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Preface

When, in the fall of 2010, the first author wrote the initial draft of this book in the form
of lecture notes for a smart grid course, the preface began by justifying the need for
such a course. He explained at length why it was important that electrical engineers
understand Smart Grid. Now, such a justification seems unnecessary. Rather, he had
to justify repeatedly his own decision to cover aspects of big data in a smart grid
course, in order to convince the audience and most of the time himself. Although we
feel completely comfortable with this “big” decision at this point of writing, we still
want to outline some points that led to that decision. The decision was motivated
by our passion to pursue research in this direction. The excitement of the problems
that lie at the intersection between the two topics convinced us that the time had
come to study big data for smart grid, which is the integration of communications and
sensing.

For big data, we have two major tasks: (i) big data modeling and (ii) big data analytics.
After the book was finished, we realized that more than 90% of the contents were dedi-
cated to these two aspects. The applications of this material are treated very lightly. We
emphasize the mathematical foundation of big data, in a similar way to Qiu and Wicks’
Cognitive Networked Sensing and Big Data (Springer, 2014). Qiu, Hu, Li and Wicks’
Cognitive Radio Communication and Networking (John Wiley & Sons Ltd, 2012) com-
plements both books. All three books are unified by matrix-valued random variables
(random matrix theory).

In choosing topics we heeded the warning of the former NYU professor K. O.
Friedrichs: “It is easy to write a book if you are willing to put into it everything you
know about the subject” (P. Lax, Functional Analysis, Wiley-Interscience, 2002, p. xvii).
The services provided by Google Scholar and online digital libraries completely relieved
us of the burden of physically going to the library. Using the “cited by” function provided
by Google Scholar, even working remotely from the office, we could put things together
without difficulty. We were able to use this function to track the latest results on the
subject. This book deals with the fundamentals of big data, addressing principles and
applications. We view big data as a new science: a combination of information science
and data science. Smart grid, communications and sensing are three applications of
special interest to the authors.

This book studies the intersection of big data (Part I) with Smart Grid (part II) and
communications and sensing (Part III). Random matrix theory is treated as the unifying
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theme. Random matrix models provide a powerful framework for modeling numer-
ous physical phenomena in quantum systems, financial systems, sensor networks, wire-
less networks, smart grid, and so forth. One goal is to outline how an audience with a
signals-and-systems background can contribute to big data research and development
(R&D). As most mathematical results are synthesized from the literature of mathemat-
ics and physics, we have tried to present them in very different ways, usually motivated
by the above Big Data systems. Roughly speaking, a big data system means a large statis-
tical system or “large models.” Although no claim of novel mathematical results is made,
the combination of these mathematical models with these particular big data systems
seems worth mentioning. Initially, we really intended to write a textbook in a traditional
way; however, as the project evolved, we could not resist the temptation to include many
beautiful mathematical results. These results are relatively new in the statistical litera-
ture and completely novel to the engineering community. We aim to bridge the gap
between big data modeling/analytics and large random matrices in a systematic man-
ner. The latest references are reasonably comprehensive in this treatment (sometimes
exhaustive, for example for non-Hermitian random matrices).

Random matrices are ubiquitous [1]. The reason for this is twofold. First, they have
a great degree of universality; that is, the eigenvalue properties of large matrices do not
depend on the underlying statistical matrix ensemble. Second, random matrices can
be viewed as noncommuting probability theory where the whole matrix is treated as
an element of the probability space. Nowadays, data sets are usually organized as large
matrices whose first dimension is equal to the number of degrees of freedom and the
second to the number of measurements. Typical examples include financial systems,
sensing systems and wireless communications systems.

As pointed out above, random matrix theory is the foundation for many problems
in smart grid and big data. We hold the belief that big data is more basic than smart
grid; the latter is is the applied science of the former. On the other hand, smart grid
motivates big data. As a result, the close interaction is the natural topic for study.
During the first offering of the first author’s course on smart grid (Fall 2010), he
primarily relied on the journal papers on power systems. During the second offering of
this course (Fall 2013), the contents of the materials mainly covered big data aspects,
especially the latest results of the random matrix theory. The audience were graduate
students from EE and CS. He realized that without solid backgrounds in big data,
the introduction of smart grid—large power systems that lead to high-dimensional
data—could be very superficial. For example, the challenges of state estimation and bad
data detection are due to the high dimensionality of the resultant datasets. This issue
belongs to the larger class of standard big data problems. Although, in Fall 2013, he
pushed the course to the frontiers of statistics, theoretical physics, and finance, he knew
that his class had difficulty in following him. He lost most students when he addressed
random matrices. To do that, he had to go back to cover random vectors first. It was
a very painful experience for all of them because the students were not comfortable
with random vectors, which are the most important prerequisite for reading Part I of
this book.

Big data is a new science with numerous applications. After we combine smart grid
and big data, we are able to crystallize many standard problems and focus our efforts
on the marriage of two subjects. We feel very comfortable that this combination will
be extremely fruitful in the near future. In the infancy of this connection, our aim is to
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spell out our goals and methodologies; at the same time, we outline the mathematical
foundations by introducing random matrix theory, in the hope that this mathematical
theory is sufficiently general and flexible to provide a definitive machinery for the anal-
ysis of big data and smart grid. It is common to hear that big data lacks a theoretical
foundation. Maybe there is no theory at all. It is the sense of the mission (to search for
such a theory) that has sustained us in this long journey.
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Some Notation

𝐀⊗ 𝐁 Kronecker product of two matrices
𝐀 (p × q) matrix with p rows and q columns
⊞ free additive convolution; Voiculescu’s operations ⊞ and ⊠
⊠ free multiplicative convolution
⟨⋅⟩ expectation of ⋅
‖⋅‖op operator norm of the matrix
‖⋅‖F Frobenius norm of the matrix
D
−→ convergence in distribution
ℂ the set of complex numbers
ℂ+ ℂ+ = {z ∈ ℂ ∶ Im (z) > 0}
𝔼X expectation of random variable X
𝔼x expectation of random vector x
𝔼X expectation of random matrix X
𝕀x∈A indicator function 𝕀x∈A is 1 if the event x ∈ A is true
Im imaginary part of real number z
m(z) Stieltjes transform
ℕ set of natural numbers
ℙ probability
ℝ set of real numbers
ℝ+ set of positive real numbers
Re (z) real part of real number z
ℤ set of integer numbers
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1

Introduction

1.1 Big Data: Basic Concepts

Data is “unreasonably effective” [2]. Nobel laureate Eugene Wigner referred to the
unreasonable effectiveness of mathematics in the natural sciences [3]. What is big data?
According to [4], its sizes are in the order of terabytes or petabytes; it is often online,
and it is not available from a central source. It is diverse, may be loosely structured with
a large percentage of data missing . It is heterogeneous.

The promise of data-driven decision-making is now broadly recognized [5–16]. There
is no clear consensus about what big data is. In fact, there have been many controversial
statements about big data, such as “Size is the only thing that matters.”

Big data is a big deal [17]. The Big Data Research and Development Initiative has been
launched by the US Federal government. “By improving our ability to extract knowledge
and insights from large and complex collections of digital data, the initiative promises to
help accelerate the pace of discovery in science and engineering, strengthen our national
security, and transform teaching and learning” [17]. Universities are beginning to create
new courses to prepare the next generation of “data scientists.”

The age of big data has already arrived with global data doubling every two years. The
utility industry is not the only one facing this issue (Wal-Mart has a million customer
transactions a day) but utilities have been slower to respond to the data deluge. Scaling
up the algorithms to massive datasets is a big challenge.

According to [18]:

A key tenet of big data is that the world and the data that describe it are constantly
changing and organizations that can recognize the changes and react quickly and
intelligently will have the upper hand ... As the volume of data explodes, orga-
nizations will need analytic tools that are reliable, robust and capable of being
automated. At the same time, the analytics, algorithms, and user interfaces they
employ will need to facilitate interactions with the people who work with the
tools.

1.1.1 Big Data—Big Picture

Data is a strategic resource, together with natural resources and human resources. Data
is king! “Big data” refers to a technology phenomenon that has arisen since the late
1980s [19]. As computers have improved, their growing storage and processing capac-
ities have provided new and powerful ways to gain insight into the world by sifting

Smart Grid using Big Data Analytics: A Random Matrix Theory Approach, First Edition.
Robert C. Qiu and Paul Antonik.
© 2017 John Wiley & Sons Ltd. Published 2017 by John Wiley & Sons Ltd.
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• Faster outbreak 
tracking and response

• Improved 
understanding of 
crisis behavior 
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• Accurate mapping of 
service needs

• Ability to predict 
demand and supply 
changes 

Data 

commons

Public/development sector

Data type: census data, health indicators, tax 
and expenditure information, facility data  
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provision, increased efficiency in expenditure
Requirements: privacy standards, “opt-out”
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Data mining 

and analysis

Individuals

Data type: “crowdsourced” information, data
exhaust
Sharing incentives: pricing/offers, improved
services
Requirements: privacy standards, “opt-out”
ability

Private sector

Data type: transaction data, spending and
use information
Sharing incentives: improved consumer
knowledge and ability to predict trends
Requirements: business models, ownership
of sensitive data

Figure 1.1 Big data, big impact: new possibilities for international development. Source: Reproduced
from [6] with permission from the World Economic Forum.

through enormous quantities of data available. But this insight, discoverable in pre-
viously unseen patterns and trends within these phenomenally large data sets, can be
hard to detect without new analytic tools that can comb through the information and
highlight points of interest.

Sources such as online or mobile financial transactions, social media traffic, and GPS
coordinates, now generate over 2.5 quintillion bytes of so-called “big data” every day.
The growth of mobile data traffic from subscribers in emerging markets exceeded 100%
annually through 2015. There are new possibilities for international development (see
Figure 1.1).

Big data at the societal level provides a powerful microscope, together with social
mining—the ability to discover knowledge from these data. Scientific research is being
revolutionized by this, and policy making is next in line, because big data and social min-
ing are providing novel means for measuring and monitoring wellbeing in our society
more realistically, beyond the GDP, more precisely, continuously, everywhere [20].

Most scientific disciplines are finding the data deluge to be extremely challenging,
and tremendous opportunities can be realized if we can better organize and access the
data [16].

Chris Anderson believed that the data deluge makes the scientific method obsolete
[21]. Petabytes data tell us to say correlation is enough. There is no need to find the
models. Correction replaces causality. It remains open to see whether the data growth
will lead to a fundamental change in scientific methods.

In the computing industry we are now focussing on how to process big data [22].
A fundamental question is “What is the unifying theory for big data?” This book adopts

the viewpoint that big data is a new science of combining data science and information
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science. Specialists in different fields deal with big data on their own, while information
experts play a secondary role as assistants. In other words, most scientific problems
are in the hands of specialists whereas only few problems—common to all fields—are
refined by computing experts. When more and more problems are open, some unifying
challenges common to all fields will arise. Big data from the Internet may receive more
attention first. Big data from physical systems will become more and more important.

Big data will form a unique discipline that requires expertise from mathematics, statis-
tics and computing algorithms.

Following the excellent review in [22], we highlight some challenges for big data:

• Processing unstructured and semistructured data. Presently 85% of the data are
unstructured or semistructured. Traditional relational databases cannot handle
these massive datasets. High scalability is the most important requirement for
big-data analysis. MapReduce and Hadoop are two nonrelational data analysis
technologies.

• Novel approaches for data representation. Current data representation cannot visually
express the true essence of the data. If the raw data are labeled, the problem is much
easier but customers do not approve of the labeling.

• Data fusion. The true value of big data cannot exhibit itself without data fusion. The
data deluge on the Internet has something to do with data formats. One critical chal-
lenge is whether we can conveniently fuse the data from individuals, industry and
government. It is preferable that data formats be platform free.

• Redundancy reduction and high-efficiency, low-cost data storage. Redundancy reduc-
tion is important for cost reduction.

• Analytical tools and development environments that are suitable for a variety of fields.
Computing algorithm researchers and people from different disciplines are encour-
aged to work together closely as a team. There are enormous barriers for people from
different disciplines to share data. Data collection, especially simultaneous collection
for relational data, is still very challenging.

• Novel approaches to save energy for data processing, data storage, and
communication.

1.1.2 DARPA’s XDATA Program

The Defense Advanced Research Projects Agency’s (DARPA’s) XDATA program seeks
to develop computational techniques and software tools for analyzing large volumes
of data, both semistructured (e.g., tabular, relational, categorical, metadata) and
unstructured (e.g., text documents, message traffic). Central challenges to be addressed
include (i) developing scalable algorithms for processing imperfect data in distributed
data stores, and (ii) creating effective human–computer interaction tools to facilitate
rapidly customizable visual reasoning for diverse missions.

Data continues to be generated and digitally archived at increasing rates, resulting in
vast databases available for search and analysis. Access to these databases has generated
new insights through data-driven methods in the commercial, science, and computing
sectors [23]. The defense section is “swimming in sensors and drowning in data.” Big data
arises from the Internet and the monitoring of industrial equipment. Sensor networks
and the Internet of Things (IoT) are another two drivers.
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There is a trend for data to be used that can sometimes be seen only once, for mil-
liseconds, or can only be stored for a short time before being deleted, especially in
some defense applications. This trend is accelerated by the proliferation of various digital
devices and the Internet. It is important to develop fast, scalable, and efficient methods
for processing and visualizing data.

The XDATA program’s technology development is approached through four technical
areas (TAs):

• TA1: Scalable analytics and data-processing technology;
• TA2: Visual user interface technology;
• TA3: Research software integration;
• TA4: Evaluation.

It is useful to consider distributed computing via architectures like MapReduce, and
its open source implementation, Hadoop. Data collected by the Department of Defense
(DoD) are particularly difficult to deal with, including missing data, missing connections
between data, incomplete data, corrupted data, data of variable size and type, and so
forth [23]. We need to develop analytical principles and implementations scalable to
data volume and distributed computer architectures. The challenge for Technical Area
1 is how to enable systematic use of big data in the following list of topic areas:

• Methods for leveraging the problem structure to create new algorithms to achieve
optimal tradeoffs among time complexity, space complexity, and stream complexity
(i.e., how many passes over the data are needed).

• Methods for the propagation of uncertainty (i.e., every query should have an answer
and an error bar), with performance guarantees for loss of precision due to approxi-
mations.

• Methods for measuring nonlinear relationships among data.
• Sampling and estimation techniques for distributed platforms, including compensat-

ing for missing information, corrupted information, and incomplete information.
• Methods for distributed dimensionality reduction, matrix factorization, matrix com-

pletion (within a distributed data store where data are not all in one place).
• Methods for operating on streaming data feeds.
• Methods for determining optimal cloud configurations and resource allocation

with asymmetric components (e.g., many standard machines, a small number of
large-memory machines, machines with graphical processing units).

The challenge for Technical Area 2 is how to hook up big data analytics to interfaces,
including but not limited to the following topics:

• Visualization of data for scientific discovery, activity patterns, and summaries.
• Expressive visualization and/or query languages and processing that support

domain-specific interaction, successive query refinement, repeated viewing of data,
faceted search, multidimensional queries, and collaborative/interactive search.

• Principled design, including menus, query boxes, hover tips, invalid action noti-
fications, layout logic, as well as processes of overview, zoom and filter, and
details-on-demand.

• Support for the study and characterization of users, including extraction of relations
and history, usage, hover time, click rate, dwell, etc.
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• Functions of timeliness, online versus batch processing, metainformation, etc.
• Analytical workflows including data cleaning and intermediate processing.
• Tools for rapid domain-specific end-user customization.

1.1.3 National Science Foundation

The phrase “big data” in the National Science Foundation (NSF) refers to large, diverse,
complex, longitudinal, and/or distributed data sets generated from instruments, sen-
sors, Internet transactions, e-mail, video, click streams, and/or all other digital sources
available today and in the future [5].

Today, US government agencies recognize that the scientific, biomedical and engi-
neering research communities are undergoing a profound transformation with the use
of large-scale, diverse, and high-resolution data sets that allow for data-intensive deci-
sion making, including clinical decision making, at a level never before imagined. New
statistical and mathematical algorithms, prediction techniques, and modeling methods,
as well as multidisciplinary approaches to data collection, data analysis and new tech-
nologies for sharing data and information are enabling a paradigm shift in scientific and
biomedical investigation. Advances in machine learning, data mining, and visualization
are enabling new ways of extracting useful information in a timely fashion from mas-
sive data sets, which complement and extend existing methods of hypothesis testing and
statistical inference. As a result, a number of agencies are developing big-data strategies
to align with their missions. The NSF’s solicitation focuses on common interests in big
data research across the National Institutes of Health (NIH) and the NSF.

1.1.4 Challenges and Opportunities with Big Data

There are challenges with Big Data. The first step is data acquisition. Some data sources,
such as sensor networks, can produce staggering amounts of raw data. A lot of this data
is not of interest. It can be filtered out and compressed by orders of magnitude. One chal-
lenge is to define these filters in such a way that they do not discard useful information.

The second big challenge is to generate the right metadata automatically, and to
describe what data is recorded and how it is recorded and measured. This metadata is
likely to be crucial to downstream analysis. Frequently, the information collected will
not be in a format ready for analysis. We have to deal with erroneous data: some news
reports are inaccurate.

Data analysis is considerably more challenging than simply locating, identifying,
understanding, and citing data. For effective large-scale analysis all of this has to happen
in a completely automated manner.

Mining requires integrated, cleaned, trustworthy, and efficiently accessible data,
declarative query and mining interfaces, scalable mining algorithms, and big data com-
puting environments. Today’s analysts are impeded by a tedious process of exporting
data from the database, performing a non-SQL process, and bringing the data back.

Having the ability to analyze big data is of limited value if users cannot understand
the analysis. Ultimately, a decision maker, provided with the result of analysis, has to
interpret these results.

In short, there is a multistep pipeline required to extract value from data. This pipeline
is not a simple linear flow—rather, there are frequent loops back as downstream steps
suggest changes to upstream steps.



6 Smart Grid using Big Data Analytics

There has not been a commonly accepted definition of big data. In [24], there are some
claims that may define the ballpark:

• Big data is the same as scalable analytics.
• Big-data problems are primarily on the application side.
• Big-data problems are primarily at the systems level.
• Big-data requires a cloud-based platform.
• The data-management community is in danger of missing the big-data train.
• It is not possible to conduct big-data research effectively without collaborating with

people outside the data-management community.
• All the big-data problems can be reduced to MapReduce problems [25].
• The bulk of big-data challenges are being addressed by industry.
• The bulk of big-data challenges are at the implementation level.
• Size is the only thing that matters (for big data).

The growth of the data volume seems to outspend the advance of our computing
infrastructure. Conventional data-processing technologies, such as database and data
warehouse, are becoming inadequate for the amount of data.

1.1.5 Signal Processing and Systems Engineering for Big Data

The big-data workshop for signal processing and systems engineering was held in
2013 [4]. One motivation from the NSF’s point of view [4] is to leverage analytical,
computational, storage, and implementation tools:

• assess fundamental performance limits in processing and storage;
• develop scalable algorithms: online (adaptive) and decentralized;
• complement computer and information science and engineering (CISE) efforts on

parallel architectures and computing;
• account for redundancy and error control: source and channel (de)coding;
• cross-fertilize NSF-wide advances on fault-tolerance, privacy, and security.

Another motivation is to facilitate ground-breaking research in big-data science and
engineering:

• to offer top-down approaches for signal processing and systems engineering;
• to develop a toolbox for statistics and optimization.

High-level issues of interest include: Can lessons learned from “big systems” engi-
neering be applied to big-data engineering? What are the right pathways? What are
overarching tools to catalyze big-data collaboration between scientists and engineers?
What are the grand challenges in big data science and engineering? How should we
educate engineers about big data?

Big engineering data has unique characteristics: it is more disciplined and regulated.
There are emerging engineering systems with big-data opportunities: smart grids,
sensor nets, transportation, telemedicine, aerospace, testing, safety, nuclear, design
blueprints and more. Now it may be necessary to rethink data collection and storage to
facilitate big-data processing and inference tasks.

Some sample questions are: How do we trade off complexity for accuracy in massive
decentralized signal and data analysis tasks? How can efficient signal and data analysis
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algorithms be developed for big, unstructured or loosely structured data? What are the
basic principles and useful methodologies to scale inference and learning algorithms
and trade off the computational resources (e.g., time, space and energy) according to
the needs of engineering practice (e.g. robustness versus efficiency, real time)?

Big-data processing and analysis, according to Hero [26], require the following:
(i) Integration of very heterogenous data: correlation mining in massive database;
processing data at vastly different scales and noise levels; processing a mixture
of continuous and categorical variables. (ii) Reliable and robust quantitative models:
uncertainty quantification; adaptation to drift over time. (iii) High throughput real-time
processing: smart adaptive sampling and compression; distributed or parallel pro-
cessing architectures. (iv) Interactive user interfaces: human-in-the-loop processing;
visualization and dimensionality reduction.

Some signal-processing challenges, according to Hero [26], include the following.
(i) Heterogeneous data integration: ranking signals for human-aided selection of relevant
variables; fusing graphs, tensors, and sequence data; active visualization: dimension-
ality reduction. (ii) Flexible low-complexity modeling and computation: scalable
signal processing: distributed algorithms and implementation; smart sampling:
feedback-controlled signal search and acquisition. (iii) Reliable robust models for
anomaly detection and classification: parsimonious signal processing; sparse correlation
graphical models; decomposable signal processing: factored models and algorithms.

As for the signal-processing toolbox, we have the following primitives: linear equation
solvers (Gauss, Givens, Householder); spectral representations (FFT, SVD); ensemble
averaging (cross validation, bootstrap, boosting); optimization (linear least square,
linear and quadratic programming, dynamic programing). They can used for the
following applications. (i) Linear and nonlinear prediction: Wiener, Kalman, particle
filtering, Volterra filters; (ii) signal reconstruction: matrix factorization, matrix, com-
pletion, robust principal component analysis (PCA). (iii) Dimension reduction: PCA,
independent component analysis (ICA), independent principal component analysis
(IPCA), canonical correlation analysis (CCA), linear discriminant analysis (LDA),
nonlinear editing (NLE). (iv) Adaptive sampling: compressive sensing, distilled sensing,
sketching. (v) Signal processing on graphs: graph spectra, the k-nearest-neighbor
algorithm (k-NN) search, belief propagation.

There is a growing gap between the amount of data we generate and the amount of
data we are able to store, communicate, and process. As Richard Baraniuk points out,
we have produced already twice as much data as can be stored [27]. And the gap keeps
widening. As long as this continues there is an urgent need for novel data-acquisition
concepts like compressive sensing.

Compressive sensing and sparse representations play a key role: advanced probability
theory and (in particular) random matrix theory, convex optimization, and applied har-
monic analysis are becoming standard ingredients of the toolbox of many engineers.
Compressive sensing has advanced the development of 𝓁1-minimization algorithms,
and more generally of nonsmooth optimization. These algorithms find widespread use
in many disciplines, including physics, biology, and economics [28]. The most important
legacy of compressive sensing may be that it has forced us to think about information,
complexity, hardware, and algorithms in a truly integrated manner.

Nondominated sorting is an interesting and useful framework for multicriteria
anomalies, human-machine interaction, or multiple end users [29, 30].
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The author’s research proposals to the National Science Foundation (NSF) [31–34]
are relevant in the context of this section.

1.1.6 Large Random Matrices for Big Data

Random matrices play a central role in statistics in the context of multivariate data. Three
classical books are included here [35–37].

The continued growth of big data has given rise to high-dimensional statistical anal-
ysis. Convex analysis, Riemannian geometry and combinatorics are relevant. Random
matrix theory (RMT) has emerged as a particularly useful framework for many theoreti-
cal questions associated with the analysis of high-dimensional multivariate data; see [38]
for a recent overview of RMT.

RMT affects modern statistical thinking in two ways. On one hand, most of the math-
ematical treatments of RMT have focused on matrices with a high degree of indepen-
dence in the entries, which one may refer to as “unstructured” random matrices. Recall
that about 75% of big data is unstructured. On the other hand, in high-dimensional
statistics, we are primarily interested in problems where there are lower dimensional
structures buried under random noise.

In November 2011, the author of [39] dedicated over 200 pages to random matrix
theory. In [40], the whole book was motivated by the same vision but with different
regimes. The first book deals with so-called asymptotic regimes, while the second deals
with nonasymptotic regimes. In the asymptotic regimes, the sizes of random matri-
ces are assumed to approach infinity. For example, for a random matrix of 𝐗 of size
m × n, we assume the asymptotic regime: m → ∞, n → ∞, but m∕n → c. On the other
hand, the nonasymptotic regime is defined as: m and n are large, but finite. The author’s
research proposals to the National Science Foundation (NSF) [31–34] have a similar
motivation.

As pointed out in Section 1.1.1, “High scalability is the most important requirement
for big data analysis.” Some state “Size is the only thing that matters.” Based on this obser-
vation, it seems natural to the author to model big data using a nonasymptotic theory of
random matrices. The motivation is to investigate how the algorithms scale with sizes
of data samples.

We believe that a nonasymptotic theory of random matrices can unify many big-data
problems. It is our intention to use this theory as the departure point for many problems
studied later in this book.

Tensors (also known as multidimensional arrays or N-way arrays) are used in a vari-
ety of applications ranging from chemometrics to network analysis. The Tensor Tool-
box [41] provides classes for manipulating dense, sparse, and structured tensors using
MATLAB’s object-oriented features.

1.1.7 Big Data Across the US Federal Government

We highlight some points [42] that which are relevant to the contex of this book.
The Anomaly Detection at Multiple Scales program at DARPA creates, adapts

and applies technology to anomaly characterization and detection in massive data
sets. Anomalies in data cue the collection of additional, actionable information in a
wide variety of real-world contexts. The initial application domain is insider threat
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detection in which malevolent (or possibly inadvertent) actions by a trusted individual
are detected against a background of everyday network activity.

The Department of Energy (DOE) provides leadership to the data management,
visualization and data analytics communities, including digital preservation and
community access. Mathematics for Analysis of Petascale Data addresses the
mathematical challenges of extracting insight from huge scientific datasets, finding key
features and understanding the relationships between those features. Research areas
include machine learning, real-time analysis of streaming data, stochastic nonlinear
data-reduction techniques, and scalable statistical analysis techniques applicable
to a broad range of DOE applications including sensor data from the electric grid,
cosmology, and climate data.

The Office of Basic Energy Sciences (BES) BES Scientific User Facilities have sup-
ported a number of efforts aimed at assisting users with data management and analysis
of big data, which can be as big as terabytes (1012 bytes) of data per day from a single
experiment.

Researchers funded by the NSF are developing a unified theoretical framework for
principled statistical approaches to network models with scalable algorithms in order
to differentiate knowledge in a network from randomness.

Information Integration and Informatics funded by the NSF addresses the chal-
lenges and scalability problems involved in moving from traditional scientific research
data to very large, heterogeneous data, such as the integration of new data types models
and representations, as well as issues related to data path, information life-cycle man-
agement, and new platforms.

NSF funds a distinct discipline encompassing mathematical and statistical founda-
tions and computational algorithms. High-speed networks distribute over 15 petabytes
of data each year in real time from the Large Hadron Collider (LHC) at CERN in Switzer-
land to more than 100 computing facilities.

The Theoretical and Computational Astrophysics Networks (TCAN) program
seeks to maximize the discovery potential of massive astronomical data sets by advanc-
ing the fundamental theoretical and computational approaches needed to interpret
those data, uniting researchers in collaborative networks that cross institutional and
geographical divides, and training the future theoretical and computational scientists.

There are research projects (i) developing data visualizations in the defense of massive
computer networks, and (ii) transforming big data sets and big ideas about earth science
theories into scientific discoveries.

1.2 Data Mining with Big Data

Big data concern large-volume, complex, growing data sets with multiple, autonomous
sources. With the fast development of networking, data storage, and data-collection
capacity, big data is now rapidly expanding in all science and engineering domains,
including physical, biological, and biomedical sciences.

Data collection has grown tremendously and is beyond the ability of commonly used
software tools to capture, manage, and process within a “tolerable elapsed time.” The
most fundamental challenge for big data applications is to explore the large volumes of
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data and extract useful information or knowledge for future actions [43]. In many situ-
ations, the knowledge-extraction process has to be very efficient and close to real time
because storing all observed data is nearly infeasible. For example, the in-network pro-
cessing in a large-scale cognitive radio network [44] is the bottleneck. For one microsec-
ond of data collection, the processing time is in the level of several milliseconds (three
orders of magnitudes larger). As a result, the unprecedented data volumes require an
effective data analysis and prediction platform to achieve fast response and real-time
classification for such big data.

Theorem 1.2.1 (HACE theorem [45]) Big data starts with large-volume, hetero-
geneous, autonomous sources with distributed and decentralized control, and seeks to
explore complex and evolving relationships among data.

In the analogy of the blind men and the giant elephant, the localized (limited) view of
each blind man leads to a biased conclusion. Exploring big data is equivalent to aggre-
gating heterogeneous information from different sources (the blind men) to help draw
a best possible picture to reveal the elephant in real time.

One of the fundamental characteristics of big data is the huge volume of data rep-
resented by heterogeneous and diverse dimensionalities. The reason is that different
information collectors prefer their own schemata or protocols for data recording, and
the nature of different applications also results in diverse data representations.

Autonomous data sources with distributed and decentralized controls are an impor-
tant characteristic of big data applications. Being autonomous, each data source (a sen-
sor) is able to generate and collect information without involving (or relying on) any
centralized control.

While the volume of the big data increases, so do the complexity and the relation-
ships underneath the data. One example is the time-varying wireless network or electric
power grid.

A big-data processing framework is shown in Figure 1.2. The challenges at Tier I focus
on data accessing and arithmetic computing procedures. Because big data is often stored
at different locations and data volumes may continuously grow, an effective comput-
ing platform will have to take distributed large-scale data storage into consideration for
computing. For example, distributed detection and estimation [46] is relevant in the
context of wireless sensor networks.

Example 1.2.2 (a long time series) We form a large random matrix using a long
record of time series. Given a time series x[i], i = 1,… ,NT ,where N and T are integers,
we form a large random matrix 𝐗 of N × T . For example, N = 1000 and T = 4000. We
view the data as a number of data segments. Here we have N data segments; the length
of each segment is T , so a total of NT data samples are needed. ◽

Example 1.2.3 (the square kilometer array (SKA)—a big-data viewpoint) The
square kilometer array (SKA) (see Figure 1.3) has 2000–3000 dishes. The wavelength
ranges from 3 m to 3 cm. The SKA will have an array of coherently connected antennas
spread over an area about 3000 km in extent, with an aggregate antenna collecting area
of up to 106 m2 at centimeter and meter wavelengths. The project timeline has the
telescope operational below 10 GHz by 2022.
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Figure 1.2 A big data processing framework. The research challenges form a three-tier structure and
center around the “big data mining platform” (Tier I), which focuses on low-level data accessing and
computing. Challenges on information sharing and privacy, and Big Data application domains and
knowledge form Tier II, which concentrates on high-level semantics, application-domain knowledge,
and user privacy issues. The outmost circle shows Tier III challenges on actual mining algorithms.
Source: Reproduced from [45] with permission.
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Figure 1.3 The square kilometer array. Source: Reproduced with permission from [47].
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A large-scale wireless communication network is attempted to emulate a virtual array.
So the SKA provides guidance.

With a 40 GB/s data volume, the data generated from the SKA are exceptionally large.
We can model each dish as a sensor. So we deal with N = 2000 − 3000 sensors, which
are spatially distributed. For each sensor, we observe a time series 𝐱i ∈ ℂT×1, for i =
1, 2,… ,N . We can collect the data from the N sensors into one single large matrix:

𝐗 =
⎛
⎜
⎜
⎜
⎝

𝐱T
1
𝐱T

2
⋮
𝐱T

N

⎞
⎟
⎟
⎟
⎠N×T

∈ ℂN×T

The data for the SKA with time of T (called a snapshot) is represented by a large ran-
dom matrix 𝐗 ∈ ℂN×T . Now we study the time evolution of the data in a sequence
of random matrices (for n snapshots) 𝐗1,… ,𝐗n ∈ ℂN×T . We can do some data pro-
cessing using these large random matrices. (i) the sum of Hermitian random matri-

ces (See Theorem 17.4.1) 1
√

n

n∑

i=1

(
𝐗1𝐗H

1 + ... + 𝐗n𝐗H
n
)

(ii) the product of non-Hermitian

random matrices 𝐗1 · · ·𝐗n; (iii) the geometric mean
(
𝐗1 · · ·𝐗n

)1∕n
. (iv) For N spatially

distributed sensors (randomly), we form the data matrix 𝐗 as above. What is the theo-
retical distribution of 𝐗? It appears that this problem can be formulated in terms of a
Euclidean random matrix. This problem corresponds to a random Green’s function.

The so-called Euclidean random matrices, defined in Section 6.14, are a special class
of random matrices. See also Section 16.1.5 for its connection with random geometric
graphs. The elements Aij of an N × N Euclidean random matrix 𝐀 are given by a deter-
ministic function f of positions of pairs of points that are randomly distributed in a finite
region V of Euclidean space:

Aij = f
(
𝐫i, 𝐫j

)
, i, j = 1,… ,N

Here, the N points 𝐫i are randomly distributed inside some region V of the d- dimen-
sional Euclidean space with a uniform density 𝜌 = N∕V . ◽

Example 1.2.4 (local learning and model fusion for multiple information
sources) As big data applications are featured with autonomous sources and
decentralized controls, aggregating distributed data sources to a centralized site for
mining is systematically prohibitive due to the potential transmission cost and privacy
concerns. On the other hand, although we can always carry out mining activities at each
distributed site, the biased view of the data collected at each site often leads to biased
decisions or models, just like the elephant and blind men case. Large random matrices
provide natural models for data representations in this context. We can form larger
matrices using data matrices from distributed sources. The fundamental mathematical
structure (random matrix) is kept invariant under the data fusion. The scalability,
however, is relevant.

We can use the unifying tool of random matrix theory to study the resultant problem.
The possibility of calculating eigenvalues without explicitly forming the sample covari-
ance matrix allows us to study the problem in a distributed manner. See Section 16.3 for
details.
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Distributed estimation and detection is natural in this context. See Section 16.1 for
details.

Model mining and correlations are the key steps. When the data is independent, iden-
tically distributed (i.i.d.)—noise only, the eigenvalue distribution has a rotational sym-
metry on the complex plane. When signal plus noise is present, some correlations are
identified on the complex plane. Non-Hermitian random matrices are studied. This the-
ory is a very recent breakthrough (Chapter 6). ◽

Example 1.2.5 (mining from sparse, uncertain, and incomplete data) Sparse,
uncertain, and incomplete data are defining features for big data applications. For most
machine-learning and data-mining algorithms, high-dimensional sparse data cause the
reliability of the models derived from the data to deteriorate significantly. We must
emphasize that sparsity and high dimensionality are two blessings, rather than curses,
for data processing. The concentration of measurement phenomenon—unique to big
data—can be exploited [40].

Uncertain data are a special type of data reality where each data field is no longer
deterministic but is subject to some random/error distributions. This is mainly linked to
domain-specific applications with inaccurate data readings and collection. In this book
we promote the exploitation of randomness. Randomness is introduced as a natural
resource for our use.

“Incomplete data” refers to missing data field values for some samples. The missing
values can be caused by different factors, such as the malfunction of a sensor node,
or some systematic policies to intentionally skip some values (e.g., dropping some
sensor node readings to save power for transmission). Low-rank matrix recovery [40]
deals with incomplete data. Again low-rank matrix recovery takes advantage of
high-dimensionality of the data, by using large random matrices as the “sampling”
matrix. ◽

Example 1.2.6 (mining complex and dynamic data) The rise of big data is driven by
the rapid increasing of complex data and their changes in volumes and in nature [48].
Documents posted on WWW servers, Internet backbones, social networks, communi-
cation networks, and transportation networks, and so on are all featured with complex
data. Simple data representations are insufficient. In big data, data types include struc-
tured data, unstructured data, semistructured data, and so on. Currently, there is no
acknowledged effective and efficient data model to handle big data. In this book we pur-
sue a paradigm of using large random matrices for data representations. This framework
has the advantage of uncovering complex relationship networks in data. ◽

1.3 A Mathematical Introduction to Big Data

There is no standard definition for big data. We give a mathematical definition below.

Definition 1.3.1 (Fundamental Definition for Big Data) Big data must satisfy the
following three conditions:

1. Data samples are modeled as random variables, say X1,X2,… ,Xn.
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2. The number of data samples, say n, is sufficiently large that some limit results may be
observed.

3. A function f
(
X1,… ,Xn

)
can be defined using n random variables.

The main motivation for this definition is to capture the mathematical implications of
big data. In particular, we are interested in representing all the data samples in terms of
a large random matrix 𝐗; applications are modeled as the function f (𝐗) .

Example 1.3.2 (data samples are independent random variables) In Defini-
tion 1.3.1, most of the time, we consider the special case of Condition 1 when the data
samples are modeled by independent random variables. Combining Condition 1 with
Condition 2, we can take advantage of a very large body of knowledge related to limit
theorems in probability and statistics. Roughly speaking, when the size of independent
random variables becomes large, some limits are approached.

The simplest and most thoroughly studied example is the sum of independent
real-valued random variables. The key to the study of this case is summarized by the
trivial but fundamental additive formulas

Var

( n∑

i=1
Xi

)

=
n∑

i=1
Var

(
Xi
)

and

𝜓 n∑

i=1
Xi

(𝜆) =
n∑

i=1
𝜓Xi

(𝜆) (1.1)

where 𝜓Y (𝜆) = log𝔼e𝜆Y denotes the logarithm of the moment-generating function
of the random variable Y . 𝔼 denotes the expectation. These formulas allow one to
derive concentration inequalities of Z = X1 + X2 + · · · + Xn around its expectation via
Markov’s inequality. See [49].

If X1,… ,Xn are independent random variables taking values in [a1, b1],… , [an, bn],
the additivity formula (1.1) implies that

𝜓Z−𝔼Z (𝜆) ⩽ 1
2
𝜆2v for 𝜆 ∈ ℝ

where v =
n∑

i=1

(
bi − ai

)2∕4. Since the right-hand side corresponds to the log-moment

generating function of a centered normal random variable with variance v, Z − 𝔼Z is
said to be sub-Gaussian with variance factor v. The sub-Gaussian property implies that
Z − 𝔼Z has a sub-Gaussian tail. More precisely, we have, for all t > 0

ℙ {[Z − 𝔼Z] ⩾ t} ⩽ 2 exp
(
−t2∕ (2v)

)

This is Hoeffding’s inequality.
One of the simplest and more natural smoothness assumptions that one may con-

sider is the so-called bounded difference condition. A function f ∶ n → ℝ of n variables



Introduction 15

(all taking values in some measurable set ) is said to satisfy the bounded differences
condition if constants c1,… , cn > 0 exist such that for every x1,… ,xn,y1,...,yn ∈ n

|
|
|

f
(
x1,… ,xi,… , xn

)
− f

(
x1,… ,xi−1, yi, xi+1,… , xn

)|
|
|
⩽ ci

In other words, changing any of the n variables, while keeping the rest fixed, cannot
cause a big change in the value of the function. Equivalently, one can interpret this as a
Lipschitz condition.

The sum of bounded variables is the simplest example of a function of bounded
differences. Indeed, if X1,… ,Xn are real-valued independent random variables such

that Xi takes its values in the interval [ai, bi], then f
(
X1,… ,Xn

)
=

n∑

i=1
Xi satisfies

the bounded difference condition with ci = bi − ai. The basic argument behind the
martingale-based approach is that once the function satisfies the bounded difference
condition, Z = f

(
X1,… ,Xn

)
may be interpreted as a martingale with bounded

increments with respect to Doob’s filtration. In other words, we may write

Z − 𝔼Z =
n∑

i=1
Δi (1.2)

where

Δi = 𝔼
[
Z |
|X1,… ,Xi

]
− 𝔼

[
Z |
|X1,… ,Xi−1

]
, i = 1,… , n

Δ1 = 𝔼
[
Z |
|X1

]
− 𝔼 [Z] .

The bounded difference condition implies that, conditionally on X1,… ,Xi−1, the mar-
tingale incrementΔi takes it values in an interval of length at most ci.Hence, Hoeffding’s

inequality remains valid for Z with v = (1∕4)
n∑

i=1
c2

i . This result is known as the bounded

difference inequality, also often called McDiarmid’s inequality. ◽

Example 1.3.3 (concentration inequalities for a nonasymptotic theory of indepen-
dence) The study of random fluctuations of functions of independent random vari-
ables is the topic of concentration inequalities. Concentration inequalities quantify such
statements, typically by bounding the probability that such a function is different from
its expected value (or from its median) by more than a certain amount.

In the mid-1990s Michel Talagrand [50] provided major new insight: “a random vari-
able that smoothly depends on the influence of many independent random variables
satisfies Chernoff type bounds.”

What kind of smooth conditions should we put on a function f (⋅) of independent
random variables X1,… ,Xn in order to get concentration bounds for Z = f

(
X1,… ,Xn

)

around its mean or median?
One approach to understanding the concentration properties of Lipschitz functions

of independent variables is based on investigating how product measures concentrate
in high-dimensional spaces. The main ideas behind this approach are dominant in Tala-
grand’s work.
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In the above examples, we had only considered the linear combination X1,… ,Xn
of independent random variables. Now we consider more general combinations f (𝐗)
where we write 𝐗 =

(
X1,… ,Xn

)
for short.

The most powerful concentration of measure results, though, do not just exploit
Lipschitz-type behavior in each individual random variable, but joint Lipschitz
behavior.

One consequence of Talagrand’s concentration theorem (Theorem 1.3.5) is the con-
centration of (empirical) spectral measure for a large random matrix [40].

We say the function f ∶ ℂn → ℝ is a 1-Lipschitz function if | f (𝐱) − f (𝐲)| ⩽ ‖𝐱 − 𝐲‖
for all random vectors 𝐱, 𝐲 ∈ ℝn, where ‖⋅‖ is the Euclidean norm.

Theorem 1.3.4 (Gaussian concentration inequality for Lipschitz functions) Let
X1,… ,Xn ≡  (0, 1) be i.i.d. real Gaussian variables, and let f ∶ ℂn → ℝ be a
1-Lipschitz function. Then for any t one has

ℙ
(
| f (𝐗) − 𝔼f (𝐗)| ⩾ tK

)
⩽ C exp

(
−ct2)

for some absolute constants C, c > 0.

The theorem is valid for all Lipschitz functions for Gaussian random vectors.

Theorem 1.3.5 (Talagrand concentration inequality) Let K > 0, and let X1,… ,Xn
be independent complex variables with |

|Xi
|
| ⩽ K for all 1 ≤ i ≤ n. Let f ∶ ℂn → ℝ be a

1-Lipschitz and convex function. Then for any t one has

ℙ
(
| f (𝐗) −𝕄f (𝐗)| ⩾ tK

)
⩽ C exp

(
−ct2)

ℙ
(
| f (𝐗) − 𝔼f (𝐗)| ⩾ tK

)
⩽ C exp

(
−ct2)

for some absolute constants C, c > 0, where 𝕄f (𝐗) is a median of f (𝐗)

The theorem is valid for all Lipschitz and convex functions for independent (not nec-
essarily Gaussian) random vectors.

Example 1.3.6 (large random matrix theory) Random matrix theory or quantum
information theory is very relevant for big data. The vision of exploiting random
matrixes to model big data is explicitly proposed in [39].

For N random (row) vectors 𝐗1,… ,𝐗N ∈ ℂ1×T , we form an N × T random matrix

𝐗 =
(
𝐗1,… ,𝐗N

)T ∈ ℂN×T

We say a matrix𝐘 is Hermitian if𝐘 = 𝐘H ,where H denotes the conjugate and transpose
of a matrix. In general, the random matrix 𝐗 is not Hermitian.

The classical framework is to study the regime of N fixed while T → ∞. For modern
big data, this fundamental assumption is invalid. We must study the new paradigm

N → ∞,T → ∞ but N/T → c ∈ [0,∞)

where c is a fixed constant.
This book surveys a lot of recent results of the literature in Part I. ◽
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Example 1.3.7 (free probability theory for hermitian random matrices) When the
sizes of random matrices are large, conventional independence is replaced with asymp-
totically freeness. Free random variables may be thought of as “independent” random
matrices in the classical sense. Chapter 5 applies this theory to model large random
matrices. Free random variables are random infinite-dimensional linear operators that
are equivalently very large random matrices. The statistical properties of free random
variables are equivalently those of the eigenvalues of large random matrices. ◽

Free probability theory was introduced by Voiculescu around 1983 in order to attack
the isomorphism problem of von Neumann algebras of free groups. Voiculescu isolated
a structure showing up in this context, which he named “freeness.” His fundamental
insight was to separate this concept from its operator algebraic origin and investigate
it for its own sake. Furthermore, he promoted the point of view that freeness should
be seen as a noncommutative analog of the classical probabilistic concept of “indepen-
dence” for random variables. Hence freeness is also called “free independence” and the
whole subject became known as “free probability theory.”

The theory was lifted to a new level when Voiculescu discovered, in 1991, that the
freeness property is also present for many classes of random matrices, in the asymptotic
regime when the size of the matrices tends to infinity. This insight, bringing together
the a priori entirely different theories of operator algebras and of random matrices, had
quite some impact in both directions. Modeling operator algebras by random matrices
resulted in some insightful results about operator algebras, whereas tools developed in
operator algebras and free probability theory could now be applied to random matrix
problems, yielding, in particular, new ways to calculate the asymptotic eigenvalue dis-
tribution of many random matrices. Freeness is motivated not by its initial occurrence
in operator algebras but by its random matrix connection.

In free probability theory, the central limit theorem on the sum of independent free
random variables gives a semicircle distribution. A semicircle distribution serves the
same function as the Gaussian or normal distribution for the sum of independent
commuting random variables. If X1,X2,… ,Xn are identically distributed zero mean
free random variables with variance of (R∕2)2

, the free summation or additive free
convolution of

1
√

n
X1 ⊞ X2 ⊞ · · ·⊞ Xn

has the semicircle distribution of

p (t) =

{
1

2𝜋R2

√
R2 − t2 |t| ⩽ R
0 otherwise,

where R is the radius of the distribution and ⊞ denotes the additive free convolution.
Using free probability, we can calculate the histogram for a generic realization of a

3000 × 3000 random matrix p(X,Y ), where X and Y are, respectively, independent
Gaussian and Wishart random matrices: p(X,Y ) = X + Y ; P(X,Y ) = XY + YX + X2.

P(X,Y ) is a polynomial of two random matrices.
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Example 1.3.8 (free probability theory for non-Hermitian random matrices) As
pointed out above, in general, a random matrix 𝐘 is non-Hermitian. Most tools in alge-
bra deal with Hermitian random matrices. Non-Hermitian random matrices are much
more difficult to handle, compared with their Hermitian counterparts. Chapter 6 gives
a comprehensive introduction to model the data using (large) non-Hermitian random
matrices. ◽

The eigenvalue density of a product

𝐗1𝐗2 · · ·𝐗L (1.3)

of L ≥ 2 independent N × N Gaussian random matrices in the limit N → ∞ is rotation-
ally symmetric in the complex plane and is given by a simple expression

𝜌
(
z, z

)
=

{ 1
L𝜋
𝜎−2∕L|z|−2+2∕L |z| ⩽ 𝜎

0 |z| > 𝜎

where the z denotes the complex conjugate of a complex number z, and the effective
scale parameter 𝜎 = 𝜎1𝜎2 · · · 𝜎L. We have

𝔼
(
𝐗1

)

ij = · · · = 𝔼
(
𝐗L

)

ij = 0, i, j = 1,… ,N

𝔼||
|

(
𝐗1

)

ij
|
|
|

2
= 𝜎2

1∕N , · · · ,𝔼||
|

(
𝐗L

)

ij
|
|
|

2
= 𝜎2

L∕N , i, j = 1,… ,N

The parameter 𝜎 corresponds to the radius of the circular support and is related to the
amplitude of the Gaussian fluctuations. This form of the eigenvalue density is univer-
sal. It is identical for products of Gaussian Hermitian, non-Hermitian, real or complex
random matrices. It does not change even if the matrices in the product are taken from
different Gaussian ensembles.

Study the product

𝐏 = 𝐀1𝐀2 · · ·𝐀L (1.4)

of L ≥ 1 independent rectangular large random Gaussian matrices 𝐀l, l = 1, 2,… , L of
dimensions Nl × Nl+1. We are interested in the limit NL+1 → ∞ and

Rl ≡ Nl

Nl+1
= finite, for l = 1, 2,… , L + 1

The 𝜎l parameters set the scale for the Gaussian fluctuations in 𝐀ls. The entries of each
matrix 𝐀l can be viewed as independent centered Gaussian random variables, the vari-
ance of the real and imaginary parts being proportional to 𝜎2

l and inversely proportional
to the square root of the number NlNl+1 of elements in the matrix.

Consider

𝐐 = 𝐏H𝐏, 𝐑 = 𝐏𝐏H
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where 𝐏 is defined in (1.4). 𝐐 and 𝐑 are are Hermitian, and they have non-negative
spectra, which differ only in the zero modes. The M transform of the matrix 𝐗 is
defined as

M𝐗
(
z, z

)
= zG𝐗

(
z, z

)
− 1

where G𝐗
(
z, z

)
is the Green’s function.

The main finding is that the eigenvalue distribution and the M transform of the prod-
uct [(1.4)] are spherically symmetric. We shall show the M transform to satisfy the L-th
order polynomial equation:

L∏

l=1

(
M𝐏

(
|z|2)

Rl
+ 1

)

= |z|2

𝜎2 (1.5)

where the scale parameter is 𝜎 = 𝜎1𝜎2 · · · 𝜎M.

An analogous equation for 𝐐 reads

√
Rl

M𝐐 (z) + 1
M𝐐 (z)

L∏

l=1

(M𝐐 (z)
Rl

+ 1
)

= z
𝜎2 (1.6)

The free argument in (1.5) is |z|2
, and z in (1.6). It is surprising that there is rotational

symmetry in the complex plane for the product of Gaussian random matrices 𝐏, while
the study of the Hermitian product 𝐐 breaks the rotational symmetry. In other words,
given a data matrix 𝐀l, l = 1,… , L, some statistical structure (symmetry) will be lost
if we study the non-negative Hermitian random matrix 𝐐, instead of non-Hermitian
random matrix 𝐏.

One unexpected implication of the universality is that a product of random matrices
whose spectra do not necessarily display rotational symmetry has an eigenvalue distri-
bution that does possess rotational symmetry on the complex plane (i.e., the average
density depends only on |𝜆|).

A random quantum state is defined by specifying a probability measure in the space
of density matrices 𝝆, i.e., Hermitian, weakly positive-definite (i.e., with nonnegative
eigenvalues), and normalized (i.e., Tr 𝝆 = 1) matrices. For any rectangular matrix 𝐙, one
can define 𝝆 ≡ 𝐙𝐙H∕Tr

(
𝐙𝐙H) is a proper random quantum density matrix.

If we model the system using the random states through 𝝆,we will break the rotational
symmetry of the product of random matrices 𝐏 (defined in (1.4)) in the complex plane.
It makes sense because the eigenvalues of 𝐏 are distributed in the complex plane and the
eigenvalues of 𝝆 are in the real axis (non-negative real values).

In statistics we often use a sample covariance matrix in the form of 𝐐.The comments
for 𝝆 are also valid for a sample covariance matrix. By studying the sample covariance
matrix we will lose some structure information (such as rotational symmetry in the
complex plane for the M transform). See Example 1.3.9 for the potential relevance to
applications.

We now consider the eigenvalue statistics for complex N × N Wishart matrices
𝐗H

r,s𝐗r,s, where 𝐗r,s is equal to the product of r complex Gaussian matrices, and the
inverse of s complex Gaussian matrices. In particular, we have

𝐗r,s = 𝐆r𝐆r−1 · · ·𝐆1
(
�̃�s�̃�s−1 · · · �̃�1

)−1
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where each 𝐆k is a rectangular standard complex Gaussian matrix of dimension nk ×
nk−1, nk ⩾ nk−1, and n0 = N , and each �̃�k is a square of dimension N × N .

Example 1.3.9 (functional averages over Gaussian ensembles) The MIMO channel
model is defined similarly to (3.11). The result here can be applied to massive MIMO
analysis. See Section 15.3. We repeat the definition to fix a different notation. Denoting
the number of transmitting antennas by M and the number of receiving antennas by N ,
the channel model is

𝐲 = 𝐇𝐬 + 𝐧 (1.7)

where 𝐬 ∈ ℂM is the transmitted vector, 𝐲 ∈ ℂ is the received vector,𝐇 ∈ ℂN×M is a com-
plex matrix and 𝐧 ∈ ℂN is the zero mean complex Gaussian vector with independent,
equal variance entries. We assume that 𝔼

(
𝐧𝐧H) = 𝐈N , where (⋅)H denotes the complex

conjugate transpose and 𝐈N the N × N identity matrix. It is reasonable to put a power
constraint

𝔼
(
𝐧H𝐧

)
= 𝔼

[
Tr

(
𝐧𝐧H)] ⩽ P

where P is the total transmitted power. The signal-to-noise ratio, denoted by snr, is
defined as the quotient of the signal power and the noise power, and in this case is equal
to P∕N . ◽

Recall that if 𝐀 is an n × n Hermitian matrix then there exists 𝐔 unitary and 𝐃 =
diag

(
d1,… , dn

)
such that 𝐀 = 𝐔𝐃𝐔H . Given a continuous function f, we define f (𝐀)

as

f (𝐀) = 𝐔 diag
(
f
(
d1

)
,… , f

(
dn

))
𝐔H

Naturally, the simplest example is the one where 𝐇 has independent and identically
distributed (i.i.d.) Gaussian entries, which constitutes the canonical model for the
single-user narrow band MIMO channel. It is known that the capacity of this channel
is achieved when 𝐬 is a vector with complex Gaussian zero mean and covariance snr 𝐈M.

See [51, 52] for instance. For the fast fading channel, assuming statistical channel state
information at the transmitter, the ergodic capacity is given by

𝔼
[
log det

(
𝐈N + snr𝐇𝐇H)] = 𝔼

[
Tr log

(
𝐈N + snr𝐇𝐇H)] (1.8)

where in the last equality we use the fundamental fact that

log det (⋅) = Tr log (⋅) (1.9)

We prefer the form of Tr log (⋅) because the trace Tr(⋅) is a linear function. The expecta-
tion 𝔼(⋅) is also a linear function. Sometimes it is convenient to exchange the order of 𝔼
and Tr(⋅) in (1.8):

𝔼
[
log det

(
𝐈N + snr𝐇𝐇H)] = 𝔼

[
Tr log

(
𝐈N + snr𝐇𝐇H)]

= Tr
[
𝔼 log

(
𝐈N + snr𝐇𝐇H)]
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The 𝔼(𝐗) can be approximated by the arithmetic average 1
n

n∑

i=1
𝐗i when n “snapshots” of

the p × p random matrix 𝐗 are observed. As a result, we reach

𝔼
[
log det

(
𝐈N + snr𝐇𝐇H)] = 𝔼

[
Tr log

(
𝐈N + snr𝐇𝐇H)]

= Tr
[
𝔼 log

(
𝐈N + snr𝐇𝐇H)]

≈ 1
n
Tr

[ n∑

i=1
log

(
𝐈N + snr𝐇i𝐇H

i
)
]

(1.10)

which boils down to the sum of random positive definite Hermitian matrices 𝐇i𝐇H
i ,

i = 1,… , n, given the i-th “snapshot” 𝐇i of the random channel matrix 𝐇 that is defined
in (3.16). See [40] for a whole chapter on the sum of random matrices. The channel
capacity with a finite number of samples can be obtained using (1.10). Note that the
Frobenius norm is defined as

‖𝐁‖2
F ≡ Tr

(
𝐁𝐁H)

In (1.10), if we expand the function log
(
𝐈N + snr𝐇i𝐇H

i

)
using its Taylor series, we can

reduce the problem to the sample moments mk defined as

m̂k = 1
M

Tr
[( 1

N
𝐇i𝐇H

i

)k]

for an integer k ≥ 1. Because the sample moments m̂k are consistent estimators of true
moments mk , it is then natural to use the moment method for the inference of the param-
eters [53, p. 425]. See Section 8.9.3 for this connection.

More generally, we can expand a functional of a random matrix in the form of f
(
𝐇𝐇H)

in terms of its Taylor series. We can similarly obtain the true moments mk . We can use
sample moments m̂k to estimate the true moments.

Another important performance measure is the minimum mean square error
(MMSE) achieved by a linear receiver, which determines the maximum achievable
output signal to interference and noise ratio (SINR). For an input vector 𝐱 with i.i.d.
entries of zero mean and unit variance, the MSE at the output of the MMSE receiver is
given by

min
𝐌∈ℂM×N

𝔼
[
‖𝐱 −𝐌𝐲‖2] = 𝔼

[
Tr log

(
𝐈M + snr𝐇H𝐇

)−1
]

(1.11)

where the expectation on the left-hand side is over both the vectors x and the
random matrices 𝐇, whereas the right-hand side is over 𝐇 only. See [52] for
details.

Let 𝐇 be an n × n Gaussian random matrix with complex, independent, and identi-
cally distributed entries of zero mean and unit variance. Given an n × n positive definite
matrix 𝐀, and a continuous function f ∶ ℝ+ → ℝ such that ∫ ∞

0 e−𝛼t| f (t)|2dt < ∞ for
every 𝛼 > 0, Tucci and Vega (2013) [54] find a new formula for the expectation

𝔼
[
Tr

(
f
(
𝐇𝐀𝐇H))]

Taking f (x) = log (1 + x) gives another formula for the capacity of the MIMO com-
munication channel, and taking f (x) = (1 + x)−1 gives the MMSE achieved by a linear
receiver.
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From Example 1.3.8, we see the connection of eigenvalues of 𝐇 and 𝐇𝐇H , when 𝐇 is
decomposed into a product of L random matrices.

Example 1.3.10 (matrix hypothesis testing) Applications include: (i) anomaly
detection; (ii) denial of service for big data; (iii) bad data detection for Smart Grid (state
estimation). We consider the so-called matrix hypothesis-testing problem

0 ∶ 𝐘 = 𝐗

1 ∶ 𝐘 =
√

SNR ⋅𝐇 + 𝐗
(1.12)

where SNR represents the signal-to-noise ratio, and 𝐗 is a non-Hermitian random
matrix of m × n. We further assume that 𝐇 is independent of 𝐗. The problem of (1.12)
is equivalent to

0 ∶ 𝐘𝐘H = 𝐗𝐗H

1 ∶ 𝐘𝐘H = SNR ⋅𝐇𝐇H + 𝐗𝐗H +
√

SNR
(
𝐇𝐗H + 𝐗𝐇H)

(1.13)

where 𝐇𝐇H ,𝐗𝐗H ,𝐘𝐘H are positive semidefinite Hermitian random matrices, which
are Wishart matrices if 𝐗,H are Gaussian random matrices. A matrix 𝐀 of m × n is said
to be positive semidefinite if all the eigenvalues of 𝐀 are non-negative, i.e., 𝜆i(𝐀) ≥ 0, i =
1,… ,min(m, n). The matrix

(
𝐇𝐗H + 𝐗𝐇H) is Hermitian. ◽

The likelihood ratio test (LRT) is the natural choice. We deal with matrix-valued
random variables, where the matrix sizes are large. See Section 8.11 for details. The
analysis of these metrics requires advanced tools, such as the nonasymptotic theory
of random matrices. The nonasymptotic theory is based on the “concentration of
measure” phenomenon when the size of a matrix is large but finite. This phenomenon
is the starting point for almost all the results.

Theorem 17.3.1 essentially says that if we take two large random matrices 𝐀N and 𝐁N ,

and if we conjugate one of them by a uniformly random unitary transformation𝐔N , then
the resulting pair of matrices 𝐀N and 𝐔N𝐁N𝐔H

N will be approximately free. As a slogan,
this can be expressed as follows

Two large random matrices
in the general position
are asymptotically free!

For a multivariate Gaussian distribution p (𝝁,𝚺) , it is well known that the differen-
tial entropy H(⋅) is given by

 (𝚺) =
p
2
+ 1

2
p log (2𝜋) + 1

2
log det𝚺. (1.14)

The high-dimensional setting where the dimension p(n) grows with the sample size n is
of particular current interest.

Let 𝐗1,… ,𝐗n+1 be an independent random sample from the p-dimensional Gaussian
distribution  p (𝝁,𝚺) . The sample covariance matrix is

�̂� = 1
n

n+1∑

k=1

(
𝐗k − 𝐗

)(
𝐗k − 𝐗

)T
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A central limit theorem is established for the log determinant of �̂� in the high-dimensional
setting where the dimension p grows with the sample size n with the only restriction
that p(n) ≤ n. In the case when lim

n→0
p(n)

n
= r for some 0 ≤ r ≤ 1, the central limit theorem

shows

log det �̂� −
p∑

k=1
log

(
1 − k

n

)
− log det𝚺

√

−2 log
(

1 − p
n

)

Law
−−→  (0, 1) as n → ∞ (1.15)

The result for the boundary case p = n yields

log det �̂� − log (n − 1)! + n log n − log det𝚺
√

2 log n

Law
−−→  (0, 1) as n → ∞ (1.16)

One common problem in statistics and engineering is to estimate the distance
between two population distributions based on the samples. A commonly used
measure of closeness is the relative entropy or the Kullback–Leibler divergence. For
two distributions ℙ and ℚ with respective density functions p(⋅) and q(⋅), the relative
entropy between ℙ and ℚ is

KL (ℙ,ℚ) = ∫ p (x) log
p (x)
q (x)

dx

In the case of two multivariate Gaussian distributions ℙ =  p
(
𝝁1,𝚺1

)
, ℚ =

 p
(
𝝁2,𝚺2

)

2KL (ℙ,ℚ) = Tr
(
𝚺−1

2 𝚺1
)
− p +

(
𝝁2 − 𝝁1

)T𝚺−1
2

(
𝝁2 − 𝝁1

)
+ log

(det𝚺1

det𝚺2

)

(1.17)

From (1.17), it is clear that estimation of the relative entropy involves estimation of the
log determinants log det𝚺1 and log det𝚺2.

For testing the hypothesis that two multivariate Gaussian distributionsℙ =  p
(
𝝁1,𝚺1

)
,

and ℚ =  p
(
𝝁2,𝚺2

)
have the same entropy, we have

0 ∶  (ℙ) =  (ℚ) versus 1 ∶  (ℙ) ≠  (ℚ)

For any given significance level 0 < 𝛼 < 1, a test with the asymptotic level 𝛼 can be con-
structed easily using the central limit theorem given above, based on two independent
samples, one from ℙ and another from ℚ.

Knowledge of the log determinant of covariance matrices is also essential for the
quadratic discriminant analysis (QDA). For classification of two multivariate Gaussian
distributions  p

(
𝝁1,𝚺1

)
and  p

(
𝝁2,𝚺2

)
, when the parameters 𝝁1,𝝁2,𝚺1,𝚺2 are

known, the oracle discriminant is

Δ = −
(
𝐳 − 𝝁1

)T 𝚺−1
1

(
𝐳 − 𝝁1

)
+
(
𝐳 − 𝝁2

)T 𝚺−1
2

(
𝐳 − 𝝁2

)
− log

(det𝚺1

det𝚺2

)

(1.18)
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That is, the observation vector z is classified into the population with  p
(
𝝁1,𝚺1

)
dis-

tribution if Δ > 0 and into  p
(
𝝁2,𝚺2

)
otherwise.

Example 1.3.11 (outliers in signal plus noise) For a complex variable z = x + iy,
the Dirac delta function is defined by 𝛿2 (z) ≡ 𝛿 (x) 𝛿

(
y
)
, and we define 𝜕∕𝜕z =

(
𝜕∕𝜕x + i𝜕∕𝜕y

)
∕2, and 𝜕∕𝜕z =

(
𝜕∕𝜕x − i𝜕∕𝜕y

)
∕2. For simplicity, we use the notation

f (z) (instead of f
(
z, z

)
) for general, nonholomorphic functions on the complex plane. ◽

We provide a general formula for the eigenvalue density of large random N × N matri-
ces of the form

𝐀 = 𝐌 + 𝐋𝐗𝐑 (1.19)

where 𝐌, 𝐋 and 𝐑 are general (𝐌) or arbitrary invertible (𝐋 and 𝐑) deterministic matri-
ces, and 𝐗 is a random matrix of zero-mean independent and identically distributed
(i.i.d.) elements with zero mean and variance 1∕N . For example, the entries of 𝐗 are
Gaussian or Bernoulli random variables. The model (1.19) has been used to model the
brain, and may be used for sensor networks and wireless networks.

As 𝐗 and therefore 𝐋XR have zero mean, 𝐌 is the ensemble average of 𝐀.The random
fluctuations of 𝐀 around its average are given by the matrix 𝐋XR, which for general 𝐋
and/or 𝐑 has dependent and nonidentically distributed elements, due to the possible
mixing and nonuniform scaling of the rows (columns) of the i.i.d. 𝐗 by 𝐋 ( 𝐑).

The density of the eigenvalues of 𝐀 = 𝐌 + 𝐋𝐗𝐑, in the complex plane for a realization
of 𝐗 (also known as the empirical spectral distribution), is defined by

𝜌𝐗 (z) =
1
N

N∑

i=1
𝛿2 (z − 𝜆i

)

where 𝜆i are the eigenvalues of 𝐌 + 𝐋𝐗𝐑. It is known [55] that 𝜌𝐗 (z) is asymptotically
self-averaging, in the sense that with probability 1, 𝜌𝐗 (z) − 𝜌 (z) converges to zero (in
the distributional sense) as N → ∞, where 𝜌 (z) ≡ ⟨𝜌𝐗 (z)⟩𝐗 is the ensemble average of
𝜌𝐗 (z) .Thus for large enough N , any typical realization of 𝐗 yields an eigenvalue density
𝜌𝐗 (z) that is arbitrarily close to 𝜌 (z) .

For any matrix 𝐁, we denote its operator norm (its maximum singular value) by ‖𝐁‖
and we define its (normalized) Frobenius norm via

‖𝐁‖F ≡ 1
N

N∑

i,j=1

|
|
|
Bij

|
|
|

2
= 1

N
Tr

(
𝐁𝐁H) (1.20)

(equivalently, ‖𝐁‖F is the root mean square of the singular values of 𝐁).
Our general result is that for large N , 𝜌(z) is nonzero in the region of complex plane

satisfying

1
N

Tr
[(
𝐌z𝐌

†
z
)−1] ⩾ 1 (1.21)

where we defined

𝐌z = L−1 (z𝐈 −𝐌)𝐑−1



Introduction 25

Using (1.20) , we can express (1.21) as

‖
‖
‖
𝐑(z𝐈 −𝐌)−1𝐋‖‖

‖F
⩾ 1

inside this region, 𝜌 (z) is given by

𝜌 (z) = 1
N

1
z
𝜕

𝜕z
Tr

[
(𝐑𝐋)−1𝐌H

z
(
𝐌z𝐌H

z + g(z)2)−1
]

(1.22)

where g(z) is a real, scalar function found by solving

1
N

Tr
[(
𝐌z𝐌H

z + g2)−1
]
= 1,

for g for each z.

Example 1.3.12 (asymptotically deterministic character of limiting spectral distri-
butions) One motivation is to study the random block matrices. We consider N × N
matrices that are Hermitian with above diagonal “block-rows” (or “strips") of height
bounded by a constant d. Examples are matrices with i.i.d block entries but the theory
we develop here applies more generally. ◽

Our analysis is often based on Stieltjes transforms. We call

mn (z) =
1
N

Tr
((

𝐌 − z𝐈N
)−1

)

the Stieltjes transform of 𝐌, the N × N random matrix of interest. Here 𝐈N is the N × N
identity matrix. In much of our analysis, we will let N grow to infinity.

Theorem 1.3.13 Suppose the N × N Hermitian matrix 𝐌 can be written as

𝐌 =
n∑

i=1
𝐌i,

where 𝐌i are independent with rank
(
𝐌i

)
⩽ di. Let z ∈ ℂ+ and Im [z] = v > 0. Call

mn (z) =
1
N

Tr
((

𝐌 − z𝐈N
)−1

)

Then, for any t > 0,

ℙ
(
|
|
|
mn (z) − 𝔼

(
mn (z)

)|
|
|
> t

)
⩽ C exp

⎛
⎜
⎜
⎜
⎜
⎝

−c N2v2t2

n∑

i=1
d2

i

⎞
⎟
⎟
⎟
⎟
⎠

where C and c are two constants that do not depend on n or dis.

We can extend the above theorem to the following.
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Theorem 1.3.14 Suppose the N × N Hermitian matrix 𝐌 can be written as

𝐌 =
∑

1⩽i,j⩽n
𝚯i,j

where 𝚯i,j = fi,j
(
Zi,Zj

)
is a N × N matrix and the random variables

{
Zi
}n

i=1 are inde-
pendent. (fi,j

(
Zi,Zj

)
are simply matrix valued functions of our random variables.) Let

𝐌i be the Hermitian matrix

𝐌i = 𝚯i,i +
∑

j≠i

(
𝚯i,j +𝚯j,i

)

Assume that rank
(
𝐌i

)
⩽ di. Let z ∈ ℂ+ and Im [z] = v > 0. Call

mn (z) =
1
N

Tr
((

𝐌 − z𝐈N
)−1

)

Then, for any t > 0,

ℙ
(
|
|
|
mn (z) − 𝔼

(
mn (z)

)|
|
|
> t

)
⩽ C exp

⎛
⎜
⎜
⎜
⎜
⎝

−c N2v2t2

n∑

i=1
d2

i

⎞
⎟
⎟
⎟
⎟
⎠

where C and c are two constants that do not depend on n nor dis.

The previous theorem is derived from the following theorem.

Theorem 1.3.15 Suppose that the N × N Hermitian matrix 𝐌 is such that, for inde-
pendent random variables

{
Zi
}n

i=1 and a matrix valued function f ,

𝐌 = f
(
Z1,… ,Zn

)

Suppose further that for all 1 ≤ i ≤ n, there exists a matrix 𝐍i such that

𝐍i = fi
(
Z1,… ,Zi−1,Zi+1,… ,Zn

)

and rank
(
𝐌 − 𝐍i

)
⩽ di. (When i = 1, 𝐍1 = f1

(
Z2,… ,Zn

)
and when i = n,

𝐍n = fn
(
Z1,… ,Zn−1

)
. fis are simply matrix-valued functions.) Let z ∈ ℂ+ and Im [z] =

v > 0. Call

mn (z) =
1
N

Tr
((

𝐌 − z𝐈N
)−1

)

Then, for any t > 0,

ℙ
(
|
|
|
mn (z) − 𝔼

(
mn (z)

)|
|
|
> t

)
⩽ C exp

⎛
⎜
⎜
⎜
⎜
⎝

−c N2v2t2

n∑

i=1
d2

i

⎞
⎟
⎟
⎟
⎟
⎠

where C and c are two constants that do not depend on n nor dis.

This is McDiarmid-type inequality.
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Example 1.3.16 (random particles) Beyond random matrices, how about the empir-
ical measure of random particles in ℝd? Is there an analog of the circular law phe-
nomenon? Does the ball replace the disc? The answer is positive. A wireless radio sensor
can be modeled as a random particle, for example. ◽

We consider a system of N particles in ℝd at positions 𝐱1,… , 𝐱N , say with charge
1∕N . These particles are subject to confinement by an external field via a potential 𝐱 ∈
ℝd → V (𝐱) . and to internal pair interaction (typically repulsion) via a potential (𝐱, 𝐲) ∈
ℝd ×ℝd → W (𝐱, 𝐲) . The idea is that an equilibrium may emerge as N tends to infinity.
The configuration energy is

N
(
𝐱1,… , 𝐱N

)
= 1

N

N∑

i=1
V

(
𝐱i
)
+ 1

N2

∑

1⩽i<j⩽N
W

(
𝐱i, 𝐱j

)

= ∫ V (𝐱) d𝜇N (𝐱) + 1
2 ∫≠

W (𝐱, 𝐲) d𝜇N (𝐱) d𝜇N (𝐲)

where 𝜇N is the empirical measure of the particles (global encoding of the particle
system)

𝜇N ∶= 1
N

N∑

k=1
𝛿𝐱k

The model is mean field in the sense that each particle interacts with the others only via
the empirical measure of the system. If 1 ≤ d ≤ 2, then one can construct a random nor-
mal matrix which admits our particles at 𝐱1,… , 𝐱N as eigenvalues: for any n × n unitary
matrix 𝐔,

𝐌 = 𝐔 diag
(
𝐱1,… , 𝐱N

)
𝐔H

which is unitary invariant if 𝐔 is Haar distributed. Here we are more interested in an
arbitrarily high dimension d, for which no matrix model is available. We make our par-
ticles at 𝐱1,… , 𝐱N , random by considering the exchangeable probability measure PN on
(
ℝd)N with density proportional to

exp
(
−𝛽NN

(
𝐱1,… , 𝐱N

))

where 𝛽N > 0 is a positive parameter that may depend on N .The law PN is a Boltzmann

measure at inverse temperature 𝛽N , and takes the form
N∏

i=1
f1
(
𝐱i
)∏

1⩽i<j⩽N f2
(
𝐱i, 𝐱j

)
due

to the structure and symmetries of N .

The model contains the complex Ginibre ensemble of random matrices as the
special case

d = 2, 𝛽N = N2,V (𝐱) = |𝐱|2
,W (𝐱, 𝐲) = 2 log 1

|𝐱 − 𝐲|

which is two dimensional, with quadratic confinement, Coulomb repulsion, and tem-
perature 1∕N2. Here we denote by | ⋅ | the Euclidean norm of ℝd.
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Beyond this two-dimensional example, the typical interaction potential W that we
may consider is the Coulomb interaction in arbitrary dimension

W (𝐱, 𝐲) = KΔ (𝐱 − 𝐲) with KΔ (𝐱) =
⎧
⎪
⎨
⎪
⎩

|𝐱| ifd = 1
log 1

|𝐱|
ifd = 2

1
|𝐱|d−2 ifd ⩾ 3

and the Riesz interaction, 0 < 𝛼 < d (Coulomb if d ≥ 3 and 𝛼 = 2) d ≥ 1

W (𝐱, 𝐲) = KΔ𝛼
(𝐱 − 𝐲) with KΔ𝛼

(𝐱) = 1
|𝐱|d−𝛼

The Coulomb kernel KΔ is the fundamental solution of the Laplace equation, whereas
the Riesz kernel KΔ𝛼

is the fundamental solution of the fractional Laplace equation,
hence the notations. In other words, in the sense of Schwartz–Sobolev distributions,
for some constant cd,

Δ𝛼KΔ𝛼
= cd𝛿0

If 𝛼 ≠ 2, then the operator Δ𝛼 is a nonlocal Fourier multiplier.

1.4 A Mathematical Theory of Big Data

This section presents a mathematical theory to unify big data systems. Basic questions
for big data includes:

• What is the theoretical foundation of big data?
• The science of data or the science of information?
• What is information?
• Are the definitions of information given by Shannon and Von Neumann sufficient for

big data?
• How is “free entropy” relevant to the new definition of “information”?

Applications of big data include: (i) quantum systems; (ii) financial systems; (iii)
atmospheric systems; (iv) sensor network (e.g., PMU, WAMS); (v) wireless networks
(vehicle-to-vehicle communications, 5G); (vi) transportation; (vii) manufacturing; (viii)
health (patients), and so forth.

The big picture of research is the interaction of random matrices, geometric func-
tional analysis, and algorithms (theoretical computer science). We make the following
observations:

• Random matrices are natural building blocks to model big data.
• At the heart of random matrix theory lies the realization that the spectrum of a ran-

dom matrix 𝐗 tends to stabilize as the dimensions of 𝐗 grows to infinity.
• In the last few years, considerable progress was made on the more difficult local and

nonasymptotic regimes. In the nonasymptotic regimes, the dimensions of 𝐗 are fixed
rather than grow to infinity.

• Connections among random matrix theory, quantum information theory, free prob-
ability, and statistics complete the picture.
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The central objective of this section is to establish the fact that the circular law is the
consequence of the more basic concept of “free entropy”. Here we only sketch the key
conceptual steps that complete the proof 1.

Circular and ring laws for eigenvalues are fundamental to random matrices.
Non-Hermitian random matrices, and thus their eigenvalues, are complex values.
See Chapter 6 for details. The circular law is observed for the (square) complex i.i.d.
ensemble, while the ring law is for the rectangular complex i.i.d. ensemble. For an
N × T complex matrix, the inner radius is

√
1 − c, where c = N∕T ≤ 1. The circular

law is the special case of the rectangular law for N = T or c = 1.
The circular law [56] states that the empirical measure of the eigenvalues of a random

n × n matrix, with i.i.d. entries of variance 1∕n, tends to the uniform law on the unit
disc of the complex plane, as the dimension n tends to infinity. This universal result was
proved rigorously by Tao and Vu [55], after 50 years of contributions. The circular law is
universal, in the sense that it remains valid if one drops the Gaussian assumption of the
entries of the matrix, while keeping the i.i.d. structure and the 1∕n variance. The proof of
this high dimensional phenomenon involves tools from potential theory, from additive
combinatorics, and from asymptotic geometric analysis. The circular law phenomenon
can be checked in the Gaussian case using the fact that the model is then exactly solvable.
Actually, Ginibre has shown in the 1960s that if the entries are i.i.d.-centered complex
Gaussians then the eigenvalues of such matrices form a Coulomb gas at temperature
1∕n in dimension 2. This in turn suggests exploration of the analog of the circular law
phenomenon in dimension ≥ 3, beyond random matrices. This led researchers to intro-
duce in [57] stochastic interacting particle systems in which each particle is confined by
an external field, and each pair of particles is subject to a singular repulsion. Under gen-
eral assumptions and suitable scaling, the empirical measure of the particles converges,
as the number of particles tends to infinity, to a probability measure that minimizes a
natural energy-entropy functional. In the case of quadratic confinement and Coulomb
repulsion, the limiting law is uniform on a ball.

Non-Hermitian matrices have a complex-valued eigenvalue distribution in general.
In the Hermitian case, we work on the complex-valued matrix functions to search for
real-valued eigenvalues, while we now have to work on a q-valued function to search
complex-valued eigenvalues. See Table 1.1. For large non-Hermitian random matrices,
we need quatartenionic free probability theory.

Boltzmann entropy (statistical physics), Shannon entropy (for classical information
theory) and von Neumann entropy [39] (for quantum information) are all defined on
the set of positive real-valued numbers. The eigenvalues of non-Hermitian random
matrices are complex valued, in general. This basic fact suggests that the concepts and
hence formulations based on Boltzmann entropy, Shannon entropy, and von Neumann
entropy may not be sufficient for the theory of big data based on non-Hermitian
random matrices.

Von Neumann entropy is defined as [58]

S (𝜌) = Tr 𝜙 (𝜌) = −
n∑

i=1
𝜆i log 𝜆i

1 The similar justification of the ring law from a more basic concept is open at this point of writing.
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Table 1.1 Comparison between classical, free, and quatartenionic free
probability theories.

Probability space Algebra

Classical probability Commutative Commutative
Free probability Noncommutative Commutative
Quatartenionic free probability Noncommutative Noncommutative

Table 1.2 Comparison of different entropy definitions.

Definition set Mathematical expression Remarks

Shannon/Boltzmann
entropy

Positive real values S(𝐩) = −
n∑

i=1
pi log pi. pi are positive

Von Neumann
entropy

Positive real values S(𝜌) = Tr 𝜙(𝜌) = −
n∑

i=1
𝜆i log 𝜆i. 𝜆i are positive

Free entropy Complex values 𝜒(𝜇) ∶= ∫∫ log |x − y|𝜇(dx)𝜇(dy). 𝜇 is complex on ℂ

where 𝜆i are the eigenvalues of 𝜌, a statistical operator, and 𝜙 ∶ ℝ+ → ℝ is the continu-
ous function 𝜙 (t) = −t log t. When studying non-Hermitian random matrices, we find
that the eigenvalues 𝜆i are complex values, instead of real (positive) values. This suggests
that von Neumann entropy is insufficient for the non-Hermitian data matrices. It is well
known that Shannon entropy may be viewed as a special case of von Neumann entropy.

1.4.1 Boltzmann Entropy and H-Theorem

Consider a system of n distinguishable particles, each of them being in one of r possi-
ble states (typically energy levels). We have n = n1 + · · · + nr where ni is the number of

particles in state i. S (𝐩) = −
n∑

i=1
pi log pi, where 𝐩 ∶=

(
p1,… , pr

)
. The quantity S(p) is

the Boltzmann entropy of the discrete probability distribution p. It appears here as an
asymptotic additive degree of freedom per particle in a system with an infinite number of
particles, each of them being in one of the r possible states, with population frequencies
p1, ..., pr.

Returning to the motivations of Boltzmann, let us recall that the first principle of
Carnot–Clausius thermodynamics states that the internal energy of an isolated system
is constant, and the second principle states that there exists an extensive state variable
called the entropy that can never decrease for an isolated system. Boltzmann wanted
to derive the second principle from the idea (controversial, at that time) that matter is
made with atoms. The H-theorem states that the entropy S = −H is monotonic along
the Boltzmann equation.
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1.4.2 Shannon Entropy and Classical Information Theory

Boltzmann entropy also plays a fundamental role in communication theory [59]. It was
founded in the 1940s by Claude Elwood Shannon (1916–2001) at Bell Labs, where it is
known as “Shannon entropy.”

My greatest concern was what to call it. I thought of calling it “information”, but
the word was overly used, so I decided to call it “uncertainty”. When I discussed
it with John von Neumann, he had a better idea. Von Neumann told me, “You
should call it entropy, for two reasons. In the first place your uncertainty function
has been used in statistical mechanics under that name, so it already has a name.
In the second place, and more important, nobody knows what entropy really is,
so in a debate you will always have the advantage.” (Claude E. Shannon, 1961)

1.4.3 Dan-Virgil Voiculescu and Free Central Limit Theorem

Free probability theory was forged in the 1980s by Dan-Virgil Voiculescu (1946–), while
working on isomorphism problems in von Neumann operator algebras of free groups.
Voiculescu discovered in the 1990s that free probability is the algebraic structure that
appears naturally in the asymptotic global spectral analysis of random-matrix models as
the dimension tends to infinity. Free probability theory comes with algebraic analogs of
the central limit theorem and the Boltzmann entropy.

For the n × n complex matrix 𝐀 ∈ n (ℂ) , 𝜏 appears as an expectation with respect
to the empirical spectral distribution. Denoting 𝜆1 (𝐀) ,… , 𝜆n (𝐀) ∈ ℂ the eigenvalues
of 𝐀, we have

𝜏 (𝐀) = 1
n

n∑

k=1
𝛿𝜆k (𝐀) = ∫ x𝜇𝐀 (dx), where 𝜇𝐀 ∶= 1

n

n∑

k=1
𝛿𝜆k (𝐀)

We also obtain

2𝜏
(
log

(
(𝐀 − z𝐈) (𝐀 − z𝐈)∗

))
= 1

n
log |

|
|
det

(
𝐀 − z𝐈n

)|
|
|

= ∫ log |z − 𝜆| d𝜇𝐀 (𝜆)

=
(
log |z − ⋅| ∗ 𝜇𝐀

)
(z)

=∶ −U𝜇𝐀
(z)

The quantity U𝜇𝐀
(z) is exactly the logarithmic potential at point z ∈ ℂ of the probability

measure 𝜇𝐀.
Since − 1

2𝜋
log |z − ⋅| is the so-called fundamental solution of the Laplace equation

in dimension 2, it follows that, in the sense of Schwartz–Sobolev distributions, 𝜇𝐀 =
1

2𝜋
ΔU𝜇𝐀

. It is amazing to point out that the (discrete) empirical spectral distribution
follows a (continuous) partial differential equation—the Laplace equation.

1.4.4 Free Entropy

Inspired by Boltzmann and Shannon on the central limit theory (CLT) of classical
probability theory, we may ask if there exists, in free probability theory, a free entropy
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functional, maximized by the semicircle law at fixed second moment, and which is
monotonic along the free CLT.

The semicircle law is, for the free entropy, the analog of the Gaussian law for the
Boltzmann entropy. The semicircle law on [−2, 2] is the unique law that maximizes
the Voiculescu entropy 𝜒 among the laws on ℝ with a second moment equal to 1, for
supp (𝜇) ⊂ ℝ,

arg max
{

𝜒 (𝜇) ∶ ∫ x2𝜇 (dx) = 1
}

= 1
2𝜋

√
4 − x2𝟏[−2,2] (x) dx

How about laws on ℂ (complex values) instead of ℝ (real values)? When 𝜇 is a proba-
bility measure on ℂ, we will denote the Voiculescu entropy functional as

𝜒 (𝜇) ∶= ∫ ∫ log |x − y|𝜇 (dx)𝜇
(
dy

)

The uniform law on the unit disc is the unique law that maximizes the functional 𝜒
among the set of laws on ℂ with the second moment (mean squared modulus) equal to
1 (here z = x + iy, and dz = dxdy) for supp (𝜇) ⊂ ℂ

arg max
{

𝜒 (𝜇) ∶ ∫ |z|2
𝜇 (dz) = 1

}

= 1
𝜋
𝟏{z∈ℂ∶|z|=1}dz

This phenomenon is known as the circular law. Under the uniform law on the unit
disc, the real and the imaginary parts follow the semicircle law on [−1, 1], and are not
independent.

If one starts with a Hermitian random Gaussian matrix, the Gaussian unitary ensem-
ble (GUE), then the same analysis is available, and produces a convergence to the semi-
circle law on [−2, 2].

It turns out that the Voiculescu free entropy 𝜒 is monotonic along the Voiculescu free
CLT. The Boltzmann–Shannon H-theorem interpretation of the CLT is thus remarkably
valid in classical probability theory, and in free probability theory.
𝐀 and 𝐁 are two n × n Hermitian matrices such that 𝜇𝐀 → 𝜇a, and 𝜇𝐁 → 𝜇b, in the

sense of moments as n → ∞, where 𝜇a and 𝜇b are two compactly supported laws on
ℝ. Let 𝐔 and 𝐕 be independent random unitary matrices uniformly distributed on the
unitary group (we say Haar unitary). Then

𝔼𝜇𝐔𝐀𝐔∗+𝐕𝐁𝐕∗

∗
−−−→
n→∞

𝜇a ⊞𝜇b

This asymptotic freeness reveals that free probability is the algebraic structure that
emerges from asymptotic analysis of large dimensional unitary invariant models of
random matrices. As the functional 𝜒 is maximized by the uniform law on the unit
disc, one may ask about an analog of the Wigner theorem for non-Hermitian random
matrices. The answer is positive.

1.4.5 Jean Ginibre and his Ensemble of Non-Hermitian Random Matrices

The circular law for the Complex Ginibre ensemble, can be proved using the Voiculescu
functional 𝜒 (maximized at fixed second moment by uniform law on unit disc). A simple
model of random matrix is the Ginibre model:

𝐆 =
⎛
⎜
⎜
⎝

G11 · · · G1n
⋮ ⋮ ⋮

Gn1 · · · Gnn

⎞
⎟
⎟
⎠
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Figure 1.4 The eigenvalues of a single
matrix drawn from the complex Ginibre
ensemble of random matrices. The dashed
line is the unit circle. This numerical
experiment was performed using the
promising Julia http://julialang.org/
(accessed August 17, 2016).
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where
(
Gjk

)

1⩽j,k⩽n are i.i.d. random variables on ℂ, with ReGjk , ImGjk of the Gaussian
law of mean 0 and variance 1∕(2n). The eigenvalues of a single matrix drawn from the
complex Ginibre ensemble of random matrices is illustrated in Figure 1.4.

