatumDefinitionId** *element*. The **MaterialModifier** *element* is used to apply a material condition or material boundary modifier to the datum. And the **ReferencedComponent** defines whether it is the measured or nominal component of the datum feature associated with the datum that is used.

For a compound datum like A·B the **CompoundDatum** *element* of **CompoundDatumType** is chosen. The **CompoundDatumType** has two or more **Datum** *elements* of **SequencedDatumType** which are used to order simple datums of type **DatumType**.

The **DatumWithPrecedenceType** also supports a datum feature without a datum definition and therefore no datum label. Such a construct will never be seen in a feature control frame. It is included in QIF to handle DMIS and other languages which allow a reference directly to a datum feature. For example, in DMIS:

T(PERP1)=TOL/PERP,0.05,FA(PLANE1)

As opposed to:

DATDEF/DAT(A),FA(PLANE1)

T(PERP1)=TOL/PERP,0.05,DAT(A)

When using a feature measurement as a datum feature, the **MeasuredDatumFeature** *element* is chosen. When using a feature nominal as a datum feature the **NominalDatumFeature** *element* is chosen. Both reference the QIF **id** of a feature item but only the **MeasuredDatumFeature** allows for a material condition modifier.

5.17.6.3 Datum reference frame type

The *DatumReferenceFrameType* can have zero to five *Datum elements* of type *DatumWithPrecedenceType*.

The case where zero **Datum** *elements* are present corresponds to a feature control frame with no datum reference frame, like $\bigcirc 0.5$.

The *DatumReferenceFrameType* can optionally reference a coordinate system with the **CoordinateSystemId** element. The coordinate system referenced by its QIF **id** can optionally contain nominal and actual transformations. These are not to be confused with the **DRFTransformActualId** which is a reference to a transform which represents the change in the actual coordinate system associated with a mobile datum reference frame.

5.18 QIF handling of units

5.18.1 Introduction

The QIF design seeks to handle units simply and unambiguously in instance files, especially to allow quantities to appear without explicit units specified for each value. QIF uses a scheme where primary and alternate units are specified once in an instance file. Quantities using the primary units can occur in instance files without an explicit attribute giving the name of the unit.

Alternate units can be assigned to individual quantities by including an attribute giving the name of the unit. All unit names must be unique for a given unit type.

Primary and alternate units are specified in a QIF instance file by using the **FileUnits** element of the QIFDocumentType. The **FileUnits** element is defined in Units.xsd. The **FileUnits** element specifies an optional primary unit for each of the unit types used in the instance file, and optional alternate units. If any quantity of a given unit type appears with a unit name in an instance file, the corresponding unit type must appear in the **PrimaryUnits** or the **OtherUnits** of the **FileUnits**. Common XML file checkers will signal an error if this rule is violated.

For example, an instance file might give the diameter of a circle feature as follows:

<Diameter>7.5</Diameter>

If the **LinearUnit** in the **PrimaryUnits** is millimeter, the line above would mean that the diameter is 7.5 millimeters. This association occurs because the **Diameter** *element* is of *LinearValueType* in the schema.

The specific unit types and values defined in QIF are:

- linear (i.e. distances)
- angular
- area
- temperature
- time
- speed
- mass
- force
- pressure.

In addition, there is UserDefinedUnitsType and corresponding UserDefinedUnitValueType.

The default unit for all unit types is the SI unit (meter, radian, kelvin, etc.). If it is desired to have a primary unit type not be a SI unit, a **UnitConversion** *element* should be included in the declaration of the primary unit. The **UnitConversion** *element* gives an **Offset** and a multiplication **Factor** that may be used to convert values of the primary unit type to values in terms of SI units.

For example, the meter is the SI unit for length. If a user wants to use the millimeter as the primary length unit in an instance file, the user puts the following lines into the **FileUnits** portion of the instance file:

```
<PrimaryUnits>
<LinearUnit>
<SIUnitName>meter</SIUnitName>
<UnitName>millimeter</UnitName>
<UnitConversion>
<Factor>0.001</Factor>
<Offset>0</Offset>
</UnitConversion>
```

```
</LinearUnit>
...
</PrimaryUnits>
```

In the **FileUnits** portion of the instance file, wherever a unit is declared, the name of the SI unit may be given regardless of whether it is the primary unit or not. If the **UnitConversion** is not included in the instance file, the **UnitName** just serves as an alias for the SI unit. For example if the unit type is **LinearUnit**, the **SIUnitName** must be meter if it is used, but the **UnitName** might be meter or m, or anything else the user likes. If the **UnitConversion** is included in the instance file, naming the SI unit makes it clear what units result from applying the conversion. The conversion is always accomplished using the equation:

SI = ((X plus Offset) times Factor)

where SI is the value in SI units, and X is the value in declared units.

5.18.2 PMI units

The **PrimaryUnits** may also designate a **PMILinearUnit**, **PMIAngularUnit**, and **PMIAreaUnit**. For example:

```
<PrimaryUnits>
 <LinearUnit>
    <SIUnitName>meter</SIUnitName>
    <UnitName>millimeter</UnitName>
    <UnitConversion>
      <Factor>0.001</Factor>
      <Offset>0</Offset>
    </UnitConversion>
  </LinearUnit>
  <PMILinearUnit>
    <SIUnitName>meter</SIUnitName>
    <UnitName>inch</UnitName>
    <UnitConversion>
      <Factor>0.0254</Factor>
      <Offset>0</Offset>
    </UnitConversion>
  </PMILinearUnit>
```

</PrimaryUnits>

If a **PMILinearUnit** is included in the **PrimaryUnits**, it applies in (only) the following portions of an instance file, regardless of whether a **LinearUnit** is included in the **PrimaryUnits** (and similarly for angular unit and area unit).

all of the QIFDocument/Characteristics portion of an instance file.
 all CharacteristicMeasurements *elements* in the QIFDocument/Results portion of an instance file.

3. all *element*s of *AbsoluteLimitsByUnitType* or *CriteriaByUnitType* in the **QIFDocument/Statistics/StatisticalStudiesPlans** portion of an instance file.

5.18.3 Default units

If a **PMILinearUnit** is not included in the **PrimaryUnits**, but a **LinearUnit** is included, the **LinearUnit** applies by default everywhere in an instance file (and similarly for angular unit and area unit).

If a **LinearUnit** is not included in the **PrimaryUnits**, the SI unit (meter in the case of linear unit) applies by default everywhere in an instance file that is not covered by a **PMILinearUnit** that is included in the **PrimaryUnits** (and similarly for all other unit types).

5.18.4 Other units

The **FileUnits** *element* also includes an **OtherUnits** sub-*element* for specifying alternate units. For example, a **LinearUnit** named inch could be defined in the **OtherUnits** *element* as follows:

```
<OtherUnits>
  <LinearUnit>
    <SIUnitName>meter</SIUnitName>
        <UnitName>inch</UnitName>
        <UnitConversion>
        <Factor>0.0254</Factor>
        <Offset>0</Offset>
        </UnitConversion>
        </LinearUnit>
        ...
</OtherUnits>
```

If a quantity in an instance file is represented using an alternate unit, the name of the unit type must be given. If the definition for inch just given is used in an instance file, a diameter of 5 inches in an instance file would be expressed as follows:

```
<Diameter linearUnit="inch">5</Diameter>
```

5.19 Modeling slots in QIF

5.19.1 Introduction

The QIF library contains four feature types, opposite parallel lines feature defined by the *OppositeParallelLinesFeatureXXXType*, opposite angled lines feature defined by the *OppositeAngledLinesFeatureXXXType*, opposite parallel planes feature defined by the *OppositeParallelPlanesFeatureXXXType*, and angled opposite planes feature defined by the *OppositeAngledPlanesFeatureXXXType*, which are designed to accommodate a variety of real features commonly referred to as slots, grooves, ribs, webs or blocks. These features have the following characteristics in common: those with parallel sides are features of size, all have a center-line or center-plane about which two straight or flat sides are symmetrically opposed (the use of complex draft on an opposite planes feature may affect strict symmetry). Collectively these four feature types will be referred to as opposite sides features. If the sides of a real feature are not flat, then the extruded cross section feature defined by the *ExtrudedCrossSectionFeatureXXXType* would be a more appropriate QIF feature for representing the real feature. The opposite lines feature might still be a suitable representation of a planar section of such a feature provided the criterion of symmetrically opposed straight sides is met.

The relationship between the opposite lines features and the opposite planes features is much like the relationship between a circle and a cylinder: the opposite lines features are a twodimensional planar section of a real feature and the opposite planes features are a threedimensional representation of a real feature.

The relationship between the angled planes feature and parallel planes feature is much like the relationship between a cone and a cylinder. The former is not a feature of size and the latter is not. A cone may be sectioned by a plane producing a circle which is a feature of size. Similarly an angled planes feature, which is not a feature of size, can be sectioned by a suitably oriented plane to produce a parallel lines feature which is a feature of size.

5.19.2 Internal and external

An opposite sides feature can be either internal or external as indicated by the value of the required **InternalExternal** *element*. An internal feature is one defined by the removal of material from the bulk of a part. The center-line/plane of the feature will typically be in open space with the surface normal vectors of the opposite sides pointing generally in the direction of the center-line/plane. These real features are commonly referred to as slots or grooves. Conversely, an external feature is one defined by the bulk of a part. The center-line/plane of the feature will typically be inside the material of the part with the surface normal vectors of the opposite sides pointing generally in the direction away from the center-line/plane. These real features are commonly referred to as real vectors of the opposite sides pointing generally in the direction away from the center-line/plane. These real features are commonly referred to as ribs, webs or blocks.

5.19.3 Location and size

The location and orientation of an opposite lines feature is defined by the center-line represented by a center-point and the axis unit vector defined by the **StartPoint** and **Vector** *elements* respectively of the required **CenterLine** *element*, and a unit vector representing the normal of the plane in which the feature lies defined by the required **Normal** *element*. The size of the opposite lines feature is given by the required **Width** *element* which applies in a direction perpendicular to the center-line axis in the plane of the feature. In the case of an angled lines feature the width is specified at the location of the start point. The feature may also have a length defined by the optional **Length** *element* which applies in the direction of the center-line axis.

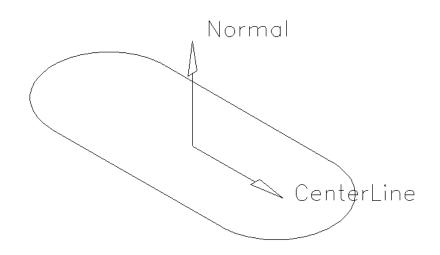


Figure 25 – An opposite parallel lines feature with round closed ends

Figure 25 shows the relationship between the **CenterLine** *element* which defines both the location and the orientation of the axis of the round-ended slot, and the **Normal** *element* which defines the plane in which the feature lies.

The location and orientation of an opposite planes feature is defined by the center-plane defined by a center-point and the center-plane's normal unit vector given by the **Point** and **Normal** *elements* of the required **CenterPlane** *element*. The size of the opposite planes feature is defined by the required **Width** *element* which applies in the direction along the center-plane normal vector. In the case of an angled planes feature the width is specified at the location of the point defined in the center plane. The feature may also have a length defined by the optional **Length** *element* which applies in the direction of the co-requisite **LengthVector** *element*. Furthermore, the feature may have a depth defined by the optional **Depth** *element* which applies in the direction of the co-requisite **DepthVector** *element*.

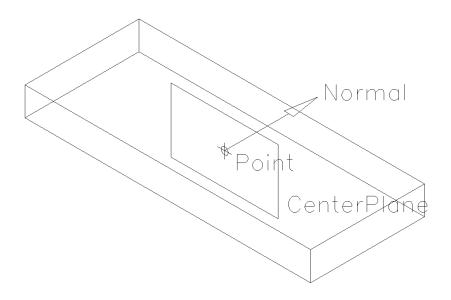


Figure 26 - An opposite parallel planes feature with flat closed ends

Figure 26 shows the relationship of the CenterPlane element with sub-*elements* **Point** and **Normal** which define the orientation of the main sides of a flat-ended slot. In order to define the orientation of the ends of the slot, the optional **LengthVector** *element* must be specified (not shown in Figure 26). The **LengthVector** *element* would have the same orientation as the **CenterLine** in Figure 25.

For both opposite lines and opposite planes features with closed ends the length is from the material boundary at one end to the material boundary at the other end measured along the center-line vector or along the length vector in the center-plane. The length is not between radius centers when a feature has rounded ends. When a feature has one or two open ends then the length can be the distance to a virtual material boundary equivalent to the real material boundary created by placing a flat block over the open end, or it can be an indication of the measureable region of the feature. In all cases the length is symmetrically disposed about the center-point of the feature.

5.19.4 End types

The opposite sides feature types also have an end-type as defined by the required **EndType** *element*. **EndType** provides a choice between (1) one of the enumerated values of the **SlotEndEnum** *element* (ROUND, FLAT, OPEN or UNDEFINED), and (2) a user-defined string in the **OtherSlotEnd** *element*. If the end-type of the opposite sides feature is unknown then the UNDEFINED enumerated end-type is used. If the end-type is known but not covered by any of the enumerated end-types, then a string is used to describe the end-type.

Figure 25 and Figure 26 show examples of the ROUND and FLAT end types respectively. Figure 29 below shows an example of the OPEN end type (upper right).

The shape of the ends of a ROUND and FLAT opposite sides feature can be further modified by using the optional **EndRadius1** and **EndRadius2** *elements* which apply in the directions against and along the center-line axis/length vector respectively. The default condition for round-ended features is to have a circular end tangent to both sides (the actual ends may be described by circular arcs for opposite lines or by cylindrical or conical segments for opposite planes but in a cross-section at any depth the circular ends will be tangent to both sides). By using the end radii *elements*, circular cross-section ends that are not tangent to the sides can be specified. The size of the end is given by the **EndRadius** *element* which must be larger than the radius of a tangent end. Whether the end expands beyond the width like a dumbbell shape or not is given by the value of the optional **Expanded** *element*.

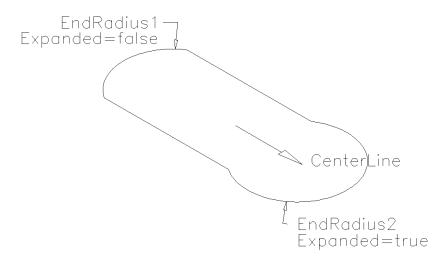


Figure 27 – A slot with non-tangent round ends

Figure 27 shows a round-ended slot with non-tangent ends. The relationship between the ends modified by the **EndRadius1** and **EndRadius2** *elements* and the **LengthVector** or **CenterLine** *elements* is shown. In the example the values of the two end radii are equal, but one is expanded and the other is not. The center of the slot is midway between the extremes of the slots in the axis direction, and not at the midpoint of the centers of the circular ends.

For flat ended opposite sides features the end radii can be used to apply a fillet radius to an otherwise flat end. The end radius must be small enough to leave a portion of the flat end.

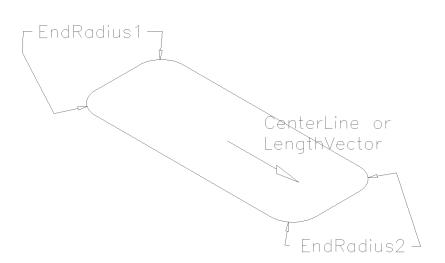


Figure 28 – A flat-ended slot with rounded corners

Figure 28 shows a flat-ended slot with rounded corners. In the example the two end radii values are equal (and both must be smaller than half the width of the slot).

An opposite sides feature may have one closed end and one open end. The presence of a single open end is indicated by the optional **SingleOpenEnd** *element*. In the case of an opposite lines feature the center-line axis must point towards the open end, and for the opposite planes feature the co-requisite **LengthVector** *element* points toward the open end.

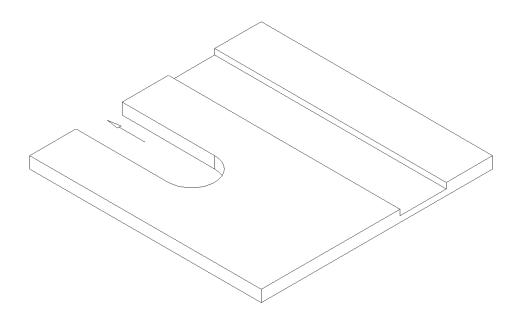


Figure 29 – Opposite planes features with open ends

Figure 29 shows two slots with open ends. The lower left slot would have end type ROUND and use the optional **SingleOpenEnd** *element*. The arrow shows the direction of the **LengthVector** *element* towards the open end. The upper right slot would have end type OPEN because both ends of the slot are open.

5.19.5 Bottom types

The opposite planes features can also define a bottom type with the optional **Bottom** *element*. That element provides a choice between (1) one of the enumerated values of the **BottomEnum** *element* and (2) a user-defined string in the **OtherBottom** *element*. The bottom enum values are BLIND, THROUGH, and UNDEFINED. If the bottom-type of the opposite planes feature is unknown then the **BottomEnum** *element* is used with the value UNDEFINED. If the bottom-type is known but not covered by any of the enumerated bottom-types, then the **OtherBottom** *element* is used with a string value that describes the bottom-type.

The slot in the lower left of Figure 29 is an example of the THROUGH bottom type; the slot in the upper right is an example of the BLIND bottom type.

5.19.6 Taper

If an opposite sides feature is tapered then it is represented by one of the angled sides features. The **TaperAngle** *element* is populated with a non-zero value and the width of the opposite sides feature changes along the center-line vector/length vector. The sign of the taper angle defines whether the feature gets larger in the direction of the vector (positive) or gets smaller in the direction of the vector (negative).

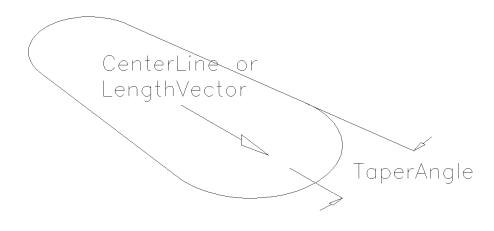


Figure 30 – A tapered slot (opposite angled lines)

Figure 30 shows the relationship between the taper angle and the center line or length vector of a tapered slot. The example shows a slot with a ROUND end type. The center of the slot is

midway between the extremes of the slots in the axis direction, and not at the midpoint of the centers of the circular ends.

5.19.7 Draft

The opposite angled planes feature instead of a taper angle may have a draft angle defined by the optional **DraftAngle** *element*. A positive draft angle means the feature will open up (get larger) in the direction defined by the co-requisite **DepthVector** *element* or the co-requisite **DraftVector** *element*, a negative draft angle means the feature will close up (get smaller). When an opposite planes feature is drafted the width and length apply at the center-point. The **DraftVector** *element* overrides the **DepthVector** *element* when the draft vector is not perpendicular to the length vector, the axis vector, or both.

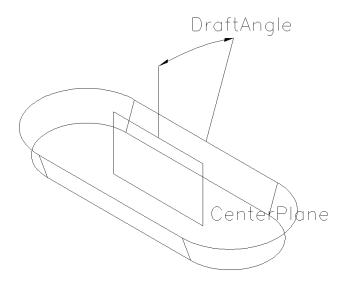


Figure 31 – A slot with draft (opposite angled plane feature)

Figure 31 shows the relationship between the draft angle and the center plane of a slot with draft.

5.19.8 Feature measurement

The above descriptions of required, optional and co-requisite data were particular to nominal opposite sides features. All data elements for measured features are optional to handle different use cases.

In addition to measured elements which correspond directly with nominal elements like measured width and length corresponding with nominal width and length respectively, there are measured data elements for minimum and maximum of size values.

5.20 Modeling cones and conical segments in QIF

5.20.1 Introduction

The QIF library contains two feature types, cone feature defined by the **ConeFeatureXXXType** and conical segment feature defined by the **ConicalSegmentFeatureXXXType**, for defining features with a single, conical surface. The cone feature is meant to describe a feature of size; a feature to which a location characteristic may apply which in turn may acquire bonus from a material condition modifier. The conical segment feature is meant to describe a feature which is not a feature of size; a feature to which a profile characteristic or a radius characteristic at a given cross section may be applied.

The *elements* necessary to describe these two feature types are the same with the exception that the sweep extents for a cone feature are optional while for a conical segment they are required. In the case of a cone feature the optional **Sweep** *element* might be used to exclude a portion of the conical surface to avoid a keyway. For a conical segment the required **Sweep** *element* defines the extent of the feature which may be the corner of a rounded pocket with draft.

5.20.2 Location, orientation and angle

The minimum information necessary to define the conical surface is its location, orientation and angle. Rather than forcing the location for the cone to be its vertex, the location of cone can be defined anywhere along its axis at a specified diameter. The reason for this is twofold. If the angle of a cone is very small so that the cone is almost cylindrical, the vertex is unstable with respect to small changes in angle. This instability can be removed by defining the location at a diameter rather than at the vertex. The feature to which a cone substitute feature fitting algorithm is to be applied may in fact nominally be a cylinder in which case the location of the vertex is indeterminate.

The locating point for a cone or conical segment is defined by the **AxisPoint** sub-element of the **Axis** element. The orientation of the cone or conical segment is defined by the **Direction** sub-element of the **Axis** element. The cone's axis direction defined by the **Direction** sub-element always points towards the widening end of the cone The **Diameter** element is the diameter of the cone in a plane perpendicular to the direction vector at the axis point. The cone or conical segment can be defined by either its full included angle (the angle between opposite sides) or its half angle (the angle between a side and its central axis) by choosing between the **FullAngle** or **HalfAngle** element respectively.

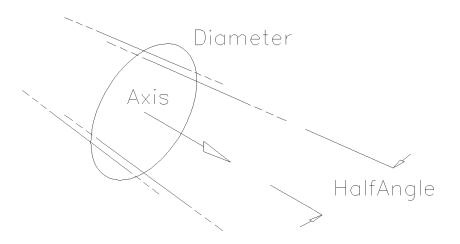


Figure 32 – An unbounded cone located at a reference diameter and defined by its half angle

Figure 32 shows a cone with its location defined at a diameter and with its half angle. This cone definition is stable at small angles and handles the degenerate case of a cylinder.

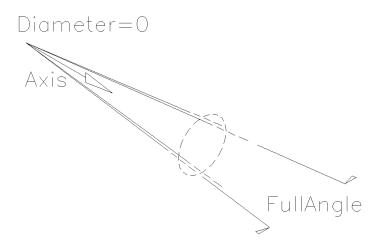


Figure 33 – An unbounded cone located at its vertex and defined by its full angle

Figure 33 shows a cone with its location defined at its vertex and with its half angle. This cone definition is equivalent to that of many CMM systems including DMIS.

5.20.3 Linear extents

The simple definitions illustrated in Figure 32 and Figure 33 show unbounded cones with undefined extents in the direction away from the vertex. The linear extents of a cone or conical segment along its axis can be defined with the optional LargeEndDistance and SmallEndDistance elements. These distances can be positive or negative depending on their relationship with the locating point. If the end is along the axis vector from the locating point then the distance will be positive. If the end is in a direction against the axis vector from the locating point then the distance will be negative.

If both the optional LargeEndDistance and SmallEndDistance *elements* are given then the cone is a conical frustum (or a segment of a frustum): a truncated cone without a pointed end. If the optional LargeEndDistance *element* is present but the SmallEndDistance *element* is missing then the cone or conical segment has a pointed end.

The effect of the locating point on the sign and value of the LargeEndDistance and SmallEndDistance *elements* is shown in

Figure 34, Figure 35, Figure 36, and Figure 37. Not shown is the case where the diameter at the locating point is larger than either the small or large ends in which case both distances would be negative. (In all diagrams the required full or half angle *element* is not shown.)

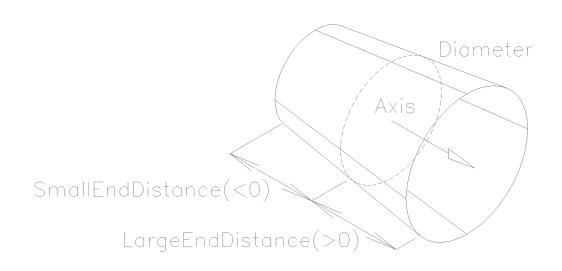


Figure 34 – A bounded, truncated cone located at a reference diameter

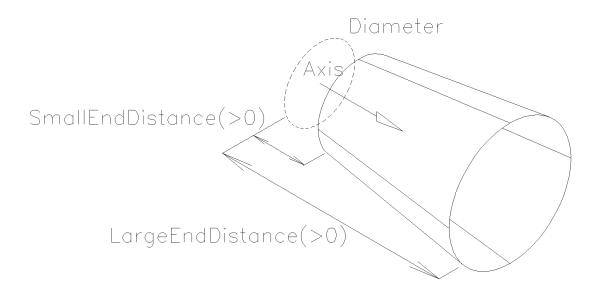


Figure 35 – A bounded, truncated cone located at a virtual reference diameter

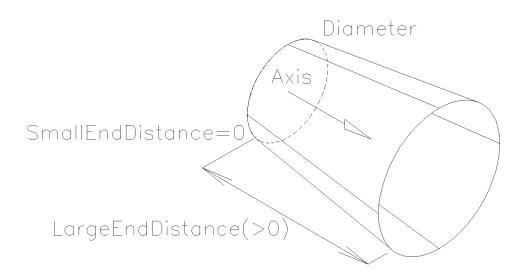


Figure 36 – A bounded, truncated cone located at its small end

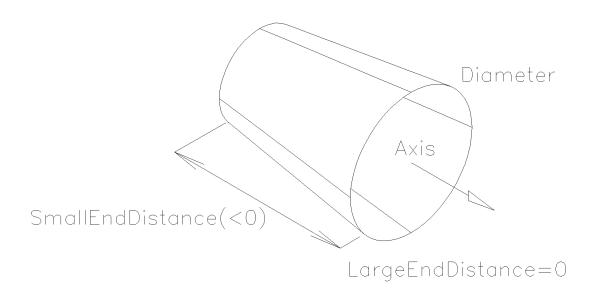
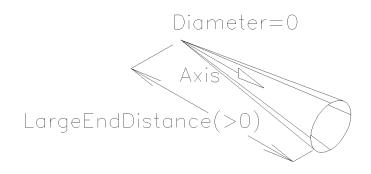



Figure 37 – A bounded, truncated cone located at its large end

Figure 38 and Figure 39 show the bounding of a cone defined with its locating point at its vertex.

Figure 38 – A bounded pointed cone located at its vertex

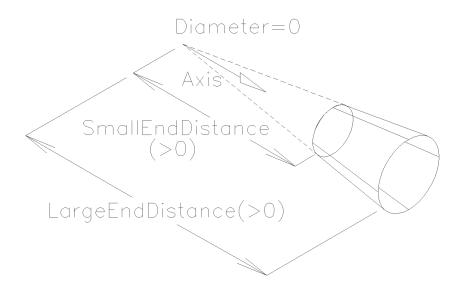


Figure 39 – A bounded truncated cone located at its vertex

5.21 Modeling pattern features in QIF

Pattern features are used for applying position controls to a set of existing features having the same shape. Pattern features are not like other QIF features. Pattern features have definition, nominal, and item aspects, but there is no measurement aspect for pattern features. The *PatternFeatureItemBaseType* is derived from the *GroupFeatureItemBaseType*. The

derivation is analogous for the definition and nominal aspects. The features in the pattern are identified by the **FeatureNominalIds** *element* inherited from the **GroupFeatureNominalType**. The locations of these features must be very close to the locations specified by the pattern. All four pattern types have a **FirstFeatureLocation** *element*; which must be very close to the location of one of the nominal features in the pattern – not necessarily the first one listed in the **FeatureNominalIds**.

There are four specific derived types of pattern feature: linear, circle, circular arc, and parallelogram (which subsumes rectangular patterns). These are described in the following four subclauses.

5.21.1 Circular pattern feature

Circular pattern features are shown in Figure 40 and Figure 41. The features are arranged with their location points equally spaced in a circle. The *PatternFeatureCircleDefinitionType* includes **Diameter**, **FeatureDirection**, and **NumberOfFeatures** *element*s. The **FeatureDirection** is a unit vector giving the orientation of a vector characterizing the features in the pattern, for example, the axis of a cylinder or the direction of an extrusion. The **FeatureDirection** is relative to a coordinate system whose Z axis is the normal to the plane of the circle and whose X axis is the line from the center of the circle to the feature being located. If this *element* is omitted, it means that all features in the pattern have the same orientation relative to the current coordinate system or are not orientable. The

PatternFeatureCircleNominalType provides the **Center**, **Normal**, and **FirstFeatureLocation** *element*s.

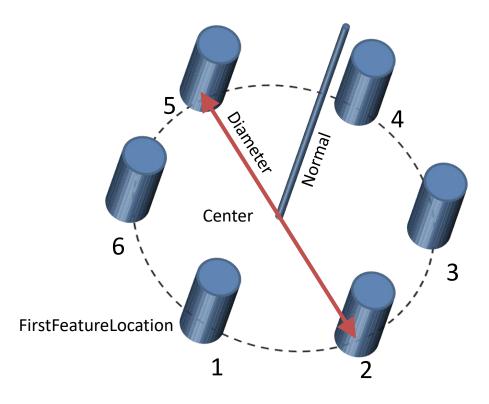


Figure 40 – PatternFeatureCircle with FeatureDirection omitted

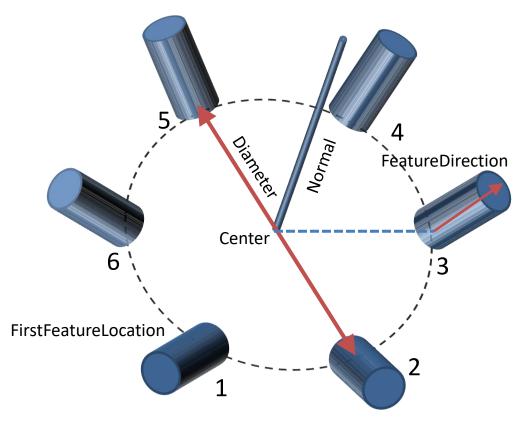


Figure 41 – PatternFeatureCircle with FeatureDirection

5.21.2 Circular arc pattern feature

A circular arc pattern feature is shown in Figure 42. The **Normal**, **Center**, **NumberOfFeatures**, **FirstFeatureLocation**, and **FeatureDirection** *element*s of circular arc pattern features have the same meaning as for circular pattern features. However, a circular arc pattern has an **ArcRadius** rather than a **Diameter**, and also has an **IncrementalArc** giving the angle subtended by any two adjacent features in the pattern. Looking in the direction opposite the **Normal**, the features are arranged counterclockwise from the first feature if the **IncrementalArc** is positive (and clockwise if it is negative).

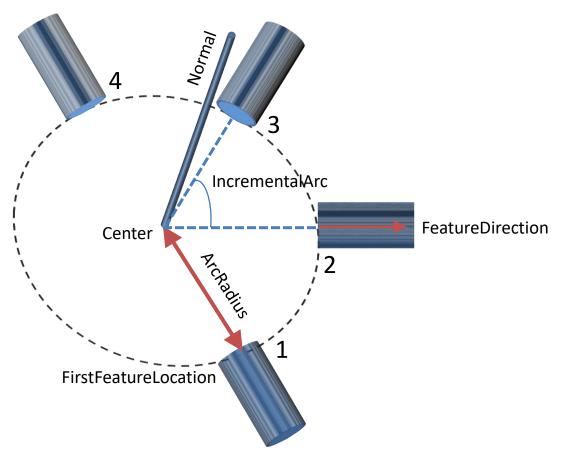


Figure 42 – PatternFeatureCircularArc

5.21.3 Linear pattern feature

A linear pattern feature is shown in Figure 43. The *PatternFeatureLinearDefinitionType* gives the LineDirection, FeatureDirection, IncrementalDistance, and NumberOfFeatures *elements*. The FirstFeatureLocation *element* is in the *PatternFeatureLinearNominalType*. Unlike the circular and circular arc patterns, the FeatureDirection is in the same coordinate system as the feature. The IncrementalDistance is the distance between adjacent features.

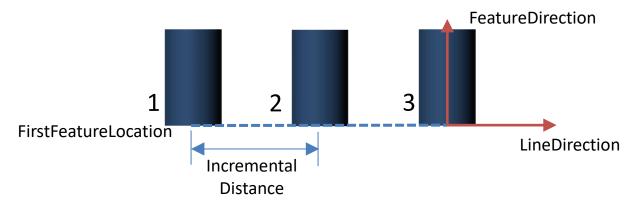
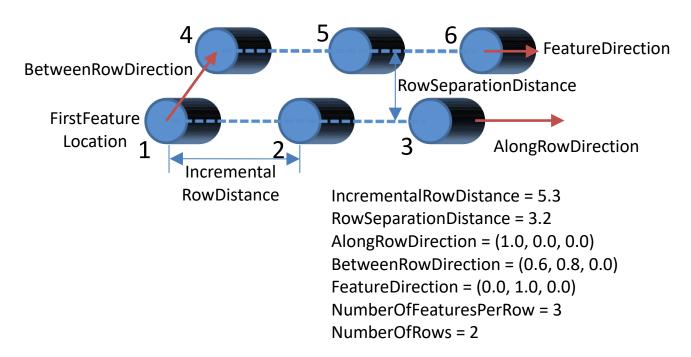
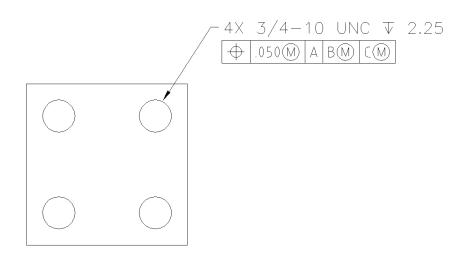
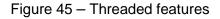



Figure 43 - PatternFeatureLinear

5.21.4 Parallelogram pattern feature

A parallelogram pattern feature is shown in Figure 44 with sample instance data. The AlongRowDirection, IncrementalRowDistance, BetweenRowDirection, RowSeparationDistance, FeatureDirection, NumberOfFeaturesPerRow, and NumberOfRows *element*s are given in the *PatternFeatureParallelogramDefinitionType*. The FirstFeatureLocation *element* is in the *PatternFeatureParallelogramNominalType*. If the BetweenRowDirection is orthogonal to the AlongRowDirection, the pattern is rectangular (or square).




5.22 Modeling threads in QIF

Features and characteristics often have *element*s that essentially define the same information. For example, a cylinder has a nominal **Diameter** *element* on the

CylinderFeatureDefinitionType and a diameter characteristic has a nominal **TargetValue** via the *LinearCharacteristicNominalBaseType* from which

DiameterNominalCharacteristicType derives. Both the diameter and the target value are nominal representations of the size of the feature. Most often these two values will be identical but use cases exist where the manufacturing size and the tolerance evaluation size might be different. For example if a diameter has a specified size of 10.0 + 0.5/-0.0 and the manufacturing process targeted the nominal value of 10.0 any undersize variation would result in an out of tolerance condition.

This is not the case with threaded features. A hole is not threaded to one specification and inspected to another. Also, unlike a simple diameter, the data associated with a thread specification is quite complex as shown in Figure 45. To allow the sharing of thread specification data the threaded feature defined by the *ThreadedFeatureDefinitionType* and the thread characteristic defined by the *ThreadCharacteristicDefinitionType* both have an *element* **ThreadSpecificationId** which references an instance of *ThreadSpecificationType* contained in a list of *ThreadSpecificationsType*.

5.22.1 Thread specification types

The *ThreadSpecificationType* provides a choice between three *elements*: SingleLeadSpecification of *SingleLeadSpecificationType*, MultiLeadSpecification of *MultiLeadSpecificationType*, and TextThreadSpecification of *TextThreadSpecificationType*. The single lead and multi-lead types allow for the unambiguous capturing of detailed information in their *element*s, some of which resolve to enumerations based on industry standards. If these pre-defined data containers are not sufficient to capture a thread specification then that specification may be entered as a simple text string via the **TextSpecification** *element* of **TextThreadSpecificationType**.

5.23 Feature measurement determination

The feature nominal is a representation of the design intent. The feature measurement is determined from an actual physical part. The QIF information model allows for different levels of detail for the information related to how a feature measurement is determined.

5.23.1 Checked and set features

At the most elementary level, the QIF information model distinguishes between a feature measurement which is checked and one which is set. A feature called out on a print may not be measurable. For example, a circle representing the region on the surface of a part which is inaccessible because of interference with a fixture net pad is not a measureable circle. But because the feature appears on a printed part drawing there may be the requirement for that feature to be reported. To accomplish this, the feature measurement is set to its nominal value. More commonly, a feature will be checked by a measurement device or otherwise be evaluated using measurement data.

For a set feature, the **Set** *element* of the **DeterminationMode** *element* on the feature item is chosen. If the feature is checked then the **Checked** *element* of the **DeterminationMode** *element* on the feature item is chosen. The differentiation between set and checked features is the only required information from the **DeterminationMode** *element*.

5.23.2 Measurement and construction

More information about how a feature is checked can be added optionally with the **CheckDetails** *element*. A checked feature can be either measured directly or constructed. A directly measured feature is evaluated using data collected directly for that feature by a measurement device. A constructed feature is evaluated using data previously collected for other features referred to as base features.

For a directly measured feature, the **Measured** *element* of the **CheckDetails** *element* is chosen. For a constructed feature, the **Constructed** *element* of the **CheckDetails** *element* is chosen.

5.23.3 Measurement points

Details on the points used for measuring a feature can be added optionally with the **PointList** *element*. This *element* contains a list of references to nominal target points defined in **NominalPointSets** global *element*. Each point set can contain optional information about the measurement device and sensor used to collect each point.

5.23.4 Construction methods

Further detail about a feature construction can be optionally added by choosing between the construction methods for a given feature type.

Common to all construction methods is the optional **NominalsCalculated** *element*. This Boolean *element* is used and set to true when feature nominals are calculated from the nominals of the set of base features rather than being specified directly. This may come about if a generic macro or subroutine is used to perform a feature construction where both the feature nominal and feature measurement are determined from the input base features.

A base feature used in a construction is a reference to another feature item by its **id** in the **FeatureItemId** *element*. In addition the referenced component of the base feature is identified by the **ReferencedComponent** *element*. Usually the measured component, but sometimes the nominal component, of a base feature is used in the construction of the feature measurement. This is not to be confused with the concept of calculated nominals, where the nominal components of all base features are used to calculate the feature nominal.

The recompensated construction method references the measurement points of a base feature rather than the base feature itself. The **BaseFeaturePointList** *element* identifies an ordered list of measurement points on referenced base features. These points are identified by a single point index, a range of point indexes, or all the points on the specified base feature. Point indexes are integers that begin at 1 for the first point in a measurement point list.

The individual construction methods are described in Features.xsd. The description includes the number and types of base feature references required for the particular construction types.

The descriptions of the various construction methods can be found in *Clause 6: QIF Library -Information Model.* Some construction method types are similar; these methods are clarified and differentiated in the following subclauses.

5.23.4.1 Best-fit and recompensated construction methods

Common to many feature types are the best-fit construction method indicated by choosing the **BestFit** *element* in the **Constructed** *element*, and the recompensated construction method indicated by choosing the **Recompensated** *element* in the **Constructed** *element*. Both methods use a substitute feature fitting algorithm to determine the feature measurement from point data. In the case of best-fit construction the point data is that from point reducible base features. The point-reduced data is compensated for probe size and a substitute feature algorithm may have been applied, such as determining the center of a circle. For recompensated construction the point data is uncompensated raw measurement points from base features. The result is that a recompensated constructed feature will be the same as if it were measured with the same points.

5.23.4.2 Extract and from-scan construction methods

The extract construction method indicated by choosing the **Extract** *element* in the **Constructed** *element* and from-scan indicated by choosing the **FromScan** *element* in the **Constructed** *element* are both used to determine a feature measurement from a set of measurement points. These two methods are similar to the recompensated construction method in that all three create the feature measurement using a substitute feature algorithm on raw uncompensated point data from base features. But the extract and from-scan construction methods differ from the recompensated construction method in that even though the base feature can be identified,

the point indexes on that feature cannot because the feature is typically measured with a scanning device resulting in a large point set variable in both size and density.

Both the extract and from-scan construction methods use a subset of points from the base feature. This subset is determined by the nominal extents of the feature being constructed. Therefore, the feature being constructed must be naturally bounded (e.g., an arc) or explicitly bounded (e.g., a plane with a polyline boundary).

The extract construction method is used when the dimensionality of the base feature and the feature being constructed are the same. Two-dimensional features can be extracted from a two-dimensional scan curve in the same plane; arcs and lines can be extracted from a planar curve scan inside a filleted pocket because the arcs and lines are coincident with the base feature. Similarly, three-dimensional features can be extracted from a three-dimensional scan surface. In both cases, the measurement points used in the construction are those inside the limits on the bounded feature.

But when a two-dimensional feature is derived from the measurement points of a threedimensional scanned surface, the feature being constructed may not be coincident with the scanned data. As a result, search windows must be used to extend the two-dimensional feature out of its plane in order to capture point data sufficient to determine the feature measurement. The from-scan construction methods have *element*s like **SearchRadius** which allow for the definition of the search windows. (Some three dimensional feature types also have a from-scan construction method to be compatible with the DMIS 5.3 CONST (Input format 15) statement.)

5.23.4.3 Copy, cast, and transform construction methods

The copy, cast and transform construction methods perform the similar operation of copying measured data from one feature measurement to another feature measurement. The **NominalsCalculated** *element* is used to control the copying of nominal feature data.

In the case of the copy construction method the base feature and the feature being constructed must be of the same type and all the measured data elements from the base feature are copied unchanged to the feature being constructed. If the **NominalsCalculated** *element* is present and set to true then the nominal data elements are similarly copied from the base feature to the feature being constructed.

In the case of the cast construction method the base feature and the feature being constructed are not of the same type and all the measured data elements from the base feature may or may not have corresponding data elements in the feature being constructed. Only those measured data elements shared between the two feature types are copied unchanged from the base feature to the feature being constructed. If the **NominalsCalculated** *element* is present and set to true then any shared nominal data elements are similarly copied from the base feature to the feature being constructed.

In the case of the transform construction method the base feature and the feature being constructed must be of the same type and all the measured data elements from the base feature are copied to the feature being constructed. All location and orientation elements are

transformed by the actual transform matrix of the specified coordinate system. All size, form, and other dimensional data remain unchanged. If the **NominalsCalculated** *element* is present and set to true then the nominal data elements are similarly copied from the base feature to the feature being constructed with the nominal location and orientation data being transformed by the nominal transform matrix of the specified coordinate system.

5.24 CharacteristicDesignators - encoding "balloon" numbers in QIF

Figure 10 shows a plate with ballooned tolerances. Characteristics that are key to a manufacturing process or to a part's usability (or have some other level of criticality) are often indicated on a drawing with an identifier in a circle or another shape. These balloon numbers and levels of criticality are accommodated in QIF with the concept of a characteristic designator.

The characteristic designator, defined by the *CharacteristicDesignatorType*, performs four tasks. First, the required **Designator** *element* captures the balloon number. Second, the optional **UUID** *element* enables assigning a persistent identifier. Third, the optional **Criticality** *element* is used to indicate the level of importance of the characteristic. This is either one of an enumerated set of criticalities (MINOR, MAJOR, CRITICAL, KEY, and UNDEFINED) or a user-defined token that may have any value. Fourth, the optional **Balloon** *element* enables specifying the location and style of the balloon for visualization.

An *element* **CharacteristicDesignator** of **CharacteristicDesignatorType** can be found in three locations in the characteristics aspect hierarchy: on the definition, on the nominal and on the item. This allows for the sharing of a characteristic designator among several instances of a characteristic. The **CharacteristicDesignator** is also an optional *element* in the **CompositeSegmentDefinitionBaseType**.

In Figure 10 the balloon number "1" is shared by the four holes in much the same way that the nominal diameter is shared. This relationship can be shown by using the optional **CharacteristicDesignator** *element* on the characteristic nominal. This is the normal location for indicating the characteristic designator and criticality except in special circumstances.

When the characteristic designator is shared among several items and it is necessary to assign augmented labels or balloon numbers to each item, this is accomplished with the **CharacteristicDesignator** *element* on the characteristic item. A balloon number of "1" may result in individual characteristic designators with designators like 1_1, 1_2, etc.; 1A, 1B, etc.; or 1.1, 1.2, etc. depending on company standards.

When a box tolerance is used (like that shown in subclause 5.9.4) and such a tolerance is ballooned then, in practice, that designator may be shared among several different characteristics and even different characteristic types. In this case, the **CharacteristicDesignator** *element* on the characteristic definition is used.

If the characteristic designator spans several different characteristic types then the same characteristic designator must be re-defined for each characteristic type; QIF does not allow for characteristic definitions to be shared among characteristics of different types.

5.25 Attributes and Part Notes

The QIF information model enables users to insert otherwise unmodeled information in many places in QIF instance files by using **Attributes** and/or **PartNotes**. Note the capital **A** and bold font on **Attributes**; this is entirely different from XSDL *attributes*.

An **Attributes** *element* is a list of **AttributeXXX** *elements* where the **XXX** indicates the type of data. The full list of **AttributeXXX** *elements* is shown in Figure 46.

Element Name	Data Type
AttributeBool AttributeQPld Attributel1 Attributel2 AttributeD3 AttributeD1 AttributeD2 AttributeD3 AttributeStr AttributeStr AttributeTime AttributeUser	Boolean QPIdType integer <i>list</i> of two integers <i>list</i> of three integers double <i>list</i> of two doubles <i>list</i> of two doubles string XML dateTime user defined data in a binary array or XML structure

Figure 46 – Attributes element names and types

Attributes are intended to be used to convey important information that is not representable elsewhere in the QIF model. Items that can be represented in the model (the nominal diameter of a circle, for example) should not be put into **Attributes**. The **AttributeStr** *element* can be used to convey any sort of information in natural language. The types that have an **Attributes** *element* in the QIF model are shown in Figure 47. Where there is an **Attributes** *element* in a base type, all derived types will have one, too.

Characteristics.xsd	QIFMeasurementResources.xsd
CharacteristicBaseType	EnvironmentalRangeType
CharacteristicGroupType	MeasurementResourceBaseType
Features.xsd	QualificationType
FeatureBaseType	TemperatureType
FeatureZoneBaseType	UserDefinedAxisType
MeasuredPointSetType	
mededical enteerrype	QIFPlan.xsd
IntermediatesPMI.xsd	ActionMethodBaseType
AlgorithmType	MeasurandBaseType
AlignmentOperationBaseType	PlanElementBaseType
AngularToleranceDefinitionType	WorkInstructionBaseType
AngularToleranceType	
AreaToleranceType	QIFResults.xsd
CoordinateSystemType	ActualComponentType
DatumType	MeasurementResultsType
DatumDefinitionType	
DatumReferenceFrameType	QIFStatistics.xsd
DatumTargetType	ControlMethodType
ForceToleranceType	CorrectiveActionPlanType
LinearToleranceDefinitionType	StatisticalStudyPlanBaseType
LinearToleranceType	StatisticalStudyResultsBaseType
MassToleranceType	Statistics.xsd
MaterialType	
OrganizationType	AssignableCauseType
PressureToleranceType	CharacteristicStatsEvalBaseType CorrectiveActionType
SoftwareType	StatsBaseType
SpeedToleranceType	StatsNumericalBaseType
StandardType SubstituteEestureAlgerithmType	StatsWithTolNumericalBaseType
SubstituteFeatureAlgorithmType TemperatureToleranceType	SummaryStatisticsType
ThreadSpecificationDetailedBaseType	
TimeToleranceType	Traceability.xsd
TransformInstanceType	ActualProductTraceabilityType
	EnvironmentType
PrimitivesPD.xsd	InspectionTraceabilityType
NodeWithIdBaseType	ManufacturingProcessTraceabilityType
	PreInspectionTraceabilityType
QIFDocument.xsd	ProductTraceabilityType
QIFDocumentType	·
	Visualization.xsd
	FontType
	PMIDisplayType

Figure 47 – Types with Attributes element

The *PartNoteType* models a note that needs to be displayed graphically and may contain only text. The *ProductType* has a *PartNoteSet element* of *PartNoteSetType* that is a list of

PartNote *elements* of *PartNoteType*. These are referenceable by id. The *ProductDefinitionBaseType* has a *PartNoteIds element* that is a list of ids of part notes. This allows part notes to be connected to specific products. The *PartNoteType* also has a *PartNoteIds element* so that part notes may be nested.

5.26 Detailed requirements

5.26.1 XML naming and design rules (NDR)

XML technology was chosen for QIF encoding because the basic XML specifications are supported as open, public domain, royalty-free standards, and because XML technology is very widely used.

The QIF information model is built using the XML Schema Definition Language(XSDL). That language was chosen because:

- XSDL has adequate expressive power for the basic structure of the model. It includes the ability to define complex types with *attributes* and *elements*.
- XSDL allows more specialized complex types to be derived from less specialized complex types, so that type hierarchies can be defined.
- XSDL has built-in data types and the ability to specialize them.
- XSDL permits the modular construction of models via an "include" capability.
- XSDL has a default instance file format (XML) with a set of rules for determining if an instance file conforms to a model. Moreover, XML instance files are human-readable as well as machine-readable.
- XSDL enables the model builder to define constraints that extend the rules for determining whether an instance file conforms to a model.
- XSDL is a widely accepted language, and the XML file format of instance files is even more widely accepted.
- Tools for determining whether a model is syntactically correct and consistent and whether a given instance file conforms to a given model are available free or for a moderate price.

Tools for generating computer code that may be incorporated in an application from a model built in XSDL are available free or for a moderate price, thus lowering the cost of implementation.

QIF version 3.0 uses all the capabilities of XSDL just mentioned:

- over 3000 complex types are defined.
- derivation hierarchies are built up to five levels deep.
- over 180 specialized data types are defined.
- the QIFDocument model is built from 22 modules.
- QIF includes hundreds of key and keyref constraints.

In this subclause, the prefix xs: is used to indicate terms that are part of the XML schema definition language (XSDL). The xs: prefix is also used in the schema files. The term xs:type used here is not part of XSDL but means either xs:complexType or xs:simpleType.

5.26.1.1 Naming conventions

Certain naming conventions have been used in the development of the QIF XML schemas.

With few exceptions names are descriptive and formed by concatenation without abbreviation. One exception to the rule against abbreviation is that "identifier" is shortened everywhere it appears to "id" or "Id". All concatenated words in a name except possibly the first start with an upper case letter. The rules for the case of the first letter of the first word are:

- All names of XML items except xs:attribute names start with an upper case letter. This includes names for xs:type, xs:element, xs:key, and xs:keyref. Example xs:type name: *ArcFeatureNominalType*
- All xs:attribute names start with a lower case letter. Example xs:attribute name: id. All xs:type names end in "Type".
- All xs:key names end in "Key".
- All xs:keyref names end in "Keyref".
- All names of instantiable feature xs:types end in "FeatureItemType", "FeatureDefinitionType", "FeatureNominalType", or "FeatureMeasurementType".
- All names of instantiable characteristic xs:types end in "CharacteristicItemType", "CharacteristicDefinitionType", "CharacteristicNominalType", or "CharacteristicMeasurementType".
- All names of enumerated xs:types end in "EnumType".
- Names of xs:types that are parent xs:types not intended to be instantiated end in "BaseType", and the types are abstract.
- To a great extent, the names of xs:elements are formed from the name of the xs:type of the xs:element by removing the "Type" at the end. For example, the name of the xs:element whose xs:type is *PlaneFeatureNominalType* is *PlaneFeatureNominal*.

The name of an xs:element that is a reference to a single QIF **id** almost always ends in "Id" and is always of one of the derived types of **QIFReferenceBaseType**. If the value of an xs:element is a list or array of **id**s, the xs:element name almost always ends in "Ids".

5.26.1.2 Design rules

A number of design rules have been followed in building the QIF schema files.

- All xs:type definitions are declared globally, i.e., as direct children of an xs:schema. In other words, no xs:type definition is embedded inside another xs:type definition or inside an xs:element. This convention is commonly called using the venetian blind pattern.
- Although the names of QIF xs:elements and xs:types are very descriptive, the precise meaning almost always requires explanation. The XML schema definition language includes an xs:documentation node type that may be used to put documentation into a schema. Documentation nodes must be preserved by XML tools. Comments may also be inserted in schema files but are not necessarily preserved by XML tools. Further details of documentation are given in subclause 7.2.
- All xs:types not intended to be instantiated are made abstract so as to be explicitly non-instantiable.

- When an xs:element is (or could be) declared to be of an abstract xs:type, there are three ways under the W3C rules in which the xs:element can be declared and instances of it put into instance files.
 - First, in the schema file, the xs:element may be declared to be of the abstract xs:type. In an instance file, instances of it may use the xs:element name for the abstract xs:type followed by an xsi:type declaration identifying one of the derived types. The xsi prefix is used for the standard XML instance namespace, http://www.w3.org/2001/XMLSchema-instance.
 - Second, in the schema file, rather than having a single xs:element declaration, an xs:choice of xs:elements of the various instantiable derived types may be used instead. In an instance file, one of the xs:elements in the xs:choice is used.
 - Third, in the schema file, the xs:element may be declared globally to be of the abstract xs:type and made to be the head of a substitution group. The instantiable derived xs:types are used as the xs:types for the other xs:elements in that substitution group. The xs:element for the abstract xs:type is then used via "ref" elsewhere in the schema file. In an instance file, the xs:element for a member of the substitution group headed by the abstract type is used.

The first method can make writing *key/keyref* constraints difficult since (1) those constraints are expressed using xs:element names, (2) the constraints need to distinguish among xs:types, and (3) the same xs:element name is used with different xs:types. It also requires the instance file to be more verbose (because the xs:type declaration is needed). Hence, the first method is not used in QIF.

The second and third methods have a different xs:type for each xs:element name, so they support writing *key/keyref* constraints. The third method is used overwhelmingly but not exclusively in QIF. The second method is used in several places.

• QIF uses the namespace "http://www.qifstandards.org/xsd/qif3". The schema files in version 3.0 of QIF, use both no prefix and the prefix "t" for this namespace. The "t" is to satisfy the XSDL rule that xpaths require a prefix when a namespace is used.

5.26.1.3 Other naming and design items

XML instance files that conform to QIF must follow the rules for the conformance of instance files to XML schemas as defined by the W3C.

5.26.2 Annotation conventions

A great number of annotations (xs:annotation) containing documentation (xs:documentation) have been included in the QIF schema files in order to explain the full meaning of the various elements in the QIF models. The meanings of the documentation nodes are essential parts of the model, not merely suggestions that may be taken or not. The documentation nodes have been prepared according the following conventions:

- Every schema file has a documentation node near the top that provides a general description of the file.
- Every xs:type has a documentation node.
- Every xs:element outside of a substitution group has a documentation node.

- The xs:element at the head of every substitution group has a documentation node.
- Every different sort of xs:key and xs:keyref has a documentation node. In the case of features and characteristics, the xs:keys and xs:keyrefs occur in large (over 35) batches that are very similar. For these batches, only the first member is documented.
- Only one documentation node is used under an annotation node, unless there is an exceptional reason to include more than one.
- The text of each documentation node consists of one or more complete sentences. The text can stand alone without the context of the XML schema code. The name of the schema file, *attribute*, type, *element*, *key*, or *keyref* is repeated in the sentence.
- All abstract types are annotated as abstract. QIF BaseTypes are always abstract.
- If an element has multiple pieces of information, then "defines" or "gives" is used to describe the element. If the element is one piece of information (even if it has substructure), then "is" is used.
- When an element has maxOccurs="0", that indicates the element is optional. In this case, the word "optional" immediately precedes the name of the element in the documentation.
- When an element has maxOccurs="unbounded", or maxOccurs="N" (where N is an integer that is 2 or greater) there may be more than one such element in an instance file. In these cases, the usage is "Each XXX element defines" rather than "The XXX element defines". Note: The default for elements is exactly one.
- If an attribute is optional, which is the default for attributes, the word "optional" immediately precedes the attribute name in the documentation.
- If an attribute has use="required", that means the attribute is required. In this case, the word "required" immediately precedes the attribute name in the documentation.
- If a type is a list of specific values, the word "enumerated" or "enumerates" is always in the annotation, e.g., "The optional, enumerated TimeDescription element describes the time relative to the inspection, at which the environment data is measured."
- Individual enumeration values in an enumerated type do not have documentation nodes, but if the meaning of the values is not obvious, either they are explained in the documentation node of the type, or a reference is given to a document giving the meanings.
- Documentation nodes do not describe structural aspects of the information model.
- When text notes can assist people in reading and understanding the schema file, text describing the file structure is placed in XML comments.
- The sentence, "This element is in an optional choice." describes a situation in which the element itself is not optional, but the element is effectively optional because the choice it is in is optional.

6 QIF Library

6.1 Introduction

The QIF Library contains fifteen schema files that support the QIF Application schema files. The files and the area covered by each are:

- Auxiliary.xsd types for auxiliary geometry
- Characteristics.xsd characteristic types
- Expressions.xsd expression types specific to QIF, used in the QIF rules and QIF plan applications
- Features.xsd feature types
- GenericExpressions.xsd domain-independent arithmetic, string, and Boolean expression types
- Geometry.xsd geometric types (half of the core of CAD)
- IntermediatesPMI.xsd intermediate PMI types
- Primitives.xsd basic types used throughout QIF
- PrimitivesPD.xsd basic numerical types used in product description
- PrimitivesPMI.xsd basic PMI types
- Statistics.xsd types that support QIF statistics
- Topology.xsd topology types (the other half of the core of CAD)
- Traceability.xsd quality measurement traceability information
- Units.xsd types for units of measurement and values with units
- Visualization.xsd types for graphical display of products, including PMI

The information covered by files in the QIF Library encompasses:

- boundary representation models of the sort found at the core of commercial computeraided design (CAD) systems
 - o geometry
 - o topology
 - mesh representations
 - \circ visualization
- product and manufacturing information (PMI)
 - geometric dimensioning and tolerancing information as expressed in ASME Y14.5M-2009
 - o digital product definition data practices in ASME Y14.41-2012
 - geometrical product specifications expressed in ISO GPS related standards such as: ISO 1101.3
 - $\circ~$ information expressed by ISO 22093:2011 and ANSI/DMIS 105.3 (DMIS 5.3) standards
 - $\circ~$ first article inspection report information as defined in the AS9102B standard.
 - welding information
- rules to use in generating quality plans and programs
 - basic generic expressions
 - o expressions specific to QIF rules

• quality statistics.

The QIF Library, and QIF in general cover both pre-measurement and post-measurement PMI information.

The sizes of these files vary widely, from 300 lines for Auxiliary.xsd to well over 23,000 lines for Features.xsd. The sizes of the subclauses of this clause vary similarly.

The descriptions of the contents of the schema files in this clause are high-level to give the reader a general understanding of each library file. For full details of every type, the HTML data dictionary (which provides two-way navigation) is most convenient to use. The XML schema files themselves contain equivalent information and for some uses are preferable to the HTML.

6.1.1 Changes in the QIF Library from QIF Version 2.1

The QIF Library for version 3.0 contains revised versions of the identically named fifteen schema files in the version 2.1 Library. Some of these files were changed radically and some only slightly, as described in this clause.

One significant change in terminology (which did not change meaning) appears in over a thousand places. That is, the term for the results of inspection has changed from "actual" to "measured". As a result, the names of most *elements* and types containing "Actual" have been changed to instead contain "Measured" or "Measurement". This change in itself has little impact on the capability of QIF but has a large impact on existing software implementations. Most of these changes were in components of *element* names and type names; for example, *DiameterCharacteristicActualType* became *DiameterCharacteristicMeasurementType*. The two QIF library files most affected by that change are Characteristics.xsd and Features.xsd.

A significant change was made to the relationships between the four aspects of features. Previously a measured (actual) feature was required to reference a feature item, now the reference to the feature item is optional; previously a feature item could optionally reference a feature nominal, now the reference to the feature nominal is required. This change brings the QIF feature aspects more into harmony with manufacturing and inspection stages: the nominal and definition aspects come into being at the design stage, the item aspect comes into being at the inspection planning stage, and the measurement aspect comes into being at inspection execution stage.

A modest change expands the identification of the GD&T standard used to include the ability to define associated standards and specifications. Associated is the ability to explicitly define software application and algorithms for substitute feature algorithms and statistical calculations.

A minor addition is the ability to optionally include a simple list of measured values used in a statistical calculation in place of references to measured characteristics that contain those values.

A detailed list of all changes in each schema file will be made available.

6.2 Auxiliary.xsd

The Auxiliary.xsd schema file contains types for:

- auxiliary geometry (points, lines and planes)
- CAD coordinate systems

Auxiliary geometry is geometry items that a user might want to see that are not in the boundary representation of an object, such as the axis of a cylinder. This includes, for example, *PointAuxiliaryType*, *LineAuxiliaryType*, and *PlaneReferenceType*.

CAD coordinate systems are coordinate systems defined in CAD and included in QIF to support CAD to CAD and CAD to DME transfer.

6.3 Characteristics.xsd

6.3.1 Characteristics element

Characteristic information in the QIF data model is modeled in the Characteristics.xsd schema file. The top level type defined in the file is the *CharacteristicAspectsListsType*. This is used in the QIFDocument schema as the type of the *Characteristics element*, as shown in Figure 48.

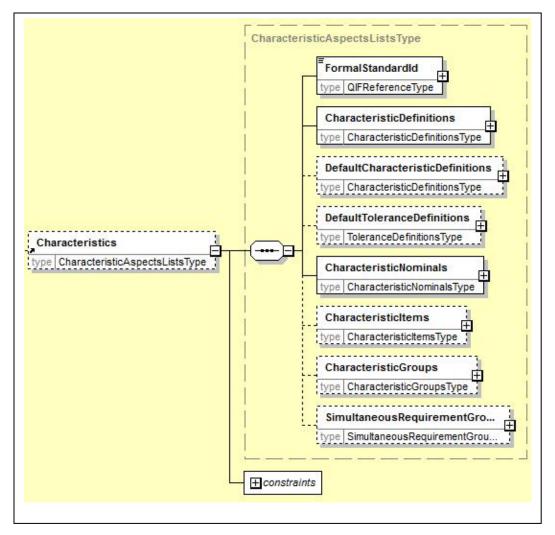


Figure 48 – Characteristics element

6.3.2 Characteristic definitions, nominals, items, and measurements

Characteristics have four aspects: *definition*, *nominal*, *measurement*, and *item*. How the aspects relate to one another is described in Subclause 6.9.3. Lists of three of the four aspects are in the **Characteristics** *element*. The missing aspect, *measurement*, is in measurement results. The **Characteristics** *element* also contains a formal standard identifier, default characteristics, default tolerances, characteristic groups, and simultaneous requirement groups.

The XML Schema language definitions for characteristics form a type hierarchy by using XSDL *extension*s to derive more specialized types from more general types. There are four hierarchies, one for each aspect. Each of the four is headed by *CharacteristicBaseType*. The prototype followed by each of the four hierarchies is shown in Figure 49. The word *Aspect* is shown in the names in the figure where one of the four aspect names (*Item*, *Definition*, *Nominal*, or *Measurement*) would appear. In the figure, inheritance is indicated by indenting an additional level. For example, the inheritance path to *CylindricityCharacteristicAspectType* is:

CharacteristicBaseType CharacteristicAspectBaseType GeometricCharacteristicAspectBaseType FormCharacteristicAspectBaseType CylindricityCharacteristicAspectType

The *CharacteristicBaseType* and other types whose name includes *Base* are abstract types and cannot be instantiated. The hierarchy has 73 leaf types that are not abstract and can be instantiated. Most of the leaf types exist because they are included in ASME GD&T, ISO GPS, or AWS A2.4:2012 (for welding). Nine of the types exist only so that users can create userdefined characteristics for which there is a defined unit (*Angular, Area, Force, Linear, Mass, Pressure, Speed, Temperature*, and *Time*). User-defined characteristics not using any of those units may be defined with either *UserDefinedAttributeCharacteristicAspectType* or *UserDefinedUnitCharacteristicAspectType*.

CharacteristicBaseType
CharacteristicAspectBaseType
AreaCharacteristicAspectBaseType
UserDefinedAreaCharacteristicAspectType
DimensionalCharacteristicAspectBaseType
AngularCharacteristicAspectBaseType
AngleCharacteristicAspectType
AngleBetweenCharacteristicAspectType
AngleFromCharacteristicAspectType
UserDefinedAngularCharacteristicAspectType
CoordinateCharacteristicAspectBaseType
AngularCoordinateCharacteristicAspectType
LinearCoordinateCharacteristicAspectType
LinearCharacteristicAspectBaseType
ChordCharacteristicAspectType
ConicalTaperCharacteristicAspectType
CurveLengthCharacteristicAspectType
DepthCharacteristicAspectType
DiameterCharacteristicAspectType
DistanceBetweenCharacteristicAspectType
DistanceFromCharacteristicAspectType
FlatTaperCharacteristicAspectType
HeightCharacteristicAspectType
LengthCharacteristicAspectType
RadiusCharacteristicAspectType
SphericalDiameterCharacteristicAspectType
SphericalRadiusCharacteristicAspectType
SquareCharacteristicAspectType
ThicknessCharacteristicAspectType
UserDefinedLinearCharacteristicAspectType
WidthCharacteristicAspectType
GeometricCharacteristicAspectBaseType
FormCharacteristicAspectBaseType
CircularityCharacteristicAspectType
ConicityCharacteristicAspectType
CylindricityCharacteristicAspectType
EllipticityCharacteristicAspectType
FlatnessCharacteristicAspectType
OtherFormCharacteristicAspectType
SphericityCharacteristicAspectType
StraightnessCharacteristicAspectType
ToroidicityCharacteristicAspectType

LocationCharacteristicAspectBaseType
CoaxialityCharacteristicAspectType
ConcentricityCharacteristicAspectType
PositionCharacteristicAspectType
SymmetryCharacteristicAspectType
OrientationCharacteristicAspectBaseType
AngularityCharacteristicAspectType
ParallelismCharacteristicAspectType
PerpendicularityCharacteristicAspectType
ProfileCharacteristicAspectBaseType
LineProfileCharacteristicAspectType
PointProfileCharacteristicAspectType
SurfaceProfileCharacteristicAspectType
SurfaceProfileNonUniformCharacteristicAspectType
RunoutCharacteristicAspectBaseType
CircularRunoutCharacteristicAspectType
TotalRunoutCharacteristicAspectType
ForceCharacteristicAspectBaseType
UserDefinedForceCharacteristicAspectType
MassCharacteristicAspectBaseType
UserDefinedMassCharacteristicAspectType
PressureCharacteristicAspectBaseType
UserDefinedPressureCharacteristicAspectType
SpeedCharacteristicAspectBaseType
UserDefinedSpeedCharacteristicAspectType
SurfaceTextureCharacteristicAspectType
TemperatureCharacteristicAspectBaseType
UserDefinedTemperatureCharacteristicAspectType
ThreadCharacteristicAspectType
TimeCharacteristicAspectBaseType
UserDefinedTimeCharacteristicAspectType
UserDefinedAttributeCharacteristicAspectType
UserDefinedUnitCharacteristicAspectType

WeldCharacteristicAspectBaseType	
WeldBevelCharacteristicAspectType	
WeldCompoundCharacteristicAspectType	
WeldEdgeCharacteristicAspectType	
WeldFilletCharacteristicAspectType	
WeldFlareBevelCharacteristicAspectType	
WeldFlareVCharacteristicAspectType	
WeldJCharacteristicAspectType	
WeldPlugCharacteristicAspectType	
WeldScarfCharacteristicAspectType	
WeldSeamCharacteristicAspectType	
WeldSlotCharacteristicAspectType	
WeldSpotCharacteristicAspectType	
WeldSquareCharacteristicAspectType	
WeldStudCharacteristicAspectType	
WeldSurfacingCharacteristicAspectType	
WeldUCharacteristicAspectType	
WeldVCharacteristicAspectType	

Figure 49 – Characteristic types

A small deviation from the hierarchy shown in Figure 49 is that *DiameterCharacteristicDefinitionType* is derived directly from *DimensionalCharacteristicAspectBaseType* in order that an option to use limits and fits may be included.

6.3.3 DefaultCharacteristicDefinitions

The **DefaultCharacteristicDefinitions** *element* shown in Figure 48 is list of default or "unless otherwise specified" characteristic definitions.

6.3.4 DefaultToleranceDefinitions

The **DefaultToleranceDefinitions** *element* shown in Figure 48 is a list of tolerance definitions with ids. The list may be a mix of **LinearTolerance** and **AngularTolerance** *element*s. A tolerance in the list can be referenced by id from a characteristic definition that uses a tolerance of the correct type. Key/keyref checks are included for this.

6.3.5 CharacteristicGroups

The **CharacteristicGroups** *element* shown in Figure 48 is a list of characteristic groups. Each of these is of **CharacteristicGroupType** or its only derived type,

CharacteristicManufacturingProcessGroupType. A characteristic group may be transformed as a whole and have a status as a whole.

6.3.6 Constraint checking for characteristics

Between QIFDocument.xsd and Characteristics.xsd there are over 200 *keyrefs* for checking references between the aspects of characteristics. The three sorts of references between characteristics that these check are:

- measurement to item
- item to nominal
- nominal to definition

For example, if the **Nominalld** *element* of an instance of **SurfaceProfileCharacteristicItemType** is populated, its value must be the **id** of a **SurfaceProfileCharacteristicNominalType**.

The nominal-to-definition *keyref* checks are in Characteristics.xsd. The other two types of *keyref* checks are in QIFDocument.xsd.

QIF enables referencing objects in external QIF instance files. *Keyrefs* apply only within an instance file. All of the 200-plus *keyref* constraints between aspects of characteristics within an instance file have been implemented between instance files using XSLT, as described in Clause 5.

6.3.7 ToleranceZones

Characteristics.xsd defines types that describe the shapes of tolerance zones used in the characteristics as shown in Figure 50.

CoaxialityDiametricalZoneType
CoaxialityNonDiametricalZoneType
ConcentricityDiametricalZoneType
ConcentricityNonDiametricalZoneType
ConcentricitySphericalZoneType
OrientationDiametricalZoneType
OrientationPlanarZoneType
PositionDiametricalZoneType
PositionNonDiametricalZoneType
PositionSphericalZoneType
StraightnessDiametricalZoneType
StraightnessNonDiametricalZoneType

Figure 50 – Tolerance zone types

6.3.8 Substitution groups in Characteristics.xsd

Characteristics.xsd defines five *substitutionGroups*. One of these is for **CharacteristicGroup**, and has only one substitutable *element*. Four *substitutionGroups* are for characteristic aspects.

Each of those has a head whose type is the base type for the aspect plus 73 substitutable *elements* (one for each instantiable characteristic type).

6.4 Expressions.xsd

The Expressions.xsd schema file defines QIF-specific expressions for supporting QIFRules.xsd. Expressions.xsd *includes* GenericExpressions.xsd (discussed in subclause 6.6), so the capabilities of GenericsExpressions.xsd are available for rules.

Expressions are involved in QIF rules when a feature (possibly associated with a characteristic) is being examined for one of three purposes: (1) picking the number of target hit points on the feature for probing, (2) picking the strategy (pattern) for hit points, or (3) picking a substitute feature algorithm for fitting the feature to hit points. The (possibly automated) system that is making the decisions is working in an environment in which sampling category has been set. The system is expected to have access to information about the feature and the characteristic (if there is one). Sampling category is discussed further in Clause 10.

Expressions are also used in rules for selecting dimensional metrology equipment (DMEs).

6.4.1 Types Defined in Expressions.xsd

The following expression types are derived from *BooleanExpressionBaseType* (which is defined in GenericExpressions.xsd).

CharacteristicIsType FeatureIsDatumType FeatureIsInternalType FeatureTypeIsType SamplingCategoryIsType ShapeClassIsType

The following expression types are derived from *ArithmeticExpressionBaseType* (which is defined in GenericExpressions.xsd).

ArithmeticParameterBaseType ArithmeticCharacteristicParameterType ArithmeticDMEParameterType ArithmeticFeatureParameterType ArithmeticPartParameterType CharacteristicToleranceType FeatureAreaType FeatureLengthType

6.4.2 Substitution groups in Expressions.xsd.

The *substitutionGroups* of **BooleanExpression** and **ArithmeticExpression** defined in GenericExpressions.xsd are extended in Expressions.xsd. There is an *element* for each of the types listed in subclause 6.4.1 above that is not a base type. In all cases, the name of the *element* is the name of the type with "Type" removed from the end of the name.

6.5 Features.xsd

6.5.1 Features element

Measurement features are generated by analyzing the association between (1) geometric dimensions and tolerances (GD&T) and (2) product design geometric elements as specified in design models or drawings. In the QIF realm and widely accepted in the metrology and manufacturing quality fields, features are defined as the underlying targets to which GD&T is applied. These features are often defined as points, curves, planes, spheres, etc. that can actually be seen on the physical part to be measured. The characteristics defined in Characteristics.xsd apply primarily to features; for example a diameter characteristic might apply to a circle or cylinder, and a perpendicularity characteristic might apply to two planes.

The Features.xsd schema file defines types that describe dimensional metrology features. The top level type defined in the file is the *FeatureAspectsListsType*. This is used in the QIFDocument schema as the type of the *Features element*, as shown in Figure 51.

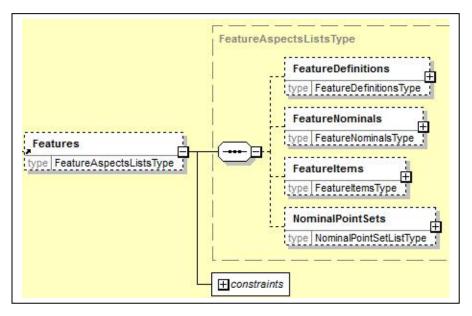


Figure 51 – **Features** element

6.5.2 Feature types

Features.xsd defines instantiable feature types plus base feature types, as shown in Figure 52. Features have four aspects: *definition, nominal, measurement,* and *item*. Each feature type in

Figure 52 that has "Aspect" in its name has a type for each of the four aspects, except that there is no measurement type for the five pattern feature types. Lists of three of the aspects are included in the *FeatureAspectsListsType*, as shown in Figure 51. A list of the fourth aspect, *measurement*, is included in measurement results.

Figure 52 – Feature Types (below)

	_
FeatureBaseType	
NonShapeFeatureBaseType	
NonShapeFeatureAspectBaseType	
MarkingFeatureAspectType	
OtherNonShapeFeatureAspectType	
ShapeFeatureBaseType	
ShapeFeatureAspectBaseType	
CurveFeatureAspectBaseType	
CircleFeatureAspectType	
CircularArcFeatureAspectType	
EllipseFeatureAspectType	
EllipticalArcFeatureAspectType	
ElongatedCircleFeatureAspectType	
LineFeatureAspectType	
OppositeAngledLinesFeatureAspectType	
OppositeParallelLinesFeatureAspectType	
OtherCurveFeatureAspectType	
PointDefinedCurveFeatureAspectType	
GroupFeatureAspectType	
PatternFeatureAspectBaseType	
PatternFeatureCircleAspectType	
PatternFeatureCircularArcAspectType	
PatternFeatureLinearAspectType	
PatternFeatureParallelogramAspectType	
OtherShapeFeatureAspectType	
PointFeatureAspectBaseType	
EdgePointFeatureAspectType	
PointFeatureAspectType	
SpecifiedFeatureAspectBaseType	
ThreadedFeatureAspectType	
SurfaceFeatureAspectBaseType	
ConeFeatureAspectType	
ConicalSegmentFeatureAspectType	
CylinderFeatureAspectType	
CylindricalSegmentFeatureAspectType	
ElongatedCylinderFeatureAspectType	
ExtrudedCrossSectionFeatureAspectType	
OppositeAngledPlanesFeatureAspectType	
OppositeParallelPlanesFeatureAspectType	
OtherSurfaceFeatureAspectType	
PlaneFeatureAspectType	
PointDefinedSurfaceFeatureAspectType	
SphereFeatureAspectType	
SphericalSegmentFeatureAspectType	
SurfaceOfRevolutionFeatureAspectType	
ToroidalSegmentFeatureAspectType	
TorusFeatureAspectType	
	-

As shown in Figure 51, the Features element also contains the NominalPointSets element.

Feature descriptions in natural language are given in the in-line documentation of the feature types. Diagrams of some feature types are provided in Clause 5. The Features.xsd file also:

- defines methods of constructing features
- contains the key/keyref pairs that constrain references from feature nominals to feature definitions
- defines the *subsitutionGroups* for feature aspects.

All but one of the feature types in DMIS 5.3 have an equivalent in QIF. QIF has some that do not have an equivalent in the DMIS 5.3 standard. A comparison of the shape feature definitions in QIF and DMIS is shown in Figure 53. QIF non-shape features are not shown.

QIF Feature	Equivalent DMIS Feature
Circle	CIRCLE
CircularArc	ARC (format 1)
Cone	CONE
ConicalSegment	CONRADSEGMNT
Cylinder	CYLNDR
CylindricalSegment	CYLRADSEGMNT
EdgePoint	EDGEPT
Ellipse	ELLIPS
EllipticalArc	no equivalent
ElongatedCircle	no equivalent
ElongatedCylinder	ELONGCYL
ExtrudedCrossSection	no equivalent
Generic	GEOM, OBJECT
Group	COMPOUND
Pattern	PATERN
Line	LINE
OppositeAngledLines	CPARLN
OppositeParallelLines	CPARLN
OppositeAngledPlanes	PARPLN, SYMPLN
OppositeParallelPlanes	PARPLN, SYMPLN
OtherCurveFeature	GEOM, OBJECT
OtherShapeFeature	GEOM, OBJECT
OtherSurfaceFeature	GEOM, OBJECT
Plane	PLANE
Point	POINT
PointDefinedCurve	GCURVE
PointDefinedSurface	GSURF
Sphere	SPHERE
SphericalSegment	SPHRADSEGMNT
SurfaceOfRevolution	REVSURF
Threaded	no equivalent
ToroidalSegment	TORRADSEGMNT
Torus	TORUS
no equivalent	RCTNGL

Figure 53 – Comparison of feature definitions in QIF and DMIS

QIF features are described using Cartesian coordinates. Notes may be attached to any of the feature aspects.

6.5.3 Constraint checking for features

Between QIFDocument.xsd and Features.xsd there are over 100 *keyrefs* for checking references between the aspects of features. The three sorts of references between features that these check are:

- measurement to item
- item to nominal
- nominal to definition.

For example, if the **FeatureNominalId** *element* of an instance of **CircleFeatureItemType** is populated, its value must be the **id** of a **CircleFeatureNominalType**.

The nominal to definition *keyref* checks are in Features.xsd. The other two types of *keyref* checks are in QIFDocument.xsd.

QIF enables referencing objects in external QIF instance files. *Keyrefs* apply only within an instance file. All of the 100-plus *keyref* constraints between aspects of features within an instance file have been implemented between instance files using XSLT, as described in Clause 5.

6.5.4 Feature construction methods

As described in subclause 6.5.4, the Features.xsd schema file provides construction methods for features. These are defined for all instantiable shape features except GroupFeature and its derived types. There are several stereotypical construction methods that may be applied to the shape feature types that may be constructed.

- copy all
- transform all except OtherCurve, OtherShape, and OtherSurface
- cast all except PointDefinedCurve, PointDefinedSurface, OtherCurve, OtherShape, and OtherSurface
- best fit all except Point, EdgePoint, OtherCurve, OtherShape, and OtherSurface
- recompensated all except Point and EdgePoint, OtherCurve, OtherShape, and OtherSurface
- from scan Circle, CircularArc, Cone, Cylinder, EdgePoint, Ellipse, EllipticalArc, Line, OppositeAngledLines, OppositeParallelLines, OppositeAngledPlanes, OppositeParallelPlanes, PointDefinedCurve, Point, Sphere, Torus
- extract CircularArc, Line, Plane, PointDefinedCurve, PointDefinedSurface
- intersection Circle, CircularArc, Ellipse, EllipticalArc, Line, OppositeParallelLines, OppositeAngledLines, Point
- projection CircularArc, Circle, Ellipse, EllipticalArc, Line, OppositeAngledLines, OppositeParallelLines, Point
- tangent through Circle, Line, Plane

In addition to these generally applicable construction methods, several other construction methods are applicable to one or a few feature types.

- Circle FromCone, Tangent
- Line Midline, Parallel, Perpendicular
- Plane Midplane, Offset, Parallel, Perpendicular, Through
- Point FromCone, CenterOfGravity, Pierce, Midpoint, MovePoint, MovePointVector, MovePointAxis, Extreme
- Threaded FromCylinder

6.5.5 Substitution groups for features

The Features.xsd schema file defines four *substitutionGroups* (one for each feature aspect), each of which has a head that is the base type for the aspect, plus 37 members (one for each instantiable feature type).

6.6 GenericExpressions.xsd

The GenericExpressions.xsd schema file defines Boolean expression types, simple arithmetic expression types, and very simple string expression (actually *token*) types. The generic expressions are not specific to QIF.

Expressions defined in GenericExpressions.xsd are used in Expressions.xsd, QIFPlan.xsd, and QIFRules.xsd. Expressions.xsd extends the *substitutionGroups* of **BooleanExpression** and **ArithmeticExpression**, as described in Subclause 6.4.2. QIFPlan.xsd extends the *substitutionGroup* of **TokenExpression**.

All expressions are modeled in XSDL (the same way everything else is modeled), not in condensed symbolic notation. This makes instances of the expressions verbose but very easy to process. No separate expression parser is needed.

6.6.1 Arithmetic Expressions

All instantiable arithmetic expression types are derived directly or indirectly from the *abstract* (non-instantiable) *ArithmeticExpressionBaseType*. Instantiable arithmetic expression types defined in the file that represent arithmetic operators are:

- NegateType
- MaxType
- MinType
- PlusType
- MinusType
- TimesType
- DividedByType

ArithmeticConstantType is also an arithmetic expression type.

A *substitutionGroup* headed by the **ArithmeticExpression** *element* is defined containing an *element* for each of the types listed above. The *element* names are the type names with "Type" removed.

MaxType, *MinType*, *PlusType*, and *TimesType* take two or more arguments. *MinusType* and *DividedByType* take exactly two arguments. *NegateType* takes one argument.

6.6.2 String Expressions

String expressions are defined using the *token* type, which is a string in which extra white space is ignored (so that, for example, " a string " is considered to be the same as "a string"). There is an *abstract* **TokenExpressionBaseType** from which **TokenConstantType** is derived. There is a *substitutionGroup* headed by the **TokenExpression** *element* and containing the **TokenConstant** *element*.

It is intended to extend the range of string expressions in future versions of QIF.

6.6.3 Boolean Expressions

The following common comparisons between arithmetic expressions that return a Boolean result are defined:

- ArithmeticEqualType
- GreaterThanType
- GreaterOrEqualType
- LessThanType
- LessOrEqualType

Boolean expression types taking Boolean arguments are defined:

- BooleanEqualType
- ConstantIsType
- NotType
- AndType
- OrType

One Boolean expression taking two *token* (i.e., string) arguments is defined; that is *TokenEqualType*.

The Boolean expression types listed above are all instantiable. In addition to those types, noninstantiable *abstract* base types are defined, headed by **BooleanExpressionBaseType**. A *substitutionGroup* headed by the **BooleanExpression** *element* is defined. Its members are *element*s corresponding to the types listed above. The names of the *element*s are the same as the names of the types, with "Type" removed.

The expression types *ConstantIsType*, *NegateType*, and *NotType* take one argument. *AndType* and *OrType* take two or more arguments. All other Boolean expression types take exactly two arguments.

6.7 Geometry.xsd

The Geometry.xsd schema file defines the geometry types shown in Figure 54 and the geometry set types shown in Figure 55. Subhierarchies of the derivation hierarchy shown in Figure 54 are also shown in Clause 7. The role of the geometry types in product definition is covered thoroughly in Clause 7 and is not described here.

The Geometry.xsd file also defines a mathematical core type for each of the instantiable (leaf) types in Figure 54 and two enumerations.

GeometryBaseType
Curve12BaseType
Aggregate12Type
ArcCircular12Type
ArcConic12Type
Nurbs12Type
Polyline12Type
Segment12Type
Spline12Type
Curve13BaseType
Aggregate13Type
ArcCircular13Type
ArcConic13Type
Nurbs13Type
Polyline13Type
Segment13Type
Spline13Type
MeshTriangleType
PathTriangulationType
PointEntityType
SurfaceBaseType
Cone23Type
Cylinder23Type
Extrude23Type
Nurbs23Type
Offset23Type
Plane23Type
Revolution23Type
Ruled23Type
Sphere23Type
Spline23Type
Torus23Type

Figure 54 – Individual geometry types

Curve12SetType	
Curve13SetType	
CurveMeshSetType	
GeometrySetType	
PointSetType	
SurfaceMeshSetType	
SurfaceSetType	

Figure 55 – Geometry set types

The GeometrySetType in Figure 55 consists of elements of the other six types.

6.8 IntermediatesPMI.xsd

The IntermediatesPMI.xsd schema file defines over 130 miscellaneous types used in other schema files. Many of these types either define ids or use ids. Twenty-four of them are enumerations.

The hierarchy of alignment operation types shown in Figure 56 is included along with a *substitutionGroup* for them.

AlignmentOperationBaseType BestFitAlignmentOperationType DatumPrecedenceAlignmentOperationType MachineCoordinateSystemOperationType MeasurementOffsetAlignmentOperationType NominalOffsetAlignmentOperationType NominalRotationAlignmentOperationType PrimaryAlignmentOperationType SecondaryAlignmentOperationType

Figure 56 – Alignment operations

The types dealing with datums and datum reference frames shown in Figure 57 are defined.

