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ABSTRACT
Human decision-making often transcends our formal models of “rationality.” Designing intel-
ligent agents that interact proficiently with people necessitates the modeling of human behavior
and the prediction of their decisions. In this book, we explore the task of automatically pre-
dicting human decision-making and its use in designing intelligent human-aware automated
computer systems of varying natures—from purely conflicting interaction settings (e.g., secu-
rity and games) to fully cooperative interaction settings (e.g., autonomous driving and personal
robotic assistants). We explore the techniques, algorithms, and empirical methodologies for
meeting the challenges that arise from the above tasks and illustrate major benefits from the
use of these computational solutions in real-world application domains such as security, nego-
tiations, argumentative interactions, voting systems, autonomous driving, and games. The
book presents both the traditional and classical methods as well as the most recent and cutting-
edge advances, providing the reader with a panorama of the challenges and solutions in predict-
ing human decision-making.

KEYWORDS
intelligent agents, human decision-making, prediction models, human-agent inter-
action, decision theory, game theory, machine learning, human factors, applications
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Preface
Human decision-making often transcends our formal models of “rationality.” Designing intel-
ligent agents that interact proficiently with people necessitates the modeling of human behavior
and the prediction of their decisions. In this book, we explore the task of automatically pre-
dicting human decision-making and its use in designing intelligent human-aware automated
computer systems of varying natures—from purely conflicting interaction settings (e.g., secu-
rity and games) to fully cooperative interaction settings (e.g., autonomous driving and personal
robotic assistants). We explore the techniques, algorithms, and empirical methodologies for
meeting the challenges that arise from the above tasks and illustrate major benefits from the use
of these computational solutions in real world application domains such as security, negotia-
tions, argumentative interactions, voting systems, autonomous driving and games. The book
presents both the traditional and classical methods as well as the most recent and cutting-edge
advances, providing the reader with a panorama of the challenges and solutions in predicting
human decision-making.

The book is written with two intentions in mind. First and foremost, it is intended for
students, researchers, and the general population who seek to broaden their knowledge and
become familiar with the task of predicting human decision-making and the development of
intelligent agents based on such predictions. Second, it is intended to serve as a textbook. This
textbook, which includes more than 60 exercises (including programming exercises) and is ac-
companied by PowerPoint presentations, could fit as part of an introductory or advanced AI
course or stand as a short course/seminar/workshop in its own right. Visit our website for fur-
ther information: https://sites.google.com/view/predicting-human-dm.

This book follows a tutorial given by both authors titled “Predicting Human Decision-
Making: Tools of the Trade” given at the thirty-first AAAI Conference on Artificial Intelligence
on February 5, 2017, in San Francisco, California. An extended version of the tutorial was given
by the first author at the 19th European Agent Systems Summer School (EASSS) from August
8–9, 2017, in Gdańsk, Poland.

PREREQUISITES
In the course of this book, we occasionally refer to techniques and concepts common in decision-
making, machine learning, game theory, and artificial intelligence. The basis for these concepts
is covered as part of the book and does not require (substantial) further reading. Some concepts
are only mentioned in the book and those are followed by appropriate references in order to keep
the book’s focus intact.

https://sites.google.com/view/predicting-human-dm
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All the same, basic familiarity with decision-making, machine learning, game theory, and

artificial intelligence concepts is encouraged, but not mandatory.
The book is filled with real-world examples, varying across different domains, accompa-

nying, illustrating, and explaining the introduced notions. We hope that this variety will allow
readers of different backgrounds to find the book engaging.

ROADMAP
The book is organized as follows.

• Chapter 1 sets the scene by discussing the prediction of human decision-making from sev-
eral perspectives. It further presents a classification of human decision-making prediction
tasks.

• Chapter 2 presents the basic notions of rational decision-making. The utility maximization
paradigm is discussed, and the basic notions of decision theory and game theory are defined
and exemplified. The chapter ends with a discussion about people’s (ir)rationality.

• Chapter 3 discusses the common techniques deployed for predicting human decision-
making. We review the three major approaches: the expert-driven, data-driven, and hybrid
approaches, as well as their advantages and limitations. This chapter further illustrates the
effectiveness of the different approaches in real-world applications.

• Chapter 4 takes a more practical approach, investigating the challenges of utilizing pre-
diction models in the real world. Six highly popular domains are discussed and compared
(Security Games, Negotiations, Argumentation, Games, Autonomous Cars, and Voting). Each
domain is surveyed briefly, followed by a comprehensive discussion of the prediction of hu-
man decision-making in the domain at hand. Domain specific and general insights such
as applicable assumptions and beneficially deployed techniques are highlighted.

• Chapter 5 elevates the level of insights derived from Chapters 2, 3, and 4 and provides a
thorough discussion of what makes a good prediction model, followed by the Predicting
HumanDecision-making (PHD) flow graph, aimed at providing directions for tackling
new prediction tasks and environments. The chapter ends with a discussion of the ethical
considerations surrounding the topic.

• Chapter 6 concludes the book and provides future directions for the field.

TEACHING WITH THIS BOOK
We have written this book with clear intention that it be used as (part of ) a course text. The book
is primarily intended for advanced undergraduates or beginning-to-middle graduate students in
computer science, engineering, or management.



PREFACE xiii
Although different instructors may wish to spend more or less time covering the different

chapters of the book, we provide the following time estimations along with practical advice.

• The introduction (Chapter 1) sets the scene and introduces terminology used for the re-
mainder of the book, do not skip it. It should take about 1–2 hours.

• If students have taken a Game Theory course, or come with a strong background in eco-
nomics, Chapter 2 may be significantly reduced. Otherwise, wewould recommend spending
2–4 hours on the topic. Note that the discussion over human rationality can easily be turned
into an intriguing class discussion.

• Chapter 3 is by far the longest chapter of the book. It consists of “two-and-a-half ” main
sections introducing the expert-driven paradigm (1–2 hours), the data-driven paradigm
(1–3 hours), and the hybrid approach (half an hour). The time estimations here relate to
computer science students as discussed above. Students from other backgrounds may re-
quire significantly more time to understand the data-driven and hybrid approaches. Note
that if students have not encountered any machine learning models in the past the in-
structor should devote at least half an hour to illustrate a few basic learning algorithms in
practice (e.g., using Weka [331]).

• Six domains are discussed in Chapter 4. From our experience, the last two (autonomous
driving and games) are the most popular among students. Allow between 1–4 hours to review
some or all of the application domains. Note that reading and even presenting the left-out
domains may be given to students as an exercise.

• Chapters 5 and 6 summarize the book and revisit the introduced techniques and many of
book’s notions and concepts. It could easily be turned into a class discussion, for the most
part. Allow for at least 1–2 hours. The topic of “ethical considerations” may be expanded or
reduced per the students’ interest or time constraints.

Overall, if one would want to use the book as a self-contained course, we would expect such
a course to take between 12–18 hours.

Another option, perhaps more relevant for most computer science instructors, is to inte-
grate this book as part of a basic or advanced AI course. Given the students’ (expected) prior
knowledge on game theory and machine learning, the book can be stripped to its bare essentials
of 4–6 hours of teaching. Our recommendation is as follows.

1. Quick overview of the Introduction (half an hour).

2. Fundamental notions of Chapter 3 (2–3 hours).
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3. A few examples from Chapter 4 (1–1.5 hours).

4. The PHD graph-flow and conclusions (1 hour).

Note that each chapter ends with exercises. Consider using those as a basis for course
homework assignments or class discussions.

Additional materials such as PowerPoint presentations and additional references are avail-
able at the book’s webpage: https://sites.google.com/view/predicting-human-dm.

READING THIS BOOK
The book deliberately sits on the fence between artificial intelligence and other fields. Thus,
readers from varying disciplines such as computer science, engineering, cognition, and social
sciences can find the book, for the most part, accessible and engaging.

We would recommend readers with a strong decision-theoretic and game-theoretic back-
ground to lightly go over Chapter 2 or skip it altogether. Readers with a strong background
in machine learning are still encouraged to read Section 3.2 (which focuses on machine learn-
ing), as it provides emphasis on the human perspectives on machine learning, commonly not
highlighted in machine learning courses.

Ariel Rosenfeld and Sarit Kraus
January 2018

https://sites.google.com/view/predicting-human-dm
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1

C H A P T E R 1

Introduction
“Trying to understand the behavior of some people is like trying to smell the color 9”

Unknown

People make millions of decisions everyday. Just now—you, the reader, decided to start reading
this book (and we are grateful for that). People’s ability to predict each other’s decisions in a fast
and accurate way constitutes an imperative factor in what we consider to be intelligent behavior.
This ability is part of what enables us, as a species, to effectively interact with, cooperate, and
influence one another on a daily basis. While the canonical question of how people actually make
decisions is of great interest to mankind, in the scope of this book we seek to address two more
modest questions.

1. How can a machine predict human decision-making?

2. How can amachine leverage the prediction of human decision-making in order to perform in an
intelligent manner?

1.1 THE PREMISE
Would you consider an autonomous car that is incapable of predicting what people (pedestrians, drivers,
or its own passengers) are about to do next intelligent or even safe? Most probably not.

From an Artificial Intelligence (AI) perspective, we are interested in endowing our ma-
chines and software with so-called “intelligence.” While the question of what constitutes as
“intelligence” remains debatable, it usually relies on human-associated qualities such as learn-
ing, reasoning and adaptation to changes. One of these qualities is our ability to predict (rather
successfully in many cases) the behavior and decisions of others, an ability which we humans
share with other primates [190]. In his seminal paper [317], Alan Turing (1912–1954) proposed
to replace the philosophical question “Can machines think?” with an operational challenge of
constructing an automated agent that is able to carry on a dialogue with a person well enough
to be indistinguishable from a person. We know this challenge today as the Turing Test. Barbara
Grosz [127] hypothesizes that given the transformations in computer use as well as the signif-
icant advances in computer science and the cognitive and brain sciences, Turing might pose a
slightly different challenge: Can an automated agent team member behave, in the long term and
in uncertain, dynamic environments, in such a way that people on the team will not notice that
it is not human? Thus, if an automated agent is embodied in an environment shared with people,



2 1. INTRODUCTION
it is self evident that the prediction of human decision-making is crucial for an automated agent
to be considered intelligent.

An automated agent is any automated tool that can be viewed as perceiving its environment
through sensors and acting upon that environment through actuators [278, Chapter 2]. These
automated agents can be either physical (e.g., robots) or virtual (e.g., software). In this relatively
broad definition one can find both highly complex algorithmic trading agents that operate in
high-risk fast-pacedmarkets as well as a simplistic automated door operation agent that responds
to possible movement in the door’s vicinity, deciding whether or not to open the door.1

As technology progresses, we find ourselves working with automated agents with in-
creased frequency, from intelligent virtual assistants like Siri,Cortana,Google Assistant, andAlexa
to make our lives more convenient [126], to doctors collaborating with IBM’s Watson to make
better diagnostic and treatment decisions [158]. Consider a personal robotic assistant in a home
environment [31]. Such a robot would help with (almost) everything—from cooking and clean-
ing to health care and companionship. In a sense, these robots should be analogous to a sharp
assistant, friend, or relative that knows the user’s beliefs and interests and can proficiently inter-
act with her. Consequently, predicting “what would a/this human do in a given context?” will
enable a personal robotic assistant to figure out for itself, with minimal to no human intervention,
what it is it needs to do, be it by mimicking, reacting to, reasoning with, or improving upon the
predicted human decision(s).

Human decision-making is a highly complex cognitive process resulting in the selection of
a belief or a course of action among several alternative possibilities. Understanding and predict-
ing human decision-making are chief concerns in multiple fields, from social sciences such as
psychology and economy through neurobiology and cognitive science. Unfortunately, similar to
other cognitive processes such as creativity and emotions, only a small portion of the multitude
of factors which effect human decision-making is currently understood by scientists. From what
scientists have already established, we know that human decision-making is influenced by a large
set of factors that vary across different individuals and groups of individuals [51], including past
experience [167], decision complexity [99], emotions [29], and many cognitive biases.2 The in-
terested reader may refer to Dietrich [80] and Baumeister [28] for concise psychological surveys
of human decision-making theories. Researchers are also currently just beginning to decipher
what exactly happens in our brains when we make decisions [204, 264]. This apparent gap in the
scientific understanding of human decision-making makes the prediction of human decisions
very complex. Specifically, relying solely on past evidence and hypotheses from different fields
may prove to be insufficient and highly inaccurate. We believe that the investigation of human
decision-making through an AI perspective can shed a much desired light on the less-explored,
yet highly applicable, facets of this challenge.

1We refer the interested reader to Franklin and Graesser [102] for a thorough discussion of what turns “simple software” into
an automated agent.

2A comprehensive list is available at http://rationalwiki.org/wiki/List_of_cognitive_biases

http://rationalwiki.org/wiki/List_of_cognitive_biases
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The challenge depicted here is not an easy one to say the least. Capturing the subtle details

inherent in human decision-making, generalizing findings across people, settings, and domains,
and acting in an intelligent manner based on a given prediction have proven to be highly complex
issues [319]. Nevertheless, the enormous potential of successful development and deployment
of human-aware agents, capable of predicting human decision-making, can bring about a much
desired leap in the way agents are designed and deployed in the real world.

Designing intelligent agents, capable of predicting human decisions and making intelli-
gent decisions appropriately, is what this book is all about.

Throughout the book we decompose the above challenge into two separate, yet extremely
related, tasks:

1. Prediction of human decision-making and behavior.

2. Acting appropriately in the environment based on the prediction.

Both tasks, as well as the interrelated challenges and the integration of solutions thereof,
are highlighted throughout the book.

1.2 PREDICTION TASKS TAXONOMY
In order to make sense out of the multitude of agents and domains that (may) use the predicting
of human decision-making, we offer the following classification. Each prediction task can be
classified according to the different aspects or dimensions underlying it and the agent’s use of
the prediction model. We highlight the prominent classification criteria:

Human-Agent Interaction Setting
It is common to consider three human-agent interaction settings based on the alignment

(or lack thereof ) between the agent’s goals and its user(s).

1. Cooperative Settings. Agents that interact with people as teammates or represent people
on different platforms usually share the same goal(s) with their users. If an agent’s goal is
completely aligned with the human’s goal then the agent is considered to be a cooperative
agent. Personal robotic assistants, such as the ones described before, belong to this category.

2. Adversarial Settings. Many of AI’s greatest achievements have focused on settings where
the agent’s success results in worse outcomes for the human. These settings include com-
petitive games such as Poker [222], Chess [57], or Go [295]. If an agent’s goal is directly
in contrast to that of the human then the agent is said to be an adversarial agent. Carmel
and Markovitch [58] were the first to show that an agent can significantly improve its
performance by adequately modeling its opponent(s).



4 1. INTRODUCTION
3. Partially Conflicting Settings. Any agent that does not fit the fully cooperative or fully ad-

versarial cases is considered to have partially conflicting interests to those of the human (or
partially conflicting interests agent). In this category one may find agents that are designed
to influence people to adopt healthier lifestyle choices. The agent cannot merely consider
its own benefit (e.g., minimizing the user’s calorie consumption) but also needs to consider
the user’s preferences and needs in order to build a successful relationship with the user
(e.g., [105]).

Platform:
Embodied agents are agents whose execution is paired with a physical body (e.g., a robot).

Conversely, software agents, such as a chatbot mounted on a smartphone (e.g., Siri), are nor
pairedwith a physical body.The platform onwhich an agent ismounted can have a vast impact on
its perception, actions and human interaction capabilities. In turn, these may have a significant
impact on the type and quality of prediction the agent can perform. For instance, for embodied
agents, resources are usually limited. This poses a significant challenge when implementing a
sophisticated prediction and intelligent decision-making mechanisms.

Activity:
Agent are situated in an environment (physical or virtual). In that environment an agent

may be either an active actor or observer, depending on its capabilities to influence. For ex-
ample, an observer agent in an economical setting may record and analyze competitors’ prices,
watch stock manipulation by insider trading and rumors, etc. The agent does not take an active
action to affect its environment other than logging its findings. Conversely, active actors are
designed to take active actions on their environment which are aimed at influencing it and/or
other agents situated in it. For example, an economical agent as discussed above can be amended
with trading capabilities, making it an active actor in the market.

Prediction Circle:
Prediction tasks can be broadly classified into three types based on their agent’s interaction

needs in practice.

1. “Humanless” circle. In many settings the prediction of human decision-making is used
by the agent despite having no human in its environment. For instance, a Super Mario
playing agent may learn from human demonstrations and deploy the learned policy in the
fully automated environment of the Super Mario game [178].

2. Single human circle. If an agent seeks to predict the decision of a single human which is
situated in its environment, such as the case in the classical games of Chess and Go, the
prediction task falls into this category. Personal assistant agents such as Siri fall into this
category as well.

3. Multi-human circle Perhaps the most complex prediction settings involve multiple peo-
ple. Consider an agent engaging in an election setting with multiple human voters. Pre-
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dicting what each voter would do and acting accordingly may be highly different than
predicting what a single voter would do and voting on her behalf (acting as a proxy).

Fixed Strategy vs. Learning:
Some prediction tasks may require learning and adaptation to change, especially when

people are involved. Predicting what video a person would want to watch next on Youtube3

naturally requires the agent to adapt to changing preferences and trends. On the other hand,
many of the most successfully deployed agents rely on a fixed prediction policy. For instance,
the ARMOR, currently developed for intelligently randomizing resource allocation at the Los-
Angeles international airport (LAX) [251], predicts the likelihood of attackers to target different
assets using a fixed prediction policy.

Prediction tasks and agents may be further classified with respect to additional aspects and
dimensions. In the scope of this book, the above categorization would suffice. The articulation
of additional classification dimensions is left as Exercise 1.2.

1.3 EXERCISES
1.1. (Level 1) Provide other examples of intelligent agents (or real-world opportunities)

where the prediction of human decision-making is (can be) deployed. Characterize the
agents using the above classifications.

1.2. (Level 1) What other dimensions divide human decision-making prediction tasks? Pro-
vide an additional dimension by which prediction tasks can be classified along with
real-world agents that can be separated based on the proposed dimension.

1.3. (Level 2) What practical insights to the design of intelligent agents that interact with
people can you derive from Alan Turing’s claim that “The processes of inference used
by the machine need not be such as would satisfy the most exacting logicians” [317,
page 457].

1.4. (Level 1) Define the following terms: Decision-maker, Intelligent decision-maker, Auto-
mated decision-maker, Decision-making, and Prediction model.

1.5. (Level 2) What are the major differences between the challenge of predicting human
decision-making and plan, activity, and intent recognition research [303]?

3www.youtube.com

www.youtube.com
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C H A P T E R 2

Utility Maximization Paradigm
That’s your game theory? Rock Paper Scissors with statistics?

Peter Watts, Blindsight

The study of decision-making, human or automated, is an interdisciplinary effort, studied by
mathematicians, computer scientists, economists, statisticians, psychologists, biologists, politi-
cal and social scientists, philosophers and others [138, Chapter 1.2]. Decision-making is cen-
tered around a decision-maker, an agent, human, or otherwise (e.g., automated), who selects a
choice from available options. A decision-maker will be called intelligent if there is an underlying
reasoning mechanism for its choices.

Economists typically assume that an agent’s behavior is motivated primarily by material
incentives, and that decisions are governedmainly by self-interest and rationality. In this context,
rationality means that decision-makers use all available information in a logical and systematic
way, so as to make the best choices they can given the alternatives at hand and the objective to
be reached [171].

Utility theory provides a well-established starting point for modeling and analyzing de-
cisions. It also implies that decisions are made in a forward-looking way, by fully taking into
account future consequences of current decisions. In other words, so-called extrinsic incentives
are assumed to shape economic behavior. Utility is a measure representing the satisfaction ex-
perienced by an agent from a service, good or state. Though a utility cannot always be directly
measured (how satisfied am I from a slice of pizza?), it is reasonable to assume that a rational
agent would want to maximize its obtained utility.

It turns out that the notion of utility is a very powerful tool for representing and analyzing
an agent’s decision-making. We will differ between two environmental settings: single decision-
maker and multiple decision-makers.

2.1 SINGLE DECISION-MAKER–DECISION THEORY
A single decision-maker environment is represented as follows:

Let † be a finite set of possible choices for the decision-maker and X be a finite set
of possible outcomes (x1; x2; : : : ; xN ). We assume that the decision-maker has a preference
relation � over X where xi � xj is interpreted as “xi is preferred at least as xj ”. A preference
relation needs to fulfill the following properties.
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1. Reflexive: 8xi :xi � xi .

2. Complete: 8xi ; xj : xi � xj _ xj � xi .

3. Transitive: 8xi ; xj ; xk : xi � xj ^ xj � xk ) xi � xk .

A utility function u W X 7! R is a real-valued function defined over the relevant set X of
outcomes.

Lemma 2.1 Every preference relation � over a finite or countable set X can be represented as a
utility function u such that xi � xj ” u.xi / � u.xj /.

The proof of Lemma 2.1 is left as Exercise 2.1 at the end of this chapter.
Note that Lemma 2.1 refers to finite or countable outcome sets. Is it hopeless to expect the

theory to work with uncountable sets? Not at all. We need the following definition to complete
our transformation from preferences to utilities.

1. The upper contor set of x 2 X is defined to be � .x/ D fy 2 X W y � xg.

2. The lower contor set of x 2 X is defined to be � .x/ D fy 2 X W x � yg.

3. A preference relation � over X is said to be continuous if � .x/ and � .x/ are closed sets.

Perhaps the main result of this section is due to Gerard Debreu (1921–2004). Lemma 2.2
is also known as Debreu’s Representation Theorem.

Lemma 2.2 Suppose that X � Rn. A preference relation � is reflexive, complete, transitive and
continuous if and only if there exists a utility function u W X 7! R that represents it.

The proof for Lemma 2.2 is left as Exercise 2.3 at the end of this chapter.
As a result, in Lemmas 2.1 and 2.2, we know that when one’s preference relation is re-

flexive, complete, transitive, and either continuous or over a countable set of outcomes, her
preference can be entirely described by a utility function. From this point onward, we will use
real-valued utilities instead of preference relations, as those will allow us to use numeric tech-
niques.

2.1.1 DECISION-MAKING UNDER CERTAINTY
In decision-making under certainty, we assume an outcome function g W † ! X exists, map-
ping each possible choice to the known outcome of that decision. Namely, in settings where the
decision-maker knows exactly what the consequence of each choice will be (g), the rationally
optimal decision would be:

��
2 arg max

�2†
u.g.�//

where u is a utility function representing the decision-maker’s preferences.
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2.1.2 DECISION-MAKING UNDER UNCERTAINTY
In decision-making under uncertainty, for every possible choice, there are multiple possible
consequences. Therefore, each possible choice introduces a probability distribution over X . For-
mally, let a 2 † be a possible choice. By selecting a, an outcome from X is sampled according to
the probability distribution Pa associated with a. We denote Pa.i/ as the probability of outcome
xi given action a. Let P be the set of all probability distributions—P D fPaja 2 †g.

A utility function as defined in Lemma 2.1 captures the link between preference over out-
comes and utilities. However, in decision-making under uncertainty preference over uncertain out-
comes (which are usually represented as lotteries) is needed. We would need a theory that con-
structs a decision-maker’s preferences on the lotteries from his preferences on the outcomes. The
most well-known such theory is the Von Neumann and Morgenstern Representation Theo-
rem (Theorem 2.3) [320]. Before introducing it, we define two (rather technical) axioms:

Independence Axiom: for any Pa; Pb; Pc 2 P , and any ˛ 2 .0; 1�.

˛Pa C .1 � ˛/Pc � ˛Pb C .1 � ˛/Pc ” Pa � Pb:

Continuity Axiom: for any Pa; Pb; Pc 2 P .

Pa � Pb ) 9˛; ˇ 2 .0; 1/ � ˛Pa C .1 � ˛/Pc � Pb � ˇPa C .1 � ˇ/Pc :

Theorem 2.3 Von Neumann and Morgenstern’s Representation Theorem [320].
A preference relation � on P which satisfies the Independence and Continuity axioms can be repre-
sented by a utility function u such that

pa � pb ” U.Pa/ D
X

xi 2X

u.xi /pa.xi / �
X

xi 2X

u.xi /pb.xi / D U.Pb/:

Given Theorem 2.3, decision-making is reduced to optimization, where a rational choice
would follow the expected-utility maximization approach:

��
2 arg max

�2†
EU.�/ D

X
xi 2X

u.xi /p� .xi /:

Intuitively, the standard rational decision-making theory (founded in von-Neumann and
Morgenstern’s work) follows expected-utility maximization, which means that choice � should
be preferred to choice � 0 if and only if the expected utility from selecting � is higher than the
expected utility from selecting � 0.

Von Neumann and Morgenstern’s theorem is a very important result for measuring the
strength of a rational agent’s preferences over sure options. Some of the most celebrated results
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in rational decision theory address the associated challenges, namely in showing what condi-
tions on preferences suffice for the existence of a pair of utility and probability functions relative
to which the agent can be represented as maximizing expected utility. We refer the interested
reader to Gilboa [120] for a comprehensive discussion over the theoretical, philosophical, and
mathematical properties of decision-making under uncertainty.

To illustrate the presented ideas consider Example 2.4.

Example 2.4 Let us consider a personal robotic assistant, as described in Chapter 1, which is
delegated by its user with the responsibility of ordering Chinese food. There are two restaurants
from which this order can be made. If no uncertainty exists, the robot should place an order
to the restaurant which is more preferred by its user. However, if outcomes are stochastic, for
example, there is some distribution over the possible outcomes (e.g, “good food”, “bad food”) for
each restaurant, then a prediction over the user’s preferred decision could rely on a (subjective)
expected utility approach.