The density of 𝐆 is proportional to
n∏

j,k=1
exp

(
−n||

|
Gjk

|
|
|

2)
= exp

(

−
n∑

j,k=1
n||
|
Gjk

|
|
|

2
)

= exp
(
−n Tr

(
𝐆𝐆H))

1.4.6 Circular Law for the Complex Ginibre Ensemble

The law of the eigenvalues is then proportional to

exp

(

−n
n∑

j=1

|
|
|
𝜆j
|
|
|

2
)

∏

1⩽j,k⩽n

|
|
|
𝜆j − 𝜆k

|
|
|

2

This defines a determinantal process on ℂ ∶ the complex Ginibre ensemble. In order to
interpret the law of the eigenvalues as a Boltzmann measure, we put the Vandermonde
determinant inside the exponential:

exp

(

−n
n∑

j=1

|
|
|
𝜆j
|
|
|

2
+ 2

∑

j<k
log |

|
|
𝜆j − 𝜆k

|
|
|

)

If we encode the eigenvalues by the empirical measure

𝜇n ∶= 1
n

n∑

j=1
𝛿𝜆j

this takes the form

e−n2(𝜇n)
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where the “energy”  (
𝜇n

)
of the configuration 𝜇n is defined via

 (
𝜇n

)
∶= ∫ |z|2d𝜇 (z) + ∫ ∫≠

log 1
|z − z′|

d𝜇 (z) d𝜇
(
z′
)

This suggests interpreting the eigenvalues 𝜆1,… , 𝜆n of 𝐆 as Coulomb gas of
two-dimensional charged particles, confined by an an external field (quadratic
potential) and subject to pair Coulomb repulsion.
− can also be seen as a penalized Voiculescu functional. Minimizing a penalized

functional is equivalent to minimizing without penalty but under constraint (Lagrange).
Presently, if  is the set of probability measures on ℂ then inf > −∞ and the infi-
mum is achieved at a unique probability measure 𝜇∗, which is the uniform law on the
unit disc of ℂ.The circular law is universal, in the sense that it remains valid if one drops
the Gaussian assumption of the entries of the matrix, while keeping the i.i.d. structure
and the 1∕n variance.

How does the random discrete probability measure 𝜇n behave as n → ∞? We may
adopt a large deviations approach. Let  be the set of probability measures on ℂ. We
may show that the functional  ∶  → ℝ ∪ {+∞} is lower semicontinuous for the
topology of narrow convergence, is strictly convex, and has compact level sets. Let us
consider a distance compatible with the topology. It can be shown that for every ball B
for this distance

ℙ
(
𝜇n ∈ B

)
≈ exp

(
−n2 inf

B

( − inf
B
))

The first Borel–Cantelli lemma allows one to deduce that almost surely

lim
n→0

𝜇n = 𝜇∗ = arg inf  = 1
𝜋
𝟏{z∈ℂ∶|z|⩽1}dz

where z = x + iy and dz = dxdy. This phenomenon is known as the circular law. If
one starts with a Hermitian random Gaussian matrix—the Gaussian unitary ensem-
ble (GUE)—then the same analysis is available, and produces a convergence to the
semicircle law on [−2, 2].

1.5 Smart Grid

Roughly speaking, a smart grid can be viewed as two flows: (i) information, and (ii)
electric power. The information flow is used for grid control. Communications, sens-
ing, and control must be considered jointly. At an abstract level, the smart grid can
be viewed as an “energy Internet.” This is very relevant to the Internet of Things, for
machine-to-machine communications.

The vision of a smart transmission grid is illustrated in Figure 1.5. As a roadmap for
research and development, the smart features of the transmission grid are envisaged and
summarized as digitization, flexibility, intelligence, resilience, sustainability, and cus-
tomization. The enabling technologies include [60]:

• New materials and alternative clean energy resources. The high penetration of alter-
native clean energy resources will mitigate the conflicts between the development of
human society and environment sustainability.
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Figure 1.5 Vision of a smart transmission grid. Source: Reproduced from [60] with Permission of IEEE.
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• Advanced power electronics and devices. These greatly improve the quality of power
supply and flexibility of power flow control.

• Sensing and measurement. The basis for communications, computing, control, and
intelligence.

• Communications. Adaptive communication networks will allow open-standardized
communication protocols to operate on a unique platform. Real-time control based
on fast and accurate information exchange on different platforms will improve system
resilience by the enhancement of system reliability and security, and optimization of
the transmission asset utilization.

• Advanced computing and control methodologies. High-performance computing, par-
allel, and distributed computing technologies will enable real-time modeling and sim-
ulation of complex power systems. The accuracy of the situation awareness will be
improved for further suitable operations and control strategies. Advanced control
methodologies and novel distributed control paradigms will be needed to automate
the entire customer-centric power-delivery network.

• Mature power market regulation and policies. These improve the transparency, lib-
erty, and competition of the power market. High customer interaction with the elec-
tricity consumption should be enabled and encouraged.

• Intelligent technologies. These enable fuzzy logic reasoning, and knowledge discovery.

1.6 Big Data and Smart Grid

Our knowledge is dominated by the scales in which our observations are made. Our
slogan is “data is science and science is data.” This book treats big data as the foundation
for the smart grid, an approach that is consistent with [39] and [40]. In other words, the
science of smart grid is a combination of distributed sensing and a distributed network
with the electric power grid. See Chapter 11 for details about why big data should be tied
together with the smart grid. The central task is to understand the statistical knowledge
of the massive datasets and make sense of these data.

Large random matrices are used to model large datasets. It is our firm belief that
large random matrices are the basic building blocks for our science. It is the calculus
for data. From the point of view of probability and statistics, after living in the age
of vector-valued random variables, we are entering a new age of big data, an age of
matrix-valued random variables. Initially, Newton and Leibniz developed the calcu-
lus of f (x), where x is a free variable. Later, we study f (X) where is a scalar-valued
random variable (a function defined on the sample space). Then, we study f (𝐱) where
𝐱 =

[
X1,… ,XN

]T is a vector-valued random variable. Now we are entering an age of
studying f (𝐗) where 𝐗 =

(
𝐱1,… , 𝐱n

)
∈ ℂN×n is a matrix-valued random variable. In

particular, we are interested in the asymptotic regime of

N → ∞, n → ∞ but N
n

→ c ∈ (0,∞)

Alternatively, we are interested in the nonasymptotic regime where
N , n are large but finite

For a complex quantum system (a system with many degrees of freedom)—such as
atoms, nuclei, fundamental particles, it is almost impossible to imagine a theory that
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is exploitable enough to compute accurately, for instance, the energy levels of such a
system. Antenna sensors, smart meters, PMUs, and stocks are analogies. The model of
random particles [56] is relevant in this context, for example. Energy and entropy are
two drivers.

1.7 Reading Guide

The core material of this book provides a comprehensive study of large random matrices
for big data applications (Part I) (see Figure 1.6). After this has been accomplished, we
make connections with selected smart grid applications (Part II) and selected applica-
tions in communications and sensing (Part III). Random matrix theory has been used
as the unifying tool to tie the three parts together. Very often, connections are made at
the mathematical level.

Missing links are, however, inevitably frequent because the majority of materials (90%
we guess) appear, for the first time, in book form. Even worse, most materials are treated,
for the first time, in the context of engineering applications. The main obstacle when
reading this book is the mathematical depth. Although tested in the class room, the
limited size of this book makes it impossible to present all the material in a self-contained
manner.

For the large random matrix, the trick is to convert two-dimensional matrix problems
into one-dimensional problems by using the eigenvalue distribution—forget about the
eigenvectors for the moment. As a result, we can study the function of f

(
𝜆i
)
, i = 1,… , n,

for some function f . Various functions f are defined for different applications.
To interpret our empirical discovery in [61] we connected our results with quan-

tum information theory; see [39] for this link. About 200 pages were also dedicated
to random matrix theory in [39]. It was realized that our discovery was caused by the
high dimensionality of the problem, which lead to the “concentration of measure” phe-
nomenon, a high-dimensional effect, or a property of a large number of variables, for
which functions with small local oscillations are almost constant. In this connection,

Big data

Cognitive
radio

network

High-
dimensional

statistics

Smart grid
Cognitive 
networked 

sensing

Cognitive 
radar

Mathematics-driven
research 

Software/data-enabled science

Figure 1.6 Big data vision.
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the first author’s book [40] was born. The current book can be viewed applying [39]
and [40]. The use of random matrix theory as the unifying theme to model large wire-
less networks, smart grid and big data was explicitly pointed out in [39]. [40] was written
to support this big vision. These three books are complementary. We closed the circle
during the writing of three books. Now we are revisiting random matrix theory, with
the emphasis on the latest results, which are also applicable to the problems we have in
mind—smart grid and big data. During this adventure, the most remarkable experience
with random matrix theory is our feeling of being shocked by its usefulness, beauty,
depth and fertility, as pointed out in the preface of [62]. According to him, usefulness
is usually measured by the utility of the topic outside mathematics. Beauty is a quality
of much the material, but is often something only a trained eye can see. “Depth comes
via the linking together of multiple ideas and topics, often seemingly removed from the
original context. And fertility means that with a reasonable effort there are new results,
some useful, some with beauty, and a few maybe with depth, still waiting to be found.”

In Chapter 1, we started our book with some challenges for big data. Chapter 2 gives
an overview of the framework for the mathematical framework needed for the analysis
of big data. We use a bottom-up approach to lay the foundations using large random
matrices to summarize the large datasets (big data).

Chapter 3 gives the fundamentals of large dimensional random matrices. One moti-
vation is to model the large datasets using large random matrices. It is our belief that
large dimensional random matrices are the foundation for the analysis of big data; this
chapter is the basic material for next-generation engineers and researchers.

Chapter 4, by studying the central limit theory for linear spectral statistics, addresses
the spectral analysis of large dimensional random matrices. The main reason is because
many important statistics in multivariate statistical analysis can be expressed as func-
tionals of the empirical spectral distribution of some random matrices.

Chapter 5 studies the Hermtian free probability theory. The idea of exploiting “large
models” is the unified theme of this whole book. As a result, large random matrices are
natural building blocks for the entire theoretical framework. As large random matrices
can be regarded as free random variables, matrix-valued free probability is discussed to
study the variables.

Chapter 6 studies (large) non-Hermitian random matrices using the newly developed
quatartenionic free probability theory. Most results appear in book form for the first
time.

Chapter 7 deals with data collection. Data storage is central to big data. For many
applications, we often cannot afford the luxury of saving all the raw data generated by
the system (or network) for future processing. One fundamental challenge is to choose
which types of information are stored. As we deal with streaming data, real-time pro-
cessing is required.

Chapter 8 deals with anomaly detection using large random matrices. One objective
is is to study the denial of service using big data. We understand how the large data size
affects the matrix hypothesis detection.

Requirements for applying big data to smart grid are addressed in Chapter 9. The
technical challenges are discussed in Chapter 10. And big data topics for smart grid are
addressed in Chapter 11.

Chapter 12 introduces grid monitoring and state estimation using phasor measure-
ment units (PMUs). Chapter 13 gives an exhaustive treatment of false data injection
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attacks in the context of state estimation. It is well known that cyber security is the most
important task facing engineers and researchers. We use false data injection to attack
against state estimation.

Chapter 14 briefly discusses the demand response.
Chapter 15 addresses communications topics for smart grids. To control the

power grid we need sensing and communications to tie together the whole grid.
High-performance computing and distributed computing are two enablers.

Bibliographical Remarks

This current book together with another two books [39,40] pursues a paradigm of mod-
eling big data using large random matrices. To the best of our knowledge, this vision was
explicitly spelled out and formulated analytically for the first time in November of 2011
during the writing of [39].

Section 1.1.5 draws on material from [4, 26, 27]. We are now facing the data deluge.
[63]. For big data we follow [22], which is an excellent review and tutorial. Labrinidis
and Jagadish (2012) [24] is very insightful. We have followed [24] for insights.

The state-of-the-art of big data is that there is no clear definition for big data, or the
adopted theoretical framework. Our aim of these three books is to attempt to define our
big data problems in a random matrix way. There is no claim of solving all big data prob-
lems using one framework. In Section 1.3 (Definition 1.3.1), we use three conditions to
define our problems related to big data. We limit the potential applications of our meth-
ods using Definition 1.3.1. Clarity and rigor, on the other hand, are achieved. Our three
books are aimed at addressing the consequences of Definition 1.3.1 in the context of
large random matrices.

We have drawn from [45] for some parts of Section 1.2. For Example 1.2.3, we also
drew from [47]. Challenges include: (i) Real-time processing [64] is challenging; (ii) other
technical challenges [65]; (iii) signal processing [66].

Example 1.3.2 and Example 1.3.3 are adapted from [49, 67].
We adopt statistical methods to study big data. Fisher [68] states that the purpose of

statistical methods is to reduce a large quantity of data to a small amount of data that
is capable of containing as much of the relevant information as possible in the original
data. Because the data will generally supply a large number of “facts,” many more than
are sought, much information in the data is irrelevant. This brings to the fore the Fishe-
rial dictum [69, p. 1] that statistical analysis via the reduction of the data is the process
of extracting the irrelevant information. This may be accomplished by modeling a hypo-
thetical population specified by relative few parameters. See [44,70] for one application
in modeling big data in large wireless networks.

Functions are the core for the practical applications. Tao’s excellent text [67] relies
heavily on Talagrand’s concentration theorem for convex functions. High-dimensional
spaces were used to model big data, originally in [39] and then in [40], by using large
random matrices.

In Example 1.3.7, we draw some material from [71]. Example 1.3.8 takes results from
[72–75]. More recent work is [76–78]. In [44,70] we used non-Hermitian random matri-
ces to model big data collected in a large-scale wireless cognitive radio network. We
follow [54] in Example 1.3.9.
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Example 1.3.10 follows [79].
Example 1.3.11 follows [80].
Example 1.3.12 is taken from [81].
Example 1.3.16 follows [56, 57].
In Section 1.4 we follow [56] for the development of the unified mathematical theory

for big data.



41

Part I

Fundamentals of Big Data
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2

The Mathematical Foundations of Big Data Systems

This chapter gives an overview of the mathematical framework needed for the analysis
of big data. Some topics are only listed. Some chapters covered later in this book aim
to go deeper in some selected directions that will be relevant to both power grids and
big data. In particular, we use a bottom-up approach to lay the foundations using large
random matrices to summarize the large datasets (big data). Random matrices play a
central role to describe a null hypothesis or a minimum information hypothesis for the
description of a large big data system or subsystem.

In big data we deal with new signal and information processing methods that can
capture, analyze, and represent emerging datasets that do not fall into traditional “signal”
categories (such as speech or video). Once we store, index and query very large datasets
using parallel and distributed computing systems, we then mine and extract knowledge
from these very large datasets to obtain big data analytics.

Random matrix models provide a powerful framework for modeling numerous phys-
ical phenomena, with applications covering all branches of theoretical physics. Finding
correlations between observables is at the heart of scientific methodology. Once corre-
lations between “causes” and “effects” are empirically established, one can start devising
theoretical models to understand the mechanisms underlying such correlations, and
use these models for prediction purposes. In many cases, for example in financial sys-
tems [82], the number of possible causes and resulting effects are large. In financial
systems, it is suggested that “large models” should be at the forefront of the econometrics
agenda. We adopt this viewpoint in big data systems.

The Marchenko–Pastur law is naturally used to model the large data sets rep-
resented in terms of large random matrices. The natural generalizations of the
Marchenko–Pastur law include free random variables and data with power-law tails.
These explicit expressions—benchmarks—are valid for the interval where singular val-
ues are expected in the absence of any true correlations (or null hypothesis ℍ0) between
the variables under study. Any deviation from these benchmarks indicates “signal”—the
presence of any true correlations (the alternative signal hypotheses ℍ1). Our central
goal for big data is to distinguish “signal” from “noise.” As a result, understanding these
benchmarks is central to this book. The systems under study are complex; the classical
assumption of linearity of the systems is, in general, invalid.

After introducing some basics, we study, as examples, a number of big data systems:
(i) quantum system; (ii) financial system; (iii) atmospheric system; (iv) sensing network;
(v) wireless network; (vi) smart grid; (vii) transportation. Historically, the quantum
system and the financial system have been most widely studied. These systems are

Smart Grid using Big Data Analytics: A Random Matrix Theory Approach, First Edition.
Robert C. Qiu and Paul Antonik.
© 2017 John Wiley & Sons Ltd. Published 2017 by John Wiley & Sons Ltd.
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unified through the use of large random matrices. Mathematically speaking, we deal
with matrix-valued random variables.

2.1 Big Data Analytics

Curiously enough, big data was a serious problem just a few years ago. When data vol-
umes started skyrocketing in the early 2000s, storage and CPU technologies were over-
whelmed by the numerous terabytes of big data—to the point that traditional signal and
information processing methods were invalid. Storage and CPUs not only developed
greater capacity, speed, and intelligence; they also fell in price. Enterprises went from
being unable to afford or manage big data to lavishing budgets on its collection and
analysis.

Today, many engineering projects are exploring big data to discover facts that were
unknown before. Using advanced analytics, industry can study big data to understand
the current state of the business and track still-evolving aspects such as customer
behavior.

Big data analytics is where advanced analytic techniques operate on big data sets.
Hence, big data analytics is really about two things—big data and analytics. The real
power comes from the combination of both things. Big data analytics is the applica-
tion of advanced analytic techniques to very big data sets. First, there is big data for
massive amounts of detailed information. Second, there is advanced analytics, which is
actually a collection of different tool types, including those based on predictive ana-
lytics, data mining, statistics, artificial intelligence, natural language processing, and
so on. Put them together and you get big data analytics, the hottest new practice in
industry.

In this book, our viewpoint is built upon the mathematical objects of large random
matrices and we use them for a unified framework of analysis. Our aim is to promote
this unified framework using large random matrices, rather than a collection of different
tool types. First the large datasets are captured (and stored for easy indexing and query-
ing), then they are represented by the notion of large random matrices with a minimum
information hypothesis of these datasets. Finally, analytics are obtained from these large
random matrices, such as the the limiting distribution of eigenvalues (when the sizes of
these random matrices approach infinity). We deal with matrix-valued functions (or
analytics) for a time-indexed sequence of large random matrices 𝐗1,𝐗2,… ,𝐗n of size
N × T for time t = T ,… , nT . often N = 100 − 10000 and T = 100 − 10000. Here N ran-
dom variables are considered jointly. One primary advantage of using random matrix
theory is its universality in the sense that the results are valid for arbitrary distributions
of these N random variables. In practice, this is critical because we often do not know
the distributions of these random variables—the data is messy.

The definition is easy to understand but do users actually use the term? To quantify
this question, the survey for the report [83] asked: “Which of the following best char-
acterizes your familiarity with big data analytics and how you name it?” Among 325
respondents, 65% said “I know what you mean, but I do not have a formal name for it,”
and 28% said “I know what you mean, and I have a name for it.” Only 7% say “I have not
seen or heard of anything resembling big data analytics.” When users have a term, it is
most often “big data analytics.”
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Why put big data and analytics together now?

• Big data provides gigantic statistical samples, which enhance analytic tool results.
• Analytic tools and databases can now handle big data.
• The economics of analytics is now more embraceable than ever.
• There is a lot to learn from messy data, as long as it is big. Discovery and predic-

tive analytics depend on lots of details—even questionable data. Data are often
missing.

• Big data is a special asset that merits leverage.
• Analytics based on large data samples reveals and leverages business change.

In our context, big data are represented by random matrices 𝐗i, i = 1,… , n and the
analytics are matrix-valued functions f

(
𝐗1,… ,𝐗n

)
. For example, the following basic

functions are natural:

• adding up the n matrices 𝐀n = 𝐗1 + 𝐗 + · · · + 𝐗n;
• products of n matrices 𝐏n = 𝐗1𝐗2 · · ·𝐗n;
• geometric mean of n matrices

(
𝐏n

)1∕n =
(
𝐗1𝐗2 · · ·𝐗n

)1∕n;
• 𝐗1∕M

1 𝐗1∕M
2 · · ·𝐗1∕M

n for non-negative integer M ≥ 1.

In general these matrices have no symmetry; they are non-Hermitian and complex.
Sometimes the only knowledge we know about these matrices is to which class these
matrices belong, such as independent identically distributed (i.i.d.) Gaussian. See
Chapter 6 for details.

2.2 Big Data: Sense, Collect, Store, and Analyze

Mathematics for Analysis of Petascale Data, funded by DOE, addresses the math-
ematical challenges of extracting insight from huge scientific datasets, finding key
features and understanding the relationships between those features. Research areas
include machine learning, real-time analysis of streaming data, stochastic nonlinear
data-reduction techniques and scalable statistical analysis techniques applicable to
a broad range of DOE applications including sensor data from the electric grid,
cosmology, and climate data.

Advances in digital sensors, communications, computation, and storage have created
huge collections of data, capturing information of value to business, science, govern-
ment, and society. In Chapter 7, we formulate the problem in terms of covariance matrix
estimation, which is ultimately reduced to a problem of convex optimization. Real-time
analytics and large-scale optimization parameters are challenges.

Random matrix theory fits into the framework of stochastic nonlinear data-reduction
techniques and scalable statistical analysis.

Sensors: We are interested in sensing the grid using smart meters and PMUs. Com-
munication infrastructure also generates a lot of data, for example through spectrum
sensing.

Computer networks: Data from the many different sources can be collected into
massive data sets via localized sensor networks, as well as the Internet. Distributed com-
puting is often required for real-time applications.
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Data storage: Advances in magnetic-disk technology have dramatically decreased the
cost of storing data. For example, a 1 terabyte disk drive, holding one trillion bytes of
data, costs around $100.

Cluster computer systems: A new form of computer system, consisting of thousands
of “nodes,” each having several processors and disks, connected by high-speed local-area
networks, has become the chosen hardware configuration for data-intensive computing
systems. These clusters provide both the storage capacity for large data sets, and the
computing power to organize the data, to analyze it, and to respond to queries about
the data from remote users. Cluster computers are designed to manage and analyze
very large data sets. The “trick” is in the software algorithms.

Cloud computing facilities: The rise of large data centers and cluster computers has
created a new business model, where businesses and individuals can rent storage and
computing capacity, for example Amazon Web Services.

Data analysis algorithms: The enormous volumes of data require automated or
semiautomated analysis—techniques to detect patterns, identify anomalies, and extract
knowledge. Again, the key is in the software algorithms—new forms of computation,
combining statistical analysis, optimization, and artificial intelligence to construct
statistical models from large collections of data and to infer how the system should
respond to new data. For example, Netflix uses machine learning in its recommendation
system.

• How do we take advantage of cloud computing to instantiate big data services in an
optimal manner (i.e., to reduce cost, maximize performance)?

• How do we automate and formalize the process of instantiating the entire data anal-
ysis pipeline?

• How do we track provenance and handle security as the data flows through the anal-
ysis pipeline?

• What additional storage and analysis systems do we need? For example, do we need
a Hadoop for graphs? What is the role of in-memory systems?

2.2.1 Data Collection

All data that is to be processed is consolidated for analysis. Difficulties with data collec-
tion lie in the different forms that data may have as they arrive from different sources.
Data integration is later performed to keep data as cohesive as possible. Data collection
can be designed to facilitate the data integration.

The sheer size of the data is a challenge and also an opportunity. Cloud computing pro-
vides a solution that meets some scalability needs. The major problem with this system
would be getting the data into the cloud to begin processing. Using standard Internet
connections to upload the data to the cloud would be a significant bottleneck in the
process.

2.2.2 Data Cleansing

After collection, data cleansing or cleaning is performed. There may be data that is either
noisy, erroneous or missing values. Data cleaning uses different methods to eliminate
this bad data from the dataset. After cleaning, data may need to be transformed as the
final preparation for analytics.

In the context of smart grid, bad data detection is performed in this stage.
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2.2.3 Data Representation and Modeling

Data representation and modeling are the most fundamental tasks for big data. We
champion the mathematical paradigm of modeling the datasets as large random matri-
ces, an idea first suggested in [39].

The singular value decomposition (SVD) of an arbitrary (in general complex) p × q
(p > q) matrix 𝐗 is given by

𝐗 = 𝐔𝚲𝐕H

where the p × q matrix 𝐔 has orthonormal rows, the q × q matrix 𝚲 is diagonal with
real, non-negative entries, and the q × q matrix 𝐕 is unitary. Note that the matrices
𝐗𝐗H = 𝐔𝚲2𝐔H and 𝐗H𝐗 = 𝐕H𝚲2𝐕 are Hermitian, with eigenvalues corresponding to
the diagonal entries of 𝚲2 and 𝐔 and 𝐕 the corresponding matrices of eigenvectors.
Consider the space-time data I (𝐱, t) . The SVD of such data is given by

I (𝐱, t) =
∑

n
𝜆nIn (𝐱)an (t) (2.1)

where I(𝐱) are the eigenmodes of the “spatial correlation” matrix

C
(
𝐱, 𝐱′

)
=

∑

t
I (𝐱, t)I

(
𝐱′, t

)

and similarly an(t) are the eigenmodes of the “temporal correlation function”

C
(
t, t′

)
=

∑

x
I (𝐱, t)I

(
𝐱, t′

)

We consider the case of a p × q matrix

𝐗 = 𝐗0 +𝐖

where𝐗0 is fixed and the entries of 𝐖 are normally distributed with a zero mean. In gen-
eral, there are correlations between entries of 𝐖. 𝐗0 may be thought of as the desired or
underlying “signal.” For SVD to be useful,𝐗0 should effectively have a low-rank structure.
𝐗 is a random matrix of size p × q. We are interested in the large matrix limit: p →

∞, q → ∞ but the ratio p∕q → c.

2.2.4 Data Analysis

Our aim is to extract big data analytics. After data processing the analysis can begin. The
major reason behind the need for handling big data is to be able to gain value (insight)
from data analysis. Analytic techniques and methods need to be further researched
to develop techniques that can process large and growing data sets. Simplification of
the analysis process of big data towards an automated approach is a major goal behind
big data.

In this stage, many different analytic methods and techniques may be performed.
These methods and techniques can be broken down into three categories: statistical
analysis, data mining, and machine learning. Statistical analysis creates models for pred-
ication and summarizes datasets. Data mining uses a variety of techniques (clustering,
classification, etc.) to discover patterns and models present in the data. Machine learn-
ing is used to discover relationships that are present within the data.
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2.2.5 Data Storage

For big data, we need an change in the architecture of systems for data storage. Data
storage needs to be highly scalable and flexible enough. For storage, distributed systems
like the Google File System were designed to use commodity clusters for storage. In this
system, data is stored as file blocks of 64MB across the nodes of the cluster. Two addi-
tional replicas are stored to provide redundancy. On top of GFS, MapReduce is used for
processing data across the nodes. It is more efficient to push computations to where the
data resides rather than the opposite. MapReduce exploits the distributed architecture
of the file system by sending jobs to the nodes on the cluster where the data resides.

2.3 Intelligent Algorithms

We list some promising intelligent algorithms:

• Compressive sampling, matrix completion, low-rank models, and dimensionality
reduction.

• Matrix completion and low-rank matrix recovery.
• Dimensionality reduction.
• Data processing in high dimensions.
• Graph, latent factor, tensor, and multirelational data models.
• Robustness to outliers and misses; convergence and complexity issues; performance

analysis.
• Scalable, online, active, decentralized, deep learning and optimization.
• Randomized schemes for very large matrix, graph, and regression problems.
• Human-machine learning systems with limited labeled and massive unlabeled data.

2.4 Signal Processing for Smart Grid

We list some promising signal processing topics for smart grid:

• Adaptive filters and statistical signal processing for smart grid.
• Distributed methods for smart grid detection, estimation, forecasting.
• Sensor fusion, data analytics, data mining, and machine learning for smart grid.
• Demand response, load management and pricing.
• Forecasting models and methods for renewable generation and for loads.
• Impacts of large-scale renewable energy integration.
• Plug in hybrid electric vehicle (PHEV) charging infrastructure and scheduling algo-

rithms, V2G algorithms.
• Cyber-physical systems models for smart grid.
• Signal processing for smart appliances, smart meters, and sensors.

2.5 Monitoring and Optimization for Power Grids

In this chapter, by “big data” we mean smarter, more insightful data analysis. But big
data is really much more than that. Companies that learn to take advantage of big data
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will use real-time information from sensors, radio frequency identification and other
identifying devices to understand their business environments:

• They pay attention to data flows as opposed to stocks.
• They rely on data scientists and product and process developers rather than data ana-

lysts.
• They are moving analytics away from the information technology (IT) function and

into core business, operational, and production functions.

Recently there has been increasing interest in studying large dimensional data sets that
arise in finance, wireless communications, genetics, and other fields. Patterns in these
data can often be summarized by the sample covariance matrix, as done in multivariate
regression and dimension reduction via factor analysis. We run the risk of being buried
in the deep mathematics of summarizing big data using large random matrices (see also
Section 3.1). We justify our approach by the argument that, in the infancy of big data
and smart grid, the interaction between two emerging fields may be unified by large
random matrices. This basic methodology lies at the heart of this book.

The original motivation for random matrix theory (RMT) comes from mathematical
physics, where large random matrices serve as a finite-dimensional approximation of
infinite-dimensional operators. Its importance for statistics comes from the fact that
RMT may be used to correct traditional tests or estimators, which fail in the “large n,
large p” setting. For example, our departure point for statistics analysis usually starts
with the sample covariance matrix 1

n
𝐗𝐗H .Here𝐗 is a complex p × n random matrix, and

p and n go to infinity simultaneously, i.e., p → ∞, n → ∞ but their ratio is concentrated
around c, p∕n → c ∈ (0,∞).

Let us first assume that the entries of 𝐗 are i.i.d. with variance 1. Results on the global

behavior of the eigenvalues of 1
n
𝐗𝐗H mostly concern the spectral distribution, 1

p

p∑

i=1
𝛿𝜆i
,

where 𝛿 denotes the Dirac measure. The spectral distribution converges, n → ∞, p → ∞
with p∕n → c ∈ (0, 1], to a deterministic measure with density function

1
2𝜋c

√
(a − x) (b − x)𝕀(a,b) (x) , a =

(
1 +

√
c
)2
, b =

(
1 −

√
c
)2

where 𝕀(x) is the indicator function. This is the so called Marchenko–Pastur law.
The remarkable observation is that when the size of random matrices are sufficiently

large we are able to exploit a unique phenomenon: a deterministic spectral distribution
is reached. The statistical properties of the entries of the large random matrix are general
and flexible.

In Chapter 6, we study the large non-Hermitian random matrices in the context of
free probability theory. This new framework may be useful in the context of smart grid.

2.6 Distributed Sensing and Measurement for Power Grids

A cornerstone of the smart grid is the advanced monitorability of its assets and oper-
ations. Increasingly pervasive installation of phasor measurement units (PMUs) allows
so-called synchrophasor measurements to be taken roughly 100 times faster than the
legacy supervisory control and data acquisition (SCADA) measurements, time stamped
using the global positioning system (GPS) signals to capture the grid dynamics.
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In addition, the availability of low-latency two-way communication networks will pave
the way to high-precision real-time grid state estimation and detection, remedial actions
to address network instability, and accurate risk analysis and post-event assessment for
failure prevention. See Chapter 15 for communication and control.

Enhanced monitoring and communication capabilities lay the foundations for various
grid-control and optimization components. On the distribution and consumers side,
on the other hand, the demand response aims to adapt the end-user power usage in
response to energy pricing, via smart metering.

For distributed generation, renewable sources such as solar, wind, and tidal, and elec-
tric vehicles are important. Based on distributed energy sources, microgrids include
distributed generation and storage systems. Bidirectional power flow to/from the grid
are enabled by such distributed sources. Open-grid architectures and markets are the
trends.

2.7 Real-time Analysis of Streaming Data

For the smart grid, it is necessary to have appropriate methods for detailed modeling
and simulation on a large scale based on the analysis of real measurements. Available
consumption data are not sufficient: the coarse time-scale of measurements by so called
smart meters—providing accumulated power value time series with typical frequencies
of only one sample per 1 to 15 minutes—may be used for short-term local load fore-
casts on a statistical level but are not sufficient for global fine-grain analysis or for use in
physical simulations that could increase the knowledge of dynamics and dependencies
in the grid [84].

Phasor measurement units (PMUs) are high-speed sensors with the option for syn-
chronous acquisition to enable monitoring of the power grid quality. However, PMUs
are rarely used and data from the real network is expensive [85].

Electrical data recorder (EDR) measurements produce massive amounts of data every
day and additional data will arise from power-grid simulations. When measuring at the
high rate of 25 kHz, each EDR produces 16 GiB per day. This adds up to a total of 5.7 TiB
per year per device, exceeding typical hard-disk storage sizes. As soon as we add many
devices or run simulations with virtual EDRs, storing the data on disk drives connected
to a single PC is obviously no longer possible and processing is not efficient. This is
similar to the situation when the radio waveform data is stored—using cognitive radios
as sensors [40].

Technical requirements are as follows. First, we need data storage that will not run
out of space like traditional storage on hard disk. Second, we need ways to access and
analyze the data efficiently. See [84] for such a system.

The model-driven approach is to (conceptually) collect or process queries on all the
data sensed by the wireless sensor network (WSN). Wireless sensor networks include
novel devices (e.g., smartphones), cognitive radios as sensors [39]. Sensor readings have
such correlations. The model-driven approach can lead to significant energy savings for
the data-acquisition task. However, due to the nature of their techniques, they can only
provide probabilistic guarantees on the accuracy of the data that the sink collects, and
hence no absolute bound on the error. In some scientific applications it may also be the
case that the domain experts do not already have a model of the data distribution they are
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sampling using the WSN but, rather, are interested in collecting accurate measurements
in order to build such a model.

Consider an example of real-time content streaming. The goal is to predict the quality
of service. In [86] the authors presented a new stochastic service model with capac-
ity sharing and interruptions, appropriate for the evaluation of the quality of real-time
streaming, like, for example, mobile TV, or in wireless cellular networks. The general
model takes into account the multiclass Markovian process of call arrivals.

2.8 Salient Features of Big Data

Scientific advances are becoming increasingly data driven and researchers will increas-
ingly think of themselves as consumers of data. The massive amounts of high dimen-
sional data bring both opportunities and new challenges to data analysis. Valid statistical
analysis for big data is becoming increasingly important.

In terms of computational efficiency, big data motivates the development of new com-
putational infrastructure and data storage methods. Optimization is often a tool, not a
goal, in big data analysis. Such a paradigm change has led to significant progress in the
development of fast algorithms that are scalable for massive data with high dimension-
ality. This forges cross-fertilization among different fields including statistics, optimiza-
tion, and applied mathematics.

When the data are aggregated from multiple sources, the best normalization practice
remains an open problem.

Big data are characterized by massive sample size and high dimensionality. First, mas-
sive sample size allows us to unveil hidden patterns associated with small subpopula-
tions and weak commonality across the whole population. Secondly, we discuss several
unique phenomena associated with high dimensionality, including noise accumulation,
spurious correlation, and incidental endogeneity. These unique features make tradi-
tional statistical procedures inappropriate.

2.8.1 Singular Value Decomposition and Random Matrix Theory

In analyzing large amounts of multivariate data, certain quantities naturally arise that are
in some sense “self-averaging.” Namely, in the large size limit, a single dataset can com-
prise a statistical ensemble for the quantity in question. One such quantity, the singular
value distribution of a data matrix, is the subject of [87]. Singular value decomposition
(SVD) is a representation of a general matrix of fundamental importance in linear alge-
bra that is widely used to generate canonical representations of multivariate data. It is
equivalent to principal component analysis in multivariate statistics but, in addition, is
used to generate low-dimensional representations for complex multidimensional time
series. One example is to generate effective low dimensional representations of high
dimensional dynamical systems—called dimensionality reduction. Another example of
current interest is to denoise and compress dynamic imaging data, in particular in the
case of direct or indirect images of neuronal activity. Our interest in this book relates to
the big data in power grids and large communications networks.

A data set with n measurements on p variables can be represented by an n × p
matrix 𝐗. In high-dimensional settings, where p is large, we often desire to reduce the



52 Smart Grid using Big Data Analytics

dimensionality by working with a low-rank approximation of the data matrix. The most
prevalent low-rank approximation is the singular value decomposition (SVD), which
is relevant to the principle component analysis (PCA). Every two or three decades,
someone will claim that he invents the PCA.

Given 𝐗, an n × p matrix, the SVD factorizes 𝐗 as 𝐗 = 𝐔𝐃𝐕T , where 𝐔 ∈ ℝn×n and
𝐕 ∈ ℝp×p are orthogonal matrices and 𝐃 ∈ ℝn×p is zero except on its diagonal with diag-
onal entries in decreasing order. The best rank K approximation to 𝐗, �̂�K , in both the
Frobenius and operator norms, is given by the first K right singular vectors and singular
values of the SVD:

�̂�K =
K∑

k=1
dk𝐮k𝐯T

k .

In MATLAB, we have the build function svd. The SVD of 𝐗 is also closely related to
the eigendecomposition of 𝐗𝐗T . To understand fully the implications of using the SVD
in data-processing applications and classical multivariate analysis techniques such as
principal components analysis (PCA), one must consider the behavior of the SVD when
the elements of 𝐗 are random.

There are two regimes of interest for random data matrices. In the first regime, the
number of samples, n, is large relative to the number of variables, p, and in the second
regime the two numbers are comparable. The first regime is called the “classical regime”
and the second regime in the “modern” regime. The classical regime is characterized by
n → ∞ and p fixed; the modern regime is characterized by n → ∞, p → ∞, and n∕p → 𝛾 ,
where 𝛾 is a fixed scalar in (0,∞).

One can study SVD by analyzing the eigendecomposition of 𝐗𝐗T . Results are stated
for Gaussian random variables but many of the results hold for arbitrary distributions
with finite fourth moments.

Given that the principal components direction vectors are inconsistent in
high-dimensional settings, many have proposed finding principal components
directions using only a subset of the variables, a method termed sparse PCA. This
method seeks linear projections that maximize the sample variance such that these
projection vectors have a limited number of nonzero elements. In other words, one
seeks a direction vector 𝐯 that maximizes var (𝐗𝐯) ∕𝐯𝐯T subject to ‖𝐯‖0 ⩽ s, where ‖⋅‖0
is the 𝓁0-norm, summing the number of nonzero elements. Jolliffe, Trendafilov and
Uddin (2003) [88] first proposed estimating sparse principal components’ directions by
relaxing the 𝓁0-norm to an 𝓁1-norm, placing this penalty on the principal components’
directions to encourage sparsity. The 𝓁1-norm is convex.

Several sparse PCA methods have been shown to be consistent in high-dimensional
settings where classical PCA is inconsistent. Amini and Wainwright [89] consider a
spiked covariance model.

More recently, several have proposed encouraging sparsity in both the PC directions
as well as the sample principal components, forming a penalized SVD or sparse matrix

factorization [90] of the following form: �̂�K =
K∑

k=1
dk𝐮k𝐯T

k , where ‖
‖𝐮k

‖
‖0 ⩽ tk , ‖‖𝐯k

‖
‖0 ⩽ sk .

2.8.2 Heterogeneity

Big data are often created by aggregating many data sources corresponding to different
subpopulations. Each subpopulation might exhibit some unique features not shared by
others.
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Finite mixture models provide a flexible tool for modeling data that arise from a het-
erogeneous population. See [91]. Let Y be a response variable of interest and let 𝐱 =
(
x1, x2,… , xp

)T be the vector of covariates1 believed to have an effect on Y . We consider
the mixture model for the population

𝛼1p1
(
y;𝜽1 (𝐱)

)
+ · · · + 𝛼mpm

(
y;𝜽m (𝐱)

)
(2.2)

where 𝛼i ≥ 0 represents the proportion of the i-th subpopulation, pi
(
y;𝜽i (𝐱)

)
is the

probability distribution of the response of the i-th subpopulation given the covariates
𝐱, 𝜽i(𝐱) as the parameter vector. In practice, many subpopulations are rarely observed,
so 𝛼i is very small. Because big data are characterized by large sample size n, the sample
size n𝛼i for the i-th subpopulation can be moderately large even if 𝛼i is very small.

Inferring the mixture model in (2.2) for large datasets requires sophisticated statis-
tical and computational methods. In high dimensions, however, we need to regularize
the estimating procedure carefully to avoid overfitting or noise accumulation [92, 93].
The authors in [94] proposed an 𝓁1-regularized likelihood method for estimating the
inverse covariance matrix in the high-dimensional multivariate normal model in pres-
ence of missing data. Their method is based on the assumption that the data are missing
at random.

2.8.3 Noise Accumulation

Analyzing big data requires us simultaneously to estimate or test many parameters.
These estimate errors accumulate when a decision or prediction rule depends on a large
number of such parameters. Such a noise-accumulation effect is especially severe in high
dimensions and may even dominate the true signals. It is usually handled by the sparsity
assumption [95–97].

Consider a classification problem [98] where the data come from two classes

𝐗1,… ,𝐗n ∼  (
𝝁1, 𝐈d

)
and 𝐘1,… ,𝐘n ∼  (

𝝁1, 𝐈d
)

(2.3)

We want to construct a classification rule that classifies a new observation 𝐙 ∈ ℝd into
either the first or the second class. For example, for n = 100 and d = 1000,we set 𝝁1 = 𝟎
and 𝝁2 to be sparse: only the first ten entries of 𝝁2 is nonzero with value 3, all the other
entries are zero. When m = 2, we can get high discriminative power. However, the dis-
criminative power becomes very low when m is too large due to noise accumulation. The
first ten features contribute to classifications and the remaining features do not. There-
fore, when m > 10, procedures do not get any additional signals but accumulate noise:
the larger m, the more noise accumulation, which makes the classification procedure
deteriorate with dimensionality.

2.8.4 Spurious Correlation

High dimensionality also brings spurious correlation, which means that many uncorre-
lated random variables may have high sample correlations in high dimensions. Spurious
correlation may lead to wrong statistical inferences.

Consider the problem of estimating the coefficient vector of a linear model

𝐲 = 𝐗𝐳 + 𝐰, Var (𝐰) = 𝜎2𝐈d (2.4)

1 In statistics, a covariate is a variable that is possibly predictive of the outcome under study.
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where 𝐲 ∈ ℝn represents the response vector, 𝐗 =
[
𝐱1,… 𝐱n

]T ∈ ℝn×d represents the
design matrix, 𝐰 ∈ ℝn represents an independent random noise vector, and 𝐈d is the
d × d identity matrix.

In high dimensions, even for a model as simple as (2.4), variable selection is challeng-
ing due to the presence of spurious correlation. When the dimensionality is high, the
important variables can be highly correlated with several spurious variables that are
scientifically unrelated [99].

2.8.5 Incidental Endogeneity

Incidental endogeneity is another subtle issue raised by high dimensionality. In a regres-

sion setting Y =
d∑

i=1
𝛽iXi + W , the term “endogeneity” means that some predictors Xi

correlate with the residual noise W . The conventional sparse model assumes

Y =
d∑

i=1
𝛽iXi + W , and 𝔼

(
W Xi

)
= 0 for i = 1,… , d (2.5)

with a small set S =
{

i ∶ 𝛽i ≠ 0
}
. The exogenous assumption in (2.5) that the residual

noise W is uncorrelated with all the predictors is crucial for the validity of most existing
statistical procedures, including variable selection consistency. Though this assumption
looks natural, it is easy to be violated in high dimensions as some of variables Xi are
incidentally correlated with W , making most high-dimensional procedures statistically
invalid.

2.8.6 Impact on Computational Methods

Big data are massive and very high dimensional, which poses significant challenges on
computing and paradigm shifts on large-scale optimization [100]. Direct application
of penalized quasilikelihood estimators on high-dimensional data requires us to solve
very large-scale optimization problems. Parallel computing, randomized algorithms,
approximate algorithms, and simplified implementations are promising. See [40] for
randomized algorithms.

The volumes of modern datasets are exploding and it is often computationally infeasi-
ble to make inferences directly based on the raw data. As a result, to handle big data from
both a statistical perspective and a computational perspective, dimension reduction as
a data preprocessing step is exploited [101].

2.9 Big Data for Quantum Systems

In this book, the first big data system is traced back to large quantum systems in the
1950s.

For a large class of quantum systems, the statistical properties of their spectrum show
remarkable agreement with random matrix predictions. Recent advances show that the
scope of random matrix theory is much wider.

The study of random matrix ensembles has provided deep insight in several fields of
physics including nuclear, atomic and molecular physics, quantum chaos, and meso-
scopic systems. The interest in random matrices arose from the need to understand the
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spectral properties of the many-body quantum systems with complex interactions—the
challenge of the data deluge for the first time in 1950s. With general assumptions about
the symmetry properties of the system dictated by quantum physics, random matrix
theory (RMT) provides remarkably successful predictions for the statistical properties
of the spectrum.

The fluctuation properties of low-dimensional systems, such as chaotic quantum sys-
tems, are universal and can be modeled by an appropriate ensemble of random matrices.
Random matrix techniques have potential applications and utility in disciplines far out-
side of quantum physics.

2.10 Big Data for Financial Systems

For big data, data capture, data storage and data representation are fundamental. Big
data analytics can be extracted from big data. The aim of this section is to introduce
how financial data is represented—data modeling. Once the data is appropriately rep-
resented, the rest of problems relate to how to analyze the data to extract useful infor-
mation (or knowledge). Financial data are very common so we use the financial system
as the prototype for other datasets. Another reason is that a lot of research has been
done in the financial literature so we can apply, by the method of analogy, the massive
results available there to our problems at hand, such as power grids, sensing networks,
and communication networks.

2.10.1 Methodology

It was the economy which followed physics, and not vice versa. The father of classi-
cal economics, Adam Smith, exemplifies the methodology of science by stressing the
role of observing the regularities and then constructing theories (which Smith called
“imaginary machines”) reproducing the observations. Using astronomy as a reference
point was not accidental—it was the celestial mechanics, and the impressive amount of
astronomical data, which dominated science in several cultures.

One of the benefits of computers was that economic systems started to save more and
more data. Today markets collect incredible amounts of data (they remember practi-
cally every transaction). This triggers the need for new methodologies, able to manage
the data. In particular, the data started to be analyzed using methods borrowed widely
from physics, where seeking regularities for unconventional correlations is mandatory.
In the new science of big data, financial engineers are ahead of communications engi-
neers because their data are more accessible.

Since the mid-1990s there has been a trend—physicists started to study the econ-
omy scientifically. These studies were devoted mostly to quantitative finance. To a large
extent, it was triggered by vast amount of data accessible in this field—big data. In this
way, physics started to play the role of financial mathematics—sometimes rephrasing
the mathematical constructions in the language of physics, sometimes applying methods
developed solely in physics, usually at the level of various effective theories of complex
systems.

The aim of macroeconomic studies is to extract important factors, understand their
mutual relations and describe the development of past events. The ultimate goal is to
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reach a level of understanding that would also permit the prediction of the system’s reac-
tion to changes in macroeconomic parameters in the future.

In some ways, the problem of interpreting the correlations between individual
stock-price changes—and also the problem of data deluge in the age of big data—is
reminiscent of the difficulties experienced by physicists in the 1950s, in interpreting
the spectra of complex nuclei. Large amounts of spectroscopic data on the energy
levels were becoming available but were too complex to be explained by model
calculations because the exact nature of the interactions was unknown. Random
matrix theory (RMT) was developed in this context to deal with the statistics of energy
levels of complex quantum systems [102]. With the minimal assumption of a random
Hamiltonian, given by a real symmetric matrix with independent random elements,
a series of remarkable predictions was made and successfully tested on the spectra
of complex nuclei [102]. Indeed, they postulated that the Hamiltonian describing a
heavy nucleus could be described by a matrix 𝐇 with independent random elements Hij
drawn from a probability distribution. Random matrix theory predictions represent an
average over all possible interactions [102]. Deviations from the universal predictions
of RMT—anomalies detection—identify system-specific, nonrandom properties of
the system under consideration, providing clues about the nature of the underlying
interactions [103–105]. Random matrix techniques have potential applications and
utility in disciplines far outside of quantum physics.

Quantifying correlations between different stocks is a topic of interest not only for sci-
entific reasons of understanding the economy as a complex dynamical system but also
for practical reasons such as asset allocation and portfolio-risk estimation. Unlike most
physical systems, where one relates correlations between subunits to basic interactions,
the underlying “interactions” for the stock market problem are not known. Here, we ana-
lyze cross correlations between stocks by applying concepts and methods of random
matrix theory, developed in the context of complex quantum systems where the pre-
cise nature of the interactions between subunits are not known. By analogy, we extend
this theory to the general big data systems, where the precise nature of the interactions
between subsystems are not known, such as power grids, sensor networks [40], large
communication systems (massive MIMO and cognitive radio network [39]), and even
atmospheric correlations [106].

Based on the reasoning above, one may trace the big data problems back to complex
quantum systems in the 1950s. The unified idea of this book is to model big data as
large random matrices so we can use RMT to extract big data analytics. The underlying
assumption is that RMT is firmly established in physics after 60 years’ research. In this
sense, we place RMT at the heart of the theory for big data analytics. We emphasize
the universality of RMT so we can apply RMT to a huge class of big data problems. To
make the point, our principle is that we only consider those big data problems whose
data can be represented by large random matrices. We follow this principle in cognitive
radio network [39] and cognitive sensing [40]. It is reasonable to extend this principle
to other large datasets such as transportation and manufacturing.

Below, we apply RMT methods to study the cross correlations of stock-price changes,
following [107]. We consider N assets; the correlation matrix contains N(N − 1)∕2
entries, which must be determined from N time series of length T ; if T is not very
large compared to N , one should expect that the determination of the covariances
is noisy, and therefore that the empirical correlation matrix is, to a large extent,



The Mathematical Foundations of Big Data Systems 57

random—that the structure of the matrix is dominated by measurement noise. If this is
the case, one should be very careful when using this correlation matrix in applications.
In particular, the smallest eigenvalues of this matrix are the most sensitive to this
“noise”. It is thus important to devise methods that allow one to distinguish “signal”
from “noise”,2—eigenvectors and eigenvalues of the correlation matrix containing
real information from those that are devoid of any useful information, and, as such,
unstable in time. From this point of view, it is interesting to compare the properties of
an empirical correlation matrix 𝐂 to a “null hypothesis” purely random matrix that one
could obtain from a finite time series of strictly uncorrelated assets. Deviations from
the random matrix case might then suggest the presence of true information.

Recent studies applying RMT methods to analyze the properties of C show that ≈ 98%
of the eigenvalues of 𝐂 agree with RMT predictions, suggesting a considerable degree
of randomness in the measured cross correlations. It was also found that there are devi-
ations from RMT predictions for ≈ 2% of the largest eigenvalues. These results prompt
the following questions:

• What is a possible interpretation of the deviations from RMT?
• Are the deviations from RMT stable in time?
• What can we infer about the structure of 𝐂 from these results?
• What are the practical implications of these results?

Initially, RMT was proposed to explain energy spectra of complicated nuclei half a
century ago. In its simplest form, a random matrix ensemble is an ensemble of N × N
matrices 𝐀 whose entries Aij are uncorrelated i.i.d. random variables, and whose distri-
bution is given by

ℙ (𝐀) ∼ exp
(

−𝛽N
2

Tr
(
𝐀𝐀T)

)

(2.6)

where 𝛽 takes specific values for different ensembles of matrices (e.g. depending on
whether or not the random variables are complex or real valued). Eigenvalue spectra
and correlations of eigenvalues in the limit 𝐍 → ∞ have been worked out for sym-
metric N × N random matrices by Wigner [109, 110]. For real valued matrix entries,
such symmetric random matrices are sometimes referred to as the Gaussian orthogonal
ensemble (GOE).

The symmetry constraint has later been relaxed by Ginibre and the probability distri-
butions of different ensembles (real, complex, quaternion)—known as Ginibre ensem-
bles (GinOE, GinUE, GinSE)—have been derived [111] in the limit of infinite matrix
size. For ensembles of random real asymmetric matrices (GinOE)—the most difficult
case—progress has only slowly been made with great effort in recent decades. The eigen-
value density could finally be derived via different methods [112, 113], where—quite
remarkably—the finite-size dependence of the ensemble has also been elucidated [113].
For recent progress in the field see [114].

Biely and Thurner (2008) [115], for the first time in financial applications, applied
(lagged) covariance matrices stemming from finite rectangular N × T data matrices
𝐗, which contain data for N different assets (or instruments) at T observation points.
The matrix ensemble corresponding to the N × N covariance matrix 𝐂 ∼ 𝐗𝐗T of such

2 The central task of big data analytics is to distinguish “signal” from “noise” [108].
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data is known as the Wishart ensemble [116] and is a cornerstone of multivariate data
analysis. For the case of uncorrelated Gaussian distributed data, the exact solution to
the eigenvalue-spectrum of 𝐗𝐗T is known as Marchenko–Pastur law (for N → ∞)
and has been used as a starting point for random matrix analysis of correlation
matrices at lag zero. Besides, a quite general methodology of extracting meaningful
correlations between variables has been discussed based on a generalization of the
Marcenko–Pastur distribution [82]. The underlying method was the powerful tool of
singular-value decomposition and RMT was used to predict singular-value spectra of
Gaussian randomness.

The time-lagged analogon to the covariance matrix is defined as

Cij
𝜏 ∼

T∑

t=1
Xi

tX
j
t−𝜏

where one time series is shifted by 𝜏 timesteps with respect to the other. In contrast to
(real-valued) equal-time correlation matrices of the Wishart ensemble, which have a real
eigenvalue spectrum, the spectrum of 𝐂𝜏 is defined in the complex plane, as matrices
of this type are, in general, asymmetric. It is the analysis of the asymmetric time-lagged
correlations that forms a fundamental part of finance and econometrics.

2.10.2 Marchenko–Pastur Law for Equal Time Correlations

From the point of view of noncommutative probability and central limit theorems, the
result of this subsection is natural and fundamental. From this point of view, it is also
puzzling how late the random matrices (in our language matrix probabilities) were used
for the analysis of financial data. The breakthrough came in 1999 [107, 117].

The empirical correlation matrix 𝐂 is constructed from the time series of price
changes Xi (t) (where i = 1,… ,N labels the asset and t = 1,… ,T the time) through
the equation:

Cij =
1
T

T∑

t=1
Xi (t)Xj (t) (2.7)

We can symbolically write (2.7) as

𝐂 = 1
T
𝐗𝐗T (2.8)

where 𝐗 is an N × T rectangular matrix, and T denotes matrix transposition. The
null hypothesis of uncorrelated assets, which we consider now, translates itself in the
assumption that the coefficients (𝐗)it = Xi (t) are independent, identically distributed,
random variables. We denote 𝜌𝐂 (𝜆) the density of eigenvalues of 𝐂, defined as:

𝜌𝐂 (𝜆) =
1
N

dn (𝜆)
d𝜆

(2.9)

where n (𝜆) is the number of eigenvalues of 𝐂 less than 𝜆. Interestingly, if 𝐗 is a T × N
random matrix, 𝜌𝐂 (𝜆) is exactly known in the limit N → ∞,T → ∞ and c = T∕N ≥ 1
fixed, and follows the so-called Marchenko–Pastur law:

𝜌𝐂 (x) =
c

2𝜋𝜎2

√
(b − x) (x − a)

x
(2.10)



The Mathematical Foundations of Big Data Systems 59

where

a = 𝜎2
(

1 + 1∕c − 2
√

1∕c
)
, b = 𝜎2

(
1 + 1∕c + 2

√
1∕c

)
,

with x ∈
[
a, b

]
where 𝜎2 is equal to the variance of the elements of 𝐗, equal to 1 with

our normalization. In the limit c = 1 the normalized eigenvalue density of the matrix
𝐗 is the well known Wigner semicircle law, and the corresponding distribution of the
squares of these eigenvalues. The most important features predicted by (2.10) are:

• the fact that the lower “edge” of the spectrum is strictly positive (except for c = 1);
there are therefore no eigenvalues between 0 and a. Near this edge, the density of
eigenvalues exhibits a sharp maximum, except in the limit c = 1 (a = 0) where it
diverges as ∼ 1∕

√
x;

• the density of eigenvalues also vanishes above a certain upper edge b.

Note that the above results are only valid in the limit N → ∞. For finite N , the singu-
larities present at both edges are smoothed: the edges become somewhat blurred, with
a small probability of finding eigenvalues above b and below a,which goes to zero when
N becomes large.

Now, we want to compare the empirical distribution of the eigenvalues of the correla-
tion matrix of stocks corresponding to different markets with the theoretical prediction
given by (2.10), based on the assumption that the correlation matrix is random. We
have studied numerically the density of eigenvalues of the correlation matrix of N = 406
assets of the S&P 500, based on daily variations during the years 1991–96, for a total of
T = 1309 days (the corresponding value of c = T∕N is 3.22).

The unexpected results showed that the majority of the spectrum of empirical covari-
ance matrices is populated by noise! Only a few of the largest eigenvalues did not match
the pattern. An immediate observation is that the highest eigenvalue 𝜆1 is 25 times larger
than the predicted b—see Figure 2.1, inset. The simplest “pure noise” hypothesis is there-
fore inconsistent with the value of 𝜆1.A more reasonable idea is that the components of
the correlation matrix which are orthogonal to the “market” is pure noise. One can treat
𝜎2 as an adjustable parameter. The best fit is obtained, for example, using the least-square
method, for 𝜎2 = 0.74, and corresponds to the dark line in Figure 2.1, which accounts
quite satisfactorily for 94% of the spectrum, while the 6% highest eigenvalues still exceed
the theoretical upper edge by a substantial amount. Note that a still better fit could be
obtained by allowing for a slightly smaller effective value of c, which could account for
the existence of volatility correlations.

2.10.3 Symmetrized Time-Lagged Correlation Matrices

The previous methods in Section 2.10.2 involved equal time correlations. The construc-
tion of delay correlation matrix involves calculating correlations between different enti-
ties with a time delay. Consider the multivariable time series at hand represented as a
matrix 𝐗 of order N × T . Here N is the number of time series of length T each. Sup-
pose that i and j are two time series among the given multivariable time series 𝐗. The
correlation between i at say t = 0 and j at time lag t = 𝜏 is given by

Cij =
1
T

T∑

t=1
XitXj(t+𝜏) (2.11)
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Figure 2.1 Smoothed density of the eigenvalues of 𝐂,where the correlation matrix 𝐂 is extracted
from N = 406 assets of the S&P500 during the years 1991–1996. For comparison we have plotted the
density (2.10) for c = 3.22 and 𝜎2 = 0.85: this is the theoretical value obtained assuming that the
matrix is purely random except for its highest eigenvalue (dotted line). A better fit can be obtained
with a smaller value of 𝜎2 = 0.74 (solid line), corresponding to 74% of the total variance. Inset: same
plot, but including the highest eigenvalue corresponding to the “market,” which is found to be
30 times greater than b. Source: Reproduced with permission from [107].

The matrix 𝐂 thus constructed is asymmetric. The eigenvalues of such a matrix will
be complex. To have real eigenvalues we suitably symmetrize the matrix 𝐂. The sym-
metrized matrix 𝐂S is constructed according to the expression

CS
ij = CS

ji =
Cij + Cji

2
The matrix element Xit corresponds to the t-th element of the time series i. The sym-

metrized delay correlation matrix 𝐂S may be thus represented in terms of the matrix 𝐗
by the expression

𝐂S = 𝐗H (0)𝐗 (𝜏) + 𝐗 (𝜏)𝐗 (0)
2T

We see [118] for empirical data sets of atmospheric data and stock market data. They
construct such matrices for varying delay values.

For the case of the independent, identically distributed data matrix 𝐗, the resolvent is
defined as

G (z) = Tr
((

z − 𝐗H𝐗
)−1

)

where G(z) is a complex function. The density of eigenvalues [87] is given by

𝜌 (𝜆) =
∑

i
𝛿
(
𝜆 − 𝜆i

)
= 1
𝜋

lim
𝜀→∞

Im [G (𝜆 − i𝜀)] (2.12)
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The above expression is valid for a simple correlation matrix for independent, identi-
cally distributed random variables. For the symmetrized delay correlation matrix 𝐂S,

the derivation is done by using the resolvent in

G𝜏 (z) = Tr
((

z − 𝐂S (𝜏)
)−1

)
(2.13)

The expression for G𝜏 (z) is obtained by expanding the resolvent in powers of 1∕z and
using a diagrammatic technique to represent various terms in the expansion. In the limit
N ,T → ∞,while maintaining the ratio Q = (T − 𝜏)∕N to be a constant, only the planar
diagrams contribute [87]. We can sum the diagrams to infinite order and, for 𝜏 << N ,
we obtain the following fourth-order equation for G𝜏 (z)

G4 + 2𝜅G3 +
(

𝜅2 − Q2

𝜎4

)

G2 − 2𝜅Q2

𝜎4 G + Q2

𝜎4𝜆2 (2Q − 1) = 0 (2.14)

where G𝜏 (z) is represented by G for convenience and 𝜅 = Q−1
𝜆

Equation (2.14) is solved numerically to obtain the required solution for G. The imag-
inary part of the solution for G is substituted in (2.12) to obtain the eigenvalue distribu-
tion for the delay correlation matrix. See Figure 2.2 for illustration. The analytical model
agrees with the numerical simulations, as shown in Figure 2.3.

2.10.4 Asymmetric Time-Lagged Correlation Matrices

The entries in the N × T data matrices 𝐗 for N assets and T observation times, are the
log-return time-series of asset i at observation times t,

Xi
t = ln Si

t − ln Si
t−1 (2.15)

after subtraction of the mean and normalization to unit variance, i.e. division by 𝜎i =√⟨(
Xi

t
)2
⟩
−
(
Xi

t
)2
. Here, Si

t is the price of asset i at time t. One time unit is the time
difference between observations at t + 1 and t, for example a day, 5 minutes; for tic

Figure 2.2 Plots of 𝜌(𝜆) versus for different
values of Q = 1,Q = 1.435 and Q = 3.22.
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Figure 2.3 Combined plot of 𝜌(𝜆) versus 𝜆 for
Q = 1 obtained analytically as well as
numerically for independent, identically
distributed random data sets.

data it can also be of variable size. Time-lagged correlation functions of unit-variance
log-return series among stocks are defined as

Cij
𝜏 (T) ≡ ⟨(

Xi
t −

⟨
Xi

t
⟩) (

Xi
t−𝜏 −

⟨
Xi

t−𝜏
⟩)⟩

T (2.16)

where the time-lag 𝜏 is measured in time units and < · · · >T stands for a time-average
over the period T . We drop T below. Equal-time correlations are obviously obtained
for T = 0. For 𝜏 ≠ 0, the lagged correlation matrix 𝐂𝜏 is generally not symmetric and
contains the lagged auto-correlations in the diagonal. It can be written as

𝐂𝜏 =
1
T
𝐗𝐃𝜏𝐗T (2.17)

where 𝐃𝜏 ≡ 𝛿t,t+𝜏 and where 𝐗 is the N × T normalized time-series data. Denoting the
eigenvalues of (Cij

𝜏 ) by 𝜆i and their associated eigenvectors by 𝐮i (or uik), where i, k =
1,… ,N , we may write the eigenvalue problem as

∑

j
Cij
𝜏 𝐮i = 𝜆j𝐮j (2.18)

We immediately recognize that eigenvalues 𝜆i are either real or complex conjugates,
because the matrix elements of Cij

𝜏 are real and thus the conjugate eigenvalue 𝜆∗i also
solves (2.18). Regarding the elements of Cij

𝜏 as random variables with a certain distri-
bution, we should keep in mind that their specific construction, (2.17), results in a
departure from a “purely” random real asymmetric N × N matrix where the entries are
i.i.d. Gaussian distributed.

2.10.5 Noise Reduction

Consider the empirical covariance matrix defined in (2.8), repeated here for conve-
nience:

𝐒 = 1
T
𝐗𝐗T (2.19)

which is an N × N matrix.
The comparison with random matrix theory proved not only helpful to identify the

noise in correlation matrices but also showed a way to reduce this noise. The RMT
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filtering method was developed in [119]. After diagonalization of the correlation
matrix,

𝚲 = 𝐔𝐒𝐔−1

only N − s highest eigenvalues are preserved, while the bulk of the eigenvalues are set
to zero. This filtered spectrum,

𝚲filtered = diag
(
0,… , 0, 𝜆s+1,… , 𝜆N

)

is then transformed back into the original basis:

𝐒filtered = 𝐔−1𝚲filtered𝐔

Finally, the normalization of the diagonal to 1 has to be restored: Sfiltered
ii = 1 for all i.

This method is capable of removing the noise for uncorrelated assets completely.
While keeping only the significant eigenvalues, the information about the full cor-
relation structure and also the noise are still present in the eigenvectors. They are
included in the unitary matrix 𝐔 which is used to transform back to the original
basis.

A weakness of the RMT filtering method is that it discards information buried in the
bulk of the spectrum. This can become relevant for correlation structures with many
small and weakly correlated branches. A method that avoids such a cutoff has been
introduced by Guhr and Kalber (2003) [120]—the so-called power mapping. It takes
each element of the correlation matrix and raises its absolute value to some power q,
while preserving the sign,

C(q)
ij = sign

(
Cij

) |
|
|
Cij

|
|
|

q
(2.20)

It is worth pointing out that C(q) is not the same as Cq.When q is larger than 1, the entries
in the matrix will be suppressed, because, due to normalization, their absolute values
are smaller than or equal to 1. The idea behind power mapping is that the noise will be
suppressed more strongly than the actual correlations. This can be seen, for example, in
the spectral density. The power mapping has a similar effect on the spectral density as a
prolongation of the time series. However, if q becomes too large, the actual correlations
will be suppressed more and more.

The power-mapping method is reminiscent of the power of the non-Hermitian ran-
dom matrix 𝐗 in Section 6.6, 𝐗𝛼, for an arbitrary real number 𝛼.

2.10.6 Power-Law Tails

To what extent the “historical” determination of covariance estimators (i.e. based on
past time series over a finite temporal window T) can be trusted when forecasting the
financial risk of a certain portfolio; put differently, how reliable is the past in shaping
the future? In a pioneering paper, Laloux et al. [107] used a comparison with RMT to
cast serious doubts on the usefulness of historical covariance spectra in estimating the
variance of a given portfolio, questioning the widely applied procedure of Markowitz’s
theory based on Gaussian mean-field approximations. The “measurement noise” due
to the finiteness of the historical time series T was claimed in [107] to bury most of
the relevant information encoded in the historical covariance matrices, thus impairing,
from the beginning, much of the consequent predictions. Clever methods were devised
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to detect meaningful correlations buried under the “noise-dressed” regions of the spec-
tra [120, 121] thus trying to mitigate the pessimistic forecast of [107].

Consider a statistical system with N correlated random variables. Imagine that we do
not know a priori correlations between the variables and that we try to learn about them
by sampling the system T times. Results of the sampling can be stored in a rectangular
matrix 𝐗 containing empirical data Xit , where the indices i = 1,… ,N and t = 1,…T
run over the set of random variables and measurements, respectively. If the measure-
ments are uncorrelated in time the two-point correlation function reads

⟨
Xi1t1

Xi2t2

⟩
= Ci1i2

𝛿t1t2
(2.21)

where 𝐂 is called correlation matrix or covariance matrix. For simplicity assume that
⟨Xit⟩ = 0. If one does not know 𝐂, one can try to reconstruct it from the data 𝐗 using
the empirical covariance matrix

Cij =
1
T

T∑

t=1
XitXjt (2.22)

which is a standard estimator of the correlation matrix. One can think of 𝐗 as of an N ×
T random matrix chosen from the matrix ensemble with some prescribed probability
measure ℙ (𝐗) d𝐗. The empirical covariance matrix:

𝐒 = 1
T
𝐗𝐗T (2.23)

thus depends on 𝐗. For the given random matrix 𝐗, the eigenvalue density of the empir-
ical matrix 𝐒 is

𝜌 (𝐗, 𝜆) ≡ 1
N

N∑

i=1
𝛿
(
𝜆 − 𝜆i (𝐒)

)
(2.24)

where 𝜆i (𝐒) denotes eigenvalues of 𝐒. Averaging over all random matrices 𝐗

𝜌 (𝐗, 𝜆) ≡ ⟨𝜌 (𝐗, 𝜆)⟩ = ∫ 𝜌 (𝐗, 𝜆)ℙ (𝐗)D𝐗 (2.25)

we can find the eigenvalue density of 𝐒 which is representative for the whole ensemble
of 𝐗. We are interested in how the eigenvalue spectrum of 𝐒 is related to that of 𝐂.

The question is how to clean the spectrum of the empirical matrix 𝐒 from the noise
optimally in order to obtain a best quality estimate of the spectrum of the underlying
exact covariance matrix 𝐂. One can consider a more general problem, where in addi-
tion to the correlations between the degrees of freedom (stocks) there are also temporal
correlations between measurements [122]

⟨
Xi1t1

Xi2t2

⟩
= Ci1i2

At1t2
(2.26)

given by an autocorrelation matrix 𝐀. If 𝐗 is a Gaussian random matrix, or more pre-
cisely if the probability measure ℙ (𝐗)D𝐗 is Gaussian, then the problem is analytically
solvable in the limit of large matrices [87,121–123]. One can then derive an exact rela-
tion between the eigenvalue spectrum of the empirical covariance matrix 𝐒 and the
spectra of the correlation matrices 𝐀 and 𝐂.

There is a model that, on the one hand, keeps the structure of correlations (2.26) and,
on the other hand, has power-law tails in the marginal probability distributions for indi-
vidual matrix elements. More generally, we will calculate the eigenvalue density of the



The Mathematical Foundations of Big Data Systems 65

empirical covariance matrix 𝐒 (2.23) for random matrices 𝐗 which have a probability
distribution of the form

ℙ (𝐗)D𝐗 =  −1f
(
Tr 𝐗T𝐂−1𝐗𝐀−1)D𝐗 (2.27)

where D𝐗 =
N ,T∏

i,t=1
dXit is a volume element. The normalization constant 

 = 𝜋d∕2(det𝐂)T∕2(det𝐀)N∕2 (2.28)

and the parameter d = NT have been introduced for convenience. The function f is an
arbitrary non-negative function such that ℙ (𝐗) is normalized: ∫ ℙ (𝐗)D𝐗 = 1.

In particular we will consider an ensemble of random matrices with the probability
measure given by a multivariate Student distribution

ℙ (𝐗)D𝐗 =
Γ
(
𝜈+d

2

)

Γ
(
𝜈

2

)
(
1 + Tr 𝐗T𝐂−1𝐗𝐀−1)−(𝜈+d)∕2D𝐗 (2.29)

The two-point correlation function can be easily calculated for this measure:
⟨

Xi1t1
Xi2t2

⟩
= 𝜎2

𝜈 − 2
Ci1i2

At1t2

We see that for 𝜎2 = 𝜈 − 2 and for 𝜈 > 2 the last equation takes the form (2.26).
Let us first consider the case without correlations: 𝐂 = 𝐈N and 𝐀 = 𝐈T . The spectrum

of the empirical covariance for the Gaussian ensemble is given by the Marchenko–Pastur
distribution:

𝜌G (𝜆) = 1
2𝜋c𝜆

√
(b − 𝜆) (𝜆 − a)

where a =
(

1 −
√

c
)2
, and b =

(
1 +

√
c
)2
.

The corresponding spectrum for the Student ensemble is then

𝜌𝜈 (𝜆) =
1

2𝜋cΓ
(
𝜈

2

)
(
𝜈

2

)𝜈∕2
𝜆−𝜈∕2−1 ∫

b

a

√
(b − x) (x − a)e−𝜈x∕2𝜆x(𝜈∕2)−1dx (2.30)

The integral over dx can be easily computed numerically. Results of this computation
for different values are shown in Figure 2.4 and Figure 2.5.

2.10.7 Free Random Variables

The law of large numbers and the central limit theorem are two cornerstones of the
theory of probability. Understanding their relationships with the physical laws is central
to all the science. Large random matrices can be regarded as free random variables.
This approach is basic to many results published in physics and finance. See [125] for
its application in financial data.

The concepts of the free random variables (FRV) calculus serve as a powerful alter-
native to standard random matrix theory, both for Gaussian and non-Gaussian noise.
Free random variables may be thought of as an abstract noncommutative generaliza-
tion of the classical (commutative) probability calculus, i.e. a mathematical framework
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Figure 2.4 Spectra of the covariance matrix C for the Student distribution (2.29) with C = IN and
A = IT , c = N∕T = 0.1, for 𝜈 = 1∕2, 2, 5, 20, and 100 (thin lines from solid to dotted), calculated using
the formula (2.30) and compared to the uncorrelated Wishart (thick line). One sees that for 𝜈 → ∞ the
spectra tend to the Wishart distribution. Source: Reproduced from [124] with permission.
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Figure 2.5 Spectra of the empirical covariance matrix S calculated from (2.30) with c = 1∕3, compared
to experimental data (stair lines) obtained by the Monte Carlo generation of finite matrices
N = 50, T = 150. Source: Reproduced from [124] with permission.

for dealing with random variables that do not commute, examples of which are random
matrices.

On the other hand, free random variables were initiated by Voiculescu et al. in 1992
and Speicher in 1994 as a rather abstract approach to von Neumann algebras, but it
has a concrete realization in the context of RMT, because large random matrices can be
regarded as free random variables, as mentioned above.
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The centerpiece of free random variables is a mathematical construction of the notion
of freeness, which is a noncommutative counterpart of the classical independence
of random variables. As such, it allows for extending many classical results founded
upon the properties of independence into the noncommutative (random matrix)
realm, particularly the algorithms of addition and multiplication of random variables,
or the ideas of stability, infinite divisibility, and so forth. This introduces a new quality
into RMT, which simplifies, both conceptually and technically, many random matrix
calculations, especially in the macroscopic limit (the bulk limit, or random matrices of
infinite size), which is the main interest in practical problems.

We formulate an analog of the central limit theorem, if random variables
𝐗1,𝐗2,… ,𝐗n forming the sums

𝐒n = 𝐗1 + 𝐗2 + · · ·𝐗n (2.31)

do not commute. In other words, we are seeking a theory of probability, which is non-
commutative, i.e. 𝐗i, can be viewed as operators, but which should exhibit close sim-
ilarities to the “classical” theory of probability. Such theories are certainly interesting
from the point of view of quantum mechanics or noncommutative field theory. Abstract
operators may have matrix representations. When such a construction exists, we have
a natural tool for formulating the probabilistic analysis directly in the space of matrices.
Contemporary financial markets are characterized by collecting and processing enor-
mous amount of data—big data. Statistically, they may obey the matrix central limit
theorems. Matrix-valued probability theory is then ideally suited for analyzing the prop-
erties of arrays of data.

The origins of noncommutative probability are linked with abstract studies of von
Neumann algebras done in the 1980s. A new twist was given to the theory when it was
realized that noncommuting abstract operators, called free random variables, can be
represented as infinite matrices [126]. Only very recently the concept of FRV started to
appear explicitly in physics [127–129].

Below we abandon a formal way and we shall follow the intuitive approach, using fre-
quently a physical intuition. Our main goal is to study the spectral properties of large
arrays of data.

Let us assume that we want to study statistical properties of infinite random matrices.
We study the spectral properties of N × N matrix 𝐗, (in the limit N), which is drawn
from a matrix measure

d𝐗 exp [−N Tr V (𝐗)] (2.32)

with a potential V (𝐗) (in general not necessarily polynomial). For the moment, we study
real symmetric matrices whose spectrum is real. The average spectral density of the
matrix 𝐗 is defined as

𝜌 (𝜆) = 1
N

⟨Tr 𝛿 (𝜆 − 𝐗)⟩ = 1
N

⟨ N∑

i=1
𝛿
(
𝜆 − 𝜆i

)
⟩

(2.33)

where ⟨· · ·⟩means averaging over the ensemble (2.32) and𝜆i = 𝜆i (𝐗) are the eigenvalues
of 𝐗. Using the standard folklore, that the spectral properties are related to the discon-
tinuities of the Green’s function we may introduce

G (z) = 1
N

⟨
Tr 1

z𝐈 − 𝐗

⟩
(2.34)



68 Smart Grid using Big Data Analytics

where z is a complex variable and 1
z𝐈−𝐗

stands for the inverse (z𝐈 − 𝐗)−1. Due to the
known properties of the distributions

lim
𝜀→0

1
𝜆 ± i𝜀

= PV 1
𝜆
∓ i𝜋𝛿 (𝜆) (2.35)

we find that the imaginary part of the Green’s function reconstructs spectral
density (2.33)

− 1
𝜋

lim
𝜀→0

ImG (z) ||z=𝜆+i𝜀 = 𝜌 (𝜆) (2.36)

This famous inversion formula motivates the whole framework.
The natural Green’s function will serve as an auxiliary construction explaining the

crucial concepts of the theory of matrix (noncommutative) probability theory. Let us
define a functional inverse of the Green’s function (sometimes called a Blue’s function
[128]), i.e., G [B (z)] = z.The fundamental object in noncommutative probability theory,
the so-called R function or R-transform, is defined as

R (z) = B (z) − 1
z

(2.37)

With the help of the R-transform, we shall now uncover several astonishing analogies
between the classical and matrix probability theory.

We shall start from the analog of the central limit theorem [126]: the spectral distri-
butions of independent variables 𝐗i

𝐒K = 1
√

K

(
𝐗1 + 𝐗2 + · · ·𝐗K

)
(2.38)

each with arbitrary probability measure with zero mean and finite variance
⟨
Tr 𝐗2

i

⟩
=

𝜎2, converge towards the distribution with R-transform R (z) = 𝜎2z.
Let us now find the exact form of this limiting distribution. Since R (z) = 𝜎2z, B (z) =

𝜎2z + 1∕z, its functional inverse satisfies

z = 𝜎2G (z) + 1∕G (z) (2.39)

The solution of this quadratic equation (with proper asymptotics G (z) → 1∕z for large
z) is

G (z) =
z −

√
z2 − 4𝜎2

2𝜎2 (2.40)

so the spectral density, supported by the cut of the square root, is

𝜌 (𝜆) = 1
2𝜋𝜎2

√
4𝜎2 − 𝜆2 (2.41)

This is the famous Wigner semicircle [102] (actually, semiellipse) ensemble. The
omnipresence of this ensemble in various physical applications finds a natural
explanation—it is a consequence of the central limit theorem for noncommuting
random variables. Thus the Wigner ensemble is a noncommutative analog of the
Gaussian distribution. Indeed, one can show that the measure (2.32) corresponding to
the Green’s function (2.40) is V (𝐗) = 1

𝜎2 𝐗2.
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Now consider, what “independence” means for two identical matrix valued ensembles,
for example, of the Gaussian type, with zero mean and unit variance. We intend to find
the discontinuities of the Green’s function

G1+2 (z) ∼ ∫ D𝐗1D𝐗2e−N Tr 𝐗2
1 e−N Tr 𝐗2

2 Tr 1
z𝐈 −

(
𝐗1 + 𝐗2

) (2.42)

In principle, this requires a solution of the convolution, with matrix-valued, noncom-
muting entries. Here we can see how the R-transform operates. This is the transform
that imposes the additive property for the all cumulants: all spectral cumulants obey

ki
(
𝐗1 + 𝐗2

)
= ki

(
𝐗1

)
+ ki

(
𝐗2

)

for all i = 1, 2,… ,∞ [126, 130].
Mathematicians call such a property “freeness,” hence the name “free random vari-

ables.” The R-transform is an analog of the logarithm of the characteristic function in
the classical probability theory, and fulfills the addition law [126]

R1+2 (z) = R1 (z) + R2 (z) (2.43)

For two large random matrices 𝐗,Y , we have

R𝐗+𝐘 (z) = R𝐗 (z) + R𝐘 (z) (2.44)

At this moment one can start to really appreciate the power of the noncommutative
approach to probability. For large random matrices 𝐗 and 𝐘 (exact results hold in the
N → ∞ limit), the knowledge of their spectra is usually sufficient for predicting the spec-
trum of the sum 𝐗 + 𝐘.

The noncommutative calculus also allows generalization of the additive law for
non-Hermitian matrices [123, 131], and even the formulation of the multiplicative law,
inferring the knowledge of all moments of the spectral function of the product of 𝐗𝐘,
knowing only the spectra of 𝐗 and 𝐘 separately (so-called S-transform) [126]. It turns
out that for two large random matrices 𝐗,Y , we have

S𝐗𝐘 (z) = S𝐗 (z) S𝐘 (z) (2.45)

As such, it offers a powerful shortcut in analyzing stochastic properties of large ensem-
bles of data. Moreover, the larger the sets the better because finite size affects scale at
least as 1∕N .

Consider power-law like spectra in noncommutative probability theory. Motivated by
the construction in classical probability, we pose the following problem: what is the most
general form of the spectral distribution of random matrix ensemble, which is stable
under matrix convolution, with the same functional form as the original distributions,
modulo shift, and rescaling? Surprisingly, noncommutative probability theory follows
from the Lévy–Khinchine theorem of stability in classical probability. In general, the
required R(z) behaves like z𝛼−1, where 𝛼 ∈ (0, 2].More precisely, the list is exhausted by
the following R-transforms [132]:

• (i) R (z) = ei𝜋𝜙z𝛼−1, where 𝛼 ∈ (1, 2] , 𝜙 [𝛼 − 2, 0]
• (ii) R (z) = ei𝜋𝜙z𝛼−1, where 𝛼 ∈ (0, 1] , 𝜙 [1, 1 + 𝛼]
• (iii) R (z) = a + b log z, where b is real, ℑa ≥ 0 and b ⩾ − 1

𝜋
Im a
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The asymptotic form of the spectra is power-law like, i.e., 𝜌 (𝜆) ∼ 1∕𝜆𝛼−1. The singular
case (iii) corresponds, in a symmetric case (b = 0), to the Cauchy distribution. Note that
case (i) with 𝛼 = 2 corresponds to the Gaussian ensemble. For spectral distributions,
several other analogies to Levy distributions hold. In particular, there is a one-to-one
correspondence for spectral analogs of ranges, asymmetries, and shifts. Spectral distri-
butions also exhibit duality laws (𝛼 → 1∕𝛼), like their classical counterparts [133, 134].

Let us show how useful the formalism of noncommutative probability theory could
be for the analysis of financial data.

We analyze a time series of prices of N companies, measured at equal sequence of T
intervals. The returns (here relative daily changes of prices) could be recast into N × T
matrix 𝐗. This matrix defines the empirical N × N covariance matrix 𝐂. This matrix
today forms a cornerstone of every methodology of measuring the market risk.

Now we are ready to confront the empirical data. Consider the extreme case in which
the covariance matrix is completely noisy (no information), i.e., 𝐗 is stochastic, belong-
ing to a random matrix ensemble. By central limit theorems, we can consider either
matrix Gaussian or matrix Lévy–Khinchine stability basins. The exact formula, corre-
sponding to T ,N → ∞, with N∕T = c fixed, comes from [131].

For symmetric Levy distributions, for completely random matrices, the Green’s func-
tion is given by

G (z) = 1∕z
[
1 + f (z)

]
(2.46)

where f (z) is a multivalued solution of a transcendental equation
(
1 + f

) (
f + c

) 1
f 2∕𝛼 = z (2.47)

In the case where 𝛼 = 2, (2.47) is algebraic (quadratic), and the spectrum is localized on
a finite interval. In all other cases, the range of the spectrum is infinite, with the large
eigenvalue distribution scaling as 1∕𝜆𝛼+1.

The case in which 𝛼 = 2 corresponds to the spectral distribution of celebrated the
Marchenko–Pastur law. See Section 2.10.2.

In the case of a Gaussian disorder, 94% of empirical eigenvalues were consistent with
random matrix spectra, as pointed out in Section 2.10.2. Only a few of the largest eigen-
values did not match the pattern, reflecting the appearance of large clusters of compa-
nies. The analysis done with the power law (𝛼 = 1.5) not only confirmed the dominance
of stochastic effects, but even interpreted the clusters as possible large stochastic events
[134]. It also pointed out the dangers of using the covariance matrix (which assumes
implicitly the finite dispersion) in cases when power laws are present. A comparative
study shows that only this covariance is stable under reshuffling, with a spectrum in
remarkable agreement with the one extracted from an ensemble of random Lévy matri-
ces with commensurate sizes and asymmetry.

2.10.8 Cross-Correlations between Input and Output Variables

Our central result is derived from the theory of free random matrices, and gives an
explicit expression for the interval where singular values are expected in the absence of
any true correlations between the variables under study. Our result can be seen as the
natural generalization of the Marchenko–Pastur distribution for the case of rectangular
correlation matrices.
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Consider the N input factors, denoted as Xi, i = 1,… ,N and M output factors Yj, j =
1,… ,M.There are a total of T observations, where Xit and Yjt, t = 1,… ,T are observed.
We assume that all N + M time series are standardized—that both Xs and Y s have zero
mean and variance unity. The Xs and the Y s may be completely different, or may be
the same set of observables but observed at different times, as for example N = M and
Yjt = Xit+1.

Now, consider the M × N cross-correlation matrix 𝐑 between the Xs and
the Y s:

(𝐑)ij =
T∑

t=1
YjtXit ≡ (

𝐘𝐗T)

ij (2.48)

We are interested in the singular value decomposition (SVD) of this matrix. If M < N ,
we consider the matrix M × M matrix 𝐑𝐑T (or the N × N matrix 𝐑T𝐑 if M > N), which
is symmetrical and has M positive eigenvalues, each of which is equal to the square of
a singular value of 𝐑 itself. The second observation is that the nonzero eigenvalues of
𝐑𝐑T = 𝐘𝐗T𝐗𝐘T are the same as those of the T × T matrix 𝐓 = 𝐗T𝐗𝐘𝐘T , obtained by
swapping the position of 𝐘 from the first to the last. In the benchmark situation (null
hypothesis) where the Xs and the Y s are independent from each other, the two matrices
𝐗T𝐗 and 𝐘𝐘T are mutually free [52], and one can use results on the product of free
matrices to obtain the eigenvalue density from that of the two individual matrices, which
are known. The general recipe [52, 135] is to construct first the so-called 𝜂-transform
of the eigenvalue density 𝜌(u) of a given T × T non-negative matrix 𝐀, defined as:

𝜂 (𝛾) = ∫ du 1
1 + 𝛾u

≡ 1
T

Tr
(
𝐈T + 𝛾𝐀

)−1 (2.49)

From the functional inverse of 𝜂 (𝛾) , one now defines the S-transform of 𝐀 as:

S𝐀 (x) ≡ −1 + x
x

𝜂−1
𝐀 (1 + x) (2.50)

Endowed with these definitions, one of the fundamental theorems of free matrix the-
ory [52] states that the S-transform of the product of two free matrices 𝐀 and 𝐁 is equal
to the product of the two S-transforms

S𝐀𝐁 (x) = S𝐀 (x) Σ𝐁 (x)

A similar, somewhat simpler, theorem exists for sums of free matrices, in terms of
R-transforms, such that

R𝐀+𝐁 (x) = R𝐀 (x) + R𝐁 (x)

Applying this theorem with 𝐀 = 𝐗T𝐗 and 𝐁 = 𝐘𝐘T one finds:

𝜂𝐀 (𝛾) = 1 − n + n
1 + 𝛾

, n = N
T

𝜂𝐁 (𝛾) = 1 − m + m
1 + 𝛾

, m = M
T

(2.51)

From this, one easily obtains:

S𝐓 (x) = S𝐗T𝐗𝐘𝐘T (x) = S𝐗T𝐗 (x) S𝐘𝐘T (x) =
(1 + x)2

(x + n) (x + m)
(2.52)
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Inverting back this relation allows one to derive the 𝜂-transform of 𝐓 as:

𝜂𝐓 (𝛾) =
1

2 (1 + 𝛾)

[

1 − (𝜇 + 𝜈) 𝛾 +
√

(𝜇 − 𝜈)2
𝛾2 − 2 (𝜇 + 𝜈 + 2𝜇𝜈) 𝛾 + 1

]

(2.53)

with 𝜇 = m − 1 and 𝜈 = n − 1. The limit 𝛾 → ∞ of this quantity gives the density of
exactly zero eigenvalues, easily found to be equal to max(1n, 1m),meaning, as expected,
that the number of nonzero eigenvalues of 𝐓 is min(N ,M). Depending on the value
of n + m compared to unity, the pole at 𝛾 = 1 corresponding to eigenvalues exactly
equal to 1 has a zero weight (for n + m < 1) or a nonzero weight equal to n + m. One
can rewrite the above result in terms of the more common Stieltjes transform of 𝐓,
m𝐀 (z) ≡ 𝜂𝐀 (−1∕z) ∕z, for matrix 𝐀, which reads:

m𝐓 (z) =
1

2z (z − 1)

[

z + (𝜇 + 𝜈) +
√

(𝜇 − 𝜈)2 − 2 (𝜇 + 𝜈 + 2𝜇𝜈) z + z2
]

(2.54)

The density of eigenvalues is then obtained from the standard relation [52]:

𝜌𝐓 (z) = lim
𝜀→0

Im
[ 1
𝜋T

Tr
(
(z + i𝜀) 𝐈T − 𝐓

)−1
]
= lim

𝜀→0

1
𝜋
Im

[
m𝐓 (z)

]
(2.55)

which leads to the rather simple final expression, which is the central result of this
section, for the density of singular values s of the original correlation matrix 𝐑 = 𝐘𝐗T :

𝜌 (s) = max (1 − n, 1 − m) 𝛿 (s) + max (m + n − 1, 0) 𝛿 (s − 1) (2.56)

+
Re

√(
s2 − 𝛾−

) (
𝛾+ − s2

)

𝜋s (1 − s2)
where 𝛾± are the two positive roots of the quadratic expression under the square root in
equation (2.54) above, which read explicitly:

𝛾± = n + m − 2mn ± 2
√

mn (1 − n) (1 − m) (2.57)

This is our main technical result.
We can choose as a benchmark the case where all (standardized) variables X and Y

are uncorrelated, meaning that the ensemble average 𝔼
(
𝐂X

)
= 𝔼

(
𝐗𝐗T) and 𝔼

(
𝐂Y

)
=

𝔼
(
𝐘𝐘T) are equal to the unit matrix, whereas the ensemble average cross-correlation

𝔼 (𝐑) = 𝔼
(
𝐗𝐘T) is identically zero.