	CompoundDatumType
	DatumDefinitionsType
1	DatumDefinitionType
1	DatumFeatureBaseType
1	DatumFeatureSimulatorModifierType
1	DatumReferenceFramesType
1	DatumReferenceFrameType
	DatumTranslationType
	DatumType
1	DatumWithPrecedenceType
	MeasuredDatumFeatureType
	NominalDatumFeatureType
	SequencedDatumType

Figure 57 – Datums and datum reference frames

A number of ISO-specific types are defined as shown in Figure 58. In addition to these ISO-specific types, there are many ISO-specific *elements* in various types. For example, the DatumType has the following ISO-Specific *elements*: **ProjectedDatum**, **DiameterModifier**,

SectionModifier, ContactingFeature, DistanceVariable, DatumFixed, ReducedDatum, ConstrainOrientation, ConstrainSubsequent. Further information about ISO-specific items is given in Clause 5.

CollectionPlaneType DiameterModifierEnumType IntersectionPlaneEnumType IntersectionPlaneType ISODegreeOfFreedomEnumType ModifyingPlaneEnumType OrientationPlaneType ReducedDatumEnumType SectionModifierEnumType

Figure 58 – ISO-specific types

Intermediates.xsd defines other types dealing, among other things, with the following: algorithms, events, external references, threads, standards, coordinate systems, tolerances, transforms, materials, and points that are to be measured or were measured.

6.9 Primitives.xsd

The Primitives.xsd schema file defines 90 miscellaneous types used in other schema files. Types in Primitives.xsd might be used in CAD as well as in quality measurement. This includes, for example: *PointType*, *UnitVectorType*, and *TransformMatrixType*. Types in this file do not have an **id** *attribute*.

The QIF types for identifiers and references to identifiers, both internal to a QIF instance file and external to it, are defined in Primitives.xsd.

Nineteen of the types have an *attribute* named **n** or **count** and represent collections such as arrays and lists. In these types, **n** or **count** is the number of items.

The definitions of the *AttributeBaseType* and eleven derived types are included along with the definitions of ten global *elements* (one of each type) in a *substitutionGroup*. These are made available to users for including data in an instance file that is not modeled elsewhere in QIF. The eleven *elements* are:

- AttributeBool an xs:boolean
- AttributeStr an xs:string
- AttributeQPId a QPId for identifying the containing element
- AttributeTime an xs:dateTime
- Attributel1 a single xs:integer
- Attributel2 two xs:integers
- Attributel3 three xs:integers
- AttributeD1 one xs:double
- AttributeD2 two xs:doubles

- AttributeD3 three xs:doubles
- AttributeUser binary data or any user-defined XML data.

An **Attributes** *element* including any number of these *element*s may be inserted in an instance file at many places. All the **Attributes** *element*s are optional.

6.10 PrimitivesPD.xsd

The PrimitivesPD.xsd schema file defines 3 miscellaneous *simpleTypes* and 8 *complexTypes* that are used in CAD product definition but not in PMI.

6.11 PrimitivesPMI.xsd

The PrimitivesPMI.xsd schema file defines miscellaneous types that do not have ids and are not used in geometry or topology but are used elsewhere. This includes 15 enumerations and 45 *complexTypes*.

Over a dozen types support statistics and have "Stats" in their names. Four of the *complexTypes* are scale types. Another four are used for datum targets. Nine *complexTypes* offer a choice between an enumeration value and a user-defined value. These are shown in Figure 59.

BottomType
DigitalModelFormatType
ManufacturingMethodType
SecurityClassification
ShapeClassType
SlotEndType
ThreadClassType
ThreadSeriesType
TypeOfCoordinatesType

Figure 59 – Types with enumeration or user definition

6.12 Statistics.xsd

The Statistics.xsd schema file supports the QIFStatistics application. It defines type hierarchies and miscellaneous other types used in quality statistics. This includes 178 *complexTypes* and 9 *simpleTypes*. Further information about QIFStatistics is given in Clause 12.

6.12.1 Basic Statistics Types

The Statistics.xsd file defines a hierarchy of basic statistics types as shown in Figure 60.

StatsBaseType StatsNumericalBaseType StatsAngularType StatsAreaType StatsForceType StatsLinearType StatsMassType StatsPressureType StatsSpeedType StatsTemperatureType StatsTimeType StatsUserDefinedUnitType StatsWithTolNumericalBaseType StatsWithTolAngularType StatsWithTolAreaType StatsWithTolForceType StatsWithTolLinearType StatsWithTolMassType StatsWithTolPressureType StatsWithTolSpeedType StatsWithTolTemperatureType StatsWithTolTimeType StatsWithTolUserDefinedUnitType StatsPassFailType

Figure 60 – Basic Statistics Types

6.12.2 Characteristic Statistics Evaluation Types

The file defines a hierarchy of characteristic statistics evaluation types as shown in Figure 61. This is very similar to the characteristics hierarchy but omits some of the intermediate types of that hierarchy. Statistics may be reported for each one of these whose name does not include *Base*, thus offering various aggregated statistics in addition to statistics for the leaf node types.

CharacteristicStatsEvalBaseType
AngularCharacteristicStatsEvalType
AngularCoordinateCharacteristicStatsEvalType
AngleCharacteristicStatsEvalType
AngleFromCharacteristicStatsEvalType
AngleBetweenCharacteristicStatsEvalType
GeometricCharacteristicStatsEvalType
FormCharacteristicStatsEvalBaseType
CircularityCharacteristicStatsEvalType
ConicityCharacteristicStatsEvalType
CylindricityCharacteristicStatsEvalType
EllipticityCharacteristicStatsEvalType
FlatnessCharacteristicStatsEvalType
OtherFormCharacteristicStatsEvalType
SphericityCharacteristicStatsEvalType
StraightnessCharacteristicStatsEvalType
ToroidicityCharacteristicStatsEvalType
LocationCharacteristicStatsEvalType
CoaxialityCharacteristicStatsEvalType
ConcentricityCharacteristicStatsEvalType
PositionCharacteristicStatsEvalType
SymmetryCharacteristicStatsEvalType
OrientationCharacteristicStatsEvalType
AngularityCharacteristicStatsEvalType
ParallelismCharacteristicStatsEvalType
PerpendicularityCharacteristicStatsEvalType
ProfileCharacteristicStatsEvalBaseType
LineProfileCharacteristicStatsEvalType
PointProfileCharacteristicStatsEvalType
SurfaceProfileCharacteristicStatsEvalType
SurfaceProfileNonUniformCharacteristicStatsEvalType
RunoutCharacteristicStatsEvalBaseType
CircularRunoutCharacteristicStatsEvalType
TotalRunoutCharacteristicStatsEvalType
LinearCharacteristicStatsEvalType
ChordCharacteristicStatsEvalType
ConicalTaperCharacteristicStatsEvalType
CurveLengthCharacteristicStatsEvalType
DepthCharacteristicStatsEvalType

LinearCharacteristicStatsEvalType (continued)
DiameterCharacteristicStatsEvalType
DistanceBetweenCharacteristicStatsEvalType
DistanceFromCharacteristicStatsEvalType
FlatTaperCharacteristicStatsEvalType
HeightCharacteristicStatsEvalType
LengthCharacteristicStatsEvalType
LinearCoordinateCharacteristicStatsEvalType
RadiusCharacteristicStatsEvalType
SphericalDiameterCharacteristicStatsEvalType
SphericalRadiusCharacteristicStatsEvalType
SquareCharacteristicStatsEvalType
ThicknessCharacteristicStatsEvalType
WidthCharacteristicStatsEvalType
SurfaceTextureCharacteristicStatsEvalType
ThreadCharacteristicStatsEvalType
UserDefinedAngularCharacteristicStatsEvalType
UserDefinedAreaCharacteristicStatsEvalType
UserDefinedAttributeCharacteristicStatsEvalType
UserDefinedForceCharacteristicStatsEvalType
UserDefinedLinearCharacteristicStatsEvalType
UserDefinedMassCharacteristicStatsEvalType
UserDefinedPressureCharacteristicStatsEvalType
UserDefinedSpeedCharacteristicStatsEvalType
UserDefinedTemperatureCharacteristicStatsEvalType
UserDefinedTimeCharacteristicStatsEvalType
UserDefinedUnitCharacteristicStatsEvalType
CompositeSegmentStatsEvalBaseType
CompositeSegmentPositionStatsEvalDaseType
CompositeSegmentProfileStatsEvalType
CompositeSegmentPSymmetryStatsEvalType WeldBevelCharacteristicStatsEvalType
71
WeldCompoundCharacteristicStatsEvalType
WeldEdgeCharacteristicStatsEvalType
WeldFilletCharacteristicStatsEvalType
WeldFlareBevelCharacteristicStatsEvalType
WeldFlareVCharacteristicStatsEvalType
WeldJCharacteristicStatsEvalType
WeldPlugCharacteristicStatsEvalType
WeldScarfCharacteristicStatsEvalType
WeldSeamCharacteristicStatsEvalType
WeldSlotCharacteristicStatsEvalType
WeldSpotCharacteristicStatsEvalType
WeldSquareCharacteristicStatsEvalType
WeldStudCharacteristicStatsEvalType
WeldSurfacingCharacteristicStatsEvalType
WeldUCharacteristicStatsEvalType
WeldVCharacteristicStatsEvalType

Figure 61 - **CharacteristicStatsEval** types (continued from previous page)

6.12.3 Criterion types

The file defines three Criterion types, one of which has a derived type for each of ten unit types, as shown in Figure 62. A Criterion type defines a numerical limit outside of which an issue (e.g., a process control issue) will exist.

CriterionDecimalType
CriterionAngularType
CriterionAreaType
CriterionForceType
CriterionLinearType
CriterionMassType
CriterionPressureType
CriterionSpeedType
CriterionTemperatureType
CriterionTimeType
CriterionUserDefinedUnitType
CriterionIntegerType
CriterionOutOfType

Figure 62 – Criterion Types

6.12.4 Summary Statistics

The Statistics.xsd schema file defines summary statistics types as shown in Figure 63. For each of the derived types there is a set type with "Summaries" replacing "Summary" in the name. For example, there is a *SummariesStatisticsAngularType*.

SummaryStatisticsType
SummaryStatisticsAngularType
SummaryStatisticsAreaType
SummaryStatisticsForceType
SummaryStatisticsLinearType
SummaryStatisticsMassType
SummaryStatisticsPressureType
SummaryStatisticsSpeedType
SummaryStatisticsTemperatureType
SummaryStatisticsTimeType
SummaryStatisticsUserDefinedUnitType

Figure 63 – Summary Statistics Types

6.12.5 Other items

The Statistics.xsd schema file defines a dozen enumeration types for statistics. For three of these, a list type is defined.

6.13 Topology.xsd

The topology.xsd schema file defines the individual topology types shown in Figure 64 and the topology set types shown in Figure 65 plus supporting enumeration types. In addition, validation types are defined for edge, face, and body. Key/keyref constraints are defined that require references to be of the correct type. For example, a VertexId *element* in a body must be the id of a vertex. A global *element* is defined for each non-base type in Figure 64 and Figure 65.

The role of the topology types in product definition is covered thoroughly in Clause 7 and is not described here.

CoEdgeMeshType
CoEdgesMeshType
CoEdgeType
CoEdgesType
EdgeOrientedType
TopologyBaseType
BodyType
EdgeType
FaceBaseType
FaceMeshType
FaceType
LoopBaseType
LoopMeshType
LoopType
PointCloudType
ShellType
VertexType

Figure 64 - Individual topology types

BodySetType EdgeSetType FaceSetType LoopSetType PointCloudSetType TopologySetType ShellSetType VertexSetType

The TopologySetType in Figure 65 consists of elements of the other seven types.

6.14 Traceability.xsd

The purpose of traceability information is to make it possible to associate QIF data files with the product inspected and the resources used to design it, manufacture it, program its inspection, and inspect it. The Traceability.xsd schema file defines types that describe the circumstances of a planned or completed quality measurement.

6.14.1 InspectionTraceabilityType

The *InspectionTraceabilityType* contains information applicable to an entire set of inspection results. An instance of the *InspectionTraceabilityType* is used (optionally) as the value of the *InspectionTraceability element* in both the *ResultsType* (multiple results sets) and the *MeasurementResultsType* (single results set) of the QIFResults schema. It is also used as the value of the *InspectionTraceability element* in the *StatisticalStudyResultsBaseType* (and, hence, all derived types) in the QIFStatistics schema. All *element*s of *InspectionTraceabilityType* are optional. The *element*s are shown in Figure 66.

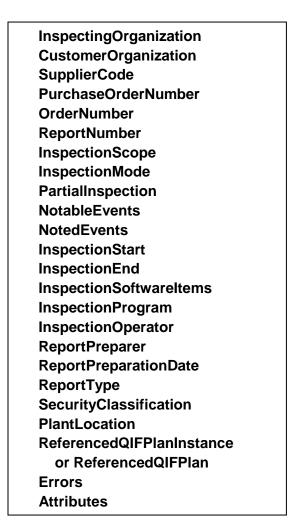


Figure 66 – Elements of InspectionTraceabilityType

6.14.2 PreInspectionTraceabilityType

The *PreInspectionTraceabilityType* contains information similar to that of the *InspectionTraceabilityType*, except that is it tailored for use when inspection has not yet occurred. *PreInspectionTraceabilityType* is the type of the **PreInspectionTraceability** *element* of the *QIFDocumentType* in QIFDocument.xsd and the *StatisticalStudyPlanBaseType* (and, hence, all its derived types) in QIFStatistics.xsd. All *element*s of *PreInspectionTraceabilityType* are optional except for the **FormalStandardId**, which is required. The AsmPathIds indicate what is to be inspected. The *element*s are shown in Figure 67.

InspectingOrganization
CustomerOrganization
SupplierCode
PurchaseOrderNumber
OrderNumber
AsmPathIds
ReportNumber
InspectionScope
InspectionMode
PartialInspection
NotableEvents
InspectionSoftwareItems
InspectionProgram
SecurityClassification
PlantLocation
ReferencedQIFPIanInstance
or ReferencedQIFPIan
FormalStandardId
Attributes

Figure 67 – Elements of *PreInspectionTraceabilityType*

6.14.3 ProductTraceabilityType

The *ProductTraceabilityType* defines traceability information for a component (i.e., part or assembly). It is used (optionally) as the value of the *Traceability element* of the *ComponentType* in Product.xsd. The *element*s of *ProductTraceabilityType* are all optional. They are shown in Figure 68.

ReportNumber
ManufacturingProcessId
Fixtureld
NotableEventIds
InspectionSoftwareItems
InspectionProgram
MeasurementDeviceIds
Attributes

Figure 68 – Elements of ProductTraceabilityType

6.14.4 ActualProductTraceabilityType

The *ActualProductTraceabilityType* defines traceability information for an actual component. It is used (optionally) as the *Traceability element* of the *ActualComponentType* in QIFResults.xsd. Its *element*s are all optional. They are shown in Figure 69.

SampleNumber
LotNumber
ReportNumber
ManufacturingProcessId
Fixtureld
NotableEventIds
NotedEventIds
InspectionStart
InspectionEnd
InspectionSoftwareItems
InspectionProgram
InspectionOperator
MeasurementDeviceIds
ProductEnvironments
Errors
Attributes

Figure 69 – Elements of *ActualProductTraceabilityType*

6.14.5 ManufacturingProcessTraceabilityType

The *ManufacturingProcessTraceabilityType* defines traceability information for a manufacturing process. It is used in the ManufacturingProcessTraceabilities *element* of the *QIFDocumentType*. Once a ManufacturingProcessTraceability is listed there, it may be referenced using the ManufacturingProcessId *element* found at several places in the QIF model. The *element*s of *ManufacturingProcessTraceabilityType* are all optional. They are shown in Figure 70. There is also a required id *attribute* which may be used for referencing.

Attributes
Description
Job
Revision
PreviousOperationId
Path
MachineManufacturerName
Machineldentifier
OperatorIdentifier
Shift
Department
ResponsibilityIdentifier
PlantSector
ProcessParameters
AssociatedTraceabilityId

Figure 70 – Elements of *ManufacturingProcessTraceabilityType*

Significant supporting types defined in Traceability.xsd include *EnvironmentType*, *InspectionProgramType*, and *PartialInspectionType*.

6.15 Units.xsd

See also subclause 5.18 QIF Handling of Units.

6.15.1 FileUnits

The top level type defined in the file is the *FileUnitsType*. This is used in the QIFDocument.xsd schema as the type of the *FileUnits element*, as shown in Figure 71. The *FileUnits element* gives explicit primary units for the file and optionally gives other units and user defined units that may be used in the file. The *FileUnits element* is optional, but it is strongly recommended that it be used. In the absence of a *FileUnits element*, the default units are SI units.

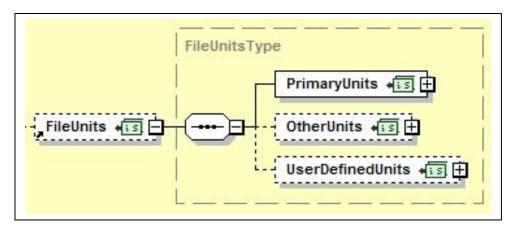


Figure 71 – FileUnits element

The Units.xsd schema file defines units for values of angle, area, force, length, mass, pressure, speed, temperature, and time. The length unit is called *linear* unit to avoid confusion with the length characteristic. The file also defines the following corresponding value types that have units. The default unit is shown following each value type.

AngleValueType radian AreaValueType square meter ForceValueType newton LinearValueType meter MassValueType kilogram PressureValueType pascal SpeedValueType meter per second TemperatureValueType kelvin TimeValueType second

A user defined characteristic type is defined in Characteristics.xsd for each of the defined unit types, and the **TargetValue** in each of those is the corresponding value type.

The Units.xsd file uses optional *attributes* extensively in order that numbers appearing in instance files do not require a lot of accompanying markup.

The derivation hierarchy of values with units is shown in

Figure 72. The items shown after the type names are the *attributes* that are added in the type. *Attributes* that may be used with a value with any type of unit in an instance file include the name of the unit, the number of decimal places in the value, and the number of significant figures in the value. If a value represents a measured value, it may also have *attributes* giving combined uncertainty and mean error. All of these *attributes* are optional.

xs:decimal
SpecifiedDecimalType – adds decimalPlaces, significantFigures
AngularValueType – angularUnit
AreaValueType – areaUnit
ForceValueType – forceUnit
<i>LinearDualValueType</i> – linearUnit
<i>LinearValueType</i> – linearUnit
<i>MassValueType</i> – massUnit
PressureValueType – pressureUnit
SpeedValueType – speedUnit
TemperatureValueType – temperatureUnit
<i>TimeValueType</i> – timeUnit
UserDefinedUnitValueType – name of a UserDefinedUnitType
MeasuredDecimalType – adds combinedUncertainty, meanError
MeasuredAngularValueType – angularUnit
MeasuredAreaValueType – areaUnit
MeasuredForceValueType – forceUnit
MeasuredLinearValueType – linearUnit
MeasuredMassValueType – massUnit
MeasuredPressureValueType – pressureUnit
MeasuredSpeedValueType – speedUnit
MeasuredTemperatureValueType – temperatureUnit
MeasuredTimeValueType - timeUnit
MeasuredUserDefinedUnitValueType – name of a UserDefinedUnitType

Figure 72 – Derivation hierarchy of values with units

The Units.xsd schema file also includes a **UserDefinedUnitType**. The **UserDefinedUnitValueType** and **MeasuredUserDefinedUnitValueType** may be used in an instance file in a user defined unit characteristic.

6.15.2 Conversions

The *UnitConversionType* has *elements* **Factor** and **Offset**. These are the parameters for a conversion from non-SI units to SI units. To convert a non-SI unit value X to an SI unit value S, use the equation: S = ((X plus Offset) times Factor). Figure 73 shows values of **Factor** and **Offset** for common units. More precise values of some **Factor**s may be needed in some applications.

Angle conversion to	radians	
degree	Factor=0.017453293	Offset=0
Area conversion to s	square meters	
square inch	Factor=0.00064516	Offset=0
square foot	Factor=0.09290304	Offset=0
square millimeter	Factor=0.000001	Offset=0
Force conversion to	newtons	
kilogram	Factor=9.80665	Offset=0
ounce	Factor=0.2780139	Offset=0
pound	Factor=4.448222	Offset=0
Length conversion to	o meters	
foot	Factor=0.3048	Offset=0
inch	Factor=0.0254	Offset=0
millimeter	Factor=0.001	Offset=0
Mass conversion to 1		
gram	Factor=0.001	Offset=0
ounce	Factor=0.02834952	Offset=0
pound	Factor=0.4535924	Offset=0
Pressure conversion	to pascals	
kilopascal	Factor=1000.0	Offset=0
psi	Factor=6894.757	Offset=0
Speed conversion to	meters per second	
feetPerSecond	Factor=0.3048	Offset=0
inchesPerSecond		Offset=0
mmPerSecond	Factor=0.001	Offset=0
Temperature Convers:		
Fahrenheit	Factor=0.555555556	Offset=459.67
Celsius	Factor=1.0	Offset=273.15
Rankine	Factor=0.55555556	Offset=0
Time conversion to s		
hour	Factor=3600.0	Offset=0
minute	Factor= 60.0	Offset=0

Figure 73 – Conversion of units

6.15.3 FileUnitsExample

Figure 74 shows a snippet of an instance file containing a **FileUnits** *element*. The **SIUnitName** and the **UnitConversion** *element*s are optional. In the snippet, the **AngleUnit** uses them but the **LinearUnit** does not. The snippet shows one entry in the **OtherUnits** and one entry in the **UserDefinedUnits**.

```
<FileUnits>
 <PrimaryUnits>
   <AngularUnit>
      <SIUnitName>radian</SIUnitName>
     <UnitName>degree</UnitName>
      <UnitConversion>
       <Factor>0.017453293</Factor>
      </UnitConversion>
   </AngularUnit>
    <LinearUnit>
      <UnitName>inch</UnitName>
   </LinearUnit>
   <TemperatureUnit>
      <SIUnitName>kelvin</SIUnitName>
      <UnitName>Fahrenheit</UnitName>
      <UnitConversion>
       <Factor>0.55555556</Factor>
        <Offset>459.67</Offset>
      </UnitConversion>
   </TemperatureUnit>
  </PrimaryUnits>
 <OtherUnits>
    <LinearUnit>
      <UnitName>mm</UnitName>
    </LinearUnit>
 </OtherUnits>
 <UserDefinedUnits>
    <UserDefinedUnit>
      <WhatIsMeasured>electrical resistance</WhatIsMeasured>
      <UnitName>ohm</UnitName>
   </UserDefinedUnit>
  </UserDefinedUnits>
</FileUnits>
```

Figure 74 - FileUnits snippet

6.15.4 Instance File Example Using Units

Three snippets from an instance file are shown in Figure 75. Assuming that the **FileUnits** shown in Figure 74 is in the instance file, the snippets are all valid.

The first cylinder has a diameter of 19 mm; the **linearUnit** mm is given explicitly. That is valid because mm is given as one of the **OtherUnits**. The **decimalPlaces** value of 1 is valid even though no decimal places appear in "19".

The second cylinder has a diameter of 2.53 inches. The diameter has no explicit **linearUnit**, but the **linearUnit** for the diameter is implicitly inch because inch was given as the **LinearUnit** in the **PrimaryUnits** of the **FileUnits**.

The nominal angularity characteristic has an angle of 10.00145 degrees, although only the first four figures are significant. The angle has no explicit **angularUnit**, but the **angularUnit** for the

Angle is implicitly degree because degree was given as the **AngularUnit** in the **PrimaryUnits** of the **FileUnits**.

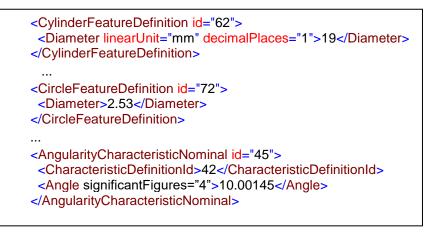


Figure 75 – Instance file snippets using units

6.16 Visualization.xsd

The Visualization.xsd schema file defines types needed for visualizing products, including PMI items. The file also includes data specifying views of a product.

Most of the information required for PMI visualization is in the PMI item being displayed. The way it should be visualized is prescribed by ASME GD&T and ISO GPS related standards, and American Welding Society standards. However the placement of the PMI item on a 2D drawing or in a 3D model based design is controlled by the user, as are the lines connecting the visualized PMI with the visualized feature. Additional text may also accompany a PMI item and may use various fonts. These items are what the Visualization.xsd schema file defines. Any QIF application providing PMI visualization should be capable of displaying PMI from this visualization information.

Visualization and views are described in much more detail in subclause 6.16.

The top level type for displaying PMI items is the *VisualizationSetType*, which is the type of the *VisualizationSet element* of the *ProductType* as shown in Figure 76. The *VisualizationSetType* has (1) a Fonts *element* that is a list of Font *element*s and (2) a PMIDisplaySet *element* that is a list of PMIDisplay *element*s.

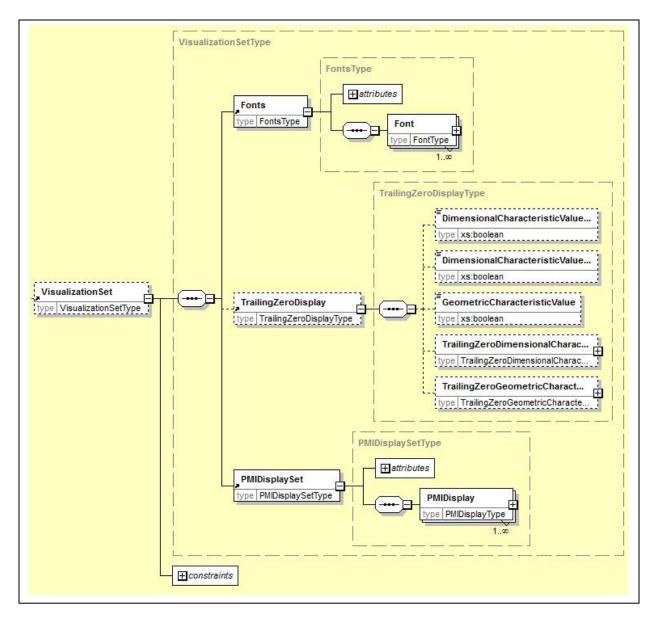


Figure 76 - VisualizationSet element

The **Font** *element*s are of *FontType*. A *FontType* is described by **Name** and **Size** *element*s as well as an optional **Attributes** *element*. It also has *attribute*s indicating whether the font is bold and/or italic and/or underlined. Another *attribute* gives an index number for the font.

The **PMIDisplay** *elements* are of **PMIDisplayType**. The *elements* of the **PMIDisplayType** include a required **Reference** *element* that is the id of a PMI item to be displayed and the following optional *elements*:

- Attributes (user data)
- Color
- Plane
- Texts
- Leader (or one of 5 substitutes that are specialized types of leader)

- WitnessLines
- Frames
- Graphics

The **Frames** *element* is a list of **Frame** *element*s of type **FrameType**. The *substitutionGroup* of the **Frame** *element* allows any of the following *element*s to appear in the list.

- FrameCircular
- FrameFlag
- FrameHexagonal
- FrameIrregularForm
- FrameOctagonal
- FramePentagonal
- FrameRectangular
- FrameTriangular
- FrameWeldSymbol

The top level type for specifying views is the *ViewSetType*, which is the type of the *ViewSet element* of the *ProductType* as shown in Figure 77.

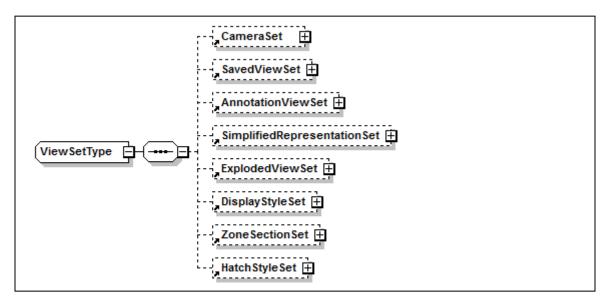


Figure 77 – ViewSetType

7 QIF Model Based Definition (MBD) information model

7.1 Foreword

The Quality Information Framework (QIF) information model was developed by domain experts from the manufacturing quality (that is metrology) community representing a wide variety of industries and quality measurement needs. Specifically for the QIF Model-Based Definition (QIF MBD) work, contributors include:

- Capvidia
- Mitutoyo America
- National Institute of Standards and Technology
- Origin International Inc.

The bulk of the work on this clause was performed by the Complete and Accurate Model-Based Definition (CAMBD) Working Group, approved and revised as needed by the Quality Information Framework (QIF) Working Group, and given final approval for ANSI review by the DMSC's Quality Management Systems (QMS) Committee.

7.2 Introduction

The QIF MBD information model defines an open, 3D model-based product definition (MBD). The model is independent of any CAD system. It includes a full suite of formally modeled characteristics (dimensions, tolerances, etc.) and features, associated to a complete model of parts and assemblies (topology, views, etc.) and metadata. It supports interchange of part and assembly models between CAD systems and transfer of those models to downstream processes.

A QIF MBD instance file can replace a traditional 2D drawing or be used together with a drawing.

QIF MBD defines a digital data format to convey part geometry (typically called the "CAD model") and information to be consumed by downstream manufacturing quality processes, about the essential characteristics of the product. Information defined in a QIF MBD model is more useful than is possible on a 2D drawing. For example, each product manufacturing information (PMI) object can have associated geometry, thereby conveying information to downstream processes. PMI objects include, but are not limited to: dimensions, geometric tolerances, datums, and datum reference frames.

The QIF MBD data format defines manufacturing information to form a "digital bridge" connecting CAD processes for product design and downstream manufacturing quality processes that generate physical products. The QIF MBD data model provides a vendor-neutral format and ensures that software solutions that support it, by either writing or reading QIF instance files, can exchange manufacturing quality data efficiently and accurately.

7.3 Scope

7.3.1 Contents of this clause

This standard defines the QIF MBD data model for a portion of the QIF manufacturing quality information model focused on model-based definition and designated as QIF MBD. QIF MBD defines a digital data format to convey part geometry (typically called the "CAD model") and information to be consumed by downstream manufacturing quality processes. The QIF MBD model consists of definitions for data types, elements, the logical relationships between them, and the semantics of the quality information. The QIF MBD model is defined using the XML Schema Definition Language (XSDL). The QIF MBD model is a digital data exchange mechanism that can be easily incorporated in software developed by commercial solution vendors that implements manufacturing quality systems.

The top level of the QIF MBD model is defined in the QIFApplications/QIFDocument.xsd XML schema file. That file includes, directly or indirectly, all of the 15 XML schema files in the QIF Library (the QIFLibrary directory). An XML instance file describing a model-based definition with PMI will contain information items drawn from QIFApplications/QIFDocument.xsd and many other QIF schema files, particularly QIFApplications/QIFProduct.xsd, QIFLibrary/Characteristics.xsd, and QIFLibrary/Features.xsd. Clause 7 describes primarily the CAD model and assembly model embodied in QIFApplications/QIFProduct.xsd, QIFLibrary/Topology.xsd, and QIFLibrary/Geometry.xsd.

XSDL also supports the definition of rules and validation checks of QIF instance files. Almost all of these check that a connection made by reference to an object that is supposed to be of a particular type does, in fact, reference an object of the correct type. Hundreds of these are included in the overall QIF model, and most of them are applicable to QIF MBD instance files. This clause describes these only briefly.

7.3.2 QIF MBD Information Model Application Architecture

The QIF MBD model is designed to support transfer of model-based definition information between a variety of types of applications as shown in Figure 78. Systems that can generate QIF MBD files are shown on the left, and systems that can consume QIF MBD files on the right.

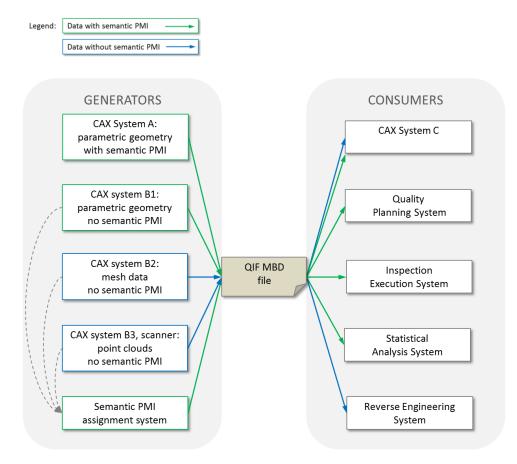


Figure 78 – Workflow of QIF MBD Information

A CAX system such as System A in Figure 78 that has semantic PMI and is QIF-enabled will be able to output a QIF MBD file with semantic PMI.

CAX systems such as Systems B1/B2/B3 in the Figure 78 that do not have semantic PMI and are QIF-enabled will be able to output a QIF MBD file containing a product definition without PMI. Although QIF MBD is designed to include PMI, it is not required.

Output from Systems B1/B2/B3 may be fed into a QIF-enabled semantic PMI assignment system, which would be able to write a QIF MBD file containing the product definition with semantic PMI.

Once a QIF MBD file is generated, by whatever means, it may be fed into any QIF-enabled system.

QIF enabled CAX System C can read QIF MBD files. If System C fully supports semantic PMI, then it can consume all the information from a QIF MBD file. If not, it can only consume product definition without PMI from QIF MBD files. Thus, QIF MBD enables CAD-to-CAD transfers.

A QIF-enabled Quality Planning System can read QIF MBD files. If it does high level planning (the plan specifies only what to inspect), it may only need the PMI stored in a file. If it does low

level planning (the plan specifies what and how to inspect) it may need all the information in the file.

Other QIF-enabled quality systems, such as inspection execution systems and statistical analysis systems, will be able to consume a QIF MBD file, produce graphical displays for the user, and use the PMI for calculations.

QIF MBD was designed for the uses described above. QIF MBD files may have additional uses, which are not defined here.

7.4 **QIF MBD** information model requirements

All CAD systems generate models of the nominal shape of products. Designers and/or manufacturing quality experts add information to the nominal shape information to instruct downstream manufacturing quality functions how to perform actions. This combination of information is called Product Definition with Product Manufacturing Information (PDPMI).

The basic requirement of QIF MBD is that it must be able to represent PDPMI. The QIF MBD model must be able to capture the product definition information coming from a CAX authoring system. The QIF MBD model must also be able to capture the PMI that comes from the CAX authoring system.

A second requirement is that the QIF MBD model must represent PMI in a form that can be consumed by downstream application software. That is, the representation must be able to graphically present the PMI. The representation must also enable processing the PMI without graphical presentation of it. Being able to display the PMI is essential for human use. Being able to use the PMI without graphical presentation is essential for computer use.

Many products are assemblies of parts. A third requirement of the QIF MBD model is that it be able to represent assemblies.

The representation of PMI used in QIF MBD is described in Clause 5, Clause 6, and Clause 7 of the standard as well as in the XML schema files containing the formal model. This Clause of the standard focuses on the representation of the definition of the nominal shape of a product and the representation of assemblies.

7.5 Overview of the product data model

7.5.1 Design principles

QIF defines a complete and unambiguous model structure implementing a clear and efficient way for representing simple parts and complex assemblies.

QIF product definition implements Boundary Representation (BREP) — a method for defining shapes using their boundaries. A distinctive characteristic of Boundary Representation is the clear separation of the shape definition data in the following two types: topology and geometry.

Topology defines the relationship between the geometric entities that can be linked together to produce complex shapes. In contrast to the geometry, topology does not consider the metric properties of objects. Geometry defines the shape of the model entities, independent of their topological relationships.

The QIF data model supports two modeling concepts – exact modeling (with use of one global model tolerance) and tolerant modeling (the model tolerance can vary from one entity to another). In both cases, the tolerance concept applies to the numerical accuracy of numbers in the file. This is distinct from the tolerance concept in PMI, which applies to manufacturing tolerances.

QIF geometric objects can be categorized in different ways. The most natural way is to separate objects by dimension: zero-dimensional (points), one-dimensional (curves) and two-dimensional (surfaces) objects.

In order to avoid any potential interoperability issues, the QIF data model defines all geometric entities explicitly. No entities such as blends, which can be interpreted and implemented differently by different systems, are allowed.

QIF supports a hybrid model representation allowing data of different natures within one model. This includes items such as parametric, mesh, and point cloud data.

For any model entity, a variety of traditional CAD attributes can be specified (such as: color, label, layer, visibility status, etc.) with possible arbitrary extensions implemented as user-defined attributes.

7.5.1.1 Binary data blocks

To store binary data blocks in an xml file the Base-64 encoding is used; it is implemented as one of the standard xml types, xs:base64Binary.

In QIF there are two application areas where the binary data can be used.

The first use is one type of user-defined attributes (AttributeUser) - BinaryDataType.

The second use of binary data is for providing an alternative, more efficient and compact way of storing large amounts of simple-type data such as 3D points. This noticeably reduces file size and significantly increases file parsing speed. These two factors can be crucial in working with such objects as point clouds or tessellated data.

The BinaryDataType represents a Base64-encoded arbitrary binary data block. For base64Binary data, the entire binary stream is encoded using the Base64 Alphabet in RFC 2045.

Fields of BinaryDataType:

Field Name	Data Type	Description
<body></body>	xs:base64Binary	The binary data encoded in the Base-64 format.
@count	xs:unsignedInt	The count attribute shows the size of the binary block in bytes.

Example:

```
<Edge id="459">

<Attributes count="3">

<!-- A user defined attribute STD02 - 14 bytes of binary data -->

<AttributeUser name="STD02" nameUserAttribute="T1">

<UserDataBinary n="14">

<2FtcGxlIHN0cmluZwA=

</UserDataBinary>

</AttributeUser>

</AttributeUser>

...
```

Field Name (binary array)	Array Element Type
Nurbs12CoreType/CPsBinary	2D point (pair of doubles)
Nurbs13CoreType/CPsBinary	3D point (triplet of doubles)
Nurbs23CoreType/CPsBinary	3D point (triplet of doubles)
Polyline12CoreType/PointsBinary	2D point (pair of doubles)
Polyline13CoreType/PointsBinary	3D point (triplet of doubles)
PathTriangulationCoreType/EdgesBinary	Pair of integers
MeshTriangleCoreType/TrianglesBinary	Triplet of integers
MeshTriangleCoreType/NeighboursBinary	Triplet of integers
MeshTriangleCoreType/VerticesBinary	3D point (triplet of doubles)
MeshTriangleCoreType/NormalsBinary	3D unit vector (triplet of doubles)
MeshTriangleType/NormalsSpecialBinary	Unsigned integer, unsigned byte and 3D point (triplet of doubles)
FaceMeshType/TrianglesBinary	Unsigned integer
FaceMeshType/TrianglesVisibleBinary	Unsigned integer
FaceMeshType/TrianglesHiddenBinary	Unsigned integer

The fields where the binary alternatives can be used are shown in the table below. The corresponding non-binary field names are the same but without the "Binary" suffix.

FaceMeshType/TrianglesColorBinary	Triplet of unsigned bytes
PointCloudType/PointsBinary	3D point (triplet of doubles)
PointCloudType/NormalsBinary	3D unit vector (triplet of doubles)
PointCloudType/PointsVisibleBinary	Unsigned integer
PointCloudType/PointsHiddenBinary	Unsigned integer
PointCloudType/PointsColorBinary	Triplet of unsigned bytes
ValidationPointsType/PointsBinary	3D point (triplet of doubles)
ValidationPointsType/DirectionsBinary	3D unit vector (triplet of doubles)
Polyline2dType/PointsBinary	2D point (pair of doubles)
Triangulation2dType/VerticesBinary	2D point (pair of doubles)
Triangulation2dType/TrianglesBinary	Triplet of integers

Table 4 – Binary Arrays

The binary representation:

Array Element Type	Binary Representation	Bytes	Endianness
double	IEEE 754-2008 binary64 double precision floating point format.	8	Little-endian
integer	32-bit integer	4	Little-endian
unsigned integer	32-bit unsigned integer	4	Little-endian
unsigned byte	8-bit unsigned integer	1	Little-endian

Table 5 – Binary Representation

The ArrayBinaryType represents an array of Base64-encoded binary elements. For data the entire binary stream is encoded using the Base64 Alphabet in RFC 2045.

Fields of ArrayBinaryType:

Field Name	Data Type	Description
<body></body>	xs:base64Binary	Binary data encoded in Base-64 format.
@count	xs:unsignedInt	The count attribute shows how many elements are present in this array.
@sizeElement	xs:unsignedInt	The sizeElement attribute shows the size (in bytes) of one element stored in the array. The total size of the binary array can be calculated as: n*sizeElement.

Example:

<pre><!-- Text--> <pointcloud id="3"> <points count="31"> -29.5774901557852 -19.9532469511032 13.0853280138086 -29.4552728087814 -19.9067373275757 13.1694405167191 -29.3333474874496 -19.8604704141617 13.2523427009583 -29.211713720251 -19.8144454956055 13.3340397587529 -29.0903710356465 -19.7686618566513 13.4145368823299 -28.9693189620972 -19.7231187820435 13.493839263916 -28.848557028064 -19.6778155565262 13.5719520957382 -28.7280847620081 -19.6327514648438 13.6488805700231 -28.6079016923904 -19.5879257917404 13.724629878978 -28.368401256314 -19.4989868402481 13.8726117699235 -28.368401256314 -19.4989868402481 13.8726117699235 -28.130051947523 -19.4109929800034 14.0159393063298 -28.113077870122 -19.3673486709595 14.0858706721553 -77.7746780960648 -19.28076171875 14.2222945601852 -7.5391901016235 -19.1951055526733 14.3541679382324 </points></pointcloud></pre>
-27.4218730617453 -19.1526247262955 14.4184111665796 -27.3048400313766 -19.1103744506836 14.4815323441117 -27.1880905389786 -19.068354010582 14.5435366630554 -27.0716241130122 -19.0265626907349 14.6044293156377 -26.9554402819386 -18.9849997758865 14.6642154940852 -26.8395385742188 -18.9436645507813 14.722900390625 -26.7239185183137 -18.9025563001633 14.7804891974838 -26.6085796426844 -18.8616743087769 14.8369871068884 -26.4935214757919 -18.8210178613663 14.8923993110657 -26.3787435460974 -18.7805862426758 14.9467310022425 -26.2642453820617 -18.7403787374496 14.9999873726456 -26.150026512146 -18.7003946304321 15.052173614502 -26.0360864648113 -18.6606332063675 15.1032949200383

7.5.1.2 Entity attributes

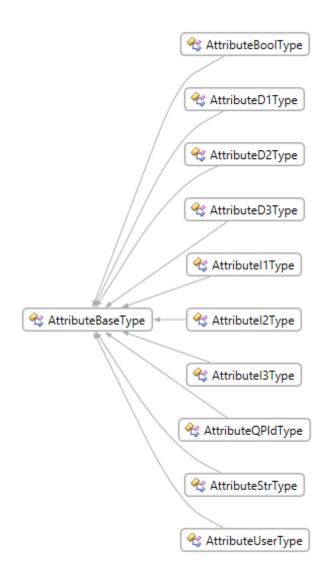


Figure 79 – Entity attributes

All entity attributes contain the following fields:

Field Name	Data Type	Description
@name	xs:string	The name of the entity attribute. This name is a unique identifier of an attribute within the entity.

7.5.1.2.1 Boolean entity attribute

The AttributeBool describes an entity attribute of Boolean type.

Fields:

Field Name	Data Type	Description
Value	xs:boolean	The Boolean value.

Example:

<AttributeBool name="bool attr" value="1"/>

7.5.1.2.2 Double entity attribute

The AttributeD1 describes an entity attribute of double type.

Fields:

Field Name	Data Type	Description
@value	xs:double	The double value.

Example:

```
<AttributeD1 name="D1 attr" value="-12.230243"/>
```

7.5.1.2.3 Pair of doubles entity attribute

The AttributeD2 describes an entity attribute of 'pair of doubles' type.

Fields:

Field Name	Data Type	Description
@value	D2Type	The pair of double values.

Example:

<AttributeD2 name="D2 attr" value="223.13 -34.244"/>

7.5.1.2.4 Triplet of doubles entity attribute

The AttributeD3 describes an entity attribute of 'triplet of doubles' type.

Fields:

Field Name	Data Type	Description
@value	D3Type	The triplet of double values.

Example:

<AttributeD3 name="D3_attr" value="23.434 -0.927 37.321"/>

7.5.1.2.5 Integer entity attribute

The AttributeI1 describes an entity attribute of integer type.

Fields:

Field Name	Data Type	Description
@value	xs:integer	The integer value.

Example:

```
<AttributeI1 name="int_attr" value="1987"/>
```

7.5.1.2.6 Pair of integers entity attribute

The AttributeI2 describes an entity attribute of 'pair of integers' type.

Fields:

Field Name	Data Type	Description
@value	І2Туре	The pair of integer values.

Example:

<AttributeI2 name="I2_attr" value="223 -34"/>

7.5.1.2.7 Triplet of integers entity attribute

The AttributeI3 describes an entity attribute of 'triplet of integers' type.

Fields:

Field Name	Data Type	Description
@value	ІЗТуре	The triplet of integer values.

Example:

<AttributeI3 name="I3_attr" value="323 -92 373"/>

7.5.1.2.8 QPId entity attribute

The AttributeQPid describes an entity attribute of QPId type.

Fields:

Field Name	Data Type	Description
Value	QPIdType	The QPId value.

Example:

```
<AttributeQPId name="qpid_attr">
<Value>4b61ec75-ab3c-4129-b88a-d9e2ee415322</Value>
</AttributeQPId>
```

7.5.1.2.9 String entity attribute

The AttributeStr describes an entity attribute of string type.

Fields:

Field Name	Data Type	Description
@value	xs:string	The string value.

Example:

<AttributeStr name="str_attr" value="Value of string attribute"/>

7.5.1.2.10 Custom entity attribute

The AttributeUser defines a user-defined entity attribute that contains a binary array or any userdefined structured XML data.

Fields:

Field Name	Data Type	Description
@nameUserAttribute	xs:string	The name of user-defined attribute type. The structure of the user-defined attribute can be identified by this name.
User Data XML or User Data Binary	xs:any or BinaryDataType	UserDataXML element: each element is a user-defined XML element from any namespace that is not the target namespace. The XML processor will validate elements if the corresponding schema is present, if the schema is not present, no errors will occur. or UserDataBinary element: a binary block of user data.

Example 1: attribute with user defined XML content:

Example 1: user defined XML schema:

```
<?xml version="1.0" encoding="utf-8"?>
<xs:schema</pre>
  xmlns:xs="http://www.w3.org/2001/XMLSchema"
  xmlns="http://userschema.org"
  targetNamespace="http://userschema.org"
 elementFormDefault="qualified"
  attributeFormDefault="ungualified"
 version="1">
  <xs:complexType name="StructureType">
    <xs:sequence>
      <xs:element name="TextField" type="xs:string">
      </xs:element>
      <xs:element name="IntegerField" type="xs:integer">
      </xs:element>
    </xs:sequence>
  </xs:complexType>
  <xs:element name="Structure" type="StructureType"/>
```

</xs:schema>

Example2: attribute with binary content:

```
<AttributeUser name="user_attr" nameUserAttribute="user_type_image">
    <UserDataBinary n="240">
        iVBORw0KGgoAAAANSUhEUgAAACAAAAAUCAIAAABj86gYAAAABmJLR0QAAAAAAAD5Q7t/AAAA
        CXBIWXMAAA7EAAAOxAGVKw4bAAAAkElEQVR4n02RyxGAIAwFqYd6qId6qId6PChMIDFBPqPx
        xJ4QH1kTzKGMGQXesgVDfhIEZyrWx+d49LYfEFQBXFuvQME6FS5ohqZZFaR2ABfYaV54R8ZK
        5lzSDQEZUboASdylgnKMwV4Hwp6K4p9cifxx74A3PTWigrqAj4gN4QMBfeR+LVzDrMUjK7IF
        Q9QFJ99Bg+037n7tAAAAAElFTkSuQmCC
        </UserDataBinary>
        <//AttributeUser>
```

7.5.2 Geometry

QIF geometry defines the shape of the model entities and includes the subtypes shown in Figure 80.

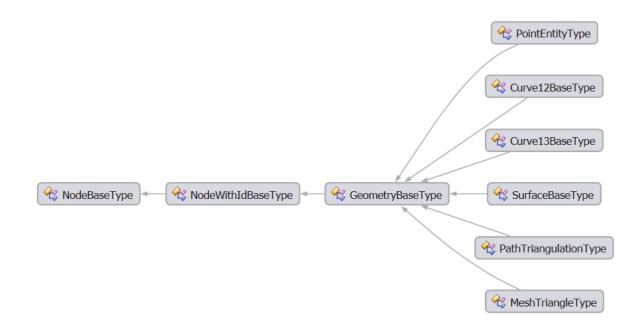


Figure 80 – Geometry Types

All geometric entities contain the following fields:

Field Name	Data Type	Description
@id	QIFIdType	The unique model entity identifier.
@label	xs:string	The model entity "nameplate". Normally it can be seen at the entity item in the model tree.
Attributes	AttributesType	User defined attributes (typified, binary array, or XML structured).

7.5.2.1 Point

The Point describes a point in 3D space. It is normally used as underlying geometry for vertices.

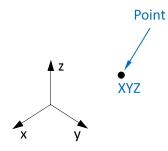


Figure 81 – Point

Fields:

Field Name	Data Type	Description
XYZ	PointSimpleType	The Cartesian three-dimensional coordinates of the 3D point.

Example:

<Point id="200"> <XYZ>-0.2032 -0.0666 -0.0684</XYZ> </Point>

7.5.2.2 2D Curves

This chapter describes curves defined in 2D space, curve(t):R1 \rightarrow R2, where

- R1 is curve parameter space the 1D real number space, where each point is defined as a single coordinate (t)
- R2 is the two-dimensional Euclidean space, where each point is defined as a coordinate pair (u, v).

The correspondence between 1D parameter space and 2D Euclidean space is illustrated in Figure 82.

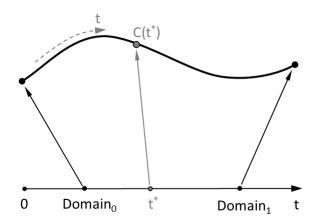


Figure 82 – 2D Parametric Curve

All types of 2D curves are derived from Curve12BaseType as shown in Figure 83.

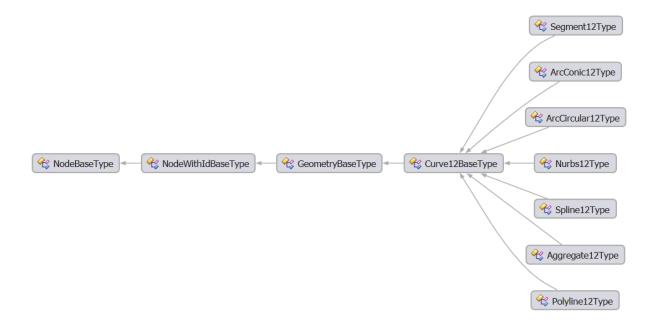


Figure 83 – 2D Curves Types

All 2D geometric curves are represented using a geometric core and a "wrapper" that includes an id for referencing.

The domain of every 2D curve is given in the domain attribute of the core, which is required.

The turned attribute of 2D curves is optional. If it does not appear, its default value is false.

2D curves are normally used to define a trimming curve in the parametric space of a surface.

All 2D curves contain the following fields:

Field Name	Data Type	Description
{Curve}/{Curve}Core	{Curve}CoreType	The curve core.
{Curve}/{Curve}Core/@domain	ParameterRangeType	The domain of the parameter space of the
	rarameterkangerype	curve.

7.5.2.2.1 Segment

Segment12 describes a linear segment in 2D space as shown in Figure 84.

Figure 84 – 2D Segment

A linear segment is defined and positioned in 2D space with start and end points.

Function:

```
Segment12(t): R_1 \rightarrow R_2
```

```
Segment12(t) = StartPoint + t(EndPoint - StartPoint), \quad t \in [0,1]
```

Fields:

Field Name	Data Type	Description
Segment12Core/StartPoint	Point2dSimpleType	The beginning point of the linear segment.
Segment12Core/EndPoint	Point2dSimpleType	The end point of the linear segment.

Example:

```
<Segment12 id="350">

<Segment12Core domain="0 1">

<StartPoint>10.1 -2431.7</StartPoint>

<EndPoint>34.1 4542.4</EndPoint>

</Segment12Core>
```

</Segment12>

7.5.2.2.2 Polyline

Polyline12 describes a polyline in 2D space as shown in Figure 85.

Figure 85 – 2D Polyline

A polyline is defined as a series of connected linear segments.

Function:

 $\begin{aligned} &Polyline12(t): \ R_1 \to R_2 \\ &Polyline12(t) = Point_i + (t-i)(Point_{i+1} - Point_i) \\ &t \in [i, i+1], \quad i \in [0, N-2], \quad N-number \ of \ points \end{aligned}$

Fields:

Field Name	Data Type	Description
Polyline12Core/Points	ArrayPoint2dType	
or	or	The array of 2D polyline points.
Polyline12Core/PointsBinary	ArrayBinaryType	

Example:

```
<Polyline12 id="32">
  <Polyline12Core domain="0 4">
   <Points n="5">
      1.2 11.5
      4.1 13.5
      7.3 16.2
      8.9 23.5
      9.2 29.8
   </Points>
   </Polyline12Core>
</Polyline12>
```

7.5.2.2.3 Circular Arc Curve

ArcCircular12 describes a circular arc in 2D space as shown in Figure 86 and Figure 87.

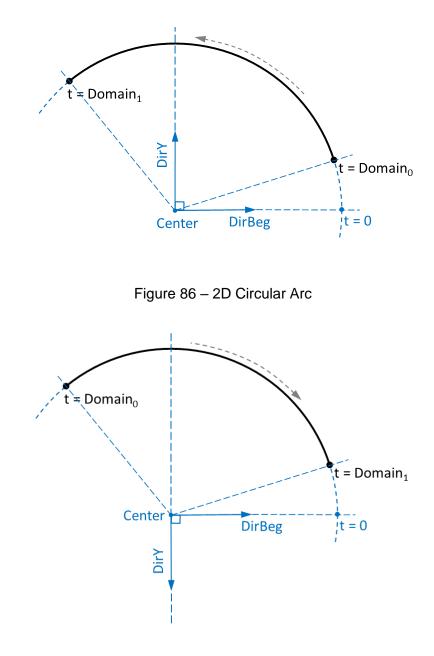


Figure 87 – 2D Circular Arc (turned)

A circular arc is defined as a portion of a circle.

Function:

```
\begin{aligned} ArcCircular12(t): \ R_1 \to R_2 \\ ArcCircular12(t) &= Center + Radius(\cos(t) \ DirBeg + \sin(t) \ DirY) \end{aligned}
```

$$DirY = \begin{cases} \begin{bmatrix} -DirBeg_{y} \\ DirBeg_{x} \end{bmatrix}, & turned = false \\ \begin{bmatrix} DirBeg_{y} \\ -DirBeg_{x} \end{bmatrix}, & turned = true \end{cases}$$

where t is in radians, $t \in (-\infty, +\infty)$

Fields:

Field Name	Data Type	Description
ArcCircular12Core/@turned	xs:boolean	This flag shows if the curve is turned.
ArcCircular12Core/Radius	xs:double	The arc radius.
ArcCircular12Core/Center	Point2dSimpleType	The center of arc.
ArcCircular12Core/DirBeg	UnitVector2dSimpleType	The unit vector representing the beginning of the circular arc.

Example:

7.5.2.2.4 Conic Arc Curve

ArcConic12 describes a conic arc in 2D space as shown in Figure 88 through Figure 93.

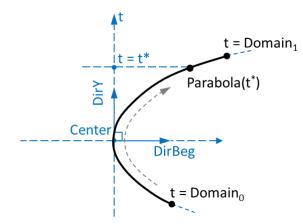


Figure 88 – 2D Conic Arc (form = PARABOLA)

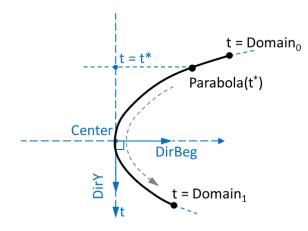


Figure 89 – 2D Conic Arc (form = PARABOLA, turned = true)

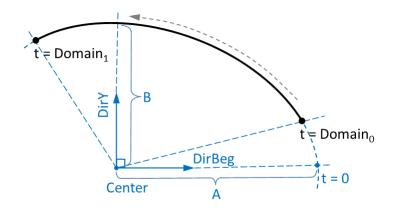


Figure 90 – 2D Conic Arc (form = ELLIPSE)

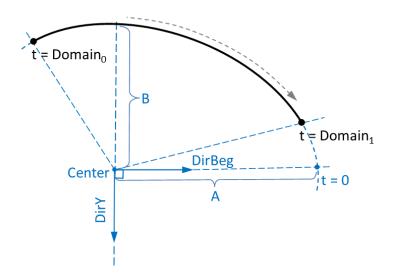


Figure 91 – 2D Conic Arc (form = ELLIPSE, turned = true)

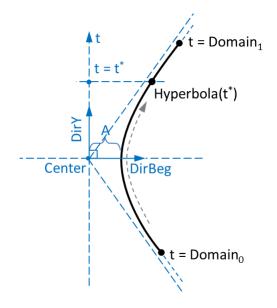
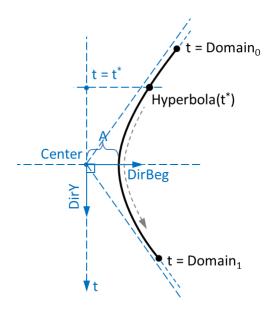



Figure 92 – 2D Conic Arc (form = HYPERBOLA)

A conic arc is defined as a portion of a conic curve. The conic curve can have one the following forms: an ellipse, a parabola, or a hyperbola.

Function:

 $\begin{aligned} ArcConic12(t): R_1 \to R_2 \\ ArcConic12(t) &= Center + x(t)DirBeg + y(t)DirY \\ \begin{bmatrix} x(t) \\ y(t) \end{bmatrix} &= \begin{cases} \begin{bmatrix} At \\ Bt^2 \end{bmatrix}, & form = PARABOLA \\ \begin{bmatrix} Acos(t) \\ Bsin(t) \end{bmatrix}, & form = ELLIPSE \\ \begin{bmatrix} A\sqrt{1+t^2/B^2} \\ t \end{bmatrix}, & form = HYPERBOLA \\ \end{bmatrix} \\ DirY &= \begin{cases} \begin{bmatrix} -DirBeg_y \\ DirBeg_x \\ DirBeg_x \end{bmatrix}, & turned = false \\ \begin{bmatrix} DirBeg_y \\ -DirBeg_x \end{bmatrix}, & turned = true \\ t \in (-\infty, +\infty) \end{aligned}$

Fields:

Field Name	Data Type	Description
ArcConic12Core/@form	ArcConicFormEnumType	The form of the conic arc.

ArcConic12Core/@turned	xs:boolean	This flag shows if the curve is turned.
ArcConic12Core/A	xs:double	Ellipse: the major radius of the arc. Parabola: the coefficient "A". Hyperbola: the semi-axis (the distance from the center to the extreme point).
ArcConic12Core/B	xs:double	Ellipse: the minor radius of the arc. Parabola: the coefficient "B". Hyperbola: the implicit parameter.
ArcConic12Core/Center	Point2dSimpleType	The center point.
ArcConic12Core/DirBeg	UnitVector2dSimpleType	The unit vector representing the beginning of the conic arc.

```
<ArcConic12 id="123">
  <ArcConic12Core form="PARABOLA" domain="-0.2 3.5">
    <A>4.5</A>
    <B>3.1</B>
    <Center>13.3 -43.2</Center>
    <DirBeg>1.0 0.0</DirBeg>
  </ArcConic12Core>
</ArcConic12>
<ArcConic12 id="123">
  <ArcConic12Core form="ELLIPSE" domain="10.3 18.9" turned="1">
    <A>14.2</A>
    <B>33.1</B>
    <Center>63.7 -34.0</Center>
    <DirBeg>1.0 0.0</DirBeg>
  </ArcConic12Core>
</ArcConic12>
<ArcConic12 id="123">
 <ArcConic12Core form="HYPERBOLA" domain="1.2 7.0">
    <A>14.5</A>
    <B>30.1</B>
    <Center>0.3 3.2</Center>
    <DirBeg>1.0 0.0</DirBeg>
  </ArcConic12Core>
</ArcConic12>
```

7.5.2.2.5 Spline Curve

Spline12 describes a spline curve in 2D space as shown in Figure 94.

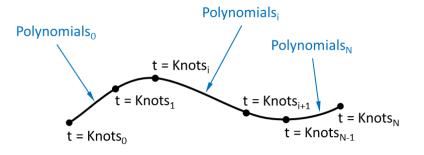


Figure 94 – 2D Spline Curve

A spline curve is defined as a sequence of parametric polynomial segments.

Function:

Spline12(t):
$$R_1 \rightarrow R_2$$

Spline12(t) = $\begin{bmatrix} x(t) \\ y(t) \end{bmatrix} = \begin{bmatrix} \sum_{i=0}^{Degree_p} (C_i^p)_x(t_p)^i \\ Degree_p \\ \sum_{i=0} (C_i^p)_y(t_p)^i \end{bmatrix}$

N – number of polynomials

$$N = number of knots - 1$$

 $Coefficients = \{C^0, \dots, C^{N-1}\}$

p-index of polynomials

$$C^p = \{c_0 \dots c_{Degree_p}\}, \quad Degree_p = Orders_p - 1$$

 t_p – parameter of polynomials p

$$\begin{split} t_p \in & \begin{cases} [Knots_p, Knots_{p+1}], & normalized = false \\ [0,1], & normalized = true \end{cases} \\ t_p = & \begin{cases} t - Knots_p, & Normalized = false \\ (t - Knots_p)/(Knots_{p+1} - Knots_p), & Normalized = true \end{cases} \\ t \in [Knots_p, Knots_{p+1}], & p \in [0, N-1] \end{cases} \end{split}$$

Fields:

Field Name	Data Type	Description
Spline12Core/@normalized	xs:boolean	This flag shows if the curve is normalized.
Spline12Core/Knots	ArrayDoubleType	The spline breakpoints.
Spline12Core/Orders	ArrayNaturalType	The orders of the polynomial segments. The order is 'the degree of the polynomial' + 1. The size of this array is 'the number of spline breakpoints' – 1.
Spline12Core/Coefficients	ArrayPoint2dType	The coefficients of the polynomial segments are pairs. For each segment the number of coefficients is equal to the order on this segment. The total size of this array is the sum of all orders.

```
<Spline12 id="302">
  <Spline12Core domain="0 2">
    <Knots n="3">
      0 1 2
    </Knots>
    <Orders n="2">
      4 4
    </Orders>
    <Coefficients n="8">
      87.5 237.5
      14.0625 -7.8125
      0 0
      -1.5625 1.5625
     100 231.25
      9.375 -3.125
     -4.6875 4.6875
     1.5625 -1.5625
    </Coefficients>
 </Spline12Core>
</Spline12>
```

7.5.2.2.6 NURBS Curve

Nurbs12 describes a NURBS curve in 2D space as shown in Figure 95.

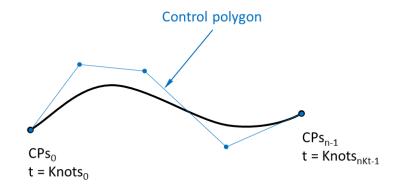


Figure 95 – 2D NURBS Curve

A NURBS curve is a freeform curve built on the B-spline basis functions and defined by its order (= degree + 1), a knot vector (an increasing sequence of real numbers which divides the parametric space in the intervals called knot spans), and an array of control points with an optional set of associated weights (positive real numbers). If the weights are not defined or if the weights are equal, the curve is a polynomial one (otherwise rational).

Function:

$$Nurbs12(t): R_1 \to R_2$$

$$Nurbs12(t) = \frac{\sum_{i=0}^{n-1} N_{i,Degree}(t) Weights_i CPs_i}{\sum_{i=0}^{n-1} N_{i,Degree}(t) Weights_i}$$

Degree = Order - 1

 $N_{i,i}(t)$ – the bspline basis functions

$$N_{i,0}(t) = \begin{cases} 1, & t \in [Knots_i, Knots_{i+1}) \\ 0, & otherwise \end{cases}$$

$$\begin{split} N_{i,p}(t) &= \frac{t - Knots_i}{Knots_{i+p} - Knots_i} N_{i,p-1}(t) + \frac{Knots_{i+p+1} - t}{Knots_{i+p+1} - Knots_{i+1}} N_{i+1,p-1}(t) \\ t &\in [Knots_0, Knots_{nKt-1}], \quad nKt - number \ of \ knots \\ nKt &= n + Order, \quad n - number \ of \ control \ points \end{split}$$

Fields:

Field Name	Data Type	Description
Nurbs12Core/Order	NaturalType	The order (= degree + 1).
Nurbs12Core/Knots	ArrayDoubleType	The knot vector is an increasing sequence of real numbers. The size of the knot vector is "number of control points" + "order".
Nurbs12Core/CPs	ArrayPoint2dType	
or	or	The array of 2D control points.
Nurbs12Core/CpsBinary	ArrayBinaryType	
Nurbs13Core/Weights	ArrayDoubleType	The array of weights associated with control points (positive real numbers).

```
<Nurbs12 id="607">
  <Nurbs12Core domain="0 1">
    <Order>3</Order>
    <Knots N="10">
       0 \ 0 \ 0 \ .33333333 \ 0 \ .33333333 \ 0 \ .666666667 \ 0 \ .666666667 \ 1 \ 1 \ 1
    </Knots>
    <CPs N="7">
      -386.61 -44.00
      -386.61 -54.39
      -377.61 -49.19
      -368.61 -44.00
      -377.61 -38.80
      -386.61 -33.60
      -386.61 -44.00
    </CPs>
    <Weights N="7">
       1 0.5 1 0.5 1 0.5 1
    </Weights>
  </Nurbs12Core>
</Nurbs12>
```

7.5.2.2.7 Aggregate Curve

Aggregate12 describes an aggregate curve in 2D space as shown in Figure 96.

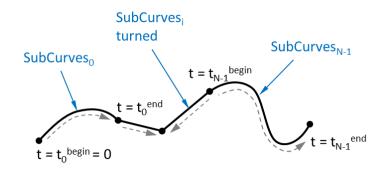


Figure 96 – 2D Aggregate Curve

An aggregate curve is a continuous curve defined as a sequence of oriented parametric subcurves.

Function:

$$\begin{split} &Aggregate12(t): R_{1} \rightarrow R_{2} \\ &Aggregate12(t) = SubCurves_{i}(t_{i}) \\ &t \in [t_{i}^{begin}, t_{i}^{end}], \quad i \in [0, N-1], \quad N-number \ of \ subcurves \\ &Domain_{i}^{j} := Domain_{j} \ of \ SubCurves_{i}, \quad j \in \{0,1\} \\ &t_{i}^{begin} = \sum_{j < i} (domain_{j}^{1} - domain_{j}^{0}) \\ &t_{i}^{end} = t_{i}^{begin} + (domain_{i}^{1} - domain_{i}^{0}) \\ &t_{i} = \begin{cases} domain_{i}^{0} + (t - t_{i}^{begin}), \quad SubCurves_{i} \ is \ not \ turned \\ domain_{i}^{1} - (t - t_{i}^{begin}), \quad SubCurves_{i} \ is \ turned \end{cases} \end{split}$$

Fields:

Field Name	Data Type	Description
Aggregate12Core/SubCurves	ArraySubCurve12Type	The array of oriented
Aggregate12core/Subcurves		sub-curves.
Aggregate12Core/SubCurves/SubCurve/@turned	xs:boolean	The orientation of sub-
Aggregate12core/subcurves/subcurve/@turned	XS.DOOIEall	curve.

```
<Aggregate12 id="419">
  <Aggregate12Core domain="0 4">
    <SubCurves n="4">
      <SubCurve turned="1">
        <Segment12Core domain="0 1">
          <StartPoint>-367.36 -214.75</StartPoint>
          <EndPoint>-367.36 -207.50</EndPoint>
        </Segment13Core>
      </SubCurve>
      <SubCurve>
        <Nurbs12Core domain="0 1">
          <Order>3</Order>
          <Knots n="6">
            0 0 0 1 1 1
          </Knots>
          <CPs n="3">
            -367.36 - 214.75
            -366.61 -214.75
            -366.61 -214.75
          </CPs>
          <Weights n="3">
            1 0.70710678 1
          </Weights>
        </Nurbs12Core>
      </SubCurve>
      <SubCurve>
        <Segment12Core domain="0 1">
          <StartPoint>-366.61 -214.75</StartPoint>
          <EndPoint>-366.61 -207.50</EndPoint>
        </Segment12Core>
      </SubCurve>
      <SubCurve>
        <Nurbs12Core domain="0 1">
          <Order>4</Order>
          <Knots n="10">
            0 0 0 0 0.91406368 0.91406368 1 1 1 1
          </Knots>
          <CPs n="6">
            -366.61 -207.50
            -366.61 -207.50
            -366.88 -207.50
            -367.29 -207.50
            -367.33 -207.50
            -367.36 -207.50
         </CPs>
        </Nurbs12Core>
      </SubCurve>
    </SubCurves>
  </Aggregate12Core>
</Aggregate12>
```

7.5.2.3 3D Curves

This chapter describes curves defined in 3D Model Space, curve(t):R1 \rightarrow R3, where

- R1 is curve parameter space the 1D real number space, where each point is defined as a single coordinate (t)
- R3 is model space the three-dimensional Euclidean space, where each point is defined as a coordinate triple (x, y, z) specified in a right-handed Cartesian coordinate system

The correspondence between 1D parameter space and 3D Euclidean space is illustrated in Figure 97.

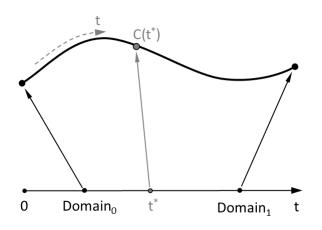
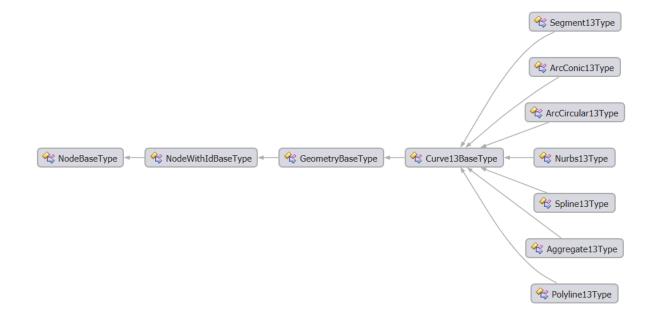



Figure 97 – 3D Parametric Curve

All types of model space curves are derived from Curve13BaseType as shown in Figure 98.

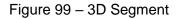
Figure 98 – 3D Curve Types

All 3D geometric curves are represented using a geometric core and a "wrapper" that includes an id for referencing.

The domain of every 3D curve is given in the domain attribute of the core, which is required.

The turned attribute of 3D curves is optional. If it does not appear, its default value is false.

The 3D curves are normally used as underlying geometry for topological edges.


All 3D curves contain the following fields:

Field Name	Data Type	Description
{Curve}/{Curve}Core	{Curve}CoreType	The curve core.
{Curve}/{Curve}Core/@domain	ParameterRangeType	The domain of the parameter space of the curve.
{Curve}/Transform	ElementReferenceType	The identifier of a three-dimensional transformation matrix.

7.5.2.3.1 Segment

Segment13 describes a linear segment in 3D space as shown in Figure 99.

A linear segment is defined and positioned in 3D space with start and end points.

Function:

Segment13(t): $R_1 \rightarrow R_3$

 $Segment13(t) = StartPoint + t(EndPoint - StartPoint), \quad t \in [0,1]$

Fields:

Field Name	Data Type	Description
Segment13Core/StartPoint	PointSimpleType	The beginning point of the linear segment.
Segment13Core/EndPoint	PointSimpleType	The end point of the linear segment.

Example:

7.5.2.3.2 Polyline

Polyline13 describes a polyline in 3D space as shown in Figure 100.

Figure 100 – 3D Polyline

A polyline is defined as a series of connected linear segments.

Function:

```
Polyline13(t): R_1 \rightarrow R_3
Polyline13(t) = Point<sub>i</sub> + (t - i)(Point<sub>i+1</sub> - Point<sub>i</sub>)
t \in [i, i + 1], \quad i \in [0, N - 2], \quad N - number of points
```

Fields:

Field Name	Data Type	Description
Polyline13Core/Points	ArrayPointType	
or	or	The array of 3D polyline points.
Polyline13Core/PointsBinary	ArrayBinaryType	

Example:

```
<Polyline13 id="32">
  <Polyline13Core domain="0 4">
    <Points n="5">
        1.2 11.5 10.4
        4.1 13.5 14.4
        7.3 16.2 17.1
        8.9 23.5 65.3
        9.2 29.8 84.4
        </Points>
        </Polyline13Core>
    </Polyline13>
```

7.5.2.3.3 Circular Arc Curve

ArcCircular13 describes a circular arc in 3D space.

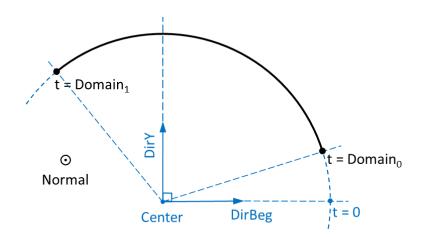


Figure 101 – 3D Circular Arc

A circular arc is defined as a portion of a circle as shown in Figure 101.

Function:

```
\begin{aligned} ArcCircular13(t): \ R_1 \to R_3 \\ ArcCircular13(t) &= Center + Radius(\cos(t) \ DirBeg + \sin(t) \ DirY) \\ DirY &= Normal \times DirBeg \end{aligned}
```

```
where t is in radians, t \in (-\infty, +\infty)
```

Fields:

Field Name	Data Type	Description
ArcCircular13Core/Radius	xs:double	The arc radius.
ArcCircular13Core/Center	PointSimpleType	The center of arc.
ArcCircular13Core/DirBeg	UnitVectorSimpleType	The unit vector representing the beginning of the circular arc. The DirBeg must be perpendicular to the Normal.
ArcCircular13Core/Normal	UnitVectorSimpleType	The normal of the plane wherein the circular arc is defined.

7.5.2.3.4 Conic Arc Curve

ArcConic13 describes a conic arc in 3D space as shown in Figure 102 through Figure 104.

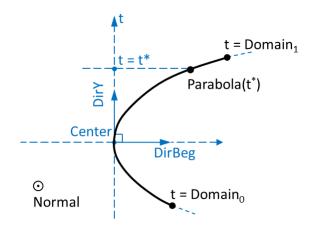


Figure 102 – 3D Conic Arc (form = PARABOLA)

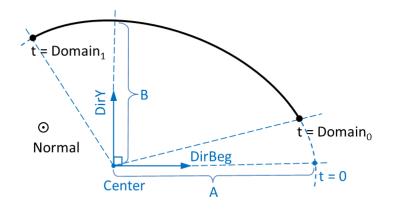


Figure 103 – 3D Conic Arc (form = ELLIPSE)

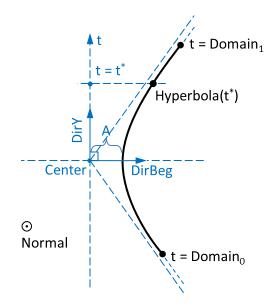


Figure 104 – 3D Conic Arc (form = HYPERBOLA)

A conic arc is defined as a portion of a conic curve. The conic curve can have one the following forms: an ellipse, a parabola, or a hyperbola.

Function:

 $\begin{aligned} ArcConic13(t): R_1 &\to R_3 \\ ArcConic13(t) &= Center + x(t)DirBeg + y(t)DirY \\ \begin{bmatrix} x(t) \\ y(t) \end{bmatrix} &= \begin{cases} \begin{bmatrix} At \\ Bt^2 \end{bmatrix}, & form = PARABOLA \\ \begin{bmatrix} Acos(t) \\ Bsin(t) \end{bmatrix}, & form = ELLIPSE \\ \begin{bmatrix} A\sqrt{1+t^2/B^2} \\ t \end{bmatrix}, & form = HYPERBOLA \end{aligned}$

 $DirY = Normal \times DirBeg$

 $t \in (-\infty, +\infty)$

Fields:

Field Name	Data Type	Description
ArcConic13Core/@form	ArcConicFormEnumType	The form of the conic arc.
ArcConic13Core/A	xs:double	Ellipse: the major radius of the arc. Parabola: the coefficient "A". Hyperbola: the semi-axis (the distance from the center to the extreme point).

ArcConic13Core/B	xs:double	Ellipse: the minor radius of the arc. Parabola: the coefficient "B". Hyperbola: the implicit parameter.
ArcConic13Core/Center	PointSimpleType	The center point.
ArcConic13Core/DirBeg	UnitVectorSimpleType	The unit vector representing the beginning of the conic arc. The DirBeg must be perpendicular to the Normal.
ArcConic13Core/Normal	UnitVectorSimpleType	The normal of the plane wherein the conic arc is defined.

```
<ArcConic13 id="123">
  <ArcConic13Core form="PARABOLA" domain="-0.2 3.5">
    <A>4.5</A>
    <B>3.1</B>
    <Center>13.3 -43.2 34.1</Center>
    <DirBeg>1.0 0.0 0.0</DirBeg>
    <Normal>0.0 1.0 0.0</Normal>
  </ArcConic13Core>
</ArcConic13>
<ArcConic13 id="123">
  <ArcConic13Core form="ELLIPSE" domain="10.3 18.9">
    <A>14.2</A>
    <B>33.1</B>
    <Center>63.7 -34.0 45.9</Center>
    <DirBeg>1.0 0.0 0.0</DirBeg>
    <Normal>0.0 1.0 0.0</Normal>
  </ArcConic13Core>
</ArcConic13>
<ArcConic13 id="123">
  <ArcConic13Core form="HYPERBOLA" domain="1.2 7.0">
    <A>14.5</A>
    <B>30.1</B>
    <Center>0.3 3.2 5.8</Center>
    <DirBeg>1.0 0.0 0.0</DirBeg>
    <Normal>0.0 1.0 0.0</Normal>
  </ArcConic13Core>
</ArcConic13>
```

7.5.2.3.5 Spline Curve

Spline13 describes a spline curve in 3D space as shown in Figure 105.

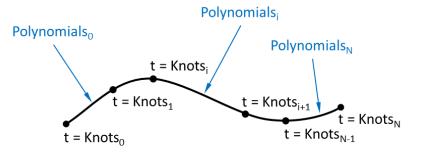


Figure 105 – 3D Spline Curve

A spline curve is defined as a sequence of parametric polynomial segments.

Function:

Spline13(t): $R_1 \rightarrow R_3$

$$Spline13(t) = \begin{bmatrix} x(t) \\ y(t) \\ z(t) \end{bmatrix} = \begin{bmatrix} \sum_{i=0}^{Degree_p} (C_i^p)_x(t_p)^i \\ \sum_{i=0}^{Degree_p} (C_i^p)_y(t_p)^i \\ \sum_{i=0}^{Degree_p} (C_i^p)_z(t_p)^i \end{bmatrix}$$

N – number of polynomials

$$N = number of knots - 1$$

 $Coefficients = \{C^0, \dots, C^{N-1}\}$

 $p-index \ of \ polynomials$

$$C^p = \{c_0 \dots c_{Degree_p}\}, Degree_p = Orders_p - 1$$

 t_p – parameter of polynomials p

$$t_{p} \in \begin{cases} [Knots_{p}, Knots_{p+1}], & normalized = false \\ [0,1], & normalized = true \end{cases}$$

$$t_{p} = \begin{cases} t - Knots_{p}, & normalized = false\\ (t - Knots_{p})/(Knots_{p+1} - Knots_{p}), & normalized = true \end{cases}$$

$$t \in [Knots_p, Knots_{p+1}], \qquad p \in [0, N-1]$$

Fields:

Field Name	Data Type	Description
Spline13Core/@normalized	xs:boolean	This flag shows if the curve is normalized.
Spline13Core/Knots	ArrayDoubleType	The spline breakpoints.
Spline13Core/Orders	ArrayNaturalType	The orders of the polynomial segments. The order is 'the degree of the polynomial' + 1. The size of this array is 'the number of spline breakpoints' - 1.
Spline13Core/Coefficients	ArrayPointType	The coefficients of the polynomial segments are triplets. For each segment the number of coefficients equal to the order on this segment. The total size of this array is the sum of all orders.

```
<Spline13 id="302">
  <Spline13Core domain="0 2">
    <Knots n="3">
      0 1 2
    </Knots>
    <Orders n="2">
      4 4
    </Orders>
    <Coefficients n="8">
      87.5 237.5 0
      14.0625 -7.8125 0
      0 0 0
      -1.5625 1.5625 0
      100 231.25 0
      9.375 -3.125 0
      -4.6875 4.6875 0
      1.5625 -1.5625 0
    </Coefficients>
  </Spline13Core>
</Spline13>
```

7.5.2.3.6 NURBS Curve

Nurbs13 describes a NURBS curve in 3D space as shown in Figure 106.

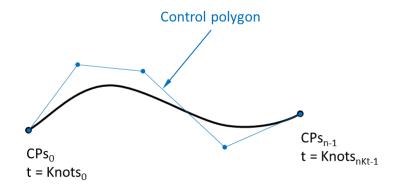


Figure 106 - 3D NURBS Curve

A NURBS curve is a freeform curve built on the B-spline basis functions and defined by its order (= degree + 1), a knot vector (an increasing sequence of real numbers which divides the parametric space in the intervals called knot spans), and an array of control points with an optional set of associated weights (positive real numbers). If the weights are not defined or if the weights are equal, the curve is a polynomial one (otherwise rational).

Function:

$$Nurbs13(t): R_1 \to R_3$$

$$Nurbs13(t) = \frac{\sum_{i=0}^{n-1} N_{i,Degree}(t)Weights_i CPs_i}{\sum_{i=0}^{n-1} N_{i,Degree}(t)Weights_i}$$

Degree = Order - 1

 $N_{i,i}(t)$ – the bspline basis functions

$$N_{i,0}(t) = \begin{cases} 1, & t \in [Knots_i, Knots_{i+1}) \\ 0, & otherwise \end{cases}$$

$$\begin{split} N_{i,p}(t) &= \frac{t - Knots_i}{Knots_{i+p} - Knots_i} N_{i,p-1}(t) + \frac{Knots_{i+p+1} - t}{Knots_{i+p+1} - Knots_{i+1}} N_{i+1,p-1}(t) \\ t &\in [Knots_0, Knots_{nKt-1}], \quad nKt - number \ of \ knots \\ nKt &= n + Order, \quad n - number \ of \ control \ points \end{split}$$

Fields:

Field Name	Data Type	Description
Nurbs13Core/Order	NaturalType	The order (= degree + 1).
Nurbs13Core/Knots	ArrayDoubleType	The knot vector is an increasing sequence of real numbers. The size of the knot vector is "number of control points" + "order".
Nurbs13Core/CPs	ArrayPointType	
or	or	The array of 3D control points.
Nurbs13Core/CPsBinary	ArrayBinaryType	
Nurbs13Core/Weights	ArrayDoubleType	The array of weights associated with control points (positive real numbers).

```
<Nurbs13 id="607">
  <Nurbs13Core domain="0 1">
    <Order>3</Order>
    <Knots n="10">
       0 \ 0 \ 0 \ .33333333 \ 0 \ .33333333 \ 0 \ .666666667 \ 0 \ .666666667 \ 1 \ 1 \ 1
    </Knots>
    <CPs n="7">
      -386.61 -291.50 -44.00
      -386.61 -291.50 -54.39
      -377.61 -291.50 -49.19
      -368.61 -291.50 -44.00
      -377.61 -291.50 -38.80
      -386.61 -291.50 -33.60
      -386.61 -291.50 -44.00
    </CPs>
    <Weights n="7">
       1 0.5 1 0.5 1 0.5 1
    </Weights>
  </Nurbs13Core>
</Nurbs13>
```

7.5.2.3.7 Aggregate Curve

Aggregate13 describes an aggregate curve in 3D space as shown in Figure 107.

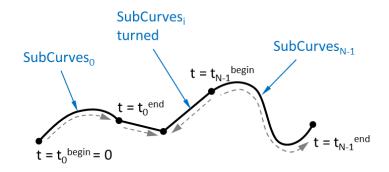


Figure 107 – 3D Aggregate Curve

An aggregate curve is a continuous curve defined as a sequence of oriented parametric subcurves.

Function:

$$\begin{split} &Aggregate13(t): R_{1} \rightarrow R_{3} \\ &Aggregate13(t) = SubCurves_{i}(t_{i}) \\ &t \in [t_{i}^{begin}, t_{i}^{end}], \quad i \in [0, N-1], \quad N-number \ of \ subcurves \\ &domain_{i}^{j} := domain_{j} \ of \ SubCurves_{i}, \quad j \in \{0,1\} \\ &t_{i}^{begin} = \sum_{j < i} (domain_{j}^{1} - domain_{j}^{0}) \\ &t_{i}^{end} = t_{i}^{begin} + (domain_{i}^{1} - domain_{i}^{0}) \\ &t_{i} = \begin{cases} domain_{i}^{0} + (t - t_{i}^{begin}), \quad SubCurves_{i} \ is \ not \ turned \\ domain_{i}^{1} - (t - t_{i}^{begin}), \quad SubCurves_{i} \ is \ turned \end{cases} \end{split}$$

Fields:

Field Name	Data Type	Description
Aggregate13Core/SubCurves	ArraySubCurve13Type	The array of oriented
		sub-curves.
Aggregate13Core/SubCurves/SubCurve/@turned	xs:boolean	The orientation of sub-
Aggregaterscore/subcurves/subcurve/@turned	X3.DUOIEdII	curve.

```
<Aggregate13 id="419">
  <Aggregate13Core domain="0 4">
    <SubCurves n="4">
      <SubCurve turned="1">
        <Segment13Core domain="0 1">
          <StartPoint>-367.36 -214.75 -36.50</StartPoint>
          <EndPoint>-367.36 -207.50 -36.50</EndPoint>
        </Segment13Core>
      </SubCurve>
      <SubCurve>
        <Nurbs13Core domain="0 1">
          <Order>3</Order>
          <Knots n="6">
            0 0 0 1 1 1
          </Knots>
          <CPs n="3">
            -367.36 -214.75 -36.50
            -366.61 -214.75 -36.50
            -366.61 -214.75 -37.25
          </CPs>
          <Weights n="3">
            1 0.70710678 1
          </Weights>
        </Nurbs13Core>
      </SubCurve>
      <SubCurve>
        <Segment13Core domain="0 1">
          <StartPoint>-366.61 -214.75 -37.25</StartPoint>
          <EndPoint>-366.61 -207.50 -37.25</EndPoint>
        </Segment13Core>
      </SubCurve>
      <SubCurve>
        <Nurbs13Core domain="0 1">
          <Order>4</Order>
          <Knots n="10">
            0 0 0 0 0.91406368 0.91406368 1 1 1 1
          </Knots>
          < CPs n = "6" >
            -366.61 -207.50 -37.25
            -366.61 -207.50 -36.87
            -366.88 -207.50 -36.56
            -367.29 -207.50 -36.50
            -367.33 -207.50 -36.50
            -367.36 -207.50 -36.50
         </CPs>
        </Nurbs13Core>
      </SubCurve>
    </SubCurves>
  </Aggregate13Core>
</Aggregate13>
```

7.5.2.4 Parametric Surfaces

This chapter describes parametric surfaces, $S(u, v):R2 \rightarrow R3$, where

- R2 is surface parameter space the 2D real number space, where each point is defined as a pair (u, v)
- R3 is model space the three-dimensional Euclidean space, where each point is defined as a coordinate triplet (x, y, z) specified in a right-handed Cartesian coordinate system

The correspondence between 2D parameter space and 3D Euclidean space is illustrated in Figure 108.