Thus far, we implicitly assumed that if uncertainty is present in the environment it is
induced by so-called “nature.” Namely, a stochastic process which does not reason about the
world and does not strive to achieve any goal (i.e., it does not seek to maximize utility). This
“nature” process simply samples an outcome given the decision-maker’s choice. For instance, na-
ture “samples” the weather for the afternoon (i.e., rain or not) unconditionally on the decision-
maker’s decision in the morning (i.e., taking an umbrella or not).1 However, “nature” can also
model the behavior of other agents who occupy the environment in many settings. If an agent
assumes/knows that the other agents in the environment do not reason about its actions at all, they
may be modeled as part of “nature.” Namely, not every agent in the environment should be con-
sidered as a decision-maker in order for a specific agent to make a rational decision. Specifically,
a single decision-maker environment does not mean a single agent is suited in the environment. If
other agents within the environment are expected to perform reasoning on others, then one may
resort to modeling the environment as a multiple decision-makers environment as described
below.

Note that when it comes to making real decisions, objective probabilities as assumed
above may not be available. Instead, Subjective Expected Utility (SEU), as developed by Sav-
age [283], Jeffery [161] and others, was developed to model individual differences between
decision-makers. SEU is built on the premise that decision-makers associate beliefs evaluations
for each outcome.

2.2 MULTIPLE DECISION-MAKERS–GAME THEORY
While decision theory is concerned with the choices of individual agents, game theory is con-
cerned with interactions of agents whose decisions affect each other. If all players have same
1Contrary to the notion of Murphy’s Laws.
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preferences, then the problem is coordination: ensuring that all players “pull in the same direc-
tion.”

Game theory is amathematical theory of interaction between self-interested agents, which
are usually referred to as players. In this book we only consider non-cooperative games, where
players are in competition and cooperative behavior is virtually impossible due to the absence of
externalmeans to enforce such cooperative behavior (e.g., contracts).Wewill discuss two popular
game forms: normal form (also know as strategic form) [320] and extensive form games [239].

2.2.1 NORMAL FORM GAMES
Let N D f1; : : : ; ng be a set of players. Each player i has a finite set of possible pure strategies
†i that he can deploy in the game. A strategy �i 2 †i provides a complete definition of how
a player will play a game given any situation the player may face. In normal form games, the
players choose their strategies simultaneously; each player must choose a strategy �i without
knowing what strategies the other players have chosen.

The combination of players’ strategies results in a strategy profile:

E� D h�1; : : : ; �ni 2 †1 � � � � � †n:

Let X be a finite set of possible outcomes for the game (x1; x2; : : : ; xN ). An outcome
function g W †1 � : : : � †n ! X maps each strategy profile to an outcome. We assume that
each player can be represented using a utility function as defined above for the single decision-
maker setting. For annotation simplicity, we will drop the outcome function g and use utility
functions of the form:

ui W †1 � : : : � †n ! R:

It is customary to represent normal form games as a payoffmatrix. A payoff matrix sum-
marizes the pure strategies available to each player and the associated utilities for each player
resulting from each possible strategy profile. Namely, each cell in the payoff matrix represents
one strategy profile and consists of all players’ utilities from the corresponding strategy profile.

Consider the following classical example, the Prisoners’ Dilemma:

Example 2.5 The classic Prisoners’ Dilemma is defined as follows.

• A set of players N D f1; 2g, where 1 stands for “Player 1” and 2 stands for “Player 2.”

• For each i 2 N , a set of strategies †i D fC; Dg, where C stands for “Cooperate” and D

stands for “Defect.”
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• Utility functions u1 for player 1 and u2 for player 2 are expressed as follows.

For Player 1:
u1.D; C / D 3 > u1.C; C / D 2 > u1.D; D/ D 1 > u1.C; D/ D 0

For Player 2:
u2.C; D/ D 3 > u2.C; C / D 2 > u2.D; D/ D 1 > u2.D; C / D 0

• The game can be represented as the following payoff matrix:

Player 1

Player 2

C D

C (2, 2) (0, 3)

D (3, 0) (1, 1)

In order for player i to find the best action for her (recall that she strives to maximize
her expected utility), reasoning about what other player(s) will do is usually essential. However,
unlike single decision-maker environments, other players, in turn, perform a similar reasoning
process as well.

Recall that the utility a player receives as a result of a game depends on the combination
of strategies that all players choose—the strategy profile. Therefore, given that all other players
act rationally—which in our context means maximizing their expected utility—different solu-
tion concepts can be used to analytically derive the optimal strategy for a single player. In this
chapter, we will discuss the two most prominent solution concepts: dominant strategies and
Nash equilibrium.

For convenience, we denote the strategy profile obtained by replacing the i th component
of strategy profile E� with � 0

i as

.E��i ; � 0
i / D h�1; : : : ; � 0

i ; : : : ; �ni:

A strategy �i is considered a dominant strategy for player i if, no matter what strate-
gies other players chooses, i will do at least as well playing �i as it would doing anything else.
Formally, �i is a dominant strategy if:

8 E� 2 †1 � � � � � †n; 8� 0
i 2 †i � ui .E��i ; �i / � ui .E��i ; � 0

i /:

Note that if a rational player has a dominant strategy, then she has no incentive to choose
any other strategy. Therefore, using the concept of dominant strategies, if a dominant strategy
does exist, it should be played. In Example 2.5, for both players, the strategy “Defect” is a
dominant strategy. Therefore, it is reasonable to predict that rational players would result in the



2.2. MULTIPLE DECISION-MAKERS–GAME THEORY 13
strategy profile hD; Di. However, there are many cases where no dominant strategy exists, as is
the case in the classic Battle of the Sexes in Example 2.6.

Example 2.6 The classic Battle of the Sexes game consists of two players (one male and one
female) where the two players seek to coordinate their choice of whether to go shopping or watch
a football game. Unfortunately, the decision has to be simultaneous and no prior coordination
is possible. The payoff matrix is represented as follows.

Player 1

Player 2

Shopping Football

Shopping (1, 2) (0, 0)

Football (0, 0) (2, 1)

Without a doubt, the most influential and celebrated solution concept in game theory to
date is Nash equilibrium. A strategy profile E� is a pure Nash equilibrium if no player could
benefit from deviating from his strategy, assuming that all other players keep their strategies. For-
mally, E� is a Nash equilibrium if:

8i 2 N 8� 0
i 2 †i � ui .E��i ; �i / � ui .E��i ; � 0

i /

or, equivalently,
8i 2 N � �i D arg max

�i

ui .E��i ; �i /:

Intuitively, a pure Nash equilibrium means that each player is using a best response strat-
egy to other players’ choices.Therefore, nobody can benefit by deviating from aNash equilibrium
alone (without coordinating with others).

In Example 2.5, the strategy profile hD; Di is a pure Nash equilibrium.

Lemma 2.7 Not every game has a pure Nash equilibrium and some games have more than a single
Nash equilibrium.

The proof of Lemma 2.7 is left as Exercise 2.10.
Thus far, we assumed that player i chooses a pure strategy �i 2 †i . However, a player can

also choose to use a mixed strategy. A mixed strategy for player i is a probability distribution
over the pure strategies †i , denoted msi . Let M†i D fmsig be the set of all possible mixed
strategies for player i . Intuitively, by using a mixed strategy, a player randomly selects a pure
strategy according to a chosen probability distribution. Since probabilities are continuous, there
are an infinite number of mixed strategies available to each player if j†i j > 1. One can regard
a pure strategy �i 2 †i as a degenerate case of a mixed strategy msi 2 M†i , in which �i is
assigned a probability of 1 and all other pure strategies are assigned a probability of 0.
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As a natural extension of our definition of a pure Nash equilibrium, a mixed strategy

profile Ems D hms1; : : : ; msi ; : : : ; msN i is considered a mixed Nash equilibrium if:

8i 2 N 8ms0
i 2 M†i � ui . Ems�i ; msi / � ui . Ems�i ; ms0

i /

where Ems�i takes the usual meaning.
Intuitively, in a mixed Nash equilibrium, each of the selected distributions should have the

property that it is a best response to the other distributions; similarly to the pureNash equilibrium.
This means that each action which is assigned with positive probability is among the actions that
are best responses, in expectation of the distribution(s) chosen by the other player(s).

Given a mixed strategy msi , we define the support for msi as:

Support.msi / D f�i 2 †i j�i is assigned a positive probability under msig:

It turns out that, unlike pure Nash equilibrium, at least one mixed Nash equilibrium exists
in every finite game.

Theorem2.8 Nash’sExistenceTheorem [225, 226]. Every gamewith a finite number of players
and a finite number of pure strategies for each player has at least one Nash equilibrium.

This insight earned John Forbes Nash the Nobel Memorial Prize in Economics in 1994
(which he shared with Reinhard Selten and John Harsanyi). The proof of Nash’s Theorem (The-
orem 2.8) is rather technical. A detailed proof along with intuitive interpretations is available
in [162].

It is easy to verify that in the two-player rock-paper-scissors game, with a utility of 1 for
the winning player, �1 for the losing player, and 0 for both if there is a draw, the mixed strategy
profile where each player randomly selects an action uniformly is a mixed Nash equilibrium. No
pure Nash equilibrium exists in the game and none of the players have a dominant strategy.

The analysis of the Battle of the Sexes game (Example 2.6) is left as Exercise 2.9.

2.2.2 EXTENSIVE FORM GAMES
Normal form games capture key aspects of strategical decision-making in environments with
multiple decision-makers. However, in normal form games, players choose their actions simul-
taneously with no knowledge of the choices of their counterparts. In many environments, play-
ers choose their actions in turns, adding a temporal aspect to the decision-making process. Such
games are usually represented as extensive form games.

In the scope of this chapter, we will discuss complete and perfect information Extensive
form games. Namely, the structure of the game and the payoffs of the players are commonly
known (complete) and that player observes other players’ moves which were played before theirs.
Note that, in general, a game with complete information may or may not have perfect informa-
tion, and vice versa.
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An extensive form game of complete and perfect information consists of a set of players N D

f1; : : : ; ng and a rooted tree T , called the game tree. Each non-terminal node is assigned to one
of the players and denoted a decision node. Player i must choose an action for each of her decision
nodes according to the available actions, represented as edges. Terminal node (leaf ) consists of a
payoff vector hr1; : : : ; rni where ri is the payoff of player i from the resulting realization of the
game. The game is realized by following a path from the root node to a leaf according to the
players’ decisions.

A pure strategy is thus a player’s selection of precisely one outgoing edge (action) for each
of the player’s decision nodes. A mixed strategy is defined similarly by selecting a probability
distribution at each decision node.

It is customary to visually represent extensive form games in the form of a tree, see Ex-
ample 2.9.

Example 2.9 Consider a sequential version of the prisoner’s dilemma presented in Exam-
ple 2.5. Let player 1 (P1) move first. Player 2 (P2), given player 1’s move, moves second. For
illustrating new ideas to come, we now assume that the utilities of both players in the hD; Di

path are -1. The game can be represented as follows.

P1

P2

C D

C D C D

P2

2, 2 0, 3 3, 0 -1, -1

Lemma 2.10 In extensive form games with complete and perfect information, any mixed strategy
for player i will result in a lower or equal utility for player i compared to some pure strategy available
to player i .

Following Lemma 2.10, which is left as Exercise 2.16 at the end of the chapter, we assume
players of an extensive form game will use pure strategies.

Similar to normal form games, the combination of players’ strategies results in a strategy
profile of the form:

E� D h�1; : : : ; �ni 2 †1 � � � � � †n:

A Nash equilibrium is a strategy profile E� which satisfies the following condition:

8i 2 N 8� 0
i 2 †i � ui .E��i ; �i / � ui .E��i ; � 0

i /;
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or, equivalently,

8i 2 N � �i D arg max
�i

ui .E��i ; �i /

where E��i is a strategy profile without player i ’s strategy.
Getting back to Example 2.9, one can easily verify that two strategy profiles satisfy the

above definition: First, P1 chooses D, while P2 selects D in the left node and C in the right.
Second, P1 chooses C while P2 chooses D in both her nodes. The second equilibrium is sup-
ported by P2’s threat of playing D in the right subtree. However, this threat is not credible since if
P1 plays D, P2 has a dominant strategy, which is to play C . Thus, although there are two Nash
equilibria, only one is reasonable. In order to rule out non-plausible Nash equilibria we use the
Subgame Perfect Nash Equilibrium (SPNE).

Each decision node in a game tree induces a subgame. Specifically, the tree rooted in each
decision node constitutes as a well-defined game. Thus, an SPNE is a strategy profile which is
a Nash equilibrium at every subtree of the game.

Intuitively, SPNE is a stronger generalization of a Nash equilibrium, where the former
requires the strategy profile to be a Nash equilibrium at every subgame including the entire game
tree, which is the only condition for the latter.

Theorem 2.11 SPNE Existence Theorem [209]. Every finite extensive form game of perfect
information has an SPNE.

The proof of the above theorem is by providing an algorithm for deriving an SPNE for
every perfect extensive form game. The algorithm commonly used is the backward induction
algorithm, also known as Zermelo’s algorithm which was developed by Ernst Zermelo (1871–
1953).

The process of Zermelo’s algorithm is rather simple. Start by determining optimal behavior
at the lowest (final) decision node at each path of the game tree. This can be achieved by solving a
single decision-maker’s problem. Note that no reasoning regarding the other player(s) is needed
for deriving an optimal move at any decision node at a final decision node. Then replace the
decision node by a terminal node resulting from the optimal choice calculated in the previous
step. The process is repeated until we reach the root node.

In finite extensive form games with perfect information, Zermelo’s algorithm is guaran-
teed to terminate in time polynomial in the tree size and is guaranteed to find an SPNE.

The page is too short to hold all basic notions of Game Theory. The interested reader is
thus encouraged to read [32, 210] for further details and examples.

2.3 ARE PEOPLE RATIONAL? A SHORT NOTE
Rationality is widely used as an assumption of the behavior of individuals in microeco-
nomic models and analyses and appears in almost all economics textbook treatments of human
decision-making. The Nobel Memorial Prize in Economic Science of 2002 was awarded to two
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experimental economists: Daniel Kahneman and Vernon Smith. Both scientists shared the award
for testing the limits of the standard economic theory of choice in predicting the actions of
real people [159]. Interestingly enough, the two received the award for seemingly contradictory
reasons.

Kahneman received the award for his joint work with Amos Tversky (1937–1996) on hu-
man judgment and decision-making. Their results demonstrated irrational wrinkles and devia-
tions in the normally assumed rational behavior as described above.

Smith received the award for setting laboratory experimental methodologies by which he
investigated economical mechanisms. He found that people were acting (approximately) ratio-
nally in most tested settings, verifying economical rational predictions in markets.

Yisrael Aumann, the recipient of the Nobel Memorial Prize in Economic Science of 2005,
explains this conflict by hypothesizing that people are rational in their decision-making proce-
dures but not in their every decision [18]. Namely, the rule that people apply to solve a particular
problem is usually the right one, but not necessarily the right one, as pure rationality suggests.
According to this paradigm, when predicting people’s decisions in the real world, one should
examine the rules and heuristics people deploy, which in many cases can in fact lead to optimal
decisions yet in quite a few settings lead to sub-optimal decision-making.

There is also considerable literature on understanding whether and why people deviate
from formal models of deductive reasoning, e.g., [39, 165]. Interestingly enough, non-human
primates exhibit similar decision-making tendencies to those of humans, suggesting a strong
biological base for the presented human decision-making behavior [280].

2.4 EXERCISES

2.1. (Level 1) Prove Lemma 2.1.

2.2. (Level 2) Alice is a decision-maker who needs to choose a single item out of a finite
set of items (X). Each item is represented as a vector of size n where the first element
indicates the monetary value of the item, the second indicates the usefulness of the item
to Alice and so on. All features are represented as integer values in the Œ0; 9� range. Alice
uses the following preference relation: x D hx1; : : : ; xni � hy1; : : : ; yni D y if and only
if x1 > y1 or, if x1 D y1 and x2 > y2, or x1 D y1; x2 D y2 and x3 > y3 and so on. (A)
(Level 1) Is Alice’s preference relation reflexive, complete and transitive? (B) (Level 1)
Provide a utility function u W X 7! R which represents Alice’s preference. (C) (Level 2)
Now assume each feature is represented as a real number in the Œ0; 9� range. Prove that
Alice’s preference relation is not continuous. (D) (Level 3) Assuming each feature is
represented as a real number in the Œ0; 9� range, prove that Alice’s preference relation
cannot be represented using a utility function (hint: without loss of generality, assume
n D 2).
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2.3. (Level 3) Following Lemma 2.2: (A) Suppose that X � Rn. Prove that if a preference

relation � is reflexive, complete, transitive, and continuous then there exists a utility
function u W X 7! R that represents it. (B) Suppose that X D Rn. Prove that if a pref-
erence relation � can be represented as a utility function u W X 7! R then it is reflexive,
complete, transitive, and continuous.

2.4. (Level 2) Construct a preference relation on R that is not continuous, but admits a
utility representation.

2.5. (Level 2) Bob considers weather to invest in stock A or stock B . Given the economic
uncertainty in his country, there are two “nature” states, stability and unrest, which will
be revealed after he makes his choice. Bob’s revenues are represented in the following
table:

Bob

Stability Unrest

StockA 3 9

StockB 16 0

Bob is assumed to have preferences which monotonically increase with revenues. (A)
If the preferences are represented by a utility function, what are the arguments of the
function? (B) Suppose that Bob is maximizing expected utility and believes that the
probability of stability is 1=3 and the probability of unrest is 2=3. Express Bob’s objective
function.What is a rational decision for Bob? (C) Bob chose to invest in stockA. Should
he be considered irrational? Can “conservatism” or “pessimism” explain his decision in
a way that would still define him as rational? Explain.

2.6. (Level 1) How can decision theory explain why many people both purchase lottery tick-
ets (implying risk-loving preferences) and insure against losses (implying risk aversion)?

2.7. (Level 2) Consider the following experiment conducted by Maurice Allais. Imagine
yourself choosing between the following two alternatives: (A) win 1 million dollars for
sure; or (B) a 10% chance of Winning 5 million dollars, a 89% chance of winning 1
million dollars, and a 1% chance of winning nothing. Which one would you choose?
Now consider the following two alternatives: (C) an 11% chance of winning 1 million
dollars and an 89% chance of winning nothing; or (D) a 10% chance of winning 5 mil-
lion dollars and a 90% chance of winning nothing. Which one would you choose? In
many surveys, subjects who were offered these alternatives chose A over B and D over
C. This is often refereed to as the “Allais Paradox” [5]. Explain why this is considered
a paradox and what significance this paradox has on the expected utility maximization
paradigm.
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2.8. (Level 1) Explain the following claim: “a single decision-maker environment does not

mean a single agent is occupying the environment.”

2.9. (Level 1) Analyze the Battle of the Sexes (Example 2.6). Who are the players? What are
their pure strategies? Does any player have a dominant strategy? Find all Nash equilibria.

2.10. (Level 1) Prove Lemma 2.7.

2.11. (Level 1) Alice and Bob are playing a card-game (say Poker). Each player gets two cards
from the deck which the other player cannot see and then the game plays out. During
the game players make decisions (e.g., raise or fold in Poker). Bob is well known for
playing a fixed-policy where during every turn his action can be anticipated perfectly if
onewere to know his cards. Playing the part of Alice, howwould youmodel your decision-
making environment, as a single decision-maker or multiple decision-makers? Explain.

2.12. (Level 2) Present an example of a two-player normal form game in which one of the
players has a dominant strategy that is not a pure strategy.

2.13. (Level 1) Analyze the two-player rock-paper-scissors-lizard-Spock game http://ww
w.samkass.com/theories/RPSSL.html. Who are the players? What are the possible
pure strategies? Find all Nash equilibria.

2.14. (Level 2) Prove that, if a player has two dominant strategies, then for every strategic
choice made by her opponents, the two strategies yield her equal payoffs.

2.15. (Level 2) A strategy s is called a strictly dominant strategy if, no matter what the other
players choose, the player is strictly better off playing s than any other strategy. (A) Prove
that, if a player has a strictly dominant strategy s, then that player plays s in all Nash
equilibria. (B) (Level 3) Prove that strictly dominant strategies are always pure.

2.16. (Level 2) Prove Lemma 2.10.

2.17. (Level 1) Show Zermelo’s algorithm execution in Example 2.9.

2.18. (Level 1) Consider a modified version of the Battle of the Sexes (Example 2.6) where
Player 1 chooses first and Player 2 sees Player 1’s choice before making her own. Use the
same utilities as defined for the normal form version. (A) Describe the modified game
as a game tree. (B) Find all Nash equilibria.

2.19. (Level 1) Following Auman’s view on human rationality (Section 2.3), describe a setting
in which people (often) deploy the correct decision rule yet the realization of that rule
may produce sub-optimal decisions.

http://www.samkass.com/theories/RPSSL.html
http://www.samkass.com/theories/RPSSL.html
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C H A P T E R 3

Predicting Human
Decision-Making

“All models are wrong, but some are useful”

Gorge Box

Designing intelligent agents that interact proficiently with people necessitates the prediction of
human decision-making. We present and discuss three prediction paradigms for predicting hu-
man decision-making which are common in many real world application fields. These paradigms
are illustrated and compared across a wide variety of domains and applications in Chapter 4.

3.1 EXPERT-DRIVEN PARADIGM
An expert-drivenmodel for predicting human decision-making is a mathematical formulation,
articulated by an expert, which is assumed to adequately predict people’s choices in a given setting
or across different settings.

Experts of different disciplines have provided a variety of models to predict people’s deci-
sions based on their experience, theoretical assumptions and domain knowledge. In this section,
we review and exemplify the most prominent quantitative models which are commonly used for
the design of automated agents.

3.1.1 UTILITY MAXIMIZATION
In Chapter 2, we presented the expected utility maximization paradigm. Despite its appealing
theoretical properties, assuming that (most) people follow the presented principles is inherently
flawed. Specifically, people have limited cognitive abilities [219] which prevent them from con-
sidering and fully evaluating all options to their fullest extent even if they seek to maximize
expected utility. The seemingly “irrational” behavior that people present in an overwhelming
number of behavioral experiments (e.g., [54, 168, 205] to name a few) makes the use of utility
maximization principles seem irrelevant.

It turns out that, despite its limitations, predicting people’s decisions using utility maxi-
mization principles can be quite effective in many settings. In his book [32], Binmore provides
several guidelines for when he concludes Game Theory principles (which prescribe rational
decision-making in multiple decision-maker settings—see Section 2.2) should be able to ade-
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quately predict people’s decisions: (1) players’ incentives are adequate and sufficiently large such
that they can override social norms (and in particular, norms of cooperation); (2) the game is
sufficiently simple; and (3) players are given enough opportunities for trial-and-error learning.
These guidelines, which we refer to as Binmore’s guidelines, which are also supported in addi-
tional works such as [89], can be easily generalized to a single decision-maker setting as well.

Perhaps the most renowned success of this approach in recent years is in the security field.
To exemplify the success of this approach and explain the general criteria that made this ap-
proach successful, consider the task of placing randomized road checkpoints in order to protect
an airport against potential attacks by terrorists, drug smugglers etc. The game-theory-based ap-
plication named ARMOR was developed precisely for this task and has been in use for almost
ten years in order to protect the Los Angeles international airport (LAX) [251]. The system
prescribes where and when security officers should set up checkpoints to check cars driving into
LAX. The authors use a game-theoretic model to represent the interaction between the secu-
rity officers and the potential attacks and assume that the possible human attackers are rational,
and therefore maximize expected utility. A thorough investigation of the prediction of human
decision-making in security settings is available in Section 4.2.

The highly successful deployment of theARMOR system is not surprising given Binmore’s
guidelines. Security experts claim that possible human attackers usually have sufficient time
and resources to conduct surveillance, attempt “mock attacks” and reason about the decision
problem, which is where, if anywhere, to attack the airport. Thus, the rationality assumption
leads to beneficial recommendations by the ARMOR system. Note that, naturally, social norms
would not play a role in the attackers’ decision-making in this case.

However, in practice, it is rarely the case that utility maximization models and reality are
aligned.The evaluation of the utility maximization notion with real world data reveals significant
discrepancies in many domains (recall the discussion on human rationality in Section 2.3). The
obvious way to cope with these discrepancies is to assume that people follow utility maximiza-
tion with noise. Namely, people have a “trembling hand” which with some probability performs
unintended, non-optimal strategies. This “slip of the hand” or tremble notion is attributed to
Reinhard Selten (1930–2016) [288]. This trembling hand is usually assumed to be a random
variable with a zero mean. Namely, on expectancy, this “tremble,” has no effect on the decision-
making process.

When significant deviations from utility maximization predictions are observed, or when
seemingly non-utility-maximizing decision-making patterns arise, different prediction models
may be needed. The following models, which we discuss next, adopt the Bounded Rationality
approach, first introduced by the 1978 Nobel-laureate and the 1975 Turing Award recipient
Herbert Simon (1916–2001) [296]. Bounded rationality suggests that people have a limited abil-
ity to compute the expected utility of every single decision alternative and thus might not be
able to choose the optimum strategy as suggested in classical decision-making and game theory
literature. Instead, bounded rationality suggests that people use a more heuristic approach that
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may lead to suboptimal decision-making in some settings. We discuss several bounded rationality
models, common in agent design, in the following.

3.1.2 QUANTAL RESPONSE
Quantal response assumes that humans are expected utility maximizers who noisily estimate
each strategy’s expected utility [214]. Formally, a person is assumed to maximize the expected
value of her utility function which is perpetuated by a zero-mean random noise. Specifically,
let us assume that for a strategy profile Es the “true” expected utility of person i is ui .Es/. Then,
according to quantal response, the human estimates the utility as Oui .s/ D u.s/ C �si

where �.si /

is the noise term associated with the person’s strategy. As a result, the person may select any
strategy with positive probability, as assigned by her quantal response function.