For a given finite size sample, however, the eigenvalues of 𝐂X and 𝐂Y will differ from
the limiting value (unit), and the singular values of 𝐑 will not be the limiting value
(zero). The statistics of the eigenvalues of 𝐂X and 𝐂Y is well known to be given by the
Marchenko–Pastur distribution with parameters n and m respectively, which reads, for
c = n,m < 1:

𝜌MP (𝜆) =
1

2𝜋c𝜆
Re

√(
𝜆 − 𝜆min

) (
𝜆max − 𝜆

)
(2.58)

with

𝜆min =
(

1 −
√

c
)2

𝜆max =
(

1 +
√

c
)2

(2.59)

The S-transform of this density takes a particularly simple form:

S (x) = 1
1 + cx

(2.60)
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The singular values of 𝐑 are obtained as the square-root of the eigenvalues of 𝐓 =
𝐗T𝐗𝐘𝐘T . Since 𝐗T𝐗 and 𝐘T𝐘 are mutually free, one can again use the multiplication
rule of S-transforms, after having noted that the S-transform of the T × T matrices𝐗T𝐗
and 𝐘T𝐘 is now given by:

S (x) = 1
x + c

(2.61)

One therefore finds that the 𝜂-transform of 𝐓 is obtained by solving the following cubic
equation for x:

𝜂−1 (1 + x) = − 1 + x
x (n + x) (m + x)

(2.62)

which can be done explicitly, leading to the following (lengthy) result. To denote y = s2,

one should first compute the following two functions:

f1
(
y
)
= 1 + m2 + n2 − mn − m − n + 3y (2.63)

and
f2
(
y
)
= 2 − 3m (1 − m) − 3n (1 − n) − 3mn (n + m − 4)
+ 2

(
m3 + n3) + 9y (1 + m + n)

(2.64)

Then, form

Δ = −4f1
(
y
)3 + f2

(
y
)2 (2.65)

If Δ > 0, one introduces a second auxiliary variable Γ:

Γ = f2
(
y
)
−
√
Δ (2.66)

to compute 𝜌2(y):

𝜋𝜌2
(
y
)
= − Γ1∕3

24∕331∕2y
+

f1
(
y
)

22∕331∕2Γ1∕3y
(2.67)

Finally, the density 𝜌(s) is given by:

𝜌 (s) = 2s𝜌2
(
s2) (2.68)

2.11 Big Data for Atmospheric Systems

Here we show that the empirical correlation matrices that arise in atmospheric sciences
can be modeled as a random matrix chosen from an appropriate ensemble. The corre-
lation studies are elegantly carried out in the matrix framework.

Weather and climate data are frequently subjected to principal component analysis
(via singular value decomposition) to identify the independent modes of atmospheric
variability. The analysis performed on the correlation matrices is aimed at separating
the signal from “noise,” to cull the physically meaningful modes of the correlation matrix
from the underlying noise.

The empirical orthogonal function (EOF) method, also called principal component
analysis, is a multivariate statistical technique widely used in the analysis of geophysical
data. It is similar to the singular value decomposition employed in linear algebra and
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Figure 2.6 Eigenvalue spacing distribution
for the monthly mean sea-level pressure
(SLP) correlation matrix. The solid curve is
the GOE prediction. Source: Reproduced
with permission from [106].

it provides information about the independent modes of variabilities exhibited by the
system.

In general, any atmospheric parameter z(x, t) (like wind velocity, geopotential height,
temperature, etc.) varies with space x and time t and is assumed to follow an average
trend on which the variations (or anomalies as referred to in atmospheric sciences) are
superimposed: z (x, t) = zavg (x) + z′ (x, t).

If the observations were taken n times at each of the p spatial locations and the cor-
responding anomalies z′(x, t) assembled in the data matrix 𝐙 of order p × n, then the
spatial correlation matrix of the anomalies is given by

𝐒 = 1
n
𝐙𝐙H (2.69)

The elements of the Hermitian matrix 𝐒 of order p are just the Pearson correlation
between various spatial points. The eigenfunctions of 𝐒 are called the empirical orthog-
onal functions because they form a complete set of orthogonal basis to represent the
data matrix 𝐙. The size of 𝐙 is large. For example n = 500, p = 600.

We will show that the spectrum of 𝐒 displays random-matrix-type spectral statistics.
In [106] Santhanam and Patra have analyzed atmospheric correlation matrices from
the perspective of the random matrix theory. The central result of their work is that
atmospheric correlation matrices can be modeled as random matrices chosen from an
appropriate RMT ensemble. The spectrum of atmospheric correlation matrices satisfy
the random matrix prescription, as shown in Figure 2.6 and 2.7. In particular, the eigen-
modes of the atmospheric empirical correlation matrices that have physical significance
are marked by deviations from the eigenvector distribution.

2.12 Big Data for Sensing Networks

Our vision for big data follows Figure 1.6, first suggested in [39, 40]. The mathematical
foundation of big data is treated in [40], with sensing networks being the motivated
application.
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Figure 2.7 Eigenvalue spacing
distribution for the monthly mean
wind-stress correlation matrix. The solid
curve is the GUE prediction. Source:
Reproduced with permission from [106].
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2.13 Big Data for Wireless Networks

Our vision for big data follows Figure 1.6, first suggested in [39, 40]. The treatment of
cognitive radio networks as a big data problem is addressed in [39]. Here we highlight
some applications of this new methodology [44]. See [70] for other applications.

In the spirit of our previous work [40]—representing large datasets in terms of
random matrices—we report some empirical findings here. In this initial report, we
summarize the most interesting results only when the theoretical models agree with
experimental data. When the size of a random matrix is sufficiently large, the empirical
distribution of the eigenvalues (viewed as functions of this random matrix) converges
to some theoretical limits (such as Marchenko-Pastur law and the single ring law). In
the context of large-scale wireless network, our empirical findings will validate these
theoretical predictions. To the best of our knowledge, our work represents the first
such attempt in the literature, although a lot of simulations have been used in earlier
work [136].

2.13.1 Marchenko–Pastur Law

Let 𝐗 =
{
𝜉ij
}

1⩽i⩽N ,1⩽j⩽n be a random N × n matrix whose entries are i.i.d. N is an integer
such that N ⩽ n and N∕n = c for some c ∈ (0, 1]. The empirical spectrum density (ESD)
of the corresponding sample covariance matrix 𝐒 = 1

n
𝐗H𝐗 converges to the distribution

of the Marchenko–Pastur law [39, 136] with density function

fMP (x) =
{ 1

2𝜋xc𝜎2

√
(b − x)(x − a), a ⩽ x ⩽ b

0 otherwise
(2.70)

where a = 𝜎2(1 −
√

c)2, b = 𝜎2(1 +
√

c)2
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2.13.2 The Single “Ring” Law

For each n ≥ 1, let𝐀n be a random matrix that admits the decomposition𝐀n = 𝐔n𝐓n𝐕n,

with 𝐓n = diag
(
s1,… , sn

)
where the sis are positive numbers and where 𝐔n and

𝐕n are two independent random unitary matrices, which are Haar-distributed
independently from the matrix 𝐓n. Under certain mild conditions, the ESD 𝜇𝐀n

of 𝐀n
converges [137], in probability, weakly to a deterministic measure whose support is
{z ∈ ℂ ∶ a ⩽ |z| ⩽ b} , a =

(∫ x−2𝜈 (dx)
)−1∕2

, b =
(∫ x2𝜈 (dx)

)1∕2
. Some outliers to the

single ring law [138] can be observed.

Consider the matrix product
𝛼∏

i=1
𝐗i, where 𝐗i is the singular value equivalent [139] of

the rectangular N × n non-Hermitian random matrix �̃�i, whose entries are i.i.d. Thus,

the empirical eigenvalue distribution of
𝛼∏

i=1
𝐗i are almost certain to converge to the same

limit given by

f 𝛼∏

i=1
𝐗i

(z) =
{ 1

𝜋c𝛼
|z|2∕𝛼−2 (1 − c)𝛼∕2 ⩽ |z| ⩽ 1

0 elsewhere
(2.71)

as N , n → ∞ with the ratio c = N∕n ⩽ 1. On the complex plane of the eigenvalues, the
inner circle radius is (1 − c)𝛼∕2 and the outer circle radius is unity.

2.13.3 Experimental Results

All the data are collected under two scenarios: (i) only noise is present; or (ii) signal plus
noise are present. We have used 70 USRP front ends and 29 high-performance PCs. The
experiments are divided into two main categories: (i) with a single USRP receiver, and
(ii) with multiple USPR receivers.

Every such software-defined radio (SDR) platform (also called a node) is composed of
one or several USRP RF front ends and a high-performance PC. The RF up-conversion
and down-conversion functionalities reside in the USRP front end, whereas the PC is
mainly responsible for baseband signal processing. The USRP front end can be config-
ured as either a radio receiver or a transmitter, which is connected to a PC via an Ethernet
cable.

Seventy USRP receivers are organized as a distributed sensing network. One PC takes
the role of the control node, which is responsible for sending a command to all the USRP
receivers that will start the sensing at the same time. The network time is synchronized
by the GPS attached to every USRP. The 70 USRPs are placed in random locations within
a room. For every single USRP receiver, a random matrix is obtained and denoted as
𝐗i ∈ ℂN×n, whose entries are normalized as mentioned above. We will investigate the
ESD of the sum and the product of the 𝛼 random matrices below, where 𝛼 is the number
of the random matrices.

The product of 𝛼 non-Hermitian random matrices is defined as 𝐙 =
∏𝛼

i=1 𝐗i, where
𝐗i ∈ ℂN×n, i = 1,… , 𝛼. A singular value equivalent is performed before multiplying the
original random matrices. We are actually analyzing the empirical eigenvalue distribu-
tion as (2.71).

By specifying 𝛼 = 5, we performed the experiments for two scenarios: (i) Pure noise.
In this case, neither the commercial signal nor the USRP signal is received at all the
USRP receivers. Figure 2.8 shows the the ring law distribution of the eigenvalues for
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N = 800, n = 2000, c = N/n = 0.4, ρ= 4, α= 5, β= c = 0.4, κ= β/ρ= 0.1
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Figure 2.8 The ring law for the product of non-Hermitian random matrix with white noise only. The
number of random matrix 𝛼 = 5. The radii of the inner circle and the outer circle agree with (2.71).
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Figure 2.9 The ring law for the product of non-Hermitian random matrices with signal plus white
noise. The number of random matrix 𝛼 = 5. The radius of the inner circle is less than that of the
white-noise-only scenario.

the product of non-Hermitian random matrices when 𝛼 is 5. The radii of the inner cir-
cle and outer circle are well matched with the result in (2.71). (ii) Commercial signal
with frequency. In this case, the signal at the frequency of 869.5 MHz is used. Figure 2.9
shows the ring-law distribution of the eigenvalues for the product of non-Hermitian
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random matrices, when signal plus white noise is present. By comparing Figure 2.9 with
Figure 2.8, we find that, in the signal-plus-white-noise case, the inner radius is smaller
than that of the white-noise-only case.

2.14 Big Data for Transportation

In a 5G wireless communication system [140, 141], low-latency data becomes impor-
tant. Vehicle-to-vehicle communications with low-latency will enable big data for
transportation.

One might be interested in the following ideas: (i) aggregate data from a large number
of vehicles; (ii) the kinds of statistical laws these data will follow; (iii) how to model these
data using large random matrices.
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3

Large Random Matrices: An Introduction

This chapter is the basic material for next-generation engineers and researchers. It is our
belief that large dimensional random matrices are the foundation for the analysis of big
data; Sections 1.3 and 1.4 support this belief. We give the fundamentals of large dimen-
sional random matrices. One motivation is to model large data sets using large random
matrices. Recently there has been increasing interest in studying large dimensional data
sets that arise in finance, wireless communications, genetics and other fields. Patterns
in these data can often be summarized by the sample covariance matrix, as is done in
multivariate regression and dimension reduction via factor analysis. In Chapter 8, for
example, we apply large random matrices for anomaly detection.

Large random matrices serve as a finite-dimensional approximation of infinite-
dimensional operators. Its importance for statistics comes from the fact that RMT may
be used to correct traditional tests or estimators, which fail in the “large n, large p”
setting, where p is the number of parameters (dimension) and n is the sample size. For
example, we can use RMT for corrections on some likelihood ratio tests that fail even
for moderate p (around 20) [160].

Statistical science is an empirical science. The object of statistical methods, according
to R. A. Fisher (1922) [68], is the reduction of data: “It is the object of the statistical
processes employed in the reduction of data to exclude this irrelevant information, and
isolate the whole of the relevant information contained in the data.” In the age of big
data [40], the goal set by Fisher has never been so relevant as it is today. In [39], we
make an explicit connection between big data and large random matrices. This connec-
tion is based on the simple observation that a massive amount of data can be naturally
represented by (large) random matrices. When the dimensions of the random matri-
ces are sufficiently large, some unique phenomena (such as concentration of spectral
measures) will occur [40].

3.1 Modeling of Large Dimensional Data as Random Matrices

In multivariate statistics, we observe a random sample of p-dimensional observations
𝐱1,… , 𝐱n ∈ ℝp or ℂp. The statistical methods, such as principal components analysis,
were developed in the early 1900s. Most results consider an asymptotic framework,
where the number of observations n grows to infinity.

Smart Grid using Big Data Analytics: A Random Matrix Theory Approach, First Edition.
Robert C. Qiu and Paul Antonik.
© 2017 John Wiley & Sons Ltd. Published 2017 by John Wiley & Sons Ltd.
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Most of these results assume that the dimension p of the variables is fixed and “small”
(less than 10 generally), whereas the number of observations n tends to infinity, n → ∞.
This is the classical asymptotic theory. The coming of big data mandates the analysis
of high-dimensional data. The dimension p of the data is quite far away from classical
situations where p is lower than 10. This new type of data is called “large dimensional
data.” The most remarkable fact is that n and p are large and comparable. One wonders
what happens if one considers the asymptotic regime

n → ∞, p → ∞, but
p
n
→ c ∈ (0,∞) (3.1)

So-called random matrix theory is the natural answer to this question.
Let us use an example to illustrate this point. Let 𝐱1,… , 𝐱n be a Gaussian sam-

ple  (
𝟎, 𝐈p

)
of dimension p, with zero mean and identity covariance matrix (also

called population covariance matrix). The associated sample covariance matrix 𝐒n is
defined by

𝐒n = 1
n

n∑

i=1
𝐱i𝐱H

i

An important statistic in multivariate analysis is

Tn = log
(
det𝐒n

)
=

p∑

i=1
log 𝜆n,i

where
{
𝜆n,j
}

1⩽j⩽p are the eigenvalues of 𝐒n. If p is kept fixed, then 𝜆n,i → 1 almost surely
as n → ∞ and thus Tn → 0. Besides, by taking a Taylor expansion of log(1 + x), one can
show that, for any p fixed

√
n
p

Tn

−→  (0, 2)

This suggests the possibility that Tn remains asymptotically normal for a large p, assum-
ing that p = O(n). However, this is not the case: if we assume that p∕n → c ∈ (0, 1) , as
n → ∞, using results on an empirical spectral distribution of 𝐒n (see Example 3.5.2.). It
can be proved that, almost certainly

√
1
p

Tn → ∫
b

a

log x
2𝜋cx

√
(b − x) (x − a)dx = c − 1

c
log (1 − c) = d (c) < 0

where a =
(

1 −
√

c
)2

and b =
(

1 +
√

c
)2
. Thus, almost certainly

√
n
p

Tn ≃ d (c)
√

np → −∞

Consequently, any test that assumes an asymptotic normality of Tn will lead to a serious
error.

This example shows that the classical large sample limits are no longer suitable for
dealing with large dimensional data. Statisticians must seek out new limiting theorems
instead. Thus, the theory of random matrices (RMT) might be one possible method for
this aim.
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3.2 A Brief of Random Matrix Theory

What do the eigenvalues of a typical large matrix look like? Do we expect certain
universal patterns of eigenvalue statistics to emerge? Large complex systems often
exhibit remarkably simple universal patterns as the number of degrees of freedom
increases. The simplest example is the central limit theorem: the fluctuation of the sums
of independent random (scalar-valued) variables, irrespective of their distributions,
follows the Gaussian distribution. The other cornerstone of probability theory identifies
the Poisson point process as the universal limit of many independent point-like events
in space or time. These mathematical descriptions assume that the original system
has independent (or at least weakly dependent) constituents. What if independence is
not a realistic approximation and strong correlations need to be modelled? Is there a
universality for strongly correlated models?

At first sight this seems an impossible task. While independence is a unique concept,
correlations come in many different forms; there is no reason to believe that they all
behave similarly. Nevertheless they do. The actual correlated system Wigner studied
was the energy levels of heavy nuclei. He asked a question: what about the distribu-
tion of the rescaled energy gaps? He discovered that the difference in consecutive
energy levels, after rescaling with the local density, shows a surprisingly universal
behavior.

Wigner not only predicted universality in complicated systems but he also discovered
a remarkably simple mathematical model for this new phenomenon: the eigenvalues of
large random matrices. For practical purposes, infinite-dimensional Hamilton operators
of quantum models are often approximated by large but finite matrices that are obtained
from some type of discretization of the original continuous model. These matrices have
specific forms dictated by physical rules. Without the precise knowledge of the Hamil-
tonian in question, the problem is still extremely difficult. Fortunately, if one is willing
to lower the bar to understanding statistical properties of the eigenvalues then one can
make statistical assumptions on the Hamiltonian, as long as it is consistent with the
symmetry observed by the Hamiltonian. The most basic symmetry assumption one can
make is that the statistical properties should be invariant under the unitary group. In
more common language it means that the properties of the atom should be the same
regardless of the (arbitrary) coordinate system one chooses.

Wigner’s idea is far reaching. For centuries, the primary territory of probability the-
ory was to model uncorrelated or weakly correlated systems. The surprising ubiquity of
random matrix statistics is a strong evidence that it plays a similar fundamental role for
correlated systems as the Gaussian distribution and the Poisson point process play for
uncorrelated systems. Random matrix theory seems to provide essentially the only uni-
versal and generally computable pattern for complicated correlated systems. It is based
on this observation that we reach our belief in RMT, upon which many parts of the whole
building of big data can be grounded, to understand correlations of the large, complex
big data system. Eugene Wigner’s revolutionary vision predicted that the energy levels
of large complex quantum systems exhibit a universal behavior: the statistics of energy
gaps depend only on the basic symmetry type of the model. These universal statistics
show strong correlations in the form of level repulsion and they seem to represent a
new paradigm of point processes that are characteristically different from the Poisson
statistics of independent points.
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Random matrices have been intensively studied since the mid-1990s. In the early
1980s, major contributions on the existence of limiting spectral distributions and
their explicit forms for certain classes of random matrices were made. In recent years,
research on random matrix theory is turning toward second-order limiting theorems,
such as the central limit theorem for linear spectral statistics, the limiting distributions
of spectral spacings, and extreme eigenvalues (thus outliers). Random matrices were
introduced by Wishart [116] in 1928 in mathematical statistics and started to gain more
momentum after Wigner [109, 110, 161, 162]. For many years, the standard text for
random matrix theory was [103], whose first edition was printed in 1967. Recently, we
have seen several excellent books [35, 67, 163]. In particular, we have seen applications
of RMT in wireless communication [39, 52, 136] and sensing [40].

According to quantum mechanics, the energy levels of a system are supposed to be
described by the eigenvalues of a Hermitian operator H , called the Hamiltonian. To
avoid the difficulty of working with an infinite-dimensional Hilbert space, we approxi-
mate the true Hilbert space by one having a finite, though large, number of dimensions.

From the very beginning, we shall make statistical hypotheses with H. Choosing
a complete set of functions as basis, we represent the Hamiltonian operators H as
matrices. The elements of these matrices are random variables whose distributions
are restricted only by the general symmetrical properties we might impose on the
ensemble of operators [103]. The problem is to obtain information on the behavior of
its eigenvalues.

Consider the big-data measurement system that collects massive data sets. Here we
make an analogy between the quantum system and the big-data measurement system
(see Table 3.1). Suppose the massive data sets are described by an infinite-dimensional
operator G. Any system must satisfy quantum mechanics; thus the massive data sets
must also satisfy quantum mechanics. Our idea is to use the analogy to replace the
infinite-dimensional operators G with large, but finite, dimensional random matrices 𝐗.

In general, we use the parameter 𝛽 to denote the number of standard real normals and
thus 𝛽 = 1; 2; 4 correspond to real, complex and quaternion respectively. G𝛽(m, n) can
be generated by the MATLAB command shown in Table 3.2. If 𝐀 is an m × n random
matrix G𝛽(m, n) then its joint element density is given by

1
(2𝜋)𝛽mn∕2 exp

(
−1

2
‖𝐀‖F

)

where || ⋅ ||F is the Frobenius norm of a matrix.
For the semicircle law, clever computational tricks for all eigenvalues [164] allow the

space of (n) and computation time (n2), rather than the space of (n2) and compu-
tation time (n3) of the naive computation (in MATLAB):
A=randn(n,n); v=eig((A+A’)/sqrt(2*n)). Algorithms developed

in [164] allow one to compute the largest eigenvalues of a billion by billion matrix.
The most well studied random matrices have names such as Gaussian, Wishart,

MONOVA, and circular. We prefer Hermite, Laguerre, Jacobi, and perhaps Fourier.
The Hermite and Laguerre ensembles are summarized in Table 3.3.

One of the most common tools in statistical analysis is principal component analysis
(PCA), which identifies the top eigenvalues and top eigenvectors of a matrix of data.
What one would like to know, after performing PCA, is whether the top eigenvalue has
significance or whether it is purely from randomness. Tracy and Widom [165] have
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Table 3.1 An analogy between the quantum system and the big data measurement system.

Quantum system Big data measurement system Large (but finite) random matrices

Hamiltonian operator H Some unknown operator G Random matrices 𝐗
Infinite dimensions Infinite dimensions Finite, though large, dimensions
A continuum and a large Empirical spectrum Discrete eigenvalues
number of discrete levels
of energy

Table 3.2 Generating the Gaussian random matrix G
𝛽
(m, n).

𝜷 MATLAB command

1 G=randn (m,n)

2 G=randn (m,n)+j*randn (m,n)

4 X=randn (m,n)+j*randn (m,n);
Y=randn (m,n)+j*randn (m,n); G=[X Y; -conj(Y) conj(X)]

Table 3.3 Hermite and Laguerre ensembles.

Ensemble Matrices Weight function Equilibrium measure Numeric MATLAB

Hermite Wigner e−x2∕2 semi-circle eig g=G(n,n);H=(g+g’)/2;

Laguerre Wishart x𝜈∕2−1e−x∕2 Marcenko-Pastur svd g=G(m,n); L=(g’*g)/m;

shown that the top eigenvalues, properly rescaled and under reasonable assumptions
that the matrix entries are sufficiently independent, follow the so-called Tracy–Widom
distribution. As a result, one way to understand the question above is to do hypothesis
testing against, instead of the Gaussian distribution (hypothesis 0), the Tracy–Widom
distribution (hypothesis 1). Some examples for hypothesis testing using RMT are
[166] and two recent books [39, 40].

The use of large random matrices for big data was explicitly proposed by the current
author in November 2011 when he was writing [39]. It is known that PCA is closely
related to dimension reduction, which is ubiquitous for big data applications; hypoth-
esis testing for massive data sets is the author’s long-term goal. We will formulate the
hypothesis test of two alternative random matrices in Section 8.2.

If we could summarize the objects of interest in random matrix theory in one sen-
tence, it would be to study the statistical properties of functions of matrices with random
entries. Problems that are of central interest are listed here:

• Macroscopic eigenvalue distribution. Given a square n × n random matrix 𝐀, let 𝜆1 ⩽
𝜆2 ⩽ · · · ⩽ 𝜆n denote the singular values of𝐀. When the matrix is Hermitian, these are



84 Smart Grid using Big Data Analytics

exactly its eigenvalues. What are the properties of the normalized measure induced
by {𝜆i}? In other words, what can we say about the measure

1
n

n∑

i=1
𝛿𝜆i

(x)? (3.2)

For example, is the measure compactly supported?
In probability theory, we are also interested in the n → ∞ limit: For what class of

random matrix does the weak limit of the empirical singular value distribution (3.2)
exist? If it exists, what is the limit?

• Mesoscopic eigenvalue distribution. Let f be a bounded function, and I an interval on
the real axis, then

1
n
∑

𝜆i∈I
f
(
𝜆i
)
→ ∫I

f (x)𝜌(x)dx

either probably or almost certainly. Assume now that 𝜌 has compact support. Let E ∈
supp 𝜌, f a continuous bounded function and I =

[
E − 1

n𝛼
,E + 1

n𝛼

]
for some 0 ≤ 𝛼 < 1,

is it true that

1
n |I|

|
|
|
|
|
|

∑

𝜆i∈I
f
(
𝜆i
)
− n∫I

f (x)𝜌(x)dx
|
|
|
|
|
|

→ 0?

• Microscopic eigenvalue distribution. Assume the eigenvalues of a random matrix lie
on a compact interval I. As there are n eigenvalues in the interval, the average spacing
of the eigenvalues is of the order 1∕n. Let pn

(
𝜆1, 𝜆2,… , 𝜆n

)
be the joint distribution of

the eigenvalues, and let

p(k)
n
(
𝜆1, 𝜆2,… , 𝜆k

)
= ∫ℝn−k

pn
(
𝜆1, 𝜆2,… , 𝜆n

)
d𝜆k+1 · · · d𝜆n

be the k-point correlation function. Does the k-point correlation function converge
to a certain limit in the local scale? In other words for E ∈ I, does the limit

lim
n→∞

p(k)
n

(
E +

𝛼1

n
,E +

𝛼2

n
,… ,E +

𝛼k

n

)

exists in some sense? If it does, what is the limit?
• Below the microscopic scale: Wegner estimates. Let E ∈ supp 𝜌, f a continuous

bounded function and I =
[
E − 1

n𝛼
,E + 1

n𝛼

]
for some 𝛼 > 1, is it true that

1
n |I|

|
|
|
|
|
|

𝔼
∑

𝜆i∈I
f
(
𝜆i
)
− n∫I

f (x)𝜌(x)dx
|
|
|
|
|
|

→ 0?

• Properties of eigenvectors. Even though it is not as fundamental as the studies of eigen-
values, there are interesting problems and results involving eigenvectors of random
matrix models.

• Universality. The famous law of large numbers states that, given a sequence of iden-
tical independently distributed (i.i.d.) random variables 𝜉1,… , 𝜉n,… of mean 0 and
finite variance, then the average

lim
n→∞

1
n

n∑

i=1
𝜉i
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almost certainly converges to 0. The exact distribution 𝜉1 will not affect the limiting
object. A slightly more advanced example is the central limit theorem, which states
that given a sequence of i.i.d. random variables 𝜉1,… , 𝜉n,… of mean 0 and finite vari-
ance,

lim
n→∞

1
√

n

n∑

i=1
𝜉i

converges weakly to the Gaussian distribution. Again, the exact distribution of 𝜉i does
not matter, as long as it is of mean 0 and variance 1 and the limiting object is universal
for these distributions.

The general belief is that random matrices belonging to the same “symmetry
class”—the Hermitian structure of matrices—behaves similarly, at all levels down
to the microscopic level. Let 𝐀 be a random Hermitian matrices where the upper
triangular entries are i.i.d., mean 0 and variance 1. Let �̃� be another such random
Hermitian matrices, but with a different entry distribution. Do they have the same
macroscopic/mesocopic/microscopic behavior? Let 𝚲 and �̃� be two eigenvalue
ensembles that are invariant under unitary transformation and suitably normalized.
Do they have the same macroscopic/mesocopic/microscopic behavior?

• Fluctuations of global eigenvalue statistics. As a consequence of the Wigner semicircle
law, for any f bounded continuous function, and 𝜆1,… , 𝜆n rescaled eigenvalues of a
Wigner matrix, we almost certainly have

1
n

n∑

i=1
f
(
𝜆i
)
→ ∫ f (x)𝜌SC(x)dx

Can we also say anything about the fluctuations of global eigenvalue statistics

1
n

n∑

i=1
f
(
𝜆i
)
− 𝔼1

n

n∑

i=1
f
(
𝜆i
)
?

The above quantity is known to converge to a Gaussian random variable of finite
variance if f is sufficiently smooth and the variance will diverge if f is an indica-
tor function. It is believed that there is some critical regularity for f for which a
central-limit-type theorem holds.

3.3 Change Point of Views: From Vectors to Measures

One of the first problems is to find a mathematically efficient way to express the limit
of a vector whose size grows to ∞. Recall that there are n eigenvalues to estimate in our
problem and n goes to ∞. A fairly natural way to do this is to associate any vector with
a probability measure. More explicitly, suppose we have a vector

(
y1,… , yn

)
in ℝn. We

can associate it with the following measure:

dGn(x) =
1
n

n∑

i=1
𝛿yi
(x)

Gn is thus a measure with n point masses of equal weight, one at each of the coordinates
of the vector.
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We will denote by Hn the spectral distribution of the true (sometimes called
population) covariance matrix 𝚺n, the measure associated with the vector of eigenval-
ues 𝜆i, i = 1,… , n of 𝚺n. We will refer to Hn as the true spectral distribution. We can
write this measure as

dHn = 1
n

n∑

i=1
𝛿𝜆i

(x)

where 𝛿𝜆i
is a point mass, of mass 1, at 𝜆i. We also call 𝛿𝜆i

a “dirac” at 𝜆i. The simplest
example of a true spectral distribution is found when 𝚺n = 𝐈n,where 𝐈n is the n × n iden-
tity matrix. In this case, for all i, 𝜆i = 1, and dHn = 𝛿1. So the true spectral distribution
is a point mass at 1 when 𝚺n = 𝐈n.

Similarly, we will denote by Fn the measure associated with the eigenvalues 𝓁i, i =
1,… , n of the sample covariance matrix 𝐒n. We refer to Fn as the empirical spectral
distribution. Equivalently, we define

dFn = 1
n

n∑

i=1
𝛿𝓁i

(x)

The change of focus from vector to measure implies a change of focus in the notion
of convergence that we will consider adequate. In particular, for consistency issues, the
notion of convergence we will use is weak convergence of probability measures.

3.4 The Stieltjes Transform of Measures

Eigenvalues of a matrix can be viewed as continuous functions of the matrix entries.
Nevertheless, these functions do not have closed forms when the matrix size exceeds 4.
This is the reason why specific tools are needed for their study. There are three important
methods employed in this area: (i) the moment method; (ii) the Stieltjes transform; (iii)
orthogonal polynomial decomposition of the exact density of the eigenvalues.

A large number of results concerning the asymptotic properties of the eigenvalues
of large dimensional random matrices are formulated in terms of the limiting behavior
of the Stieltjes transform of their empirical spectral distributions. The Stieltjes trans-
form is a convenient and very powerful tool in the study of the convergence of spectral
distribution of matrices (or operators), just as the characteristic function of a probabil-
ity distribution is a powerful tool for central limit theorems. Most importantly, there
is a simple connection between the Stieltjes transform of the spectral distribution of a
matrix and its eigenvalues.

We will consider results obtained via the Stieltjes transform method. By definition,
the Stieltjes transform of a measure G on ℝ is defined as

mG(z) = ∫
1

x − z
dG(x), for z ∈ ℂ+

where

ℂ+ ≜ ℂ
⋂

{z ∶ Im {z} > 0}

is the set of complex numbers with a strictly positive imaginary part. The Stieltjes
transform appears to be known under several names in different areas of mathematics.
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It is sometimes referred to as Cauchy or Abel–Stieltjes transform. Good refer-
ences about Stieltjes transforms include Akhiezer (1965) [167, Sections 3.1–2], Lax
(2002) [168, Chapter 32], Hiai and Petz (2000) [169, Chapter 3] and Geronimo and Hill
(2003) [170]. Qiu et al. [39] also surveyed many properties of the Stieltjes transform.

Here we list important properties of Stieltjes transforms of measures on ℝ:

• If G is a probability measure, mG(z) ∈ ℂ+ if z ∈ ℂ+ and lim
y→∞

−iymG(iy) = 1.
• If F and G are two measures, and if mF (z) = mG(z), for all z ∈ ℂ+, then G = F , almost

everywhere 1.
• If Gn is a sequence of probability measures and mGn

(z) has a (pointwise) limit m(z) for
all z ∈ ℂ+, then there exists a probability measure G with Stieltjes transform mG(z) =
m(z) if and only if lim

y→∞
−iym(iy) = 1. If it is the case, Gn converges weakly to G.

• The same is true if the convergence happens only for an infinite sequence
{

zi
}∞

i=1 in
ℂ+ with a limit point in ℂ+.

• If t is a continuity point of the cumulative distribution function of G, then the deriva-
tive dG (t) ∕dt = lim

𝜀→∞
1
𝜋
Im
(
mG (t + i𝜀)

)
.

For proofs, we refer the reader to [170].
Through an inversion formula, we can recover the initial measure from its Stieltjes

transform mΓn
(z).

The Stieltjes transform characterizes the vague convergence of finite measures. It is
an important tool for the study of random matrices.

Let ℂ+ = {z ∈ ℂ, Im(z) > 0}.

Proposition 3.4.1 A sequence
(
𝜇n
)

n⩾1 of probability measures R converges vaguely
to a positive measure 𝜇 if and only if their Stieltjes transform m𝜇n

(z) for n ≥ 1 converge
to m𝜇 (z) on ℂ+.

The link between the Stieltjes transform and random matrix theory is the following:
the Stieltjes transform of the spectral distribution F𝐀n

of an n × n matrix 𝐀n is just

m𝐀n
(z) = ∫

1
x − z

dF𝐀 (x) =
1
n

n∑

i=1

1
𝜆i − z

= 1
n
Tr
[(
𝐀n − z𝐈n

)−1
]

which is the fundamental relation for studying large dimensional random matrices.
Points 3 and 4 above can be used to show convergence of probability measures if one
can control the corresponding Stieltjes transforms. In this sense, the Stieltjes transform
plays the role of Fourier transform for a continuous-time (or discrete-time) signal. It
is more convenient to work on the problems in the Fourier transformed domain. In
analogy, we also study problems in the Stieltjes transformed domain.

1 In measure theory [171], one talks about almost everywhere convergence of a sequence of measurable
functions defined on a measurable space. That means pointwise convergence almost everywhere. Suppose
{fn} is a sequence of functions sharing the same domain and codomain. The sequence {fn} converges
pointwise to f , often written as lim

n→∞
fn → f pointwise, if and only if lim

n→∞
fn(x) → f (x) for every x in the domain.
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Like the Fourier transformation in probability theory, there is also a one-to-one
correspondence between the distributions and their Stieltjes transforms via the
inversion formula: for any distribution function G

G
{[

a, b
]}

= 1
𝜋

lim
𝜂→∞∫

b

a
ImmG (𝜉 + i𝜂) d𝜉

3.5 A Fundamental Result: The Marchenko–Pastur Equation

In the study of covariance matrices, a remarkable result exists that describes the limit-
ing behavior of the empirical spectral distribution, F∞ = lim

n→∞
Fn, in terms of the limiting

behavior of the true spectral distribution, H∞ = lim
n→∞

Hn.The connection between these
two measures F∞ and H∞ is made through an equation that links the Stieltjes transform
of the empirical spectral distribution to an integral against the true spectral distribu-
tion. We call this equation the Marchenko–Pastur equation because it first appeared
in the landmark paper of Marchenko and Pastur (1967) [172]. The result was indepen-
dently rediscovered in Wachter (1978) [173] and then refined in Silverstein and Bai
(1995) [174] and Silverstein (1995) [175]. In particular, Silverstein (1995) [175] is the
only paper where the case of a nondiagonal true covariance matrix is treated.

We work with the N × n data matrix 𝐗. The sample covariance matrix is defined as

𝐒n = 1
N
𝐗H𝐗

and denotes mFn
the Stieltjes transform of the spectral distribution, Fn, of 𝐒n. If the data

vectors are not made zero mean in the definition of 𝐒n, the difference between two def-
initions is a matrix of rank one.

In the spectral analysis of 𝐒n, it is usual to assume that the data size p tends to infinity
proportionally to the sample size n, or

n → ∞, p → ∞, but
p
n
→ c ∈ (0,∞) .

When we consider sample covariance matrices 𝐒n, the eigenvalues are random variables,
and the corresponding empirical spectral distributions F𝐒n

(x) are random probability
measures onℝ+ ∶ x ∈ ℝ, x > 0, or, equivalently, a sequence of random variables of mea-
sures.

Let vFn
(z) be the Stieltjes transform of the spectral distribution of 1

N
𝐗𝐗H .The vFn

can
be expressed by

vFn
(z) = −

(
1 − n

N

) 1
z
+ n

N
mFn

(z)

Currently, the most general version of the result is found in [175] and states the
following:

Theorem 3.5.1 Suppose the data matrix 𝐗 can be written a 𝐗 = 𝐘𝚺1∕2
n , where 𝚺n is

an n × n positive definite matrix and 𝐘 is an N × n matrix whose entries are i.i.d (real
or complex), with zero mean and variance 1, 𝔼

(
Yij
)
= 0,𝔼

(
|
|
|
Yij
|
|
|

2)
= 1, and the finite

fourth moment 𝔼
(
|
|
|
Yij
|
|
|

4)
<∞. Call Hn the true (or population) spectral distribution,
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i.e the distribution that puts mass 1∕n at each of the eigenvalues of the true covariance
matrix𝚺n.Assume that Hn converges weakly to a limit denoted H∞ = lim

n→∞
Hn. (We write

this convergence Hn ⇒ H∞.) Then, when n,N → ∞, and n∕N → 𝛾, 𝛾 ∈ (0,∞) , almost
certainly where v∞(z) is a deterministic function;
1) vFn

(z) → v∞ (z)
2) v∞(z) satisfies the equation

− 1
v∞ (z)

= z − 𝛾 ∫
𝜆dH∞ (𝜆)

1 + 𝜆v∞ (z)
, ∀z ∈ ℂ+ (3.3)

3) (3.3) has one and only one solution, which is the Stieltjes transform of a measure.

Theorem 3.5.1 says that the spectral distribution of the sample covariance matrix is
asymptotically nonrandom. Furthermore, it is fully characterized by the true population
spectral distribution, through (3.3).

Example 3.5.2 (Marchenko–Pastur Law) The white Gaussian random vector has
a true covariance matrix 𝚺n = 𝐈n; all the population eigenvalues 𝜆i

(
𝚺n
)

are equal to
1. Then, Hn = H∞ = 𝛿1. A little bit of elementary work leads to the well known fact in
random matrix theory that the empirical spectral distribution, Fn, converges (almost
surely) to the Marchenko–Pastur law, if 𝛾 < 1, whose density is given by

f𝛾 (x) =
1

2𝜋𝛾x
√
(b − x) (x − a), a =

(
1 −

√
𝛾
)2
, b =

(
1 +

√
𝛾
)2 (3.4)

We refer the reader to [172, 176], and [177] for more details and explanations
concerning the case 𝛾 > 1. One point of statistical interest is that even though the true
population eigenvalues are all equal to 1, the empirical ones are now spread on the
interval

[(
1 −

√
𝛾
)2
,
(
1 +

√
𝛾
)2
]
. ◽

This Marchenko–Pastur law is the analogue of Wigner’s semicircle law in this set-
ting of multiplicative rather than additive symmetrization. The assumption of Gaussian
entries may be significantly relaxed.

El Karoui (2008) [178] proposed using a fundamental result in random matrix the-
ory, the Marchenko–Pastur equation (3.3), to better estimate the eigenvalues of large
dimensional covariance matrices. The Marchenko–Pastur equation holds in a very wide
generality and under weak assumptions. The estimator he obtained can be thought of
as “shrinking” in a nonlinear fashion the eigenvalues of the sample covariance matrix to
estimate the true population eigenvalue.

3.6 Linear Eigenvalue Statistics and Limit Laws

The empirical spectral density (ESD) of an n × n Hermitian matrix 𝐀n, which is a
one-dimensional function

F𝐀n
(x) = 1

n
|
|
|

{
1 ⩽ i ⩽ n ∶ 𝜆i

{
𝐀n
}
⩽ x
}|
|
|
= 1

n

n∑

i=1
𝟏
(
𝜆i
{
𝐀n
}
⩽ x
)

(3.5)
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where |I| denotes the number of the elements in a finite set I, and 𝟏(B) denotes
the indicator of an event B. If the eigenvalues 𝜆i are not all real, we can define a
two-dimensional empirical spectral distribution of the matrix 𝐀:

F𝐀n
(x, y) = 1

n

n∑

i=1
𝟏
(
Re 𝜆i

{
𝐀n
}
⩽ x, Im 𝜆i

{
𝐀n
}
⩽ y
)

(3.6)

Sometimes it is more convenient to work with measures than with corresponding
distribution functions. We define an empirical spectral measure of eigenvalues of the
matrix 𝐀n:

𝜇𝐀n
(B) = 1

n
|
|
|

{
1 ⩽ i ⩽ n ∶ 𝜆i

{
𝐀n
}
⩽ B

}|
|
|
, B ∈  (𝕋 )

where 𝕋 = ℝ or 𝕋 = ℂ and (𝕋 ) is a Borel 𝜎-algebra2 of 𝕋 .
A Wigner matrix is a Hermitian (or symmetric in the real case) matrix in which the

upper diagonal and diagonal entries are independent random variables. In this context,
we consider the Wigner matrix 𝐌n = {𝜉ij}1⩽i,j⩽n, which has the upper diagonal entries
as independent, identically distributed (i.i.d.) complex (or real) reandom variables with
zero mean and variance 1, and the diagonal entries as i.i.d. real random variables with
bounded mean and variance.

A cornerstone of random matrix theory is Wigner’s semicircle law. For any real num-
ber x, we have

lim
n→∞

F𝐀n
(x) = lim

n→∞

1
n
|
|
|

{
1 ⩽ i ⩽ n ∶ 𝜆i

{
𝐀n
}
⩽ x
}|
|
|
= ∫

x

−2
𝜌sc(y)dy (3.7)

in the sense of probability (and also in the almost sure sense). There are four types of
convergence: almost surely, in law, in probability and in the r-th mean. See, for example,
[179] for these definitions.

A fundamental result is Wigner’s semicircle law, which describes the global limiting
behavior of eigenvalues of the Wigner ensemble: for any bounded continuous function
𝜑, one has

1
n

n∑

i=1
𝜑
(
𝜆i
)
−→
ℙ ∫ 𝜑(x)𝜌sc (x) dx (3.8)

where 𝜌sc(x) =
1

2𝜋2

√
4 − x21{|x|⩽2} is the density function of the Wigner semicircle law

Fsc(x).We say the empirical spectral density Fn(x) converges weakly in probability to the
semicircle law Fsc(x). The result of this type, which is the analog of the Law of Large
Numbers of classical probability theory, is normally the first step in studies of the eigen-
value distribution for any ensemble of random matrices. Central limit theorem (CLT)
for fluctuations of linear eigenvalue statistics is a natural second step in studies of the
eigenvalue distribution of any ensemble of random matrices (see Section 3.7).

For given random variables X and X1,X2,… on a probability space, Xn is said to con-
verge to X in probability [179], if and only if the following condition

lim
n→∞

ℙ
(
|
|Xn − X|| ⩾ 𝜀

)
= 0 (3.9)

holds for each positive 𝜀, written as Xn −→
ℙ

X.

2 A 𝜎-algebra that is related to the topology of a set. The Borel 𝜎-algebra is defined to be the 𝜎-algebra
generated by the open sets (or, equivalently, by the closed sets).
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On the other hand, the sample covariance matrix plays an fundamental role in
statistics. Let 𝐱 be a random vector 𝐱 =

(
X1,… ,Xp

)
∈ ℂn and assume for simplicity

that 𝐱 is centered (zero mean). Then the true covariance matrix is given by

𝔼
(
𝐱𝐱H) =

(
cov

(
Xi,Xj

))

1⩽i,j⩽n

Consider N independent samples or realizations 𝐱1, 𝐱2,… , 𝐱N ∈ ℂn of the random
vector 𝐱 and form the N × n data matrix 𝐗 =

(
𝐱T

1 ,… , 𝐱T
N

)T ∈ ℂN×n. Then the sample
covariance matrix is an n × n non-negative definite matrix defined as

𝐒 = 1
N
𝐗H𝐗

If N → +∞ and n fixed, then the sample covariance matrix converges (entrywise) to
the true covariance matrix almost surely. We focus on the regime that both n and N tend
to infinity at the same time.

Let 𝐗 =
{
𝜉ij
}

1⩽i⩽N ,1⩽j⩽n be a random N × n matrix, where N = N(n) is an integer such
that N ≤ n and lim

n→∞
N∕n = y for some y ∈ (0, 1]. The matrix ensemble is said to obey

condition𝐂𝟏with constant C0 if the random variables 𝜉ij are jointly independent, having
a mean of 0 and variance of 1, and obey the moment condition

sup
i,j

𝔼||
|
𝜉ij
|
|
|

C0 ⩽ C

for some constant C independent of n,N .
The first fundamental result concerning the asymptotic behavior of empirical spectral

density for large covariance matrices is the Marchenko–Pastur law [172, 180–182].

Theorem 3.6.1 (Marchenko–Pastur law) Assume a random N × n matrix 𝐗 obeys
condition 𝐂𝟏 with C0 ≥ 4, and n → ∞, N → ∞ such that lim

n→∞
N∕n = y for some

y ∈ (0, 1], the empirical spectral distribution of the matrix 𝐒 = 1
n
𝐗H𝐗 converges in

distribution to the Marchenko–Pastur law with a density function

fMP(x) =
1

2𝜋xy𝜎2

√
(b − x) (x − a) 𝕀 (a ⩽ x ⩽ b) (3.10)

where

a = 𝜎2(1 −
√

y
)2
, b = 𝜎2(1 +

√
y
)2

If c > 1, the Marchenko—Pastur law has a point mass 1 − c−1 at the origin.

Here 𝕀(⋅) is the indicator function and 𝜎2 (the variance) is the scale parameter. If 𝜎2 = 1,
the Marchenko–Pastur law is called the standard Marchenko–Pastur law. When y = 1
or N = n, the density function is supported on the interval [0, 4] and

d𝜇
dx

= fMP(x) =
1

2𝜋

√
4 − x

x
Actually, by a change of variable x → x2, the distribution 𝜇 is the image of the semicir-
cle law.



92 Smart Grid using Big Data Analytics

0 0.5 1 1.5 2 2.5 3 3.5 4

0

0.5

1

1.5

x

f(
x)

Empircal eigenvalue distribution

Marchenko–pastur law

Figure 3.1 Plotted above is the distribution of the eigenvalues of 1

n
𝐗H𝐗 where 𝐗 is an N × n random

Gaussian matrix with n = 3000 and y = N∕n = 0.8. The blue curve is the Marchenko–Pastur law with
density function fMP(x).

When the aspect ratio y = N∕m = 1; we get the special case that

f (x) = 1
𝜋

√
4 − x2, x ∈ [0, 2]

This is the famous quarter-circle law. The singular values of a normally distributed
square matrix lie on a quarter circle. The moments are Catalan numbers.

Figure 3.1 and Figure 3.2 illustrate the Marchenko–Pastur law and compares theoret-
ical predictions with simulations.

The MATLAB codes are shown below.

MATLAB Code for Marchenko–Pastur Law, Revised from [183]

%Experiment : Gaussian Random Matrix
%Plot : Histogram of the eigenvalues of XX /m
%Theory : Marcenko-Pastur as n \to infinity
%% Parameters
t =1; %tria s
y = 0.1 ; %aspect ratio
n =3000; %matrix column size
m=round ( n/y ) ;
v = [] ; %eigenvalue samples
dx = 0.05 ; %bin size
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Figure 3.2 Plotted above is the distribution of the eigenvalues of 1

n
𝐗H𝐗 where 𝐗 is an N × n random

Gaussian matrix with n = 3000 and y = N∕n = 1. The blue curve is the quarter circle law with density
function.

%% Experiment
for i =1: t ,
X=randn (m, n ) ; % random m*n matrix
s=X’*X; %symmetric posisitve definite matrix
v =eig (s) ; % eigenvalues
end
v=v/m; % normalized eigenvalues
a=(1-sqrt(y))^2 ; b=(1+ sqrt(y))^2 ;
%% Pl o t
[ count , x ]= hist ( v , a : dx : b ) ;
cla reset
bar ( x , count / ( t*n*dx ) , ’y ’ ) ;
hold on ;
%% Theory
x= linspace ( a , b ) ;
plot ( x , sqrt ( ( x-a ) .*( b-x ) ) ./ ( 2 * pi*x*y ) ,
’LineWidth’ , 2 )
axis ( [ 0 ceil(b) -0.1 1.5 ] ) ;
xlabel(’x’)
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ylabel(’f(x)’)
legend(’Empircal Eigenvalue Distribution’,
’Marchenko-Patur Law’)

MATLAB Code for Quarter Circle Law, Revised from [183]

%Experime n t : Gaussian Random
%Plot : Histogram singular values
%Theory : Quater Circle Law
%% Parame t e r s
t =1; %trials
r =1; %aspect ratio
n =2000; %matri x column size
m = n ;
v = [ ] ; %eigen value samples
dx = .05 ; %bin size
a = 0 ; b = 2 ;
%% Ex p e r ime n t
for i =1: t ,
v = svd ( randn ( n ) ) ; % singular values
end
v=v / sqrt (m) ; % normalized singular values
close all ;
[ count , x ]= hist ( v , (a-dx/2) : dx : b ) ; cla reset
bar ( x , count / ( t *n*dx ) , ’ y ’) ; hold on ;
%% Theory
x= linspace (a , b ) ;
plot ( x , sqrt (4 - x.^ 2 ) / pi , ’LineWidth’ , 2 )
axis square
axis ( [ 0 2 0 2 / 3 ] ) ;
xlabel(’x’)
ylabel(’f(x)’)
legend(’Empircal Eigenvalue Distribution’,
’Quater Circle Law’)

Example 3.6.2 (linear vector channel) This example follows [52]. The linear vector
memoryless channel is defined as

𝐲 = 𝐇𝐱 + 𝐧 (3.11)
where 𝐱 ∈ ℂK is the input vector, 𝐲 ∈ ℂN the output vector and 𝐧 ∈ ℂN models the addi-
tive circularly symmetric Gaussian noise. With the i.i.d. Gaussian input, the normalized
input-output mutual information of (3.11) conditioned on 𝐇 is

1
N

I (𝐱; 𝐲|𝐇) = 1
N

log det
(
𝐈 + SNR𝐇𝐇H)

= 1
N

N∑

i=1
log
(
1 + SNR 𝜆i

(
𝐇𝐇H))

= ∫
∞

0
log (1 + SNR x) dF𝐇𝐇H(x) (3.12)
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with the transmitted signal-to-noise ratio (SNR)

SNR =
N𝔼

[
‖𝐱‖2]

K𝔼
[
‖𝐧‖2]

and with 𝜆i
(
𝐇𝐇H) equal to the i-th squared singular value of 𝐇.Here || ⋅ || denotes the

Euclidean norm.
Another fundamental performance measure for (3.11) is the minimum mean-square-

error (MMSE) achieved by a linear receiver, which determines the maximum achiev-
able output signal-to-interference-and-noise ratio (SINR). For an i.i.d. input vector, the
arithmetic mean over uses (or transmit antennas) of the MMSE is given, as a function
of random matrix 𝐇, by

1
K

min
𝐌∈ℂK×N

𝔼
[
‖𝐱 −𝐌𝐲‖2] = 1

K
Tr
{(

𝐈 + SNR𝐇H𝐇
)−1
}

= 1
K

K∑

i=1

1
1 + SNR 𝜆i (𝐇H𝐇)

= ∫
∞

0

1
1 + SNR x

dF𝐇H𝐇(x)

= N
K ∫

∞

0

1
1 + SNR x

dF𝐇𝐇H (x) − N − K
K

(3.13)

The expectation in the first line is over 𝐱 and 𝐧. The last line follows the following relation

NF𝐇𝐇H (x) − NU(x) = KF𝐇H𝐇 (x) − KU(x) (3.14)

where U(x) is the unit-step function: U(x) = 0, x < 0; U(x) = 1, x > 0.
Both fundamental performance measures (capacity and MMSE) are coupled

through

SNR d
d SNR

loge det
(
𝐈 + SNR𝐇𝐇H) = K − Tr

{(
𝐈 + SNR𝐇𝐇H)−1

}
(3.15)

As seen in (3.12) and (3.13), capacity and MMSE are dictated by the distribution of the
empirical (squared) singular value distribution of the random channel matrix 𝐇. In the
simplest case, the entries of 𝐇 are i.i.d. Gaussian. More general cases, such as indepen-
dent (but not identically distributed) entries or even dependent entries, are of interest
in this context. ◽

Example 3.6.3 (functional averages over Gaussian ensembles) The MIMO channel
model is defined similarly to (3.11). The result here can be applied to massive MIMO
analysis. See Section 15.3. We repeat the definition to fix a different notation. Denoting
the number of transmitting antennas by M and the number of receiving antennas by N ,
the channel model is

𝐲 = 𝐇𝐬 + 𝐧 (3.16)

where 𝐬 ∈ ℂM is the transmitted vector, 𝐲 ∈ ℂ is the received vector,𝐇 ∈ ℂN×M is a com-
plex matrix and 𝐧 ∈ ℂN is the zero mean complex Gaussian vector with independent,
equal variance entries. We assume that 𝔼

(
𝐧𝐧H) = 𝐈N , where (⋅)H denotes the complex
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conjugate transpose and 𝐈N the N × N identity matrix. It is reasonable to put a power
constraint

𝔼
(
𝐧H𝐧

)
= 𝔼

[
Tr
(
𝐧𝐧H)] ⩽ P,

where P is the total transmitted power. The signal-to-noise ratio, denoted by snr, is
defined as the quotient of the signal power and the noise power and in this case is equal
to P∕N .

Recall that if 𝐀 is an n × n Hermitian matrix then there exists 𝐔 unitary and 𝐃 =
diag

(
d1,… , dn

)
such that 𝐀 = 𝐔𝐃𝐔H . Given a continuous function f we define f (𝐀) as

f (𝐀) = 𝐔 diag
(

f
(
d1
)
,… , f

(
dn
))

𝐔H

Naturally, the simplest example is the one where 𝐇 has independent and identically
distributed (i.i.d.) Gaussian entries, which constitutes the canonical model for the sin-
gle user narrow band MIMO channel. It is known that the capacity of this channel is
achieved when 𝐬 is a vector with complex Gaussian zero mean and covariance snr 𝐈M.

See [51, 52] for instance. For the fast fading channel, assuming statistical channel state
information at the transmitter, the ergodic capacity is given by

𝔼
[
log det

(
𝐈N + snr𝐇𝐇H)] = 𝔼

[
Tr log

(
𝐈N + snr𝐇𝐇H)] (3.17)

where in the last equality we use the fundamental fact that
log det (⋅) = Tr log (⋅) (3.18)

We prefer the form of Tr log (⋅) because the trace Tr(⋅) is a linear function. The expecta-
tion 𝔼(⋅) is also a linear function. Sometimes it is convenient to exchange the order of 𝔼
and Tr(⋅) in (3.17):

𝔼
[
log det

(
𝐈N + snr𝐇𝐇H)] = 𝔼

[
Tr log

(
𝐈N + snr𝐇𝐇H)]

= Tr
[
𝔼 log

(
𝐈N + snr𝐇𝐇H)]

The 𝔼(𝐗) can be approximated by the arithmetic average 1
n

n∑

i=1
𝐗i when n “snapshots” of

the p × p random matrix 𝐗 are observed. As a result, we reach
𝔼
[
log det

(
𝐈N + snr𝐇𝐇H)] = 𝔼

[
Tr log

(
𝐈N + snr𝐇𝐇H)]

= Tr
[
𝔼 log

(
𝐈N + snr𝐇𝐇H)] (3.19)

≈ 1
n
Tr

[ n∑

i=1
log
(
𝐈N + snr𝐇i𝐇H

i
)
]

which boils down to the sum of random positive definite Hermitian matrices 𝐇i𝐇H
i ,

i = 1,… , n, given the i-th “snapshot” 𝐇i of the random channel matrix 𝐇 that is defined
in (15.29). See [40] for a whole chapter on the sum of random matrices. The channel
capacity with a finite number of samples can be obtained using (3.19). Note that the
Frobenius norm is defined as

‖𝐁‖2
F ≡ Tr

(
𝐁𝐁H)

In (3.19), if we expand the function log
(
𝐈N + snr𝐇i𝐇H

i

)
using its Taylor series, we can

reduce the problem to the sample moments mk defined as

m̂k = 1
M

Tr
[( 1

N
𝐇i𝐇H

i

)k]
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for an integer k ≥ 1. Because the sample moments m̂k are consistent estimators of true
moments mk , it is then natural to use the moment method for the inference of the param-
eters [53, p. 425]. See Section 8.9.3 for this.

More generally, we can expand a function of a random matrix in the form of f
(
𝐇𝐇H)

in terms of its Taylor series. We can similarly obtain the true moments mk . We can use
sample moments m̂k to estimate the true moments.

Another important performance measure is the minimum mean square error
(MMSE) achieved by a linear receiver, which determines the maximum achievable
output signal-to-interference-and-noise ratio (SINR). For an input vector 𝐱 with i.i.d.
entries of zero mean and unit variance the MSE at the output of the MMSE receiver is
given by

min
𝐌∈ℂM×N

𝔼
[
‖𝐱 −𝐌𝐲‖2] = 𝔼

[
Tr log

(
𝐈M + snr𝐇H𝐇

)−1
]

(3.20)

where the expectation on the left-hand side is over both the vectors x and the random
matrices 𝐇, whereas the right-hand side is over 𝐇 only. See [52] for details.

Let 𝐇 be an n × n Gaussian random matrix with complex, independent, and
identically distributed entries of zero mean and unit variance. Given an n × n positive
definite matrix 𝐀, and a continuous function f ∶ ℝ+ → ℝ such that ∫ ∞

0 e−𝛼t|f (t)|2dt <
∞ for every 𝛼 > 0, Tucci and Vega (2013) [54] find a new formula for the
expectation

𝔼
[
Tr
(

f
(
𝐇𝐀𝐇H))]

Taking f (x) = log (1 + x) gives another formula for the capacity of the MIMO com-
munication channel, and taking f (x) = (1 + x)−1 gives the MMSE achieved by a linear
receiver.

Let 𝕄n be the set of all n × n complex matrices and 𝕌n be the set of n × n unitary
complex matrices. Let d𝐇 be the Lebesgue measure on 𝕄n and let

d𝜇 (𝐇) = 𝜋−n2 exp
(
−Tr

(
𝐇H𝐇

))
d𝐇

be the Gaussian measure on 𝕄n. This is the induced measure by the Gaussian random
matrix with complex independent and identically distributed entries with zero mean
and unit variance in the set of matrices, when this is represented as an Euclidean space
of dimension 2n2. Note that this probability measure is left and right invariant under
unitary multiplication, or

d𝜇 (𝐇𝐔) = d𝜇 (𝐔𝐇) = d𝜇 (𝐇)

for every unitary 𝐔.
Let 𝐀 be an Hermitian n × n matrix for n = 2 with eigenvalues 𝜆1 and 𝜆2. If 𝜆1 ≠ 𝜆2

then

∫𝕄2

Tr
[
log
(
𝐈2 +𝐇H𝐀𝐇

)]
d𝜇 (𝐇) =

f0
(
𝜆1
)
− f0

(
𝜆2
)
+ 𝜆1 f1

(
𝜆2
)
− 𝜆2 f1

(
𝜆1
)

𝜆1 − 𝜆2

where

f0
(
𝜆i
)
= ∫

∞

0
e−tt𝜆i log

(
1 + t𝜆i

)
dt, and f1

(
𝜆i
)
= ∫

∞

0
e−t log

(
1 + t𝜆i

)
dt
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If 𝜆1 = 𝜆2 = 𝜆 then

∫𝕄2

Tr
[
log
(
𝐈2 + 𝜆 ⋅𝐇H𝐇

)]
d𝜇 (𝐇)

= ∫
∞

0
e−t
[

(1 + t) log (1 + t𝜆) + t𝜆 (t − 1)
1 + t𝜆

]

dt

Analogously, we can compute explicitly the moments for the two-dimensional case.
Let 𝐀 be an Hermitian 2 × 2 matrix with eigenvalues 𝜆1 and 𝜆2 and let m ≥ 1. If 𝜆1 ≠ 𝜆2
then

∫𝕄2

Tr
[(
𝐇H𝐀𝐇

)m]d𝜇 (𝐇) = m!

(

(m + 1)
𝜆m+1

1 − 𝜆m+1
2

𝜆1 − 𝜆2
+
𝜆1𝜆

m
2 − 𝜆2𝜆

m
1

𝜆1 − 𝜆2

)

If 𝜆1 = 𝜆2 = 𝜆 then

∫𝕄2

Tr
[(
𝐇H𝐀𝐇

)m]d𝜇 (𝐇) = m!
(
m2 + m + 2

)
𝜆m

Let𝐀 be an n × n positive definite matrix, and let
{
𝜆1,… , 𝜆n

}
be the set of eigenvalues

of 𝐀. Assume that all the eigenvalues are different. Then

∫𝕄n

Tr
[
log
(
𝐈n +𝐇H𝐀𝐇

)]
d𝜇 (𝐇) = 1

det (𝚫 (𝐃))

n−1∑

k=0
det
(
𝐓k
)

(3.21)

where𝐓k is the matrix constructed by replacing the (k + 1) row of𝚫 (𝐃)
({
𝜆n−k−1

i

}n
i=1

)
by

{
1

(n − k − 1)! ∫
∞

0
e−t(t𝜆i

)n−k−1 log
(
1 + t𝜆i

)
}n

i=1

Here 𝚫 (𝐃) is the Vandermonde matrix associated with the sequence
{
𝜆1,… , 𝜆n

}

Let𝐀 be an n × n positive definite matrix, and let
{
𝜆1,… , 𝜆n

}
be the set of eigenvalues

of 𝐀. Assume that all the eigenvalues are different. Then

∫𝕄n

Tr
[(
𝐈n +𝐇H𝐀𝐇

)−1
]
d𝜇 (𝐇) = 1

det (𝚫 (𝐃))

n−1∑

k=0
det
(
𝐓k
)

(3.22)

where 𝐓k is the matrix constructed by replacing the (k + 1) row of 𝚫(𝐃)({𝜆n−k−1
i }n

i=1) by
{

1
(n − k − 1)! ∫

∞

0
e−t(t𝜆i

)n−k−1(1 + t𝜆i
)−1dt

}n

i=1

As a consequence of (3.21) and (3.22), we have a new formula for the capacity of
the MIMO communication channel and for the MMSE described previously in this
example.

For every real value 𝛼 > 0 let us define the following class of functions:

L2
𝛼 ∶=

{

f ∶ ℝ+ → ℝ ∶ measurable such that ∫
∞

0
e−𝛼t|f (t)|2dt < ∞

}

(3.23)

This is a Hilbert space with respect to the inner product

⟨ f , g⟩𝛼 = ∫
∞

0
e−𝛼t f (t)g(t)dt
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Moreover, polynomials are dense with respect to this norm (see [184, Chapter 10]). Let
𝛼 be the set of continuous functions in L2

𝛼 and let  be the intersection of all the 𝛼
 =

⋂

𝛼

𝛼
Note that the family  is a very rich family of functions. For instance, all func-
tions that do not grow faster than polynomials belong to this family. In particular,
f (t) = log(1 + t) ∈  .

Let𝐀 be an n × n positive definite matrix, and let
{
𝜆1,… , 𝜆n

}
be the set of eigenvalues

of 𝐀. Assume that all the eigenvalues are different. Then for every f ∈  we have

∫𝕄n

Tr
[

f
(
𝐇H𝐀𝐇

)]
d𝜇 (𝐇) = 1

det (𝚫 (𝐃))

n−1∑

k=0
det
(
𝐓k
)
, (3.24)

where𝚫 (𝐃) is the Vandermonde matrix associated with the matrix𝐃 = diag
(
𝜆1,… , 𝜆n

)

and 𝐓k is the matrix constructed by replacing the (k + 1) row of 𝚫 (𝐃)
({
𝜆n−k−1

i

}n
i=1

)
by

1
(n − k − 1)!

{
fk
(
𝜆i
)}n

i=1

where

fk (x) ∶= ∫
∞

0
e−t(tx)n−k−1f (tx) dt ◽

3.7 Central Limit Theorem for Linear Eigenvalue Statistics

Theorems for Wigner’s semicircle law and the Marchenko–Pastur law can be viewed as
random matrix analogs of the law of large numbers from classical probability theory.
Thus a central limit theorem for fluctuations of linear eigenvalue statistics is a natural
second step in studies of the eigenvalue distribution of any ensemble of random matri-
ces. Here we only give the result for a sample covariance matrix. We refer to Section B.5
for its application in hypothesis testing.

For each n ≥ 1, let 𝐀n = 1
n
𝐗H

n 𝐗n be a real sample covariance matrix of size n, where
𝐗n =

{
Xij
}

1⩽i,j⩽n, and
{

Xij ∶ 1 ⩽ i, j ⩽ n
}

is a collection of real independent random
variables with zero mean and unit variance. The eigenvalues are ordered such that
𝜆1
(
𝐀n
)
⩽ 𝜆2

(
𝐀n
)
⩽ · · · ⩽ 𝜆n

(
𝐀n
)
.The test function f from the space s has the norm

‖f ‖2
s = ∫ (1 + 2 |𝜔|)2s|F (𝜔)|2d𝜔

for some s > 3∕2, where F (𝜔) is the Fourier transform of f defined by

F (𝜔) = 1
√

2𝜋 ∫ ej𝜔t f (t)dt

We note that if f is a real-valued function with f ∈ s for some s > 3∕2, the both f and
its derivative f ′ are continuous and bounded almost everywhere [185]. In particular,
this implies that f is Lipschitz.
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Suppose that 𝔼
[
X4

ij

]
= m4 for all 1 ≤ i, j ≤ n and all n ≥ 1. Assume there exists 𝜀 > 0

such that

sup
n⩾1

sup
1⩽i,j⩽n

𝔼||
|
Xij
|
|
|

4+𝜀
< ∞

Let f be a real-valued function with ‖f ‖s < ∞ for some s > 3∕2. Then

n∑

i=1
f
(
𝜆i
(
𝐀n
))

− 𝔼
n∑

i=1
f
(
𝜆i
(
𝐀n
))

−→  (
0, v2 [f

])
(3.25)

in distribution as n → ∞, where the variance v2 [f
]

is a function of f defined by

v2 [f
]
= 1

2𝜋2 ∫
4

0 ∫
4

0

(
f (x) − f (y)

x − y

)2 (
4 − (x − 2)

(
y − 2

))

√
4 − (x − 2)2

√

4 −
(
y − 2

)2
dxdy

+
m4 − 3

4𝜋2

(

∫
4

0

x − 2
√

4 − (x − 2)2
dx

)2

For big data, we are interested in the performance of algorithms at different scales
of matrix sizes n. The variance of the linear eigenvalue statistics, (3.25), does not grow
to infinity in the limit n → ∞ for sufficiently smooth test functions. This points to very
effective cancellations between different terms of sum and a rigidity property [186] for
the distribution of the eigenvalues.

See also [187] for a recent result. Consider a N × n matrix

𝐘n = 1
√

n
𝚺1∕2

n 𝐗n

where 𝚺n is a nonnegative definite Hermitian matrix and 𝐗n is a random matrix with
i.i.d. real or complex standardized entries. The fluctuations of the linear statistics of the
eigenvalues:

Tr f
(
𝐘n𝐘H

n
)
=

N∑

i=1
f
(
𝜆i
)
, 𝜆i eigenvalues of 𝐘n𝐘H

n

are shown to be Gaussian, in the regime where both dimensions of matrix 𝐘n go to
infinity at the same pace and in the case where f is an analytic function. The main
improvement with respect to Bai and Silverstein’s CLT [188] lies in the fact that
Najim (2013) [187] considers general entries with finite fourth moment, but whose
fourth cumulant is non-null, i.e. whose fourth moment may differ from the moment
of a (real or complex) Gaussian random variable. As a consequence, extra terms
proportional to

|𝜈|2 = ||
|
𝔼
(
Xn

11
)2|
|
|

2
𝜅 = 𝔼||X

n
11
|
|

4 − |𝜈|2 − 2

appear in the limiting variance and in the limiting bias, which not only depend on the
spectrum of matrix 𝚺n but also on its eigenvectors.
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3.8 Central Limit Theorem for Random Matrix S−1T

As a generalization of the univariate Fisher statistic, random Fisher matrices are widely
used in multivariate statistical analysis, for example for testing the equality of two multi-
variate population covariance matrices. See Section 8.9.6 for testing equality of multiple
covariance matrices.

The asymptotic distributions of several meaningful test statistics depend on the
related Fisher matrices. Such Fisher matrices have the form

𝐅 = 𝐒y𝐌𝐒−1
x 𝐌H

where 𝐌 is a nonnegative and non random Hermitian matrix, and 𝐒x and 𝐒y are p × p
sample covariance matrices from two independent samples where the populations are
assumed to be centered and normalized (i.e. mean 0, variance 1 and with independent
components).

In the large-dimensional context, Zheng (2012) [189] established a central limit
theorem for linear spectral statistics of a standard Fisher matrix where the two
population covariance matrices are equal: the matrix 𝐌 is the identity matrix and
𝐅 = 𝐒y𝐒−1

x . In order to extend the CLT of Zheng (2012) [189] to general Fisher matrices,
we first need to establish limit theorems for the spectral (eigenvalues) distribution of
the matrix 𝐌𝐒−1

x 𝐌H , or the matrix 𝐒−1
x 𝐓 where 𝐓 = 𝐌H𝐌 is nonrandom. In many

large-dimensional statistic problems, the deterministic matrix 𝐓 is usually not invertible
or has eigenvalues close to zero, and it is impossible to base the analysis on the CLT of
Bai and Silverstein (2004) [190].

Here we consider the product 𝐒−1
x 𝐓 of a general determinist and nonrandom Hermi-

tian matrix 𝐓 by the inverse 𝐒−1
x of a standard sample covariance matrix, due to Zheng

et al. (2013) [191].
Consider the hypothesis test

0 ∶ 𝐒y𝐌𝐒−1
x 𝐌H 𝐌 = 𝐈,

1 ∶ 𝐒y𝐌𝐒−1
x 𝐌H 𝐌 is arbitrary

For a p × p random matrix 𝐀n with eigenvalues 𝜆i, i = 1,… , p linear spectral statistics
of type

1
p

p∑

i=1
f
(
𝜆i
)
= Tr f (𝐀)

for various test functions f are of central importance in the theory of random matrices.
Let

{
𝐱t
}
, t = 1,… , n be a sequence of independent p-dimensional observations with

independent and standardized components, so for 𝐱t =
(
Xtj
)
, 𝔼Xtj = 0 and 𝔼||

|
Xtj
|
|
|

2
= 1.

The corresponding sample covariance matrix is

𝐒 = 1
n

n∑

t=1
𝐱t𝐱H

t (3.26)

Consider the product matrix

𝐒−1𝐓 =

(
1
n

n∑

t=1
𝐱t𝐱H

t

)−1

𝐓 (3.27)
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where 𝐓 is a p × p non-negative definite and nonrandom Hermitian matrix. Notice that
we do not ask that 𝐓 be invertible.

Assumption 3.8.1 The p × n observation matrix
(
Xtj
)
, t = 1,… , n, j = 1,… , p are

made with independent elements satisfying 𝔼Xtj = 0,𝔼||
|
Xtj
|
|
|

2
= 1. Moreover, for any

𝜂 > 0 and as p, n → ∞

1
np

n∑

t=1

p∑

j=1
𝔼
[
|
|
|
Xtj
|
|
|

2
𝕀|Xtj|⩾𝜂

√
n

]
→ 0 (3.28)

where 𝕀cdot is the indicator function.

The elements are either all real or all complex and we set an index = 1 or = 2, respec-
tively. In the later case, 𝔼X2

tj = 0 for all t, j.

Assumption 3.8.2 In addition to Assumption 3.8.1, the entries
{

Xtj
}

have an uniform

fourth moment 𝔼||
|
Xtj
|
|
|

4
= 1 + 𝜅. Moreover, for any 𝜂 > 0 and as p, n → ∞

1
np

n∑

t=1

p∑

j=1
𝔼
[
|
|
|
Xtj
|
|
|

4
𝕀|Xtj|⩾𝜂

√
n

]
→ 0 (3.29)

Assumption 3.8.3 In addition to Assumption 3.8.1, the entries
{

Xtj
}

have an
uniform fourth moment (not necessarily the same). Moreover, for any 𝜂 > 0 and as
p, n → ∞

1
np

n∑

t=1

p∑

j=1
𝔼
[
|
|
|
Xtj
|
|
|

4
𝕀|Xtj|⩾𝜂

√
n

]
→ 0 (3.30)

Assumption 3.8.4 The empirical spectrum density Hn of {𝐓n} tends to a limit H,
which is a probability measure not degenerated to the Dirac mass at 0.

Assumption 3.8.5 In addition to Assumption 3.8.4, the operator norm of 𝐓 is
bounded when n, p → ∞.

Assumption 3.8.6 The dimension p and the sample size n both tend to infinity such
that p∕n → c ∈ (0, 1) .

Theorem 3.8.7 Under Assumptions 3.8.1, 3.8.4 and 3.8.6, with probability 1, the
empirical spectrum density Fn(x) of 𝐒−1𝐓 tends to a nonrandom distribution Fc,H whose
Stieltjes transform s(z) is the unique solution to the equation

zm(z) = −1 + ∫
tdH (t)

−z − cz2m(z) + t
(3.31)

The distribution Fc,H is then the limiting spectrum density of 𝐒−1𝐓.
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We consider a linear spectral statistics of 𝐒−1𝐓 of form

Fn
(

f
)
= ∫ f (x)dFn (x) =

1
p

p∑

i=1
f
(
𝜆i
)
,

where
{
𝜆i
}
, i = 1,… , p are are the eigenvalues of the matrix 𝐒−1𝐓 and f a given test

function. A special feature here is that fluctuations of Fn( f ) will not be considered
around the limiting spectrum density limit Fc,H

(
f
)
, but around Fcn,Hn

(
f
)

a finite sam-
ple proxy of Fc,H obtained by substituting the parameters (cn,Hn) to (c,H) in the limiting
spectral density. Therefore, we consider the random variable

Xn
(

f
)
= p

[
Fn
(

f
)
− Fyn,Hn

(
f
)]

= p∫ f (x)d
[
Fn − Fyn,Hn

]
(x)

The statements of the central limit theorem are too technical, and are beyond the
scope of this book. See [191] for details.

3.9 Independence for Random Matrices

Our aim in this section is to understand independent random matrices. We need this
for the likelihood ratio test for large random matrices. See Section 8.11.

A random matrix phenomenon is an observable phenomenon that can be represented
in a matrix form, which under repeated measurements yields different outcomes that
are not deterministically predictable. Instead, the outcomes obey certain conditions of
statistical regularity. The set of descriptions of all possible outcomes that may occur on
observing a matrix random phenomenon is called the sample space  .

A matrix event is a subset of the sample space  . A measure of the degree of cer-
tainty with which a given matrix event will occur when observing a matrix random
phenomenon can be found by defining a probability function on subsets of the sam-
ple space,  , which assigns a probability to every matrix event according to the three
postulates of Kolmogorov [192].

A matrix 𝐗 ∈ ℝp×n consisting of np elements X11 (⋅) ,X12 (⋅) , · · · ,Xpn (⋅) that are real
valued functions defined on the sample space  is a real random matrix, if the range
ℝp×n of

⎛
⎜
⎜
⎝

X11 (⋅) · · · X1n (⋅)
⋮ ⋮

Xp1 (⋅) · · · Xpn (⋅)

⎞
⎟
⎟
⎠

consists of Borel sets of np-dimensional real space and, if for each Borel set B of real
np-tuples, arranged in a matrix,

⎛
⎜
⎜
⎝

X11 · · · X1n
⋮ ⋮

Xp1 · · · Xpn

⎞
⎟
⎟
⎠

in ℝp×n, the set
⎧
⎪
⎨
⎪
⎩

s ∈  ∶
⎛
⎜
⎜
⎝

X11
(
s11
)
· · · X1n

(
s1n
)

⋮ ⋮
Xp1

(
sp1
)
· · · Xpn

(
spn
)

⎞
⎟
⎟
⎠

∈ B
⎫
⎪
⎬
⎪
⎭
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is an event in  .
A scalar function f𝐗 (𝐗) is such that
(i) f𝐗 (𝐗) ⩾ 0
(ii) ∫ 𝐗f𝐗 (𝐗) d𝐗 = 1
(iii) ℙ (𝐗 ∈ ) = ∫ f𝐗 (𝐗) d𝐗 where  is a subset of the space of realizations of 𝐗,

defines the probability density function (pdf) of the random matrix 𝐗.
A scalar function f𝐗,𝐘 (𝐗,𝐘) is such that
(i) f𝐗,𝐘 (𝐗,𝐘) ⩾ 0
(ii) ℙ ((𝐗,𝐘) ∈ ) = ∫ ∫ f𝐗,𝐘 (𝐗,𝐘) d𝐗d𝐘 where  is a subset of the space of real-

izations of (𝐗,𝐘) defines the joint (bimatrix variate) probability density function of the
random matrix 𝐗 and 𝐘.

We denote the matrix with p rows and q columns by 𝐀 (p × q) . Let the random matri-
ces 𝐗(p × n) and 𝐘(r × s) have the joint pdf f𝐗,𝐘 (𝐗,𝐘) . Then

(i) the marginal pdf of 𝐗 is defined by

f𝐗 (𝐗) = ∫𝐘
f𝐗,𝐘 (𝐗,𝐘) d𝐘

(ii) the conditional pdf of 𝐗 given 𝐘 is defined by

f𝐗|𝐘 (𝐗|𝐘) =
f𝐗,𝐘 (𝐗,𝐘)

f𝐘 (𝐘)
, f𝐘 (𝐘) > 0

where f𝐘 (𝐘) is the marginal pdf of 𝐘.
Likewise, we can define the marginal pdf of 𝐗, and the conditional pdf of 𝐘, given 𝐗.
Two random matrices 𝐗(p × n) and 𝐘(r × s) are independently distributed if and

only if
f𝐗,𝐘 (𝐗,𝐘) = f𝐗 (𝐗) f𝐘 (𝐘)

where f𝐗 (𝐗) and f𝐘 (𝐘) are the marginal densities of 𝐗 and 𝐘, respectively.
The moment generating function (mgf) of the random matrix 𝐗(p × n) is defined as

M𝐗 (𝐙) = ∫𝐗
exp

(
Tr
(
𝐙𝐗T)) f𝐗 (𝐗) d𝐗

where 𝐙 (p × n) is a mgf if and only if it is positive and continuous in a neighborhood of
𝐙 = 𝟎, where M𝐗 (𝟎) = 1. In this case, the pdf is determined uniquely by the mgf.

The characteristic function of a random matrix 𝐗 (p × n) is defined as
Φ (𝐙) = M𝐗

(
j𝐙
)
,

where j =
√
−1. The mgf of a bimatrix variate distribution is defined by

M𝐗1,𝐗2

(
𝐙1,𝐙2

)
= 𝔼

[
exp

{
Tr
(
𝐙1𝐗T

1
)
+ Tr

(
𝐙2𝐗T

2
)}]

= ∫𝐗1
∫𝐗2

exp
{

Tr
(
𝐙1𝐗T

1
)

+Tr
(
𝐙2𝐗T

2
)}

f𝐗1,𝐗2

(
𝐗1,𝐗2

)
d𝐗1d𝐗2.

The function M𝐗1,𝐗2

(
𝐙1,𝐙2

)
is an mgf if and only if it is positive and continuous a

neighborhood of 𝐙1 = 𝟎, and 𝐙2 = 𝟎,where M𝐗1,𝐗2
(𝟎, 𝟎) = 1. The mgf of the marginal

distributions of 𝐗i, i = 1, 2 are given by
M𝐗1

(
𝐙1
)
= M𝐗1,𝐗2

(
𝐙1, 𝟎

)
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and
M𝐗2

(
𝐙2
)
= M𝐗1,𝐗2

(
𝟎,𝐙2

)

respectively. In this case, the joint pdf f𝐗1,𝐗2

(
𝐗1,𝐗2

)
is determined uniquely by the mgf.

Example 3.9.1 (Gaussian matrix ensembles) A random real symmetric N × N
matrix 𝐗 is said to belong to the Gaussian orthogonal ensemble (GOE) if the diagonal
and upper triangular elments are independently chosen with p.d.f.s

1
√

2𝜋
e−x2

ii∕2 and 1
√
𝜋

e−x2
ij

respectively. An equivalent construction of GOE matrices is to let 𝐀 be an N × N ran-
dom matrix of independent standard Gaussians  (0, 1) and to form 𝐗 = 1

2

(
𝐀 + 𝐀T) .

The joint p.d.f. of all the independent elements of 𝐗 is

p (𝐗) ∶ =
N∏

i=1

1
√

2𝜋
e−x2

ii∕2 ∏

1⩽i⩽j⩽N

1
√
𝜋

e−x2
ij = AN

N∏

i,j=1
e−x2

ij

= AN exp

(

−
N∑

i,j=1
x2

ii∕2

)

= AN exp
(
− 1

2
Tr𝐗2

)

where AN is the normalization. The invariance
p
(
𝐔−1𝐗𝐔

)
= p (𝐗)

for any unitary matrix 𝐔, i.e., 𝐔H𝐔 = 𝐈.
Now consider another GOE matrix 𝐘.The joint p.d.f. of all the independent elements

of 𝐘 is

p (𝐘) ∶ =
N∏

i=1

1
√

2𝜋
e−y2

ii∕2
∏

1⩽i⩽j⩽N

1
√
𝜋

e−y2
ij = BN

N∏

i,j=1
e−y2

ij

= BN exp

(

−
N∑

i,j=1
y2

ii∕2

)

= BN exp
(
−1

2
Tr𝐘2

)

Now we assume that 𝐗 and 𝐘 are independent: all the elements Xij of 𝐗 are indepen-
dent from all the elements Yij of 𝐘. The joint p.d.f. of all the independent elements of 𝐗
and 𝐘 is

p(𝐗)p(𝐘) =
N∏

i=1

1
√

2𝜋
e−x2

ii∕2
∏

1⩽i⩽j⩽N

1
√
𝜋

e−x2
ij

N∏

i=1

1
√

2𝜋
e−y2

ii∕2
∏

1⩽i⩽j⩽N

1
√
𝜋

e−y2
ij

= CN

N∏

i,j=1
e−x2

ij

N∏

i,j=1
e−y2

ij = CN exp

(

−
N∑

i,j=1
x2

ii∕2

)

exp

(

−
N∑

i,j=1
y2

ii∕2

)

= CN exp
(
−1

2
Tr
(
𝐗2 + 𝐘2)

)
◽

Example 3.9.2 (Wishart random matrices) The matrix

𝐆 =
[
𝟎n×n 𝐗
𝐗H 𝟎m×m

]

(3.32)
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where 𝐗 is an n × m (n ≥ m) matrix, has in general n − m zero eigenvalues and
the remaining eigenvalues given by ± the positive square roots of the eigenvalues
of 𝐗H𝐗.

Let 𝐗 denote an n × m (n ≥ m) random matrix, and suppose the elements of 𝐗 are
determined by a parameter 𝛽 = 1, 2 or 4. These elements are real, complex, and real
quaternion independent random variables with Gaussian densities

1
√

2𝜋
e−x2

ij ,
1
𝜋

e−|z|
2
ij ,

2
𝜋

e−2|z|2ij and 2
𝜋

e−2|w|2ij

in the three cases 𝛽 = 1, 2 or 4. A real quaternion is specified by two complex numbers
z and w. Use 𝐗 to form 𝐆, according to (3.32).

We define Wishart ensembles as consisting of 𝐗H𝐗, referred to as (uncorrelated)
Wishart matrices.

The joint probability density function of the elements of the n × m complex matrix
𝐗 is

p (𝐗) = 1
𝜋nm

n∏

i=1

m∏

j=1
e−|z|

2
ij = 1

𝜋nm exp
(
−Tr𝐗H𝐗

)
(3.33)

Similarly , the joint probability density function of the elements of the n × m complex
matrix 𝐘 is

p (𝐘) = 1
𝜋nm

n∏

i=1

m∏

j=1
e−|w|

2
ij = 1

𝜋nm exp
(
−Tr𝐘H𝐘

)
(3.34)

When 𝐗 and 𝐘 are independent: all the elements of 𝐗 are independent of all the ele-
ments of 𝐘, the joint p.d.f. of all the elements of X and 𝐘 is given by

p (𝐗) p (𝐘) = 1
𝜋nm

1
𝜋nm

( n∏

i=1

m∏

j=1
e−|z|

2
ij

)( n∏

i=1

m∏

j=1
e−|w|

2
ij

)

= 1
𝜋2nm exp

(
−Tr𝐗H𝐗

)
exp

(
−Tr𝐘H𝐘

)

= 1
𝜋2nm exp

(
−Tr

(
𝐗H𝐗 + 𝐘H𝐘

))
(3.35)

Let us generalize the above two independent random matrices to N (N ≥ 2) indepen-
dent random matrices 𝐗i, i = 1, 2,… ,N . We have

p
(
𝐗1
)

p
(
𝐗2
)
· · · p

(
𝐗N
)
= 1
𝜋Nnm exp

(

−Tr

( N∑

i=1
𝐗H

i 𝐗i

))

(3.36)

With 𝐗 an n × m complex Gaussian matrix given by (3.34) and 𝐀 = 𝐗H𝐗, we have

p (𝐀) = ∫ 𝛿
(
𝐀 − 𝐗H𝐗

)
p (𝐗) d𝐗 (3.37)

Here 𝛿
(
𝐀 − 𝐗H𝐗

)
is equal to the product of one-dimensional delta functions over the

independent real and imaginary parts of 𝐀. Writing each of these as a Fourier integral
shows

𝛿
(
𝐀 − 𝐗H𝐗

)
= 1

(2𝜋)m2 ∫ eiTr(𝐇(𝐀−𝐗H𝐗))d𝐇 (3.38)
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where 𝐇 is an m × m Hermitian matrix. Substituting this into (3.37) and noting that

∫ exp
(
−Tr𝐗H𝐗

)
ei Tr(𝐇(𝐀−𝐗H𝐗))d𝐗 = 𝜋nm(det (𝐈 + i𝐇))−n

and then separating the integration into a product of one-dimensional integrations,
gives

p (𝐀) = 𝜋2nm

(2𝜋)m2 ∫
eiTr(𝐇𝐀)

(det (𝐈 + i𝐇))n d𝐇

After some algebra, we obtain the p.d.f. of 𝐀 = 𝐗H𝐗 as

p (𝐀) = 1
C𝛽,N

exp
(

−𝛽
2

Tr𝐀
)

(det𝐀)𝛽∕2(n−m+1−2∕𝛽) (3.39)

where C𝛽,N is a normalization constant.
For a rectangular n × m matrix 𝐗 with n < m, sometimes we want to deal with the

square equivalent 𝐘, where the m × m 𝐘 is obtained from 𝐗 by the addition of m − n
rows of zeros. It can be shown that

𝐗H𝐗 = 𝐘H𝐘
where the m × m matrix 𝐗H𝐗 has m − n zero eigenvalues. The nonzero eigenvalues of
𝐗H𝐗 and 𝐗𝐗H are equal.