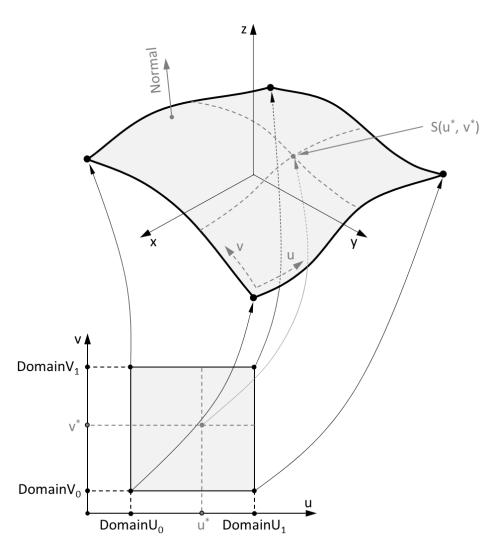


Figure 108 – Parametric Surface

All types of QIF surfaces are derived from SurfaceBaseType as shown in Figure 109.

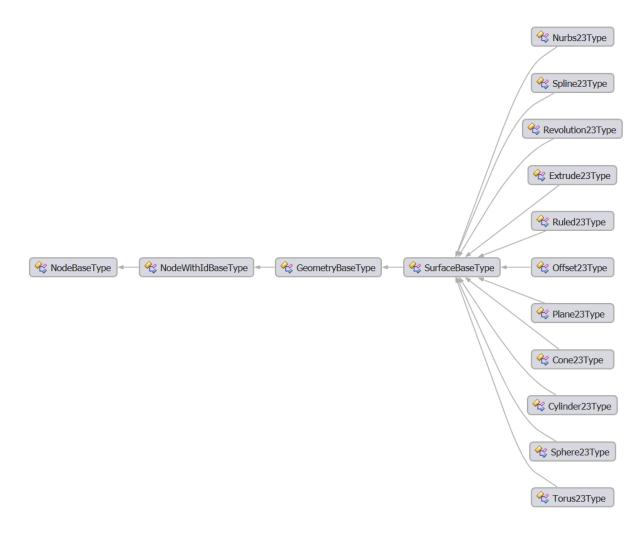


Figure 109 – Parametric Surface Types

The surfaces are normally used as underlying geometry for topological faces.

All parametric surfaces contain the following fields:

Field Name	Data Type	Description
{Curve}/{Curve}Core	{Curve}CoreType	The surface core.
{Curve}/{Curve}Core/@form	Attr23CoreEnumType	This field enumerates values that describe the surface form: 'FREEFORM' - a freeform surface (NURBS, spline etc.); 'CYLINDER' - a cylindrical surface; 'CONE' - a conical surface; 'TORUS' - a toroidal surface; 'SPHERE' - a spherical surface;

		'PLANE' - a plane surface;
{Curve}/Transform	ElementReferenceType	The identifier of a three-dimensional transformation matrix.

About the scaling coefficient

The scaling coefficient scaleV normalizes the parameterization in the v-direction, so very large and very small cylinders, cones and tori have reasonable parameterization. Additionally, the scaling coefficient preserves approximate angle correspondence in 2D and 3D space as shown in Figure 110.

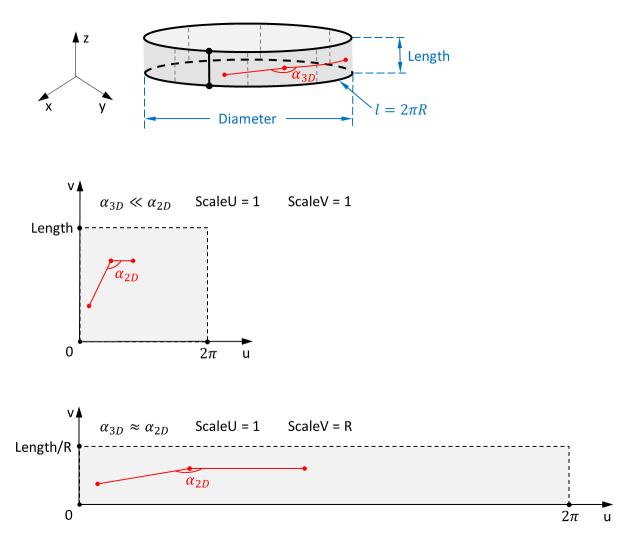


Figure 110 – Scaling coefficient

7.5.2.4.1 Plane Surface

Plane23 describes a plane parametric surface as shown in Figure 111.

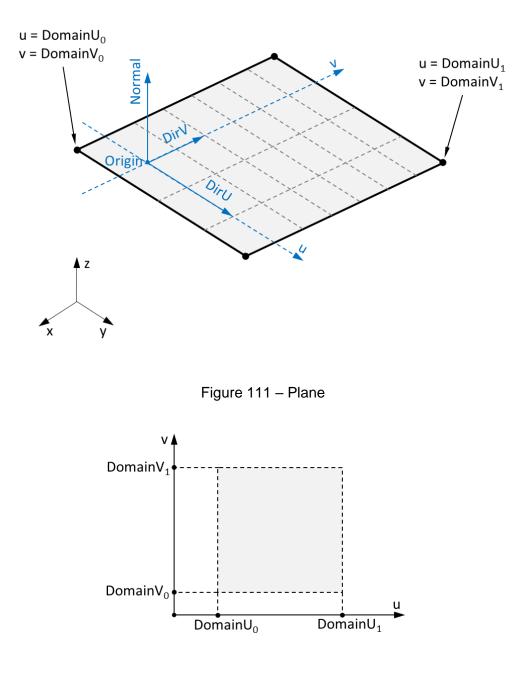


Figure 112 – Plane (Parameter Space)

Plane is an infinite flat surface. The parameterization of the plane is defined by two vectors: DirU and DirV. As seen in Figure 112, domain values (domainU and domainV) 'limit' the plane infinity.

Function:

```
\begin{split} Plane23(u,v): \ R_2 \to R_3 \\ Plane23(u,v) &= Origin + uDirU + vDirV \\ u \in [domainU_0, domainU_1], \qquad v \in [domainV_0, domainV_1] \\ Normal &= \frac{DirU \times DirV}{\|DirU \times DirV\|} \end{split}
```

Fields:

Field Name	Data Type	Description
Plane23Core/@domainU	ParameterRangeType	The parameter domain in the U-direction.
Plane23Core/@domainV	ParameterRangeType	The parameter domain in the V-direction.
Plane23Core/Origin	PointSimpleType	The origin point on the plane.
Plane23Core/DirU	VectorSimpleType	The direction and scaling of U-parameter lines. The DirU vector must not be parallel or anti-parallel to the DirV vector.
Plane23Core/DirV	VectorSimpleType	The direction and scaling of V-parameter lines.

```
<Plane23 id="233">

<Plane23Core domainU="-1.0 10.0" domainV="3.0 4.0">

<Origin>3.0 0.0 5.5</Origin>

<DirU>2.0 0.0 0.0</DirU>

<DirV>0.0 3.0 0.0</DirV>

</Plane23Core>

</Plane23>
```

7.5.2.4.2 Cylinder Surface

Cylinder23 describes a cylinder parametric surface as shown in Figure 113, Figure 114, and Figure 115.

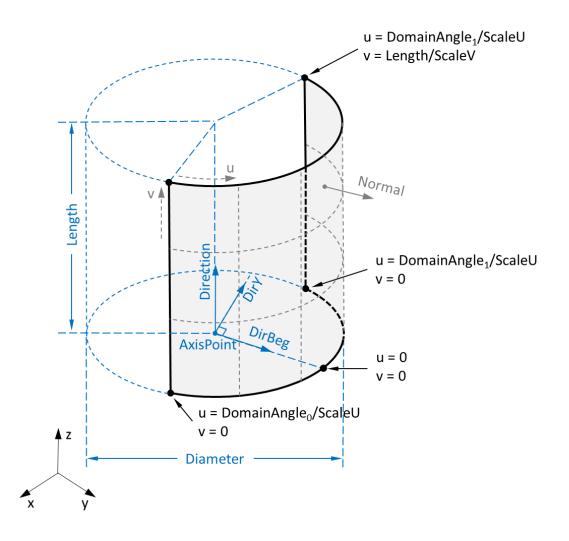
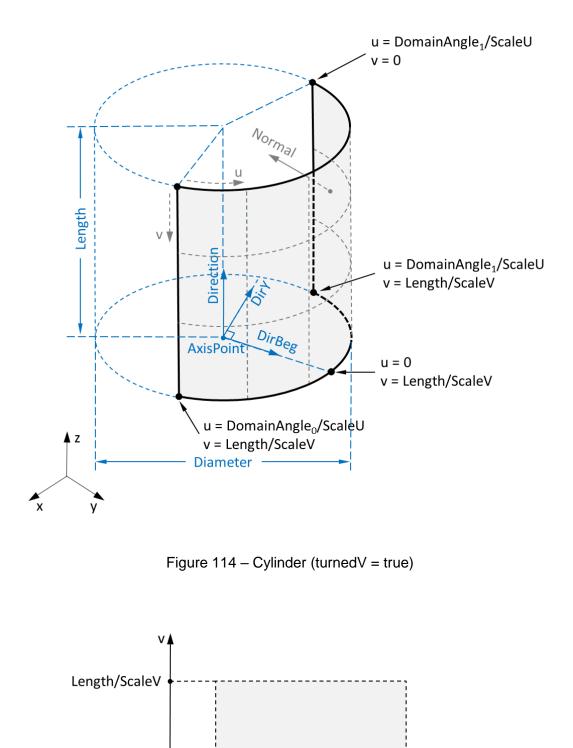



Figure 113 – Cylinder

Copyright © 2018 by Digital Metrology Standards Consortium, Inc. (DMSC)

DomainAngle₁/ScaleU

u

0

DomainAngle₀/ScaleU

Figure 115 – Cylinder (Parametric Space)

The cylinder is a surface generated by rotating a 3D linear segment around a specified axis on a specified angle. The rotating segment must be parallel to the specified axis.

Function:

```
\begin{aligned} Cylinder 23(u,v) &: R_2 \to R_3 \\ Cylinder 23(u,v) &= AxisPoint + R(\cos(u')DirBeg + \sin(u')DirY) + v'Direction \\ R &= \frac{Diameter}{2}, \quad DirY = Direction \times DirBeg \\ u' &= u * scaleU \\ where u' is measured in radians \\ v' &= \begin{cases} v * scaleV, & turnedV = false \\ Length - v * scaleV, & turnedV = true \end{cases} \end{aligned}
```

$$u \in \left[\frac{domainAngle_0}{scaleU}, \frac{domainAngle_1}{scaleU}\right], \quad v \in [0, Length/scaleV]$$

where DomainAngle in formula is measured in radians, and DomainAngle in file is measured in the units specified in the element, or in radians if no units are specified

Field Name	Data Type	Description
Cylinder23Core/@turnedV	xs:boolean	This flag shows if the v direction of the cylinder must be inverted.
Cylinder23Core/@scaleU	DoublePositiveType	The scaling coefficient of the u direction of the parametric space.
Cylinder23Core/@scaleV	DoublePositiveType	The scaling coefficient of the v direction of the parametric space.
Cylinder23Core/Diameter	xs:double	The cylinder diameter.
Cylinder23Core/Length	xs:double	The height of the cylinder – a distance between the cylinder top and bottom.
Cylinder23Core/Axis/AxisPoint	PointType	The axis origin (the bottom center).
Cylinder23Core/Axis/Direction	UnitVectorType	The axis vector.
Cylinder23Core/Sweep/DirBeg	UnitVectorType	The start direction specifies the position of the cylinder seam (u=0). This vector must lie in a plane normal to the axis of the cylinder.
Cylinder23Core/Sweep/DomainAngle	AngleRangeType	The sweep angle from the start direction (the surface domain in the u direction).

Fields:

Example:

```
<Cylinder23 id="132">

<Cylinder23Core>

<Diameter>4.4</Diameter>

<Length>7.1</Length>

<Axis>

<AxisPoint>10.0 0.0 0.0</AxisPoint>

<Direction>0.0 0.0 1.0</Direction>

</Axis>

<Sweep>

<DirBeg>1.0 0.0 0.0</DirBeg>

<DomainAngle>1.3 1.9</DomainAngle>

</Cylinder23Core>

</Cylinder23>
```

7.5.2.4.3 Cone Surface

Cone23 describes a cone parametric surface as shown in Figure 116, Figure 117, and Figure 118.

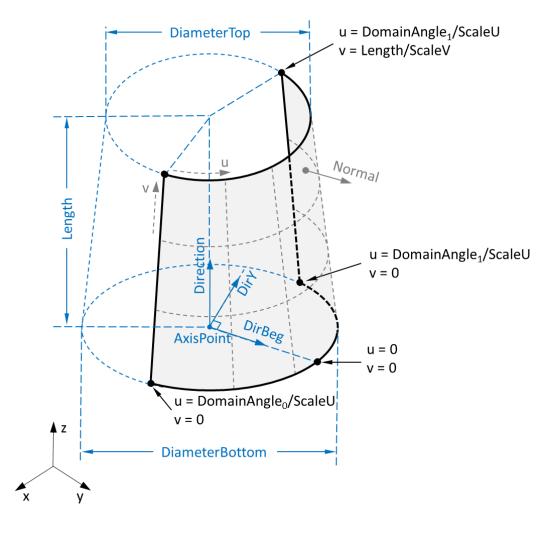


Figure 116 – Cone

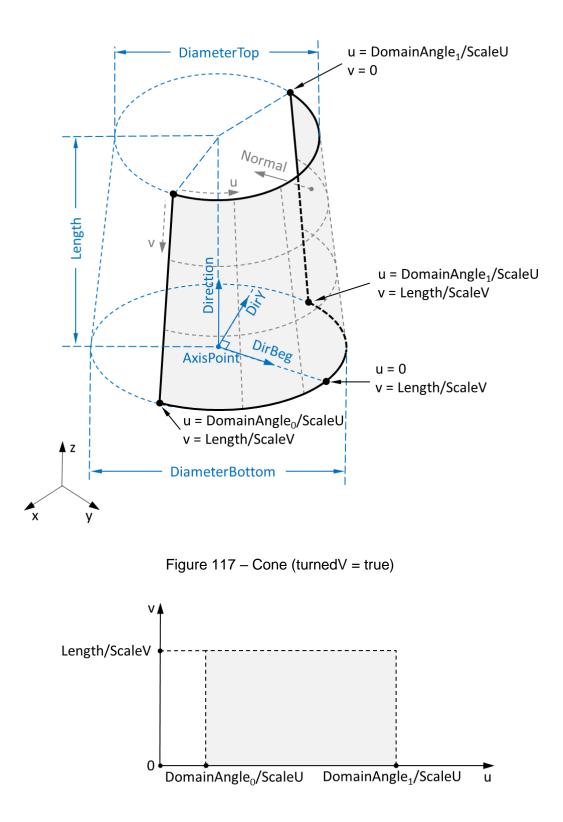


Figure 118 – Cone (Parametric Space)

The cone is a surface generated by rotating a 3D linear segment around a specified axis on a specified angle. The axis and the rotating segment must be coplanar.

Function:

$$Cone23(u, v): R_2 \to R_3$$

$$Cone23(u, v) = AxisPoint + R(v')(cos(u')DirBeg + sin(u')DirY) + v'Direction$$

$$RadiusTop = \frac{DiameterTop}{2}, \quad RadiusBottom = \frac{DiameterBottom}{2}$$

$$R(v) = RadiusBottom + v \frac{RadiusTop - RadiusBottom}{Length}$$

$$DirY = Direction \times DirBeg$$

$$u' = u * scaleU$$
where u' is measured in radians

$$v' = \begin{cases} v * scaleV, & turnedV = false \\ Length - v * scaleV, & turnedV = true \end{cases}$$

 $u \in [DomainAngle_0/scaleU, DomainAngle_1/scaleU], \quad v \in [0, Length/scaleV]$

where DomainAngle in formula is measured in radians, and DomainAngle in file is measured in the units specified in the element, or in radians if no units are specified

Fields:

Field Name	Data Type	Description
Cone23Core/@turnedV	xs:boolean	This flag shows if the v direction of the cone must be inverted.
Cone23Core/@scaleU	DoublePositiveType	The scaling coefficient of the u direction of the parametric space.
Cone23Core/@scaleV	DoublePositiveType	The scaling coefficient of the v direction of the parametric space.
Cone23Core/DiameterBottom	xs:double	The diameter at the bottom.
Cone23Core/DiameterTop	xs:double	The diameter at the top.
Cone23Core/Length	xs:double	The cone height – a distance between the cone top and bottom.
Cone23Core/Axis/AxisPoint	PointType	The axis origin (the bottom center).
Cone23Core/Axis/Direction	UnitVectorType	The axis vector.
Cone23Core/Sweep/DirBeg	UnitVectorType	The start direction specifies the position of the cone seam (u=0). This vector must

		lie in a plane normal to the axis of the
		cone.
Cone23Core/Sweep/DomainAngle AngleRangeType	AngleDengeTune	The sweep angle from the start direction
	(the surface domain in the u direction).	

Example:

```
<Cone23 id="132">

<Cone23Core>

<DiameterBottom>4.4</DiameterBottom>

<DiameterTop>2.1</DiameterTop>

<Length>7.1</Length>

<Axis>

<AxisPoint>10.0 0.0 0.0</AxisPoint>

<Direction>0.0 0.0 1.0</Direction>

</Axis>

<Sweep>

<DirBeg>1.0 0.0 0.0</DirBeg>

<DomainAngle>1.3 1.9</DomainAngle>

</Cone23Core>

</Cone23>
```

7.5.2.4.4 Sphere Surface

Sphere23 describes a sphere parametric surface as shown in Figure 119, Figure 120, and Figure 121.

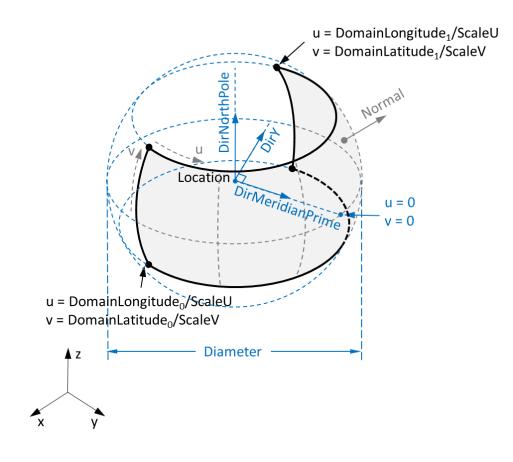


Figure 119 – Sphere

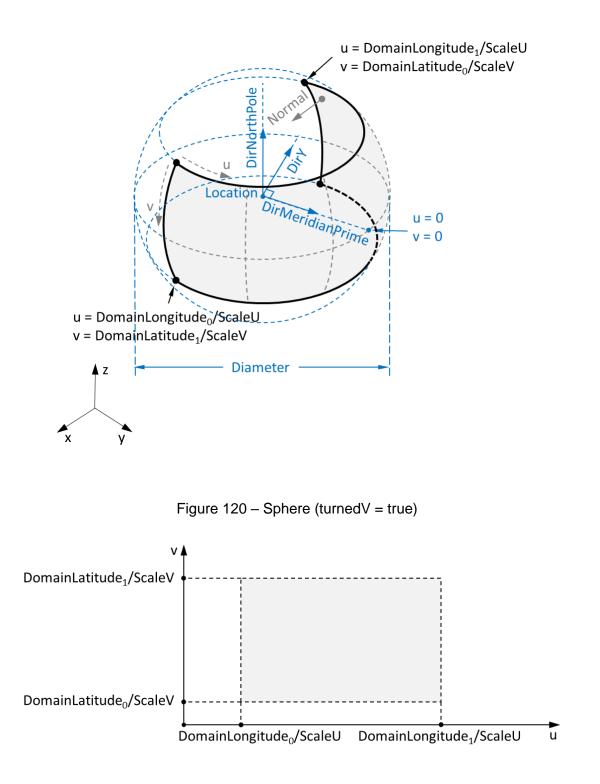


Figure 121 – Sphere (Parametric Space)

The sphere is a surface defined by its center point and radius.

Function:

$$\begin{split} Sphere 23(u,v): \ R_2 &\to R_3 \\ Sphere 23(u,v) \\ &= Location + R\sin(v') \, DirNorthPole \\ &+ R\cos(v')(\cos(u')DirMeridianPrime + \sin(u')DirY) \end{split}$$

 $R = \frac{Diameter}{2}$

DirY = *DirNorthPole* × *DirMeridianPrime*

u' = u * scaleU

where u' is measured in radians

 $v' = \begin{cases} v*scaleV, & turnedV = false \\ -v*scaleV, & turnedV = true \end{cases}$

where v' is measured in radians

 $u \in [DomainLongitude_0/scaleU, DomainLongitude_1/scaleU]$

where DomainLongitude in formula is measured in radians, and DomainLongitude in file is measured in the units specified in the element, or in radians if no units are specified

 $v \in [DomainLatitude_0/scaleV, DomainLatitude_1/scaleV]$

where DomainLatitude in formula is measured in radians, and DomainLatitude in file is measured in the units specified in the element, or in radians if no units are specified

Fields:

Field Name	Data Type	Description
		This flag shows if
Sphere23Core/@turnedV	xs:boolean	the v direction of
spherezscore/ @turnedv	XS.DOOIEdii	the sphere must
		be inverted.
		The scaling
Sphere23Core/@scaleU	DoublePositiveType	coefficient of the u
spherezscore/ @scaleo		direction of the
		parametric space.
	DoublePositiveType	The scaling
Sphere23Core/@scaleV		coefficient of the v
spherezscore/@scalev		direction of the
		parametric space.
Sabara 22 Cara (Diamatar	xs:double	The sphere
Sphere23Core/Diameter		diameter.

Sphere23Core/Location	PointSimpleType	The sphere center.
Sphere23Core/LatitudeLongitudeSweep/DirMeridianPri me	UnitVectorType	The direction of the prime meridian vector. The longitude is 0 on the PrimeMeridianVec tor. This vector must be perpendicular to the north pole vector.
Sphere23Core/LatitudeLongitudeSweep/DomainLatitude	AngleRangeType	The latitude domain (the u direction). The latitude end angle must be greater than the latitude start angle.
Sphere23Core/LatitudeLongitudeSweep/DomainLongitud e	AngleRangeType	The longitude domain (the u direction).
Sphere23Core/LatitudeLongitudeSweep/DirNorthPole	UnitVectorType	The direction of the north pole vector.

```
<Sphere23 id="132">
  <Sphere23Core>
   <Diameter>7.4</Diameter>
   <Location>2.0 3.0 2.3</Location>
   <LatitudeLongitudeSweep>
        <DirMeridianPrime>1.0 0.0 0.0</AxisPoint>
        <DomainLatitude>-0.1 0.4</DomainLatitude>
        <DomainLongitude>0.2 1.4</DomainLongitude>
        <DirNorthPole>0.0 0.0 1.0</DirNorthPole>
        </LatitudeLongitudeSweep>
        </Sphere23Core>
   </Sphere23>
```

7.5.2.4.5 Torus Surface

Torus23 describes a torus parametric surface as shown in Figure 122, Figure 123, and Figure 124.

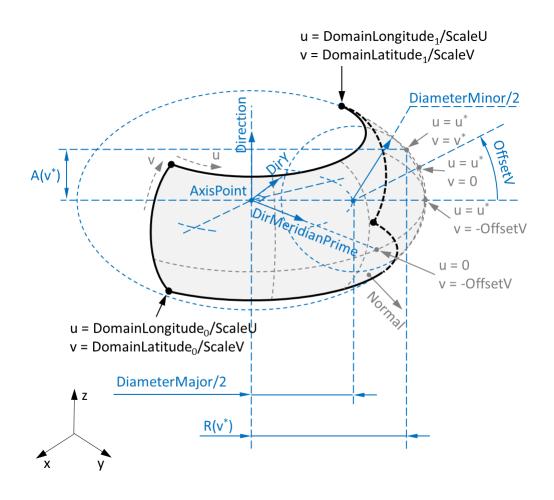
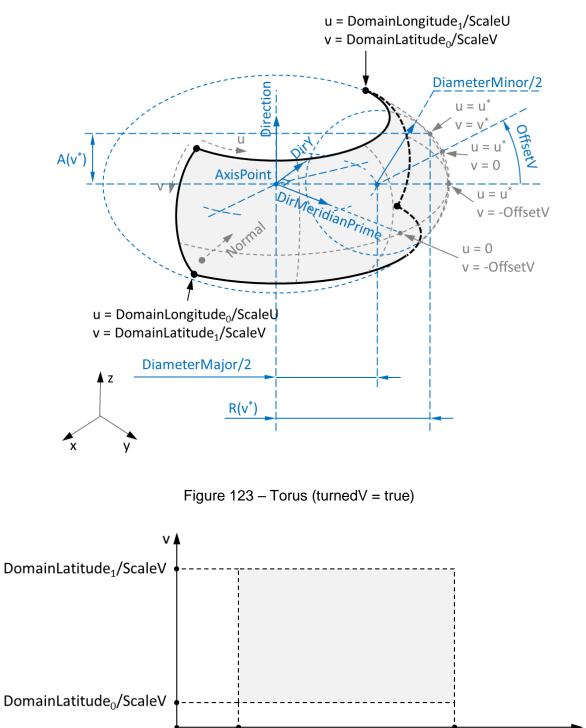



Figure 122 – Torus

DomainLongitude₀/ScaleU DomainLongitude₁/ScaleU u

Figure 124 – Torus (Parametric Space)

The torus is a surface generated by rotating a 3D circular arc around an axis coplanar with the arc on a specified angle.

Function:

Torus23(u, v): $R_2 \rightarrow R_3$ $Torus 23(u, v) = AxisPoint + A(v) + R(v)(\cos(u')DirMeridianPrime + \sin(u')DirY)$ $A(v) = RadiusMinor \sin(v')Direction$

 $RadiusMinor = \frac{DiameterMinor}{2}$, $RadiusMajor = \frac{DiameterMajor}{2}$

 $R(v) = RadiusMajor + RadiusMinor \cos(v')$

DirY = *Direction* × *DirMeridianPrime*

u' = u * scaleU

where u' is measured in radians

 $v' = \begin{cases} OffsetV + v * scaleV, & turnedV = false \\ OffsetV - v * scaleV, & turnedV = true \end{cases}$

where v' is measured in radians

 $u \in [DomainLongitude_0/scaleU, DomainLongitude_1/scaleU]$

where DomainLongitude in formula is measured in radians, and DomainLongitude in file is measured in the units specified in the element, or in radians if no units are specified

 $v \in [DomainLatitude_0/scaleV, DomainLatitude_1/scaleV]$

where DomainLatitude in formula is measured in radians, and DomainLatitude in file is measured in the units specified in the element, or in radians if no units are specified

Fields:

Field Name	Data Type	Description
Torus23Core/@turnedV	xs:boolean	This flag shows if the v direction of the torus must be inverted.
Torus23Core/@offsetV	xs:double	The offsetting distance of the v direction of the parametric space.

Torus23Core/@scaleU	DoublePositiveType	The scaling coefficient of the u direction of the parametric space.
Torus23Core/@scaleV	DoublePositiveType	The scaling coefficient of the v direction of the parametric space.
Torus23Core/DiameterMinor	xs:double	The torus minor diameter.
Torus23Core/DiameterMajor	xs:double	The torus major diameter.
Torus23Core/Axis/AxisPoint	PointType	The axis origin (the bottom center).
Torus23Core/Axis/Direction	UnitVectorType	The axis vector.
Torus23Core/LatitudeLongitudeSweep/DirMeridianPri me	UnitVectorType	The direction of the prime meridian vector. The longitude is 0 on the PrimeMeridianVect or. This vector must be perpendicular to the north pole vector.
Torus23Core/LatitudeLongitudeSweep/DomainLatitude	AngleRangeType	The latitude domain (the v direction).
Torus23Core/LatitudeLongitudeSweep/DomainLongitu de	AngleRangeType	The longitude domain (the u direction). Regardless of the values of the longitude domain, the longitude sweep is in the positive direction.

```
<Torus23 id="344">

<Torus23Core>

<DiameterMinor>8.0</DiameterMinor>

<DiameterMajor>24.0</DiameterMajor>

<Axis>

<AxisPoint>10.0 3.0 0.0</AxisPoint>

<Direction>0.0 0.0 1.0</Direction>

</Axis>

<LatitudeLongitudeSweep>

<DirMeridianPrime>1.0 0.0 0.0</DirMeridianPrime>
```

```
<DomainLatitude>0.0 1.57</DomainLatitude>
    <DomainLongitude>0.0 3.14</DomainLongitude>
    </LatitudeLongitudeSweep>
    </Torus23Core>
</Torus23>
```

7.5.2.4.6 Extrude Surface

Extrude23 describes an extruded parametric surface as shown in Figure 125 and Figure 126.

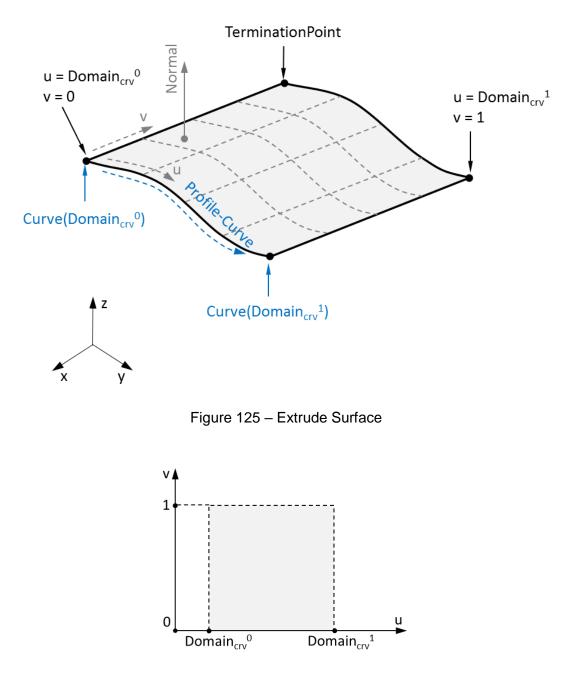


Figure 126 – Extrude Surface (Parametric Space)

The extrude surface is an extrusion of the profile-curve along the extrusion direction for a distance specified by the termination point.

Function:

*Extrude*23(u, v): $R_2 \rightarrow R_3$

 $Extrude23(u, v) = Curve(u) + (TerminationPoint - Curve(domain_{crv}^{0}))v$

 $u \in [domain_{crv}^0, domain_{crv}^1], \quad v \in [0,1]$

Fields:

Field Name	Data Type	Description
Extrude23Core/TerminationPoint	PointSimpleType	The termination point. Together with the curve start point it specifies the extrusion direction and distance.
Extrude23Core/Curve	Curve13CoreType	The curve to be used as the profile of extrusion.

7.5.2.4.7 Ruled Surface

Ruled23 describes a ruled parametric surface as shown in Figure 127, Figure 128, and Figure 129.

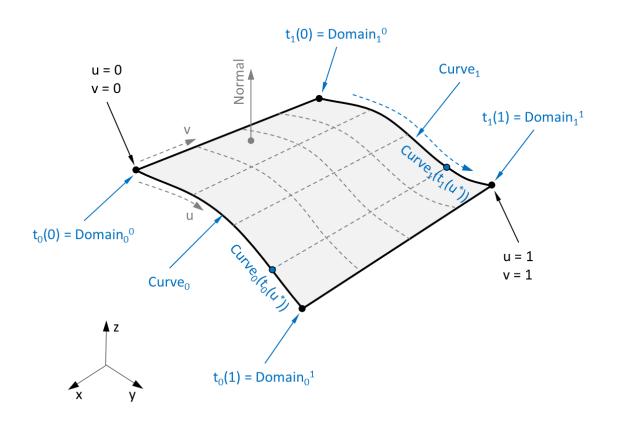


Figure 127 – Ruled Surface

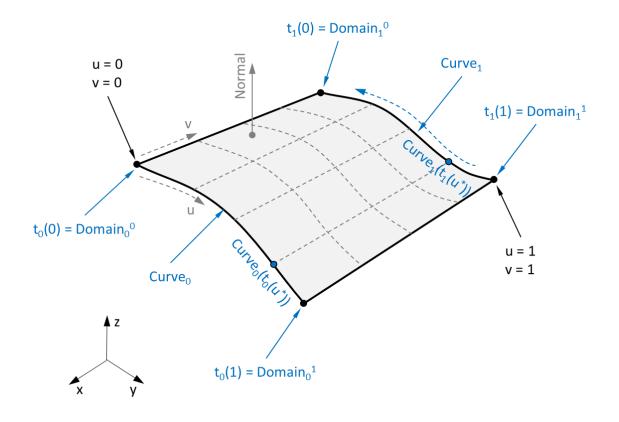


Figure 128 – Ruled Surface (turnedSecondCurve = true)

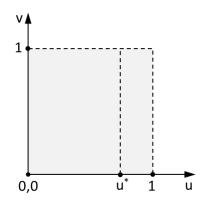


Figure 129 – Ruled Surface (Parametric Space)

The ruled surface is generated by connecting corresponding points on two 3D curves by a set of linear segments.

Function:

```
\begin{aligned} & Ruled23(u,v): R_2 \to R_3 \\ & Ruled23(u,v) = Curve_0(t_0(u))(1-v) + Curve_1(t_1(u))v \\ & domain_c - domain of \ curve \ c, \qquad c \in \{0,1\} \\ & u \in [0,1], \qquad v \in [0,1] \\ & t_0(u) = domain_0^0 + u(domain_0^1 - domain_0^0) \\ & t_1(u) = \begin{cases} domain_1^0 + u(domain_1^1 - domain_1^0), & turnedSecondCurve = false \\ domain_1^1 + u(domain_1^0 - domain_1^1), & turnedSecondCurve = true \end{cases} \end{aligned}
```

Fields:

Field Name	Data Type	Description
Ruled23Core/@turnedSecondCurve	xs:boolean	This flag shows if the second curve is turned.
Ruled23Core/Curve[0]	Curve13CoreType	The first curve.
Ruled23Core/Curve[1]	Curve13CoreType	The second curve.

```
<Ruled23 id="361">
  <Ruled23Core>
    <Curve>
      <ArcCircular13Core domain="2.214 4.068">
        <Radius>0.625</Radius>
        <Center>14.8 11.0 0</Center>
        <DirBeg>1.0 0.0 0.0</DirBeg>
        <Normal>0.0 0.0 1.0</Normal>
      </ArcCircular13Core>
    </Curve>
    <Curve>
      <Segment13Core domain="0 1">
        <StartPoint>13.5 11.5 0.1</StartPoint>
        <EndPoint>13.5 10.5 0.3</EndPoint>
      </Segment13Core>
    </Curve>
  </Ruled23Core>
</Ruled23>
```

7.5.2.4.8 Surface of Revolution

Revolution23 describes a parametric surface of revolution as shown in Figure 130, Figure 131, and Figure 132.

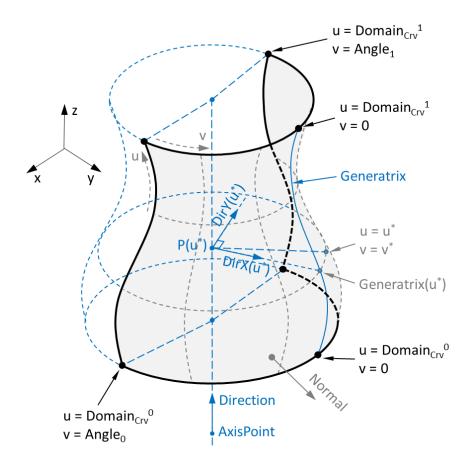


Figure 130 – Surface Of Revolution

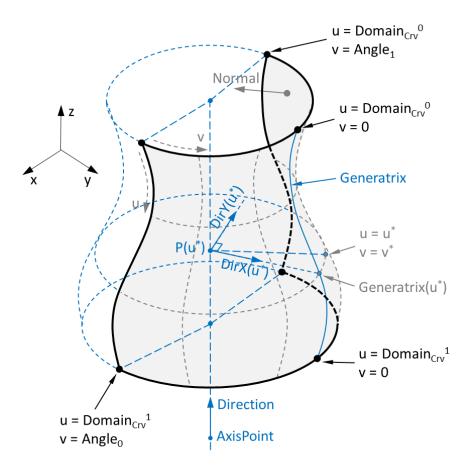


Figure 131 – Surface Of Revolution (turned Generatrix)

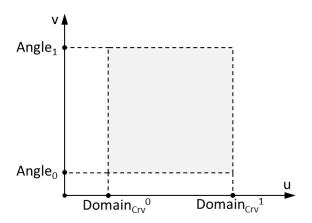
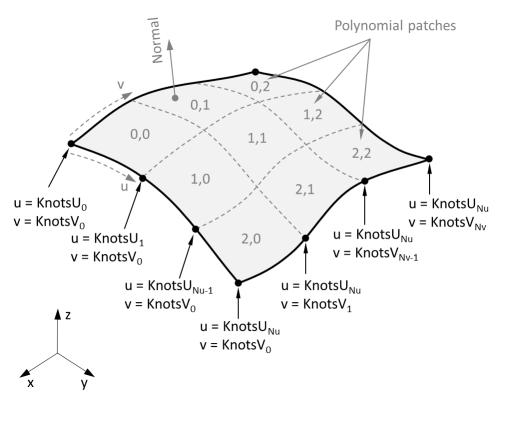


Figure 132 – Surface Of Revolution (Parametric Space)

The surface of revolution is generated by rotating a 3D generatrix curve around a specified axis on a specified angular range.

Function:

 $\begin{aligned} Revolution 23(u, v): R_2 &\to R_3 \\ Revolution 23(u, v) &= P(u) + R(u) (\cos(v) DirX(u) + \sin(v) DirY(u)) \\ P(u) &= AxisPoint + ((Generatrix(u) - AxisPoint) \cdot Direction)Direction \\ R(u) &= \|Generatrix(u) - P(u)\| \\ DirX(u) &= \frac{Generatrix(u) - P(u)}{\|Generatrix(u) - P(u)\|} \\ DirY(u) &= Direction \times DirX(u) \\ u &\in [domain_{crv}^0, domain_{crv}^1], \quad v \in [angle_0, angle_1] \end{aligned}$


Fields:

Field Name	Data Type	Description
Revolution23Core/@angle	ParameterRangeType	This field specifies start and end rotation angles.
Revolution23Core/Axis/AxisPoint	PointType	The axis origin.
Revolution23Core/Axis/Direction	UnitVectorType	The axis direction.
Revolution23Core/Generatrix	Curve13CoreType	The 3D curve to be rotated around the axis.

```
<Revolution23 id="354">
  <Revolution23Core angle="0 6.28318">
    <Axis>
      <AxisPoint>18.0 10.5 0</AxisPoint>
      <Direction>0.0 1.0 0.0/Direction>
    </Axis>
    <Generatrix>
      <ArcCircular13Core domain="1.965 4.317">
        <Radius>0.4</Radius>
        <Center>18.6 11.1 0.0</Center>
        <DirBeg>1.0 0.0 0.0</DirBeg>
        <Normal>0.0 0.0 1.0</Normal>
      </ArcCircular13Core>
    </Generatrix>
  </Revolution23Core>
</Revolution23>
```

7.5.2.4.9 Spline Surface

Spline23 describes a parametric spline surface as shown in Figure 133 and Figure 134.

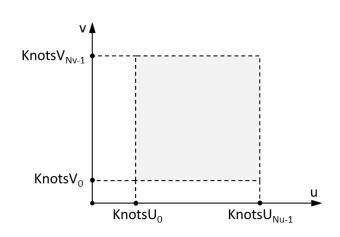


Figure 134 – Spline Surface (Parameter Space)

A spline surface is a grid of parametric polynomial patches.

Function:

Spline23(u, v): $R_2 \rightarrow R_3$

$$Spline23(u,v) = \begin{bmatrix} x(u,v) \\ y(u,v) \\ z(u,v) \end{bmatrix} = \begin{bmatrix} \sum_{i=0}^{DegreeU_p} \sum_{j=0}^{DegreeV_q} (C_{i,j}^{p,q})_x(u_p)^i(v_q)^j \\ \sum_{i=0}^{DegreeU_p} \sum_{j=0}^{DegreeV_q} (C_{i,j}^{p,q})_y(u_p)^i(v_q)^j \\ \sum_{i=0}^{DegreeU_p} \sum_{j=0}^{DegreeV_q} (C_{i,j}^{p,q})_z(u_p)^i(v_q)^j \end{bmatrix}$$

 $Coefficients = \{\underbrace{C^{0,0} \dots C^{N_u-1,0}}_{N_u}, \dots, \underbrace{C^{0,N_v-1} \dots C^{N_u-1,N_v-1}}_{N_u}\}$

 $DegreeU_p = OrdersU_p - 1$

 $DegreeV_q = OrdersV_q - 1$

NC - number of coefficients

 $NC^{p,q}$ – number of coefficients of polynomial patch (p,q)

 $NC^{p,q} = OrdersU_pOrdersV_q$

$$NC = \sum_{p=0}^{N_u - 1} \sum_{q=0}^{N_v - 1} NC^{p,q}$$

 $C^{p,q}$ – coefficients of polynomial patch (p,q)

$$C^{p,q} = \{\underbrace{c_{0,0} \dots c_{DegreeU_{p},0}}_{OrdersU_{p}}, \dots, \underbrace{c_{0,DegreeV_{q}} \dots c_{DegreeU_{p},DegreeV_{q}}}_{OrdersU_{p}}\}$$

 N_u, N_v – number of polynomials in the u and v directions

 $p \in [0, N_u],$ $N_u = number of knots in the u direction - 1$

 $q \in [0, N_v], \quad N_v = number of knots in the v direction - 1$

 u_p – parameter of polynomials p in the u direction

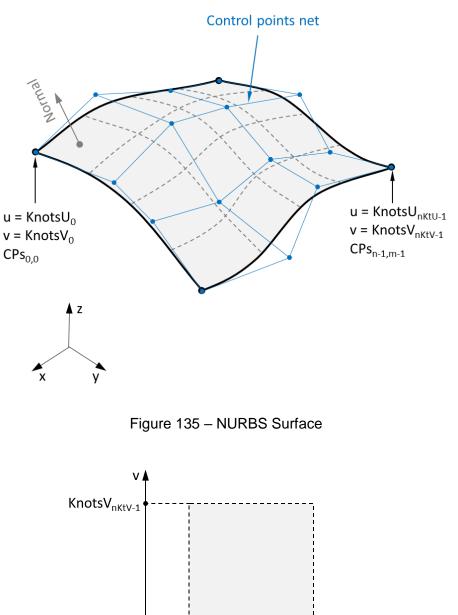
$$u_p \in \begin{cases} [KnotsU_p, KnotsU_{p+1}], & normalized = false \\ [0,1], & normalized = true \end{cases}$$

$$u_{p} = \begin{cases} u - KnotsU_{p}, & normalized = false \\ (u - KnotsU_{p})/(KnotsU_{p+1} - KnotsU_{p}), & normalized = true \end{cases}$$

 v_q – parameter of polynomials p in the v direction

$$\begin{split} v_q &\in \begin{cases} [KnotsV_q, KnotsV_{q+1}], & normalized = false \\ [0,1], & normalized = true \end{cases} \\ v_q &= \begin{cases} v - KnotsV_q, & normalized = false \\ (v - KnotsV_q)/(KnotsV_{q+1} - KnotsV_q), & normalized = true \end{cases} \\ u &\in [KnotsU_i, KnotsU_{i+1}], & i \in [0, N_u - 1] \\ v &\in [KnotsV_j, KnotsV_{j+1}], & j \in [0, N_v - 1] \end{cases} \end{split}$$

Fields:


Field Name	Data Type	Description
Spline13Core/@normalized	xs:boolean	This flag shows if the spline surface is normalized. A value of 1 (or true) means the surface is normalized. A value of 0 (or false) means the surface is not normalized.
Spline23Core/KnotsU	ArrayDoubleType	The knot vector in the u direction (the u spline breakpoints).
Spline23Core/KnotsV	ArrayDoubleType	The knot vector in the v direction (the v spline breakpoints).
Spline23Core/OrdersV	ArrayNaturalType	The orders of the polynomial patches in the u direction. The order is 'the degree of the polynomial' + 1. The size of this array is 'the number of the u spline breakpoints' - 1.
Spline23Core/OrdersV	ArrayNaturalType	The orders of the polynomial patches in the v direction. The order is 'the degree of the polynomial' + 1. The size of this array is 'the number of the v spline breakpoints' - 1.
Spline13Core/Coefficients	ArrayPointType	The coefficients of the polynomial patches. For each patch the number of coefficients equals 'the u polynomial order of the patch' * 'the v polynomial order of the patch'. The total size of this array is the sum of all patch coefficients.

```
<Spline23 id="101">
<Spline23Core>
<KnotsU n="3">
0 1 2
```

```
</KnotsU>
    <KnotsV n="2">
      0 1
    </KnotsV>
    <OrdersU n="2">4 4</OrdersU>
    <OrdersV n="2">4 4</OrdersV>
    <Coefficients n="32">
      -29.7 -20 13
      47.1 18 33
      -21.6 -18 -90
      4.45 6.75 49
      -15.9 60 -48
      2.7 -54 0
      -2.7 54 132.3
      7.65 -20.25 -83.7
      30.9 -60 12
      6.3 54 117
      -13.05 -54 -314.1
      0.6 20.25 147.9
      -20.3 34 -5
      -14.1 -60 -129
      19.35 60 241.8
      -6.2 -20.75 -100.45
      0.25 -13.25 5
      17.25 2.25 0
      -8.25 2.25 57
      25.75 -6.25 -49
      -8.25 39.75 0.6
      20.25 -6.75 13.5
      20.25 -6.75 -118.8
      -53.25 18.75 77.7
      24.75 - 39.75 - 37.2
      -18 6.75 -67.5
      -11.25 6.75 129.6
      45.3 -18.75 -54.9
      -21.25 13.25 7.35
      6 -2.25 53.25
      0.75 -2.25 -59.55
      -8.3 16.25 14.95
    </Coefficients>
  </Spline23Core>
</Spline23>
```

7.5.2.4.10 NURBS Surface

Nurbs23 describes a NURBS parametric surface as shown in Figure 135 and Figure 136.

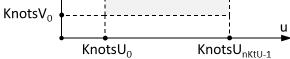


Figure 136 – NURBS Surface (Parameter Space)

A NURBS surface is a bivariate vector-valued piecewise rational function built on the B-spline basis functions and defined by its orders in the u and v directions, two knot vectors (an

increasing sequence of real numbers which divides the parametric space in the intervals called knot spans), and a bidirectional control net with an optional set of associated weights (positive real numbers). If the weights are not defined or if the weights are equal, the surface is polynomial (otherwise rational).

Function:

$$\begin{split} &Nurbs23(u,v): R_2 \to R_3 \\ &Nurbs23(u,v) = \frac{\sum_{i=0}^{n-1} \sum_{j=0}^{m-1} N_{i,DegreeU}(u) N_{j,DegreeV}(v) Weights_{i,j} CPs_{ij}}{\sum_{i=0}^{n-1} \sum_{j=0}^{m-1} N_{i,DegreeU}(u) N_{j,DegreeV}(v) Weights_{i,j}} \\ &DegreeU = OrderU - 1, \quad DegreeV = OrderV - 1 \\ &N_{i,j}(t) - the bspline basis functions \\ &N_{i,0}(t) = \begin{cases} 1, & t \in [Knots_i, Knots_{i+1}) \\ 0, & otherwise \end{cases} \\ &N_{i,p}(t) = \frac{t - Knots_i}{Knots_{i+p} - Knots_i} N_{i,p-1}(t) + \frac{Knots_{i+p+1} - t}{Knots_{i+p+1} - Knots_{i+1}} N_{i+1,p-1}(t) \\ &u \in [KnotsU_0, KnotsU_{nKtU-1}], \quad n - number of control points in the u direction \\ &v \in [KnotsV_0, KnotsV_{nKtV-1}], \quad m - number of control points in the v direction \\ &nKtU = n + OrderU, \quad nKtV = m + OrderV \\ &CPs = \{\underbrace{CPs_{0,0}, \dots, CPs_{n-1,0}}_{n}, \dots, \underbrace{CPs_{0,m-1}, \dots, CPs_{n-1,m-1}}_{n}\} \\ &Weights = \{\underbrace{Weights_{0,0}, \dots, Weights_{n-1,0}}_{n}, \dots, \underbrace{Weights_{0,m-1}, \dots, Weights_{n-1,m-1}}_{n}\} \end{cases}$$

Fields:

Field Name	Data Type	Description
Nurbs23Core/OrderU	NaturalType	The order in the u direction (= degree + 1).
Nurbs23Core/OrderV	NaturalType	The order in the v direction (= degree + 1).
Nurbs23Core/KnotsU	ArrayDoubleType	The knot vector in the u direction. The size of the knot vector is 'number of control points in the u direction' + 'order in the u direction'.
Nurbs23Core/KnotsV	ArrayDoubleType	The knot vector in the v direction. The size of the knot vector is 'number of control points in the v direction' + 'order in the v direction'.
Nurbs23Core/CPs	ArrayPointType	The array of control points. The size of this array is
or	or	('number of the u-knots' - 'the u-order') * ('number
Nurbs23Core/CPsBinary	ArrayBinaryType	of the v-knots' - 'the v-order').

Nurbs23Core/Weights	ArrayDoubleType	The array of weights associated with control points (positive real numbers).
Example:		
<pre><nurbs23 id="102"></nurbs23></pre>	<pre>V> 1 1 1 0.511 0.944 0.196 .196 8 0 8 1.102 6 4</pre>	

7.5.2.4.11 Offset Surface

Offset23 describes an offset parametric surface as shown in Figure 137 and Figure 138.

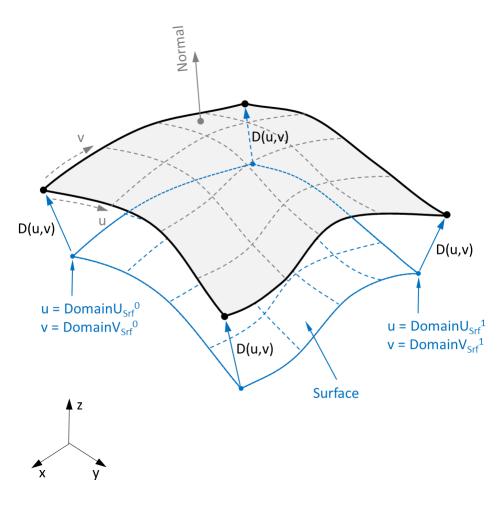


Figure 137 – Offset Surface

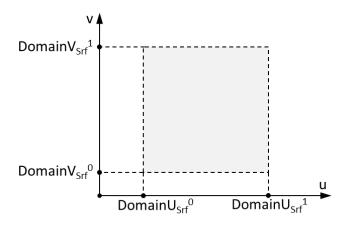


Figure 138 – Offset Surface (Parametric Space)

The offset surface is constructed from an existing surface by moving every surface point in the normal direction by an offset distance.

Function:

$$\begin{split} Offset23(u,v) &: R_2 \to R_3 \\ Offset23(u,v) &= Surface(u,v) + D(u,v) \\ D(u,v) &= N_{srf}(u,v)Distance \\ N_{srf}(u,v) &= \frac{Surface'_u \times Surface'_v}{\|Surface'_u \times Surface'_v\|} \\ u &\in \left[domainU^0_{srf}, domainU^1_{srf}\right], \quad v \in \left[domainV^0_{srf}, domainV^1_{srf}\right] \end{split}$$

Fields:

Field Name	Data Type	Description
Offset23Core/Distance	xs:double	The offset distance.
Offset23Core/Surface	SurfaceCoreType	The base surface for offsetting.

```
<Offset23 id="97">
<Offset23Core>
<Distance>0.2</Distance>
<Surface>
<Nurbs23Core>
<OrderU>4</OrderU>
<OrderV>4</OrderV>
<KnotsU n="8">
```

```
0 0 0 0 1 1 1 1
        </KnotsU>
        <KnotsV n="8">
          0 0 0 0 1 1 1 1
        </KnotsV>
        <CPs n="16">
          -1.165 -0.787 0.511
          -0.551 -0.551 0.944
          -0.216 -0.551 0.196
          0.009 -0.521 0.196
          -1.377 0 -0.118
          -0.748 0 0.314
          -0.413 0 0.145
          -0.098 0 0.204
          -1.181 0 -0.590
          -0.511 0 0.354
          -0.206 0 -0.098
          0.118 0 -0.275
          -1.377 0.551 -1.102
          -0.826 0 -0.826
          -0.511 0 -0.944
          -0.177 0 -0.954
        </CPs>
      </Nurbs23Core>
    </Surface>
  </Offset23Core>
</Offset23>
```

7.5.2.5 Mesh Curves

7.5.2.5.1 Triangulation Path

PathTriangulation describes a path of triangulation edges. The way the identification of triangle edges relate to the identification of triangle vertices is illustrated in Figure 139.

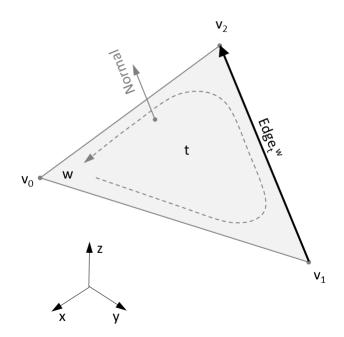


Figure 139 – The edge 'w' of triangle 't'

 E_t^w – the edge 'w' of the triangle 't' is opposite to the vertex 'w'

$$E_t^w = \begin{cases} Start \ point = v_1 = Vertices_a, & a = Triangles_t^{(w+1) \ mod \ 3} \\ End \ point = v_2 = Vertices_b, & b = Triangles_t^{(w+2) \ mod \ 3} \end{cases}$$

$$Triangles_t^w = vertex w in triangle t$$

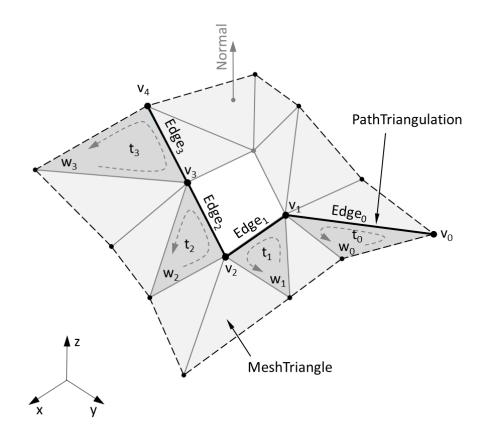


Figure 140 – Triangulation Path

$$Edges = \{\underbrace{t_0, w_0}_{Edge_0}, \underbrace{t_1, w_1}_{Edge_1}, \underbrace{t_2, w_2}_{Edge_2}, \underbrace{t_3, w_3}_{Edge_3}\}$$
$$V = \{v_0, v_1, v_2, v_3, v_4\}$$

The triangulation path is a polyline formed from the mesh edges as shown in Figure 140.

Function:

$$\begin{split} Edges &= \{\underbrace{t_0, w_0}_{Edge_0}, \dots, \underbrace{t_{n-1}, w_{n-1}}_{Edge_{n-1}}\}, \qquad n-number\ of\ edges \\ Pairs\ (t_i, w_i)\ specifies\ edges\ E_{t_i}^{w_i} \\ V-sequence\ of\ vertices\ in\ the\ path \\ V &= \{v_0, \dots, v_n\} \end{split}$$

$$v_{i} = Vertices_{j}, \qquad j = \begin{cases} Triangles_{0}^{(w_{0}+1) \mod 3} & i = 0\\ Triangles_{i}^{(w_{i}+1) \mod 3} = Triangles_{i-1}^{(w_{i-1}+2) \mod 3}, & 0 < i < n\\ Triangles_{n-1}^{(w_{n-1}+2) \mod 3}, & i = n \end{cases}$$

Fields:

Field Name	Data Type	Description
PathTriangulationCore/Edges or PathTriangulationCore/EdgesBinary	Arrayl2Type or ArrayBinaryType	The array of triangle edges that forms a triangulation path. This is an array of pairs of positive integers, where the first value is a triangle index and the second value is a vertex index opposite to the edge.
MeshTriangle	ElementReferenceType	The identifier of a triangle mesh.

```
<PathTriangulation id="32">
 <PathTriangulationCore>
    <Edges n="2">
      1 0
      0 2
    </Edges>
  </PathTriangulationCore>
  <MeshTriangle>
    <Id>98</Id>
  </MeshTriangle>
</PathTriangulation>
<MeshTriangle id="98">
  <MeshTriangleCore>
    <Triangles n="2">
      0 1 2
      2 3 0
    </Triangles>
    <Neighbours n="2">
      -1 1 -1
      -1 0 -1
    </Neighbours>
    <Vertices n="4">
      0.0 0.0 0.0
      10.0 0.0 0.0
      10.0 5.0 0.0
      0.0 5.0 0.0
    </Vertices>
  </MeshTriangleCore>
</MeshTriangle>
```

7.5.2.6 Mesh Surfaces

7.5.2.6.1 Triangulation Mesh Surface

MeshTriangle23 describes a triangulation mesh surface. Figure 141 illustrates how two triangles may be sewn together.

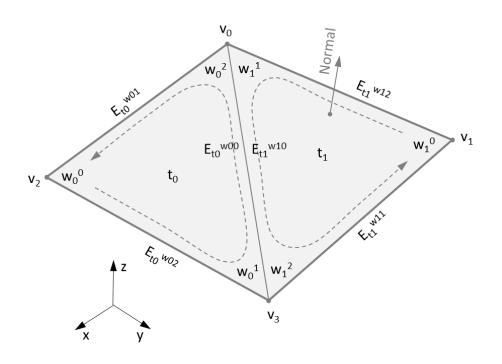


Figure 141 – Two sewn triangles

 $t_{0} = Neighbours_{t_{1}}^{w_{1}^{0}}, \qquad t_{1} = Neighbours_{t_{0}}^{w_{0}^{0}}$ $w_{t}^{i} - index \ of \ vertex \ of \ triangle \ t$ $w_{t}^{i} \in \{0,1,2\}, \qquad i \in \{0,1,2\}, \qquad t - index \ of \ triangle$ $w_{t}^{1} = (w_{t}^{0} + 1) \ mod \ 3, \qquad w_{t}^{2} = (w_{t}^{0} + 2) \ mod \ 3$ $\begin{cases} v_{0} = Vertices_{i} = Vertices_{j}, \qquad i = Triangles_{t_{0}}^{w_{0}^{2}}, j = Triangles_{t_{1}}^{w_{1}^{1}}$ $v_{1} = Vertices_{i}, \qquad i = Triangles_{t_{0}}^{w_{0}^{0}}$ $v_{3} = Vertices_{i} = Vertices_{j}, \qquad i = Triangles_{t_{0}}^{w_{0}^{0}}, j = Triangles_{t_{1}}^{w_{1}^{2}}$

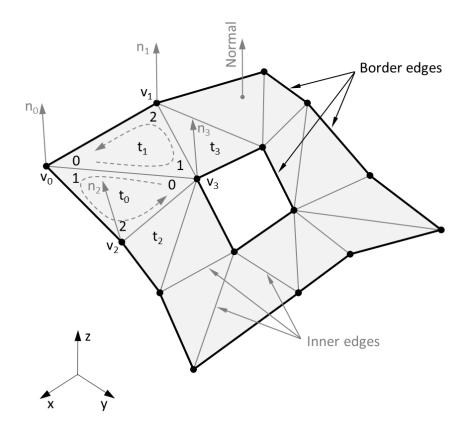


Figure 142 – Triangle Mesh

$$\begin{aligned} Triangles_{t_0} &= \begin{bmatrix} v_3 \\ v_0 \\ v_2 \end{bmatrix}, \quad Triangles_{t_1} &= \begin{bmatrix} v_0 \\ v_3 \\ v_1 \end{bmatrix} \\ Neighbours_{t_0} &= \begin{bmatrix} -1 \\ t_2 \\ t_1 \end{bmatrix}, \quad Neighbours_{t_1} &= \begin{bmatrix} t_3 \\ -1 \\ t_0 \end{bmatrix} \end{aligned}$$

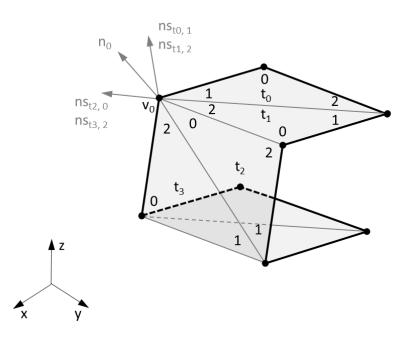


Figure 143 – Triangle Mesh with special normals

 $ns_{t,w} = special normal of vertex w in triangle t$

t – *index of triangle (first integer in NormalSpecial/@vertex)*

w – *vertex index in a triangle (second integer in NormalSpecial/@vertex)*

A mesh surface is a set of triangles connected by their common edges as shown in Figure 142. QIF allows defining more than one normal vector per vertex; in this case, the special normals array shall be used as shown in Figure 143 – Triangle Mesh with special normals.

Function:

 $Triangles_t^w = the \ vertex_w \ in \ the \ triangle_t$

 E_t^w – the edge_w in the triangle_t is opposite to the vertex_w

$$E_{t}^{w} = \begin{cases} Start \ point = Vertices_{a}, & a = Triangles_{t}^{(w+1) \ mod \ 3} \\ End \ point = Vertices_{b}, & b = Triangles_{t}^{(w+2) \ mod \ 3} \end{cases}$$

$$Neighbours_{t}^{w} = \begin{cases} neighbour \ triangle \ index, & E_{t}^{w} \ is \ a \ border \ edge \ otherwise \end{cases}$$

$$w - vertex \ index \ in \ a \ triangle, & w \in \{0,1,2\} \end{cases}$$

$$N_{t} - unit \ normal \ of \ the \ triangle \ 't'$$

$$\begin{cases} N_{t} = \frac{(Vertices_{v_{1}} - Vertices_{v_{0}}) \times (Vertices_{v_{2}} - Vertices_{v_{0}})}{\left\| (Vertices_{v_{1}} - Vertices_{v_{0}}) \times (Vertices_{v_{2}} - Vertices_{v_{0}}) \right\|} \\ v_{i} = Triangles_{t}^{i} \\ i \in \{0, 1, 2\} \end{cases}$$

Fields:

Field Name	Data Type	Description
MeshTriangleCore/Triangles or MeshTriangleCore/TrianglesBinary	Arrayl3Type or ArrayBinaryType	The array of indices of the triangle vertices. The number of array elements corresponds to the number of triangles in the mesh. Each element of this array is a triplet of integer numbers: index of the first vertex, index of the first vertex, index of the second vertex and index of the third vertex. All three vertex indices of a triangle must be different and must lie in the range [0,, number of vertices - 1].
MeshTriangleCore/Neighbours or MeshTriangleCore/NeighboursBinary	Arrayl3Type or ArrayBinaryType	The array of indices of the triangle neighbors. The number of array elements corresponds to the number of triangles in the mesh. Each element of this array is a triplet of integer numbers: index of a neighbor triangle opposite to the first triangle vertex, index of a neighbor triangle opposite to the second triangle vertex, index of a neighbor triangle opposite to the third triangle vertex. There is a special index value "- 1" which shows that there is no neighbor.

		The neighbor indices must lie in the range [- 1,, number of triangles - 1]. The array of 3D points. The number of array
MeshTriangleCore/Vertices or MeshTriangleCore/VerticesBinary	ArrayPointType or ArrayBinaryType	elements corresponds to the number of vertices in the mesh. Each element of this array is a triplet of real numbers: the X- coordinate, the Y- coordinate and the Z- coordinate.
MeshTriangleCore/Normals or MeshTriangleCore/NormalsBinary	ArrayUnitVectorType or ArrayBinaryType	The mesh normals - an array of unit vectors. The number of array elements corresponds to the number of vertices in the mesh. Each element of this array is a triplet of real numbers: the X- component, the Y- component and the Z- component.
NormalsSpecial or NormalsSpecialBinary	ArrayTriangleVertexNormalType or ArrayBinaryType	The special mesh normal - an array of normal vectors specified on the triangle level. This array is an addition to the core mesh normal vectors and it allows for the definition of different normal vectors in a common vertex for different triangles. This situation is typical for vertices of mesh feature lines.
NormalsSpecial/NormalSpecial/@vertex	І2Туре	The pair of non-negative integers, where the first value is a triangle index and the second value is a vertex index.

```
<MeshTriangle id="98">
  <MeshTriangleCore>
    <Triangles n="2">
      0 1 2
      2 3 0
    </Triangles>
    <Neighbours n="2">
      -1 1 -1
      -1 0 -1
    </Neighbours>
    <Vertices n="4">
      0.0 0.0 0.0
      10.0 0.0 0.0
      10.0 5.0 0.0
      0.0 5.0 0.0
    </Vertices>
    <Normals n="4">
      0 0 1
      0 0 1
      0 0 1
      0 0 1
    </Normals>
  </MeshTriangleCore>
  <NormalsSpecial n="2">
    <NormalSpecial vertex="0 0">
      0.5 0 0.8660254037844
    </NormalSpecial>
    <NormalSpecial vertex="1 2">
      0 0.5 0.8660254037844
    </NormalSpecial>
  </NormalsSpecial>
</MeshTriangle>
```

7.5.3 Topology

QIF topology elements define boundaries of geometry objects and specify connectivity relations. In QIF they are separated by type and organized in the following sets:

- VertexSet
- EdgeSet
- LoopSet
- FaceSet
- ShellSet
- BodySet
- PointCloudSet

As seen in Figure 144, all topology types are derived from TopologyBaseType.

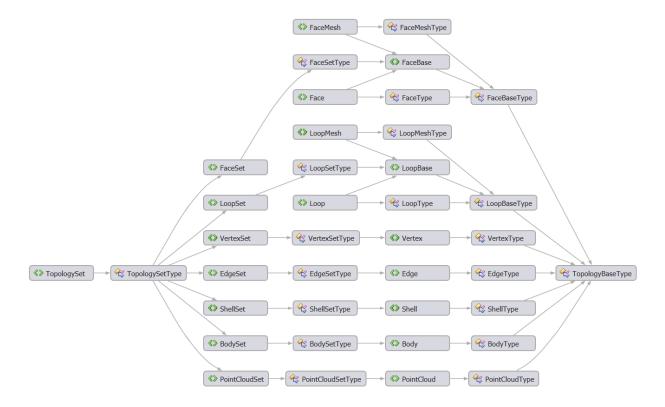


Figure 144 – Topology Types

The main topological items are:

- Body a set of oriented shells built on collections of connected face elements
- Shell a set of connected faces
- Face a bounded portion of a surface
- Loop a circuit of edges bounding a face
- Edge a bounded piece of a 3D curve
- Vertex lies at a point and can be used to bound an edge

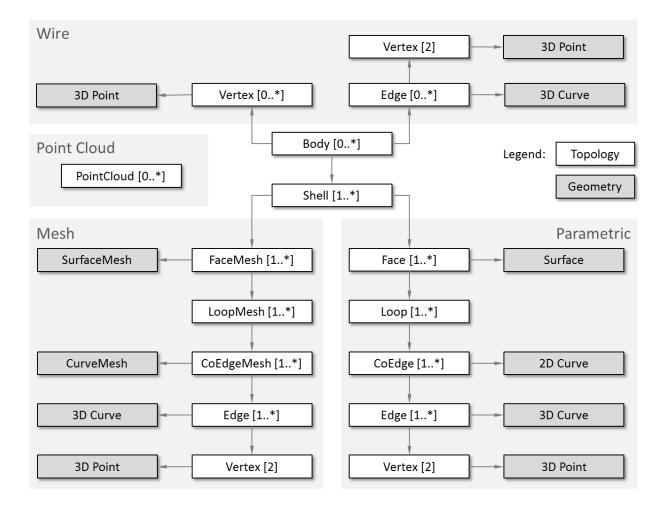


Figure 145 – Boundary Representation

All topology objects contain the following fields:

Field Name	Data Type	Description	
@id	QIFIdType	The unique model entity identifier.	
@label	xs:string	The model entity "nameplate". Normally it can be seen at the entity item in the model tree.	
@color	ColorType	The RGB color property of a model entity.	
@transparency	TransparencyType	The transparency property of a model entity.	
@hidden	xs:boolean	The visibility property of a model entity in the graphical window.	
@size	xs:double	A recommended size for visualization of an infinite drawable element.	
Attributes	AttributesType	User-defined attributes (typified, binary array, or XML structured).	

7.5.3.1 Vertex

Vertex describes a topological vertex as illustrated in Figure 146.

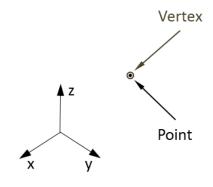


Figure 146 – Vertex

A vertex lies at a 3D point and is normally used to bound an edge.

Fields:

Field Name	Data Type	Description
@tolerance	xs:double	The tolerance value, which is calculated as the maximum distance from the vertex underlying 3D point to the ends of all neighboring edges that are terminated in the neighborhood of this vertex. This value can be defined only for the case of the tolerant body.
Point	ElementReferenceType	The identifier of a 3D point – the underlying geometry of the vertex.

```
<Vertex id="401">
<Point>
<Id>398</Id>
</Point>
</Vertex>
```

7.5.3.2 Edge

Edge describes a topological edge as shown in Figure 147.

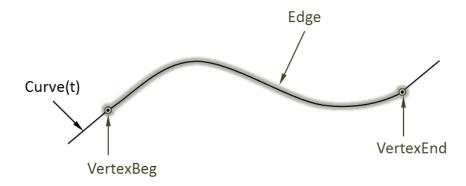
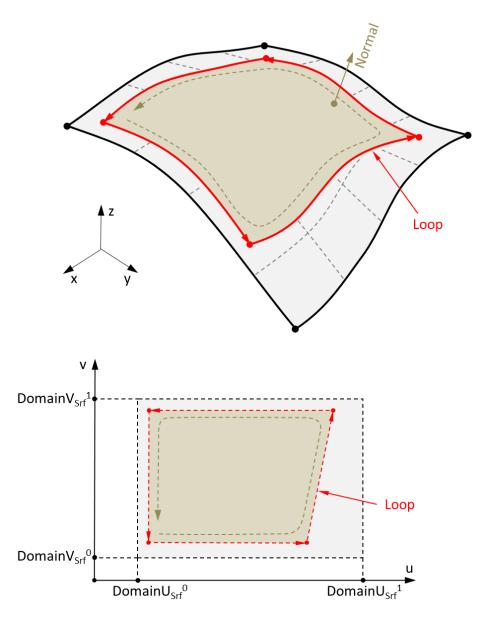


Figure 147 – Edge

An edge is a bounded piece of a 3D curve.


Fields:	
---------	--

Field Name	Data Type	Description
@tolerance	xs:double	The tolerance value calculated as the maximum distance between the 2D parametric co-edges of the neighboring faces. The edge tolerance for the case of tolerant body.
Validation	ValidationEdgeType	The set of edge validation properties.
Curve	ElementReferenceType	The identifier of a 3D curve that is the underlying geometry of this edge.
VertexBeg	ElementReferenceType	The identifier of the vertex, which bounds this edge at the beginning of the edge. The 'underlying' parameter of VertexBeg must be less than the 'underlying' parameter of VertexEnd. Or, in other words, the edge always follows the natural parameterization of the underlying 3D curve. If there is a need to pass an edge in the opposite (to the natural parameterization of the underlying curve) direction then the corresponding flag shall be defined at the loop level.
VertexEnd	ElementReferenceType	The identifier of the vertex, which bounds this edge at the end of the edge. The 'underlying' parameter of VertexEnd must be bigger than the 'underlying' parameter of VertexBeg. In other words, the edge always follows the natural parameterization of the underlying 3D curve. If there is a need to pass an edge in the opposite (to the natural parameterization of the underlying curve) direction then the corresponding flag shall be defined at the loop level.

```
<Edge id="405">
<Curve>
<Id>390</Id>
</Curve>
<VertexBeg>
<Id>566</Id>
</VertexBeg>
<VertexEnd>
<Id>401</Id>
</VertexEnd>
</Edge>
```

7.5.3.3 Loop

Loop describes a topological loop as shown in Figure 148.

A loop is a circuit of edges (in 3D space) with corresponding CoEdges (in surface parameter space) bounding a face. CoEdges are shown in Figure 149.

Fields:

Field Name	Data Type	Description
@form	LoopFormEnumType	The loop type that can take one of the following values:

		'UNKNOWN', 'OUTER', 'INNER', 'SLIT' or 'VERTEX'.
CoEdges	CoEdgesType	An array of co-edges that forms the loop.
CoEdges/CoEdge/EdgeOriented/@turned	xs:boolean	This flag shows if the referenced edge shall be inverted.
CoEdges/CoEdge/EdgeOriented/Id	QIFReferenceType	A reference to an edge.
CoEdges/CoEdge/Curve12	ElementReferenceType	A reference to a 2D curve which is a projection of the edge underlying 3D Curve onto the face underlying surface.

```
<Loop id="113" form="OUTER">
  <CoEdges n="4">
    <CoEdge>
      <EdgeOriented>
        <Id>405</Id>
      </EdgeOriented>
      <Curve12>
        <Id>520</Id>
      </Curve12>
    </CoEdge>
    <CoEdge>
      <EdgeOriented>
        <Id>469</Id>
      </EdgeOriented>
      <Curve12>
        <Id>532</Id>
      </Curve12>
    </CoEdge>
    <CoEdge>
      <EdgeOriented turned="1">
        <Id>511</Id>
      </EdgeOriented>
      <Curve12>
        <Id>547</Id>
      </Curve12>
    </CoEdge>
    <CoEdge>
      <EdgeOriented>
        <Id>567</Id>
      </EdgeOriented>
      <Curve12>
        <Id>563</Id>
      </Curve12>
    </CoEdge>
  </CoEdges>
</Loop>
```

7.5.3.3.1 Co-Edges

A CoEdge defines a parameter space curve (i.e. the projection of an underlying 3D Curve of an edge onto an underlying surface of a face) that represents a part of the face trimming loop and additionally includes the corresponding edge orientation flag.

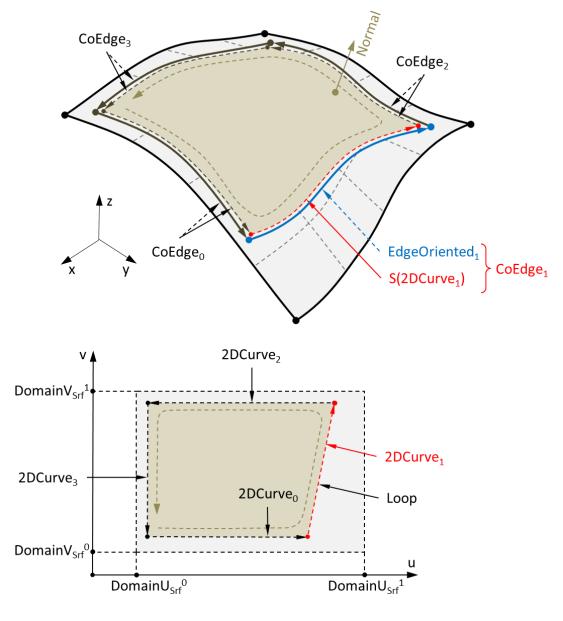


Figure 149 - Co-Edge

7.5.3.3.2 Loop forms

The QIF data model allows defining of the four loop forms: 'OUTER' (shown in Figure 150), 'INNER' (shown in Figure 151), 'SLIT' (shown in Figure 152) and 'VERTEX' (shown in Figure 153). In addition, the 'UNKNOWN' loop form may be used.

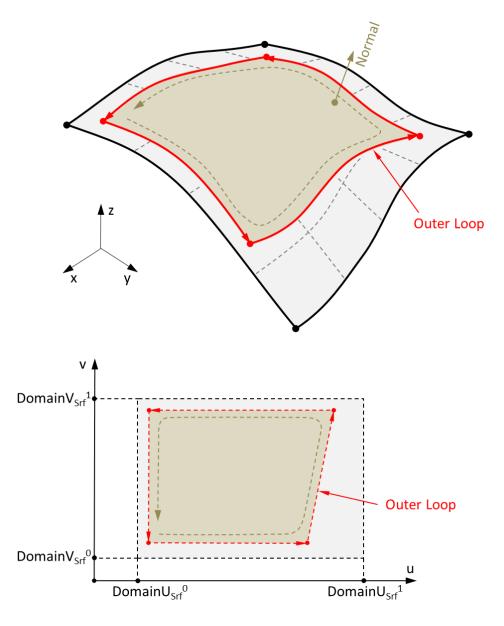


Figure 150 – Outer Loop

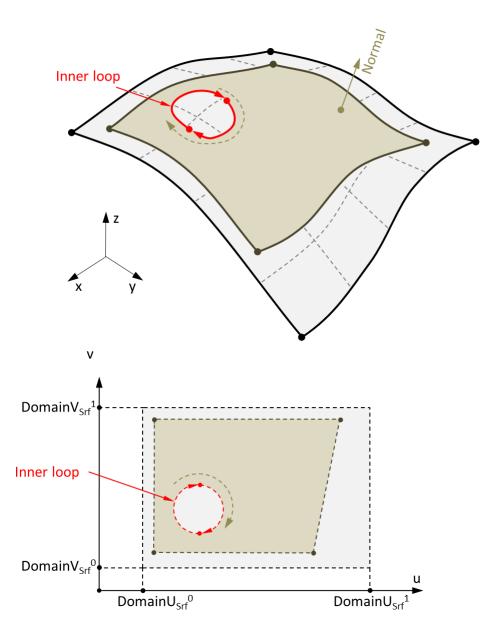


Figure 151 – Inner Loop

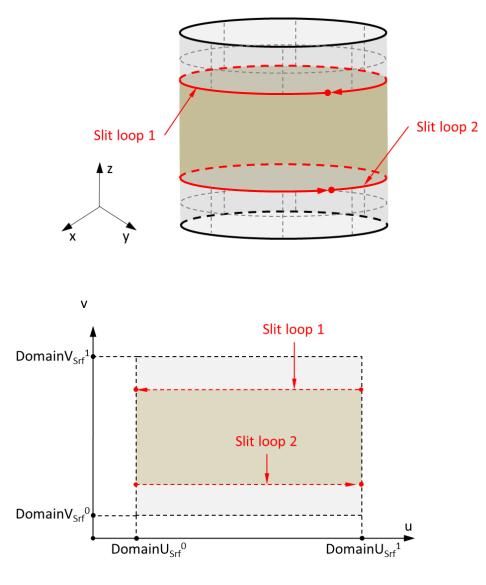


Figure 152 – Slit Loop

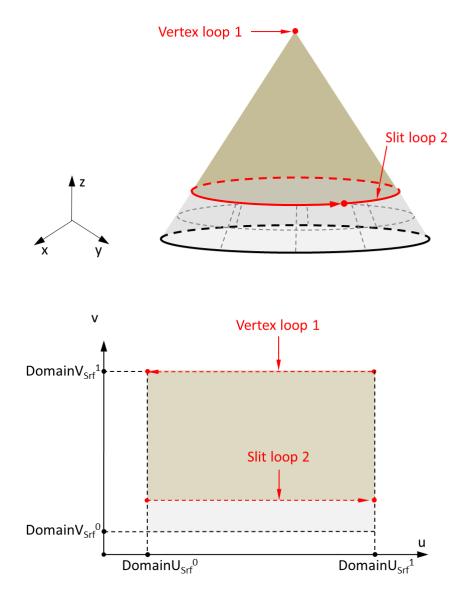
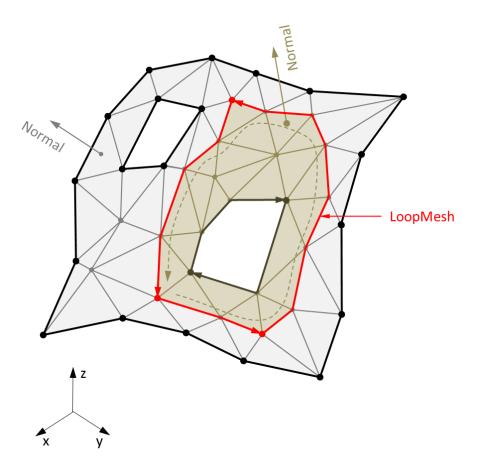
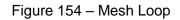




Figure 153 – Vertex Loop

7.5.3.4 Mesh Loop

LoopMesh describes a topological mesh loop as shown in Figure 154.

A mesh loop is a circuit of CoEdges bounding a mesh face as shown in Figure 155.

Fields:

Field Name	Data Type	Description
CoEdgesMesh	CoEdgesMeshType	An array of mesh co- edges that forms a mesh loop.
CoEdgesMesh/CoEdgeMesh/EdgeOriented/@turned	xs:boolean	This flag shows if the referenced edge must be reversed from the original edge orientation.
CoEdgesMesh/CoEdgeMesh/EdgeOriented/Id	QIFReferenceType	A reference to an edge with a given orientation.

CoEdgesMesh/CoEdge/CurveMesh	ElementReferenceType	A reference to a mesh curve. This is the projection of the underlying 3D Curve of an oriented Edge onto an underlying mesh surface of a mesh face.
------------------------------	----------------------	---

```
<LoopMesh id="113">
  <CoEdgesMesh n="4">
    <CoEdgeMesh>
      <EdgeOriented>
        <Id>405</Id>
      </EdgeOriented>
      <CurveMesh>
        <Id>520</Id>
      </CurveMesh>
    </CoEdgeMesh>
    <CoEdgeMesh>
      <EdgeOriented>
        <Id>469</Id>
      </EdgeOriented>
      <CurveMesh>
        <Id>532</Id>
      </CurveMesh>
    </CoEdgeMesh>
    <CoEdgeMesh>
      <EdgeOriented turned="1">
        <Id>511</Id>
      </EdgeOriented>
      <CurveMesh>
        <Id>547</Id>
      </CurveMesh>
    </CoEdgeMesh>
    <CoEdgeMesh>
      <EdgeOriented>
        <Id>567</Id>
      </EdgeOriented>
      <CurveMesh>
        <Id>563</Id>
      </CurveMesh>
    </CoEdgeMesh>
  </CoEdgesMesh>
</LoopMesh>
```

7.5.3.4.1 Mesh Co-Edges

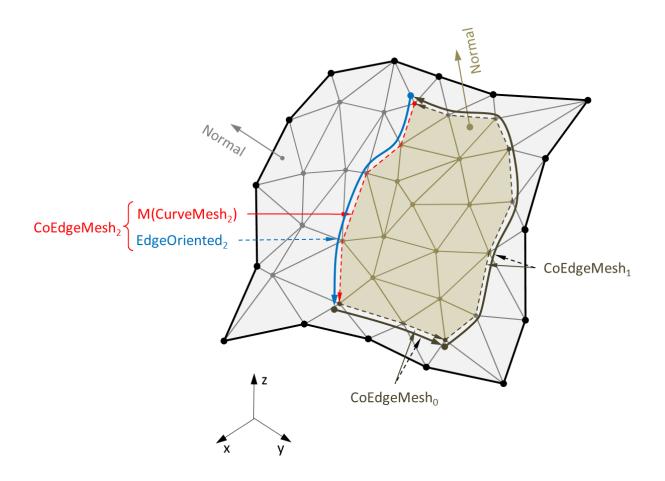


Figure 155 – Mesh Co-Edge

7.5.3.5 Face

Face describes a topological face as shown in Figure 156.

Figure 156 - Face

A face is a bounded portion of a parametric surface.

Fields:

Field Name	Data Type	Description
@turned	xs:boolean	This flag shows if the face normal goes in the opposite direction of the surface normal.

@hasOuter	xs:boolean	This flag shows if the face has its outer loop explicitly represented in the loop array. If this attribute is false, the natural border of the underlying surface shall be taken as the face outer loop.
Validation	ValidationFaceType	The set of face validation properties.
Surface	ElementReferenceType	The identifier of the underlying surface.
LoopIds	ArrayReferenceType	The array of identifiers of the face trimming contours.

```
<Face id="174" color="191 191 191" turned="1">

<Surface>

<Id>102</Id>

</Surface>

<LoopIds n="1">

<Id>113</Id>

</LoopIds>

</Face>
```

7.5.3.6 Mesh Face

FaceMesh describes a topological mesh face as shown in Figure 157.