The most common quantal response function is the logit quantal response (often referred
to as simply “quantal response function”), where each possible strategy si is assigned a non-
negative probability as follows:

P .si / D
expŒ� � u.Es�i ; si /�

†s0
i
expŒ� � u.Es�i ; s0

i /�

where � 2 Œ0; 1/ is the rationality parameter, indicating how rational the decision-maker is
assumed to be. Namely, when � D 0 the decision-maker uses a uniform random choice over
the possible strategies regardless of their expected utility. Conversely, when � ! 1, quantal
response converges to a “pure” utility maximization as discussed before. The proof of these two
observations is left as Exercise 3.2.

Simply put, quantal response suggests that instead of strictly maximizing expected utility,
as suggested in Section 3.1.1, individuals respond stochastically in games: the chance of selecting
a non-optimal strategy increases as the cost of such an error decreases. The difference between
utility maximization and quantal response is illustrated in Example 3.1.

Example 3.1 Consider a decision-maker with three strategies: s1, s2, and s3. The decision-
maker calculated the expected utility of each strategy denoted EU Œs1� D 1:01, EU Œs2� D 1,
and EU Œs3� D 0:25. By assuming that the decision-maker follows the utility maximization
paradigm, the decision-maker is expected to choose strategy s1 with certainty as it has the highest
expected utility. Using the quantal response, high-utility actions are assigned higher probability,
depending on the rationality parameter �. Figure 3.1 depicts this example with varying � values.

The quantal response notion was found useful in predicting people’s decisions in a wide
variety of economic settings. For example, in all-pay auctions [8], first-price auctions [122], and
in alternating-offer bargaining [122].
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Figure 3.1: Probability estimation for a quantal response decision-maker over three strategies
per Example 3.1.

From an intelligent agent design perspective, quantal response has been used to predict
people’s decision-making in an attempt to influence their decisions. In [20], the authors found
that by using a quantal response prediction model of human decision-making, their information
revealing agents performed better at influencing human decisions compared to expected utility
maximization prediction methods. Another relevant example comes from the field of negotia-
tions. Using a quantal response function, several works have been shown to be able to negotiate
effectively with people (e.g., [96]). We provide a detailed discussion of the negotiation domain
in Section 4.3.

The definition of quantal response equilibrium is left as Exercise 3.4.
The interested reader is encouraged to read [214] for a thorough discussion over the rela-

tion between quantal response and other game-theoretical concepts.

3.1.3 LEVEL-k
Level-k model assumes that humans can perform only a bounded number of iterations of
strategic reasoning. Level-k models were introduced by Stahl and Wilson [300, 301] and
Nagel [224]. Formally, a person who follows the level-k model is associated with a level
k 2 N [ f0g, corresponding to the number of iterations of reasoning the person is able to per-
form. A level � 0 person is nonstrategic and follows a simple decision rule (most commonly,
playing randomly or playing an intuitive default strategy). A level-k person, for k � 1, best re-
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sponds to the strategy played by level-(k � 1) agents. If a level-k agent has more than one best
response, it is common to assume that she mixes uniformly over them. This iterative strategical
thinking process is a step-by-step reasoning process rather than circular concepts such as a Nash equi-
librium. Level-k models have been shown to adequately predict people’s decisions in a variety
of experimental studies such as [71] and consequent works.

Similar to the quantal response model (Section 3.1.2), where the � parameter had to
be set, in order to predict a person’s decisions using a level-k model one would need to set
k appropriately. While k can be estimated from collected data, more troubling is the need to
determine what the level-0 player would do, as it recursively defines what a level k player would
do. Wright and Layton-Brown [334] provide several level-0 meta-models which they show to
work well across a variety of settings. It is important to note, however, that level-0 reasoners may
not be “dumb.” For example, if a person starts to analyze the game carefully but gets confused or
makes an error, she might make a choice that appears random, much like how a small calculation
error in a long proof can lead to odd results.

Arad and Rubinstein [9] designed a simple two-player game that naturally triggers level-k
reasoning. The game works as follows: each player requests an integer amount of money between
11 and 20 NIS. Each player will receive the amount s/he requests. A player will receive an
additional amount of 20 NIS if s/he asks for exactly one NIS less than the other player. The
experiment is aimed at triggering level-k reasoning where a level-0 reasoner would request 20
NIS, a level-1 reasoner would request 19 and so on. The game’s level-k models are illustrated
in Figure 3.2. An experiment was conducted with 108 students from Tel Aviv University (the
first author of this book happens to be one of those students) which showed that level-k model
subjects did not use more than k D 3 of reasoning in choosing their actions. Past studies of level-
k reasoning reached the same conclusion. Crawford et al. [73] reviews a large body of evidence
suggesting that level-k models can out-predict other models in various other environments as
well.

…         Level-3    Level-2     Level-1     Level-0

… 13 14 15 16 17 18 19 20

Figure 3.2: Arad and Rubinstein’s 11-20 Money Request Game analyses through level-k mod-
eling.

Note that level-k models are agnostic over whether individuals stop the iterated reason-
ing because of their own cognitive constraints, or because of their beliefs over the cognitive
constraints of their opponents. Nevertheless, players with a high IQ have been shown to use
more steps of thinking than others [121]. Specifically, in Chess stronger players’ moves have
been shown to be best explained by larger values of k [33].
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There are several extensions of the level-k model. Most prominent is the inclusion of noisy

actions. Namely, a level-k decision-maker may decide on a non-best-response action with an �

probability. An additional extension in that spirit is the integration of quantal response within
the level-k modeling, denoted Qlevel � k. In a Qlevel � k model, the reasoner responds using
a quantal response to Qlevel � k � 1 reasoners. Specifically, a Qlevel � k decision-maker re-
sponds quantally to level-k � 1 decision-makers (which in turn respond quantally to level-k � 2

and so forth, unlike level-k decision-makers which use best response to level-k � 1 (which in
turn best respond to level-k � 2 and so forth). Note that in order to deploy the Qlevel � k

model, one would need to set the � parameter for each level.

3.1.4 COGNITIVE HIERARCHY
Closely related to the level-k model (Section 3.1.3), the cognitive hierarchy model was pro-
posed by [55] to account for people’s assumed iterative reasoning process. In the cognitive hi-
erarchy model, a decision-maker is assumed to be associated with a level k 2 N [ f0g, denoted
cognitive hierarchy level, corresponding to the number of iterations of reasoning the person is able
to perform. However, unlike the level-k model, a reasoner of cognitive hierarchy level k best re-
sponds to a distribution of cognitive hierarchal reasoners of lower levels and not just to reasoners
of level k � 1. Specifically, while a level-k reasoner best responds to the level-k � 1 reasoners,
cognitive hierarchy level k best responds to an hypothesized distribution of lower levels from
0 to k � 1. We use the notation fk.j / to denote the belief that a decision-maker of cognitive
hierarchy level k has regarding the proportion of cognitive hierarchy level j decision-makers in
the population.

Note that under both level-k and cognitive hierarchy, a decision-maker of any level ignores
the possibility that other decision-makers may be making as many strategical iterations as she
does or even more.

Similar to the level-k model, the iterative process begins with decision-makers of cognitive
hierarchy level 0, who are assumed not to perform any strategical reasoning and merely choose
according to some rule of thumb (commonly, assumed to be uniform distribution).

In order to predict a person’s decisions using a cognitive hierarchy model, one would need
to set k appropriately. Furthermore, the level 0 rule would need to be set. However, in addition
to the above (which are also needed in level-k model), when using a cognitive hierarchy model,
the decision-maker’s hypothesized distribution of cognitive hierarchy levels in the population
is needed (as she is assumed to best respond to that distribution). Camerer et al. [55] advocate
a single-parameter distribution in which the cognitive hierarchy levels of decision-makers in
the population are distributed according to a Poisson distribution. Namely, the proportion of
cognitive hierarchy level j in the population is assumed to be

f .j / D
�j e��

j Š

where � is a positive real number equal to the expected cognitive level in the population.
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The Poisson distribution assumes that the frequency of very high cognitive levels drops

off quickly for higher values of k. For example, if the average number of thinking steps in the
population is 1.5 (� D 1:5), then less than 2% of players are expected to have five or more steps
of thinking. Camerer et al. [55] found that � values of between 1 and 2 explain empirical results
of human decision-making in about 100 games, suggesting that assuming a value of 1.5 could
give reliable predictions for many other games as well.

The authors assume that each reasoner of cognitive hierarchy level k reasons according to
the above distribution but consider only reasoners of cognitive hierarchy levels 0 to k � 1. As a
result, the above distribution does not necessarily sum to 1 for the reasoner. The authors suggest
bypassing this issue by normalizing the reasoner’s distribution; they divide each applicable f .j /

by the sum of all applicable f .j /-s. Simply put, for a reasoner of cognitive hierarchy level k, she
assumes that the population is distributed according to

fk.j / D

8<: �j e��

j Š
Pk�1

lD0 f .l/
if j < k

0 otherwise:

The above “normalized” (truncated) Poisson distribution is the most popular assumption
over the population distribution, yet it is not the only one. Other forms include a normalized
uniform distribution and exponential decay distributions (see [134]). The formulation of these
notions is left as an exercise.

A simple setting which illustrates apparent cognitive hierarchy behavior is the beauty
contest game proposed by John Maynard Keynes (1883–1946) [182]. Keynes likens the stock
market to a newspaper contest in which people guess which faces others will consider to be the
most beautiful. Keynes notes that “It is not the case of choosing those which, to the best of one’s
judgment, are really the prettiest, nor even those which average opinion genuinely thinks the
prettiest. We have reached the third degree, where we devote our intelligences to anticipating
what average opinion expects the average opinion to be. And there are some, I believe, who prac-
tice the fourth, fifth, and higher degrees” [182, p. 156]. The essence of Keynes’s observation is
captured in Example 3.2.

Example 3.2 Each player is asked to pick a number between 0 and 100. The player whose
number is closest to 2

3
of the average wins a prize. The rest get nothing. A cognitive hierarchy

level 0 player will select a number non-strategically by sampling a number at random or choosing
a number which may have special significance to the player (in either case, the player’s choice is
indistinguishable from a randomly generated number by other players).

The cognitive hierarchy model seems to accurately explain people’s behavior in several
empirical investigations of Example 3.2 [41]. Specifically, past studies have shown that players’
choices spiked at 50 �

2
3

k for k D 1; 2; 3, as suggested by the level-k model. Nevertheless, most
players choose different numbers, mainly in the 1-33 interval, suggesting a possible reasoning
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over the distribution of players. Additional examples for the use of cognitive hierarchy models
for two-player games are available in [125].

Note that unlike level-k models, it is uncommon to associate error rates with cognitive hi-
erarchy models. Namely, a person is assumed to respond perfectly to her belief over the level dis-
tribution. However, the incorporation of quantal response was proposed by Wright and Leyton-
Brown in [333]. The authors show the benefit of the integrated model (quantal response with
cognitive hierarchy) in several publicly accessible databases.

3.1.5 BEHAVIORAL SCIENCES
Behavioral sciences such as psychology and cognitive science provide a wide gamut of obser-
vations, theories, empirical studies, and general criteria to explain and predict how people make
decisions. However, as noted at the beginning of this section, only a few of the proposed models
provide a mathematical model which is needed for automated agent’s design.

In his popular book, Dan Ariely advocates that people, to great extent, are “Irrationally
Predictable” [11]. Namely, Ariely notes that simple observations and manipulations can have
a far-reaching effect on people’s decisions and can assist in predicting them. While these be-
havioral observations are not mathematically formulated for the most part, utilizing them in
automated agent design can be very useful. For example, Hajaj et al. [137] recently showed
that comparison shopping agents, such as the ones listed in Shoppingbots.info, can increase
their revenues substantially by displaying prices sequentially in a way that will leverage known
decision-makers’ cognitive biases. Specifically, they instantiate the anchoring-and-adjustment
insight from Kahneman and Tversky [170] along with ad-hoc, domain-specific heuristics to derive
a computational method which they show to increase a comparison shopping agent’s revenue.

Unfortunately, articulating a mathematical behavioral science-based model can be very
complex and may require extensive domain knowledge and the incorporation of expert-defined
heuristics. Let us consider The Ultimatum Game in Example 3.3.

Example 3.3 The Ultimatum Game The ultimatum game consists of two players. The first
player (the proposer) conditionally receives a sum of money (say, $10) and proposes how to
divide the sum between the proposer and the other player. The second player (the responder)
chooses to either accept or reject this proposal. If the second player accepts, the money is split
according to the proposal. If the second player rejects, neither player receives any money. The
game is typically played only once so that reciprocation should not pose a significant issue.

Güth et al. [130] was the first experimental study of this game. The mean offer that human
proposers gave in this study was a split where the proposer receives 63% of the money and the
responder receives 37% of the money. Subsequent studies have revalidated these findings and
found that offers below 20–30% are very likely to be rejected whereas offers which propose at
least 50% to the responder are almost always accepted. The results vary in different parameters
of the game such as cultures and different levels of familiarity between the proposer and the

Shoppingbots.info
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Figure 3.3: The Ultimatum Game (Example 3.3) represented as an extensive form game.

responder (see [150, 151] for discussion on these issues). This behavioral evidence suggests a
general guideline as to how one should predict how a human proposer and a human responder
would act in an ultimatum game setting. However, how can one translate the above insights into
a mathematically viable model that would work in a new domain or in a new setting?

Consider an intelligent agent that negotiates a possible trade deal with a human interlocu-
tor. The agent wants to offer a “take-it-or-leave-it” contract to the human. Such an offer can be
easily viewed as a proposal as to how to split the profit from the trade deal. The situation can be
modeled as an Ultimatum Game (Example 3.3). Therefore, the agent may take the experimental
evidence discussed above and use it as a guideline, for instance by assuming that the likelihood
that the human would accept an offer below 50% diminishes according to some expert-based
functional form (which parameters may be learned from appropriate data, if such exists). We
provide a thorough discussion over the negotiation domain in Section 4.3.

The above examples are part of a long list of well-known and well-studied cognitive biases
of human decision-makers. Cognitive biases are tendencies to think and act in certain ways that
can lead to systematic deviations from a standard of rationality or good judgment [141]. These
biases are often studied in psychology and behavioral economics and are usually confirmed by
replicable research, testing the hypothesized bias in different experimental settings including
different cultures, genders, etc. A significant effort is also made in investigating the evolutionary
background of these biases (e.g., [64]). We are interested in these cognitive biases as they have
significant effects on humans’ decision-making. Thus, identifying and appropriately leveraging
them in intelligent agent design may be very effective. We divide these biases into two groups:
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general biases, which have been identified across many different domains and environmental
settings, and domain specific biases, which are (suspected to be) limited to a specific domain
or to a narrow group of environmental settings.

Note that while the list of known decision-making biases gets longer by the day, only a
small fraction of these biases are currently in use by automated agents for predicting human
decision-making. We will discuss this issue in Chapter 4.

General Biases
We will discuss only a few prominent cognitive biases which seem to be presented across a
wide range of settings. We will exemplify their use in agent design as well. Ideally, each of the
mentioned biases should have a chapter of its own. Such a chapter would discuss the evolutionary
background of the bias and the multitude of experimental results that validate and question it.
However, due to space limitations, we will restrict ourselves to a short and concise definition
of each of the prominent biases, along with a practical example of where and when this bias
can be of use in agent design. The interested reader is encouraged to refer to one of the many
books on the topic—the authors of this book would recommend the following easy-access books
[11, 81, 169, 253, 324, 343].

• Anchoring is the tendency of people to rely too heavily, or “anchor,” on a past reference
or on one trait or piece of information when making decisions. Kahneman and Tver-
sky were the first to document the anchoring bias in an experiment involving a roulette
wheel marked with integers ranging from 0–100. Each participant witnessed a spin of the
roulette wheel. They were then asked whether they thought that the percentage of United
Nations member countries that was from Africa was greater or smaller than the number
spun on the wheel. Next, they were asked to estimate the true percentage. Participants who
saw the wheel stop on the number 10 guessed, on average, that the actual percentage of
African countries belonging to the United Nations was 25%. In contrast, those who saw
the wheel stop on the number 65 guessed, on average, that the percentage from Africa
was 45%. A common example for the use of Anchoring in agent design stems from auto-
mated negotiating agents. For example, the NegoChat-A agent [276] leverages this bias
at the beginning of the negotiation process by presenting an offer which it does not ex-
pect the human to accept. Yet, the offer serves as an anchor for further negotiation offers.
We provide a detailed overview of the methods used in the design of human-interacting
automated negotiation agents in Section 4.3.

• Bandwagon effect, also known as herding, refers to the tendency of people to do (or be-
lieve) things because many other people do (or believe) the same things. The phrase “jump
on the bandwagon” first appeared in American politics in 1848 when Dan Rice (1823–
1900), a famous and popular circus clown of the time, used his bandwagon and its music
to gain attention for his political campaign appearances. The idea underlying the effect is
that decisions or beliefs spread among people with the probability of any individual adopt-
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ing it increase as more people “jump on the bandwagon.” This often happens regardless
of the initial belief or preference of the decision-maker. The effect is often leveraged in
recommendation settings, for example, by offering items to people accompanied with ex-
planations such as “best selling” or “people like you also liked…,” thus, to some extent,
aiming to trigger the effect. From a multi-agent perspective, this effect can facilitate the
design of agents that support people or act autonomously in voting systems, as people
show clear biases toward voting for the leader of a poll or to their second-most preferred
candidate as long as it receives many votes in the polls [305]. Voting settings are discussed
in Section 4.5 in more detail.

• Loss Aversion refers to people’s tendency to prefer avoiding losses over acquiring equiv-
alent gains. Loss aversion is the reason we see phrases like “last chance” or “Hurry! Only
2 left!” in marketing campaigns so often. Loss aversion can be considered as “Playing Not
to Lose” as opposed to “Playing to Win.” Loss aversion can explain many everyday phe-
nomena such as the unwillingness of many people to sell their house or stocks for less
money than they paid for them. In [345], the authors show that automated agents can
use debiasing techniques to partially decrease the impact of loss aversion, and thus, po-
tentially, improve the agent’s performance. From the opposing perspective, Gunaratne et
al. [129] show how loss aversion can be triggered in decision-makers by manipulating the
information presentation by an automated agent. Note that loss aversion is also part of the
prospect theory described in Section 3.1.6.

• Default bias, which is also known as the status quo bias, is the tendency of people to opt
for the default supplied option. A default usually refers to that option which a decision-
maker will receive if she does not make an active choice or if she avoids taking the time
to consider or adopt an alternative state to the status quo. The default bias can be seen in
religion. More than 90% of religious people belong to the religion of their birth, namely,
the default religion offered to them. From a design perspective, leveraging the default bias
can have a far reaching effect on people’s decision. For instance, many countries add to their
driver’s license application form an organ donation check box which applicants are asked to
mark if they wish to be added to the organ donors database. Interestingly enough, countries
which use a slightly different check box where applicants can mark the box if whey wish
not to be added to the organ donors database have significantly higher organ donation
rates: organ donation rates can vary from approximately 15% to approximately 95% with
this small change [164]. Similar results are shown in web users agreeing to receive e-mail
advertisements [163]. From an agent design perspective, Lee et al. [198] show that the
default bias can be a powerful tool for automated persuasive agents (in their experiment,
a persuasive robot) to propel people toward self-beneficial behavior. By placing a healthy
snack in the “default” location on the robot’s tray (compared to an unhealthy snack placed
in a non-default location), human subjects significantly chose the healthy snackmore often
than under controlled conditions, thereby promoting a healthier diet.
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• Framing is the phenomenonwhere peoplemaymake different decisions based on the same

information, depending on how that information is presented. Different types of framing
effects have been identified: including risky choice framing (e.g., the risk of losing 10 out
of 100 lives vs. the opportunity to save 90 out of 100 lives), attribute framing (e.g., beef
that is 95% lean vs. 5% fat), and goal framing (e.g., motivating people by offering a $5
reward vs. imposing a $5 penalty) [199]. From a design perspective, an agent can adjust
the framing of information without changing their content, in order to influence decision-
makers in a desired way. For example, in the field of human-robot interaction, Souza et
al. [299] show that by framing the robots’ information, human operators can significantly
change their decisions and commands to the robots.

Note that it is not completely and immediately clear how one should apply the above
general biases, separately and together, to agent technologies in a given setting. Therefore, in
many cases, extensive domain knowledge and the incorporation of expert-defined heuristics
may be required. Nevertheless, a few more holistic theories have emerged by combining several
of these (and other) biases. Most notable is the prospect theory, as described in Section 3.1.6.
Before describing the theory, we will complete our discussion on the use of behavioral biases by
discussing domain-specific biases.

Domain-Specific Biases
In the previous section, we devoted our attention to general biases which have been found across
different environments and people. However, in different fields, experts have identified many
more biases and tendencies of people which stem from their domain of interest. To exemplify
the use of this approach, consider the Virtual Suspect system [36]. The system is intended for
inexperienced law enforcement personnel and is used to train them in interrogation strategies.
As part of the system, an automated agent plays the part of the suspect and therefore has to
simulate a human interrogatee. Ample research in criminology shows that suspects often dis-
play various biases during the interrogation which leads law enforcement personnel to develop
different techniques for driving the interrogatee to tell the truth. These techniques are often
depicted in popular TV shows such as Law and Order, CSI, Criminal Minds, and others. The
developers of the Virtual Suspect system were able to adequately predict human suspects’ deci-
sions (e.g., deny, come up with an alibi, etc.) based on expert-based modeling of their emotional
state and leveraging expert-knowledge in criminology.

Another example is the modeling of human geographical movement. Experts in the field,
inspired by Newton’s law of gravity, have hypothesized that the flow of individuals between
two locations decreases exponentially with the physical distance thereof. These so-called “gravity
models” and their subsequent models have a long tradition in urban planning and have been used
to model and intelligently adapt to a wide variety of social phenomena such as human migration,
inter-city communication, and traffic flows [231]. Agents may utilize these models in different
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ways, for example by exploiting the predicted movement of people in order to improve caching
of multimedia files in distributed systems [284].

Both of the above examples, as well as many others, are analytical models which are crafted
by experts for a specific domain and setting. In many cases, the very existence of these models re-
mains within the domain of interest (e.g., criminology or geography) and thus requires extensive
domain knowledge on the part of the agent designer.

3.1.6 PROSPECT THEORY
ProspectTheory [172], proposed by the 2002 Nobel laureatesDaniel Kahneman and Amos Tver-
sky (1937–1996), offers a descriptive theory of how people actually make decisions. This theory
is one of the most widely cited theories in economic literature.

Prospect Theory consists of two main novel notions compared to traditional methods:
First, the theory assumes that people derive utilities from gains and losses which are measured
relative to some reference point, rather than from the resulting outcome of the decision. Namely,
a utility function should receive as an argument the relative change as compared to the decision-
maker’s reference point, denoted as �.xi / where xi denotes a possible outcome of her decision-
making. We assume �.xi / 2 R where positive numbers indicate gains and negative numbers
indicate losses. The utility function is assumed to follow the loss-aversion bias, namely, the
“pain” of losing ˛ dollars should outweigh the “pleasure” of gaining ˛ dollars. Furthermore,
the utility function is assumed to be concave in the region of gains but convex in the region
of losses. This element of prospect theory is known as diminishing sensitivity. This means that
by replacing a gain (or loss) of ˛ dollars with ˛ C 1 dollars the marginal change in utilities is
smaller than the replacement of ˇ dollars with ˇ C 1 dollars if ˛ < ˇ. This notion is illustrated
in Figure 3.4. Second, the theory assumes that a human decision-maker is using a non-linear
probability weighing. Namely, people do not weigh outcomes by their objective probabilities but
rather by transformed probabilities, called weighted probabilities or decision probabilities, often
denoted using � instead of p. The weighing is done such that people overweigh low probabilities
and underweigh high probabilities.

The combination of both notions together suggests that people reason over potential
prospects instead of potential expected utilities. The prospect of a decision option � is defined,
using our notation from Chapter 2, as

Prospect.�/ D
X

xi 2X

�� .xi / � u.�.xi //

as opposed to the expected utility of � which is defined as EU.�/ D
P

xi 2X p� .xi / � u.xi /.
It is common to use a utility function of the form

u.�.xi // D

(
�.xi /

a if �.xi / � 0

��.��.xi //
b otherwise
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Figure 3.4: Illustration of the non-linear weighing of gains and loses underlying the Prospect
Theory.

as proposed in the original paper introducing the theory.
The above utility function consists of the coefficient of loss aversion (�), the gain satiation

coefficient (a), and the loss satiation coefficient (b). It is generally assumed that the a and b

parameters are in the .0; 1/ range and that 2 < � < 4. It is further common to assume that
a D b. Tversky and Kahneman suggested that � D 2:25, a D 0:88, and b D 0:88.

The transformation of probabilities to decision weights is commonly assumed to follow

�i D
pc

i

.pc
i C .1 � pi /c/

1
c

as done in the original paper.
The nonlinear transformation of objective probabilities to decision weights is expressed

via the c parameter. It is common to use two probability weighting functions, one for the prob-
abilities associated with “gain” outcomes (with parameter cC) and one associated with “lose”
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outcomes (with parameter c�). Tversky and Kahneman found that cC D 0:61 and c� D 0:69. It
is common to find c parameters estimated in the [0.5,1) range.

The prospect theory was later extended into a Cumulative Prospect Theory [318]. The
main modification to Prospect Theory is that cumulative probabilities are transformed, rather
than the probabilities themselves. We refer the interested reader to [95] for a discussion of the
empirical difference between the two.