Consider the correlated Wishart matrices. The n × m data matrix 𝐗 has rows in 𝐗T𝐗
has each row drawn from an m-dimensional Gaussian with mean zero and variance 𝚺.
Equivalently, the distribution of 𝐗 is proportional to

p (𝐗) ∝ exp
(
−1

2
Tr
(
𝐗T𝐗𝚺−1)

)
(3.40)

For the complex case, we have

p (𝐗) ∝ exp
(
−1

2
Tr
(
𝐗H𝐗𝚺−1)

)
◽

Example 3.9.3 (Probability density functions of random matrices) Assume that
the matrix 𝐗 ∈ ℂn×n has a probability density function

pn (𝐗) ≜ H
(
𝜆1,… , 𝜆n

)

It is known that the joint probability density function of the eigenvalues (which are not
necessarily independent, in general) will be of the form

pn
(
𝜆1,… , 𝜆n

)
= cJ

(
𝜆1,… , 𝜆n

)
H
(
𝜆1,… , 𝜆n

)

where J(⋅) arises from the integral of the Jacobian of the transform from the matrix space
to its eigenvalues-eigenvector space, and c is a constant for normalization to make sure
that the integral of pn (𝐗) is one. Generally, it is assumed that H(⋅) has the form

H
(
𝜆1,… , 𝜆n

)
=

n∏

i=1
g
(
𝜆i
)

(3.41)

and J(⋅) has the form

J
(
𝜆1,… , 𝜆n

)
=
∏

i<j

(
𝜆i − 𝜆j

)𝛽
n∏

i=1
hn
(
𝜆i
)

(3.42)
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For example, 𝛽 = 1 and hn = 1 for a real Gaussian matrix, 𝛽 = 2, hn = 1 for a complex
Gaussian matrix, 𝛽 = 4, hn = 1 for a quaternion Gaussian matrix, and 𝛽 = 1, hn = xn−p

for a real Wishart matrix with n ≥ p.
Examples are summarized here:

1) Real Gaussian matrix (symmetric; i.e., 𝐗T = 𝐗)

pn (𝐗) = c exp
(
− 1

4𝜎2 Tr
(
𝐗2)

)

The diagonal entries of𝐗 are i.i.d. real (
0, 2𝜎2) and entries above diagonal are i.i.d.

real  (
0, 𝜎2) .

2) Complex Gaussian matrix (Hermitian; i.e., 𝐗H = 𝐗)

pn (𝐗) = c exp
(
− 1

2𝜎2 Tr
(
𝐗2)

)

The diagonal entries of 𝐗 are i.i.d. real  (
0, 𝜎2) and entries above diagonal are i.i.d.

complex  (
0, 𝜎2) (their real and imaginary parts are i.i.d.  (

0, 𝜎2∕2
)
).

3) Real Wishart matrix of order p × n

pn (𝐗) = c exp
(
− 1

2𝜎2 Tr
(
𝐗T𝐗

))

The entries of 𝐗 are i.i.d. real  (
0, 𝜎2)

4) Complex Wishart matrix of order p × n

pn (𝐗) = c exp
(
− 1
𝜎2 Tr

(
𝐗H𝐗

))
(3.43)

The entries of 𝐗 are i.i.d. complex  (
0, 𝜎2)

For generalized densities, we have:

1) The real Gaussian matrix (symmetric; i.e., 𝐗T = 𝐗)

pn (𝐗) = c exp (−Tr V (𝐗))

The diagonal entries of𝐗 are i.i.d. real (
0, 2𝜎2) and entries above diagonal are i.i.d.

real  (
0, 𝜎2) .

2) The complex Gaussian matrix (Hermitian; i.e., 𝐗H = 𝐗)

pn (𝐗) = c exp (−Tr V (𝐗)) .

The diagonal entries of 𝐗 are i.i.d. real  (
0, 𝜎2) and entries above diagonal are i.i.d.

complex  (
0, 𝜎2) (the real and imaginary parts of which are i.i.d.  (

0, 𝜎2∕2
)
.

3) The real Wishart matrix of order p × n

pn (𝐗) = c exp
(
−Tr V

(
𝐗T𝐗

))

The entries of 𝐗 are i.i.d. real  (
0, 𝜎2) .

4) The complex Wishart matrix of order p × n

pn (𝐗) = c exp
(
−Tr V

(
𝐗H𝐗

))
(3.44)

The entries of 𝐗 are i.i.d. complex  (
0, 𝜎2) .
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In Case 1 and Case 2, V (x) is assumed to be a polynomial of even degrees with a pos-
itive leading coefficients. For example, we have the 2m-order polynomial

V (x) = 𝛾2mx2m + · · · + 𝛾0, 𝛾2m > 0

In Case 3 and Case 4, V (x) is assumed to be a polynomial with positive leading coeffi-
cients. For example, we have V (x) = ax2 + bx + c, a > 0, where a > 0, b and c are the
coefficients for the second-order polynomial. ◽

Example 3.9.4 (independence for random matrices) The aim of this example is to
understand, if two random matrices X and Y are jointly independent, what happens to
their probability distribution functions.

Matrix-valued random variables or random matrices take values in a matrix
space 𝕄n×p (ℝ) or 𝕄n×p (ℂ) of n × p real or complex-valued matrices, with Borel
𝜎-algebra, where n, p ≥ 1 are integers. One can view a matrix-valued random variable
X =

(
Xij
)

1⩽i⩽n;1⩽j⩽p as the joint random variable of its scalar components Xij. One can
apply all the usual matrix operators (e.g., sum, product, determinant, trace, inverse) on
random matrices to obtain a random variable with the appropriate range.

Given a random variable X, taking values in some range R, we define the distribution
𝜇X of X to be the probability measure of the measurable space R defined by the formula

𝜇X (S) = ℙ (X ∈ S)

The distribution of a discrete random variable can be expressed as the sum of Dirac
masses

𝜇X =
∑

x∈R
px𝛿x

Given any n × n Hermitian matrix Mn, the empirical spectral distribution (or ESD)

𝜇 1
√

n
Mn

∶= 1
n

n∑

i=1
𝛿
𝜆i

(
Mn∕

√
n
)

of Mn, where

𝜆1
(
Mn
)
⩽ · · · ⩽ 𝜆n

(
Mn
)

are the (necessarily real) eigenvalues of Mn, counting multiplicity. The ESD is a prob-
ability measure, which can be viewed as a distribution of the normalized eigenvalues
of Mn.

When Mn is a random variable ensemble, then the ESD 𝜇 1
√

n
Mn

is now a random mea-
sure: a random variable taking values in the space Pr (ℝ) of probability measures on the
real line. Thus, the distribution 𝜇 1

√
n

Mn
is a probability measure of probability measures!

A family
(
X𝛼

)

𝛼∈A of random variables is said to be jointly independent if the distribu-
tion of

(
X𝛼

)

𝛼∈A is the product measure of the distribution of the individual X𝛼.

We say that X is independent of Y if (X,Y ) are jointly independent.
A family of events

(
E𝛼
)

𝛼∈A is said to be jointly independent if their indicators
(
𝕀
(
E𝛼
))

𝛼∈A are jointly independent.
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A finite family
(
X1,… ,Xk

)
of random variables Xi, 1 ≤ i ≤ k taking values in measur-

able spaces Ri are jointly independent if and only if

ℙ
(
Xi ∈ Ei for all 1 ⩽ i ⩽ k

)
=

k∏

i=1
ℙ
(
Xi ∈ Ei

)
(3.45)

for all measurable Ei ⊂ Ri. In particular, Xi, i = 1,… , k may be matrix-valued random
variables.

If E1,… ,Ek are jointly independent events, we have

ℙ

( k⋂

i=1
Ei

)

=
k∏

i=1
ℙ
(
Ei
)

(3.46)

and

ℙ

( k⋃

i=1
Ei

)

= 1 −
k∏

i=1
ℙ
(
Ei
)

Let
(
X𝛼

)

𝛼∈A be a family of random variables (not necessarily independent or finite),
and let 𝜇 be a probability measure on a measurable space R, and let B be an arbitrary set.
Then, after extending the sample space if necessary, one can find an i.i.d. family

(
Y𝛽
)

𝛽∈B
with distribution 𝜇 that is independent of

(
X𝛼

)

𝛼∈A.

For instance, one can create arbitrarily large i.i.d. families of Bernoulli random vari-
ables, Gaussian random variables, and so forth, regardless of what other random vari-
ables are in play. ◽

3.10 Matrix-Valued Gaussian Distribution

Theorem 3.10.1

• For 𝐀 (m × m) and 𝐁 (n × n) det (𝐀⊗ 𝐁) = (det𝐀)n(det𝐁)m
.

• For 𝐀 (m × m) and 𝐁 (m × m) , Tr (𝐀⊗ 𝐁) = (Tr 𝐀) (Tr 𝐁) .
• For 𝐀 (m × n) ,𝐁 (p × q) ,𝐂 (n × r) , and 𝐃 (q × s) , (𝐀⊗ 𝐁) (𝐂⊗ 𝐃) = (𝐀𝐂)⊗ (𝐁𝐃) .
• For nonsingular matrices 𝐀 and 𝐁, (𝐀⊗ 𝐁)−1 = 𝐀−1 ⊗ 𝐁−1.

Theorem 3.10.2 For 𝐀 (p × m) ,𝐁 (n × q) ,𝐂 (q × m) ,𝐃 (q × n) ,𝐄 (m × m) , and
𝐗 (m × n) , we have

• vec (𝐀𝐗𝐁) =
(
𝐁T ⊗ 𝐀

)
vec (𝐗)

• Tr (𝐂𝐗𝐁) =
(
vec

(
𝐂T))T (𝐈q ⊗ 𝐗

)
vec (𝐁)

Tr
(
𝐃𝐗T𝐄𝐗𝐁

)
= (vec (𝐗))T (𝐃T𝐁T ⊗ 𝐄

)
vec (𝐗)

= (vec (𝐗))T (𝐁𝐃⊗ 𝐄T) vec (𝐗)
•

The random variable 𝐗, with the pdf

p (x) = 1
√

2𝜋𝜎2
exp

{
− 1

2𝜎2 (x − 𝜇)2
}
, x ∈ ℝ (3.47)
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where 𝜇 ∈ ℝ is said to have a normal (or Gaussian) distribution with mean 𝜇 and vari-
ance 𝜎2. The multivariate generation of (3.47) for 𝐱 =

(
X1,… ,Xp

)T is

p (𝐱) = 1
(2𝜋)p∕2

1
√

det𝚺
exp

{
−1

2
Tr𝚺−1 (𝐱 −𝐦) (𝐱 −𝐦)T

}
(3.48)

where 𝐱 ∈ ℝp,𝐦 ∈ ℝp,𝚺 > 0, and the random vector and the random vector 𝐱 is said to
have a multivariate normal (or Gaussian) distribution, denoted by 𝐱 ∼ p (𝐦,𝚺), with
mean vector 𝐦 and covariance matrix 𝚺.

The random matrix 𝐗 (p × n) is said to have a matrix valued normal (or Gaus-
sian) distribution with mean matrix 𝐌 (p × n) and covariance matrix 𝚺⊗𝚿 where
𝚺 (p × p) > 0 and 𝚿 (n × n) > 0, if vec

(
𝐗T) ∼ pn

(
vec

(
𝐌T) ,𝚺⊗𝚿

)
. For a matrix

𝐘(m × n), vec (𝐘) is an mn × 1 vector defined as

vec (𝐘) =
⎛
⎜
⎜
⎝

𝐲1
⋮
𝐲m

⎞
⎟
⎟
⎠

where 𝐲i, i = 1,… , n is the i-th column of 𝐘.The notation 𝐀⊗ 𝐁 denotes the Kronecker
product (direct product) of the matrices 𝐀 and 𝐁.

We use the notation 𝐗 ∼ p,n (𝐌,𝚺⊗𝚿) .
If 𝐗 ∼ p,n (𝐌,𝚺⊗𝚿) , then the pdf of 𝐗 is given by

p (𝐗) = 1
(2𝜋)np∕2

1
(det𝚺)n∕2 exp

{
−1

2
Tr
[
𝚺−1 (𝐗 −𝐌)𝚿−1(𝐗 −𝐌)T]

}
(3.49)

where 𝐗 ∈ ℝp×n,𝐌 ∈ ℝp×n.

We now derive the density of the random matrix 𝐗. Let 𝐱 = vec
(
𝐗T) and

𝐦 = vec
(
𝐌T) . Then, using the definition of (3.49), 𝐱 ∼ p,n (𝐦,𝚺⊗𝚿) , and its

pdf is

p (𝐱) = 1
(2𝜋)np∕2

1
(det𝚺⊗𝚿)1∕2 exp

{
−1

2
Tr
[
(𝚺⊗𝚿)−1 (𝐱 −𝐦) (𝐱 −𝐦)T]

}

Using Theorems 3.10.1 and 3.10.2, we get

(det𝚺⊗𝚿)−1∕2 = (det𝚺)−n∕2(det𝚿)−p∕2 (3.50)
Tr
[
(𝚺⊗𝚿)−1 (𝐱 −𝐦) (𝐱 −𝐦)T] = Tr

[
𝚺−1 ⊗𝚿−1 (𝐱 −𝐦) (𝐱 −𝐦)T]

= Tr
[
𝚺−1 (𝐗 −𝐌)𝚿−1(𝐗 −𝐌)T]

(3.51)

From (3.50) and (3.51), we obtain (3.49).
The matrix-valued Gaussian distribution arises when sampling from a multivariate

Gaussian population. Let 𝐱1, 𝐱2,… , 𝐱N be a random sample of size N from p (𝐦,𝚺) .
Define the observation matrix as

𝐗 =
(
𝐱1,… , 𝐱N

)
=
⎛
⎜
⎜
⎜
⎝

X11 X12 · · · X1N
X21 X22 · · · X2N
⋮ ⋮ · · · ⋮

Xp1 Xp2 · · · XpN

⎞
⎟
⎟
⎟
⎠

then 𝐗T ∼ N ,p
(
𝐞𝐦T , 𝐈N ⊗ 𝚺

)
, where 𝐞 (N × 1) = (1,… , 1)T

.

If 𝐗 ∼ n,p (𝐌,𝚺⊗𝚿) , then 𝐗T ∼ n,p
(
𝐌T ,𝚿⊗ 𝚺

)
.
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If 𝐗 ∼ n,p (𝐌,𝚺⊗𝚿) , then the characteristic function of 𝐗 is

Φ𝐗 (𝐙) = exp
(

j𝐙T𝐌 − 1
2
𝐙T𝚺𝐙𝚿

)
(3.52)

Let us derive (3.52):
Φ𝐗 (𝐙) = 𝔼

{
exp

(
Tr
(
j𝐙T𝐙

))}

= 𝔼
{

exp
(

j Tr
((

vec
(
𝐗T))T vec

(
𝐙T)

))}

Now we know that vec
(
𝐗T) ∼ pn

(
vec

(
𝐌T) ,𝚺⊗𝚿

)
. Thus, from the characteristic

function of a vector-valued Gaussian distribution, we obtain

Φ𝐗 (𝐙) = exp
(

j
(
vec

(
𝐗T))T vec

(
𝐙T) − 1

2

(
vec

(
𝐙T))T (𝚺⊗𝚿) vec

(
𝐙T)

)

= exp
(

Tr
(

j𝐙T𝐌 − 1
2
𝐙𝚺𝐙𝚿

))

The last equality follows from Theorem 3.10.2.

3.11 Matrix-Valued Wishart Distribution

See Section B.3

3.12 Moment Method

Figure 3.2 gives the intuition for finding statistical metrics for hypothesis tests because
the closed-form expression agrees with empirical simulations. We must take advantage
of the closed-form expression offered by the Marchenko–Pastur law.

Consider the motivated hypothesis problem of (8.2). For hypothesis 0, we deal with
𝐗𝐗H . If we assume that conditions for random matrix 𝐗 are met for Theorem 3.6.1, we
can apply the Marchenko–Pastur law for hypothesis 0.

On the other hand, for hypothesis 1, we deal with

𝐘𝐘H = SNR ⋅𝐇𝐇H + 𝐗𝐗H +
√

SNR
(
𝐇𝐗H + 𝐗𝐇H)

which is different from 0. Our intuition says that the additional terms in the above
expression of 𝐘𝐘H will deform the resultant distribution such that the distribution
of 𝐘𝐘H deviates from that of 𝐗𝐗H , whose distribution of eigenvalues follows the
Marchenko–Pastur distribtuion. To take advantage of this deformation, our task is to
find statistical metrics to measure it. It seems natural to choose the moments of the
empirical spectral density as such metrics.

Similar to the proof of the semicircle law, we use the trace relation: for a positive inte-
ger k, the k-th moment of the empirical spectral density is given by

mk = ∫ xkF𝐒 (dx) = 1
N

Tr
(
𝐒k) = 1

n
Tr
((1

n
𝐗H𝐗

)k)

(3.53)

For the Marchenko–Pastur distribution, the moments are given by

mk,MP = ∫
b

a
xk𝜌MP(x)dx =

k−1∑

i=0

1
i + 1

(
k
i

)(
k − 1

i

)

yi (3.54)
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for k ≥ 0. See [193] for the derivation of (3.54). When k = 0, the zero-order moment
m0 is the area under the curve of 𝜌MP(x), as illustrated in Figure 3.2.

The expectation of moments is

𝔼
(
mk
)
= 𝔼

( 1
N

Tr
(
𝐒k)
)
= 𝔼

{
1
n
Tr
((1

n
𝐗H𝐗

)k)}

(3.55)

For each fixed integer k, it follows from [163] that

𝔼
( 1

N
Tr
(
𝐒k)
)
=

k−1∑

i=1

(N
n

)i 1
i + 1

(
k
i

)(
k − 1

i

)

+ O
(1

n

)
(3.56)

and

Var
( 1

N
Tr
(
𝐒k)
)
= O

( 1
n2

)
(3.57)

3.13 Stieltjes Transform Method

The Stieltjes transform is another fundamental tool, in addition to the moment method.
The Stieltjes transform s(z) of a Hermitian matrix 𝐀 of n × n is defined for any complex
number z not in the support of F𝐀(x):

s(z) = ∫ℝ

1
x − z

dF𝐀(x) =
1
n

n∑

i=1

1
𝜆i (𝐀) − z

(3.58)

The Stieltjes transform can be regarded as the generating function of the moments from
the observations: for z large enough

s(z) = 1
n
Tr (𝐀 − z𝐈)−1 = −1

n

n∑

k=0

1
zk+1 Tr

(
𝐀k) = −1

n

n∑

k=0

1
zk+1 mk

The Stieltjes transform of the Marchenko–Pastur distribution is given by

sMP(z) = ∫ℝ

1
x − z

𝜌MP(x)dx = ∫
b

a

1
2𝜋xy

√
(b − x) (x − a)dx

which is the unique solution to the equation

sMP(z) +
1

y + z − 1 + yzsMP(z)
= 0

in the upper plane.
Some manipulations give

sMP(z) = −
y + z − 1 −

√
(
y + z − 1

)2 − 4yz
2yz

where we take the branch of
√
(
y + z − 1

)2 − 4yz with cut at [a, b] that is asymptotically
y + z − 1 as z → ∞.
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Proposition 3.13.1 (criterion of convergence—Section 2.4 in [67]) Let 𝜇n be a
sequence of probability measure defined on the real line and 𝜇 be a deterministic prob-
ability measure. Then 𝜇n converges to 𝜇 in probability if and only if s𝜇n

(z) converges to
s𝜇(z) in probability for every z in the upper half plane.

The notion of convergence in probability is defined in (3.9). By Proposition 3.13.1, the
Marchenko–Pastur law follows from the criterion of convergence by showing that

s(z) → sMP(z)

in probability for every z in the upper half plane.
A more careful analysis of the Stieltjes transform s(z) gives more accurate and power-

ful control of the empirical spectral density of 𝐀. We are interested in the local version
of the Marchenko–Pastur law 𝜌MP(x), which is defined in (3.10).

Consider the sample covariance matrix 𝐒 = 1
n
𝐗H𝐗, where 𝐗 =

{
𝜉ij
}

1⩽i⩽N ,1⩽j⩽n is a
rectangular random matrix with entries bounded by K where K may depend on n.

Let NI(𝐀) denote the number of eigenvalues of 𝐀 on the interval I. The length of an
interval is denoted by |I|.As illustrated in Figure 3.2, it is natural to ask how many eigen-
values of 𝐒 lie on the interval I if the length |I| shrinks with n. This problem lies at the
heart of proving universality of the local eigenvalue statistics: see [182, 194] and [195].

For any constants 𝜀, 𝛿,C1 > 0, there exists C2 > 0 such that the following holds.
Assume that N∕n → y for some 0 < y ≤ 1. Then, with probability at least 1 − n−C1 , one
has [193]

|
|
|
|
NI (𝐒) − N ∫I

𝜌MP(x)dx
|
|
|
|
⩽ 𝛿N |I| (3.59)

for any interval I ⊂ (a + 𝜀, b − 𝜀) of length |I| ≥ C2K2 log n∕n.

3.14 Concentration of the Spectral Measure for
Large Random Matrices

In general we do not know a priori that 1
N
Tr f

(
𝐗A (𝜔)

)
converges. The interest in Corol-

lary 3.14.2 is in the case where N and M are large and N∕M remains bounded and
bounded away from zero.

Let the set H
N×N be the set of complex entries N × N Hermitian matrices. Let f be a

real valued function onℝ. f can also be seen as a function fromH
N×N (ℂ) intoH

N×N (ℂ).
For 𝐌 ∈ H

N×N (ℂ) , and the eigenvalue decomposition 𝐌 = 𝐔𝐃𝐔H for a diagonal real
matrix 𝐃 and a unitary matrix 𝐔, we have

f (𝐌) = 𝐔f (𝐃)𝐔H

where f (𝐃) is the diagonal matrix with entries
(

f
(
D11
)
,… , f

(
DNN

))

Often we are interested in 1
N
Tr f (𝐌) , for 𝐌 ∈ H

N×N (ℂ) . We consider the con-
centration of the real valued random variable 1

N
Tr f

(
𝐗A
)

for inhomogeneous random
matrices given by

𝐗A =
((

𝐗A
)

ij

)

1⩽i,j⩽N
, 𝐗A = 𝐗H

A ,
(
𝐗A
)

ij =
1
√

N
Aij𝜔ij
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with

𝝎 ∶=
(
𝜔R + i𝜔I) =

(
𝜔ij
)

1⩽i,j⩽N =
(
𝜔R

ij +
√
−1𝜔I

ij

)

1⩽i,j⩽N
, 𝜔ij = 𝜔ji

𝐀 =
(
Aij
)

1⩽i,j⩽N , Aij = Aji

where
(
𝜔ij
)

1⩽i,j⩽N are independent complex random variables with laws
(
Pij
)

1⩽i⩽N ,1⩽j⩽M,

Pij being a probability measure on ℂ with

Pij
(
𝜔ij ∈ •

)
= ∫ 𝕀u+iv∈•PR

ij (du)PI
ij (dv)

and 𝐀 is a nonrandom complex matrix with entries
(
Aij
)

1⩽i,j⩽N uniformly bounded by,
say, a.

When needed, we shall write𝐗A = 𝐗A (𝝎) .We letΩN =
{(
𝜔R, 𝜔I)}

1⩽i,j⩽N , and denote

byℙN the lawℙN = ⊗1⩽i⩽j⩽N

(
PR

ij ⊗ PI
ij

)
onΩN ,with PI

ii = 𝛿0,where 𝛿0 is the Dirac mea-
sure.

For a compact set K , we denote its diameter by |K |, that is the maximal distance
between two points of K . For a Lipschitz function f ∶ ℝn → ℝ, we define the Lipschitz
constant |f | by

|f | = sup
𝐱,𝐲

|f (𝐱) − f (𝐲)|
‖𝐱 − 𝐲‖

where || ⋅ || denotes the Euclidean norm on ℝn.

We say that a measure 𝜈 onℝ satisfies the logarithmic Sobolev inequality with the (not
necessarily optimal) constant c if, for any differentiable function f ,

∫ f 2 log
f 2

∫ f 2d𝜈
d𝜈 ⩽ 2c∫ |

|f
′|
|

2d𝜈

where f ′(x) is the first derivative of f (x).Recall that a measure 𝜈 satisfying the logarithmic
Sobolev inequality possesses sub-Gaussian tails. Recall also that the Gaussian law [196]
that any probability measure 𝜈 absolutely continuous with respect to the Lebesgue mea-
sure satisfying the Bobkov and Götze [197] condition (including 𝜈 (dx) = Z−1e−|x|𝛼dx for
𝛼 ≥ 2), as well as any distribution absolutely continuous with respect to them possessing
an upper and lower bounded density, satisfies the logarithmic Sobolev inequality [198,
Section 7.1].

Theorem 3.14.1 ( [199]) (a) Assume that the
(
Pij
)

i⩽j,i,j∈ℕ are uniformly compactly
supported, that is that there exists a compact set K ⊂ ℂ, so that for any 1 ⩽ i ⩽ j ⩽
N , Pij (Kc) = 0. Assume that f (x) is convex and Lipschitz. Then, for any t > t0 (N) ∶=
8 |K |

√
𝜋a|f |∕N > 0

ℙN
(
|
|
|
|

1
N

Tr f
(
𝐗A (𝜔)

)
− 𝔼 1

N
Tr f

(
𝐗A
)|
|
|
|
> t
)

⩽ 4 exp

{

−
N2(t − t0 (N)

)2

16|K |2a2 |f |2

}
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(b) If the
(

PR
ij ,P

I
ij

)

1⩽i⩽j⩽N
satisfy the logarithmic Sobolev inequality with uniform con-

stant c, then for any Lipschitz function f , for any t > 0

ℙN
(
|
|
|
|

1
N

Tr f
(
𝐗A (𝜔)

)
− 𝔼 1

N
Tr f

(
𝐗A
)|
|
|
|
> t
)

⩽ 2 exp

{

− N2t2

16ca2|f |2

}

The well known Wishart’s matrices (or sample covariance matrices) are used through-
out the book. We shall state results under the natural normalization

∫ xPij (dx) = 0, ∫ x2Pij (dx) = 1

If 𝐘 is a N × M matrix, N ≤ M, with independent entries 𝜔ij = Re
(
𝜔ij
)
+ i Im

(
𝜔ij
)

of
law Pij,𝐙 = 𝐘𝐘H is a so-called Wishart’s matrix. LetℙN ,M = ⊗1⩽i⩽N ,1⩽j⩽MPij. For the sake
of completeness, let us consider inhomogeneous Wishart matrices given for a diagonal
real matrix 𝐑 =

(
𝜆1,… , 𝜆M

)
with 𝜆i ⩾ 0 by 𝐙 = 𝐘𝐑𝐘H . To deduce the concentration of

the spectral measure for such matrices from Theorem 3.14.1, note that if we consider

Aij = 0 for 1 ⩽ i ⩽ N , 1 ⩽ j ⩽ N
Aij = 0 for M + 1 ⩽ i ⩽ M + N ,M + 1 ⩽ j ⩽ M + N

Aij =
√
𝜆i−M for N + 1 ⩽ i ⩽ M + N , 1 ⩽ j ⩽ N

Aij =
√
𝜆j−M for 1 ⩽ i ⩽ N ,N + 1 ⩽ j ⩽ N + M

then 𝐀 = 𝐀H and if we consider 𝐗A ∈ H
(N+M)×(N+M) (ℂ) constructed as in the previous

section, 𝐗A can be written as
(

0 𝐘𝐑1∕2

𝐑1∕2𝐘 0

)

Now, it is straightforward to see that
(
𝐗A
)2 is equal to

(
𝐘𝐑𝐘H 0

0 𝐑1∕2𝐘H𝐘𝐑1∕2

)

In particular, for any measurable function f ,

Tr f
((

𝐗A
)2
)
= 2Tr f

(
𝐘𝐑𝐘H) + (M − N) f (0)

It is therefore a direct consequence of Theorem 3.14.1 that

Corollary 3.14.2 (Guionnet and Zeitouni (2000) [199]) With
(
Xij
)

1⩽i⩽N ,1⩽j⩽M inde-
pendent random variables, and with ℙN ,M defined above, we let 𝐑 be a non-negative
diagonal matrix with finite spectral radius 𝜌. Set 𝐙 = 𝐗𝐑𝐗H . Then

• If the
(
Pij
)

1⩽i⩽N ,1⩽j⩽M are supported in a compact set K , for any function f so
that g(x) = f (x2) is convex and has finite Lipschitz norm |g| ≡ |||f |||, for any
t > t0 (N + M) ∶= 4 |K |

√
𝜋𝜌|||f |||∕ (N + M)
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ℙ
(
|
|
|
|

1
N

Tr f (𝐙) − 𝔼 1
N

Tr f (𝐙)
|
|
|
|
> t M + N

N

)

⩽ 4 exp

(

− 1
4|K |2𝜌|||f |||2

(
t − t0 (N + M)

)2(N + M)2

)

.

• If the
(
Pij
)

1⩽i⩽N ,1⩽j⩽M satisfy the logarithmic Sobolev inequality with uniformly
bounded constant c, the above result holds for any Lipschitz functions g(x) = f (x2) ∶
for any t > 0

ℙ
(
|
|
|
|

1
N

Tr f (𝐙) − 𝔼 1
N

Tr f (𝐙)
|
|
|
|
> t M + N

N

)

⩽ 2 exp

(

− 1
2c𝜌|||f |||2

t2(N + M)2

)

The proof is, in fact, straightforward because, with the above remarks, one should see
f (𝐙) as g

(
𝐗A
)
= f

((
𝐗A
)2
)

and thus control the Lipschitz norm of g and the convex-
ity of g.

The results presented above extend to the case where 𝐑 is self-adjoint non-negative
but not diagonal.

3.15 Future Directions

The ubiquity of massive streaming data, especially in problems involving array signal
processing, trade of stocks and various online trading schemes, and so forth, makes
RMT ideal. Integration of computational tools for analysis of large dimensional
data using RMT has the potential to create a new paradigm for statistical prac-
tices. Hadamard products of random matrices are applicable to missing at random
scenarios.

The vision of studying the interactions among, RMT, big data, and smart grid is explic-
itly outlined in the previous books of the author [39,40], where RMT is used as the unify-
ing theme. This book makes more ideas concrete. The connection of RMT with massive
MIMO [200], viewed as an large array of antennas—in the order of n = 800 − 1000,may
be fruitful. In some sense, massive MIMO is a problem of big data.

The data are dependent on time, and much of the theory in the field is under the setting
of i.i.d. observations. The current setting of i.i.d. observations can be extended to the case
when the columns of the data matrix can be viewed as a realization of a high-dimensional
multivariate time series, t = 1,… ,NTs, where Ts is the sampling interval. We deal with
a data matrix 𝐗 of size n × N . The natural setting is when N and n can be arbitrary,
including the case that N∕n → c ∈ (0,∞), as n → ∞,N → ∞.

Bibliographical Remarks

Some material from Section 3.1 can be found in [201]. The example on Tn =
log
(
det𝐒n

)
is inspired by the introduction to the Bai and Silverstein (2010) [163].
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Historically, the author’s interest in random matrix theory was initially led by the work
in [61], where it was found that the classical methods such as generalized likelihood
ratio test (GLRT) were outperformed by the generalized functions of sample covariance
matrices. In other words, we proposed the new statistic f

(
𝐒n
)
, where f (x) was some

very general function. With research going deeper and deeper, we understood that the
𝐒n might be viewed as a random matrix that is also a non-negative, Hermitian matrix.
The most critical step was made when we realized that the trace function gave the best
empirical results in MATLAB simulations. Then we were convinced that Tr f

(
𝐒n
)

was
the new statistic for our problem.

Paul and Aue (2013) [38] give an overview of random matrix theory (RMT) with the
objective of highlighting the results and concepts that have a growing impact in the
formulation and inference of statistical models and methodologies, in the context of
high-dimensional statistics. We drew on some material from this paper in Section 3.15.

We took some material from [202–204] in Section 3.2. Some good tutorials on ran-
dom matrix theory are [164,183], where some MATLAB codes are available. The mate-
rial in Section 3.3, Section 3.4 and Section 3.5 is taken from [178].

We drew material freely from the Ph.D. dissertation of Wang [193], in particular in
Section 3.6. Most of results are standard in the literature.

Classical works on covariance matrices [172, 180–182] are still inspiring. The goal
of [205] is to prove the central limit theorem for linear statistics of the eigenvalues of
real symmetric band random matrices with independent entries.

In [206], the authors study a Wigner matrix𝐇—a random N × Nmatrix whose entries
are independent up to symmetry constraints—which has been deformed by the addition
of a finite-rank matrix 𝐀 belonging to the same symmetry class as 𝐇. By Weyl’s eigen-
value interlacing inequalities, such a deformation does not influence the global statistics
of the eigenvalues as N → ∞.

According to [52], there is a long history for the celebrated log-det formula

log det
(
𝐈 + SNR𝐇𝐇H)

where 𝐇 is a random matrix. In 1964, Pinsker [207] gave a general log-det formula for
the mutual information between jointly Gaussian random vectors but did not specif-
ically work on the linear model (3.11). Verdu [208], in 1986, gave the explicit form
of (3.12) as the capacity of the synchronous DS-CDMA channel as a function of sig-
nature vectors. The 1991 edition of the textbook by Cover and Thomas [59] gives the
log-det formula for the capacity of the power constrained vector Gaussian channel with
arbitrary noise covariance matrix. In the mid 1990s, Foschini [209] and Telatar [210]
gave (3.12) for the multiple-input, multiple-output (MIMO) channel with i.i.d. Gaus-
sian entries. The analysis of Gaussian channel with memory via vector channels (e.g.
[211,212]) used the fact that the capacity can be expressed as the sum of the capacities of
independent channels whose signal-to-noise ratios are governed by the singular values
of the channel matrix. Recently, authors in [213] applied log-determinants of random
matrices in the context of information theory, exploiting concentration inequalities for
random matrices.

Example 3.6.3 is taken from [54].
Central limit theorem for the linear eigenvalue statistics of the Wigner and sample

covariance matrix ensemble was proved in [181]. In Section 3.7, we followed [214,215].
Analogous results for linear statistics of the eigenvalues of symmetric band random
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matrices with independent entries are studied in [205]. In [216], they consider a class
of real random matrices with dependent entries and show that the limiting empirical
spectral distribution is given by the Marchenko–Pastur law. They also establish a rate of
convergence for the expected empirical spectral distribution.

Section 3.14 is taken from [199].
Example 3.9.1 and Example 3.9.2 are adapted from Forrester (2010) [62]. We modified

the results for two independent random matrices. Example 3.9.3 is taken from Bai and
Silverstein (2010) [163]. Example 3.9.4 is adapted from Tao (2012) [67].

In Section 3.9, we take some definitions from [217] on random matrices.
Sections 3.10 and 3.11 are taken from [217].
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4

Linear Spectral Statistics of the Sample Covariance Matrix

This chapter, by studying the central limit theory for linear spectral statistics, conducts
the spectral analysis of large dimensional random matrices. It is a fundamental work
because many important statistics in multivariate statistical analysis can be expressed
as functionals of the empirical spectral distribution of some random matrices. Thus, a
deeper investigation of the convergence of the empirical spectral distribution is needed
for more efficient statistical inferences, such as tests of hypotheses and confidence
regions.

4.1 Linear Spectral Statistics

One of the exciting developments in statistics since the mid-1990s has been the devel-
opment of theory and methodologies for dealing with high-dimensional data. The term
“dimension” is primarily interpreted as meaning that the dimensionality of the observed
multivariate data is comparable to the available number of replicates or subjects on
which the measurements on the different variables are taken. This is often expressed in
the asymptotic framework as n → ∞, p → ∞, such that p∕n → c > 0, where p denotes
the dimension of the observation vectors (forming a triangular array) and n denotes the
sample size.

One very notable high-dimensional phenomenon associated with sample covariance
matrices is that the sample eigenvalues do not converge to their population counterparts
if dimension and sample sizes remain comparable even as the sample size increases. A
formal way to express this phenomenon is through the use of the empirical spectral
distribution (ESD), that is, the empirical distribution of the eigenvalues of the sample
covariance matrix.

The empirical spectral distribution (ESD) of the sample covariance matrix almost cer-
tainly converges to a nonrandom probability distribution known as the Marchenko–
Pastur distribution (law). Since this highly influential discovery a large body of litera-
ture under the banner of random matrix theory (RMT) has been developed to explore
the properties of the eigenvalues and eigenvectors of large random matrices.

For example, let 𝐀 be an n × n positive definite matrix. Then

1
n
ln det (𝐀) = 1

n

n∑

i=1
ln𝜆i = ∫

∞

0
lnxdF𝐀 (x)

Generalizing the above example, we have the definition of a linear spectral statistic.

Smart Grid using Big Data Analytics: A Random Matrix Theory Approach, First Edition.
Robert C. Qiu and Paul Antonik.
© 2017 John Wiley & Sons Ltd. Published 2017 by John Wiley & Sons Ltd.
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Definition 4.1.1 (linear spectral statistic (LSS)) Let Fn(x) be the empirical spec-
tral distribution of a random matrix that has a limiting spectral distribution F(x).
We call

�̂� = ∫ f (x)dFn (x) =
1
n

n∑

i=1
f
(
𝜆i

)

a linear spectral statistic (LSS).

Associated with the given random matrix, a linear spectral statistic can be considered
as an estimator of

𝜃 = ∫ f (x)dF (x)

To make a test hypotheses about 𝜃, it is necessary to know the limiting distribu-
tion of

Gn
(
f
)
= 𝛼n

(
�̂� − 𝜃

)
= ∫ f (x)dXn (x)

where Xn (x) = 𝛼n
(
Fn (x) − F (x)

)
and 𝛼n → ∞ is a suitable normalizer such that Gn(f )

tends to a nondegenerate distribution.

4.2 Generalized Marchenko–Pastur Distributions

In Section 3.5, the population covariance matrix has the simple form 𝚺 = 𝜎2𝐈p, which
is quite restrictive. In order to consider a general population covariance matrix 𝚺, we
assume the following: the observed vectors

{
𝐲k

}

1⩽k⩽n can be expressed as

𝐲k = 𝚺1∕2𝐱k

where 𝐱k have i.i.d. components as in Section 3.5 and 𝚺1∕2 is any non-negative squared
root of 𝚺. The associated sample covariance matrix is

𝐁n = 1
n

n∑

k=1
𝐲k𝐲H

k = 𝚺1∕2

(
1
n

n∑

k=1
𝐱k𝐱H

k

)

𝚺1∕2 = 𝚺1∕2𝐒n𝚺1∕2.

Here 𝐒n denotes the sample covariance matrix with i.i.d. components. The eigenvalues
of 𝐁n are the same as the product 𝐒n𝚺, for all non-negative matrices 𝚺.

Proposition 4.2.1 (Bai and Silverstein (2010)) Let 𝐒n be the sample covariance
matrix with i.i.d. components and

(
𝚺n

)

n⩾1 be a sequence of non-negative Hermitian
squared matrices of size p. Let 𝐁n = 𝐒n𝚺n. We assume that:

• the coordinates of 𝐱i are complex i.i.d. with mean zero and variance one;
• the ratio of the data dimension over the sample size p∕n → c > 0 as n → ∞;
• the sequence

(
𝚺n

)

n⩾0 is deterministic, or independent from
(
𝐒n

)

n⩾1;
• the sequence

(
Hn

)

n⩾0 =
(
F𝚺n

)

n⩾0 of the empirical spectral distributions of
(
𝚺n

)

n⩾0
converges weakly to a fixed probability measure H . Then F𝐁n

(x) converges weakly
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to a fixed probability measure Fc,H(x), whose Stieltjes transform, denoted by m(z),
is implicitly defined by the equation

s (z) = ∫
1

t (1 − c − czs (z))
dH (t) (4.1)

where z ∈ ℂ+.

The implicit equation given above has an unique solution in the space of functions
from ℂ+ to ℂ+. Moreover, the solution s(z) of this equation has no closed-form expres-
sion, and this is the unique information that we know about the limiting spectral distri-
bution Fc,H(x).

There is another way to present the fundamental equation (4.1). Take the squared
matrix of size n

𝐀n = 1
n
𝐗H𝚺𝐗

where 𝐗 is defined as 𝐗 =
(
𝐱1,… , 𝐱n

)
∈ ℂp×n. The two matrices 𝐀 and 𝐁 have the same

positive eigenvalues and their empirical spectral distributions satisfy

nF𝐀n
− pF𝐁n

= (n − p) 𝛿0

Assuming that p∕n → c > 0, F𝐁n
has a limit F𝐁

c,H if, and only if, F𝐀n
has a limitF𝐀

c,H . In this
case, the limits satisfy

F𝐀
c,H − F𝐁

c,H = (1 − c) 𝛿0

and their respective Stieltjes transform s𝐀 (z) and s𝐁 (z) are linked to each other by

s𝐀 (z) = −1 − c
z

+ cs𝐁 (z)

Replacing s𝐁 (z) by s𝐀 (z) in (4.1), we find

s𝐀 (z) = −
(

z − c∫
t

1 + s𝐀 (z)
dH (t)

)−1

Then solving this equation with respect to z leads to

z = − 1
s𝐀 (z)

+ c∫
t

1 + s𝐀 (z)
dH (t) (4.2)

which gives the inverse function of s𝐀 (z). The equations (4.1) and (4.2) are of
fundamental importance in the methods of statistical estimation, and are called
“Marchenko–Pastur equations.”

The limiting spectral distribution F𝐁
c,H and its companion F𝐀

c,H are called “generalized
Marchenko–Pastur distributions” with indexes c and H . In the case where 𝚺n = 𝐓, the
limiting spectral distribution H of 𝐓 is called “population spectral distribution.”

4.2.1 Central Limit Theorem

In this subsection, we use Fc,H(x) to denote F𝐁
c,H(x) to save notation.

In multivariate analysis, most of the population statistics can be written as a function
of the empirical spectral distribution Fn of some random matrices:

�̂� = ∫ f (x) dFn (x)
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�̂� is called a “linear spectral statistic,” and can be considered as an estimator of

𝜃 = ∫ f (x) dF (x)

where F is the limiting spectral distribution of Fn.
If we consider the sample covariance matrix Bn, we saw in Section 4.2 that its empirical

spectral distribution Fn converges weakly to a generalized Marchenko–Pastur distribu-
tion Fc,H . This consistency is not enough for a better statistical inference, for which a
central limit theorem is often required. In this section, we will present the result of Bai
and Silverstein (2004) [188].

We consider the following linear spectral statistic

�̂�
(
f
)
= ∫ f (x) dF𝐁n

(x)

As the convergences cn → c and Hn → H can be very slow, the difference

p
(

�̂�
(
f
)
− ∫ f (x) dFc,H (x)

)

could have no limit. As a result, we have to consider the limiting distribution of the
normalized difference

p
(

�̂�
(
f
)
− ∫ f (x) dFcn,Hn

(x)
)

In the sequel, we will denote

Gn (x) = p
(
F𝐁n

(x) − Fcn,Hn
(x)

)

Proposition 4.2.2 We denote by (xjk) the entries of the vector 𝐱j. We assume: (i) For
all 𝜂 ≥ 0

1
np

∑

j,k
𝔼

(
|
|
|
xjk

|
|
|

4
I
(
|
|
|
xjk

|
|
|
⩾ 𝜂

√
n
))

→ 0 as n → ∞

(ii) For all n, the xij = x(n)
ij , 1 ⩽ i ⩽ p, 0 ⩽ j ⩽ n are independent, and satisfy

𝔼|
|
|
xij

|
|
|

2
= 1, max

i,j,n
𝔼|
|
|
xjk

|
|
|

4
< ∞,

p
n
→ y

(iii) 𝐓n ∈ ℂp×p is non-negative Hermitian, with a bounded spectral norm in p, and there
is a cumulative distribution function H such that

Hn ≡ F𝐓n


−→ H

Let f1,… , fk be analytic functions on an open set of ℂ, which includes the interval
[

lim inf
n

𝜆
𝐓n
n,min𝟏]0,1[

(
y
) (

1 −
√

c
)2
, lim sup

n
𝜆
𝐓n
n,max

(
1 +

√
c
)2

]

then

a) The random vectors Xn
(
f1
)
,… ,Xn

(
fk
)

are a tight sequence in n.
b) If xij and 𝐓n are real, and 𝔼|

|
|
xij

|
|
|

4
= 3, then
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(
Xn

(
f1
)
,… ,Xn

(
fk
)) 

−→
(
X

(
f1
)
,… ,X

(
fk
))

where
(
X

(
f1
)
,… ,X

(
fk
))

is a k-dimensional Gaussian vector.
c) If xij is complex with𝔼

(
xij

)2 = 0 and𝔼|
|xij

|
|

4 = 2, then (b) also holds, except the mean
is zero and the covariance function is a half of the function given in (b).

Example 4.2.3 (corrected likelihood ratio test ([160])) Let 𝐱 ∈ ℝp be a random vec-
tor such that

𝐱 ∼  (
𝟎p,𝚺p

)

We would like to test

0 ∶ 𝚺p = 𝐈p

1 ∶ 𝚺p ≠ 𝐈p

If we want to test 𝚺p = 𝐀, with a given 𝐀 ∈ ℂp×p, we can go back to the null above by the
transformation 𝐲 = 𝐀−1∕2𝐱. And we work on 𝐲 instead. Let

(
𝐱1,… , 𝐱n

)
be an n-sample

of 𝐱 such that p < n and 𝐒n the sample covariance matrix. We define

K⋆ = Tr 𝐒n − log det𝐒n − p (4.3)

The likelihood ratio statistic is Kn = nK⋆. When p is fixed and n → ∞

Kn

−→ 𝜒2

1
2

p(p+1)

under 0. When p becomes large, however, Kn grows to infinity, which leads to a test
with higher level than the given one. Thus it is necessary to construct a version of Kn
suitable in large dimensional setting. Notice that

K⋆ =
p∑

i=1

(
𝜆n,i − ln 𝜆n,i − 1

)

where
(
𝜆n,i

)

1⩽i⩽p are the eigenvalues of 𝐒n. This is a linear spectral statistic. We will apply
Proposition 4.2.2 to obtain the asymptotic distribution of Kn in large dimensional set-
ting. By taking 𝐓n = 𝐈p, 𝐁n becomes 𝐒n. Moreover, we have Hn = H = F𝐓n

= 𝛿1, and also
Xn

(
f
)
= ∫ℝ f (x)d

(
F𝐒n

− Fcn

)
(x).

Applying Proposition 4.2.2, we obtain the following result:

Proposition 4.2.4 We assume that the conditions in Proposition 4.2.2 hold. K⋆ is
defined as in (4.3) and g (x) = x − ln x − 1. Then, under 0 and when n → ∞:

K̃n = 1
√

v (c)

(

K⋆ − p∫ℝ
g (x)dFcn

(x) − m (c)
) 

−→  (0, 1)

where m (c) = − log(1−c)
2

, and v (c) = −2 log (1 − c) − 2c.
In large dimensions, the limiting distribution of Kn is not a 𝜒2 law any more, but a

Gaussian law. For intermediate dimensions such as p = 50, the corrected LRT gives good
results, whereas the traditional LRT performs poorly. ◽
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4.2.2 Spiked Population Models

We consider observations of the form

𝐱i = 𝚺1∕2𝐲i,

where 𝐲i are i.i.d. vectors of size p, with mean 0, variance 1, and i.i.d. components.
(
𝐱i
)

i⩾1
is thus a random sequence of i.i.d. vectors with mean zero and population covariance
matrix 𝚺. If we take 𝚺 = 𝐈p, then this corresponds to the “null” case, and we saw from
above that the limiting spectral distribution of 𝐒n is the standard Marchenko–Pastur
law. As noticed in [177], there are examples of real data that are significantly different
from this null case. The so-called “spiked population model” is defined by the population
covariance matrix 𝚺 whose eigenvalues have the form

𝛼1,… , 𝛼1
⏟⏞⏞⏟⏞⏞⏟

n1

,… , 𝛼k ,… , 𝛼k
⏟⏞⏞⏟⏞⏞⏟

nK

, 1,… , 1
⏟⏟⏟

p−m

(4.4)

where n1 + · · · + nK = m is the number of “spikes.” The spiked population model can be
viewed as a finite rank perturbation of the null case.

When p∕n → c > 0, it is easy to see that the empirical spectral distribution of 𝐒n still
converges to the standard Marchenko–Pastur law. However, the asymptotic behavior of
the extreme eigenvalues of 𝐒n will be different from the null case.

4.2.3 Generalized Spiked Population Model

Bai and Yao (2012) [218] generalized the above model to a “generalized spiked popula-
tion model.” We assume that 𝚺p has the following structure

𝚺p =
(
𝐕m 0
0 𝐓p−m

)

Moreover, we assume:

• 𝐕m is squared matrix of size m, where m is a fixed integer. The eigenvalues of 𝐕m are
𝛼1 > · · · > 𝛼K > 0 with respective multiplicities n1,… , nK (n1 + · · · + nK = m).

• The empirical spectral distribution Hp of 𝐓p−m converges to a limiting non-random
distribution H;

• The sequence of the largest eigenvalues of 𝚺 is bounded;
• The eigenvalues 𝛽n,j of 𝐓p−m satisfy

sup
j

d
(
𝛽n,j,ΓH

)
= 𝜀p → 0,

where d(x,A) is the distance from x to a set A and ΓH is the support of H .

Definition 4.2.5 An eigenvalue 𝛼 of 𝐕m is called a “generalized spike,” or simply a
spike, if 𝛼 ∉ ΓH .

Consequently, the spectrum of the population covariance matrix 𝚺 is composed of a
main part, 𝛽n,j, and a smaller part of m spiked eigenvalues that are well separated from
the main part, in the form of Definition 4.2.5.

Limits of spiked eigenvalues are given in [218]. The authors proved a central limit
theorem for the vectors of eigenvalues.
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4.3 Estimation of Spectral Density Functions

Our aim here is to recover the population spectral distribution H(x) (or HN (x)) from
the sample covariance matrix 𝐒n. This task has a central importance in several popu-
lar statistical methodologies like principal component analysis [177], Kalman filtering
or independent component analysis, which all rely on an efficient estimation of some
population covariance matrices.

Let 𝐱1,… , 𝐱n be a sequence of i.i.d. zero-mean random vectors in ℝN or ℂN with a
common population (or true) covariance matrix 𝚺N . When the population size N is not
negligible with respect to the sample size n, modern random matrix theory indicates
that the sample covariance matrix

𝐒n = 1
n

n∑

i=1
𝐱i𝐱H

i

does not approach true 𝚺N . For instance, in a simple case where 𝚺p = 𝐈N (identity
matrix), the eigenvalues of 𝐒n will spread over an interval approximately equal to
(

1 ∓
√

N∕n
)2

around the unique population eigenvalue 1 of 𝚺N . Therefore, classical
statistical procedures based on an approximation of 𝚺N by 𝐒n become inconsistent in
such high-dimensional data situations.

The spectral distribution G𝐀 of an N × N Hermitian matrix (or real symmetric) 𝐀 is
the measure generated by its eigenvalues

{
𝜆i (𝐀)

}N
i=1:

G𝐀 (x) =
1
N

N∑

i=1
𝛿𝜆i(𝐀) (x) , x ∈ ℝ

where 𝛿b denotes the Dirac point measure at b. Let
{
𝜆i

(
𝚺N

)}N
i=1 be the N eigenvalues

of the true (or population) covariance matrix 𝚺N . We are particularly interested in the
following spectral distribution

HN (x) = G𝚺N
(x) = 1

N

N∑

i=1
𝛿𝜆i(𝚺N) (x)

Following the random matrix theory, both sizes N and n will grow to infinity. It is, then,
natural to assume that HN (x) weakly converges to a limiting distribution H(x) when
N → ∞. We refer this limiting spectral distribution HN (x) as the population spectral
distribution of the observation model.

The main observation is that under reasonable assumptions, when both dimensions N
and n become large at a proportional rate say c, almost, the (random) spectral distribu-
tion G𝐒n

(x) of the sample covariance matrix 𝐒n will weakly converge to a deterministic
distribution F(x), called limiting spectral distribution. Naturally this limiting spectral
distribution F(x) depends on the population spectral distribution H(x), but in general
this relationship is complex and has no explicit form. The only exception is the case where
all the population eigenvalues

{
𝜆i

(
𝚺N

)}N
i=1 are unit:𝚺N = 𝐈N , or H(x) = 𝛿1 (x); the limit-

ing spectral distribution F(x) is then explicit known to be the Marchenko–Pastur distri-
bution with an explicit density function. For a general population spectral distribution
H(x), this relationship is expressed via implicit equations, (4.5) and (4.7).
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A critical task here is to recover the population spectral distribution H(x) (or HN (x))
from the sample covariance matrix 𝐒n.

Let 𝐀1∕2 stand for any Hermitian square root of a non-negative definite Hermitian
matrix 𝐀 ≥ 0. Our model assumptions are as follows.

• The sample and population sizes n and N both tend to infinity, and in such a way that
N∕n → c ∈ (0,∞).

• There is a doubly infinite array of i.i.d., complex-value random variables
(
wij

)
, i, j ⩾ 1

satisfying

𝔼
(
w11

)
= 0, 𝔼

(
|
|w11

|
|

2
)
= 1

such that, for each N , n, letting 𝐖n =
(
wij

)

1⩽i⩽N ,1⩽j⩽n, the observation vectors can
be represented as 𝐱j = 𝚺1∕2

N w⋅j, where w⋅j =
(
wij

)

1⩽i⩽N denotes the j-th column
of 𝐖n.

• The spectrum density HN (x) of𝚺N weakly converges to a probability distribution H(x)
as n → ∞.

These assumptions are classical conditions for the celebrated Marchenko–Pastur
theorem [163, 175, 219]. Under these assumptions, almost certainly, as n → ∞, the
empirical spectrum density Fn (x) = G𝐒n

(x) of the sample covariance matrix 𝐒n weakly
converges to a (nonrandom) generalized Marchenko–Pastur distribution F(x).

Unfortunately, except in the simplest case where H(x) ≡ 𝛿1 (x), the limit spectral
density F(x) has no explicit form and it is characterized as follows. Let m(z) denote
the Stieltjes transform of cF(x) + (1 − c) 𝛿0 (x), which is a one-to-one map defined
on the upper half complex plane ℂ+ = {z ∈ ℂ ∶ Im (z) > 0}. This transform m(z)
satisfies the following fundamental Marchenko–Pastur equation (MP):

z = − 1
m (z)

+ c∫
t

1 + tm (z)
dH (t) , z ∈ ℂ+ (4.5)

The above MP equation excludes the real line from its domain of definition. Following
[220], we fill this gap by an extension of the MP equation to the real line. The estimation
method can be entirely based on this extension.

4.3.1 Estimation Method

The support of a distribution G(x) is denoted by supp (G) and its complementary set
by suppc (G). As the empirical spectral density Fn(x) is observed, we will use mn(z)
to approximate m(z) in the MP equation. Here mn(z) is the Stieltjes transform of
(N∕n) Fn(x) + (1 − N∕n) 𝛿0 (x). More precisely, for u ∈ ℝ, let

mn (u) = −
1 − N∕n

u
+ 1

n

N∑

i=1

1
𝜆i − u

(4.6)

It is clear that the domain of mn(u) is suppc (Fn(x)
)
. Thus, mn(u)s are well defined

on Ωinterior for all large n, where Ωinterior is the interior of Ω with Ωinterior = lim inf
n→∞

suppc (Fn(x)
)
∖ {0}.
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Theorem 4.3.1 Assume that the model assumptions hold. Then

• for any u ∈ Ωinterior, mn(z) converges to m(z);
• for any u ∈ suppc (F(x)), m(u) is a solution to equation

u = − 1
mn (u)

+ c∫
t

1 + tm (u)
dH (t) (4.7)

• the solution is also unique in the set

B =
{

m (u) ∈ ℝ∖ {0} ∶ du
dm (u)

> 0, (−m (u))−1 ∈ suppc (H(x))
}

• for any non-empty open interval (a, b) ∈ B, H(x) is uniquely determined by
u (m (u)),m (u) ∈ (a, b).

As (−∞, 0) ⊂ Ωinterior ⊂ suppc (Fn(x)
)
, there are infinitely many u-points such that

mn (u) almost surely converges to m(u). The MP equation (4.7) can be inverted in the
following sense: the knowledge of u(m) on any interval in B will uniquely determine
the population spectral distribution H(x). The estimation method will be built on this
property.

Now we are in a position to describe the estimation method, using the above theorem.
Let us consider the estimation problem in a parametric setting. Suppose H(x) = H(𝜃)
is the limit of HN with unknown parameter vector 𝜽 ∈ Θ ⊂ ℝp. The procedure of the
estimation of H(x) includes three steps:

1) Choose a u-net
{

u1,… ,uq
}

from Ωinterior, where ui’s are distinct and the size q is no
less than p.

2) For each ui, calculate mn(ui) using (4.6) and plug the pair into the Marchenko–Pastur
equation (4.7). Then we obtain q approximate equations

ui ≈ − 1
mn

(
ui

) + N
n ∫

tdH (t,𝜽)
1 + tmn

(
ui

) ∶= ûi
(
mni,𝜽

)
, i = 1,… , q

3) Find the least-squares solution of 𝜽:

�̂�n = arg min
𝜽∈Θ

q∑

i=1

(
ui − ûi

(
mni,𝜽

))2

See Figure 4.1. A central issue here is the choice of the u-net
{

u1,… ,um
}

. For example,
When H(x) has finite support, the upper and lower bounds of supp (F) ∖ {0} can be
estimated respectively by 𝜆max = max

{
𝜆i

}
and 𝜆min = min

{
𝜆i ∶ 𝜆i > 0

}
where 𝜆i are

sample eigenvalues. As a consequence, we design a primary set:

U =
⎧
⎪
⎨
⎪
⎩

(−10, 0) ∪
(
0, 0.5𝜆max

)
∪

(
5𝜆max, 10𝜆max

)

(−10, 0) ∪
(
5𝜆max, 10𝜆max

)

(−10, 0)

(discrete model, N ≠ n)
(discrete model, N = n)
(continuous model) .

Next, we choose 𝓁 equally spaced u-points from each individual interval of U . This pro-
cess is called adaptive choice of u-net. Here we set 𝓁 = 20 for all cases considered in
simulation. For example we take {−10 + 10t∕2𝓁, t = 1,… , 20} from the first interval.
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u1

u2
u3 s4

u4

s1s21.0 0.8 0.6 0.4 0.2 0.2 0.4
s

–10

–5

5

10

15

20
u

s
3

Figure 4.1 The curve of u = u (m) (solid thin), and the sets B and suppc
(

Fn(x)
)

(solid thick) for
H(x) = 0.3𝛿2(x) + 0.4𝛿7(x) + 0.3𝛿10(x) and c = 0.1. ui = u

(
mi

)
,mi ∈ B, i = 1, 2, 3, 4. In the figure the s−

is the m in our notation. Source: Reproduced from [220] with permission.

4.3.2 Kernel Estimator of the Limiting Spectral Distribution

The density function of the limiting spectral distribution of general sample covariance
matrices is usually unknown. We use kernel estimators, which have been proved to be
consistent.

Suppose that Xij are independent and identically distributed (i.i.d.) real random vari-
ables. Let 𝐗n =

(
Xij

)

N×n and 𝐓𝑁 be an N × N nonrandom Hermitian non-negative def-
inite matrix. Consider the random matrices

𝐀n = 1
n
𝐓1∕2
𝑁

𝐗n𝐗T
n 𝐓

1∕2
𝑁

When 𝔼X11 = 0 and 𝔼X2
11 = 1, 𝐀n can be viewed as a sample covariance matrix drawn

from the population with true covariance matrix 𝐓𝑁 . Moreover, if 𝐓𝑁 is another sample
covariance matrix, independent of 𝐗n, then 𝐀n is a Wishart matrix.

In order to capture the whole picture of the eigenvalues of sample covariance matrices,
it is necessary to study the behavior of all eigenvalues. A good candidate for this purpose
is the empirical spectral distribution. The basic limit theorem regarding 𝐀n concerns its
empirical spectral distribution F𝐀n

(x). Here, for any matrix 𝐀 with real eigenvalues, the
empirical spectral distribution F𝐀(x) is given by

F𝐀 (x) =
1
p

p∑

i=1
I
(
𝜆i (𝐀) ⩽ x

)

where 𝕀 is the indicator function, and 𝜆i, i = 1,… , p, denote the eigenvalues of 𝐀. Sup-
pose the ratio of the dimension to the sample size cn = N∕n tends to c as n → ∞. When
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𝐓n becomes the identity matrix, 𝐓n = 𝐈n, the so-called Marchenko–Pastur law with the
density function

fc (x) =
{ 1

2𝜋c
1
x

√
(b − x) (x − a), a ⩽ x ⩽ b,

0, otherwise
(4.8)

It has point mass 1 − c−1 at the origin if c > 1, where a =
(

1 −
√

c
)2

and b =
(

1 +
√

c
)2

.
The distribution function of the Marchenko–Pastur law is denoted by 𝔽c (x). The Stieltjes
transform of the MP law is

m (z) =
1 − c − z +

√
(z − 1 − c)2 − 4c
2cz

(4.9)

which satisfies the equation

m (z) = 1
1 − c − czm (z) − z

(4.10)

Here, the Stieltjes transform mF (z) for any probability distribution function F(x) is
defined by

mF (z) = ∫
1

x − z
dF (x) , z ∈ ℂ+ (4.11)

where ℂ+ = {z ∈ ℂ ∶ Im (z) > 0}.
It is also common to study

𝐁n = 1
n
𝐗T

n 𝐓n𝐗n

since the eigenvalues of 𝐀n and 𝐁n differ by |n − p| zero eigenvalues. Thus

F𝐁n
(x) =

(
1 − N

n

)
I (x ∈ [0,∞)) + N

n
F𝐀n

(x) (4.12)

When F𝐓n
(x) converges weakly to a nonrandom distribution H(x), Marchenko and

Pastur (1967) [172], Yin (1986) [221] and Silverstein (1995) [175] proved that, with a
probability of 1, F𝐁n

(x) converges in distribution to a nonrandom distribution function
Fc,H (x) whose Stieltjes transform mFc,H

(z) is, for each z ∈ ℂ+, the unique solution to the
fundamental equation of Marchenko and Pastur (4.5).

From (4.12), we have

Gc,H (x) = (1 − c) I (x ∈ [0,∞)) + cFc,H (x)

where Fc,H (x) is the limit of F𝐀n
(x). As a consequence of this fact, we have

mG (z) = −1 − c
z

+ cmF (z) (4.13)

Moreover, mG (z) has an inverse

z
(
mG (z)

)
= − 1

mG (z)
+ cn ∫

t
1 + tmG (z)

dH (t) (4.14)

Relying on this inverse, Silverstein and Choi [222] carried out a remarkable analysis of
the analytic behavior of mG (z).
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When 𝐓n becomes the identity matrix, i.e., 𝐓n = 𝐈n, there is an explicit solution to the
fundamental equation of Marchenko and Pastur (4.5). In this case, from (4.12), we see
that the density function of Gc,H (x) is

gc (x) = (1 − c) I (c < 1) 𝛿0 (x) + cfc (x)

where 𝛿0 (x) is the point mass at 0. Unfortunately, there is no explicit solution to (4.5)
for general 𝐓n. Although we can use F𝐀n

(x) to estimate Fc,H (x), we cannot make any
statistical inference about Fc,H (x) because there is no central limit theorem concerning
F𝐀n

(x) − Fc,H (x). Actually, it is argued in [163] that the process n
(
F𝐀n

(x) − Fc,H (x)
)
,

for x ∈ (−∞,∞), does not converge to a nontrivial process in any metric space. This
motivates us to pursue alternative ways of understanding the limiting spectral distribu-
tion Fc,H (x). Our aim is to estimate the density function fc,H (x) of the limiting spectral
distribution Fc,H (x) of sample covariance matrices 𝐀n by kernel estimators.

Suppose that the observations X1,… ,Xn are i.i.d. random variables with an unknown
density function f (x) and Fn(x) is the empirical distribution function determined by the
sample. A popular nonparametric estimate of f (x) is then

f̂n (x) =
1

nh

n∑

i=1
K

(x − Xi

h

)

= 1
h ∫ K

(x − y
h

)
dFn

(
y
)

(4.15)

where the function K(y) is a Borel function and h = h(n) is the bandwidth, which tends
to 0 as n → ∞. Here, f̂n (x) is a probability density function and it inherits some smooth
properties of K(y) if the kernel is taken as a probability density function. Under some
regularity conditions on the kernel, it is well known that f̂n (x) → f (x) in some sense
(with probability 1). There is a huge body of literature regarding this kind of estimate.
For example, we may refer to Rosenblatt [223], Parzen [224], Hall [225] or the books
by Silverman [226] and Devroye and Lugosi [227].

With the aid of (4.15), we can consider the following estimator fn(x) of fc,H(x):

fn (x) =
1

Nh

N∑

i=1
K

(
x − 𝜆i

(
𝐀n

)

h

)

= 1
h ∫ K

(x − y
h

)
dF𝐀n

(
y
)

(4.16)

where 𝜆i
(
𝐀n

)
, i = 1,… , n, are eigenvalues of 𝐀n. It turns out that fn (x) is a consistent

estimator of fc,H(x) under some regularity conditions. In (4.16), note the “smoothing”
ideas. It was proved by [228] that fn(x) is a consistent estimator of fc,H(x) under some reg-
ularity conditions. The main aim of [229] is to establish a central limit theorem for this
fn (x). This provides an approach to making inferences on the Marchenko–Pastur-type
distribution functions.

The kernel estimator of the distribution function of the Marchenko–Pastur law is

Fn (x) = ∫
x

−∞
fn

(
y
)
dy

Intuitively, Fn(x) depicts the global picture of all eigenvalues and should not differ greatly
from F𝐀n

(x).
In the following, let us consider another example for the estimation of density func-

tions. To do that, we first present the famous McDiarmid’s concentration inequality.
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Example 4.3.2 (concentration inequalities [230]) Hoeffding’s inequality applies to
sums of independent random variables. Its generalization to arbitrary real-valued func-
tions of independent random variables that satisfy a certain condition is obtained in
[231]. Let  be some set, and consider a function g ∶ n → ℝ. We say that the function
g has bounded differences if non-negative numbers exist c1,… , cn, such that

sup
x1,…,xn,x

′
i ∈

|
|
|
g
(
x1,… , xn

)
− g

(
x1,… , xi−1, x

′

i, xi+1,… , xn
)|
|
|
⩽ ci (4.17)

for all i = 1,… , n. In words, if we change the i-th variable while keeping all the others
fixed, the value of g will not change by more than ci.

Theorem 4.3.3 (McDiarmid’s inequality [231]) Let Xn =
(
X1,… ,Xn

)
∈ n be

an n-tuple of independent -valued random variables. If a function g ∶ n → ℝ has
bounded differences, as in (4.17), then, for all t > 0

ℙ
(
|g (Xn) − 𝔼g (Xn)| ⩾ t

)
⩽ exp

⎛
⎜
⎜
⎜
⎜
⎝

− 2t2

n∑

i=1
c2

i

⎞
⎟
⎟
⎟
⎟
⎠

Let Xn =
(
X1,… ,Xn

)
be an n-tuple of i.i.d. real-valued random variables whose com-

mon distribution P has a probability density function (pdf) f:

P (A) = ∫A
f (x)dx

for any measurable set A ⊆ ℝ. We wish to estimate f from the sample Xn. A popular
method is to use a kernel estimate (the book by Devroye and Lugosi [227] has plenty of
material on density estimation, including kernel methods, from the viewpoint of statis-
tical learning theory). We pick a non-negative function K(x) ∶ ℝ → ℝ that integrates to
one, ∫ K (x)dx = 1 (such a function is called a kernel), as well as a positive bandwidth
(or smoothing constant) h > 0 and form the estimate

f̂n (x) =
1

nh

n∑

i=1
K

(x − Xi

h

)

f̂n (x) is a valid probability distribution function, i.e., that it is non-negative and integrates
to 1. A common way of quantifying the performance of a density estimator is to use the
L1 distance to the true density f (x):

‖
‖
‖

f̂n − f ‖‖
‖L1

= ∫ℝ

|
|
|
f̂n (x) − f (x)||

|
dx.

Obviously ‖
‖
‖

f̂n − f ‖‖
‖L1

is a random variable because it depends on the random sample Xn.
Thus, we can write it as a function g(Xn) of the sample Xn. Leaving aside the problem
of actually bounding 𝔼g (Xn), we can easily establish a concentration bound for it using
McDiarmid’s inequality. To do that, we need to check that g has bounded differences.
Choosing xn and xn

(i), we have
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g (xn) − g
(

xn
(i)

)

= ∫ℝ

|
|
|
|
|
|

1
nh

j−1∑

i=1
K

(x − xi

h

)
+ 1

nh
K

(
x − x′

j

h

)

+ 1
nh

n∑

i=j+1
K

(x − xi

h

)
− f (x)

|
|
|
|
|
|

dx

− ∫ℝ

|
|
|
|
|
|

1
nh

j−1∑

i=1
K

(x − xi

h

)
+ 1

nh
K

(
x − x′

j

h

)

+ 1
nh

n∑

i=j+1
K

(x − xi

h

)
− f (x)

|
|
|
|
|
|

dx

⩽ 1
nh ∫ℝ

|
|
|
|
|
|

K
(x − xj

h

)

− K

(
x − x′

j

h

)|
|
|
|
|
|

dx

⩽ 1
nh ∫ℝ

K
(x

h

)
dx = 2

n

Thus, we see that g(Xn) has the bounded differences property with c1 = · · · = cn = 2∕n,
so that

ℙ
(
|g (Xn) − 𝔼g (Xn)| ⩾ t

)
⩽ 2e−nt2∕2 ◽

We are ready to present the main result in this section. Suppose that the kernel func-
tion K(x) satisfies

sup
−∞<x<∞

|K (x)| <∞, lim
|x|→∞

|xK (x)| = 0 (4.18)

and

∫ K (x)dx = 1, ∫ |
|K

′ (x)||dx < ∞ (4.19)

Theorem 4.3.4 Suppose that K(x) satisfies (4.18) and (4.19). Let h = h(n) be a
sequence of positive constants satisfying

lim
n→∞

nh5∕2 = ∞, lim
n→∞

h = 0 (4.20)

Moreover, suppose that all Xij are i.i.d. with 𝔼X11 = 0, Var
(
X11

)
= 1 and 𝔼X16

11 < ∞.
Also, assume that cn → c ∈ (0, 1). Let 𝐓n be an N × N nonrandom symmetric posi-
tive definite matrix with spectral norm bounded above by a positive constant such that
Hn (x) = F𝐓n

(x) converges weakly to a nonrandom distribution H(x). In addition, sup-
pose that Fc,H (x) has a compact support [a, b] with a > 0. Then,

fn(x) −→ fc,H(x) in probability uniformly in x ∈ [a, b]

It is conjectured that 𝔼X16
11 can be reduced to 𝔼X4

11 <∞. When 𝐓n is the identity
matrix, we have a slightly better result.

Theorem 4.3.5 Suppose that K(x) satisfies (4.18) and (4.19). Let h = h(n) be a
sequence of positive constants satisfying

lim
n→∞

nh2 = ∞, lim
n→∞

h = 0 (4.21)
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Moreover, suppose that all Xij are i.i.d. with𝔼X11 = 0,Var
(
X11

)
= 1 and𝔼X12

11 < ∞. Also,
assume that cn → c ∈ (0, 1). Denote the support of the Marchenko–Pastur law by [a, b].
Let 𝐓n = 𝐈n. Then

sup
x∈[a,b]

|
|fn (x) − fc (x)|| −→ 0 in probability

Theorem 4.3.4 also leads to the estimate of Fc,H (x), as below. Under the assumptions
of Theorem 4.3.4, correspondingly,

Fn (x) −→ Fc,H (x) in probability (4.22)

where

Fn (x) = ∫
x

−∞
fn (t)dt (4.23)

Using (4.22) and the Helly–Bray lemma, ensure that, under the assumptions of
Theorem 4.3.4, if g(x) is a continuous bounded function, then

∫ g (x)dFn (x) → ∫ g (x)dFc,H (x) in probability (4.24)

In order to prove consistency of the nonparametric estimates, we need to develop a
convergence rate for F𝐀n

(x). Under the assumptions of Theorem 4.3.4, we have

sup
x

|
|
|
𝔼F𝐀n

(x) − Fcn,Hn
(x)||

|
= O

( 1
n2∕5

)
(4.25)

and

𝔼 sup
x

|
|
|
F𝐀n

(x) − Fcn,Hn
(x)||

|
= O

( 1
n2∕5

)
(4.26)

Under the fourth moment condition, that is, 𝔼X4
11 <∞, it was proved in [229] that the

above rate O
(
n−2∕5) could be improved to O

(
n−1

√
log n

)
.

Example 4.3.6 (multiuser wireless systems) Since Fc,H(x) does not have an explicit
expression (except for some special cases), we may now use Fn(x) to estimate it, by (4.22).
More importantly, Fn(x) has some smoothness properties, which F𝐀n

(x) does not have.
Consider a synchronous CDMA system with n users and processing gain N . The dis-

crete time model for the received signal 𝐘 is given by

𝐘 =
n∑

k=1
xk𝐡k +𝐖

where xk ∈ ℝ, and 𝐡k ∈ ℝN are, respectively, the transmitted symbol and the signature
spreading sequence of user k, and 𝐖 is the Gaussian noise with zero mean and
covariance matrix 𝜎2𝐈n. Assume that the transmitted symbols of different users are
independent, with 𝔼xk = 0, and 𝔼|

|xk
|
|

2 = Pk . This model is slightly more general than
that in [232], where all of the users’ powers Pk are assumed to be the same.

Following [232], consider the demodulation of user 1 and use the signal-to-
interference ratio (SIR) as the performance measure of linear receivers. For user 1, the
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optimal demodulator 𝐜1 that generates a soft decision 𝐜T
1 𝐘 maximizing the signal-to-

interference ratio

𝛽1 =
(
𝐜T

1 𝐡1
)2P1

𝐜T
1 𝐜1𝜎

2 +
K∑

k=2

(
𝐜T

k 𝐡k
)2Pk

is the minimum mean square error (MMSE) receiver. The SIR of user 1 is given by

𝛽MMSE
1 = P1𝐡T

1
(
𝐇1𝐃1𝐇T

1 + 𝜎2𝐈
)−1𝐡1

where

𝐃1 = diag
(
P2,… ,Pn

)
∈ ℝN×(n−1), 𝐇1 =

(
𝐡2,… ,𝐡n

)
∈ ℝN×(n−1)

Assume that the 𝐡k are i.i.d. random vectors, each consisting of i.i.d. random variables
with appropriate moments. Moreover, suppose that N∕n → c > 0 and F𝐃1

(x) → H (x).
Then, by Lemma 2.7 in [233] and the Helly–Bray lemma, we have

𝛽MMSE
1 − P1 ∫

1
x + 𝜎2 dFc,H (x) −→ 0, in probability

To compare the performance of different receivers we may then use the value of
∫ 1

x+𝜎2 dFc,H (x) with the limiting SIR of the other linear receiver. However, we usually
do not have an explicit expression for Fc,H (x). Thus, we may use the kernel estimate
∫ 1

x+𝜎2 dFn (x) to estimate ∫ 1
x+𝜎2 dFc,H (x), with the help of (4.24). ◽

Example 4.3.7 (statistical inference of properties of the true covariance
matrix) We use fn(x), defined in (4.16), to infer, in some way, some statistical
properties of the true covariance matrix 𝐓n. Specifically speaking, by (4.11), we may
evaluate the Stieltjes transform of the kernel estimator fn(x)

mfn
(z) = ∫

1
x − z

fn (x) dx, z ∈ ℂ+ (4.27)

By (4.13), we may then obtain mgn
(z) defined as

mgn
(z) = −1 − c

z
+ cmfn

(z)

On the other hand, we conclude from (4.14) that

mgn
(z)

(
c − 1 − zmgn

(z)
)

c
= ∫

1
t + 1∕mgn

(z)
dH (t) (4.28)

Note that mgn
(z) has a positive imaginary part. Therefore, with notation

z1 = −1∕mgn
(z) , s

(
z1

)
=

mgn
(z)

(
c − 1 − zmgn

(z)
)

c
we can rewrite (4.28) as

s
(
z1

)
= ∫

1
t − z1

dH (t) , z1 ∈ ℂ+ (4.29)
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As a result, in view of the inversion formula

F
{[

a, b
]}

= 1
𝜋

lim
v→∞∫

b

a
ImmF (u + iv) du (4.30)

we may recover H(t) from s(z1) as given in (4.29). However, s(z1) can be estimated by the
resulting kernel estimate mfn

(z) through the use of

mgn
(z)

(
c − 1 − zmgn

(z)
)

c
, where mgn

(z) = −1 − c
z

+ cmfn
(z) (4.31)

Once H(t) is estimated, we may further estimate the functions of the true covariance
matrix 𝐓n such as 1

n
Tr 𝐓2

n. Indeed, by the Helly–Bray lemma, we have

1
n
Tr 𝐓2

n = ∫ t2dHn (t)
D
−→ ∫ t2dH (t)

where D stands for convergence in distribution. Thus, we may use an estimator for
1
n
Tr 𝐓2

n, based on the resulting (4.31). We conjecture that the estimators of H(t) and the
corresponding functions like 1

n
Tr 𝐓2

n obtained by the above method are also consistent.
A rigorous argument is currently being pursued by [228]. ◽

Example 4.3.8 (MATLAB simulations) We perform a simulation study to investi-
gate the behavior of the kernel density estimators of the Marchenko–Pastur law. We
consider one population with Gaussian distribution. The kernel is selected as

K (x) = 1
√

2𝜋
e−x2∕2

which is the standard normal density function. The bandwidth is chosen as h = h(n) =
n− 2

5 .
From each population, we generate two samples with sizes N × n equal to 50 × 200

and 800 × 3200, respectively. We can therefore form two random matrices,
(
Xij

)

50×200
and

(
Xij

)

800×3200. The kernel density estimator defined in (4.16) is

f̂n (x) =
1

N × n−2∕5

N∑

i=1
K

((
x − 𝜆i

)
∕n−2∕5)

where 𝜆i, i = 1,… ,N , are eigenvalues of 1
n

(
Xij

)

N×n

(
Xij

)T
N×n. We consider two examples

n = 200,N = 50, and 800 × 3200, respectively. This curve of f̂n (x) is drawn and labeled
as “Kernel Density Estimation” in Figure 4.2 and Figure 4.3, in comparison with the the-
oretical curve labeled as “Marchenko–Pastur.”

Let us consider another case: the sum of several random matrices. Let 𝐗,Y be two
independent random matrices of N × n. Let Z be the random matrix of N × n whose
entries are Bernoulli random variables. We consider the sample covariance matrix

1
n
(𝐗 + 𝐘 + 𝜎𝐙) (𝐗 + 𝐘 + 𝜎𝐙)T

where 𝜎 is the scaling parameter. The variance of the entries of 𝐗 + 𝐘 + 𝐙 is normalized
to 1. Figure 4.4 shows that the sum of independent random matrices will not affect the
density function. The parameter 𝜎 also has no impact.
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Figure 4.2 Spectral density curves for sample covariance matrices 1

n

(
Xij

)

N×n

(
Xij

)T

N×n
, N = 50;

n = 200. Xij are i.i.d. standard Gaussian distribution with zero mean and variance 1, or Xij ∼  (0, 1). In
MATLAB: X=randn(N,n);
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Figure 4.3 The same as Figure 4.2 except N = 800; n = 3200.
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Figure 4.4 The kernel density estimation of 1

n
(𝐗 + 𝐘 + 𝜎𝐙) (𝐗 + 𝐘 + 𝜎𝐙)T is compared with the

Marchenko-Pastur law. N = 600, n = 2000, h = 1∕n1∕3, and 𝜎 = 1.

Although, sometimes, we do not know its exact formula, we can predict the limiting
spectral density function. The kernel spectral density curve is consistent. The kernel
spectral density estimator is robust with respect to the bandwidth selection.

The MATLAB code is included here for convenience.

clear all;
%Reference
% NONPARAMETRIC ESTIMATE OF SPECTRAL DENSITY FUNCTIONS OF
% SAMPLE COVARIANCE MATRICES: A FIRST STEP
% Bing-Yi Jing, Guangming Pan, Qi-Man Shao and Wang Zhou
% The Annals of Statistics, Vol. 38, No. 6, 3724-3750,2010.
N=50; n=200; h=1/n^(2/5);
c=N/n; a=(1-sqrt(c))^2; b=(1+sqrt(c))^2;
x=(a+0.01):0.01:b;
fcx=(1/2/pi/c./x).*sqrt((b-x).*(x-a));

% the density function of Marcenko and Pastur law
X=randn(N,n); lambda=eig(1/n*X*X’);
L=(b-a)/0.01; x1=a+0.01;
for j=1:L
for i=1:N
y=(x1-lambda(i))/h; Ky(i)=kernel(y);
end %N
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fnx(j)=sum(Ky)/N/h; x1=x1+0.01; x2(j)=x1;
end %L
% figures
ifig=0;
ifig=ifig+1;figure(ifig)
plot(x,fcx,x2,fnx)
xlabel(’x’)
ylabel(’f(x)’)
legend(’Marcenko-Pastur’,’Kernel Density Estimation’);

function [Kx] = kernel(x)
Kx=1/sqrt(2*pi)*exp(-0.5*x.^2);

◽

4.3.3 Central Limit Theorems for Kernel Estimators

The notation of this subsection is the same as in Section 4.3.2.
For a general 𝐓n, we refer to [229]. In this subsection, following [234], we consider

the special case when 𝐓n is the identity matrix, i.e. 𝐓n = 𝐈n. So we have

𝐀n = 1
n
𝐗n𝐗T

n

It is equivalent to consider

𝐁n = 1
n
𝐗T

n 𝐗n

because the eigenvalues of 𝐀n and 𝐁n differ by |n − N|zero eigenvalues. The almost sure
convergence of F𝐀n

(x) to the famous Marchenko–Pastur law (MP law) is fully under-
stood under the 2nd moment condition of X11 when the dimension N is of the same
order as the sample size n.

After establishing the strong law of large numbers, we may wish to prove the central
limit theorem (CLT). However, even for the Wishart ensemble, there is no CLT avail-
able in the literature about F𝐀n

(⋅) due to the shortage of powerful tools. Hence it is also
impossible to make inference based on the individual eigenvalue of the sample covari-
ance matrix when one only has finite moment conditions. These difficulties push us to
seek other possible ways to make statistical inferences.

Using the notation

m (z) = mF𝐀n
(z)

which m(z) satisfies (4.10), we obtain the relationship between Stieltjes transform of the
limit of F𝐀n

(x) and mF𝐁n
(z)

mF𝐁n
(z) = −1 − c

z
+ cmF𝐀n

(z) (4.32)

which gives the equation satisfied by mF𝐁n
(z)

z = − 1
mF𝐁n

(z)
+ c

1 + mF𝐁n
(z)

(4.33)
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For the kernel function K(⋅) we assume that
lim

|x|→∞
|xK (x)| = lim

|x|→∞
|xK ′ (x)| = 0 (4.34)

∫ K (x) dx = 1, ∫ |xK ′ (x)| dx < ∞, ∫ |xK ′′ (x)|dx <∞ (4.35)
∫ xK (x) dx = 0, ∫ x2 |K (x)| < ∞ (4.36)

Let z = u + iv, where u ∈ ℝ and v is in a bounded interval, say [?v0, v0] with v0 > 0. Sup-
pose that

∫
∞

−∞

|
|
|
K (j) (z)||

|
du <∞, j = 0, 1, 2 (4.37)

uniformly in v ∈ [?v0, v0], where K (j) (z) denotes the j-th derivative of K(z). Also suppose
that

lim
|x|→∞

|
|
|
xK

(
x + iv0

)|
|
|
= lim

|x|→∞

|
|
|
xK ′ (x + iv0

)|
|
|
= 0 (4.38)

The distribution function the MP law is

𝔽c (x) = ∫
x

−∞
fc
(
y
)
dy

where fc(x) is defined in (4.8). Our first result is the CLT for
(
Fn (x) − 𝔽cn

(x)
)

Theorem 4.3.9 Suppose that
• h = h(n) is a sequence of positive constants satisfying

lim
n→∞

nh2
√

ln h−1
→ 0, lim

n→∞

1
nh2 → 0

• K(x) satisfies (4.34)–(4.38) and is analytic on open interval including
[

a − b
h

,
b − a

h

]

• Xij are i.i.d. with 𝔼X11 = 0, Var
(
X11

)
= 1, 𝔼X4

11 = 3 and 𝔼X32
11 < ∞, cn → c ∈ (0, 1)

Then, as n → ∞, for any fixed positive integer d and different points x1,… , xd in (a, b),
the joint limiting distribution of

√
2𝜋n

√
ln n

(
Fn (x) − 𝔽cn

(x)
)
∼  (

0, 𝐈d
)
, j = 1,… , d (4.39)

is multivariate normal with mean zero and covariance matrix 𝐈d, the d × d identity
matrix.

The convergence rate n∕
√

ln n is consistent with the conjectured convergence rate
n∕

√
ln n of the ESD of sample covariance matrices to the Marchenko–Pastur law. It

is easy to check that the Gaussian kernel K(x) = (2𝜋)−1∕2e−x2∕2 satisfies all conditions
specified in Theorem 4.3.9.

Based on Theorem 4.3.9, we may further develop the smoothed quantile esti-
mators of the Marchenko–Pastur law. For 0 ≤ 𝛼 < 1, define the 𝛼-quantile of the
Marchenko–Pastur law by

x𝛼 = inf
{

x, 𝔽cn
(x) > 𝛼

}
(4.40)
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and its estimator by

xn,𝛼 = inf
{

x, Fn (x) > 𝛼
}

(4.41)

Under the assumptions of Theorem 4.3.9, we have

n
√

ln n

(
xn,𝛼 − x𝛼

)
→ 

(

0, 1
2𝜋2f 2

c
(
x𝛼

)

)

, x𝛼 ∈ (a, b) (4.42)

where fc(x) and a, b are defined in (4.8).
The next theorem is the CLT for fn(x).

Theorem 4.3.10 Suppose that

• h = h(n) is a sequence of positive constants satisfying

lim
n→∞

ln h−1

nh2 → 0, lim
n→∞

nh3 = 0 (4.43)

• K(x) satisfies (4.34)–(4.38) and is analytic on open interval including
[

a − b
h

,
b − a

h

]

• Xij are i.i.d. with 𝔼X11 = 0, Var
(
X11

)
= 1, 𝔼X4

11 = 3 and 𝔼X32
11 < ∞, cn → c ∈ (0, 1).

Then, as n → ∞, for any fixed positive integer d and different points x1,… , xd in (a, b),
the joint limiting distribution of

nh
(
fn

(
xi
)
− fcn

(
xi
))

∼  (
0, 𝜎2𝐈d

)
, i = 1,… , d (4.44)

is multivariate normal with mean zero and covariance matrix 𝜎2𝐈d, where

𝜎2 = − 1
2𝜋2 ∫

∞

−∞ ∫
∞

−∞
K ′ (u1

)
K ′ (u2

)
ln

(
u1 − u2

)2du1du2 (4.45)

Here fc(x) and a, b are defined in (4.8). The Gaussian kernel K (x) = (2𝜋)−1∕2e−x2∕2 also
satisfies all conditions specified in Theorem 4.3.10. Theorem 4.3.10 is actually a corollary
of the following theorem.

Theorem 4.3.11 When the condition lim
n→∞

nh3 = 0 in Theorem 4.3.10 is replaced by

lim
n→∞

h = 0

while the remaining conditions are unchanged, Theorem 4.3.10 holds as well if the ran-
dom variables (4.44) are replaced by

nh
(

fn
(
xi
)
− 1

h ∫
b

a
K

(xi − y
h

)
d𝔽cn

(
y
)
)

∼  (
0, 𝜎2𝐈d

)
, xi ∈ (a, b) , i = 1,… , d

Example 4.3.12 (optimal bandwidth h) In practice, the bandwidth h(n) as a func-
tion of n needs to be selected. First, we derive the theoretical result; then we show
simulations.
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We evaluate the quality of the estimate fn(x) by the mean integrated square error

L = 𝔼
(

∫
b

a

(
fn (x) − fcn

(x)
)2 dx

)

= ∫
b

a

(
Bias

(
fn (x)

))2 dx + ∫
b

a
Var

(
fn(x)

)
dx

where Bias
(
fn (x)

)
= 𝔼fn (x) − fcn

(x). It is easy to verify that (see [226] and [224])

1
h ∫ K

(x − y
h

)
d𝔽cn

(
y
)
− fcn

(x) = 1
2

h2 (
fcn

(x)
)′′

∫ x2K (x) dx + O
(
h3)

Although it is not rigorous from Theorem 4.3.11 we roughly have

𝔼fn (x) −
1
h ∫ K

(x − y
h

)
d𝔽cn

(
y
)
= o

( 1
nh

)

and

Var
(
fn (x)

)
= 𝜎2

n2h2 + o
(
𝜎2

n2h2

)

Recall that 𝜎2 is defined in (4.45). These give

L =
[

1
2

h2 (
fcn

(x)
)′′

∫ x2K (x) dx + O
(
h3) + o

( 1
nh

)]2

+ 𝜎2 (b − a)
n2h2 + o

(
𝜎2

n2h2

)

Differentiating the above with respect to h and setting it equal to zero, we see that the
asymptotic optimal bandwidth is

h⋆ =
(
𝜎2 (b − a)

2n2c2
1

)1∕6

where c1 = 1
2

(
fcn

(x)
)′′ ∫ x2K (x) dx < ∞. This is different from the asymptotic optimal

bandwidth O
(
1∕n1∕5) in classical density estimates (see [226]).