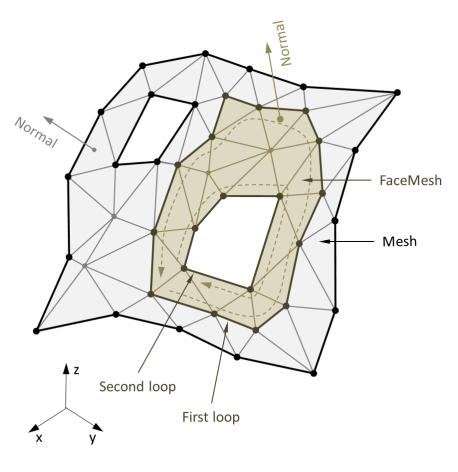


Figure 157 – Mesh Face

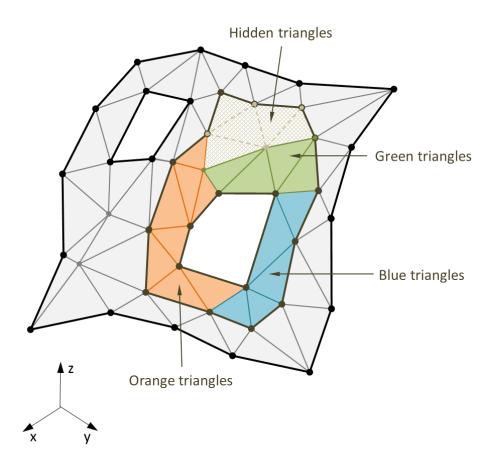


Figure 158 – Mesh Face (Triangle Visibility and Color)

As shown in Figure 158, a mesh face is built on a mesh surface bounded by a set of closed triangulation paths (polylines formed from the triangle edges). The triangles of a mesh face may be colored and they may be hidden. By default, all triangles in a mesh face are visible, and their appearance is the same on both sides.

Fields:

Field Name	Data Type	Description
@turned	xs:boolean	This attribute shows if the face orientation shall be reversed from the orientation of the underlying surface. If the value is true, the face orientation shall be opposite the surface orientation. If the value is false, the two orientations shall be the same.
Validation	ValidationFaceType	The set of face validation properties.
Mesh	ElementReferenceType	The identifier of the underlying mesh surface.

LoopIds	ArrayReferenceType	An array of identifiers of the face trimming
-		contours.
Triangles	ArrayIntType	The array of triangle indices of the underlying
e e		mesh surface. All elements of this array must be
Or Triangles Dinom	Or Armov Dinom Tuno	unique and must lie in the range [0, number of
TrianglesBinary	ArrayBinaryType	triangles in the underlying mesh surface - 1].
TrianglesVisible	ArrayIntType	The indexes from the Triangles array of the
or	or	triangles that should be visible or hidden. If this
TrianglesVisibleBinary	ArrayBinaryType	element is not used, all triangles are visible. If
or	or	TrianglesVisible[Binary] is used, all other triangles
TrianglesHidden	ArrayIntType	in the mesh face are hidden. If
or	or	TrianglesHidden[Binary] is used, all other
TrianglesHiddenBinary	ArrayBinaryType	triangles in the mesh face are visible.
		An array of unsigned byte values that defines
		colors of the face interior triangles. Each element
TrianglesColor	ArrayIntType	of this array is a triplet of unsigned byte numbers
or	or	representing the RGB color: the red-component,
TrianglesColorBinary	ArrayBinaryType	the green-component and the blue-component.
		The number of array elements corresponds to
		the number of triangles in the face interior.

```
<FaceMesh id="234">
  <Mesh>
    <Id>34</Id>
  </Mesh>
  <LoopIds n="1">
    <Id>55</Id>
  </LoopIds>
 <Triangles n="8">
    19 20 21 22 23 40 41 42
  </Triangles>
  <TrianglesHidden n="3">
    0 6 7
  </TrianglesHidden>
  <TrianglesColor n="8">
    255 255 255
    255 255 255
    255 255 255
    128 0 0
    255 10 255
    100 255 255
    255 10 255
    128 0 0
  </TrianglesColor>
</FaceMesh>
```

7.5.3.7 Shell

Shell describes a topological shell as shown in Figure 159.

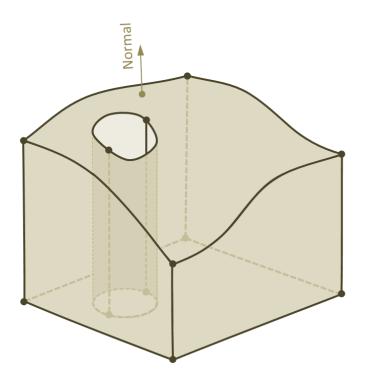


Figure 159 – Shell

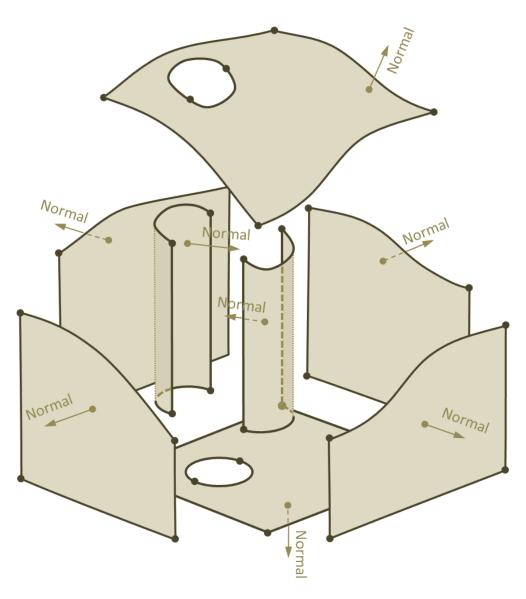
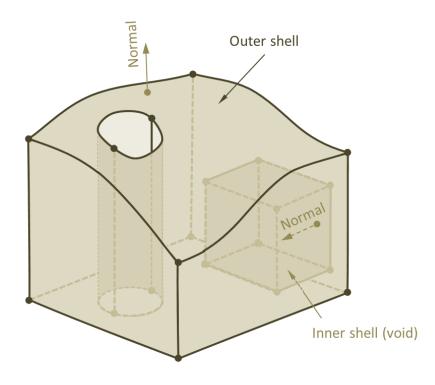


Figure 160 – Shell Faces

A topological shell is a set of connected faces. Figure 160 shows an exploded view of the faces of a shell along with their normal vectors.


Fiel	de.
1 10	las:

Field Name	Data Type	Description
@turned	xs:boolean	This flag shows if the shell orientation shall be reversed from the orientation of the component faces. If the value is true, the shell orientation shall be opposite the faces orientation. If the value is false, the two orientations shall be the same.
@closed	xs:boolean	This flag shows if the shell is closed (there are no gaps or open contours).

@form	ShellFormEnumType	The shell type that can take one of the following values: 'UNKNOWN', 'OUTER' or 'INNER'.
FaceIds	ArrayReferenceType	An array of face IDs.

7.5.3.8 Body

Body describes a topological body as shown in Figure 161.

A body is a solid represented as a set of one outer and a number of inner shells.

Fields:

Field Name	Data Type	Description
@form	BodyFormEnumType	The body type that can take one of the following values: 'UNDEFINED', 'TRIMMED_SURFACE', 'WIRE', 'SOLID', 'SHEET' or 'MIXED'.
Validation	ValidationBodyType	The set of body validation properties.
Transform	ElementReferenceType	The identifier of the transformation matrix.
ShellIds	ArrayReferenceType	The array of shell identifiers
FaceIds	ArrayReferenceType	The array of face identifiers.
LoopIds	ArrayReferenceType	The array of loop identifiers.
EdgeIds	ArrayReferenceType	The array of edge identifiers.
VertexIds	ArrayReferenceType	The array of vertex identifiers.

	0	• ••	
<body <="" color="0</td><td>255</td><td>0" id="127" td=""><td>form="SOLID"></td></body>	form="SOLID">		
<shellids n="1"></shellids>			
<id>578</id>			
<faceids n="6"></faceids>			
<id>176</id>			
<id>179</id>			
<id>180</id>			
<id>178</id>			
<id>174</id>			
<id>177</id>			
<loopids n="6"></loopids>			
<id>126</id>			
<id>161</id>			
<id>171</id>			
<id>151</id>			
<id>113</id>			
<id>139</id>			
<edgeids n="12"></edgeids>			
<id>539</id>			
<id>555</id>			
<id>567</id>			
<id>575</id>			
<id>511</id>			
<id>495</id>			
<id>487</id>			
<id>456</id>			
<id>430</id>			
<id>405</id>			

```
<Id>469</Id>
<Id>425</Id>
</EdgeIds>
</EdgeIds>
<VertexIds n="8">
<Id>553</Id>
<Id>553</Id>
</Id>
<//id>
```

7.5.3.9 Point Cloud

PointCloud describes a cloud of points as shown in Figure 162 and Figure 163.

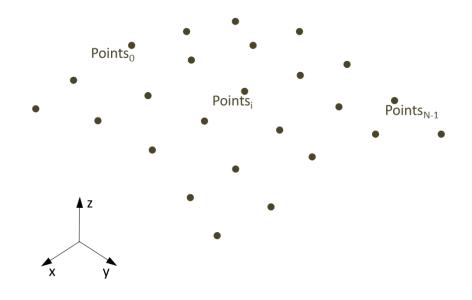


Figure 162 – Cloud of Points

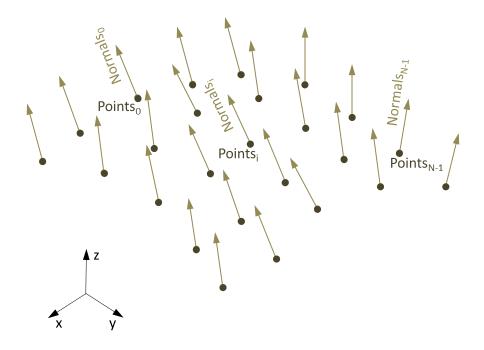


Figure 163 – Cloud of Point with Defined Normals

N – number of points

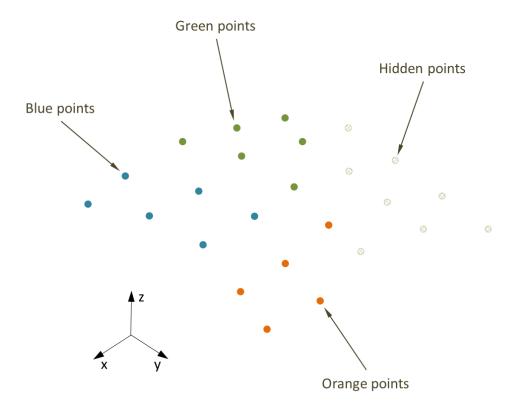


Figure 164 – Point Cloud (Point Visibility and Color)

A point cloud is a collection of 3D points with an optional set of associated normals. The points may be colored and they may be hidden. In order to simplify work with point clouds QIF considers this object as a topological exception. This means that this type of geometric data does not need any extra topological wrapper and it can participate in the model scene as it is.

Field Name	Data Type	Description
Points	ArrayPointType	
or	or	The array of 3D points.
PointsBinary	ArrayBinaryType	
Normals	ArrayUnitVectorType	The array of normals. The number of
or	or	elements in this array must equal the
NormalsBinary	ArrayBinaryType	number of 3D points in this point cloud.
PointsVisible	ArrayIntType	The indexes from the Points array of the
or	or	points that should be visible or hidden. If
PointsVisibleBinary	ArrayBinaryType	this element is not used, all points are
or	or	visible. If PointsVisible[Binary] is used, all
PointsHidden	ArrayIntType	other points in the point cloud are hidden.
or	or	If PointsHidden[Binary] is used, all other
PointsHiddenBinary	ArrayBinaryType	points in the point cloud are visible.

Fie	Ide.
1 10	ias:

PointsColor or PointsColorBinary	ArrayIntType or ArrayBinaryType	An array of unsigned byte values that defines colors of the points. Each element of this array is a triplet of unsigned byte numbers representing the RGB color: the red-component, the green-component and the blue-component. The number of array elements corresponds to the number of points.
--	---------------------------------------	--

<PointCloud id="3">

<Points n="20"> -1.16929133858268 -0.78740157480315 0.511811023622047 -0.883047171186937 -0.687746062992126 0.638852435112278 -0.63918051910178 -0.620078740157481 0.622630504520268 -0.259113444152814 -0.551181102362205 0.374744823563721 0.00984251968503937 -0.521653543307087 0.196850393700787 -1.27238261883931 -0.212890055409741 -0.0729075532225137 -0.980417571260382 -0.19196288735513 0.125172480368966 -0.731792013652614 -0.177678407483015 0.203090740200685 -0.334651069850837 -0.162556840888716 0.146355162394824 -0.0211431904345291 -0.15456401283173 0.0527121609798776 -1.28273549139691 0.134149897929426 -0.596383785360163 -0.995118906818745 0.0690377148072541 -0.360411738656125 -0.750102610630461 0.0254231338366655 -0.245109793374594 -0.352964367108432 -0.0143654882645842 -0.24891178726116 -0.0215077282006419 -0.0193205016039662 -0.352580927384077 -1.37795275590551 0.551181102362205 -1.10236220472441 -1.12086249635462 0.318970545348498 -0.995051399825022 -0.896033829104695 0.163312919218431 -0.939413823272091 -0.514727325750948 0.0204141149023039 -0.927384076990376 -0.177165354330709 0 -0.954724409448819

</Points>

<Normals n="20">

```
-0.623765689571477 0.380773422526389 0.682589162828535
-0.310237069934693 0.562301118777707 0.766531416355309
0.090750754593406 0.625699548958669 0.774767303758777
0.577779206607798 0.413801444322832 0.70351940491219
0.00191672240401954 -0.0146948717641499 0.99989018743013
-0.509232347350378 0.675520319522933 0.533249204709822
-0.326094688542491 0.757232035434036 0.56591686546418
-0.118001946731718 0.795610989745604 0.594204252394364
0.205316690584309 0.75203536789529 0.626328876870692
0.00588691478872499 0.776036953180493 0.630659965062479
-0.325919814041952 0.783893402891083 0.528476496846074
-0.0597624697937558 0.921696358846995 0.383280927378786
0.0741285257671752 0.965747087229765 0.248671520634772
0.0810453652229759 0.988778769243019 0.125491809573915
0.0200710836160788 0.993714825343097 0.110127187813973
0.398014876083999 0.696526033146993 0.597022314125991
```

```
0.588385732990174 0.795976710575262 0.142208668636623
0.501600088180723 0.865095712095178 0.00260008685018021
0.16965400244185 0.984848612494367 -0.0359267299288623
0 1 0
</Normals>
</PointCloud>
```

7.5.3.10 Sewn Faces

Two faces sewn together have at least one common edge between them that corresponds to co-edges defined on each of the two faces. The bypass of the co-edges shall be oriented so that they are opposite from each other in order to conform to the normals of each face. If the orientations of the underlying surfaces are not conformal – the face optional attribute "@turned" shall be used to specify that the face normal is opposite to its underlying surface normal. Sewn faces are illustrated in Figure 165 and Figure 166.

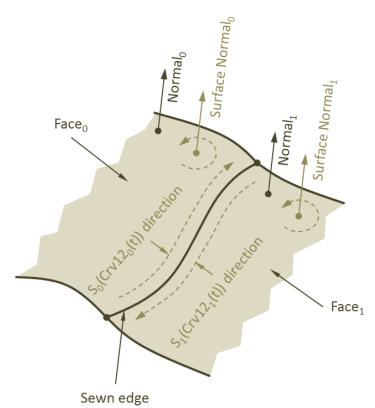
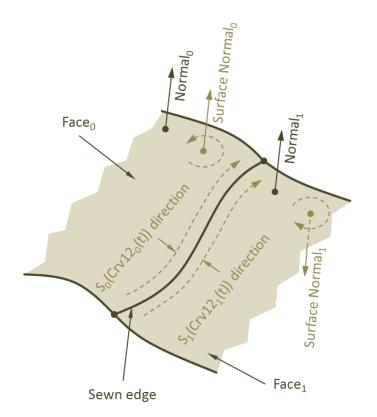
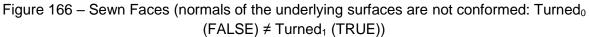




Figure 165 – Sewn Faces (normals of the underlying surfaces are conformed: $Turned_1 = FALSE$)

One of implications of the face normals conformance requirement is impossibility of a Mobius strip definition.

7.5.3.11 Tolerant Edges and Vertices

It is highly recommended to maintain one global model tolerance for a whole body. It makes the body definition more robust for geometric algorithms and less problematic to transfer to other environments, systems and formats. There are a number of geometric kernels, which allow the loosening of tolerances on some model entities while maintaining topological connectivity. This concept is referred to as tolerant modeling.

QIF can store data from both types of modelers (exact and tolerant) by use of the optional attribute "@tolerance" that can be specified for edges and vertices.

Tolerant edges shall contain the actual tolerance value, which is calculated as the maximum distance between the 2D parametric co-edges of the neighbor faces.

Tolerant vertices shall contain the actual tolerance value, which is calculated as the maximum distance from the vertex underlying 3D point to the ends of all neighboring edges that are terminated in the neighborhood of this vertex.

Figure 167 illustrates tolerant edges and vertices.

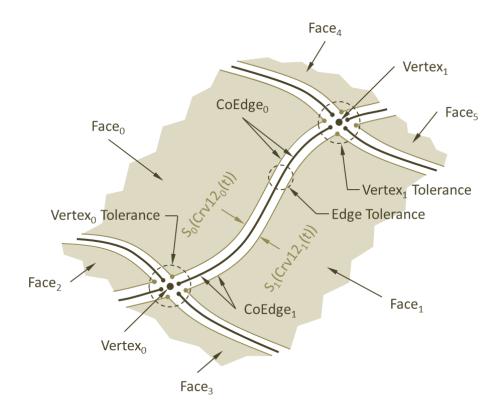
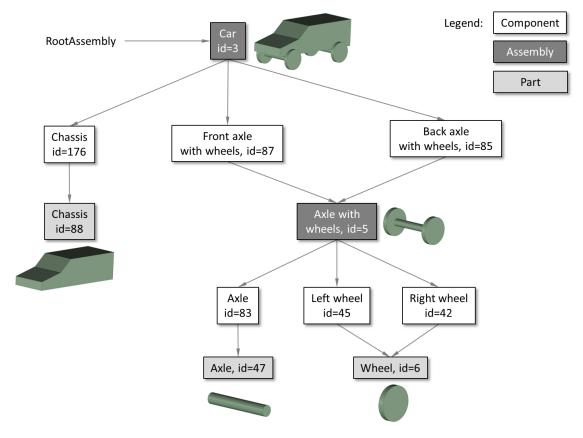



Figure 167 – Tolerant Edges and Vertices

7.5.4 Product structure

7.5.4.1 Assembly Graph: Root, Parts, Assemblies and Components

Figure 168 – Product directed acyclic graph

Figure 168 shows the product directed acyclic graph representing the relationships between parts, assemblies and components that describe the product content.

A part defines one body or a number of bodies (also known as a "multi-body part"), and can be instantiated multiple times in the CAD scene. The use of part instances simplifies the need to maintain identical model elements and reduces the total amount of scene data.

An assembly defines one or more bodies and may also include other components (instances of other parts or sub-assemblies). An assembly itself can be instantiated multiple times in the CAD scene. The use of assemblies simplifies the need to maintain identical model elements and reduces the total amount of scene data.

Assembly Fields (product graph relationships):

Field Name	Data Type	Description
ComponentIde	ArrayReferenceType	The array of component identifiers used in
ComponentIds	Апаукетегенсетуре	the product definition.

Component defines a single instance of a part or an assembly.

Fields of component (product graph relationships):

Field Name	Data Type	Description
Transform	ElementRefernceType	The identifier of the transformation matrix that maps the component into the product.
Part or Assembly	ArrayReferenceType	The identifier of a part or assembly to be instantiated.

Root of the product directed acyclic graph:

Root	Description
Product/RootPart	The starting point of the product directed acyclic graph for a part. The graph contains only one node because the part cannot contain references to any components or assemblies.
Product/RootAssembly	The starting point of the product directed acyclic graph for an assembly.
Product/RootComponent	The starting point of the product directed acyclic graph for a component.

7.5.4.2 References in Assemblies (AsmPaths)

AsmPath defines information about an assembly path; the path is used to identify entities within an assembly, as seen in Figure 169. The assembly path is a sequence of identifiers of the scene components that contain the entity of interest. The sequence defines the path from the root to the entity parent component. The id of the parent component shall be the last element in this sequence.

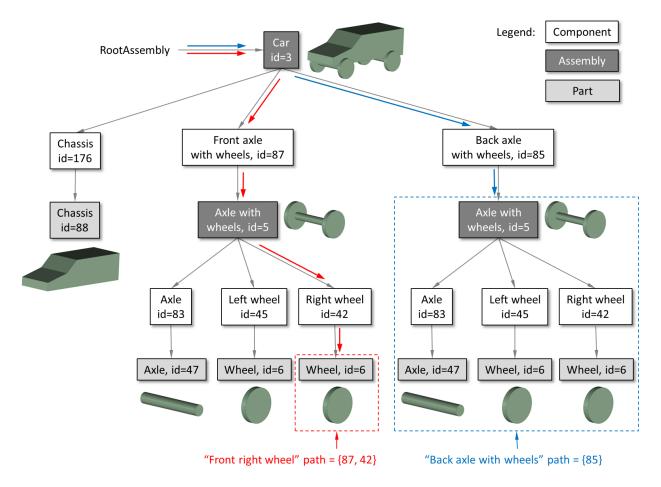


Figure 169 – Unfolded product tree

AsmPath definition:

 $AsmPath = \{ComponentIds_0, \dots, ComponentIds_{n-1}\}$

n – number of elements in ComponentIds

*ComponentIds*₀ – *this component does not have a parent component*

ComponentIds_{i-1} – the nearest parent component for ComponentIds_i,
$$i \in [1, n-1]$$

AsmPath Fields:

	Field Name	Data Type	Description
--	------------	-----------	-------------

@id	QIFIdType	The QIF identifier.
ComponentIds	ArrayReferenceType	The array of identifiers of the scene components that contain the entity of interest. This array defines the path from the root to the parent component. The id of the parent component must be the last element of this array.

Unfolded Part instances within the Product:

Part	Part id	Instance	AsmPath
Chassis	88	Chassis	176
Axle	47	Front axle	87, 83
Axle	47	Back axle	85, 83
Wheel	6	Front left wheel	87, 45
Wheel	6	Front right wheel	87, 42
Wheel	6	Back left wheel	85, 45
Wheel	6	Back right wheel	85, 42

Unfolded Assembly instances within the Product:

Assembly	Assembly id	Instance	AsmPath
Car	3	Car	<empty></empty>
Axle with wheels	5	Front axle with wheels	87
Axle with wheels	5	Back axle with wheels	85

In QIF all assembly paths used for referencing are collected in the table AsmPaths only when needed. Every assembly path has its own unique QIFId that is included in one or more referencing elements of QIFReferenceFullType. This provides a clear, unambiguous and compact way of referencing part entities within an assembly of any complexity. See Figure 170 for an example.

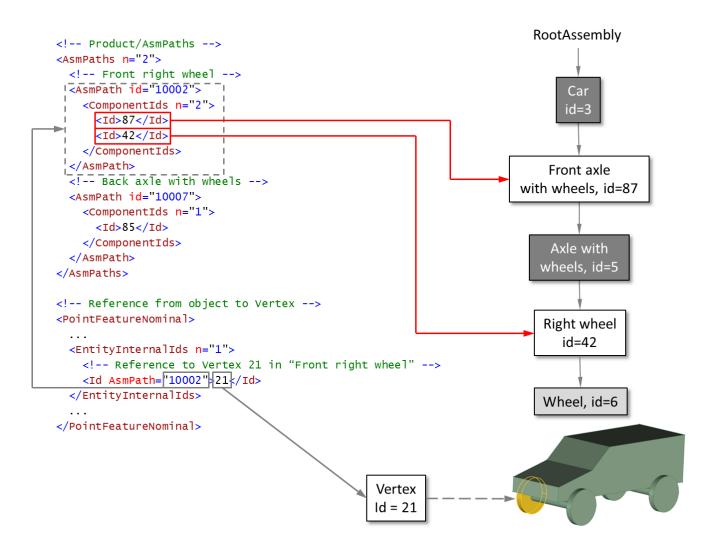


Figure 170 – Reference of a part entity within an assembly

```
</AsmPaths>
```

7.5.4.3 Positioning of parts, sub-assemblies and bodies

Parts and subassemblies may be instantiated multiple times via components. Positioning of a component (part or subassembly) in 3D space is defined by a transformation specified in the Transform field of the component.

T(x) - transformation $T(x): R_3 \rightarrow R_3$ PA - part or subassembly AsmPath - assembly path to PA $AsmPath = \{C_0, ..., C_{n-1}\}$ $TC_i(x) - transformation associated with the i - th component, where x - a 3D point of PA$

 $TC_i(x) = \begin{cases} transformation \ referenced \ by \ Transform, & if \ the \ Transform \ field \ is \ filled \\ identity \ transformation, & otherwise \end{cases}$

Positioning of *PA* geometry inside the parent component C_{n-1} shall be calculated by applying transformation $TC_{C_{n-1}}$ to the *PA* entities. To calculate position and orientation of *PA* entities in Global Model Space, it is necessary to follow the entire instantiation chain (AsmPath) sequentially applying transformations coming from *PA* to the assembly root.

TPAmodel(x) - total transformation of a 3D point defined in PA to Global Model Space

 $TPAmodel(x) = (TC_{C_0} \circ TC_{C_1} \circ \dots \circ TC_{C_{n-1}})(x), \qquad x - the \ 3D \ point \ defined \ in \ PA$

A body can be included in only one part or assembly (the DefinitionInternal/Bodylds field in definition of Part/Assembly). Positioning of bodies is defined by the transformation specified in the Transform field.

B - a body referenced from a part or a subassembly PA

$$TB_i(x)$$
 - transformation associated with the i - th body,
where x - a 3D point of B

 $TB_i(x)$

```
= \begin{cases} transformation referenced by Transform, & Transform presented in the i - th body \\ identity transformation, & otherwise \end{cases}
```

To calculate the position and orientation of the *B* geometry inside *PA* it is necessary to apply the TB_B transformation to the *B* geometry.

To calculate the position and orientation of the *B* entities in Global Model Space, it is necessary to apply the *TPAmodel* transformations as described above.

 $TBmodel_i(x)$ – transformation of a 3D point defined in the i_{th} body Global Model Space $TBmodel_B(x) = (TPAmodel \circ TB_B)(x), \quad x - a \ 3D \ point \ defined \ in B$

7.5.4.4 External Definitions of Parts and Assemblies

Figure 171 shows how a part or assembly can also contain external definitions such as files, images, drawings, CAD files of native or neutral formats, physical model or prototype, etc.

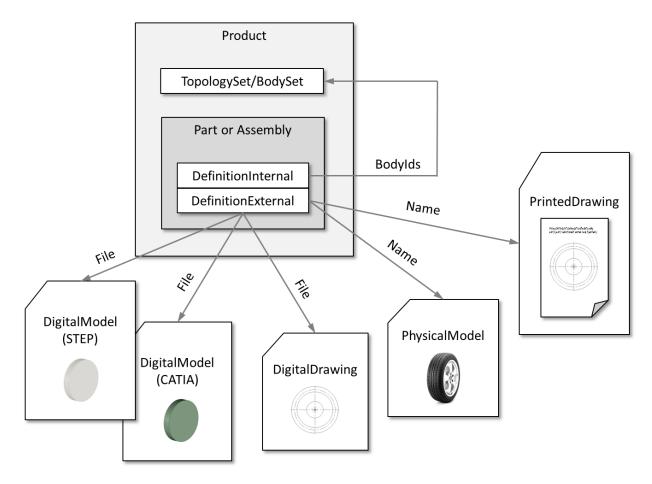


Figure 171 – Multiple representations for parts and assemblies

7.5.4.4.1 PrintedDrawing

PrintedDrawing defines information about a printed drawing of a product. This may be on paper, mylar, or some other physical media.

Field Name	Data Type	Description
Name	xs:string	The name of the model.
Version	xs:string	The version of the model associated with product being inspected.
Description	xs:string	A description of the model.
Author/Name	xs:string	The name of the author.

Author/Organization	xs:string	The name of author's organization.
DrawingNumber	xs:string	The drawing number of the printed drawing associated with product being inspected.
AdditionalChanges	xs:string	The description or references to descriptions of any additional changes to the drawing beyond what is included in the Version.
Location	xs:string	A description of the physical location of the printed drawing.

```
<PrintedDrawing id="1">
    <Name>Widget Drawing</Name>
    <Version>2</Version>
    <Description>Widget Drawing rev02</Description>
    <DrawingNumber>12345</DrawingNumber>
    <Location>Engineering</Location>
</PrintedDrawing>
```

7.5.4.4.2 DigitalDrawing

The DigitalDrawing defines an electronic version of a drawing. It has only 2D drawing information. Any geometric dimensioning and tolerancing information is drawn with annotation symbols.

Field Name	Data Type	Description
Name	xs:string	The name of the model
File/Name	xs:token	The fully qualified identifier (URI) of the file.
File/Version	xs:token	The version number of the file.
File/Format	DigitalModelFormatType	The file format.
Application/Name	xs:string	The name of the software application wherein the model was most recently edited.
Application/Organization	xs:string	The name of the organization that created the software application wherein the model was most recently edited.
Application/AddonName	xs:string	The name of the software add-on application wherein the model was most recently edited.
Application/AddonOrganization	xs:string	The name of the organization that created the software add-on

		application wherein the model was most recently edited.
Author/Name	xs:string	The name of the author.
Author/Organization	xs:string	The name of author's organization.
ApplicationSource/Name	xs:string	The name of the software application wherein the model was created.
ApplicationSource/Organization	xs:string	The name of the organization that created the software application wherein the model was created.
ApplicationSource/AddonName	xs:string	The name of the software add-on application wherein the model was created.
ApplicationSource/AddonOrganization	xs:string	The name of the organization that created the software add-on application wherein the model was created.
Description	xs:string	A description of the model.
Entities	EntitiesExternalType	A list of instances of the EntityExternalType associated with the model. Only those entities from the model that need to be referenced should be included in this list.

7.5.4.4.3 DigitalModel

The DigitalModel defines a digital data model that represents information about an assembly or part.

Field Name	Data Type	Description
Name	xs:string	The name of the model
File/Name	xs:token	The fully qualified identifier (URI) of the file.
File/Version	xs:token	The version number of the file.
File/Format	DigitalModelFormatType	The file format.
Application/Name	xs:string	The name of the software application wherein the model was most recently edited.
Application/Organization	xs:string	The name of the organization that created the software application wherein the model was most recently edited.
Application/AddonName	xs:string	The name of the software add-on application wherein the model was most recently edited.
Application/AddonOrganization	xs:string	The name of the organization that created the software add-on application wherein the model was most recently edited.
Author/Name	xs:string	The name of the author person.
Author/Organization	xs:string	The name of author's organization.
ApplicationSource/Name	xs:string	The name of the software application wherein the model was created.
ApplicationSource/Organization	xs:string	The name of the organization that created the software application wherein the model was created.
ApplicationSource/AddonName	xs:string	The name of the software add-on application wherein the model was created.
ApplicationSource/AddonOrganization	xs:string	The name of the organization that created the software add-on application wherein the model was created.
Description	xs:string	A description of the model.
Units	OtherUnitsType	Specifies the units used in the model.
GDT	GDTEnumType	Specifies the presence of geometric dimensioning and tolerancing information in model.

Тороlоду	TopologyEnumType	Specifies the presence of topology information in model.
Entities	EntitiesExternalType	A list of instances of the EntityExternalType associated with the model. Only those entities from the model that need to be referenced should be included in this list.

```
<DigitalModel id="6">
  <Name>Model</Name>
  <File>
    <Name>c:/models/model 12.sat</Name>
    <Format>
      <DigitalModelFormatEnum>ACIS</DigitalModelFormatEnum>
    </Format>
  </File>
  <Description>Sample drawing</Description>
  <Units>
    <LinearUnit>
      <UnitName>mm</UnitName>
    </LinearUnit>
  </Units>
  <GDT>MACHINEREAD</GDT>
  <Topology>PRESENT</Topology>
  <Entities>
    <Entity id="101">
      <EntityId>1903</EntityId>
      <Name>Wheel body</Name>
    </Entity>
    <Entity id="102">
      <EntityId>4324</EntityId>
      <Name>Chassis body</Name>
    </Entity>
  </Entities>
</DigitalModel>
```

7.5.4.4.4 PhysicalModel

The PhysicalModel is an actual, hands-on, physical, model or prototype of a part that is used to communicate features, datum reference frames, characteristics, or other information. Examples of physical models include actual part instances, part instances made from other materials, and 3D printing and stereolithography models.

Field Name Data Type	Description
----------------------	-------------

Name	xs:string	The name of the model.
Version	xs:string	The version of the model associated with product being inspected.
Description	xs:string	A description of the model.
Author/Name	xs:string	The name of the author.
Author/Organization	xs:string	The name of author's organization.
Location	xs:string	A description of the physical location of the physical model
ModelNumber	xs:string	The model number of the physical model being inspected.

```
<PhysicalModel id="7">

<Name>Wheel</Name>

<Version>2</Version>

<Location>Warehouse 2, position 24A/10</Location>

<ModelNumber>23876-2372-33</ModelNumber>

</PhysicalModel>
```

7.5.4.5 Layers

A layer is a "slice" of the model containing a set of model entities independent of the referencing model hierarchy. The user can specify an arbitrary number of layers for one model. A model entity can be included in a single layer or multiple layers.

Fields:

Field Name	Data Type	Description
@applyColor	xs:boolean	Shows if the layer color supersedes colors of the model entities associated with this layer.
@index	xs:unsignedInt	The layer index.
ElementIds	ArrayReferenceFullType	An array of entity identifiers presents in this this layer.

7.5.4.6 Part Notes

PartNote describes a part (standard) note – a treelike note used for annotating of a whole model or a separate model entity. In QIF all part notes are collected in the PartNoteSet. Normally part notes are visible in the model tree, and in some systems are also visualized in the graphical window so the part notes are implemented in QIF as drawable entities with the corresponding set of attributes.

Fields:

Field Name	Data Type	Description
Text	xs:string	A text of the current node of the part note.
PartNotelds	ArrayReferenceType	An array of identifiers of nested/children part notes.

```
<PartNote id="1427" label="NIST Test Case 1 CATIA V5R21 RB">
  <PartNoteIds n="7">
    <Id>1428</Id>
    <Id>1429</Id>
    <Id>1430</Id>
    <Id>1431</Id>
    <Id>1432</Id>
    <Id>1433</Id>
    <Id>1434</Id>
  </PartNoteIds>
</PartNote>
<PartNote id="1428" label="Part Number">
  <Text>NIST Test Case 1 CATIA V5R21 RB</Text>
</PartNote>
<PartNote id="1429" label="Revision">
  <Text>B</Text>
</PartNote>
<PartNote id="1430" label="Nomenclature">
  <Text>NIST Complex Test Case 1 V5R21</Text>
</PartNote>
<PartNote id="1431" label="Source">
  <Text>Unknown</Text>
</PartNote>
<PartNote id="1432" label="Modeled By">
  <Text>Rich Eckenrode, RECON Services.com</Text>
</PartNote>
<PartNote id="1433" label="CAGE Code">
  <Text>64JW1</Text>
</PartNote>
<PartNote id="1434" label="Company">
  <Text>RECON Services Incorporated</Text>
</PartNote>
```

7.5.4.7 Notes

Note describes an annotation note, which may be visualized in the graphical window as a 3D annotation or as a flat-to-screen note.

Fields:

Field Name	Data Type	Description
@form	NoteFormEnumType	This attribute specifies the note form: '3D' - note defined on the 3D annotation plane; 'SCREEN' - note defined as flat to screen;
EntityInternalIds	ArrayReferenceFullType	An array of identifiers of CAD entities associated with this note.
EntityExternalIds	ArrayReferenceFullType	An array of instance identifiers of EntityExternalType associated with this note.
Text	xs:string	A text of the note.

```
<Note id="1455" label="Note_10" form="3D">
  <EntityInternalIds n="1">
    <Id>2195</Id>
  </EntityInternalIds>
  <Text>B</Text>
</Note>
```

7.5.4.8 Flag notes

NoteFlag describes a flag note, which is visualized by its flag note symbol and can be attached to model entities. The shape of a flag note (flag style) is defined in an associated display info object.

Fields:

Field Name	Data Type	Description
@form	NoteFormEnumType	This attribute specifies the note form: '3D' - note defined on the 3D annotation plane; 'SCREEN' - note defined as flat to screen;
EntityInternalIds	ArrayReferenceFullType	An array of identifiers of CAD entities associated with this flag note.
EntityExternalIds	ArrayReferenceFullType	An array of identifiers of instances of EntityExternalType associated with this flag note.
Text	xs:string	A text of the flag note (the flag note symbol).
TextHidden	xs:string	A hidden text of the flag note.
URI	xs:anyURI	A Uniform Resource Identifier for the information, which may be, for example, a file or a web site.

```
<NoteFlag id="731" label="Flag Note_1">
        <EntityInternalIds n="1">
        <Id>1096</Id>
        </EntityInternalIds>
        <Text>1</Text>
</NoteFlag>
```

7.5.5 Transformations

In order to support all varieties of systems and formats, QIF allows connecting transformations to all topological and 3D geometric elements. However, it is recommended to limit the use of transformations to high-level objects such as sub-assemblies, parts and bodies. That will help eliminate any potential interoperability issues.

Transformation defines positioning of a 3D point specifying rotation and translation.

$$\begin{split} T(p) &- transformation \\ T(p): \ R_3 \to R_3 \\ p &= \begin{bmatrix} p_x \\ p_y \\ p_z \end{bmatrix}, \quad Origin = \begin{bmatrix} Origin_x \\ Origin_y \\ Origin_z \end{bmatrix}, \quad R = \begin{bmatrix} XDirection_x & XDirection_y & XDirection_z \\ YDirection_x & YDirection_y & YDirection_z \\ ZDirection_x & ZDirection_y & ZDirection_z \end{bmatrix} \end{split}$$

T(p) = pR + Origin

Fields:

Field Name	Data Type	Description
Rotation/XDirection	UnitVectorSimpleType	An orthogonal basis of the Cartesian coordinate system. Direction X.
Rotation/YDirection	UnitVectorSimpleType	An orthogonal basis of the Cartesian coordinate system. Direction Y.
Rotation/ZDirection	UnitVectorSimpleType	An orthogonal basis of the Cartesian coordinate system. Direction Z.
Origin	PointSimpleType	An origin of the coordinate system.
Attributes	AttributesType	User defined attributes (typified, binary array, or XML structured).
Name	xs:token	The name of the transform.

```
<Transform id="348">

<Rotation>

<XDirection>0.9405 -0.3396 0.0</XDirection>

<YDirection>0.3318 0.9191 -0.2123</YDirection>

<ZDirection>0.0721 0.1996 0.9772</ZDirection>

</Rotation>

<Origin>0.0798 -0.2104 -0.0984</Origin>

</Transform>
```

7.5.6 Auxiliary data

7.5.6.1 Point

PointAuxiliary describes an auxiliary point, a point that does not directly participate in forming a body, but in a definition of supplemental model entities, e.g. the center of a sphere, as seen in Figure 172.

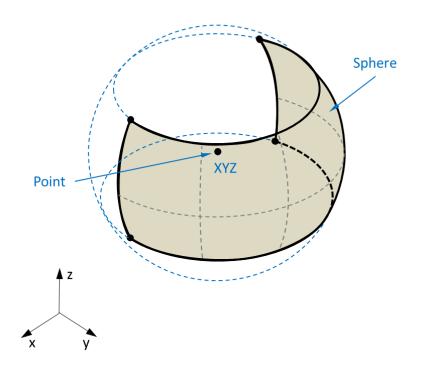


Figure 172 – Point

Fields:

Field Name	Data Type	Description
XYZ	PointType	The Cartesian three-dimensional coordinates of the 3D point.

```
<PointAuxiliary id="112">
<XYZ>1.32 9.23 4.22</XYZ>
</PointAuxiliary>
```

7.5.6.2 Line

LineAuxiliary describes an auxiliary line, a line that does not directly participate in forming a body, but in a definition of supplemental model entities, e.g. the axis of a cylinder, as seen in Figure 173.

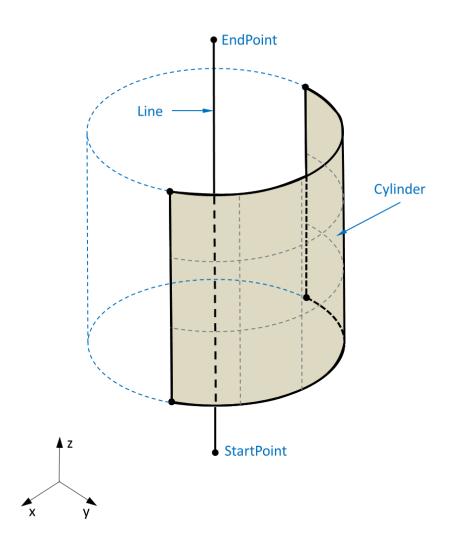


Figure 173 – Line

Field Name	Data Type	Description
StartPoint	PointSimpleType	The beginning point of the line segment.
EndPoint	PointSimpleType	The ending point of the line segment.
LineStyle	LineStyleEnumType	The line style of the line segment.
LineStyle/@thickness	xs:positiveInteger	The thickness of the line in pixels.

```
<LineAuxiliary id="21">
        <StartPoint>1.32 9.23 4.22</StartPoint>
        <EndPoint>3.45 0.33 5.40</EndPoint>
        </LineAuxiliary>
```

7.5.6.3 Reference Plane

PlaneReference describes an auxiliary plane, a plane that does not directly participate in forming of a body, but in a definition of supplemental model entities, e.g. the central plane of a feature, as seen in Figure 174.

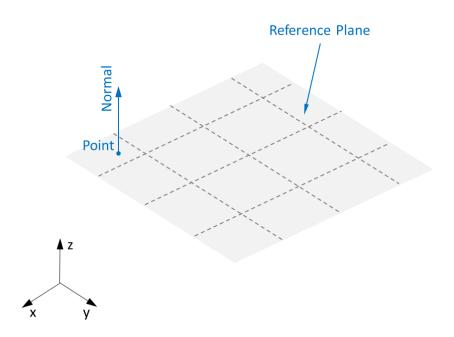


Figure 174 – Reference Plane

Fields:

Field Name	Data Type	Description
Plane/Point	PointType	The plane origin.
Plane/Normal	UnitVectorType	The unit normal vector of the plane.

```
<PlaneReference id="23">
  <Plane>
    <Point>10.0 12.0 23.1</Point>
    <Normal>1.0 0.0 0.0</Normal>
```

</Plane> </PlaneReference>

7.5.6.4 Coordinate System

CoordinateSystem describes the Cartesian 3D coordinate system in the model space, as seen in Figure 175. The CoordinateSystem is defined as a model entity.

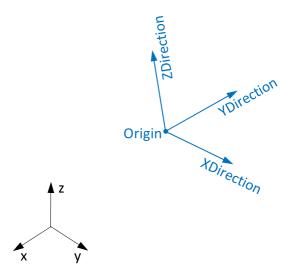


Figure 175 – Coordinate System

ZDirection = *XDirection* × *YDirection*

 $(XDirection \cdot YDirection) = 0$

 $(XDirection \cdot ZDirection) = 0$

 $(YDirection \cdot ZDirection) = 0$

Field Name	Data Type	Description
		An orthogonal basis of the
CoordinateSystemCore/Rotation/XDirection	UnitVectorSimpleType	Cartesian coordinate system.
		Direction X.
		An orthogonal basis of the
CoordinateSystemCore/Rotation/YDirection	UnitVectorSimpleType	Cartesian coordinate system.
		Direction Y.
		An orthogonal basis of the
CoordinateSystemCore/Rotation/ZDirection	UnitVectorSimpleType	Cartesian coordinate system.
		Direction Z.

CoordinateSystemCore/Origin	PointSimpleType	The origin of the coordinate system.
-----------------------------	-----------------	--------------------------------------

```
<CoordinateSystem id="33" label="CS1">
<CoordinateSystemCore>
<Rotation>
<XDirection>0.9405 -0.3396 0.0</XDirection>
<YDirection>0.3318 0.9191 -0.2123</YDirection>
<ZDirection>0.0721 0.1996 0.9772</ZDirection>
</Rotation>
<Origin>0.0798 -0.2104 -0.0984</Origin>
</CoordinateSystemCore>
</CoordinateSystem>
```

7.5.7 Visualization data

The VisualizationSet represents a container for storing all visualization data used for displaying PMI entities in a 3D scene.

7.5.7.1 Line style

The LineStyleType defines a line style used for visualization of cross-sections hatching and auxiliary lines.

The names from enumeration LineStyleEnumType define sequences of dashes and dots forming a line pattern.

DOT < SHORT_DASH < DASH < MEDIUM_DASH < MEDIUM_LONG_DASH < LONG_DASH

The QIF line styles:

Style Name	Pattern
SOLID	
DASH	
DOT	•••••
DASH_DOT	
DASH_DOT_DOT	··
DASH_DOT_DOT_DOT	·
DASH_DASH_DOT	·_·
DASH_DASH_DOT_DOT	
DASH_DASH_DOT_DOT_DOT	· · · · · · · · · · ·
SHORT_DASH	
LONG_DASH	
MEDIUM_LONG_DASH	
MEDIUM_DASH_SHORT_DASH_SHORT_DASH	
LONG_DASH_SHORT_DASH	
LONG_DASH_SHORT_DASH_SHORT_DASH	
LONG_DASH_DOT_DOT	
LONG_DASH_DOT	· • • • •
MEDIUM_DASH_DOT_SHORT_DASH_DOT	· _ · _ · _ · _ · _ · _ · _ · _ · _ · _
SPARSE_DOT	•••••

Table 6 – Line Styles

Fields:

Field Name	Data Type	Description
	LineStyleEnumType	The line style.
@thickness	xs:positiveInteger	The thickness of line in pixels.

7.5.7.2 Fonts

All fonts used for visualization of 3D annotations are collected in the Fonts, an *element* of the VisualizationSet.

Font fields:

Field Name	Data Type	Description
@index	xs:unsignedInt	An index identifying a font within the Fonts table.
@bold	xs:boolean	This attribute shows if the text shall be bold.
@italic	xs:boolean	This attribute shows if the text shall be italicized.
@underline	xs:boolean	This attribute shows if the text shall be underlined.
Attributes	AttributesType	User defined attributes (typified, binary array, or XML structured).
Name	xs:string	The font name.
Size	NaturalType	The font size defined in points (typography, 1 pt = 1/72 inch).
Alignment	AlignmentEnumType	The optional alignment <i>element</i> defines the note alignment, ALIGNMENT_LEFT is the default value

Example:

```
<Font index="1" italic="1">
<Name>Microsoft Sans Serif</Name>
<Size>8</Size>
<Alignment>ALIGNMENT_CENTER</Alignment>
</Font>
```

7.5.7.3 Special symbols

In order to store special symbols in text strings (PMIDisplay/Texts/Text) the following decorated symbol names shall be used:

Decorated Symbol Name	Image	Description
{STRAIGHTNESS}		Straightness
{FLATNESS}		Flatness
{CIRCULARITY}	0	Circularity/Roundness

{CYLINDRICITY}	þ/	Cylindricity
{PROFILE_LINE}	\cap	Profile of a Line
{PROFILE_SURFACE}	\Box	Profile of a Surface
{ANGULARITY}	2	Angularity
{PERPENDICULARITY}		Perpendicularity
{PARALLELISM}	//	Parallelism
{POSITION}	\$	Position
{CONCENTRICITY}	O	Concentricity
{SYMMETRY}	=	Symmetry
{RUNOUT_CIRCULAR}	*	Circular Runout
{RUNOUT_TOTAL}	21	Total Runout
{DIAMETER}	Ø	Diameter
{DIAMETER_SPHERICAL}	SØ	Spherical Diameter
{RADIUS}	R	Radius
{RADIUS_SPHERICAL}	SR	Spherical Radius
{RADIUS_CONTROLLED}	CR	Controlled Radius
{BETWEEN}	↔	Between
{CONICAL_TAPER}	\triangleright	Conical Taper
{SLOPE}		Slope
{COUNTERBORE}		Counterbore
{SPOTFACE}	<u>ISF</u>	Spotface
{COUNTERSINK}	\sim	Countersink
{DEPTH}	$\overline{\mathbf{v}}$	Depth
{SQUARE}		Square
{PLUS_MINUS}	±	Plus Minus
{DEGREE}	0	Degree
{ST}	ST	Statistical Tolerance
{CF}	(CF)	Continuous Feature
{M}	\boxtimes	At Maximum Material Condition
{L}		At Least Material Condition
{P}	P	Projected Tolerance Zone

{T}	T	Tangent Plane
{F}	Ē	Free State
{U}	0	Unequally Disposed Profile
{I}	(I)	Independency
{TRANSLATION}	⊳	Translation
{BRACKET_CURLED_LEFT}	{	Left Curled Bracket
{BRACKET_CURLED_RIGHT}	}	Right Curled Bracket
{BR}		Line Break
{WELD_FILLET_ARROW}	V	Fillet Arrow Side
{WELD_FILLET_OTHER}	4	Fillet Other Side
{WELD_FILLET_BOTH}	₽	Fillet Both Sides
{WELD_FILLET_BOTH_STAGGERED}	\rightarrow	Fillet Both Sides Staggered
{WELD_SPOT_ARROW}	σ	Spot Arrow Side
{WELD_SPOT_OTHER}	<u> </u>	Spot Other Side
{WELD_SPOT_NO}	-0-	Spot No Side
{WELD_STUD_ARROW}	8	Stud Arrow Side
{WELD_SEAM_ARROW}	₽	Seam Arrow Side
{WELD_SEAM_OTHER}	\$	Seam Other Side
{WELD_SEAM_NO}	÷	Seam No Side
{WELD_BACK_ARROW}		Back Arrow Side
{WELD_BACK_OTHER}	д	Back Other Side
{WELD_SURFACING_ARROW}	\sim	Surfacing Arrow Side
{WELD_SQUARE_ARROW}		Square Arrow Side
{WELD_SQUARE_OTHER}		Square Other Side
{WELD_SQUARE_BOTH}	-#-	Square Both Sides
{WELD_V_ARROW}	$\overline{}$	V Arrow Side
{WELD_V_OTHER}		V Other Side
{WELD_V_BOTH}	X	V Both Sides
{WELD_BEVEL_ARROW}		Bevel Arrow Side
{WELD_BEVEL_OTHER}		Bevel Other Side
{WELD_BEVEL_BOTH}	K	Bevel Both Sides
{WELD_U_ARROW}	ㅈ	U Arrow Side

{WELD_U_OTHER}	Y	U Other Side
{WELD_U_BOTH}	¥	U Both Sides
{WELD_J_ARROW}	Ъ	J Arrow Side
{WELD_J_OTHER}	<u> </u>	J Other Side
{WELD_J_BOTH}	카	J Both Sides
{WELD_FLARE_BEVEL_ARROW}	тс	Flare Bevel Arrow Side
{WELD_FLARE_BEVEL_OTHER}	<u>ــــ</u>	Flare Bevel Other Side
{WELD_FLARE_BEVEL_BOTH}	÷	Flare Bevel Both Sides
{WELD_SCARF_V_ARROW}	7	Scarf Arrow Side
{WELD_SCARF_V_OTHER}	_//_	Scarf Other Side
{WELD_SCARF_V_BOTH}	#	Scarf Both Sides
{WELD_CONTOUR_FLAT_ARROW}	_	Contour Flat Arrow Side
{WELD_CONTOUR_FLAT_OTHER}	_	Contour Flat Other Side
{WELD_CONTOUR_FLAT_ANGLED_ARROW}	/	Contour Angled Flat Arrow Side
{WELD_CONTOUR_FLAT_ANGLED_OTHER}	\mathbf{X}	Contour Angled Flat Other Side
{WELD_CONTOUR_CONCAVE_ARROW}	`	Contour Concave Arrow Side
{WELD_CONTOUR_CONCAVE_OTHER})	Contour Concave Other Side
{WELD_CONTOUR_CONCAVE_ANGLED_ARROW}	ſ	Contour Angled Concave Arrow Side
{WELD_CONTOUR_CONCAVE_ANGLED_OTHER}	L	Contour Angled Concave Other Side
{WELD_CONTOUR_CONVEX_ARROW}	、	Contour Convex Arrow Side
{WELD_CONTOUR_CONVEX_OTHER}	(Contour Convex Other Side
{WELD_CONTOUR_CONVEX_ANGLED_ARROW}	ر	Contour Angled Convex Arrow Side
{WELD_CONTOUR_CONVEX_ANGLED_OTHER}	ſ	Contour Angled Convex Other Side
{WELD_MELT_ARROW}	-	Melt Arrow Side

Table 7 – Special Symbols

Example:

⊕ 0.75 A B C

```
<Text>
    <Data>0.75</Data>
    <XY>1.64658 0</XY>
  </Text>
  <Text>
    <Data>A</Data>
    <XY>3.80537 0</XY>
  </Text>
  <Text>
    <Data>B</Data>
    <XY>4.79375 0</XY>
  </Text>
  <Text>
    <Data>C</Data>
    <XY>5.85390 0</XY>
  </Text>
</Texts>
```

7.5.7.4 Annotation View

The Annotation View defines an annotation view specifying a default text direction and normal vector of the visualization planes for assigned 3D annotations, as seen in Figure 176. All Annotation Views are collected in the AnnotationViewSet, which is an *element* of the ViewSet. Each 3D annotation intended to be visualized shall be assigned to an annotation view. One 3D annotation may be assigned to only one annotation view; however, one or many 3D annotations may be assigned to one annotation view.

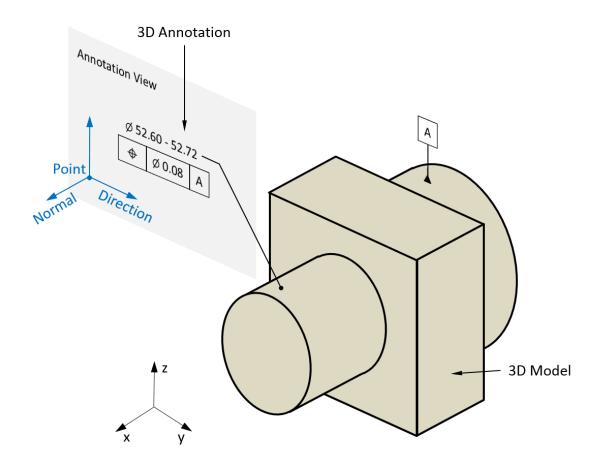
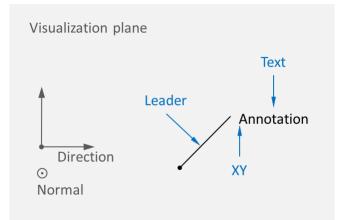
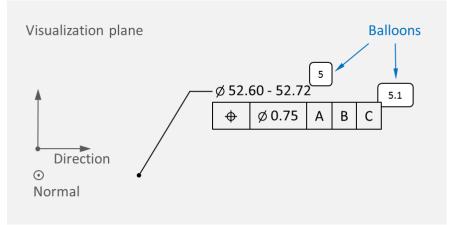
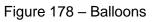


Figure 176 – Annotation View


Field Name	Data Type	Description
@id	QIFIdType	The unique model entity identifier.
@label	xs:string	The annotation view label.
Normal	UnitVectorType	The unit normal vector of the visualization plane.
Direction	UnitVectorType	The default text direction defined by a unit vector perpendicular to the normal vector.

:


```
<AnnotationView id="3404">
<Normal>0 0 1</Normal>
<Direction>1 0 0</Direction>
</AnnotationView>
```


7.5.7.5 PMI display information

The PMIDisplay defines a block of display data used for visualization of a 3D annotation, like those seen in Figure 177 and Figure 178. All PMI display information entities are collected in the PMIDisplaySet, which is an *element* of the VisualizationSet. Visualization plane is defined by Annotation View.

Field Name	Data Type	Description
Color	ColorType	The RGB color type is a triplet of integer numbers: the red- component, the green-component and the blue-component.
Plane	PlanePMIDisplayType	A visualization plane defined by annotation view.
Plane/AnnotationViewId	ElementReferenceType	The annotation view identifier.

Plane/Point	PointType	An origin point of the plane.
Plane/Direction	UnitVectorType	The direction of the PMI, different from the default direction.
Texts	TextsType	A set of 3D annotation text lines.
Texts/@fontIndex	xs:unsignedInt	An index identifying a font within the FontSet table.
Texts/@lineHeight	xs:double	A height of the text line defined in the model units.
Texts/Text	TextType	A string.
Leader or LeaderExtend or LeaderCircular or LeaderDoubleHead or LeaderDoubleHeadCircular or LeaderDoubleHeadExtend	LeaderType or LeaderExtendType or LeaderCircularType or LeaderDoubleHeadType or LeaderDoubleHeadCircularTyp e or LeaderDoubleHeadExtendType	Information about a leader type.
WitnessLines	WitnessLinesType	Witness lines.
Frames	FramesType	The visualization frames.
Graphics	GraphicsType	The additional visualization data. It allows specifying user-defined PMI data that have no semantic representation, or if the semantic representation cannot be written into QIF file.
Reference	ElementReferenceFullType	Reference to an annotation entity.

```
<PMIDisplay>

<Plane>

<AnnotationViewId>

<Id>3404</Id>

<AnnotationViewId>

<Origin>282.215308328645 -154.21715304523

3.53553390593274</Origin>

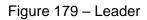
</Plane>

<Texts lineHeight="4.5" n="3" fontIndex="1">

<Texts lineHeight="4.5" n="3" fontIndex="1">

<Text>

<Data>{PERPENDICULARITY}</Data>


<XY>0 0</XY>
```

```
</Text>
    <Text>
      <Data>1.5</Data>
      <XY>1.64658203125 0</XY>
    </Text>
    <Text>
      <Data>A</Data>
      <XY>3.37275390625 0</XY>
    </Text>
  </Texts>
  <LeaderExtend>
    <StartPoint>-94.734069824219 -102.512253206787</StartPoint>
    <EndPoint>-10.8 2.7</EndPoint>
    <HeadForm>DOT FILLED</HeadForm>
    <HeadHeight>3.6</HeadHeight>
    <PointExtension>-1.8 2.7</PointExtension>
  </LeaderExtend>
  <Frames n="3">
    <FrameRectangular>
      <XY>-0.2 -0.2</XY>
      <Width>1.64658203125</Width>
      <Height>1</Height>
    </FrameRectangular>
    <FrameRectangular>
      <XY>1.44658203125 -0.2</XY>
      <Width>1.726171875</Width>
      <Height>1</Height>
    </FrameRectangular>
    <FrameRectangular>
      <XY>3.17275390625 -0.2</XY>
      <Width>0.98837890625</Width>
      <Height>1</Height>
    </FrameRectangular>
  </Frames>
  <Reference>
    <Id>2320</Id>
  </Reference>
</PMIDisplay>
```

7.5.7.5.1 Leader

Leader describes a leader of a 3D annotation, as seen in Figure 179.

Fields:

Field Name	Data Type	Description
StartPoint	Point2dSimpleType	The beginning point of the 2D line segment.
EndPoint	Point2dSimpleType	The ending point of the 2D line segment.
HeadForm	LeaderTypeEnumType	A form of the leader head.
HeadHeight	xs:double	A size of the leader head.

Example:

```
<Leader>
<StartPoint>2.647 -36.261</StartPoint>
<EndPoint>2.647 -1.800</EndPoint>
<HeadForm>TRIANGLE_FILLED</HeadForm>
<HeadHeight>3.600</HeadHeight>
</Leader>
```

7.5.7.5.2 Leader head types

LeaderHeadFormEnumType describes forms of the leader head.

Leader type	Image
NONE	
ARROW_OPEN	\leftarrow

Table 8 – Leader Head Types

7.5.7.5.3 Double head leader

LeaderDoubleHead describes a double head leader, as described in Figure 180.

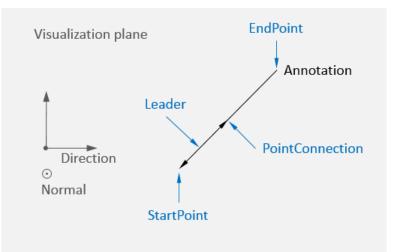


Figure 180 – Double head leader

Fields:

Field Name	Data Type	Description
StartPoint	Point2dSimpleType	The beginning point of the 2D line segment.
EndPoint	Point2dSimpleType	The ending point of the 2D line segment.
HeadForm	LeaderTypeEnumType	The first head form.
HeadHeight	xs:double	A size of the leader head.
HeadForm2	LeaderTypeEnumType	The second head form.
PointConnection	Point2dSimpleType	This field specifies 2D coordinates of the connection point.

```
<LeaderDoubleHead>

<StartPoint>-73.225 2.066</StartPoint>

<EndPoint>0 2.066</EndPoint>

<HeadForm>ARROW_FILLED</HeadForm>

<HeadHeight>4.5</HeadHeight>

<HeadForm2>ARROW_FILLED</HeadForm2>

<PointConnection>-38.225 2.066</PointConnection>

</LeaderDoubleHead>
```

7.5.7.5.4 Extended leader

LeaderExtend describes an extended leader, which has a break point and consists of two segments, as seen in Figure 181.

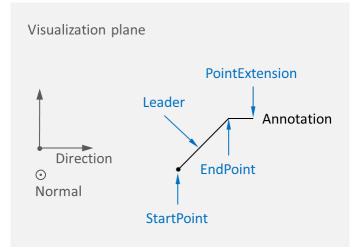


Figure 181 – Extended leader

Fields:

Field Name	Data Type	Description
StartPoint	Point2dSimpleType	The beginning point of the 2D line segment.
EndPoint	Point2dSimpleType	The ending point of the 2D line segment.
HeadForm	LeaderTypeEnumType	A form of the leader head.
HeadHeight	xs:double	A size of the leader head.
PointExtension	Point2dSimpleType	This field specifies 2D coordinates of the extension point.
Modifier	LeaderModifierEnumType	A type of leader modifier.

Example:

```
<LeaderExtend>

<StartPoint>-94.73 -102.51</StartPoint>

<EndPoint>-10.80 2.70</EndPoint>

<HeadForm>DOT_FILLED</HeadForm>

<HeadHeight>3.6</HeadHeight>

<PointExtension>-1.80 2.70</PointExtension>

<Modifier>ALL_AROUND</Modifier>

</LeaderExtend>
```

7.5.7.5.5 Double head extended leader

LeaderDoubleHeadExtend describes a double head extended leader, which has a break point and consists of two segments, as seen in Figure 182.

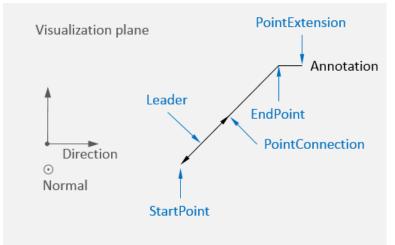


Figure 182 – Double head extended leader

F	ie	ld	s:
		ū	э.

Field Name	Data Type	Description
StartPoint	Point2dSimpleType	The beginning point of the 2D line segment.
EndPoint	Point2dSimpleType	The ending point of the 2D line segment.
HeadForm	LeaderTypeEnumType	The first head form.
HeadHeight	xs:double	A size of the leader head.
HeadForm2	LeaderTypeEnumType	The second head form.
PointConnection	Point2dSimpleType	This field specifies 2D coordinates of the connection point.
PointExtension	Point2dSimpleType	This field specifies 2D coordinates of the extension point.

```
<LeaderDoubleHeadExtend>

<StartPoint>-73.225 2.066</StartPoint>

<EndPoint>0 2.066</EndPoint>

<HeadForm>ARROW_FILLED</HeadForm>

<HeadHeight>4.5</HeadHeight>

<HeadForm2>ARROW_FILLED</HeadForm2>

<PointConnection>-38.225 2.066</PointConnection>

<PointExtension>15.000 10.000</PointExtension>

</LeaderDoubleHeadExtend>
```

7.5.7.5.6 Circular leader

LeaderCircular describes a circular leader that is less than a semicircle, as seen in Figure 183.

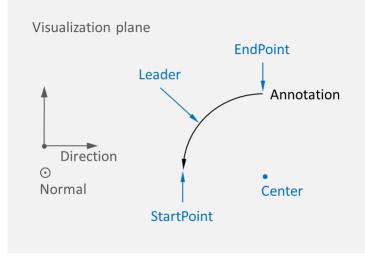


Figure 183 – Circular leader

Fields:

Field Name	Data Type	Description
StartPoint	Point2dSimpleType	The beginning point of the 2D line segment.
EndPoint	Point2dSimpleType	The ending point of the 2D line segment.
HeadForm	LeaderTypeEnumType	The first head form.
HeadHeight	xs:double	A size of the leader head.
Center	Point2dSimpleType	This field specifies 2D coordinates of the leader central point.

Example:

```
<LeaderCircular>
<StartPoint>0.0 0.0</StartPoint>
<EndPoint>10.0 10.0</EndPoint>
<HeadForm>ARROW_FILLED</HeadForm>
<HeadHeight>1.0</HeadHeight>
<Center>10.0 0.0</Center>
</LeaderCircular>
```

7.5.7.5.7 Double head circular leader

LeaderDoubleHeadCircular describes a double head circular leader, as seen in Figure 184.

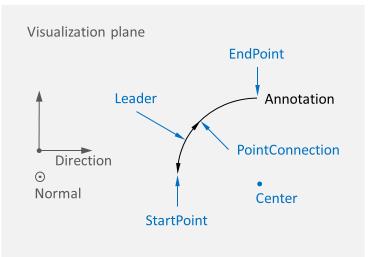


Figure 184 – Double head circular leader

Field Name	Data Type	Description
StartPoint	Point2dSimpleType	The beginning point of the 2D line segment.
EndPoint	Point2dSimpleType	The ending point of the 2D line segment.
HeadForm	LeaderTypeEnumType	The first head form.
HeadHeight	xs:double	A size of the leader head.
HeadForm2	LeaderTypeEnumType	The second head form.
PointConnection	Point2dSimpleType	This field specifies 2D coordinates of the connection point.
Center	Point2dSimpleType	This field specifies 2D coordinates of the leader central point.

Fields:

Example:

```
<LeaderDoubleHeadCircular>
   <StartPoint>0.0 0.0</StartPoint>
   <EndPoint>10.0 10.0</EndPoint>
   <HeadForm>ARROW_FILLED</HeadForm>
   <HeadHeight>1.0</HeadHeight>
   <HeadForm2>ARROW_FILLED</HeadForm2>
   <PointConnection>2.93 7.07</PointConnection>
   <Center>10.0 0.0</Center>
</LeaderDoubleHeadCircular>
```

7.5.7.5.8 Witness Lines

WitnessLines describes witness lines, as seen in Figure 185 and Figure 186.

extension point of the second witness line; it lies

does not intersect the feature.

on the feature in cases when the annotation plane

7.5.7.5.8.1 **Linear Witness Lines**

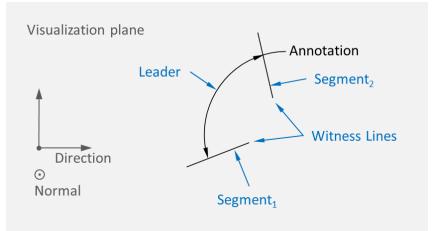


Figure 185 – Witness Lines

Field Name	Data Type	Description
@width	xs:double	The width of the witness lines in points.
Segment1/StartPoint	Point2dSimpleType	The beginning point of the first 2D line segment.
Segment1/EndPoint	Point2dSimpleType	The ending point of the first 2D line segment.
ZextensionPoint1	PointSimpleType	The optional ZextensionPoint1 <i>element</i> is an extension point of the first witness line; it lies on the feature in cases when the annotation plane does not intersect the feature.
Segment2/StartPoint	Point2dSimpleType	The beginning point of the second 2D line segment.
Segment2/EndPoint	Point2dSimpleType	The ending point of the second 2D line segment.
		The optional ZextensionPoint2 element is an

PointSimpleType

Fields:

Example:

ZextensionPoint2

```
<WitnessLines width="1">
  <Segment1>
    <StartPoint>-73.225 87.343</StartPoint>
    <EndPoint>-73.225 -0.358</EndPoint>
  </Segment1>
  <ZextensionPoint1>-73.225 0 22.344</ZextensionPoint1>
```

```
<Segment2>
<StartPoint>-38.225 87.343</StartPoint>
<EndPoint>-38.225 -0.358</EndPoint>
</Segment2>
</WitnessLines>
```

7.5.7.5.8.2 Circular Witness Line

A Circular Witness Line must have an angle of less than or equal to 180 degrees, as seen in Figure 186.

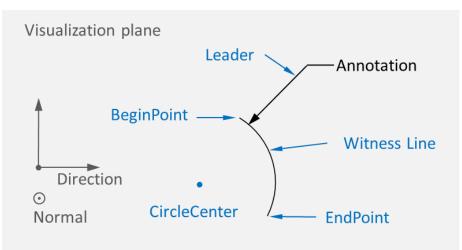


Figure 186 – Circular Witness Line

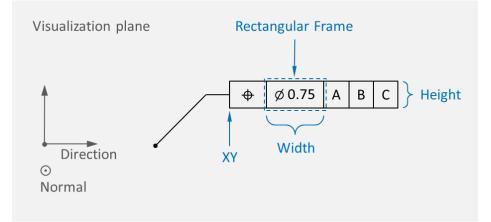
Fields:

Field Name	Data Type	Description
@width	xs:double	The width of the witness lines in points.
BeginPoint	LineSegment2dType	The BeginPoint <i>element</i> is the begin point of the circular witness line.
EndPoint	LineSegment2dType	The EndPoint <i>element</i> is the end point of the circular witness line.
CircleCenter	LineSegment2dType	The CircleCenter <i>element</i> is the center of the circular witness line.
CircleRadius	DoublePositiveType	The CircleRadius <i>element</i> is the radius of the circular witness line.

```
<WitnessLines width="1">

<BeginPoint>0.0 0.0</BeginPoint>

<EndPoint>10.0 10.0</EndPoint>


<CircleCenter>10.0 0.0</CircleCenter>

<CircleRadius>2.5</CircleRadius>
```

</WitnessLines>

7.5.7.5.9 Rectangular frame

FrameRectangular describes a rectangular frame, as seen in Figure 187.

Fields:

Field Name	Data Type	Description
ХҮ	Point2dSimpleType	2D coordinates of the frame left bottom corner point (the anchor point of the rectangular frame).
Width	xs:double	The frame width.
Height	xs:double	The frame height.

Example:

```
<FrameRectangular>
   <XY>-0.2 -0.2</XY>
   <Width>1.6</Width>
   <Height>1.0</Height>
</FrameRectangular>
```

7.5.7.5.10 Circular frame

FrameCircularType describes a circular frame, which is normally used for visualization of datum targets, as seen in Figure 188.

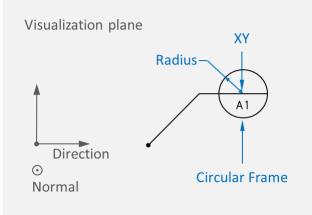
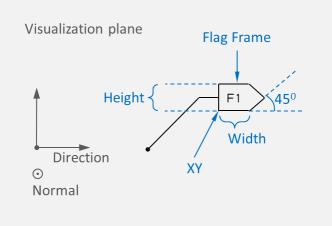
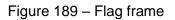


Figure 188 – Circular frame

Fields:

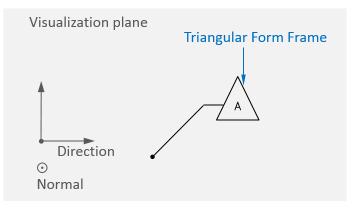

Field Name	Data Type	Description
@crossed	xs:boolean	The optional crossed attribute shows if the frame shall be crossed with the middle line that separates the circular frame into halves (top and bottom).
ХҮ	Point2dSimpleType	2D coordinates of the frame center (the anchor point of the circular frame).
Radius	xs:double	The frame radius.


Example:

```
<FrameCircular>
<XY>-0.2 -0.2</XY>
<Radius>7.3</Radius>
</FrameCircular>
```

7.5.7.5.11 Flag frame

FrameFlag describes a flag frame, which is normally used for visualization of flag notes, as seen in Figure 189.



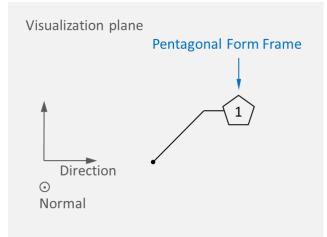
Fields:

Field Name	Data Type	Description
@right	xs:boolean	This attribute shows if the flag frame has the triangle <i>element</i> at the right side.
ХҮ	Point2dSimpleType	2D coordinates of the frame left bottom corner point (the anchor point of the flag frame).
Width	xs:double	The frame width.
Height	xs:double	The frame height.

7.5.7.5.12 Triangular form frame

FrameTriangle defines a triangular form frame as seen in Figure 190.

Fields:

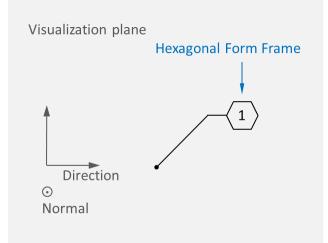

Field Name	Data Type	Description
Points	ArrayPoint2dType	A 2D polyline that describes the frame shape. The array includes 3 points.

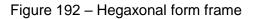
Example:

```
<FrameTriangle>
   <Point>0.294677734375 1.33232421874998</Point>
   <Point>1.03935546875 -0.199999999999977</Point>
   <Point>-0.44999999999998 -0.19999999999977</Point>
</FrameTriangle>
```

7.5.7.5.13 Pentagonal form frame

FramePentagonal defines a pentagonal form frame, as seen in Figure 191.


Field Name	Data Type	Description
Points	ArrayPoint2dType	A 2D polyline that describes the frame shape. The array includes 5 points.

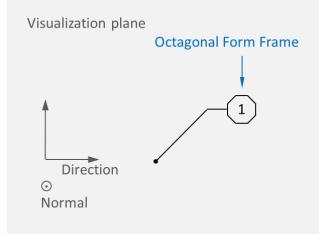

Example:

```
<FramePentagonal>
  <Point>0.5 0</Point>
  <Point>1.5 0</Point>
  <Point>2 1</Point>
  <Point>1 2</Point>
  <Point>0 1</Point>
</FramePentagonal>
```

7.5.7.5.14 Hexagonal form frame

FrameHexagonal defines a hegaxonal form frame, as seen in Figure 192.

Fields:

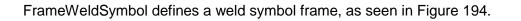

Field Name	Data Type	Description
Points	ArrayPoint2dType	A 2D polyline that describes the frame shape. The array includes 6 points.

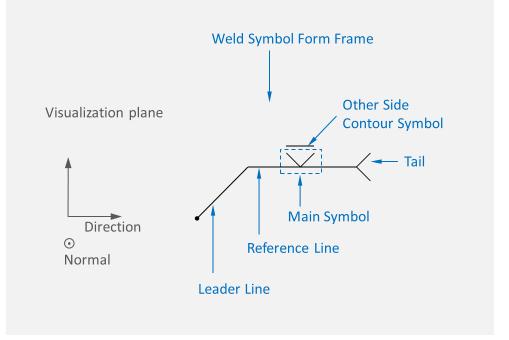
```
<FrameHexagonal>
   <Point>0.5 0</Point>
   <Point>1.0 0</Point>
```

```
<Point>1.5 0.75</Point>
<Point>1.0 1.5</Point>
<Point>0.5 1.5</Point>
<Point>0 0.75</Point>
</FrameHexagonal>
```

7.5.7.5.15 Octagonal form frame

FrameOctagonal defines a hegaxonal form frame, as seen in Figure 193.

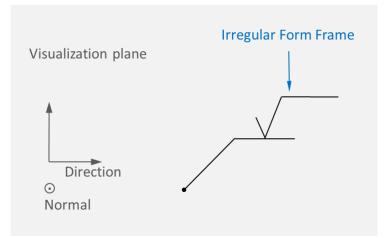



Fields:

Field Name	Data Type	Description
Points	ArrayPoint2dType	A 2D polyline that describes the frame shape. The array includes 8 points.

```
<FrameOctagonal>
  <Point>0.5 0</Point>
  <Point>1.5 0</Point>
  <Point>2 0.5</Point>
  <Point>2 1.5</Point>
  <Point>1.5 2</Point>
  <Point>0.5 2</Point>
  <Point>0 1.5</Point>
  <Point>0 0.5</Point>
  </FrameOctagonal>
```

7.5.7.5.16 Weld Symbol form frame



Field Name	Data Type	Description
ReferenceLineBeginPoint	Point2dSimpleType	A 2D point that defines the begin point of the reference line.
ReferenceLIneEndPoint	Point2dSimpleType	A 2D point that defines the end point of the reference line.
Tail	FrameWeldSymbolTailType	2D points that define the tail of the reference line.
MainSymbol	MainWeldSymbolType	The main symbol that is placed on the reference line.
SupplementarySymbol	WeldSupplementarySymbolType	The supplementary symbol that is placed on the reference line.
ArrowSideContourSymbol	WeldContourSymbolType	The contour symbol that is placed on the arrow side.
OtherSideContourSymbol	WeldContourSymbolType	The contour symbol that is placed on the other side.

```
<Tail>
    <UpperPoint>4.5 1.5</UpperPoint>
    <LowerPoint>4.5 0.5</LowerPoint>
    </Tail>
    <MainSymbol>
    <Origin>2.0 1</Origin>
    <Symbol>WELD_FILLET_OTHER_SIDE</Symbol>
    </MainSymbol>
    <OtherSideContourSymbol>
    <Origin>2.0 1.75</Origin>
    <Symbol>WELD_CONTOUR_FLAT</Symbol>
    </OtherSideContourSymbol>
</PrameWeldSymbol>
</PrameWeldSymbol>
</Pre>
```

7.5.7.5.17 Irregular form frame

FrameIrregular defines an irregular form frame, as seen in Figure 195. A FrameIrregular is a closed shape only if the first and last points in Points are the same.

Field Name	Data Type	Description
Points	ArrayPoint2dType	A 2D polyline that describes the frame shape.

```
<FrameIrregularForm>
  <Points n="4">
    10 1
    10.5 0
    11 2
    14 2
  </Points>
```

</FrameIrregularForm>

7.5.7.5.18 Graphic presentation

Graphics defines additional graphical presentation data, as seen in Figure 196. It allows specifying user-defined PMI data that have no semantic representation, or if the semantic representation cannot be written into QIF file.

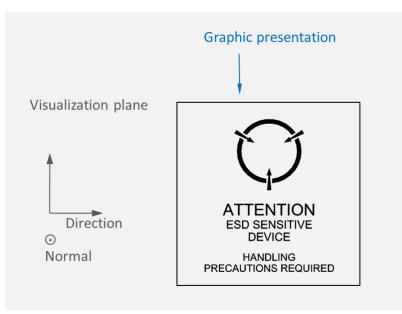


Figure 196 – Graphic presentation

Field Name	Data Type	Description
Polylines	Polylines2dType	The set of 2D polylines.
Polylines/Polyline/Points or Polylines/Polyline/PointsBinary	ArrayPoint2dType or ArrayBinaryType	The array of 2D polyline points.
Areas	Areas2dType	The set of 2D areas.
Areas/Area/Loops	Loops2dType	The set of loops defining the area. The first loop is outer, the rest are inner loops.
Areas/Area/Loops/Loop/Points or Areas/Area/Loops/Loop/PointsBinary	ArrayPoint2dType or ArrayBinaryType	The array of 2D points of a closed polyline.
Areas/Area/Triangulation	Triangulation2dType	The area defined in the triangulation form.
Areas/Area/Triangulation/Vertices or	ArrayPoint2dType or	The array of 2D vertices of a triangulation.

Areas/Area/Triangulation/VerticesBinary	ArrayBinaryType	
Areas/Area/Triangulation/Triangles or Areas/Area/Triangulation/TrianglesBinary	Arrayl3Type or ArrayBinaryType	The array of indices of the triangle vertices. The number of the array <i>elements</i> corresponds to the number of triangles in the mesh. Each <i>element</i> of this array is a triplet of integer numbers: index of the first vertex, index of the second vertex and index of the third vertex. All three vertex indices of a triangle must be different and shall lie in the range [0,, number of vertices - 1].

```
<Graphics>
  <Polylines n="1">
    <Polyline>
      <Points n="2">
        25 0
        25 10
      </Points>
    </Polyline>
  </Polylines>
  <Areas n="2">
    <Area>
      <Loops n="2">
        <Loop>
          <Points n="5">
            30 0
            40 0
            40 10
            30 10
            30 0
          </Points>
        </Loop>
        <Loop>
          <Points n="5">
            31 1
            31 9
            39 9
            39 1
            31 1
          </Points>
        </Loop>
      </Loops>
    </Area>
    <Area>
```

```
<Triangulation>

<Vertices n="4">

10 0

20 0

20 10

10 10

</Vertices>

<Triangles n="2">

0 1 2

0 2 3

</Triangles>

</Area>

</Graphics>
```

7.5.7.6 Saved View

SavedView describes a saved view to facilitate presentation of the model and its 3D annotations, as seen in Figure 197.

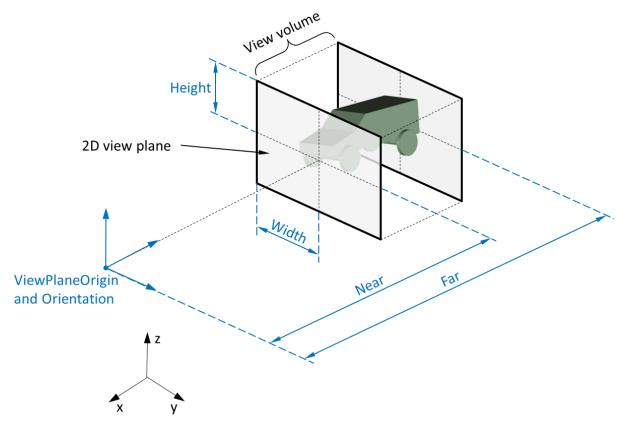


Figure 197 - Saved view

Field Name	Data Type	Description
@id	QIFIdType	Unique model entity identifier.
@label	xs:string	Label of the Saved View.
ActiveView	xs:boolean	Defines an active view.
AnnotationVisibleIds	ArrayReferenceFullType	An array of identifiers of model annotations that shall be visible in this saved view.
AnnotationHiddenIds	ArrayReferenceFullType	An array of identifiers of model annotations that shall be hidden in this saved view.
Bodylds	ArrayReferenceFullType	An array of identifiers of model bodies that shall be visible in this saved view. If the Bodylds <i>element</i> is absent, then all model bodies are visible in this saved view.
ComponentIds	ArrayReferenceFullType	An array of identifiers of model components that shall be visible in this saved view. If the ComponentIds <i>element</i> is absent, then all model components are visible in this saved view.
SimplifiedRepresentationId	QIDReferenceActiveType	An identifier of the simplified representation.
ExplodedViewId	QIDReferenceActiveType	An identifier of the exploded view.
DisplayStyleId	QIDReferenceActiveType	An identifier of the display style, defining color, transparency and display form.
ZoneSectionId	QIDReferenceActiveType	An identifier of the zone section, which defines zone section planes, separating the model into parts, and logical operations between them.
Cameralds	ArrayReferenceActiveType	An array of identifiers of orthographic cameras.

```
<SavedView id="2371" label="MBD_0">

<ActiveView>true</ActiveView>

<AnnotationVisibleIds n="5">

<Id>2325</Id>

<Id>2328</Id>

<Id>2331</Id>

<Id>2331</Id>

<Id>2334</Id>

<Id>2337</Id>

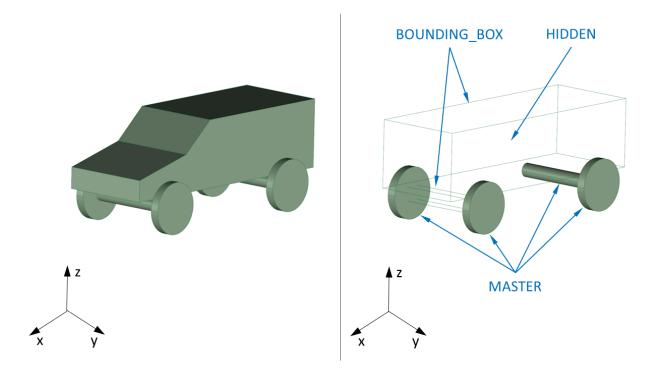
</AnnotationVisibleIds>

<SimplifiedRepresentationId>2377</SimplifiedRepresentationId>

<ExplodedViewId>2380</ExplodedViewId>

<DisplayStyleId>2394</DisplayStyleId>

<ZoneSectionId>2395</ZoneSectionId>


<CameraIds n="1">

<Id>2372</Id>
```

</CameraIds> </SavedView>

7.5.7.6.1 Simplified Representation

The SimplifiedRepresentation defines a simplified model representation, as seen in Figure 198. All simplified representations are collected in one set SimplifiedRepresentationSet, which is an *element* of the ViewSet.

Field Name	Data Type	Description
@id	QIFIdType	The unique model entity identifier.
@label	xs:string	The label of the simplified representation.
Form	SimplifiedRepresentationFormEnumTyp e	The default representation form.
SimplifiedRepresentation Groups	SimplifiedRepresentationGroupsType	Groups of components and bodies with defined simplified representation forms.
SimplifiedRepresentation Groups/SimplifiedReprese ntationGroup/Form	SimplifiedRepresentationFormEnumTyp e	The representation form defined for the group of components and bodies.