From agent design perspective, it has been shown that prospect theory-based agents can
better simulate market behavior than expected utility maximizing agents [77]. This naturally fits
empirical evidence showing that the financial professionals follow prospect theory principles
more often than expected utility maximization ones [2]. Using Prospect Theory, an agent can
order presented alternatives to human decision-makers in order to drive them to make a desired
investment [21].

Note that the above expert-driven models are the most well-known and most deployed
methods in agent design. Naturally, many other expert-drivenmodels exist.The interested reader
may consider other prominent models such as regretminimization [157], strategy elimination
[69], Stackelberg Reasoning [68], and Team Reasoning [26].

3.1.7 UTILIZING EXPERT-DRIVEN MODELS
In many domains, expert knowledge is usually qualitative. Namely, expert knowledge is often
formulated as general criteria or rules (as exemplified in Section 3.1.5) and is not available in a
mathematical formulation, needed for most agent designs. Extracting domain knowledge from
human experts (also known as knowledge acquisition from human experts) in a way that can
be easily used by an automated agent may be very complex [236]. It is rarely the case that a
domain expert can “pin-point the true decision-making model” and provide exact rules, formula
and parameters for people’s decisions. As a result, two knowledge acquisition techniques have
been in use.

1. Interviews and Questionnaires, by which a designer elicits domain knowledge in the
form of decision-makers’ utilities, features, heuristics, or decision-making characteristics
with which she can deploy an expert-driven model. For instance, to develop the ARMOR
[251] agent, the designers conducted intensive interviews with security experts, trying
to reason about the utilities of potential attackers from attacking different airport termi-
nals. Furthermore, they were able to conclude that attackers are (or can be assumed to
be) expected utility maximizers. As a result, a game-theoretical approach was successfully
deployed by the designers.

2. The designer becomes a domain expert herself, relying on introspection to articulate the
domain knowledge in a mathematical way. For instance, in order to predict human ar-
gumentative decisions (see Section 4.4), the first author had to become an expert in the
computational argumentation field.
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The two methods often suffer from a significant gap between the qualitative expert knowl-

edge and the resulting mathematical formulation thereof. As a result, the process of articulat-
ing expert knowledge in an expert-driven model is usually iterative: an expert-driven model is
constructed based on qualitative expert-knowledge and then tested with a few real-world or
synthetic examples. The qualitative knowledge is then reformulated to account for non-intuitive
results and the process is repeated.

Tuning expert-driven models’ parameters may be done using expert knowledge or a lim-
ited amount of data. As a result, expert-driven models mostly require little to no contextual
data, making them especially favored in domains with established behavioral assumptions and
in domains where obtaining data imposes major costs or when relevant data is scarce.

Note that use of expert knowledge can also be utilized using a hybrid approach as we will
discuss in Section 3.3.

3.2 DATA-DRIVEN PARADIGM

More than 60 years ago, the psychologist Paul Meehl (1920–2003) put forward an “outrageous
claim”—that mechanical, data-driven algorithms could better predict human behavior and de-
cisions than a trained clinical psychologist, and with much simpler criteria [216]. Paraphrasing
on Meehl’s claim, he claimed that expert-based models, normally deployed by human experts,
are expected to be outperformed by data-based models. To a certain extent, he was right.

A data-drivenmodel for predicting human decision-making is a machine learning-based
model which is trained using contextual data about people’s decisions, and realized to a given
setting. Today, most computer scientists predict people’s decisions through machine learning
techniques.

In the following, we assume that the reader is familiar with the basic terminology in ma-
chine learning. We recommend the following texts for a complete and through overview of
the machine learning field [218, 220, 293]. For a more practically oriented introduction we
recommend [82, 349]. For an easy-access evaluation of different machine learning algorithms,
which requires no programming knowledge, we recommend using the Waikato Environment
for Knowledge Analysis (Weka) [331]. A recent extension thereof is the Auto-Weka 2 [187]
which automatically searches through the space of WEKA’s learning algorithms and their hy-
perparameters.

3.2.1 MACHINE LEARNING: A HUMAN PREDICTION PERSPECTIVE
Generally, the basic premise of machine learning is to build algorithms that leverage statistically
based methods to produce a prediction model. In our context, the resulting prediction model
should produce a prediction as to a human’s decision in a (most commonly, unseen) decision-
making setting.
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A decision-making setting is commonly represented as a vector of features Ex that describe

the decision environment and, possibly, the decision-maker. For example, if we wish to predict
the time at which a worker would leave the workplace today, Ex should consist of features that
describe the decision-making environment such as the day of the week, the company type (e.g.,
high tech, public office), etc. Additional features which describe the decision-maker may also
be included, such as the time the worker started the work day, the time at which the worker left
the workplace the previous day, whether the worker uses public transportation, etc. The process
of describing a decision-making setting using a set of features is often called feature extraction
(also known as feature engineering or feature construction). Naturally, features are intended to
be as informative as possible in order to facilitate the subsequent learning and generalization of
contextual examples. Recent advances in deep learning may relieve some of the feature extraction
burden in many cases, yet it imposes other limitations as we further discuss in Section 3.2.2.

Machine learning algorithms are typically classified into three broad categories.

1. Supervised learning: Supervised learning algorithms require a set of training examples,
each consisting of a past decision-making setting extended with the actual choice made by
a human decision-maker (i.e, the examples are labeled with the human decision). Con-
tinuing with our previous example, a supervised learning algorithm will require a set of
training examples consisting of past decisions made by a specific worker or a group of
different workers, each with the correct label—the decision that the decision-maker has
made in the setting in question. Given the labeled training set, a wide variety supervised
learning algorithm such as decision trees [259], deep neural networks [124], or Support
Vector Machine (SVM) [70] may be applied. The goal of these models is to approximate
the mapping of decision settings to actual decisions using different underlying assump-
tions. Note that the goal is not to “reverse engineer” the human decision-making process
but rather to approximate the decision outcome. An example for the use of this approach
in agent design is predicting which arguments a person is likely to put forward during an
argumentative dialog in order to provide beneficial arguments for that person to use or
for persuading the person to change her mind. We discuss both examples as part of the
Argumentation domain in Section 4.4.

2. Unsupervised learning:Unsupervised learning algorithms do not require the training data
to include labels. Unsupervised learning algorithms such as K-means and Hierarchical
clustering [337] are used for modeling the underlying structure or distribution in the
data in order to learn more about the data (e.g., discovering patterns) or as a means toward
constructing a prediction model (e.g., feature construction). Continuing with our previous
example, if the company did not keep track of when different employees left the workplace,
the encountered decision-making settings can reveal interesting insights that may be used
later for providing a prediction. For example, clustering the employees into types (most
commonly known as clusters) or deriving association rules such as “employees with a large
workload tend to come earlier to work” may provide additional strength to a future predic-
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tion model. A practical example comes from the automotive industry, which we discuss
in Section 4.6. By dividing drivers into clusters according to age, gender, etc. automotive
functionalities such as adaptive cruise control can be better configured to the driver’s sat-
isfaction by automated agents. We discuss this and other automotive applications which
use the prediction of human decision-making in Section 4.6.

3. Reinforcement learning: Reinforcement learning is concerned with how agents ought to
take actions in an unknown environment so as to maximize some cumulative reward over
time. Namely, popular reinforcement learning algorithms such as Q-learning and Rmax
[304] are developed and deployed by agents as to learn an optimal mapping from states
in the environment to desired actions. The use of reinforcement learning for the predic-
tion of human decision-making takes one of two forms. (1) Approximating and predict-
ing how human decisions evolve in reinforcement learning environments (e.g., repeated
play of an unknown game). Erev and Roth [87] found that reinforcement learning mod-
els outperform baseline models in modeling and predicting how human decisions change
and adapt in a broad range of repeated economical environments, (2) By using a vari-
ant of reinforcement learning called inverse reinforcement learning, an agent can model
human decision-making from a set of human-generated demonstrations (i.e., training ex-
amples) [227]. Ziebart et al. [348] showed that inverse reinforcement learning can be very
effective in inferring destinations and routes of human drivers based on partial driving
trajectories. Inverse reinforcement learning is strongly related to the notion of learning
from demonstrations [65], in which a person seeks to teach an agent (usually a robotic
agent) how to operate in a complex environment. Using our terminology, in most cases,
the person shows the robot what she would do in a given decision-making setting and
expects the robot to adequately predict and carry out the action she would take in future
decision-making settings.

3.2.2 DEEP LEARNING—THE GREAT REDEEMER?
The recent successes of deep learning [197] have demonstrated that predictive accuracy of data-
driven models can often be considerably enhanced and that feature extraction can often be re-
lieved. These successes have been mainly demonstrated in computer vision, speech recognition
and natural language processing. The major advantage of deep learning compared to standard
supervised learning lies in deep learning’s ability to automatically learn internal representations
of the necessary processing steps such as detecting useful features with only “raw” input as the
training signals. Thereby, deep learning can significantly relieve many of the feature construction
concerns.

The most impressive and world-renowned use of deep learning for predicting human
decision-making is found in the game Go, as described in Example 3.4. The use of this pre-
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Figure 3.5: High-level view of the three main strands of Machine Learning.

diction model allowed the Go playing agent AlphaGo [295] to beat expert human Go players,
which marked a significant milestone in AI history [208].

Example 3.4 Due to its enormous state space, the game of Go cannot be solved using ex-
haustive search. Instead, Silver et al. [295] presented a novel approach to mitigate this problem
which heavily relies on the prediction of expert human Go players’ game decisions (i.e., game
moves). First, the authors trained a deep network prediction model on a set of 30 million game
moves made by strong human players to predict what would be an expert’s next move given a
board position. The prediction model was extremely accurate, achieving an impressive 57% ac-
curacy.1 Using this prediction model, the authors then use a reinforcement learning approach to
adjust the learned model toward the goal of winning games rather than maximizing prediction
accuracy. In addition, another model is trained for estimating the chance of each player winning
the game given a board position. These models are integrated within a Monte Carlo Tree Search
(MCTS) method which uses the prediction of expert moves in its expansion and rollout phases.

Note that the recent achievements in the game of Heads-UpTexasHold’emPoker, most
notably the DeepStack [221] and Libratus [49] agents which conclusively defeated human
professional players [117], do not explicitly use the prediction of human moves. We believe that
this is a research direction worth exploring.
1Why should 57% accuracy be considered impressive in the game of Go? This question is left as Exercise 3.17.
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Similar to Example 3.4, the prediction of human decision-making was also successfully

deployed for the task of predicting human decisions in unrepeated two-player normal form
games [140]. The authors show that a deep learning architecture can outperform many of the
expert-based and hybrid approaches (such as the ones we discuss in Section 3.1) in a very con-
vincing manner.

Impressive successes were also demonstrated for the prediction of human decisions from
a visual perspective. For example, deep learning was successfully deployed to predict whether
two individuals in a video will hug, kiss, shake hands, or slap five based on more than 600
hours of unlabeled videos from YouTube2 [321]. In a similar spirit, human drivers’ steering
decisions were successfully predicted using a deep neural network that maps raw pixels from a
single front-facing camera directly to steering commands based on dozens of hours of unlabeled
steering behavior [38].

To date, deep learning seems to be most powerful when a lot of training examples are
available and especially when there is some feature locality in space and time such as evident in
videos, images, voice and many games such as Go and Atari. Recall that in addition to enhanced
prediction qualities, as discussed before, an important advantage of deep learning is that one does
not have to worry about the feature engineering. However, all that glitters is not gold. At least
not yet. To date, large human decisions corpora are not widely available and collecting such big
datasets can be highly complex (see Section 3.2.3). However, we speculate that this will change
in the near future given the technological advancements in wearable devices, smart phones and
online platforms. Furthermore, a deep learning infrastructure needs to be designed such that it
could be trained in reasonable time and also, potentially, leverage domain knowledge on human
decision-making. Thus, deep learning algorithms usually require much more experience on the
designer’s part as compared to “old fashioned/off-the-shelf ” methods such as decision trees and
SVMs, which can be found in Weka. Also, in many cases, it is the lack of self-explainability of
the deep learning models which makes them disadvantageous compared to simplistic, yet pos-
sibly less accurate, models which are easier to understand, explain and maintain (e.g., Bayesian
networks, K-nearest-neighbors, etc.). Law and medicine are the first of many fields that require
explainable AI developments.

3.2.3 DATA—THE GREAT BARRIER?
Google’s Research Director Peter Norvig is often quoted for saying “We (Google) don’t have
better algorithms, we just have more data,” emphasizing the great importance of data in today’s
world. Machine learning is naturally based on data.

For predicting human decision-making, contextual training data on past decision-making
settings could be valuable. However, obtaining contextual data raises two main issues: (1) ob-
taining enough data; and (2) obtaining the right data.

2https://www.youtube.com/

https://www.youtube.com/
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Obtaining data on human decision-making is very complex compared to standard pre-

diction tasks. For example, in order to predict the weather, historical weather data can be easily
obtained from most national meteorological services, thus obtaining quality data should not
pose a great concern. However, data on human decision-making is usually not widely available
and unfortunately, even if past data on human decisions is available, it does not necessarily fit
the specific setting and assumptions required for a new prediction task. Altman et al. [6] showed
that machine learning methods can be easily deployed to predict a person’s decision in game-
theoretic settings based on her decisions in earlier games. Naturally, the proposed model requires
data that identifies a person across different games. Identified repeated-interaction datasets are
usually not available.

Before one turns to collecting data independently, a highly complex and resource con-
suming task as we discuss next, an extensive search for available data should be performed. Sev-
eral open source data repositories are available, such as Harvard’s Dataverse,3 Zenodo,4 Open
ICPSR,5 Kaggle,6 and UCI Machine Learning Repository,7 to name a few. Several government
entities, such as the U.S Government8 and public organizations, are following suit. These and
others enable the sharing, preserving, citing, exploring, and analyzing of previously collected
(and usually labeled) data. In general, there is an ever-growing multidisciplinary recognition of
the benefits resulting from publishing data [188, 195, 242]. Nevertheless, many researchers do
not publish their collected data on open source repositories. In many cases it is worthwhile to
visit a researcher web-page to search for specific data or (kindly) ask a researcher for the data
by e-mail. Note that avoiding making data public can be explained, in some cases, with ethic
concerns such as anonymity and privacy. In such cases, the above arguments do not apply.

To date, many researchers who investigate human decision-making turn to collect their
own data. Given the discussion above, that is unfortunate yet understandable.

Data collection is the process of gathering and measuring information on targeted vari-
ables. Ideally, it would be highly valuable to use an observational approach where human de-
cisions are gathered in the real world, namely, in decision-making settings which were neither
triggered nor artificially manipulated by the researcher. It is self-evident that the observational
approach is the most ecologically valid approach to model and predict human decisions “in
the wild.” With the advances in different technologies such as on-line shopping platforms,
smart phones, wearable devices, and others, it seems that observational data on human decision-
making is becoming increasingly prevalent. For example, smart phone navigational applications
such as WAZE9 or Google Maps10 can observe driving decisions (e.g., take route a or route b

3https://dataverse.org/
4https://zenodo.org/
5https://www.openicpsr.org/
6https://www.kaggle.com/datasets
7http://archive.ics.uci.edu/ml/
8https://www.data.gov/
9http://www.waze.com

10http://maps.google.com

https://dataverse.org/
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https://www.openicpsr.org/
https://www.kaggle.com/datasets
http://archive.ics.uci.edu/ml/
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given the time, congestions, etc.) with and without the system’s recommendations. Note that
once the navigational application provides a suggested route, it is most likely to influence the
user’s decision, violating the observational premise. Hence, the major limitation of the observa-
tional approach.

When a researcher manipulates or artificially creates decision-making settings for data
collection she departs from the observational approach and turns to an experimental approach.
Using an experimental approach, data is gathered from people who willingly agree to participate
in the data collection, who are fully aware that they are subject to artificial decision-making
settings and, most importantly, the decision-making settings faced by the experiment participants
are governed by strict data collection protocols and standards. The correct design of data collection
from people is a vastly under-appreciated art. We review this process below.

Phase 1 – Recruiting Human Participants
Data collection normally starts by recruiting human participants, right?Wrong. Before recruiting
human participants, an Institutional Review Board (IRB) must approve the proposed recruit-
ment protocol. The purpose of the IRB is to assure that appropriate measures are taken to protect
the rights and welfare of human participants. This includes how their anonymity is kept, how
they will be compensated for their participation, etc.

Armed with an IRB-approved recruitment protocol, researchers may start recruiting par-
ticipants. A very common practice in academic research is to recruit students and faculty as study
participants. While this practice is acceptable, in many cases its worthwhile to go to the extra ef-
fort of recruiting non-academic participants. This may be done using crowd-sourcing platforms
such as Amazon Mechanical Turk (AMT)11 or by posting ads using social media, etc.

Since there is an infinite number of possible participant groups one can recruit, it is cus-
tomary to recruit an (approximately) equal number of men and women and strive to achieve a
diverse group in terms of age, education level, etc. The number of participants in data collection
varies significantly in the literature and there does not seem to be a “magic number.” The number
of participants is usually determined in an ad-hoc fashion, as we will describe soon. As a general
rule of thumb, it is customary to recruit at least 15 participants for each examined condition in
the data collection. Note that sampling the decisions of a small and similar group of people
will likely result in poor prediction accuracy in real-world deployment.

It is of the utmost importance to get the participants’ written informed consent before
continuing with the data collection.

Phase 2 – Pre-questionnaire
In some cases, a researcher may want to collect additional information using psychological or
behavioral questionnaires. For example, the Minnesota Multiphasic Personality Inventory [142]
may provide significant insights into adult personality and psychopathology. While such ques-

11https://www.mturk.com/

https://www.mturk.com/
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tionnaires may provide very valuable information on the participants of the data collection, one
should consider if this information would be available in the future when the intended agent
is deployed. For example, consider an autonomous car which seeks to predict a driver’s driving
style (e.g., aggressive, safety-first, etc.). It is reasonable to speculate that obtaining a driver’s per-
sonality traits in data collection will assist in predicting her intended driving style. Nevertheless,
one may wonder if such psychological information would be available for a new driver who will
use the autonomous car in the future. Psychological questionnaires are generally very resource
consuming, and are rarely administered in AI.

Phase 3 – Presenting Decision-Making Settings
In this phase, the participant is presented with decision-making settings and is required to make
choices. But, how do we choose which decision-making settings to present to a participant?
The choice will bear a significant effect on the quality and diversity of the collected data which in
turn will effect the trained prediction model and the intended agent that will use the prediction
model. Consider the following true experience.

Example 3.5 Can we build an automated negotiator, with no expert designed rules, that would
do well across cultures? This is the main question of [136]. Participants from three countries were
recruited—the U.S., Israel and Lebanon. Due to logistical constraints (time differences, access
to participants, etc.), asking participants of one group to negotiate with participants of another
group was too complex. Therefore, an observational approach was adopted where participants
were randomly coupled within their group and were asked to negotiate over a given topic as they
would do in “the real world” (i.e., with minimal influence from the experiment designer). Note
that in the examined settings people negotiated repeatedly with their partners, but agreements
were not enforceable, as with many verbal agreements in the real world. Using the collected data,
three machine learning models were trained, one for each culture. Thus far, everything went
according to plan. However, once an agent was designed based on the data collected in Lebanon,
the agent turned out to be very “nasty”—it promised one thing and did another. Namely, it did
not keep its commitments throughout the negotiation process. The agent performed very poorly
in preliminary testing with human participants who, in turn, started acting “nasty” as well.

So, what went wrong in Example 3.5? It turns out that collectivist societies such as
Lebanon are more homogeneous and display less variance in the extent to which they fulfill
commitments [112]. Specifically, in data collected from Lebanon, virtually everybody kept all
of their commitments. So, what would an expected utility maximizing agent do if it assumes
that its human counterpart would always keep her commitments? You guessed it, it would not
keep its own commitments.

The above example highlights the problem of generalizing observed human decisions
which may be biased. Specifically, the collected data from Lebanon did not reflect all realis-
tic settings and thus the resulting prediction model was highly biased. A common strategy for
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mitigating this problem is acquiring additional data on “hard-to-reach” or off-the-path parts of
the decision-making space via experiments. However, this may not be as simple as it may sounds.

Consider the following task faced by judges everyday: deciding whether a defendant will
await trial at home (bail) or at jail (remand). The judge’s task hinges on the prediction of what
a defendant would do if he were to be released until trial (e.g., commit another crime or not), a
prediction task which can be significantly improved using data-based methods [184]. However,
available data on defendants’ decisions suffers from the selective labels problem [192]. Namely,
one would know what a defendant would have done if sent to await trial at home only if she
is actually sent to await trail at home. Naturally, judges’ decisions are made during the data
collection phase and those are a consequence of our existing predictions. This is very likely to lead to
a self-fulfilling prophecy.

In order to ensure that the intended model provides adequate predictions for all settings
(also for those which are unlikely, yet possible), it is important to collect data on a wide range of
decision-making settings, not only the most common and obvious ones. Ideally, we would want
to observe people’s decisions for every possible decision-making setting and use the observed
data with minimal (if any) generalization. However, this is usually infeasible. Think of a judge
who would release all defendants only to learn which defendants would commit a crime, or a
behavioral economist who asks experiment participants to make decisions as though they were
under all possible two-player normal form game conditions in a questionnaire.

The common technique to overcome the above limitations is somewhat similar to the
Expectation-Maximization (EM) technique in statistics [78]. In an iterative process, the de-
signer first speculates a possible division of the decision settings space into different choice
zones. It is advisable to rely on domain knowledge in this phase. Namely, we divide the pos-
sible decision-making settings into clusters or types based on our assumed human behavior in
these clusters. We then articulate representative decision-making settings for each cluster as well
as randomly selected settings when applicable12 and obtain participants’ responses thereof. Then,
using post-hoc analysis of the learned model, the designer seeks apparent defects in the learned
model and revises its assumed choice zones, usually using hold-out and cross-validation analysis.
Specifically, the designer should examine the model using a held-out subset of decisions which
the trained model did not encounter in training. Another common, yet non-cost-efficient, way
to examine the adequacy of the learned model is to deploy it using an automated agent in pre-
liminary testing (usually with very few human participants, if any). Then, the designer should
carefully examine the agent’s behavior and revise its assumptions. The iterative process then
continues for “as many times as needed.” Remember, a prediction model is only as good as its
agent performance. Namely, a prediction model is considered useful if and only if the agent
that uses it performs well according to a pre-defined measure (usually measured in terms of re-
ceived utility). Specifically, there is no “gold standard” for what constitutes a good prediction
model, yet it is common to expect more accurate prediction models to bring about better agent

12It is debatable whether or not releasing a defendant at random is ethically acceptable.
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performance. As a general rule of thumb, for a reasonable prediction task, two or three iterations
would suffice. Furthermore, from our experience, extremely high prediction accuracy of a model
(� 90) on human decision-making usually indicates some error or overfitting. Perhaps the most
common error for novice researchers and practitioners is using the evaluation set as part of the
training data.

This phase of the data collection is the most resource consuming. As a result, it is advisable
to take the time and effort to organize the experiment protocol properly in order to ensure that
the right data, and enough of it, are obtained. This phase is often called experimental design or
design of experiments in the literature. This phase is also related to the active learning paradigm
ofmachine learning [290], although active learning is rarely applied for human decision-making.

To complete the story of Example 3.5, in the second iteration of Phase 3 participants from
Lebanon were asked to negotiate with an automated agent that was programmed to be signif-
icantly less reliable when fulfilling its agreements compared to human negotiators in Lebanon.
The obtained data enabled more diverse negotiation behavior and decisions and thus resulted in
a better prediction model that, in turn, translated into better automated negotiators.

Phase 4 – Post-questionnaire
Similar to Phase 2, in most cases it is useful to administer a questionnaire following Phase 3. In
a post-questionnaire, participants are asked to rate various aspects of Phase 3, focusing on key
evaluation questions to boost the reliability of the data collection. These may include questions
as to how clearly the decision-making settings were presented to them in the data collection.
Post-questionnaires tend to be short in order to reduce the amount of time participants need
to complete them, and therefore increase the response rate and quality. Guidelines for efficient
post-questionnaire design are available in [311].

In some cases, a researcher may want to collect additional information for future refer-
ence. For example, the Nasa Task Load indeX (TLX) [139] is commonly applied to assess the
perceived workload of the participant. An example for the use of Nasa TLX post-questionaires
in data collection is given in [265] where, in order to construct a model of human operators’
skills in multirobot tasks, participants were asked to operate a group of robots and their deci-
sions were recorded. An automated advising agent was later constructed to provide advice for
human operators and relied on the trained model. Participants’ TLX scores, obtained from the
data collection process, were later used as a baseline for evaluating the benefit of the advising
agent.

3.2.4 ADDITIONAL ASPECTS IN DATA COLLECTION
Additional important aspects of data collection focus on maintaining the validity of the data
and boosting its reliability and replicability. These aspects are not specific or unique to the data
collection of human decision-making, hence for further reading we recommend referring to one
of the many sources on data collection standards and best practices such as [44, 118, 234].
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Figure 3.6: High-level view of the data collection process.

An under-represented method for data collection in agent design is the think-aloud
method. The think-aloud method requires participants to say whatever comes into their mind
as they make decisions during the experiment. This might include, but is not restricted to, what
they are looking at, thinking and feeling. All verbalizations are transcribed and then analyzed.
This may allow the researcher to better evaluate the adequacy of her experimental design. This
may also provide a unique view into the decision-making process rather than only the final deci-
sion. The method usually requires manual annotation of the provided verbalization which may
be very resource demanding.