Figure 4.5 illustrates (4.44) by showing how the kernel density estimation fn deviates
from the limiting Marchenko–Pastur law fcn

(x): nh
(
fn

(
xi
)
− fcn

(
xi
))
, i = 1,… , d. We

have found that h(n) = 1∕n
1
3 is the optimal bandwidth; this observation agrees with the

theoretical derivation above. The case for h(n) = 1∕n
1
5 is shown in Figure 4.6.

4.3.4 Estimation of Noise Variance

Example 4.3.13 (MIMO channels) The observation vectors
{
𝐱i
}

1⩽i⩽n are
N-dimensional and satisfy the equation

𝐱i = 𝐇𝐳i + 𝐰i + 𝝁, i = 1,… , n (4.46)

Here, 𝐳i is an m-dimensional common factor where m << N , 𝐇 is an N × m matrix,
𝝁 represents the general mean, and (𝐰i) is a sequence of independent noise vectors.
The random vectors 𝐳i and the noise 𝐰i have a Gaussian distribution and they are both
unobserved. We have the choice

𝔼𝐳i = 0 and 𝔼𝐳i𝐳T
i = 𝐈; 𝐑w = cov

(
𝐰i

)
is diagonal
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Figure 4.5 The kernel density estimation fn(x) deviates from the limiting Marchenko–Pastur law fcn
(x):
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− fcn
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xi
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, i = 1,… , d. The optimal bandwidth h = 1∕n1∕3. Here d = 8763 points are plotted.

The setting is the same as Figure 4.2 unless otherwise specified.
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Figure 4.6 The same as Figure 4.5 except that h = 1∕n1∕5.
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and

𝚪 ∶= 𝐇T𝐑−1
w 𝐇

is diagonal with distinct diagonal elements. For a white Gaussian noise vector, we have
𝐑w = 𝜎2𝐈. Therefore, the true covariance matrix of

{
𝐱i
}

1⩽i⩽n is

𝚺 = 𝐇𝐇T + 𝐑w (4.47)

The maximum likelihood estimator of 𝝁 is 𝐱 and those of 𝚪 and 𝐑w are obtained by
solving the following implicit equations

𝐇
(
𝚪 + 𝐈m

)
= 𝐒n𝐑−1

w 𝐇 (4.48)
diag

(
𝐇𝐇T + 𝐑w

)
= diag

(
𝐒n

)
, with 𝚪 ∶= 𝐇T𝐑−1

w 𝐇 diagonal (4.49)

For the white Gaussian noise, the estimation of 𝐑w = 𝜎2𝐈 is reduced to that of 𝜎2. (4.48)
and (4.49) become

𝐇
(
𝚪 + 𝐈m

)
= 1
𝜎2 𝐒n𝐇

N𝜎2 = Tr
(
𝐒n −𝐇𝐇T)

, with 𝚪 ∶= 1
𝜎2 𝐇

T𝐇 diagonal
◽

The maximum likelihood estimation is obtained as

�̂�2 = 1
N − m

N∑

i=m+1
𝜆i

(
𝐒n

)
(4.50)

and

�̂�i =
(
𝜆n,i − �̂�2)1∕2𝐯n,i, 1 ⩽ i ⩽ m (4.51)

where 𝐯n,i is the normalized eigenvector of 𝐒n corresponding to 𝜆n,i (1 ⩽ i ⩽ m), where
𝜆i is the eigenvalues of 𝐒n the sample covariance matrix

𝐒n = 1
n − 1

n∑

i=1

(
𝐱i − 𝐱

)(
𝐱i − 𝐱

)T

and where 𝐱 = 1
n

n∑

i=1
𝐱i the sample mean for the random vectors 𝐱1,… , 𝐱n ∈ ℝN .

In the classical setting, hereafter called the low-dimensional setting, the asymptotic
likelihood theory is developed by fixing the dimension N while the sample size n → ∞.
The maximum likelihood estimations are asymptotically normal with the standard√

n-convergence rate. In particular, as n → ∞
√

n
(
�̂�2 − 𝜎2) 

−→  (
0, s2) , s2 = 2𝜎4

N − m
(4.52)

Consider the so-called spiked true covariance matrix model

spec (𝚺) = (𝛼1,… , 𝛼1
⏟⏞⏞⏟⏞⏞⏟

n1

,… , 𝛼K ,… , 𝛼K
⏟⏞⏞⏟⏞⏞⏟

nK

, 0,… , 0
⏟⏟⏟

N−m

) + 𝜎2 (1,… , 1)
⏟⏞⏟⏞⏟

N

(4.53)
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where (𝛼i) are non-null eigenvalues of 𝐇𝐇T with multiplicity numbers (ni) satisfying
n1 + · · · + nK = m.

When the dimension N is large compared to the sample size n, the maximum likeli-
hood estimation �̂�2 in (4.50) has a negative bias. Assuming some conditions are satisfied,
we have

(N − m)

𝜎2
√

2c

(
�̂�2 − 𝜎2) + 𝛽

(
𝜎2) 

−→  (0, 1) (4.54)

where 𝛽
(
𝜎2) =

√
c∕2

(

m + 𝜎2
m∑

i=1

1
𝛼i

)

, and cn = p∕ (n − 1) → c > 0, as n → ∞. There-

fore, for high-dimensional data, the maximum likelihood estimation �̂�2 has an asymp-
totic bias −𝛽

(
𝜎2) (after normalization). This bias is a complicated function of the noise

variance and the m non-null eigenvalues of the matrix 𝐇𝐇T . The above CLT (4.54) is
still valid if c̃n = (N − m) ∕n is substituted for c. Now if we let N << n, so that c̃n ≈ 0
and 𝛽

(
𝜎2) ≈ 0, and thus

(N − m)

𝜎2
√

2c

(
�̂�2 − 𝜎2) + 𝛽

(
𝜎2) ≈

√
N − m

𝜎2
√

2

(
�̂�2 − 𝜎2)

This is exactly the classical CLT (4.52) for known under the classical low-dimensional
scheme. From this point of view, (4.54) gives a natural extension of the classical
CLT (4.52) to the high-dimensional context.

4.4 Limiting Spectral Distribution of Time Series

Time series play a central role in the analysis of real-world applications.

4.4.1 Vector Autoregressive Moving Average (VARMA) Models

In this section we study the limiting spectral distribution of large-dimensional sample
covariance matrices of a stationary and invertible VARMA (p, q) model. We study the
limiting spectral distribution of a population covariance matrix and a sample covariance
matrix for a VARMA (p, q) model. The relationship between the power spectral density
function and limiting spectral distribution of large-dimensional covariance matrices of
VARMA (p, q) is also established.

In the analysis of large-dimensional data, vector autoregressive moving average
(VARMA) models are an important class of linear multivariate time-series models with
a wide range of applications.

The power spectral density function of an ARMA(p, q) process is defined as:

Φ (𝜔) = 𝜎2

2𝜋

|
|
|
𝜙

(
e−j𝜔)||

|

2

|
|
|
𝜃
(
e(−j𝜔)

)|
|
|

2 , − 𝜋 ⩽ 𝜔 ⩽ 𝜋

where

𝜙(t) = 1 − 𝜙1t − · · · − 𝜙ptp, 𝜃(t) = 1 + 𝜃1t + · · · + 𝜃qtq

and 𝜎2 is constant variance.
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4.4.2 General Linear Process

The results in Section 4.4.1 are limited to ARMA-type processes rather than the general
linear process considered in this section.

Let
{
𝐗i

}
, i = 1,… , n be a sequence of p-dimensional real-valued random vectors and

consider the associated empirical covariance matrix

𝐒n = 1
n

n∑

i=1
𝐗i𝐗T

i (4.55)

In this section, we consider another aspect of such Marchenko–Pastur type theorems
by examining time-series observations instead of an i.i.d. sample. Let us first consider
an univariate real-valued linear process

zt =
∞∑

k=0
𝜙kwt−k , t ∈ ℤ (4.56)

where (wk) is real-valued and weakly stationary white noise with mean 0 and variance 1.
The p-dimensional process (𝐗t) considered in this section will be made by p independent
copies of the linear process (zt), i.e. for 𝐗t =

(
X1t ,… ,Xpt

)T

Xit =
∞∑

k=0
𝜙kwi,t−k , t ∈ ℤ (4.57)

where the p coordinate processes
{(

w1,t,… ,wp,t
)}

are independent copies of the uni-
variate error process

{
wt

}
in (4.56). Let 𝐗1,… ,𝐗n be the observations of the time series

at time epochs t = 1,… , n. We are interested in the empirical spectral density of the
sample covariance matrix 𝐒n in (4.56).

We always employ an usual convention that for any complex number z,
√

z denotes
its square root with a non-negative imaginary part.

Theorem 4.4.1 Assume that the following conditions hold: (i) The dimensions p →
∞, n → ∞, and p∕n → c ∈ (0,∞). (ii) The error process has a fourth moment: 𝔼w4

t <∞.

(iii) The linear filter (
(
𝜙k

)
) is absolutely summable, i.e.

∞∑

k=0
|
|𝜙k

|
| <∞.Then almost surely

the empirical spectral density of 𝐒n tends to a nonrandom probability distribution F(x).
Moreover, the Stieltjes transform s = s(z) of F(x) (as a mapping fromℂ+ intoℂ+) satisfies
the equation

z = − 1
s (z)

+ 1
2𝜋 ∫

2𝜋

0

1
cs (z) + [2𝜋Φ (𝜔)]−1 d𝜔 (4.58)

where G (𝜔) is the spectral density of the linear process (zt):

Φ (𝜔) = 1
2𝜋

|
|
|
|
|

∞∑

k=0
𝜙kej𝜔k

|
|
|
|
|

2

, 𝜔 ∈ [0, 2𝜋) (4.59)

We provide a numerical algorithm for the computation of the density function h(x) of
the LSD defined in (4.58) through its Stieltjes transform s(z). We have

s(z) = 1
−z + g (s(z))



148 Smart Grid using Big Data Analytics

with

g (s(z)) = 1
2𝜋 ∫

2𝜋

0

1
cs(z) + (2𝜋Φ (𝜔))−1 d𝜔

The algorithm below is of fixed-point type.

Algorithm

1) For a given real x, let 𝜀 be small enough positive value and set z = x + i𝜀.
2) Choose an initial value s0(z) = u + i𝜀 and iterate for k ≥ 0 the above mapping

sk+1 (z) =
1

−z + g
(
sk(z)

)

until convergence and let sK (z) be the final value.
3) Define the estimate of the density function h(x) to be

ĥ (x) = 1
𝜋
Im sK (z)

It is well known that this iterated map has good contraction properties guaranteeing
the convergence of the algorithm.

Example 4.4.2 (ARMA process) For simplicity, we consider the simplest causal
ARMA(1,1) process for the coordinates:

zt = 𝜙zt−1 + wt + 𝜃zt−1, t ∈ ℤ

where |𝜙| < 1 and 𝜃 is real. The purpose is to find a simplified form of general
equation (4.58). We have

1
2𝜋Φ (𝜔)

=
|
|
|
|
|

1 − 𝜙ej𝜔

1 + 𝜃ej𝜔

|
|
|
|
|

2

and

I = 1
2𝜋 ∫

2𝜋

0

1
cs(z) + (2𝜋Φ (𝜔))−1 d𝜔 = 1

2𝜋i ∮|𝜉|=1

1

cs(z) + |
|
|

1−𝜙𝜉
1+𝜃𝜉

|
|
|

2
d𝜉
𝜉

By a lengthy but elementary calculation of residues, we find that for an ARMA(1,1)
process, the general equation (4.58) reduces to

z = − 1
s (z)

+ 𝜃

cs (z) 𝜃 − 𝜙
− (𝜙 + 𝜃) (1 + 𝜙𝜃)

(cs (z) 𝜃 − 𝜙)2
sgn (Im (𝛼))

√
𝛼2−4

where

𝛼 = cs (z) (1 + 𝜃2) + 1 + 𝜙2

cs (z) 𝜃 − 𝜙
In order to compute the density function of the LSD F(x), it is important to an explicit

formula for the integral in (4.58) to implement numerical algorithms. ◽
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4.4.3 Large Sample Covariance Matrices for Linear Processes

A typical object of interest in many fields is the sample covariance matrix 1
n−1

𝐗𝐗T of a
data matrix 𝐗 =

(
Xi,t

)
, i = 1,… , p; t = 1,… , n.

Our aim in this section is to obtain a Marchenko–Pastur-type result in the case where
there is dependence within the rows of 𝐗. More precisely, for i = 1,… , p, the i-th row
of 𝐗 is given by a linear process of the form

(
Xi,t

)

t=1,…,n =

( ∞∑

j=0
cjZi,t−j

)

t=1,…,n

, cj ∈ ℝ

Here, is an array of independent random variables that satisfies

𝔼Zi,t = 0, 𝔼Z2
i,t = 1, 𝜈4 = sup

i,t
𝔼Z4

i,t < ∞ (4.60)

as well as the Lindeberg-type condition that, for each 𝜀 > 0

1
pn

p∑

i=1

n∑

j=1
𝔼

(
Z2

i,tI(Z2
i,t⩾𝜀n)

)
→ 0, as n → ∞ (4.61)

Clearly, Eq. (4.61) is satisfied if all
{

Zi,t
}

are identically distributed.
The novelty of the result is that we allow for dependence within the rows, and that the

equation for the Stieltjes transform mF (z) is given in terms of the spectral density

Φ (𝜔) =
∑

k∈ℤ
𝜙ke−j𝜔k , 𝜔 ∈ [0, 2𝜋]

of the linear processes Xi only, which is the Fourier transform of the autocovariance
function

𝜙k =
∞∑

j=0
cjcj+|k|, k ∈ ℤ

4.4.4 Stationary Processes

We consider a stationary causal process
(
Xk

)

k∈ℤ as follows: let
(
Wk

)

k∈ℤ be a sequence
of i.i.d. real valued random variables and let g ∶ ℝℤ → ℝ be a measurable function such
that, for any k ∈ ℤ

Xk = g
(
𝐰k

)
, 𝐰k =

(
· · · ,Wk−1,Wk

)
(4.62)

is a proper random variable, 𝔼g
(
𝐰k

)
= 0 and ‖

‖
‖

g
(
𝐰k

)‖
‖
‖2
< ∞

The framework (4.62) is very general and it includes many widely used linear and
nonlinear processes (see, for example, [235]). We refer to [236] for many examples of
stationary processes that are of the form (4.62). Following [237] and [235]),

(
Xk

)

k∈ℤ can
be viewed as a physical system with 𝐰k (respectively Xk) being the input (respectively
output) and g being the transform or data-generating mechanism.

For a positive integer n, we consider n independent copies of the sequence
(
Wk

)

k∈ℤ

that we denote by
(

W (i)
k

)

k∈ℤ
, for i = 1,… , n. Setting

𝐰(i)
k =

(
· · · ,W (i)

k−1,W
(i)
k

)
, X(i)

k = g
(
𝐰(i)

k

)
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it follows that
(

X(1)
k

)

k∈ℤ
,… ,

(
X(n)

k

)

k∈ℤ

are n independent copies of
(
Xk

)

k∈ℤ. Let N = N(n) be a sequence of positive integers,
and define for any i ∈ {1,… , n}, 𝐱i =

(
X(i)

1 ,… ,X(i)
N

)
. Let

𝐗n =
(
𝐱T

1 ,… , 𝐱T
n
)
∈ ℝN×n and 𝐒n = 1

n
𝐗n𝐗T

n ∈∈ ℝN×N (4.63)

where 𝐒n is the sample covariance matrix associated with
(
Xk

)

k∈ℤ. To derive the limiting
spectral distribution of 𝐒n, we need to impose some dependence structure on

(
Xk

)

k∈ℤ.
Let

(
W ′

k

)

k∈ℤ be an independent copy of
(
Wk

)

k∈ℤ. We then define the functional depen-
dence measure

𝜀 (k) = ‖
‖
‖

Xk − X ′

k
‖
‖
‖2

for any integer k ⩾ 0 (4.64)

where X ′

k = g
(
𝐰′

k

)
with 𝐰′

k =
(
𝐰−1,W

′

0,W1,… ,Wk−1,Wk
)
. The coefficient 𝜀 (k) mea-

sures how much the process will deviate, measured by the L2 distance, from the original
orbit

(
g
(
𝐰k

))

k⩾0 if we change the current input W0 to an independent copy W ′

0. In
addition, by Proposition 3 in [238], it satisfies

‖
‖
‖

P0
(
Xk

)‖
‖
‖2

⩽ 2𝜀 (k) (4.65)

where for any k and j belonging to ℤ we have

Pj
(
Xk

)
= 𝔼

(
Xk|𝐰j

)
− 𝔼

(
Xk|𝐰j−1

)

Theorem 4.4.3 Let
(
Xk

)

k∈ℤ be defined in (4.62) and 𝐒n (4.63). Assume that
∑

k⩾0

‖
‖
‖

P0
(
Xk

)‖
‖
‖2
<∞ and

∑

k⩾0
𝜀2 (k) < ∞ (4.66)

and that c(n) = N∕n → c ∈ (0,∞). Then, with probability one, F𝐒n
(x) tends to a non-

random probability distribution, whose Stieltjes transform s(z) (z ∈ ℂ+) satisfies the
equation

z = − 1
s
−
(z)

+ c
2𝜋 ∫

2𝜋

0

1
s
−
(z) + (2𝜋Φ (𝜔))−1 d𝜔 (4.67)

where s
−
= − 1−c

z
+ cs (z) and Φ (⋅) is the spectral density of

(
Xk

)

k∈ℤ.

Under the first part of condition (4.66), the series
∑

k⩾0

|
|
|
Cov

(
X0,Xk

)|
|
|

is finite.

Thus (4.66) implies that the spectral density Φ (⋅) of
(
Xk

)

k∈ℤ exists, is continuous, and
is bounded on [0, 2𝜋).

Condition (4.66) is referred in the literature as the Hannan–Heyde condition and is
known to be sufficient for the validity of the central limit theorem for the partial sums
(normalized by

√
n) associated with an adapted regular stationary process in L2.



Linear Spectral Statistics of the Sample Covariance Matrix 151

Consider functions of real-valued linear processes. Define

Xk = h

(
∑

i⩾0
aiWk−i

)

− 𝔼

(

h

(
∑

i⩾0
aiWk−i

))

(4.68)

where
(
ai

)

i∈ℤ is a sequence of real numbers in 𝓁1 and is a sequence of i.i.d. random
variables in L1. We can give sufficient conditions in terms of the regularity of the function
h(x) for the condition (4.66) to be satisfied. See [239] for details.

4.4.5 Symmetrized Auto-cross Covariance Matrix

Consider the limiting spectral distribution (LSD) of a symmetrized autocross covariance
matrix

𝐑𝜏 =
1

2T

T∑

k=1

(
𝐰k𝐰H

k+𝜏 + 𝐰H
k 𝐰k+𝜏

)

where 𝐰k =
(
W1k ,… ,WNk

)T and
{

Wit
}

are independent random variables with mean
0 and variance 𝜎2. Here, 𝜏 ≥ 1 denotes the number of lags. The motivation for this
section comes from any large-dimensional model with a lagged time series structure
that is central to large dimensional dynamic factor models [240] and singular spectrum
analysis [241, 242].

Consider the framework of a large-dimensional dynamic k-factor model with lag q to
understand the underlying motivation of this work. This takes the following form

𝐲t =
q∑

i=0
𝐇i𝐱t−i + 𝐰t, t = 1,… ,T

where 𝐇is are N × k nonrandom matrices with full rank. For t = 1,… ,T , 𝐱ts are
k-dimensional vectors of i.i.d. standard complex components with finite fourth
moment and 𝐰t are N-dimensional vectors of i.i.d. standard complex components
with finite second moment, independent of 𝐰t . This model can be viewed as a
large-dimensional information-plus-noise-type model [243], with information con-
tained in the summation part and noise in 𝐰t . Here, “large dimension” refers to N
and T , while the number of factors k and the number of lags q are small and fixed.
Under this high-dimensional setting, an important statistical problem is the estimation
of k and q.

For 𝜏 = 0, Cov
(
𝐱t

)
= 𝚺x, the population covariance matrix of 𝐲t has the same eigen-

values as those of
(
𝜎2𝐈 +𝐇H𝚺x𝐇 0

0 𝜎2𝐈

)

with the two diagonal blocks of size k(q + 1) × k(q + 1) and (N − k(q + 1)) × (N − k(q +
1)), respectively. Therefore, we have the spiked population model framework.

The limiting spectral distribution of 𝐑𝜏 denoted as F𝜏 (x) has been derived: F𝜏 (x) =
lim

N→∞
F𝐑𝜏

(x). See [244] for details.
Let us summarize the work of [245] in this context. The focus is on a class of time

series known as linear processes (or MA(∞) processes) given by the representation

𝐱t =
∞∑

𝓁=0
𝐀𝓁𝐳t−𝓁 , t ∈ ℤ, (4.69)
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where
(
𝐀𝓁 ∶ 𝓁 ∈ ℕ

)
are p × p matrices, 𝐀0 the identity matrix, and

(
𝐳t ∶ t ∈ ℤ

)
are

p-dimensional random vectors (innovations) with i.i.d. entries Ztj (real or complex val-
ued) with zero mean, unit variance and finite fourth moment. It is assumed that the
matrices 𝐀𝓁 are symmetric (in the real case) or Hermitian (in the complex case) and

are simultaneously diagonalizable. Moreover, the stability requirement
∞∑

𝓁=1
𝓁 ‖

‖𝐀𝓁
‖
‖ <∞

is imposed, where || ⋅ || denotes the operator norm. These assumptions imply that, up
to an unknown rotation, the coordinates of the process 𝐱t are uncorrelated stationary
linear processes with short range dependence. The goal is to relate the behavior of the
ESD of the lag-𝜏 symmetrized sample autocovariances, defined as

𝐂𝜏 =
1

2n

n−𝜏∑

t=1

(
𝐱t𝐱H

t+𝜏 + 𝐱t+𝜏𝐱H
t
)
,

to that of the spectra of the coefficient matrices
(
𝐀𝓁 ∶ 𝓁 ∈ ℕ

)
when p, n → ∞ such that

p∕n → c ∈ (0,∞).
The class of models under study here includes the class of causal autoregressive mov-

ing average (ARMA) processes of finite orders satisfying the requirement that the coef-
ficient matrices are simultaneously diagonalizable and the joint empirical distribution
of their eigenvalues (when diagonalized in the common orthogonal or unitary basis)
converges to a finite dimensional distribution. The results are expressed in terms of the
Stieltjes transform of the ESD of the sample autocovariances.

4.4.6 Large Sample Covariance Matrices with Heavy Tails

This section deals with symmetric random matrices whose upper diagonal entries are
obtained from a linear random field with heavy tailed noise. Our goal here is to weaken
the moment conditions by allowing for heavy tails, and the assumption of independent
entries by allowing for dependence within the rows and columns. Potential applications
arise in portfolio management in finance, massive MIMO, and smart grid, where obser-
vations typically have heavy tails and dependence.

In the statistical analysis of high-dimensional data, we often try to reduce its
dimensionality, while preserving as much of the variation in the data as possible. One
important example of such an approach is the principal component analysis (PCA).
The variances of the first k principal components are given by the k-largest eigenvalues
of the covariance matrix. In practice, the true underlying covariance matrix is not
available, thus one usually replaces it with the sample covariance matrix 1

n
𝐗𝐗T , where

𝐗 is a p × n data matrix. To account for large high-dimensional data sets, we study the
k-largest eigenvalues of the sample covariance matrix when both the dimension of the
data as well as the sample size go to infinity.

There are two cases: (i) observations are regularly varying with tail index
𝛼 ∈ (0, 2)—observations with infinite variance; (ii) observations have finite vari-
ances but infinite fourth moments with tail index 𝛼 ∈ [2, 4). In many applications
where data typically exhibits heavy tails, like finance, the assumption of an infinite
variance might be too strong. So here we assume case (ii). This assumption is also
consistent with the motivation to derive a theoretical framework for the use of PCA for
high-dimensional data.
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We assume that 𝐗 is a p × n matrix with entries

Xit =
∞∑

j=−∞
cjZi,t−j, j ∈ ℕ (4.70)

where the sequence cj is absolutely summable,
∞∑

j=−∞

|
|
|
cj
|
|
|
< ∞, and

(
Zit

)

i,t is an array of

i.i.d. mean zero random variables with marginal distribution that is regularly varying
with tail index 𝛼 ∈ [2, 4), and normalizing sequence an:

𝔼Z11 = 0 and lim
n→∞

nℙ
(
|
|Zit

|
| > anx

)
= x−𝛼, for each x > 0 (4.71)

In other words, for each i ∈ ℕ,
(
Xit

)

t there is an infinite order moving average process
driven by some regularly varying noise with finite variance but infinite fourth moment.
From classical extreme value theory, the sequence an is necessarily characterized by

an = n1∕𝛼L (n) (4.72)

for some slowly varying function L ∶ ℝ+ → ℝ+: a function with the property that, for
each x > 0, lim

t→∞
L (tx) ∕L (t) = 1. Moreover we assume that Z11 satisfies the tail balancing

condition given by

lim
x→∞

ℙ
(
Z11 > x

)

ℙ
(
|
|Z11

|
| > x

) = q = 1 − lim
x→∞

ℙ
(
Z11 ⩽ −x

)

ℙ
(
|
|Z11

|
| > x

) (4.73)

for some 0 ≤ q ≤ 1.

Definition 4.4.4 The (normalized) sample covariance matrix of the sample 𝐗 is
defined as the p × p matrix

𝐒n = 1
a2

np

(
𝐗𝐗T − n𝜇X𝐈p

)

where 𝜇X = 𝔼Z2
11

∑

j
c2

j and 𝐈p is the p × p identity matrix. We denote by 𝜆1,… , 𝜆p the

unordered, and 𝜆(1),… , 𝜆(p) by the ordered eigenvalues of 𝐒.

It can be shown that 𝐗𝐗T is dominated by its diagonal entries. If 𝛼 > 2, the diagonal
entries have a finite mean n𝜇X = n𝔼Z2

11
∑

j
c2

j , which has to be subtracted in order to

obtain a nontrivial limiting result.
If 𝛼 = 2, it is possible that 𝔼Z2

11 = ∞. In this case we replace 𝜇X in the above definition

with the sequence of truncated means uxn =
∑

j
c2

j 𝔼
(

Z2
11I{Z2

11⩽a2
np

}

)

.

The following theorem is a generalization of [246] to nonindependent entries, except
that [246] assumes that p∕n goes to some positive finite constant, while we assume that p
is bounded by some small power of n. The random probability measure of its eigenvalues

is defined as 1
p

p∑

i=1
𝛿n−1𝜆i

, where 𝛿 denotes the Dirac measure.
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Theorem 4.4.5 Define the matrix 𝐗 =
(
Xit

)
as in equations (4.70), (4.71)and (4.73)

with 𝛼 ∈ [2, 2). Suppose n → ∞, p∞ such that

lim sup
n→∞

pn

n𝛽
< ∞ (4.74)

for some 𝛽 > 0 satisfying

• 𝛽 < max
{

1
3
,

4−𝛼
4(𝛼−1)

}
if 2 ⩽ 𝛼 < 3, or

• 𝛽 <
4−𝛼

3𝛼−4
if 3 ⩽ 𝛼 < 4.

Then the point process Nn =
p∑

i=1
𝛿𝜆i

of the eigenvalues of 𝐒n converges in distribution to

a Poisson point process Nn with intensity measure 𝜈, which is given by

𝜈 ((x,∞]) = 𝔼Nn (x,∞] = x−𝛼∕2
|
|
|
|
|
|

∑

j
c2

j

|
|
|
|
|
|

𝛼∕2

, x > 0

In particular, the theorem shows that the k largest eigenvalues 𝜆(1) ⩾ · · · ⩾ 𝜆(k) of 𝐒n,
the variances of the k-largest principal components, converge jointly to a random vector
with a distribution that only depends on k, the tail index 𝛼 and the coefficients (cj). Let
(Yi) be an i.i.d. sequence of exponentially distributed random variables with mean 1,
ℙ

(
Yi > x

)
= e−x for x > 0, and denote by Γi = Y1 + · · · + Yi their successive sum. Then

we have that
(
𝜆(1),… , 𝜆(p)

) D
−−−→
n→∞

(
Γ−2∕𝛼

1 ,… ,Γ−2∕𝛼
k

)
(

∑

j
c2

j

)
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5

Large Hermitian Random Matrices and Free Random Variables

Finding correlations between observables is at the heart of scientific methodology.
Once correlations between “causes” and “effects” are empirically established, we can
start devising theoretical models to understand the mechanisms underlying such
correlations, and use these models for prediction purposes. In many cases the number
of possible causes and of resulting effects are both large. For example, in an industrial
setting, one can monitor a large number of characteristics of a device (engine, hardware,
etc.) during the production phase and correlate these with the performances of the
final product. In economics and finance, one aims to understand the relation between
a large number of possibly relevant factors. Nowadays, the number of macroeconomic
time series available to economists is huge. This has led Granger [255] and others to
suggest that “large models” should be at the forefront of the econometrics agenda.
The idea of exploiting “large models” is the unified theme of this whole book. As a
result, large random matrices are natural building blocks in the theoretical framework.
As large random matrices can be regarded as free random variables, matrix-valued free
probability theory is therefore relevant.

Random matrices find ubiquitous applications in many branches of science.
The reason for this is twofold. First, random matrices possess a great degree of
universality: eigenvalue properties of large matrices do not depend on details of the
underlying statistical matrix ensemble. Second, random matrices can be viewed as
non commuting random variables. As such, they form a basis of a non commutative
probability theory where the whole matrix is treated as an element of the probabilistic
space. In the limit when the size of the matrix tends to infinity, N → ∞, the connection
to the probability theory is becoming exact in the mathematical sense. This is the
celebrated free-probability theory, where independent matrices play the role of free
random variables (hereafter FRV). The most fundamental observation is that data sets
are usually organized as large matrices. Large random matrices are regarded as free
random variables, which is the basis for this chapter.

Our basic task is to represent these large data sets—data modeling for big data. Our
basic approach is to learn from physicists. Physicists concentrated on the analysis of
experimental data using tools borrowed from the analysis of real-world complex sys-
tems, to become a predictive theory at a high confidence level.

Often the first dimension of these matrices is equal to the number of degrees of free-
dom, N , and the second to the number of measurements, T . Typical examples are large
economic/financial systems, sensing networks, wireless networks, and complex biolog-
ical systems.

Smart Grid using Big Data Analytics: A Random Matrix Theory Approach, First Edition.
Robert C. Qiu and Paul Antonik.
© 2017 John Wiley & Sons Ltd. Published 2017 by John Wiley & Sons Ltd.
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A common feature of these methods is that they require massive accumulation
and analysis of data, which is usually contaminated by statistical noise. Due to the
high dimensionality of the system in question, its complex nature, nonlinearity, poten-
tial non stationarity and emerging collective behavior, the problem at hand becomes
hard to solve using the traditional methods of multivariate statistical analysis. The basic
methodology is to borrow ideas from emergent domains of physics and mathematics
such as statistical theory of networks, percolation theory, spin glasses, random matrix
theory, free random probability, and game theories.

In the language of a matrix-valued probability calculus, the quantum nature comes
from the fact that basic objects of the probability calculus are operators, written as
large, non commuting matrices, represented in economy by arrays of big data—in finan-
cial systems, wireless networks, sensor networks, smart grid, and so forth. The relevant
observables in this language are related to the statistical properties of their spectra.

5.1 Large Economic/Financial Systems

Our basic approach to big data is the method of analogy, with the goal of parallel applica-
tions in financial systems, wireless networks, sensor networks, smart grid, and so forth.
The concepts of statistical physics can enrich this science of big data, hopefully even
making a major impact at the fundamental level.

Two conceptual revolutions were caused by Boltzmann (concepts of probability) and
quantum mechanics (matrix-valued probability).

The concept of a random walk was formulated using the assumption of the Gaussian
character of a stochastic process. Today, for a physicist, familiar with critical phenom-
ena, the concept of a power law and large fluctuations is rather obvious. The second
major factor changing the Gaussian world was the computer. The performance of com-
puters has increased by several orders of magnitude. This fact has had a large impact
on the economy. First, the speed and the range of transactions has changed drastically.
In such a way, a computer started involuntarily to serve as an amplifier of fluctuations.
Second, the economies and markets started to watch each other more closely, because
computers allowed for collecting exponentially more data.

Since the 1990s, there has been a tendency for physicists to study the economy sci-
entifically. One benefit of using computers was that economic systems started to save
more and more data. Today markets collect an incredible amount of data (they remem-
ber practically every transaction). This triggers the need for new methodologies able
to manage the data—data management for big data. In particular, the data started to
be modeled and analyzed using methods—big data modeling and learning—borrowed
widely from physics. These studies were devoted mostly to quantitative finance. To a
large extent, they were triggered by the vast amount of data accessible in this field. In
the science of big data, this is the reason why the state of the art for financial systems
is ahead of other branches such as wireless networks, sensor networks and smart grid.
The study of financial systems is more difficult than these big physical systems such as
wireless networks, sensor networks, and smart grid, in that the latter can be controlled
for data collection.

We must deal with large-scale phenomena in economic systems. There are too
many random factors for us to consider. The ultimate goal is to reach a level of
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understanding that would permit us to predict the reaction of the system to the change
of macro economic parameters in the future.

It is worthwhile stressing how natural and fundamental is the use of large random
matrices from the point of view of non commutative probability and central limit
theorems. Thus, it is puzzling how late large random matrices (in our language matrix
probabilities) were used for the analysis of financial data. The breakthrough came in
1999, as treated in Section 2.10.2. Matrix probability theory seems to be ideally suited
for a better understanding the role of covariance matrices and a way to quantitatively
assess the role of the noise, relevant correlations and the stability of the analysis. In our
opinion, the full power of random matrix techniques has not yet been recognized by
the quantitative finance community, not to mention by the big data community.

5.2 Matrix-Valued Probability

The basic building block for matrix-valued probability is the complex random matrix
𝐗 of N × T , 𝐗 ∈ ℂN×T . Can one formulate an analog of the central limit theorem, if
random variables 𝐗1,… ,𝐗n forming the sums

𝐒n = 𝐗1 + 𝐗2 + · · · + 𝐗n (5.1)

do not commute? In other words, we are looking for a theory of probability that is
noncommutative—𝐗is can be viewed as operators—but which should exhibit close sim-
ilarities to the “classical” theory of probability.

Abstract operators may have matrix representations. If such constructions exist, we
would have a natural tool for formulating probabilistic analysis directly in the space of
matrices. Contemporary financial markets are characterized by collecting and process-
ing enormous amount of data. Statistically, they may obey the matrix-valued central
limit theorems. Matrix-valued probability theory is then ideally suited for analyzing the
properties of large arrays of data. It also allows the reformulation of standard multi-
variate statistical analysis of covariance into a novel and powerful language. Spectral
properties of large arrays of data may also provide a rather unique tool for studying
chaotic properties, unraveling correlations and identifying unexpected patterns in very
large sets of data.

The origins of noncommutative probability is linked with abstract studies of
von Neumann algebras carried out in the 1980s. A new twist was given to the theory
when it was realized that noncommuting abstract operators, called free random
variables, can be represented as infinite matrices [126]. The concept of free random
variables only very recently started to appear explicitly in physics [127, 128, 131].

In this section, we abandon a formal way and we shall follow the intuitive approach.
Our main goal is to study the spectral properties of large arrays of data, with big

physical systems in mind. As large stochastic matrices obey central limit theorems with
respect to their measure, spectral analysis is a powerful tool for establishing a stochas-
tic feature of the whole set of matrix-ordered data simply by comparing their spectra
to the analytically known results of random matrix theory. The deviations of empirical
spectral characteristics from the spectral correlations of purely stochastic matrices can
be used simultaneously as a source for inferring the relevant correlations, which are not
so visible when investigated by other methods.
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Let us assume, that we want to study the statistical properties of infinite random matri-
ces. We are interested in the spectral properties of an N × N matrix 𝐗 (in the limit
N → ∞), which is drawn from a matrix measure

exp (−N Tr V (𝐗)) d𝐗 (5.2)

with a potential V (𝐗) (in general not necessarily polynomial). We shall restrict our-
selves to complex Hermitian matrices for the moment because their spectrum is real.
The average spectral density of the matrix 𝐗 is defined as

𝜌 (𝜆) = 1
N
⟨Tr 𝛿 (𝜆 − 𝐗)⟩ = 1

N

⟨ N∑

i=1
𝛿
(
𝜆 − 𝜆i

)
⟩

(5.3)

where ⟨· · ·⟩ means averaging over the ensemble (2.32). Then, G (z) is a meromorphic
function whose poles are on the real axis and correspond to the eigenvalues of the par-
ticular𝐗matrix one is considering. Conversely, when the averaging operation is actually
performed, and the N → ∞ limit is taken, the poles of the Green’s function start to merge
into continuous intervals of the real line. In this limit, the Green’s function becomes a
holomorphic function everywhere in the complex plane except for the intervals men-
tioned above. Remarkably, those are the intervals where the eigenvalue density (2.33) is
actually defined.

Using the standard folklore, that the spectral properties are related to the discontinu-
ities of the Green’s function, we may introduce

G (z) = 1
N

⟨
Tr
(
z𝐈N − 𝐗

)−1
⟩

(5.4)

where z is a complex variable and 𝐈N is the identity matrix of N × N . Due to the known
properties of the distributions (Sokhotsky’s formula)

− 1
𝜋

lim
𝜀→0+

ImG (z) ||z=𝜆+i𝜀 = 𝜌 (𝜆) (5.5)

where PV stands for the principal value, we see that the imaginary part of the Green’s
function reconstructs spectral density (2.33)

− 1
𝜋

lim
𝜀→0+

G (z) ||z=𝜆+i𝜀 = 𝜌 (𝜆) (5.6)

so the Green’s function, in the infinite matrix limit, is equivalent to the eigenvalue den-
sity and encodes all of the spectral density of the matrix ensemble under study. The
whole framework is motivated by the fundamental relation of (2.36). Being holomorphic
everywhere in the complex plane except for some cuts on the real line, the Green’s func-
tion can typically be expanded into a power series around infinite z whose coefficients
can be shown to be given by the following expression:

G (z) =
∞∑

k=0

Mk

zk+1 , Mk = ∫ 𝜌 (𝜆) 𝜆kd𝜆 (5.7)

The mk are called matrix moments and are usually summed up in the M-transform, or
moment generating function

M𝐗 (z) = zG𝐗 (z) − 1 =
∞∑

k=1

Mk

zk+1 (5.8)
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The natural Green’s function will serve as an auxiliary construction that explains the
crucial concepts of the theory of matrix-valued (noncommutative) probability theory.
Let us define a functional inverse of the Green’s function (sometimes called a Blue’s
function [128]):

G [B (z)] = z

The fundamental object in noncommutative probability theory, the so-called R function
or R-transform, is defined as

R (z) = B (z) − 1
z

(5.9)

With the help of the R-transform, we shall now uncover several astonishing analogies
between classical and matrix-valued probability theory.

We shall start from the analog of the central limit theorem [126]: the spectral distri-
bution for the sum of independent variables 𝐗i, i = 1,… ,K

𝐒n = 1
√

n

(
𝐗1 + 𝐗2 + · · · + 𝐗n

)
(5.10)

each with arbitrary probability measure with zero mean and finite variance
⟨
Tr 𝐗i𝐗H

i

⟩
=

𝜎2, i = 1,… , n, converges towards the distribution with R-transform R (z) = 𝜎2z.
Let us now find the exact form of this limiting distribution. R (z) = 𝜎2z, so it follows

from (2.37) that B (z) = 𝜎2z + 1∕z, and its functional inverse fulfills

z = 𝜎2G (z) + 1
G (z)

(5.11)

The solution of this quadratic equation (with proper asymptotics G (z) → 1∕z for
large z) is

G (z) =
z −
√

z2 − 4𝜎2

2𝜎2 (5.12)

so the spectral density, supported by the cut of the square root, is

𝜌 (𝜆) = 1
2𝜋𝜎2

√
4𝜎2 − 𝜆2 (5.13)

This is the famous Wigner semicircle [102] (actually, semiellipse) ensemble. The
omnipresence of this ensemble in various physical applications finds a natural
explanation—it is a consequence of the central limit theorem for noncommuting
random variables. Thus, the Wigner ensemble is a noncommutative analog of the
Gaussian distribution in classical commutative probability. Indeed, one can show, that
the measure (5.2) corresponding to the Green’s function (5.12) is V (𝐗) = 1

𝜎2 𝐗2 for the
real matrix case and V (𝐗) = 1

𝜎2 𝐗𝐗H for the complex matrix case.

5.2.1 Eigenvalue Spectra for the Covariance Matrix and its Estimator

Statistical systems with many degrees of freedom appear in numerous research areas,
such as big physical data systems. One of the most fundamental issues is the determi-
nation of correlations. In practice, we sample the system many times by carrying out
independent measurements. For each sample, we estimate values of the elements of
the covariance matrix, and then take the average over a set of samples. The statistical
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uncertainty of the average of individual elements of the matrix generically decreases
with the number of independent measurements T as 1∕

√
T .There are N(N + 1)∕2 inde-

pendent elements of the correlation matrix for a system with N degrees of freedom.
Consider a statistical system consisting of N real degrees of freedom xi, i = 1,… ,N

with a stationary probability distribution

p
(
x1,… , xN

)
N∏

n=1
dxn (5.14)

such that the expectation (mean) is zero:

∫ xip
(
x1,… , xN

)
N∏

n=1
dxn = 0, ∀i (5.15)

The covariance matrix for the system is defined as

Cij = ∫ xixjp
(
x1,… , xN

)
N∏

n=1
dxn (5.16)

Assume that the system belongs to the Gaussian universality class. Under this assump-
tion, the probability distribution can be approximated by

p
(
x1,… , xN

)
N∏

n=1
dxn = 1

√
(2𝜋)N det𝐂

exp

(

−1
2
∑

ij
xiCijxj

) N∏

n=1
dxn (5.17)

where Cij is a covariance system (5.16). By construction, it is a symmetric,
positive-definite matrix. In fact, for a wide class of models, the Gaussian approxi-
mation describes well the large N behavior of the system as a consequence of the
central limit theorem. Deviations from the Gaussian behavior can result either from the
presence of fat (heavy) tails in the probability distribution or from collective excitations
of many degrees of freedom. None of these effects will be discussed here.

Experimentally, the correlation matrix is computed as follows. One performs a series
of T independent measurements. Assume T > N . The measured vectored values 𝐱n
form a rectangular N × T matrix 𝐗 with elements Xnt, where Xnt is the measured value
of the n-th degree of freedom 𝐱n in the t-th experiment t = 1,… ,T . The experimental
correlation matrix is computed using the following estimator (called sample covariance
matrix in statistics):

cij =
1
T

T∑

t=1
XitXjt =

1
T
{
𝐗𝐗T}

ij (5.18)

where 𝐗T is the transpose of 𝐗. We expect that for T → ∞, the estimated values cij will
approach the elements Cij. More precisely, if the measurements are independent, the
probability distribution of measuring a matrix 𝐗 of values Xnt is a product of probabili-
ties for individual measurements

ℙ (𝐗)D𝐗 =
T∏

t=1

(

p
(
X1t,… ,XNt

)
N∏

n=1
dXnt

)

(5.19)

where

D𝐗 =
N∏

n= 1
dXnt (5.20)
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In particular, for the Gaussian approximation

ℙ (𝐗)D𝐗 =  exp

(

− 1
2

T∑

t=1
XitC−1

ij Xjt

)
N ,T∏

n,t=1
dXnt

=  exp
(
− 1

2
Tr𝐗T𝐂−1𝐗

)
D𝐗,

(5.21)

where  is a normalization factor, which ensures that ∫ ℙ (𝐗)D𝐗 = 1. In this partic-
ular case, we have  =

[
(2𝜋)N det𝐂

]−T∕2
. All averages over measured values Xnt are

calculated with this probability measure. We shall denote these averages by ⟨· · ·⟩, or the
mathematical expectation 𝔼 (⋅) . In particular, we see that

⟨
XitXj𝜏

⟩
= Cij𝛿t𝜏 , 𝔼

(
XitXj𝜏

)
= Cij𝛿t𝜏 (5.22)

This relation reflects the assumed absence of correlations between measurements. In
general, if measurements are correlated, the right-hand side of the last equation can be
expressed by a matrix it,j𝜏 in double indices.

Now we are in a position to state the main result in this section, after the introduc-
tory remarks above. We aim to relate the true covariance matrix 𝐂 to its estimator 𝐜,
through the use of their eigenvalue spectra. We denote the eigenvalues of the matrix 𝐂
by Λn, n = 1,… ,N . For a given set of eigenvalues, we can calculate matrix invariants,
like, for example, the spectral moments

Mk = 1
N

Tr 𝐂k = 1
N

N∑

n=1
Λk

n = ∫ dΛ𝜌0 (Λ)Λk (5.23)

where the density of eigenvalues 𝜌0 (Λ) is defined as

𝜌0 (Λ) =
1
N

N∑

n=1
𝛿
(
Λ − Λn

)
(5.24)

The question is how these quantities are related to the analogous quantities defined for
the estimator of the correlation matrix 𝐜

mk = 1
N
⟨
Tr 𝐂k⟩ = ∫ d𝜆𝜌 (𝜆) 𝜆k (5.25)

where the eigenvalue density of the matrix estimator is

𝜌 (𝜆) = 1
N

⟨ N∑

n=1
𝛿
(
𝜆 − 𝜆n

)
⟩

(5.26)

We expect that the dependence of the estimated spectrum 𝜌 (𝜆) and the genuine spec-
trum 𝜌0 (Λ) should be controlled by T and N . Indeed, as we shall see later, it turns out
that for N → ∞, this dependence is governed by the parameter c = N∕T , which we
assume to be finite.

In order to derive the relation between the spectral properties of the covariance matrix
and its estimator, it is convenient to define resolvents (Green’s functions)

𝐆 (Z) =
(
Z𝐈N − 𝐂

)−1 (5.27)
and

𝐠 (z) =
⟨(

z𝐈N − 𝐂
)−1
⟩
=
⟨(

z𝐈N − 1
T
𝐗𝐗T
)−1⟩

(5.28)
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where Z and z are complex variables. The symbol 𝐈N stands for the N × N unit matrix.
Expanding the resolvents in 1∕Z (or 1∕z) in power series, we see that they can be inter-
preted as generating functions for the moments

M (Z) = 1
N

Tr [Z𝐆 (Z)] − 1 =
∞∑

k=1

1
Zk

Mk (5.29)

and

m (z) = 1
N

Tr
[
z𝐠 (z)

]
− 1 =

∞∑

k=1

1
zk

mk (5.30)

From the relation between M(Z) an m(z), we can determine the corresponding relation
between the eigenvalue spectra 𝜌0 (Λ) and 𝜌 (𝜆) . Indeed, taking the imaginary part of
1
N
Tr 𝐠 (z) (and 1

N
Tr𝐆 (Z)) for z = 𝜆 + i0+ (or Z = Λ + i0+), where 𝜆 and Λ are real, we

can calculate the eigenvalue densities 𝜌 (𝜆) (and 𝜌0 (Λ)) directly:

𝜌 (𝜆) = − 1
𝜋
Im 1

N
Tr 𝐠
(
𝜆 + i0+) (5.31)

as follows from the standard relation for distributions:
1

x + i0+ = PV 1
x
− i𝜋𝛿 (x)

where PV stands for principal value and x is real.
The fundamental relation between the generating functions (5.29) and (5.30) is

derived by means of a diagrammatic technique [123] for calculating integrals (5.28)
with the Gaussian measure (5.21). The large N limit corresponds to the planar limit in
which only planar diagrams contribute. This significantly simplifies considerations and
allows us to write down closed formulae for the resolvents.

The fundamental relation between the generating functions (5.29) and (5.30) reads

m (z) = M (Z) (5.32)
where the complex number Z is related to z by the conformal map

Z = z
1 + cm (z)

(5.33)

or, equivalently, if we invert the last relation for z = z(Z), as

z = Z (1 + cM (Z)) (5.34)
We can use (5.32) and (5.33) to compute moments of the genuine correlation func-
tion 𝐂 from the experimentally measured moments of the estimator 𝐜. Indeed,
combining (5.32) and (5.33), we obtain the following equation:

m (z) = M
(

z
1 + cm (z)

)

(5.35)

which gives a compact relation between moments mk and Mk :

∞∑

k=1

mk

zk
=

∞∑

k=1

Mk

zk

(

1 + c
∞∑

l=1

ml

zl

)k

(5.36)
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from which we can recursively express mk by Ml, l = 1,… , k

m1 = M1

m2 = M2 + cM2
1

m3 = M3 + 3cM1M2 + c2M3
1

· · ·

(5.37)

or inversely: Mk by ml, l = 1,… , k

M1 = m1

M2 = m2 − cm2
1

M3 = m3 − 3cm1m2 + 2c2m3
1

· · ·

(5.38)

Let us observe that for c < 1 the functions M(Z) an m(z) (expressed in infinite power
series) can also be expanded around z = Z = 0. In this case

M (Z) = −
∞∑

k=0
ZkM−k

where

M−k = 1
N

Tr 𝐂−k

Similarly

m (Z) = −
∞∑

k=0
zkm−k

where

m−k = 1
N
⟨
Tr 𝐜−k⟩

Using the same manipulation as before, we obtain
∞∑

k=1
M−kZk =

∞∑

k=1
m−kZk

(

1 − c − c
∞∑

l=1
M−lZl

)k

(5.39)

and hence
M−1 = (1 − c)m−1

M−2 = (1 − c)2m−2 − c (1 − c)m2
−1

M−3 = (1 − c)3m−3 − c(1 − c)2m−1m−2 − c2 (1 − c)m3
−1

· · · .

The relations between moments can be used directly in practical applications to clean
the spectrum of the correlation matrix. Formulae (5.32) and (5.33) encode full informa-
tion about the relation between the eigenvalue spectrum 𝜌0 (Λ) and 𝜌 (𝜆) for a given c. In
particular, if one knows the spectrum 𝜌0 (Λ) of the correlation matrix 𝐂, we can exactly
determine, for a given c, the shape of the spectrum 𝜌 (𝜆) of the estimator dressed by
statistical fluctuations.
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The algorithm is summarized as follows:

• From the eigenvalue spectrum 𝜌0 (Λ) ,we first deduce an explicit form of the function
M(Z) and of the right-hand side of (5.34).

• Inverting (5.34) for Z, we find the dependence Z = Z(z) as a function of z.
• Inserting it to (5.32), we determine the function m(z).
• Taking the imaginary part along the cuts of the map m(z) on the real axis (5.31), we

eventually find 𝜌 (𝜆) .

One can easily write a numerical program that realizes this procedure. In few cases the
solution is possible analytically.

Example 5.2.1 (correlation matrix C with degenerate eigenvalues) Consider the
correlation matrix 𝐂 whose spectrum is given by a sequence of degenerate eigenval-

ues 𝜇i, i = 1,… ,K with degeneracies ni. Consequently, defining pi = ni∕N ,
K∑

i=1
pi = 1,

we have

M (Z) =
K∑

i=1

pi𝜇i

Z − 𝜇i
(5.40)

This form is particularly simple to discuss. We should, however, keep in mind that rela-
tions (5.32) and (5.33) also remain valid in a more general case, for instance, when in
the limit N → ∞, the spectrum of 𝜌0 (Λ) is not a sum of delta functions but approaches
some continuous distribution. Map (5.34) now reads

z = Z

(

1 + c
K∑

i=1

pi𝜇i

Z − 𝜇i

)

(5.41)

Clearly, if we solve this equation for Z = Z(z),we obtain a multivalued function, except
in the case c = 0 for which we have a simple relation, z = Z. The “physical” Riemann
sheet of the map Z = Z(z) is singled out by the condition Z → z for z → ∞.On this sheet,
the complex z-plane is mapped on a part of the Z plane without a simply or multiply
connected region surrounding the poles at Z = 𝜇i. ◽

Example 5.2.2 (correlation matrix C with one eigenvalue) Let us consider the sim-
plest case, as an illustration, where K = 1. In this case, we have only one eigenvalue
𝜇1 = 𝜇 and p1 = 1 and M(Z) = 𝜇∕(Z − 𝜇). Map (5.33) has the following form:

z = Z + c Z𝜇
Z − 𝜇

If one rewrites the right-hand side of this equation using polar coordinates (R, 𝜙) around
the pole: Z − 𝜇 = Rei𝜙:

z = Rei𝜙 + c𝜇
2

R
e−i𝜙 + 𝜇 (1 + c)

one can see that the equation is invariant under the “duality” transformation

R ↔ c𝜇
2

R
, 𝜙↔ −𝜙
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which maps the inside of the circle |Z − 𝜇| = 𝜇
√

c onto the outside and vice versa.
Obviously, the outside corresponds to the “physical” Riemann sheet of the inverse map
Z = Z(z)

Z = 1
2

[

(1 − c)𝜇 + z +
√(

z − 𝜇+
) (

z − 𝜇−
)
]

since in this region Z ∼ z for z → ∞. The two constants in the last equation are 𝜇± =
(

1 ±
√

c
)2
𝜇. Along the cut 𝜇− < z < 𝜇+ on the real axis the map Z = Z(z) becomes

complex and ambiguous: it has a phase (sign) ambiguity, which is related to the fact that
the cut is mapped into the limiting circle where the two Riemann sheets meet.

From (5.32), we can easily find the generating function m(z) and then from (5.31), the
spectral density of the correlation matrix 𝐜

𝜌 (𝜆) = 1
2𝜋c𝜇

√(
𝜇+ − 𝜆

) (
𝜆 − 𝜇−

)

𝜆
, (5.42)

This is a well known result called Marchenko–Pastur distribution in random matrix
theory for the spectral distribution of the Wishart ensemble. It is interesting to interpret
this result as a statistical smearing of the initial spectral density 𝜌0 (Λ) , given by the
delta function localized at 𝜇 into a wide peak 𝜌 (𝜆) supported by the cut [𝜇−, 𝜇+],
due to a finite series of measurements. The larger c, the larger is the width of the
resulting distribution 𝜌 (𝜆) . For instance, this formula gives cr ≈ 0.01 if the correlation
matrix 𝐂 has two eigenvalues 𝜇1 = 1 and 𝜇2 = 1.1 and the corresponding weights
p1 = p2 = 1∕2. ◽

Example 5.2.3 (correlation matrix C with two eigenvalues) The genuine covariance
matrix 𝐂 has two different eigenvalues 𝜇1, 𝜇2 with relative weights p1, p2, p1 + p2 = 1. In
this one can also find an explicit form of the map Z(z) solving the corresponding cubic
(Cardano) equation.

Depending on the parameters 𝜇i, pi, the map Z(z) has one or two cuts on the real
axis of the z plane. This means that corresponding eigenvalue distribution 𝜌(𝜆) has a
support on one or two intervals. The critical value at which a single cut solution splits
into a two-cut one is:

cr =
(
𝜇2 − 𝜇1

)2

[(
p1𝜇

2
1
)1∕3 +

(
p2𝜇

2
2
)1∕3
]3 (5.43)

Thus, in this case, to observe a bimodal signal in the measured spectrum one has to
perform T measurements with T of order 100N . In Figure 5.1, we illustrate (5.43). ◽

The method can be straightforwardly generalized from K = 1, 2 to arbitrary K ,

𝜇1,… , 𝜇K with
K∑

k=1
pi = 1, although only the K = 3 case is solvable analytically (quartic

Ferrari equation). In other cases, one can use a numerical implementation of the
general procedure, which we described before, to determine the shape of the spectrum
of the estimator 𝜌 (𝜆) from any given distribution 𝜌0 (Λ) and for any c.
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Figure 5.1 The figures represent spectra of the eigenvalue distributions 𝜌 (𝜆) of the experimental
correlation matrix measured in a series of measurements for c = r = 0.01, 0.115, 0.3, respectively. The
underlying correlation matrix has two eigenvalues 𝜇1 = 1 and 𝜇2 = 2 with the weights p1 = p2 = 0.5.
At the critical value c = cr = rc = 0.115 ((5.43)), the spectrum splits. The spectral densities are
calculated analytically. Source: Reproduced with permission from [121].

In practice, one is, however, interested in the opposite problem, that is, in the determi-
nation of the spectrum 𝜌0 (Λ) of the genuine correlation matrix 𝐂 from the distribution
of the measured eigenvalues.

5.3 Wishart-Levy Free Stable Random Matrices

Consider i = 1,… ,N stochastic time series xij observed at synchronous times
tj, j = 0,… ,T . The data can be arranged in a N × T matrix 𝐌 of increments
mij = xij − xi,j−1, where each row corresponds to a time series and each column to
a sampling time. Assuming that the average of the increments is zero, the Pearson
estimator for the covariance of two time series i and j is

cij =
1
T

T∑

k=1
mikmjk (5.44)

The covariances of all pairs can be collected in a N × N symmetric matrix

𝐂 = 1
T
𝐌𝐌T (5.45)

The covariance matrix 𝐂 is also called Wishart matrix as it was studied by him [116].
One is often interested in testing the hypothesis that there are no significant correlations.
This can be done by comparing the eigenvalue spectrum of an empirical correlation
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matrix with the spectrum of a reference matrix built with synthetic uncorrelated time
series. If the matrix rows are random walks whose increments are independent and
identically distributed (i.i.d.) normal deviates with standard deviation 𝜎, the spectrum
describing the above null hypothesis in the limit for N ,T → ∞ with c = N∕T is given
analytically by the Marchenko–Pastur law [172]:

𝜌𝐂 (𝜆) =
1

2𝜋𝜎2c𝜆

√(
𝜆+ − 𝜆

) (
𝜆 − 𝜆−

)

𝜆± = 𝜎2
(

1 ∓
√

c
)2 (5.46)

Indeed, for a sufficiently large matrix, the exact distribution of its elements becomes less
and less relevant, and the Marchenko–Pastur law can be obtained for i.i.d. increments
drawn from any symmetric distribution with a finite second moment 𝜎2.This effect was
also evident in Wigner’s studies of matrices whose elements are binary random variables
assuming the values ±1 with equal probability. In both the Wigner and Wishart ensem-
bles, the spectra of large matrices converge to that of an infinite matrix (respectively
the semicircle law and the Marchenko–Pastur law) as a consequence of a generalized
central limit theorem.

A practical use of (5.46) is that if the empirical spectrum of data shows significant dif-
ferences from the theoretical curve, then it may be justified to reject the null hypothesis
of no true correlations. The details of the latter are then a separate issue. In principle, it is
possibile to test not only correlation, but also any kind of suitable assumption leading to
a given shape of the expected spectrum, both theoretically and numerically. Depending
on the specific case, one chooses a suitable null hypothesis.

The result given by (5.46) lies within classical random matrix theory and requires
i.i.d. matrix elements with finite moments. In this section, we are concerned with the
Wishart–Levy ensemble as a natural extension of the Wishart–Gaussian ensemble
treated by the Marchenko–Pastur theory. The situation becomes more complicated
if the elements of 𝐌 are distributed with power-law tails, as happens in numerous
physical, biological and economic data [256].

The Marchenko–Pastur theory is not valid any more when the second moment is not
finite, and the corresponding spectral densities cannot be obtained from a simple exten-
sion of Gaussian random matrix theory. As a consequence of the central limit theorem
for scale-free processes, the distribution of many of the above phenomena is usually
assumed to be a symmetric Levy 𝛼-stable distribution, whose pdf is given most suitably
as the inverse Fourier (cosine) transform of its characteristic function:

L𝛼 (x) = −1 [e−|𝛾𝜔|
𝛼 ]
(x) = 1

𝜋 ∫
∞

0
e−(𝛾𝜔)

𝛼

cos (x𝜔) d𝜔 (5.47)

The second and higher moments of L𝛼 (x) diverge for 𝛼 < 2, and for 𝛼 ≤ 1 even the first
moment does not exist. If 𝛼 = 2, (5.47) gives a Gaussian with standard deviation 𝜎 =√

2𝛾.However, we shall see that the functional representation of this distribution is not
required in the derivation of the spectrum.

A matrix whose elements are i.i.d. samples from a stable density is called a Levy matrix.
A symmetric Levy matrix is called a Wigner–Levy matrix. A symmetric matrix 𝐂 built
from a Levy matrix 𝐌 according to the equation

𝐂 = 1
T2∕𝛼𝐌𝐌T (5.48)



168 Smart Grid using Big Data Analytics

is called a Wishart-Levy matrix. Notice that the normalization factor has been gener-
alized with respect to (5.48) to take into account Levy 𝛼-stable statistics. Sampling the
elements from the probability density function

fX (x) = N2∕𝛼L𝛼
(
N2∕𝛼x

)
(5.49)

the limiting spectrum becomes independent of the matrix size N . The spectra of these
matrices no longer have a finite support as in the semicircle and Marchenko–Pastur laws
and are dominated by the behavior of the power-law tail of L𝛼 (x) .

The theory of free probability with its convenient machinery leading to analytic results
that could be obtained otherwise only by means of a painful use of combinatorics. A free
Levy stable random matrix has a spectrum belonging to the class of free stable laws.

5.4 Basic Concepts for Free Random Variables

We have the following exact formula:
free probability theory= noncommutative probability theory + free independence.
A symmetric N × N matrix 𝐗 has real eigenvalues 𝜆1,… , 𝜆N . The spectral density of

𝐗 can be written as

𝜌𝐗 (𝜆) =
1
N

N∑

i=1
𝛿
(
𝜆 − 𝜆i

)
(5.50)

where it is assumed that the weight of each eigenvalue is the same and each eigenvalue
is counted as many times as its multiplicity. The resolvent matrix [257] is defined as

𝐆𝐗 (z) =
(
z𝐈N − 𝐗

)−1
, z ∈ ℂ (5.51)

where 𝐈N is the N × N identity matrix. The Green’s function is defined as

G𝐗 (z) =
1
N

Tr𝐆𝐗 (z) (5.52)

where the trace Tr of a square matrix is defined as the sum of its diagonal elements.
If 𝐗 is a random matrix, the above definition is generalized including an expectation
operator denoted by 𝔼 (or ⟨· · ·⟩)

G𝐗 (z) =
1
N
𝔼
[
Tr𝐆𝐗 (z)

]
, G𝐗 (z) =

1
N
⟨Tr𝐆𝐗 (z)⟩ (5.53)

The Green’s function contains the same information as the eigenvalues and the eigen-
value density of𝐗 [258]. The Green’s function can be written in terms of the eigenvalues
of 𝐗 ∶

G𝐗 (z) =
1
N

N∑

i=1

1
z − 𝜆i

(5.54)

This is a special case of the definition through the Cauchy transform (Stieltjes transform)
of a generic spectral density:

G𝐗 (z) = ∫
+∞

−∞

1
x − 𝜆

𝜌𝐗 (𝜆) d𝜆 (5.55)
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By using the following representation of Dirac’s 𝛿-function
1

x ± i𝜀
= PV

(1
x

)
∓ i𝜋𝛿 (x) (5.56)

where PV denotes the principal value and x is real, the spectral density can be obtained
from the Green’s function:

𝜌𝐗 (𝜆) = lim
𝜀→0+

1
𝜋
Im
[
G𝐗 (𝜆 − i𝜀)

]
(5.57)

This means that the eigenvalues follow from the discontinuities of G𝐗 (z) on the real axis.
Noncommutativity of matrices and, in general, of operators makes it difficult to

extend standard probability theory to matrices as well as operator spaces. Among pos-
sible extensions of probability theory to operator spaces, the so-called free probability
theory has the advantage that many results can be deduced from well known theorems
on analytic functions [125].

Conventional Classical Probability

In order to explain the framework of free probability, let us start from conventional clas-
sical probability. A probability space (Ω, ,ℙ) is a measure space, where Ω is the sample
space,  is a 𝜎-algebra on Ω, and

ℙ ∶  → [0, 1] ∈ ℝ

is a non-negative measure on sets in  obeying Kolmogorov’s axioms; 𝜔 ∈ Ω is called
an elementary event, A ∈  is called an event.

A random variable X ∶ Ω → ℝ is a measurable function that maps elements from the
sample space to the real numbers, and thus elements from  to a Borel 𝜎-algebra Σ on
ℝ. The probability distribution of X with respect to ℙ is described by a measure 𝜇X on
(ℝ,Σ) defined as the image measure of

𝜇X = ℙ
[
X−1 (B)

]

where B is any Borel set and X−1 (B) ⊂  is the counter image of B. The cumulative
distribution function of X is

FX (x) = 𝜇X (X ⩽ x) .

The expectation value for any bounded Borel function g ∶ ℝ → ℝ is

𝔼
[
g (X)
]
= ∫ℝ

g (x)𝜇X (dx) = ∫ℝ
g (x)dFX (x) (5.58)

If FX (x) is differentiable, the probability density function (pdf) of X is fX (x) =
dFX (x) ∕dx.

This construction can be extended to noncommutative variables, such as matrices or
more general operators.

Non-commutative Variables

Let  denote a unital algebra over a field  , i.e. a vector space equipped with a bilinear
product

∘ ∶  × → 
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that has an identity element 𝐈. A tracial state on  is a positive linear function

𝜏 ∶  → 𝔽

with the properties

𝜏 (𝐈) = 1 and 𝜏 (𝐗𝐘) = 𝜏 (𝐘𝐗)

for every 𝐗,𝐘 ∈ . The couple (, 𝜏) is called a noncommutative probability space.
For our purposes  =  () ,where  () denotes the Banach algebra of linear oper-

ators on a real separable Hilbert space . This is a ∗-algebra, as it is equipped with an
involution (the adjoint operation)

𝐗 → 𝐗∗ ∶  () →  ()

Considering a self-adjoint operator 𝐗 ∈  () , it is possible to associate a (spectral)
distribution to 𝐗 as in classical probability. Thanks to the Riesz representation theorem
and the Stone–Weierstrass theorem, there is a unique measure 𝜇𝐗 on (ℝ,Σ) satisfying

∫ℝ
g (x)𝜇𝐗 (dx) = 𝜏

[
g (𝐗)
]

(5.59)

where g ∶ ℝ → ℝ is any bounded Borel function [259]. Therefore, we say that the dis-
tribution of 𝐗 is described by the measure 𝜇𝐗. For our purposes, this measure is equal to
the spectral density 𝜌𝐗 defined in (5.57). In random matrix theory, the Wigner semicircle
law has the role of the Gaussian law in classical probability, and the Marchenko–Pastur
law corresponds to the 𝜒2 law.

Independence and Freeness

Classically, independence between two random variables X and Y can be defined requir-
ing that for any couple of bounded Borel functions f , g

𝔼
[(

f (X) − 𝔼
[
f (X)
]) (

g (Y ) − 𝔼
[
g (Y )
])]

= 0 (5.60)

Analogously, two elements 𝐗 and 𝐘 in a noncommutative probability space are defined
as free (or freely) independent with respect to 𝜏, if for any couple of bounded Borel
functions f , g

𝜏
[(

f (X) − 𝜏
[
f (X)
]) (

g (Y ) − 𝜏
[
g (Y )
])]

= 0 (5.61)

Defining freeness between more than two elements is a nontrivial extension [260].
Generally, square N × N random matrices 𝐗 are noncommutative random variables

with respect to the function

𝜏 (𝐗) = 1
N
𝔼 [Tr 𝐗]

(see (5.53)), but for any given N , no pair of random matrices is free. Two random matri-
ces𝐗,𝐘 can, nevertheless, reach freeness asymptotically if, for any integer n > 0 and any
set of non-negative integers

(
𝛾1,… , 𝛾n

)
and
(
𝛽1,… , 𝛽n

)
for which in the limit N → ∞

𝜏 (𝐗𝛾1 ) = · · · = 𝜏 (𝐗𝛾n ) = 𝜏
(
𝐘𝛽1
)
= · · · = 𝜏

(
𝐘𝛽n
)
= 0 (5.62)

we have

𝜏
(
𝐗𝛾1𝐘𝛽1 · · ·𝐗𝛾n𝐘𝛽n

)
= 0 (5.63)
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This means that large random matrices can be good approximations of free noncommu-
tative variables. This observation is the foundation for exploiting free noncommutative
variables to handle large random matrices that naturally represent the big data.

Properties

Given an operator 𝐗 ∈  () , the following functions are useful in deriving its spectral
distribution 𝜇𝐗:

• Moment generating function, defined as

M𝐗 (z) = zG𝐗 (z) − 1 (5.64)

The name stems from the fact that, if the distribution of 𝐗 has finite moments of order
k, m𝐗,k = 𝜏

(
𝐗k)

M𝐗 (z) =
∞∑

k=1

m𝐗,k

zk
(5.65)

This can be seen inserting the sum of the geometric series
∞∑

k=0
qk = 1

1 − q
, |q| < 1 (5.66)

with q = 𝜆∕ |z| into (5.55):

G𝐗(z) = ∫
+∞

−∞

1
z (1 − 𝜆∕z)

𝜌𝐗 (𝜆) d𝜆

= ∫
+∞

−∞

1
z

∞∑

k=0

𝜆k

zk
𝜌𝐗 (𝜆) d𝜆

=
∞∑

k=0

1
zk+1 ∫

+∞

−∞
𝜆k𝜌𝐗 (𝜆) d𝜆

=
∞∑

k=0

m𝐗,k

zk+1 (5.67)

• R-transform. In classical probability the pdf of the sum of two independent random
variables X + Y is equal to the convolution of the individual pdfs:

fX+Y (x) =
(
fX ∗ fY

)
(x) (5.68)

The convolution is done conveniently in Fourier space, where it becomes a multipli-
cation: the characteristic function

f̂X+Y (𝜔) = ∫ℝ
fX+Y (x) ei𝜔x (5.69)

of X + Y is the product of the characteristic functions of X and Y

f̂X+Y (𝜔) = f̂X (𝜔) f̂Y (𝜔) (5.70)

and the cumulant generating function of X + Y is the sum of the cumulant generating
functions of X and Y :

log f̂X+Y (𝜔) = log f̂X (𝜔) + log f̂Y (𝜔) (5.71)
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The free analog of the cumulant generating function is the R-transform invented by
Voiculescu [126, 259] as part of the functional inverse of the Green’s function:

G𝐗

(
R𝐗 (z) +

1
z

)
= z (5.72)

The R-transform for the sum of two free operators is the sum of their R-transforms:

R𝐗+𝐘 (z) = R𝐗 (z) + R𝐘 (z) (5.73)

The free analogue of convolution is indicated with the symbol ⊞

𝜇𝐗⊞𝐘 = 𝜇𝐗 ⊞𝜇𝐘 (5.74)

This is computed through R𝐗, given the connection between the Green’s function G𝐗
and the spectral distribution 𝜇𝐗.

• Blue function. It is convenient to introduce also an inverse of the Green’s function G𝐗,

called Blue function:

G𝐗
(
B𝐗 (z)

)
= B𝐗

(
G𝐗 (z)

)
= z (5.75)

The Blue function is related to the R-transform by

B𝐗 (z) = R𝐗 (z) +
1
z

(5.76)

• S-transform. In the same fashion as the R-transform for the sum, another transform
allows to compute the spectral distribution of the product of two operators from their
individual spectral distributions:

R𝐗 (z) =
1 + z

z
𝜒𝐗 (z) (5.77)

where

𝜒𝐗
(
zG𝐗 (z) − 1

)
= 1

z
(5.78)

For 𝐗 ≠ 𝐘, the S-transform of the product is the product of the individual
S-transforms:

S𝐗𝐘 (z) = S𝐗 (z) S𝐘 (z) (5.79)

As the R-transform allows to compute the free additive convolution ⊞, the
S-transform leads to the free multiplicative convolution ⊠:

𝜇𝐗𝐘 = 𝜇𝐗 ⊠𝜇𝐘 (5.80)

5.5 The Analytical Spectrum of the Wishart–Levy Random
Matrix

Now we are in a position to perform a case study to illustrate the machinery of free
random variables.

Let 𝐏 be the matrix projector of size T × T , with N ones in arbitrary positions on the
diagonal and all the other elements zero, for example:

𝐏 = diag (..., 1, 1,… , 1, 1, 0, 0, 1,… , 1, 0,…) (5.81)
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Let 𝚲 be a (large) T × T matrix with a free stable spectral distribution. This property
is the analog of classical stability. The sum of two free noncommutative 𝜇- distributed
variables results in a new 𝜇-distributed variable. The Wishart matrix ensemble of size
N × N defined in (5.45) can be approximated using the N × T matrix 𝐌∕T2∕𝛼 obtained
from 𝐏𝚲 if only the N nonzero rows are considered. Indicating this operation with curly
braces, the approximation reads

𝐂 = 1
T2∕𝛼𝐌𝐌T ≃ {𝐏𝚲}

{
𝚲T𝐏
}

(5.82)

Our aim in this section is to find the spectrum of 𝐂 defined in (5.82).
The moment-generating function of the T × T matrix

𝐃 = 𝚲P𝚲T (5.83)

satisfies the transcendental equation

− exp
(

i 2𝜋
𝛼

)
zM2∕𝛼

𝐃 (z) =
(
M𝐃 (z) + 1

) (
M𝐃 (z) + c

)
(5.84)

which can be solved analytically for a few special values of 𝛼 = 1∕4, 1∕3, 1∕2, 2∕3, 3∕4,
1, 4∕3, 3∕2, 2; recall that c = N∕T is defined above. The equation (5.84) can be solved
numerically for other values.

The Green’s functions of the matrices 𝐃 and 𝐂 are related by equation [125]:

G𝐃 (z) = c2G𝐂 (cz) + 1 − c
z

(5.85)

whence, noticing that cG𝐂 (cz) = G𝐂 (z)

M𝐃 (z) = zG𝐃 (z) − 1 = czG𝐂 (z) − c = cM𝐂 (z) (5.86)

In the following, we will give steps that lead to (5.84) and, thus, the desired spectral
density 𝜌𝐂 (𝜆) .

As in classical probability, stable laws have an analytic form for their Fourier trans-
form, free stable laws have an analytic form for their Blue transform

B𝚲 (z; 𝛼) = a + bz𝛼−1 + 1
z

(5.87)

The parameter a accounts for a horizontal shift in the distribution of the matrix ele-
ments and can be set to zero without loss of generality. The parameter b depends on the
distribution; for the symmetric Levy 𝛼-stable pdf, (5.47), b has the value [121]

b = ei𝜋(𝛼∕2−1) (5.88)

Given an index 𝛼 ∈ (0, 2], B𝚲 (z; 𝛼) indirectly but precisely defines the attractor law for
the sum of free variables with an 𝛼-tailed spectral distribution. Since free probability
theory is exact only in the large size limit N ,T → ∞,N∕T = c, the only variables that
define the model are 𝛼 and c.

Rewriting (5.87) with G𝚲 (z) in place of z and using (5.75) yields

bG𝛼−1
𝚲 (z) + G−1

𝚲 (z) = z (5.89)

which is equivalent to

bG𝛼

𝚲 (z) + zG𝚲 (z) + 1 = 0, G𝚲 (z) ≠ 0 (5.90)
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Due to (5.79) of the S-transform, if, for simplicity, from now on we substitute 𝚲 with
its symmetrized counterpart

(
𝚲 + 𝚲T)∕2 so that 𝚲 = 𝚲T

S𝚲P𝚲T (z) = S𝚲 (z) S𝐏𝚲 (z) = S𝚲 (z) S𝚲P (z) = S𝚲𝚲P (z) = S𝚲2𝐏 (z) (5.91)

For the S-transform of the matrix product 𝚲2
, we also require the Green’s function.

The desired relation is a consequence of the fact that the spectral measure for free Levy
𝛼-stable operators in the Wigner ensemble is symmetric [261]:

𝜌𝚲 (𝜆) = 𝜌𝚲 (−𝜆) , G𝚲 (z) = G−𝚲 (z) (5.92)

We can express the Green’s function of𝚲2 in terms of the Green function of𝚲,by exploit-
ing the Cauchy (or Stieltjes) transform representation and the previous symmetry (5.92):

G𝚲2 (z) = ∫
∞

−∞

1
z − 𝜆2 𝜌𝚲 (𝜆) d𝜆

= ∫
∞

−∞

1
2
√

z

[
1

√
z − 𝜆

+ 1
√

z + 𝜆

]

𝜌𝚲 (𝜆) d𝜆

= 1
2
√

z

(
G𝚲

(√
z
)
+ G−𝚲

(√
z
))

= 1
√

z
G𝚲

(√
z
)

(5.93)

According to (5.83), the next piece in the composition of the solution is the S-transform
of the projector 𝐏,which requires its Green’s function too. Inserting the spectral density
of 𝐏,

𝜌𝐏 (𝜆) = c𝛿 (𝜆 − 1) + (1 − c) 𝛿 (𝜆) , (5.94)

into the definition of the Green’s function of 𝐏 as a Cauchy transform yields

G𝐏 (z) = ∫
∞

−∞

1
z − 𝜆

𝜌𝐏 (𝜆) d𝜆

= ∫
∞

−∞

1
z − 𝜆

[c𝛿 (𝜆 − 1) + (1 − c) 𝛿 (𝜆)] d𝜆

= c
z − 1

+ 1 − c
z

(5.95)

The moment-generating function M𝐏 (z) = zG𝐏 (z) − 1 and the definition of the
S-transform finally give

S𝐏 (z) =
z + 1
z + c

(5.96)

Rewriting (5.96) with
√

z replacing z,

bG𝛼

𝚲

(√
z
)
+
√

zG𝚲

(√
z
)
+ 1 = 0 (5.97)

and inserting (5.93) yields
bz𝛼∕2G𝛼

𝚲2 (z) − zG𝚲2 (z) + 1 = 0 (5.98)

By observing that from (5.78)

z = 1

𝜒𝚲2

(
zG𝚲2

(√
z
)
− 1
) ≡ 1

𝜒𝚲2
(5.99)
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(5.98) becomes

b
𝜒
𝛼∕2
𝚲2

G𝛼

𝚲2

(
1
𝜒𝚲2

)

− 1
𝜒𝚲2

G𝚲2

(
1
𝜒𝚲2

)

+ 1 = 0 (5.100)

Because, from (5.77), it follows that

1
𝜒𝚲2

G𝚲2

(
1
𝜒𝚲2

)

− 1 = z (5.101)

(5.100) can be simplified to

b
𝜒
𝛼∕2
𝚲2

G𝛼

𝚲2

(
1
𝜒𝚲2

)

= z (5.102)

Multiplying both sides by 𝜒−𝛼∕2
𝚲2 ∕b yields

1
𝜒𝛼
𝚲2

G𝛼

𝚲2

(
1
𝜒𝚲2

)

= z
b

1
𝜒
𝛼∕2
𝚲2

(5.103)

then subtracting and adding 1
[

1
𝜒
𝚲2

G𝚲2

(
1
𝜒𝚲2

)

− 1 + 1

]𝛼

= z
b

1
𝜒
𝛼∕2
𝚲2

(5.104)

and inserting (5.101) again gives

(z + 1)𝛼 = z
b

1
𝜒
𝛼∕2
𝚲2

(5.105)

which can be written as

𝜒𝚲2 = 1
(z + 1)2

( z
b

)2∕𝛼
(5.106)

Now, using (5.77), the definition of the S-transform, and the result

S𝚲2 = 1 + z
z

𝜒𝚲2 = 1
z (1 + z)

( z
b

)2∕𝛼
(5.107)

which can be used to write S𝐃, the S-transform of the Wishart matrix on the
right-hand-side of (5.82) is

S𝐏𝚲2 = S𝐏S𝚲2 = 1
z (c + z)

( z
b

)2∕𝛼
(5.108)

This result is the starting point for the way back. Reapplying the definition of the
S-transform, we can write

𝜒𝐏𝚲2 = z
z + 1

S𝐏𝚲2 = 1
(z + 1) (z + c)

( z
b

)2∕𝛼
(5.109)

and
1
𝜒𝐏𝚲2

= (z + 1) (z + c)
( z

b

)−2∕𝛼
(5.110)
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Together with M𝐃 (z) = zG𝐃 (z) − 1, this allows the substitution
𝜒𝐃
(
M𝐃 (z)

)
= 1∕z, M𝐃

(
1∕𝜒𝐃

)
= z

Notice that we changed the index 𝚲2𝐏 to 𝐃 to emphasize our goal. So we can finally
write

z =
(
M𝐃 (z) + 1

) (
M𝐃 (z) + c

)
(

M𝐃 (z)
b

)−2∕𝛼

(5.111)

Inserting (5.86) yields the corresponding equation for 𝐂

z =
(
cM𝐂 (z) + 1

) (
cM𝐂 (z) + c

)
(cM𝐂 (z)

b

)−2∕𝛼

(5.112)

gathering c:

z = c2−2∕𝛼 (M𝐂 (z) + 1∕c
) (

M𝐂 (z) + 1
)
(M𝐂 (z)

b

)−2∕𝛼

(5.113)

From (5.64) and from the relation between the moment generating function and the
spectrum, we finally obtain

𝜌𝐂 (𝜆) =
1
𝜋𝜆

Im
[
M𝐂 (𝜆 + i0−)

]
(5.114)

Inserting b from (5.88) and rearranging, (5.111) takes the form anticipated in (5.84).
Returning to the reason for the section, the result described by (5.113) must be con-
sidered an approximation of the curve corresponding to the null hypothesis of absence
of correlation in time series with fat-tailed increments.

5.6 Basic Properties of the Stieltjes Transform

The Stieltjes transform is relevant to free random variables. We include some introduc-
tory materials for convenience.

Let G be a function of bounded variation defined on the real line. Then, its Stieltjes
transform is defined by

m (z)
∧
= ∫

∞

−∞

1
x − z

G (dx) (5.115)

where z = u + iv with v > 0. The integrand in (5.115) is bounded by 1∕v, the integral
always exists, and

1
𝜋
Im (m (z)) = ∫

∞

−∞

v
𝜋
[
(x − u)2 + v2

]G (dx) .

This is the convolution of G with a Cauchy density, with a scale parameter v. If G is a
distribution function, then its Stieltjes transform always has a positive imaginary part.
Thus, we can easily verify that, for any continuity points x1 < x2 of G,

lim
v→0 ∫

x2

x1

1
𝜋
Im (m (z))du = G

(
x2
)
− G
(
x1
)

(5.116)

(5.116) provides a continuity theorem between the family of distribution functions and
the family of their Stietjes transforms.
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If Im (m (z)) is continuous at x0 + i0, then G(x) is differentiable at x = x0 and its deriva-
tive equals 1

𝜋
Im
(
m
(
x0 + i0

))
. (5.116) gives an easy way to find the density of a distri-

bution if its Stieltjes transform is known.
Let G be the empirical spectral distribution of a Hermitian matrix 𝐀N of N × N . It is

seen that

mG (z) = 1
N

Tr (𝐀 − z𝐈)−1 = 1
N

N∑

i=1

1
Aii − z − 𝜶

H
i

(
𝐀i − z𝐈N−1

)−1
𝜶i

(5.117)

where𝜶i is the i−th column vector of𝐀with the i−th entry removed and𝐀i is the matrix
obtained from 𝐀 with the i−th row and column deleted. (5.117) is a powerful tool in
analyzing the spectrum of a large random matrix. As mentioned above, the mapping
from distribution functions to their Stieltjes transforms is continuous.

Example 5.6.1 (limiting spectral distributions of the Wigner matrix) As an illus-
tration of how to use (5.117), let us consider the Wigner matrix to find its limiting spec-
tral distribution.

Let mN (z) be the Stieltjes transform of the empirical spectral distribution of N−1∕2𝐖.

By (5.117), and noticing wii = 0, we have

mN (z) = 1
N

N∑

i=1

1
−z − 1

N
𝜶

H
i

(
N−1∕2𝐖i − z𝐈N−1

)−1
𝜶i

= 1
N

N∑

i=1

1
−z − 𝜎2mN (z) + 𝜀i

= − 1
−z + 𝜎2mN (z)

+ 𝛿N

where
𝜀i = 𝜎2mN (z) − 1

N
𝜶

H
i

(
N−1∕2𝐖i − z𝐈N−1

)−1
𝜶i

𝛿N = 1
N

N∑

i=1

−𝜀i
(
−z − 𝜎2mN (z) + 𝜀i

) (
−z − 𝜎2mN (z)

)

For any fixed v0 > 0 and B > 0, with z = u + iv, we have (omitting the proof)

sup
|u|⩽B,v0⩽v⩽B

|
|𝛿N (z)|| = o(1), a.s. (5.118)

Omitting the middle steps, we have

mN (z) = − 1
2𝜎2

[

z + 𝛿N𝜎
2 −
√
(
z − 𝛿N𝜎

2
)2 − 4𝜎2

]

(5.119)

From (5.119) and (5.118), it follows that, with probability 1, for every fixed z with v > 0

mN (z) → m(z) = − 1
2𝜎2

[
z −
√

z2 − 4𝜎2
]

Letting v → 0, we find the density of the semicircle law. ◽

Let 𝐀N be an N × N Hermitian matrix and F𝐀N
be its empirical spectral distribution.

If the measure 𝜇 admits a density f (x) with support Ω:

d𝜇(x) = f (x)dx on Ω



178 Smart Grid using Big Data Analytics

Then, the Stieltjest transform of F𝐀N
is given for complex arguments by

S𝐀N
(z) = Ψ𝜇(z) = ∫

1
x − z

dF𝐀N
(x) = 1

N
Tr
(
𝐀𝐍 − z𝐈

)−1

= −
∞∑

k=0
z−(k+1)

(

∫Ω
xkf (x)dx

)

= −
∞∑

k=0
z−(k+1)Mk (5.120)

where Mk = ∫Ω xkf (x)dx is the k−th moment of F . This provides a link between the
Stieltjes transform and the moments of 𝐀N . The moments of random Hermitian matri-
ces become practical if direct use of the Stieltjes transform is too difficult.

Let 𝐀 ∈ ℂN×M,𝐁 ∈ ℂM×N , such that 𝐀𝐁 is Hermitian. Then, for z ∈ ℂ∖ℝ, we have
[136, p. 37]

M
N

mF𝐁𝐀
(z) = mF𝐀𝐁

(z) + N − M
N

1
z

In particular, we can apply 𝐀𝐁 = 𝐗𝐗H .