SimplifiedRepresentation Groups/SimplifiedReprese ntationGroup/Component Ids	ArrayReferenceFullType	An array of identifiers of model components.
SimplifiedRepresentation Groups/SimplifiedReprese ntationGroup/BodyIds	ArrayReferenceFullType	The array of identifiers of model bodies.

```
<SimplifiedRepresentationSet n="1">
  <SimplifiedRepresentation id="10000">
    <Form>MASTER</Form>
  <SimplifiedRepresentationGroups n="2">
    <SimplifiedRepresentationGroup>
      <Form>BOUNDING BOX</form>
      <BodyIds n="2">
        <Id>114</Id>
        <Id>127</Id>
      </BodyIds>
    </SimplifiedRepresentationGroup>
    <SimplifiedRepresentationGroup>
      <Form>HIDE</Form>
      <ComponentIds n="1">
        <Id>1242</Id>
      </ComponentIds>
      <BodyIds n="1">
        <Id>128</Id>
      </BodyIds>
    </SimplifiedRepresentationGroup>
  </SimplifiedRepresentationGroups>
  </SimplifiedRepresentation>
</SimplifiedRepresentationSet>
```

7.5.7.6.2 Exploded View

The ExplodedViewType defines an exploded view - a sequence of translate and rotate operations applied to the groups of components and bodies showing each object separated from others, as seen in Figure 199. All exploded views are collected in the ExplodedViewSet, which is an *element* of the ViewSet.

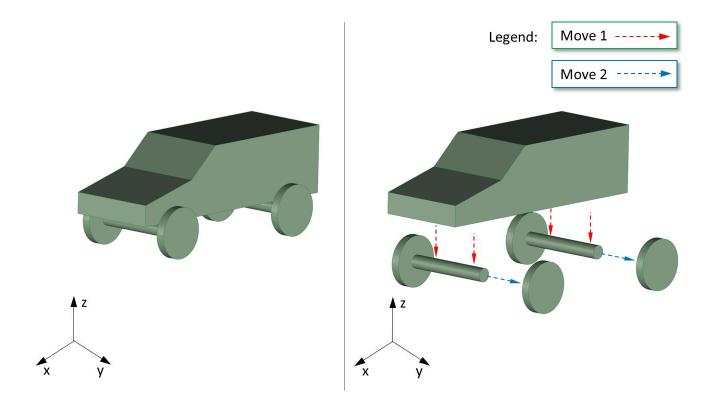
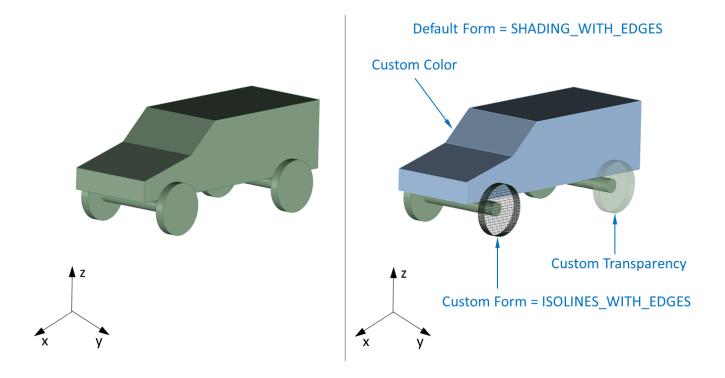
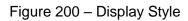


Figure 199 – Exploded View


Field Name	Data Type	Description
@id	QIFIdType	The unique model entity identifier.
@label	xs:string	The label of the exploded view.
MoveGroups	ExplodedViewMoveGroupsType	The sequence of translate and rotate operations applied to the groups of components and bodies.
MoveGroups/MoveGrou p/Translate	ExplodedViewTranslateType	The translation operator defined by a unit vector and a translation distance.
MoveGroups/MoveGrou p/Translate/Direction	UnitVectorType	The translation direction.
MoveGroups/MoveGrou p/Translate/Value	LinearValueType	The translation distance.
MoveGroups/MoveGrou p/Rotate	ExplodedViewRotateType	The rotation operator defined by a rotation axis and rotation angle.
MoveGroups/MoveGrou p/Rotate/Axis	UnitVectorType	The rotation axis.
MoveGroups/MoveGrou p/Rotate/Angle	AngularValueType	The rotation angle.


MoveGroups/MoveGrou p/ComponentIds	ArrayReferenceFullType	The array of component identifiers.
MoveGroups/MoveGrou p/BodyIds	ArrayReferenceFullType	The array of body identifiers.

```
<ExplodedViewSet n="1">
  <ExplodedView id="10001">
    <MoveGroups n="2">
      <MoveGroup>
        <Translate>
          <Direction>1 0 0</Direction>
          <Value>20</Value>
        </Translate>
        <ComponentIds n="2">
          <Id>123</Id>
          <Id>124</Id>
        </ComponentIds>
      </MoveGroup>
      <MoveGroup>
        <Rotate>
          <Axis>0 1 0</Axis>
          <Angle>45</Angle>
        </Rotate>
        <ComponentIds n="1">
          <Id>125</Id>
        </ComponentIds>
      </MoveGroup>
    </MoveGroups>
  </ExplodedView>
</ExplodedViewSet>
```

7.5.7.6.3 Display Style

The DisplayStyleType defines a display style of saved view *elements*, such as color, transparency and visualization form, as seen in Figure 200. All display styles are collected in the DisplayStyleSet, which is an *element* of the ViewSet.

Field Name	Data Type	Description
@id	QIFIdType	The unique model entity identifier.
@label	xs:string	The label of the display style.
Mode/Form	DisplayStyleFormEnumType	The default visualization mode.
Mode/Color	ColorType	The default drawing color.
Mode/Transparency	TransparencyType	The default transparency value.
DisplayStyleGroups	DisplayStyleGroupsType	The array of the groups of <i>elements</i> with a defined display style.
DisplayStyleGroups/Display StypeGroup/Mode	DisplayStyleModeType	The display style for the group of <i>elements</i> .
DisplayStyleGroups/Display StypeGroup/Mode/Form	DisplayStyleFormEnumType	The visualization mode.
DisplayStyleGroups/Display StypeGroup/Mode/Color	ColorType	The drawing color.
DisplayStyleGroups/Display StypeGroup/Mode/Transpa rency	TransparencyType	The transparency value.

DisplayStyleGroups/Display	ArrayReferenceFullType	The array of identifiers of model
StypeGroup/ComponentIds		components.
DisplayStyleGroups/Display	ArrayReferenceFullType	The array of identifiers of model
StypeGroup/BodyIds	Allaykelelenceruiltype	bodies.

```
<DisplayStyleSet n="1">
  <DisplayStyle id="10002">
    <Mode>
      <Form>SHADING WITH EDGES
    </Mode>
    <DisplayStyleGroups n="2">
      <DisplayStyleGroup>
        <Mode>
          <Form>WIREFRAME</Form>
          <Color>255 0 0</Color>
        </Mode>
        <BodyIds n="2">
          <Id>128</Id>
          <Id>129</Id>
        </BodyIds>
      </DisplayStyleGroup>
      <DisplayStyleGroup>
        <Mode>
          <Form>SHADING WITH EDGES
          <Transparency>0.5</Transparency>
        </Mode>
        <ComponentIds n="1">
          <Id>12834</Id>
        </ComponentIds>
      </DisplayStyleGroup>
    </DisplayStyleGroups>
  </DisplayStyle>
</DisplayStyleSet>
```

7.5.7.6.4 Zone Section

The ZoneSectionType defines a zone section – a set of section planes that separates the model into parts and the logical operations between them, as seen in Figure 201 through Figure 207. Figure 206 show an XML code snippet of a Zone Section with a logical operations tree.

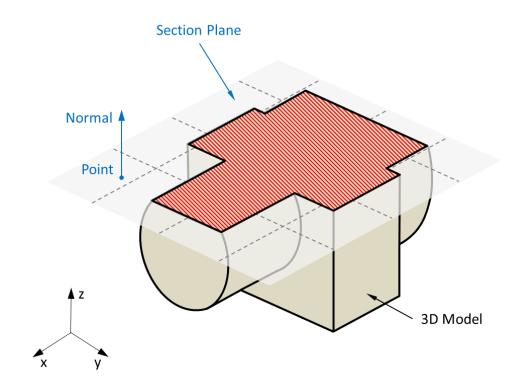


Figure 201 – Zone Section with one section plane

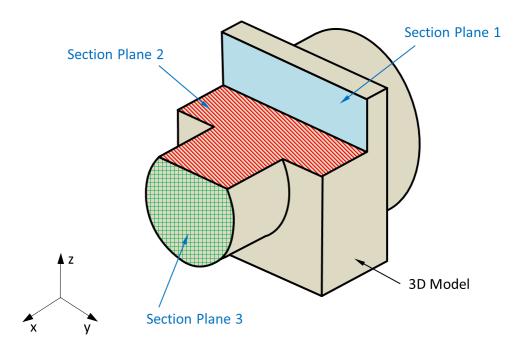
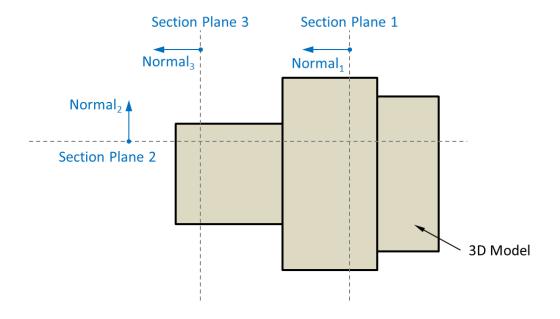



Figure 202 – Zone Section with three section planes

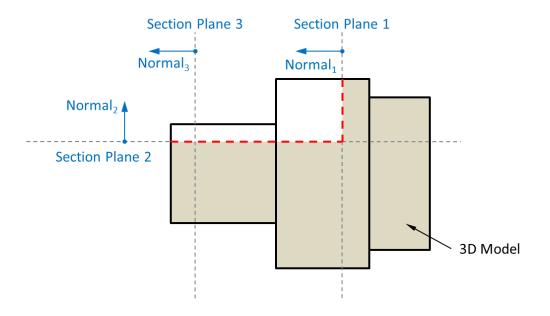
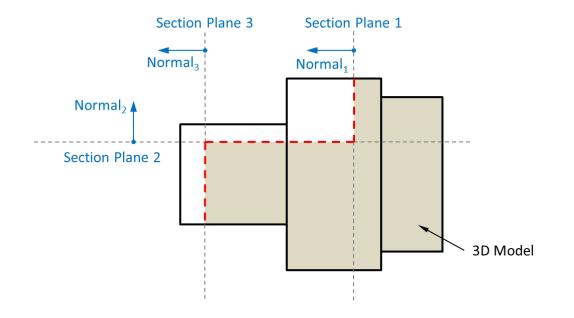
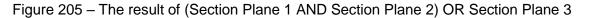




Figure 204 – The result of Section Plane 1 AND Section Plane 2

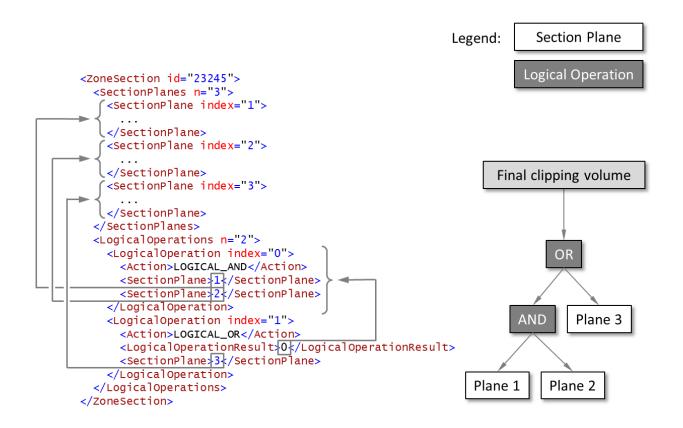


Figure 206 – Logical operations tree

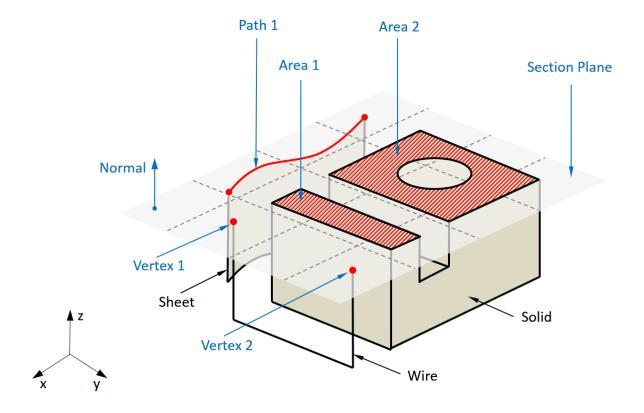


Figure 207 – Sections of wire, sheet and solid bodies

Field Name	Data Type	Description
@id	QIFIdType	Unique model entity identifier.
@label	xs:string	The zone section label.
@hatching	xs:boolean	Hatching On/Off.
SectionPlanes	ZoneSectionPlanesType	An array of the section planes.
SectionPlanes/SectionPlane	ZoneSectionPlaneType	The section plane.
SectionPlanes/SectionPlane/@index	xs:unsignedInt	An index identifying a zone section plane within the SectionPlanes set.
SectionPlanes/SectionPlane/Plane	PlaneXType	The plane.
SectionPlanes/SectionPlane/Section Groups	SectionGroupsType	The groups of cross-sections.
SectionPlanes/SectionPlane/Section Groups/SectionGroup	SectionGroupType	The cross-section group.
SectionPlanes/SectionPlane/Section Groups/SectionGroup/BodyId	QIFReferenceFullType	The body identifier.

SectionPlanes/SectionPlane/Section Groups/SectionGroup/Areas	SectionAreasType	An array of the section areas, defined by loops and hatching style.
SectionPlanes/SectionPlane/Section Groups/SectionGroup/Areas/Area	SectionAreaType	The section area.
SectionPlanes/SectionPlane/Section Groups/SectionGroup/Areas/Area/H atchStyleId	QIFReferenceType	The identifier of the hatching style for the section area.
SectionPlanes/SectionPlane/Section Groups/SectionGroup/Areas/Area/Lo ops	SectionLoopsType	A set of section closed loops - boundary of the area.
SectionPlanes/SectionPlane/Section Groups/SectionGroup/Areas/Area/Lo ops/Loop	SectionPathType	The section closed loop.
SectionPlanes/SectionPlane/Section Groups/SectionGroup/Areas/Area/Lo ops/Loop/Edges	SectionEdgesType	An array of oriented edges.
SectionPlanes/SectionPlane/Section Groups/SectionGroup/Areas/Area/Lo ops/Loop/Edges/Edge	EdgeOrientedType	The oriented edge.
SectionPlanes/SectionPlane/Section Groups/SectionGroup/Paths	SectionPathsType	The section paths.
SectionPlanes/SectionPlane/Section Groups/SectionGroup/Paths/Path	SectionPathType	The section path.
SectionPlanes/SectionPlane/Section Groups/SectionGroup/Paths/Path/Ed ges	SectionEdgesType	An array of oriented edges.
SectionPlanes/SectionPlane/Section Groups/SectionGroup/Paths/Path/Ed ges/Edge	EdgeOrientedType	The oriented edge.
SectionPlanes/SectionPlane/Section Groups/SectionGroup/Vertices	ArrayReferenceType	The section vertices.
LogicalOperations	LogicalOperationsType	A logical operations tree.
LogicalOperations/LogicalOperatio n	LogicalOperationType	The logical operation.
LogicalOperations/LogicalOperatio n/@index	xs:unsignedInt	An index identifying a logical operation within the LogicalOperations set.
LogicalOperations/LogicalOperatio n/Action	LogicalOperationEnumTy pe	The logical operation type: LOGICAL_AND or LOGICAL_OR.
LogicalOperations/LogicalOperatio n/SectionPlane	xs:unsignedInt	The index of section plane.
LogicalOperations/LogicalOperation/LogicalOperationResult	xs:unsignedInt	The index of logical operation.

```
<ZoneSection id="23244">
  <SectionPlanes n="1">
    <SectionPlane index="0">
      <Plane>
        <Point>0 0 0</Point>
        <Normal>0 0 1</Normal>
        <Direction>1 0 0</Direction>
      </Plane>
      <SectionGroups n="2">
        <SectionGroup>
          <BodyId>128</BodyId>
          <Areas n="1">
            <Area>
              <HatchStyleId>1</HatchStyleId>
              <Loops n="2">
                <Loop>
                  <Edges n="4">
                    <Edge turned="1">
                       <Id>3467</Id>
                    </Edge>
                    <Edge turned="1">
                       <Id>3468</Id>
                    </Edge>
                    <Edge>
                       <Id>2783</Id>
                    </Edge>
                    <Edge>
                      <Id>2344</Id>
                    </Edge>
                  </Edges>
                </Loop>
                <Loop>
                  <Edges n="1">
                    <Edge>
                       <Id>2923</Id>
                    </Edge>
                  </Edges>
                </Loop>
              </Loops>
            </Area>
          </Areas>
        </SectionGroup>
        <SectionGroup>
          <BodyId>129</BodyId>
          <Paths n="1">
            <Path>
              <Edges n="3">
                <Edge>
                  <Id>3460</Id>
                </Edge>
                <Edge turned="1">
                  <Id>3568</Id>
```

```
</Edge>
<Edge>
<Id>1283</Id>
</Edge>
</Edges>
</Path>
</Paths>
</SectionGroup>
</SectionGroups>
</SectionPlane>
</SectionPlanes>
</ZoneSection>
```

7.5.7.6.5 Hatching style

The HatchStyleType defines a hatching style used for visualization of cross-section areas, as seen in Figure 208 and Figure 209. All hatching styles are collected in the HatchStyleSet that is an *element* of the ViewSet.

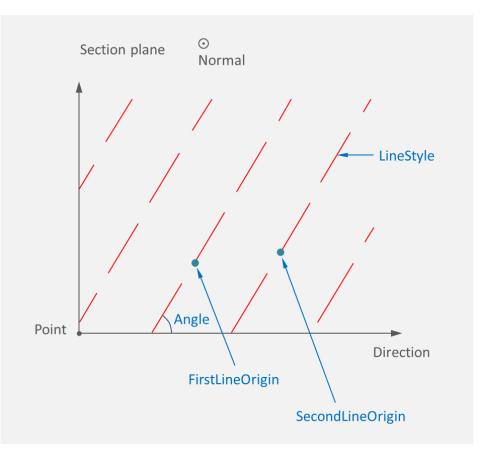
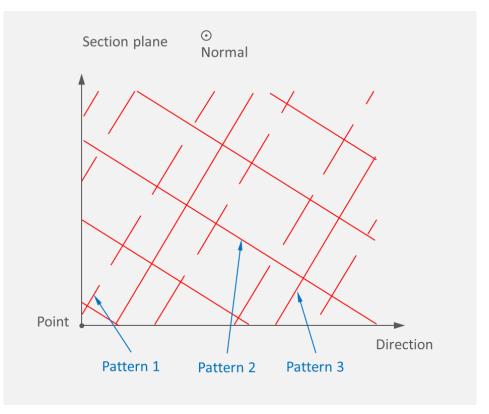
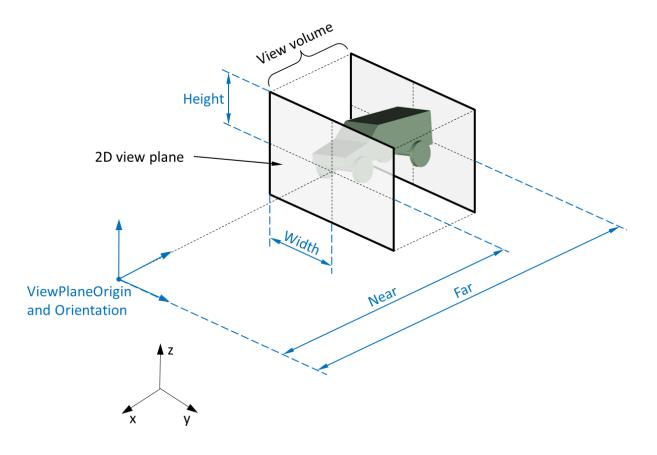


Figure 208 – Hatching Pattern




Figure 209 – Combination of patterns

Field Name	Data Type	Description
@id	QIFIdType	The unique model entity identifier.
@label	xs:string	The label of the hatching style.
Form	HatchStyleFormEnumType	The form of the hatching.
Color	ColorType	The color of the hatching.
Patterns	HatchPatternsType	The array of hatching patterns.
Patterns/Pattern/LineStyle	HatchPatternLineStyleEnumType	The line style of the hatching.
Patterns/Pattern/LineStyle/@thi ckness	xs:positiveInteger	The line thickness in pixels.
Patterns/Pattern/FirstLineOrigin	Point2dSimpleType	The origin of the first hatching line.
Patterns/Pattern/SecondLineOri gin	Point2dSimpleType	The origin of the second hatching line.
Pattern/Angle	AngularValueType	The angle of the hatching lines.
Pattern/Color	ColorType	The color of the hatching lines.

```
<HatchStyleSet n="1">
  <HatchStyle id="1" label="hatch style 1">
    <Form>PATTERN</Form>
    <Color>0 0 0</Color>
    <Patterns n="3">
      <Pattern>
        <LineStyle>SOLID</LineStyle>
        <FirstLineOrigin>0 0</FirstLineOrigin>
        <SecondLineOrigin>4 0</SecondLineOrigin>
        <Angle>45</Angle>
      </Pattern>
      <Pattern>
        <LineStyle>DASH</LineStyle>
        <FirstLineOrigin>0 0</FirstLineOrigin>
        <SecondLineOrigin>4 0</SecondLineOrigin>
        <Angle>135</Angle>
      </Pattern>
      <Pattern>
        <LineStyle>DOT</LineStyle>
        <FirstLineOrigin>2 O</FirstLineOrigin>
        <SecondLineOrigin>6 0</SecondLineOrigin>
        <Angle>45</Angle>
      </Pattern>
    </Patterns>
  </HatchStyle>
</HatchStyleSet>
```

7.5.7.6.6 Camera

Camera describes a camera – projection of the 3D model space to 2D window, as seen in Figure 210 and Figure 211.

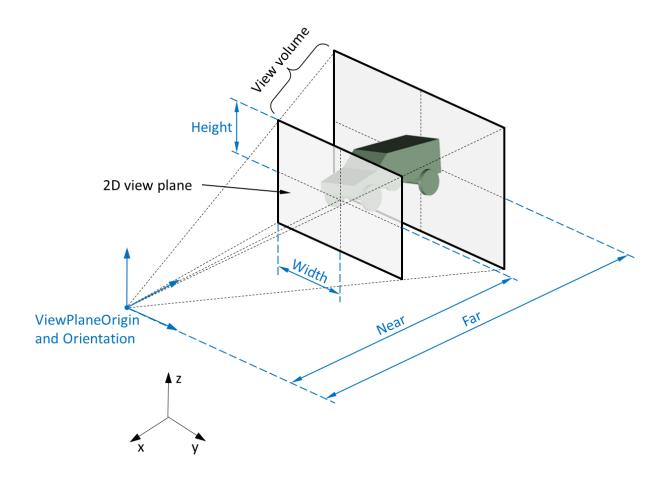


Figure 211 – Perspective Camera

Width = Height * Ratio

Field Name	Data Type	Description
@form	CameraFormEnumType	This attribute specifies the camera type: 'ORTHOGRAPHIC' or 'PERSPECTIVE'.
ViewPlaneOrigin	PointSimpleType	The view plane origin.
Orientation	QuaternionType	The rotation of the view plane around the view plane origin.
Ratio	xs:double	The aspect ratio of the view plane (normally it corresponds to the viewport).
Near	LinearValueType	The distance from the view plane to the near clipping plane.
Far	LinearValueType	The distance from the view plane to the far clipping plane.
Height	xs:double	Half of the top to bottom extent of the 2D view plane.

```
<Camera id="348">

<ViewPlaneOrigin>0.467 0.587 0.020</ViewPlaneOrigin>

<Orientation>

<Value>0.285 0.267 -0.185 -0.901</Value>

</Orientation>

<Ratio>1.465</Ratio>

<Near>-2.449</Near>

<Far>2.449</Far>

<Height>1.079</Height>

</Camera>
```

7.5.8 Validation properties

7.5.8.1 Edge validation properties

Edge validation properties include total length, centroid, bounding box and points with tangent vectors.

Edge/Validation fields:

Field Name	Data Type	Description
Length	xs:double	The edge length.
Centroid	PointSimpleType	The edge centroid.
Вох	BoundingBoxAxisAlignedType	The edge bounding box.
Points/Points	ArrayPointType	
or	or	The set of points that lie on the edge.
Points/PointsBinary	ArrayBinaryType	
Points/Directions	ArrayUnitVectorType	The set of tangent vectors defined at the
or	or	points. The number of array elements
Points/DirectionsBinary	ArrayBinaryType	corresponds to the number of points.

```
<Edge id="403">
  <Validation>
    <Length>100</Length>
    <Centroid>50 0 0</Centroid>
    <Box>
      <PointMin>0 0 0</PointMin>
      <PointMax>100 0 0</PointMax>
    </Box>
    <Points>
      <Points n="3">
        0 0 0
        50 0 0
        100 0 0
      </Points>
      <Directions n="3">
        1 0 0
        1 0 0
        1 0 0
      </Directions>
    </Points>
  </Validation>
  <Curve>
    <Id>390</Id>
  </Curve>
  <VertexBeg>
    <Id>396</Id>
```

```
</VertexBeg>
<VertexEnd>
<Id>400</Id>
</VertexEnd>
</Edge>
```

7.5.8.2 Face validation properties

Face validation properties include total area, centroid, bounding box and points with normal vectors.

Field Name	Data Type	Description
Area	xs:double	The face area.
Centroid	PointSimpleType	The face centroid.
Вох	BoundingBoxAxisAlignedType	The face bounding box.
Points/Points	ArrayPointType	
or	or	The set of points that lie on the face.
Points/PointsBinary	ArrayBinaryType	
Points/Directions	ArrayUnitVectorType	The set of normal vectors defined at the
or	or	points. The number of array elements
Points/DirectionsBinary	ArrayBinaryType	corresponds to the number of points.

Face/Validation, FaceMesh/Validation fields:

```
<Face id="174">
  <Validation>
    <Area>10000</Area>
    <Centroid>50 50 0</Centroid>
    <Box>
      <PointMin>0 0 0</PointMin>
      <PointMax>100 100 0</PointMax>
    </Box>
    <Points>
      <Points n="5">
        0 0 0
        100 0 0
        100 100 0
        0 100 0
        50 50 0
      </Points>
      <Directions n="5">
        0 0 1
        0 0 1
        0 0 1
        0 0 1
        0 0 1
```

```
</Directions>
</Points>
</Validation>
<Surface>
<Id>102</Id>
</Surface>
<LoopIds n="1">
<Id>113</Id>
</LoopIds>
</Face>
```

7.5.8.3 Body validation properties

Body validation properties include total area, centroid, volume, bounding box, points with normal vectors that lie on faces and points with tangent vectors that lie on edges.

Body/Validation fields:

Field Name	Data Type	Description
Area	xs:double	The body area.
Centroid	PointSimpleType	The body centroid.
Volume	xs:double	The body volume.
Box	BoundingBoxAxisAlignedType	The body bounding box.
FacePoints/Points or FacePoints/PointsBinary	ArrayPointType or ArrayBinaryType	The set of points that lie on the faces.
FacePoints/Directions or FacePoints/DirectionsBinary	ArrayUnitVectorType or ArrayBinaryType	The set of normal vectors defined at the face points. The number of array <i>elements</i> corresponds to the number of face points.
EdgePoints/Points or EdgePoints/PointsBinary	ArrayPointType or ArrayBinaryType	The set of points that lie on the edges.
EdgePoints/Directions or EdgePoints/DirectionsBinary	ArrayUnitVectorType or ArrayBinaryType	The set of tangent vectors defined at the edge points. The number of array <i>elements</i> corresponds to the number of edge points.

```
<Body id="127">

<Validation>

<Area>60000.0</Area>

<Centroid>50 50 50</Centroid>

<Volume>1000000.0</Volume>

<Box>

<PointMin>0 0 0</PointMin>
```

```
<PointMax>100 100 100</PointMax>
    </Box>
    <FacePoints>
      <Points n="2">
        50 50 0
        50 50 100
      </Points>
      <Directions n="2">
        0 0 -1
        0 0 1
      </Directions>
    </FacePoints>
    <EdgePoints>
      <Points n="2">
        50 0 0
        50 100 0
      </Points>
      <Directions n="2">
        1 0 0
        1 0 0
      </Directions>
    </EdgePoints>
  </Validation>
  <FaceIds n="1">
    <Id>175</Id>
  </FaceIds>
  <LoopIds n="1">
    <Id>126</Id>
  </LoopIds>
  <EdgeIds n="4">
    <Id>487</Id>
    <Id>495</Id>
    <Id>503</Id>
    <Id>511</Id>
  </EdgeIds>
  <VertexIds n="8">
    <Id>484</Id>
    <Id>486</Id>
    <Id>492</Id>
    <Id>494</Id>
    <Id>500</Id>
    <Id>502</Id>
    <Id>508</Id>
    <Id>510</Id>
  </VertexIds>
</Body>
```

7.5.8.4 Part/Assembly validation properties

Part/Assembly validation properties include total area, centroid, volume, bounding box, points with normal vectors that lie on faces, points with tangent vectors that lie on edges, and centroid and bounding box defined for each part/assembly instance.

Validation fields:

Field Name	Data Type	Description
Area	xs:double	The part/assembly area.
Centroid	PointSimpleType	The part/assembly centroid.
Volume	xs:double	The part/assembly volume.
Вох	BoundingBoxAxisAlignedType	The part/assembly bounding box.
FacePoints/Points or FacePoints/PointsBinary	ArrayPointType or ArrayBinaryType	The set of points that lie on the faces.
FacePoints/Directions or FacePoints/DirectionsBinary	ArrayUnitVectorType or ArrayBinaryType	The set of normal vectors defined at the face points. The number of array <i>elements</i> corresponds to the number of face points.
EdgePoints/Points or EdgePoints/PointsBinary	ArrayPointType or ArrayBinaryType	The set of points that lie on the edges.
EdgePoints/Directions or EdgePoints/DirectionsBinary	ArrayUnitVectorType or ArrayBinaryType	The set of tangent vectors defined at the edge points. The number of array <i>elements</i> corresponds to the number of edge points.
Instances	ValidationPartAssemblyInstancesType	The array of instance validation properties.
Instances/Instance/AsmPathId	QIFReferenceType	The identifier of the assembly path of this part/assembly.
Instances/Instance/Centroid	PointSimpleType	The instance centroid.
Instances/Instance/Box	BoundingBoxAxisAlignedType	The instance bounding box.

```
<Part id="1930" label="crank-arm">

<Validation>

<Area>60000.0</Area>

<Centroid>50 50 50</Centroid>

<Volume>1000000.0</Volume>

<Box>

<PointMin>0 0 0</PointMin>

<PointMax>100 100 100</PointMax>

</Box>

<FacePoints>

<Points n="2">
```

```
50 50 0
        50 50 100
      </Points>
      <Directions n="2">
        0 0 -1
        0 0 1
      </Directions>
    </FacePoints>
    <EdgePoints>
      <Points n="2">
        50 0 0
        50 100 0
      </Points>
      <Directions n="2">
        1 0 0
        1 0 0
      </Directions>
    </EdgePoints>
    <Instances n="2">
      <Instance>
        <AsmPathId>1123</AsmPathId>
        <Centroid>150 50 50</Centroid>
        <Box>
          <PointMin>100 0 0</PointMin>
          <PointMax>200 100 100</PointMax>
        </Box>
      </Instance>
      <Instance>
        <AsmPathId>1124</AsmPathId>
        <Centroid>50 50 150</Centroid>
        <Box>
          <PointMin>0 0 100</PointMin>
          <PointMax>100 100 200</PointMax>
        </Box>
      </Instance>
    </Instances>
  </Validation>
  <BodyIds n="4">
    <Id>1929</Id>
    <Id>1921</Id>
    <Id>1913</Id>
    <Id>1899</Id>
  </BodyIds>
</Part>
```

7.5.9 High level description of the product data

The QIF MBD model includes the information items from the Product.xsd schema file and many of the schema files in the QIF Library. The QIF Library files are incorporated into the schema by a chain of "*include*" directives starting in the Product.xsd schema file. A diagram of the highest-level *element*s of the QIF MBD model are seen in Figure 212.

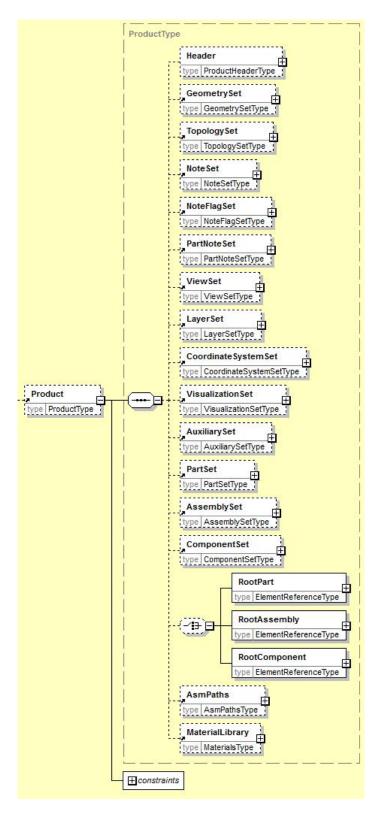


Figure 212 - High level view of QIF MBD highest level elements

8 QIF Plans information model

8.1 Foreword

The Quality Information Framework (QIF) information model was developed by domain experts from the manufacturing quality (that is metrology) community representing a wide variety of industries and quality measurement needs. Specifically for the QIF Plans work, past and current contributors include:

Main:

- Honeywell Federal Manufacturing & Technology
- Lockheed Martin Missiles and Fire Systems
- Mitutoyo America
- National Institute of Standards and Technology
- Origin International Inc.
- QIF Solutions
- Renishaw plc

Support:

- Capvidia
- Deere & Co.
- DISCUS Software
- Hexagon Metrology
- Horst Engineering
- IPI Solutions
- ITI transenData
- Metrosage LLC
- PAS Technology
- Rolls-Royce
- Siemens
- University of North Carolina at Charlotte
- Validation Technologies

This clause was written by the QIF Plans Working Group and given final approval for ANSI review by the DMSC's Quality Measurement Standards (QMS) Committee.

This version of the QIF Plans information model contains significant additions to the previous standard, which was published as ANSI/QIF Part 4 – 2015. These include:

- Numerical-valued variables may be declared, set, and evaluated. The value of a variable may be used in arithmetic expressions.
- The "If" action group has been added. It includes zero to many Elselfs and an ElseDo. It behaves the way "If" behaves in some widely-used programming languages.
- A "While" action group has been added. It behaves the way "while" behaves in some widely-used programming languages.
- Expressions were defined for use in rules in version 2.1, but they were not used in plans. In QIF version 3.0, expressions are used in plans in the tests made in "If" and "While".

- The ability to reference a measurement taken while executing a plan has been added. This was done by defining the VirtualMeasurementType with an id and putting an optional VirtualMeasurement *element* in the CharacteristicItemBaseType and the FeatureItemBaseType. Measured values can be obtained during plan execution by referencing the id in the VirtualMeasurement *element*.
- String (actually xs:token) expressions were added with very limited use. A test can be made whether two strings are identical.
- A "Halt" action was added so that execution of a plan can be stopped before completion.
- The LaserRadar measure feature method was added.

All additions were designed to be translatable into the DMIS programming language. Plans are not intended to be directly executable. As used above, "plan execution" really means execution of a program created from a plan.

8.2 Introduction

In brief, QIF Plans is an information model representing the unique QIF Application of measurement plans. QIF Plans defines the information necessary to support multiple levels of measurement planning, including:

- a simple Bill of Characteristics (BoC),
- measurement scope,
- inspection planning,
- CMM measurement planning,
- quality routing plans,
- first article inspection,
- manufacturing verification,
- on-machine gaging,
- final product acceptance.

Quality measurement plans are required by all quality departments to efficiently and effectively validate conformance of manufactured products according to design specifications. QIF provides the only standard format for defining measurement plans at any level above measurement programs. Without QIF, small, medium and enterprise manufacturers suffer from the need to transpose measurement information from one system to another. Older methodologies waste valuable time, allow for human mistakes, and cost money. QIF provides a common, standardized information definition for measurement planning to carry quality requirements information from one system to another.

The objective of the QIF Plans information model is to communicate all the necessary feature definition, product characteristics and related quality information required to measure and verify product requirements. Although the scope of QIF Plans places an emphasis on feature-based dimensional metrology and the dimensional measurement programs to be executed on dimensional measurement equipment, much attention was devoted toward addressing significant *elements* that also support attribute and other types of validations.

A QIF Plans file is an XML instance file conforming to the QIF Document schema and having a **Plan** *element* in the **QIFDocument** root *element*. The **Plan** *element* itself does not contain all information necessary and sufficient to perform inspection or generate a CMM program for

performing inspection. Information regarding features, characteristics, product shape and structure (i.e., CAD data), measurement rules, and measurement resources is associated with the plan by being in other *element*s of the same **QIFDocument** or by being in one or more external QIF files. The plan references that information using QIF ids and QPIds. Non-QIF data in external files or on drawings may also be referenced.

Directly or by reference, a QIF Plan will consist of many categories of information. It will contain a list of features and an associated bill of characteristics (BoC) such as tolerances associated with features. The plan can reference additional product information such as datums, datum reference frames, and measurement resources, as well as traceability information. At a minimum, a QIF Plan will define one or more actions that specify "what" to measure or validate. These actions can be further organized in a hierarchical group of actions. Also within QIF Plans, each action may reference one or many action methods on "how" to perform a measure or validation. In addition, an action may specify measurement resources (measurement devices, fixtures, and sensors).

8.3 Scope

8.3.1 Contents of this clause

This clause defines a QIF application information model called QIF Plans. The information model is described in a data dictionary and consists of definitions for data types, *elements*, the logical relationships between them, and the semantics of the quality information for the application of Quality Planning.

The XML schema definition language also allows for the definition of rules and checks that enforce constraints on the computer-to-computer writing and reading of instances of QIF Plans. The file that defines the top levels of the QIF Plans information model and contains some of the rules is QIFPlan.xsd. The bulk of the model is defined in the files of the QIF Library, many of which are used by the QIFPlan.xsd file. All QIF XML schema files are normative to the QIF standard and can be downloaded at www.qifstandards.org.

8.3.2 Workflow of QIF Plans data for manufacturing quality

Figure 2 shows a Model Based Product Verification Workflow activity diagram flowing from a product definition as the primary input to the reporting and analysis of measurement results. The work flow activities for a Quality Metrology Enterprise are contained in the blue boxes and consist of four major Quality Metrology Enterprise activities:

- Determine Measurement Requirements
- Define Measurement Process
- Execute Measurement Process
- Analyze & Report Quality Data

Between any two connected work activities there exists an interface in which digital information must be exchanged.

Assuming that the activity of "*Define Product*" has already been performed, the planning work activity of "*Determine Measurement Requirements*" receives product definition with Product and Manufacturing Information (PMI) as input which includes product characteristics and their criticalities. Then based upon known quality requirements and/or manufacturing process knowledge, measurement requirements are determined as a set of measurement criteria also known as a bill of characteristics (BOC). A product characteristic is typically a tolerance or specification applied to a feature or product that needs verification. This BOC may constitute a high level quality plan – a list of "what" needs to be inspected or verified. Next, given metrology resources and metrology knowledge, the "*Define Measurement Process*" activity augments the set of measurement requirements by defining an inspection plan on "how" to inspect or verify the items in the bill of characteristics. The "hows" may reference one or many measurement resources. The generation of the "hows" may be guided by a measurement rule set. This inspection plan will then drive the activity of "*Execute Measurement Process*" via various measurement resources, which produces measurement results.

The QIF Plan conveys information output of the "*Determine Measurement Requirements*" activity by describing a measurement scope that lists all of the product characteristics and their features and the actions required to measure/validate them. Furthermore the QIF Plans conveys the output of "*Define Measurement Process*" by describing the methods on how to measure/validate the actions contained in the measurement scope.

8.3.3 QIF Plans information model

The QIF Plans information model focuses on actions, the "what" of inspection, and includes action methods, the "how" to measure. The "what" defines the product characteristics needing to be verified/evaluated and the corresponding features that need to be measured. The "how" augments the "what" with additional information such as the verification or measurement methods. "What" can also designate generic or specific measurement resources according to quality engineering business practices or by specified measurement rules. Information about inspection equipment, and detailed methods of inspection, (the "how"), can be generated at the time of initial QIF Plan generation or can be gradually augmented during further maturation of the QIF Plan. As a result, a QIF Plan has the advantage of specifying either only the actions of inspection, or it can be further augmented with details on the action methods to be used. This separation of "what" from "how" permits flexibility in configuring manufacturing computer aided quality systems. The work flow to the "what" stage is illustrated in Figure 213. The work flow through the "how" stage is shown in Figure 214.

8.3.4 QIF Plans scope

The QIF Plans information model was designed with the following scope and out-of-scope requirements.

In scope:

- Feature-Based
- Dimensional Metrology
- Non-Dimensional Metrology
- Product (that is, Part and/or Assembly)

- Product Characteristics
 - Dimensional Tolerances
 - Geometric Tolerances
 - User Defined Characteristic (attribute or variable)
 - Surface Textures
 - Thread Specifications
 - Flagged Notes
 - General Notes
- Characteristics Designator (that is, a human-readable product unique identifier (for example <PC007>) similar to the known practice of "ballooning")
- Characteristics Criticality Class Levels (for example MINOR, MAJOR, CRITICAL)
- Characteristic QPId (that is, a persistent digital-readable universally unique identifier similar to the UUID)
- Datum Features, Datums, Datum Targets, and Datum Reference Frames
- Traceability Information
- Work Instructions (reference to a document, image, text, or video)
- Determine Measurement Scope (that is a list of actions of "what" to measure)
- Define Measurement Plan (a hierarchical list of actions of "what" to measure with associated methods on "how" to measure)
- Associations to Measurement Resources
- Consideration of Measurement Definitions that include accuracy statements and calibration statements
- Utilization of Measurement Rules
- Product Model-Based Definition and Model Entity Relationships
- Planning from a Model Based Product Definition Environment
- Planning from a Document/Drawing based Product Definition Environment

Out of scope:

- Reaction planning defining corrective action
- Sampling plans
- Low level execution plans or "DME Programming"

8.3.5 QIF Plans use cases

The QIF Plans 3.0 model was designed to support the following use cases.

8.3.5.1 Bill of Characteristics

A measurement requirement is often identified as a product characteristic. A product characteristic is typically a tolerance or specification applied to a feature or product that needs verification. A group of product characteristics for a product is called a Bill of Characteristics (BoC). A BoC is a complete listing of the product characteristic items required for verifying that a product meets requirements. A BoC can be considered as a simple measurement plan. From a QIF Characteristic Item, one can obtain the characteristic data, the associated feature Item, the criticality of the characteristic item, the human readable name of the characteristic item and the machine readable universally unique persistent identifier for the characteristic item, known as the QPId.

8.3.5.2 Measurement Scope

In the measurement scope use case, shown in Figure 213, the BoC defines "what" to measure. A BoC can include the following:

- Single Action: definition of a set of features and characteristics, and definition of one action stating Measure and Evaluate ALL defined Characteristics
- Specified Action Plan: definition of a set of features and characteristics, and definition of one action to measure and evaluate specified characteristics
- Set of Actions Plan: definition of a set of features and characteristics, plus definition of an Action Group that contains Actions to measure and/or evaluate a specified characteristic or measure a feature.

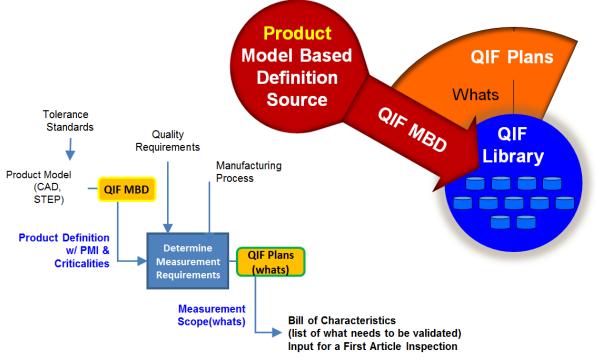


Figure 213 – Measurement Scope (e.g., Bill of Characteristics) with QIF Plans

8.3.5.3 Inspection Plan

The inspection plan use case, shown in Figure 214, defines "what" to measure with "how" to measure. An inspection plan can include the following:

- Unordered Plan of Actions with Methods
- Directed Plan of Actions with Methods which specifies a hierarchical order of actions

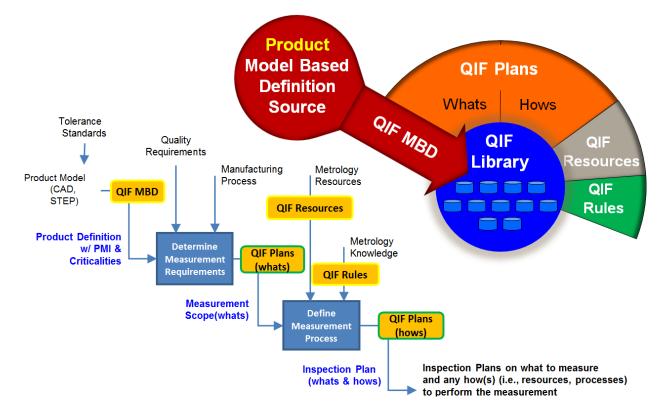


Figure 214 – Inspection Process Planning with QIF Plans

8.3.5.4 Routing Plan

The routing plan use case, includes the "what" to measure with "how" to measure, but also adds the "where" to measure such as the work cell for performing the measurement.

8.3.5.5 Application Use-Cases

A QIF Plan can be used for the following activities:

- Plan for First Article Inspection (FAI)
- Plan for Sample (Partial) Inspection
- Plan for 100% Inspection
- Plan within a Technical Data Package (MIL-STD-31000A)
- Plan using supplied Measurement Rules Definition
- Plan from a Model Based Product Definition
- Plan from a Document/Drawing-Based Product Definition
- Plan for complete Plant-wide Product Inspection
- Plan for Enterprise-wide Product Inspection
- Plan for QIF Plans items Persistence with QIF Results items

8.3.6 QIF Plans product definition support

The QIF information models support a digital engineering environment. The QIF is designed to support a workflow of quality data within a product definition environment that is either:

- Model-Centric (that is product shape only)
- Model-Based Definition (that is product shape with PMI)
- Drawing-based

8.4 Data types and *elements* of the QIF Plans information model

The QIF Plans information model employs the following high level data types and *elements*. Data *elements* are shown in Figure 216.

8.4.1 Plan

A QIF instance file that is a **Plan** has a unique persistent identifier. The file may make an association with a product definition (that is the model-centric, model-based definition, or drawing based), may have traceability information that describes the circumstances of the plan, has one **PlanElement**, and may reference one or many rules to be used or that were used.

8.4.2 PlanElement

A **PlanElement** can be an action or an action group.

8.4.3 Action

An action defines "what" needs to be measured/validated. An action may:

- include instructions defining what to do,
- specify measurement resources,
- have a preferred action method,
- have a list of alternative action methods,
- have preferred measurement resources,
- have a list of work instructions.

Descriptions of the specific types of action defined in QIF follow.

8.4.3.1 MeasureEvaluateAllActionType

The *MeasureEvaluateAllActionType* defines an action that means: measure whatever is necessary in order to find CharacteristicMeasurements for all CharacteristicItems, and find those measurements. For any FeatureItems that are measured, also populate the corresponding FeatureMeasurements with values.

8.4.3.2 MeasureEvaluateSpecifiedActionType

The *MeasureEvaluateSpecifiedActionType* defines an action that means: measure whatever is necessary in order to find CharacteristicMeasurements for the CharacteristicItems whose QIF ids are specified, and find those measurements. For any FeatureItems that are measured, also populate the corresponding FeatureMeasurements with values.

8.4.3.3 EvaluateSpecifiedCharacteristicsActionType

The *EvaluateSpecifiedCharacteristicsActionType* defines an action that means: find **CharacteristicMeasurements** for the **CharacteristicItems** whose QIF ids are specified. Do not measure anything while performing this action. All features that need to be measured in order to evaluate the **CharacteristicMeasurements** must already be measured.

8.4.3.4 MeasureSpecifiedFeaturesActionType

The *MeasureSpecifiedFeaturesActionType* defines an action that means: measure the **FeatureItems** whose QIF ids are specified, and populate the corresponding **FeatureMeasurements** with values.

8.4.3.5 MeasureSpecifiedMeasurandsActionType

The *MeasureSpecifiedMeasurandsActionType* defines an action that means: measure the **Measurands** whose QIF ids are given, and populate the corresponding **FeatureMeasurements** with values.

8.4.3.6 HaltActionType

The *HaltActionType* defines an action that means stop executing the plan. A plan is not required to include an instance of *HaltActionType*.

8.4.3.7 VariableSetType

The VariableSetType represents the setting of a variable.

8.4.4 Action Groups

Actions may be combined together into the following types of action group: ordered group, unordered group, one of group, partially ordered group, pick some group, "if" group, or "while" group.

8.4.4.1 OrderedActionGroup

The **OrderedActionGroup** defines an action group for which all of the steps it contains must be executed in order of increasing sequence number. The **SequenceNumber**s of the **Steps** in an instance of **OrderedActionGroup** must be present, must be assigned 1, 2, 3, ..., and must be executed in that order.

8.4.4.2 UnorderedActionGroup

The **UnorderedActionGroup** defines an action group for which all of the **Steps** it contains should be executed, however the **Steps** may be executed in any order and no particular order of execution is implied.

8.4.4.3 PartiallyOrderedActionGroup

The **PartiallyOrderedActionGroup** defines an action group for which all of the **Steps** it contains should be executed, but each **Step** may be executed only after all of the **Predecessors** of that **Step** have been executed. If more than one **Step** meets that condition, any order of executing those **Steps** will work, and no particular order is required by the plan. The **SequenceNumbers** of the **Steps** in the **StepsWithPredecessors** in an instance of **PartiallyOrderedActionGroup** must be assigned 1, 2, 3, ... but usually will not be executed in that order.

8.4.4.4 OneOfActionGroup

The **OneOfActionGroup** defines an action group for which exactly one of the **Steps** it contains must be executed. Any **Step** in the list will do. The **SequenceNumbers** of the **Steps** in an instance of **OneOfActionGroup** are not required to be distinct. The **SequenceNumbers**

indicate a preference for which **Step** is executed, with 1 the most preferred, 2 the second most preferred, and so on. **Step**s with the same **SequenceNumber** are equally preferred.

8.4.4.5 If Action Group

The **IfActionGroup** is a conditional action group that represents an If-Elself-Else construct with zero to many Else-Ifs and an optional Else for the purpose of conditionally executing one or more specific actions. Details of the **IfActionGroup** are given in subclause 8.9.4.2.

8.4.4.6 WhileActionGroup

The **WhileActionGroup** is a conditional action group that represents a while loop that controls a flow of one or more actions to be executed repeatedly based on a given Boolean expression. Details of the **WhileActionGroup** are given in subclause 8.9.4.3.

8.4.5 Nesting of Action Groups

Inside any action group (starting with the **PlanRoot**, which is an action group), the plan *elements* to be executed may be either actions or action groups. In this way, a nest of action groups, possibly interspersed with actions, may be formed. For most practical purposes of dimensional metrology, however, a single root action group with no nested action groups will suffice as a plan.

8.4.6 Action Group Functions

The *MeasureActionGroupFunctionType* defines the function of an action group. The data *element* may contain one of the enumerated functions in the following subclauses or it may contain a string describing some other function.

8.4.6.1 RoutingPlan

A **RoutingPlan** is a group of actions that may route the product from one measurement work cell to another. It's enumeration value is ROUTING_PLAN.

8.4.6.2 OperationSequenceGroup

An **OperationSequenceGroup** is a group of actions that are performed at one work cell, typically referencing a measurement device resource. It's enumeration value is OPERATION_SEQUENCE.

8.4.6.3 SetupUsageGroup

A **SetupUsageGroup** is a group of actions that are performed at one part setup, typically referencing a fixture resource. It's enumeration value is SETUP_USAGE_GROUP.

8.4.6.4 SensorUsageGroup

A **SensorUsageGroup** is a group of actions that are performed at one sensor tool change, typically referencing a sensor resource. It's enumeration value is SENSOR_USAGE_GROUP.

8.4.6.5 CarriageUsageGroup

A **CarriageUsageGroup** is a group of actions that are performed at one carriage, typically referencing a carriage of a measurement device resource. It's enumeration value is CARRIAGE_USAGE_GROUP.

8.4.6.6 PartCoordinateSystemUsageGroup

A **PartCoordinateSystemUsageGroup** is a group of actions that are performed at one active part coordinate system which usually corresponds with a datum reference frame. It's enumeration value is PCS_USAGE_GROUP, where "PCS_" means "part coordinate system".

8.4.6.7 EvaluateCharacteristicActions

An **EvaluateCharacteristicActions** is a group of actions that are performed to evaluate a product characteristic. It's enumeration value is EVALUATE_CHAR_ACTIONS, where "CHAR_" means "characteristic".

8.4.6.8 EstablishDatumActions

An **EstablishDatumActions** is a group of actions that are performed to establish a datum with a datum reference frame. It's enumeration value is ESTABLISH_DATUM_ACTIONS.

8.4.7 Measurand

A measurand is the object, quantity, property or condition to be measured for a specific purpose. It can be used to evaluate a product characteristic item of a feature, can be used to establish a datum instance within a datum reference frame, and can be used to determine a particle/grain size within granular materials.

8.4.8 Action Method

An action method describes "how" an action is to be performed. It can be used by multiple actions, may have chosen measurement resources, may have work instructions, and may be a measure feature method derived type.

8.4.9 Measure Feature Method

A measure feature method will be subtyped as one of the following:

- coordinate measure feature method (e.g., measure a feature with a CMM)
- gage measure feature method (e.g., measure a feature with a gage)
- manual measure feature method (e.g., measure a feature by hand using a caliper, micrometer, or open set-up)
- microscope measure feature method (e.g., measure a feature by microscope)
- autocollimator measure feature method (e.g., measure a feature by an optical instrument for non-contact measurement of angles)
- profile projector measure feature method
- universal length measuring machine measure feature method
- laser radar measure feature method
- laser tracker measure feature method
- computed tomography measure feature method
- theodolite measure feature method
- calibrated comparator measure feature method
- external reference measure feature method
- other measure feature method

8.4.10 Work Instruction

A work instruction can be textual, a document file, an image file, or a video file.

8.5 Tracking information through the product lifecycle

QIF is constructed to enable a seamless flow of information from upstream applications such as a QIF Plan to downstream applications such as a QIF Results and to enable tracking information through a product's lifecycle. This can be enabled through separate or a common QIF documents and with QPIds. The **QIFDocument** is used as a unique container that holds applications such as the measurement plan and measurement results as well as other key *element*s.

8.6 QIF Plans data flow to results

QIF is constructed to enable a seamless flow of information from upstream applications such as QIF Products and/or QIF Plans to downstream applications such as QIF Results and to enable tracking information through a product's lifecycle. QIF Results is downstream from QIF Plans. A QIF Document can contain a QIF Plan with multiple QIF Results. QIF Results data files can be generated in the absence of a previously built QIF Plans file. However, if a QIF Plans file exists prior to the measurement execution, then a significant portion of the contents of the corresponding QIF Results file can be obtained from the shared QIF Documents or from the QIF Plans' QIF Document file.

The following items may normally be transcribed directly from a QIF Plan's QIF Document file to a corresponding QIF Results file:

- file units
- datum feature definitions
- datum definitions
- datum target definitions
- datum reference frames
- measurement resources
- product's part and assembly definitions
- feature definitions, nominals, and items
- characteristic definitions, nominals, and items

8.7 QIF Results reference to QIF Plans

Within a Results file there are two ways to express an association with the Plans file that was used in producing the Results file. They both use the *choice*-type **InspectionTraceability** *element* within the **MeasurementResults** *element*. The first choice records the QPId of the QIF Plans file through a **ReferencedQIFPIanInstance** *element*. The second choice indicates that the QIF Plans file is contained in the QIF Document file by setting the **ReferencedQIFPIan** *element* to "ThisFile".

8.8 Item tracking and persistence between QIF Plans and QIF Results

An application can associate multiple results items from Results files with plan items from a Plans file by using QIF persistent identifiers (QPId)s, as described in Clause 5.

8.9 High level description of QIF Plans.xsd

8.9.1 High level structure of the QIF Plans schema

This subclause describes the highest level *elements* of the QIF Plans information model. The QIF Plans schema model includes the information items from the QIFPlan.xsd schema file and several of the schema files in the QIF Library. The QIF Library files are incorporated into the schema by a chain of "*include*" directives starting in the QIFPlan.xsd schema file. *Elements* in the figure with + signs at the right have substructure that is not shown in the figure. All substructures are defined in the QIF Library files. A complete description of all QIF Plans data definitions and *elements* is available in text in the XML schema files and graphically in the QIF HTML files. QIFPlan.xsd also includes several *key*, and *keyref constraints* on *elements* and relationships between *elements*.

The **Plan** *element* is of type *PlanType* and is the highest level *element* of the QIF Plans model. An XML instance file written in conformance with the *QIFPlan.xsd* schema file may contain one **Plan** *element*. A *PlanType*'s top level components are described in Figure 215. They include:

- Version this optional *element* gives version information about the measurement plan. The VersionType includes the VersionQPId *element* which uniquely identifies this measurement plan.
- **RulesUsedQPId** this optional *element* gives the QPId of the rules that were used in creating the plan. The rules may be in the same **QIFDocument** as the plan, or in a separate QIFDocument, or both (in which case the two sets of rules must be identical).
- **RulesToUseQPId** this optional *element* gives the QPId of the rules to be used in making a more detailed plan from the plan or in generating a program from the plan (a DMIS program, for example). The rules may be in the same **QIFDocument** as the plan, or in a separate **QIFDocument**, or both (in which case the two sets of rules must be identical).
- WorkInstructions this optional *element* captures any instructions necessary for executing the **Plan**.
- ActionMethods this optional *element* captures any action methods necessary for executing the **Plan**.
- Measurands this optional *element* captures any measurands used in the Plan.
- LocalVariables this optional *element* captures any local variables used in the Plan.
- **PlanRoot** this *element* gives information about the activities to be carried out in executing the measurement plan and how execution of the measurement plan is to be controlled. Structurally, the **PlanRoot** is at the top of a plan tree of **PlanElements**. All **PlanElement** instances occur within this plan tree.

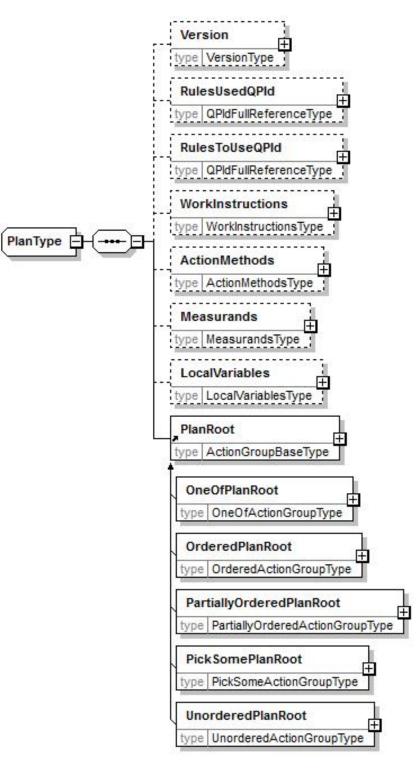


Figure 215 – Sub-*elements* of the Plan data type

The global **PlanRoot** *element*, introduced in Figure 215, is of **ActionGroupBaseType** that may be replaced (as provided by substitution group declarations) by any of the following *elements* representing action groups:

- **OneOfPlanRoot** A **PlanRoot** which is an **OneOfActionGroup** that defines an action group for which exactly one action must be executed.
- OrderedPlanRoot A PlanRoot which is an OrderedActionGroup that defines an action group for which all of the actions it contains must be executed in order.
- **PartiallyOrderedPlanRoot** A **PlanRoot** which is a **PartiallyOrderedActionGroup** that defines an action group for which all of the actions it contains should be executed only after all of the predecessors of that action have been executed.
- **PickSomePlanRoot** A **PlanRoot** which is a **PickSomeActionGroup** that defines an action group for which a specified number of actions it contains must be executed in any order.
- UnorderedPlanRoot A PlanRoot which is an UnorderedActionGroup that defines an action group for which all of the actions it contains must be executed in any order of execution.

Figure 216 shows the major data *elements* introduced in the QIF Plan.xsd schema file with simplified relations between QIF Plans *elements* as well as with *elements* from the QIF library.

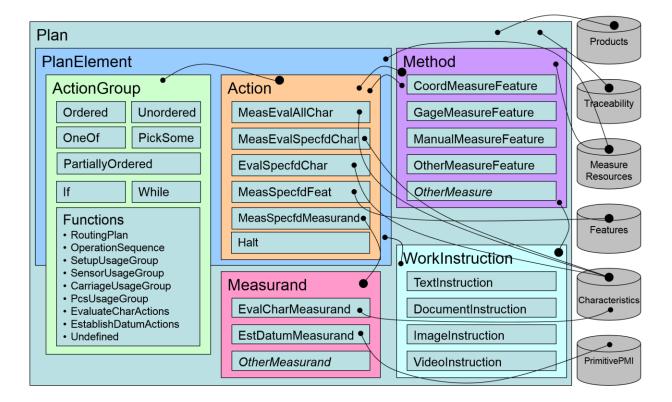


Figure 216 - QIF Plans Major Elements with Simplified Relations

8.9.2 Major elements

The major data *elements* of the QIF Plans information model are listed below and explained in both subclause 3.0 (Terms and Definitions) and subclause 8.4

• Plan

- o Plan*Element*
 - Action
 - ActionGroup
- Measurand
- Method
- WorkInstruction

8.9.3 Simplified relationships elements

The lines from a small dot to a larger dot signify a one-to-many relationship whereas the lines from a small dot to a small dot signify a one-to-one relationship. High level relationships include:

- A measurement plan may have product information
- A measurement plan has traceability Information
- A measurement plan has a top level Plan element
- A PlanElement is an action or an action group
- An action group references zero to many work instructions
- An action group contains one to many actions
- An action references zero or one action method
- An action references zero to many preferred measurement resources
- · An action references zero to many work instructions
- Some actions reference features
- Some actions reference characteristics
- Some actions reference measurands
- An action method references zero to many chosen measurement resources
- An action method references zero to many work instructions
- Some measurands evaluate a characteristic
- Some measurands establish a datum within a datum reference frame

8.9.4 Conditional Action Groups

Most of the action groups can be used as a plan root. The way they work is described following Figure 215. The *IfActionGroupType* and the *WhileActionGroupType* cannot be used as a plan root but are conditional action groups that can be used anywhere else a **PlanElement** may be used.

8.9.4.1 Expressions

The **IfActionGroup** and **WhileActionGroup** plan *elements* test Boolean expressions as a conditional action group. The Boolean expressions include comparing arithmetic expressions as well as Boolean constants *true* and *false* and the Boolean operations *and*, *or*, and *not*. The arithmetic expressions include the usual arithmetic operations (plus, minus, etc.), constants, and several types of arithmetic values extracted from features, characteristics, and other types of object. They also include using the values of plan variables. Plan variables are described in subclause 8.9.5.

The formal models of Boolean expressions and arithmetic expressions other than plan variables are given in the Expressions.xsd and GenericExpressions.xsd schema files and are described in Clause 6.

8.9.4.2 IfActionGroupType

The *IfActionGroupType* is derived from *ActionGroupBaseType* and represents an If-Elself-Else construct with zero to many Else-Ifs and an optional Else.

The If element is a test to evaluate and the PlanElement to execute if the test evaluates to true.

Each optional **Elself** is a test to evaluate and the **PlanElement** to execute if the test evaluates to true.

The optional **ElseDo** is a **PlanElement** to execute if none of the **If** or **ElseIf** tests evaluates to true.

To execute an *lfActionGroupType*:

- Evaluate the test in the **If**. If it evaluates to true, execute the **PlanElement** in the **If** and return.
- Otherwise, evaluate the test in the next **Elself** if there is one. If it evaluates to true, execute the **PlanElement** in the **Elself** and return. Repeat until either return occurs or there are no more **Elself**s.
- Otherwise, if there is an ElseDo, execute the PlanElement in the ElseDo and return.
- Otherwise, return.

It is possible that no **PlanElement** will be executed when an *IfActionGroupType* is executed.

8.9.4.3 WhileActionGroupType

The WhileActionGroup plan *element* (of *WhileActionGroupType*) represents a loop. It consists of a **BooleanExpression** and a **PlanElement**.

To execute a WhileActionGroup:

- evaluate the **BooleanExpression**. If the **BooleanExpression** evaluates to true, execute the **PlanElement**.
- Repeat evaluating and executing as long as the **BooleanExpression** evaluates to *true*.
- The first time the **BooleanExpression** evaluates to *false*, return.

If the **BooleanExpression** evaluates to *false* the first time it is evaluated, the **PlanElement** is never executed.

In order that a **While** will eventually stop looping, it is necessary that executing the **PlanElement** will eventually change something, and that the change will eventually cause the **BooleanExpression** to evaluate to *false*.

The **WhileActionGroup** has limited usefulness. Additional methods of referencing variables and modifying strings will be needed in future versions of QIF to make it more useful.

8.9.5 Plan Variables

As shown in Figure 215, a plan may include a **LocalVariables** *element* that is a set of variable declarations. Each declaration gives the name of the variable and its initial value.

The value of a variable may be changed by using a **VariableSet** element (which is of type *VariableSetType*).

The value of a variable may be used in an expression by using a **VariableValue** *element* (which is of type **VariableValueType**).

9 QIF Resources information model

9.1 Foreword

The Quality Information Framework (QIF) was developed by computer scientists and domain experts from the manufacturing quality community representing a wide variety of industries and quality measurement needs. Specifically for the QIF Resources work, past and current contributors include:

- Honeywell Federal Manufacturing & Technology
- Lockheed Martin
- Manufacturing Technology Centre
- Metrosage LLC
- Mitutoyo America Corporation
- National Institute of Standards and Technology
- Nikon Metrology
- Origin International, Inc.
- Rolls-Royce plc
- University of North Carolina, Charlotte

This clause was written by the QIF Resources Working Group, and given final approval for ANSI review by the DMSC's Quality Measurement Standards (QMS) Committee.

Version 3.0 of QIFResources has minor changes from version 2.1. The most notable changes are the addition of the LaserRadarType of instrument, the additional derived types CaliperDialType and CaliperDigitalType from the CaliperType, and the additional derived types MicrometerAnalogType and MicrometerDigitalType from the MicrometerType. These derived types are added to support QIFRules for DME selection.

9.2 Introduction

The Quality Information Framework (QIF) consists of a suite of information models that fit into one of two functional categories, QIF Library or QIF Applications. The QIF achieves system wide interoperability by designating a set of information models as part of a QIF Library. The QIF Library information models are common, reusable components. A QIF application area information model represents a unique application area, one of QIF model based definition (i.e., QIF Product), measurement resources (i.e., QIF Resources), measurement plans (i.e., QIF Plans), measurement rules (i.e., QIF Rules), measurement results (i.e., QIF Results), and measurement statistics (i.e., QIF Statistics). Because the QIF library components are referenced throughout the comprehensive QIF information model, it ensures interoperability and extensibility between any data producer and consumer that implements the QIF formats within their software.

An essential part of any dimensional measurement planning process is an adequate description of the measurement devices, tools, and auxiliary equipment available for possible application to the measurement task at hand. The measurement planner will then have the information necessary to make appropriate selections of measurement facilities for the inspection task at hand.

The QIF Resources clause is intended to supply a uniformly detailed set of this information. In addition to obviously required information, such as dimensional measuring equipment (DME) nomenclature, the clause describes everything sufficient to support high-level decisions about DME capabilities and applicability, including description, location, and characterization of the DME capabilities. Examples of pertinent information are: achievable accuracy, measurement speed, workpiece size and mass capacity, etc. Additionally, historical information, such as calibration history and maintenance records, may be useful to downstream processes to establish measurement traceability and validity. Finally, information about associated auxiliary equipment (e.g. sensors, fixtures, etc.) may be required to determine fitness of the DME system for a particular measurement task.

9.3 Scope

This clause specifies the description and documentation of dimensional measurement resources, sufficient for use in generating a high level measurement plan for product certification, acceptance, or any other common application of dimensional measurement data.

9.3.1 Contents of this clause

This clause defines an information model for a portion of the QIF manufacturing quality information model designated QIF Resources. As described in Clause 5, an XML data file conforming to an XML schema model is called an instance file. The root of every QIF instance file is a QIFDocument, but different QIF instance files may focus on different QIF applications. A QIFDocument containing a Resources *element* may be regarded as a QIF Resources instance file.

As applicable, this clause covers the following topics:

- general descriptive information,
- sensors and sensor hardware,
- system calibration,
- system performance tests,
- workpiece capacity,
- geometric characteristics, and
- mechanical characteristics.

The information model consists of definitions for data types, *elements*, the logical relationships between them, and the semantics of the quality information. The information model, defined using the XML Schema definition language (XSDL), is scoped to be a digital data exchange mechanism that can be easily incorporated in application software developed by commercial solution vendors that implement manufacturing quality systems.

XSDL also supports the definition of rules and checks for validation of QIF instance files.

The QIFMeasurementResources.xsd schema file defines the top level information model for resources. QIF Resources also draws from *elements* in the QIFLibrary. The types and relationships of information contained in a QIF Resources instance file are governed by the

schema. The way in which data is formatted for QIF Resources instance files is prescribed by the rules of XML and the rules for how instance files conform to schema files. All QIF XML schema files are a normative part of the QIF standard and can be downloaded at www.qifstandards.org.

9.4 QIF Resources Requirements

The specific technical requirements of QIF Resources are twofold:

- Describe various measurement resource entities and systems
- Provide the necessary data structures sufficient to support measurement planning and measurement results (particularly QIF Plans and QIF Results)

9.5 The QIF Resources data model

9.5.1 QIF Resources Instance Data

QIF Resources instance data is contained in a **MeasurementResources** *element*. This data will be found within a **QIFDocument** node, and may be the only contents of the QIF Document (making the QIF instance file a purely QIF Resources instance file), or it may sibling to QIF MBD, QIF Plans, QIF Results, etc. *element*s.

MeasurementResources is of type MeasurementResourcesType as shown in Figure 217.

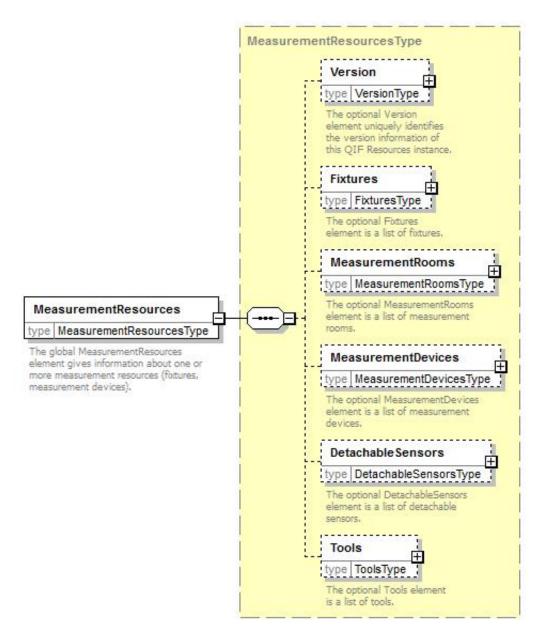


Figure 217 – QIF Resources instance data high level view

This type contains **Version** information (identification and traceability information specific to QIF Resources QIF instance file data) and **Fixture** information.

MeasurementRooms is an optional list of rooms in which measurements may be made.

MeasurementDevices will contain all *elements* that are derived from *MeasurementDevicesType*. These include manual devices, CMMs, CT, laser trackers, etc. and is discussed in subclause 9.5.3: Measurement Devices.

The next 2 *element*s, **DetachableSensors** and **Tools**, provide the mechanisms by which all **SensorType** derived items will be ultimately be attached to a Measurement Device. **SensorType** types are measurement resources which are mounted on

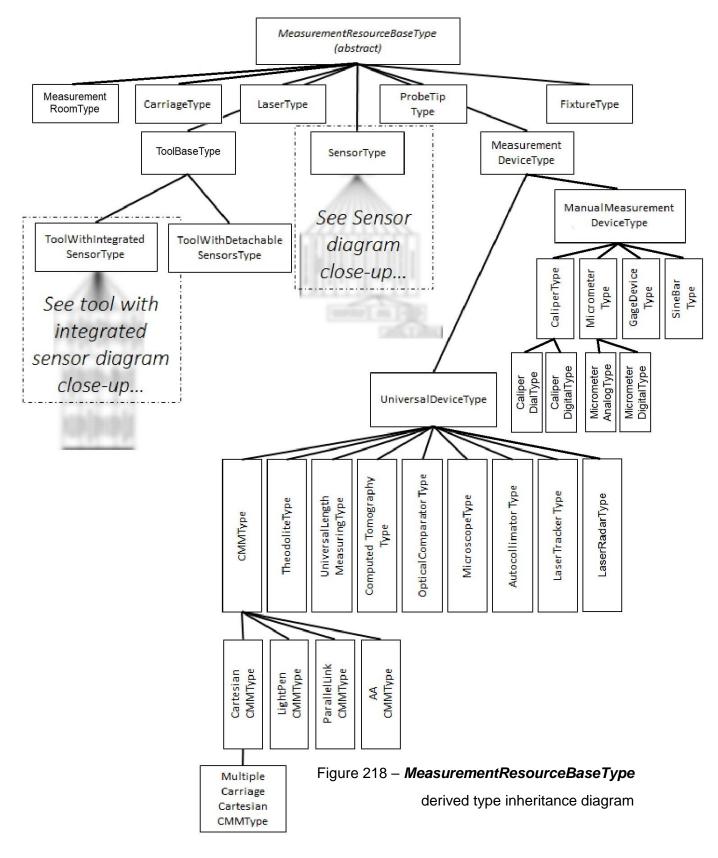
Copyright © 2018 by Digital Metrology Standards Consortium, Inc. (DMSC)

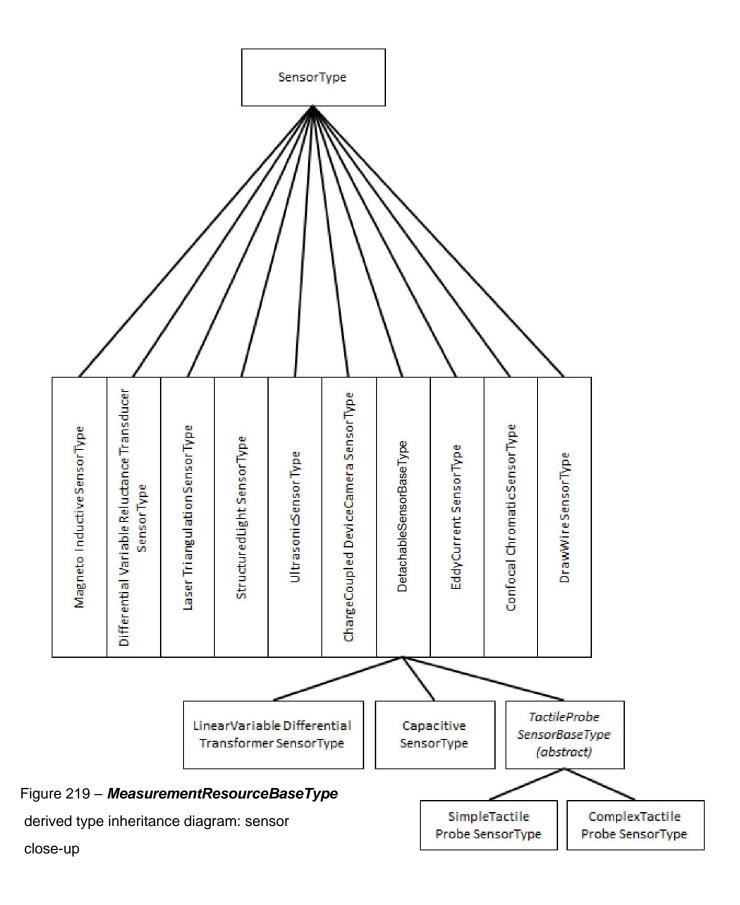
MeasurementDeviceType types in order to carry out a measurement. So for example, a tactile probe mounted on a CMM is an example of a *SensorType* mounted on a *MeasurementDeviceType*.

DetachableSensors are where one can place **DetachableSensorBaseType** derived items, which are Sensors that are physically independent units that can be added and removed from a given measurement device.

Tools are where one can place **ToolBaseType** derived items, all of which fall either into the category **ToolWithDetachableSensorsType** or **ToolWithIntegratedSensorType**. **ToolWithDetachableSensors** has an *element* where one can specify the detachable sensor(s) that are mounted onto the tool. An instance of **ToolWithIntegratedSensorType** is a special type of tool that has a **SensorType**-derived item physically integrated into it.

For an example of how *MeasurementDeviceType* items, *ToolBaseType* items, and *SensorType* items all interact, see subclause 9.5.4: CMM.


9.5.2 MeasurementResourceBaseType


This is the base class for many of the types in QIFMeasurementResources.xsd. All types which represent measurement equipment of any type will be derived from this.

The *MeasurementResourceBaseType* is where many of the standard characteristics of any measurement device can be found, including a Name, Description, Manufacturer, Model Number, Mass, Size, and Location.

There is also an **Attributes** *element* which allows the user to specify various types of user defined data within this type, while still validating to the schema. (It is important to note, however, that use of these user-defined Attributes presents serious issues in terms of interoperability). The **Attributes** may include a persistent ID, which can either be in the form of a QIF-recommended QPId (ensuring uniqueness), or in the form of a non-standard ID string (the uniqueness of which must be enforced by the implementer).

Below, in Figure 218, Figure 219, and Figure 220 is an inheritance diagram for the types derived from *MeasurementResourceBaseType*.

	ToolWithIntegrated SensorType								
	/	/		//		$\left \right $			
ToolWith	SensorType	ToolWith	SensorType	ToolWith	SensorType	ToolWith	SensorType	ToolWith SimpleTodiloBroho	SensorType
	ToolWith	Comprex racurer robe Sensor Type	ToolWith	SensorType	ToolWith	SensorType	ToolWith	SensorType	
	ToolWith	SensorType	ToolWith	SensorType	ToolWith	SensorType	ToolWith MagnetoInductive	SensorType	

Figure 220 – *MeasurementResourceBaseType* derived type inheritance diagram: tool with integrated sensor close-up

9.5.3 Measurement Devices

A Measurement Device in QIF Resources is defined as a piece of measurement equipment that is directly used by the end user. As an example, a CMM is considered a Measurement Device, since it is directly manipulated by an end user, but the sensor which is attached to it is not considered a Measurement Device, since that is an instrument used by the CMM, and only indirectly used by the end user.

Measurement Devices are described by using *MeasurementDeviceType*.

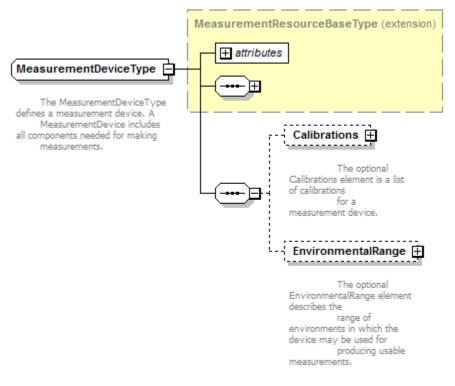


Figure 221 – *MeasurementDeviceType* overview

In addition to the *element*s inherited from *MeasurementResourceBaseType*, the *MeasurementDeviceType* provides a Calibration *element* and an EnvironmentalRange *element*.

Generally speaking, while this type is not declared as abstract, it is preferred that derived types be used (see the remainder of this subclause).

9.5.3.1 Manual Devices

The *ManualMeasurementDeviceType* is used mainly for the purposes of derivation of the following types:

- CaliperType
- MicrometerType
- GageDeviceType
- SineBarType

Although the *ManualMeasurementDeviceType* is not declared abstract, it is recommended that this type be used only if none of its derived types adequately describe the intended device.

9.5.3.1.1 CaliperType

To describe a caliper, this type should be used. Aside from the inherited *elements* from its base classes, all *elements* of this type are optional.

9.5.3.1.2 MicrometerType

To describe a micrometer, this type should be used. Aside from the inherited *elements* from its base classes, all *elements* of this type are optional.

9.5.3.1.3 GageDeviceType

To describe a gage, this type should be used. Although this type provides no additional *elements* beyond the *elements* of its base classes, it does convey the fact that a gage is being described, as opposed to a generic "measurement device".

9.5.3.1.4 SineBarType

To describe a sine bar, this type should be used. Aside from the inherited *elements* from its base classes, all *elements* of this type are optional.

9.5.3.2 Universal Devices

A Universal Device is a measurement device which typically satisfies the following conditions:

- not a manual device
- has a working volume
- has an effective working volume
- has a resolution.

Although the *UniversalDeviceType* is not declared abstract, it is recommended that this type be used only if none of its derived types adequately describe the intended device.

The **Resolution** *element* is optional and can be one of many different resolution types. See subclause 9.5.7 for more information about the available resolution types.

The **WorkingVolume** *element* is optional and can be one of many different working volume types. See subclause 9.5.8 for more information about the available working volume types.

The **EffectiveWorkingVolume** *element* is optional and can be one of many different effective working volume types. See subclause 9.5.8 for more information about the available effective working volume types.

The **TemperatureCompensation** *element* is an optional *element* that is used to specify the type of temperature compensation that the universal device uses. This can be a

TemperatureCompensationEnumType, or a custom string by using

OtherTemperatureCompensation. The **OtherTemperatureCompensation** *element* should only be used if none of the enum values in **TemperatureCompensationEnumType** adequately express the temperature compensation of the device.

9.5.3.2.1 CMMType

This type is addressed in subclause 9.5.4.

9.5.3.2.2 TheodoliteType

The *TheodoliteType* is derived from *UniversalDeviceType* and represents a theodolite. In addition to the *element*s from its base classes, it provides a number of optional *element*s for describing the theodolite.

9.5.3.2.3 UniversalLengthMeasuringType

The *UniversalLengthMeasuringMachineType* is derived from *UniversalDeviceType* and represents a universal length measuring machine. In addition to the *elements* from its base classes, it provides a number of optional *elements* for describing the universal length measuring machine.

9.5.3.2.4 ComputedTomographyType

The **ComputedTomographyType** is derived from **UniversalDeviceType** and represents a computed tomography measuring machine. In addition to the *elements* from its base classes, it provides a number of optional *elements* for describing the computed tomography measuring machine.

9.5.3.2.5 OpticalComparatorType

The **OpticalComparatorType** is derived from **UniversalDeviceType** and represents a profile projector. In addition to the *elements* from its base classes, it provides a number of optional *elements* for describing the profile projector.

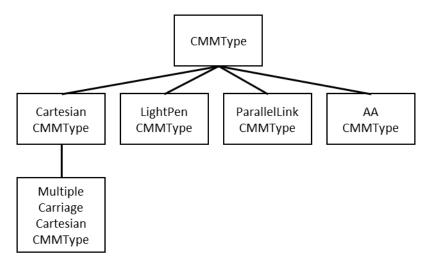
9.5.3.2.6 MicroscopeType

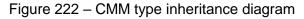
The *MicroscopeType* is derived from *UniversalDeviceType* and represents a microscope. In addition to the *element*s from its base classes, it provides a number of optional *element*s for describing the microscope.

9.5.3.2.7 AutocollimatorType

The *AutocollimatorType* is derived from *UniversalDeviceType* and represents an autocollimator. In addition to the *elements* from its base classes, it provides a number of optional *elements* for describing the autocollimator.

9.5.3.2.8 LaserTrackerType


The *LaserTrackerType* is derived from *UniversalDeviceType* and represents a laser tracker. In addition to the *elements* from its base classes, it provides a number of optional *elements* for describing the laser tracker.


9.5.3.2.9 LaserRadarType

The *LaserRadarType* is derived from *UniversalDeviceType* and represents a laser radar. In addition to the elements from its base classes, it provides a number of optional elements for describing the laser radar.

9.5.4 Coordinate Measuring Machine (CMM)

There are various types of CMM designs that are supported by QIF Resources. These are all derived from *CMMType*. An inheritance diagram for the *CMMType* types can be seen in Figure 222.

Although *CMMType* is not abstract, it not recommended that it be used unless *none* of its derived types describe the particular CMM in question.

For single carriage Cartesian CMMs, the *CartesianCmmType* should be used. The *MultipleCarriageCartesianCMMType* is meant for more complex CMMs with multiple carriages.

Cartesian CMM types make use of the *MeasurementDeviceScaleType* to describe the scales of the CMM.

9.5.4.1 CMM Accuracy Tests

Each CMM accuracy test, addressed in the two subclauses below, is accompanied by an *EnvironmentalRangeType* which indicates the range of conditions under which the accuracy test is valid.

There is also an **AccuracySource** *element* which is represented by an **AccuracySourceType** type. This *element* is meant to indicate whether the accuracy test values originated from the equipment manufacturer, or from a custom test of some type.

9.5.4.1.1 Cartesian CMM Accuracy Tests

There are various methods for specifying Cartesian CMM accuracy tests. These types are applied via the substitution group *CartesianCMMAccuracyTest*. The available types are:

- CartesianCMMFPSTest
- CartesianCMMB89Test
- CartesianCMMISO10360Test

CartesianCMMPointAccuracyTest

9.5.4.1.2 Articulating Arm CMM Accuracy Tests

There are various methods for specifying AA CMM accuracy tests. These types are applied via the substitution group **AACMMAccuracyTest**. The available types are:

- AACMMB89Test
- AACMMISO10360Test
- AACMMPointAccuracyTest

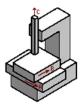
9.5.4.2 **CMM Speeds**

The CMMSpeedsType substitution group is used to specify CMM speeds for Cartesian CMMs and Parallel Link CMMs. There are two types of CMM speed types:

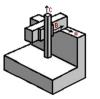
- CartesianCMMSpeedsType
- ParallelLinkCMMSpeedsType

9.5.4.3 **CMM Geometry Types**

There are various types of CMM geometries that can be described using QIF Resources. Images of these CMM geometries are depicted in Figure 223.