Note that the data you, the reader, collect in your research can be of much use to other
researchers in your field and in other fields as well. Unless the data is confidential, please share it
using one of the open data-sharing platforms or your personal webpage where it can accessible
to all.

3.2.5 THE DATA FRONTIER
Developing a data-driven (or, as we will soon discuss, hybrid) model necessitates the collection
of contextual data. The traditional observational and experimental data collection approaches
were discussed in Section 3.2.3. However, an important dimension to data collection is the use
of novel data sources through which decision-makers or decision-making settings may be better
characterized and understood.

Consider the following prediction task: predicting whether an individual is going to com-
mit suicide. Today, suicide is a leading cause of death worldwide [330], making this a task of
utmost social importance. Naturally, the experimental data collection approach is inadequate.
However, how should one use an observational approach in this setting? Characterizing an in-
dividual using demographics or even historical mental health data may not suffice. Specifically,
many of the factors that are expected to effect one’s mental state are hidden from researchers.
The use of new data collection techniques and the use of new data sources for the prediction of
human decision-making is what we refer to as the data frontier.

Social media platforms such as Twitter can be used as effective data sources. Getting back
to our prediction task from before, social media has been shown to be a platform for individuals
to express suicidal thoughts, behaviors, and intent [232]. The use of hybrid techniques for de-
tecting people at risk was proposed in the past (e.g., [1]), mostly relying on expert-articulated
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lexicons of “risky vocabulary” or changes in social profiles. The task is often referred to as suicidal
screening. However, existing prediction models seem to lack real-world impact, mainly due to
their poor ability to distinguish suicidal thoughts from other psychological conditions such as
depression and their lack of effective intervention means [67]. To the best of our knowledge, to
date, there exists no controlled study testing whether prediction tools of this sort can effectively
reduce suicidal behaviors.

The use of social media to predict people’s decision-making was also successful for the
task of HIV prevention [338], intercepting terrorist acts [84] and predicting antisocial behav-
ior [191], to name a few.

Additional data sources provide unique opportunities. For example, detecting non-verbal
cues such as facial expressions can be used to enhance the prediction of human players’ strategic
decisions in games [246], psychological tests and neuroimaging can be effectively utilized to bet-
ter predict criminal behavior, substance abuse and educational decisions (among other lifestyle
decisions) [106], and the integration of multiple sensors can be used for predicting when one
person would interrupt another [98]. Generally speaking, the combination and fusion of multi-
ple data sources and sensors such as video, sound, bodily vital signs, and others can significantly
enhance a prediction model’s quality. Consider the task of predicting when a driver is about to
perform a dangerous maneuver. The state-of-the-art solution provided in [160], capable of pre-
dicting drivers’ maneuvers several seconds before they take place, uses an integration of video of
the driver inside the car and the road in front, the vehicle’s dynamics, global position coordinates
(GPS), street maps, and others from which multi-modal data from both inside and outside the
vehicle can be generated.

The challenge of using multiple resources lies in identifying relevant resources and fusing
the different sources correctly. With the advancements in wearable devices, Internet of Things
(IoT) and other technologies, this data frontier is expected to keep expanding in the future.

3.2.6 IMBALANCED DATASETS
The prediction of rare decisions poses a great challenge. For concreteness, let us consider the
following problem instance; many companies invest significant efforts and resources in predict-
ing which “trusted individual”, also known as “insider”, will choose to maliciously break security
policy—commonly, by stealing or selling company secrets. This is often referred to as the insider
threat problem [22, 233].

Most individuals in an organization are benign and would not engage in malicious activi-
ties. Only a small fraction of individuals choose to act maliciously. Due to the lack of extensive
examples for the latter case, developing a prediction model, and especially a data-driven model,
is extremely challenging. Let us consider a data-driven approach where each person is labeled
“inclined toward acting maliciously” or not. A great deal of data sources are available at one’s dis-
posal, including the employee’s e-mails, demographics, uploads, and downloads onto memory
sticks, and much more. However, the set of training examples for which the label is “inclined to-
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ward acting maliciously” is usually very small, usually by several orders of magnitude, compared
to the complementary set. This problem is often known in machine learning as the imbalanced
dataset problem.

To understand the problem better, consider the following prediction model: for any in-
dividual, regardless of any information, predict that she will not engage in malicious behavior.
If non-malicious individuals consist of 99.9% of the employee population, the proposed model
would have an expected accuracy of 99.9% just by saying that no one is malicious. This is clearly
a problem because many machine learning algorithms are designed to maximize accuracy.

To overcome the challenges associated with the imbalanced datasets, several machine
learning techniques have been proposed as surveyed in [143]. The most popular techniques in-
clude collecting more data (which in many cases is infeasible or very expensive), changing the
performance metric (e.g., by using the receiver operating characteristic (ROC) curve [94]),
resampling the training set using over-sampling of the minority set or under-sampling the
majority set and statistical techniques such as SMOTE [62]. Another common solution, which
seems to be the dominant approach for mitigating the insider threat problem, is adopting an
expert-driven or hybrid approach, thus relying less on data (e.g., [173]). We discuss the use of
hybrid models in Section 3.3.

3.2.7 LEVELS OF SPECIALIZATION: WHO AND WHAT TO MODEL
In tandem to obtaining data, one must decide the level of specialization for the intended predic-
tion model. Intuitively, if the prediction model is intended to address a modest task of predicting
specific human decisions for a specific decision-making setting, the collected data process should
reflect that. For example, if we wish to predict what Dr:House will choose to eat for lunch it
makes sense to collect data on Dr:House at lunchtime over some period of time.

We discuss the two main dimensions of prediction models’ specialization: personalization
and situationalization.

Personalization
Personalization refers to the decision-maker’s “weight” in the prediction model. Every human
decision-making prediction model can be classified as one of three types.

1. Generalized models do not model the decision-maker within the decision setting at all,
hence these models are generalized across all decision-makers in the training data. These
models rely solely on the decision-making environment, namely, the decision options and
circumstances. This modeling approach is useful when low variation in humans decisions
is expected and when data is scarce.

2. Semi-personalized models consider both the decision-maker’s characteristics as well as
the decision-making environment’s characteristics. The decision-maker’s features such as
gender, age and others are incorporated within the decision setting feature vector Ex. This
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allows for partial personalization of themodel, as different decision-makers will potentially
be associated with different predictions based on their features. This is the most popular
personalization level today.

3. Fully-personalized models are constructed for each specific human of interest. Namely,
a separate prediction model is constructed for each human and is trained based only on
that specific human’s decisions. This modeling approach is useful when very high variation
between humans is expected and when substantial data on a decision-maker is available.

To exemplify the difference between the above personalization levels, consider Exam-
ple 3.6.

Example 3.6 Automotive climate control systems are heavy energy consumers. As a result,
an automated agent may be used to persuade drivers to save energy by suggesting more eco-
nomically beneficial settings that would keep the driver comfortable. To that end, a prediction
model of which climate control settings a driver would be willing to adopt if suggested to her
is very valuable. In [23], a prediction model for which climate control settings a driver would
consider acceptable was constructed as a generalized model. Specifically, all drivers would receive
the same advice, which depends solely on environmental factors (e.g., outside temperatures).
This was later extended in [266] into a semi-personalized model, where drivers’ actions influence
future prediction. Namely, each driver is represented using her past climate control settings and
reactions to the agent’s advised settings and thus the prediction of the driver’s future decisions
(to accept or reject a proposed climate control setting) is modified accordingly. Lastly, in [267],
a fully personalized model was suggested such that each driver is represented using a unique pa-
rameterized model which is updated over time using the driver’s interactions with the system.
The resulting prediction model is fully personalized such that prediction and actions of driver x

are unrelated and bare no effect on the predictions for driver y once the models are deployed.

Generalized models are especially useful for mitigating the cold start problem. The cold
start problem is related to the sparsity of information regarding a decision-maker or a decision-
making environment. For example, when predicting which item(s) a new human user, on whom
we have no prior knowledge, may seek to purchase in an e-commerce platform, a generalized
model based on tending items may prove valuable. An extremely successful deployment of a
generalized model is AlphaGo, which we discussed in Example 3.4. Note that the prediction
model used by AlphaGo does not seek to predict a specific person’s decisions but rather the
likelihood that an expert Go player will make a move. In principle, generalized models are very
useful when the decision-maker’s characteristics are assumed to have little to no effect over the
decision. Consider a clinical decision support system [223] which is intended to recommend
which tests to administer to a patient given her symptoms and medical records. A possible
approach may include the prediction of what an experienced human doctor would do. Given
the clinical decisions of several highly experienced human doctors, a generalized model of what
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an expert would decide should be more useful than a personalized model of what a specific Dr.
House would decide.

Semi-personalized prediction models are very effective across a wide variety of prediction
settings. These models leverage data from (possibly many) different people, yet use the decision-
maker’s characteristics to personalize the prediction, thus “enjoy the best of both worlds”. For
example, Last.fm13 and YouTube14 predict what songs or videos a user is likely to see (or would
want to see) next by observing which songs or videos the user has listened to on a regular basis
(the user’s decisions) and comparing those against the decisions of other users. Common tech-
niques deployed in this realm include collaborative filtering [46]. Semi-personalized models
are also common in targeted advertising [254] which use semi-personalized prediction models
based on user demographics and personal information as well as other (similar) people’s past
actions for deciding on which advertisements a human user would be most likely to click.

Fully personalized models have the benefit of modeling a specific decision-maker. As one
would expect, adequate fully personalized models require extensive data on the decision-maker
in question. Virtual assistants such as GoogleNow15 strive to provide fully personalized predic-
tion models. For example, say a human user drives to her gym everyday at 7pm. We would expect
the virtual assistant to predict that and react accordingly (e.g., notify me on possible traffic con-
gestions). Indeed, personalized virtual assistants do just that. Another example is the DARKO
prediction model for a specific human’s decisions in a home environment using a camera [263].
By following a video stream of a person at home, a personal robotic assistant can utilize person-
alized prediction models to allow better reactivity to the user’s activity in shared environments
[186]. In order to train a fully personalized prediction model one would need to collect data
generated from a specific person, a highly difficult task in most settings. Today, only a few large
cooperations such as Google and Facebook, as well as government authorities (presumably),
hold such personalized data on people.

Situationalization
Situationalization refers to the decision environments (or situations) in which we seek to eval-
uate the intended prediction model. There exist three broad levels of situationalization which
are defined with respect to the entire decision environment space of the task in question.

1. Narrow models are trained and evaluated on a single decision-making environment in
the domain. Specifically, the prediction model is not intended for generalization across
different environments, however it may be intended for generalization across different
decision-makers. For instance, in an ultimatumgame (Example 3.3) where an agent plays
the proposer and a human decision-maker acts as the receiver, a prediction model may be
useful to predict the probability that a human decision-maker would accept a specific offer,

13https://www.last.fm/
14https://www.youtube.com/
15https://www.google.com/landing/now/
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for example the Nash equilibrium strategy offer. Several studies examined this question
exactly, while focusing on a specific offer or a few specific offers without the intention of gener-
alizing across them. An interesting implication of these investigations is through the prism
of cultural differences; namely, by learning how individuals in different cultures may react
to an offer. A survey of these efforts is available in [237].

2. Broad models generalize data across an abundance of decision-making circumstances yet
do not cover the entire decision-making space. These models are intended for addressing
a subset of decision-making environments which do not necessarily represent the entire
space of possible decision-making environments. For example, consider the models listed
in Example 3.6 which are designed to predict human decisions in climate control envi-
ronments which are only considered summer conditions. Naturally, the trained model is not
expected to perform well in winter conditions but it was not designed with that goal in
mind.

3. Holistic models are intended for evaluation under all possible decision-making environ-
ments in the context of the task in question. Holistic models are expected to train on a
very varied dataset which can reflect the possible heterogeneity in decision-making envi-
ronments. For example, a model for the prediction of an expert Go player’s moves (Ex-
ample 3.4) is not limited to the confines of specific game positions.

See Figure 3.7 for a graphic illustration of the examples discussed in this section on the
personalization-situationalization space.

3.2.8 TRANSFER LEARNING
In a traditional learning environment, such as supervised learning, if we intend to deploy a
model for some prediction task in domain A (e.g., predicting one’s investment decisions), we
assume that we are provided with training data from the same domain, A. Namely, according
to the model’s situationalization, the model is expected to generalize the training examples for
the same domain A alone. For instance, given an investor’s history of investment, we could
predict the likelihood that she will invest in a new stock. Transfer learning allows us to (re-)use
data from domain A to a new, related domain B (e.g., predicting one’s insurance decisions).
Specifically, using transfer learning the designer seeks to transfer as much knowledge as she can
from the source domain (domain A), from which training examples have been gathered, to our
target domain (domain B). Using our example above, a designer may seek to transfer knowledge
about the decision-maker and decision-making features from one’s investment decisions to her
insurance decisions, assuming the two domains are related.

Andrew Ng, chief scientist at Baidu and professor at Stanford, is often quoted as claiming
that “transfer learning will be the next driver of machine learning commercial success” (NIPS
2016 tutorial).
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The ability of a prediction model to apply knowledge learned in previous domains to novel
domains, which share some commonality, is inspired by a human being’s ability to do so. Suc-
cessful use of transfer learning can significantly reduce time and costs and can bring about a
more holistic prediction perspective, spanning across various domains in one’s life. This in turn
can translate to better adoption of intelligent agents that provide a wide variety of services (e.g.,
personal robotic assistants).
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Different techniques have been proposed in the literature to perform transfer learning (see

[241] for a survey). These techniques are mainly motivated by having a robot transfer knowledge
on how to accomplish one task to accomplishing a similar task [310]. However, to the best of
our knowledge, to date, no work has successfully transfered human decision examples from
one domain to another in order to train a prediction model. And not for lack of trying.

Consider the following example based on [269].

Example 3.7 The prediction of human decisions in argumentative dialogs (i.e., which argu-
ments to present and when) can be very useful for argumentative agents (see a thorough discus-
sion in Section 4.4). In order to predict what arguments a person is likely to present next in a
dialog, training data of past dialogs on the same topic have been shown to be highly effective (more
effective than using an expert-driven approach). However, in practice, obtaining past dialogs on
every possible topic is infeasible. The common setting is one in which previous argumentative
discussions on different topics are available. In this case, transfer learning could potentially be used
to transfer the observed argumentative decisions from one set of domains to a target domain.
Namely, given a partial discussion in the target domain, for which the agent has no prior dialogs
from which to learn, a prediction is generated according to users’ argumentative selections in
other domains. Unfortunately, as discussed in detail in [269], the attempt was highly unsuccess-
ful. Apparently, given conversations on the target topic, conversations on different topics (even
from the same person) do not enhance the prediction accuracy. Moreover, when no conversa-
tions over the desired domain are available, it is better to use expert-driven heuristics rather than
deploying transfer learning.

So what went wrong in Example 3.7? Seemingly, the authors did everything right: their
feature-based transfer method, where each decision in one domain is mapped as a decision in
the target domain, seems adequate. In addition, they tried to transfer argumentative decisions
by using the same person, having each participant engage in three argumentative dialogs and
transferring the person’s decisions from the first two domains to the third. The authors provide
two explanations for the unsuccessful use of transfer learning. These explanations also highlight
the main difficulties in applying transfer learning when predicting human decision-making in
general.

1. Different domains may drive significantly different decision-making behaviors. In Exam-
ple 3.7 people may not use a cross-domain deliberation style—people might deliberate
differently over different topics, depending on varying factors such as their knowledge of
the topic, their attitude toward the discussed issue, etc. In general, given the multitude of
factors that influence human decision-making, it is very hard to know in advance which
domains should be considered similar with respect to human decision-making.

2. Even if a person follows a similar decision-making process across different domains, the
factors that influence the decision-making in both domains may amount to completely
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different decisions which are hard to transfer. In Example 3.7, the tested domains may
have triggered different outcomes despite people following fixed argumentative patterns.
Namely, in topics of personal interest (e.g., politics), people’s decisions may have been
different as a result of the emotional factors involved. Transferring the person’s decisions
to a less emotionally charged domain may prove problematic.

Due to the reasons above, the use of transfer learning in the prediction of human decision-
making is mostly considered an open challenge.

3.3 HYBRID APPROACH
Hybrid prediction models combine methods from both the expert-driven and the data-driven
paradigms. These models explore how these two paradigms can be combined to bring about
better predictions than the two paradigms alone. The basic premise of the hybrid approach is
the assumption that theoretical models can benefit from empirical evidence and data which
conversely can be better leveraged using theoretical models. This premise in aligned with the
call for combining theoretical game theory and experimental game theory for better predicting
people,s decisions raised by the 1970 Nobel-laureate Paul Samuelson (1915–2009) [279].

Human Prediction
Model

�eory Data

Figure 3.9: Hybrid models integrate expert-driven techniques (i.e., theory) with data-driven
techniques (i.e., data).

The most common and straightforward technique to combine the two paradigms is by
injecting expert-driven theories and models as features within a machine learning approach. We
discuss this technique as well as others in the following.

3.3.1 EXPERT-DRIVEN FEATURES IN MACHINE LEARNING
Manual feature extraction is, by definition, an expert-driven process. However, beyond the basic
representation of a decision-making setting, the use of well-known expert-driven theories and
models as features within a machine learning approach is worth exploring. We discuss a few
recent successful deployments of this approach.
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Recently, such hybrid models were proposed for predicting human decision-making in

decision theoretic settings under risk and ambiguity [230, 252]. These models use expert-driven
models and behavioral biases such as utility maximization and loss aversion as additional fea-
tures for representing the decision setting.This approachwas shown to outperform expert-driven
and data-driven approaches in a recent human choice prediction competition [86].

Another recent example comes from the negotiation domain (discussed in detail in Sec-
tion 4.3). The prediction of what will be the next bid by a human interlocutor can be very useful
in planning the negotiation course. NegoChat-A [276], the state-of-the-art human-agent ne-
gotiation agent, uses a hybrid approach by combining the expert-driven AspirationAdaptation
Theory [289] as additional features to the machine learning prediction model. These additional
features have been shown to enhance the agent’s prediction accuracy compared to a basic ma-
chine learning method (which does not include expert-driven features) or a pure Aspirational
Adaptation Theory prediction approach. The prediction of human reciprocity in bilateral nego-
tiation was also shown to benefit from using a hybrid model [108].

In predicting argumentative decisions of people in argumentative dialogs, the well-
established Argumentation Theory (see [322] for a summary) can provide expert-based pre-
diction, similar to the way Game Theory can provide predictions in appropriate settings. How-
ever, the predictive accuracy of Argumentation Theory models was shown to be very low in
real settings [268]. Nevertheless, the state-of-the-art prediction model [269] has shown that
argumentation theory (as well as other behavioral biases such as confirmation bias [229]—the
tendency to search for, interpret, favor, and recall information in a way that confirms one’s pre-
existing beliefs) can be very effective in enhancing the prediction accuracy of machine learning
models.

3.3.2 ADDITIONAL TECHNIQUES FOR COMBINING EXPERT-DRIVEN
AND DATA-DRIVEN MODELS

Other techniques for combining expert-driven and data-driven models are used sporadically in
the literature. For example, several models (both expert-driven and data-driven) may be com-
bined into a single model using ensemblemethods. In its simplest form one can consider com-
bining several models using averaging (for continuous predictions), or majority voting (for clas-
sification of discrete data). Erev et al. [88] provide a real-world example of combining both
expert-driven and data-expert models in such a fashion.

Other possible techniques include reducing the size of the decision-making space using
expert-driven models. Specifically, the use of focal points [286] was shown to significantly
reduce the size of the decision-making space. Focal points are a concept introduced by 2005
Nobel-laureate Thomas Schelling (1921–2016), identifying decisions that people tend to make
in the absence of communication or prior knowledge just because they seem natural or special.
Consider the following example: two people unable to communicate with each other are each
shown a panel of four squares and asked to select one; if and only if they both select the same one,
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they will each receive a prize. Three of the squares are blue and one is red. Assuming they each
know nothing about the other player, but that they each want to win the prize, then they will,
reasonably, both choose the red square. The red square is hence a focal point. Focal points may
play an important role in shaping the expectations of human decision-makers and hence can be
leveraged in predicting them. In domains such as the job candidate selection [352] and “Pick
the Pile” games [274], by assuming human decisions are heavily biased toward focal points,
the number of the possible predicted decisions can be significantly reduced and, conversely,
prediction accuracy is shown to increase.

It is important to note that, in many cases, expert-driven models are trained using data.
For example, a quantal response model uses a rationality parameter which is usually learned
from available data. While the line separating expert-driven and hybrid models is not crisp, it
is our opinion that the mere introduction of data does not turn a quantal response model (or
any of the models described in Section 3.1 for that matter) into a hybrid model. Expert-driven
models are developed primarily through decision-making assumptions and expert-based theory.
As a result, the use of data in these models does not change the assumptions and theory behind
the intended model and takes a marginal role at best.

3.4 EXERCISES
3.1. (Level 1) What real-world application domains, other than security, can potentially

benefit from assuming that people are fully rational?

3.2. (Level 1) Prove the following properties of the logit quantal response model: A) When
the rationality parameter � is set to 0, then a quantal response decision-maker will fol-
low a uniform random choice over the possible strategies regardless of their expected
utility. B) When � ! 1, quantal response converges to a “pure” utility maximization
as discussed before.

3.3. (Programming) Implement a script (or excel/access) sheet which receives the number
of possible strategies for a decision-maker and its rationality parameter (�) and returns
the logit quantal response probability distribution over the possible strategies.

3.4. (Level 2) Define the quantal response equilibrium based on Section 3.1.2. Prove that it
is a generalization of a Nash equilibrium.

3.5. (Level 1) Analyze the Prisoner’s Dilemma (Example 2.5) under the following condi-
tions: (A) both prisoners use quantal response with � D 0:5; (B) both prisoners are level-
k reasoners with k D 1; 2 (mention which level-0 behavior you assumed and why it is
reasonable); and (C) both prisoners have a cognitive hierarchy level k where both pris-
oners believe that the prisoner population is half of level 1 and the other half of level
2.



3.4. EXERCISES 57
3.6. (Level 1) Find all pure Nash equilibrium in the beauty contest game (Example 3.2).

3.7. (Level 1) The silk market in Beijing, China is famous for its unorthodox selling tech-
nique. Each item is significantly overpriced to begin with. Once a costumer enters the
store the seller negotiates a price with the costumer which in some cases can reach as
little as 10% of the original pricing. Which cognitive biases are leveraged by the sellers?

3.8. (Level 1) Two restaurants differ in their tip systems. Restaurant A adds the common tip
(10%) to the bill, clearly mentioning that the tip could be removed if a box is checked
on the receipt. Restaurant B clearly mentions on its receipts that the common tip (10%)
could be added to the bill if the appropriate box on the receipt is checked. Which restau-
rant would you consider to receive more tips? Why?

3.9. (Level 2) Analyze Rubinstein’s e-mail game [277] using the expert-based approaches
presented in Section 3.1. Whenever parameters need tuning, set them as you see fit.

3.10. (Level 2) Prove that the Tversky and Kahneman probability weighting function (pre-
sented in Section 3.1.6) infinitely overweights infinitesimal probabilities and infinitely
underweights near-one probabilities. Namely, show that

8xi � lim
p� .xi /!0

�� .xi /

p� .xi /
D lim

p� .xi /!1

1 � �� .xi /

1 � p� .xi /
D 1:

3.11. (Level 1) Consider a lottery ticket L that pays 106 with probability 10�6. How much
would a rational decision-maker be willing to pay to buy the lottery ticket? Now suppose
that there is insurance that can save the decision-maker a loss of 106 that will occur with
probability 10�6 (e.g., her house can burn down). How much would a rational decision-
maker be willing to pay for full insurance against this risk? Repeat these two questions
under the assumption that the decision-maker follows the prospect theory with a zero-
wealth as the reference point, w.p/ D p and

v.y/ D

(
y if y � 0

2y otherwise:

3.12. (Level 1) What is the Focal Points Theory [286]?

3.13. (Level 2) What is the Aspiration Adaptation Theory [289]?

3.14. (Programing) Try your data-driven modeling skills on one of the many data-sets on
Kaggle https://www.kaggle.com/, some of which are aimed at predicting human
decision-making.

3.15. (Level 1) Explain in your own words what is the selective labels problem. Identify
another domain where the problem may manifest itself.

https://www.kaggle.com/
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3.16. (Level 1) What is deep learning, and how does it contrast with other supervised learning

algorithms?

3.17. (Level 2) The prediction model used by AlphaGo (Example 3.4 is considered to be
highly accurate, yet it achieves “only” 57% accuracy. On the other hand, a model for pre-
dicting whether one will brush her teeth tomorrow evening with 99% accuracy should
be considered rather poor in most cases. What is the reason? Can you think of easy ways
to avoid this phenomena?

3.18. (Level 1) What are the different methods for collecting data on human decision-
making? Elaborate on the main advantages and disadvantages of the within-subject
and between-subjects experimental designs.

3.19. (Level 2) How can one evaluate a prediction model using the Receiver operating char-
acteristic (ROC) curve [94]?

3.20. (Level 2) Provide a few new real-world examples, not mentioned in this chapter,
for human decision-making prediction tasks and situate them on the personalization-
situationalization space (Figure 3.7). Explain your choices.

3.21. (Level 2) Which prediction approach would you take in order to predict what stocks
people are likely to invest in more today? Discuss the different options. What is the
main barrier for the using such prediction models to make money in practice?

3.22. (Level 1) A large company noticed that their best and most experienced employees are
leaving prematurely. Define a human decision-making prediction problem that, once
solved, can be used by the company to mitigate the problem. How would you go about
modeling the problem?What data sources would you use, if any?What are the problems
you are likely to tackle and how do you plan to approach them?