Let 𝐗 ∈ ℂ𝐍×𝐍 be Hermitian and a be a nonzero real. Then, for z ∈ ℂ∖ℝ

mFa𝐗
(z) = 1

a
mF𝐗

(z)

There are only a few kinds of random matrices for which the corresponding asymptotic
eigenvalue distributions are known explicitly [262]. For a wider class of random matri-
ces, however, explicit calculation of the moments turns out to be infeasible. The task of
finding an unknown probability distribution given its moments is known as the problem
of moments. It was addressed by Stieltjes in 1894 using the integral transform defined
in (5.120). A simple Taylor series expansion of the kernel of the Stieltjes transform

− lim
s→∞

dm

dxm

G
(
s−1)

s
= m!∫ xmdF(x)

shows how the moments can be found given the Stieltjes transform, without the need
for integration. The probability density function can be obtained from the Stieltjes trans-
form, simply taking the limit

p(x) = lim
y→0+

1
𝜋
ImG(x + jy)

which is called the Stieltjes inverse formula [169].
We follow [263] for the following properties:

• Identical sign for imaginary part

ImΨ𝜇(z) = Im(z)∫Ω

f (𝜆)
(𝜆 − x)2 d𝜆

where ℑ is the imaginary part of z ∈ ℂ.
• Monotonicity. If z = x ∈ ℝ∖Ω, then Ψ𝜇(z) is well defined and

Ψ′

𝜇(z) = ∫Ω

f (𝜆)
(𝜆 − x)2 d𝜆 > 0 ⇒ Ψ′

𝜇(z) ↗ on ∖Ω

• Inverse formula
f (x) = 1

𝜋
lim
y→0+

ImΨ(x + jy) (5.121)

Note that if x ∈ ℝ∖Ω, then Ψ𝜇(x) ∈ ℝ ⇒ f (x) = 0.
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• Dirac measure. Let 𝛿x be the Dirac measure at x

𝛿x (A) =
{

1 if x ∈ A,
0 else

Then,

Ψ𝛿x
(z) = 1

x − z
; Ψ𝛿0

(z) = −1
z

An important example is

LM = 1
M

M∑

k=1
𝛿𝜆k

⇒ ΨLM
(z) = 1

M

M∑

k=1

1
𝜆k − z

• Link with the resolvent. Let 𝐗 be a M × M Hermitian matrix

𝐗 = 𝐔
⎛
⎜
⎜
⎝

𝜆1 0
⋱

0 𝜆M

⎞
⎟
⎟
⎠

𝐔H

and consider its resolvent 𝐐(z) and spectral measure LM

𝐐(z) = (𝐗 − z𝐈)−1
, LM = 1

M

M∑

k=1
𝛿𝜆k

The Stieltjes transform of the spectral measure is the normalized trace of the
resolvent

ΨLM
(z) = 1

M
Tr𝐐(z) = 1

M
Tr(𝐗 − z𝐈)−1

Gaussian tools [264] are useful. Let the Z′

is be independent complex Gaussian random
variables and denote by 𝐳 = (Z1, · · · ,Zn).

• Integration by part formula

𝔼
(
ZkΦ(𝐳, 𝐳)

)
= 𝔼|Zk|

2𝔼

(
𝜕Φ
𝜕Zk

)

• Poincaré-Nash inequality

var
(
Φ(𝐳, 𝐳)

) ≤
n∑

k=1
|Zk|

2

(
|
|
|
|

𝜕Φ
𝜕Zk

|
|
|
|

2
+
|
|
|
|
|

𝜕Φ
𝜕Zk

|
|
|
|
|

2)

5.7 Basic Theorems for the Stieltjes Transform

Theorem 5.7.1 ([265]) Let mF (z) be the Stieltjes transform of a distribution function
F , then

• mF is analytic over ℂ+;
• if z ∈ ℂ+, then mF (z) ∈ ℂ+;
• if z ∈ ℂ+, ||mF (z)|| ⩽

1
Im(z)

and Im
(

1
mF (z)

)
⩽ − Im(z);
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• if F(0−) = 0, then mF is analytic over ℂ∖ℝ+. Moreover, z ∈ ℂ+ implies zmF(z) ∈ ℂ+

and we have the inequalities

|
|mF (z)|| ⩽

⎧
⎪
⎨
⎪
⎩

1
|Im(z)|

, z ∈ ℂ∖ℝ
1
|z|
, z < 0

1
dist(z,ℝ+)

, z ∈ ℂ∖ℝ+

with dist being the Euclidean distance.
Conversely, if mF (z) is a function analytical on ℂ+ such that mF (z) ∈ ℂ+ if z ∈ ℂ+ and

lim
y→∞

−iymF
(
iy
)
= 1

then mF (z) is the Stieltjes transform of a distribution function F given by

F(b) − F(a) = lim
y→0

1
𝜋 ∫

b

a
Im
(
mF (x + jy)

)
dx.

If, moreover, zmF (z) ∈ ℂ+forz ∈ ℂ+, then F(0−) = 0, in which case mF (z) has an ana-
lytic continuation on ℂ∖ℝ+.

Our version of the above theorem is close to [136] with slightly different
notation.

Let t > 0 and mF (z) be the Stieltjes transform of a distribution function F . Then, for
z ∈ ℂ+, we have [136]

|
|
|
|

1
1 + tmF (z)

|
|
|
|
⩽ |z|

Im(z)
.

Let x ∈ ℂN , t > 0 and 𝐀 ∈ ℂN×N be Hermitian, non-negative definite. Then, for z ∈ ℂ+

we have [136]
|
|
|
|
|

1
1 + txH(𝐀 − z𝐈)−1x

|
|
|
|
|
⩽ |z|

Im(z)
.

The fundamental result in the following theorem [266] states the equivalence between
pointwise convergence of the Stieltjes transform and weak convergence of probability
measures.

Theorem 5.7.2 (Equivalence) Let (𝜇n) be probability measures on ℝ and
(
Ψ𝜇n

)
, Ψ𝜇n

the associated Stieltjes transform. Then the following two statements are equivalent:

• Ψ𝜇n
(z) →

n→∞
Ψ𝜇(z) for all z ∈ ℂ+

• 𝜇n
w
→

n→∞
𝜇

Let the random matrix 𝐖 be square N × N with i.i.d. entries with zero mean and
variance 1

N
. Let Ω be the set containing eigenvalues of 𝐖. The empirical distribution of

the eigenvalues

P𝐇(z)
Δ
= 1

N
|{𝜆 ∈ Ω ∶ Re𝜆 < Rez and Im 𝜆< Imz}|

converges a nonrandom distribution function as N → ∞.
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Table 5.1 Common random matrices and their moments (the entries of 𝐖 are i.i.d. with zero mean
and variance 1

N
; 𝐖 is square N × N, unless otherwise specified. tr (𝐇) ≜ lim

N→∞
1

N
Tr (𝐇)).

Convergence laws Definitions Moments

Full-circle law 𝐖 square N × N

Semicircle law 𝐊 = 𝐖+𝐖H
√

2
tr
(
𝐊2m) = 1

m+1

(
2m
m

)

Quarter-circle law 𝐐 =
√
𝐖𝐖H tr (𝐐m) = 22m

𝜋m
1

(m
2
+ 1
)

(
m − 1

m−1
2

)

∀m odd

𝐐2

Deformed quarter-circle law
𝐑 =
√
𝐖H𝐖,

𝐖 ∈ ℂN×𝛽N

𝐑2 tr
(
𝐑2m) = 1

m

m∑

i=1

(
m
i

)(
m

i − 1

)

𝛽 i

Haar distribution 𝐓 = 𝐖
(
𝐖H𝐖

)−
1
2

Inverse semicircle law 𝐘 = 𝐓 + 𝐓H

Table 5.1 compiles some moments for commonly encountered matrices from [262].
Table 5.2 lists commonly used random matrices and their density functions. Calculating
eigenvalues 𝜆k of a matrix 𝐗 is not a linear operation. Calculation of the moments of the
eigenvalue distribution is, however, conveniently done using a normalized trace because

1
N

N∑

k=1
𝜆m

k = 1
N

Tr (𝐗m)

Thus, in the large matrix limit, we define tr(𝐗) as

tr (𝐗) ≜ lim
N→∞

1
N

Tr (𝐗)

Table 5.2 is self-contained and only some remarks are made here. For the Haar distri-
bution, all eigenvalues lie on the complex unit circle because the matrix 𝐓 is unitary. The
essential nature is that the eigenvalues are uniformly distributed. The Haar distribution
demands Gaussian distributed entries in the random matrix 𝐖. This condition does not
seem to be necessary, but allowing for any complex distribution with zero mean and
finite variance is not sufficient.

Table 5.31 lists some transforms (Stieltjes, R-, S- transforms) and their properties. The
Stieltjes transform is more fundamental because both R-transform and S-transform can
be expressed in terms of the Stieltjes transform.

Products of Random Matrices Almost certainly, the eigenvalue distribution of the matrix
product

𝐏 = 𝐖H𝐖𝐗
converges in distribution, as K ,N → ∞ but 𝛽 = K∕N .

1 This table is primarily compiled from [262].
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Table 5.2 Definition of commonly encountered random matrices for convergence laws (the entries
of 𝐖 are i.i.d. with zero mean and variance 1

N
; 𝐖 is square N × N, unless otherwise specified).

Convergence laws Definitions Density functions

Full-circle law 𝐖 square N × N p𝐖 (z) =

{
1
𝜋
|z| < 1

0 elsewhere

Semicircle law 𝐊 = 𝐖+𝐖H
√

2
p𝐊 (z) =

{
1

2𝜋

√
4 − x2 |x| < 2
0 elsewhere

Quarter-circle law 𝐐 =
√
𝐖𝐖H p𝐐 (z) =

{
1
𝜋

√
4 − x2 0 ≤ x ≤ 2
0 elsewhere

𝐐2 p𝐐2 (z) =
⎧
⎪
⎨
⎪
⎩

1
2𝜋

√
4−x

x
0 ≤ x ≤ 4

0 elsewhere

Deformed quarter-circle law
𝐑 =
√
𝐖H𝐖,

𝐖 ∈ ℂN×𝛽N

p𝐑 (z) =
⎧
⎪
⎨
⎪
⎩

√
4𝛽−(x2−1−𝛽)2

𝜋x
a ≤ x ≤ b

(
1 −
√
𝛽

)+
𝛿(x) elsewhere

a = ||
|
1 −
√
𝛽
|
|
|
, b = 1 +

√
𝛽

𝐑2 p𝐑2 (z) =
⎧
⎪
⎨
⎪
⎩

√
4𝛽−(x−1−𝛽)2

2𝜋x
a2 ≤ x ≤ b2

(
1 −
√
𝛽

)+
𝛿(x) elsewhere

Haar distribution 𝐓 = 𝐖
(
𝐖H𝐖

)−
1
2 p𝐓 (z) =

1
2𝜋
𝛿 (|z| − 1)

Inverse semicircle law 𝐘 = 𝐓 + 𝐓H p𝐘 (z) =
⎧
⎪
⎨
⎪
⎩

1
𝜋

1
√

4−x2
|x| < 2

0 elsewhere

Sums of Random Matrices Consider the limiting distribution of random Hermitian
matrices of the form [172, 174]

𝐀 +𝐖𝐃𝐖H

where 𝐖(N × K), 𝐃(K × K), 𝐀(N × N) are independent, with 𝐖 containing i.i.d. entries
having second moments,𝐃 is diagonal with real entries, and𝐀 is Hermitian. The asymp-
totic regime is

K∕N → 𝛼 as N → ∞

The behavior is expressed using the limiting distribution function F𝐀+𝐖𝐃𝐖H (x). The
remarkable result is that the convergence of

F𝐀+𝐖𝐃𝐖H (x)

to a nonrandom F .

Theorem 5.7.3 ([172, 174]) Let 𝐀 be an N × N nonrandom Hermitian matrix for
which F𝐀(x) converge weakly as N → ∞ to a distribution function 𝔸. Let F𝐃(x) converge
weakly as N → ∞ to a distribution function denoted 𝔻. Suppose the entries of

√
N𝐖
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Table 5.3 Table of Stieltjes, R- and S- transforms (Table 5.2 lists the definitions of the matrix notations
used in this table).

Stieltjes transform R-transform S-transform

G (z)
Δ
= ∫ 1

x−z
dP (x) , Imz > 0, ImG(z) ≥ 0 R (z)

Δ
= G−1 (−z) − z−1 S(z)

Δ
= 1+z

z
Υ−1(z),

Υ(z)
Δ
= −z−1G−1 (z−1) − 1

G
𝛼𝐈(z) =

1
𝛼−z

R
𝛼𝐈 (z) = 𝛼 S

𝛼𝐈 (z) =
1
𝛼
,

G𝐊(z) =
z
2

√
1 − 4

z2 − z
2

R𝐊 (z) = z S𝐊 (z) = undef ined

G𝐐(z) =
√

1 − 4
z2

(
z
2
− arcsin 2

z

)
− z

2
− 1

2𝜋
R𝐐2 (z) = 1

1−z
S𝐐2 (z) = 1

1+z

G𝐐2 (z) = 1
2

√
1 − 4

z
− 1

2
R𝐑2 (z) = 𝛽

1−z
S𝐑2 (z) = 1

𝛽+z

G𝐑2 (z) =
√

(1−𝛽)2

4z2 − 1+𝛽
2z

+ 1
4
− 1

2
− (1−𝛽)

2z
R𝐘(z) =

−1+
√

1+4z2

z
S𝐘(z) = undef ined

G𝐘(z) =
−sign(Rez)
√

z2−4
R
𝛼𝐗 (z) = 𝛼R𝐗 (𝛼z) S(𝐐2)−1 (z) = S(𝐖H𝐖)−1 (z) = −z

G
𝜆2 (z) =

G𝜆

(√
z
)
−G𝜆

(
−
√

z
)

2
√

z
lim
z→∞

R (z) = ∫ xdP(x) S𝐀𝐁(z) = S𝐀(z)S𝐁(z)

G𝐗𝐗H (z) = 𝛽G𝐗H𝐗 (z) + 𝛽−1
z
,𝐗 ∈ ℂN×𝛽N R𝐀+𝐁 (z) = R𝐀 (z) + R𝐁 (z)

G
𝐀+𝐁

(
R𝐀+𝐁 (−z) − z−1) = z

G𝐗−1 (z) = − 1
z
− G𝐗(1∕z)

2z2

G(𝐐2)−1 (z) = G(𝐖H𝐖)−1 (z) = − 1
z
− −1+

√
1−4z

2z2

G𝐗+𝐖𝐘𝐖H (z) =
G𝐗

(
z − 𝛽 ∫ ydP𝐘(x)

1+yG𝐗+𝐖𝐘𝐖H (z)

)

Imz > 0,𝐗,𝐘,𝐖jointlyindependent.

G𝐖𝐖H (z) =
1∫

0
u(x, z)dx,

u(x, z) =
⎡
⎢
⎢
⎣

−z +
𝛽∫

0

w(x,y)dy

1+
1∫

0
u(x′ ,z)w(x′ ,y)dx′

⎤
⎥
⎥
⎦

−1

,

x ∈ [0, 1]

i.i.d. for fixed N with unit variance (sum of the variances of the real and imaginary parts
in the complex case). Then, the eigenvalue distribution of𝐀 +𝐖𝐃𝐖H converges weakly
to a deterministic F . Its Stieltjes transform G(z) satisfies the equation:

G(z) = G𝔸

(

z − 𝛼 ∫
𝜏

1 + 𝜏G(z)
d𝕋 (𝜏)

)

Theorem 5.7.4 ([267]) Assume

• 𝐗n = 1
√

n

(
X(n)

ij

)
, where 1 ≤ i ≤ n, 1 ≤ j ≤ p, and Xi,j,N are independent real random

variables with a common mean and variance 𝜎2, satisfying
1

n2𝜀2
n

∑

i,j
X2

ij I
(
|
|
|
Xij
|
|
|
≥ 𝜀n
√

n
)

→
n→∞

0
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where I(x) is an indication function and 𝜀2
n is a positive sequence tending to zero.

• p
n
→ y > 0 as n → ∞;

• 𝐓n is an p × p random symmetric matrix with F𝐓n
converging almost surely to a dis-

tribution H(t) as n → ∞;
• 𝐁n = 𝐀n + 𝐗n𝐓n𝐗H

n , where 𝐀n is a random p × p symmetric matrix with F𝐀n
almost

surely to F𝐀, a (possibly defective) nonrandom distribution;
• 𝐗N ,𝐓N ,𝐀N are independent.

Then, as n → ∞, F𝐁n
almost certainly converges to a nonrandom distribution F , whose

Stieltjes transform m(z) satisfies

m(z) = m𝐀(z)
(

z − y∫
x

1 + xm (z)
dH(x)

)

Theorem 5.7.5 ([166]) Let 𝐒n denote the sample covariance matrix of n pure noise
vectors distributed  (0, 𝜎2𝐈p). Let l1 be the largest eigenvalue of 𝐒n. In the joint limit
p, n → ∞, with p∕n → c ≥ 0, the distribution of the largest eigenvalues of 𝐒n converges
to a Tracy–Widom distribution

Pr

{
l1∕𝜎2 − 𝜇n,p

𝜉n,p

}

→ F𝛽(s)

with 𝛽 = 1 for real valued noise and 𝛽 = 2 for complex valued noise. The centering and
scaling parameters, 𝜇n,p and 𝜉n,p are functions of n and p only.

Theorem 5.7.6 ([166]) Let l1 be the largest eigenvalue as in Theorem 5.7.5. Then,

Pr
⎧
⎪
⎨
⎪
⎩

l1∕𝜎2 >

(

1 +
√

p
n

)2

+ 𝜀
⎫
⎪
⎬
⎪
⎭

≤ exp
(
−nJLAG (𝜀)

)

where

JLAG (𝜀) = ∫ x
1

(
x − y
) (1+c)y+2

√
c

(y+B)2
dy
√

y2−1

c = p∕n, x = 1 + 𝜀

2
√

c
,B = 1+c

2
√

c

Consider the standard model for signals with p sensors. Let
{
𝐱i = 𝐱(ti)

}n
i=1 denote

p−dimensional i.i.d. observations of the form

𝐱(t) = 𝐀𝐬(t) + 𝜎𝐧(t) (5.122)

sampled at n distinct times ti, where 𝐀 =
[
𝐚1,… , 𝐚K

]T is the p × K matrix of K linearly
independent p−dimensional vectors. The K × 1 vector 𝐬(t) =

[
s1(t),… , sK (t)

]T repre-
sents the random signals, assumed zero-mean and stationary with full rank covariance
matrix. 𝜎 is the unknown noise level, and bfn(t) is a p × 1 additive Gaussian noise vector,
distributed  (0, 𝐈p) and independent of 𝐬(t).
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Theorem 5.7.7 ([166]) Let 𝐒n denote the sample covariance matrix of n observations
from (5.122) with a single signal of strength 𝜆. Then, in the joint limit p, n → ∞, with
p∕n → c ≥ 0, the largest eigenvalue of 𝐒n converges almost certainly to

𝜆max
(
𝐒n
) a.s.
→

⎧
⎪
⎨
⎪
⎩

𝜎2
(

1 +
√

p∕n
)2

𝜆 ≤ 𝜎2
√

p∕n
(
𝜆 + 𝜎2)

(
1 + p

n
𝜎2

𝜆

)
𝜆 > 𝜎2

√
p∕n

Theorem 5.7.8 ([268]) Let 𝐂 ∈ p×p be positive semidefinite. Fix an integer l ≤ p and
assume the tail

{
𝜆i (𝐂)

}

i>l

of the spectrum of 𝐂 decays sufficiently fast that
∑

i>l
𝜆i (𝐂) =  (𝜆1 (𝐂)

)

Let
{
𝐱i
}n

i=1 ∈ ℝp be i.i.d. samples drawn from a  (𝟎,𝐂) distribution. Define the sample
covariance matrix

�̂� = 1
n

n∑

i=1
𝐱i𝐱H

i

Let 𝜅l be the condition number associated with a dominant l−dimensional invariance
subspace of 𝐂

𝜅l =
𝜆1 (𝐂)
𝜆l (𝐂)

If

n = Ω
(
𝜀−2𝜅2

l l log p
)

then with high probability
|
|
|
|
𝜆k

(
Ĉn

)
− 𝜆k
(
𝐂n
)|
|
|
|
≤ 𝜀𝜆k

(
𝐂n
)
, for k = 1,… , l

Theorem 5.7.8 says, assuming sufficiently fast decay of the residual eigenvalues,
n = Ω

(
𝜀−2𝜅2

l l log p
)

samples ensure that the top l eigenvalues are captured with relative
precision.

5.8 Free Probability for Hermitian Random Matrices

5.8.1 Random Matrix Theory

Definition 5.8.1 Consider an n × n Hermitian matrix 𝐀 and define

𝜙 (𝐀) = lim
n→∞

1
n
Tr (𝐀) (5.123)

The k-th moment of 𝐀 can be expressed as 𝜙
(
𝐀k) .



186 Smart Grid using Big Data Analytics

Theorem 5.8.2 (deformed quarter-circle law) Let the entries of the N × n matrix 𝐗
be independent, identically distributed entries with zero mean and variance 1∕N . Then
the empirical singular value distribution of 𝐗 almost certainly converges to the limit
given by

f√𝐗𝐗H (x) = max(0, 1 − c)𝛿(x) +
√

4c − (x2 − 1 − c)2

𝜋x
𝕀
(
|
|
|
1 −
√

c||
|
⩽ x ⩽ ||

|
1 +
√

c||
|

)

(5.124)

as N , n → ∞ with c = n∕N fixed.
Moreover the transformation random variable X as Y = X2 reads

fY
(
y
)
= 1

2
√

y
fX (X)

This gives

f𝐗𝐗H (x) = max(0, 1− c)𝛿(x) +
√

4c− (x− 1− c)2

2𝜋x
𝕀
((

1−
√

c
)2

⩽ x⩽
(

1+
√

c
)2
)

(5.125)

which is known as the Marchenko–Pastur distribution and its moments are given by

𝜙

[(
𝐗𝐗H)K

]
=

K∑

k=1
CK ,kck . (5.126)

On the Unitary Matrices

The N × N matrix 𝐔 is called unitary if

𝐔H𝐔 = 𝐔𝐔H = 𝐈N (5.127)

where 𝐈N is the N × N identity matrix.

Theorem 5.8.3 (Haar distribution) Let the entries of the N × N matrix 𝐗 be inde-
pendent identically complex distributed entries with zero mean and finite positive vari-
ance. Define

𝐔 = 𝐗
(
𝐗H𝐗
)−1∕2

Then the empirical eigenvalue distribution of 𝐔 converges almost surely to the limit
given by

p𝐔 (z) =
1

2𝜋
𝛿 (|z| − 1)

as N → ∞.

All the eigenvalues of the unitary Haar matrix 𝐔 lie on the unit circle on the complex
plane when the matrix size N is large.

Let the entries of the N × N matrix 𝐗 be independent identically distributed complex
entries with zero mean and finite positive variance. Then 𝐗 can be decomposed as

𝐗 = 𝐔𝐐 (5.128)
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where𝐔 is a Haar matrix and𝐐 fulfills the same conditions needed for the quarter-circle
law defined above.

If a Hermitian random matrix 𝐗 has the same spectral distribution with

𝐔𝐗𝐔H (5.129)

for any unitary matrix 𝐔 independent of 𝐗, then the matrix 𝐗 is called unitarily
invariant.

A unitarily invariant 𝐗 can be decomposed as

𝐔𝚲𝐔H

where 𝐔 is a Haar matrix independent of the diagonal matrix𝚲.
Consider a function

𝐘 = g (𝐗)

with unitarily invariant matrix 𝐗 as an input and a Hermitian matrix 𝐘 as an output.
Then the matrix 𝐘 is also unitarily invariant. A matrix that fulfills the same conditions
needed for the semicircle law or deformed quarter-circle law, or Haar distribution is
unitarily invariant.

If the joint distribution of the entries of a N × n matrix 𝐗 is equal to the joint distri-
bution of the entries of a matrix 𝐘 such that

𝐘 = 𝐔𝐗𝐕H (5.130)

where 𝐔 and 𝐕 are Haar distributed and independent of 𝐗, then the matrix 𝐗 is called
a bi-unitarily invariant random matrix.

Note that an identity matrix is also a unitary matrix. Then one can consider bi-unitarily
invariant N × n random matrix 𝐗 such that the singular value distribution of 𝐗 is invari-
ant both by left and right a unitary matrix product.

Let the set
{
𝐗1,… ,𝐗L

}
consist of independent standard Gaussian matrices where the

size of 𝐗i is ni × ni−1. Moreover, define a matrix

𝐗 =
L∏

i=1
𝐗i

Then 𝐗 is bi-unitarily invariant.

Theorem 5.8.4 ([169]) A square random matrix 𝐗 is a bi-unitarily-invariant, if it can
be decomposed as

𝐗 = 𝐔𝐘

where 𝐔 is a Haar matrix and independent of unitarily invariant positive definite
matrix 𝐘.

5.8.2 Free Probability Theory for Hermitian Random Matrices

Consider random matrices as noncommutative random variables in general. Then, in
contrast to probability theory, we must define the variables in a matrix valued proba-
bility space or a noncommutative probability space, which changes the whole frame of
(classical) probability theory.
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Free probability theory is a new mathematical field that was initiated by Voiculescu in
the 1980s [269]. It applies to noncommutative random variables. Large random matri-
ces are the prime examples of free random variables.

Let  (n) be the set of all noncrossing permutation of {1, 2,… , n}. Let 𝜋 be a
noncrossing partition of this set

𝜋 =
{

B1,… ,Br
}

where Bi is the block of 𝜋 that connects some elements in the (non-crossing) partition 𝜋.

Definition 5.8.5 (free cumulant) Consider a random matrix 𝐗. Then the moment of
asymptotic eigenvalue distribution can be expressed

𝜙 (𝐀n) =
∑

𝜋∈ (n)

∏

Bi∈𝜋
𝜅|Bi| (5.131)

where 𝜅n is called the n-th order free cumulant.

5.8.3 Additive Free Convolution

The R-transform is the free analog of the logarithm of the Fourier transform.
Consider the free random matrices 𝐀 and 𝐁 and assume that their asymptotic eigen-

value distributions are known. Now we want to address how to infer the asymptotic
eigenvalue distribution of 𝐀 + 𝐁.

Theorem 5.8.6 (free cumulants [270]) The Hermitian matrices 𝐀 and 𝐁 are free.
Then we have

𝜅𝐀+𝐁,n = 𝜅𝐀,n + 𝜅𝐁,n (5.132)

where 𝜅⋅,n in (5.131).

Definition 5.8.7 (free cumulant) Consider an Hermitian random matrix𝐗.Then the
definition of R-transform is

R𝐗 (𝜔) =
∞∑

n=1
𝜅𝐗,n𝜔

n−1 (5.133)

Let the matrices 𝐀 and 𝐁 are free. Then, with (5.132) we have

R𝐀+𝐁 (𝜔) =
∞∑

n=1

(
𝜅𝐀,n + 𝜅𝐁,n

)
𝜔n−1

=
∞∑

n=1
𝜅𝐀,n𝜔

n−1 +
∞∑

n=1
𝜅𝐁,n𝜔

n−1

= R𝐀 (𝜔) + R𝐁 (𝜔) (5.134)

Example 5.8.8 (product of two i.i.d. random matrices) Let the entries of the R × T
matrix 𝐇 be i.i.d with the variance 1∕R and the ratio 𝛽 = T∕R fixed. Show that

R𝐇𝐇H (𝜔) =
𝛽

1 − 𝜔
(5.135)
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Our departure point is (5.126)

𝜙
[(
𝐗𝐗H)n] =

n∑

k=1
n,k𝛽

k (5.136)

With the definition of free cumulant we have
n∑

k=1
n,k𝛽

k =
∑

𝜋∈ (n)

∏

Bi∈𝜋
𝜅|Bi| (5.137)

Note that (5.137) holds if all free cumulants are equal to 𝛽 as
n∑

k=1
n,k𝛽

k =
∑

𝜋∈ (n)

∏

Bi∈𝜋
𝛽 =

∑

𝜋∈ (n)

𝛽r (5.138)

Then the R-transform is given by

R𝐇H𝐇 (𝜔) =
∞∑

n=1
𝛽𝜔n−1 = 𝛽

∞∑

n=1
𝛽𝜔n

= 𝛽

1 − 𝜔
(5.139)

◽

Theorem 5.8.9 The functional inversion of the Stieltjes transform is equal to

G−1 (𝜔) = R (𝜔) + 1
𝜔

(5.140)

The R-transform of the matrix c𝐗, c ∈ ℝ can be expressed as

Rc𝐗 (𝜔) = cR𝐗 (c𝜔) (5.141)

Example 5.8.10 (project matrix) Consider a projection matrix 𝐀, and a matrix 𝐁 =
𝐔𝐀𝐔H , where 𝐔 is a Haar matrix, and

p𝐀 (x) =
𝛿 (x + 1) + 𝛿 (x − 1)

2
.

Find the asymptotic eigenvalue distribution of 𝐀 + 𝐁. First, 𝐀 and 𝐁 free. So 𝐀 and 𝐁
have same distributions, but the eigenvectors are fully uncorrelated. Thus,

R𝐀+𝐁 (𝜔) = 2R𝐀 (𝜔) (5.142)

The Stieltjes transform of 𝐀 is

G𝐀 (s) = ∫
1

s − x
dP (x)

= 1
2

( 1
s − 1

+ 1
s + 1

)

If we take the functional inverse of G𝐀 (s), we obtain
𝜔 = G𝐀

(
G−1

𝐀 (s)
)
= G𝐀

(
B𝐀 (s)

)

= 1
2

(
1

B𝐀 (𝜔) − 1
+ 1

B𝐀 (𝜔) + 1

)
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where the Blue’s function is defined as B𝐀 (s) = G−1
𝐀 (s) . Alternatively, we have

B2
𝐀 (𝜔) −

1
𝜔

B𝐀 (𝜔) − 1 = 0

whose two solutions are

B𝐀 (𝜔) =
1 ∓
√

1 + 4𝜔2

2𝜔
With (5.140)

R𝐀 (𝜔) = B𝐀 (𝜔) −
1
𝜔

=
−1 ∓

√
1 + 4𝜔2

2𝜔
As from the definition of the R-transform

lim
𝜔→∞

R𝐀 (𝜔) = lim
𝜔→0

𝜅𝐀,1 +
∞∑

k=2
𝜅𝐀,k𝜔

k−1 = 𝜅𝐀,1 = 𝜙 (𝐀)

where the mean is zero, we can obtain the right solution as

0 = lim
𝜔→∞

R𝐀 (𝜔) =
−1 ∓

√
1 + 4𝜔2

2𝜔
.

Thus the one with positive sign is the right solution

R𝐀 (𝜔) =
−1 +

√
1 + 4𝜔2

2𝜔
From (5.142), we have the R-transform

R𝐀+𝐁 (𝜔) = 2R𝐀 (𝜔) =
−1 +

√
1 + 4𝜔2

𝜔

and the Blue’s function

B𝐀+𝐁 (𝜔) = G−1
𝐀+𝐁 (s) =

√
1 + 4s2

s
Then, taking the inverse of the above expression, the Stieltjes transform is obtained as

s =

√
1 + 4G2

𝐀+𝐁 (s)

G𝐀+𝐁 (s)
⇒ G𝐀+𝐁 (s) =

1
√

s2 − 4
Finally, by using the inversion formula of the Stieltjes transform, we obtain the proba-
bility density function of the real eigenvalues

p𝐀+𝐁 (x) = − 1
𝜋

lim
y→0

ℑG𝐀+𝐁
(
x + jy

)

= − 1
𝜋

lim
y→0

ℑ 1
√
(
x + jy

)2 − 4

= − 1
𝜋
ℑ 1
√

x2 − 4

= − 1
𝜋

1
√
𝜆2 − 4
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Two observations are remarkable. First, if we randomly rotate the eigenvectors, which
is a Haar-distributed operation, then the matrix 𝐀 is free with the randomly rotated one
𝐁 = 𝐔𝐀𝐔H . Second, adding two free elements that have even discrete densities will lead
to continuous density.

This example says that having an intuition about free probability in terms of (classical)
probability may be false. Rather, regarding the concept of freeness as the independence
of random eigenvectors is a good intuition. ◽

Theorem 5.8.11 (free central limit theorem [259]) Let 𝐗k be a free identical family
of random matrices with the eigenvalues zero mean variance 1 for all 1 ≤ k ≤ N . Then
the asymptotic eigenvalue distribution of

𝐗 = lim
N→∞

1
N

N∑

k=1
𝐗k

converges in distribution to the semicircle distribution:

p𝐗 (x) =
1

2𝜋

√
4 − x2, x ∈ (−2, 2)

Proof : Using the linearity (5.134) and the scaling property (5.141) of the R-transform,
the R-transform of 𝐗 is given by

R𝐗 (𝜔) =
1
√

N

N∑

k=1
R𝐗k

(
𝜔
√

N

)

As these matrices are freely identical, we have

R𝐗 (𝜔) =
N
√

N
R𝐗k

(
𝜔
√

N

)

=
√

NR𝐗k

(
𝜔
√

N

)

=
√

N

(

𝜅1 + 𝜅2
𝜔
√

N
+ 𝜅3

𝜔2
√

N
+ · · ·

)

=
√

N

(

0 + 𝜔
√

N
+ 𝜅3

𝜔2
√

N
+ · · ·

)

where we used the facts: the first order free cumulant is the mean, and the second order
cumulant is variance. As N → ∞, the cumulants that are higher than the second order
vanish, thus

lim
N→∞

√
N

(

0 + 𝜔
√

N
+ 𝜅3

𝜔2
√

N
+ · · ·

)

= 𝜔

Using the steps similar to the previous example will find the semicircle
distribution. ◽
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5.8.4 Compression of Random Matrix

Consider a N × N Hermitian matrix 𝐗 such that

𝐗 =
[
𝐱1,… , 𝐱N

]
, 𝐱i ∈ ℂN

Suppose that the N × T (N ≤ T) rectangular matrix 𝐗c is defined as

𝐗c =
[
𝐱1,… , 𝐱T

]
, 𝐱i ∈ ℂN

with c = T∕N ⩽ 1 fixed. It is assumed that we have the R-transform of the N × N matrix
𝐗𝐗H at our disposal. Our problem is to find the R-transform of the T × T matrix 𝐗H

c 𝐗c.

The idea is to compress the N × N matrix 𝐗𝐗H to the T × T matrix 𝐗H
c 𝐗c, by using the

project matrix that was treated previously.

Example 5.8.12 (projection matrix for matrix compression) As an example, let the
N × N diagonal matrix 𝐏 be a projection matrix such that

p𝐏 (x) = (1 − c) 𝛿 (x) + c𝛿 (x − 1)

For N = 4, c = 1∕2, we have

𝐗𝐗H =
⎛
⎜
⎜
⎜
⎝

x11 x12 x13 x14
x21 x22 x23 x24
x31 x32 x33 x34
x41 x42 x43 x44

⎞
⎟
⎟
⎟
⎠

, 𝐏𝐗𝐗H𝐏 =
⎛
⎜
⎜
⎜
⎝

x11 x12 0 0
x21 x22 0 0
0 0 0 0
0 0 0 0

⎞
⎟
⎟
⎟
⎠

which is called the corner of the matrix 𝐗𝐗H . It is immediately seen that the eigenvalue
distribution of the N × N corner of the matrix 𝐗𝐗H is equivalent to 𝐗H

c 𝐗c. ◽

Theorem 5.8.13 (theorem 14.10 in [259]) Consider the N × N Hermitian random
matrix 𝐗. Let the T × T diagonal matrix 𝐏 be distributed as

p𝐏 (x) = (1 − c) 𝛿 (x) + c𝛿 (x − 1)

Moreover define

𝐗c = 𝐗𝐏

Then the asymptotic eigenvalue distribution of 𝐗c converges almost surely to limit

p𝐗c
(x) = p𝐗𝐏 (x) = (1 − c) 𝛿 (x) + cp𝐘 (x)

such that the R-transform of 𝐘 satisfies

R𝐘 (𝜔) = R𝐗 (c𝜔) (5.143)

as N → ∞ with c = T∕N ≤ 1 fixed.

Example 5.8.14 (rectangular matrix with i.i.d. entries) Let the entries of the N × T
matrix 𝐗c be i.i.d with the variance 1∕N and the ratio c = T∕N ≤ 1 fixed. Then find the
R-transform of 𝐗H

c 𝐗c for any c ≤ 1.
With (5.135) for c = 1, we have

R𝐗H
1 𝐗1

(𝜔) = 1
1 − 𝜔
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Thus from (5.143), we have

R𝐗H
c 𝐗c

(𝜔) = R𝐗H
1 𝐗1

(c𝜔) = 1
1 − c𝜔

◽

Theorem 5.8.15 ([271]) Consider an invertible Hermitian matrix 𝐗. Then we have
1

R𝐗 (𝜔)
= R𝐗−1

(
−R𝐗 (𝜔)

(
1 + 𝜔R𝐗 (𝜔)

))

5.8.5 Multiplicative Free Convolution

Consider the free random matrices 𝐀 and 𝐁 and assume that, their asymptotic eigen-
value distributions are known. Now we want to address how to infer the asymptotic
eigenvalue distribution of 𝐀𝐁.

As defined before, the moment-generating function for a Hermitian random matrix
𝐗 is

M𝐗 (s) =
∞∑

k=1
𝜙
(
𝐗k) sk (5.144)

where 𝜙(⋅) is defined in (5.123). Or equivalently

M𝐗 (s) =
(1

s

)
G𝐗

(1
s

)
− 1 (5.145)

Moreover, the S-transform of 𝐗 is

S𝐗 (z) =
1 + z

z
M−1

𝐗 (s) (5.146)

Theorem 5.8.16 (theorem 2.5 in [272]) Let 𝐀 and 𝐁 be free random matrices such
that, either 𝜙 (𝐀) ≠ 0 or 𝜙 (𝐁) ≠ 0. Then we have

S𝐀𝐁 (z) = S𝐀 (z) S𝐁 (z) (5.147)

Moreover, R-transform and S-transform has a straightforward relation [259] such
that

S𝐗
(
zR𝐗 (z)

)
= 1

R𝐗 (𝜔)
(5.148)

Example 5.8.17 (product of two i.i.d. random matrices) Let the entries of the R × T
matrix 𝐗 be i.i.d with the variance 1∕R with the ratio 𝛽 = T∕R fixed. Show that

S𝐗H𝐗 (z) =
1

1 + 𝛽z
(5.149)

◽

Lemma 5.8.18 Consider the R × T matrix 𝐗. Then we have

S𝐗𝐗H (z) = z + 1
z + 𝛽

S𝐗H𝐗

(
z
𝛽

)

(5.150)

with 𝛽 = T∕R.
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Example 5.8.19 (S-transform of HHH ) Let the entries of the R × T and S × T matri-
ces 𝐀 and 𝐁 be independent identically distributed with zero mean, variances 1∕R and
1∕S and

𝐇 ≜ 𝐀𝐁 (5.151)

Moreover assume that R, S,T → ∞ with ratios 𝜌 = S∕R and 𝛽 = R∕T fixed. Then find
the S-transform of 𝐇𝐇H . Let us first define

𝐂R×R = 𝐀𝐁𝐁H𝐀H , C̃S×S = 𝐀H𝐀𝐁𝐁H (5.152)

where

S𝐀H𝐀 (z) =
1

1 + 𝜌z
, S𝐁𝐁H (z) = 1

z + 𝛽∕𝜌
. (5.153)

Then the S-transform reads

SC̃ (z) = 1
(1 + 𝜌z) (z + 𝛽∕𝜌)

. (5.154)

It follows from (5.150) that

S𝐂 (z) =
z + 1
z + 𝜌

SC̃

(
z
𝜌

)

= z + 1
z + 𝜌

⋅
1

(1 + z) (z + 𝜌𝛽∕𝜌)
= 𝜌

(z + 𝜌) (z + 𝛽)
. (5.155)

◽

Let 𝐗 be a p × n(p ≥ n) matrix with standard complex Gaussian entries. The positive
definite matrix 𝐗H𝐗 is then referred to as a complex Wishart matrix. Such matrices are
fundamental in random matrix theory. Crucial to these applications is the exact solv-
ability of statistical properties of the eigenvalues of complex Wishart matrices.

Example 5.8.20 (S-transform of complex Gaussian and Wishart matrices
[75]) For a complex Wishart matrix 𝐗H𝐗 with 𝐗 an M ≥ N standard Gaussian
matrix we must scale the eigenvalues by dividing 𝐗H𝐗 by N . With M ≥ N fixed, the
large N leading eigenvalue support is then the interval [0, 4], and the global density of
eigenvalues is given by the Marchenko–Pastur law

𝜌𝐗H𝐗 (x) =
1

𝜋
√

x

√
1 − x∕4, 0 < x < 4 (5.156)

In fact, it is not the global densities themselves that are the central objects of free prob-
ability calculus but rather certain transforms.

The most fundamental of these is the Stieltjes transform (a type of Green function)

G𝐘 (z) = ∫I

1
y − z

𝜌𝐘
(
y
)
dy, z ∉ I (5.157)

where I denotes the interval of support. From (5.156), we have

G𝐗H𝐗 (z) =
−1 +

√
1 − 4∕z

2
(5.158)
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(see e.g. [62, Exercises 14.4 q.6(i) with 𝛼 = 0]). As the eigenvalues of
(
𝐗H𝐗
)−1 are

the reciprocals of the eigenvalues of 𝐗H𝐗, a straightforward calculation from (5.157)
and (5.158) shows

G(𝐗H𝐗)−1 (z) = −1
z
−

−1 +
√

1 − 4z
2z2 (5.159)

this being a special case of the general relation

G𝐘−1 (z) = −1
z
−

G𝐘 (1∕z)
2z2 (5.160)

Now introduce the auxiliary quantity

Υ (z) ∶= −1 − 1
z

G (1∕z) (5.161)

so that

Υ𝐗H𝐗 (z) = −1 −

(
−1 +

√
1 − 4z

2z

)

, Υ(𝐗H𝐗)−1 (z) = z

(
−1 +

√
1 − 4∕z

2

)

From these explicit forms, we compute the corresponding inverse functions

Υ−1
𝐗H𝐗 (z) =

z
(1 + z)2 , Υ−1

(𝐗H𝐗)−1 (z) = − z2

1 + z
(5.162)

Finally, introduce the S-transform by

S𝐘 (z) =
1 + z

z
Υ(−1)

𝐘 (z) (5.163)

We see from (5.162) that

S𝐗H𝐗 (z) =
1

1 + z
, S(𝐗H𝐗)−1 (z) = −z (5.164)

◽

Theorem 5.8.21 (the law of large numbers for the free additive convolution of
measures with bounded support [273]) Let 𝜇 be a probability measure on ℝ with
existing mean value 𝛼, and let 𝜓n ∶ ℝ → ℝ be the map 𝜓n (x) =

1
n

x. Then

d𝜓n (x)
dx

(𝜇 ⊞ · · ·⊞𝜇) → 𝛿𝛼

where convergence is weak and 𝛿x denotes the Dirac measure at x ∈ ℝ.

Here d𝜙(𝜇)
dx

denotes the image measure of 𝜇 under 𝜙 for a Borel measurable function
𝜙 ∶ ℝ → ℝ, respectively, [0,∞) → [0,∞) .

Theorem 5.8.22 (The free multiplicative law for measures with unbounded support
[274]) Let 𝜇 be a probability measure on [0,∞) and let 𝜙n ∶ [0,∞) → [0,∞) be the
map 𝜙n (x) = x1∕n. Set 𝛿 = 𝜇 ({0}) . If we denote

𝜈n =
d𝜙n
(
𝜇n
)

dx
=

d𝜙n

dx

⎛
⎜
⎜
⎜
⎝

n times
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞

𝜇 ⊠ · · ·⊠𝜇

⎞
⎟
⎟
⎟
⎠
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then 𝜈n converges weakly to a probability measure 𝜈 on [0,∞) . If 𝜇 is a Dirac measure
on [0,∞) , then 𝜈 = 𝜇. Otherwise 𝜈 is the unique measure on [0,∞) characterized by
𝜈

([
0, 1

S𝜇(t−1)

])
= t for all t ∈ (𝛿, 1) and 𝜈 ({0}) = 𝛿.The support for the measure 𝜈 is the

closure of the interval

(a, b) =

((

∫
∞

0
x−1d𝜇 (x)

)−1

,∫
∞

0
xd𝜇 (x)

)

where 0 ⩽ a ⩽ b ⩽ ∞.

Note that, unlike in the additive case, the multiplicative limit distribution is only a
Dirac measure if 𝜇 is a Dirac measure. Furthermore S𝜇 and hence ( [269, Theorem 2.6])
𝜇 can be reconstructed from the limit measure.

Proposition 5.8.23 (two-parameter family of measures [274]) Let 𝛼, 𝛽 ≥ 0. There
exists a probability measure 𝜇𝛼,𝛽 on (0,∞) for which the S-transform is given by

S𝜇𝛼,𝛽 (z) =
(−z)𝛽

(1 + z)𝛼
, 0 < z < 1, 𝛼 > 0, 𝛽 > 0 (5.165)

Furthermore, these measures form a two-parameter semigroup, multiplicative under⊠
induced by multiplication of (𝛼, 𝛽) ∈ [0,∞) × [0,∞) .

Example 5.8.24 (two-parameter family of measures [274]) For (𝛼, 𝛽) = (1, 0) , we
have S𝜇1,0

(z) = 1
1+z
, which the S-transform of the free Poisson distributions with shape

parameter 1 (also called the Marchenko–Pastur law). The distribution is give by

𝜇1,0 (x) =
1

2𝜋

√
4 − x

x
𝕀(0,4) (x) dx

where 𝕀 is the indicator function. ◽

We can use (5.165) to model the massive datasets, where two parameters 𝛼, 𝛽 ≥ 0
must be estimated from the data.

5.9 Random Vandermonde Matrix

A Vandermonde matrix with entries on the unit circle has the following form:

𝐕 = 1
√

N

⎛
⎜
⎜
⎜
⎝

1 · · · 1
e−j𝜔1 · · · e−j𝜔L

⋮ ⋱ ⋮
e−j(N−1)𝜔1 e−j(N−1)𝜔L

⎞
⎟
⎟
⎟
⎠N×L

(5.166)

We will consider the case where 𝜔1,… , 𝜔L are independent and identically distributed
(i.i.d.), taking values in [0, 2𝜋]. Throughout this section, the 𝜔i will be called phase
distributions. 𝐕 will be used only to denote Vandermonde matrices with a given
phase distribution, and the dimensions of the Vandermonde matrices will always
be N × L.
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In many practical applications, N and L are quite large, and we may be interested
in studying the case where both go to a given ratio L

N
→ c. The factor 1

√
N
, as well as

the assumption that the Vandermonde entries e−j𝜔i lie on the unit circle, are included
in (5.166) to ensure that the analysis will give limiting asymptotic behavior. In general,
often the moments, not the moments of the determinants, are the quantities we seek. It
can be shown that, asymptotically, the moments of the Vandermonde matrices depend
only on the ratio c and the phase distribution, and have explicit expressions. Moments
are useful for performing deconvolution.

The fact that all the moments exist is not enough to guarantee that there exists a limit
probability measure having these moments. However, we will prove that, in this case,
this is true. In other words, the matrices 𝐕H𝐕 converge in distribution to a probabil-
ity measure 𝜇c supported on [0,+∞] where c = lim L

N
as the dimension grows. More

precisely, let 𝜇L be the empirical eigenvalue distribution of the random matrices 𝐕H𝐕.
Then 𝜇L converge weakly to a unique probability measure 𝜇c supported in [0,+∞] with
moments

m(c)
n = ∫

+∞

0
tnd𝜇c (t)

We also enlarge the class of functions for which the limit eigenvalue distribution exists
to include unbounded densities and we find lower bounds and upper bounds for the
maximum eigenvalue.

Example 5.9.1 (capacity of the Vandermonde channel [275]) Consider the Gaus-
sian matrix channel in which the received signal 𝐲 ∈ ℂN×1 is given as

𝐲 = 𝐇𝐱 + 𝐳 (5.167)

where 𝐳 ∼  (𝟎, 𝐈N
)
, 𝐱 ∼  (𝟎, 𝐈L

)
, 𝐇 ∈ ℂN×L has i.i.d. zero mean Gaussian entries

and is standard. Then an explicit expression for the asymptotic capacity exists

lim
N→∞

log det
(
𝐈N + 𝛾𝐇𝐇H)

= −
log e
4𝛾

F (𝛾, 𝛽) + 𝛽 log
(

1 + 𝛾 − 1
4

F (𝛾, 𝛽)
)
+ log

(
1 + 𝛽𝛾 − 1

4
F (𝛾, 𝛽)

)

where

F (a, b) ∶=

(√

a
(

1 +
√

b
)2

+ 1 −
√

a
(

1 −
√

b
)2

+ 1

)2

and the SNR 𝛾 is

𝛾 =
N ⋅ 𝔼

[
‖𝐱‖2]

L ⋅ 𝔼
[
‖𝐳‖2]

and the ratio N
L
→ 𝛽 as N → ∞.

We can prove that a similar limit exists and is finite if the Gaussian matrix is replaced
with a random Vandermonde matrix. Besides, using Jensen’s inequality, we can get an
upper bound on the capacity. More precisely, if we fix the SNR Y , we may define the
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asymptotic capacity of the Vandermonde channel (whenever the limiting moments exist
and define a measure) for random Vandermonde matrices 𝐕 ∈ ℂN×L, to be

C𝐕 (𝛾) ∶= lim
N→∞

𝔼
( 1

N
log det

(
𝐈N + 𝛾𝐕𝐕H)

)

= lim
N→∞

𝔼
( 1

N
log det

(
𝐈L + 𝛾𝐕H𝐕

))

= lim
N→∞

𝔼
( 1

N
Tr log

(
𝐈L + 𝛾𝐕H𝐕

))

= lim
L→∞∫

∞

0
c log (1 + 𝛾t) d𝜇L (t)

= ∫
∞

0
c log (1 + 𝛾t) d𝜇c (t) (5.168)

where 𝜇L is the empirical measure of the L × L random matrix 𝐕H𝐕 and 𝜇c is the limit
measure of the 𝜇L. The first equality follows from Sylvester’s theorem on determinants,
the second and third are by definition, and the final equality is a consequence of their
uniform integrability. This latter follows from log (1 + 𝛾t) < 𝛾t, t > 0 and that given 𝜀 >
0,∃𝛼 > 0 such that

sup
L ∫

∞

𝛼

td𝜇L (t) < 𝜀

see the converse statement in [276, Theorem 5.4]. Therefore, by Jensen’s inequality

C𝐕 (𝛾) = ∫
∞

0
c log (1 + 𝛾t) d𝜇c (t)

⩽ c log (1 + 𝛾)

since the limit first moment is 1.
Consider an application for a network with M mobile users conducting synchronous

multiaccess to a base station with N antenna elements, arranged as a uniform linear

0
0
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0.5

0.75

p(
Λ)

1

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6

1.25

1.5

Λ

Figure 5.2 Simulated limit
distribution for a uniform distribution
𝜃 ∼ U [−𝜋, 𝜋] with L = N = 1000
averaged over 700 sample matrices.
Source: Reproduced from [275] with
permission.
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Figure 5.3 Simulated limit distribution for 𝜃 ∼ f (x) ,where f (x)is an unbounded pdf defined as
f (x) = 1

2𝜋
log 𝜋

|x|
. The distributions with L = N = 1000 are averaged over 700 sample matrices. Source:

Reproduced from [275] with permission.

array. Suppose a random subset of L users in any time slot are selected to transmit. Then
the antenna array response over the selected users is 𝐕 defined as

𝐕 = 1
√

N

⎛
⎜
⎜
⎜
⎝

1 · · · 1
e−i2𝜋d∕𝜆 sin(𝜃1) · · · e−i2𝜋d∕𝜆 sin(𝜃L)

⋮ ⋱ ⋮
e−i2𝜋(N−1)d∕𝜆 sin(𝜃1) e−i2𝜋(N−1)d∕𝜆 sin(𝜃L)

⎞
⎟
⎟
⎟
⎠

N×L

(5.169)

where d is the element spacing and 𝜆 is the wavelength. Let us assume that M, L,N are
large and that the angles of arrival are uniformly scattered in (−𝛼, 𝛼). Then it is reason-
able to determine the performance with the assumption that the angles of arrival are
drawn uniformly so that the maximum sum throughput (equivalently per user rate) is
determined by (5.168) with the phase pdf given as

q𝛼 (𝜃) =
1

2𝛽
√

4𝜋2d2

𝜆2 − 𝜃2

for 𝜃 ∈
[
− 2𝜋d

𝜆
sin (𝛼) , 2𝜋d

𝜆
sin (𝛼)

]
.

An unbounded pdf is defined as

f (x) = 1
2𝜋

log 𝜋

|x|
(5.170)

For an illustration of Eq. (5.170), see Figure 5.2 and Figure 5.3. ◽

Example 5.9.2 (massive MIMO) We study the spatial degrees of freedom of
multiple-input multiple-output (MIMO) transmissions in a wireless network with
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homogeneously distributed nodes, under the following classical line-of-sight propaga-
tion model between node k and node j in the network [277, 278]:

hjk =
exp
(
i2𝜋rjk∕𝜆

)

rjk
(5.171)

In the above equation, 𝜆 is the carrier wavelength and rjk is the internode distance. From
a mathematical point of view, these matrices are interesting objects, as they are halfway
between purely random matrices with i.i.d. entries and fully deterministic matrices.
Indeed, the internode distances rjk are random due to the random node positions, but
there is a clear correlation between the matrix entries. ◽

5.10 Non-Asymptotic Analysis of State Estimation

State estimation may be formulated as random vector channels. We show that our
nonasymptotic framework can be applied in Bayesian inference problems that involve
estimation of uncorrelated components. Consider a simple linear statistical model

𝐲 = 𝐇𝐱 + 𝐳 (5.172)

where 𝐇 ∈ ℂn×p is a known matrix, 𝐱 ∈ ℂp denotes an input signal with zero mean and
covariance matrix P𝐈p and 𝐳 represents a zero-mean noise uncorrelated with 𝐱, which
has covariance 𝜎2𝐈n. For an arbitrary random vector 𝐱′ with a covariance matrix 𝚺x, we
can always normalize such that 𝐱 =

(
𝚺x
)−1∕2𝐱′ so the resultant covariance matrix of 𝐱 is

P𝐈p. In this section, we assume that

𝛼 ∶=
p
n
⩽ 1 (5.173)

i.e. the sample size exceeds the dimension of the input signal. The MMSE estimate of 𝐱
given 𝐲 can be expressed as [279]

x̂ = 𝔼 (𝐱|𝐲) = 𝔼
(
𝐱𝐲H) (𝔼

(
𝐱𝐲H))−1𝐲

= P𝐇H(𝜎2𝐈n + P𝐇𝐇H)−1𝐲 (5.174)

and the resulting MMSE is given by

MMSE (𝐇) = Tr
(

P𝐈p − P2𝐇H(𝜎2𝐈n + P𝐇𝐇H)−1𝐇
)

(5.175)

As a result, the normalized MMSE (NMMSE) can be written as

NMMSE (𝐇) ∶=
MMSE (𝐇)
𝔼‖𝐱‖2 = Tr

(

𝐈p −𝐇H
( 1
SNR

𝐈n +𝐇𝐇H
)−1

𝐇
)

(5.176)

where SNR ∶= P
𝜎2 . We can evaluate the function NMMSE (𝐇) ) in a reasonably tight

manner, as stated below. We need to define a scalar-valued function

f (𝛿,𝐇) ∶= 1
p
𝔼Tr
((
𝛿 +𝐇𝐇H)−1

)
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Suppose that 𝐇 = 𝐀𝐌, where 𝐀 ∈ ℂn×m is a deterministic matrix for some integer
m ≥ p, and 𝐌 ∈ ℂn×p is a random matrix such that Mijs are independent random vari-

ables satisfying 𝔼Mij = 0 and 𝔼||
|
Mij
|
|
|

2
= 1

p
.

If
√

pMijs are bounded by D, then for any t > 8
√

𝜋

p
, one has

1
p
NMMSE (𝐇) ∈

[
f
( 8

9SNR
,𝐇
)
+ 𝜏 lb

bd, f
( 9

8SNR
,𝐇
)
+ 𝜏ub

bd

]
(5.177)

with probability exceeding 1 − 8 exp
(
− pt2

16

)
. Here

𝜏 lb
bd = −

2
√

2tD ‖𝐀‖ SNR1.5

3
√

3p
, 𝜏ub

bd =
3
√

3tD ‖𝐀‖ SNR1.5

8p

We can obtain similar results if Hijs satisfy the logarithmic Sobolev inequality. This is
also true when Hijs are independently drawn from heavy-tailed distributions.
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for the exposition of the basic properties.

A nonasymptotic analysis of random vector channels has been performed in [40].
In particular, this is done in a systematic manner for the detection of extremely weak
signals. The foundation of the nonasymptotic analysis is the concentration of spectral
measure phenomenon. In Section 5.10, we give some complementary treatment of this
topic, following [286] for the exposition.
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6

Large Non-Hermitian Random Matrices and Quatartenionic
Free Probability Theory

This chapter studies (large) non-Hermitian random matrices using the newly developed
quatartenionic free probability theory. In our opinion, this development will be the new
paradigm to represent large datasets and new big data analytics will be derived with it.
Most results are appearing here in book form for the first time. Some results have never
appeared in a publication before. This chapter is also the culmination of the random
matrix theory development. The most important fact is that non-Hermitian random
matrices have complex-valued eigenvalues. As shown in Section 1.4, the new concept of
free entropy—defined in the complex plane—is introduced to define the “information.”

Recently, for example in [287], products of random matrices have experienced a
revival due to new mathematical insights about the statistics of the eigen- and singular
values for finite as well as infinite matrix dimensions. Due to recent progress in the
field, now we may study a product of an arbitrary number of random matrices of
arbitrary size for certain matrix ensembles. Since the number of matrices and their size
can be chosen freely, discussions of various limits are allowed. This not only includes
macroscopic (as well as microscopic) structures for infinite matrix dimension, but
also available is the limit where the number of matrices goes to infinite. Analogous to
the study of individual random matrices, products of random matrices show a rich
mathematical structure and various limits have revealed new universality classes,
which are important in the physical sciences as well as in mathematics and beyond.

Our interest in products of large random matrices arises from the rich mathematical
structure of this objects. We believe that knowledge discovery is to find the structure
behind the large datasets. This novel mathematical object is very natural in the context
of big data. Often, we are interested in a matrix-valued time series that are conveniently
modeled as a sequence of N × N matrices 𝐗1,𝐗2,… ,𝐗L. We are interested in the large
random matrices, say N = 100 − 1000. These matrix-valued random variables are build-
ing blocks for the big data problem at hand. Basic matrix operations include:

• adding up the L matrices 𝐀L = 𝐗1 + 𝐗 + · · · + 𝐗L;
• products of L matrices 𝐏L = 𝐗1𝐗2 · · ·𝐗L;
• geometric mean of L matrices

(
𝐏L

)1∕L =
(
𝐗1𝐗2 · · ·𝐗L

)1∕L;
• 𝐗1∕M

1 𝐗1∕M
2 · · ·𝐗1∕M

L for non-negative integer M ≥ 1.

The most useful observation is to preserve the symmetry of eigenvalues on the complex
plane. For example, for a complex number in its polar form z = |z| ej𝜙, the function

z𝛼 ≡ exp
(
𝛼 log (z)

)
= |z|𝛼ej𝛼𝜙, for 𝛼 ∈ ℝ
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has the property of preserving the symmetry. In particular, 𝛼 = L∕M for non-
negative integers L and M.

For large random matrices, it is very interesting to discover that the product
𝐗1𝐗2 · · ·𝐗L behaves as the power 𝐗L of a single matrix 𝐗, for 𝐗 = 𝐗i, i = 1,… , L.

Outliers to the circular law, the (single) ring law, and the elliptic law are studied. In
practice, the ring law is most important since the rectangular random matrix is naturally
encountered. The circular law is the special case of the single ring law. Associated with
the single ring law is the random singular value decomposition (SVD). MATLAB codes
are included to gain hands-on insight.

6.1 Quatartenionic Free Probability Theory

Non-Hermitian matrices have complex-valued eigenvalue distribution in general.
In the Hermitian case, we work on the complex-valued matrix functions to search
real-valued eigenvalues, while we now have to work on a q-valued function to search
complex-valued eigenvalues (see Figure 6.1), where q is defined in (6.10). See also See
Table 6.1.

Since non-Hermitian matrices have real eigenvalues, the method of analysis to deal
with real-valued eigenvalue distributions in free probability is to use complex analysis,
that is to represent a real-valued eigenvalue distribution

p (x) = 1
𝜋

lim
𝜀→0+

Re
{

jG
(
x + j𝜀

)}
(6.1)

as a limit of a complex-valued holomorphic function G(s), which is the Stieltjes trans-
form defined by

G (s) = ∫
1

s − x
dP (x) (6.2)

where p(x) = dP(x)∕dx.

G(z)

ℝ

ℂ+

ℂ

G(q)ℂ2

Figure 6.1 Left: Complex-valued operation for a real function in upper complex plane. Right:
Quaternion-valued operation for a complex function in hyper complex plane.

Table 6.1 Comparison between classical, free, and quatartenionic free probability theories.

Probability space Algebra

Classical probability Commutative Commutative
Free probability Non-commutative Commutative
Quatartenionic free probability Non-commutative Non-commutative
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Complex-valued eigenvalue distributions are often circularly symmetric and, thus, not
holomorphic. They can be represented by a pair of holomorphic functions representing
real and imaginary part. Instead of real and imaginary part of a complex variable z, one
can also consider z, its complex conjugate z∗, and apply the Wirtinger rule [288] for
differentiation:

𝜕z
𝜕z∗

= 0 = 𝜕z∗
𝜕z

(6.3)

6.1.1 Stieltjes Transform

In order to generalize the Stieltjes transform to two complex variables z and z∗, we first
rewrite (6.2) by

G (s) = d
ds ∫ log (s − x)dP (x) (6.4)

We further note that the Dirac function of a complex argument can be represented as
the limit

𝛿 (z − z′) = 1
𝜋

lim
𝜀→0

𝜀2

(|z−z′|2+𝜀2)2

= 1
𝜋

lim
𝜀→0

𝜕2

𝜕z𝜕z∗
log

[
|z − z′|2 + 𝜀2]

(6.5)

Thus we obtain

p (z) = 1
𝜋

lim
𝜀→0

𝜕2

𝜕z𝜕z∗ ∫ log
[
|
|z − z′||

2 + 𝜀2
]
dP (z) (6.6)

We define the bivariate Stieltjes transform by

G (s, 𝜀) = 𝜕

𝜕s ∫ log
[
|s − z|2 + 𝜀2]dP (z)

= ∫
(s − z)∗

|s − z|2 + 𝜀2
dP (z)

(6.7)

and get the bivariate Stieltjes inversion formula to read

p (z) = 1
𝜋

lim
𝜀→0

𝜕

𝜕z∗
G (s, 𝜀) . (6.8)

At first sight, the bivariate Stieltjes transform looks quite different from (6.2). We can,
however, rewrite (6.7) as

G (s, 𝜀) = ∫
[(

s − z i𝜀
i𝜀 s∗ − z∗

)−1
]

11

dP (z) (6.9)

which clearly resembles the form of (6.2). To get an even more striking analogy
with (6.2), we can introduce the Stieltjes transform with quaternionic argument
q ≡ v + j𝜔, (v, 𝜔) ∈ ℂ2, i2 ≡ −1, ij = ji

G (q) ≡ ∫
1

q − z
dP (z) (6.10)

and with the respective inversion formula

p (z) = 1
𝜋

lim
𝜀→0

𝜕

𝜕z∗
ℜG (z + i𝜀) (6.11)
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and the definition ℜ
(
v + j𝜔

) ≡ v ∈ ℂ2. Note that real and imaginary part of a
quaternion are its first and second complex components, respectively. Quaternions are
inconvenient to deal with, since multiplication of quaternions does not commute, in
general. However, any quaternion q = v + j𝜔 can be conveniently represented by the
complex-valued 2 × 2 matrix

(
v 𝜔

−𝜔∗ v∗
)

(6.12)

This matrix representation directly connects (6.9) with (6.10) via
G (s, 𝜀) = ℜG (s + i𝜀) . (6.13)

Finally, the quaternion-valued Stieltjes transform can be expressed as

G (q) ≡ ∫ (
1 − q−1z

)−1q−1dP (z)

=
∞∑

k=0
∫ (

q−1z
)kq−1dP (z)

=
∞∑

k=0
𝔼
[(

q−1z
)k

]
q−1

(6.14)

Note that the last equation of (6.14) is equivalent to

q−1
∞∑

k=0
𝔼
[(

q−1z
)k

]
(6.15)

We follow (6.14) for the rest of the work.

6.1.2 Additive Free Convolution

We define the S-transform of quaternion argument p in complete analogy to the complex
case in [52] as

R (p) = G−1 (p) − p−1 (6.16)
and obtain for free random matrices 𝐀 and 𝐁, with R𝐀 (p) and R𝐁 (p) denoting the
R-transforms of the respective asymptotic eigenvalue distributions,

R𝐀+𝐁 (p) = R𝐀 (p) + R𝐁 (p) (6.17)
The scaling law of the R-transform is generalized as

Rz𝐀 (p) = zR𝐀 (pz) (6.18)
for z ∈ ℂ. Note that the order of factors does matter here, since pz ≠ zp, in general.

Let 𝐀 and 𝐁 are free each others. Then we have
G𝐀+𝐁 (q) = G𝐀

(
q − R𝐁

[
G𝐀+𝐁 (q)

])
(6.19)

(6.19) can be derived as follows.
q = G𝐀

[
G−1
𝐀 (q)

]

= G𝐀

[
G−1
𝐀+𝐁 (q) − G−1

𝐁 (q) + 1
q

]

= G𝐀
[
G−1
𝐀+𝐁 (q) − R𝐁 (q)

]
.

(6.20)

By substitution q → G𝐀+𝐁 (q), we have
G𝐀+𝐁 (q) = G𝐀

(
q − R𝐁

[
G𝐀+𝐁 (q)

])
.
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6.1.3 Multiplicative Free Convolution

The key quantity of interest in random matrix theory is the eigenvalue density, which
may be equivalently expressed through the Green’s function. The R and S transforms
satisfy functional relations with the Green’s function and hence their knowledge is
equivalent (in the Hermitian case) to the knowledge of the eigenvalue density (or more
precisely of its moments).

While additive free convolution generalizes straightforwardly, this is very different for
multiplicative free convolution.

The Green’s function for non-Hermitian matrices is conveniently expressed as
2 × 2 matrices with complex elements. In order to distinguish this situation from the
Hermitian case, where functions and their arguments were complex numbers, we shall
use calligraphic letters to denote the corresponding 2 × 2 complex matrices. The R
transform in this case is a map of a space of 2 × 2 complex matrices onto a space of
2 × 2 complex matrices  → R ().

We define a modified quaternion-valued Stieltjes transform of a non-Hermitian
random matrix 𝐗 as

𝐗 = lim
𝜀→0

G𝐗 (z + i𝜀) (6.21)

Moreover, for any q ∈ ℂ2, we define the following operation as
qL = 𝜔q𝜔∗, qR = 𝜔∗q𝜔 (6.22)

where 𝜔 ≜ e(j arg z)∕4. Let the non-Hermitian matrices 𝐀 and 𝐁 be free from each other.
Then we have [289]

R𝐀𝐁
(𝐀𝐁) =

[
R𝐀

(𝐁)]L
⋅
[
R𝐁

(𝐀)]R (6.23)
But this is a nontrivial formula and very less fruitful, compareing with quaternion valued
R transform. On the other hand, there is an interesting result in the name of S-transform
over (noncommutative) unital Banach algebra [290].

6.1.4 Quaternion-valued Functions for Hermitian Matrices

Recall that the quaternion-valued Stieltjes can be expanded as

G (q) = ∫
1

q − z
dP (z) =

∞∑

k=0
𝔼
[(

q−1z
)k

]
q−1

The quaternion-valued Stieltjes transform for a real distribution, however, can be
written as

∫ 1
q−x

dP (x) =
∞∑

k=0
∫ xk

qk+1 dP (z)

=
∞∑

k=0

mk

qk+1

(6.24)

since qx = xq, x ∈ ℝ. This yields the same algebra as in the complex case. Therefore,
quaternion-valued Stieltjes, R and S transforms for a real distribution are simply equiv-
alent to the complex case. Obviously

G𝐇 (q) = G𝐇 (s) ||
|s=q, R𝐇 (p) = R𝐇 (𝜔) ||

|𝜔=q, S𝐇 (r) = S𝐇 (z) ||z=r (6.25)

where 𝐇 is a Hermitian matrix.
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Example 6.1.1 (semicircle and full circle elements) Let 𝐇 is a semicircle element.
Find G𝐇 (q) and R𝐇 (q). Since odd moments of an even distribution vanish let Ck be the
k-th Catalan number, We have

∫
1

q − x
dP𝐇 (x) =

∞∑

k=0

1
q2k+1 Ck (6.26)

By using the recursive expression of the Catalan number, we have [259]

G𝐇 (q) = 1
q
+

∞∑

k=1

1
q2k+1

( k∑

m=1
Cm−1Ck−m

)

= q−1 + q−1
∞∑

k=1

k∑

m=1

Cm−1

q2k+1 ⋅
Ck−m

q2(m−k)+1

= q−1 + q−1
∞∑

m=1

Cm−1

q2m+1 ⋅

( ∞∑

k=m

Ck−m

q2(m−k)+1

)

= q−1 + q−1
∞∑

m=1

Cm−1

q2m+1 ⋅G𝐇 (q)

= q−1 + q−1G2
𝐇 (q) = q−1 (

1 + G2
𝐇 (q)

)
(6.27)

which leads to the following solution:

G2
𝐇 (q) = 1

2

[
q −

(
q2 − 4

)1∕2
]

Now substituting q for G−1
𝐇 (q) in the last identity of (6.27), we have

0 = G−1
𝐇 (q)

(
1 + q2) − q

=
[
R𝐇 (q) + q−1]−1 (

1 + q2) − q

=
(
1 + q2) −

[
R𝐇 (q) + q−1]−1q

which gives

R𝐇 (q) = q (6.28)

Let 𝐆 is a full circle element, then we have

R𝐆 (q) = ℑq (6.29)

(6.29) can be derived as follows. 𝐆 can be decomposed as

𝐆 =
𝐇1 +𝐇2

√
2

where 𝐇1 and 𝐇2 are two semicircle elements and free from each other. Then
we have

R𝐆 (q) = 1
2
(
q + jqj

)
= ℑq

where ℑq = ℑ
(
v + j𝜔

) ≡ w ∈ ℂ2. ◽
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6.2 R-diagonal Matrices

Definition 6.2.1 (Biane and Lehner (2001) [291]) A random matrix 𝐗 is called
R-diagonal if it can be decomposed as 𝐗 = 𝐔𝐘, such that 𝐔 is Haar unitary and free
of 𝐘 =

√
𝐗𝐗H .

As the matrix size grows, independence is converted into freeness according to some
freeness result; see Hiai and Petz (2006) [169]. Therefore, bi-unitarily invariant matrices
are asymptotically R-diagonal. Note that independent R-diagonal matrices are free of
each other.

R-diagonal matrices have circularly symmetric eigenvalue distribution. In order to
determine the boundary of such distributions, we define the following measures [292]:

in(𝐗)2 ≜ ∫
1
x

dF𝐗𝐗H (x)

out(𝐗)2 ≜ ∫ xdF𝐗𝐗H (x)
(6.30)

where these integrals are computed by using the convention 1∕0 = ∞ and 1∕∞ = 0.
out(𝐗)2 is the second moment of singular value distribution of 𝐗 and when 𝐗 is invert-
ible (or has no zero eigenvalues), in(𝐗)2 is the second moment of singular value distri-
bution of 𝐗−1.

6.2.1 Classes of R-diagonal Matrices

A Haar-unitary matrix 𝐕 and a (i.i.d.) Gaussian random matrix 𝐗 are asymptotically
R-diagonal matrices because they can be decomposed as

𝐕 = 𝐕𝐈; 𝐗 = 𝐔𝐐 (6.31)

where 𝐔 is a Haar-unitary matrix and 𝐐 is a quarter circle distributed random
matrix. Moreover, with the following theorems we here present some important class
R-diagonal matrices:

Theorem 6.2.2 (Haagerup and Larsen (2000) [292]) Let the matrix 𝐗i be a free
family of R-diagonal matrices for all 1 ≤ i ≤ L. Then

• sum of free R-diagonal matrices: 𝐗1 + · · · + 𝐗L =
L∑

i=1
𝐗i;

• product of free R-diagonal matrices: 𝐗1 · · ·𝐗L =
L∏

i=1
𝐗i;

• power of a R-diagonal matrices:
(
𝐗i

)p
, i = 1,… , L for a natural numbers p

are R-diagonal, too.

Theorem 6.2.3 (proposition 6.1.1 in [259]) Let the matrix 𝐗 be R-diagonal and free
of the matrix 𝐘. Then 𝐗𝐘 is also R-diagonal.

Theorem 6.2.4 ([259]) Let the free Hermitian matrices 𝐗 and 𝐘 have a symmetric
(even) eigen value distribution on the real line. Then the matrix 𝐗𝐘 is R-diagonal.
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A large class of R-diagonal matrices have the property of behaving as if they are
identical with respect to multiplication:

Theorem 6.2.5 (Proposition 3.10 in Haagerup and Larsen (2000) [292]) Let the
random matrices 𝐗i, i = 1,… , L be asymptotically free R-diagonal elements and their
asymptotic eigenvalue distributions of 𝐗i be identical for all i. Then the asymptotic
eigenvalue distribution of

𝐗1 · · ·𝐗L =
L∏

i=1
𝐗i

is identical to 𝐗i, i = 1,… , L.

6.2.2 Additive Free Convolution

Operations such as a sum or product of R-diagonal random matrices can be performed
without quaternionic free calculus.

Consider a Hermitian matrix �̃� such that the empirical eigenvalue distribution of �̃� is

p�̃� (x) =
1
2

[
p√

𝐗𝐗H (x) + p√
𝐗𝐗H (−x)

]
(6.32)

where �̃� is symmetrized singular value version of 𝐗.

Theorem 6.2.6 (Proposition 3.5 in [292]) Let the asymptotically free random matri-
ces 𝐀 and 𝐁 be R-diagonal. Define

𝐂 = A + B

Then we have

R�̃� (𝜔) = R�̃� (𝜔) + R�̃� (𝜔) (6.33)

Two lemmas make the problem as trivial as in Hermitian case.

Lemma 6.2.7 (Symmetrization Lemma I) Let 𝐗 be a rectangular non-Hermitian
random matrix in general. Then we have,

G�̃� (s) = sG√
𝐗𝐗H

(
s2) (6.34)

Lemma 6.2.8 (Symmetrization Lemma II) Let the matrix 𝐗 be defined as in the
previous lemma. Then we have

S�̃� (z) =
[z + 1

z
S𝐗𝐗H (z)

]1∕2
(6.35)

Example 6.2.9 (deformed quarter-circle element) Let 𝐗 be a deformed
quarter-circle element. Then find the R-transform R�̃� (𝜔). Recall (5.154) such that
the S-transform of 𝐗𝐗H is given by

S𝐗𝐗H (z) = 1
z + c

(6.36)
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Using the inversion formula between R-transform and S-transform (5.148),
we have

𝜔R̃𝐗 (𝜔)
(
𝜔R̃𝐗 (𝜔) + 1

)
⋅

1
𝜔R̃𝐗 (𝜔) + c

= 𝜔2

which leads to the following solution

R̃𝐗 (𝜔) =
𝜔

2
− 1

2𝜔
+

√
(
𝜔

2
− 1

2𝜔

)2
+ c (6.37)

Note that we are two solutions. In the case of c = 1, the right one must give R̃𝐗 (𝜔) =
𝜔. See Example 5.8.10 for more details about the approach of how to choose the right
solutions from the two solutions. ◽

6.2.3 Multiplicative Free Convolution

The trace operator is cyclic invariant. This allows us to work on complex value-free prob-
ability by means of S-transform to deal with a multiplication of non-Hermitian matrices.

The following theorem gives a straightforward way to switch from singular values to
eigenvalues of R-diagonal matrices and vice versa.

Theorem 6.2.10 ([292]) Let the random matrix 𝐗 be R-diagonal such that it can be
decomposed as 𝐗 = UY , where 𝐔 is Haar unitary matrix and free of the matrix 𝐘 =√
𝐗𝐗H . Then we have:
(i) The eigenvalue distribution P𝐗 (z) is circularly invariant with its boundary

supp
(
P𝐗

)
=

[
in (𝐗)−1

, out (𝐗)
]
×p [0, 2𝜋] (6.38)

Here by×p we denote the polar set product: A×pB =
{

aej𝜃 |a ∈ A, 𝜃 ∈ B
}

. Explicitly, the
support of the eigenvalue distributionP𝐗 (z) is the annulus with the inner radius in (𝐗)−1

and the outer radius out (𝐗). (ii) The S-transform S𝐘2 (z) of 𝐘2 has an analytic continu-
ation to the neighborhood of interval

(
P𝐘2 (0) − 1, 0

]
and monotonically deceasing on

(
P𝐘2 (0) − 1, 0

]
such that the derivative of the S-transform S′

𝐘2 (z) < 0, and it takes the
values in between

S
((

P𝐘2 (0) − 1, 0
])

=
(
in (𝐗)−2

, out (𝐗)2] (6.39)

(iii) P𝐗 (z) ||z=0 = P𝐘 (z) ||z=0 and the radial distribution function

P(−1)
𝐗 (r)

(
1

√
S𝐘2 (r − 1)

)

= r; r ∈
(
P𝐘 (0) , 1

]
(6.40)

(iv) The eigenvalue distribution P𝐗 (z) is the only circularly symmetric probability
measure satisfying (iii).

Corollary 6.2.11 ([292]) With the notation as in Theorem 6.2.10, the functional
inversion of radial probability measure of 𝐗

P(−1)
𝐗 (r) = 1

√
S𝐘2 (r − 1)

∶
(
P𝐘 (0) , 1

]
→

[
in (𝐗)−1

, out (𝐗)
]

(6.41)
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has an analytical continuation to a neighborhood of its domain and monotonically
increasing on

(
P𝐘 (0) , 1

]
such that the derivative dP(−1)

𝐗 (r) ∕dr > 0. Moreover, the radial
density of 𝐗 such that

2𝜋rp𝐗 (z)
|
|
||z|=r =

dP𝐗 (r)
dr

, r ∈
[
in (𝐗)−1

, out (𝐗)
]

(6.42)

has an analytical continuation to the neighborhood of
(
in (𝐗)−1

, out (𝐗)
]
.

Theorem 6.2.10 and its corollary play central to characterize non-Hermitian random
matrices.

Example 6.2.12 (project compression) Let the entries of the T × T matrix 𝐆 be
independent identically distributed with variance 1∕T and the matrix 𝐏 ∈ {0, 1}T×T be
diagonal with K nonzero entries. Then, show that the empirical eigenvalue distribution
of 𝐇 = 𝐆𝐏 converges almost surely to

p (z) = (1 − 𝛼) 𝛿 (z) +

{
1∕𝜋 , |z| <

√
a

0 , elsewhere

First, 𝐇𝐇H is the square equivalent of the deformed quarter circle law (eigenvalues)
element. Thus

S𝐇𝐇H (z) = 1
z + 𝛼

With Theorem 6.2.10, we have

P(−1)
𝐇 (r) = 1

√
S𝐇𝐇H (r − 1)

=
√

r + 𝛼 − 1

Then the probability measure (radial) is given by

P𝐇 (r) = (1 − 𝛼) + r2

Moreover, the zero measure of the distribution is

P𝐇 (z) ||z=0 = (1 − 𝛼) 𝛿 (z)

where the asymptotic eigenvalue distribution of 𝐇 can be easily obtained as

p𝐇 (z) = (1 − 𝛼) 𝛿 (z) +
(

1
2𝜋r

dP𝐇(r)
dr

)
|
|
||z|=r

= (1 − 𝛼) 𝛿 (z) + 1
𝜋

Finally, we need determine the boundary of the density. Since the distribution has some
zero measure, then inner radius of the density is given by

in (𝐗)−1 = 0

The outer radius of the density reads

out (𝐗) = 1
√

S𝐇𝐇H (z)
|
|z=0 =

√
𝛼

◽
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Theorem 6.2.13 (Proposition 3.10 in Haagerup and Larsen (2006) [292]) Let the
random matrices 𝐗k be asymptotically free R-diagonal elements, and their asymptotic
eigenvalue distributions of 𝐗k be identical for all k = 1, 2,… ,N . Then the asymptotic
eigenvalue distributions of

N∏

k=1
𝐗k (6.43)

and 𝐗N
k are identical for any k = 1, 2,… ,N .

Theorem 6.2.13 has a lot of practical applications.
The R-diagonal matrices has an interesting consequence of additively free convolution

regarding to singular values:

Theorem 6.2.14 ([293]) Let𝐗 be R-diagonal matrix, and has the decomposition form
𝐗 = 𝐔

√
𝐘1 such that 𝐔 is Haar-unitary matrix and free of the matrix

√
𝐘1 =

√
𝐗𝐗H .

Furthermore, let the asymptotic eigenvalue distribution of 𝐗 be

𝛼𝛿 (z) +
{

p𝐗 (z) P(−1)
𝐗 (𝛼) < |z| ⩽ b

0 elsewhere (6.44)

Moreover, define a summation of identical free matrices as

𝐘c =
1∕c∑

k=1
𝐘k

for c ≤ 1. Then, the asymptotic eigenvalue distribution of 𝐗c = 𝐔
√
𝐘c satisfies

p𝐗c
(z) = 𝛼c𝛿 (z) +

{
p𝐗

(
z

√
c

) √
cP(−1)

𝐗

(
1
c
𝛼c + 1 − 1

c

)
< |z| ⩽

√
cP(−1)

𝐗 (1)
0 elsewhere

where 𝛼N = max (0, 1 + cN − N).

Theorem 6.2.14 immediately inspires us to propose the following theorem:

Theorem 6.2.15 (Theorem 29 of Cakmak and Muller (2012) [139]) Consider N ×
N R-diagonal matrix 𝐗 =

[
𝐱1,… , 𝐱N

]
whose eigenvalue distribution is

𝛼𝛿 (z) +
{

p𝐗 (z) P(−1)
𝐗 (𝛼) < |z| ⩽ b

0 elsewhere

where P(−1)
𝐗 (r) is the functional inversion of radial probability measure (CDF). Moreover,

let the N × T (T ≤ N) matrix 𝐗c =
[
𝐱1,… , 𝐱T

]
, for c = T∕N ≤ 1. Define

𝛼c = max
(

0, 1 + 𝛼

c
− 1

c

)

Then, the empirical eigenvalue distribution of 𝐗c,u such that

𝐗c,u = 𝐔
√

𝐗H
c 𝐗c
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converges almost surely to limit distribution satisfies

p𝐗c.u
(z) = 𝛼c𝛿 (z) +

{ 1
c
p𝐗 (z) P(−1)

𝐗
(
c𝛼c + 1 − c

)
< |z| ⩽ b

0 elsewhere

as N ,T → ∞ with c = T∕N ≤ 1 fixed.

Proof. We follow [139] for this proof.

𝐗 =
[
𝐱1,… , 𝐱N

]

Define an N × N diagonal matrix 𝐏 whose diagonal terms are distributed as

p𝐏 (x) = (1 − c) 𝛿 (x) + c𝛿 (x − 1) .

Then, using the matrix projection, we have

𝐏𝐗𝐗H𝐏 = 𝐗c𝐗H
c (6.45)

which gives

p𝐗c𝐗H
c
(x) = (1 − c) 𝛿 (x) + cp𝐗c𝐗H

c
(x − 1) (6.46)

With Theorem 5.8.13(Theorem 14.10 in [259]), we have

R𝐗H
c 𝐗c

(𝜔) = R𝐗𝐗H (c𝜔) (6.47)

Recall the functional relation between R-transform and S-transform [259]

zR (z) S (zR (z)) = z; zS (z)R (zS (z)) = z (6.48)

Using (6.48), we obtain

S𝐗H
c 𝐗c

(z) = 1
R𝐗H

c 𝐗c

(
zS𝐗H

c 𝐗c
(z)

) = 1
R𝐗𝐗H

(
czS𝐗H

c 𝐗c
(z)

)

= S𝐗𝐗H

(
czS𝐗H

c 𝐗c
(z)R𝐗𝐗H

(
zS𝐗H

c 𝐗c
(z)

))

= S𝐗𝐗H (cz)

(6.49)

Moreover we defined in the Theorem

𝐗c,u = 𝐔
√

𝐗H
c 𝐗c (6.50)

With (6.41) , we have

P(−1)
𝐗 (r) = 1√

S𝐗H
c 𝐗c

(r−1)
= 1

√
S𝐗𝐗H (cr−c)

= 1
√

S𝐗𝐗H ((cr+1−c)−1)

= P(−1)
𝐇 (cr + 1 − c)

(6.51)

Let r → P𝐗c,u
(r). We have

P𝐗 (r) = cP𝐗c,u
(r) + 1 − c (6.52)

so

P𝐗c,u
(r) = 1

c
P𝐗 (r) + 1 − 1

c
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Moreover, zero measure can be easily found as

𝛼c = P𝐗c,u
(r) ||

|r=0
= max

(
0, 1 − 1

c
+ 1

c
P𝐗 (r) ||r=0

)

= max
(

0, 𝛼
c
+ 1 − 1

𝛼

)
,

(6.53)

since we defined zero measure of 𝐗 as 𝛼. Thus, we have distribution of 𝐗c,u, which sat-
isfies with

dP𝐗c,u (r)

dr
= p𝐗c,u (r)
= 𝛼c𝛿 (r) +

1
c
p𝐗 (r)

p𝐗c,u
(z) = 1

2𝜋r
p𝐗c,u (r)

|
|
|r=|z|

= 𝛼c𝛿 (z) +
1
c
p𝐗 (z)

In the final step, we study how the boundary of the distribution function is affected by
the matrix transform (6.50). It is obvious that the outer boundary does not change since
(with (6.51))

P(−1)
𝐗c,u

(r) ||r=1 = P(−1)
𝐗c,u

(cr + r − c) ||r=1 = P(−1)
𝐗 (r) ||r=1.

In the same way, the inner boundary is given by

P(−1)
𝐗c,u

(r) ||
|r=𝛼c

= P(−1)
𝐗c,u

(cr + 1 − c) ||
|r=𝛼c

Thus, the asymptotic eigenvalue distribution of 𝐗c,u converges to the limit distribution

p𝐗c,u
(z) = 𝛼c𝛿 (z) +

{
1
c
p𝐗 (z) P(−1)

𝐗c,u
(cr + 1 − c) ||

|r=𝛼c
< |z| ⩽ b

0 elsewhere,

as N ,T → ∞ with the ratio c = T∕N ≤ 1 fixed. ◽
The above proof can be viewed as an example to illustrate the approach. For N time

series of length T , we can model these time series using an N × T non-Hermitian ran-
dom matrix 𝐗 ∈ ℂN×T where N and T are large, in the order of 100–5000. The current
laptop can handle a matrix of 5000 − 5000 for their eigenvalues calculations.

6.2.4 Isotropic Random Matrices

In the physics literature, the R-diagonal matrix is also called isotropic random matrix.
Here we give an intuitive introduction to this concept. The concept of isotropic random
matrices in analogy to isotropic complex random variables z that have a circularly sym-
metric probability distribution depending only on the module |z|. Using polar decom-
position, one can write z ≡ rej𝜙 where r is a real non-negative random variable and 𝜙 is
a random variable (phase) with a uniform distribution on [0, 2𝜋).

Isotropic random matrices are defined by a straightforward generalization of isotropic
complex random variables. A square N × N matrix 𝐗 is said to be an isotropic ran-
dom matrix if it has a polar decomposition 𝐗 = 𝐇𝐔 in which 𝐇 is a positive semidef-
inite Hermitian random matrix and 𝐔 is a unitary random matrix independent of 𝐇
and distributed on the unitary group  (N) with the Haar measure. In short, 𝐔 is a
Haar unitary matrix. In other words, for an N × N isotropic random matrix 𝐗, one has
P (𝐗) = P (𝐗𝐕), where 𝐕 ∈  (N).
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Examples of isotropic random matrices include: (i) Girko-Ginibre matrix; (ii) the
matrix of the form 𝐔𝐇𝐕 where 𝐔 and 𝐕 are unitary Haar measure random matrices
and 𝐇 is a positive semidefinite Hermitian random matrix.

Properties of for isotropic random matrices include: (i) Eigenvalue spectrum is rota-
tionally symmetric on the complex plane; (ii) They form isotropic unitary ensemble
(IUE). (iii) Average eigenvalue distribution for the product of L matrices generated from
any type of IUE is independent of the order of multiplication in the N → ∞ limit.

6.3 The Sum of Non-Hermitian Random Matrices

We define the arithmetic average of L matrices as

1
L

(
𝐗1 + · · · + 𝐗L

)
= 1

L

L∑

i=1
𝐗i (6.54)

where 𝐗i ∈ ℂN×n, i = 1,… , L are non-Hermitian random matrices, whose entries are
i.i.d. with zero mean and variance one.