Fixed Bridge



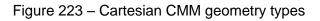
L Shaped Bridge

Column

Fixed Table Cantilever Arm

Moving Ram Horizontal Arm

Cantilever Arm


Gantry

Fixed Table

Horizontal Arm

Moving Table Horizontal Arm

The CMM geometries depicted in Figure 223 correspond to the following enumeration values defined in the type *CartesianCMMGeometryEnumType*:

- FIXED_BRIDGE
- MOVING_BRIDGE
- L_SHAPED_BRIDGE
- COLUMN
- FIXED_TABLE_CANTILEVER_ARM
- MOVING_TABLE_CANTILEVER_ARM
- FIXED_TABLE_HORIZONTAL_ARM
- MOVING_TABLE_HORIZONTAL_ARM
- MOVING_RAM_HORIZONTAL_ARM
- GANTRY

If none of the values listed above correctly describe the CMM in question, then the **OtherCartesianCMMGeometry** string value *element* can be used.

9.5.5 Sensors and Tools

Sensors and tools are *MeasurementResourceBaseType*-derived types which exist in order to be mounted on a *UniversalDeviceType*-derived resource. For example, a tactile probe (a sensor) can be mounted on a CMM (a universal device).

9.5.5.1 Detachable vs Integrated Sensors

There are two ways in which sensors and tools can interact with a *UniversalDeviceType*derived resource.

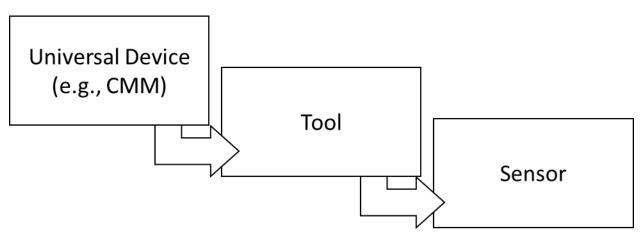


Figure 224 – Method 1 for mounting a sensor on a universal device

The first method is depicted in Figure 224. A **ToolBaseType**, specifically, a type derived from **ToolWithDetachableSensorsType**, is mounted onto a **UniversalDeviceType**-derived resource. Then, a **SensorType**-derived resource is mounted onto the Tool. This method should be used when the tool is a separate physical entity from the sensor device.

In cases when the sensor is physically integrated with the tool, then the second method should be used. This can be used, as depicted in Figure 225, below.

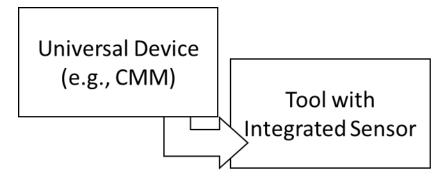


Figure 225 – Method 2 for mounting a sensor on a universal device

For this situation, QIF Resources provides a special set of tools with integrated resources. These are the types that are derived from the abstract type **ToolWithIntegratedSensorType**. The sensor *elements* which are found on the **ToolWithIntegratedSensorType**-derived types are the **SensorType**-derived measurement resources, which means that this method and the first method described above are both capable of carrying the same sensor data.

9.5.5.2 Sensor Types

This subclause will address the types of sensors that are available in QIF Resources. Each sensor and its corresponding tool-integrated sensor will be addressed simultaneously, since they are so similar. (See subclause 9.5.5.1 for more information on tools and sensors).

There are various types of sensors which are supported by QIF Resources.

Below is a listing of the sensors:

- Linear Variable Differential Transformer Sensor: LinearVariableDifferentialTransformerSensorType and ToolWithLVDTSensorType
- Capacitive Sensor: CapacitiveSensorType and ToolWithCapacitiveSensorType
 Eddy Current Sensor: EddyCurrentSensorType and
- Eddy Current Sensor: EddyCurrentSensorType and ToolWithEddyCurrentSensorType
- Confocal Chromatic Sensor: ConfocalChromaticSensorType and ToolWithConfocalChromaticSensorType
- Draw Wire Sensor: DrawWireSensorType and ToolWithDrawWireSensorType
- Magneto Inductive Sensor: MagnetoInductiveSensorType and ToolWithMagnetoInductiveSensorType
- Differential Variable Reluctance Transducer Sensor: DifferentialVariableReluctanceTransducerSensorType and ToolWithDVRTSensorType
- Laser Triangulation Sensor: *LaserTriangulationSensorType* and *ToolWithLaserTriangulationSensorType*
- Structured Light Sensor: *StructuredLightSensorType* and *ToolWithStructuredLightSensorType*
- Ultrasonic Sensor: UltrasonicSensorType and ToolWithUltrasonicSensorType

- Simple Tactile Probe Sensor: *SimpleTactileProbeSensorType* and *ToolWithSimpleTactileProbeSensorType*
- Complex Tactile Probe Sensor: ComplexTactileProbeSensorType and
 ToolWithComplexTactileProbeSensorType
- Charge Coupled Device Camera Sensor: ChargeCoupledDeviceCameraSensorType
 and ToolWithCCDCameraSensorType

9.5.5.2.1 Touch Trigger sensors

There are 2 touch trigger sensor types available in QIF Resources: the Simple Tactile Probe Sensor and the Complex Tactile Probe Sensor.

The Simple Tactile Probe Sensor is meant to represent a single tip with no articulation. The types for this simple probe are *SimpleTactileProbeSensorType* and *ToolWithSimpleTactileProbeSensorType*.

The Complex Tactile Probe Sensor is meant to represent a tactile probing system that does not fall into the category of Simple Tactile Probe Sensor. This could include a sensor tip that is capable of articulation in some way, or a multiple stylus tipped probing system.

When a Complex Tactile Probe System is used, a measurement point item or actual can reference a specific tip on that probe. This is done by using referencing the *ProbeTipType*. This type is found under the **LocatedTips** *element* of the complex probe.

9.5.6 Rotary Table

The *RotaryTableType* represents a rotary table. It can be attached to a *CartesianCMMType* or to a *ComputedTomographyType* via their RotaryTable *element*.

9.5.7 Resolution Types

There are various methods for characterizing the resolution of a measurement device. These types are used for *UniversalDeviceType*, and are applied via a substitution group. The available types are:

- Cartesian Resolution: CartesianResolutionType
- Linear Resolution: *LinearResolutionType*
- Spherical Resolution: SphericalResolutionType
- User Defined Resolution: *UserDefinedResolutionType*

9.5.8 Working Volumes

There are various methods for characterizing the working volume and effective working volume of a measurement device.

For any given machine geometry, there is the *WorkingVolumeBaseType* and the *EffectiveWorkingVolumeBaseType*, each of which is characterized by different XML types.

WorkingVolumeBaseType and *EffectiveWorkingVolumeBaseType* are used for all *UniversalDeviceType*-derived types, and are applied via a substitution group. The working volume types are used for some sensors as well.

- Cartesian Working Volume: CartesianWorkingVolumeType and EffectiveCartesianWorkingVolumeType
- Closed Shell Set Working Volume: ClosedShellSetWorkingVolumeType and EffectiveClosedShellSetWorkingVolumeType
- Cylindrical Working Volume: CylindricalWorkingVolumeType and EffectiveCylindricalWorkingVolumeType
- Spherical Working Volume: SphericalWorkingVolumeType and EffectiveSphericalWorkingVolumeType
- User Defined Working Volume: UserDefinedWorkingVolumeType and EffectiveUserDefinedWorkingVolumeType

9.5.9 Axis Types

The axis types are used for characterizing the type of axis that is referenced by the *UserDefinedResolutionType* and *UserDefinedWorkingVolumeType*. It is applied via a substitution group.

There are two types of axis types:

- Linear Axis: *LinearAxisType*
- Rotary Axis: RotaryAxisType

9.5.10 Environmental Data

The *EnvironmentalRangeType* is used by *MeasurementDeviceType*, *SensorType*, and *MeasurementDeviceAccuracyBaseType* to describe a range of environmental parameters (temperature, air pressure, humidity, vibration, etc.).

In the case of the *MeasurementDeviceType* and *SensorType*, the *EnvironmentalRangeType* is used to describe the acceptable range of environmental conditions for measurement.

In the case of the *MeasurementDeviceAccuracyBaseType*, the *EnvironmentalRangeType* is used to describe the acceptable range of environmental conditions for the given accuracy statement.

9.5.11 Calibrations

The *CalibrationType* is used by *MeasurementDeviceType* to characterize calibrations that have taken place on the given measurement device.

9.5.12 *MeasurementRoomType*

The *MeasurementRoomType* describes an environmentally controlled room in which measurements may be done. It provides for controls on temperature and humidity.

10 QIF Rules information model

10.1 Introduction

10.1.1 Why

In an attempt to encourage uniformity in measurement strategies across a large corporation or supply chain, a common approach is to distribute a set of measurement rules (sometimes called measurement templates). This will give the Coordinate Measuring Machine (CMM) (or any other Dimensional Measurement Equipment (DME)) inspection program creator a guideline for implementing programs that conform to best organizational practices.

Using the QIF Rules model, any organization can build a file conforming to the model and containing a set of rules meant to give a dimensional measurement process planner, CMM programmer, or CMM software package a set of standard practices regarding:

- how individual features of a product should be measured based on selected criteria (such as applicable characteristics, tolerances, feature geometry type, feature size, datum, etc.) and/or measurement requirements (such as uncertainty, setup, and environment)
- how measurement resources should be selected, based on similar criteria plus part and DME parameters.

Benefits of using rules are reduced uncertainty, consistent planning, and planning automation. The QIF Rules model does not propose any specific set of rules. It only provides a format for rules files in order that sets of rules may be exchanged easily and unambiguously.

10.1.2 What

Rules may be made for the following items on a per feature basis:

- the number or density of CMM hit points to use
- the pattern in which the CMM hit points should be distributed (point sampling strategy)
- the feature fitting algorithm to use.

Rules may be made for DME selection on a per feature basis or more broadly.

A QIF Rules instance file will consist of a set of rules, each of which normally contains an "if" part that is a "Boolean Condition" and a corresponding "then" part that specifies what action is allowed or required if the "if" part is true. A Boolean Condition is a statement which can be unambiguously evaluated as true or false. For example: "Joe's car is red" would evaluate to "true" if and only if the color of Joe's car is red. Any given Boolean Condition may have one or more corresponding actions that should be taken depending on the value of the Boolean Condition. For example, if "Joe's car is red" evaluates to true, the corresponding action may be requested: "Borrow Joe's car." QIF Rules simply consists of a set of Boolean Conditions pertaining to the feature, characteristic, or part in question, and a set of measurement-related actions that should be carried out depending on these conditions.

The QIFRules.xsd schema file defines the top level information model for rules. QIF Rules also draws from *elements* in the QIF Library, particularly those in the GenericExpressions.xsd and Expressions.xsd schema files. For DME selection, QIF Rules references types defined in QIFMeasurementResources.xsd.

A QIFDocument containing a **Rules** *element* may be regarded as a QIF Rules instance file. It is anticipated that typically, a QIF Rules file will contain no other application and will not contain items such as features, characteristics, and traceability that are not required for stating rules.

Using a QIF Rules file during planning, however, will require using other information items such as features and characteristics.

The measurement rules described in this clause are *not* an attempt to give DME programmers a precise set of instructions regarding how to carry out any given measurement on a given part. Such a detailed set of instructions would be transmitted using QIF Plans.

10.1.3 How

QIF rules files are intended to be used during measurement planning. QIF specifies the model of a rules file. The rules files themselves are written by any QIF user who wants to put a set of rules into a well-defined, formal, standard format. Although examples of rules files have been built during QIF development, QIF does not require or recommend any particular set of rules. Using the QIF rules model does not guarantee or even imply that a given set of rules is usable or even makes sense; it is up to the organization writing the rules to see to that. It is intended that there be three main parties involved in the use of rules:

- a person or group that writes the rules
- a person or group that decides how the rules are to be applied
- a person or software system that uses the rules during process planning or DME programming.

The party writing the QIF Rules instance file should decide at the outset in what way the rules are intended to be used. If a QIF Rules instance file is to be used in an automatic process planning application or an automatic DME programming system, it will be necessary to write enough rules to cover all the decisions that the software may be required to make. This is expected to be difficult. The model does not attempt to ensure that a set of rules conforming to the model will even be consistent, let alone complete. If the intent of writing the QIF Rules instance file is to encode a (possibly existing) set of natural language rules in a formal way, the job of the rules writers is expected to be more straightforward. However, since natural language may be used to say almost anything, it is possible that the QIF Rules model will not be sufficiently expressive to state some desired rules. It is the intent of the DMSC that future versions of the rules model be improved by adding functionality that is found by users to be needed.

The party deciding how the rules will be used may be the same one that wrote the rules or it may be a manager, process planner, or DME programmer. The most lax decision would be to use the rules merely as suggestions. Another possibility is to require that the rules be followed,

but where there are alternatives that are all allowed by the rules, use the desirability values in the rules only as suggestions, and let the person or software using the rules decide among the alternatives. A third possibility is to require that the rule user use the given desirability values to find and select the most desirable alternative.

The party using the rules during process planning or DME programming will presumably follow the organization's rules for how a set of rules modeled using QIF will be applied. Applying the rules will be a non-trivial undertaking. If this party is a software application, a great deal of functionality will need to be programmed into it. If this party is a person, some form of translation from the QIF rules instance file into an easily understandable form will be needed.

10.1.4 Changes from QIF 2.1

As compared with version 2.1 of QIFRules published as ANSI/QIF Part 6–2015, this version of QIF Rules contains a major addition. That is a model of rules for selecting dimensional metrology equipment (DME). There was no such model in previous versions of QIF. Most of the formal DME selection rules model is contained in the QIFRules.xsd schema file. Minor additions and improvements needed by the DME selection rules model were made in other schema files (Expressions.xsd, GenericExpressions, and QIFMeasurementResources.xsd).

10.2 Design principles of QIF Rules

This subclause gives an overview of the QIF Rules information model.

10.2.1 Structure of a Rule

A QIF rules file consists of a set of rules, each of which (usually) has a "Boolean Condition" (a statement which can be unambiguously evaluated as true or false) and always has a corresponding action, as in the following pseudocode model:

```
If ("Boolean Condition") then
{
    Corresponding "action"
}
```

For example, if "the feature is a cylinder" evaluates to true, the corresponding action may be requested: "measure 13 points".

If the Boolean Condition is omitted, the action always applies.

The following Boolean Conditions are supported by QIF Rules:

- Characteristic Type (is equal to a given characteristic type)
- Feature Type (is equal to a given feature type)
- Shape class (part shape class is equal to one of prismatic, thin walled, etc.)
- Is feature a datum?
- Is feature internal?
- User defined Sampling Category (compared to a given value)
- Boolean expressions using the Boolean constants True and False and the Boolean operators BooleanEqual, And, Or, and Not.

• Arithmetic comparisons that yield a Boolean result: ArithmeticEqual, GreaterThan, LessThan, GreaterOrEqual, and LessOrEqual.

The arithmetic comparisons act on arithmetic expressions, which include:

- arithmetic constants
- arithmetic operations Negate, Plus, Minus, Times, DividedBy, Max, Min
- parameters (numerical *elements* or *attributes*) of characteristics, features, parts, and DMEs
- characteristic tolerances
- feature size, area, or length

The actions available for rules differ between feature rules and DME selection rules. Also, the two types of rule have differing structure, as described in the following subclauses.

The rules are to be evaluated in an environment in which the **SamplingCategory** has been set to some positive integer so that the **SamplingCategoryIsType** Boolean expression can be evaluated. For example, the values 1 and 2 might represent first article inspection and process control, or the values 1 through 4 might represent LOW, MEDIUM, HIGH, and SUPER, respectively.

10.2.2 Feature Rules

For features, the following actions can be triggered by the above Boolean Condition:

- Number of measurement points
- Measurement point density
- Point sampling strategy (taken from ISO-14406:2010)
- Feature fitting algorithm to use

Here is an example in pseudocode:

```
If (FeatureType is Cylinder) then
{
    Number of Points = 64
}
```

For features, this if/then clause could optionally be followed by a series of "else if" and finally an "else" statement. These "else if" and "else" statements are modeled after the commonly seen "if/else if/else" statements found in applications of computer science.

Here is a simple example in XML. In this example, we test whether the surface area of the feature is greater than 10 units of area. If it is, then a minimum of 25 points is required. Otherwise ("else"), a minimum of 10 points is required.

```
<MaxFeatureRules n="2">
<IfThenSurfaceRule>
<GreaterThan>
<FeatureArea/>
```

```
<ArithmeticConstant val="10"/>
</GreaterThan>
<ThenPoints>
<MinPoints>25</MinPoints>
</ThenPoints>
</IfThenSurfaceRule>
<Else>
<ThenPoints>
</ThenPoints>10</MinPoints>
</ThenPoints>
</Else>
</MaxFeatureRules>
```

When a rule is applied to a feature, if more than one characteristic applies to the feature, and a condition uses a characteristic type test, the condition should be tested for each characteristic applied to the feature.

Since measurement points are taken on Features (not Characteristics), there may often arise a situation where two or more conflicting Rules may apply to a given Feature. When this is the case, the Rule with the higher number of points should be used. If this happens when two sampling strategies are specified, then it is up to the evaluating system to make the appropriate decision. (Exception: the *IfThenElseFeatureRulesType*; see subclause 10.4.2.1.)

10.2.3 DME Selection Rules

The DME selection rules model is designed to allow the rule writer to write a wide range of types of rule. A DME selection rule may be very general, such as, "A caliper must not be used", or it may be very specific, such as, "If the feature is internal, and the feature is a cylinder, and the diameter is greater than 3.2, and the characteristic is diameter, then the cartesian coordinate measuring machine whose QIF ID is 1234 must be used".

DME selection rules can be used to:

- require using a particular DME or any of a set of DMEs
- authorize (but not require) using a particular DME or any of a set of DMEs
- prohibit using a particular DME or any of a set of DMEs.

DME selection rules are intended to be used during measurement planning. A set of rules conforming to the model may be written so as to leave the planner with no choice (useful if the planner is an automated system). A rule set may also be written so as to provide the planner with a set of acceptable alternatives from which the planner may choose. Where a rule set leaves alternatives, the desirability of each alternative may be specified as a number, so that the choice can be made algorithmically if that is what the planner (or the planner's organization) wishes to do.

Specifying the set of DMEs to which the rules apply during a measurement planning session is the responsibility of the organization in which measurement planning is taking place. For example, it might be any of (but is not limited to):

- a list of DMEs on hand
- commercially available measurement equipment, e.g., equipment found in a catalog
- a QIF measurement resources file.

In a QIF instance file, the rule above that has no "If" part and prohibits the use of a caliper would be:

```
<DMEDecisionRule>
<DMEThen n="1">
<DMEThen n="1">
<DMEDecisionClass>
<MustNot/>
<DMEClassName>CALIPER</DMEClassName>
</DMEDecisionClass>
</DMEThen>
</DMEThen><//DMEDecisionRule>
```

And the complex rule requiring the coordinate measuring machine with QIF id 1234 would be:

```
<DMEDecisionRule>
  <And n="4">
    <FeatureTypeIs val="CYLINDER"/>
    <FeatureIsInternal/>
    <CharacteristicIs val="DIAMETER"/>
    <GreaterThan>
      <ArithmeticFeatureParameter>
        <Parameter>Diameter</Parameter>
      </ArithmeticFeatureParameter>
      <ArithmeticConstant val="3.2"/>
    </GreaterThan>
  </And>
  <DMEThen n="1">
    <DMEDecisionId>
     <Must/>
     <DMEId>1234</DMEId>
    </DMEDecisionId>
  </DMEThen>
</DMEDecisionRule>
```

10.3 QIF Rules schema files

The QIF Rules schema model includes the information items from the QIFRules.xsd schema file and several of the schema files from the QIF Library. As with other QIF components, the QIF Library schema files are incorporated into the model by a chain of "*include*" directives starting in the QIFRules.xsd schema file. The following QIF Library schema files are required:

- Expressions.xsd
- IntermediatesPMI.xsd
- PrimitivesPMI.xsd

- Units.xsd
- GenericExpressions.xsd
- Primitives.xsd.

10.4 QIF Rules elements and data types

This subclause describes the major *elements* and types in the QIF Rules model.

10.4.1 QIF Rules top level

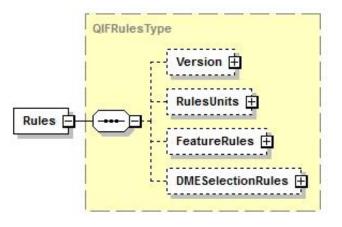


Figure 226 – Rules element and QIFRulesType

The top-level data object under **QIFDocument** in a QIF Rules instance file is a **Rules** *element* of type **QIFRulesType**, as shown in Figure 226. The **Rules** *element* contains an optional set of rules for features in its **FeatureRules** *element* and an optional set of rules for selecting dimensional measurement equipment (DMEs) in the **DMESelectionRules** *element*.

10.4.2 Feature Rules

The **FeatureRules** *element* shown in Figure 226 is of type **FeatureRulesType**, as shown in Figure 227.

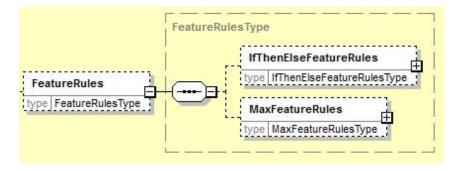


Figure 227 – FeatureRules *element* and *FeatureRulesType*

The *FeatureRulesType* models a collection of sets of rules for selecting quality measurement items. Currently it contains a complete model of rules for selecting any or all of the following for a given feature:

- the quantity (number or density) of hit points
- the strategy for selecting hit points
- a feature fitting algorithm.

As shown in Figure 227, the *FeatureRulesType* provides two methods of making selections, **IfThenElseFeatureRules** and **MaxFeatureRules**. Either method or both methods may be used. If the **IfThenElseFeatureRules** and **MaxFeatureRules** are both used for quantity of points, both sets of rules should be applied and the greatest value should be used. Also, if both are used and they give different point sampling strategies or feature fitting algorithms, the evaluating system may use any of those strategies or algorithms.

Since a given feature F may be associated with zero to many characteristics C1 ... Cn, if there is any characteristic associated with F, the rules should be evaluated for each FCi pair, and the number or density of hit points to use for F should be set to the maximum value.

If a number of hit points must be compared with a density of hit points, the evaluating system should find and use the area of the feature to convert density values to numbers of points.

Numerical quantities that are constants, feature parameters, or characteristic parameters may be used in conditions.

The numerical quantities, **FeatureSize**, **FeatureLength** and **FeatureArea**, may also be used in conditions. The evaluating system must set the value of **FeatureLength** for the feature being processed if **FeatureLength** is used in any condition. The evaluating system must set the value of **FeatureArea** for the feature being processed if **FeatureArea** is used in any condition.

The rules are not intended for picking the quantity of points or the point sampling strategy to use for measuring a characteristic that is not associated with any feature.

10.4.2.1 IfThenElseFeatureRulesType

The *IfThenElseFeatureRulesType* is a set of rules for selecting (1) the number or density of hit points for a single feature, possibly with an associated characteristic and/or (2) a strategy for selecting the points. To evaluate an *IfThenElseFeatureRulesType*, each *IfThenFeatureRule* should be considered in order until the 'if' part of one of them evaluates to true, at which point the 'then' part of the rule should be evaluated and the value of the point quantity and/or point sampling strategy returned. In this case, the remainder of the *IfThenFeatureRules* should be ignored. If the 'if' part of no *IfThenFeatureRule* evaluates to true, then the 'then' part of the Else should be evaluated and returned.

Below is an example of an *lfThenElseFeatureRulesType* rule.

```
<IfThenElseFeatureRules n="3">
     <IfThenCylinderRule>
        <ThenPoints>
```

```
<NumberOfPoints>23</NumberOfPoints>
</ThenPoints>
</IfThenCylinderRule>
<IfThenCircularArcRule>
<ThenPoints>
</PointDensity>0.8</PointDensity>
</ThenPoints>
</IfThenCircularArcRule>
<Else>
<ThenPoints>13</MinPoints>
</ThenPoints>
</Else>
</IfThenElseFeatureRules>
```

In this example, we first test if the Feature is a cylinder. If so, then we request 23 points and have completed the *IfThenElseFeatureRulesType* rule. Otherwise, we test if the Feature is an arc. If it is, then we request a point density of 0.8 (with the exact placement of points to be calculated by the evaluating system). If the Feature was a circular arc, then we are finished evaluating. Otherwise, we fall into the "Else" statement: a minimum of 13 points.

10.4.2.2 MaxFeatureRulesType

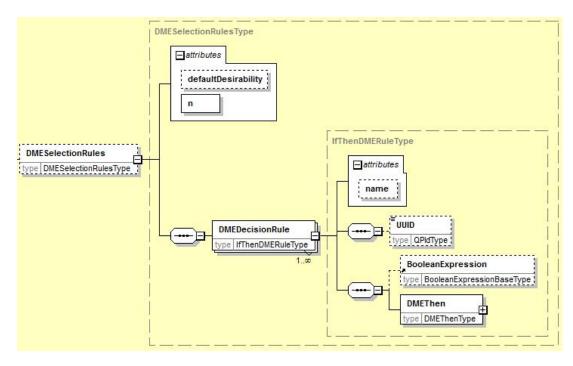
The *MaxFeatureRulesType* is a set of rules for selecting (1) the number or density of hit points for a single feature, possibly with an associated characteristic and/or (2) a point sampling strategy for the points. To evaluate a *MaxFeatureRulesType*, keep track of a current answer for point quantity, which is initially set to zero. Each IfThenFeatureRule should be considered in order. If the 'if' part of a rule evaluates to true, the 'then' part of the rule should be evaluated and if that value is greater than the current answer, the current answer should be set to that value. If the 'if' part of no IfThenFeatureRule evaluates to true, so that the current answer is still zero after all IfThenFeatureRules have been processed, then the 'then' part of the Else should be evaluated and the current answer set to that value. The returned value for point quantity is the final value of the current answer. In addition to keeping track of the current answer for point quantity, the evaluating system should collect all the strategies and feature fitting algorithms from the 'then' parts that were evaluated.

Below is an example of the *MaxFeatureRulesType* rule.

```
<MaxFeatureRules n="3">
<IfThenSurfaceRule name="FirstRule">
<GreaterThan>
<FeatureArea/>
<ArithmeticConstant val="2"/>
</GreaterThan>
<ThenPoints>
</InenPoints>
</IfthenSurfaceRule>
```

```
<IfThenSurfaceRule name="SecondRule">
    <And n="2">
      <CharacteristicIs val="SURFACEPROFILE"/>
      <LessThan>
        <ArithmeticCharacteristicParameter>
          <CharacteristicTypeEnum>SURFACEPROFILE</CharacteristicTypeEnum>
          <Parameter>ToleranceValue</Parameter>
        </ArithmeticCharacteristicParameter>
        <ArithmeticConstant val="0.010"/>
      </LessThan>
    </And>
    <ThenPoints>
      <MinPointDensity>0.2</MinPointDensity>
    </ThenPoints>
  </IfThenSurfaceRule>
  <Else>
    <ThenPoints>
      <MinPoints>3</MinPoints>
    </ThenPoints>
  </Else>
</MaxFeatureRules>
```

In this example, we must evaluate all rules to see which evaluate to true. There are 2 rules in this example: the **IfThenSurfaceRule** named "FirstRule" and the **IfThenSurfaceRule** named "SecondRule". There is also an "Else" statement, to be executed only in the event that no rules apply to the Feature/Characteristic being evaluated.


In many cases, only the "FirstRule" or "SecondRule" will evaluate to true. In this case, the corresponding **ThenPoints** statement should be executed.

However, if the Feature/Characteristic happens to be on a surface of greater than 2 units of area AND is a surface profile tolerance with a tolerance value of less than 0.010 units, then both of the rules evaluate true. If this is the case, then the evaluating system must determine which of the rules would apply more points to the surface, and choose that rule.

Additional examples of feature rules are provided in the Rules section of the informative sampleInstanceFiles distributed with the QIF XML schema files.

10.4.3 DME Selection Rules

The **DMESelectionRules** *element* shown in Figure 228 is of type **DMESelectionRulesType**. That type has a set of **DMEDecisionRule** *element*s, a required *attribute*, **n**, giving the number of rules, and an optional *attribute* **defaultDesirability**. The **defaultDesirability** is used as the value of desirability if no explicit value is provided in a rule.

Figure 228 – DMESelectionRules element and DMESelectionRulesType

As shown in Figure 228, each **DMEDecisionRule** *element* is of type *IfThenDMERuleType*, which consists of:

- an optional *attribute* that is a **name** for the rule
- an optional UUID element that is a universally unique identifier for the rule
- an optional BooleanExpression element and
- a required **DMEThen** element.

When rules are being evaluated, the **DMEThen** part of the rule applies if either the **BooleanExpression** evaluates to true or is omitted. The types of Boolean expression supported by the model are described in subclause 10.2.1.

10.4.3.1 DMEThen

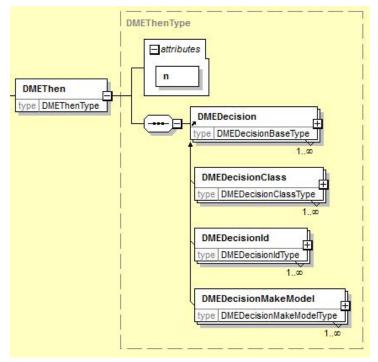


Figure 229 – **DMEThen** *element* and **DMEThenType**

Figure 229 shows the **DMEThen** *element* and the **DMEThenType**. The *element* is the "Then" part of a rule and is of type **DMEThenType**. The type names one *element*, **DMEDecision**, but that *element* is of an *abstract* type, so one of the three *element*s, **DMEDecisionClass**, **DMEDecisionId**, or **DMEDecisionMakeModel** from its substitution group must be used in its place. Note also that multiple *element*s may be used, as given by *attribute* **n**. That enables a single **DMEThen** to specify several DMEs, such as a particular combination of CMM, tool, and probe tip.

10.4.3.2 DMEDecisionClass

The DMEDecisionClass element and DMEDecisionClassType are shown in Figure 230.

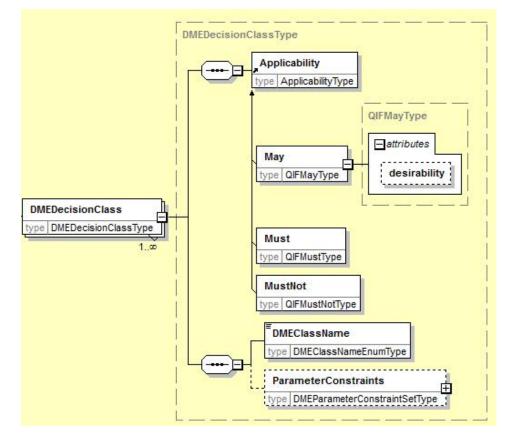


Figure 230 – DMEDecisionClass element and DMEDecisionClassType

Using a **DMEDecisionClass** *element* indicates that any member of the DME class whose name is given in the **DMEClassName** *element* may be selected or ruled out, provided it meets any constraints given in the optional **ParameterConstraints** *element*. If the **Applicability** is **May** or **Must**, the planning system that is using the rules is expected to select one or more DMEs that are in the class and satisfy the constraints.

The *abstract* **DMEDecisionBaseType** (not shown in the figure) has only one *element*, an **Applicability** which is of the *abstract* **ApplicabilityType**. In an instance file the **Applicability** *element* must be replaced by an *element* in its substitution group, namely one of:

- a May element of QIFMayType
- a Must element of **QIFMustType**
- a MustNot element of QIFMustNotType

"Must" means that a member of the class must be selected.

"MustNot" means that a member of the class must not be selected.

"May" means that a member of the class may be selected, but does not require that a member of the class be selected.

The *QIFMustType* and the *QIFMustNotType* do not have any *element*s or *attribute*s, but the *QIFMayType* has an optional **desirability** *attribute* of *ZeroToOneType* (a double value in range [0..1]). If no value for the **desirability** *attribute* is provided, the value is the **defaultDesirability**

given in the **DMESelectionRulesType**, if that is provided, or 1 if not. The **desirability** value (which is set by the author of the rules) is intended to help compare choices during DME selection. The way in which the **desirability** value is to be used is not specified by QIF, but is left to the planner and the planner's organization. It might, for example, be advisory (it would be a good idea to select a more desirable DME), prescriptive (you must select the most desirable choice), or ignored.

The **DMEClassName** *element* of the **DMEDecisionClassType** is the name of a DME class. Its value is one of the names given in the **DMEClassNameEnumType**.

The optional **ParameterConstraints** *element* of the **DMEDecisionClassType** is a set of constraints on parameters of the class. A member of the specified class must satisfy the parameter constraints in order to be included in set of identified DMEs. Each constraint is of type **DMEParameterConstraintType**.

The *DMEParameterConstraintType* has **ParameterName**, **Comparison**, and **ArithmeticExpression** *element*s. For a DME to satisfy a constraint, the named parameter of the DME must satisfy the enumerated comparison with the evaluated arithmetic expression. The parameter name must be the name of a parameter of the class of DMEs named in the **DMEDecisionClass** in which the constraint is found. For example if the the DME class name is CALIPER, the parameter is LinearResolution, the comparison is LESS, and the arithmetic expression is 0.01, then the resolution of a caliper being considered must be less than (i.e., better than) 0.01.

It will often be possible to represent a constraint on a DME either as a rule or as a parameter constraint. Using parameter constraints can help avoid a proliferation of rules.

Here is an example of a DME selection rule using the **May** *element*. It is from the Rolls-Royce "Guide" mentioned earlier, page 25, table 5. The English language version of the rule is: "If feature size is less than 5 mm and tolerance is greater than or equal to 0.100 mm, then an analog micrometer may be used". The rule modeled below adds the requirement that the feature being considered must not be an internal feature.

```
<DMEDecisionRule>
 <And n="3">
    <Not><FeatureIsInternal/></Not>
    <LessThan>
      <FeatureSize/>
      <ArithmeticConstant val="5.0"/>
    </LessThan>
    <GreaterOrEqual>
      <ArithmeticCharacteristicParameter>
        <Parameter>Tolerance</Parameter>
      </ArithmeticCharacteristicParameter>
      <ArithmeticConstant val="0.100"/>
    </GreaterOrEqual>
 </And>
 <DMEThen n="1">
    <DMEDecisionClass>
      <May desirability="1"/>
      <DMEClassName>ANALOG MICROMETER/DMEClassName>
```

```
</DMEDecisionClass>
</DMEThen>
</DMEDecisionRule>
```

10.4.3.3 DMEDecisionId

The DMEDecisionId element and DMEDecisionIdType are shown in Figure 231.

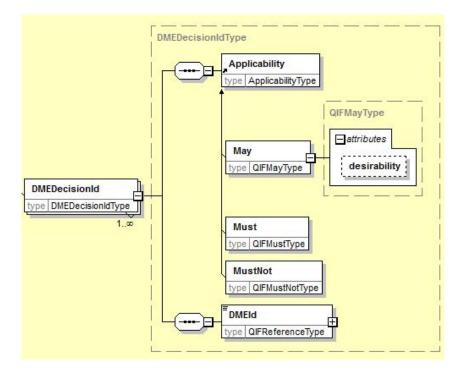


Figure 231 – DMEDecisionId element and DMEDecisionIdType

The **DMEDecisionId** *element* indicates a specific DME with a QIF Id. The value of the **DMEId** *element* must be the QIF id of a DME found in the **MeasurementResources** section of a **QIFDocument**. The **QIFDocument** with the measurement resource could be in the same file as the one containing the rules, but is expected more usually to be in a separate file.

The meanings of the *elements* that may be substituted for **Applicability** are the same as for the **DMEDecisionClassType** described in subclause 10.4.3.2.

10.4.3.4 DMEDecisionMakeModel

The **DMEDecisionMakeModel** *element* is of type **DMEDecisionMakeModelType** and is shown in Figure 232. This *element* indicates a DME identified by its make and model. Optionally, a serial number may be given.

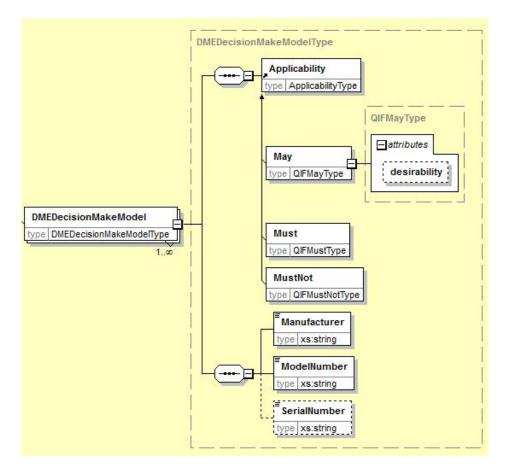


Figure 232 – DMEDecisionMakeModel element

The **DMEDecisionMakeModelType** has required **Manufacturer** and **ModelNumber** *element*s and an optional **SerialNumber** *element* (so that a specific instance of a DME may be chosen even if it is not represented in a QIF resources file).

The meanings of the *element*s that may be substituted for **Applicability** are the same as for the **DMEDecisionClassType** described in subclause 10.4.3.2.

11 QIF Results information model

11.1 Foreword

The Quality Information Framework (QIF) information model was developed by domain experts from the manufacturing quality (that is metrology) community representing a wide variety of industries and quality measurement needs. Specifically for the QIF Results work, past and current contributors include:

- Capvidia, Inc.
- Honeywell Federal Manufacturing & Technologies
- Lockheed Martin
- Manufacturing Technology Centre
- Metrosage
- Mitutoyo America
- National Institute of Standards and Technology
- Origin International Inc.
- University of North Carolina, Charlotte

The bulk of the work on this clause was performed by the QIF Results Working Group, revised as needed and approved by the Quality Information Framework (QIF) Working Group, and given final approval for ANSI balloting by the DMSC's Quality Measurement Standards (QMS) Committee. QIF version 3.0 is solely a product of the DMSC and its committees and working groups.

11.2 Introduction

Part inspection is carried out by a measurement execution activity, whose functionality is typically to interpret machine-level measurement plans, give equipment level commands to specific dimensional measuring equipment (DME) control units, collect point data, fit features to the data, and output feature and characteristic data. Measurement execution can also include software solutions that issue instructions to human operators using calipers, go/no-go gages, and specialized inspection equipment to generate results data. Once the machine-level measurement plans are executed, the measurement data, either raw data or pre-processed data, is collected, reported, and analyzed. The QIF Results specification provides a vendor-neutral format for the data. Software solutions that support QIF, by either writing or reading QIF files, can exchange manufacturing quality data efficiently and accurately.

11.3 Scope

11.3.1 Workflow of QIF Results data for manufacturing quality

Clause 5 describes an example of enterprise quality information workflow that employs QIF modeled information at all interfaces. Figure 233 shows an example of quality workflow that uses only QIF Results data, in order to focus on the QIF Results information model.

In this example, upstream processes generate a set of part-specific inspection requirements. A common example is the set of characteristics and requirements data of a First Article Inspection Report (FAIR) conforming to the AS9102B: *Aerospace First Article Inspection Requirement* standard. The Program the Measurement activity takes knowledge of actual inspection resources by capability and availability, assigns resources to the plan, and generates a program or set of inspection instructions suitable to the resource chosen. The execution program may be in ANSI/DMIS 105.3-2016 format or any other proprietary format, including non-digital information like instructions to human operators using calipers, go/no-go gauges, or other specialized inspection equipment. The QIF information model has been harmonized with ANSI/DMIS 105.3-2016 to support all data that may be defined in a DMIS program.

The Execute Measurement Program activity shown in Figure 233, inspects the part or assembly by executing the program and generates results formatted according to the QIF Results component of QIF. Finally, measurement results are collected, reported, and analyzed, through the Analyze and Report Quality Data activity. Results of a single part inspection, as well as the statistical analysis of groups of parts, can provide feedback to upstream processes such as product manufacturing and quality engineering.

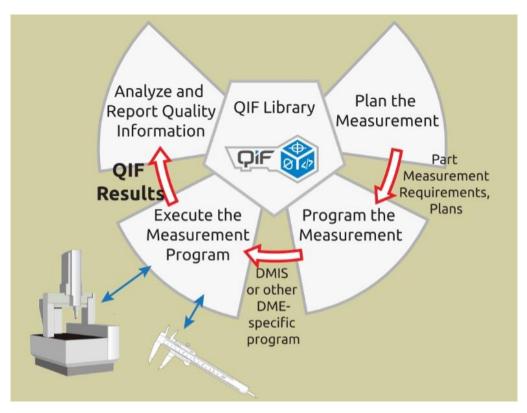


Figure 233 – Example of QIF Results information flow.

11.3.2 Design guidelines for the QIF Results information model

The QIF Results information model is designed to satisfy the following functional requirements:

- express results of dimensional inspection according to the principles of ASME GD&T and ISO GPS, and support data required to fully express the intent and results of inspection programs written in the DMIS language.
- support inspection traceability of quality data, meaning that inspection results data can be identified with the factory resources used to inspect the part, including equipment, software, and people.
- support information needed by downstream processes, e.g., First Article Inspection Report (FAIR) generation, statistical process control, and other computer aided quality solutions.
- support a quality data workflow that is digital model-based or document/drawing-based.

11.4 The QIFResults.xsd schema file

11.4.1 High level structure of the QIF Results schema

This subclause describes the highest level *elements* of the QIF Results information model. The QIF Results schema model includes the information items from the QIFResults.xsd schema file and several of the schema files in the QIF Library. The QIF Library files are incorporated into the schema by a chain of "*include*" directives starting in the QIFResults.xsd schema file.

The **Results** *element*, shown in Figure 234, which is of type *ResultsType*, is the highest level *element* of the QIF Results model. *Elements* in the figure with + signs at the right (all of them) have substructure that is not shown in the figure. Most substructure is defined in the QIF Library files.

An XML instance file written in conformance with the QIFDocument.xsd and QIFResults.xsd schema files may contain one **Results** *element*.

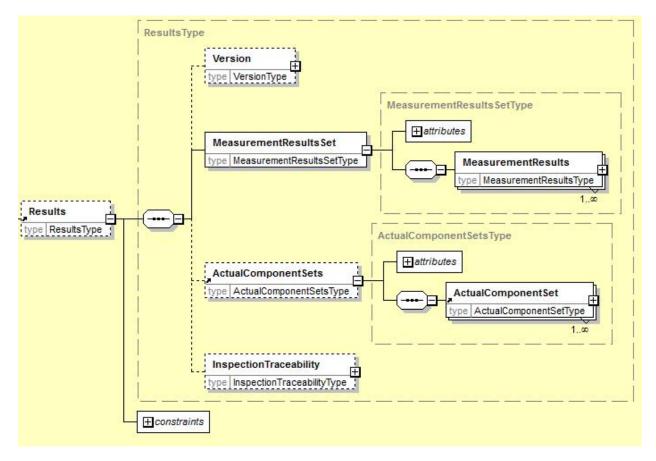


Figure 234 – The Results element

The *element*s of **Results** are:

- Version This optional *element* contains information about the file, including TimeCreated, Signoffs, and ThisInstanceQPId.
- MeasurementResultsSet –This required *element* is a list of one or more MeasurementResults *elements*, each of which contains information about a set of related measurements. The user may decide which measurements are related. In a common scenario, several parts of the same design may be measured in order to collect data for statistical analysis. The data for each part would be put into a separate MeasurementResults *element*.
- ActualComponentSets This optional *element* is a list of one or more ActualComponentSet *elements* which describe physical objects that may comprise the manufactured product that was inspected. Any product with two or more components is also called an assembly. QIF can identify inspection data by individual components of an assembly. The scheme for defining and identifying components of assemblies is described in more detail in Clause 5: Overview.
- InspectionTraceability This optional *element* contains information common to all
 product measurements in the QIF Results instance file about workflow details and the
 inspection resources that were used to generate the Results data. (Each

MeasurementResults *element* also has a single, optional **InspectionTraceability** *element* that contains information particular to that single product measurement.)

Not shown are constraints as a *key/keyref* pair. The **ActualComponentIdKey** collects all **QIFIds** of **ActualComponents**. The **ActualComponentKeyref** requires that an *element* located anywhere in an instance file that is supposed to be the id of an **ActualComponent** is either (1) the id of an **ActualComponent** in the same instance file or (2) the local id of an external QIF instance file.

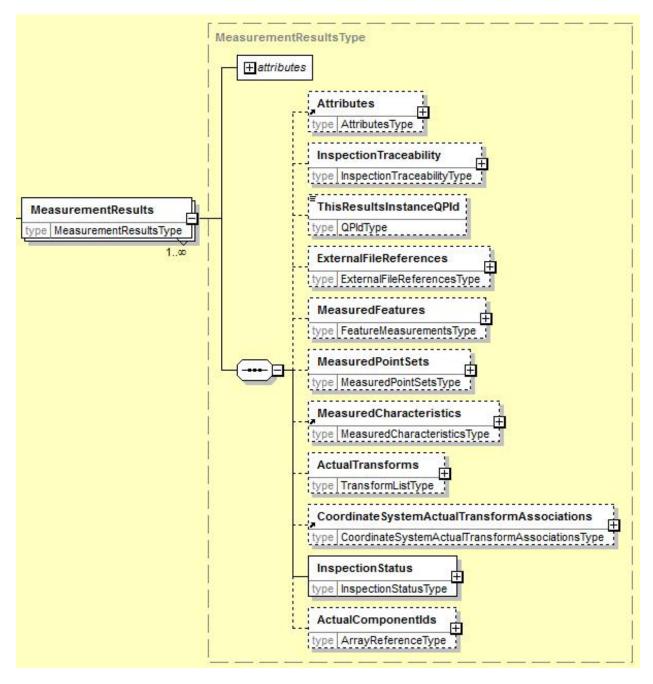


Figure 235 - High level view of the MeasurementResults element

The sub-elements of the *MeasurementResultsType*, introduced in Figure 235 are:

- **id** This required *attribute* is the QIF id of the measurement results, used for referencing.
- **Attributes** This optional *element* contains user defined attributes (e.g., typified, binary array, or XML structured).

- **InspectionTraceability** This optional *element*, of type *InspectionTraceabilityType*, gives traceability information that applies to this set of measurement results.
- **ThisResultsInstanceQPId** This optional *element*, of type **QPIdType**, gives a globally unique identifier to this set of measurement results.
- ExternalFileReferences This optional *element*, of type *ExternalFileReferencesType* is a list of references to additional files created in the measurement process, e.g. a photo, a text CMM report, etc.
- **MeasuredFeatures** This optional *element* gives information about the features that were measured.
- **MeasuredPointSets** This optional *element* includes up to 15 *elements* for describing points and their provenance. It has an **id** *attribute* to make it referenceable. A measured feature can reference all or a portion of one or more measured point sets using these ids. The **PointList** *element* contains these references as a list. A **WholePointSetId** *element* in the list references a whole point set via its id. A **RangePointSetId** *element* in the list references a range of points in a point set via the point set's id and start and end point indexes. A **SinglePointSetId** *element* in the list references a start at 1 for the first point in a point set.
- **MeasuredCharacteristics** This optional *element* gives information about the characteristics that were measured and evaluated.
- ActualTransforms This optional *element* gives information about the actual transforms used in the measurement results. These transforms can represent actual coordinate system transforms or actual datum reference frame transforms.
- **CoordinateSystemActualTransformAssociations** This optional *element* gives information about the association of actual transforms with coordinate systems.
- InspectionStatus This required *element*, of type *InspectionStatusType*, reports the status of the measurement results.
- ActualComponentsIds This optional *element* is the list of QIFIds of actual components involved in the measurement results.

The **ActualComponentSet** *element*, shown in Figure 234, is a list of *elements* of type **ActualComponentType** which is described in Figure 236. Its components are:

- id This required *attribute* is the QIF id of the actual component, used for referencing.
- **Attributes** This optional *element* contains user defined attributes (e.g., typified, binary array, or XML structured).
- SerialNumber *element* This optional *element* is the serial number of the actual component. Components with the same **ModelNumber** have different **SerialNumbers**.

The combination of **ModelNumber** and **SerialNumber** should differentiate a given actual component from all other actual components in a QIF application instance file.

- AdditionalChanges This *element* is a record of any changes to the product beyond what is recorded in the product model. The information recorded here may be used for the Additional Changes field of an AS9102B form.
- Status This required *element* gives the inspection status of the actual component.
- **Traceability** This optional *element* of type *ActualProductTraceabilityType* gives traceability information for the actual component. See Clause 6 for details.
- **AsmPathId** This optional *element* is the id of the assembly path of this component. It gives information about where the actual component is located in an assembly.

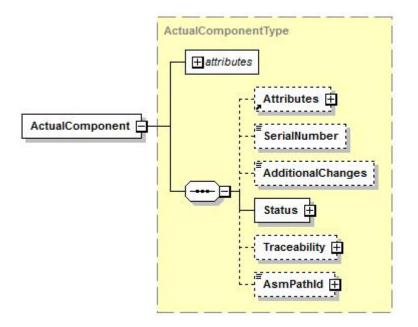


Figure 236 - The ActualComponentType data type

11.5 Data dictionary: QIFResults.xsd

QIFResults.xsd is a single XML schema file that describes the QIF Results information model. It defines several data types that are unique to the QIF Results application area, and, in keeping with QIF design guidelines, it reuses definitions from the QIF library whenever possible.

12 QIF Statistics information model

12.1 Foreword

The Quality Information Framework (QIF) information model was developed by domain experts from the manufacturing quality (that is metrology) community representing a wide variety of industries and quality measurement needs. Specifically for the QIF Statistics work, past and current contributors include:

Main:

- Honeywell Federal Manufacturing & Technologies
- Mitutoyo America
- National Institute of Standards and Technology
- Origin International Inc.

Support:

- Deere and Co.
- InfinityQS
- Lockheed Martin
- University of North Carolina Charlotte

This clause was written by the QIF Statistics Working Group, and given final approval for ANSI balloting by the DMSC's Quality Measurement Standards (QMS) Committee.

12.2 Introduction

QIF Statistics is an extension of the Quality Information Framework data model designed to carry information to transport statistical quality control plans, corrective action plans and detailed summary quality statistics. It builds on the QIF Results framework through supporting multi-part measurement results that can apply to a number of quality study types beyond single or first article inspection. It is designed to haul information in an unambiguous form for pre-production, capability, and production quality studies. In addition it supports the full extent of measurement systems analysis studies including Gage R&R.

The benefits will be easily understood by the intended audience for this standard – all those who are already engaged in Quality measurement planning or the associated inspection process. So here is a summary of the benefits of standardization:

- Eliminates wasted resources, money, and time in measurement planning and execution tasks.
- Redirects these savings to value-added activities, enhancements, etc.
- Allows manufacturers and measurement solutions providers to redirect more energy to new development.
- Enables inspection systems to communicate with more measurement planning systems making them both more useful.
- Permits customers to focus more on core business.

- Uses standard identifiable tags, yet with provision for familiar user-defined names.
- Moves away from proprietary schemas that require significantly more technical support.

12.3 Scope

The scope of the Statistics information model consists of quality measurements of variable and attribute characteristics. Measurement results not only include observed measurement values, but also summary statistical or derived results (e.g., individuals, averages, standard deviations, max, min, etc.). All necessary nominal (as designed) target values are also included to allow reanalysis, if required. Any other traceability information relevant to one or more measurements is also in scope, information such as the shift, data source, equipment operator's name, the ID and feature of the item measured, the date and time of the measurement, etc.

QIF Statistics is designed to support single or multiple workpiece studies. QIF Statistics applies to First Article Inspection, Process Capability studies, Production Runs, Gage R&R studies, etc.

Applicable software classifications that can make use of this interoperability standard include: Enterprise Resource Planning (ERP), Manufacturing Execution Systems (MES), Statistical Quality Control (SQC), Statistical Process Control (SPC), Gage Repeatability and Reproducibility (Gage R&R), Measurement Systems Analysis (MSA) and Advanced Statistical Analysis.

12.3.1 Contents of this clause

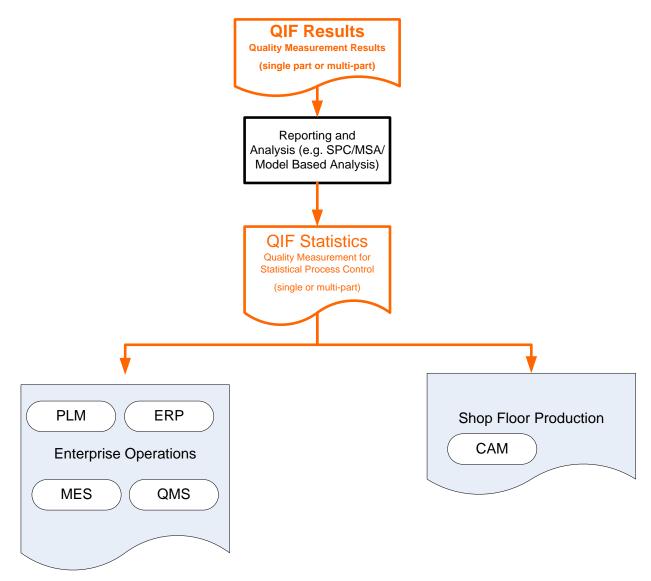
This clause defines a QIF application information model for a portion of the QIF manufacturing quality information model designated QIF Statistics.

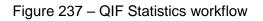
The information model consists of definitions for data types, *elements*, the logical relationships between them, and the semantics of the quality information. The information model, defined using the XML Schema Definition (XSDL) Language, is scoped to be a digital data exchange mechanism that can be easily incorporated in application software developed by commercial solution vendors that implement manufacturing quality systems. The QIF Statistics information model is expressed in the file "QIFStatistics.xsd". All QIF XML schema files are normative and are available for download at www.qifstandards.org.

XSDL also supports the definition of rules and checks for validation of QIF instance files.

This clause describes the several business use cases for the QIF Statistics data model for interoperability and details the various aspects of the Study Plans, Results and Corrective Action Plans.

The data model is described using simplified practical examples of each study type. The examples illustrate how the QIF Document structure provides for an integrated platform to combine Measurement Resources, Part Definition, Measurement Plans, Measurement Results and Measurement Statistics into a single package.


This clause does not describe detailed Statistical theories or the calculation methods associated with them.


12.4 Requirements

QIF Statistics is designed to carry information between a wide variety of manufacturing and enterprise applications. This clause describes the simple workflow from measurement result collection and Statistical Process Control applications to aggregate Statistics and how this information can be archived or consumed by downstream applications such as PLM (Product Lifecycle Management) and ERP (Enterprise Resource Planning) systems.

12.4.1 QIF Statistics quality metrology activity diagram

The following diagram, Figure 237, represents the purpose of QIF Statistics in the overall Quality Information workflow.

12.4.1.1 Manufacturing package type definition

QIF Statistics can serve as a data hauling format for quality measurements and statistics from and to the following types of manufacturing packages:

12.4.1.1.1 ERP – Enterprise Resource Planning

Enterprise Resource Planning (ERP) is a company-wide computer software system used to manage and coordinate all the resources, information, and functions of a business from shared data stores.

An ERP system has a service-oriented architecture with modular hardware and software units or "services" that communicate on a local area network. The modular design allows a business to add or reconfigure modules (perhaps from different vendors) while preserving data integrity in one shared database that may be centralized or distributed.

12.4.1.1.2 MRP II – Manufacturing Resource Planning

Manufacturing Resource Planning (MRP II) is a method for the effective planning of all resources of a manufacturing company. Ideally, it addresses operational planning in units, financial planning in dollars, and has a simulation capability to answer "what-if" questions and extension of closed-loop MRP.

12.4.1.1.3 MES – Manufacturing Execution System

Manufacturing Execution Systems (MES) manage and monitor work-in-process on the factory floor including manual or automatic labor and production reporting, as well as on-line inquiries and links to tasks that take place on the production floor. Manufacturing Execution Systems may include one or more links to work orders, receipt of goods, shipping, quality control, maintenance, scheduling or other related tasks.

12.4.1.1.4 CAQ - Computer Aided Quality

Computer-Aided Quality (CAQ) assurance is the engineering application of computers and computer controlled machines for the definition and inspection of the quality of products.

12.4.1.1.5 SPC - Statistical Process Control

Statistical Process Control (SPC) is an effective method of monitoring a process through the use of control charts. Control charts enable the use of objective criteria for distinguishing background variation from events of significance based on statistical techniques. By collecting data from samples at various points within the process, variations in the process that may affect the quality of the end product or service can be detected and corrected, thus reducing waste as well as the likelihood that problems will be passed on to the customer. With its emphasis on early detection and prevention of problems, SPC has a distinct advantage over quality methods, such as inspection, that apply resources to detecting and correcting problems in the end product or service.

12.4.1.1.6 SQC – Statistical Quality Control

Statistical Quality Control (SQC) is a method of quality control that uses statistical sampling of units produced by a production process. These are checked for defectives (variances) to determine whether or not the process is in control. If not, corrective action is taken. In the field of statistical quality control, the statistical control chart is used as a basic tool to formally distinguish between normal and abnormal variances.

12.4.1.1.7 APQP – Advanced Product Quality Planning

Advanced Product Quality Planning (or APQP) is a framework of procedures and techniques used to develop products in industry, particularly the automotive industry. It is quite similar to the concept of Design for Six Sigma (DFSS).

It is a defined process for a product development system for General Motors, Ford, Chrysler and their suppliers. According to the Automotive Industry Action Group (AIAG), the purpose of APQP is "to produce a product quality plan which will support development of a product or service that will satisfy the customer."

12.4.1.1.8 MSA – Measurement Systems Analysis

Measurement System Analysis (or MSA), is a specially designed experiment that seeks to identify the components of variation in the measurement.

Just as processes that produce a product may vary, the process of obtaining measurements and data may have variation and produce defects. A Measurement Systems Analysis evaluates the test method, measuring instruments, and the entire process of obtaining measurements to ensure the integrity of data used for analysis (usually quality analysis) and to understand the implications of measurement error for decisions made about a product or process. MSA is an important element of Six Sigma methodology and of other quality management systems.

MSA analyzes the collection of equipment, operations, procedures, software and personnel that affects the assignment of a number to a measurement characteristic.

12.4.1.2 Sample QIF Statistics business scenarios

This clause describes examples of real world business cases where QIF Statistics may be applicable for interoperability.

12.4.1.2.1 MES to SQC

A manufacturer has configured all critical variable and attribute checks for each operation in a multi-stage process. The plans are issued to the shop floor workstations through a local area network. The company will use the SQC system to acquire and analyze the data and the MES system for long term retention and look-ups.

12.4.1.2.2 ERP to MES

A large multi-national corporation has developed their global quality control plan within a centralized ERP system. Each manufacturing plant has chosen a different MES system and uses them to collect quality control information.

12.4.1.2.3 SPC to PLM

A global manufacturer has multiple production facilities that manufacture the same part. Each plant has developed its own statistical process control programs for quality control. In addition each plant uses a different SPC software vendor. The company wishes to store all measurement data, including statistical values in PLM for engineering analysis.

12.5 The QIF Statistics data model

12.5.1 Design principles of QIF Statistics

The data model relies on the QIF shared library for the storage of nominal feature and characteristic information and on the QIF Results data model for the optional storage of measured feature and characteristic information. The *element*s of the QIF Statistics data model augment the information contained in the QIF Plans and QIF Results data models for the purposes of statistical evaluations involving more than one measurement.

The QIF Statistics data model includes elements for statistical evaluations on a percharacteristic basis and for summary information over multiple characteristics. The directives defining the various statistical evaluations to be collected reside in a light-weight, mnemonicbased list. The association between a statistical quantity and its mnemonic is defined in the annotation describing each individual data element and is shown in Table 9 below.

12.5.2 QIF Statistics data sets

QIF Statistics naturally divides into two aspects: those elements of the data model that are used to define the requirements of a statistical study, and those elements that are used to define the results of a statistical study. The results of a statistical study can be used to alter measurement or production processes and activities, often in real time. In addition, QIF Statistics contains information particular to the assignable causes and corrective actions related to events and thresholds encountered in the course of a statistical study.

At the highest level a QIF document containing QIF Statistics can contain any or all of the following sets of data:

- Statistical Study Plans (StatisticalStudyPlans element)
- Statistical Study Results (StatisticalStudiesResults element)
- Corrective Action Plans (CorrectiveActionPlans element)

QIF Statistics defines a variety of statistical study types. The criteria for determining the status (pass or fail) for each statistical study type can be defined as well as the statistical quantities particular to that study type.

12.5.2.1 Statistical study plans

Statistical Study Plans contain information that specifies the parameters of various quality study types. Each Statistical Study Plan can include the following types of information:

• Feature Item Ids

- Characteristic Item Ids
- Pre-Inspection Traceability
- Corrective Action Plan Ids

The following Statistical Study Plan types are supported:

- Bias Study Plan
- Capability Study Plan
- First Article Study Plan
- Gage R & R Study Plan
- Linearity Study Plan
- Process Difference Study Plan
- Production Study Plan
- Simple Study Plan
- Stability Study Plan

The statistical study plan data set types are:

- Bias Study Plan (**BiasStudyPlan** *element*) where the bias (expected measured value versus actual value) of a measurement system is determined.
- Capability Study Plan (**CapabilityStudyPlan** *element*) where a number of part samples are measured to establish the capability of a manufacturing process (e.g. Cp, Cpk, etc.).
- First Article Study Plan (**FirstArticleStudyPlan** *element*) where the number and severity of non-conforming characteristics determines product acceptance.
- Gage R&R Study Plan (**GageRandRStudyPlan** *element*) where a number of part samples are repeatedly measured by two or more appraisers to establish the repeatability and reproducibility of a measurement process.
- Linearity Study Plan (LinearityStudyPlan *element*) where an artifact or artifacts are measured to determine the linearity of a measurement system.
- Process Difference Study Plan (**ProcessDifferenceStudyPlan** *element*) where the same part is measured before and after a manufacturing process to determine any part distortion caused by that process.
- Production Study Plan (**ProductionStudyPlan** *element*) where samples are measured for statistical process control to ensure the ongoing stability or capability of a manufacturing process.
- Simple Study Plan (**SimpleStudyPlan** *element*) where multiple samples are measured for the purpose of averaging features for process adjustment or reverse engineering.
- Stability Study Plan (**StabilityStudyPlan** *element*) where the same part or artifact is measured over time to assess the stability of a measurement system.

More than one study plan of a given type may be instantiated in a single QIF document. Similarly, two or more study plans of different types may be instantiated in a single QIF document.

12.5.2.2 Statistical study results

Statistical Study Results contain information related to the output of various quality study types. Each Statistical Study Result can include the following types of information:

- Status
- Assignable Cause Ids
- Corrective Action Ids
- Characteristic Ids
- Traceability
- Characteristic Statistics
- Measurement lds (reference to measured characteristic)

The above plan data sets have corresponding results data sets:

- Bias Study Results (**BiasStudyResults** *element*) where the bias (expected measured value versus actual value) of a measurement system was determined.
- Capability Study Results (**CapabilityStudyResults** *element*) where a number of part samples were measured to establish the capability of a manufacturing process.
- First Article Study Results (**FirstArticleStudyResults** *element*) where the number and severity of non-conforming characteristics determined product acceptance.
- Gage R&R Study Results (GageRandRStudyResults *element*) where a number of part samples were repeatedly measured by two or more appraisers to establish the repeatability and reproducibility of a measurement process.
- Linearity Study Results (LinearityStudyResults *element*) where an artifact or artifacts were measured to determine the linearity of a measurement system.
- Process Difference Study Results (**ProcessDifferenceStudyResults** *element*) where the same part was measured before and after a manufacturing process to determine any part distortion caused by that process.
- Production Study Results (**ProductionStudyResults** *element*) where samples were measured for statistical process control to ensure the ongoing stability or capability of a manufacturing process.
- Simple Study Results (**SimpleStudyResults** *element*) where multiple samples were measured for the purpose of averaging features for process adjustment or reverse engineering.
- Stability Study Results (**StabilityStudyResults** *element*) where the same part or artifact was measured over time to assess the stability of a measurement system.

A QIF Statistics study result does not need a QIF-defined study plan but can optionally reference an associated QIF-defined study plan by its QIF id if it exists.

More than one study result of a given type may be instantiated in a single QIF document. Similarly, two or more study plans of different types may be instantiated in a single QIF document.

12.5.2.3 Corrective action plans

Corrective Action Plans contain information related to the establishment of lists of assignable causes of variation and associated corrective actions. Each Corrective Action Plan can include the following types of information:

- Assignable Causes
- Corrective Actions

A corrective action plan has a single data set type (**CorrectiveActionPlan** *element*). More than one corrective action plan may be defined in the **CorrectiveActionPlans** *element*.

A corrective action plan consists of a list of assignable causes and a list of corrective actions. The connection between the assignable causes and corrective actions is made by referencing the QIF id of the corrective action via the optional **CorrectiveActionIds** *element*.

More than one corrective action may be associated with a single assignable cause. Because the assignable cause and corrective action list are independent, the same corrective action may be associated with more than one assignable cause.

12.5.3 Statistical and summary values

12.5.3.1 Hierarchy of statistical information

A variety of statistical quantities can be derived from a set of data. The number and type of meaningful statistical quantities grows with the information available for a set of data.

- At the very lowest level a set of data of any type will define quantities like the total number of samples.
- If the data set is numerical, then quantities like the average value, the maximum and the minimum, or the standard deviation (and many others) become available.
- If a numerical data set has specification limits or tolerance values then even more quantities become available such as Cp and Cpk, the number out of tolerance, and the equipment variation relative to the tolerance zone.

12.5.3.2 Statistical values and their associated mnemonics

A statistical study plan will need to define the various statistical values that are to be collected, evaluated, and reported on a per characteristic basis. This is done via the **StatsValuesPerChar** *element* defined in the **StatisticalStudyBaseType**. This *element* is a simple list of mnemonics defining all statistical quantities available for collection and reporting. Unlike the containers for statistical evaluation quantities, the **StatsValuesPerChar** *element* does not differentiate based on the hierarchy of the preceding clause. Therefore, the list of mnemonics may include references to statistical quantities that are meaningless or which may not be calculated given the size and type of the data set. If a statistical study plan requests a quantity which is unavailable then the associated results container element should not be included in the statistical study results.

The mnemonics used in the **StatsValuesPerChar** *element* are defined in the **StatsValueEnumType**.

Table 9 lists the various mnemonics and their associated statistical value elements. A checkmark in the **Num** column signifies that a data set must be numeric for the statistical value to make sense. A checkmark in the **Tol** column signifies that a data set must have a specification limit (either numerical or non-numerical) for the statistical value to make sense. The **Size** column shows the number of samples needed for simple statistical quantities to be calculated. The sample sizes for gage R&R studies are defined by best practices and not the minimum number necessary to calculate a value. The **Size** column entries for these rows are intentionally left blank.

Mnemonic	Statistical Value	Num	Tol	Size
TOTNUM	Total number of samples			≥1
EFFNUM	Effective number of samples			≥1
NUMSUB	Number of subgroups			≥2
AVG	Average	✓		≥2
DIFF	Difference between exactly two samples	✓		=2
RMS	Root mean square	✓		≥2
MAX	Maximum value	✓		≥2
MIN	Minimum value	✓		≥2
RANGE	Range	✓		≥2
AVGRNG	Average range over subgroups	✓		≥3
STDDEV	Standard deviation	✓		≥2
SKEW	Skew	✓		≥3
KURT	Kurtosis	✓		≥4
NORM	Normality	✓		≥3
PROVAR	Process variation (6σ)	✓		≥2
ESTSTDV	Estimate standard deviation from average range over subgroups	✓		≥2
UCL	Upper control limit			≥2

LCL	Lower control limit			≥2
UCLRNG	Upper control limit for subgroup range	\checkmark		≥3
LCLRNG	Lower control limit for subgroup range	\checkmark		≥3
NUMOOC	Number of samples out of control			≥2
NUMOOT	Number of samples out of tolerance		✓	≥1
NOOTHI	Number of samples above upper tolerance limit		~	≥1
NOOTLO	Number of samples below lower tolerance limit		✓	≥1
СР	Ср	✓	✓	≥2
СРК	Cpk	✓	✓	≥2
PP	Рр	✓	✓	≥2
PPK	Ppk	\checkmark	✓	≥2
СМ	Cm (like Cp but using 8σ instead of 6σ)	\checkmark	✓	≥2
СМК	Cmk (like Cpk but using 8σ instead of 6σ)	✓	✓	≥2
AV	Appraiser variation	✓		
REL_AV	Relative appraiser variation	✓	✓	
EV	Equipment variation	\checkmark		
REL_EV	Relative equipment variation	\checkmark	✓	
INTERACTION	Appraiser/equipment interaction	\checkmark		
REL_INTERACTION	Relative appraiser/equipment interaction	\checkmark	✓	
RANDR	Gage R&R	\checkmark		
REL_RANDR	Relative gage R&R	\checkmark	✓	
PV	Part variation	✓		
REL_PV	Relative part variation	\checkmark	~	
TV	Total variation	\checkmark		
REL_TV	Relative total variation	✓	✓	

LNRTY	Linearity	~		≥3
REL_LNRTY	Relative Linearity	~	~	≥3
BIAS	Bias	~		≥1
REL_BIAS	Relative Bias	~	~	≥1
R_SQR	R ² goodness of fit	~		≥3
SLOPE	Slope of best-fit line (m in Y=mX+b)	~		≥2
INTCPT	Y-intercept of best fit line (b in Y=mX+b)	~		≥2
UPRCONFLIM	Upper confidence limit	✓		≥2
LWRCONFLIM	Lower confidence limit	✓		≥2
TDIST	T-distribution value	~		≥2

Table 9 – Statistical values and their associated mnemonics.

For example, the study plan below requests that the average value and the Cp and Cpk be evaluated for each characteristic defined in the **CharacteristicItemIds** *element*:

```
<CapabilityStudyPlan>

<NumberOfSamples>6</NumberOfSamples>

<CharacteristicItemIds n="2">

<Id>>7</Id>

<Id>>8</Id>

</CharacteristicItemIds>

<StatsValuesPerChar>AVG CP CPK</StatsValuesPerChar>

...

</CapabilityStudyPlan>
```

After measurement and statistical evaluation the statistical results might look like:

```
<CapabilityStudyResults>

...

<DiameterCharacteristicStats>

<MeasuredIds>

<Ids n="6">

<Id>42</Id>

<Id>44</Id>

<Id>44</Id>

<Id>44</Id>

<Id>46</Id>

<Id>48</Id>

<Id>50</Id>

<Id>50</Id>

</Id>

</Id>
```

```
<ValueStats>
        <Average>
          <Value>10.07</Value>
        </Average>
        <Cp>
          <Value>2.04</Value>
        </Cp>
        <Cpk>
          <Value>1.83</Value>
        </Cpk>
      </ValueStats>
    </DiameterCharacteristicStats>
    <DiameterCharacteristicStats>
      <MeasuredIds>
         <Ids n="6">
           <Id>43</Id>
           <Id>45</Id>
           <Id>47</Id>
           <Id>49</Id>
           <Id>51</Id>
           <Id>53</Id>
         </Ids>
      </MeasuredIds>
      <ValueStats>
        <Average>
          <Value>9.86</Value>
        </Average>
        <Cp>
          <Value>1.89</Value>
        </Cp>
        <Cpk>
          <Value>1.47</Value>
        </Cpk>
      </ValueStats>
    </DiameterCharacteristicStats>
</CapabilityStudyResults>
```

12.5.3.3 Summary values and their associated mnemonics

In addition to collecting statistical values for individual characteristics, summary information for the whole statistical study can be collected. Examples include: the minimum Cpk over all characteristics, the maximum range over all characteristics, or the average gage R&R over all characteristics.

The summary values to be collected are defined by a list of **StatsValuesSummary** *elements* defined in the **StatisticalStudyBaseType**. This *element* has two sub-*elements*: the **SummaryType** *element* uses a mnemonic to define which statistical value type is to be summarized, and the **SummaryStats** *element* is a simple list of mnemonics defining all

statistical summary quantities to be collected and reported. The available summary values are shown in Table 10 below.

Mnemonic	Statistical Value
AVG	Average over all values
MAX	Maximum of all values
MIN	Minimum of all values
RANGE	Range over all values
STDDEV	Standard deviation of all values

Table 10 - Statistical summary values and their associated mnemonics.

For example, a study plan might request the average of average values and the minimum Cpk over all characteristics in the study:

```
<CapabilityStudyPlan>
   <NumberOfSamples>6</NumberOfSamples>
   <CharacteristicItemIds n="2">
       <Id>7</Id>
       <Id>8</Id>
   </CharacteristicItemIds>
   <StatsValuesPerChar>AVG CP CPK</StatsValuesPerChar>
   <SummaryStatsValuesList n="2">
      <SummaryStatsValues>
        <SummaryType>AVG</SummaryType>
        <SummaryStats>AVG</SummaryStats>
      </SummaryStatsValues>
      <SummaryStatsValues>
        <SummaryType>CPK</SummaryType>
        <SummaryStats>MIN</SummaryStats>
      </SummaryStatsValues>
   </ SummaryStatsValuesList>
```

</CapabilityStudyPlan>

After measurement and statistical evaluation the statistical results will contain additional information summarizing the statistical evaluations:

```
<CapabilityStudyResults>

...

<DiameterCharacteristicStats>

<MeasuredIds>

<Ids n="6">

<Id>>42</Id>
```

```
<Id>44</Id>
       <Id>46</Id>
       <Id>48</Id>
       <Id>50</Id>
       <Id>52</Id>
     </Ids>
  </MeasuredIds>
  <ValueStats>
    <Average>
      <Value>10.07</Value>
    </Average>
    <Cp>
      <Value>2.04</Value>
    </Cp>
    <Cpk>
      <Value>1.83</Value>
    </Cpk>
  </ValueStats>
</DiameterCharacteristicStats>
<DiameterCharacteristicStats>
  <MeasuredIds>
     <Ids n="6">
       <Id>43</Id>
       <Id>45</Id>
       <Id>47</Id>
       <Id>49</Id>
       <Id>51</Id>
       <Id>53</Id>
     </Ids>
  </MeasuredIds>
  <ValueStats>
    <Average>
      <Value>9.86</Value>
    </Average>
    <Cp>
      <Value>1.89</Value>
    </Cp>
    <Cpk>
      <Value>1.47</Value>
    </Cpk>
  </ValueStats>
</DiameterCharacteristicStats>
<LinearStatsSummaries n="1">
  <LinearStatsSummary>
    <SummaryType>AVG</SummaryType>
    <Average>
      <Value>9.965</Value>
    </Average>
  </LinearStatsSummary>
</LinearStatsSummaries>
<StatsSummaries n="1">
  <StatsSummary>
```

```
<SummaryType>CPK</SummaryType>
<Minimum>
<Value>1.47</Value>
</Minimum>
</StatsSummary>
</StatsSummaries>
```

</CapabilityStudyResults>

Statistical values may have the same units as the set of values from which they are calculated (average, minimum, standard deviation, etc.) or they may be unit-less (Cp, Cpk, etc.). Statistical values with units can only be summarized over characteristics that share the same units. It is reasonable to average the standard deviations of a set of linear dimensions but not of a mixed set of linear and angular dimensions. Therefore there are separate statistical summary *elements* for each unit type: **LinearStatsSummary**, **AngularStatsSummary**, etc. Unit-less statistical values can be summarized over characteristics with differing units. There is a single unit-less statistical summary *element*. **StatsSummary**.

12.5.4 Statistical study criteria

The pass/fail criteria of a statistical study are defined as various criterion types. There is a criterion type for each type of units and the *CriterionDecimalType* which is unit-less and from which all other types derive.

A pass/fail criterion for a statistical value has three basic components:

- A limit value, above or below which a failure condition exists
- An optional number of allowed exceptions defining the number or fraction of characteristics which may have statistical values above or below the limit without causing a failure condition
- An optional refinement to the above number defining an extreme limit, different from the limit value, above or below which no characteristic statistical value is allowed.

Whether the limit and extreme limit are upper or lower bounds is taken in the context of the statistical value type and is explicitly stated in the criterion element's annotation.

Here are several examples of pass/fail criteria for the Cpk value (for Cpk the limit and extreme limit are lower bounds).

An example where any characteristic in a capability study with a Cpk value below the criterion limit of 1.66 will cause a failure condition:

```
<CapabilityStudyPlan>
...
<CpkThreshold>
<Limit>1.66</Limit>
</CpkThreshold>
...
</CapabilityStudyPlan>
```

An example where 95% of the characteristics must achieve a Cpk value above 1.66, or in other words where 5% of the characteristics are allowed to have a Cpk value below the limit of 1.66 by using the optional **NumberAllowedExceptions** *element*.

```
<CapabilityStudyPlan>

...

<CpkThreshold>

<Limit>1.66</Limit>

<NumberAllowedExceptions>

<Fraction>0.05</Fraction>

</NumberAllowedExceptions>

</CpkThreshold>

...

</CapabilityStudyPlan>
```

In the above example there is no lower limit to the Cpk value of the 5% of characteristics allowed to have a Cpk value below 1.66. To enforce an absolute lower limit of 1.33, the **ExtremeLimit** *element* is used:

```
<CapabilityStudyPlan>

...

<CpkThreshold>

<Limit>1.66</Limit>

<NumberAllowedExceptions>

<Fraction>0.05</Fraction>

</NumberAllowedExceptions>

<ExtremeLimit>1.33</ExtremeLimit>

</CpkThreshold>

...

</CapabilityStudyPlan>
```

In the above example no Cpk values may be below 1.33 and up to 5% of characteristics may have values between 1.33 and 1.66, and the remainder of Cpk values must be 1.66 or greater.

12.5.5 Data groups and subgroups

Statistical evaluations are done on a set of data. Some statistical calculations require the data set to be split into a number of subgroups.

In a statistical plan, the total number of samples to be included is defined by the **NumberOfSamples** *element*. If these samples are to be grouped then the optional **SubgroupSize** *element* is to be used. The number of samples must be an even multiple of the subgroup size.

For example, a capability study requiring 6 samples over 2 subgroups would require a subgroup size of 3:

```
<CapabilityStudyPlan>
<NumberOfSamples>6</NumberOfSamples>
```

Copyright © 2018 by Digital Metrology Standards Consortium, Inc. (DMSC)

```
<SubgroupSize>3</SubgroupSize>
<CharacteristicItemIds n="2">
<Id>7</Id>
<Id>8</Id>
</CharacteristicItemIds>
...
</CapabilityStudyPlan>
```

The measured characteristics included in the evaluation of a statistical value are stored as a list of ids referencing the characteristic measurements stored in the **Results** *element*. The optional **MeasuredIds** *element* is used when all measurments are in one set and the optional **Subgroup** *element* is used, one instance for each subgroup, when the measurements are grouped into subgroups.

The results of the capability study with 6 samples with a subgroup size of 3 might look like:

```
<CapabilityStudyResults>
. . .
    <DiameterCharacteristicStats>
      <SubGroups n="2">
        <Subgroup id="20">
          <MeasuredIds>
             <Ids n="3">
                <Id>42</Id>
                <Id>44</Id>
                <Id>46</Id>
             </Ids>
          </MeasuredIds>
        </Subgroup>
        <Subgroup id="21">
          <MeasuredIds>
             <Ids n="3">
                <Id>48</Id>
                <Id>50</Id>
                <Id>52</Id>
             </Ids>
          </MeasuredIds>
        </Subgroup>
      </SubGroups>
</CapabilityStudyResults>
```

Each measurement subgroup has a unique QIF id so that it may be referenced in the same manner as a characteristic measurement.

12.5.5.1 Exclusion

Sometimes a measurement can be excluded because its value is known to be meaningless or suspect. There may have been an equipment error causing an obviously erroneous value like a

10 mm hole measured as 100 mm. The feature may have been reworked so that it is no longer a member of the raw production set.

To exclude a characteristic from a statistical calculation use the optional **Exclusion** sub-*element* of the **MeasuredIds** *element*. The id of the characteristic appears normally in the **Ids** sub*element* list but is then marked as excluded by including the same id in the **Exclusion** sub*element* with a reason for the exclusion.

For example, a single measurement is excluded from a single data set evaluation because it was reworked:

```
<CapabilityStudyResults>
. . .
    <DiameterCharacteristicStats>
      <MeasuredIds>
         <Ids n="6">
           <Id>42</Id>
           <Id>44</Id>
           <Id>46</Id>
           <Id>48</Id>
           <Id>50</Id>
           <Id>52</Id>
         </Ids>
         <Exclusions n="1">
           <Exclusion>
             <Id>44</Id>
             <Reason>
               <ExclusionReasonEnum>REWORK</ExclusionReasonEnum>
             </Reason>
           </Exclusion>
         </Exclusions>
      </MeasuredIds>
    </DiameterCharacteristicStats>
</CapabilityStudyResults>
```

Similarly, measurements can be excluded from subgroups using the **Exclusion** *element*. For example, two measurements are excluded from two different subgroups for different reasons:

```
<CapabilityStudyResults>

...

<DiameterCharacteristicStats>

<SubGroups n="2">

<SubGroup id="20">

<MeasuredIds>

<Ids n="3">

<Id>42</Id>

<Id>44</Id>

<Id>44</Id>

<Id>46</Id>
```

```
</Ids>
             <Exclusions n="1">
               <Exclusion>
                 <Id>44</Id>
                 <Reason>
                   <ExclusionReasonEnum>REWORK</ExclusionReasonEnum>
                 </Reason>
               </Exclusion>
             </Exclusions>
          </MeasuredIds>
        </Subgroup>
        <Subgroup id="21">
          <MeasuredIds>
             <Ids n="3">
               <Id>48</Id>
               <Id>50</Id>
               <Id>52</Id>
             </Ids>
             <Exclusions n="1">
               <Exclusion>
                 <Id>52</Id>
                 <Reason>
                   <OtherExclusionReason>Grit on
caliper</OtherExclusionReason>
                 </Reason>
               </Exclusion>
             </Exclusions>
          </MeasuredIds>
        </Subgroup>
      </SubGroups>
</CapabilityStudyResults>
```

12.5.5.2 Subgroup statistics

Some statistical values can be accumulated on a per-sub-group basis. Like study statistical values and study summary values these values are identified by a mnemonic.

Mnemonic	Subgroup Statistical Value
TOTNUM	Total number of samples
EFFNUM	Effective number of samples
AVG	Average over all subgroup values
DIFF	Difference between exactly two subgroup values
MAX	Maximum of all subgroup values

MIN	Minimum of all subgroup values
RANGE	Range over all subgroup values
NUMOOT	Number of out-of-tolerance subgroup samples
NOOTHI	Number of subgroup samples above upper tolerance limit
NOOTLO	Number of subgroup samples below lower tolerance limit

Table 11 – Subgroup statistical values and their associated mnemonics.

For a statistical plan the statistical values to be evaluated for each subgroup are listed in the **StatsValuesPerSubgroup** *element*.

For example, the study plan below requests that the average value and the Cp and Cpk be evaluated for each characteristic defined in the **CharacteristicItemIds** *element* and that the average and range be evaluated for each subgroup of size 3:

```
<CapabilityStudyPlan>

<NumberOfSamples>6</NumberOfSamples>

<SubgroupSize>3</SubgroupSize>

<CharacteristicItemIds n="2">

<Id>?</Id>

<Id>?</Id>

</CharacteristicItemIds>

</CharacteristicItemIds>

<StatsValuesPerChar>AVG CP CPK</StatsValuesPerChar>

<StatsValuesPerSubgroup>AVG RANGE</StatsValuesPerSubgroup>

...
```

```
</CapabilityStudyPlan>
```

After measurement and statistical evaluation the statistical results might look like:

```
<CapabilityStudyResults>
    <DiameterCharacteristicStats>
      <SubGroups n="2">
        <Subgroup id="20">
          <MeasuredIds>
             <Ids n="3">
               <Id>42</Id>
               <Id>44</Id>
               <Id>46</Id>
             </Ids>
          </MeasuredIds>
        </Subgroup>
        <Subgroup id="21">
          <MeasuredIds>
             <Ids n="3">
               <Id>48</Id>
```

```
<Id>50</Id>
           <Id>52</Id>
         </Ids>
      </MeasuredIds>
    </Subgroup>
  </SubGroups>
  <ValueStats>
    <Average>
      <Value>10.07</Value>
    </Average>
    <SubgroupAverage subgroupId="20">
      <Value>10.04</Value>
    </SubgroupAverage>
    <SubgroupAverage subgroupId="21">
      <Value>10.1</Value>
    </SubgroupAverage>
    <SubgroupRange subgroupId="20">
      <Value>0.02</Value>
    </SubgroupRange>
    <SubgroupRange subgroupId="21">
      <Value>0.03</Value>
    </SubgroupRange>
    <Cp>
      <Value>2.04</Value>
    </Cp>
    <Cpk>
      <Value>1.83</Value>
    </Cpk>
  </ValueStats>
</DiameterCharacteristicStats>
<DiameterCharacteristicStats>
  <SubGroups n="2">
   <Subgroup id="22">
      <MeasuredIds>
         <Ids n="3">
           <Id>43</Id>
           <Id>45</Id>
           <Id>47</Id>
         </Ids>
      </MeasuredIds>
    </Subgroup>
    <Subgroup id="23">
      <MeasuredIds>
         <Ids n="3">
           <Id>49</Id>
           <Id>51</Id>
           <Id>53</Id>
         </Ids>
      </MeasuredIds>
    </Subgroup>
  </SubGroups>
  <ValueStats>
```

```
<Average>
          <Value>9.86</Value>
        </Average>
        <SubgroupAverage subgroupId="22">
          <Value>9.81</Value>
        </SubgroupAverage>
        <SubgroupAverage subgroupId="23">
          <Value>9.91</Value>
        </SubgroupAverage>
        <SubgroupRange subgroupId="22">
          <Value>0.04</Value>
        </SubgroupRange>
        <SubgroupRange subgroupId="23">
          <Value>0.07</Value>
        </SubgroupRange>
        <Cp>
          <Value>1.89</Value>
        </Cp>
        <Cpk>
          <Value>1.47</Value>
        </Cpk>
      </ValueStats>
    </DiameterCharacteristicStats>
</CapabilityStudyResults>
```

This example illustrates how the subgroup id is used to associate values with individual subgroups.