3.23. (Level 2) A doctor finds out that almost 30% of her scheduled patients do not show
up. As a result she has been “over-booking” patients. Some days, her solution works
perfectly with the “right” number of patients arriving while on other days there is sig-
nificant overcrowding in the clinic. Discuss how would you go about helping the doctor
schedule her patients better. Which prediction approach would you adopt and why?

3.24. (Level 2) The Global Terrorism Database (https://www.start.umd.edu/gtd/) is an
open-source database including information on terrorist attacks around the world from
1970 with annual updates. Can we expect a fully data-driven model, based of the above
data set, to be of human expert prediction quality? Why? How would you go about
predicting next year’s terrorist attacks?

3.25. (Level 2) An autonomous car seeks to adapt its driving style (e.g., speed, distance from
other vehicles) to its passengers. To that end, the car tries to predict what decisions its

https://www.start.umd.edu/gtd/
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passenger would have made if she was the driver. However, the car cannot ask the driver
to demonstrate her driving behavior as it is fully autonomous with no wheel or gas pedal.
How would you predict one’s decisions if you cannot observe their decisions? Can you
think of a “work-around”? How would you mitigate the cold start problem where a new
passenger enters the car? What would you do if there is more than a single passenger?
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C H A P T E R 4

From Human Prediction to
Intelligent Agents

“Action speaks louder than words but not nearly as often.”

Mark Twain

The prediction of human decision-making can, in many cases, enhance our understanding of
how people make decisions and endow automated agents with the ability to predict human
decisions, an ability we associate with intelligence. However, paraphrasing on Mark Twain,
“intelligent action speaks louder than predictions but not nearly as often.”

The maxim of this book can be phrased as follows: a prediction model is as good as its
agent performance. In this context, the challenge of using a prediction model in an intelligent
agent is of utmost importance. This point of view was also highlighted in a recent Science Maga-
zine essay [302] by Subrahmanian and Kumar which claimed that “A predictive model must also
provide one or more prescriptions for potential future actions…” Note that a prediction model
may employ various assumptions regarding people’s decision-making. However, it is important
to remember that the usefulness or accuracy of a prediction model is not attributed to the cor-
rectness of its underlying assumptions but rather to the fact that people make decisions as if the
assumptions are correct.

We first present the generic framework in which prediction models are normally inte-
grated within the design of intelligent agents. Next, we systematically discuss and compare sev-
eral real world domains in which the prediction of human decision-making plays a role in the
design of intelligent agents. Through this comparison we aim to identify which assumptions and
domain characteristics make a specific model or approach more suitable than others. We discuss
our insights, as well as our own personal experience, providing best practices in Chapter 5.

4.1 PREDICTION MODELS IN AGENT DESIGN
Intelligent agents may use human prediction models in many different ways. The most common
way to leverage such prediction models is through the integration thereof within the agent’s
reasoning and/or optimization process, as depicted in Figure 4.1.

In Chapter 3, we focused on the dashed component of Figure 4.1, denoting the prediction
of human decision-making.
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Figure 4.1: High-level illustration of the the integration of human prediction models in intelli-
gent agent design. The dashed area is discussed in Chapter 3.

Note that in order to proficiently implement the above methodology, components outside
the dashed area should be accounted for. Specifically, designing an optimization problem or a
reasoning mechanism which contemplates a prediction model of human decisions along with
environmental factors may not be straightforward. In some cases, the designed problem along
with the associated predictionmodel could be readily mapped into a well-known optimization or
reasoning category such as Linear Programing (LP) [76], Markov Decision Process (MDP),
[258] or regretminimization [30], while in other cases new formulations need to be developed.

The Optimizer’s Curse
If the prediction model perfectly reflects human decision-making, then an agent can select its
actions through the expected utility maximization paradigm using optimization and reasoning
techniques such as the ones stated above. Theoretically, on average, such an approach will receive
the expected utility if the whole process is repeated many times. In reality, however, human pre-
diction models are far from perfect. These models usually oversimplify the real decision-making
setting and the representation of the decision-maker. They tend to generalize across people and
provide predictions across different decision-makers. Therefore, if an agent consistently takes
the prediction at face value and selects a best response, it should expect the value of the cho-
sen action to be less than what was estimated, even if the value estimates are unbiased(!). This
phenomenon is often referred to as the curse of the optimizer [298].
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To illustrate the curse of the optimizer in our context, consider a personal robotic assistant

that needs to take one of three actions (e.g., cleaning the floor, doing the dishes, or ordering food,
denoted a1; a2; a3). Let us assume that the true expected value of the three actions is exactly zero
(�1 D �2 D �3 D 0). The robot uses an estimation of the expected value of each action based
on the prediction of the human’s decisions (e.g., will the user choose to eat soon). We assume
that the estimations are normally distributed with the mean equal to the true value, which is
zero, with a standard deviation of one. We assume that the expected utilities are conditionally
unbiased. If an agent selects the highest estimation of the three, the value of that selection is
0.85 on expectancy (the calculation is left to the reader as Exercise 4.2). Namely, if the agent
evaluates the estimators at every decision setting (which we assume to be unconditional), then
the agent is likely to face significant deviations from the expected utilities it considered (0.85
on expectation in the above example). Intuitively, by selecting the action with the highest utility
estimate, the agent favors the overly optimistic estimates and that is the source of the bias.

Theoretically speaking, the optimizer’s curse is very troubling. However, in practice, its
impact may be limited. First, the greater the difference between the best alternative and the other
alternatives (on expectancy), the more likely it is that the agent will select the best alternative.
Namely, if one alternative is significantly better than others on expectancy, it is also significantly
more likely to be selected by the agent. Furthermore, the estimates of expected utilities are usually
(highly) correlated as they consider common (or even the very same) features in the prediction
model. The extent to which the curse hinders human interacting agents’ performance is yet to
be investigated in real world domains.

Directly overcoming the optimizer’s curse can be accomplished using a Bayesian approach
to interpret the expected utility estimations. Specifically, one may define a prior on the true
expected utility of every action. Then, rather than ranking alternatives based on the calculated
expected utilities (i.e., evidence), one may use Bayes’ rule to determine the posterior distribution
of the expected utility of each action and rank the alternatives accordingly. The potential benefit
of using this approach in human interacting agent design has yet to be investigated in practice.
See more details in [298].

Note that the use of a prediction model which does not adequately reflect human decisions
may significantly hinder an agent’s performance [196, 212]. Guidelines and techniques for the
design of intelligent agents, irrespective to the use of prediction models, are presented in popular
AI textbooks such as [278, 332].

4.2 SECURITY GAMES
Today, security is a critical concern around the world. A security setting usually consists of a
defender (e.g., police) which has a limited number of resources (e.g., officers) that seeks to
protect a large set of targets (e.g., airport terminals) from an adversary (e.g., terrorists) [306].
Naturally, the prediction of an adversary’s decisions (e.g., if, when, and where to attack) is critical
for the success allocation of defender resources by the automated agent.
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Automated agents have been shown to outperform human security experts by providing

security predictions and efficient resource allocations that are significantly better than the current
practices. These allocations are not only better, but they are also derived much faster than manual
ones.

Security domains are unique in that the predictive agent (used by the defender), in most
cases, cannot consider the adversary in isolation. Namely, the adversary may react to the pre-
diction model used by the defender and may leverage it to its benefit. Therefore, an appropriate
prediction by the defender should also consider the adversary’s reasoning about the defender. As
a result, the main question in predicting an adversary’s decisions is—How strategic does one
consider the adversary to be?

Given the possible strategic interaction between the defender and the adversary, theGame
Theoretic approach seems to be the most adequate starting-point. Indeed, most commonly, se-
curity games aremodeled as a StackelbergSecurityGame (SSG) where the defender “commits”
to a (mixed) strategy that the adversary can first observe and then (best) respond to. The under-
lying motivation for this model is that adversaries can, in many security settings, perform careful
surveillance of the defender’s actions and thus elicit the defender’s policy. Consider Example 4.1
for an illustration.

Example 4.1 Consider a security guard who needs to protect two assets at different locations.
Naturally, the security guard cannot be in two places at the same time, therefore complete cov-
erage is impossible. As a result, the security guard needs to decide which of the resources to
guard at each time step. A potential attacker can decide which asset to attack. Domain experts
have provided you with the following payoff matrix:

Defender

Attacker

Asset1 Asset2

Asset1 (4, -3) (-1, 1)

Asset1 (-5, 5) (2, -1)

If players have no prior knowledge of their counterpart, then a Nash equilibrium may be cal-
culated (left as part of Exercise 4.4). However, in practice, the attacker may perform careful
surveillance and obtain a distribution of the guard’s decisions (e.g., “on Sundays the guard se-
cures Asset 1 in 75% of the cases”). In a sense, the defender “moves first,” as the attacker is
expected to learn the guard’s mixed strategy and then attack. The calculation of the guard’s op-
timal strategy completes Exercise 4.4.

The ARMOR agent is a prominent example of the practical benefits of this approach.
ARMOR was developed for intelligently randomizing resource allocation at the Los-Angeles
international airport (LAX) [251]. The agent prescribes where and when security officers should
set up checkpoints to check cars driving into LAX, assuming they face a perfectly rational adversary
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capable of observing their past actions and which maximizes expected utility. The highly successful
deployment of ARMOR gave rise to additional agents that follow the SSG modeling with
the assumption of an adversary’s perfect rationality: IRIS [316], a scheduler for randomized
deployment of U.S. federal air marshals to flights, TRUSTS [341], a patrol scheduler for fare-
checking in massive transit systems, and others.

Nevertheless, in many security domains the assumption of a perfectly rational adversary
brings about poor predictions and in turn poor agent performance. As a result, the use of
bounded rational models such as quantal response and prospect theory were adapted and extended
to the security context in order to relax the perfect rationality assumption. These models have
been shown to significantly improve prediction accuracy and agent performance in human stud-
ies [92, 228, 340]. A recent comparison of bounded rational models in SSG is available at [176].
The parameters of these bounded rational models are normally trained using (usually limited)
data available from security agencies or by explicit experimentation in simulated settings. Newly
deployed agents such as PAWS [91], which is designed to combat illegal poaching through the
optimization of human patrol resources, use bounded rational prediction models.

Despite significant improvement in prediction accuracy by bounded rational models, in
some environments, adversaries are assumed to use even less strategic reasoning and planning
against the defender. Specifically, in some environments the adversary is assumed to be reactive
to defender’s decisions rather than strategic. Namely, non-strategic adversaries do not consider
their decisions’ effect on the defender’s (future) decisions. Non-strategic adversaries in security
settings have recently beenmodeled as opportunistic adversarieswhich choose where and when
to attack in real-time based on defender presence and the attractiveness of the potential targets
[344]. Predicting the decisions of non-strategic adversaries tends to take a more data-driven
approach, such as the INTERCEPT model [177], intended at predicting poaching activity as
reactive to defender actions based on significant amounts of past data. When data is insuffi-
cient for deploying a data-driven approach, an expert-driven or hybrid approach is adopted. For
example, The Traffic Enforcement Allocation Problem (TEAP) [271] is used for scheduling
efficient traffic enforcement in order to mitigate traffic accidents. In order to model drivers’ de-
cisions (e.g., drive recklessly or safely given the traffic police’s current and past actions), a hybrid
approach is adopted by combining both numerical estimations and heuristics found in traffic
enforcement literature. The TEAP model is deployed by the Israeli Traffic police [272].

Finally, in some environments adversaries are assumed to follow minimal to no strategic
behavior at all. Namely, the decisions of adversaries are assumed to be influenced mostly (if not
only) by environmental factors. The idea is similar to the 2002 hit movie Minority Report, where
Tom Cruise plays a police officer in the LAPD “pre-crime unit.” In Minority Report, the LAPD
uses a super-natural predicting model of when and where someone is going to commit a crime
and prevent it before anything actually happens. Possible offenders have no way to knowwhether
the police is “on to them” or not and have no way to influence the police’s predictions (other
than to avoid any intention of committing a crime to begin with). In a more realistic manifes-
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tation of the Minority Report notion, police departments worldwide are now implementing the
predictive policing approach [249], where historical crime data is used to produce predictions
for future crimes. By using data-driven models, police departments can predict which people
and locations are at an increased risk of crime, thus creating so-called “heat maps” of criminal
activity. For example, Chicago’s police department is reported as using such a prediction model
to help locate who might be more likely to commit violent crimes [156]. Another example is the
Anti-Poaching Engine [243], which is currently in deployment in South Africa. The system
was developedwith the aim of efficiently allocating and coordinating between drones and ground
rangers for mitigating illegal poaching. The underlying poachers’ prediction model assumes that
poachers are solely influenced by environment factors such as animal density, accessibility to roads
and other terrain-based characteristics. The prediction of non-strategical adversaries’ decisions
is most naturally done using data-driven models, as long as appropriate data is available.

Security prediction models tend to take a generalized approach where a single model is de-
signed for all possible attackers. A few semi-personalized models exist, for example in predicting
people at higher risk of performing violent crimes, yet to a far lesser extent. Security prediction
models strive to be holistic yet usually provide only broad prediction model situationalization.
Specifically, the prediction is usually restricted to a realistic subset of adversary decision-making
settings due to the large decision-making setting space. Furthermore, note that most security
settings are repeated in nature. As a result, successful prediction of the adversary’s decisions and
effective counter-action by the defender might lead to changes in the adversary’s decisions in the
future. These changes may be poorly described by a prediction model, limiting its applicability.
Therefore, by relying solely on historical data, a highly biased model may be learned due to the
underlying distribution of defender’s strategies by which the data was obtained, which cannot
be regarded as holistic. In many cases, an online learning approach may be used to mitigate
the above issue. Namely, the adversary model may be updated as more real world data becomes
available. A few theoretically justified strategies for updating the adversary model are available
in [133, 297].

The key factor that distinguishes between the above security settings in terms of adversary
prediction models is how strategic does one consider the adversary to be. Note that there is
an inverse relation between the assumed strategic capabilities of the adversary and the amount
of needed data for efficient deployment. Specifically, by assuming pure rationality, as done in
ARMOR, no data of adversary decision-making is needed for setting parameters or configuration
of the prediction model. However, the less rational the adversary is assumed to be, the greater
the increase in the number of parameters and thus more data is required for adequate prediction.
Unfortunately, lack of appropriate data may drive agent designers toward adopting unrealistic
assumptions. The systems discussed in this section are depicted in Figure 4.2.
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Figure 4.2: The characterization of agents in state-of-the-art security games with respect to the
level of strategic reasoning assumed on the adversary’s part and the amount of required data for
adequate prediction. A trade-off between the two criteria is apparent.

4.3 NEGOTIATIONS

Automated negotiators can be used with humans in the loop or without them. When used with
humans, they can alleviate some of the effort required of people during negotiations and can as-
sist people that are less qualified in the negotiation process [180]. Also, there may be situations
in which automated negotiators can even replace human negotiators [25, 83]. Another possi-
bility is for people embarking on important negotiation tasks to use these agents as a training
tool, prior to actually performing the task [181, 202, 315]. The success of automated negotia-
tors depends on efficiently modeling the negotiation counter-part. Thus, the key difficulty when
negotiating with people is to cope with human decision-making.

In contrast to the (assumed) fully rational attackers in Security Games as discussed above
(e.g., in ARMOR), empirical studies have shown that people’s negotiation decisions often fall
short of what one would consider rational [85, 213]. As a result, automated negotiators that
assume their human counterpart to be fully rational often perform badly with people [152, 244].

Could data be used to mitigate the above challenge? Potentially yes. However, due to the
extremely wide variety of negotiation settings and protocols it seems that obtaining adequate
data for a specific negotiation setting is highly complex. Consider a negotiation setting where
one wants to sell a used car to a stranger. This setting is remarkably different than a negotiation
setting where two executives negotiate a trading deal after several successful trading deals in the



68 4. FROM HUMAN PREDICTION TO INTELLIGENT AGENTS
past. Note that the use of transfer learning in this realm is also highly difficult for the same
reasons.

Given the complexity of obtaining contextual data on the one hand, and the well de-
veloped social science literature on what drives human negotiation decisions on the other, we
discuss the different approaches by considering the amount of data needed for their successful
deployment. We start with the expert driven approach, relying on expert-articulated heuristics,
going through hybrid approaches that combine collected data with heuristics and concluding
with data-driven models that cope with the complexities associated with obtaining data in this
domain.

One of the most prominent and long-standing techniques for mitigating a human nego-
tiator’s irrationality is the use of expert-based models, based on expert knowledge and heuris-
tics. For instance, Curhan’s Subjective Value Inventory [75] identifies four key factors that
can be leveraged to predict which offers people will accept: (1) material outcome (e.g., “the ex-
tent to which the terms of the agreement benefit you”); (2) feelings about the self (e.g., “did you
lose face?”); (3) feelings about the process (e.g., “did the counterpart listen to your concerns?”);
and (4) feelings about the relationship (e.g., “did the negotiation build a good foundation for a
future relationship”). Following these and other “rules-of-thumb,” automated agents that ne-
gotiate with people have been developed. The first software agent that negotiated with people,
Diplomat [189], was designed for the game of Diplomacy [294].1 A crucial component of
the game involves simultaneous, repeated negotiation—players are expected to negotiate complex
deals in incomplete and imperfect information settings where other agents’ goals are usually un-
known. Misleading information can be exchanged between the different agents and complex,
non-committing alliances and agreements between the agents may be formed. The Diplomat
agent used a heuristic approach where different personality traits of the human player, such as
aggressiveness, willingness to take chances and loyalty were estimated for predicting her deci-
sions. The prediction rate of this agent with respect to whether its human opponent will keep the
agreements they signedwas 92%.Most human players were not able to guess which of the players
was played by the automated agent. In a similar spirit, other works such as [107, 166, 235, 281]
relied on heuristics to try and predict a human negotiator’s decisions. Many real-world trading
bots, such as high frequency financial exchanges, advertising exchanges, or sniping agents used
in eBay, employ expert-driven rule-based functions which have been hard-coded in advance by
human experts [153]. The major limitation of the above expert-driven approach is obvious—it
heavily relies on expert-based knowledge and heuristics which may not be available or may not
bring about an adequate agent performance.

A competing approach to mitigate a human negotiatior’s irrationality is by adopting
bounded rationality models. These models were deployed successfully with human negotiators in
several systems. For example, the QOAgent [203] adopts a bounded rational approach where
a finite set of possible negotiator types is assumed based on expert knowledge, each with an

1This game is considered to be the ancestor of many popular computer strategy games, such as Sid Meier’s Civilization.
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additive utility function (e.g., one type might have a long-term orientation regarding the fi-
nal agreement, while the other type might have a more constrained orientation). After each
observed decision, the agent tries to infer which type best suits the opponent based on the as-
sumed decision-making models. The agent considers the utility of both sides when calculating
a proposal using an expert-articulated model that leverages domain-specific biases (e.g., Luce
numbers [207] which represent probabilistic beliefs regarding the tendency of a negotiator to
choose one offer over another). Other works, such as [244], adopt classical bounded rationality
models such as the quantal response approach. Ficici and Pfeffer [96] compared the prediction
capabilities of several bounded rationality models with human-human negotiations. The authors
show that beyond a certain level of sophistication, more complex bounded rational models yield
diminishing returns. They further show that simple bounded rational models (such as the quan-
tal response) can be very useful for constructing automated negotiators that negotiate better than
people. More recently, Haim et al. [135] showed that adopting a bounded rationality approach
can surpass human performance level at three-player market settings. These agents are best clas-
sified as expert-driven models due to their substantial reliance on expert-articulated heuristics
and behavioral models.

Note that the above agents do not assume access to a significant amount of past expe-
riences or negotiation data. However, an agent can possibly improve its negotiation strategies
based on such data, if available. An initial attempt in that direction is the KBAgent [240] which
extended the QOAgent by using a generic opponent modeling mechanism, which allows the
agents to model their counterpart’s population and adapt their behavior to that population. The
agent negotiates with each person only once, and uses past negotiation sessions of other people
as a knowledge base for generic opponent modeling. The database containing a relatively small
number of past negotiation sessions is used to extract the likelihood of acceptance of proposals
and which proposals may be offered by the opposite side. The KBAgent still heavily relies on
expert-driven components (as does the underlying QOAgent), thus it is best classified as part
of the hybrid approach. A similar attempt was made by Byde et al. [53] who developed AutONA,
an automated negotiation agent for negotiations between buyers and sellers over the price and
quantity of a given product. While the model can be viewed as one-shot negotiations, for each
experiment, AutONA was provided with data from previous experiments, allowing it to adapt
its predictions. In order to model the opponent, AutONA attaches a belief function to each
player that tries to estimate the probability of a price for a given seller and a given quantity. This
belief function, based on expert-based heuristics, is updated based on observed prices in prior
negotiations and rounds. Unlike the KBAgent who was shown to outperform human nego-
tiators, AutONA was shown to achieve a human-like negotiation level, but no better. More
recently, the NegoChat-A and NegoChat agents [275, 276] presented a novel hybrid approach
which combines machine learningmodels for the prediction of the likelihood that an offer would
be accepted with well-known human biases, such as Anchoring and Aspiration AdaptationTheory
[289] for outperforming the KBAgent. The unique feature of the NegoChat and NegoChat-
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A agents is that they present natural text understanding capabilities that demonstrate the need
for partial agreements and issue-by-issue interactions, currently not accounted for in most pre-
diction models. Recently, Zick et al. [347] studied a unique negotiation setting in which agents,
both human and automated, need to form coalitions and agree on how to share resources. The
authors show that hybrid models which rely on basic machine learning techniques and features
based on game theory can provide adequate predictions of people’s decisions of whether or not
to join a coalition in an online study.

For a more data-driven perspective, some works have adopted a machine learning ap-
proach where negotiation decisions (offers and responses to offers) are collected and generalized.
Most commonly, machine learning models take a generalized or semi-personalized approach due
to the complexities of collecting many negotiation decisions of specific users. For example, Peled
et al. [245] presented an agent design for repeated negotiation in incomplete-information set-
tings that learns to reveal information strategically during the negotiation process. The agent
used classical machine learning techniques to predict how people make and respond to offers
during the negotiation, how they reveal information and their response to potential revelation
actions by the agent using a generalized model. A recent survey by Baarslag et al. [24] demon-
strates the variety of machine learning methods successfully used to predict human decisions
in a wide range of negotiation settings and protocols. The survey shows the wide popularity of
Bayesian learning techniques in negotiation prediction tasks. Note that the underlying notion
behind this line of works is to develop agents without (or at least, to a minimal extent) relying on
human expert knowledge. However, a major concern in using this approach hinges on feature
construction, which may bear a significant effect on the prediction model’s accuracy [274].

Figure 4.3 depicts the negotiation agents discussed in this section with respect to their
prediction approach.

Due to the high number of possible negotiation settings which may vary dramatically
(number of players, negotiation protocol, reward structure, temporal aspects, etc.) it is hard to
conclusively say that a certain prediction method is preferable to another. However, the above
discussion illustrates three dominant phenomena.

1. It seems that the expert-driven approach, and specifically the heuristic-based approach,
stands out in their successful deployment with people. This outcome may be attributed to
the complexities of obtaining data combined with a large number of factors that influence
human decision-making in negotiation as discussed earlier in this section. These factors
can be leveraged by domain experts using hand-coded heuristics and rules which can be
effectively deployed by automated agents.

2. In repeated negotiation settings, data on past interactions is valuable. Namely, as a result one
can see hybrid agents, which combine expert-driven heuristics with collected data from
past interactions, which perform adequately.
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3. Due to the complexity of obtaining human negotiation decisions in real-world settings,

most data-driven models take a generalized or a semi-personalized approach. To date,
these models seem to be outperformed by expert-driven and hybrid models.

Recent work in the field has also focused on creating adequate platforms for the design
and evaluation of negotiation agents and the research of their ability to compete with as well as
train human partners. One such platform, the IAGO platform [215], was recently proposed. By
creating testable agents, direct performance comparisons can potentially be made, allowing the
quantification and improvement of human-agent interaction in the negotiation realm.

Expert-Driven Data-DrivenHybrid

Diplomat

OAgent

KBAgent Baarslag et al.

AutONA

NegoChat

Figure 4.3: Categorization of automated negotiation agents discussed in Section 4.3.

We speculate that future developments will bring about a greater emphasis on automated
agents which negotiate on one’s behalf (as also speculated in [25]). Such agents will be expected
to consider a fully personalized approach, be it as part of the expert-driven, hybrid, or data-
driven models, for predicting their user’s decisions. Note that humans often rely on costless,
non-binding signals (often known as cheap talk) to establish cooperative relationships in repeated
settings. Existing negotiation agents, of all prediction approaches, still fall short on this criterion.

4.4 ARGUMENTATION
A key human skill, utilized across many domains and activities, is the ability to argue. Politi-
cians argue for their election manifestos, colleagues argue about the best way of solving a task,
and we even argue with ourselves before making an important decision. Intelligent agents may
benefit from the prediction of human argumentative decisions and behavior in many ways. For
instance, by enhancing the argumentative capabilities of their users [287], being more persua-
sive while engaging with human interlocutors [155], etc. Here we discuss two argumentative
prediction tasks: (1) predicting how a person would evaluate an argument (e.g., consider it per-



72 4. FROM HUMAN PREDICTION TO INTELLIGENT AGENTS
suasive or not); and (2) predicting which argument a person would present next in the course of
an argumentative dialog.