It is found that the sum will not affect the empirical eigenvalue density function,
which converges to the Marchenko–Pastur law (Theorem 3.6.1) for the large matrix
limit. In other words, the matrix sum affects the scaling parameter 𝜎2 only if the
Marchenko–Pastur law is found to be identical to L. Recall from Theorem 3.6.1 that
the eigenvalues of 1

n
𝐗𝐗H or the singular values of 𝐗 have the probability distribution

function (PDF) defined as

fMP(x) =
1

2𝜋xc𝜎2

√
(b − x) (x − a) 𝕀 (a ⩽ x ⩽ b) (6.55)

where

a = 𝜎2
(

1 −
√

c
)2
, b = 𝜎2

(
1 +

√
c
)2
, and c = n∕N (6.56)

Consider the N × T , (T ≤ N) matrix 𝐗 and the N × (N − T) null matrix  . Let the
N × N matrix 𝐗s = [𝐗 |𝐍 ]. Then we have

𝐗s𝐗H
s = 𝐗𝐗H (6.57)

We call 𝐗s the square equivalence of 𝐗. When the matrix is R-diagonal that also means
that the matrix is biunitarily invariant, then square equivalence can be replaced by
square equivalent. Let the N × N random matrix 𝐗 be R-diagonal such that

𝐗𝛽 =
[
𝐱1, 𝐱2,… , 𝐱N

]

with the ratio 𝛽 = T∕N ≤ 1 fixed. Moreover, define a N × T random matrix as
𝐗 =

[
𝐱1, 𝐱2,… , 𝐱T

]

Define an arbitrary N × N diagonal matrix 𝐏 such that the diagonal entries
p𝐏 (x) = (1 − 𝛽) 𝛿 (x) + 𝛽𝛿 (x − 1)

Using 𝐗𝐏 = 𝐗p, then we have

𝐗p𝐗H
p ≡ 𝐗𝛽𝐗H

𝛽
(6.58)

Thus we call 𝐗p the square equivalent of a rectangular random matrix 𝐗𝛽 .
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Example 6.3.1 (matrix-valued hypothesis testing) Consider the hypothesis testing

0 ∶ 𝐗1 + · · · + 𝐗L

1 ∶
(
𝐗1 + · · · + 𝐗L

)
+

(
𝐘1 + · · · + 𝐘K

) (6.59)

where 𝐗i ∈ ℂN×n, i = 1,… , L are non-Hermitian random matrices, whose entries
are i.i.d. with zero mean and variance one. Here 𝐘i ∈ ℂN×n, i = 1,… ,K are
non-Hermitian random matrices. 𝐘i ∈ ℂN×n, i = 1,… ,K are freely independent
of 𝐗i ∈ ℂN×n, i = 1,… , L.

Then the singular values of𝐗sum = 𝐗1 + · · · + 𝐗L the probability distribution function
defined in (3.10) with the variance parameter 𝜎2

sum = 𝜎2
1 + · · · + 𝜎2

L. Using �̃� to represent
the square equivalence of 𝐙 defined in (6.57) or the square equivalent of 𝐙 (6.58), with
the aid of the linearity of the trace function, we have

0 ∶ Tr
(
�̃�sum

)

1 ∶ Tr
(
�̃�sum

)
+ Tr

(
�̃�1 + · · · + �̃�K

)

which is the standard scalar-valued hypothesis-testing problem. ◽
Figures 6.2 and 6.3 illustrate the above remarks. The average operation will not affect

the PDF of 𝐗, if we have L realizations of 𝐗, i.e., 𝐗i, i = 1,… , L.
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Figure 6.2 The sum of L non-Hermitian random matrices: N = 800, n = 2000, c = N∕n = 0.4,
a = 0.135, b = 2.66 and h = 0.079, for one matrix, i.e., L = 1.
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Figure 6.3 The same as Figure 6.2 except L = 10.

MATLAB Code: Sum of Non-Hermitian Matrices

clear all;
%Reference
% Non-Hermitian Random Matrix Theory for MIMO Channels
% Burak Cakmak (2012) MS Thesis
% NTNU-Trondheim Norwegain University of Science

and Technology
N=200*4; beta=0.4; kappa=0.05; alpha=1; c=beta; n=N/c;
% c=N/n; c=p/n; beta=T/R=1/c; beta>1.
R=N; T=n; rho=beta/kappa; S=R*rho; %kappa=beta/rho
radius_inner=((1-kappa)*(1-beta))^(alpha/2) sigma=1;
step=0.01/40; %step=0.01/10/4/2/2;

h=1/n^(1/3);
a=(1-sqrt(c))^2; b=(1+sqrt(c))^2;
x=(a+step):step:b;
fcx=(1/2/pi/c./x).*sqrt((b-x).*(x-a));
% the density function of Marcenko and Pastur law

Z=zeros(N,n);
for i=1:alpha
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Y=randn(N,n)
+sqrt(-1)*randn(N,n);
% N x n matrix white noise that follows the

Marchenko-Pastur Law

Z=Z+Y; % singular value equivalent
end % i

VarZ=var(Z)’;
VarZ(1:1)

for j=1:n
Z(:,j)=Z(:,j)/std(Z(:,j)); % normalized the variance to one
end %j

lambda=eig(1/n*Z*Z’); % eigenvalues of sample covariance
matrix

L=(b-a)/step;
x1=a+step;
for j=1:L

for i=1:N y=(x1-lambda(i))/h;
Ky(i)=kernel(y);
end %N
fnx(j)=sum(Ky)/N/h;
x1=x1+step;
x2(j)=x1;
end %L

% figures
ifig=0;

ifig=ifig+1;figure(ifig)
plot(x,fcx,’.b’, x2,fnx,’-*r’)
xlabel(’Eigenvalues x’)
ylabel(’Probability Density
Function (PDF) f_c(x), f_n(x)’)
legend(’Marcenko-Pastur Law’,’Kernel Density Estimation’);

title([’N=’,int2str(N),’, n=’,int2str(n),’,
\alpha=’,num2str(alpha), .. ’, c=N/n=’,num2str(c), ’,
a=’,num2str(a), ’, b=’,num2str(b),’, h=’,num2str(h)]) grid

function [Kx] = kernel(x)
Kx=1/sqrt(2*pi)*exp(-0.5*x.^2);
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6.4 The Product of Non-Hermitian Random Matrices

We define the product as

𝐗1 · · ·𝐗L =
L∏

i=1
𝐗i

where 𝐗i ∈ ℂN×n, i = 1,… , L are non-Hermitian random matrices, whose entries are
i.i.d. with zero mean and variance one. Similar to (6.54) for the arithmetic average,
we are motivated to understand the geometric mean of L non-Hermitian random
matrices:

(
𝐗1 · · ·𝐗L

)1∕L =

( L∏

i=1
𝐗i

)1∕L

The product of large non-Hermitian random matrices is much more involved than the
sum. But we still have the tractable calculus for this kind of operations.

In Figure 6.4 and Figure 6.5, the case of L = 1 and L = 10 are compared for the eigen-
values on the complex plane. The so-called the single-ring law is observed: All eigen-
values lie within a single ring. The radius of the inner circle is greatly reduced when the
number of matrices L increases.

Now we address how to calculate the radius of the inner circle and the probability
distribution of the eigenvalues within the ring.

Definition 6.4.1 Consider the N × n matrix𝐗. Let the n × n matrix𝐔 be Haar-unitary
matrix and free of 𝐗H𝐗 Moreover define,

𝐗u = 𝐔
√
𝐗H𝐗 (6.60)

Then, as far as concerning singular value distribution, we have

𝐗H
u 𝐗u ≡ 𝐗H𝐗, 𝐗H𝐗 ∈ ℂn×n (6.61)

The matrix 𝐗u is called the singular value equivalent of 𝐗.

Theorem 6.4.2 Let the entries of the N × n matrix𝐗 be i.i.d. with zero mean variance
1∕N . Then, the empirical eigenvalue distribution of the singular value equivalent of 𝐗
converges almost surely to

f𝐗u
(z) =

{
1

c𝜋

√
1 − c < |z| ⩽ 1

0 elsewhere
(6.62)

as N , n → ∞ with the ratio c = n∕N ≤ 1 fixed.

The radius of the inner circle is
√

1 − c, which agrees with the empirical eigenvalue
distribution, as shown in Figure 6.4.

Now we consider the case
L∏

i=1
𝐗u,i (6.63)
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Figure 6.4 Eigenvalues for a product of L non-Hermitian random matrices:
N = 800, n = 2000, c = N∕n = 0.4, a = 0.135, b = 2.66 and h = 0.079, for one matrix, i.e., L = 1.

where 𝐗u,i is the singular value equivalent of the rectangular N × n matrix 𝐗i, whose
entries are i.i.d. with zero mean and variance 1∕N .

Theorem 6.4.3 Let N × n matrix
L∏

i=1
𝐗u,i be defined in (6.63). Then, the empirical

eigenvalue distributions of
L∏

i=1
𝐗u,i converge almost surely to the same limit given by

f L∏

i=1
𝐗u,i

(z) =
{ 1

𝜋cL
|z|2∕L−2 (1 − c)L∕2 ⩽ |z| ⩽ 1

0 elsewhere

as N , n → ∞ with the ratio c = N∕n ≤ 1 fixed.

The radius of the inner circle is (1 − c)L∕2, which agrees with the empirical eigenvalue
distribution, as shown in Figure 6.5 for L = 10. The PDF is also given above. Figure 6.6
and Figure 6.7 illustrates the case for L = 1 and L = 10.

Moreover, there is an interesting measure for square non-Hermitian random matri-
ces; such a measure, called a left-right eigenvector correlation in the literature, tells how
many pairs of eigenvalues are lying close in the complex plane. Consider the N × N
non-Hermitian random matrix 𝐗 with eigenvalue decomposition

𝐗 = 𝐕𝚲𝐖−1 =
∑

i
𝜆i𝐯i𝐰H

i
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Figure 6.5 The same as Figure 6.4 except L = 10.
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Figure 6.6 The empirical eigenvalue density function for a product of L non-Hermitian random
matrices: N = 800, n = 2000, c = N∕n = 0.4, a = 0.135, b = 2.66 and h = 0.079, for one matrix,
i.e., L = 1.
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Figure 6.7 The same as Fig. 6.6 except L = 10.

where𝐕 is called right eigenvector matrix and𝐖 = 𝐕−1 is called left eigenvectors. Then
the correlation between right-left eigenvectors is defined as

C𝐗 (z) =
𝜋

N

N∑

i=1

(
𝐰H

i 𝐰
) (
𝐯H

i 𝐯
)
𝛿
(
z − zi

)
(6.64)

Theorem 6.4.4 Let the random matrix 𝐗 defined in (6.63). Then the correlation
between right-eigenvector defined in (6.64) of singular value equivalent of 𝐗 is

C𝐗u
(z) =

{
1
c

(
1 − |z|2∕L) |z|

2
L
−2 (1 − c)L∕2

< |z| ⩽ 1
0 elsewhere

(6.65)

as N , n → ∞ with the ratio c = N∕n ≤ 1.

MATLAB Code: Product of Non-Hermitian Matrices

clear all;
%Reference
% Non-Hermitian Random Matrix Theory for MIMO Channels
% Burak Cakmak (2012) MS Thesis
% NTNU-Trondheim Norwegain University of Science
and Technology
N=200*4; beta=0.4; kappa=0.1; alpha=10; c=beta; n=N/c;
% c=N/n; c=p/n; beta=T/R=c.
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R=N; T=n; rho=beta/kappa; S=R*rho; %kappa=beta/rho
radius_inner=(1-beta)^(alpha/2)
%radius_inner=((1-kappa)*(1-beta))^(alpha/2)
%radius_inner=((rho-beta)*(1-beta)*rho)^(alpha/2)
sigma=1;
step=0.01/40; %step=0.01/10/4/2/2;

h=1/n^(1/3);
a=(1-sqrt(c))^2; b=(1+sqrt(c))^2;
x=(a+step):step:b;
fcx=(1/2/pi/c./x).*sqrt((b-x).*(x-a)); % the density
function of Marcenko and Pastur law
H=bernoulli(0.5,N,N)+sqrt(-1)*bernoulli(0.5,N,N);
% i.i.d. complex matrix
U=H*sqrtm(inv(H’*H)); % Unitrary Haar matrix U of N x N

Z=eye(N,N);
for i=1:alpha
H=1/sqrt(2)*randn(R,T)+sqrt(-1)*1/sqrt(2)*randn(R,T);
Z=Z*U*sqrtm(H*H’); % singular value equivalent
end % i

VarZ=var(Z)’;
VarZ(1:10)

for j=1:N
Z(:,j)=Z(:,j)/std(Z(:,j)); % normalized the variance to one
end %j

Z=Z/sqrt(N); % normalized so the eigenvalues lie within
unit circle

lambda=eig(Z*Z’); % eigenvalues of sample covariance matrix

% kernel density estimation
L=(b-a)/step;
x1=a+step;
for j=1:L
for i=1:N

y=(x1-lambda(i))/h;
Ky(i)=kernel(y);

end %N
fnx(j)=sum(Ky)/N/h;
x1=x1+step;
x2(j)=x1;

end %L

% figures
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ifig=0;

ifig=ifig+1;figure(ifig)
hist(lambda);
xlabel(’Eigenvalues x’)
ylabel(’Probability Density Function (PDF) f(x)’)
legend(’Kernel Density Estimation’);

title([’N=’,int2str(N),’, n=’,int2str(n),’,
c=N/n=’,num2str(c),’,
a=’,num2str(a),\ldots
’, b=’,num2str(b),’, h=’,num2str(h)])

grid

ifig=ifig+1;figure(ifig)
plot(x,n*h*(fcx-fnx))
xlabel(’Eigenvalue x’)
ylabel(’Probability Density Function (PDF) ’)
legend(’Deviation n*h*[ f_c(x)-f_n(x) ]’);
title([’N=’,int2str(N),’, n=’,int2str(n),’,
c=N/n=’,num2str(c),’,
a=’,num2str(a),\ldots
’, b=’,num2str(b),’, h=’,num2str(h)])

grid

ifig=ifig+1;figure(ifig)
plot(x,fcx,’.b’, x2,fnx,’-*r’)
xlabel(’Eigenvalues x’)
ylabel(’Probability Density
Function (PDF)
f_c(x), f_n(x)’)
legend(’Marcenko-Pastur Law’,’Kernel Density Estimation’);

title([’N=’,int2str(N),’, n=’,int2str(n),’,
c=N/n=’,num2str(c),\ldots
’, \alpha=’,num2str(alpha), ’, a=’,num2str(a), ’,
b=’,num2str(b),\ldots ’, h=’,num2str(h)]) grid

ifig=ifig+1;figure(ifig); lambdaZ=eig(Z);
t=0:2*pi/1000:2*pi;x=sin(t);y=cos(t); % unit circle
plot(real(lambdaZ),imag(lambdaZ),’.’,radius_inner*x,
radius_inner*y,’r-’,x,y,’r-’);
axis([-1.5 1.5 -1.5 1.5])

%xlabel(’Eigenvalues x’)
xlabel(’real(Z)’); ylabel(’imag(Z)’);
legend(’Eigenvalues’,’Inner
Unit Circle ’,’Outer Unit Circle’);
title([’N=’,int2str(N),’, n=’,int2str(n),\ldots
’, c=N/n=’,num2str(c),’, \rho=’,num2str(rho),’,
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\alpha=’,num2str(alpha),\ldots
’, \beta=c=’,num2str(beta),
’, \kappa=\beta/\rho=’,num2str(kappa)])

grid

function [Kx] = kernel(x)
Kx=1/sqrt(2*pi)*exp(-0.5*x.^2);

function B=bernoulli(p,m,n);
% BERNOULLI.M
% This function generates n independent draws of a Bernoulli
% random variable with probability of success p.
% first, draw n uniform random variables

M = m;
N = n;
p = p;
B = rand(M,N) < p;
B=B*(-2)+ones(M,N);

6.5 Singular Value Equivalent Models

We consider the data matrix 𝐙 that can be expressed in the form
𝐙 = 𝐘2𝐘1, 𝐙 ∈ ℂN×n (6.66)

where 𝐘1 ∈ ℂK×n,𝐘2 ∈ ℂN×K are non-Hermitian random matrices. The entries of 𝐘1
and𝐘2 are assumed to be i.i.d. with zero mean and variance 1∕N , and 1∕n, respectively.
The data matrix model defined in (6.66) generalizes the standard model in the previous
sections. As the 𝜌 = K∕N goes to infinity, i.e., 𝜌 → ∞

lim
𝜌→∞

𝐙 ≡ 𝐗 (6.67)

and the entries of 𝐗 ∈ ℂN×nare i.i.d. with zero mean and variance 1∕N . When (6.67) is
valid, we can treat𝐗 as the same as the previous sections when the sum and the product
of such matrices are studied. We can study

𝐗1 · · ·𝐗L =
L∏

i=1
𝐗i (6.68)

where 𝐗i, i = 1,… , L are defined in (6.67). In practice, the asymptotic condition of
𝜌 → ∞ is approximately satisfied when 𝜌 varies from 10 to 50. See Figure 6.8 and
Figure 6.9 for illustration.

Theorem 6.5.1 Let the random matrix 𝐗 be defined as in (6.66). Then, the empirical
eigenvalue distribution of singular value equivalent of 𝐗 converges almost surely to the
limit

f𝐇u
(z) =

{
1

c𝜋
1

√
(1−𝜌)2+4𝜌|z|2

√
(1 − 𝛽∕𝜌) (1 − 𝛽) ⩽ |z| ⩽ 1

0 elsewhere
(6.69)

as N , n,K → ∞ with the ratios 𝜌 = K∕N , and c = N∕n ≤ 1 fixed.
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Figure 6.8 The empirical eigenvalue density function for one non-Hermitian random matrix:
N = 800, n = 2000, c = N∕n = 0.4, a = 0.135, b = 2.66, h = 0.079 and 𝜎2 = 0.0124 for 𝜌 = 10 (thus
K = N𝜌 = 8000).
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Figure 6.9 The same as Figure 6.8 except 𝜌 = 50.
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Figure 6.10 The eigenvalues for one non-Hermitian random matrix:
N = 800, n = 2000, c = N∕n = 0.4, a = 0.135, b = 2.66, h = 0.079 and 𝜎2 = 0.0124 for 𝜌 = 10 (thus
K = N𝜌 = 8000).

See Figure 6.10 and Figure 6.11 for the illustration of (6.69). The radius of the inner
circle is given by

√
(1 − 𝛽∕𝜌) (1 − 𝛽).

In Figure 6.12 and Figure 6.13, we study the case L = 5 in (6.67). The radius of the
inner circle is given by

(√
(1 − 𝛽∕𝜌) (1 − 𝛽)

)L
. For the general case, the author obtained

it using a heuristic approach.
It is known in [270, 294] that free independence occurs asymptotically in large

random matrices. As a result, when N and n go large, (6.67) can be viewed as the free
multiplicative convolution of k free random variables. We are interested in the support
of the k-time free multiplicative convolution of the measure 𝜇 with itself, which we
denote as 𝜇k :

𝜇k = 𝜇 ⊠ · · ·⊠𝜇
⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟

k−times

Let bk denote the upper boundary of the support of 𝜇k :

Theorem 6.5.2 ([295]) Suppose that 𝜇 is a compactly supported probability measure
on ℝ+, with expectation 1 and variance 𝜎2. Then

lim
k→∞

bk

k
= e𝜎2

where e denotes the base of natural logarithms, e = 2.71…
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Figure 6.11 The same as Figure 6.10 except 𝜌 = 50.
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N = 800, n = 2000, c = N/n = 0.4, ρ  = 10, K = Nρ = 8000, α = 5,
a = 0.13509, b = 2.6649, h = 0.07937, σ2 = 2.6272

Figure 6.12 The eigenvalues for one non-Hermitian random matrix:
N = 800, n = 2000, c = N∕n = 0.4, a = 0.135, b = 2.66, h = 0.079 and 𝜎2 = 0.0124 for
𝜌 = 10 and L = 5.
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Figure 6.13 The same as Figure 6.12.

To say it very roughly, the largest singular value of the product approximately
equals a certain average of all singular values multiplied by

√
n and a proportionality

constant.
From (3.10), we know the famous Marchenko–Pastur law is compacted-supported

within the interval [a1, b1], where a1 and b1 are defined in (6.56). To differenti-
ate the “signal” from noise, we often need to know bk , the upper boundary of the
support of 𝜇k .

We can extend the above theorem.

Theorem 6.5.3 ((2012) [296]) There exists a universal constant C > 0 such that for
all k and any 𝜇1,… , 𝜇k probability measures supported on [0, b], satisfying 𝔼

(
𝜇i

)
= 0

and Var
(
𝜇i

)
⩾ 𝜎2, for i = 1,… , k, the the upper boundary Bk of the support of the mea-

sure 𝜇1 ⊠ · · ·⊠𝜇k satisfies

𝜎2k ⩽ Bk ⩽ Cbk.

In other words, for (not necessarily identically distributed) positive free random vari-
ables

(
𝐘i

)

i⩾1 such 𝔼
(
𝜇i

)
= 0, Var

(
𝜇i

)
⩾ 𝜎2, and ‖

‖𝐘i
‖
‖ ⩽ b, for i ≥ 1, we have

lim
n→∞

sup 1
K

‖
‖
‖
𝐘1∕2

1 · · ·𝐘1∕2
K−1𝐘K𝐘

1∕2
K−1 · · ·𝐘

1∕2
1

‖
‖
‖
< Cb

and

lim
n→∞

inf 1
K

‖
‖
‖
𝐘1∕2

1 · · ·𝐘1∕2
K−1𝐘K𝐘

1∕2
K−1 · · ·𝐘

1∕2
1

‖
‖
‖
⩾ 𝜎2
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For compactly supported measures with mean 1, the variance is additive [296] with
respect to free multiplicative convolution, that is

Var
(
𝜇1 ⊠ · · ·⊠𝜇k

)
=

k∑

i=1
Var

(
𝜇i

)

MATLAB Code: Singular Value Equivalent Models

clear all;
%Reference
% Non-Hermitian Random Matrix Theory for MIMO Channels
% Burak Cakmak (2012) MS Thesis
% NTNU-Trondheim Norwegain University of

Science and Technology
N=200*4; beta=0.4; rho=10; alpha=1; c=beta; n=N/c;
% c=N/n; c=p/n; beta=T/R=c.
R=N; T=n; kappa=beta/rho; S=R*rho; %kappa=beta/rho
radius_inner=((1-kappa)*(1-beta))^(alpha/2)

step=0.01/40; %step=0.01/10/4/2/2;
h=1/n^(1/3);
a=(1-sqrt(c))^2; b=(1+sqrt(c))^2;
x=(a+step):step:b;
fcx=(1/2/pi/c./x).*sqrt((b-x).*(x-a));
% Marcenko and Pastur law
H=bernoulli(0.5,N,N)+sqrt(-1)*bernoulli(0.5,N,N);
% i.i.d. complex matrix
U=H*sqrtm(inv(H’*H)); % Unitrary Haar matrix U of N x N
clear H;

Z=eye(N,N);
for i=1:alpha

H1=1/sqrt(2)*randn(S,T)+sqrt(-1)*1/sqrt(2)*randn(S,T);
H2=1/sqrt(2)*randn(R,S)+sqrt(-1)*1/sqrt(2)*randn(R,S);
Y=H2*H1/sqrt(R*T); % R x T (N x n)
Z=Z*U*sqrtm(Y*Y’); % singular value equivalent
end % i
clear H1; clear H2;clear Y; clear U;

VarZ=var(Z)’;
sigma2=(mean(VarZ))^(1/alpha);

for j=1:N
Z(:,j)=Z(:,j)/std(Z(:,j)); % normalized the variance to one
end %j
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Z=Z/sqrt(N); % normalized so the eigenvalues lie within
unit circle

lambda=eig(Z*Z’); % eigenvalues of sample covariance matrix

% kernel density estimation
L=(b-a)/step;
x1=a+step;
for j=1:L
for i=1:N

y=(x1-lambda(i))/h;
Ky(i)=kernel(y);

end %N
fnx(j)=sum(Ky)/N/h;
x1=x1+step;
x2(j)=x1;

end %L

% figures
ifig=0;

ifig=ifig+1;figure(ifig)
hist(lambda);
xlabel(’Eigenvalues x’)
ylabel(’Probability Density Function (PDF) f(x)’)
legend(’Kernel Density Estimation’);

title([’N=’,int2str(N),’, n=’,int2str(n),’,
c=N/n=’,num2str(c),’, a=’,num2str(a),\ldots
’, b=’,num2str(b),’, h=’,num2str(h)])

grid

ifig=ifig+1;figure(ifig)
plot(x,n*h*(fcx-fnx))
xlabel(’Eigenvalue x’)
ylabel(’Probability Density Function (PDF) ’)
legend(’Deviation n*h*[ f_c(x)-f_n(x) ]’);
title([’N=’,int2str(N),’, n=’,int2str(n),’,
c=N/n=’,num2str(c),’,
a=’,num2str(a),\ldots
’, b=’,num2str(b),’, h=’,num2str(h)])

grid
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ifig=ifig+1;figure(ifig)
plot(x,fcx,’.b’, x2,fnx,’-*r’)
xlabel(’Eigenvalues x’)
ylabel(’Probability Density
Function (PDF) f_c(x), f_n(x)’)
legend(’Marcenko-Pastur Law’,’Kernel Density Estimation’);

title([’N=’,int2str(N),’, n=’,int2str(n),’,
c=N/n=’,num2str(c),\ldots
’, \rho=’,num2str(rho), ’, K=N\rho=’,num2str(S),\ldots ’,
\alpha=’,num2str(alpha),’, a=’,num2str(a),\ldots
’, b=’,num2str(b),’, h=’,num2str(h),’,

\sigma^2=’,num2str(sigma2)])
grid

ifig=ifig+1;figure(ifig);
lambdaZ=eig(Z);
t=0:2*pi/1000:2*pi;x=sin(t);y=cos(t); % unit circle
plot(real(lambdaZ),imag(lambdaZ),’.’,
radius_inner*x,radius_inner*y,’r-’,x,y,’r-’);
axis([-1.5 1.5 -1.5 1.5])

%xlabel(’Eigenvalues x’)
xlabel(’real(Z)’); ylabel(’imag(Z)’);
legend(’Eigenvalues’,’Inner Circle ’,’Outer Unit Circle’);
title([’N=’,int2str(N),’,
n=’,int2str(n),\ldots
’, c=N/n=’,num2str(c),’, \rho=’,num2str(rho),’,

\alpha=’,num2str(alpha),\ldots
’, \beta=c=’,num2str(beta), ’,

\kappa=\beta/\rho=’,num2str(kappa),\ldots
’, inner radius=’,num2str(radius_inner)])

grid

function [Kx] = kernel(x)
Kx=1/sqrt(2*pi)*exp(-0.5*x.^2);

function B=bernoulli(p,m,n);
% BERNOULLI.M
% This function generates n independent draws of a Bernoulli
% random variable with probability of success p.
% first, draw n uniform random variables

M = m;
N = n;
p = p;
B = rand(M,N) < p;
B=B*(-2)+ones(M,N);
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6.6 The Power of the Non-Hermitian Random Matrix

The new results in this section were recently obtained by the author using a heuristic
approach. This power of the non-Hermitian random matrix is reminiscent of the power
mapping method that was used for noise reduction in the empirical covariance matrix
in Section 2.10.5.

6.6.1 The Matrix Power

If𝐀 is diagonalizable, with𝐀 = 𝐔𝐃𝐔H , where𝐔 is unitary, then for an arbitrary function
we have the definition g (𝐀) = 𝐔g (𝐃)𝐔H . Therefore for diagonalizable matrices [297,
p.3], g (𝐀) has the same eigenvectors as 𝐀 and its eigenvalues are obtained by apply-
ing g to those of 𝐀. In particular, for 𝛼 ∈ ℝ, 𝐀𝛼 is a matrix function with g(z) = z𝛼 =
exp (𝛼 ln z), where z ∈ ℂ. The definition of the power of a complex variable follows [298,
Article 236]. For z = |z| ej𝜙 ∈ ℂ, we have z𝛼 = |z|𝛼ej𝛼𝜙. If 𝛼 is a real number, the power 𝛼
will not break the symmetry of z on the complex plane. For example, the circle |z| = R
is transformed into |z|𝛼 = R𝛼 . Consider a special case 𝛼 = 1∕M, where M is a positive
integer. Then

R𝛼 = exp (𝛼 ln R) = exp
( 1

M
ln R

)
→ 1 (6.70)

as M goes large enough. Let 𝜆i, i = 1,… ,N be the eigenvalues of 𝐀𝐀H , which are
always positive. The eigenvalues of the matrix function

(
𝐀𝐀H)𝛼 , for every 𝛼 ∈ ℝ,

we have
(
𝜆i
)𝛼 = exp

(
𝛼 ln 𝜆i

)
→ 1, as 𝛼 → 0 (6.71)

6.6.2 Spectrum

The eigenvalues of an n × n complex matrix 𝐌 are the roots in ℂ of its characteristic
polynomial. We denote by s1 (𝐌) ⩾ … ⩾ sn (𝐌) ⩾ 0 the singular values of 𝐌, defined
for every 1 ≤ i ≤ n by the eigenvalues of the matrix

√
𝐌𝐌H si (𝐌) = 𝜆i

(√
𝐌𝐌H

)
. We

define the empirical spectral measure and the empirical singular values measure as

𝜇𝐌 = 1
n

n∑

i=1
𝛿𝜆i(𝐌), 𝜈𝐌 = 1

n

n∑

i=1
𝛿si(𝐌)

𝜇𝐌 is a probability measure on ℂ while and 𝜈𝐌 is a probability measure on ℂ+.
Let

(
Xij

)

i,j⩾1 and
(
Yij

)

i,j⩾1 be independent, i.i.d. complex, random variables with mean
0 and variance 1. Similarly, let

(
Gij

)

i,j⩾1 and
(
Hij

)

i,j⩾1 be independent, complex, centered
Gaussian variables with variance 1, independent of

(
Xij,Yij

)
. We consider the random

matrices

𝐗n =
(
Xij

)

1⩽i,j⩽n,𝐘n =
(
Yij

)

1⩽i,j⩽n,𝐆n =
(
Gij

)

1⩽i,j⩽n, and 𝐇n =
(
Hij

)

1⩽i,j⩽n

For ease of notation we will sometimes drop the subscript n. It is known that almost
surely (a.s.) for n large enough, 𝐗 is invertible and then 𝜇𝐗−1𝐘 is a well defined ran-
dom probability measure on ℂ. The generalized eigenvalues of (𝐀,𝐁) two n × n complex
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matrices, are the zeros of the polynomial det (𝐀 − z𝐁). If 𝐁 is invertible, it is simply the
eigenvalues of 𝐁−1𝐀. Now, let 𝜇 be the probability measure whose density with respect
to the Lebesgue measure on ℂ ≃ ℝ2 is

1
𝜋
(
1 + |z|2)2

Through stereographic projection, 𝜇 is easily seen to be the uniform measure on the
Riemann sphere.

Theorem 6.6.1 (Spherical ensemble [299–301]) For each integer n ≥ 1,

𝔼𝜇𝐆−1𝐇 = 𝜇

We have a universality result.

Theorem 6.6.2 (Universality of generalized eigenvalues—Bordenave (2011)
[302]) Almost surely,

𝜇𝐗−1𝐘 − 𝜇𝐆−1𝐇 −−−→
n→∞

0

Corollary 6.6.3 (Spherical law—Bordenave (2011) [302]) Almost surely

𝜇𝐗−1𝐘 −−−→
n→∞

𝜇

Theorem 6.6.4 (Universality of sum and product of random matrices)—Bordenave
(2011) [302]) For every integer n, let𝐌n,𝐊n,𝐋n be n × n complex matrices such that,
for some positive real value 𝛼 > 0

• x → x−𝛼 is uniformly bounded for
(
𝜈𝐊n

)

n⩾1 and
(
𝜈𝐋n

)

n⩾1, and x → x𝛼 is uniformly
bounded for

(
𝜈𝐌n

)

n⩾1;
• for almost all z ∈ ℂ, 𝜈𝐊−1

n 𝐌n𝐋−1
n −𝐊−1

n 𝐋−1
n z converges weakly to a probability measure 𝜈z.

Then, almost surely,

𝜇𝐌+𝐊𝐗𝐋∕
√

n −−−→
n→∞

𝜇,

where 𝜇 depends only on
(
𝜈z
)

z∈ℂ. For 𝐌 = 𝐊 = 𝐋 = 𝐈n, the n × n identity matrix, this
statement gives the famous circular law theorem.

Lemma 6.6.5 (singular values of sum and product— [302]) If 𝐀,B are n × n com-
plex matrices, for any real positive value 𝛼 > 0

∫ x𝛼d𝜈𝐀+𝐁 (x) ⩽ 21+𝛼
(

∫ x𝛼d𝜈𝐀 (x) + ∫ x𝛼d𝜈𝐁 (x)
)

∫ x𝛼d𝜈𝐀𝐁 (x) ⩽ 2
(

∫ x𝛼d𝜈𝐀 (x)
)1∕2(

∫ x𝛼d𝜈𝐁 (x)
)1∕2
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6.6.3 The Product

Given �̃�i, i = 1,… , L in ℂN×n, we can always first obtain the singular value equivalent

𝐗i = 𝐔
√

�̃�i�̃�H
i

where 𝐔 is an N × N Haar unitary matrix. For two arbitrary positive integers L and M,
we study the product of non-Hermitian random matrices followed by a power 1∕M

(
𝐗1 · · ·𝐗L

)1∕M (6.72)

or
(
𝐗1

)1∕M · · ·
(
𝐗L

)1∕M (6.73)

where 𝐗i, i = 1,… , L are N × N non-Hermitian random matrices, whose entries are
i.i.d. with mean zero and variance 1∕N . (6.72) and (6.73) will be shown to be identical.
This is the basis for defining

𝐗L∕M =
(
𝐗1 · · ·𝐗L

)1∕M =
(
𝐗1

)1∕M · · ·
(
𝐗L

)1∕M

Now it is well known that the asymptotic eigenvalue distribution of the product
𝐗1 · · ·𝐗L is identical to (𝐗i)L, i = 1,… , L, according to Theorem 6.2.5. We rewrite (6.72)
as 𝐗L to represent any one of the L matrices. Then we obtain 𝐗L∕M, which is natural.
When M = L, (6.72) is the geometric mean of the L matrices. Thus (6.72) reduces
to 𝐗. This result is intuitive. The geometric mean of an arbitrary number of large
non-Hermitian random matrices is identical to any one such large matrix.

What is unexpected is the discovery of the results when M is significantly larger than
L. Define the ratio 𝛼 = L∕M. When 𝛼 is smaller than 1∕5, the asymptotic eigenvalue
distribution is found to follow Gaussian distribution (Figure 6.14) with the mean equal
to one. All the eigenvalues are distributed very close to the unit circle, as illustrated in
Figure 6.15. What matters is the ratio 𝛼. The result looks the same if we use L = 30 and
M = 150.

In analogy with a complex number z, the order of L and M will not affect the result.
In other words,

(
𝐗L)1∕M and

(
𝐗1∕M)L are identical, as illustrated in Figure 6.16 and

Figure 6.17. Therefore, we have the unambiguous definition for the fractional power 𝛼,
i.e., 𝐗𝛼 . The radius of the inner circle on the complex plane is found to be

rin =
(√

1 − c
)(L∕M)2

(6.74)

where c = N∕n. Using (6.70), we can always choose L and M to force the inner circle to
be close enough to the outer unit circle. The empirical expression (6.74) has been tested
for a large class of parameters such that |z| ≥ rin. Using the rescaling in the MATLAB
code, we always guarantee that the upper bound of the spectrum is the unit circle |z| = 1.

clear all;
L=3;M=15; N=200*2; beta=0.3; c=beta; n=N/c; % c=N/n;
c=p/n; beta=T/R=c; beta<1.
step=0.01/40; %step=0.01/10/4/2/2;
h=1/n^(1/3);
a=(1-sqrt(c))^2; b=(1+sqrt(c))^2;



Large Non-Hermitian Random Matrices and Quatartenionic Free Probability Theory 237

0 0.5 1 1.5 2 2.5

Eigenvalues x

N = 400, n = 1333, c = N/n = 0.3, L = 3, M = 15,
a = 0.20455, b = 2.3954, h = 0.090856

Marchenko–Pastur law
Kernel density estimation

0

0.5

1

1.5

2

2.5

P
ro

ba
bi

lit
y 

de
ns

ity
 fu

nc
tio

n 
(P

D
F

) 
f c

(x
),

 f n
(x

)

Figure 6.14 The eigenvalues of
(
𝐗L

)1∕M
for one non-Hermitian random matrix𝐗 of size N × n:

N = 400, n = 1333, c = N∕n = 0.3, L = 3,M = 15, a = 0.135, b = 2.66, h = 0.0908. The ratio 𝛼 is
𝛼 = L∕M = 1∕5.
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Figure 6.15 The same as Figure 6.14. Four outliers.



238 Smart Grid using Big Data Analytics

0 0.5 1 1.5 2 2.5
0

0.5

1

1.5

2

2.5

Eigenvalues x

N = 400, n = 1333, c = N/n = 0.3, L = 3, M = 15, a = 0.20455,
b = 2.3954, h = 0.090856

Marchenko–Pastur law
Kernel density estimation

P
ro

ba
bi

lit
y 

de
ns

ity
 fu

nc
tio

n 
(P

D
F

) 
f c(

x)
, f

n(
x)

Figure 6.16 The eigenvalues of
(
𝐗1∕M

)L
for one non-Hermitian random matrix𝐗 of size N × n. All

other parameters are the same as Figure 6.14.
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Figure 6.17 The same as Figure 6.16. Four outliers.
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x=(a+step):step:b;
fcx=(1/2/pi/c./x).*sqrt((b-x).*(x-a)); % Marcenko
and Pastur law
X=bernoulli(0.5,N,N)+sqrt(-1)*bernoulli(0.5,N,N);
% i.i.d. complex matrix X
U=X*sqrtm(inv(X’*X)); % Unitrary Haar matrix U of N x N
%X=1/sqrt(2)*randn(N,n)+sqrt(-1)*1/sqrt(2)*randn(N,n);
% Gaussian random matrix

X=1/sqrt(2)*bernoulli(0.5,N,n)+sqrt(-1)*1/sqrt(2)
*bernoulli(0.5,N,n);
% Bernoulli random matrix
D=zeros(N,N); D(1,1)=1.3; D(2,2)=j*1.3;
D(3,3)=-j*1.3; D(4,4)=-1.3;
X=U*sqrtm(X*X’); % singular value equivalent
X=U*(X*X’)^(L/2); % singular value equivalent X^(L)
X=U*(X*X’)^(1/2/M); % singular value equivalent X^(1/M)
radius_inner=(1-beta)^(1/2*(L/M)^2) % Y=X^L; Z=Y^(1/M);
Z=X;
for j=1:N
Z(:,j)=Z(:,j)/std(Z(:,j)); % normalized the variance to one
end %j
A=U*D*U’*sqrt(N); Z=Z+A; % A will cause outliers
Z=Z/sqrt(N); % normalized so the eigenvalues lie within
unit circle
lambda=eig(Z*Z’); % eigenvalues of sample covariance matrix
% kernel density estimation
Mtemp=(b-a)/step;
x1=a+step;
for j=1:Mtemp
for i=1:N

y=(x1-lambda(i))/h;
Ky(i)=kernel(y);

end %N
fnx(j)=sum(Ky)/N/h;
x1=x1+step;
x2(j)=x1;

end %L

To save space, other functions are omitted; they can found in other codes that were
included previously.

6.7 Power Series of Large Non-Hermitian Random Matrices

The notation follows Section 6.6. In Section 6.6 we precisely defined the fractional
power 𝐗𝛼 for a square matrix 𝐗 and 𝛼 ∈ ℝ, in particular 𝛼 = L∕M where L and
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M are arbitrary positive integers. With suitable rescaling, the spectrum of 𝐗𝛼 lies
within a single ring with the inner circle and the outer unit circle. The radius of
the inner circle is given by (6.74). For a complex number z, the power z𝛼 will not
break the symmetry of z on the complex plane. In this section, the functions f (z)
will generally not keep this symmetry. Even in this context, we will find that it is
very beneficial to pro-process the data matrix 𝐗 with the power function 𝐗𝛼 , which,
with properly chosen 𝛼, transforms the all the eigenvalues of 𝐗 to possess special
properties: (1) Gaussian distribution; (2) mean one. By removing the mean and nor-
malizing the variance, the resultant eigenvalues of𝐗𝛼 are Gaussian with zero-mean and
variance one.

Now we are in a position to study the general power series
∞∑

k=0
ak𝐗k

where it is assumed that the coefficients ak satisfy certain conditions for the power series
to exist. We are motivated by the fact that the power 𝐗k is a R-diagonal matrix, so 𝐗k

has a complete analogy with complex number z = |z|kejk𝜙, where z = |z| ej𝜙 is a complex
number. One naturally thinks of the power series [298, 303, 304]

∞∑

k=0
bkzk .

We can replace the complex argument z with 𝐗 = UP, where 𝐏 =
√
𝐗𝐗H is the polar

part of the matrix 𝐗, and 𝐔 is the Haar unitary matrix.

6.7.1 The Geometric Series

The geometric series is defined as the series

1 + z + z2 + z3 + z4 + · · ·

Consider the series of moduli

1 + |z| + |z|2 + |z|3 + |z|4 + · · ·

for this series
Sn,p = |z|k+1 + |z|k+2 + · · · + |z|k+p

= |z|k+1 1−|z|p

1−|z|

If |z| < 1, then Sn,p < |z|k+1 1
1−|z|

for all values of p. The series

1 + |z| + |z|2 + |z|3 + |z|4 + · · ·

is convergent so long as |z| < 1, and therefore the geometric series is absolutely conver-
gent if |z| < 1. When |z| ≥ 1, the terms of the geometric series do not tend to zero as k
tends to infinity, and the series is therefore convergent.

When g(z) is a polynomial or rational function [297, pp.1–2] with scalar coefficients
and a scalar argument, z, it is natural to define g(𝐀) by replacing the complex argu-
ment z with 𝐀, replacing division by matrix inversion, and replacing 1 with the identity
matrix.
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Figure 6.18 The eigenvalues of a geometric series of K terms: each term is
(
𝐗L∕M

)
for one

non-Hermitian random matrix𝐗 of size N × n. N = 800, n = 2667, c = 0.3, L = 3,M = 15, K = 20,
a = 0.204, b = 2.395.

The spectrum is upper bounded by the unit circle, so the geometric series is conver-
gent if the z is replaced by 𝐗L∕M∕ (1 + 𝜀) , 𝜀 > 0. The parameter 𝜀 is chosen to guarantee
the convergence of the geometric series. In practice, we are interested in a finite sum

f (𝐘) = 𝐈 + 𝐘 + · · · + 𝐘K =
K∑

k=1
𝐘k , 𝐘 = 𝐗L∕M

The radius of the inner circle forf (𝐘) is found to be

rin = rK , r =
(√

1 − c
)(L∕M)2

(6.75)

where c = N∕n. The outer boundary of the spectrum is the unit circle. Comparing (6.75)
and (6.75), the integral term by term affects the radius of the inner circle.

In Figure 6.18 and Figure 6.19, we consider the geometric series with K = 20. We can
always choose a bigger ratio L∕M such that the inner circle is very close to the unit circle.

6.7.2 Power Series

A power series may or may not converge for points that are actually on the periphery of
the circle; thus the series

1 + z
1s +

z2

2s +
z3

3s +
z4

4s + · · · (6.76)
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Figure 6.19 The same as Figure 6.18. Four outliers.

whose radius of convergence is unity, converges or diverges at the point z = 1 according
as s is greater or not greater than unity.

Let

a0 + a1z + a2z2 + a3z3 + a4z4 + · · ·

be a power series and consider the series

a1 + a22z + 3a3z2 + 4a4z3 + · · ·

which is obtained by differentiating the power series term by term. The derived series
has the same circle of convergence as the original series. The series

∞∑

k=0
ak

zk+1

k + 1
(6.77)

obtained by integrating the original power series term by term, has the same circle of

convergence as
∞∑

k=0
akzk+1. For (6.76), we have a0 = 1, ak = 1

ks , k ≥ 1, thus we obtain the

function

f (z) = z +
∞∑

k=1

1
ks

1
k + 1

zk+1 = z + 1
1s

z2

2
+ 1

2s
z3

3
+ 1

3s
z4

4
+ · · · (6.78)

The series

1 + z
1!

+ z2

2!
+ · · · + zk

k!
+ · · ·
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is a power series converging everywhere, and thus define a function regular in the whole
plane. To every point z of the complex plane, there corresponds a definite number w, the
sum of the above series. This function may be used to define powers of the base e for all
complex powers 𝐳, called the exponential function ez = exp(z). If p is a positive number,
we define

pz = exp (z ln p) , zp = exp (p ln z)

where ln is the natural logarithm.
Now we can replace the complex argument z with the 𝐘 in (6.78), to obtain

f (𝐘) = 𝐘 +
∞∑

k=1

1
ks

1
k + 1

𝐘k+1 = 𝐘 + 1
1s
𝐘2

2
+ 1

2s
𝐘3

3
+ 1

3s
𝐘4

4
+ · · · (6.79)

For instance, we can set 𝐘 = 𝐗L∕M. Similarly, we can do this for the geometric
series (6.76).

We consider the series (6.77) where ak is the coefficients for the geometric series. The
radius of the inner circle in this case is found to be

rin = rK+1, r =
(√

1 − c
)(L∕M)2

(6.80)

where c = N∕n. The outer boundary of the spectrum is the unit circle. Simulations agree
very closely with (6.80).

Using the geometric series (6.76), we replace the argument with 𝐙 defined as

𝐙 = SNR ⋅ 𝐈N + 𝐗 (6.81)

where SNR is the signal-to-noise ratio SNR = Tr
(
𝐈N

)
∕Tr

(
𝐗𝐗H)

. Here the entries of
𝐗 are i.i.d. with zero mean and variance one. In Figures 6.20 and 6.21 we can visu-
alize the difference of the perturbation caused by the signal term for different SNRs.
Rich mathematical structures are observed, as functions of K and M. The complex s =
|s| exp(Angle) is used in the geometric series (6.76). The phase angle of s plays a signifi-
cant role in this data visualization.

Now we summarize our algorithm as follows:

1) Given L rectangular complex matrices �̃�i, i = 1,… , L, we find the singular value
equivalent 𝐗i, i = 1,… , L, which are square matrices.

2) Take the power function of the matrix, 𝐗𝛼i for each 𝐗i. In particular, 𝛼 = L∕M.
3) We do the same steps as above even when there is additive signal.
4) Use the symmetry-breaking series such as geometric series to form plots in the com-

plex plane to guide us for better visualization.

◽
We are naturally motivated to study

0 ∶ 𝐙 = 𝐗𝛼

1 ∶ 𝐙 =
(
SNR ⋅ 𝐈N + 𝐗

)𝛼
, 𝛼 ∈ ℝ

(6.82)

For any complex exponent 𝛼 and any complex z, the binomial series

(1 + z)𝛼 =
∞∑

k=0

(
𝛼

k

)

zk = 1 +
(
𝛼

1

)

z +
(
𝛼

2

)

z2 + · · · +
(
𝛼

k

)

zk + · · ·
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Figure 6.20 The eigenvalues of a geometric series of K terms: each term is
(
𝐗L∕M

)
for one

non-Hermitian random matrix𝐗 of size N × n. N = 800, n = 2667, c = 0.3, L = 1,M = 5, K = 3,
|s| = 2,Angle = 𝜋∕3, and SNR = 0.05.
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Figure 6.21 The same as Figure 6.20 except SNR = 0.2.
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converges and has for sum the principal value of the power (1 + z)𝛼 . We define the
symbol

(
𝛼

0

)

= 1,
(
𝛼

k

)

= 𝛼 (𝛼 − 1) · · · (𝛼 − k + 1)
1 ⋅ 2 ⋅ · · · k

, for k ≥ 1

and for every real 𝛼.

clear all;
L=1;M=5; K=3; N=200*4; beta=0.2; c=beta; n=N/c;
% c=N/n; c=p/n; beta=T/R=c; beta<1.
d=2; angle=pi/3; ifig=0; s=d*(cos(angle)
+sqrt(-1)*sin(angle));
X=bernoulli(0.5,N,N)+sqrt(-1)*bernoulli(0.5,N,N);
% i.i.d. complex matrix X
U=X*sqrtm(inv(X’*X)); % Unitrary Haar matrix U of N x N
%X=1/sqrt(2)*randn(N,n)+sqrt(-1)*1/sqrt(2)*randn(N,n);
% Gaussian random matrix

X=1/sqrt(2)*bernoulli(0.5,N,n)+sqrt(-1)*1/sqrt(2)
*bernoulli(0.5,N,n);
% Bernoulli random matrix

X=U*sqrtm(X*X’); % singular value equivalent
S=eye(N,N)*sqrt(N); X=SNR*S+X;

X=U*(X*X’)^(L/2); % singular value equivalent X^(L)
X=U*(X*X’)^(1/2/M); % singular value equivalent X^(1/M)
X=geometricseries(X,K,s);
radius_inner=(1-beta)^(1/2*(L/M)^2); % Y=X^L; Z=Y^(1/M);

Z=X;
for j=1:N
Z(:,j)=Z(:,j)/std(Z(:,j)); % normalized the variance to one
end %j
Z=Z/sqrt(N); % normalized so the eigenvalues lie within
unit circle
lambda=eig(Z*Z’); % eigenvalues of sample covariance matrix
lambdaZ=eig(Z);
ifig=kerneldensity(lambda,c,L,M,K,ifig);

function ifig=kerneldensity(lambda,c,L,M,K,ifig)

N=length(lambda); n=round(N/c); step=0.001+0.01/40;
%step=0.01/10/4/2/2;
h=1/n^(0.33);
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a=(1-sqrt(c))^2; b=(1+sqrt(c))^2; x=(step):step:3;
fcx=(1/2/pi/c./x).*sqrt((b-x).*(x-a)); % Marcenko
and Pastur law

% kernel density estimation
x1=step; Mtemp=(3-x1)/step;
for j=1:Mtemp
for i=1:N
y=(x1-lambda(i))/h; Ky(i)=kernel(y);
end %N
fnx(j)=sum(Ky)/N/h; x1=x1+step; x2(j)=x1;

end %L

Missing functions can be found in the previous codes.

6.8 Products of Random Ginibre Matrices

For any integer number k, there exists a probability measure 𝜋(k), called the
Fuss–Catalan distribution of order k, whose moments are the generalized Fuss–Catalan
numbers given in terms of the binomial symbol

∫
b(k)

0
xm𝜋(k) (x) dx = 1

km + 1

(
km + m

m

)

=∶ FC(k)
m (6.83)

The measure 𝜋(k) (x) has no atoms (or Dirac measures), and it is supported on [0, b(k)]
where b (k) = (k + 1)k+1∕kk . Its density is analytic on [0, b(k)], and bounded at x = b(k),
with asymptotic behavior ∼ 1∕

(
𝜋xk∕(k+1)) at x → 0. This distribution arises in ran-

dom matrix theory as one studies the product of k independent random square

Ginibre matrices, 𝐙 =
k∏

i=1
𝐆i. In this case the squared singular values of 𝐙, i.e., the

eigenvalues of 𝐙𝐙H have asymptotic distribution 𝜋(k) (x) in the large matrix limit.
The same Fuss–Catalan distribution also describes asymptotically the statistics of
singular values of k-th power of a single random Ginibre matrix [305]. In terms of free
probability theory, it is the free multiplicative convolution product of k copies of the
Marchenko–Pastur distribution [306, 307], which is written as 𝜋(k) (x) =

[
𝜋(1)]⊠k . ⊞

and ⊠ represent, respectively, the free additive convolution and the free multiplicative
convolution. They are Voiculescu’s operations ⊞ and ⊠.

An explicit expression of the spectral density for k = 2 is given by

𝜋(2) (x) =
21∕3

√
3

12𝜋

[

21∕3
(

27 + 3
√

81 − 12x
)2∕3

− 6x1∕3
]

x2∕3
(

27 + 3
√

81 − 12x
)1∕3 (6.84)

where x ∈ [0, 27∕4]. See Figure 6.22.
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Making use of the inverse Mellin transform and the Meijer G-function, one may find a
more explicit form of this distribution, as a superposition of hyper-geometric functions
of the type kFk−1

𝜋(k) (x) =
k∑

i=1
Λi,kx

i
k+1

−1
kFk−1

([{
aj
}k

j=1

]
;
[{

bj
}k

j=1 ,
{

bj
}k

j=i+1

]
; kk

(k + 1)k+1 x
)

(6.85)

where

aj = 1 −
1 + j

k
+ i

k + 1
, bj = 1 +

i − j
k + 1

and the coefficients Λi,k read for i = 1, 2,… , k

Λi,k = 1
k3∕2

√
k + 1

2𝜋

(
kk∕(k+1)

k + 1

)i

[
i−1∏

j=1
Γ
(

j−i
k+1

)
][

k∏

j=i+1
Γ
(

j−i
k+1

)
]

k∏

j=1
Γ
(

j+1
k

− n
k+1

)
(6.86)

Here pFq

([{
aj
}p

j=1

]
;
[{

bj
}q

j=1

]
; x

)
stands for the hypergeometric function [308]

of the type pFq with p “upper” parameters aj and q “lower” parameters bj of the
real argument x.The symbol

{
aj
}r

j=1 represents the list of r elements, a1, a2,… , ar .
The above distribution is exact and it describes the density of squared singular
values of k square Ginibre matrices in the limit of large matrix size N . Observe
that, in the simplest case k = 1, the above form reduces to the Marchenko–
Pastur distribution,

𝜋(1) (x) = 1
𝜋
√

x
1F0

([
−1

2

]
; [] ; 1

4
x
)
=

√
1 − x∕4

𝜋
√

x
(6.87)

while the case k = 2

𝜋(2) (x) =
√

3
2𝜋x2∕3 2F1

([
−1

6
,

1
3

]
;
[2

3

]
; 4

27
x
)
−

√
3

6𝜋x1∕3 2F1

([1
6
,

2
3

]
;
[4

3

]
; 4

27
x
)

(6.88)

is equivalent to the form (6.84). See Figure 6.22 and Figure 6.23 for the illustration of the
product of k = 2 matrices.

The upper edge b (k) = (k + 1)k+1∕kk of the Fuss–Catalan distribution 𝜋(k) (x) for large
matrices determines the size of the largest eigenvalue 𝜆max of the sample covariance
matrix of size N . For k = 1, we obtain b(1) = 4 so that 𝜆max ≈ 4∕N .

Consider the following ensemble of non-Hermitian random matrices parametrized
by an arbitrary m–dimensional probability vector 𝐰 = w1,… ,wm and a non-negative
integer k:

𝐙 ∶=
[
w1𝐔1 + w2𝐔2 + · · · + wm𝐔m

]
𝐆1 · · ·𝐆k (6.89)

Here 𝐔1,… ,𝐔m of N × N denote m independent random unitary matrix distributed
according to the Haar measure, while 𝐆1,… ,𝐆k are independent square random
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matrices of size N from the complex Ginibre ensemble. The empirical sample
covariance matrix is obtained as a normalized Wishart-like matrix,

𝐒m,k ∶=
𝐙m,k𝐙H

m,k

Tr
(
𝐙m,k𝐙H

m,k

) (6.90)

Example 6.8.1 (modeling data in wireless networks) We consider using (6.89) to
model the big data generated in the wireless networks. At the Wireless Systems Labora-
tory of Tennessee Technological University, it was recently found that the experimental
data for each radio can be modeled as the complex Ginibre matrix. Now consider N
such radio receivers. At each time instant t, we have 𝐱i ∈ ℂN×1, i = 1,… ,T , so that the
data matrix is formed as

�̃� =
(
𝐱1,… , 𝐱T

)
∈ ℂN×T

Consider the singular value equivalent matrix 𝐗 ∈ ℂN×N

�̃��̃�H = 𝐗𝐗H

It is natural to study the product of L such square random matrices 𝐗1 · · ·𝐗L =
L∏

i=1
𝐗i,

assuming that L such data matrices are observed in the wireless network. Also it is inter-
esting to study the M-th root

(
𝐗1 · · ·𝐗L

)1∕M =

( L∏

i=1
𝐗i

)1∕M

◽

For a complex quantum system (a system with many degrees of freedom)—such as
atoms, nuclei, fundamental particles—it is almost impossible to imagine an exploitable
enough theory to compute accurately, for example, the energy levels of such a system.
By analogy, we have antenna sensors, smart meters, PMUs, and stocks.

6.9 Products of Rectangular Gaussian Random Matrices

In Example 6.8.1, we encountered rectangular complex random matrices. Below we con-
sider the product of rectangular Gaussian random matrices

𝐏 ≡ 𝐀1𝐀2 · · ·𝐀L (6.91)

of L ≥ 1 independent rectangular large random Gaussian matrices 𝐀𝓁 ,𝓁 = 1, 2,… , L,
of dimensions N𝓁 × N𝓁+1. We are interested in the eigenvalue and singular value density
of 𝐏 in the limit N𝓁+1 → ∞ and

c𝓁 ≡ N𝓁

NL+1
= finite, for 𝓁 = 1, 2,… , L + 1 (6.92)

In other words, all matrix dimensions grow to infinity at fixed rates and, obviously,
cL+1 = 1 The product 𝐏 is a matrix of dimensions N1 × NL+1 and has eigenvalues only
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if it is a square matrix: N1 = NL+1. We assume the matrices 𝐀𝓁 in the product (6.91)
to be complex Gaussian matrices drawn randomly from the ensemble defined by the
probability measure

d𝜇
(
𝐀𝓁

)
∝ exp

(

−
√

N𝓁N𝓁+1

𝜎2
𝓁

Tr
(
𝐀H

𝓁𝐀𝓁

)
)

D𝐀𝓁 (6.93)

where D𝐀𝓁 ≡ ∏

a,b
d
(
Re [𝐀]ab

)
d
(
Im [𝐀]ab

)
is a flat measure. A normalization constant,

fixed by the condition ∫ d𝜇 (𝐀) = 1, is omitted. This is the simplest generalization of
the Girko–Ginibre ensemble to rectangular matrices. The 𝜎𝓁 parameters set the scale
for the Gaussian fluctuations in 𝐀𝓁 ,𝓁 = 1,… , L. The entries of each matrix 𝐀𝓁 can be
viewed as independent centered Gaussian random variables, the variance of the real and
imaginary parts being proportional to 𝜎2

𝓁 and inversely proportional to the square root
of the number N𝓁N𝓁+1 of elements in the matrix.

Let us introduce some notation first. The eigenvalue density 𝜌𝐗 (𝜆) of a Hermitian
matrix𝐗 is a real function of real argument, while in the case of a non-Hermitian matrix
it is a real function of complex argument. In the latter case we write 𝜌𝐗

(
𝜆, 𝜆

)
and treat

𝜆 and its conjugate 𝜆 as independent variables.
In the Hermitian case, the eigenvalue density can be computed from a Green’s function

G𝐗 (z), which contains the same information as the density itself:

𝜌𝐗 (𝜆) = − 1
𝜋

lim
𝜀→0+

ImG𝐗 (𝜆 + i𝜀) (6.94)

For a non-Hermitian matrix, the corresponding Green’s function G𝐗
(
z, z

)
is nonholo-

morphic and therefore we shall write it explicitly as a function of z and z. In this case the
eigenvalue distribution is reconstructed from the Green’s function as

𝜌𝐗

(
𝜆, 𝜆

)
= − 1

𝜋

𝜕

𝜕z
G𝐗

(
z, z

)
(6.95)

It is convenient to use the moment generating function or M transform, which is
closely related to the Green’s function: M𝐗 (z) = zG𝐗 (z) − 1. For a Hermitian matrix 𝐗
one has

M𝐗 (z) =
∑

n⩾1

mn

zn =
∑

n⩾1

1
zn ∫ 𝜆n𝜌𝐗 (𝜆) d𝜆 (6.96)

where the mns are the moments of the eigenvalue density. If the matrix 𝐗 is
of finite dimensions N × N , the moments are given by mn = 1

N
⟨Tr (𝐗n)⟩. The

moment-generating function encodes the same information as the Green’s function
G𝐗 (z) = z−1M𝐗 (z) + z−1. Thus, one can calculate the corresponding eigenvalue
distribution from M𝐗 (z).

One can also introduce a similar function for non-Hermitian matrices: M𝐗
(
z, z

)
=

zG𝐗
(
z, z

)
− 1. In this case, however, M𝐗

(
z, z

)
does not play the role of a moment-

generating function any more since now one also has mixed moments
⟨
Tr

(
𝐗n(𝐗H)k

)⟩
,

which in general depend on the ordering of 𝐗 and 𝐗H in the product under
the trace.
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The situation is slightly simplified when the M transform is a spherically symmetric
function: M𝐗

(
z, z

)
= 𝐗

(
|z|2). In this case (6.95) can be cast into the form

𝜌𝐗
(
z, z

)
= 1
𝜋
′

𝐗
(
|z|2) + c𝛿2 (

z, z
)

(6.97)

where′

𝐗 is the first derivative of𝐗 and c = 1 +𝐗(0) is a constant representing the
fraction of zero modes. In this case the eigenvalue distribution is spherically symmetric
as well.

The main result in this section is that the eigenvalue distribution and the M transform
of the product (6.91) are spherically symmetric. The M transform is shown to satisfy the
L-th order polynomial equation

L∏

𝓁=1

(
1
c𝓁
𝐏

(
|z|2) + 1

)

= |z|2

𝜎2 (6.98)

where the scale parameter is 𝜎 = 𝜎1𝜎2 · · · 𝜎L.

An analogous equation for

𝐐 ≡ 𝐏H𝐏

reads
√

c1
M𝐐 (z) + 1

M𝐐 (z)

L∏

𝓁=1

(
1
c𝓁

M𝐐 (z) + 1
)

= z
𝜎2 (6.99)

The free argument in (6.98) is |z|2 and z in (6.99).
When 𝐏 is a square matrix, then c1 = 1. When the product of square matrices is con-

sidered, all of the c𝓁 ,𝓁 = 1,… , L become equal to unity and the two equations take the
following form:

(𝐏
(
|z|2) + 1

)L = |z|2

𝜎2 , M−1
𝐐 (z)

(
M𝐐 (z) + 1

)L = z
𝜎2 (6.100)

(6.98) can be easily rewritten in terms of the corresponding Green’s functions. If one
does that and then applies the prescriptions in (6.95) and (6.94), respectively, it becomes
clear that

𝜌𝐏

(
𝜆, 𝜆

)
∼ 1∕|𝜆|2(L−1)∕L and 𝜌𝐐 (𝜆) ∼ 1∕𝜆L∕(L−1), as 𝜆→ 0 (6.101)

In the more general case of rectangular matrices, when solving (6.98) and (6.99) for
the Green’s functions, one can then see that only those brackets in which c1 = 1 con-
tribute to the singularity at zero, while all others approach a constant for z → 0. Thus,
the eigenvalue density displays the following singularity

𝜌𝐏

(
𝜆, 𝜆

)
∼ 1∕|𝜆|2(s−1)∕s

, as 𝜆→ 0 (6.102)

where s is the number of those ratios among c1,… , cL, which are exactly equal to unity

s ≡ #
{
𝓁 = 1, 2,… , L ∶ N𝓁 = NL+1

}
= 1, 2,… , L

On the other hand, the eigenvalue density of 𝐐 behaves as

𝜌𝐐 (𝜆) ∼ 1∕𝜆−s∕(s−1), as 𝜆→ 0 (6.103)
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where the complementary error function is defined as erfc (x) ≡ (
2∕

√
𝜋

) ∫ ∞
x

exp
(
−t2) dt, and q is a free parameter, whose value is to be adjusted by fitting. (6.103)

can be verified numerically.
The third result in this section is a heuristic form for the finite size corrections to

the eigenvalue distribution. For a large but finite order of magnitude N of the matrices
involved, the eigenvalue distribution is still spherically symmetric. So let fN (r) denote
the radial profile of this distribution, where r = |𝜆|. As we shall show, the evolution
of the radial shape with the size N is very well described by a simple multiplicative
correction:

𝜌N (r) ≡ 𝜌 (r) 1
2
erfc

(
q (r − 𝜎)

√
N

)
(6.104)

In the limit N → ∞ the correction becomes a step function, so that 𝜌∞ (r) = 𝜌 (r) for
r ≤ 𝜎 and 𝜌∞ (r) = 0 for r > 𝜎.

6.10 Product of Complex Wishart Matrices

Example 6.10.1 (product of complex Gaussian matrices) We define the product

𝐗r,s = 𝐆r𝐆r−1 · · ·𝐆1
(
�̃�s�̃�s−1 · · · �̃�1

)−1 (6.105)

where the matrices �̃�1,… , �̃�s have size N × N and each 𝐆k is a rectangular standard
complex Gaussian matrix of dimension lk × lk−1, lk ⩾ lk−1, and l0 = N . For s = 0, we
have

𝐗r,0 = 𝐗r = 𝐆r𝐆r−1 · · ·𝐆1

Our goal is to derive the Stieltjes transform G(z) of 𝐗H
m,n𝐗m,n. We will show that

(

1 −
G (−1∕z)

z

)r+1

= z
(

G (−1∕z)
z

)s+1

(6.106)

The eigenvalues of the product Wishart matrix 𝐗H
r,s𝐗r,s are identical to the eigenvalues

of
(
𝐗H

r,s−1𝐗r,s−1

) (
�̃�s�̃�s−1

)−1. Applying (5.147) and the second equation in (5.164) to the
latter, it follows that

S𝐗H
r,s𝐗r,s

(z) = (−z) S𝐗H
r,s−1𝐗r,s−1

(z)

Now iterating this shows

S𝐗H
r,s𝐗r,s

(z) = (−z)sS𝐗H
r,0𝐗r,0

(z)

For notational convenience, let us now relabel𝐆r𝐆r−1 · · ·𝐆1 to read𝐆1𝐆2 · · ·𝐆r . With
this done, we note that 𝐗H

r,0𝐗r,0 has the same eigenvalues as
(
𝐗H

r−1,0𝐗r−1,0

) (
𝐆r𝐆H

r
)
.

Noting that 𝐆r𝐆H
r have the same nonzero eigenvalues as 𝐆H

r 𝐆r and applying the first
equation in (5.164), (5.147), and iterating we conclude

S𝐗H
r,s𝐗r,s

(z) = (−z)s

(1 + z)r
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Recalling (5.163), it follows from this that

z = (−1)s

(
Υ𝐗H

r,s𝐗r,s
(z)

)s+1

(
1 + Υ𝐗H

r,s𝐗r,s
(z)

)r+1

Recalling (5.161) and performing minor manipulation, (6.106) follows. ◽

Now let us take a look at the eigenvalue statistics of the product of complex Gaussian
matrices for the case r = s.

Example 6.10.2 (Eigenvalue statistics of the product of complex Gaussian
matrices) We will show that the global density is supported on (0,∞) and has the
explicit form

x𝜌𝐗H
r,r𝐗r,r

(x) = 1
𝜋

x1∕(r+1) sin 𝜋

r+1

1 + 2x1∕(r+1) cos 𝜋

r+1
+ x2∕(r+1)

(6.107)

We have from (6.106) in the case r = s that

zG𝐗H
r,r𝐗r,r

(−z)

1 − zG𝐗H
r,r𝐗r,r

(−z)
= z1∕(r+1)

and thus

zG𝐗H
r,r𝐗r,r

(−z) = 1 − 1
1 + z1∕(r+1)

From the definition (5.157), it follows from this that

∫I

𝜆

𝜆 + z
𝜌𝐗H

r,r𝐗r,r
(𝜆) d𝜆 = 1

1 + z1∕(r+1) (6.108)

Applying the inverse formula

x𝜌𝐗H
r,r𝐗r,r

(x) = − 1
2𝜋i

(
1

1 + z1∕(r+1)

|
|
|
|z=xe𝜋i

− 1
1 + z1∕(r+1)

|
|
|
|z=xe−𝜋i

)

gives (6.107). ◽

Example 6.10.3 (singularity of the product of complex Gaussian matrices) Very
recently [310], upon the introduction of the variable 𝜙 according to

x = (sin (r + 1)𝜙)r+1

sin𝜙(sin r𝜙)r , 0 < 𝜙 < 𝜋

r + 1
(6.109)

it has been shown that the corresponding eigenvalue density is given by the succinct
expression

𝜌𝐗H
r 𝐗r

(𝜙) = (sin𝜙)2(sin r𝜙)r−1

𝜋(sin (r + 1)𝜙)r (6.110)
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Of particular interest is the singular behaviour in the original variable x as x → 0+

𝜌𝐗H
r 𝐗r

(x) ∼
sin𝜋∕ (r + 1)
𝜋xr∕(r+1) (6.111)

which follows from (6.109) and (6.110).
Changing variables 𝜆 = 1∕ (1 + x) transforms the density to have support on (0, 1). It

follows from (6.108) that the transformed density satisfies

1
z

(
1 − 1

1 + z1∕(r+1)

)
= ∫

1

0

𝜆

1 − (1 − z) 𝜆
𝜌𝐗H

r 𝐗r
(𝜆) d𝜆

and thus that p-th moment is equal to the coefficient of (1 − z)p−1 in the power series
expansion about z = 1 of the LHS. The transformed density for r = s = 1 is equal to the
particular beta density

𝜌𝐗H
1 𝐗1

(𝜆) = 1
𝜋

1
√
𝜆 (1 − 𝜆)

, 0 < 𝜆 < 1

We remark that the x → 0+ leading form of (6.107) is exactly the same as that exhibited
by (6.111) in the case s = 0, suggesting this to be a universal feature valid for general r, s
which is independent of s. ◽

6.11 Spectral Relations between Products and Powers

It is natural to extend (6.91) which is repeated here

𝐏 ≡ 𝐀1𝐀2 · · ·𝐀L (6.112)

to define the M-th root of some matrix 𝐏

𝐏1∕M ≡ 𝐀1∕M
1 𝐀1∕M

2 · · ·𝐀1∕M
L (6.113)

for an arbitrary non-negative integer M ≥ 1. M = 1 corresponds to the case of (6.91)
or (6.112). From Table 6.2, we see that there is a singularity x−k∕(k+1), k = 0, 1, 2,…, at
the points close to the origin x → 0. After taking the M-th root, we can remove the
singularity from the complex plane.

Theorem 6.11.1 ([311, 312]) Consider L identically distributed isotropic matrices
𝐗1,𝐗2,… ,𝐗L generated independently from a given isotropic unitary ensemble (IUE).
In the limit N → ∞, the eigenvalue density of the product 𝐏 = 𝐗1𝐗2 · · ·𝐗L becomes
identical to the eigenvalue density of the L-th power 𝐗L of a single matrix 𝐗 from this
ensemble (e.g., 𝐗 = 𝐗1).

In other words, the probability that a randomly chosen eigenvalue of 𝐏 lies
within a circle of radius r: for N → ∞, ℙ

(
𝜆𝐏 < r

)
approaches ℙ

(
𝜆L
𝐗 < r

)
, which

is the probability that a randomly chosen eigenvalue of 𝐗L lies within the same
circle.

One can use this above observation to derive the eigenvalue density of the product𝐏 =
𝐗1𝐗2 · · ·𝐗L if the eigenvalue density of 𝐗 is known. In particular one can immediately
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show that the eigenvalue distribution of the product of L independent Girko–Ginibre
matrices has a simple form:

𝜌
(
z, z

)
= 1
𝜋L

|z|−2+2∕L for |z| ⩽ 1 (6.114)

and zero for |z| > 1. The matrix 𝐏𝐏H obtained from the product 𝐏 of the L
Girko–Ginibre matrices generate a Fuss–Catalan family of distributions that have,
however, a much more complicated limiting eigenvalue density.

Theorem 6.11.1 is a counterintuitive result, so let us stress that it only holds in the limit
N → ∞. Now let us derive the results in Theorem 6.11.1. We emphasize the approach
used here.

For an R-diagonal (isotropic) matrix 𝐗 given by the radial decomposition
𝐗 = 𝐇𝐔, where 𝐇 Hermitian and 𝐔 is a Haar unitary matrix, the two matri-
ces 𝐗𝐗H = 𝐇2 and 𝐗H𝐗 = 𝐔H𝐇2𝐔 have identical eigenvalues and therefore the
S-transforms for 𝐗H𝐗 and 𝐗𝐗H are identical:

S𝐗𝐗H (z) = S𝐗H𝐗 (z) = S𝐇2 (z) (6.115)

Consider an isotropic unitary ensemble of random matrices 𝐗 = 𝐇𝐔 ∈ ℂN×N . In the
large N limit the random matrices can be represented as free random variables and one
can use the Haagerup–Larsen theorem [292] that relates the eigenvalue density of 𝐗 to
the eigenvalue density of 𝐇2 by the following formula:

S𝐇2

(
F𝐗 (r) − 1

)
= 1

r2 (6.116)

where F𝐗 (r) is the cumulative density function for the density of eigenvalues of𝐗 on the
complex plane and S𝐇2 (z) the S-transform for the matrix 𝐇2. The cumulative density
function

F𝐗 (r) = ∫|z|⩽r
𝜌x

(
z, z

)
d2z = 2𝜋 ∫

r

0
s𝜌x (s) ds = ∫

r

0
px (s) ds (6.117)

can be interpreted as the fraction of eigenvalues of𝐗 in the circle of radius r centered at
the origin of the complex plane. It is related to the eigenvalue density 𝜌x

(
z, z

)
= 𝜌x (|z|)

that depends on the distance from the origin |z|. The integrand px (s) ds = 2𝜋s𝜌x (s) ds
is interpreted as the probability of finding eigenvalues of 𝐗 in a narrow ring of radii |z|
and |z| + d|z|∶

F ′

𝐗 (r) = px (r) = 2𝜋r𝜌x (r) (6.118)

The prime denotes the derivation with respect to the radial variable. The cumulative
density function F𝐗 (r) enters equation (6.116) as an argument of the S-transform S𝐇2 (z)
that is related to the eigenvalue density 𝜌𝐇2 (𝜆) of the matrix 𝐗2. The Haagerup–Larsen
theorem states also that the support of the eigenvalue density of 𝐗 is a ring of radii Rmin
and Rmax or a disk (if Rmin = 0)

R2
min = ∫

∞

0
𝜆−1𝜌𝐇2 (𝜆) d𝜆, R2

max = ∫
∞

0
𝜆𝜌𝐇2 (𝜆) d𝜆 (6.119)

It follows from (6.115) that (6.116) can be rewritten as

S𝐗H𝐗
(
F𝐗 (r) − 1

)
= 1

r2 (6.120)
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Now we are in a position to apply (6.120) to the product of L identically distributed
R-diagonal (isotropic) matrices 𝐏L = 𝐗1𝐗2 · · ·𝐗L. The resulting matrix has an identi-
cal eigenvalues as 𝐇L𝐔L, where 𝐇2

L = 𝐏H
L 𝐏L so we can apply (6.120) replacing in this

equation 𝐗 by 𝐏L:

S𝐏H
L 𝐏L

(
F𝐏L

(r) − 1
)
= 1

r2 (6.121)

The S-transform for the matrix 𝐏H
L 𝐏L that appears in (6.121) can be substituted by the

S-transforms for individual terms in the product. Indeed, writing

𝐏H
L 𝐏L = 𝐗H

L 𝐏
H
L−1𝐏L−1𝐗L (6.122)

where 𝐏L−1 = 𝐗1 …𝐗L−1 we find that

S𝐏H
L 𝐏L

= S𝐏H
L−1𝐏L−1

S𝐗H
L 𝐗L

(6.123)

because, due to the cyclic properties of trace, the moments of𝐗H
L 𝐏

H
L−1𝐏L−1𝐗L are identi-

cal to those of𝐗L𝐗H
L 𝐏

H
L−1𝐏L−1 and the moments of𝐗L𝐗H

L are identical to those of𝐗H
L 𝐗L.

Applying (6.123) recursively we eventually obtain

S𝐏H
L 𝐏L

=
L∏

i=1
S𝐗H

i 𝐗i
(6.124)

Taking into account that all 𝐗i are identically distributed and having the same
S-transform (that we denote by S𝐗H𝐗) we can write (6.124) as

S𝐏H
L 𝐏L

= SL
𝐗H𝐗 (6.125)

Inserting this into (6.121) we have

S𝐗H𝐗
(
F𝐏L

(r) − 1
)
= 1

r2∕L (6.126)

(6.126) has a form identical to (6.120) except that on the left hand side F𝐗 (r) is replaced
by F𝐏L

(r) and on the right hand side r is replaced by r1∕L. From this observation it imme-
diately follows that

F𝐏L
(r) = F𝐗

(
r1∕L) = F𝐗L (r) (6.127)

(6.127) follows from the fact that the eigenvalues of 𝐗L are equal to the L-th power of
the corresponding eigenvalues of 𝐗:

F𝐗L (r) ≡ ℙ
(
|𝜆|L ⩽ r

)
= ℙ

(
|𝜆| ⩽ r1∕L) ≡ F𝐗

(
r1∕L) (6.128)

So we see that the product of L identically distributed isotropic matrices 𝐏L =
𝐗1𝐗2 · · ·𝐗L has the same eigenvalue distribution as the L-th power 𝐗L of a single
matrix 𝐗 in the product. In practice, the eigenvalue distribution of 𝐏L can be calculated
directly from the eigenvalue distribution of a single matrix 𝐗 by substituting r → r1∕L

in the cumulative distribution function F𝐗 (r) (6.117). The corresponding eigenvalue
densities may be found using (6.117). They read

p𝐏L
(r) = 1

L
r1∕L−1p𝐗

(
r1∕L) (6.129)

and

𝜌𝐏L
(r) = 1

L
r2∕L−2𝜌𝐗

(
r1∕L) (6.130)
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Example 6.11.2 (Girko–Ginibre matrices) Girko-Ginibre matrices 𝐗 have a uni-
form distribution 𝜌𝐗 (r) = 1∕𝜋 inside the unit circle |z| ≤ 1. We have

F𝐗 (r) = 2∫
r

0
ydy = r2 for r ⩽ 1 (6.131)

and 1 otherwise. For the product of L-independent Girko–Ginibre matrices we
have (6.127)

F𝐏L
(r) = r2∕L for r ≤ 1 (6.132)

and one otherwise. Taking the derivative with respect to r (6.118), we find the corre-
sponding densities:

p𝐏L
(r) = 2

L
r2∕L−1𝜃 (1 − r)

and

𝜌𝐏L
(r) = 2

𝜋L
r2∕L−2𝜃 (1 − r)

where 𝜃 denotes the Heaviside step function. ◽

6.12 Products of Finite-Size I.I.D. Gaussian Random Matrices

Products of matrices lose much of the symmetry of the individual matrices and
are generically complex. For example a product of symmetric matrices will not be
symmetric in general. For simplicity, we will look at matrices with a minimum of
symmetry.

A striking property of RMT is its universality, which is the independence of the under-
lying distribution of the individual matrix elements. It is usually manifest in the limit of
large matrix size. However, if we study the local, microscopic behavior of the spectrum
on the scale of the mean level spacing between singular values, it is often vital to have a
detailed knowledge of the joint distribution of singular values (or eigenvalues) at hand
for finite matrix size.

We consider the product of L complex non-Hermitian, independent random matrices,
each of size N × N with independent identically distributed Gaussian entries (Ginibre
matrices). We compute all eigenvalue density correlation functions exactly for finite N
and fixed L. Given the product 𝐏L of L independent matrices 𝐗i, i = 1,… , L, each of
size N × N drawn from the Ginibre ensemble with Gaussian distribution proportional
to exp

[
−Tr𝐗H

i 𝐗i
]

𝐏L = 𝐗1𝐗2 · · ·𝐗L. (6.133)

The L = 1 case is the Ginibre ensemble, while the L = 2 case is the Wishart ensemble.
The partition function ZL can be expressed as an integral of the joint proba-

bility distribution function jpdf of the complex eigenvalues zi, i = 1,… ,N , are
given by

ZL = CL ∫
N∏

a=1
d2zawL

(
za

)
N∏

b>a

|
|zb − za

|
|

2 ≡ ∫
N∏

a=1
d2zajpdf ({z}) (6.134)
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where CL is some known constant. The weight function wL(z) that depends only on the
modulus |z| is given by the so-called Meijer G-function. The corresponding kernel of
polynomials orthonormal with respect to that weight reads

K (L)
N

(
zi, zj

)
=

√

wL
(
zi
)

wL
(
zj
)

N−1∑

k=0

1
(𝜋k!)L

(
ziz∗j

)k
(6.135)

The k-point density correlation functions then easily follow to be the determinant of
that kernel

R(L)
k

(
z1,… , zk

) ≡ N!
(N−k)!

1
ZL

∫ ipdf ({z}) d2zk+1 · · · d2zN

= det
1⩽i,j⩽k

[
K (L)

N

(
zi, zj

)] (6.136)

For large N and large arguments |z| >> 1 the eigenvalue density behaves as

R(L)
1

(
z1,… , zk

)
= K (L)

N (z, z) ≈ |z|
2
L
−2

L𝜋
1
2

erfc

(√
L
(
|z|2∕L − N

)

√
2|z|1∕L

)

(6.137)

By zooming into the region around the edge of the support, which is z ≈ NL∕2 in (6.137),
we obtain

R(L)
1

(
z1,… , zk

)
= K (L)

N (z, z) ≈ |z|
2
L
−2

L𝜋
1
2
erfc

(√
L
(
|z|2∕L − N

)

√
2|z|1∕L

)

(6.138)

This result depending only on the radial distance from the edge is universal in the
sense that it is valid for all L. It is convenient to recast this result (6.138) into a rescaled
density with compact support that is normalized to unity. Using the rescaled variable
w = zN−L∕2, we define the following density, for which the radius of the eigenvalue
support approaches 1 for N → ∞:

𝜌L (w) ≡ lim
N>>1

1
N

NLR(L)
1

(
NL∕2w

)
= |w|

2
L −2

L𝜋
1
2
erfc

(√
LN(|z|2∕L−1)
√

2|z|1∕L

)

= |w|
2
L −2

L𝜋
1
2
erfc

(√
2N
L
(|w| − 1)

) (6.139)

The complementary error function changes only in a narrow strip around the unit cir-
cle |w| = 1, of a width proportional to 1∕

√
N . We see that the width of the crossover

region around the edge|w| = 1 is proportional to
√

L, the square root of the number of
multiplied matrices.

It is instructive to compare this result (6.139) with the limiting density for large-N of
the L-th power𝐗L of a single Ginibre matrix𝐗. This density is given by exactly the same
distribution, however with a different dependence on L:

𝜌L (w) =
|w|

2
L
−2

L𝜋
1
2
erfc

(√
2N
L

(|w| − 1)

)

(6.140)

Here, the width of the crossover region is proportional to L and not to
√

L. In a sense,
the finite size corrections are stronger for the L-th power than for the product of L inde-
pendent Ginibre matrices.
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From (6.139), the mean or macroscopic large-N density can be obtained:

𝜌
(L)
macro (w) ≡ lim

N→∞

1
N

NLR(L)
1

(
z = NL∕2w

)
= |w|

2
L
−2

L𝜋
Θ (1 − |w|) (6.141)

where Θ is Heaviside’s function.
The above treatment is only valid for the products of finite-size square matrices. We

can extend this discussion to include products of rectangular matrices. In particular, we
consider the product matrix

𝐘L = 𝐗L𝐗L−1 · · ·𝐗1 (6.142)

where 𝐗𝓁 are N𝓁 × N𝓁−1 real 𝛽 = 1, complex 𝛽 = 2, and quaternion (𝛽 = 4) matrices
from the Wishart ensemble. We deal with the singular values of such matrices, and the
spectral correlation functions of 𝐘L𝐘H

L .

6.13 Lyapunov Exponents for Products of Complex Gaussian
Random Matrices

The application that we are considering here is the time-varying topology of a large net-
work (e.g. wireless communications, power grids). Our aim is to combine the contem-
porary interest in the eigenvalues of large random matrices with the topic of products
of random matrices by studying eigenvalue distributions of products of random matri-
ces where the size of the matrices is large. Lyapunov exponents are useful tools that
measure the sensitivity of a dynamical system with respect to initial conditions. Let
f ∶ X → X be a differentiable map of a manifold X to itself. The dependence on small
perturbations in the initial conditions can be measured by the growth of matrix products
𝐏n = 𝐀n𝐀n−1 · · ·𝐀1, where 𝐀k ∶= f ′

(
𝐱k

)
and 𝐱k = f

(
𝐱k−1

)
. In order to quantify what is

meant by a typical initial position, the manifold X is usually endowed with a probability
measure. Then,𝐀k are random matrices and therefore we are led to the study of random
matrix products.

Let
𝐏n = 𝐀n𝐀n−1 · · ·𝐀1 (6.143)

where each 𝐀i is a d × d independent, identically distributed random matrix such that
the diagonal elements of𝐀H𝐀 have finite second moments. According to the multiplica-
tive ergodic theorem of Oseledec [313], the limiting matrix

𝐕d ∶= lim
n→∞

(
𝐏H

n 𝐏n
)1∕(2n) (6.144)

is well defined, with d positive real eigenvalues e𝜇1 ⩾ e𝜇2 ⩾ · · · ⩾ e𝜇d . The {𝜇i} are
referred to as the Lyapunov exponents.

The key fact about Lyapunov exponents is that they satisfy the following relation:

𝜇1 + · · · + 𝜇k = sup lim
n→∞

1
n

log Volk
(
𝐲1 (n) ,… , 𝐲k (n)

)
(6.145)

where 𝐲i (n) = 𝐏n𝐲i (0) and the supremum is over all choices of linearly independent
vectors 𝐲i(0). It can be proved that the supremum is in fact not needed in this formula.
In words, the sum of k largest Lyapunov exponents measures the average growth
rate in the volume of a k-dimensional element when we apply linear transformations
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specified by matrices 𝐀i. If these matrices are independent and Gaussian, then this
formula can be significantly simplified. Namely, let 𝐆(i) be independent random d × d
matrices whose entries are independent (real) standard Gaussian entries, and 𝚺1∕2 is
a (real) positive-definite d × d matrix. Let 𝐀i = 𝚺1∕2𝐆(i). We will call these matrices
real Gaussian matrices with covariance matrix 𝚺. The crucial observation is that the
distribution of 𝐀T

i 𝐀i is invariant relative to the transformation
𝐀T

i 𝐀i → 𝐐T𝐀T
i 𝐀i𝐐,

where𝐐 is an arbitrary orthogonal matrix. This implies that the changes in the volume of
a k-dimensional element are independent from step to step and that their distribution is
the same as if they were applied to the element spanned by the standard basis vectors 𝐞i,

𝜇1 + · · · + 𝜇k = 𝔼 log Volk
(
𝐀1𝐞1,… ,𝐀1𝐞k

)

= 1
2
𝔼 log det

(
𝐆T

k 𝚺𝐆k
)
, (6.146)

where𝐆k denotes a random d × k matrix with the identically distributed standard Gaus-
sian entries (see [314] for details). Sometimes it is useful to write this formula as

𝜇1 + · · · + 𝜇k = 1
2

d
d𝜇

𝔼
[
det

(
𝐆T

k Σ𝐆k
)𝜇]||

|
|𝜇=0

(6.147)

This argument works for complex Gaussian matrices as well.
While formula (6.144) allows one to compute all Lyapunov exponents, it is essentially

a multidimensional integral, which can be computationally demanding. For this reason,
it is of interest to obtain a more explicit method for the Lyapunov exponent calculation.
For big-data applications, real-time computing is required.