12.5.6 High level structure of the QIF Statistics schema

The QIF Statistics schema model includes the information items from the QIFStatistics.xsd schema file and ten of the schema files in the QIF Library. The QIF Library files are incorporated into the schema by a chain of "*include*" directives starting in the Statistics.xsd schema file.

The Statistics element, is the root of the QIF Statistics model, as shown in Figure 238.

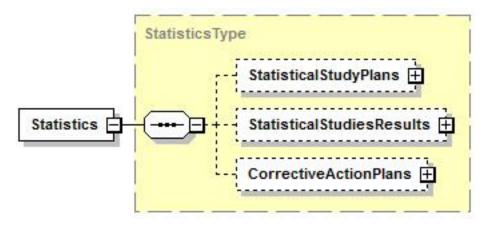


Figure 238 - Highest level QIF Statistics elements.

The optional **StatisticalStudyPlans** *element* contains one or more statistical study plans *element*s of the types listed in subclause 12.5.2.1 using the substitution group mechanism for the **StatisticalStudyPlan** *element*.

Similarly, the optional **StatisticalStudyResults** *element* contains one or more statistical study results *element*s of the types listed in subclause 12.5.2.2 using the substitution group mechanism for the **StatisticalStudyResult** *element*.

By contrast, the optional **CorrectiveActionPlans** *element* is a simple list of one or more **CorrectiveActionPlan** *element*s all of the same type.

12.5.7 Referencing measurement results

An overview of how QIF entities reference other QIF entities can be found in **subclause 5.13 Tracking information through the product lifecycle**.

A QIF document containing QIF Statistics study results can reference the measurement results used in statistical calculations at two levels.

At a very low level, measurment results can be referenced by characteristic and feature summaries as seen in examples above. The **MeasuredIds** *element* found in the **CharacteristicStatsEvalBaseType** and the **SubgroupType** can reference individual characteristic measurement instances in the QIF document via their QIF ids or in external QIF documents via the QIF id of an **ExternalQIFDocument** *element* in conjuction with the **xId** *attribute* where the **xId** attribute is the QIF id of the measured feature in the external QIF document. Similarly, the **MeasuredIds** *element* found in the **AverageFeatureType** can reference individual feature measurement instances in the QIF document via their QIF id or in external documents with the **ExternalQIFDocument** QIF id / **xId** mechanism.

At a higher level, whole measurement results can be referenced by any of three mechanisms:

- 1. Each entry in the **ResultsIds** *element* of **StatisticalStudyResultsBaseType** can reference a measurement results contained within the QIF document via the QIF id of each **MeasurementResults** *element* or measurements results in external QIF documents with the **ExternalQIFDocument** QIF id / **xId** mechanism.
- 2. Each entry in the **ResultsQPIds** *element* of **StatisticalStudyResultsBaseType** can reference a measurement results contained in another QIF document or documents via the QPId of the measurement results found in the **ThisResultsInstanceQPId** *element* in the other QIF document. The QPId of each measurement results is referenced rather than the QPId of the QIF document itself because a QIF document can contain more than one measurement results.
- Each entry in the ResultsFiles element of StatisticalStudyResultsBaseType can reference a measurement results contained within an electronic document of any type via its URI (Uniform Resource Identifier).

12.6 QIF Statistics samples

12.6.1 Typical quality data examples

The QIF Statistics specification is designed to carry all types of quality information. The schema supports Variable measurement data, Attribute measurement data, Binary measurement data and various combinations of these.

This guideline details typical examples for implementing QIF Statistics XML files that carry these different quality data types.

Several examples use the following sample part (i.e. widget), shown in Figure 239, as a basis for inspection.

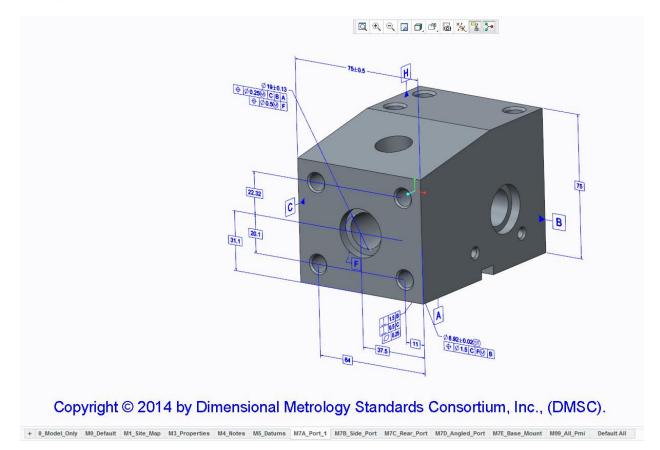


Figure 239 - Sample QIF widget

This sample part has defined variable characteristic data (Diameter, Flatness, etc.), and may also be inspected for Attribute data (Pass/Fail, Scratches, Dents, Burrs, etc.) The next subclause describes examples of how this inspection data can be carried with QIF Documents.

12.6.1.1 Variable data example

Variable data is defined as quantitative data where measurements are used for analysis. Diameter and Flatness are examples of variable characteristics. As an example, XBar and R, XBar and s, and Individual and Moving Range Control charts are used for variables data.

The following QIF document structure is an example that contains two QIF MeasurementResults blocks for a variable inspection of a diameter:

```
<QIFDocument xmlns="http://qifstandards.org/xsd/qi"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" versionQIF="3.0.0"
idMax="10" xsi:schemaLocation= "http://gifstandards.org/xsd/gif3
../Applications/OIFDocument.xsd">
  <QPId>934F7360-5140-4b57-B834-F0774D2F22FC
  <StandardsDefinitions n="1">
    <Standard id="10">
      <Organization>
        <StandardsOrganizationEnum>ASME</StandardsOrganizationEnum>
      </Organization>
      <Designator>Y14.5</Designator>
      <Year>2009</Year>
    </Standard>
</StandardsDefinitions>
  <Product>
    <PartSet n="1">
      <Part id="1" label=" QIF Widget"/>
    </PartSet>
  </Product>
  <Characteristics>
    <FormalStandardId>10</FormalStandardId>
    <CharacteristicDefinitions n="1">
      <DiameterCharacteristicDefinition id="2">
      <Name>Diameter #1</Name>
        <Tolerance>
          <MaxValue>2.200</MaxValue>
          <MinValue>1.800</MinValue>
          <DefinedAsLimit>true</DefinedAsLimit>
        </Tolerance>
      </DiameterCharacteristicDefinition>
    </CharacteristicDefinitions>
    <CharacteristicNominals n="1">
      <DiameterCharacteristicNominal id="3">
        <CharacteristicDefinitionId>2</CharacteristicDefinitionId>
        <TargetValue>2.000</TargetValue>
      </DiameterCharacteristicNominal>
    </CharacteristicNominals>
    <CharacteristicItems n="1">
      <DiameterCharacteristicItem id="4">
        <Name>Diameter #1</Name>
        <CharacteristicNominalId>3</CharacteristicNominalId>
      </DiameterCharacteristicItem>
    </CharacteristicItems>
  </Characteristics>
  <Results>
    <MeasurementResultsSet n="2">
      <MeasurementResults id="5">
```

```
<MeasuredCharacteristics>
        <CharacteristicMeasurements n="1">
          <DiameterCharacteristicMeasurement id="6">
          <Status>
            <CharacteristicStatusEnum>PASS</CharacteristicStatusEnum>
          </Status>
          <CharacteristicItemId>4</CharacteristicItemId>
          <Value>1.987</Value>
        </DiameterCharacteristicMeasurement>
      </CharacteristicMeasurements>
    </MeasuredCharacteristics>
    <InspectionStatus>
      <InspectionStatusEnum>PASS</InspectionStatusEnum>
    </InspectionStatus>
   </MeasurementResults>
   <MeasurementResults id="7">
    <MeasuredCharacteristics>
      <CharacteristicMeasurements n="1">
        <DiameterCharacteristicMeasurement id="8">
          <Status>
            <CharacteristicStatusEnum>PASS</CharacteristicStatusEnum>
          </Status>
          <CharacteristicItemId>4</CharacteristicItemId>
          <Value>2.123</Value>
        </DiameterCharacteristicMeasurement>
      </CharacteristicMeasurements>
    </MeasuredCharacteristics>
    <InspectionStatus>
      <InspectionStatusEnum>PASS</InspectionStatusEnum>
    </InspectionStatus>
   </MeasurementResults>
  </MeasurementResultsSet>
</Results>
<Statistics>
  <StatisticalStudiesResults n="1">
    <SimpleStudyResults id="9">
      <Status>
        <StatsEvalStatusEnum>INFORMATIONAL</StatsEvalStatusEnum>
      </Status>
      <CharacteristicsStats n="1">
        <DiameterCharacteristicStats>
          <MeasuredIds>
           <Ids n="2">
            <Id>6</Id>
            <Id>8</Id>
           </Ids>
          </MeasuredIds>
          <Status>
            <StatsEvalStatusEnum>INFORMATIONAL</StatsEvalStatusEnum>
          </Status>
          <ValueStats>
            <TotalNumber>
              <Value>2</Value>
            </TotalNumber>
            <NumberSubgroups>
              <Value>2</Value>
            </NumberSubgroups>
```

```
<Maximum>
                <Value>2.123</Value>
              </Maximum>
              <Minimum>
                <Value>1.987</Value>
              </Minimum>
              <Range>
                <Value>0.002</Value>
              </Range>
              <NumberOutOfTolerance>
                <Value>0</Value>
              </NumberOutOfTolerance>
              <Cpk>
                <Value>0.553</Value>
              </Cpk>
              <Ppk>
                <Value>0.401</Value>
              </Ppk>
            </ValueStats>
          </DiameterCharacteristicStats>
        </CharacteristicsStats>
        <NumberOfSamples>2</NumberOfSamples>
      </SimpleStudyResults>
    </StatisticalStudiesResults>
 </Statistics>
</QIFDocument>
```

- 1. The Part Id is identified in the **Product** element.
- 2. The characteristic name (Diameter #1) and tolerance are defined in the **CharacteristicDefinitions** *element*.
- 3. The characteristic target value is defined in the **CharacteristicNominals** *element* with a reference to the characteristic definition.
- 4. The characteristic name is further expressed in the **DiameterCharacteristicItem** *element* with a reference to the characteristic nominal
- 5. The measurement values are identified in the **MeasurementResults** subclauses with reference to the characteristic Items.
- 6. The **SimpleStudyResults** subclause defines the study type and references the measurement lds from the measurements subclause and further describes the detailed statistical values.

12.6.1.2 Attribute data example

Attribute data is defined as qualitative data that can be counted for recording and analysis. Examples include characteristics such as the presence of a required label, the installation of all required fasteners, and the absence of errors on an expense report. Other examples are characteristics that are inherently measurable (i.e. could be treated as variables data), but where the results were recorded in a simple yes/no fashion, such as the acceptability of a shaft diameter when checked on a go/no-go gage, or the presence of any engineering changes on a drawing. Attributes data are usually gathered in the form of nonconforming units or of nonconformities; they are analyzed by p, np, c and u control charts.

The following QIF document structure is an example that contains three QIF MeasurementResults blocks for attribute inspection of the QIF Widget (e.g. scratches):

```
<?xml version="1.0" encoding="UTF-8"?>
<QIFDocument
xmlns="http://gifstandards.org/xsd/gif3"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
versionOIF="3.0.0"
idMax="12"
xsi:schemaLocation=
  "http://qifstandards.org/xsd/qif3 ../QIFApplications/QIFDocument.xsd">
 <QPId>21106cae-9a93-4573-bf61-6dc057b0d0be
 <StandardsDefinitions n="1">
    <Standard id="12">
      <Organization>
        <StandardsOrganizationEnum>ASME</StandardsOrganizationEnum>
      </Organization>
      <Designator>Y14.5</Designator>
      <Year>2009</Year>
    </Standard>
 </StandardsDefinitions>
 <Product>
    <PartSet n="1">
      <Part id="1" label="Widget">
        <Attributes n="1">
          <AttributeQPId name="gpid">
            <Value>ed43400a-29bf-4ec6-b96c-e2f846eb6f00</Value>
          </AttributeOPId>
        </Attributes>
      </Part>
    </PartSet>
 </Product>
  <Characteristics>
    <FormalStandardId>12</FormalStandardId>
    <CharacteristicDefinitions n="1">
      <UserDefinedAttributeCharacteristicDefinition id="2">
        <Name>Scratched</Name>
      </UserDefinedAttributeCharacteristicDefinition>
    </CharacteristicDefinitions>
    <CharacteristicNominals n="1">
      <UserDefinedAttributeCharacteristicNominal id="3">
        <CharacteristicDefinitionId>2</CharacteristicDefinitionId>
        <PassValues n="1">
          <StringValue>0</StringValue>
        </PassValues>
        <FailValues n="1">
          <StringValue>1 or more</StringValue>
        </FailValues>
      </UserDefinedAttributeCharacteristicNominal>
    </CharacteristicNominals>
    <CharacteristicItems n="1">
      <UserDefinedAttributeCharacteristicItem id="4">
        <Attributes n="1">
          <AttributeQPId name="gpid">
          <Value>fd43400a-29bf-4ec6-b96c-e2f846eb6ff1</Value>
          </AttributeQPId>
```

```
</Attributes>
      <Name>Scratched</Name>
      <CharacteristicNominalId>3</CharacteristicNominalId>
    </UserDefinedAttributeCharacteristicItem>
  </CharacteristicItems>
</Characteristics>
<Results>
  <MeasurementResultsSet n="3">
    <MeasurementResults id="5">
      <ThisResultsInstanceOPId>
        fd43400a-29bf-4ec6-b96c-e2f846eb6ff7
      </ThisResultsInstanceQPId>
      <MeasuredCharacteristics>
        <CharacteristicMeasurements n="1">
          <UserDefinedAttributeCharacteristicMeasurement id="6">
            <Status>
              <CharacteristicStatusEnum>PASS</CharacteristicStatusEnum>
            </Status>
            <CharacteristicItemId>4</CharacteristicItemId>
            <Value>0</Value>
          </UserDefinedAttributeCharacteristicMeasurement>
        </CharacteristicMeasurements>
      </MeasuredCharacteristics>
      <InspectionStatus>
        <InspectionStatusEnum>PASS</InspectionStatusEnum>
      </InspectionStatus>
    </MeasurementResults>
    <MeasurementResults id="7">
      <ThisResultsInstanceOPId>
        6eccd072-fbac-11e3-a3ac-0800200c9a66
      </ThisResultsInstanceOPId>
      <MeasuredCharacteristics>
        <CharacteristicMeasurements n="1">
          <UserDefinedAttributeCharacteristicMeasurement id="8">
            <Status>
              <CharacteristicStatusEnum>PASS</CharacteristicStatusEnum>
            </Status>
            <CharacteristicItemId>4</CharacteristicItemId>
            <Value>0</Value>
          </UserDefinedAttributeCharacteristicMeasurement>
        </CharacteristicMeasurements>
      </MeasuredCharacteristics>
      <InspectionStatus>
        <InspectionStatusEnum>PASS</InspectionStatusEnum>
      </InspectionStatus>
    </MeasurementResults>
    <MeasurementResults id="9">
      <ThisResultsInstanceOPId>
        b3e4acb3-1b7e-4039-9154-9490ae1ec56f
      </ThisResultsInstanceQPId>
      <MeasuredCharacteristics>
        <CharacteristicMeasurements n="1">
          <UserDefinedAttributeCharacteristicMeasurement id="10">
            <Status>
              <CharacteristicStatusEnum>FAIL</CharacteristicStatusEnum>
            </Status>
            <CharacteristicItemId>4</CharacteristicItemId>
```

```
<Value>1</Value>
            </UserDefinedAttributeCharacteristicMeasurement>
          </CharacteristicMeasurements>
        </MeasuredCharacteristics>
        <InspectionStatus>
          <InspectionStatusEnum>FAIL</InspectionStatusEnum>
        </InspectionStatus>
      </MeasurementResults>
    </MeasurementResultsSet>
  </Results>
  <Statistics>
    <StatisticalStudiesResults n="1">
      <SimpleStudyResults id="11">
        <ThisStatisticalStudyResultsInstanceQPId>
          fd43400a-29bf-4ec6-b96c-e2f846eb6ff9
        </ThisStatisticalStudyResultsInstanceQPId>
        <Status>
          <StatsEvalStatusEnum>INFORMATIONAL</StatsEvalStatusEnum>
        </Status>
        <CharacteristicsStats n="1">
          <UserDefinedAttributeCharacteristicStats>
            <MeasuredIds>
              <Ids n="3">
                <Id>6</Id>
                <Id>8</Id>
                <Id>10</Id>
              </Ids>
            </MeasuredIds>
            <Status>
              <StatsEvalStatusEnum>INFORMATIONAL</StatsEvalStatusEnum>
            </Status>
            <AttributeStats>
              <TotalNumber>3</TotalNumber>
              <FailurePercentage>33</FailurePercentage>
            </AttributeStats>
          </UserDefinedAttributeCharacteristicStats>
        </CharacteristicsStats>
        <NumberOfSamples>3</NumberOfSamples>
        <SubgroupSize>1</SubgroupSize>
      </SimpleStudyResults>
    </StatisticalStudiesResults>
 </Statistics>
</QIFDocument>
```

- 1. The Part id is identified in the Product element.
- 2. The characteristic name (Scratched) is defined in the **CharacteristicDefinitions** *element*.
- 3. The characteristic pass/fail condition is defined in the **CharacteristicNominals** *element* with a reference to the characteristic definition.
- The characteristic name is further expressed in the UserDefinedAttributeCharacteristicItem *element* with a reference to the characteristic nominal.

- 5. The measurement values are identified in the **MeasurementResults** sections with reference to the characteristic items.
- 6. The **SimpleStudyResults** section defines the study type and references the measurement Ids from the measurements section and further describes the detailed statistical values.

12.6.2 Typical quality study type examples

In addition to these different quality measurement data types, the specification supports specific Quality Study types. Examples include Capability studies, SPC studies, Gage Repeatability and Reproducibility studies, Gage Linearity studies, Gage Bias studies, etc.

This subclause describes in detail typical examples for implementation of QIF Statistics XML files that carry information from these different quality study types.

12.6.2.1 First article inspection study example

A First Article Inspection Report (FAIR) is a formal method of providing a measurement report for a given manufacturing process. The method consists of measuring characteristics of an initial sample item against given specification <u>http://en.wikipedia.org/wiki/Specifications</u>, for example a drawing. Despite the name, the inspected article may not necessarily be the 'first' produced. First article inspection is typically called for in a contract between the producer and buyer of some manufactured article, to ensure that the production process reliably produces what is intended. First article inspection is widely used in the aerospace industry.

The following QIF Document structure represents a sample first article inspection for two diameters on a widget.

```
<?xml version="1.0" encoding="UTF-8"?>
<QIFDocument
xmlns="http://gifstandards.org/xsd/gif3"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
versionQIF="3.0.0"
 idMax="19"
 xsi:schemaLocation="http://gifstandards.org/xsd/gif3
../QIFApplications/QIFDocument.xsd">
  <QPId>cbb10eac-f86b-42f0-929b-e62d5c5a4fcb
  <StandardsDefinitions n="1">
    <Standard id="19">
      <Organization>
        <StandardsOrganizationEnum>ASME</StandardsOrganizationEnum>
      </Organization>
      <Designator>Y14.5</Designator>
      <Year>2009</Year>
    </Standard>
  </StandardsDefinitions>
  <Product>
    <PartSet n="1">
      <Part id="1" label="Widget">
        <Attributes n="1">
          <AttributeQPId name="gpid">
            <Value>ed43400a-29bf-4ec6-b96c-e2f846eb6f00</Value>
          </AttributeQPId>
```

```
</Attributes>
      <ModelNumber>9876543</ModelNumber>
      <DefinitionExternal n="1" id="2">
        <PrintedDrawing id="3">
          <Name>Widget Drawing</Name>
          <Version>2</Version>
          <Description>Widget Drawing rev02</Description>
          <DrawingNumber>12345/DrawingNumber>
          <Location>Engineering</Location>
        </PrintedDrawing>
      </DefinitionExternal>
    </Part>
  </PartSet>
</Product>
<Characteristics>
  <FormalStandardId>19</FormalStandardId>
  <CharacteristicDefinitions n="2">
    <DiameterCharacteristicDefinition id="4">
      <Name>Diameter #1</Name>
      <Tolerance>
        <MaxValue>2.200</MaxValue>
        <MinValue>1.800</MinValue>
        <DefinedAsLimit>false</DefinedAsLimit>
      </Tolerance>
    </DiameterCharacteristicDefinition>
    <DiameterCharacteristicDefinition id="5">
      <Name>Diameter #2</Name>
      <Tolerance>
        <MaxValue>3.200</MaxValue>
        <MinValue>2.800</MinValue>
        <DefinedAsLimit>false</DefinedAsLimit>
      </Tolerance>
    </DiameterCharacteristicDefinition>
  </CharacteristicDefinitions>
  <CharacteristicNominals n="2">
    <DiameterCharacteristicNominal id="6">
      <CharacteristicDefinitionId>4</CharacteristicDefinitionId>
      <TargetValue>2.000</TargetValue>
    </DiameterCharacteristicNominal>
    <DiameterCharacteristicNominal id="7">
      <CharacteristicDefinitionId>5</CharacteristicDefinitionId>
      <TargetValue>3.000</TargetValue>
    </DiameterCharacteristicNominal>
  </CharacteristicNominals>
  <CharacteristicItems n="2">
    <DiameterCharacteristicItem id="8">
      <Name>Diameter #1</Name>
      <KeyCharacteristic>
        <Designator>C</Designator>
      </KeyCharacteristic>
      <CharacteristicNominalId>6</CharacteristicNominalId>
      <LocationOnDrawing>
        <DrawingId>3</DrawingId>
        <SheetNumber>1</SheetNumber>
        <DrawingZone>A</DrawingZone>
      </LocationOnDrawing>
    </DiameterCharacteristicItem>
```

```
<DiameterCharacteristicItem id="9">
      <Attributes n="1">
        <AttributeQPId name="gpid">
          <Value>6eccd077-fbac-11e3-a3ac-0800200c9a66</Value>
        </AttributeOPId>
      </Attributes>
      <Name>Diameter #2</Name>
      <KeyCharacteristic>
        <Designator>C</Designator>
      </KeyCharacteristic>
      <CharacteristicNominalId>7</CharacteristicNominalId>
      <LocationOnDrawing>
        <DrawingId>3</DrawingId>
        <SheetNumber>1</SheetNumber>
        <DrawingZone>A</DrawingZone>
      </LocationOnDrawing>
    </DiameterCharacteristicItem>
  </CharacteristicItems>
</Characteristics>
<Results>
  <MeasurementResultsSet n="2">
    <MeasurementResults id="10">
      <ThisResultsInstanceOPId>
        6eccd078-fbac-11e3-a3ac-0800200c9a66
      </ThisResultsInstanceOPId>
      <MeasuredCharacteristics>
        <CharacteristicMeasurements n="1">
          <DiameterCharacteristicMeasurement id="11">
            <Status>
              <CharacteristicStatusEnum>PASS</CharacteristicStatusEnum>
            </Status>
            <CharacteristicItemId>8</CharacteristicItemId>
            <ManufacturingProcessId>17</ManufacturingProcessId>
            <NonConformanceDesignator>0</NonConformanceDesignator>
            <Value>2.001</Value>
          </DiameterCharacteristicMeasurement>
        </CharacteristicMeasurements>
      </MeasuredCharacteristics>
      <InspectionStatus>
        <InspectionStatusEnum>PASS</InspectionStatusEnum>
      </InspectionStatus>
      <ActualComponentIds n="1">
        <Id>14</Id>
      </ActualComponentIds>
    </MeasurementResults>
    <MeasurementResults id="12">
      <ThisResultsInstanceQPId>
        6eccd079-fbac-11e3-a3ac-0800200c9a66
      </ThisResultsInstanceOPId>
      <MeasuredCharacteristics>
        <CharacteristicMeasurements n="1">
          <DiameterCharacteristicMeasurement id="13">
            <Status>
              <CharacteristicStatusEnum>FAIL</CharacteristicStatusEnum>
            </Status>
            <CharacteristicItemId>9</CharacteristicItemId>
            <ManufacturingProcessId>18</ManufacturingProcessId>
```

```
<NonConformanceDesignator>1</NonConformanceDesignator>
            <Value>3.234</Value>
          </DiameterCharacteristicMeasurement>
        </CharacteristicMeasurements>
      </MeasuredCharacteristics>
      <InspectionStatus>
        <InspectionStatusEnum>FAIL</InspectionStatusEnum>
      </InspectionStatus>
      <ActualComponentIds n="1">
        <Id>14</Id>
      </ActualComponentIds>
    </MeasurementResults>
  </MeasurementResultsSet>
  <ActualComponentSets n="1">
    <ActualComponentSet n="1">
      <ActualComponent id="14">
        <SerialNumber>1ABC-DEFG</SerialNumber>
        <Status>
          <InspectionStatusEnum>PASS</InspectionStatusEnum>
        </Status>
      </ActualComponent>
    </ActualComponentSet>
  </ActualComponentSets>
</Results>
<Statistics>
  <StatisticalStudiesResults n="1">
    <FirstArticleStudyResults id="15">
      <ThisStatisticalStudyResultsInstanceQPId>
        4aa329b6-fbbb-11e3-a3ac-0800200c9a66
      </ThisStatisticalStudyResultsInstanceQPId>
      <Status>
        <StatsEvalStatusEnum>FAIL</StatsEvalStatusEnum>
      </Status>
      <InspectionTraceability>
        <InspectingOrganization>
          <Name>Supplier Corporation, Inc.</Name>
          <Address>
            <StreetNumber>1234</StreetNumber>
            <Street>Main Street</Street>
            <Town>Anywhere</Town>
            <PostalCode>90120</PostalCode>
            <Country>USA</Country>
          </Address>
        </InspectingOrganization>
        <CustomerOrganization>
          <Name>Customer Corporation, Inc.</Name>
          <Address>
            <StreetNumber>4321</StreetNumber>
            <Street>Tower Street</Street>
            <Town>Somewhere</Town>
            <PostalCode>012345</PostalCode>
            <Country>USA</Country>
          </Address>
          <CustomerNumber>0001-0000</CustomerNumber>
        </CustomerOrganization>
        <PurchaseOrderNumber>1</PurchaseOrderNumber>
        <ReportNumber>0001-00002</ReportNumber>
```

```
<InspectionStart>2014-06-03T13:47:30Z</InspectionStart>
          <ReportPreparer>
            <Name>John Smith</Name>
          </ReportPreparer>
          <ReportPreparationDate>2014-06-03T13:47:30Z</ReportPreparationDate>
          <PlantLocation id="16">
            <LocationDescription>QA</LocationDescription>
            <Address>
              <TelephoneNumber>800-555-1212</TelephoneNumber>
              <ElectronicMailAddress>
                john.smith@supplier.com
              </ElectronicMailAddress>
            </Address>
          </PlantLocation>
        </InspectionTraceability>
        <InSpecRatio>0.5</InSpecRatio>
      </FirstArticleStudyResults>
    </StatisticalStudiesResults>
 </Statistics>
  <ManufacturingProcessTraceabilities n="2">
    <ManufacturingProcessTraceability id="17">
      <Description>CNC Machining</Description>
      <MachineManufacturerName>MC Hammer</MachineManufacturerName>
      <MachineIdentifier>214-West</MachineIdentifier>
      <Shift>1</Shift>
      <Department>Mill</Department>
      <PlantSector>West Building</PlantSector>
      <ProcessParameters n="1">
        <Parameter>
          <ParameterType>Drill</ParameterType>
          <ParameterValue>Tool # 1</ParameterValue>
        </Parameter>
      </ProcessParameters>
    </ManufacturingProcessTraceability>
    <ManufacturingProcessTraceability id="18">
      <Description>CNC Machining</Description>
      <MachineManufacturerName>MC Hammer</MachineManufacturerName>
      <MachineIdentifier>214-West</MachineIdentifier>
      <Shift>1</Shift>
      <Department>Mill</Department>
      <PlantSector>West Building</PlantSector>
      <ProcessParameters n="1">
        <Parameter>
          <ParameterType>Drill</ParameterType>
          <ParameterValue>Tool # 2</ParameterValue>
        </Parameter>
      </ProcessParameters>
    </ManufacturingProcessTraceability>
 </ManufacturingProcessTraceabilities>
</QIFDocument>
```

- 1. The **Part** id is identified in the **Product** element.
- 2. The printed drawing Information is identified in the DefinitionExternal element.

- The characteristic name (Diameter #1) and the tolerance are defined in the CharacteristicDefinitions element.
- 4. The characteristic target value is defined in the **CharacteristicNominals** *element* and the tolerance is indicated by a reference to the characteristic definition.
- 5. The characteristic name is further expressed in the **DiameterCharacteristicItem** *element* with a reference to the characteristic nominal.
- 6. The measurement values are identified in the **Results** *element* with reference to the characteristic Items.
- 7. The **StudyResults** *element* defines the study type and references the measurement lds from the **Results** section and further describes the detailed statistical values.
- 8. This example makes extensive use of the **InspectionTraceability** and **ManufacturingProcessTraceability** *elements.*

12.6.2.2 Process capability study example

The definition of a Process Capability study is a "set of measurements against characteristics of a manufactured part that are compared to the nominal and tolerance in order to determine whether the process is capable of producing conforming parts". The results of a process capability study usually can be interpreted through a control chart (XBarR) and various quality indices such as Cp, Cpk, Pp, Ppk.

A Process Capability study is typically derived from 20-30 samples from an initial launch from a production line. It is also used when a manufacturing process has been changed or adjusted.

The following QIF document structure represents a 30 piece capability study for a single diameter that has a sample size of 3 for a total of 10 subgroups. The Statistical plan and results are identified and referenced at the bottom of the sample. Note: Measurement blocks have been removed in the middle to save space.

```
<?xml version="1.0"?>
<QIFDocument
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns="http://gifstandards.org/xsd/gif3"
 versionQIF="3.0.0"
 idMax="108"
 xsi:schemaLocation="http://qifstandards.org/xsd/qif3
../QIFApplications/QIFDocument.xsd">
  <QPId>3030ba85-2cb7-454d-8905-0016e58ca4df</OPId>
  <StandardsDefinitions n="1">
    <Standard id="108">
      <Organization>
        <StandardsOrganizationEnum>ASME</StandardsOrganizationEnum>
      </Organization>
      <Designator>Y14.5</Designator>
      <Year>2009</Year>
    </Standard>
  </StandardsDefinitions>
  <MeasurementResources>
    <MeasurementDevices n="1">
      <Caliper id="1">
        <Name>500-171-30</Name>
        <Description>Mitutoyo 6 inch Caliper</Description>
```

```
<Manufacturer>Mitutoyo</Manufacturer>
      <SerialNumber>1234-5678</SerialNumber>
      <LinearResolution>
        <LinearValue>0.0005</LinearValue>
      </LinearResolution>
      <Accuracy>
        <EnvironmentalRange></EnvironmentalRange>
        <AccuracyValue>0.001</AccuracyValue>
      </Accuracy>
    </Caliper>
  </MeasurementDevices>
</MeasurementResources>
<Product>
  <PartSet n="1">
    <Part id="2" label="Widget">
      <Attributes n="1">
        <AttributeQPId name="qpid">
          <Value>ed43400a-29bf-4ec6-b96c-e2f846eb6f00</Value>
        </AttributeOPId>
      </Attributes>
    </Part>
  </PartSet>
  <RootPart>
    <Id>2</Id>
  </RootPart>
</Product>
<Characteristics>
  <FormalStandardId>108</FormalStandardId>
  <CharacteristicDefinitions n="1">
    <DiameterCharacteristicDefinition id="3">
      <Name>Diameter 2.000</Name>
      <Tolerance>
        <MaxValue>2.200</MaxValue>
        <MinValue>1.800</MinValue>
        <DefinedAsLimit>false</DefinedAsLimit>
      </Tolerance>
    </DiameterCharacteristicDefinition>
  </CharacteristicDefinitions>
  <CharacteristicNominals n="1">
    <DiameterCharacteristicNominal id="4">
      <CharacteristicDefinitionId>3</CharacteristicDefinitionId>
      <TargetValue>2.000</TargetValue>
    </DiameterCharacteristicNominal>
  </CharacteristicNominals>
  <CharacteristicItems n="1">
    <DiameterCharacteristicItem id="5">
      <Name>Top Diameter 2.000</Name>
      <MeasurementDeviceIds n="1">
        \langle Id \rangle 1 \langle Id \rangle
      </MeasurementDeviceIds>
      <CharacteristicNominalId>4</CharacteristicNominalId>
    </DiameterCharacteristicItem>
  </CharacteristicItems>
</Characteristics>
<Results>
  <MeasurementResultsSet n="30">
    <MeasurementResults id="6">
```

```
<MeasuredCharacteristics>
          <CharacteristicMeasurements n="1">
            <DiameterCharacteristicMeasurement id="7">
              <Status>
                <CharacteristicStatusEnum>PASS</CharacteristicStatusEnum>
              </status>
              <CharacteristicItemId>5</CharacteristicItemId>
              \langle Value \rangle 2.001 \langle Value \rangle
            </DiameterCharacteristicMeasurement>
          </CharacteristicMeasurements>
        </MeasuredCharacteristics>
        <InspectionStatus>
          <InspectionStatusEnum>PASS</InspectionStatusEnum>
        </InspectionStatus>
        <ActualComponentIds n="1">
          <Id>66</Id>
        </ActualComponentIds>
      </MeasurementResults>
*** (28 other MeasurementResults elements)
      <MeasurementResults id="64">
        <MeasuredCharacteristics>
           <CharacteristicMeasurements n="1">
            <DiameterCharacteristicMeasurement id="65">
              <Status>
                <CharacteristicStatusEnum>PASS</CharacteristicStatusEnum>
              </status>
              <CharacteristicItemId>5</CharacteristicItemId>
              <Value>2.000</Value>
            </DiameterCharacteristicMeasurement>
          </CharacteristicMeasurements>
        </MeasuredCharacteristics>
        <InspectionStatus>
          <InspectionStatusEnum>PASS</InspectionStatusEnum>
        </InspectionStatus>
        <ActualComponentIds n="1">
          <Id>95</Id>
        </ActualComponentIds>
      </MeasurementResults>
    </MeasurementResultsSet>
    <ActualComponentSets n="30">
      <ActualComponentSet n="1">
        <ActualComponent id="66">
          <SerialNumber>1ABC-DEFG</SerialNumber>
          <Status>
            <InspectionStatusEnum>PASS</InspectionStatusEnum>
          </Status>
        </ActualComponent>
      </ActualComponentSet>
*** (28 other ActualComponentSet elements)
      <ActualComponentSet n="1">
        <ActualComponent id="95">
          <SerialNumber>30ABC-DEFG</SerialNumber>
          <Status>
            <InspectionStatusEnum>PASS</InspectionStatusEnum>
          </Status>
        </ActualComponent>
      </ActualComponentSet>
```

```
</ActualComponentSets>
 </Results>
 <Statistics>
    <StatisticalStudyPlans n="1">
      <CapabilityStudyPlan id="96">
        <Version>
          <ThisInstanceOPId>
            4aa329b4-fbbb-11e3-a3ac-0800200c9a66
          </ThisInstanceQPId>
        </Version>
        <NumberOfSamples>10</NumberOfSamples>
        <CpkThreshold>
          <Limit>1.33</Limit>
        </CpkThreshold>
      </CapabilityStudyPlan>
    </StatisticalStudyPlans>
    <StatisticalStudiesResults n="1">
      <CapabilityStudyResults id="97">
        <ThisStatisticalStudyResultsInstanceQPId>
          f77ac48c-5071-44f7-9e6b-3e8972639686
        </ThisStatisticalStudyResultsInstanceQPId>
        <Status>
          <StatsEvalStatusEnum>INFORMATIONAL</StatsEvalStatusEnum>
        </Status>
        <CharacteristicsStats n="1">
          <DiameterCharacteristicStats>
            <Subgroups n="10">
              <Subgroup id="98">
                <MeasuredIds>
                  <Ids n="3">
                    <Id>7</Id>
                    <Id>9</Id>
                    <Id>11</Id>
                  </Ids>
                </MeasuredIds>
              </Subgroup>
*** (8 other Subgroup elements)
              <Subgroup id="107">
                <MeasuredIds>
                  <Ids n="3">
                    <Id>61</Id>
                    < Id > 63 < /Id >
                    <Id>65</Id>
                  </Ids>
                </MeasuredIds>
              </Subgroup>
            </Subgroups>
            <Status>
             <StatsEvalStatusEnum>INFORMATIONAL</StatsEvalStatusEnum>
            </Status>
            <ValueStats>
              <TotalNumber>
                <Value>30</Value>
              </TotalNumber>
              <NumberSubgroups>
                <Value>10</Value>
              </NumberSubgroups>
```

```
<Average>
                <Value>1.984466667</Value>
              </Average>
              <Maximum>
                <Value>2.156</Value>
              </Maximum>
              <Minimum>
                <Value>1.764</Value>
              </Minimum>
              <StandardDeviation>
                <Value>0.078690898</Value>
              </StandardDeviation>
              <NumberOutOfTolerance>
                <Value>1</Value>
              </NumberOutOfTolerance>
              <Cp>
                <Value>1.678</Value>
              </Cp>
              <Cpk>
                <Value>1.345</Value>
              </Cpk>
            </ValueStats>
          </DiameterCharacteristicStats>
        </CharacteristicsStats>
        <NumberOfSamples>10</NumberOfSamples>
      </CapabilityStudyResults>
    </StatisticalStudiesResults>
 </Statistics>
</OIFDocument>
```

- 1. The **Part** id is identified in the **Product** element.
- 2. The characteristic name (Diameter_2.000) and the tolerance are defined in the **CharacteristicDefinitions** *element*.
- 3. The characteristic target value is defined in the **CharacteristicNominals** *element* and the tolerance is indicated by a reference to the characteristic definition.
- 4. The characteristic name (Top_Diameter_2.000) is further expressed in the **DiameterCharacteristicItem** *element* with a reference to the characteristic nominal.
- 5. The measurement values are identified in the **Results** *element* with reference to the characteristic Items.
- 6. The **StudyResults** section defines the study type and references the measurement lds from the **Results** section and further describes the detailed statistical values.

12.6.2.3 SPC production study example

SPC (Statistical Process Control) is defined as the use of statistical techniques such as control charts to analyze a process or its outputs so as to take appropriate actions to achieve and maintain a state of statistical control and to improve the process capability. The data used in an SPC study derives from the control or sampling plan in which characteristics are measured in subgroups from a larger production population. The subgroup measurements are statistically extrapolated to identify the overall quality of a batch of product. This is in addition to identifying "special causes" of variation that can be addressed through corrective action.

The following QIF document structure is an example that represents a 30 piece production study for a single diameter that has a sample size of 3 for a total of 10 subgroups. This sample also provides the application of Serial Number assigned to each inspected part. Assignable Causes and Corrective Action are also identified (associated as a Study Issue with Subgroup Id #3). The Statistical results are identified and referenced at the bottom of the sample. Note: Measurement and Serialization blocks have been removed in the middle to save space.

```
<?xml version="1.0"?>
<QIFDocument
  xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
  xmlns="http://gifstandards.org/xsd/gif3"
  versionQIF="3.0.0"
  idMax="113"
  xsi:schemaLocation=
    "http://qifstandards.org/xsd/qif3 ../QIFApplications/QIFDocument.xsd">
  <QPId>d057f71b-ebaa-4bfd-9fb0-3e5dabf3f9fe</QPId>
  <StandardsDefinitions n="1">
    <Standard id="113">
      <Organization>
        <StandardsOrganizationEnum>ASME</StandardsOrganizationEnum>
      </Organization>
      <Designator>Y14.5</Designator>
      <Year>2009</Year>
    </Standard>
  </StandardsDefinitions>
  <MeasurementResources>
    <MeasurementDevices n="1">
      <Caliper id="1">
        <Name>500-171-30</Name>
        <Description>Mitutoyo 6 inch Caliper</Description>
        <Manufacturer>Mitutoyo</Manufacturer>
        <SerialNumber>1234-5678</SerialNumber>
        <LinearResolution>
          <LinearValue>.0005</LinearValue>
        </LinearResolution>
        <Accuracy>
          <EnvironmentalRange>
            <MaxAmbientTemperature>22</MaxAmbientTemperature>
          </EnvironmentalRange>
          <AccuracyValue>0.001</AccuracyValue>
        </Accuracy>
      </Caliper>
    </MeasurementDevices>
  </MeasurementResources>
  <Product>
    <PartSet n="1">
      <Part id="2" label="Widget">
        <Attributes n="1">
          <AttributeQPId name="gpid">
            <Value>ed43400a-29bf-4ec6-b96c-e2f846eb6f00</Value>
          </AttributeOPId>
        </Attributes>
      </Part>
    </PartSet>
    <RootPart>
```

```
\langle Id \rangle 2 \langle /Id \rangle
    </RootPart>
 </Product>
  <Characteristics>
    <FormalStandardId>113</FormalStandardId>
    <CharacteristicDefinitions n="1">
      <DiameterCharacteristicDefinition id="3">
        <Name>Diameter 2.000</Name>
        <Tolerance>
          <MaxValue>2.200</MaxValue>
          <MinValue>1.800</MinValue>
          <DefinedAsLimit>false</DefinedAsLimit>
        </Tolerance>
      </DiameterCharacteristicDefinition>
    </CharacteristicDefinitions>
    <CharacteristicNominals n="1">
      <DiameterCharacteristicNominal id="4">
        <CharacteristicDefinitionId>3</CharacteristicDefinitionId>
        <TargetValue>2.000</TargetValue>
      </DiameterCharacteristicNominal>
    </CharacteristicNominals>
    <CharacteristicItems n="1">
      <DiameterCharacteristicItem id="5">
        <Name>Top Diameter 2.000</Name>
        <MeasurementDeviceIds n="1">
          <Id>1</Id>
        </MeasurementDeviceIds>
        <CharacteristicNominalId>4</CharacteristicNominalId>
      </DiameterCharacteristicItem>
    </CharacteristicItems>
  </Characteristics>
  <Results>
    <MeasurementResultsSet n="30">
      <MeasurementResults id="6">
        <MeasuredCharacteristics>
          <CharacteristicMeasurements n="1">
            <DiameterCharacteristicMeasurement id="7">
              <Status>
                <CharacteristicStatusEnum>PASS</CharacteristicStatusEnum>
              </Status>
              <CharacteristicItemId>5</CharacteristicItemId>
              <Value>2.001</Value>
            </DiameterCharacteristicMeasurement>
          </CharacteristicMeasurements>
        </MeasuredCharacteristics>
        <InspectionStatus>
          <InspectionStatusEnum>PASS</InspectionStatusEnum>
        </InspectionStatus>
        <ActualComponentIds n="1">
          <Id>66</Id>
        </ActualComponentIds>
      </MeasurementResults>
*** (28 other MeasurementResults elements)
      <MeasurementResults id="64">
        <MeasuredCharacteristics>
          <CharacteristicMeasurements n="1">
            <DiameterCharacteristicMeasurement id="65">
```

```
<Status>
                <CharacteristicStatusEnum>PASS</CharacteristicStatusEnum>
              </Status>
              <CharacteristicItemId>5</CharacteristicItemId>
              <Value>2.000</Value>
            </DiameterCharacteristicMeasurement>
          </CharacteristicMeasurements>
        </MeasuredCharacteristics>
        <InspectionStatus>
          <InspectionStatusEnum>PASS</InspectionStatusEnum>
        </InspectionStatus>
        <ActualComponentIds n="1">
          <Id>95</Id>
        </ActualComponentIds>
      </MeasurementResults>
    </MeasurementResultsSet>
    <ActualComponentSets n="30">
      <ActualComponentSet n="1">
        <ActualComponent id="66">
          <SerialNumber>1ABC-DEFG</SerialNumber>
          <Status>
            <InspectionStatusEnum>PASS</InspectionStatusEnum>
          </Status>
        </ActualComponent>
      </ActualComponentSet>
*** (28 other ActualComponentSet elements)
      <ActualComponentSet n="1">
        <ActualComponent id="95">
          <SerialNumber>30ABC-DEFG</SerialNumber>
          <Status>
            <InspectionStatusEnum>PASS</InspectionStatusEnum>
          </Status>
        </ActualComponent>
      </ActualComponentSet>
    </ActualComponentSets>
 </Results>
 <Statistics>
    <StatisticalStudyPlans n="1">
      <CapabilityStudyPlan id="96">
        <Version>
          <ThisInstanceOPId>
            4aa329b2-fbbb-11e3-a3ac-0800200c9a66
          </ThisInstanceQPId>
        </Version>
        <NumberOfSamples>10</NumberOfSamples>
        <CpkThreshold>
          <Limit>1.33</Limit>
        </CpkThreshold>
      </CapabilityStudyPlan>
    </StatisticalStudyPlans>
    <StatisticalStudiesResults n="1">
      <CapabilityStudyResults id="97">
        <ThisStatisticalStudyResultsInstanceQPId>
          4aa329b3-fbbb-11e3-a3ac-0800200c9a66
        </ThisStatisticalStudyResultsInstanceQPId>
        <Status>
          <StatsEvalStatusEnum>INFORMATIONAL</StatsEvalStatusEnum>
```

```
</Status>
        <CharacteristicsStats n="1">
          <DiameterCharacteristicStats>
            <Subgroups n="10">
              <Subgroup id="98">
                <MeasuredIds>
                  < Ids n = "3" >
                    <Id>7</Id>
                    <Id>9</Id>
                     <Id>11</Id>
                  </Ids>
                </MeasuredIds>
              </Subgroup>
*** (8 other Subgroup elements)
              <Subgroup id="107">
                <MeasuredIds>
                  <Ids n="3">
                    <Id>61</Id>
                    <Id>63</Id>
                    <Id>65</Id>
                  </Ids>
                </MeasuredIds>
              </Subgroup>
            </Subgroups>
            <Status>
              <StatsEvalStatusEnum>INFORMATIONAL</StatsEvalStatusEnum>
            </Status>
            <StudyIssues n="1">
              <StudyIssue id="108">
                <AssignableCauseIds n="1">
                  <Id>110</Id>
                </AssignableCauseIds>
                <CorrectiveActionIds n="2" >
                  <Id>111</Id>
                  <Id>112</Id>
                </CorrectiveActionIds>
                <SubgroupIds n="1">
                  <Id>100</Id>
                </SubgroupIds>
              </StudyIssue>
            </StudyIssues>
            <ValueStats>
              <TotalNumber>
                <Value>30</Value>
              </TotalNumber>
              <NumberSubgroups>
                <Value>10</Value>
              </NumberSubgroups>
              <Average>
                <Value>1.984466667</Value>
              </Average>
              <Maximum>
                <Value>2.156</Value>
              </Maximum>
              <Minimum>
                <Value>1.764</Value>
              </Minimum>
```

```
<StandardDeviation>
                <Value>0.078690898</Value>
              </StandardDeviation>
              <NumberOutOfTolerance>
                <Value>1</Value>
              </NumberOutOfTolerance>
              <cp>
                <Value>1.678</Value>
              </Cp>
              <Cpk>
                <Value>1.345</Value>
              </Cpk>
            </ValueStats>
          </DiameterCharacteristicStats>
        </CharacteristicsStats>
        <NumberOfSamples>10</NumberOfSamples>
      </CapabilityStudyResults>
    </StatisticalStudiesResults>
    <CorrectiveActionPlans n="1">
      <CorrectiveActionPlan id="109">
        <AssignableCauses n="1">
          <AssignableCause id="110">
            <AssignableCauseEnum>BROKEN TOOL</AssignableCauseEnum>
            <CorrectiveActionIds n="2">
              <Id>111</Id>
              <Id>112</Id>
            </CorrectiveActionIds>
          </AssignableCause>
        </AssignableCauses>
        <CorrectiveActions n="2">
          <CorrectiveAction id="111">
            <ActionToTake>Scrap Part</ActionToTake>
          </CorrectiveAction>
          <CorrectiveAction id="112">
            <ActionToTake>Call Maintenance</ActionToTake>
          </CorrectiveAction>
        </CorrectiveActions>
      </CorrectiveActionPlan>
    </CorrectiveActionPlans>
 </Statistics>
</OIFDocument>
```

- 1. The **Part** id is identified in the **Product** element.
- 2. The characteristic name (Diameter_2.000) and the tolerance are defined in the **CharacteristicDefinitions** *element*.
- 3. The characteristic target value is defined in the **CharacteristicNominals** *element* and the target value is indicated by a reference to the characteristic definition.
- 4. The characteristic name is further expressed in the **DiameterCharacteristicItem** *element* with a reference to the characteristic nominal.
- 5. The measurement values are identified in the **Results** *element* with reference to the characteristic items.

- 6. Each measurement result has an **ActualComponent** reference to provide a relationship to the serial numbers.
- 7. The **ProductionStudyResults** section defines the study type and references the measurement ids from the **Results** *element* and further describes the detailed statistical values.
- 8. The **StudyIssue** section contains information that identifies the relationship to the **AssignableCauses** and **CorrectiveActions** which are defined in the **CorrectiveActionPlan** *element*.

12.6.2.4 Gage repeatability and reproducibility study example

Repeatability and Reproducibility (R&R) studies are a method of analyzing the variation of measurement in a gage (repeatability) and the variation of measurements by operators (reproducibility).

Repeatability is the variation in measurements obtained with one measurement instrument when used several times by one appraiser while measuring the identical characteristic on the same part.

Reproducibility is the variation in the average of the measurements made by different appraisers using the same measuring instrument when measuring identical characteristics on the same part.

The following QIF document structure is an example that describes a single characteristic from a Long Form (Average and Range) R&R study with 2 Appraisers, 2 trials and 5 parts that would result in a total of 20 QIF MeasurementResults blocks (not shown):

```
<?xml version="1.0" encoding="UTF-8"?>
<QIFDocument
xmlns="http://qifstandards.org/xsd/qif3"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 versionQIF="3.0.0"
 idMax="8"
 xsi:schemaLocation=
  "http://qifstandards.org/xsd/qif3 ../QIFApplications/QIFDocument.xsd">
  <QPId>961b7421-dbd8-4bf3-b3be-56f427262484
  <StandardsDefinitions n="1">
    <Standard id="8">
      <Organization>
        <StandardsOrganizationEnum>ASME</StandardsOrganizationEnum>
      </Organization>
      <Designator>Y14.5</Designator>
      <Year>2009</Year>
    </Standard>
  </StandardsDefinitions>
  <FileUnits>
    <PrimaryUnits>
      <AngularUnit>
        <UnitName>degree</UnitName>
      </AngularUnit>
      <LinearUnit>
        <UnitName>inch</UnitName>
      </LinearUnit>
```

```
<TemperatureUnit>
      <UnitName>Fahrenheit</UnitName>
    </TemperatureUnit>
  </PrimaryUnits>
  <OtherUnits n="1">
    <LinearUnit>
      <UnitName>mm</UnitName>
    </LinearUnit>
  </OtherUnits>
</FileUnits>
<MeasurementResources>
  <MeasurementDevices n="1">
    <ManualMeasurementDevice id="1">
      <Name>216-380</Name>
      <Description>Digital Tape Measure</Description>
      <Manufacturer>Mitutoyo</Manufacturer>
      <SerialNumber>1234-5678</SerialNumber>
    </ManualMeasurementDevice>
  </MeasurementDevices>
</MeasurementResources>
<Product>
  <PartSet n="1">
    <Part id="2" label="Drum">
      <Attributes n="1">
        <AttributeQPId name="gpid">
          <Value>71cb7514-abf6-4de1-9366-fc7e3db0ad2a</Value>
        </AttributeQPId>
      </Attributes>
    </Part>
  </PartSet>
  <RootPart>
    <Id>2</Id>
  </RootPart>
</Product>
<Characteristics>
  <FormalStandardId>8</FormalStandardId>
  <FormalStandard>
    <FormalStandardEnum>ASME-Y14.5-1994</formalStandardEnum>
  </FormalStandard>
  <CharacteristicDefinitions n="1">
    <UserDefinedLinearCharacteristicDefinition id="3">
      <Name>Circumference #1</Name>
      <Tolerance>
        <MaxValue linearUnit= "inch">75.5</MaxValue>
        <MinValue linearUnit= "inch">75.3</MinValue>
        <DefinedAsLimit>true</DefinedAsLimit>
      </Tolerance>
      <WhatToMeasure>measure the circumference of the drum</WhatToMeasure>
    </UserDefinedLinearCharacteristicDefinition>
  </CharacteristicDefinitions>
  <CharacteristicNominals n="1">
    <UserDefinedLinearCharacteristicNominal id="4">
      <CharacteristicDefinitionId>3</CharacteristicDefinitionId>
      <TargetValue linearUnit="inch">75.398</TargetValue>
    </UserDefinedLinearCharacteristicNominal>
  </CharacteristicNominals>
  <CharacteristicItems n="1">
```

```
<UserDefinedLinearCharacteristicItem id="5">
      <Attributes n="1">
        <AttributeQPId name="gpid">
          <Value>ed43400a-29bf-4ec6-b96c-e2f846eb6ff7</Value>
        </AttributeOPId>
      </Attributes>
      <Name>Circumference #1</Name>
      <MeasurementDeviceIds n="1">
        <Id>1</Id>
      </MeasurementDeviceIds>
      <CharacteristicNominalId>4</CharacteristicNominalId>
    </UserDefinedLinearCharacteristicItem>
  </CharacteristicItems>
</Characteristics>
<Statistics>
  <StatisticalStudyPlans n="1">
    <GageRandRStudyPlan id="6">
      <Version>
        <ThisInstanceQPId>
          fd43400a-29bf-4ec6-b96c-e2f846eb6ff9
        </ThisInstanceOPId>
      </Version>
      <RandRStudyType>AVGANDRANGE</RandRStudyType>
      <NumberOfAppraisers>2</NumberOfAppraisers>
      <NumberOfParts>5</NumberOfParts>
      <NumberOfTrials>2</NumberOfTrials>
    </GageRandRStudyPlan>
  </StatisticalStudyPlans>
  <StatisticalStudiesResults n="1">
    <GageRandRStudyResults id="7">
      <ThisStatisticalStudyResultsInstanceQPId>
        4aa329b9-fbbb-11e3-a3ac-0800200c9a66
      </ThisStatisticalStudyResultsInstanceQPId>
      <Status>
        <StatsEvalStatusEnum>INFORMATIONAL</StatsEvalStatusEnum>
      </Status>
      <StudyId>6</StudyId>
      <CharacteristicsStats n="1">
        <UserDefinedLinearCharacteristicStats>
          <Status>
            <StatsEvalStatusEnum>INFORMATIONAL</StatsEvalStatusEnum>
          </Status>
          <ValueStats linearUnit="mm">
            <AppraiserVariation>
              <Value>2.54</Value>
            </AppraiserVariation>
            <EquipmentVariation>
              <Value>1.85</Value>
            </EquipmentVariation>
            <GageRandR>
              <Value>3.14</Value>
            </GageRandR>
            <TotalVariation>
              <Value>3.81</Value>
            </TotalVariation>
          </ValueStats>
        </UserDefinedLinearCharacteristicStats>
```

```
</CharacteristicsStats>

<MeasurementDeviceIds n="1">

<Id>1</Id>

</MeasurementDeviceIds>

<NumberOfAppraisers>2</NumberOfAppraisers>

<NumberOfParts>5</NumberOfParts>

<NumberOfTrials>2</NumberOfTrials>

</GageRandRStudyResults>

</StatisticalStudiesResults>

</OIFDocument>
```

- 1. The units used in the file are identified in the FileUnits section.
- 2. The measurement device (a digital tape measure) is defined in the **MeasurementResources** *element*
- 3. The Part id is identified in the Product element.
- 4. The characteristic name (Circumference #1) and the tolerance are defined in the **CharacteristicDefinitions** *element*.
- 5. The characteristic target value is defined in the **CharacteristicNominals** *element* and the tolerance is indicated by a reference to the characteristic definition.
- 6. The characteristic name is further expressed in the **CharacteristicItems** *element* with a reference to the characteristic nominal.
- 7. The Gage R&R Study parameters for appraisers, parts and trial are defined in the **GageRandRStudyPlan** *element*.
- 8. The detailed statistical results of the R&R study are defined in the **GageRandRStudyResults** *element*, including reference to the measurement device.

12.6.2.5 Gage stability study example

Gage Stability studies are a method of analyzing the variation of measurement over time. Stability (or drift) is the total variation in the measurements obtained with a measurement system on the same master or parts when measuring a single characteristic over an extended time period.

The following QIF document structure is an example that contains two QIF MeasurementResults blocks and one QIF Statistics in one XML file for a typical Gage Stability study:

```
<QIFDocument xmlns="http://qifstandards.org/xsd/qif3"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" versionQIF="3.0.0"
idMax="10" xsi:schemaLocation= "http://qifstandards.org/xsd/qif3
../Applications/QIFDocument.xsd">
<QPId>b366baab-82fc-49eb-b3da-4fd81e410976</QPId>
<StandardsDefinitions n="1">
<StandardsDefinitions n="1">
<Standard id="10">
<Organization>
<StandardsOrganizationEnum>ASME</StandardsOrganizationEnum>
</Organization>
<Designator>Y14.5</Designator>
<Year>2009</Year>
</StandardsDefinitions>
```

```
<MeasurementResources>
  <MeasurementDevices n="1">
    <Caliper id="1">
      <Name>500-171-30</Name>
      <Description>6 inch Caliper</Description>
      <Manufacturer>Gage Manufacturer</Manufacturer>
      <SerialNumber>1234-5678/SerialNumber>
      <LinearResolution>
        <LinearValue>.0005</LinearValue>
      </LinearResolution>
      <Accuracy>
        <EnvironmentalRange></EnvironmentalRange>
        <AccuracyValue>.001</AccuracyValue>
      </Accuracy>
    </Caliper>
  </MeasurementDevices>
</MeasurementResources>
<Characteristics>
  <FormalStandardId>10</FormalStandardId>
  <CharacteristicDefinitions n="1">
    <DiameterCharacteristicDefinition id="2">
    <Name>Diameter 2.000</Name>
    <Tolerance>
      <MaxValue>2.200</MaxValue>
      <MinValue>1.800</MinValue>
      <DefinedAsLimit>true</DefinedAsLimit>
    </Tolerance>
    </DiameterCharacteristicDefinition>
  </CharacteristicDefinitions>
  <CharacteristicNominals n="1">
    <DiameterCharacteristicNominal id="3">
      <CharacteristicDefinitionId>2</CharacteristicDefinitionId>
      <TargetValue>2.000</TargetValue>
    </DiameterCharacteristicNominal>
  </CharacteristicNominals>
  <CharacteristicItems n="1">
    <DiameterCharacteristicItem id="4">
    <Name>Top Diameter 2.000</Name>
    <MeasurementDeviceIds n="1">
      <Id>1</Id>
    </MeasurementDeviceIds>
    <CharacteristicNominalId>3</CharacteristicNominalId>
    </DiameterCharacteristicItem>
  </CharacteristicItems>
</Characteristics>
<Results>
  <MeasurementResultsSet n="1">
    <MeasurementResults id="5">
      <InspectionTraceability>
        <InspectionStart>2014-06-19T19:12:32Z</InspectionStart>
      </InspectionTraceability>
      <MeasuredCharacteristics>
        <CharacteristicMeasurements n="1">
          <DiameterCharacteristicMeasurement id="6">
            <Status>
              <CharacteristicStatusEnum>PASS</CharacteristicStatusEnum>
            </status>
```

```
<CharacteristicItemId>4</CharacteristicItemId>
            <Value>2.001</Value>
          </DiameterCharacteristicMeasurement>
        </CharacteristicMeasurements>
      </MeasuredCharacteristics>
      <InspectionStatus>
        <InspectionStatusEnum>PASS</InspectionStatusEnum>
      </InspectionStatus>
    </MeasurementResults>
    <MeasurementResults id="7">
      <InspectionTraceability>
        <InspectionStart>2014-06-26T12:40:32Z</InspectionStart>
      </InspectionTraceability>
      <MeasuredCharacteristics>
        <CharacteristicMeasurements n="1">
          <DiameterCharacteristicMeasurement id="8">
            <Status>
              <CharacteristicStatusEnum>PASS</CharacteristicStatusEnum>
            </Status>
            <CharacteristicItemId>4</CharacteristicItemId>
            <Value>1.999</Value>
          </DiameterCharacteristicMeasurement>
        </CharacteristicMeasurements>
      </MeasuredCharacteristics>
      <InspectionStatus>
        <InspectionStatusEnum>PASS</InspectionStatusEnum>
      </InspectionStatus>
    </MeasurementResults>
  </MeasurementResultsSet>
</Results>
<Statistics>
  <StatisticalStudiesResults n="1">
    <StabilityStudyResults id="9">
      <Status>
        <StatsEvalStatusEnum>INFORMATIONAL</StatsEvalStatusEnum>
      </Status>
      <CharacteristicsStats n="1">
        <DiameterCharacteristicStats>
          <MeasuredIds>
            <Ids n="2">
              <Id>6</Id>
             <Id>8</Id>
            </Ids>
          </MeasuredIds>
          <Status>
            <StatsEvalStatusEnum>INFORMATIONAL</StatsEvalStatusEnum>
          </Status>
          <ValueStats>
            <Average>
              <Value>2.000</Value>
            </Average>
            <Maximum>
              <Value>2.001</Value>
            </Maximum>
            <Minimum>
              <Value>1.999</Value>
            </Minimum>
```

The structure above can be logically described as follows:

- 1. The measurement device (a caliper) is defined in the MeasurementResources element.
- 2. The Part id is identified in the Product element.
- 3. The characteristic name (Diameter_2.000) and the tolerance are defined in the **CharacteristicDefinitions** *element*.
- 4. The characteristic target value is defined in the **CharacteristicNominals** *element* and the tolerance is indicated by a reference to the characteristic definition.
- 5. The characteristic name is further expressed in the **DiameterCharacteristicItem** *element* with a reference to the characteristic nominal and also a reference to the measurement device.
- The measurement values are identified in the **Results** *element* with reference to the characteristic Items. Each **MeasurementResult** block also makes use of the **InspectionTraceability** *element* to capture the time.
- 7. The detailed statistical results of the stability study are defined in the **StabilityStudyResults** *element*, including reference to the measurement device.

12.6.2.6 Gage linearity study example

Gage Linearity studies are a method of analyzing the amount of error change throughout a measurement system's measuring range. Linearity is also the amount of deviation from an instrument's ideal straight-line performance.

The following **QIFDocument** structure is an example that contains a **Statistics** *element* for a typical Gage Linearity study:

```
<?xml version="1.0" encoding="UTF-8"?>
<QIFDocument
xmlns="http://qifstandards.org/xsd/qif3"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
versionQIF="3.0.0"
idMax="16"
xsi:schemaLocation=
"http://qifstandards.org/xsd/qif3 ../QIFApplications/QIFDocument.xsd">
<QPId>b366baab-82fc-49eb-b3da-4fd81e410965</QPId>
<StandardsDefinitions n="1">
<StandardsDefinitions n="1">
<StandardsDefinitions n="1">
<Standard id="16">
<StandardsOrganizationEnum>ASME</StandardsOrganizationEnum>
</Organization>
```

```
<Designator>Y14.5</Designator>
    <Year>2009</Year>
  </Standard>
</StandardsDefinitions>
<MeasurementResources>
  <MeasurementDevices n="1">
    <Caliper id="1">
      <Name>500-196-30</Name>
      <Description>Digital Caliper</Description>
      <Manufacturer>Mitutovo</Manufacturer>
      <SerialNumber>1234-5678</SerialNumber>
      <LinearResolution>
        <LinearValue>.0005</LinearValue>
      </LinearResolution>
      <Accuracy>
        <EnvironmentalRange></EnvironmentalRange>
        <AccuracyValue>.001</AccuracyValue>
      </Accuracy>
    </Caliper>
  </MeasurementDevices>
</MeasurementResources>
<Characteristics>
  <FormalStandardId>16</FormalStandardId>
  <CharacteristicDefinitions n="3">
    <LengthCharacteristicDefinition id="2">
    <Name>1 inch Ceramic Gage Block</Name>
      <Tolerance>
        <MaxValue>1.00000012</MaxValue>
        <MinValue>0.9999988</MinValue>
        <DefinedAsLimit>false</DefinedAsLimit>
      </Tolerance>
    </LengthCharacteristicDefinition>
    <LengthCharacteristicDefinition id="3">
    <Name>3 inch Ceramic Gage Block</Name>
      <Tolerance>
        <MaxValue>3.00000012</MaxValue>
        <MinValue>2.99999988</MinValue>
        <DefinedAsLimit>false</DefinedAsLimit>
      </Tolerance>
    </LengthCharacteristicDefinition>
    <LengthCharacteristicDefinition id="4">
    <Name>5 inch Ceramic Gage Block</Name>
      <Tolerance>
        <MaxValue>5.00000012</MaxValue>
        <MinValue>4.99999988</MinValue>
        <DefinedAsLimit>false</DefinedAsLimit>
      </Tolerance>
    </LengthCharacteristicDefinition>
  </CharacteristicDefinitions>
  <CharacteristicNominals n="3">
    <LengthCharacteristicNominal id="5">
      <CharacteristicDefinitionId>3</CharacteristicDefinitionId>
      <TargetValue>1.000000</TargetValue>
    </LengthCharacteristicNominal>
    <LengthCharacteristicNominal id="6">
      <CharacteristicDefinitionId>3</CharacteristicDefinitionId>
      <TargetValue>3.000000</TargetValue>
```

```
</LengthCharacteristicNominal>
    <LengthCharacteristicNominal id="7">
      <CharacteristicDefinitionId>4</CharacteristicDefinitionId>
      <TargetValue>5.000000</TargetValue>
    </LengthCharacteristicNominal>
  </CharacteristicNominals>
  <CharacteristicItems n="3">
    <LengthCharacteristicItem id="8">
      <Attributes n="1">
        <AttributeOPId name="gpid">
          <Value>ed43400a-29bf-4ec6-b96c-e2f846eb6ff7</Value>
        </AttributeOPId>
      </Attributes>
      <Name>1 inch Ceramic Gage Block</Name>
      <MeasurementDeviceIds n="1">
        <Id>1</Id>
      </MeasurementDeviceIds>
      <CharacteristicNominalId>5</CharacteristicNominalId>
    </LengthCharacteristicItem>
    <LengthCharacteristicItem id="9">
      <Attributes n="1">
        <AttributeQPId name="qpid">
          <Value>4aa329b0-fbbb-11e3-a3ac-0800200c9a66</Value>
        </AttributeOPId>
      </Attributes>
      <Name>3 inch Ceramic Gage Block</Name>
      <MeasurementDeviceIds n="1">
        <Id>1</Id>
      </MeasurementDeviceIds>
      <CharacteristicNominalId>6</CharacteristicNominalId>
    </LengthCharacteristicItem>
    <LengthCharacteristicItem id="10">
      <Attributes n="1">
        <AttributeQPId name="gpid">
          <Value>102a1434-39ba-43d5-81a4-99e60f0ab582</Value>
        </AttributeQPId>
      </Attributes>
      <Name>5 inch Ceramic Gage Block</Name>
      <MeasurementDeviceIds n="1">
        <Id>1</Id>
      </MeasurementDeviceIds>
      <CharacteristicNominalId>7</CharacteristicNominalId>
    </LengthCharacteristicItem>
  </CharacteristicItems>
</Characteristics>
<Results>
  <MeasurementResultsSet n="1">
    <MeasurementResults id="11">
      <Attributes n="1">
        <AttributeQPId name="gpid">
          <Value>5931444d-b651-4360-8368-f26d43b2cd2d</Value>
        </AttributeOPId>
      </Attributes>
      <MeasuredCharacteristics>
        <CharacteristicMeasurements n="3">
          <LengthCharacteristicMeasurement id="12">
            <Status>
```

```
<CharacteristicStatusEnum>PASS</CharacteristicStatusEnum>
              </Status>
              <CharacteristicItemId>8</CharacteristicItemId>
              <Value>1.00000</Value>
            </LengthCharacteristicMeasurement>
            <LengthCharacteristicMeasurement id="13">
              <Status>
                <CharacteristicStatusEnum>PASS</CharacteristicStatusEnum>
              </Status>
              <CharacteristicItemId>9</CharacteristicItemId>
              <Value>3.00000</Value>
            </LengthCharacteristicMeasurement>
            <LengthCharacteristicMeasurement id="14">
              <Status>
                <CharacteristicStatusEnum>PASS</CharacteristicStatusEnum>
              </Status>
              <CharacteristicItemId>10</CharacteristicItemId>
              <Value>5.00000</Value>
            </LengthCharacteristicMeasurement>
          </CharacteristicMeasurements>
        </MeasuredCharacteristics>
        <InspectionStatus>
          <InspectionStatusEnum>PASS</InspectionStatusEnum>
        </InspectionStatus>
      </MeasurementResults>
    </MeasurementResultsSet>
 </Results>
  <Statistics>
    <StatisticalStudiesResults n="1">
      <LinearityStudyResults id="15">
        <ThisStatisticalStudyResultsInstanceQPId>
          63416e37-347a-4f1e-be6b-63d8d94b9cc6
        </ThisStatisticalStudyResultsInstanceQPId>
        <Status>
          <StatsEvalStatusEnum>INFORMATIONAL</StatsEvalStatusEnum>
        </Status>
        <CharacteristicsStats n="1">
          <LengthCharacteristicStats>
            <Status>
              <StatsEvalStatusEnum>INFORMATIONAL</StatsEvalStatusEnum>
            </Status>
            <ValueStats>
              <RelativeEquipmentVariation>
                <Value>0.000002</Value>
              </RelativeEquipmentVariation>
            </ValueStats>
          </LengthCharacteristicStats>
        </CharacteristicsStats>
        <SampleSize>3</SampleSize>
      </LinearityStudyResults>
    </StatisticalStudiesResults>
  </Statistics>
</QIFDocument>
```

The structure above can be logically described as follows:

- 1. The measurement device (a caliper) is defined in the **MeasurementResources** element.
- 2. The characteristic names (1 inch, 3 inch, 5 inch Gage Blocks as length characteristics) and tolerance values are defined in the **CharacteristicDefinitions** *element*.
- 3. The characteristic target value is defined in the **CharacteristicNominals** *element* and the tolerance is indicated by a reference to the characteristic definition.
- 4. The characteristic names are further expressed in the **LengthCharacteristicItems** *elements* with references to the characteristic nominals and also references to the measurement device.
- 5. The measurement values are identified in the **Results** *element* with reference to the characteristic Items.
- 6. The detailed statistical results of the linearity study are defined in the **LinearityStudyResults** *element*.

12.6.2.7 Gage bias study example

Gage Bias studies are a method of analyzing the difference between the observed average of measurements and the reference value. The reference value, also known as the accepted reference value or master value, is a value that serves as an agreed-upon reference for measured values. A reference value can be determined by averaging several measurements with a higher level of measuring equipment.

The following **QIFDocument** structure is an example that contains **MeasurementResults** for a typical Gage Bias study:

```
<?xml version="1.0" encoding="UTF-8"?>
<QIFDocument
xmlns="http://gifstandards.org/xsd/gif3"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
versionOIF="3.0.0"
idMax="16"
 xsi:schemaLocation=
  "http://qifstandards.org/xsd/qif3 ../QIFApplications/QIFDocument.xsd">
 <QPId>fd43400a-29bf-4ec6-b96c-e2f846eb6ff6</QPId>
 <MeasurementResources>
    <MeasurementDevices n="1">
      <Caliper id="1">
        <Name>500-196-30</Name>
        <Description>Digital Caliper</Description>
        <Manufacturer>Mitutoyo</Manufacturer>
        <SerialNumber>1234-5678</SerialNumber>
        <LinearResolution>
          <LinearValue>.0005</LinearValue>
        </LinearResolution>
        <Accuracy>
          <EnvironmentalRange>
            <MaxAmbientTemperature>22</MaxAmbientTemperature>
          </EnvironmentalRange>
          <AccuracyValue>.001</AccuracyValue>
        </Accuracy>
      </Caliper>
   </MeasurementDevices>
 </MeasurementResources>
  <Characteristics>
    <FormalStandardId>16</FormalStandardId>
```

```
<CharacteristicDefinitions n="3">
  <LengthCharacteristicDefinition id="2">
  <Name>1 inch Ceramic Gage Block</Name>
    <Tolerance>
      <MaxValue>1.00000012</MaxValue>
      <MinValue>0.99999988</MinValue>
      <DefinedAsLimit>false</DefinedAsLimit>
    </Tolerance>
  </LengthCharacteristicDefinition>
  <LengthCharacteristicDefinition id="3">
  <Name>3 inch Ceramic Gage Block</Name>
    <Tolerance>
      <MaxValue>3.00000012</MaxValue>
      <MinValue>2.99999988</MinValue>
      <DefinedAsLimit>false</DefinedAsLimit>
    </Tolerance>
  </LengthCharacteristicDefinition>
  <LengthCharacteristicDefinition id="4">
  <Name>5 inch Ceramic Gage Block</Name>
    <Tolerance>
      <MaxValue>5.00000012</MaxValue>
      <MinValue>4.99999988</MinValue>
      <DefinedAsLimit>false</DefinedAsLimit>
    </Tolerance>
  </LengthCharacteristicDefinition>
</CharacteristicDefinitions>
<CharacteristicNominals n="3">
  <LengthCharacteristicNominal id="5">
    <CharacteristicDefinitionId>2</CharacteristicDefinitionId>
    <TargetValue>1.000000</TargetValue>
  </LengthCharacteristicNominal>
  <LengthCharacteristicNominal id="6">
    <CharacteristicDefinitionId>3</CharacteristicDefinitionId>
    <TargetValue>3.000000</TargetValue>
  </LengthCharacteristicNominal>
  <LengthCharacteristicNominal id="7">
    <CharacteristicDefinitionId>4</CharacteristicDefinitionId>
    <TargetValue>5.000000</TargetValue>
  </LengthCharacteristicNominal>
</CharacteristicNominals>
<CharacteristicItems n="3">
  <LengthCharacteristicItem id="8">
    <Attributes n="1">
      <AttributeQPId name="qpid">
        <Value>ed43400a-29bf-4ec6-b96c-e2f846eb6ff7</Value>
      </AttributeQPId>
    </Attributes>
    <Name>1 inch Ceramic Gage Block</Name>
    <MeasurementDeviceIds n="1">
      <Id>1</Id>
    </MeasurementDeviceIds>
    <CharacteristicNominalId>5</CharacteristicNominalId>
  </LengthCharacteristicItem>
  <LengthCharacteristicItem id="9">
    <Attributes n="1">
      <AttributeQPId name="gpid">
        <Value>6eccd074-fbac-11e3-a3ac-0800200c9a66</Value>
```

```
</AttributeOPId>
      </Attributes>
      <Name>3 inch Ceramic Gage Block</Name>
      <MeasurementDeviceIds n="1">
        <Id>1</Id>
      </MeasurementDeviceIds>
      <CharacteristicNominalId>6</CharacteristicNominalId>
    </LengthCharacteristicItem>
    <LengthCharacteristicItem id="10">
      <Attributes n="1">
        <AttributeQPId name="gpid">
          <Value>3e5e4e61-151b-4454-bc47-2f874b4f32b1</Value>
        </AttributeOPId>
      </Attributes>
      <Name>5 inch Ceramic Gage Block</Name>
      <MeasurementDeviceIds n="1">
        <Id>1</Id>
      </MeasurementDeviceIds>
      <CharacteristicNominalId>7</CharacteristicNominalId>
    </LengthCharacteristicItem>
  </CharacteristicItems>
</Characteristics>
<Results>
  <MeasurementResultsSet n="1">
    <MeasurementResults id="11">
      <ThisResultsInstanceQPId>
        86c01a11-87a1-4bfe-88c7-c3b9b21436d5
      </ThisResultsInstanceOPId>
      <MeasuredCharacteristics>
        <CharacteristicMeasurements n="3">
          <LengthCharacteristicMeasurement id="12">
            <Status>
              <CharacteristicStatusEnum>PASS</CharacteristicStatusEnum>
            </Status>
            <CharacteristicItemId>8</CharacteristicItemId>
            <Value>1.00000</Value>
          </LengthCharacteristicMeasurement>
          <LengthCharacteristicMeasurement id="13">
            <Status>
              <CharacteristicStatusEnum>PASS</CharacteristicStatusEnum>
            </Status>
            <CharacteristicItemId>9</CharacteristicItemId>
            <Value>3.00000</Value>
          </LengthCharacteristicMeasurement>
          <LengthCharacteristicMeasurement id="14">
            <Status>
              <CharacteristicStatusEnum>PASS</CharacteristicStatusEnum>
            </Status>
            <CharacteristicItemId>10</CharacteristicItemId>
            <Value>5.00000</Value>
          </LengthCharacteristicMeasurement>
        </CharacteristicMeasurements>
      </MeasuredCharacteristics>
      <InspectionStatus>
        <InspectionStatusEnum>PASS</InspectionStatusEnum>
      </InspectionStatus>
    </MeasurementResults>
```

```
</MeasurementResultsSet>
 </Results>
  <Statistics>
    <StatisticalStudiesResults n="1">
      <BiasStudyResults id="15">
        <ThisStatisticalStudyResultsInstanceQPId>
          fd43400a-29bf-4ec6-b96c-e2f846eb6ff9
        </ThisStatisticalStudyResultsInstanceQPId>
        <Status>
          <StatsEvalStatusEnum>INFORMATIONAL</StatsEvalStatusEnum>
        </Status>
        <CharacteristicsStats n="1">
          <LengthCharacteristicStats>
            <Status>
              <StatsEvalStatusEnum>INFORMATIONAL</StatsEvalStatusEnum>
            </Status>
            <ValueStats>
              <RelativeEquipmentVariation>
                <Value>0.000002</Value>
              </RelativeEquipmentVariation>
            </ValueStats>
          </LengthCharacteristicStats>
        </CharacteristicsStats>
        <SampleSize>3</SampleSize>
      </BiasStudyResults>
    </StatisticalStudiesResults>
 </Statistics>
</OIFDocument>
```

The structure above can be logically described as follows:

- 1. The measurement device (a caliper) is defined in the MeasurementResources element.
- 2. The characteristic names (1 inch, 3 inch, 5 inch Gage Blocks as length characteristics) and tolerance values are defined in the **CharacteristicDefinitions** *element*.
- 3. The characteristic target value is defined in the **CharacteristicNominals** *element* and the tolerance is indicated by a reference to the characteristic definition.
- 4. The characteristic names are further expressed in the **LengthCharacteristicItem** *elements* with references to the characteristic nominals and also references to the measurement device.
- The measurement values are identified in the MeasurementResults section with references to the characteristic Items.
- 6. The detailed statistical results of the bias study are defined in the **BiasStudyResults** *element*.

Annex A – Graphical conventions of the data dictionary

(informative)

This annex describes the graphical conventions used in the QIF data dictionaries. The data dictionaries describe the structure of the information models and the manufacturing quality semantics of the data types.

The rules of encoding QIF instance files are primarily defined in the XML schema files, but the data dictionaries express many of the same requirements via the pictures and table entries.

Data type definitions are indicated by a box with beveled corners on the left side, as in Figure A.1.

Figure A.1 – Notation for a type definition, *PlaneType*.

Rectangular boxes indicate data elements. A solid rectangle indicates a required element, whereas a dotted rectangle indicates an optional element. If an object is not designated optional, then it is required by default. Small boxes on the right hand end of element boxes, containing either "-" or "+" are used to indicate one of the following conditions exist:

• A ("+") indicates that the additional structures or elements below this node have been hidden in this diagram.

• A ("-") indicates that additional structures or elements below this node exist and are visible on the diagram.

The absence of any box at the right hand end of an element box indicates that the type of the element is a primitive type without any substructure, e.g., xs:decimal. In this case, there will also be three bars in the upper left corner of the element box. The beveled box with 3 dots on a line represents the XSDL *sequence* operator. It indicates that the object to the left is composed of all of the elements to the right, in that specified order.

Type definitions can be reused to generate data elements, as shown by a yellow box in dotted lines, with the name of the type definition at the top. Figure A.2 shows that **ZonePlane** is an element of type **PlaneType**.

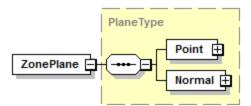


Figure A.2 – Reuse of the type definition *PlaneType* to generate element ZonePlane.

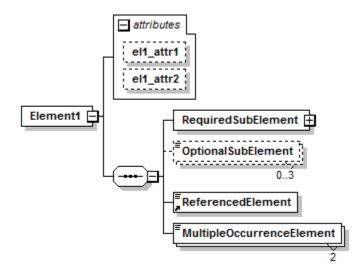


Figure A.3 – Notation for elements, sub-elements, and attributes.

Figure A.3 contains examples of numerous information modeling notations. *Element* definitions in XML schema files can be reused by "reference", indicated by an arrow in the lower left corner of the **ReferencedElement** box. *Elements* may appear in an XML instance document more than once. Figure A.3. shows the **OptionalSubElement** notated with two numerals separated by an ellipsis, "0..3", that indicates the number of occurrences as an inclusive range. The **OptionalSubElement** may occur zero, 1, 2, or 3 times as sub-elements of **Element1**. Where there is a single cardinality numeral, the *element* must occur exactly that number of times in the instance file. For example, the *element* **MultipleOccurrenceElement** must occur exactly two times as sub-elements of Element1. Information items can be instantiated in XSDL as *elements* or *attributes*. An *element's attributes* are shown in the data dictionaries as solid-lined boxes that are explicitly labeled *attributes*, as shown at the top of the diagram.

Figure A.4 shows an example *element* definition where exactly one of the three sub-element

choices must be given. The beveled box with three square dots and a "switch" line $\begin{pmatrix} -1 + 1 \\ -1 \end{pmatrix}$ indicate the XSDL *choice* structure. When **Element2** is instantiated in an XML instance file, it must have exactly one sub-element chosen among the three sub-elements shown.

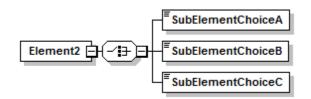


Figure A.4 – The choice of notation.

The data dictionaries are grouped by XML schema file. It is characteristic of QIF definitions to use types declared in other XML schema files. The sharing of definitions specified in other files is indicated by the XML schema file directive *include*.

Annex B – Sample QIF instance files

(informative)

Two QIF instance files are included as inline text in this annex. They apply to the sample part drawing in Figure B.1.

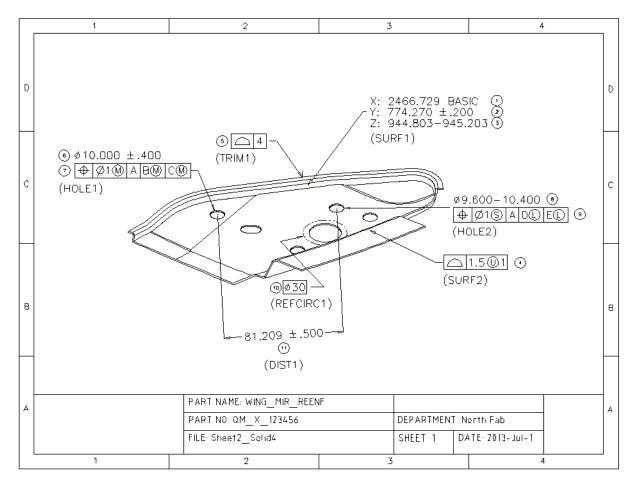


Figure B.1 – A sample part drawing

The features and ballooned characteristics called-out in Figure B.1 can be described fully and unambiguously in a QIF Plan instance file along with other traceability and measurement information.