Similar to negotiation settings (Section 4.3), expert-based theories and models have been
developed and proposed to account for argumentative decision-making in different settings. The
accumulation of these theories and models is often called the ArgumentationTheory [17, 322].
Inmany respects, theArgumentationTheory is themost widely accepted expert-driven approach
for predicting agents’ argumentative decision-making (human or automated). Note that argu-
mentative decision-making is unique in that the decision-maker is expected to use some form of
non-monotonic logic. In other words, the introduction of new information or arguments can
cause the conclusions or decisions of an arguer to change significantly. Unfortunately, despite
its appealing theoretical properties, Argumentation Theory has been shown to provide poor pre-
diction capabilities for human argumentative decisions across a wide variety of argumentative
settings ranging from formal argument analysis and reasoning [59], through well-accepted ar-
gumentative principles [260, 268] to the analysis and reasoning of non-formal arguments on
the Web [19]. The most comprehensive study to demonstrate the poor predictive capabilities of
Argumentation Theory is that of Rosenfeld and Kraus [269]. The authors examined the most
well-established argumentative principles and models with more than 1; 000 human participants
across a wide range of argumentative settings and assumptions. The authors also examined the
formulation of bounded rationality and heuristic prediction models which have also fallen short.
Altogether, unlike negotiation settings where the expert-driven approach was shown to provide
valuable predictions and in turn allowed for the design of beneficial agents, here, the use of
expert-driven approaches seems inadequate for prediction and agent design. This lack of appli-
cability as to agent design is supported by [269] who examined the use of Argumentation Theory
and bounded rationality models in the design of argumentative agents aimed at supporting hu-
man argumentation. These agents performed rather poorly, resulting in a low subjective benefit
for their human users. Note that other expert-based computational techniques for modeling hu-
man reasoners such as [37, 132, 154] were recently proposed. These methods have thus far not
been tested with human subjects.

It is important to note that in specific application domains such as legal [14], med-
ical [101], and critical reasoning [308], Argumentation Theory is able to provide adequate
argumentation-support systems. These domains are unique in their emphasis on strict proto-
cols and reasoning rules, making argumentation theory very applicable. This is not the case in
most argumentative settings.

The good news is that people love to argue, especially online. The emergence of web dis-
course and argumentation platforms such as ChangeMyView, an active community on Reddit,2
and social media debates allows the Natural Language Processing (NLP) and specifically the
argumentation mining community to make significant achievements in predicting which ar-
guments a person would find more compelling. For instance, automated classifiers have been

2https://reddit.com/r/changemyview

https://reddit.com/r/changemyview
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proposed to automatically score the persuasiveness of argumentative essays [93, 250]. Recently,
Habernal and Gurevych [131] provided a deep learning model for comparing the persuasive-
ness of arguments in head-to-head comparisons using a large corpus of 16,000 arguments. A
similar approach was proposed by Wei et al. [326], relying on a hybrid approach based on expert-
articulated features. Surprisingly, studies show that specific non-trivial interaction patterns be-
tween users as well as linguistic factors can significantly enhance the prediction accuracy of
people’s argumentative decisions [307].

For the task of predicting which arguments a person is likely to put forward in an argu-
mentative dialog, obtaining a large amount of data is impractical. Namely, while people post
arguments and comments on the web debating politics, sports, and other issues, bilateral argu-
mentative settings like a debate between two spouses on which vehicle they should purchase,
or a debate between two researchers on whether to send a joint paper to Conference A or B

is very hard to find online or to collect experimentally. As a result, for this task, a hybrid ap-
proach, leveraging data together with expert-articulated features, was shown to provide adequate
predictions and beneficial agents. For instance, Rosenfeld and Kraus [269] presented a hybrid
approach for the prediction of which arguments a person is likely to present in a dialog. The
authors present novel argument provision agents that assist their human users by providing ar-
guments for them to use while engaging in an argumentative dialog using a variety of argument
provision policies based on the prediction model. A prediction model may also be used to derive
a persuasive policy as proposed in [270] where, unlike the former case, the prediction model is
integrated within an optimization technique aimed at maximizing the likelihood of a successful
persuasive interaction with human interlocutors (rather than providing arguments that a person
would find useful to use on her own in a dialog). The integration of expert-articulated features,
which on their own pose little predictive power, is used in order to mitigate the challenge of
generalizing the few argumentative decision examples that the authors were able to obtain.

It is important to note that unlike negotiation agents that can “fool” people into thinking
they are human under certain settings, there is still a long way to go before the argumentation
field reaches that level of performance. The use of human experts that manually classify argu-
ments and relations between arguments in order to train data-driven and hybrid is still a very
common practice. We believe that future developments in NLP, such as the automatic mapping
of natural language statements into formatted arguments, the automatic extraction of arguments
from texts and the automatic identification of relations between natural language arguments, as
well as other open problems of great importance, will enable additional developments in the
argumentation field.

To summarize, unlike Security Games (Section 4.2) and Negotiations (Section 4.3), in
predicting human argumentative decisions the data-driven and hybrid approaches seem to be
more suitable than the expert-driven approach. We can point to two possible reasons. First,
in security and negotiation settings, it is (fairly) clear what the engaging parties are striving to
achieve (e.g., the adversary in security games seeks to maximize the likelihood of a successful
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and beneficial attack, a negotiator seeks to maximize expected value, etc.) and substantial expert-
knowledge has been accumulated to support different decision-making rules and hypotheses.
However, in many argumentative settings it is completely unclear what the arguing parties are
trying to achieve. People argue for a wide variety of reasons. These reasons may vary from want-
ing to establish one’s beliefs as correct, as advocated in [119, p. 10]—“By spotting weaknesses,
mistakes, and falsehoods in your own and other people’s arguments, you stand a much better
chance of holding to and acting on true beliefs.”—to arguing to fulfill socio-evolutionary needs
as advocated in [217, p. 284]—“Our ancestors were neither living in harmony with one another
nor waging constant war... argumentation may have played at least as important a role in their
social lives as in ours”—to arguing just for the sake of arguing as many people (too often) do.
In any case, a multitude of factors such as incomplete knowledge over a reasoner’s values, prior
knowledge and reasoning capabilities seem to make the expert-driven approach unsuitable for
the task of predicting human decision-making in most argumentative settings. Exception may
be found in application domains such as law and medicine, where expert-articulated rules are
very common and accepted by the engaging parties (e.g., precedents and legislation in Law,
Hippocrates’ oath in medicine). Second, even when the argumentative goal is fairly clear, for
instance in persuasive settings where a professor seeks to persuade her students to enroll in grad-
uate studies, people tend to resist changing their decisions [174]. Therefore, the prediction of
which argument(s) would change one’s mind is highly complex (as change is scarce). Despite
the disheartening results above, due to the recent development in online debating platforms,
social media, and advancements in NLP, prediction tasks such as predicting which argument(s)
a person would find more compelling based on linguistics and interaction dynamics, or which
arguments a person is likely to put forward in a dialog based on the dialog dynamics, can now
be addressed appropriate l y.

Note that the expert-driven research on argumentation can be interpreted as a normative
approach to how one should argue from a logical perspective as opposed to the practical perspec-
tive. Therefore, it is important to note that the scientific value of such works is well-appreciated
and is not in any way questioned here except for its applicability to human arguers.

4.5 VOTING
Voting is a key component in group decision-making and has been since its use in ancient Greece
in the 6th century BC. Similar to argumentative settings, voting is used as a social mechanism
for conflict resolution between agents (in this context, referred to as voters), be they human or
automated. The conflict is over which alternative(s) to adopt out of a set of alternatives (i.e.,
candidates) standing for election [72].3 It is important to note that voting is not restricted to
political decision-making alone and in fact takes a significant role in the business world (e.g.,

3The case of “multiwinner voting” where more than a single alternative is chosen is inherently more challenging than the
“single winner voting” case [90].
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board of directors’ decision-making) and in other social decision-making settings (e.g., decision-
making on a University’s requirement committees).

Similar to Argumentation Theory in predicting argumentative decisions, different voting
procedures and rules have been proposed and investigated over the years (see [43] for a survey)
which are grouped together as part of the Social Choice Theory. While there are many voting
procedures and rules, none of them is “perfect,” as shown by the 1972 Nobel laureate Kenneth
Arrow (1921–2017) in his famous impossibility theorem [13] (left as Exercise 4.11). Perhaps
the most commonly applied voting procedure in practice is plurality, where each voter selects
one candidate (or none if the voter can abstain), and the candidate with the most votes wins the
election.4 Assuming that a person would vote sincerely, namely reporting her true preferences,
seems to be natural in two-alternative elections. Specifically, given two alternatives, the choice
to vote for one’s non-favorite alternative is dominated by voting for the preferred alternative,
meaning that regardless of other voters’ choices, voting for the preferred alternative is the ra-
tional thing to do. However, in many real-world voting settings, and specifically when more
than two alternatives are available, a voter may be better off misrepresenting her preference and
acting strategically. This phenomenon is call a voting manipulation or strategic voting [309].
Consider Example 4.2 for an illustration of voting manipulation.

Example 4.2 One of the most well discussed examples of voting manipulation comes from
the 2000 U.S. elections where many voters who ranked third-party candidate Ralph Nader first,
voted for their second choice (typically Al Gore) assuming that casting a vote for Nader provided
no practical chance of making him the winner (e.g., given pre-election opinion polls) [146].

Unfortunately, as shown by the Gibbard-Satterthwaite Theorem [116, 282], the devel-
opment of a voting procedure that guarantees that voters cannot manipulate their voting suc-
cessfully (e.g., improve the chance of their preferred alternative to be the winner) when there
are three or more alternatives is impossible (under basic assumptions). As a result, every voting
mechanism can be theoretically manipulated. Combining this insight with the occurrence of
strategic voting in many real world elections [100, 256] suggests that some people may engage
in strategic voting under different circumstances [27], making the assumption that all people
vote sincerely impractical.

In negotiation settings, expert knowledge was used to mitigate the prediction challenge.
Therefore, one may wonder under what circumstances a person would try to manipulate her vote
and how? Several expert-driven models were proposed, mostly to explain strategic voting in
hindsight (e.g., [194, 262, 342, 351] to name a few).Thesemodels capture and resort to different
behavioral biases such as the bandwagon effect (Section 3.1.5). These models are often highly
generalized in termsofpersonalization level andverynarrow in their situationalization level.
Namely, proposedmodels do not consider any personalization nor do they consider the decision-
making of voters across different voting settings and sets of alternatives. Part of the difficulty in
4Other voting procedures and illustrations of people’s voting behavior are available in [291].
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modeling human voters lies in the fact that voting is a result of subjective preferences over the
alternatives. These preferences are unknown to an outside observer in natural experiments and
may be hard for one to articulate and represent in controlled experiments (unlike negotiation
settings where incentives may be set more easily). Consider Example 4.2—while the decision
outcome of voters was observed (many voting for Gore), the preferences (e.g., do they prefer
Gore over Nader?) and strategical considerations (i.e., were they aware of the polls?) that led to
the decision outcome are unobservable in most cases. It is hard to conclusively say that people
acted strategically based on the observed data alone. Moreover, even if one’s own preferences can
be represented and understood (say, in an extensive interview), it is hard to speculate what that
person thinks that other voters will choose. This is similar to the Level-k expert-driven model
(Section 3.1.3) where reasoners reason about others which in turn are expected to reason about
them recursively. This is especially complex since one’s incentives to engage in strategic voting
may also radically depend on context and emotional factors (e.g., how strongly the person feels
about the alternatives, such as the case in many political voting settings).

The challenge stated above also applies to data-driven methods. Namely, while observed
argumentative choices were useful in argumentative prediction settings, here, data has to be col-
lected while controlling for the underlying preference of the voters. To the best of our knowledge,
only two papers [305, 351] have examined this question with human voters in a computational
context. Tal et al. [305] examined people’s voting behavior in various online settings under the
plurality rule. The authors studies two popular settings. First, a single voter who is asked to cast
a single vote after seeing a large pre-election poll (e.g., U.S. presidential elections). Second, a
repeated voting setting until a decision is made (e.g., hiring committee). The results demonstrate
that most people select the natural “default” vote, namely voting for the most-preferred candidate
in the single-shot setting, or keep voting for the same candidate in the iterative setting when there
is no “clear and obvious” strategic behavior. When a “simple” strategic decision can be made
that improves their short-term payoff (e.g., voting for their second most preferred alternative
would make it the winner), people usually choose the strategic alternative. This is often called a
myopic best-response. Similar results were observed in Zou et al. [351] who investigated peo-
ple’s strategic voting in collaborative social event scheduling using the online scheduling website
Doodle (www.doodle.com). Strategic behavior in Doodle can take different forms. For instance,
when scheduling a meeting, the invited participants are asked to vote for all time slots for which
they are available. However, while many time slots may be feasible for a participant, she may
decide to “hide” some of her feasible time slots hoping that a more convenient (or preferred)
time slot would be selected. Interestingly, most participants seem to engage in strategic voting.
Furthermore, the authors speculate that there might be social pressure for voters to vote for as
many slots as possible in order to appear flexible. Interestingly, strategic voting in the form of
voting for unpopular slots in addition to one’s preferred slots is also detected, presumably in
order to appear flexible.

www.doodle.com
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Automated agents may participate in voting systems with people for two main reasons:

acting autonomously seeking to pursue their own design goal [34] or acting as proxies for indi-
vidual people who delegated the voting task to the agents [110]. In either case, an agent may
significantly benefit from accurately predicting people’s voting decisions and manipulating its
own vote to improve its well-being.

Automated agents which engage in strategic voting with other automated agents have
been widely studied and discussed within the computational social choice literature [45].

4.6 AUTOMOTIVE INDUSTRY
The seeds of autonomous cars where planted somewhere in the 1500’s, centuries before the
invention of the automobile. Back then, Leonardo da Vinci designed a cart that could move
without being pushed or pulled, a “self-propelled cart” if you will. Since then, impressive mile-
stones have been achieved in this realm, such as Whitehead Torpedo (1868), which could effi-
cientlymaintain depth and changed the face of navel warfare,MechanicalMike aircraft autopilot
(1933), which was used in an around-the-world flight in 1933, reaching the autonomous cars
we begin to see today [325].

Automated agents have a number of advantages over human beings that make them better
drivers: they have more sensors, they are not emotional, they never get distracted or tired, and
so on. However, in order for such agents to operate safely and intelligently in the real world, the
prediction of what people—be they pedestrians, other drivers or the car’s own passengers - are
about to do next is essential.

Unlike previous sections, here, data is usually abundant. Millions of miles of driving data
are being collected using front-facing and driver-facing cameras in different vehicles throughout
the world [103]. The availability of large data sets (such as KITTI [111]) along with the inherent
spatio-temporal nature of driving decisions make deep learning architectures especially attrac-
tive. Indeed, the use of deep learning is showing much promise: Bojarski et al. [38] presented a
deep learning architecture that is shown to predict a human driver’s choice of steering angle such
that it can drive autonomously for about 98% of the time without human intervention. Frid-
man et al. [104] were able to predict driver’s decisions using a deep learning technique based on
drivers’ glances. Predicting drivers’ dangerous decisions, such as performing dangerous maneuvers,
in advance was also demonstrated using deep learning in [160]. Similar deep learning methods
were deployed in other studies as well (e.g., [323, 336]). These predictions may be used in a
number of ways, from learning a baseline policy upon which an agent can improve (similar to
the AlphaGo) or for providing driving assistance such as alerting a driver before she performs a
dangerous maneuver.

Chen et al. [63] proposed a less expensive deep learning approach by transferring data
from simulated driving to real-world driving. The learned affordances need to be manually as-
sociated with car actions, which is expensive, as was the case with older rule-based systems (e.g.,
expert-systems [115]). Interestingly, despite having their prediction model train on drivers’ de-
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cisions from a simulated environment (the TORCS car simulation game [335]), the prediction
model performs adequately on real data as well.5

Prediction models in this realm are usually generalized providing predictions for an av-
erage or good driver and do not consider driver characteristics. Despite recent attempts to per-
sonalize an autonomous car’s driving behavior to individuals [179],6 we are unaware of a per-
sonalized or semi-personalized prediction model successfully tested with human data. The stat-
of-the-art models often take broad situationalization aimed at providing a prediction across a
wide range of decision-making settings. Note, however, that current models strive to provide
an holistic approach, yet due to the wide variety of decision-making settings (e.g., fog, snow,
gravel, construction zone, driving norms, cultures, etc.) current models are not expected to pro-
vide adequate predictions across every remotely possible decision-making setting.

Note that the automotive industry’s drive to predict drivers’ decisions is not restricted to
the quest toward fully autonomous driving. An important field of study in this realm is driver ex-
perience and engagement with vehicular systems. Recent evidence suggests that drivers’ current
user experience often does not meet drivers’ wishes, making many drivers desire more natural car
systems that can “understand and predict their desires and actions” [200, 261]. A recent example
is the effort to personalize and improve the thermal comfort system in modern cars. Note that
this effort is completely complementary to the drive for developing self-driving cars. Unfortunately,
unlike with driving decisions, collecting data on people’s decisions in other automotive systems
may be more complex.

The thermal comfort of humans has been exhaustively For that purpose, extensive inves-
tigated over the last four decades from the expert-driven perspective, resulting in the ISO 7730
standard7 [15]. This standard, which was also found to be applicable in car cabins, is aimed at
predicting the degree of thermal comfort of an average person exposed to a certain steady envi-
ronment (see [74] for a recent survey). It relies on the assumption that user-specific parameters
are available, such as thermal sensitivity, clothing and activity level. These parameters are hard
to obtain automatically. The standard is in fact a hybrid model as it is the result of human ex-
periments and expert knowledge. It is a broad, semi-personalized method for predicting what
cabin temperature a driver would find comfortable.

While the ISO 7730 standard provides a prediction model for what temperature a driver
would find comfortable, it does not prescribe predictions if one does not set the parameters on-
line according to the person in question. Furthermore, it does not predict what actions a driver
would take to bring about the desired cabin temperature. For example, Alice’s desired interior
cabin temperature is 21ıC and she wishes to reach it as fast as possible (she does not mind
enduring extreme settings in the process). Bob, on the other hand, wants to reach 19ıC but re-

5A similar concept was also successfully deployed in predicting human operators’ decisions while controlling a set of
robots [265].

6In racing video games a number of studies have trained cars to race in a human-like style using supervised learning (e.g.,
[60, 314]).

7Also known as Fanger’s Predicted Mean Vote (PMV) criteria.
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frains from settings in which the fan speed is higher than 3 and thus prefers milder adjustments.
The task of predicting what actions a driver would take to adjust her thermal comfort level is
considered with different goals in mind, from reducing energy consumption [23, 266] to im-
proving drivers’ satisfaction [123, 267]. The proposed models rely on a data-driven approach,
leveraging collected data. Note that these models train on significantly less data than themod-
els discussed before, as obtaining data on drivers’ thermal comfort decisions is much harder
and more expensive to obtain. To date, drivers’ “non-driving” decisions (e.g., tuning the radio,
changing the climate control settings, etc.) are not recorded automatically. The above models
take a semi-personalized to fully personalized approach and consider a broad situationalization.
These prediction techniques and subsequent agents are being considered for implementation in
future General Motors (GM) vehicles.

The prediction of human decision-making in driving also raises important ethical ques-
tions, such as what an “ethical autonomous car” should do in accordance to human drivers’
ethical decision-making [201]. Unfortunately, people do not necessarily agree on what consti-
tutes as a correct ethical choice, nor do they apply the same ethical standards to others as they do
themselves. For example, when an autonomous car has to choose between sacrificing its passen-
ger(s) or other road users, most people agree that a utilitarian approach should be taken, namely,
saving as many people as possible. However, despite this ethical standpoint, most people would
like others to buy a car that employs this ethical reasoning, but they would themselves prefer to
ride in an autonomous car that protects its passengers at all costs [40]. An extended discussion
about ethical consideration in predicting human decision-making is given in Section 5.3.

4.7 GAMES THAT PEOPLE PLAY
Game playing is an area of research in AI from its inception. Ever since, a major driving force
behind much of the technical and theoretical progress in AI has been attributed to the task of
achieving human-like or super-human performance in different game settings. This drive has
led to many of the most celebrated achievements in AI, such as the successes in Chess [57],
Checkers [285], Poker [42], and Go [295]. In this section we focus on designing good game
playing agents using the prediction of human player’s decisions.

An automated game playing agent may benefit from the prediction of human decision-
making in two major ways. First, by predicting what moves a human player is likely to make, an
agent may adapt its actions to the human player and better plan its future actions. In a common
adversarial setting, such as in Chess or Go, this use is often known as opponentmodeling [145].
Second, through the prediction of adequate move selection by human players (hopefully, good
human players), an agent may use different AI techniques to improve its own playing policy
by relying on human anticipated moves as a baseline. This technique is often associated with
the terms behavior cloning and imitation learning [10]. Note that the difference between the
two approaches described above is situated in how the prediction model is used by the agent.
Namely, the same prediction model can potentially be used for both purposes.
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Many games have an optimal strategy for playing against fully rational opponents, how-

ever, empirical studies suggest that people rarely converge to fully rational play [87]. Therefore,
similar to the way human players take advantage of the peculiarities of their (human) oppo-
nents, predicting a human opponent’s decisions may yield better agent performance, especially
in games involving high degrees of uncertainty, deceptiveness and stochasticity.

In predicting human game decision-making, expert and domain knowledge are usually
highly available. Usually, after playing a game for long enough, human players gain some sense
of what constitutes a good playing policy and what one may expect from other human players.
On the other hand, data availability may vary between games. Namely, when data is abun-
dant (such as the case in the automotive industry), data-driven models seem to perform best
in game settings as well. The most recent illustration of the above claim is the AlphaGo agent
(Example 3.4), where the use of deep learning for predicting human game decision-making
was shown to outperform past expert-driven agents (as well as human experts) which rely on
expert-articulated rules and heuristics. On the other hand, when the intended game is suffi-
ciently complex (i.e., multiplayer, real-time, etc.), or when obtaining data may be expensive,
expert-driven, and hybrid approaches seem to perform well and relieve some of the data collec-
tion requirements. The latter is the most common case in game playing agents and, in fact, it is the case
in most modern commercialized computer games [206].

Traditionally, game playing agents that are designed to play highly complex games, such
as real-time video games, have been designed using finite state machines or other handcrafted
behavioral scripts. As a result, the prediction of an opponent’s decisions, however sometimes done
implicitly, is traditionally done in an expert-driven fashion. These agents heavily relied on expert-
driven heuristics articulated by the agent’s designers based on their knowledge, intuitions and
experience. The advantage of this approach is clear: no human decision-making data is needed
and, given sufficient domain knowledge, the automated agent is expected to play well. Note that
other expert-driven prediction methods have also been proposed, yet to a significantly lesser
extent. These include game theoretical models (e.g., [109]) and bounded rationality models
(e.g., [353]). Non-heuristic models are harder to instantiate in highly complex games and, as
such, the focus of the expert-driven approach was, and still is, placed on handcoded heuristics
by domain experts.

As noted before, domain knowledge is usually highly available. As a result, the combi-
nation of domain knowledge with human-generated data has been shown to be very beneficial
in a variety of games. There are several ways to integrate domain knowledge within a game
playing agent. First, the agent’s designer may represent the agent’s decision-making space in a
sophisticated manner such that it will encompass, to a large extent, what drives human decision-
making. For example, Thurau et al. [313] created game playing agents for the computer game
Quake II. Different algorithms are presented that learn from human-generated data. Yet, the
authors leverage game-specific expert knowledge and devise hierarchal “levels of learning,” in-
spired by how people make decisions in the game. Namely, the agent learns strategic, tactical
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and reactive behavior separately per the designers’ domain experience. Similarly, in the represen-
tation of decision-making settings in the game of Mario [178], different learning methods have
been investigated which rely heavily on domain specific abstraction [238], similarities between
different states and actions [273], and others. All of the above are expected to be devised by a
human expert. Another related line of research investigates the provision of direct biasing to the
agent’s decision-making by relying on (non-expert) humans to provided feedback [185, 247] or
demonstrations [52]. For example, Aler et al. [4] show how human demonstrations for what
a robotic soccer player should do in different game settings can be generalized using machine
learning techniques and used later to control a robotic soccer agent efficiently. Priesterjahn et
al. [257] proposed a different approach, where the behavior of artificial opponents in a game is
created and adjusted through automatically learned rules derived from human players’ actions.
Note that human input is highly domain specific. Hence, the resulting models are best classified
as hybrid models.

From a data-driven perspective, human game decision-making may be leveraged without
relying on domain specific knowledge at all, often known as general game playing [114]. The
DRON technique, which stands for Deep Reinforcement Opponent Network, was recently
proposed in this spirit [144].DRON predicts an opponent’s decisions based on past observations
through a deep learning architecture. The technique then uses the prediction to compute an
adaptive response, exploiting the human opponent’s predicted idiosyncrasies. In many senses,
this approach is similar to that used in AlphaGo (see Example 3.4) [295], where a deep learning
prediction model was trained to predict what an expert’s next move would be given a board
position. Facial expressions were also used for predicting people’s strategic decisions in a data-
driven model in the Centipede game [246]. Key facial points were extracted from video snippets
of the players’ faces, with no domain-specific characteristics, in order to train a classifier to
predict participants’ game decisions. Note that, due to the ample expert knowledge collected in
most game settings, the use of pure data-driven models is relatively scarce.

In many cases, agents that play games well do not play in a human-like style. Therefore,
some game playing agents are designed with a different goal in mind: playing in the style of
human players, either a particular human or humans in general [149]. The notion behind this
approach is that AI should be utilized to make a game more enjoyable and realistic. The task
of imitating human game play is a variation of the famous Turing test [148], and has led to
the establishment of various competitions such as the 2k BotPrize [147] and the Mario AI
Championship [292]. The results of these competitions suggest that in many cases it is harder
to create a human-like game playing agent than to create a high-performing agent that achieves
superhuman performance. Nevertheless, significant successes were developed in this realm (see a
recent survey in [312]). The common methodology deployed for this “imitation” task is naturally
a data-driven or hybrid one. Namely, the prediction of human decisions is based on (sometimes
limited amounts of ) data, which in many cases is combined with different heuristics and game-
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specific knowledge. Unlike before, the success of such agents is usually evaluated through a
human user study.