File QIF_PLAN_SAMPLE.QIF

```
<?xml version="1.0" encoding="UTF-8" standalone="no" ?>
<QIFDocument xmlns="http://qifstandards.org/xsd/qif3" idMax="70"
versionQIF="3.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-
instance" xsi:schemaLocation="http://qifstandards.org/xsd/qif3
../QIFApplications/QIFDocument.xsd">
```

```
<QPId>93faa356-871d-4874-a140-26662e4b83ff</QPId>
```

```
<Version>
   <TimeCreated>2018-06-25T11:54:21</TimeCreated>
  </Version>
 <Header>
   <Application>
      <Name>SOLIDWORKS 2017</Name>
      <AddonName>CheckMate 14 for SOLIDWORKS</AddonName>
      <AddonOrganization>Origin International Inc.</AddonOrganization>
    </Application>
 </Header>
 <StandardsDefinitions n="1">
   <Standard id="70">
      <Organization>
        <StandardsOrganizationEnum>ASME</StandardsOrganizationEnum>
      </Organization>
      <Designator>Y14.5</Designator>
      <Year>2009</Year>
    </Standard>
 </StandardsDefinitions>
 <PreInspectionTraceability>
   <InspectingOrganization>
      <Name>Origin International</Name>
      <Address>
        <StreetNumber>72</StreetNumber>
        <Street>Baynards Lane</Street>
        <Town>Richmond Hill</Town>
        <Region>Ontario</Region>
        <PostalCode>L4C 9B8</PostalCode>
        <FacsimileNumber>416 410 8313</FacsimileNumber>
        <TelephoneNumber>1-800-269-2509</TelephoneNumber>
<ElectronicMailAddress>support@originintl.com</ElectronicMailAddress>
      </Address>
   </InspectingOrganization>
    <SupplierCode>North Fab</SupplierCode>
   <PurchaseOrderNumber>P0123456</PurchaseOrderNumber>
   <AsmPathIds n="1">
      <Id>3</Id>
   </AsmPathIds>
   <ReportNumber>QIF 1</ReportNumber>
   <InspectionScope>DETAIL</InspectionScope>
   <InspectionMode>FAI Full</InspectionMode>
   <FormalStandardId>70</FormalStandardId>
 </PreInspectionTraceability>
  <FileUnits>
   <PrimaryUnits>
      <AngularUnit>
```

```
<SIUnitName>radian</SIUnitName>
      <UnitName>degree</UnitName>
      <UnitConversion>
        <Factor>0.017453292519943</Factor>
      </UnitConversion>
    </AngularUnit>
    <LinearUnit>
      <SIUnitName>meter</SIUnitName>
      <UnitName>mm</UnitName>
      <UnitConversion>
        <Factor>0.001</Factor>
      </UnitConversion>
    </LinearUnit>
 </PrimaryUnits>
</FileUnits>
<DatumDefinitions n="5">
 <DatumDefinition id="42">
    <DatumLabel>A</DatumLabel>
  </DatumDefinition>
  <DatumDefinition id="43">
    <DatumLabel>B</DatumLabel>
 </DatumDefinition>
  <DatumDefinition id="44">
    <DatumLabel>C</DatumLabel>
 </DatumDefinition>
  <DatumDefinition id="57">
    <DatumLabel>D</DatumLabel>
 </DatumDefinition>
 <DatumDefinition id="58">
    <DatumLabel>E</DatumLabel>
  </DatumDefinition>
</DatumDefinitions>
<DatumReferenceFrames n="3">
 <DatumReferenceFrame id="12"/>
 <DatumReferenceFrame id="41">
    <Datums n="3">
      <Datum>
        <SimpleDatum>
          <DatumDefinitionId>42</DatumDefinitionId>
          <MaterialModifier>NONE</MaterialModifier>
          <ReferencedComponent>ACTUAL</ReferencedComponent>
        </SimpleDatum>
        <Precedence>
          <PrecedenceEnum>PRIMARY</PrecedenceEnum>
        </Precedence>
      </Datum>
      <Datum>
        <SimpleDatum>
          <DatumDefinitionId>43</DatumDefinitionId>
          <MaterialModifier>MAXIMUM</MaterialModifier>
```

```
QIF 3.0
```

```
<ReferencedComponent>ACTUAL</ReferencedComponent>
      </SimpleDatum>
      <Precedence>
        <PrecedenceEnum>SECONDARY</PrecedenceEnum>
      </Precedence>
    </Datum>
    <Datum>
      <SimpleDatum>
        <DatumDefinitionId>44</DatumDefinitionId>
        <MaterialModifier>MAXIMUM</MaterialModifier>
        <ReferencedComponent>ACTUAL</ReferencedComponent>
      </SimpleDatum>
      <Precedence>
        <PrecedenceEnum>TERTIARY</PrecedenceEnum>
      </Precedence>
    </Datum>
  </Datums>
</DatumReferenceFrame>
<DatumReferenceFrame id="56">
  <Datums n="3">
    <Datum>
      <SimpleDatum>
        <DatumDefinitionId>42</DatumDefinitionId>
        <MaterialModifier>NONE</MaterialModifier>
        <ReferencedComponent>ACTUAL</ReferencedComponent>
      </SimpleDatum>
      <Precedence>
        <PrecedenceEnum>PRIMARY</PrecedenceEnum>
      </Precedence>
    </Datum>
    <Datum>
      <SimpleDatum>
        <DatumDefinitionId>57</DatumDefinitionId>
        <MaterialModifier>LEAST</MaterialModifier>
        <ReferencedComponent>ACTUAL</ReferencedComponent>
      </SimpleDatum>
      <Precedence>
        <PrecedenceEnum>SECONDARY</PrecedenceEnum>
      </Precedence>
    </Datum>
    <Datum>
      <SimpleDatum>
        <DatumDefinitionId>58</DatumDefinitionId>
        <MaterialModifier>LEAST</MaterialModifier>
        <ReferencedComponent>ACTUAL</ReferencedComponent>
      </SimpleDatum>
      <Precedence>
        <PrecedenceEnum>TERTIARY</PrecedenceEnum>
      </Precedence>
    </Datum>
  </Datums>
</DatumReferenceFrame>
```

```
</DatumReferenceFrames>
<MeasurementResources>
 <MeasurementDevices n="3">
    <MeasurementDevice id="15">
      <Name>CMM</Name>
   </MeasurementDevice>
    <MeasurementDevice id="47">
      <Name>GAGE PINS</Name>
    </MeasurementDevice>
    <MeasurementDevice id="54">
      <Name>CALIPERS</Name>
    </MeasurementDevice>
  </MeasurementDevices>
</MeasurementResources>
<Product>
 <PartSet n="1">
    <Part hidden="0" id="1" transparency="0">
      <Header>
        <Name>WING MIR REENF</Name>
        <Description>Wing Mirror Re-enforcement</Description>
      </Header>
      <UUID>fbb01e31-e4b3-4b7f-9fa2-087921f96647</UUID>
      <ModelNumber>QM X 123456</ModelNumber>
      <Version>1.02</Version>
      <DefinitionExternal id="6" n="2">
        <PrintedDrawing id="5">
          <Name>sheet2_solid4_2017</Name>
          <Version>1.0.0</Version>
          <Description>Sample QIF elements</Description>
          <DrawingNumber>#1</DrawingNumber>
          <AdditionalChanges>none</AdditionalChanges>
          <Location>Cabinet 17, Drawer 3</Location>
        </PrintedDrawing>
        <DigitalModel id="7">
          <Name>sheet2 solid4 2017</Name>
          <File>
            <Name>D:/CM14 Parts/QIF/sheet2 solid4 2017.SLDPRT</Name>
            <Format>
         <DigitalModelFormatEnum>SOLIDWORKS</DigitalModelFormatEnum>
            </Format>
          </File>
        </DigitalModel>
      </DefinitionExternal>
    </Part>
 </PartSet>
  <ComponentSet n="1">
    <Component hidden="0" id="2" transparency="0">
      <UUID>fd32e995-4b6e-431b-a99a-514750e3b4e5</UUID>
      <Part>
        <Id>1</Id>
```

```
</Part>
      </Component>
    </ComponentSet>
    <AsmPaths n="1">
      <AsmPath id="3">
        <ComponentIds n="1">
          <Id>2</Id>
        </ComponentIds>
      </AsmPath>
    </AsmPaths>
 </Product>
 <Features>
   <FeatureDefinitions n="6">
      <EdgePointFeatureDefinition id="8">
        <InternalExternal>EXTERNAL</InternalExternal>
      </EdgePointFeatureDefinition>
      <PointFeatureDefinition id="16"/>
      <PointFeatureDefinition id="28"/>
      <CircleFeatureDefinition id="34">
        <InternalExternal>INTERNAL</InternalExternal>
        <Diameter>10</Diameter>
      </CircleFeatureDefinition>
      <CircleFeatureDefinition id="48">
        <InternalExternal>INTERNAL</InternalExternal>
        <Diameter>10</Diameter>
      </CircleFeatureDefinition>
      <CircleFeatureDefinition id="61">
        <InternalExternal>NOT APPLICABLE</InternalExternal>
        <Diameter>30</Diameter>
      </CircleFeatureDefinition>
   </FeatureDefinitions>
    <FeatureNominals n="6">
      <EdgePointFeatureNominal id="9">
        <FeatureDefinitionId>8</FeatureDefinitionId>
        <Location>2460.7099609375 770.604614257813
944.993591308594</Location>
        <Normal>-0.735465884156764 -0.307902932144901
0.603560864882807</Normal>
        <AdjacentNormal>0.0411800179070127 -0.909449806293281 -
0.413769568671128</AdjacentNormal>
      </EdgePointFeatureNominal>
      <PointFeatureNominal id="17">
        <FeatureDefinitionId>16</FeatureDefinitionId>
        <Location>2466.72924804688 774.269897460938
945.002746582031</Location>
        <Normal>0.731520704665006 0.146124942551001 -
0.665976696147005</Normal>
      </PointFeatureNominal>
      <PointFeatureNominal id="29">
        <FeatureDefinitionId>28</FeatureDefinitionId>
```

```
QIF 3.0
```

```
<Location>2536.49487304688 782.806213378906
920.002197265625</Location>
        <Normal>-0.760926041022395 -0.648538030188337 -
0.0197479997320103</Normal>
      </PointFeatureNominal>
      <CircleFeatureNominal id="35">
        <FeatureDefinitionId>34</FeatureDefinitionId>
        <Location>2433.974609375 800.617431640625
890.049621582031</Location>
        <Normal>0.0558150216639719 -0.907624351305543 -
0.41605615038579</Normal>
      </CircleFeatureNominal>
      <CircleFeatureNominal id="49">
        <FeatureDefinitionId>48</FeatureDefinitionId>
        <Location>2496.25146484375 780.842590332031
938.272277832031</Location>
        <Normal>0.0418550117439991 -0.90916921031098 -
0.414318120547991</Normal>
      </CircleFeatureNominal>
      <CircleFeatureNominal id="62">
        <FeatureDefinitionId>61</FeatureDefinitionId>
        <Location>2506.63672251543 792.999124488284
912.644676969086</Location>
        <Normal>0.041846787761012 -0.90918955358026 -
0.414274307693118</Normal>
      </CircleFeatureNominal>
    </FeatureNominals>
    <FeatureItems n="6">
      <EdgePointFeatureItem id="10">
        <Attributes n="1">
          <AttributeStr name="Comment" value="An edge point with</pre>
uniform profile characteristic"/>
        </Attributes>
        <FeatureNominalId>9</FeatureNominalId>
        <FeatureName>TRIM1</FeatureName>
        <UUID>aeba4615-65db-4f7d-a2e8-a7928c80117f</UUID>
        <DeterminationMode>
          <Checked>
            <CheckDetails>
              <Measured/>
            </CheckDetails>
          </Checked>
        </DeterminationMode>
      </EdgePointFeatureItem>
      <PointFeatureItem id="18">
        <Attributes n="1">
          <AttributeStr name="Comment" value="A point on a surface</pre>
with coordinate characteristics"/>
        </Attributes>
        <FeatureNominalId>17</FeatureNominalId>
        <FeatureName>SURF1</FeatureName>
        <UUID>263c98a7-9786-4408-b62f-dda79a07daad</UUID>
```

```
<DeterminationMode>
          <Checked>
            <CheckDetails>
              <Measured/>
            </CheckDetails>
          </Checked>
        </DeterminationMode>
      </PointFeatureItem>
      <PointFeatureItem id="30">
        <Attributes n="1">
          <AttributeStr name="Comment" value="A point on a surface</pre>
with non-uniform profile characteristic"/>
        </Attributes>
        <FeatureNominalId>29</FeatureNominalId>
        <FeatureName>SURF2</FeatureName>
        <UUID>63799169-1d43-41ee-b1ad-451f9d8a8f4e</UUID>
        <DeterminationMode>
          <Checked>
            <CheckDetails>
              <Measured/>
            </CheckDetails>
          </Checked>
        </DeterminationMode>
      </PointFeatureItem>
      <CircleFeatureItem id="36">
        <Attributes n="1">
          <AttributeStr name="Comment" value="A hole with position and</pre>
gage-pin diameter"/>
        </Attributes>
        <FeatureNominalId>35</FeatureNominalId>
        <FeatureName>HOLE1</FeatureName>
        <UUID>f29bb618-e50d-4dbb-b4b4-83b28755c741</UUID>
        <DeterminationMode>
          <Checked>
            <CheckDetails>
              <Measured/>
            </CheckDetails>
          </Checked>
        </DeterminationMode>
      </CircleFeatureItem>
      <CircleFeatureItem id="50">
        <Attributes n="1">
          <AttributeStr name="Comment" value="A hole with position and</pre>
caliper diameter"/>
        </Attributes>
        <FeatureNominalId>49</FeatureNominalId>
        <FeatureName>HOLE2</FeatureName>
        <UUID>5bb191b0-7a18-4393-8f24-1353ac8365c7</UUID>
        <DeterminationMode>
          <Checked>
            <CheckDetails>
              <Measured/>
```

```
</CheckDetails>
          </Checked>
        </DeterminationMode>
      </CircleFeatureItem>
      <CircleFeatureItem id="63">
        <Attributes n="1">
          <AttributeStr name="Comment" value="A non-measureable</pre>
reference circle"/>
        </Attributes>
        <FeatureNominalId>62</FeatureNominalId>
        <FeatureName>REFCIRC1</FeatureName>
        <UUID>6443f863-c559-42f2-b62a-48c0172d3395</UUID>
        <DeterminationMode>
          <Set/>
        </DeterminationMode>
      </CircleFeatureItem>
    </FeatureItems>
 </Features>
 <Characteristics>
    <FormalStandardId>70</FormalStandardId>
    <CharacteristicDefinitions n="11">
      <PointProfileCharacteristicDefinition id="11">
        <ToleranceValue>4</ToleranceValue>
        <DatumReferenceFrameId>12</DatumReferenceFrameId>
      </PointProfileCharacteristicDefinition>
      <LinearCoordinateCharacteristicDefinition id="19">
        <DimensionType>BASIC OR TED</DimensionType>
        <NonTolerance>MEASURED</NonTolerance>
      </LinearCoordinateCharacteristicDefinition>
      <LinearCoordinateCharacteristicDefinition id="22">
        <Tolerance>
          <MaxValue>0.2</MaxValue>
          <MinValue>-0.2</MinValue>
          <DefinedAsLimit>false</DefinedAsLimit>
        </Tolerance>
      </LinearCoordinateCharacteristicDefinition>
      <LinearCoordinateCharacteristicDefinition id="25">
        <Tolerance>
          <MaxValue>945.20274658203107</MaxValue>
          <MinValue>944.80274658203098</MinValue>
          <DefinedAsLimit>true</DefinedAsLimit>
        </Tolerance>
      </LinearCoordinateCharacteristicDefinition>
      <PointProfileCharacteristicDefinition id="31">
        <ToleranceValue>1.5</ToleranceValue>
        <OuterDisposition>1</OuterDisposition>
        <DatumReferenceFrameId>12</DatumReferenceFrameId>
      </PointProfileCharacteristicDefinition>
      <DiameterCharacteristicDefinition id="37">
        <Tolerance>
          <MaxValue>0.4</MaxValue>
```

```
<MinValue>-0.4</MinValue>
      <DefinedAsLimit>false</DefinedAsLimit>
    </Tolerance>
  </DiameterCharacteristicDefinition>
  <PositionCharacteristicDefinition id="40">
    <ToleranceValue>1</ToleranceValue>
    <DatumReferenceFrameId>41</DatumReferenceFrameId>
    <MaterialCondition>MAXIMUM</MaterialCondition>
    <ZoneShape>
      <DiametricalZone/>
    </ZoneShape>
  </PositionCharacteristicDefinition>
  <DiameterCharacteristicDefinition id="51">
    <Tolerance>
      <MaxValue>10.4</MaxValue>
      <MinValue>9.6</MinValue>
      <DefinedAsLimit>true</DefinedAsLimit>
    </Tolerance>
  </DiameterCharacteristicDefinition>
  <PositionCharacteristicDefinition id="55">
    <ToleranceValue>1</ToleranceValue>
    <DatumReferenceFrameId>56</DatumReferenceFrameId>
    <MaterialCondition>REGARDLESS</MaterialCondition>
    <ZoneShape>
      <DiametricalZone/>
    </ZoneShape>
  </PositionCharacteristicDefinition>
  <DiameterCharacteristicDefinition id="64">
    <DimensionType>BASIC OR TED</DimensionType>
    <NonTolerance>SET</NonTolerance>
  </DiameterCharacteristicDefinition>
  <DistanceBetweenCharacteristicDefinition id="67">
    <Tolerance>
      <MaxValue>0.5</MaxValue>
      <MinValue>-0.5</MinValue>
      <DefinedAsLimit>false</DefinedAsLimit>
    </Tolerance>
  </DistanceBetweenCharacteristicDefinition>
</CharacteristicDefinitions>
<CharacteristicNominals n="11">
  <PointProfileCharacteristicNominal id="13">
    <CharacteristicDefinitionId>11</CharacteristicDefinitionId>
  </PointProfileCharacteristicNominal>
  <LinearCoordinateCharacteristicNominal id="20">
    <CharacteristicDefinitionId>19</CharacteristicDefinitionId>
    <TargetValue>2466.729248046875</TargetValue>
    <Direction>XAXIS</Direction>
  </LinearCoordinateCharacteristicNominal>
  <LinearCoordinateCharacteristicNominal id="23">
    <CharacteristicDefinitionId>22</CharacteristicDefinitionId>
    <TargetValue>774.26989746093795</TargetValue>
    <Direction>YAXIS</Direction>
```

```
</LinearCoordinateCharacteristicNominal>
      <LinearCoordinateCharacteristicNominal id="26">
        <CharacteristicDefinitionId>25</CharacteristicDefinitionId>
        <Direction>ZAXIS</Direction>
      </LinearCoordinateCharacteristicNominal>
      <PointProfileCharacteristicNominal id="32">
        <CharacteristicDefinitionId>31</CharacteristicDefinitionId>
      </PointProfileCharacteristicNominal>
      <DiameterCharacteristicNominal id="38">
        <CharacteristicDefinitionId>37</CharacteristicDefinitionId>
        <TargetValue>10</TargetValue>
      </DiameterCharacteristicNominal>
      <PositionCharacteristicNominal id="45">
        <CharacteristicDefinitionId>40</CharacteristicDefinitionId>
      </PositionCharacteristicNominal>
      <DiameterCharacteristicNominal id="52">
        <CharacteristicDefinitionId>51</CharacteristicDefinitionId>
      </DiameterCharacteristicNominal>
      <PositionCharacteristicNominal id="59">
        <CharacteristicDefinitionId>55</CharacteristicDefinitionId>
      </PositionCharacteristicNominal>
      <DiameterCharacteristicNominal id="65">
        <CharacteristicDefinitionId>64</CharacteristicDefinitionId>
        <TargetValue>30</TargetValue>
      </DiameterCharacteristicNominal>
      <DistanceBetweenCharacteristicNominal id="68">
        <CharacteristicDefinitionId>67</CharacteristicDefinitionId>
        <TargetValue>81.208839738425993</TargetValue>
        <AnalysisMode>THREEDIMENSIONAL</AnalysisMode>
      </DistanceBetweenCharacteristicNominal>
    </CharacteristicNominals>
    <CharacteristicItems n="11">
      <PointProfileCharacteristicItem id="14">
        <Attributes n="1">
          <AttributeStr name="Comment" value="A uniform profile zone</pre>
±2.0 with empty DRF"/>
        </Attributes>
        <Name>5</Name>
        <CharacteristicDesignator>
          <Designator>5</Designator>
          <UUID>6f2a6f83-3ff7-4327-b00c-98208361301a</UUID>
          <Criticality>
            <LevelEnum>MINOR</LevelEnum>
          </Criticality>
        </CharacteristicDesignator>
        <FeatureItemIds n="1">
          <Id>10</Id>
        </FeatureItemIds>
        <MeasurementDeviceIds n="1">
          <Id>15</Id>
        </MeasurementDeviceIds>
        <CharacteristicNominalId>13</CharacteristicNominalId>
```

```
<LocationOnDrawing>
          <DrawingId>5</DrawingId>
          <SheetNumber>SHEET1</SheetNumber>
          <DrawingZone>C2</DrawingZone>
        </LocationOnDrawing>
      </PointProfileCharacteristicItem>
      <LinearCoordinateCharacteristicItem id="21">
        <Attributes n="1">
          <AttributeStr name="Comment" value="A basic or theoretically</pre>
exact coordinate dimension"/>
        </Attributes>
        <Name>1</Name>
        <CharacteristicDesignator>
          <Designator>1</Designator>
          <UUID>fdb07604-ac7e-4f7c-acc8-0860de517fd4</UUID>
          <Criticality>
            <OtherLevel>REF</OtherLevel>
          </Criticality>
        </CharacteristicDesignator>
        <FeatureItemIds n="1">
          <Id>18</Id>
        </FeatureItemIds>
        <MeasurementDeviceIds n="1">
          <Id>15</Id>
        </MeasurementDeviceIds>
        <CharacteristicNominalId>20</CharacteristicNominalId>
        <LocationOnDrawing>
          <DrawingId>5</DrawingId>
          <SheetNumber>SHEET1</SheetNumber>
          <DrawingZone>D3</DrawingZone>
        </LocationOnDrawing>
      </LinearCoordinateCharacteristicItem>
      <LinearCoordinateCharacteristicItem id="24">
        <Attributes n="1">
          <AttributeStr name="Comment" value="A bi-directional</pre>
coordinate tolerance"/>
        </Attributes>
        <Name>2</Name>
        <CharacteristicDesignator>
          <Designator>2</Designator>
          <UUID>445298bf-91a2-4ec6-8fa4-3b2c029eeb6e</UUID>
          <Criticality>
            <LevelEnum>MINOR</LevelEnum>
          </Criticality>
        </CharacteristicDesignator>
        <FeatureItemIds n="1">
          <Id>18</Id>
        </FeatureItemIds>
        <MeasurementDeviceIds n="1">
          <Id>15</Id>
        </MeasurementDeviceIds>
        <CharacteristicNominalId>23</CharacteristicNominalId>
```

```
<LocationOnDrawing>
          <DrawingId>5</DrawingId>
          <SheetNumber>SHEET1</SheetNumber>
          <DrawingZone>D3</DrawingZone>
        </LocationOnDrawing>
      </LinearCoordinateCharacteristicItem>
      <LinearCoordinateCharacteristicItem id="27">
        <Attributes n="1">
          <AttributeStr name="Comment" value="A limit coordinate</pre>
tolerance"/>
        </Attributes>
        <Name>3</Name>
        <CharacteristicDesignator>
          <Designator>3</Designator>
          <UUID>187ce9c9-7125-47b0-869b-d37a9722a35d</UUID>
          <Criticality>
            <LevelEnum>MAJOR</LevelEnum>
          </Criticality>
        </CharacteristicDesignator>
        <FeatureItemIds n="1">
          <Id>18</Id>
        </FeatureItemIds>
        <MeasurementDeviceIds n="1">
          <Id>15</Id>
        </MeasurementDeviceIds>
        <CharacteristicNominalId>26</CharacteristicNominalId>
        <LocationOnDrawing>
          <DrawingId>5</DrawingId>
          <SheetNumber>SHEET1</SheetNumber>
          <DrawingZone>D3</DrawingZone>
        </LocationOnDrawing>
      </LinearCoordinateCharacteristicItem>
      <PointProfileCharacteristicItem id="33">
        <Attributes n="1">
          <AttributeStr name="Comment" value="An offset profile zone</pre>
+1.0/-0.5 to ABC"/>
        </Attributes>
        <Name>4</Name>
        <CharacteristicDesignator>
          <Designator>4</Designator>
          <UUID>7ad19cce-458a-4d0a-9436-6a2d2683b018</UUID>
          <Criticality>
            <LevelEnum>CRITICAL</LevelEnum>
          </Criticality>
        </CharacteristicDesignator>
        <FeatureItemIds n="1">
          <Id>30</Id>
        </FeatureItemIds>
        <MeasurementDeviceIds n="1">
          <Id>15</Id>
        </MeasurementDeviceIds>
        <CharacteristicNominalId>32</CharacteristicNominalId>
```

```
<LocationOnDrawing>
          <DrawingId>5</DrawingId>
          <SheetNumber>SHEET1</SheetNumber>
          <DrawingZone>B3</DrawingZone>
        </LocationOnDrawing>
      </PointProfileCharacteristicItem>
      <DiameterCharacteristicItem id="39">
        <Attributes n="1">
          <AttributeStr name="Comment" value="A bi-directional</pre>
diameter tolerance"/>
        </Attributes>
        <Name>6</Name>
        <CharacteristicDesignator>
          <Designator>6</Designator>
          <UUID>4e609ab8-7d1c-4317-9b16-5fea194f9d7e</UUID>
          <Criticality>
            <LevelEnum>MINOR</LevelEnum>
          </Criticality>
        </CharacteristicDesignator>
        <FeatureItemIds n="1">
          <Id>36</Id>
        </FeatureItemIds>
        <MeasurementDeviceIds n="1">
          <Id>15</Id>
        </MeasurementDeviceIds>
        <CharacteristicNominalId>38</CharacteristicNominalId>
        <LocationOnDrawing>
          <DrawingId>5</DrawingId>
          <SheetNumber>SHEET1</SheetNumber>
          <DrawingZone>C1</DrawingZone>
        </LocationOnDrawing>
      </DiameterCharacteristicItem>
      <PositionCharacteristicItem id="46">
        <Attributes n="1">
          <AttributeStr name="Comment" value="MMC diametrical position</pre>
to AB(m)C(m)"/>
        </Attributes>
        <Name>7</Name>
        <CharacteristicDesignator>
          <Designator>7</Designator>
          <UUID>4438e85a-441a-420f-93d8-c6ed52fae87e</UUID>
          <Criticality>
            <LevelEnum>CRITICAL</LevelEnum>
          </Criticality>
        </CharacteristicDesignator>
        <FeatureItemIds n="1">
          <Id>36</Id>
        </FeatureItemIds>
        <MeasurementDeviceIds n="1">
          <Id>47</Id>
        </MeasurementDeviceIds>
        <CharacteristicNominalId>45</CharacteristicNominalId>
```

```
<LocationOnDrawing>
          <DrawingId>5</DrawingId>
          <SheetNumber>SHEET1</SheetNumber>
          <DrawingZone>C1</DrawingZone>
        </LocationOnDrawing>
      </PositionCharacteristicItem>
      <DiameterCharacteristicItem id="53">
        <Attributes n="1">
          <AttributeStr name="Comment" value="Limit diameter tolerance</pre>
with caliper "/>
        </Attributes>
        <Name>8</Name>
        <CharacteristicDesignator>
          <Designator>8</Designator>
          <UUID>a5a0d3a2-e6c4-4be9-93fe-18ba95d8372c</UUID>
        </CharacteristicDesignator>
        <FeatureItemIds n="1">
          <Id>50</Id>
        </FeatureItemIds>
        <MeasurementDeviceIds n="1">
          <Td>54</Td>
        </MeasurementDeviceIds>
        <CharacteristicNominalId>52</CharacteristicNominalId>
        <LocationOnDrawing>
          <DrawingId>5</DrawingId>
          <SheetNumber>SHEET1</SheetNumber>
          <DrawingZone>C3</DrawingZone>
        </LocationOnDrawing>
      </DiameterCharacteristicItem>
      <PositionCharacteristicItem id="60">
        <Attributes n="1">
          <AttributeStr name="Comment" value="RFS position to</pre>
AD(1)E(1)"/>
        </Attributes>
        <Name>9</Name>
        <CharacteristicDesignator>
          <Designator>9</Designator>
          <UUID>c79e4f25-f235-4886-88a3-b8a2eeaba096</UUID>
          <Criticalitv>
            <LevelEnum>MINOR</LevelEnum>
          </Criticality>
        </CharacteristicDesignator>
        <FeatureItemIds n="1">
          <Id>50</Id>
        </FeatureItemIds>
        <MeasurementDeviceIds n="1">
          <Id>15</Id>
        </MeasurementDeviceIds>
        <CharacteristicNominalId>59</CharacteristicNominalId>
        <LocationOnDrawing>
          <DrawingId>5</DrawingId>
          <SheetNumber>SHEET1</SheetNumber>
```

```
<DrawingZone>C3</DrawingZone>
        </LocationOnDrawing>
      </PositionCharacteristicItem>
      <DiameterCharacteristicItem id="66">
        <Attributes n="1">
          <AttributeStr name="Comment" value="Diameter set</pre>
dimension"/>
        </Attributes>
        <Name>10</Name>
        <CharacteristicDesignator>
          <Designator>10</Designator>
          <UUID>ee9bb7c3-31fb-40a4-841d-4f1b9fc885bd</UUID>
        </CharacteristicDesignator>
        <FeatureItemIds n="1">
          <Id>63</Id>
        </FeatureItemIds>
        <CharacteristicNominalId>65</CharacteristicNominalId>
        <LocationOnDrawing>
          <DrawingId>5</DrawingId>
          <SheetNumber>SHEET1</SheetNumber>
          <DrawingZone>B2</DrawingZone>
        </LocationOnDrawing>
      </DiameterCharacteristicItem>
      <DistanceBetweenCharacteristicItem id="69">
        <Attributes n="1">
          <AttributeStr name="Comment" value="Distance between HOLE1</pre>
and HOLE2"/>
        </Attributes>
        <Description>Distance-between characteristic</Description>
        <Name>DIST1</Name>
        <CharacteristicDesignator>
          <Designator>11</Designator>
          <UUID>3e6797f5-b443-4b15-9108-055190223837</UUID>
        </CharacteristicDesignator>
        <FeatureItemIds n="2">
          <Id>50</Id>
          <Id>36</Id>
        </FeatureItemIds>
        <MeasurementDeviceIds n="1">
          <Id>15</Id>
        </MeasurementDeviceIds>
        <CharacteristicNominalId>68</CharacteristicNominalId>
        <LocationOnDrawing>
          <DrawingId>5</DrawingId>
          <SheetNumber>SHEET1</SheetNumber>
          <DrawingZone>B2</DrawingZone>
        </LocationOnDrawing>
      </DistanceBetweenCharacteristicItem>
    </CharacteristicItems>
  </Characteristics>
```

```
<Plan>
```

</QIFDocument>

*** end Plan sample file ***

The execution of the sample plan with the specified measurement equipment might result in a measurement report file like:

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	SURF1		POINT (SURFACE)								
3 Z 944.840 945.003 0.200 -0.200 -0.163 * SURF2 POINT (SURFACE) MEASURED NOMINAL VPR-TOL LWR-TOL BONUS DEV ERROR ** 0.675 X 2537.170 2536.495 0.675 0.574 Y 783.380 782.806 0.574 0.018 Z 920.020 920.002 0.018 -0.886 -0.386 4 *V -0.886 0.000 1.000 -0.500 -0.886 -0.386 TRIM1 EDGE POINT (TRIM) MEASURED NOMINAL VPR-TOL LWR-TOL BONUS DEV ERROR x 2460.720 2460.710 X 2460.720 2460.710 VPR-TOL LWR-TOL BONUS DEV ERROR 0.010 Y 770.620 770.605 0.015 -0.014			2466.90	0 2466.729			BASIC	0.171			
SURF2 POINT (SURFACE) MEASURED NOMINAL UPR-TOL LWR-TOL BONUS DEV ERROR ** X 2537.170 2536.495 0.675 0.574 Y 783.380 782.806 0.574 0.018 Z 920.020 920.002 1.000 -0.500 -0.886 -0.386 TRIM1 EDGE POINT (TRIM) UPR-TOL LWR-TOL BONUS DEV ERROR X 2460.720 2460.710 UPR-TOL LWR-TOL BONUS DEV ERROR X 2460.720 2460.710 UPR-TOL LWR-TOL BONUS DEV ERROR X 2460.720 2460.710 UPR-TOL LWR-TOL BONUS DEV ERROR Y 770.620 770.605 0.014 0.014 0.014											
MEASURED NOMINAL UPR-TOL LWR-TOL BONUS DEV ERROR ** X 2537.170 2536.495 0.675 0.675 Y 783.380 782.806 0.574 0.018 Z 920.020 920.002 0.018 -0.886 -0.386 4 *V -0.886 0.000 1.000 -0.500 -0.886 -0.386 TRIM1 EDGE POINT (TRIM) UPR-TOL LWR-TOL BONUS DEV ERROR X 2460.720 2460.710 UPR-TOL LWR-TOL BONUS DEV ERROR X 2460.720 2460.710 UPR-TOL LWR-TOL BONUS DEV ERROR X 2460.720 2460.710 0.010 0.015 0.015 Y 770.620 770.605 0.014 -0.014 0.014	3	Z	944.84	0 945.003	0.200	-0.200		-0.163	*		
X 2537.170 2536.495 Y 783.380 782.806 Z 920.020 920.002 4 *V -0.886 0.000 1.000 -0.500 -0.886 -0.386 TRIM1 EDGE POINT(TRIM) MEASURED NOMINAL UPR-TOL LWR-TOL BONUS DEV ERROR X 2460.720 2460.710 Y 770.620 770.605 Z 944.980 944.994 -0.014	SURF2		POINT (SURFACE)								
Y 783.380 782.806 Z 920.020 920.002 4 *V -0.886 0.000 1.000 -0.500 -0.886 -0.386 TRIM1 EDGE POINT(TRIM) MEASURED NOMINAL UPR-TOL LWR-TOL BONUS DEV ERROR X 2460.720 2460.710 Y 770.620 770.605 Z 944.980 944.994 -0.014			MEASURED	NOMINAL	UPR-TOL	LWR-TOL	BONUS	DEV E	RROR **		
Z 920.020 920.002 4 *V -0.886 0.000 1.000 -0.500 -0.886 -0.386 TRIM1 EDGE POINT(TRIM) MEASURED NOMINAL UPR-TOL LWR-TOL BONUS DEV ERROR X 2460.720 2460.710 Y 770.620 770.605 Z 944.980 944.994 -0.014		Х	2537.170	2536.495				0.675			
4 *V -0.886 0.000 1.000 -0.500 -0.886 -0.386 TRIM1 EDGE POINT(TRIM) MEASURED NOMINAL UPR-TOL LWR-TOL BONUS DEV ERROR X 2460.720 2460.710 Y 770.620 770.605 Z 944.980 944.994 -0.014		Y	783.380	782.806				0.574			
TRIM1 EDGE POINT(TRIM) MEASURED NOMINAL UPR-TOL LWR-TOL BONUS DEV ERROR X 2460.720 2460.710 0.010 Y 770.620 770.605 0.015 Z 944.980 944.994 -0.014		Z	920.020	920.002				0.018			
MEASUREDNOMINALUPR-TOLLWR-TOLBONUSDEVERRORX2460.7202460.7100.0100.010Y770.620770.6050.0150.015Z944.980944.994-0.014	4	*V	-0.886	0.000	1.000	-0.500		-0.886	-0.386		
MEASUREDNOMINALUPR-TOLLWR-TOLBONUSDEVERRORX2460.7202460.7100.0100.010Y770.620770.6050.015Z944.980944.994-0.014											
X2460.7202460.7100.010Y770.620770.6050.015Z944.980944.994-0.014	TRI	M1	EDGE POINT(TRIM)								
Y 770.620 770.605 0.015 Z 944.980 944.994 -0.014			MEASURED	NOMINAL	UPR-TOL	LWR-TOL	BONUS	DEV E	RROR		
Z 944.980 944.994 -0.014		Х	2460.720	2460.710				0.010			
		Y	770.620	770.605				0.015			
5 V -0.020 0.000 2.000 -2.000 -0.020*		Z	944.980	944.994				-0.014			
	5	V	-0.020	0.000	2.000	-2.000		-0.020	*		
HOLE1 CIRCLE	HOLE1		CIRCLE								
MEASURED NOMINAL UPR-TOL LWR-TOL BONUS DEV ERROR **			MEASURED	NOMINAL	UPR-TOL	LWR-TOL	BONUS	DEV E	RROR **		
X 2434.010 2433.975 0.035		Х	2434.010	2433.975				0.035			
Z 889.980 890.050 -0.070		Z	889.980	890.050				-0.070			
6 *D 9.499 10.000 0.400 -0.400 0.000 -0.501 -0.101	6	*D	9.499	10.000	0.400	-0.400	0.000	-0.501	-0.101		
7 P 0.897 0.000 1.000 1.000 0.897 *	7	Ρ	0.897	0.000	1.000	1.000		0.897	*		

HOLE2 CIRCLE									
	X Z	MEASURED 2496.390 938.090	NOMINAL 2496.251 938.272	UPR-TOL	LWR-TOL	BONUS	DEV 0.139 -0.182	ERROR **	
8	D	10.200	10.000	0.400	-0.400		0.200	-*	
9	*P	1.138	0.000	1.000		1.138	0.138		
REFCIRC1 SET DIMENSION									
		MEASURED	NOMINAL	UPR-TOL	LWR-TOL	BONUS	DEV	ERROR	
	Х	2506.637	2506.637				0.000		
	Y	792.999	792.999				0.000		
	Ζ	912.645	912.645				0.000		
10	D	30.000	30.000	SET			0.000		
DIST1 DISTANCE BETWEEN									
11	S	MEASURED 81.221	NOMINAL 81.209	UPR-TOL 0.500	LWR-TOL -0.500	BONUS 0.012	DEV	ERROR *	

The actual information contained in such a report can be merged with information in the original inspection plan to produce a QIF Results instance file.

File QIF_RESULTS_SAMPLE.QIF

```
<?xml version="1.0" encoding="UTF-8" standalone="no" ?>
<QIFDocument xmlns="http://qifstandards.org/xsd/qif3" idMax="88"
versionQIF="3.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-
instance" xsi:schemaLocation="http://gifstandards.org/xsd/gif3
../QIFApplications/QIFDocument.xsd">
  <QPId>9914bdee-8cfa-4c27-b523-ebec280914ff</QPId>
  <Version>
    <TimeCreated>2018-06-25T11:55:56</TimeCreated>
  </Version>
  <Header>
    <Application>
      <Name>SOLIDWORKS 2017</Name>
      <AddonName>CheckMate 14 for SOLIDWORKS</AddonName>
      <AddonOrganization>Origin International Inc.</AddonOrganization>
    </Application>
  </Header>
  <StandardsDefinitions n="1">
    <Standard id="87">
      <Organization>
        <StandardsOrganizationEnum>ASME</StandardsOrganizationEnum>
```

```
</Organization>
      <Designator>Y14.5</Designator>
      <Year>2009</Year>
   </Standard>
 </StandardsDefinitions>
 <PreInspectionTraceability>
   <InspectingOrganization>
      <Name>Origin International</Name>
      <Address>
        <StreetNumber>72</StreetNumber>
        <Street>Baynards Lane</Street>
        <Town>Richmond Hill</Town>
        <Region>Ontario</Region>
        <PostalCode>L4C 9B8</PostalCode>
        <FacsimileNumber>416 410 8313</FacsimileNumber>
        <TelephoneNumber>1-800-269-2509</TelephoneNumber>
<ElectronicMailAddress>support@originintl.com</ElectronicMailAddress>
      </Address>
    </InspectingOrganization>
    <SupplierCode>North Fab</SupplierCode>
    <PurchaseOrderNumber>P0123456</PurchaseOrderNumber>
    <AsmPathIds n="1">
      <Id>3</Id>
   </AsmPathIds>
    <ReportNumber>QIF 1</ReportNumber>
    <InspectionScope>DETAIL</InspectionScope>
   <InspectionMode>FAI Full</InspectionMode>
   <ReferencedQIFPlanInstance>
      <ItemQPId>9f2f4875-5e15-440f-9825-07b18112d839</ItemQPId>
   </ReferencedOIFPlanInstance>
    <FormalStandardId>87</FormalStandardId>
  </PreInspectionTraceability>
 <FileUnits>
   <PrimaryUnits>
      <AngularUnit>
        <SIUnitName>radian</SIUnitName>
        <UnitName>degree</UnitName>
        <UnitConversion>
          <Factor>0.017453292519943</Factor>
        </UnitConversion>
      </AngularUnit>
      <LinearUnit>
        <SIUnitName>meter</SIUnitName>
        <UnitName>mm</UnitName>
        <UnitConversion>
          <Factor>0.001</Factor>
        </UnitConversion>
      </LinearUnit>
    </PrimaryUnits>
```

```
QIF 3.0
```

```
</FileUnits>
<DatumDefinitions n="5">
 <DatumDefinition id="52">
    <DatumLabel>A</DatumLabel>
 </DatumDefinition>
  <DatumDefinition id="53">
    <DatumLabel>B</DatumLabel>
 </DatumDefinition>
  <DatumDefinition id="54">
    <DatumLabel>C</DatumLabel>
 </DatumDefinition>
  <DatumDefinition id="70">
    <DatumLabel>D</DatumLabel>
 </DatumDefinition>
  <DatumDefinition id="71">
    <DatumLabel>E</DatumLabel>
  </DatumDefinition>
</DatumDefinitions>
<DatumReferenceFrames n="3">
 <DatumReferenceFrame id="13"/>
 <DatumReferenceFrame id="51">
    <Datums n="3">
      <Datum>
        <SimpleDatum>
          <DatumDefinitionId>52</DatumDefinitionId>
          <MaterialModifier>NONE</MaterialModifier>
          <ReferencedComponent>ACTUAL</ReferencedComponent>
        </SimpleDatum>
        <Precedence>
          <PrecedenceEnum>PRIMARY</PrecedenceEnum>
        </Precedence>
      </Datum>
      <Datum>
        <SimpleDatum>
          <DatumDefinitionId>53</DatumDefinitionId>
          <MaterialModifier>MAXIMUM</MaterialModifier>
          <ReferencedComponent>ACTUAL</ReferencedComponent>
        </SimpleDatum>
        <Precedence>
          <PrecedenceEnum>SECONDARY</PrecedenceEnum>
        </Precedence>
      </Datum>
      <Datum>
        <SimpleDatum>
          <DatumDefinitionId>54</DatumDefinitionId>
          <MaterialModifier>MAXIMUM</MaterialModifier>
          <ReferencedComponent>ACTUAL</ReferencedComponent>
        </SimpleDatum>
        <Precedence>
          <PrecedenceEnum>TERTIARY</PrecedenceEnum>
```

```
</Precedence>
      </Datum>
    </Datums>
 </DatumReferenceFrame>
  <DatumReferenceFrame id="69">
    <Datums n="3">
      <Datum>
        <SimpleDatum>
          <DatumDefinitionId>52</DatumDefinitionId>
          <MaterialModifier>NONE</MaterialModifier>
          <ReferencedComponent>ACTUAL</ReferencedComponent>
        </SimpleDatum>
        <Precedence>
          <PrecedenceEnum>PRIMARY</PrecedenceEnum>
        </Precedence>
      </Datum>
      <Datum>
        <SimpleDatum>
          <DatumDefinitionId>70</DatumDefinitionId>
          <MaterialModifier>LEAST</MaterialModifier>
          <ReferencedComponent>ACTUAL</ReferencedComponent>
        </SimpleDatum>
        <Precedence>
          <PrecedenceEnum>SECONDARY</PrecedenceEnum>
        </Precedence>
      </Datum>
      <Datum>
        <SimpleDatum>
          <DatumDefinitionId>71</DatumDefinitionId>
          <MaterialModifier>LEAST</MaterialModifier>
          <ReferencedComponent>ACTUAL</ReferencedComponent>
        </SimpleDatum>
        <Precedence>
          <PrecedenceEnum>TERTIARY</PrecedenceEnum>
        </Precedence>
      </Datum>
    </Datums>
  </DatumReferenceFrame>
</DatumReferenceFrames>
<MeasurementResources>
  <MeasurementDevices n="3">
    <MeasurementDevice id="16">
      <Name>CMM</Name>
    </MeasurementDevice>
    <MeasurementDevice id="57">
      <Name>GAGE PINS</Name>
    </MeasurementDevice>
    <MeasurementDevice id="66">
      <Name>CALIPERS</Name>
    </MeasurementDevice>
  </MeasurementDevices>
```

514

```
</MeasurementResources>
 <Product>
   <PartSet n="1">
     <Part hidden="0" id="1" transparency="0">
        <Header>
          <Name>WING MIR REENF</Name>
          <Description>Wing Mirror Re-enforcement</Description>
        </Header>
        <UUID>fbb01e31-e4b3-4b7f-9fa2-087921f96647</UUID>
        <ModelNumber>QM X 123456</ModelNumber>
        <Version>1.02</Version>
        <DefinitionExternal id="6" n="2">
          <PrintedDrawing id="5">
            <Name>sheet2 solid4 2017</Name>
            <Version>1.0.0</Version>
            <Description>Sample QIF elements</Description>
            <DrawingNumber>#1</DrawingNumber>
            <AdditionalChanges>none</AdditionalChanges>
            <Location>Cabinet 17, Drawer 3</Location>
          </PrintedDrawing>
          <DigitalModel id="7">
            <Name>sheet2 solid4 2017</Name>
            <File>
              <Name>D:/CM14 Parts/QIF/sheet2 solid4 2017.SLDPRT</Name>
              <Format>
<DigitalModelFormatEnum>SOLIDWORKS</DigitalModelFormatEnum>
              </Format>
            </File>
          </DigitalModel>
        </DefinitionExternal>
      </Part>
   </PartSet>
    <ComponentSet n="1">
      <Component hidden="0" id="2" transparency="0">
        <UUID>fd32e995-4b6e-431b-a99a-514750e3b4e5</UUID>
        <Part>
          <Id>1</Id>
        </Part>
      </Component>
   </ComponentSet>
    <AsmPaths n="1">
     <AsmPath id="3">
        <ComponentIds n="1">
          <Id>2</Id>
        </ComponentIds>
     </AsmPath>
   </AsmPaths>
 </Product>
 <Features>
```

```
<FeatureDefinitions n="6">
      <EdgePointFeatureDefinition id="8">
        <InternalExternal>EXTERNAL</InternalExternal>
      </EdgePointFeatureDefinition>
      <PointFeatureDefinition id="18"/>
      <PointFeatureDefinition id="34"/>
      <CircleFeatureDefinition id="42">
        <InternalExternal>INTERNAL</InternalExternal>
        <Diameter>10</Diameter>
      </CircleFeatureDefinition>
      <CircleFeatureDefinition id="59">
        <InternalExternal>INTERNAL</InternalExternal>
        <Diameter>10</Diameter>
      </CircleFeatureDefinition>
      <CircleFeatureDefinition id="75">
        <InternalExternal>NOT APPLICABLE</InternalExternal>
        <Diameter>30</Diameter>
      </CircleFeatureDefinition>
   </FeatureDefinitions>
    <FeatureNominals n="6">
      <EdgePointFeatureNominal id="9">
        <FeatureDefinitionId>8</FeatureDefinitionId>
        <Location>2460.7099609375 770.604614257813
944.993591308594</Location>
        <Normal>-0.735465884156764 -0.307902932144901
0.603560864882807</Normal>
        <AdjacentNormal>0.0411800179070127 -0.909449806293281 -
0.413769568671128</AdjacentNormal>
      </EdgePointFeatureNominal>
      <PointFeatureNominal id="19">
        <FeatureDefinitionId>18</FeatureDefinitionId>
        <Location>2466.72924804688 774.269897460938
945.002746582031</Location>
        <Normal>0.731520704665006 0.146124942551001 -
0.665976696147005</Normal>
      </PointFeatureNominal>
      <PointFeatureNominal id="35">
        <FeatureDefinitionId>34</FeatureDefinitionId>
        <Location>2536.49487304688 782.806213378906
920.002197265625</Location>
        <Normal>-0.760926041022395 -0.648538030188337 -
0.0197479997320103</Normal>
      </PointFeatureNominal>
      <CircleFeatureNominal id="43">
        <FeatureDefinitionId>42</FeatureDefinitionId>
        <Location>2433.974609375 800.617431640625
890.049621582031</Location>
        <Normal>0.0558150216639719 -0.907624351305543 -
0.41605615038579</Normal>
      </CircleFeatureNominal>
      <CircleFeatureNominal id="60">
        <FeatureDefinitionId>59</FeatureDefinitionId>
```

```
QIF 3.0
```

```
<Location>2496.25146484375 780.842590332031
938.272277832031</Location>
        <Normal>0.0418550117439991 -0.90916921031098 -
0.414318120547991</Normal>
      </CircleFeatureNominal>
      <CircleFeatureNominal id="76">
        <FeatureDefinitionId>75</FeatureDefinitionId>
        <Location>2506.63672251543 792.999124488284
912.644676969086</Location>
        <Normal>0.041846787761012 -0.90918955358026 -
0.414274307693118</Normal>
      </CircleFeatureNominal>
    </FeatureNominals>
    <FeatureItems n="6">
      <EdgePointFeatureItem id="10">
        <Attributes n="1">
          <AttributeStr name="Comment" value="An edge point with</pre>
uniform profile characteristic"/>
        </Attributes>
        <FeatureNominalId>9</FeatureNominalId>
        <FeatureName>TRIM1</FeatureName>
        <UUID>aeba4615-65db-4f7d-a2e8-a7928c80117f</UUID>
        <DeterminationMode>
          <Checked>
            <CheckDetails>
              <Measured/>
            </CheckDetails>
          </Checked>
        </DeterminationMode>
      </EdgePointFeatureItem>
      <PointFeatureItem id="20">
        <Attributes n="1">
          <AttributeStr name="Comment" value="A point on a surface</pre>
with coordinate characteristics"/>
        </Attributes>
        <FeatureNominalId>19</FeatureNominalId>
        <FeatureName>SURF1</FeatureName>
        <UUID>263c98a7-9786-4408-b62f-dda79a07daad</UUID>
        <DeterminationMode>
          <Checked>
            <CheckDetails>
              <Measured/>
            </CheckDetails>
          </Checked>
        </DeterminationMode>
      </PointFeatureItem>
      <PointFeatureItem id="36">
        <Attributes n="1">
          <AttributeStr name="Comment" value="A point on a surface</pre>
with non-uniform profile characteristic"/>
        </Attributes>
        <FeatureNominalId>35</FeatureNominalId>
```

```
QIF 3.0
```

```
<FeatureName>SURF2</FeatureName>
        <UUID>63799169-1d43-41ee-b1ad-451f9d8a8f4e</UUID>
        <DeterminationMode>
          <Checked>
            <CheckDetails>
              <Measured/>
            </CheckDetails>
          </Checked>
        </DeterminationMode>
      </PointFeatureItem>
      <CircleFeatureItem id="44">
        <Attributes n="1">
          <AttributeStr name="Comment" value="A hole with position and</pre>
gage-pin diameter"/>
        </Attributes>
        <FeatureNominalId>43</FeatureNominalId>
        <FeatureName>HOLE1</FeatureName>
        <UUID>f29bb618-e50d-4dbb-b4b4-83b28755c741</UUID>
        <DeterminationMode>
          <Checked>
            <CheckDetails>
              <Measured/>
            </CheckDetails>
          </Checked>
        </DeterminationMode>
      </CircleFeatureItem>
      <CircleFeatureItem id="61">
        <Attributes n="1">
          <AttributeStr name="Comment" value="A hole with position and</pre>
caliper diameter"/>
        </Attributes>
        <FeatureNominalId>60</FeatureNominalId>
        <FeatureName>HOLE2</FeatureName>
        <UUID>5bb191b0-7a18-4393-8f24-1353ac8365c7</UUID>
        <DeterminationMode>
          <Checked>
            <CheckDetails>
              <Measured/>
            </CheckDetails>
          </Checked>
        </DeterminationMode>
      </CircleFeatureItem>
      <CircleFeatureItem id="77">
        <Attributes n="1">
          <AttributeStr name="Comment" value="A non-measureable</pre>
reference circle"/>
        </Attributes>
        <FeatureNominalId>76</FeatureNominalId>
        <FeatureName>REFCIRC1</FeatureName>
        <UUID>6443f863-c559-42f2-b62a-48c0172d3395</UUID>
        <DeterminationMode>
          <Set/>
```

```
</DeterminationMode>
    </CircleFeatureItem>
  </FeatureItems>
</Features>
<Characteristics>
 <FormalStandardId>87</FormalStandardId>
  <CharacteristicDefinitions n="11">
    <PointProfileCharacteristicDefinition id="12">
      <ToleranceValue>4</ToleranceValue>
      <DatumReferenceFrameId>13</DatumReferenceFrameId>
    </PointProfileCharacteristicDefinition>
    <LinearCoordinateCharacteristicDefinition id="22">
      <DimensionType>BASIC OR TED</DimensionType>
      <NonTolerance>MEASURED</NonTolerance>
    </LinearCoordinateCharacteristicDefinition>
    <LinearCoordinateCharacteristicDefinition id="26">
      <Tolerance>
        <MaxValue>0.2</MaxValue>
        <MinValue>-0.2</MinValue>
        <DefinedAsLimit>false</DefinedAsLimit>
      </Tolerance>
    </LinearCoordinateCharacteristicDefinition>
    <LinearCoordinateCharacteristicDefinition id="30">
      <Tolerance>
        <MaxValue>945.20274658203107</MaxValue>
        <MinValue>944.80274658203098</MinValue>
        <DefinedAsLimit>true</DefinedAsLimit>
      </Tolerance>
    </LinearCoordinateCharacteristicDefinition>
    <PointProfileCharacteristicDefinition id="38">
      <ToleranceValue>1.5</ToleranceValue>
      <OuterDisposition>1</OuterDisposition>
      <DatumReferenceFrameId>13</DatumReferenceFrameId>
    </PointProfileCharacteristicDefinition>
    <DiameterCharacteristicDefinition id="46">
      <Tolerance>
        <MaxValue>0.4</MaxValue>
        <MinValue>-0.4</MinValue>
        <DefinedAsLimit>false</DefinedAsLimit>
      </Tolerance>
    </DiameterCharacteristicDefinition>
    <PositionCharacteristicDefinition id="50">
      <ToleranceValue>1</ToleranceValue>
      <DatumReferenceFrameId>51</DatumReferenceFrameId>
      <MaterialCondition>MAXIMUM</MaterialCondition>
      <ZoneShape>
        <DiametricalZone/>
      </ZoneShape>
    </PositionCharacteristicDefinition>
    <DiameterCharacteristicDefinition id="63">
      <Tolerance>
```

```
<MaxValue>10.4</MaxValue>
      <MinValue>9.6</MinValue>
      <DefinedAsLimit>true</DefinedAsLimit>
    </Tolerance>
  </DiameterCharacteristicDefinition>
  <PositionCharacteristicDefinition id="68">
    <ToleranceValue>1</ToleranceValue>
    <DatumReferenceFrameId>69</DatumReferenceFrameId>
    <MaterialCondition>REGARDLESS</MaterialCondition>
    <ZoneShape>
      <DiametricalZone/>
    </ZoneShape>
  </PositionCharacteristicDefinition>
  <DiameterCharacteristicDefinition id="79">
    <DimensionType>BASIC OR TED</DimensionType>
    <NonTolerance>SET</NonTolerance>
  </DiameterCharacteristicDefinition>
  <DistanceBetweenCharacteristicDefinition id="83">
    <Tolerance>
      <MaxValue>0.5</MaxValue>
      <MinValue>-0.5</MinValue>
      <DefinedAsLimit>false</DefinedAsLimit>
    </Tolerance>
  </DistanceBetweenCharacteristicDefinition>
</CharacteristicDefinitions>
<CharacteristicNominals n="11">
  <PointProfileCharacteristicNominal id="14">
    <CharacteristicDefinitionId>12</CharacteristicDefinitionId>
  </PointProfileCharacteristicNominal>
  <LinearCoordinateCharacteristicNominal id="23">
    <CharacteristicDefinitionId>22</CharacteristicDefinitionId>
    <TargetValue>2466.729248046875</TargetValue>
    <Direction>XAXIS</Direction>
  </LinearCoordinateCharacteristicNominal>
  <LinearCoordinateCharacteristicNominal id="27">
    <CharacteristicDefinitionId>26</CharacteristicDefinitionId>
    <TargetValue>774.26989746093795</TargetValue>
    <Direction>YAXIS</Direction>
  </LinearCoordinateCharacteristicNominal>
  <LinearCoordinateCharacteristicNominal id="31">
    <CharacteristicDefinitionId>30</CharacteristicDefinitionId>
    <Direction>ZAXIS</Direction>
  </LinearCoordinateCharacteristicNominal>
  <PointProfileCharacteristicNominal id="39">
    <CharacteristicDefinitionId>38</CharacteristicDefinitionId>
  </PointProfileCharacteristicNominal>
  <DiameterCharacteristicNominal id="47">
    <CharacteristicDefinitionId>46</CharacteristicDefinitionId>
    <TargetValue>10</TargetValue>
  </DiameterCharacteristicNominal>
  <PositionCharacteristicNominal id="55">
    <CharacteristicDefinitionId>50</CharacteristicDefinitionId>
```

```
</PositionCharacteristicNominal>
      <DiameterCharacteristicNominal id="64">
        <CharacteristicDefinitionId>63</CharacteristicDefinitionId>
      </DiameterCharacteristicNominal>
      <PositionCharacteristicNominal id="72">
        <CharacteristicDefinitionId>68</CharacteristicDefinitionId>
      </PositionCharacteristicNominal>
      <DiameterCharacteristicNominal id="80">
        <CharacteristicDefinitionId>79</CharacteristicDefinitionId>
        <TargetValue>30</TargetValue>
      </DiameterCharacteristicNominal>
      <DistanceBetweenCharacteristicNominal id="84">
        <CharacteristicDefinitionId>83</CharacteristicDefinitionId>
        <TargetValue>81.208839738425993</TargetValue>
        <AnalysisMode>THREEDIMENSIONAL</AnalysisMode>
      </DistanceBetweenCharacteristicNominal>
    </CharacteristicNominals>
    <CharacteristicItems n="11">
      <PointProfileCharacteristicItem id="15">
        <Attributes n="1">
          <AttributeStr name="Comment" value="A uniform profile zone</pre>
±2.0 with empty DRF"/>
        </Attributes>
        <Name>5</Name>
        <CharacteristicDesignator>
          <Designator>5</Designator>
          <UUID>6f2a6f83-3ff7-4327-b00c-98208361301a</UUID>
          <Criticalitv>
            <LevelEnum>MINOR</LevelEnum>
          </Criticality>
        </CharacteristicDesignator>
        <FeatureItemIds n="1">
          <Id>10</Id>
        </FeatureItemIds>
        <MeasurementDeviceIds n="1">
          <Id>16</Id>
        </MeasurementDeviceIds>
        <CharacteristicNominalId>14</CharacteristicNominalId>
        <LocationOnDrawing>
          <DrawingId>5</DrawingId>
          <SheetNumber>SHEET1</SheetNumber>
          <DrawingZone>C2</DrawingZone>
        </LocationOnDrawing>
      </PointProfileCharacteristicItem>
      <LinearCoordinateCharacteristicItem id="24">
        <Attributes n="1">
          <AttributeStr name="Comment" value="A basic or theoretically</pre>
exact coordinate dimension"/>
        </Attributes>
        <Name>1</Name>
        <CharacteristicDesignator>
          <Designator>1</Designator>
```

```
QIF 3.0
```

```
<UUID>fdb07604-ac7e-4f7c-acc8-0860de517fd4</UUID>
          <Criticality>
            <OtherLevel>REF</OtherLevel>
          </Criticality>
        </CharacteristicDesignator>
        <FeatureItemIds n="1">
          <Id>20</Id>
        </FeatureItemIds>
        <MeasurementDeviceIds n="1">
          <Id>16</Id>
        </MeasurementDeviceIds>
        <CharacteristicNominalId>23</CharacteristicNominalId>
        <LocationOnDrawing>
          <DrawingId>5</DrawingId>
          <SheetNumber>SHEET1</SheetNumber>
          <DrawingZone>D3</DrawingZone>
        </LocationOnDrawing>
      </LinearCoordinateCharacteristicItem>
      <LinearCoordinateCharacteristicItem id="28">
        <Attributes n="1">
          <AttributeStr name="Comment" value="A bi-directional</pre>
coordinate tolerance"/>
        </Attributes>
        <Name>2</Name>
        <CharacteristicDesignator>
          <Designator>2</Designator>
          <UUID>445298bf-91a2-4ec6-8fa4-3b2c029eeb6e</UUID>
          <Criticalitv>
            <LevelEnum>MINOR</LevelEnum>
          </Criticality>
        </CharacteristicDesignator>
        <FeatureItemIds n="1">
          <Id>20</Id>
        </FeatureItemIds>
        <MeasurementDeviceIds n="1">
          <Id>16</Id>
        </MeasurementDeviceIds>
        <CharacteristicNominalId>27</CharacteristicNominalId>
        <LocationOnDrawing>
          <DrawingId>5</DrawingId>
          <SheetNumber>SHEET1</SheetNumber>
          <DrawingZone>D3</DrawingZone>
        </LocationOnDrawing>
      </LinearCoordinateCharacteristicItem>
      <LinearCoordinateCharacteristicItem id="32">
        <Attributes n="1">
          <AttributeStr name="Comment" value="A limit coordinate</pre>
tolerance"/>
        </Attributes>
        <Name>3</Name>
        <CharacteristicDesignator>
          <Designator>3</Designator>
```

```
QIF 3.0
```

```
<UUID>187ce9c9-7125-47b0-869b-d37a9722a35d</UUID>
          <Criticality>
            <LevelEnum>MAJOR</LevelEnum>
          </Criticality>
        </CharacteristicDesignator>
        <FeatureItemIds n="1">
          <Id>20</Id>
        </FeatureItemIds>
        <MeasurementDeviceIds n="1">
          <Id>16</Id>
        </MeasurementDeviceIds>
        <CharacteristicNominalId>31</CharacteristicNominalId>
        <LocationOnDrawing>
          <DrawingId>5</DrawingId>
          <SheetNumber>SHEET1</SheetNumber>
          <DrawingZone>D3</DrawingZone>
        </LocationOnDrawing>
      </LinearCoordinateCharacteristicItem>
      <PointProfileCharacteristicItem id="40">
        <Attributes n="1">
          <AttributeStr name="Comment" value="An offset profile zone</pre>
+1.0/-0.5 to ABC"/>
        </Attributes>
        <Name>4</Name>
        <CharacteristicDesignator>
          <Designator>4</Designator>
          <UUID>7ad19cce-458a-4d0a-9436-6a2d2683b018</UUID>
          <Criticalitv>
            <LevelEnum>CRITICAL</LevelEnum>
          </Criticality>
        </CharacteristicDesignator>
        <FeatureItemIds n="1">
          <Id>36</Id>
        </FeatureItemIds>
        <MeasurementDeviceIds n="1">
          <Id>16</Id>
        </MeasurementDeviceIds>
        <CharacteristicNominalId>39</CharacteristicNominalId>
        <LocationOnDrawing>
          <DrawingId>5</DrawingId>
          <SheetNumber>SHEET1</SheetNumber>
          <DrawingZone>B3</DrawingZone>
        </LocationOnDrawing>
      </PointProfileCharacteristicItem>
      <DiameterCharacteristicItem id="48">
        <Attributes n="1">
          <AttributeStr name="Comment" value="A bi-directional</pre>
diameter tolerance"/>
        </Attributes>
        <Name>6</Name>
        <CharacteristicDesignator>
          <Designator>6</Designator>
```

```
QIF 3.0
```

```
<UUID>4e609ab8-7d1c-4317-9b16-5fea194f9d7e</UUID>
          <Criticality>
            <LevelEnum>MINOR</LevelEnum>
          </Criticality>
        </CharacteristicDesignator>
        <FeatureItemIds n="1">
          <Id>44</Id>
        </FeatureItemIds>
        <MeasurementDeviceIds n="1">
          <Id>16</Id>
        </MeasurementDeviceIds>
        <CharacteristicNominalId>47</CharacteristicNominalId>
        <LocationOnDrawing>
          <DrawingId>5</DrawingId>
          <SheetNumber>SHEET1</SheetNumber>
          <DrawingZone>C1</DrawingZone>
        </LocationOnDrawing>
      </DiameterCharacteristicItem>
      <PositionCharacteristicItem id="56">
        <Attributes n="1">
          <AttributeStr name="Comment" value="MMC diametrical position</pre>
to AB(m)C(m)"/>
        </Attributes>
        <Name>7</Name>
        <CharacteristicDesignator>
          <Designator>7</Designator>
          <UUID>4438e85a-441a-420f-93d8-c6ed52fae87e</UUID>
          <Criticalitv>
            <LevelEnum>CRITICAL</LevelEnum>
          </Criticality>
        </CharacteristicDesignator>
        <FeatureItemIds n="1">
          <Id>44</Id>
        </FeatureItemIds>
        <MeasurementDeviceIds n="1">
          <Id>57</Id>
        </MeasurementDeviceIds>
        <CharacteristicNominalId>55</CharacteristicNominalId>
        <LocationOnDrawing>
          <DrawingId>5</DrawingId>
          <SheetNumber>SHEET1</SheetNumber>
          <DrawingZone>C1</DrawingZone>
        </LocationOnDrawing>
      </PositionCharacteristicItem>
      <DiameterCharacteristicItem id="65">
        <Attributes n="1">
          <AttributeStr name="Comment" value="Limit diameter tolerance</pre>
with caliper "/>
        </Attributes>
        <Name>8</Name>
        <CharacteristicDesignator>
          <Designator>8</Designator>
```

```
QIF 3.0
```

```
<UUID>a5a0d3a2-e6c4-4be9-93fe-18ba95d8372c</UUID>
        </CharacteristicDesignator>
        <FeatureItemIds n="1">
          <Id>61</Id>
        </FeatureItemIds>
        <MeasurementDeviceIds n="1">
          <Id>66</Id>
        </MeasurementDeviceIds>
        <CharacteristicNominalId>64</CharacteristicNominalId>
        <LocationOnDrawing>
          <DrawingId>5</DrawingId>
          <SheetNumber>SHEET1</SheetNumber>
          <DrawingZone>C3</DrawingZone>
        </LocationOnDrawing>
      </DiameterCharacteristicItem>
      <PositionCharacteristicItem id="73">
        <Attributes n="1">
          <AttributeStr name="Comment" value="RFS position to</pre>
AD(1)E(1)"/>
        </Attributes>
        <Name>9</Name>
        <CharacteristicDesignator>
          <Designator>9</Designator>
          <UUID>c79e4f25-f235-4886-88a3-b8a2eeaba096</UUID>
          <Criticality>
            <LevelEnum>MINOR</LevelEnum>
          </Criticality>
        </CharacteristicDesignator>
        <FeatureItemIds n="1">
          <Id>61</Id>
        </FeatureItemIds>
        <MeasurementDeviceIds n="1">
          <Id>16</Id>
        </MeasurementDeviceIds>
        <CharacteristicNominalId>72</CharacteristicNominalId>
        <LocationOnDrawing>
          <DrawingId>5</DrawingId>
          <SheetNumber>SHEET1</SheetNumber>
          <DrawingZone>C3</DrawingZone>
        </LocationOnDrawing>
      </PositionCharacteristicItem>
      <DiameterCharacteristicItem id="81">
        <Attributes n="1">
          <AttributeStr name="Comment" value="Diameter set</pre>
dimension"/>
        </Attributes>
        <Name>10</Name>
        <CharacteristicDesignator>
          <Designator>10</Designator>
          <UUID>ee9bb7c3-31fb-40a4-841d-4f1b9fc885bd</UUID>
        </CharacteristicDesignator>
        <FeatureItemIds n="1">
```

```
<Id>77</Id>
        </FeatureItemIds>
        <CharacteristicNominalId>80</CharacteristicNominalId>
        <LocationOnDrawing>
          <DrawingId>5</DrawingId>
          <SheetNumber>SHEET1</SheetNumber>
          <DrawingZone>B2</DrawingZone>
        </LocationOnDrawing>
      </DiameterCharacteristicItem>
      <DistanceBetweenCharacteristicItem id="85">
        <Attributes n="1">
          <AttributeStr name="Comment" value="Distance between HOLE1</pre>
and HOLE2"/>
        </Attributes>
        <Description>Distance-between characteristic</Description>
        <Name>DIST1</Name>
        <CharacteristicDesignator>
          <Designator>11</Designator>
          <UUID>3e6797f5-b443-4b15-9108-055190223837</UUID>
        </CharacteristicDesignator>
        <FeatureItemIds n="2">
          <Id>61</Id>
          <Id>44</Id>
        </FeatureItemIds>
        <MeasurementDeviceIds n="1">
          <Id>16</Id>
        </MeasurementDeviceIds>
        <CharacteristicNominalId>84</CharacteristicNominalId>
        <LocationOnDrawing>
          <DrawingId>5</DrawingId>
          <SheetNumber>SHEET1</SheetNumber>
          <DrawingZone>B2</DrawingZone>
        </LocationOnDrawing>
      </DistanceBetweenCharacteristicItem>
    </CharacteristicItems>
  </Characteristics>
  <Results>
    <MeasurementResultsSet n="1">
      <MeasurementResults id="88">
        <ThisResultsInstanceQPId>8521ff0f-4c05-4f13-a2be-
1386190f75a6</ThisResultsInstanceQPId>
        <ExternalFileReferences n="1">
          <ExternalFileReference>
            <URI>C:/R19 parts/5802804.res</URI>
            <FileSpec>
              <OtherFileSpec>res</OtherFileSpec>
            </FileSpec>
            <Description>Zeiss Umess CMM Results</Description>
          </ExternalFileReference>
        </ExternalFileReferences>
        <MeasuredFeatures n="6">
```

```
QIF 3.0
```

526

```
<EdgePointFeatureMeasurement id="11">
            <FeatureItemId>10</FeatureItemId>
            <Location>2460.72 770.62 944.98</Location>
            <Normal>-0.735465884156764 -0.307902932144901
0.603560864882807</Normal>
          </EdgePointFeatureMeasurement>
          <PointFeatureMeasurement id="21">
            <FeatureItemId>20</FeatureItemId>
            <Location>2466.9 774.31 944.84</Location>
          </PointFeatureMeasurement>
          <PointFeatureMeasurement id="37">
            <FeatureItemId>36</FeatureItemId>
            <Location>2537.17 783.38 920.02</Location>
          </PointFeatureMeasurement>
          <CircleFeatureMeasurement id="45">
            <FeatureItemId>44</FeatureItemId>
            <Location>2434.01 801.52505599193 889.98</Location>
            <Normal>0.0558150216639719 -0.907624351305543 -
0.41605615038579</Normal>
            <Diameter>9.499476</Diameter>
          </CircleFeatureMeasurement>
          <CircleFeatureMeasurement id="62">
            <FeatureItemId>61</FeatureItemId>
            <Location>2496.39 781.751759542342 938.09</Location>
            <Normal>0.0418550117439991 -0.90916921031098 -
0.414318120547991</Normal>
            <Diameter>10.19998799999999</Diameter>
          </CircleFeatureMeasurement>
          <CircleFeatureMeasurement id="78">
            <FeatureItemId>77</FeatureItemId>
            <Location>2506.63672251543 792.999124488284
912.644676969086</Location>
            <Normal>0.041846787761012 -0.90918955358026 -
0.414274307693118</Normal>
            <Diameter>30</Diameter>
          </CircleFeatureMeasurement>
        </MeasuredFeatures>
        <MeasuredCharacteristics>
          <CharacteristicMeasurements n="11">
            <PointProfileCharacteristicMeasurement id="17">
              <Status>
<CharacteristicStatusEnum>PASS</CharacteristicStatusEnum>
              </Status>
              <CharacteristicItemId>15</CharacteristicItemId>
              <FeatureMeasurementIds n="1">
                <Id>11</Id>
              </FeatureMeasurementIds>
              <NonConformanceDesignator>NA</NonConformanceDesignator>
              <Value>-0.020323885079998</Value>
            </PointProfileCharacteristicMeasurement>
            <LinearCoordinateCharacteristicMeasurement id="25">
```

<Status>

<CharacteristicStatusEnum>BASIC OR TED</CharacteristicStatusEnum> </Status> <CharacteristicItemId>24</CharacteristicItemId> <FeatureMeasurementIds n="1"> <Id>21</Id> </FeatureMeasurementIds> <NonConformanceDesignator>NA</NonConformanceDesignator> <TypeOfCoordinates> <CoordinateEnum>CARTESIAN 3D</CoordinateEnum> </TypeOfCoordinates> <Value>2466.900000000001</Value> </LinearCoordinateCharacteristicMeasurement> <LinearCoordinateCharacteristicMeasurement id="29"> <Status> <CharacteristicStatusEnum>PASS</CharacteristicStatusEnum> </Status> <CharacteristicItemId>28</CharacteristicItemId> <FeatureMeasurementIds n="1"> <Id>21</Id> </FeatureMeasurementIds> <NonConformanceDesignator>NA</NonConformanceDesignator> <TypeOfCoordinates> <CoordinateEnum>CARTESIAN 3D</CoordinateEnum> </TypeOfCoordinates> <Value>774.30999999999995</Value> </LinearCoordinateCharacteristicMeasurement> <LinearCoordinateCharacteristicMeasurement id="33"> <Status> <CharacteristicStatusEnum>PASS</CharacteristicStatusEnum> </status> <CharacteristicItemId>32</CharacteristicItemId> <FeatureMeasurementIds n="1"> <Id>21</Id> </FeatureMeasurementIds> <NonConformanceDesignator>NA</NonConformanceDesignator> <TypeOfCoordinates> <CoordinateEnum>CARTESIAN 3D</CoordinateEnum> </TypeOfCoordinates> <Value>944.840000000003</Value> </LinearCoordinateCharacteristicMeasurement> <PointProfileCharacteristicMeasurement id="41"> <Status> <CharacteristicStatusEnum>FAIL</CharacteristicStatusEnum> </Status> <CharacteristicItemId>40</CharacteristicItemId> <FeatureMeasurementIds n="1"> <Id>37</Id>

</FeatureMeasurementIds>

```
<NonConformanceDesignator>1234</NonConformanceDesignator>
              <Value>-0.886195693015347</Value>
            </PointProfileCharacteristicMeasurement>
            <DiameterCharacteristicMeasurement id="49">
              <Status>
<CharacteristicStatusEnum>FAIL</CharacteristicStatusEnum>
              </Status>
              <CharacteristicItemId>48</CharacteristicItemId>
              <FeatureMeasurementIds n="1">
                <Id>45</Id>
              </FeatureMeasurementIds>
<NonConformanceDesignator>1234</NonConformanceDesignator>
              <Value>9.499476</Value>
            </DiameterCharacteristicMeasurement>
            <PositionCharacteristicMeasurement id="58">
              <Status>
<CharacteristicStatusEnum>PASS</CharacteristicStatusEnum>
              </status>
              <CharacteristicItemId>56</CharacteristicItemId>
              <FeatureMeasurementIds n="1">
                <Id>45</Id>
              </FeatureMeasurementIds>
              <NonConformanceDesignator>NA</NonConformanceDesignator>
              <Value>0.897298445619006</Value>
            </PositionCharacteristicMeasurement>
            <DiameterCharacteristicMeasurement id="67">
              <Status>
<CharacteristicStatusEnum>PASS</CharacteristicStatusEnum>
              </Status>
              <CharacteristicItemId>65</CharacteristicItemId>
              <FeatureMeasurementIds n="1">
                <Id>62</Id>
              </FeatureMeasurementIds>
              <NonConformanceDesignator>NA</NonConformanceDesignator>
              <Value>10.199987999999999</Value>
            </DiameterCharacteristicMeasurement>
            <PositionCharacteristicMeasurement id="74">
              <Status>
<CharacteristicStatusEnum>FAIL</CharacteristicStatusEnum>
              </Status>
              <CharacteristicItemId>73</CharacteristicItemId>
              <FeatureMeasurementIds n="1">
                <Id>62</Id>
              </FeatureMeasurementIds>
```

```
QIF 3.0
```

```
<NonConformanceDesignator>1234</NonConformanceDesignator>
              <Value>1.137681133150282</Value>
            </PositionCharacteristicMeasurement>
            <DiameterCharacteristicMeasurement id="82">
              <Status>
<CharacteristicStatusEnum>BASIC OR TED</CharacteristicStatusEnum>
              </Status>
              <CharacteristicItemId>81</CharacteristicItemId>
              <FeatureMeasurementIds n="1">
                <Id>78</Id>
              </FeatureMeasurementIds>
              <Value>30</Value>
            </DiameterCharacteristicMeasurement>
            <DistanceBetweenCharacteristicMeasurement id="86">
              <Status>
<CharacteristicStatusEnum>PASS</CharacteristicStatusEnum>
              </Status>
              <CharacteristicItemId>85</CharacteristicItemId>
              <FeatureMeasurementIds n="2">
                <Id>62</Id>
                <Id>45</Id>
              </FeatureMeasurementIds>
              <Value>81.220808617516994</Value>
            </DistanceBetweenCharacteristicMeasurement>
          </CharacteristicMeasurements>
        </MeasuredCharacteristics>
        <InspectionStatus>
          <InspectionStatusEnum>FAIL</InspectionStatusEnum>
        </InspectionStatus>
        <ActualComponentIds n="1">
          <Id>4</Id>
        </ActualComponentIds>
      </MeasurementResults>
    </MeasurementResultsSet>
    <ActualComponentSets n="1">
      <ActualComponentSet n="1">
        <ActualComponent id="4">
          <Status>
            <InspectionStatusEnum>FAIL</InspectionStatusEnum>
          </Status>
          <AsmPathId>3</AsmPathId>
        </ActualComponent>
      </ActualComponentSet>
    </ActualComponentSets>
    <InspectionTraceability>
      <ReportPreparer>
        <Name>John Doe</Name>
        <EmployeeId>123-456</EmployeeId>
      </ReportPreparer>
```

```
<ReportPreparationDate>2018-06-
25T11:55:56</ReportPreparationDate>
    </InspectionTraceability>
    </Results>
```

</QIFDocument>

*** end of Results sample file ***

Annex C – ISO GPS support in QIF 3.0

(informative)

Preface

Most dimensional and geometrical tolerancing standards used in industry are based on either American Society of Mechanical Engineers (ASME) or International Organization for Standardization (ISO) standards. Both ISO Geometrical Product Specifications (GPS) and ASME Y14.5 help establish uniform practices for stating and interpreting product design intent. QIF accommodates both ASME GD&T and ISO GPS documented practices.

ISO GPS and ASME Y14.5 commonality

ISO GPS and ASME Y14.5 share many symbols and semantic concepts at a high level although they may differ at a more detailed level. It is by virtue of this commonality that there was always a shared support in QIF for ISO GPS concepts.

QIF designation of formal tolerance standards

The primary mechanism for differentiating the detailed meaning of QIF types and *elements* across different standards is the required use of the **FormalStandardId** *element* when characteristics are defined. This element contains a reference to the id of a standard defined in the **StandardsDefinitions** *element*. The ISO GPS main standard can be defined as follows:

```
<StandardsDefinitions n="1">

<Standard id="15">

<Organization>

<StandardsOrganizationEnum>ISO</StandardsOrganizationEnum>

</Organization>

<Designator>1101</Designator>

<Year>2012</Year>

</Standard>

</StandardsDefinitions>
```

Related standards can be defined and referenced from the main standard as follows:

```
<StandardsDefinitions n="3">
  <Standard id="15">
    <Organization>
      <StandardsOrganizationEnum>ISO</StandardsOrganizationEnum>
    </Organization>
   <Designator>1101</Designator>
   <Year>2012</Year>
   <ReferencedStandardIds n="2">
      <Id>16</Id>
      <Id>17</Id>
   </ReferencedStandardIds>
  </Standard>
  <Standard id="16">
    <Organization>
      <StandardsOrganizationEnum>ISO</StandardsOrganizationEnum>
    </Organization>
    <Designator>8015</Designator>
    <Year>2011</Year>
```

```
</Standard>

<Standard id="17">

<Organization>

<StandardsOrganizationEnum>ISO</StandardsOrganizationEnum>

</Organization>

<Designator>14415-1</Designator>

<Year>2016</Year>

</Standard>

</StandardsDefinitions>
```

ISO GPS and ASME Y14.5 terminology

The shared symbols and semantic concepts of ISO GPS and ASME Y14.5 often bring with them differences in terminology. The following table indicates ASME Y14.5 terms used in QIF with their ISO GPS equivalents:

ASME Y14.5 term	ISO GPS term
Feature control frame	Tolerance frame or
	Tolerance indicator
Reference dimension	Auxiliary dimension
Basic dimension	Theoretically exact dimension (TED)
Circularity	Roundness

ISO GPS specific items in QIF

ISO GPS includes several symbols; datum, tolerance, and tolerance indicatormodifiers; and semantic concepts that do not have ASME Y14.5 counterparts. QIF implements support of these with types and *elements* specific to ISO GPS as listed below.

The following is a list of QIF types, *elements* and enumerations specific to ISO GPS support:

- 1. Median feature (A) **CharacteristicDefinitionBaseType**/MedianFeature optional Boolean element
- 2. Envelope requirement (E) CharacteristicDefinitionBaseType/EnvelopeRequirement optionalBoolean element
- 3. Common zone modifier CZ CharacteristicDefinitionBaseType/CommonZone optional Boolean element
- 4. United feature modifier UF *CharacteristicDefinitionBaseType*/UnitedFeature optional Boolean *element*
- 5. Separate zone modifier SZ CharacteristicDefinitionBaseType/SeparateZone optional Boolean element
- 6. Direction feature modifier 4 // B

GeometricCharacteristicDefinitionBaseType/DirectionFeature optional element, the

- type of which is *DirectionFeatureType* (a complex type)
- Collection plane modifier O // B
 GeometricCharacteristicDefinitionBaseType/CollectionPlane optional element, the type of which is CollectionPlaneType (a complex type)
- Intersection plane modifier /// B
 GeometricCharacteristicDefinitionBaseType/IntersectionPlane optional element, the type of which is IntersectionPlaneType (a complex type)
- Orientation plane modifier (// B)
 GeometricCharacteristicDefinitionBaseType/OrientationPlane optional element, the type of which is OrientationPlaneType (a complex type)
- Linear element modifier LE (as Y14.5M equivalent EACH ELEMENT)
 OrientationCharacteristicDefinitionBaseType/EachElement optional Boolean element
- 11. Not convex modifier NC FlatnessCharacteristicDefinitionType/NotConvex optional Boolean element
- 12. Orientation only modifier >< PositionCharacteristicDefinitionType/OrientationOnly optional Boolean element, and ProfileCharacteristicDefinitionBaseType/OrientationOnly optional Boolean element (Note: because '>' and '<' are reserved characters in XML schema language this symbology is described as "greaterthan/lessthan" in the schema annotation)
- 13. Unequally disposed zone modifier UZ (optional choice between ISO unequally disposed zone UZ and ASME outer disposition (1) methods) *ProfileCharacteristicDefinitionBaseType*/UnequallyDisposedZone linear value optional *element*
- 14. ALLOVERTHISSIDE and ALLAROUNDTHISSIDE additions to ASME ALLOVER and ALLAROUND *ExtentEnumType*
- 15. Offset zone modifier OZ **ProfileCharacteristicDefinitionBaseType**/OffsetZone optional Boolean element
- 16. Variable angle modifier VA **ProfileCharacteristicDefinitionBaseType**/VariableAngle optional Boolean element
- 17. Projected datum modifier P **DatumType**/ProjectedDatum linear value optional element
- Threaded datum diameter modifiers PD, MD, and LD DatumType/DiameterModifier optional element, the type of which is DiameterModifierEnumType (a simple type)

- Section modifiers ACS, SCS and ALS
 SectionModifier optional *element*, the type of which is SectionModifierEnumType (a simple type)
- 20. Contacting feature datum modifier CF *DatumType*/ContactingFeature optional Boolean *element*
- 21. Distance variable modifier DV **DatumType/DistanceVariable** optional Boolean element
- 22. Datum fixed modifier DF **DatumType/DatumFixed** optional Boolean element
- Datum reduction modifiers PT, SL, and PL *DatumType*/ReducedDatum optional *element*, the type of which is *ReducedDatumEnumType* (a simple type)
- 24. Constrain orientation >< datum modifier DatumType/ConstrainOrientation optional Boolean element (Note: because '>' and '<' are reserved characters in XML schema language this symbology is described as "greaterthan/lessthan" in the schema annotation)
- 25. Constrain subsequent <> datum modifier DatumType/ConstrainSubsequent optional Boolean element (Note: because '<' and '>' are reserved characters in XML schema language this symbology is described as "lessthan/greaterthan" in the schema annotation)
- 26. Degrees of freedom modifiers (as choice between ISO Tx,Ty,Tz,Rx,Ry,Rz and ASME u,v,w,x,y,z)

DegreesOfFeedomType/ISODegreesOfFreedom *element*(s), the type of which is ISODegreeOfFreedomEnumType (a simple type)

- 27. ISO Thread specifications *ThreadSeriesEnumType* various *ThreadClassEnumType* various
- 28. Zone direction for circular runout (via DMIS support of ISO) CircularRunoutCharacteristicNominalType/ZoneDirection optional element, the type of which is UnitVectorType (a complex type)
- 29. Coaxiality O

CoaxialityCharacteristicDefinitionType, CoaxialityCharacteristicNominalType, CoaxialityCharacteristicItemType, and CoaxialityCharacteristicMeasurementType types

30. Associated tolerance feature specification element (C, G, N, X, T) *GeometricCharacteristicDefinitionBaseType*/ AssociatedTolerancedFeatureSpecificationElement optional element, the type of which is *AssociatedTolerancedFeatureSpecificationElementEnumType* (a simple type)

- QIF 3.0
 - 31. Reference feature association specification element, e.g. "S0,25-x-500 C P" GeometricCharacteristicDefinitionBaseType/ ReferenceFeatureAssociationSpecificationElement optional element, the type of which is ReferenceFeatureAssociationSpecificationElementType (a complex type)
 - 32. Reciprocity requirement [®] *MaterialModifierEnumType* LEAST_RPR and MAXIMUM_RPR *enumerations* to indicate the presence of the reciprocity requirement symbol paired with the ^① and [®] symbols respectively.
 - 33. Dimension modifiers LP, LS, GG, GX, GN, CC, CA, CV as optional element DeterminationModifier of type DeterminationModifierEnumType and dimension modifiers SX, SN, SA, SM, SD, SR, SQ as an optional element SignificantDimension of type SignificantDimensionEnumType

Annex D – DMSC Volunteer Agreement

(informative)

DMSC volunteer agreement: "You hereby agree, by your participation in any activity of this standards committee (including committee meeting attendance, email exchanges, phone conversations, or document generation), that you will not disclose any corporate confidential information or corporate trade secrets either verbally or in writing. Furthermore, any information disclosed to you in any activity of this standards committee, or disclosed to you in documents produced by this committee, will be provided to you for the sole purpose of establishing an industry-wide standard pursuant to the procedures prescribed by ANSI and ISO. You therefore agree not to use this information, or to collaborate in its use, in any manner that might suggest you have any proprietary rights to such information, such as rights to a patent, trademark, or copyright."

Bibliography

[1] SAE AS9102B (2014-10), Aerospace First Article Inspection Requirement

[2] Walmsley, Priscilla., 2002. *Definitive XML Schema*. Prentice Hall, Upper Saddle River, NJ, USA.

[3] ASME B89.7.2 – 2014, Dimensional Measurement Planning