Most of the best-performing agents for general video games are based on tree search
methods, specifically on the Monte Carlo Tree Search (MCTS) [248]. MCTS [50] is used
for stochastic planning and game playing, and offers a more focused search of the game tree as
well as the incorporation of opponent modeling. This was the method of choice in AlphaGo
[295] (Example 3.4). There are different ways to incorporate the prediction of human decision-
making within the MCTS framework. For example, Ponsen et al. [255] propose estimating the
opponent’s cards and actions in the game of Poker and integrate the two models in the MCTS
procedure. The proposed model is generalized at first, providing a prior to the MCTS based
on the entire obtained training data, yet as more experienced is gained from a specific human
player the model becomes personalized. A similar approach was also deployed for the popular
card game “Cheat” (also known as “I Doubt It” and “Bullshit”) [35]. Other recent examples
include [79, 183], where the standard MCTS decision-making is biased toward decisions made
more often by human players, thus emulating human playing style to a certain extent.

To summarize, agents may benefit from the prediction of human decision-making in
games in various ways; from using the prediction for achieving super-human performance to
adjusting game difficulty for the human player’s enjoyment. Two major insights may be derived
from the discussion above.

1. Hybrid models perform very well across a wide variety of games. These approaches level
the existing game-specific knowledge and expertise along with human-generated data to
bring about adequate prediction models and good game playing agents.

2. Data-drivenmodels perform well when sufficient data is available. In such cases, it seems
that the use of game-specific knowledge is not needed (such as the case in Go).

There is a growing interest in creating agents for general game playing. Namely, address-
ing the question of how one would create a single agent that is capable of playing any game it
is given without prior knowledge. In such settings, relying on domain specific knowledge will
take a lesser role and conversely, generalized, data-driven models are likely to take a stronger
role. We further speculate that future games will strive to provide a more personalized experi-
ence, especially for the task of making games more enjoyable. As a result, personalized prediction
models that are able to transfer user’s decisions across different gaming platforms will be more
widely adopted.

4.8 EXERCISES
4.1. (Level 1) Consider a prediction model capable of adequately predicting what a person

would do next in a game of Chess. The model is given a board position and returns a
probability distribution over the legal moves. How would you use the prediction model
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for the design of a good Chess playing agent? Provide three options which differ in their
time and memory demands.

4.2. (Level 2) An agent’s disappointment (or surprise) from performing action a is defined
as the difference between the expected value from performing action a and the actual
value received as a result of that action. Consider k possible actions where each is esti-
mated with an unbiased normally distributed estimator with a standard deviation of one.
(A) Prove that if k D 3 and the true expected value of each action is 0 then an agent’s
disappointment is expected to be 0.85. (B) Prove that the expected disappointment of
the agent increases with k.

4.3. (Level 1) An agent gained access to several unconditional prediction models. To make
its decision, the agent runs the prediction models and chooses the action which received
the highest confidence value for any of the models. Namely, the action for which one
of the models returned the highest confidence regadless of other predictions. What is
the main problem one can expect to see from the agent? Provide a numerical example
to justify your claim.

4.4. (Level 2) Consider Example 4.1. (A) Find all Nash equilibrium of the game given that
the attacker cannot perform surveillance. (B) Solve the game given that the attacker
performs perfect surveillance. [Hint—assume that the guard secures Asset 1 with prob-
ability p and Asset 2 with probability 1 � p. What would the attacker do in such a case?
What would the guard want to do given this analysis?]

4.5. (Level 1) What is the unique notion introduced by the subjective quantal response pre-
diction model [228]? Can this notion be adapted to non-security game settings? If so,
provide a reasonable example.

4.6. (Level 1) In a repeated security setting where the adversary is assumed to be playing
a best response to the defender’s last action, how should the agent conduct its moves?
Explain and provide an example to illustrate your claim.

4.7. (Level 2) In a maximum security prison, security guards need to plan their patrols to
intercept potential breakouts. How would you recommend approaching the problem?
Discuss the necessary steps as well as the advantages and limitations for a few reasonable
approaches.

4.8. (Level 2) Articulate a heuristic-based negotiation policy for an automated seller in a
physical shop. Assume the seller knows the true cost of each item and can send and
receive purchase offers from costumers in the shop. Make sure you address the nego-
tiation protocol (e.g., if an offer is rejected, how does the agent generate new offers,
if any). If your policy were leaked to the human buyer, can she take advantage of it to
improve her negotiation strategy? If so, how?
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4.9. (Level 1) In order for an automated agent to negotiate on a human’s behalf the agent

must predict the preference of its users. This issue is considered to be one of the major
issues preventing wider deployment of automated negotiation agents. Explain why.

4.10. (Level 1) The role of non-verbal signals such as facial expressions and arm gestures is
extremely important in human interaction. What are the major challenges in predicting
and generating non-verbal cues in human-agent argumentative interactions? Relate to
[66] in your answer.

4.11. (Level 2) Explain, in your own words, what is “Arrow’s (impossibility) theorem” (also
known as the “General Possibility Theorem” or “Arrow’s paradox”) [13].

4.12. (Programming) The LemonadeStandGame is a game for three agents (vendors) which
interact by choosing a position (usually from a finite set of options) on an “island” in
order to sell lemonade to the island’s population. The rewards depend on the actions
of all of the agents such that the further away an agent is from its competitors, the
higher the reward it receives. Program an agent that plays the Lemonade Stand Game
in its competition version [350]. What approach did you take? Why? Say the agent
is supposed to compete against people, how would you modify your agent? Provide full
details.

4.13. (Programming) Try your deep learning skills in the recent MIT course on Deep Learn-
ing for Self-Driving Cars [103]. Use the browser-based deep learning simulations (e.g.,
http://selfdrivingcars.mit.edu/deeptrafficjs/) to design a self-driving car.
How would you integrate a human prediction model in your model?

4.14. (Level 1) In the classical Chess match between IBM’s Deep Blue and Gery Kasparov
in 1997, Deep Blue’s operators were reported to have “tweaked” Deep Blue’s responses
specifically to Kasparov’s playing style [56]. How would you characterize Deep Blue’s
opponent modeling technique?

4.15. (Level 2) Healthcare agents are generally considered to address a partially-conflicting
interaction setting. In many application settings these agents heavily rely on the pre-
diction of human decision-making. (A) In [339], the authors investigate the problem
of finding an optimal incentive structure for encouraging people to become vaccinated
against influenza. What assumptions were made about the human decision-makers?
How were these assumptions justified? (B) Provide 2–3 additional real-world settings
and identify which assumptions and characteristics make particular prediction approach
more suitable than others.

4.16. (Level 1) Discuss the following claim: Using a prediction model that achieves higher accu-
racy than chance-level is always beneficial for an automated agent.

http://selfdrivingcars.mit.edu/deeptrafficjs/
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4.17. (Level 1) Is it possible that an agent that responds quantly to the predictions of a con-

structed prediction model performs better than an agent than maximizes expected util-
ity? Explain.
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C H A P T E R 5

Which Model Should I Use?
“Sometimes Science is more Art than Science, Morty. A lot of people don’t get that”

Rick Sanchez, Rick and Morty (S01E06)

The prediction of human decision-making can take a wide variety of different approaches and
techniques as we discuss in Chapter 3 and as illustrated in Chapter 4. However, the answer to
the question “What prediction method should I use for task X?” is always “It depends”. As
demonstrated in Chapter 4, the decision of which prediction approach to adopt depends on
many factors, specifically data availability, expert knowledge, and domain characteristics.

Even the most experienced professionals cannot conclusively say which approach will per-
form best ex-ante. From a data-driven approach, this is often called the “No Free Lunch The-
orem”. Intuitively, it states that no single algorithm works best for every problem. However,
some guidelines and best practices may assist one in finding a suitable approach and reduce the
costs and efforts of developing unsuitable prediction models. We start our discussion by address-
ing the question of what makes a good prediction model. Following are the guidelines for how one
should go about developing a human decision-making prediction model. We finish the chapter with
a disucssion about the ethical considerations.

5.1 IS THIS A GOOD PREDICTION MODEL?
How can one claim that one prediction method is better than another? A common technique
to evaluate the quality of a prediction model, be it of human decision-making or not, is the
use of statistical analysis. It is common in statistics to assess the performance of a model using
common measures such as the area under the receiver operating characteristic (ROC) curve,
accuracy, recall, etc. (see [211, 218] for introductory books discussing the statistical analysis of
prediction models). We refer to this approach as statistical testing. Naturally, every statistical
measure has to be considered carefully. For example, the most common measure one looks for is
accuracy. However, accurate predictions may significantly suffer from overfitting such that ac-
curate predictions on training data generalize poorly to test data (a problem also associated with
the Accuracy paradox [346, p. 118]). Remember that in virtually all prediction environments,
let alone the prediction of human decision-making which is inherently noisy, a tradeoff occurs
between the complexity of the learned model (e.g., in terms of the number of parameters) and
its successful generalization of observed data. Namely, complex models (i.e., many parameters)
are likely to fit training data very well yet may overfit it as well.
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Recall the maxim of this book: a prediction model is only as good as its agent perfor-

mance. Through this viewpoint, one should deploy the developed prediction models in a con-
trolled experimental design and “put the agents (and thereby, the prediction models) to the
test.” We refer to this approach as end-to-end testing. Note that end-to-end testing may be
highly expensive in both time and cost (recruiting participants, developing the needed code for
the agent(s), etc.). Nevertheless, end-to-end testing is imperative for obtaining a complete, real
world testing of the actual benefits of a prediction model. When comparing more than a single
prediction model in an end-to-end testing, it is vital to maintain all other components of the
agents constant (as much as possible) and vary only the prediction model. Otherwise, poor agent
performance may be attributed to one of other components of the agent, not necessarily the pre-
diction component (see Figure 4.1). Surprisingly, in some cases, prediction models with lower
accuracy levels may perform better with people compared to more accurate ones. The reader is
encouraged to reflect on this point in Exercise 5.1.

In tandem to the above considerations, one may be interested in the interpretability of a
prediction model. For instance, a decision tree prediction model is usually considered to be much
more natural for most people to understand and to a certain extent, perhaps, trust. Consider a
magic 8-ball that seems to be capable of providing perfect predictions of whether a criminal up
for parole will commit another crime if released. A parole officer could potentially benefit from
such a prediction tool. However, the lack of understanding of what factors are accounted for in
the model and the lack of interpretability of the prediction process (which human judges, jurors,
or correction officers are expected to provide in human parole decision-making) may make such
a magical tool be rejected despite its appealing properties. Note that without an interpretable
model, relevant authorities may not be willing to test prediction models and associated agents
in field trials, thus completely defeating the spirit of innovative AI applications (e.g., in security
settings [177]).

5.2 THE PREDICTING HUMAN DECISION-MAKING
(PHD) FLOW GRAPH

Before one starts collecting data, interviewing domain experts and implementingmachine learn-
ing algorithms and intelligent agents, it is best to consider what prediction methods worked best
in similar prediction tasks. Following extensive deliberations between the authors, based on our
experience in the field and the domains surveyed in this book we present and illustrate the Pre-
dicting Human Decision-making flow graph, abbreviated as the PHD flow graph. The PHD
flow graph is depicted in Figure 5.1.

The PHD flow graph works as follows. Given a new prediction task, the first question a
designer should ask herself is whether there is available data. This corresponds to our recom-
mendation in Section 3.2.3 to perform an extensive search for available data before one turns to
collect her own data. If no data is available one should consider collecting data explicitly (as dis-
cussed in Section 3.2.3). Recall the complexities and costs associated with data collection before
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Figure 5.1: The Predicting Human Decision-making (PHD) flow graph. By following the ques-
tions in the graph’s internal nodes (starting from it root (Is data available?), a terminal node is
reached—pointing to the most well-suited technique(s) to address a given prediction task.

answering the question to the affirmative. If the answer is negative, then the last data option is
transferring related data from other fields. Unfortunately, as discussed in Section 3.2.8, the use
of transfer learning in the prediction of human decision-making is mostly considered an open
challenge.

If data is unavailable and cannot be collected or transferred from other fields then one may
resort to expert knowledge. If such knowledge exists, then the use of expert-driven prediction
is the main way to go. Otherwise, the prediction task is somewhat “hopeless.” To exemplify this
part of the PHD flow let us revisit the ARMOR agent from Section 4.2. The prediction task
underlying the ARMOR agent is predicting where an attacker would choose to attack an airport.
Naturally, data is not available and collecting such data is virtually impossible (i.e., how many
examples does one have from the past?). Nevertheless, expert knowledge does exist. Namely,
experts assume attackers to be rational since they can perform careful surveillance over the de-
fender’s actions and decide when and where to attack accordingly. As such, the task of predicting
where and when an attack would occur on an airport fits the expert-driven approach (specifi-
cally, game-theoretical models). A similar argument applies to the IRIS and TRUSTS agents
from the security domain, also discussed in Section 4.2. Additional examples come from the ne-
gotiation domain (Section 4.3 where the negotiation agents Diplomat and QOAgent (among
others) take an expert-driven approach based on the significant expert knowledge accumulated
in the field. In certain complex games (Section 4.7), for which obtaining data may be expensive
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and domain knowledge is available, this approach is used as well. A slightly different setting
is encountered when one tackles the prediction task of identifying who is likely to choose to
attempt to assassinate his prime minister or president?. In Israel, only a single attempt (un-
fortunately successful) was made to assassinate the Prime Minister Yitzhak Rabin (1922–1995)
in 1995. Of course, data is unavailable and collecting or transferring appropriate data is im-
practical. Unfortunately, expert knowledge of what drives one to assassinate his prime minister
have not matured (unlike expert knowledge on potential terrorists which sadly has accumulated
around the world by intelligence agencies as we shall discuss next). As a result, it seems that
the task of adequately predicting who is likely to attempt to assassinate his prime minister is
virtually hopeless at the moment.

If a significant amount of quality data can be obtained, data-driven models seem to be
the natural choice. However, if expert knowledge is available, such knowledge may be used to
enhance the prediction quality. For instance, consider the task of predicting the persuasiveness of
arguments on the web (Section 4.4). Plenty of argument examples are available online, however,
the injection of argumentative and linguistic knowledge such as NLP features and non-trivial
interaction patterns between users is shown to boost prediction quality. Note that in some cases
domain knowledge exists but is not used; this is the case for the Anti-Poaching Engine for
battling illegal poaching (Section 4.2). It takes a data-driven approach, avoiding considering
expert-based knowledge on the possible strategical interaction between the defenders and the
poachers. In the case where no domain knowledge is available, the use of data-driven models
seems most natural. This is the case in predicting drivers’ decisions for autonomous driving
directly from visual input.

To better understand the PHDflow graph, the reader is encouraged to refer to the exercises
at the end of this chapter.

5.3 ETHICAL CONSIDERATIONS

Joseph Weizenbaum (1923–2008), the creator of the ELIZA program [327] (among many other
important achievements), was an advocate for the restrictive usage of AI.He claimed that certain
tasks should never be done by machines which he argued had no compassion and intuition,
qualities which are required for many tasks such as nursing [328]. Weizenbaum’s main claim
was that there is more to the human mind than just the brain, and that a simple replication (or
approximation) of the brain will never achieve realistic human behavior.While some readers may
agree with the sentiment of Weizenbaum’s claim, with the enhanced capabilities of predicting
human decision-making, and potentially human ethical decision-making, one may wonder if
and where would the line should be drawn.

The study of how ethical considerations can be injected into an automated agent is studied
within the emerging field of machines ethics [97]. Many different facets play a role in endowing
an agent with moral capabilities ([61] provides an up-to-date comprehensive survey). In this
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Figure 5.2: Representative agents and prediction tasks using the PHD flow graph.

section, we discuss a few directions where the prediction of human ethical decision-making
may be used to advance this important field.

The first issue we discuss is how an agent can leverage the prediction of human ethical
decision-making in order to make ethical decisions on its own. The most straightforward way to
predict what a human’s ethical decisions is by using expert-articulated rules that are expected
to apply to the intended encounters between the designed agent and humans [47]. One may
consider Asimov’s rules for robotics [16] as an example of expert-articulated hierarchal rules.
Expert rules suffer from two major limitations. First, it is hard for an expert to ensure that
the intended agent(s) behave ethically under all possible decision-making settings it/they may
face. Underspecification of the expert-driven model may result in unethical behavior of the agent.
Conversely, overspecification of ethical rules may prove detrimental, as reasoning over a large set
of rules may be very expensive. Second, no personalization is taken into account. Specifically,
who is to guarantee that a set of ethical rules and their relations are applicable and fixed across all people?
See [175] for a discussion on how different cultures consider machine hazards and ethics.

Consider the MedEthEx agent which acts as an “ethical advisor” for evaluating medical
decisions [7]. MedEthEx takes as input a list of ethical duties for a doctor provided by an expert
where duties can be overruled by a stronger duty/rule, in a similar spirit to Brook’s famous sub-
sumption agent architecture [48]. The goal of the MedEthEx agent is to learn the preference
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order of the duties and recommend ethical courses of action. To that end, the agent uses training
examples consisting of ethical dilemmas and the decision made by the doctor, thus providing
a data-driven dimension to the expert-articulated rules. A similar approach was proposed by
Armstrong [12] where a set of expert-articulated ethical utility functions is given and a linear
weighting between the functions is learned to capture the probability of each of them being the
“correct” one according to contextual training examples.

From a more data-driven approach, Guarini [128] explores the use of an artificial neural
network which is trained using examples of ethical dilemmas that are labeled as ethically per-
missible or not. A reinforcement learning approach may also be applicable where an agent seeks
to find the right policy given an unknown “ethical utility function” [3].

In its current state, there seems to be little agreement about what makes one prediction
model better than another for predicting ethical decision-making. Nevertheless, most models
seem to follow a broad generalized approach, assuming that (most) people follow the same eth-
ical standard across different decision-making settings. We speculate that the investigation of
human ethical decision-making in different domains may reveal important insights for driving
this research forward. Specifically, ethical decision-making in medicine, autonomous driving,
and law may present different phenomena that can be levered by hybrid approaches that com-
bine domain knowledge and data. The study of transfer learning [241] in this realm proposes
an interesting opportunity to study the nature of ethical decision-making across cultures and
settings.

We now turn to discuss the ethical considerations of the use of prediction models for
human decision-making in different domains.

Consider the prediction of what (potential) criminals would do next [249]. Powerful pre-
diction can allow police to focus on those most likely to commit crimes, thus reduce criminal
activity, promote social values, and allow for better relationships between police and normative
citizens. Sounds good, doesn’t it? However, such prediction models may use racial profiling and
infringe on civil liberties with little accountability. Those who advocate the use of automated
prediction models usually claim that when a police officer is allocating resources or selects in-
dividuals for inspection on the street or at the airport, it still deploys some prediction model,
though sometimes implicitly, thus computerized prediction models can in fact reduce unethical
or socially unacceptable considerations. For instance, the New York Police Department’s infa-
mous stop-and-frisk program was conclusively shown to target African-American and Latino
men significantly more often than Caucasian men [113]. Another debatable question is whether
the use of different information sources is ethically acceptable. For example, should one’s med-
ical record or bank details be used to predict if she is going to commit treason? On some topics
the debate seems to rage on while in other cases a large consensus seems to be more feasible.
For example, a recent survey shows that online screening for suicidal thoughts and behaviors
(Section 3.2.5) appears to be socially acceptable by most people [329].
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The use of prediction models and the information that feeds into them, be these models

part of a decision-support tool for decision-makers or an autonomous decision tool, is subject to
debate in popular media and among legislative authorities. Balancing the potential benefits with
the potential consequences is a key challenge in this realm. We speculate that if more parts of
the data collection and prediction model development process were to be transparent, it would
increase the acceptance of prediction models in practice. In any case, it is important to discuss
ethically charged issues with one’s university ethics advisory committee, most commonly the
Institutional Review Board (IRB), or other acceptable ethical function at one’s institute. The
authors of this book adopted a practice of consulting the university’s ethical advisor at least once
a year.

5.4 EXERCISES
5.1. (Level 1) Discuss the main differences between statistical testing and end-to-end test-

ing. Why should end-to-end testing be considered more reliable?

5.2. (Level 1) Legal reasoning in argumentation (Section 4.4) has very strict, well-accepted
rules and protocols that are followed most of the time. On the other hand, data is rather
abundant as legal proceedings are recorded and transcribed. Which method would you
use?

5.3. (Level 2) In order to reduce costs, supermarket chains use a new technology where the
customers themselves scan the products instead of human cashiers. A human supervisor
is in charge of picking people for screening—namely, the human supervisor seeks to
predict which customer is more likely to misrepresent her shopping. How would you
go about modeling the prediction task? What data or expert knowledge would you seek
and how? [Hint: selective labeling problem.]

5.4. (Level 1) How would you model the prediction task of how a member of Parliament
would vote on a new legislative act? How would you handle the cold-start problem?
Explain.

5.5. (Level 1) Some patients do not comply with doctors’ medical advice such as medication
dosage, diet, therapy, etc. How would you model the task of which patients are likely to
disregard doctors’ advice?

5.6. (Level 2) The selection of papers for publication in refereed conferences and journals
goes through the evaluations of individual Program Committee (PC) members. Each
PC member is asked to read a submitted paper and provide a recommendation (usually
on a Likert-scale ranging from “strong reject” through “borderline” to “strong accept.”
Given a PC member’s past recommendations on different papers, could one develop
an agent to predict a reviewer’s recommendation on a new paper? Consider the case of
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blind review (the paper’s authors are unknown during reviewing). [Mention the “NIPS
Experiment” in your answer [193].]

5.7. (Programming) Agar.io (http://agar.io/) is a massive multiplayer online action
game. Human players control a cell on a map representing a petri dish. The goal is
to gain as much mass as possible by eating agar (food pellets) and cells smaller than
the player’s cell, while avoiding larger ones which can eat the player’s cell(s). Build an
automated agent aimed at playing against human players.

5.8. (Level 1) Consider Asimov’s rules as the ethical decision rules for a robot in their original
ordering of importance [16]. (A) Can you think of a setting where the ethical decision
derived from Asimov’s rules would not coincide with your idea of an ethical decision?
(B) What are the implications of changing the ordering of the three rules? Illustrate.

5.9. (Level 2) What are the major social, cultural, and ethical tensions that emerge due
to the use of human decision-making prediction? Provide two examples that were not
mentioned in this chapter.

http://agar.io/
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Concluding Remarks
“Success consists of going from failure to failure without loss of enthusiasm”

Winston Churchill

Predicting human decision-making is both widely beneficial and deeply problematic. In this
book, we reviewed and illustrated the main challenges, techniques, algorithms, and empirical
methodologies for predicting human decision-making and their use in intelligent agent design.

We explored the three major prediction approaches, thoroughly discussed and exemplified
in Chapter 3:

1. Expert-driven.

2. Data-driven.

3. Hybrid.

But this book is not just about predicting human decision-making, it is also about design-
ing intelligent agents based on such prediction models. In this vein, we examined some of the
most popular and intriguing domains to-date that have shown to benefit from the prediction of
human decision-making. These domains are discussed, and both domain-specific and general
insights are highlighted in Chapter 4. For tackling new prediction tasks and developing novel
agents we provide the Predicting Human Decision-making (PHD) flow graph in Chapter 5,
concluding our exploration of the field in the context of this book.

As advancements in technology are made, specifically human interacting technology (e.g.,
smart phones), the need for efficient predictionmodels of human decisions becomesmore preva-
lent. In recent years, we have seen an ever-growing emphasis on data-driven models which is
attributed to two main factors: (1) the large quantities of human-generated data we can now
easily collect and store; and (2) the major advancements in machine learning methods such as
deep learning.

We expect to see the following major trends in the near future.

1. Deep learning is expected to lead to new and exciting applications that rely on the pre-
diction of human decision-making. We believe that AlphaGo (Example 3.4) is just one
of many possible AI achievements that can leverage deep learning and human decision-
making prediction. We see new graduate students and many engineering teams in industry
that have already abandoned many of the classical data-driven approaches and shifted to
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deep learning. We expect to see this trend manifest itself in the prediction of human be-
havior and decision-making more extensively in the near future.

2. As significant amounts of data are gathered on each of us everyday by different techno-
logical instruments, we expect to see more observational data (which is “in the wild” as
opposed to explicit experimentation). This data will most probably be rich in terms of
recorded modalities (video, sound, etc.) and will allow better personalization of predic-
tion models that will slowly become a standard. This will assist in building a relationship
between human users and automated systems which deploy the prediction.

3. Hybrid models are expected to shed new light on the possible mutual development of
both the expert-driven and data-driven approaches. This will possibly allow for new break-
throughs in both paradigms.Hybridmodels are also expected to be applied to new domains
and settings, previously considered too complex for expert and data-driven models.

4. Transfer learning in human decision-making is expected to be a catalyst for adopting
human decision-making prediction models across new domains. Furthermore, the use of
transfer learning is expected to put a stronger emphasis on data-driven and hybrid models
capable of providing adequate predictions across a wide range of domains and settings.

5. New application domains are likely to trigger new research questions and drive the de-
velopment of new prediction approaches and methods.

6. End-to-end testing, where prediction models are integrated within an agent design and
tested with actual people, will become a standard tool in a researcher’s toolbox. Recall the
maxim of this book: A prediction model is as good as its agent’s performance.

We hope that this book encouraged you, the reader, to keep pushing forward the knowl-
edge and prediction abilities of human decision-making. There is more to this challenge than
meets the eye.
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