Implicit in the need for efficient computational methods is that it is generally not
possible to compute the Lyapunov exponents analytically. Some noteworthy exceptions
occur in the case d = 2. For general d, except from the case of diagonal matrices, it seems
that the only exact computation of the Lyapunov exponents recorded in the literature is
when the𝐀i are real Gaussian matrices with entries independent standard real normals.
For real Gaussian matrices and the simplest situation when 𝚺 = 𝜎2𝐈 and 𝐈 is the identity
matrix, Newman [314] found that

𝜇i =
1
2

(

log
(
2𝜎2) + Ψ

(
d − i + 1

2

))

(i = 1,… , d) (6.148)

where Ψ(x) denotes the digamma function, Ψ (x) ∶=
(
logΓ (x)

)′. At the positive inte-

ger points, Ψ (n) =
n−1∑

k=1

1
k
− 𝛾 , where 𝛾 = 0.5772... is the Euler constant. At half-integers,

Ψ (n + 1∕2) =
n−1∑

k=1

1
k−1∕2

− 2 log 2 − 𝛾 . The asymptotic behavior of the digamma function

is given by the formula Ψ (z) = log z − 1
2z
− 1

12z2

(
1 + O

(
1
z2

))
. In particular if we nor-

malize 𝜎2 = 1∕d, then for d = 1 the largest Lyapunov exponent𝜇1 =
[
− log 2 − 𝛾

]
∕2 and

d → ∞, 𝜇1 = − 1
2d

+ O
(

1
d2

)
. Another explicit formula is known for the sum of all Lya-

punov exponents. Indeed, if k = d, then det
(
𝐆T

k 𝚺𝐆k
)
= det

(
𝐆T

k 𝐆k
)

det (𝚺), and there-
fore formula (6.147) becomes

𝜇1 + · · ·𝜇d = 1
2

log det𝚺 + d
d𝜇

𝔼
[
det

(
𝐆d𝐆T

d
)𝜇]||

|
|𝜇=0
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In [315], Forrester showed that this implies that

𝜇1 + · · ·𝜇d = 1
2

d∑

i=1

(

log
(

2
yi

)

+ Ψ
( i

2

))

(6.149)

where yi are eigenvalues of 𝚺−1.
Forrester has also established analog of formulas (6.148) and (6.149) for the

complex-valued Gaussian matrices. Recall that in general the density for a Gaussian
matrix 𝐀 with covariance matrix 𝚺 is given by

ℙ (𝐀) = c𝛽 det
(
𝚺−k) exp

[

−𝛽
2

Tr
(
𝐀T)

𝚺−1𝐀
]

where 𝛽 = 1, 2, or 4 for real, complex or quaternion matrices and c𝛽 is a normalization
constant. Equivalently, 𝐀 can be obtained as 𝚺1∕2𝐆, and 𝐆 is a real, complex or quater-
nion matrix with independent entries. The entries of 𝐆 have components that are real
Gaussian variables with variance 1∕𝛽. Namely, Forrester showed that in the case of the
complex-valued Gaussian matrices with 𝚺 = 𝜎2𝐈

2𝜇i = log 𝜎2 + Ψ (d − i + 1) (6.150)
(See Proposition 1 in [315] and note that the absence of 1∕2 before Ψ is a typo.)

If 𝜎2 = 1∕d, then for d = 1 the largest Lyapunov exponent 𝜇1 = −𝛾∕2 and for d → ∞,
𝜇1 = − 1

d
+ O

(
1

d2

)
. The sum rule in the complex valued case is

𝜇1 + · · ·𝜇d = 1
2

d∑

i=1

(

log
(

1
yi

)

+ Ψ (i)
)

A significant advance that Forrester achieved in the complex-valued case is an explicit
formula for all Lyapunov exponents valid in the case of general Σ. Namely, it is shown
in [315] that

𝜇k = 1
2
Ψ (k) + 1

2
∏

i<j

(
yi − yj

) det

⎡
⎢
⎢
⎢
⎢
⎢
⎣

[
yi−1

j

]

i=1,…,k−1;j=1,…,d[(
log yj

)
yk−1

j

]

j=1,…,d[
yi−1

j

]

i=k+1,…,d;j=1,…,d

⎤
⎥
⎥
⎥
⎥
⎥
⎦

(6.151)

where yi are eigenvalues of 𝚺−1. In particular, for k = 1, one can rewrite this as

𝜇1 = 1
2

⎡
⎢
⎢
⎢
⎣

Ψ (1) −
d∑

j=1

log yi
∏

𝓁≠j

(
1 − yj∕y𝓁

)

⎤
⎥
⎥
⎥
⎦

provided that all yi are different.
The proof of formula (6.151) is based on the Harish–Chandra–Itzykson–Zuber inte-

gral and cannot be directly generalized to the case of real or quaternion Gaussian matri-
ces.

In fact, it appears that for the real-valued case with general Σ, an explicit formula
(from [316]) is only known for products of 2 × 2 Gaussian matrices:

𝜇1 = 1
2

[
Ψ (1) + log

(1
2

Tr𝚺 +
√

det𝚺
)]

(6.152)
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Some explicit formulas are also known for 2 × 2 random matrices with non-Gaussian
entries, see [317]. In addition, there are methods that sometime allow one to com-
pute Lyapunov exponents efficiently even when explicit formulas are not available,
(see [318]).

The theorem below is to derive an explicit formula for the largest Lyapunov exponent
that would be applicable in the real and quaternion-valued case with general 𝚺.

Theorem 6.13.1 ([319]) Let 𝐀i be independent Gaussian matrices with covariance
matrix 𝚺. Let the entries be real, complex or quaternion, according to whether 𝛽 = 1; 2;
or 4. Assume that the eigenvalues of 𝚺 are 𝜎2

i = 1∕yi. Then, the following formula holds
for the largest Lyapunov exponent of 𝐀i

2𝜇1 = Ψ (1) + log
(

2
𝛽

)

+ ∫
∞

0

⎡
⎢
⎢
⎣

𝕀[0,1] (x) −
d∏

i=1

(

1 + x
yi

)−𝛽∕2⎤
⎥
⎥
⎦

1
x

dx (6.153)

Consider a model with a spike. Assume that all yi = 1, for i = 1,… , d − 1 and yd =
1∕𝜃 < 1. This means that the covariance matrix 𝚺 has a spike 𝜃 > 1; or informally that
one of the rows in matrices 𝐀i has the size which is

√
𝜃 larger than other rows. We ask

the question about the behavior of the largest Lyapunov exponent when d; or 𝜃; or both,
are large. Assume first that 𝛽 = 2. We can write

2𝜇1 = Ψ (1) + ∫
∞

0

[

𝕀[0,1] (x) −
1

(1 + x)d−1 (1 + 𝜃x)

]
1
x

dx

= Ψ (d) + fd

where

fd = (𝜃 − 1)∫
∞

0

1
(1 + x)d−1 (1 + 𝜃x)

⩽ 𝜃 − 1
d

(6.154)

Hence, if 𝜃 = O(d) and d → ∞, then

2𝜇1 ∼ Ψ (d) ∼ log d.

In other words, in this case the spike 𝜃 in 𝚺 cannot influence the leading order asymp-
totics of the largest Lyapunov exponent.

It is still interesting to find out what is the contribution of the spike 𝜃 to the Lyapunov
exponent even though it is of a lower order than the leading asymptotics. (Indeed, the
leading term asymptotics can be removed if we rescale all the entries in the matrices 𝐀i

by 𝜎 = 1∕
√

d.)

Theorem 6.13.2 ([319]) Suppose that 𝐀i are independent d × d Gaussian matrices
with the covariance matrix𝚺 and that the eigenvalues of𝚺 are 𝜎2

i = 1, for i = 1,… , d − 1
and 𝜎2

i = 𝜃 > 1. Let 𝜃 = d∕t, where 0 < t < d. In the complex case (𝛽 = 2), we have the
following estimate

2𝜇1 = log d + et ∫
∞

1
e−tx dx

x
+ Ot (1∕d)

= log d − et Ei (−t) + Ot (1∕d) (6.155)
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where Ei(x) is the exponential integral function. In the real case (𝛽 = 1)

2𝜇1 = log d + et∕2 ∫
∞

1
e−tx∕2 1

√
x
(√

x + 1
)dx + Ot (1∕d)

The above theorem implies the following: for the largest Lyapunov exponent 𝜇1, we
have

lim
d→∞

d
(
𝜇1 − log d

)
= 𝜃 − 3

2
When d is fixed and 𝜃 goes to infinity, we have

2𝜇1 ∼ log 𝜃 − 𝛾

6.14 Euclidean Random Matrices

A special class of random matrices are the so-called Euclidean random matrices. See also
Section 16.1.5 for its connection with random geometric graphs. The elements Aij of an
N × N Euclidean random matrix 𝐀 are given by a deterministic function f of positions
of pairs of points that are randomly distributed in a finite region V of Euclidean space:

Aij = f
(
𝐫i, 𝐫j

)
, i, j = 1,… ,N

Here, the N points 𝐫i are randomly distributed inside some region V of the d- dimen-
sional Euclidean space with a uniform density 𝜌 = N∕V . In general, the random matrix
𝐀 is non-Hermitian.

This model may be applied to massive MIMO where each antenna is viewed as a scat-
tering center located at a random position 𝐫i, i = 1,… ,N . We are interested in the col-
lective radiation from the region V containing N randomly located antennas, especially
when N is large, say N = 104. This is analogous with collective spontaneous emission
in dense atomic systems consisting of N atoms [320]. This model of three-dimensional
region of space is of interest to unmanned aerial vehicles (UAVs). One extension of the
work in this section is to consider the impact of multipath on the eigenvalue distribu-
tions, as only free-space Green’s function is considered for the path with the line of sight
(LOS) between the transmitter and the receiver.

For arbitrary V , we have
𝐀 = 𝐇𝐓𝐇H (6.156)

The advantage of this representation lies in the separation of two different sources of
complexity: the matrix 𝐇 is random but independent of the function f , whereas the
matrix 𝐓 depends on f but is not random.

Furthermore, if we assume that 𝔼Hij = 0, we readily find that Hij are identically dis-
tributed random variables with zero mean and variance equal to 1∕N . We will assume,
in addition, that Hij are independent Gaussian random variables. This assumption
largely simplifies calculations but may limit applicability of our results at high densities
of points 𝜌.

Example 6.14.1 (random Green’s matrix) The purpose of this example is to study
eigenvalue distributions of certain large Euclidean random matrices that appear
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in problems of wave propagation in random media. In the simplest case of scalar
waves the propagation is described by a scalar wave equation, so the function f
that will be of interest to us is the Green’s function G

(
𝐫i, 𝐫j

)
of the Helmholtz

equation
(
∇2 + k2

0 + i𝜀
)

G
(
𝐫i, 𝐫j

)
= −4𝜋

k0
𝛿
(
𝐫i − 𝐫j

)

where 𝜀 is a positive infinitesimal. It is easy to check that

G
(
𝐫i, 𝐫j

)
=

exp
(

ik0
|
|
|
𝐫i − 𝐫j

|
|
|

)

k0
|
|
|
𝐫i − 𝐫j

|
|
|

A random Green’s matrix is defined as

Aij =
(
1 − 𝛿ij

) exp
(

ik0
|
|
|
𝐫i − 𝐫j

|
|
|

)

|
|
|
𝐫i − 𝐫j

|
|
|

(6.157)

where k0 = 2𝜋∕𝜆0 and 𝜆0 is the wavelength. We assume that the N points 𝐫i are chosen
randomly inside a three-dimensional (d = 3) sphere of radius R. This non-Hermitian
Euclidean random matrix is of special importance in the context of wave propagation in
disordered media because its elements are proportional to the Green’s function of the
Helmholtz equation, with 𝐫i, which may be thought of as positions of point-like scatter-
ing centers.

For each realization of the random matrix (6.157), its eigenvalues 𝜆i, i = 1,… ,N obey
N∑

i=1
𝜆i = 0, Im 𝜆i > −1, i = 1,… ,N (6.158)

Very generally, the eigenvalue density of the matrix defined by (6.157) depends on
two dimensionless parameters: the number of points per wavelength cubed 𝜌𝜆3

0 and the
second moment of

𝔼|𝜆|2 = 𝛾 = 9N∕8
(
k0R

)2

We now deal with the borderline of the support of eigenvalues, which is easier to visu-
alize. For a low-density 𝜌𝜆3

0 ⩽ 10, a simple equation

|𝜆|2 ≃ 2𝛾
(

−8𝛾 Im 𝜆
3|𝜆|2

)

(6.159)

gives satisfactory results. For 𝛾 << 1, the density of eigenvalues is roughly uniform
within a circular domain of the radius, (see Figure 6.24(a)). The domain grows in size
and shifts up with increasing 𝛾 . At 𝛾 ≥ 1, it starts to “feel” the “wall” Im 𝜆 = −1 and
deforms Figure 6.24(b).

Another curve for the borderline of eigenvalue distribution is given by

|𝜆|2 = 8𝛾
√

3𝜋

√
1 + Im 𝜆

(

1 + |𝜆|2

|𝜆|2 + 4𝛾

)

(6.160)

◽
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Figure 6.24 Density plots of the logarithm of eigenvalue density of the N×N random Green’s matrix
(6.157) obtained by numerical diagonalization of 10 realizations of the matrix for N= 104. The solid
lines represent the borderlines of the support of eigenvalue density following from the theory. The
dashed lines show the diffusion approximation (6.160). From (a) to (d), we keep increasing Y . Source:
Reproduced with permission from [321].

Now let us turn to the general framework for analysis, closely following [320].
Consider a singly connected three-dimensional region of space V . Let

{
𝜓m (𝐫)

}
be an

orthonormal basis in V , such that

∫V
d3𝐫𝜓m (𝐫)𝜓∗

n (𝐫) = 𝛿mn (6.161)

We now show that an arbitrary N × N Euclidean random matrix 𝐀 with
elements

Aij = f
(
𝐫i, 𝐫j

)
, i, j = 1,… ,N (6.162)

where f is a sufficiently well-behaved function of 𝐫i, 𝐫j ∈ V , can be represented as

𝐀 = 𝐇𝐓𝐇H (6.163)
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Here 𝐇 is an N × N matrix with elements

Him =
√

V
N
𝜓m

(
𝐫i
)

(6.164)

We use V to denote the considered three-dimensional region of space as well as its vol-
ume, and 𝐓 an M × M matrix to be defined below. The size M of the matrix 𝐓 can be
arbitrary and, in fact, M will be infinite for the majority of functions f

(
𝐫i, 𝐫j

)
.

To establish (6.163), we write the elements explicitly as

Aij =
V
N

∑

m,n
Tmn𝜓m

(
𝐫i
)
𝜓∗

n
(
𝐫j
)

(6.165)

where we have used (6.164) and the definition of matrix multiplication. Multiplying this
equation by 𝜓∗

m′

(
𝐫i
)
𝜓n′

(
𝐫j
)
, integrating over 𝐫i and 𝐫j and using the orthogonality of

the basis functions 𝜓m (𝐫), we readily obtain

Tmn = V
N ∫V

d3𝐫i ∫V
d3𝐫jf

(
𝐫i, 𝐫j

)
𝜓∗

m (𝐫)𝜓n (𝐫) (6.166)

When the points
{
𝐫i
}

are chosen inside V randomly, 𝐀 and 𝐇 become random
matrices, whereas 𝐓 is always a nonrandom matrix independent of

{
𝐫i
}

and deter-
mined uniquely by the function f , the region V , and the choice of the orthonormal
basis

{
𝜓m (𝐫)

}
. We will limit our consideration to the case when the spatial integral of

any basis function
{
𝐫i
}

that contributes to (6.165) vanishes1:

∫V
d3𝐫𝜓m (𝐫) = 0 (6.167)

The elements Him of 𝐇 are then independent random variables having zero means and
variances equal to 1∕N :

𝔼Him = 1
V ∫V

d3𝐫i

√
V
N
𝜓m

(
𝐫i
)
= 0

𝔼
[
HimH∗

jn

]
= 1

V 2 ∫V
d3𝐫i ∫V

d3𝐫j
V
N
𝜓m

(
𝐫i
)
𝜓∗

n
(
𝐫j
)
= 𝔼

[
Him

]
𝔼
[
H∗

jn

]
= 0, i ≠ j

𝔼
[
HimH∗

in
]
= 1

V ∫V
d3𝐫i

V
N
𝜓m

(
𝐫i
)
𝜓∗

n
(
𝐫i
)
= 1

N
𝛿mn (6.168)

The representation (6.163) is very useful because it can be handled using the powerful
mathematical arsenal of the so-called free random variable theory. For random matri-
ces, the notion of asymptotic freeness [126] is equivalent to the notion of statistical
independence that we are familiar with for random variables.

Three fundamental objects of the free random variable theory, defined for any Her-
mitian matrix 𝐀 will be useful for us in this section: the usual Green’s function

G (z) = 1
N
𝔼
[
Tr

(
z𝐈N − 𝐀

)−1
]

(6.169)

where 𝐈 is an identity matrix of N × N . The Blue’s function is defined as the functional
inverse of the Green’s function G(z)

B [G (z)] = z, (6.170)

1 This restricts the class of functions f
(
𝐫i, 𝐫j

)
to which our analysis applies but will be sufficient for us here.
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and the S-transform of the probability distribution of eigenvalues defined through an
auxiliary function 𝜒(z):

S (z) = 1 + z
z

𝜒 (z) , 1
𝜒 (z)

G
[

1
𝜒 (z)

]

− 1 = z (6.171)

If two Hermitian random matrices 𝐀 and 𝐁 are asymptotically free, the Blue’s func-
tion B𝐂 (z) of their sum 𝐂 = A + B is equal to the sum of individual Blue’s functions
B𝐀 (z) and B𝐁 (z), minus 1∕z. The S-transform of the matrix product 𝐂 = AB can be
found by multiplying the individual S-transforms of 𝐀 and 𝐁. Once the Blue’s function
or the S-transform corresponding to the random matrix 𝐂 are found, its Green’s func-
tion G(z) can be calculated either from (6.170) or from (6.171). The probability density
of the eigenvalues 𝜆 of 𝐂 is then determined in the usual way:

p (𝜆) = − 1
𝜋

lim
𝜀→∞

ImG (𝜆 + i𝜀) (6.172)

The functions G(z),B(z) and S(z) all contain the same full information about the statis-
tical distribution of eigenvalues 𝜆 as p(𝜆). The Green’s function can be represented as an
infinite series with coefficients in front of consecutive powers of 1∕z equal to statistical
moments of 𝜆:

G (z) =
∞∑

k=0
𝔼
[
𝜆k] 1

zk+1 .

We have, thus, the moments

𝔼
[
𝜆k] = 1

(k + 1)!
dk+1

d(1∕z)k+1

|
|
|
|
|z→∞

, (6.173)

where z is assumed real. Using this equation and (6.170) we readily derive an expression
for the k-th moment 𝔼

[
𝜆k] in terms of Blue’s function B(z):

𝔼
[
𝜆k] = 1

(k + 1)!

[

−B2 (z)
B′ (z)

d
dz

]k [

−B2 (z)
B′ (z)

]|
|
|
|
|z→0

, (6.174)

where B′ (z) = dB (z) ∕dz. If we introduce the R-transform [52] R (z) = B (z) − 1∕z, the
average eigenvalue and the variance become

𝔼𝜆 = R (0) and var 𝜆 = 𝔼[𝜆 − 𝔼𝜆]2 = R′ (z)||z→0

respectively.
For matrix 𝐀 of the form (6.163), the free random variable theory provides a number

of mathematical theorems that we will exploit in the future’s research. In particular, we
have [52] that

S𝐀 (z) =
1

z + M∕N
S𝐓

( N
M

z
)

(6.175)

if𝐓 is a Hermitian nonnegative random matrix independent of𝐇 and the limits N ,M →
∞ are taken at a constant M∕N . Using (6.175), we derive a relation between the Blues
function of 𝐀 and the Green’s function of 𝐓:

B𝐀 (z) =
1
z

{
1 + M

N

[1
z

G𝐓

(1
z

)
− 1

]}
(6.176)
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A particular case that we will consider here is when the region V is a square box of
side L. A convenient set of basis functions is then given by “plane waves”

𝜓m (𝐫) = 1
√

V
exp

(
i𝐪m ⋅ 𝐫

)

where 𝐪m =
{

qmx
, qmy

, qmz

}
, qmx

= mxΔq with mx = ±1,±2,… (and similarly for my

and mz), and Δq = 2𝜋∕L.

Example 6.14.2 (Eigenvalue distribution of the sinc matrix) We consider the real
symmetric N × N Euclidean matrix 𝐀 = S with elements defined through the cardinal
sine (sinc) function:

Sij = f
(
𝐫i, 𝐫j

)
=

sin
(

k0
|
|
|
𝐫i − 𝐫j

|
|
|

)

k0
|
|
|
𝐫i − 𝐫j

|
|
|

(6.177)

Here k0 is a constant and the vector 𝐫i defines positions of N randomly chosen points
inside a three-dimensional cube of side L. The first important property of the matrix 𝐒 is
the positiveness of its eigenvalues: 𝜆i (𝐒) > 0, i = 1,… ,N . Indeed, the Fourier trans-
form of the function f (Δ𝐫) in (6.177) is positive and hence f (Δ𝐫) is a function of positive
type. An Euclidean matrix defined through a function of positive type is positive definite
and hence has only positive eigenvalues. The matrix 𝐓 corresponding to 𝐒 can be found
from (6.166):

Tmn = N
V 2 ∫V

d3𝐫1 ∫V
d3𝐫2

sin
(
k0

|
|𝐫1 − 𝐫2

|
|
)

k0
|
|𝐫1 − 𝐫2

|
|

exp
(
−i𝐪m ⋅ 𝐫1 + i𝐪n ⋅ 𝐫2

)
(6.178)

Unfortunately, it is impossible to calculate this double integral exactly in a box. However,
introducing new variables of integration 𝐑 = 𝐫1 + 𝐫2 and Δ𝐫 = 𝐫2 − 𝐫1 and limiting the
integration over Δ𝐫 to the region |Δ𝐫| < L∕2𝛼, with 𝛼 ≈ 1 a numerical constant to be
fixed later, we obtain an approximate result

Tmn ≈ N
V 2 ∫V d3𝐑 exp

(
−i

(
𝐪m − 𝐪n

)
⋅ 𝐑

)

∫
|Δ𝐫|<L∕2𝛼 d3Δ𝐫 sin(k0Δr)

k0Δr
exp

(
i
(
𝐪m + 𝐪n

)
⋅ Δ𝐫∕2

)

= 𝛿mn
2𝜋2N
k0qm

L
2𝛼𝜋

{
sinc

[(
qm − k0

) L
2𝛼

]
− sinc

[(
qm + k0

) L
2𝛼

]}

(6.179)

This expression is still too involved to be useful. The second sinc function in (6.179)
is always smaller than 2𝛼∕k0L (because qm = |

|𝐪m
|
| > 0 and k0 > 0) and hence can be

dropped in the limit of large k0L >> 1, considered in this section. Besides, because the
first sinc function in (6.179) is peaked around qm = k0, we replace it by a boxcar function
∏[(

qm − k0
)

L∕2𝛼𝜋
]
, where, the boxcar function is defined as

∏
(x) = 1 for |x| < 1∕2

and
∏

(x) = 0 otherwise. The coefficient in front of (qm − k0) in the argument of
∏

is
chosen to ensure that the integral of the latter over qm from 0 to ∞ is equal to the same
integral of the sinc function. We then obtain

Tmn ≃ 2𝜋2N
k0qm

L
2𝛼𝜋

∏[(
qm − k0

) L
2𝛼

]
𝛿mn
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which is different from zero only for𝐪ms inside a spherical shell of radius k0 and thickness
L

2𝛼𝜋
. In addition, for all 𝐪ms inside the shell the value of Tmn is the same and equal to

N∕M with M = 𝛼
(
k0L

)2∕𝜋 >> 1, the number of inside the shell Equation (6.179) then
yields

𝐒 = N
M
𝐇𝐇H (6.180)

which is equivalent to (6.163) with a M × M matrix𝐓 = N
M
𝐈M. To obtain the R-transform

of (6.180), we see Example 5.8.8 for the product of two i.i.d. random matrices. We then
readily find

G𝐓 (z) =
1
M

Tr
[
z𝐈 − N

M
𝐈
]−1

= 1
z − N∕M

and from (6.176):

B𝐒 (z) = (1 − 𝛽z)−1 + 1∕z

with 𝛽 = N∕M. This is the Blue’s function of the famous Marchenko–Pastur law

p (𝜆) =
(

1 − 1
𝛽

)+

𝛿 (𝜆) +
√
(𝜆 − a) (b − 𝜆)

2𝜋𝛽𝜆
(6.181)

where a =
(

1 −
√
𝛽

)2
, b =

(
1 +

√
𝛽

)2
and x+ = max(x, 0). The distribution of eigen-

values of the matrix (6.177) is therefore parameterized by a single parameter 𝛽 equal
to the variance of this distribution, as can be easily checked from (6.181): var (𝜆) = 𝛽.
Although our derivation of (6.181) was based on several approximations, the average
value of 𝜆, 𝔼𝜆 = 1, following from this equation, is exact. The second moment of 𝜆,

𝔼𝜆2 = 1
N
𝔼 [Tr 𝐒] = 1 + aN

(
k0L

)2 (6.182)

where the numerical constant a is given by

a = 1
2 ∫unit cube

d3𝐮1 ∫unit cube
d3𝐮2

1
|
|𝐮1 − 𝐮2

|
|

2 ≃ 2.8

with the integrations running over the volume of a cube of unit side. By requiring that
the second moment 1 + 𝛽 of the distribution (6.181) coincides with (6.182), we can now
fix the value of 𝛼 that remained arbitrary until now. We obtain 𝛼 = 𝜋∕a ≃ 1.12 and

𝛽 = 2.8N
(
k0L

)2 ◽

Example 6.14.3 (Eigenvalue distribution of cosc matrix) Let us now consider
a Euclidean random matrix with elements defined using the cardinal cosine (cosc)
function:

Cij =
(
1 − 𝛿ij

)
cos

(
k0

|
|
|
𝐫i − 𝐫j

|
|
|

)
∕k0

|
|
|
𝐫i − 𝐫j

|
|
|
, i, j = 1,… ,N (6.183)
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The prefactor 1 − 𝛿ij allows us to deal with the divergence of the function cos(x)∕x for
x → 0. Proceeding as in the previous example, we find

Tmn ≃ 4𝜋N
k0V

1
q2

m − k2
0
𝛿mn (6.184)

under the same approximations as in (6.179). The matrix 𝐓 defined in (6.184) has infi-
nite size.

For details of this example, we refer to [320]. ◽

Let us recall some results from free probability that will be needed in the next example.
The extension of free probability theory and, in particular, the generalization of the

concept of the Blue’s function, to non-Hermitian matrices is natural in quaternion space
[322, 323]. The 2 × 2 matrix 𝐐 is an arbitrary quaternion in the matrix representation

𝐐 =
(

a ib∗

b a∗

)

(6.185)

For an arbitrary Q defined above, we can use algebraic properties of quaternions to show
that the following addition law holds [322, 323]

R𝐗1+𝐗2
(𝐐) = R𝐗1

(𝐐) + R𝐗2
(𝐐) (6.186)

where 𝐗1 and 𝐗2 are two non-Hermitian, asymptotically free random matrices.
Now consider the non-Hermitian complex matrix𝐗1 + i𝐗2,𝐗1 and𝐗2 are two asymp-

totically free Hermitian matrices with known R-transforms. Jarosz and Nowak (2004,
2006) [322, 323] showed that the problem reduces to solving a simple system of three
equations with three unknown variables, complex u, v, and real t:

R𝐗1
(u) = x + t − 1

u
R𝐗2

(v) = y − t
v

(6.187)

|u| = |v|

where z = x + iy. We express u and v via t from the first two equations, substitute the
results into the third equation, and then solve for t. The resolvent and the correlator are
then given by

g𝐗1+i𝐗2
(z) = Reu − iRe v (6.188)

c𝐗1+i𝐗2
(z) = (Reu)2 + (Re v)2 − |u|2 (6.189)

Equation for the borderline z ∈ 𝛿D of the eigenvalue domain follows from
c𝐗1+i𝐗2

(z) = 0.

Example 6.14.4 (Eigenvalue distribution of the cosc+i sinc matrix and the com-
plex expc matrix) The matrices 𝐂 and 𝐒 can be combined in a single complex
non-Hermitian matrix: 𝐂 + i (𝐒 − 𝐈). The theory of free random variables allows one
to study the statistical distribution of the complex eigenvalues of this matrix based on
the properties of the matrices 𝐂 and 𝐒 that we considered in the previous examples.
This, however, requires asymptotic freeness of 𝐂 and 𝐒. The matrices 𝐂 and 𝐒 defined
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by (6.177) and (6.183) through the same set of points 𝐫i turn out to be not asymptotically
free. We, therefore, start our study of non-Hermitian Euclidean random matrices by
the case of a matrix

𝐗 = 𝐂 + i
(
𝐒′ − 𝐈

)
(6.190)

where two different and independent sets of points 𝐫i and 𝐫 ′

i are used to define the real
and imaginary parts of 𝐗:

Sij =
(
1 − 𝛿ij

) sin
(

k0
|
|
|
𝐫i − 𝐫j

|
|
|

)

k0
|
|
|
𝐫i − 𝐫j

|
|
|

, Cij =
(
1 − 𝛿ij

) cos
(

k0
|
|
|
𝐫i − 𝐫j

|
|
|

)

k0
|
|
|
𝐫i − 𝐫j

|
|
|

(6.191)

Since 𝐗 is of the form 𝐗1 + i𝐁2, where 𝐗1 = 𝐂 and 𝐗2 = 𝐒′ − 𝐈N are two asymp-
totically free Hermitian matrices, we can make use of (6.187), (6.188) and (6.189) to
calculate the resolvent g(z) and the eigenvector correlator c(z) of 𝐗. In the limit of
𝛾 << 1, the R-transforms of 𝐗1 and 𝐗2 are those of Gaussian and Wishart matrices,
respectively:

g
(
z = x + iy

)
= x

2𝛾
− i

2

[
y

𝛾
(
1 + y

) + 1
2 + y

]

(6.192)

c
(
z = x + iy

)
=

(
x

2𝛾

)2

+ 1
4

[
y

𝛾
(
1 + y

) − 1
2 + y

]2

− 1
𝛾
(
1 + y

) (
2 + y

) (6.193)

The correlator (6.193) must vanish on the borderline 𝛿D of the eigenvalue domain. We
therefore readily obtain equation for the borderline on the complex plane:

x2 +

(
y

(
1 + y

) − 𝛾

2 + y

)2

− 4𝛾
(
1 + y

) (
2 + y

) = 0 (6.194)

The probability density inside the domain delimited by (6.194) is

p
(
x, y

)
= 1

2𝜋

[
𝜕x Re g (z) − 𝜕x Re g (z)

]

= 1
2𝜋

[
1
𝛾
+ 1

𝛾(1+y)2 − 1
(2+y)2

] (6.195)

By analogy with the cardinal sine and cosine functions, a “cardinal complex expo-
nent” function can be defined as f (x) = exp (ix) ∕x. The Euclidean random matrix 𝐆
corresponding to this function has elements

Gij = f
(
𝐫i − 𝐫j

)
=

(
1 − 𝛿ij

) exp
(

ik0
|
|
|
𝐫i − 𝐫j

|
|
|

)

k0
|
|
|
𝐫i − 𝐫j

|
|
|

(6.196)

This matrix has a particular importance in the problem of wave scattering by an
ensemble of N point-like scatterers. Although the matrix 𝐆 is similar to the matrix 𝐗,
the analytic study of its properties is much more involved. See [321] for an analytical
theory. ◽
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6.15 Random Matrices with Independent Entries
and the Circular Law

In this section we consider two ensembles of random matrices with independent
entries. Before we state the circular law, we first define a class of Hermitian random
matrices with independent entries originally introduced by Wigner (1958) [109].

Definition 6.15.1 (Wigner random matrices) Let 𝜉 be a complex random variable
with mean zero and unit variance, and let 𝜍 be a real random variable with mean
zero and finite variance. We say 𝐗n is a Wigner matrix of size n with atom variables
𝜉, 𝜍 if 𝐗n =

(
Xij

)n
i,j=1 is a random Hermitian n × n matrix that satisfies the following

conditions:

• Independent random variables.
{

Xij ∶ 1 ⩽ i ⩽ j ⩽ n
}

is a collection of independent
random variables.

• Entries above the diagonal ones.
{

Xij ∶ 1 < i < j ⩽ n
}

is a collection of independent
and identically distributed (i.i.d.) copies of 𝜉.

• Diagonal entries.
{

Xii ∶ 1 ⩽ i ⩽ n
}

is a collection of i.i.d. copies of 𝜍.

The prototypical example of a Wigner real symmetric matrix is the Gaussian orthog-
onal ensemble (GOE). The GOE is defined by the probability distribution

ℙ (d𝐌) = 1
Z(𝛽)

n
exp

(

−𝛽
4

Tr𝐌2
)

d𝐌 (6.197)

on the space of n × n real symmetric matrices when 𝛽 = 1 and d𝐌 refers to the
Lebesgue measure on the n(n + 1)∕2 different elements of the matrix. Here Z(𝛽)

n denotes
the normalization constant. So for a matrix 𝐗n =

(
Xij

)n
i,j=1 drawn from the GOE, the

elements
{

Xij ∶ 1 ⩽ i ⩽ j ⩽ n
}

are independent Gaussian random variables with mean
zero and variance 1 + 𝛿ij. The classical example of a Wigner Hermitian matrix is the
Gaussian unitary ensemble (GUE). The GUE is defined by the probability distribution
given in (6.197) with 𝛽 = 2, but on the space of n × n Hermitian matrices. Thus, for a
matrix 𝐗n =

(
Xij

)n
i,j=1 drawn from the GUE, the n2 different real elements of the matrix

{
Re

(
Yij

)
∶ 1 ⩽ i ⩽ j ⩽ n

}
∪

{
Im

(
Yij

)
∶ 1 ⩽ i ⩽ j ⩽ n

}

are independent Gaussian random variables with mean zero and variance (1 + 𝛿ij)∕2. A
classical result for Wigner random matrices is Wigner’s semicircle law Wigner (1958)
[109, Theorem 2.5].

Theorem 6.15.2 (Wigner’s semicircle law) Let 𝜉 be a complex random variable with
mean zero and unit variance, and let 𝜍 be a real random variable with mean zero and
finite variance. For each n ≥ 1, let 𝐗n be a Wigner matrix of size n with atom variables
𝜉, 𝜍, and let 𝐀n be a deterministic n × n Hermitian matrix with rank o(n). Then the
empirical spectral distribution of 1

√
n

(
𝐗n + 𝐀n

)
converges almost surely to the semi-

circle distribution Fsc(x) as n → ∞, where

Fsc (x) = ∫
x

−∞
fsc (t) dt, fsc (x) =

{
1

2𝜋

√
4 − x2, if |x| ⩽ 2
0, if |x| > 2
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Wigner’s semicircle law holds in the case where the entries of 𝐗n are not identically
distributed (but are still independent) provided the entries satisfy a Lindeberg-type con-
dition. See [163, Theorem 2.9] for further details.

Now we are ready for the circular law. The circular law is another milestone in the
development of random-matrix theory. The circular-law theorem states that the empir-
ical spectral distribution of an n × n random matrix with i.i.d. entries of variance 1∕n
tends to the uniform law on the unit disc of the complex plane as the dimension n
tends to infinity. This phenomenon is the non-Hermitian counterpart of the semi cir-
cular limit for Wigner random Hermitian matrices, and the quarter-circular limit for
Marchenko-Pastur random covariance matrices

We now consider an ensemble of random matrices with i.i.d. entries. That is, we con-
sider a random n × n matrix 𝐗n whose entries are i.i.d. copies of a random variable 𝜉.
In this case, we say 𝐗n is an i.i.d. random matrix, and we refer to 𝜉 as the atom variable
of 𝐗n. When 𝜉 is a standard complex Gaussian random variable, 𝐗n can be viewed as a
random matrix drawn from the probability distribution

ℙ (d𝐌) = 1
𝜋n2 exp

(
−Tr

(
𝐌𝐌H))

d𝐌

on the set of complex n × n matrices. Here d𝐌 denotes the Lebesgue measure on the
2n2 real entries of 𝐌. This is known as the complex Ginibre ensemble. The real Ginibre
ensemble is defined analogously. Following Ginibre (1965) [111], one may compute the
joint density of the eigenvalues of a random n × n matrix 𝐗n drawn from the complex
Ginibre ensemble.

Mehta [103, 324] used the joint density function obtained by Ginibre to compute the
limiting spectral measure of the complex Ginibre ensemble. In particular, he showed
that if𝐗n is drawn from the complex Ginibre ensemble, then the ESD of 1

√
n
𝐗n converges

to the circular law Fcircle
(
x, y

)
, where

Fcircle
(
x, y

)
= 𝜇circle

({
z ∈ ℂ ∶ Re (z) ⩽ x, Im (z) ⩽ y

})

and 𝜇circle is the uniform probability measure on the unit disk in the complex plane.
Edelman (1997) [113] verified the same limiting distribution for the real Ginibre
ensemble.

For the general (non-Gaussian) case, there is no formula for the joint distribution of
the eigenvalues and the problem appears much more difficult. The universality phe-
nomenon in random matrix theory asserts that the spectral behavior of a random matrix
does not depend on the distribution of the atom variable 𝜉 in the limit n → ∞. In other
words, one expects that the circular law describes the limiting ESD of a large class of
random matrices (not just Gaussian matrices).

Let Xij, 1 ⩽ i ⩽ j <∞, be an array of independent random variables with 𝔼Xij = 0. We
consider the random matrix

𝐗n =
{

Xij
}n

i,j=1

Denote by 𝜆1,… , 𝜆n the eigenvalues of the matrix 𝐗n and define its spectral distribu-
tion function F𝐀n

(x, y) by (3.6).
We say that the Circular law holds if F𝐀n

(x, y) converges to the distribution func-
tion F(x, y) of the uniform distribution in the unit disc in ℝ2. F(x, y) is called the
circular law.
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For matrices with independent identically distributed complex normal entries,
the circular law was proved by Mehta, see [103]. Almost certain convergence of
F𝐗n

(x, y) to the circular law F(x, y) under the assumption of a finite fourth (2 + 𝜀)
and finally of the second moment was established in [325] by Pan, Zhou and
by Tao, Vu in [326, 327], respectively. The excellent tutorial by Bordenave and
Chafaï is [328, 329].

Theorem 6.15.3 (Tao-Vu (2010) [55]) Let 𝜉 be a complex random variable with
mean zero and unit variance. For each n ≥ 1, let 𝐗n be a n × n matrix whose entries
are i.i.d. copies of 𝜉, and let 𝐀n be an n × n deterministic matrix. If

rank
(
𝐀n

)
= o (n) and sup

n⩾1

1
n2

‖
‖𝐀n

‖
‖

2
F < ∞

then the ESD of 1
√

n

(
𝐗n + 𝐀n

)
converges almost certainly to the circular law Fcircle

(
x, y

)

as n → ∞.

6.16 The Circular Law and Outliers

The random matrix 1
√

n
𝐗 is perturbed by an deterministic matrix𝐀 such that the eigen-

values of 1
√

n
𝐗 + 𝐀 are considered. We define the signal-to-noise ratio (SNR) in dB as

SNR = 10 ∗ log10

(
Tr

(
𝐀𝐀H)

Tr (𝐗𝐗H∕n)

)

Figure 6.25, Figure 6.26 and Figure 6.27 are plotted for n = 50, n = 200, and n = 1, 000,
respectively. For other related simulation results, see Figure 6.28–6.31. From these
results, we illustrate the statistical properties of outliers. We can clearly identify every
corresponding eigenvalue location on the complex plane. For n = 1, 000 in Figure 6.27,
SNR is −12.2 (dB). We can consider a more general model

𝐙 = 1
√

n
𝐗 + 𝜇𝐘 (6.198)

where 𝐘 is a random matrix (independent of 𝐗) such that the columns of 𝐘 are i.i.d.,
with each column equal to

√
p

1−p
𝜙n with probability p and −

√
1−p

p
𝜙n with probability

1 − p, for some fixed 0 < p < 1.

Code 1: I.I.D. Random Matrix perturbed by a Diagonal Matrix

%***********************************************************
% The code is devloped by Robert C. Qiu
%
% based on the paper of Terrence Tao cited below
%
% Terrence Tao, Outliers in the spectrum of i.i.d. matrices
with bounded rank
% perturbations, Probability Theory and Related Fields,
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Vol. 155, No. 1-2,
% pp. 231-263, 2013.
%***********************************************************
clear all;

n=50;
N_Try=5

A=zeros(n,n);

A(1,1)=2+i; A(2,2)=3;A(3,3)=2; % determinstic matrix of
low rank
A(4,4)=-2-i; A(5,5)=-1.5;A(6,6)=-2; % determinstic matrix of
low rank
A(7,7)=2-i; A(8,8)=-2+2*i;A(9,9)=-2-i*3; % determinstic
matrix of low rank
A(10,10)=-2+i; % determinstic matrix of low rank

%A=zeros(n,n);
%A(:,1)=(2*randn(n,1)+j*randn(n,1));

3
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–3 –2 –1 0

Real (z)

Im
ag

 (
z)

1 2 3

Figure 6.25 This figure shows the eigenvalues of a single n × n i.i.d. random matrix with atom
distribution X defined by a white Gaussian random variable with zero mean and variance one; the
eigenvalues were perturbed by adding the diagonal matrix with ten diagonal entries: 2 + i; 3; 2; −2 − i;
−1.5; −2; 2 − i; −2 + 2i; −2 − 3i; −2 + i, corresponding to ten locations on the complex z plane. The
small circles are centered at these ten locations on the complex plane, and each has a radius n− 1

4

where n = 50. Five hundred Monte Carlo trials are performed to see how stable these eigenvalues
locations are. We can clearly identify every corresponding eigenvalue location on the complex plane.
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Figure 6.26 Parameters are same as Figure 6.25, except for n = 200.
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Figure 6.27 Parameters are same as Figure 6.25, except for n = 1000.
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Figure 6.28 Parameters are same as Figure 6.25, except for n = 2000. Only 50 Monte Carlo trials are
performed here, rather than 500.

%A(:,2)=(4*randn(n,1)+3*j*randn(n,1));

for i=1:N_Try
X=zeros(n,n);

X=(randn(n,n)+j*randn(n,n))/sqrt(2);
% i.i.d. random matrix with i.i.d. (Gaussian)
% complex entries

lamda=eig(X/sqrt(n)+A); % eigenvalues are complex numbers
SNR_dB=10*log10(trace(A*A’)/trace(X*X’))
%*********** Figures *********
IFIG=0;
IFIG=IFIG+1;figure(IFIG);
t=0:2*pi/1000:2*pi;x=sin(t);y=cos(t); % unit circle
r=n^(-1/4); % radius of circle
plot(real(lamda),imag(lamda),’.’,x,y,’r-’,2+r*x,1+r*y,
3+r*x,r*y,2+r*x,r*y,...
-2+r*x,-1+r*y,-1.5+r*x,n^(-1/4)*y,-2+r*x,r*y,
2+r*x,-1+r*y,-2+r*x,2+r*y,... -2+r*x,-3+r*y,
-2+r*x,1+r*y);hold on;
axis([-3.5 3.5 -3.5 3.5])
xlabel(’real(z)’)
ylabel(’imag(z)’)
end % N_Try
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Figure 6.29 This figure shows the eigenvalues of a single n × n i.i.d. random matrix with atom
distribution X defined by a white Gaussian random variable with zero mean and variance one; the
eigenvalues were perturbed by adding a deterministic matrix with four eigenvalues:

2+2j;2-𝛿+2j;2+2j-j-𝛿;2+2j+𝛿∕
√

2+j𝛿∕
√

2 (their corresponding eigenvectors are random Gaussian
vectors). Here 𝛿 = 2n− 1

4 is the minimum distance between two eigenvalues. The small circles are
centered at these four eigenvalue locations on the complex plane, respectively, and each has a radius
n− 1

4 where n = 2000. Five hundred Monte Carlo trials are performed to see how stable these
eigenvalues locations are. We can clearly identify every corresponding eigenvalue location on the
complex plane.

hold off;
a=eig(A);
a(1:15)

Code 2: I.I.D. Random Matrix Perturbed by a Deterministic Matrix

%***********************************************************
%
% Outliers in the spectrum of i.i.d. matrices with bounded
rank perturbations
%
% Terrence Tao
%
% Probability Theory and Related Fields, Vol. 155, No. 1-2,
pp. 231-263, 2013.
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Figure 6.30 This figure shows the eigenvalues of a single n × n i.i.d. random matrix with atom
distribution X defined by a white Gaussian random variable with zero mean and variance one; the
eigenvalues were perturbed by adding a deterministic matrix with four eigenvalues:

a+jb;a-𝛿+jb;a+jb-j𝛿;a+jb+𝛿∕
√

2+j𝛿∕
√

2 (their corresponding eigenvectors are random Gaussian
vectors). Here 𝛿 = 2n− 1

4 is the minimum distance between two eigenvalues, and
a = (1 + 𝛿)∕

√
2; b = (1 + 𝛿)∕

√
2. The small circles are centered at these 4 eigenvalue locations on the

complex plane, and each has a radius of n− 1
4 . In this case n = 5, 000. 200 Monte Carlo trials are

performed to see how stable these eigenvalues locations are. We can clearly identify every
corresponding eigenvalue location on the complex plane.

%***********************************************************
clear all;
n=5000;
N_Try=5
Axis_Length=3;
IFIG=0;

A=zeros(n,n);

x1=randn(n,1); x2=randn(n,1);x3=randn(n,1);x4=randn(n,1);
x1=x1/sqrt(x1’*x1);x2=x2/sqrt(x2’*x2);x3=x3/sqrt(x3’*x3);
x4=x4/sqrt(x4’*x4);
A=(x1*x1’+j*x2*x2’+(1+j)*x3*x3’+(-1-j)*x4*x4’)*2;
% matrix with rank =4

lamda=eig(A); % eigenvalues are complex numbers
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Figure 6.31 This figure shows the eigenvalues of a single n × n i.i.d. random matrix with atom
distribution X defined by a white Gaussian random variable with zero mean and variance one; the
eigenvalues were perturbed by adding a deterministic matrix with four eigenvalues: 2; 2+2j;2j;-2-2j
(their corresponding eigenvectors are random Gaussian vectors). The small circles are centered at
these four eigenvalue locations on the complex plane, and each has a radius n− 1

4 where n = 9000.
Twenty Monte Carlo trials are performed to see how stable these eigenvalues locations are. We can
clearly identify every corresponding eigenvalue location on the complex plane.

IFIG=IFIG+1;figure(IFIG);
t=0:2*pi/1000:2*pi;x=sin(t);y=cos(t); % unit circle
plot(real(lamda),imag(lamda),’*’,x,y,’r-’);hold on;
axis([Axis_Length*(-1) Axis_Length Axis_Length*(-1)
Axis_Length])
grid;
xlabel(’real(z)’)
ylabel(’imag(z)’)
hold off;

for i=1:N_Try X=zeros(n,n);
X=(randn(n,n)+j*randn(n,n))/sqrt(2); % i.i.d. random matrix
with i.i.d.

% (Gaussian) complex entries
lamda=eig(X/sqrt(n)+A); % eigenvalues are complex numbers
SNR_dB=10*log10(trace(A*A’)/trace(X*X’/n))
%*********** Figures *********
IFIG=1; IFIG=IFIG+1;figure(IFIG);
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t=0:2*pi/1000:2*pi;x=sin(t);y=cos(t); % unit circle
r=n^(-1/4); % radius of circle
plot(real(lamda),imag(lamda),’.’,x,y,’r-’,...

2+r*x,0+r*y,2+r*x,2+r*y,0+r*x,2+r*y,-2+r*x,
-2+r*y);hold on;

axis([Axis_Length*(-1) Axis_Length Axis_Length*(-1)
Axis_Length])
grid;
xlabel(’real(z)’)
ylabel(’imag(z)’)
end % N_Try

D=eig(A)
hold off;

Example 6.16.1 (orthogonal frequency-division multiplexing (OFDM)
systems) Channel estimation is critical to orthogonal frequency-division mul-
tiplexing (OFDM) systems [330–332]. In this example, we follow the system model
of [332] below. Our goal is to reformulate the system in terms of large random matrices
and study outliers of the perturbed random matrices in this context.

We assume that the use of a cyclic prefix (CP) both preserves the orthogonality of
the tones and eliminates intersymbol interference (ISI) between consecutive OFDM
symbols. Further, the channel is assumed to be slowly fading, so it is considered to be
constant during one OFDM symbol. The number of tones in the system is N and the
length of the CP is L samples.

Under these assumptions we can regard the system as a set of parallel Gaussian chan-
nels, with correlated attenuation hk . The attenuation on each tone are given by

hk = G
(

k
NTs

)

, k = 0,… ,N − 1

where G(⋅) is the frequency response of the channel g(𝜏) during the OFDM symbol and
Ts is the sampling period of the system. In matrix notation, we describe the OFDM
system as

𝐲 = 𝐙𝐡 + 𝐱 (6.199)

where where 𝐲 =
[
y0,… , yN−1

]T is the received vector

𝐙 =
⎛
⎜
⎜
⎝

z0 0
⋱

0 zN−1

⎞
⎟
⎟
⎠

is a diagonal matrix containing the transmitted signaling points, 𝐡 =
[
h0,… , hN−1

]T

is a channel attenuation vector, and 𝐱 =
[
x0,… , xN−1

]T is a vector of independent
identically distributed (i.i.d.) complex zero-mean Gaussian noise with variance 𝜎2. The
random noise vector 𝐱 is assumed to be uncorrelated with the random channel vector 𝐡.
In multiuser systems, the interference from other uses can be also modeled in the
vector 𝐱.
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Putting 𝐚 = 𝐙𝐡 ∈ ℂN within the duration of each symbol consisting of N tones, we
rewrite (6.199) in terms of our standard random vector form

𝐲 = 𝐱 + 𝐚

where the random vector 𝐚 is independent of the noise random vector 𝐱. Assume that
we consecutively use the channel for n times, representing the duration of n symbols.
Then, we have

𝐲i = 𝐚i + 𝐱i, i = 1,… , n (6.200)

whose i-th realization of the channel may or may not independent of j-th realization of
the channel, for i ≠ j, i, j = 0,… ,N − 1. Writing

𝐘 = 1
√

n

(
𝐲1,… , 𝐲n

)
∈ ℂN×n,𝐀 = 1

√
n

(
𝐚1,… , 𝐚n

)
∈ ℂN×n,𝐗 =

(
𝐱1,… , 𝐱n

)
∈ ℂN×n

we have the random matrices

𝐘 = 1
√

n
𝐗 + 𝐀 (6.201)

where the signal random matrix𝐀 is independent of the noise random matrix𝐗. (6.201)
is called the standard random matrix form of the signal-plus-noise model. We are inter-
ested in the asymptotic regime

n → ∞,N → ∞, but n∕N → c ∈ (0,∞)

so n and N are large but comparable, to exploit the recent developments of large dimen-
sional random matrices in the statistics literature.

In (6.201), when the random matrix 1
√

n
𝐗 is a matrix with independent identically

distributed complex normal entries, the circular law for 1
√

n
𝐗 has been proven. The ran-

dom matrix 1
√

n
𝐗 is perturbed by a deterministic (or random) matrix 𝐀 such that the

eigenvalues of 1
√

n
𝐗 + 𝐀 exhibit outliers in the complex plane outside the unit circle. See

previous figures in this section for illustrations. This outlier model was first studied by
Tao (2011) [333] and was also treated previously in this section.

Now we consider the use of outliers for channel estimation or symbols deci-
sion making (demodulation). From the K outliers of the eigenvalues

𝜆i

(
1

√
n
𝐗 + 𝐀

)

, i = 1,… , n

we can detect the eigenvalues

𝜆k (𝐀) , k = 1,… ,K

which are in turn linked with the channel vector 𝐡 =
[
h0,… , hN−1

]T and the transmit-
ting signal points

𝐙 =
⎛
⎜
⎜
⎝

z0 0
⋱

0 zN−1

⎞
⎟
⎟
⎠
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through the relation

𝐚 = 𝐙𝐡 =
⎛
⎜
⎜
⎝

z0 0
⋱

0 zN−1

⎞
⎟
⎟
⎠

⎛
⎜
⎜
⎝

h0
⋮

hN−1

⎞
⎟
⎟
⎠

=
⎛
⎜
⎜
⎝

h0z0
⋮

hN−1zN−1

⎞
⎟
⎟
⎠

=
⎛
⎜
⎜
⎝

a0
⋮

aN−1

⎞
⎟
⎟
⎠

∈ ℂN×1 (6.202)

For any diagonal matrix 𝐃

𝐃 = diag
(
d1,… , dn

)
=

⎛
⎜
⎜
⎝

d1 0
⋱

0 dn

⎞
⎟
⎟
⎠

it follows that

𝜆i (𝐃) = di, i = 1,… , n (6.203)

Our target here is to use the fact of (6.203) for demodulation. Assume that the trans-
mitting signals points remain invariant for n uses of the channel, whose i-th channel
gain vector is 𝐡i. So we have

𝐀 = 1
√

n

(
𝐚1,… , 𝐚n

)
= 1

√
n

⎛
⎜
⎜
⎝

z0 0
⋱

0 zN−1

⎞
⎟
⎟
⎠N×N

(6.204)

⎛
⎜
⎜
⎜
⎝

h00 h01 · · · h0,n−1
h10 h11 · · · h1,n−1
⋮ ⋮ ⋮ ⋮

hN−1,0 hn−1,1 · · · hN−1,n−1

⎞
⎟
⎟
⎟
⎠N×n

= 𝐙𝐇 ∈ ℂN×n

where

𝐇 = 1
√

n

(
𝐡1,… ,𝐡n

)
∈ ℂN×n

is the channel gain matrix. When n = N , we have the eigenvalue decomposition

𝐇 = 𝐔𝚲𝐔H = 𝐔
⎛
⎜
⎜
⎝

𝜆0 (𝐇) 0
⋱

0 𝜆N−1 (𝐇)

⎞
⎟
⎟
⎠

𝐔H (6.205)

where 𝐔 is the matrix consisting of the n eigenvectors and 𝜆i (𝐇) is the i-th (complex)
eigenvalue, where i = 0,… ,N − 1. Upon inserting (6.205) into (6.204), we obtain

𝐀 =
⎛
⎜
⎜
⎝

z0 0
⋱

0 zN−1

⎞
⎟
⎟
⎠

𝐔
⎛
⎜
⎜
⎝

𝜆0 (𝐇) 0
⋱

0 𝜆N−1 (𝐇)

⎞
⎟
⎟
⎠

𝐔H

= 𝐔
⎛
⎜
⎜
⎝

z0 0
⋱

0 zN−1

⎞
⎟
⎟
⎠

⎛
⎜
⎜
⎝

𝜆0 (𝐇) 0
⋱

0 𝜆N−1 (𝐇)

⎞
⎟
⎟
⎠

𝐔H

= 𝐔
⎛
⎜
⎜
⎝

𝜆0 (𝐇) z0 0
⋱

0 𝜆N−1 (𝐇) zN−1

⎞
⎟
⎟
⎠

𝐔H ,

(6.206)
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In other words, we have

𝜆i (𝐀) = 𝜆i (𝐇) zi, i = 0,… ,N − 1 (6.207)

The second line of (6.206) follows from using the special property of the diagonal
matrix 𝐙: For any diagonal matrix 𝐃 and an arbitrary complex square matrix 𝐂, the
order of the matrix multiplication can be exchanged

𝐃𝐂 = 𝐂𝐃

From (6.207) it follows that

zi =
𝜆i (𝐀)
𝜆i (𝐇)

, i = 0,… ,N − 1 (6.208)

Since 𝜆i (𝐀) can be obtained from the outliers of the eigenvalues 𝜆i

(
1

√
n
𝐗 + 𝐀

)
, as

pointed out before, we can detect the symbols zi, i = 0,… ,N − 1, if we know the
eigenvalues 𝜆i (𝐀) .

Example 6.16.2 (additive Gaussian deformation of the circular law) For each
integer n ≥ 1, let 𝐗 =

(
Xij

)

1⩽i,j⩽n be the random matrix whose entries are i.i.d. copies
of a complex valued random variable 𝜉 with variance 𝜎2. The circular law theorem
asserts that the empirical spectral distribution of 𝐗–after centering and rescaling by
𝜎
√

n–converges weakly to the uniform distribution on the unit disc of . Bordenave
et al. (2013) [334] consider random matrix of the form

𝐋 = 𝐗 − 𝐃 (6.209)

where 𝐗 is a matrix with i.i.d. entries as above, and 𝐃 is the diagonal matrix obtained
from the row sums of 𝐗: for i = 1,… , n,

Dii =
n∑

k=1
Xik

If 𝐗 is interpreted as the adjacency matrix of a weighted oriented graph, then 𝐋 is the
associated Laplacian matrix, with zero row sums.

6.17 Random SVD, Single Ring Law, and Outliers

We know that, most times, if one adds a finite rank perturbation to a large random
matrix, it barely modifies its spectrum. However, we observe that the extreme eigen-
values may be altered and deviated away from the bulk. This phenomenon has already
been well understood in the Hermitian case (see [138] for the references along this
line). For a large random Hermitian matrix, if the strength of the added perturbation
is above a threshold, the extreme eigenvalues of the perturbed matrix deviate at a
macroscopic distance from the bulk (such eigenvalues are usually called outliers) and

2 xd comment: Zhang, Matrix Theory, P. 227. We can use something like

𝜆i (𝐀𝐁) = 𝜆i (𝐀) 𝜆i (𝐁)
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then have Gaussian fluctuations, otherwise they stick to the bulk and fluctuate like
those of the nonperturbed matrix. This phenomenon is called the BBP phase transition,
named after the authors of [335], who first brought it to light for empirical covariance
matrices. Tao [333] studied a non-Hermitian case : he showed in [333] a similar result
for large random matrices whose entries are i.i.d. with mean zero and variance one.
We have treated the case studied by Tao [333] in Section 6.16. In this section, we
study finite rank perturbations for another natural model of non-Hermitian random
matrices, which admit a form like

𝐗 = 𝐔
⎛
⎜
⎜
⎝

s1 0
⋱

0 sn

⎞
⎟
⎟
⎠

𝐕 (6.210)

where 𝐔 and 𝐕 are Haar-distributed unitary random matrices and the sis are positive
numbers, which are independent from 𝐔 and 𝐕 and with additional assumption (A1)
the empirical distribution of sis tends to a probability measure 𝜇s, which is compactly
supported on ℝ+. (6.210) is called random singular value decomposition (SVD). 𝐗 is
unitary invariant by construction. The complex Ginibre ensemble is a special case of
this unitary invariant model.

Example 6.17.1 (Marchenko–Pastur quarter circular law) Let 𝐗 be a random
matrix with i.i.d. entries. We know that the singular values si(𝐗) is compactly sup-
ported on ℝ+. The spectrum measure 𝜇s for the random matrix 𝐗 is the well-known
Marchenko–Pastur quarter circular law

𝜇s(dx) = 1
𝜋

√
4 − x2𝟏[0,2](x)dx

where 𝟏[c,d](x) is the indication function that is one on the interval [c, d] and zero outside
the interval. ◽

Due to Example 6.17.1, the model (6.210) can be seen as a generalization of the i.i.d.
matrices case where we assume that they are isotropic, which means that their law does
not change by left or right product by any unitary matrix. For example, matrices from
the complex Ginibre ensemble (matrices with i.i.d. entries which are complex standard
Gaussian) do satisfy the assumption (A1). In [137], Guionnet, Krishnapur and Zeitouni
showed that the eigenvalues of 𝐗 tend to spread over a single annulus centered in the
origin as the dimension n tends to infinity. In [336], Guionnet and Zeitouni proved the
convergence in probability of the support of its empirical spectral distribution (ESD),
which shows the lack of natural outliers for this kind of matrix. See also (8.7) for the
definition of the ESD.

Inspired by Tao [333], Benaych-George and Rochet (2013) [138] proved that, for
finite rank perturbation with a bounded operator norm, outliers show up close to the
first eigenvalues of the perturbation, which are outside the annulus (as in the i.i.d. matri-
ces case), whereas no outlier appears inside the bulk. Then they showed (and this is the
main difficulty of the paper) that the outliers have Gaussian fluctuations in the case of a
rank one perturbation.

Let, for each n ≥ 1, 𝐗n be a random matrix which admits the decomposition

𝐗n = 𝐔n𝐒n𝐕n
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with 𝐒n = diag
(
s1,… , sn

)
, where the sis are positive numbers and where 𝐔n and 𝐕nare

two independent random unitary matrices which are Haar-distributed independently
from the matrix 𝐒n. We make the assumptions of the Single Ring Theorem [137].

• Hypothesis 1: The Empirical Spectral Distribution (ESD) of 𝐒n, 𝜇𝐒n
= 1

n

n∑

i=1
𝛿si

con-

verges, in probability, weakly to a deterministic probability measure 𝜇 which is com-
pactly supported on ℝ+.

• Hypothesis 2: There exists M > 0, such that ℙ
(
‖
‖𝐒n

‖
‖op > M

)
→ 0, where the opera-

tor norm is denoted by ‖⋅‖op.
• Hypothesis 3: There exist some constants 𝜅, 𝜅1 > 0 such that

Im(z) > n−𝜅 ⇒
|
|
|
|
Im

(
G𝜇𝐒n

(z)
)|
|
|
|
⩽ 𝜅1

where G𝜇 denotes the Stieltjes transform of 𝜇, that is G𝜇(z) = ∫ 1
z−x
𝜇 (dx).

There is anther assumption in the single ring theorem [137], but [337] showed that it
was unnecessary.

According to [336], we know that the ESD 𝜇𝐗n
of𝐗n converges, in probability, weakly

to a deterministic probability measure whose support on the complex plane is a single
ring defined as {z ∈ ℂ, a ⩽ |z| ⩽ b} .The inner radius a and outer radius b of the ring
can be easily calculated:

a =
(

∫
∞

0
x−2d𝜇s(x)

)−1∕2

, b =
(

∫
∞

0
x2d𝜇s(x)

)1∕2

(6.211)

Example 6.17.2 (singular values have a uniform distribution) Consider the case
when singular values have a uniform distribution on the interval [𝛼, 𝛽]:

𝜇s(dx) = 1
𝛽 − 𝛼

𝟏[𝛼,𝛽]dx (6.212)

for 𝛽 > 𝛼. It follows from (6.211) that

a =
(∫ ∞

0 x−2d𝜇s(x)
)−1∕2 =

(
1
𝛽−𝛼

∫ 𝛽

𝛼
x−2dx

)−1∕2

=
(

1
𝛽−𝛼

(

−x−1 |
|
|
|

𝛽

𝛼

))−1∕2

=
√
𝛼𝛽

and

b =
(∫ ∞

0 x2d𝜇s(x)
)1∕2 =

(
1
𝛽−𝛼

∫ 𝛽

𝛼
x2dx

)1∕2

=
(

1
𝛽−𝛼

1
3
x3 |

|
|
|

𝛽

𝛼

)1∕2

=
(

1
3(𝛽−𝛼)

(
𝛽3 − 𝛼3)

)1∕2

= 1
√

3

√
𝛼2 + 𝛼𝛽 + 𝛽2

◽

According to [336], we know that there is no natural outlier outside the outer circle of
the bulk as long as the operator norm ‖

‖𝐒n
‖
‖op is bounded, even if 𝐒n has his own outliers.
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Below, to make also sure there is no natural outlier inside the inner circle (when a > 0),
we may suppose in addition that

sup
n⩾1

‖
‖𝐒

−1
n

‖
‖op < ∞

Let us now consider a sequence of matrices 𝐀n (possibly random, but independent of
𝐔n, 𝐒n and 𝐕n) with rank lower than a fixed integer r such that ‖

‖𝐀n
‖
‖op is also bounded.

Then, we have:

Theorem 6.17.3 (outliers for finite rank perturbation [138]) Let 𝜀 > 0 and
suppose that for all sufficiently large n, 𝐀n does not have any eigenvalues in the band
{z ∈ ℂ, b + 𝜀 ⩽ |z| ⩽ b + 3𝜀} and has k ≤ r eigenvalues 𝜆1

(
𝐀n

)
,… , 𝜆k

(
𝐀n

)
with

modulus higher than b + 3𝜀. Then, with a probability tending to 1, 𝐗n + 𝐀n has exactly
k eigenvalues with modulus higher than b + 2𝜀. Furthermore, after labeling properly

∀i ∈ {1,… , k} , 𝜆i
(
𝐗n + 𝐀n

)
− 𝜆i

(
𝐀n

) (ℙ)
−−→ 0

This theorem is an analogous version of Theorem 1.4 of Tao’s paper [333] and so is
its proof. However, things are different inside the annulus. Indeed, the following result
establishes the lack of small outliers:

Theorem 6.17.4 (no outlier inside the bulk [138]) Suppose that a > 0 and
sup
n⩾1

‖
‖𝐒−1

n
‖
‖op < ∞. Then for all 𝛿 ∈ ]0, a[, with a probability tending to one

𝜇𝐗n+𝐀n
({z ∈ ℂ, |z| ⩽ a − 𝜀}) = 0

where 𝜇𝐗n+𝐀n
is the Empirical Spectral Distribution of 𝐗n + 𝐀n.

See Figure 6.32 for an illustration of Theorem 6.17.3 and Theorem 6.17.4. We drew
circles around each eigenvalues of 𝐀n and we observe the lack of outliers inside the
annulus.

Let us now consider the fluctuations of the outliers. Here we shall suppose that𝐀n has
rank one and write

𝐀n = 𝐛n𝐜∗n
with 𝐛n and 𝐜n some n × 1 complex matrices. We can suppose 𝐜n to be normalized, so
that

‖
‖𝐀n

‖
‖op =

√
𝐛n𝐛∗n

We assume that 𝐀n has one non zero eigenvalue, which is equal to

𝜃n
(
= 𝐜∗n𝐛n

)

whose absolute value |𝜃n| tends to a limit denoted by |𝜃n| such that

|𝜃| ⩾ b + 4𝜀

for a certain 𝜀 > 0 (b is the radius of the outer circle of the bulk), and we also assume
that the largest singular value

√
𝐛n𝐛∗n of 𝐀n converges in the 2 sense to a limit denoted

by L when n goes to +∞.
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Figure 6.32 Eigenvalues of𝐗n + 𝐀n for n = 2000 where 𝜇s(dx) = 1

3
𝟏[1,4](x)dx and𝐀n = diag

(1, 3 + i, 3 − i, 0,… , 0). The small circles are centered at 1, 3 + i, 3 − i, respectively, and each has a
radius of ∼ 1

n1∕4
. Twenty Monte Carlo trials are performed.

It turns out that the fluctuations of the outlier eigenvalue of𝐗n + 𝐀n are Gaussian with
a variance that can be explicitly expressed out of L, 𝜃 and b (see (6.213)). More precisely,
we have:

Theorem 6.17.5 (Gaussian fluctuations away from the bulk [138]) Let �̃�n denote
the largest eigenvalue of 𝐗n + 𝐀n in absolute value. Then as n tends to infinity

√
n
(
�̃�n − 𝜃n

) (d)
−−→ ℂ

(

0, b2L2

|𝜃|2 − b2

)

(6.213)

where ℂ
(
0, 𝜎2) denotes the complex Gaussian law with covariance matrix 𝜎2𝐈2.

We notice that the closer from the bulk |𝜃| is, the higher the variance is. This can be
viewed as a new expression of the general tendency of eigenvalues of random matrices
to repel each other. However, the limit law is isotropic in ℂ, whereas it could have been
plausible that this tendency would have led to get a nonsymmetric limit distribution
here, due to a tendency of �̃�n to get as far as possible from the bulk.

Due to [336], we know that Theorem 6.17.5 applies, for example, to the model of ran-
dom complex matrices 𝐗n distributed according to the law

1
Zn

exp (−n Tr V (𝐀𝐀∗)) d𝐀
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where d𝐀 is the Lebesgue measure of the n × n complex matrices set, V (x) is a poly-
nomial with positive leading coefficient and Zn is a normalization constant. It is quite
a natural unitarily invariant model. One can notice that V (x) = 1

2𝜎2 x gives the Ginibre
matrices [111, 328, 329].

Example 6.17.6 (massive MIMO in the presence of interference and noise) For
the sake of conciseness, let the channel bandwidth be smaller than the coherence band-
width. Channels whose physical bandwidth is wider than the coherence bandwidth can
be decomposed into equivalent parallel narrowband channels by means of orthogonal
frequency division multiplexing or related techniques.

Let the frequency-flat, block-fading, narrowband channel from m transmit antennas
to n receive antennas be described by the matrix equation

𝐘 = 𝐇𝐓 + 𝐙 (6.214)

where 𝐓 ∈ ℂm×T is the transmitted data (eventually multiplexed with pilot symbols), T
is the coherence time in multiples of the symbol interval,𝐇 ∈ ℂn×m is the channel matrix
of unknown propagation coefficients, 𝐘 ∈ ℂn×T , is the received signal, and 𝐙 ∈ ℂm×T is
the total impairment. Furthermore, we assume that channel, data, and impairment have
zero mean, i.e. 𝔼𝐗 = 𝔼𝐇 = 𝔼𝐙 = 𝟎. The impairment includes both thermal noise and
interference from other cells and is, in general, neither white nor Gaussian.

We decompose the impairment process

𝐙 =𝐖 +𝐇I𝐗I (6.215)

into white noise 𝐖 and interference from L neighboring cells where interfering data
𝐗I ∈ ℂLm×n is transmitted in neighboring cells and received in the cell of interest through
the channel 𝐇I ∈ ℂn×Lm. It follows from (6.214) and (6.215) that

𝐘 = 𝐇𝐓 +𝐇I𝐗I +𝐖 (6.216)

The interference and the noise can be modeled using (6.210) when

𝐙 = 𝐗 = 𝐔H
⎛
⎜
⎜
⎝

s1 0
⋱

0 sn

⎞
⎟
⎟
⎠

𝐕

Recognizing 𝐀 = 𝐇𝐓, we reach the standard model 𝐗 + A, which is considered above.
𝐀 is the low rank matrix whose rank r is r = min {m, n,T} . For example if we set the
parameters m = 3,T = 1000, L = 2, n = 200, we have the rank r = 3. Consider the spe-
cial case of the single transmit antenna m = 1. We have the rank one matrix perturba-
tion, 𝐡𝐭T , of the random matrix 𝐙

𝐘 = 𝐡𝐭T + 𝐙

where 𝐡 = 𝐇 ∈ ℂn×1, 𝐭 = 𝐓T ∈ ℂT×1. Only one outlier will occur in the spectrum of𝐘 =
𝐡𝐭T + 𝐙 in the complex plane. For m transimit antennas we have

𝐘 = 𝐡1𝐭1T + 𝐡2𝐭2T + · · · + 𝐡m𝐭mT + 𝐙

where 𝐡i = 𝐇 (∶, i) ∈ ℂn×1, 𝐭i = 𝐓T (∶, i) ∈ ℂT×1, i = 1,… ,m, if m ≤ n, and m ≤ T .
There are r(= m) outliers for this case. ◽
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Code 3: Outliers in the Single Ring Theorem

%***********************************************************
%
% Outliers in the single ring theorem
%
% FLORENT BENAYCH-GEORGES AND JEAN ROCHET
%
% arXiv: 1308.3064v1 [math.PR] 14 Aug 2013
%***********************************************************
clear all;
n=200; % matrix of n x n
N_Try=20 % number of Monte Carlo trials
Axis_Length=4; % window of visualization
IFIG=0;

A=zeros(n,n);
alpha=1; beta=4;

A(1,1)=1; A(2,2)=3+i;A(3,3)=3-i;

for i=1:N_Try
X=zeros(n,n);
X=(randn(n,n)+j*randn(n,n))/sqrt(2);
% i.i.d. random matrix with i.i.d.
%(Gaussian) complex entries

[U1,S1,V1] = svd(X);
X=(randn(n,n)+j*randn(n,n))/sqrt(2);
% i.i.d. random matrix with i.i.d.
%(Gaussian) complex entries

[U2,S2,V2] = svd(X);
c=alpha;d=beta; s = c+ (d-c).*rand(n,1);
% uniform distribution
% on the interval [c, d]

S=diag(s); % singular eigenvalues have uniform distrition
on the interval [c,d]
X=U1*S*V2; % random matrix with prescribed singular values
lamda=eig(X+A); % eigenvalues are complex numbers
SNR_dB=10*log10(trace(A*A’)/trace(X*X’/n))
%*********** Figures *********
IFIG=1;
IFIG=IFIG+1;figure(IFIG);
t=0:2*pi/1000:2*pi;x=sin(t);y=cos(t); % unit circle
r=n^(-1/4); % radius of circle
a=sqrt(alpha*beta); b=sqrt(alpha^2+beta^2+alpha*beta)/sqrt(3);
plot(real(lamda),imag(lamda),’.’, a*x,a*y,’r.’,b*x,b*y,’r.’,...
3+r*x,1+r*y,’r.’,3+r*x,-1+r*y,...
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’r.’,1+r*x,0+r*y,’r.’);
hold on;
axis([Axis_Length*(-1) Axis_Length Axis_Length*(-1)
Axis_Length]) grid on;
xlabel(’Real Part of Complex Value z’)
ylabel(’Imaginary Part of Complex Value z’)
title([’Matrix size = ’,num2str(n), ’,
# Monte Carlo Trials=’,num2str(i)])
end % N_Try
hold off

6.17.1 Outliers for Finite Rank Perturbation: Proof of Theorem 6.17.3

Now we give outline the proof Theorem 6.17.3, with the emphasis of what tools are
needed. We adapt [333, Theorem 1.4] to prove Theorem 6.17.3. It starts with this
calculation

det (z𝐈 − (𝐗 + 𝐀)) = det (z𝐈 − 𝐗) det
(
𝐈 − (z𝐈 − 𝐗)−1𝐀

)

= det (z𝐈 − 𝐗) det
(
𝐈 − (z𝐈 − 𝐗)−1𝐁𝐂

)

= det (z𝐈 − 𝐗) det
(
𝐈 − 𝐂(z𝐈 − 𝐗)−1𝐁

) (6.217)

where 𝐀 = 𝐁𝐂,𝐁 ∈ ℂn×r,𝐂 ∈ ℂr×n. For the last step, we used the fact that for all 𝐌 ∈
ℂp×q,𝐍 ∈ ℂq×p

det
(
𝐈p +𝐌𝐍

)
= det

(
𝐈q + 𝐍𝐌

)

For any matrix 𝐐 ∈ ℂn×n, the n eigenvalues z satisfy det
(
z𝐈n +𝐐

)
= 0.

According to (6.217), therefore, the eigenvalues z of 𝐗 + 𝐀 are not eigenvalues of 𝐗,
and they instead satisfy

det
(
𝐈 − 𝐂(z𝐈 − 𝐗)−1𝐁

)
= 0.

Using (6.217), as previously done by Tao in [333], we introduce the meromorphic func-
tions (implicitly depending on n)

f (z) ∶= det
(
𝐈 − 𝐂(z𝐈 − 𝐗)−1𝐁

)
(6.218)

g (z) ∶= det
(
𝐈 − 𝐂(z𝐈)−1𝐁

)
(6.219)

Lemma 6.17.7 As n goes to infinity, we have

sup
|z|⩾b+2𝜀

| f (z) − g (z)|
ℙ
−→ 0

See the proof of this lemma below. Now we are in a position to explain how this
lemma allows one to conclude the proof of Theorem 6.17.3. The poles of f (z) and g(z)
are, respectively, eigenvalues of the𝐀 and of the null matrix 𝐈, hence for n large enough,
they have no pole in the region {z ∈ ℂ ∶ |z| > b + 2𝜀}, whereas their zeros in this region
are precisely the eigenvalues of 𝐗 + 𝐀 and 𝐀 that are in this region. Thus by Rouché’s
Theorem, with probability tending to 1, for n large enough, 𝐗 + 𝐀 and 𝐀 have the same
number j of eigenvalues in this region. Indeed, |g (z)| admits the following lower bound
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on the circle with radius b + 𝜀: as we assumed that any eigenvalue of 𝐀 is at least at
distance 𝜀 from {z ∈ ℂ ∶ |z| = b + 2𝜀}, we have

inf
|z|=b+2𝜀

|g (z)| = inf
|z|=b+2𝜀

n∏

i=1
|
|z − 𝜆i (𝐀)||

|z|2 ⩾
(

𝜀

b + 2𝜀

)r

Also, using Lemma 6.17.7, we conclude that, after a proper labeling

∀i ∈
{

1,… , j
}
, 𝜆i (𝐗 + 𝐀)

ℙ
−→ 𝜆i (𝐀)

Indeed, for each fixed i ∈ {1,… , j}
n∏

𝓁=1

|
|
|
1 − 𝜆𝓁 (𝐀)

𝜆i(𝐗+𝐀)
|
|
|
= |

|
|
g
(
𝜆i (𝐗 + 𝐀)

)|
|
|
= |

|
|
f
(
𝜆i (𝐗 + 𝐀)

)
− g

(
𝜆i (𝐗 + 𝐀)

)|
|
|

⩽ sup
|z|⩾b+2𝜀

|f (z) − g (z)|
ℙ
−→ 0

Let us now explain how to prove Lemma 6.17.7. we can notice at first that it suffices
to prove that

sup
|z|⩾b+2𝜀

| f (z) − g (z)| = sup
|z|⩾b+2𝜀

|
|
|
det

(
𝐈 − 𝐂(z𝐈 − 𝐗)−1𝐁

)
− det

(
𝐈 − 𝐂(z𝐈)−1𝐁

)|
|
|

ℙ
−→ 0

simply because the function det ∶ ℂr×r → ℂ is Lipschitz over every bounded set of com-
plex matrices ℂr×r . Then, the proof of Lemma 6.17.7 is based on both following lemmas
(whose proofs are found in the original source [138]). Let ‖⋅‖op be the operator norm of
the matrix.

Lemma 6.17.8 There exists a constant C1 > 0 such that the event

n ∶
{
∀k ⩾ 1, ‖

‖
‖
𝐗k‖‖

‖op
⩽ C1 ⋅ (b + 𝜀)k

}

has probability tending to 1, as n tends to infinity.

Lemma 6.17.9 For all k ≥ 0, as n tends to infinity, we have
‖
‖
‖
𝐂𝐗k𝐁‖

‖
‖op

ℙ
−→ 0

On the event n defined at Lemma 6.17.8 above, we write, for |z| ⩾ b + 2𝜀

𝐂(z𝐈 − 𝐗)−1𝐁 − 𝐂(z𝐈)−1𝐁 = 𝐂
+∞∑

k=1

𝐗k

zk+1𝐁

and it suffices to write that for any 𝛿 > 0

ℙ
(

sup
|z|⩾b+2𝜀

‖
‖
‖
𝐂(z𝐈 − 𝐗)−1𝐁 − 𝐂(z𝐈)−1𝐁‖

‖
‖op

> 𝛿

)

⩽ ℙ
( c

n
)
+ ℙ

(
k0∑

k=1

‖𝐂𝐗k𝐁‖op

(b+2𝜀)k+1 >
𝛿

2

)

+ℙ

(

n and
‖
‖
‖
‖
‖
𝐂

+∞∑

k=k0+1

𝐗k

zk+1𝐁
‖
‖
‖
‖
‖op

>
𝛿

2

)

Due to Lemma 6.17.8, we find a large enough k0 so that the last event has a vanishing
probability. Then, Lemma 6.17.9, the probability of the last-but-one event goes to zero
as n tends to infinity.
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6.17.2 Eigenvalues Inside the Inner Circle: Proof of Theorem 6.17.4

Our goal here is to show that for all 𝛿 ∈ ]0, a[, with probability tending to one, the
function f (z) defined at (6.218) has no zero in the region {z ∈ ℂ ∶ |z| < a − 𝛿}.
Recall that

f (z) ∶= det
(
𝐈 − 𝐂(z𝐈 − 𝐗)−1𝐁

)

so that a simple sufficient condition would be ‖
‖
‖
𝐂(z𝐈 − 𝐗)−1𝐁‖

‖
‖op

< 1 for all |z| < a − 𝛿.
Thus, it suffices to prove that with probability tending to one as n tends to infinity

sup
|z|<a−𝛿

‖
‖
‖
𝐂(z𝐈 − 𝐗)−1𝐁‖

‖
‖op

< 1

The method is the same as in Section 6.17.1. Let us write, for all |z| < a − 𝛿

𝐂(z𝐈 − 𝐗)−1𝐁 = 𝐂𝐗−1(z𝐈 − 𝐗−1)−1𝐁

= 𝐂
+∞∑

k=1
zk−1𝐗−k𝐁

(6.220)

The idea is to see 𝐗−1 as an isotropic random matrix such as 𝐗, since 𝐗−1 =
𝐕H diag

(
1
s1
,… ,

1
sn

)
𝐔H , and satisfies the same kind of hypothesis.

According to [336], we know that there is no natural outlier outside the outer circle of
the bulk as long as ‖

‖𝐒n
‖
‖op is bounded, even if 𝐒n has his own outliers. In Theorem 6.17.4,

to make also sure there is no natural outlier inside the inner circle (when a > 0), we may
suppose in addition that sup

n⩾1
‖
‖𝐒−1

n
‖
‖op < ∞.

Indeed, Hypotheses 1 and 2 are automatically satisfied because a > 0, and the follow-
ing lemma assures us that Hypothesis 3 is also satisfied.

Lemma 6.17.10 There exist some constants �̃�, �̃�1 > 0, such that

Im (z) > 1
n�̃�

⇒ |
|
|
Im

(
G𝐒−1 (z)

)|
|
|
⩽ �̃�1

The proof of Lemma 6.17.10 is given in [138]. Thus, according to [336], the support
of 𝜇𝐗−1

n
(⋅) converges in probability to the annulus
{

z ∈ ℂ ∶ b−1 ⩽ |z| < a−1}

and so, according to what we have done previously

sup
|𝜉|⩾a−1+𝜀

𝐂
+∞∑

k=1

𝐗−k

𝜉k+1𝐁
ℙ
−→ 0

Therefore

ℙ
(

sup
|z|<a−𝛿

‖
‖
‖
𝐂(z𝐈 − 𝐗)−1𝐁‖

‖
‖op

< 1
)

⩾ 1 − ℙ

(

sup
|𝜉|>a−1+𝜀

‖
‖
‖
‖
‖
𝐂

+∞∑

k=1

𝐗−k

𝜉k+1𝐁
‖
‖
‖
‖
‖op

< 1

)

→ 1

with a proper choice for 𝜀.
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6.18 The Elliptic Law and Outliers

Let us consider an array of random variables Xij, 1 ⩽ i, j < ∞, such that the pairs
(
Xij,Xji

)
, 1 ⩽ i ⩽ j < ∞, are independent random vectors with zero mean 𝔼Xij =

𝔼Xji = 0, variance one 𝔼X2
ij = 𝔼X2

ji = 1, and correlation coefficient 𝔼XijXji = 𝜌, |𝜌| ⩽ 1.
We also assume that Xii, i ⩽ i <∞, are independent random variables, independent
of the pairs

(
Xij,Xji

)
, 1 ⩽ i ⩽ j < ∞, and 𝔼Xii = 0,𝔼X2

ii <∞. We consider the random
matrix

𝐗n =
{

Xij
}n

i,j=1

Define the empirical spectral measure 𝜇n of n−1∕2𝐗n by (3.6).

Theorem 6.18.1 (elliptic law) Let𝐗n be given above. Then 𝜇n → 𝜇 in probability, and
𝜇 has the density g(x, y):

g
(
x, y

)
=

{
1

𝜋(1−𝜌2)
,
(
x, y

)
∈

{
u, v ∈ ℝ ∶ u2

(1+𝜌)2 + v2

(1+𝜌)2 ⩽ 1
}

0, otherwise

Example 6.18.2 (MATLAB implementations) Consider two standard Gaussian
random variables, Y and Z. We form the random matrix 𝐗n using

Xij = Y ; Xji = 𝜌Y +
√

1 − 𝜌2Z, 1 ⩽ i < j < n (6.221)

Another method in MATLAB is two generate two random vectors with correlation coef-
ficient 𝜌 with covariance matrix

[
1 𝜌

𝜌 1

]

The trick is to use the Cholesky factorization function chol.m. If𝐀 is positive definite,
R = chol(A) produces an upper triangular 𝐑 such that

𝐑T𝐑 = 𝐀

R = chol(Sigma);
for i=1:n % since we deal with i.i.d. random variables,
we use the loop.
z = repmat(mu,n,1) + bernoulli(0.5,n,2)*R;
% z is a n x 2 matrix
for j=1:n;

X(i,j)=z(j,1); % the first random vector
X(j,i)=z(j,2); % the second random vector that is correlated

% with the first random vector
end
end ◽

Suppose 𝐀 is an n × n matrix
Denote by 𝜆1,… , 𝜆n the eigenvalues of the matrix 𝐗n and define its spectral distribu-

tion function F𝐀n
(x, y) by (3.6).
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If 𝜌 = 1, we have the ensemble of symmetric random matrices. If Xij are i.i.d., then
𝜌 = 0, and we get the ensemble of matrices with i.i.d. elements.

Define the density of uniformly distributed random variable on the ellipse

g
(
x, y

)
=

{
1

𝜋(1−𝜌2)
,
(
x, y

)
∈

{
u, v ∈ ℝ ∶ u2

(1+𝜌)2 + v2

(1+𝜌)2 ⩽ 1
}

0, otherwise,

and the corresponding distribution function

G
(
x, y

)
=

x

∫
−∞

y

∫
−∞

f (u, v) dudv

If all Xij have finite fourth moment and densities then it was proved by Girko that F𝐗n

converges to G. He called this result “elliptic law.” But similarly to the case of the Circular
law Girko’s proof is considered questionable in the literature. Later the elliptic law was
proved for matrices with Gaussian entries [338]. In this case one can write an explicit
formula for the density of eigenvalues of the matrix n−1∕2𝐗n. In [339, 340], Naumov
proved that the elliptic law under the assumption that all elements have a finite fourth
moment only. More recently, Nguyen and O’Rourke [341] proved proved the elliptic
law in the general case assuming finite second moment only. The line of work is relevant
to the circular law (see tutorial [329]).

Figure 6.33 is illustrated for a Gaussian random variable while Figure 6.34 for
Bernoulli random variable. Both are for 𝜌 = 0.5. Figure 6.35 and Figure 6.36 are for
𝜌 = −0.5.

Example 6.18.3 (Gaussian case) Let the elements of the matrix 𝐗 have Gaussian
distribution with zero mean and correlations

𝔼X2
ij = 1, and 𝔼XijXji = 𝜌, i ≠ j, |𝜌| ⩽ 1

The ensemble of such matrices can be specified by the probability measure

ℙ (dX) ∼ exp
[

− n
2 (1 − 𝜌2)

Tr
(
XXT − 𝜌X2)

]

It follows from Theorem 6.18.1 that 𝜇n
weak
−−−→ 𝜇. This result can be generalized to the

ensemble of Gaussian complex asymmetric matrices. In this case, the invariant mea-
sure is

ℙ (dX) ∼ exp
[

− n
1 − |𝜌|2 Tr

(
XXT − 2 Re 𝜌X2)

]

(6.222)

and

𝔼X2
ij = 1, and 𝔼XijXji = |𝜌| ej2𝜃, i ≠ j, |𝜌| ⩽ 1

Then the limit measure has a uniform density inside an ellipse which is centered at
zero and has semiaxes 1 + |𝜌| in the direction 𝜃 and 1 − |𝜌| in the direction 𝜃 + 𝜋∕2. For
illustration, see Figure 6.37 (Gaussian case) and Figure 6.38 (Bernoulli case).

It seems that (6.222) is also valid for the Bernoulli case, according to Figure 6.38. ◽
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Figure 6.33 Eigenvalues of the matrix n−1∕2𝐗n for 𝜌 = 0.5 and n = 3000. Each entry is an i.i.d. Gaussian
random variable.

In analogy with the outliers in the circular law in Section 6.16, here we conjecture that
outliers also will occur in n−1∕2𝐗n + 𝐀n where 𝐀n is an n × n matrix of low rank. Formal
proof of this result is beyond the reach of the author. The outliers of n−1∕2𝐗n + 𝐀n is
illustrated in Figure 6.39.

Code 4: Outliers in the Elliptic Law

%***********************************************************
%
% ELLIPTIC LAW FOR REAL RANDOM MATRICES
%
% ALEXEY NAUMOV
%
% arXiv: 1201.1639v2 [math.PR] 13 Feb 2012
%***********************************************************
clear all;
n=3000; % matrix of n x n
N_Try=1 % number of Monte Carlo trials
Axis_Length=1.5; % window of visualization
IFIG=0;
rho=0.5;
A=zeros(n,n);X=zeros(n,n);
A(1,1)=1; A(2,2)=2.5+i;A(3,3)=2.5-i;
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Figure 6.34 Eigenvalues of the matrix n−1∕2𝐗n for 𝜌 = 0.5 and n = 3, 000. Each entry is an i.i.d.
Bernoulli random variable, taking the values +1 and −1 each with probability 1/2.
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Figure 6.35 Eigenvalues of the matrix n−1∕2𝐗n for 𝜌 = −0.5 and n = 3000. Each entry is an i.i.d.
Gaussian random variable.
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Figure 6.36 Eigenvalues of the matrix n−1∕2𝐗n for 𝜌 = −0.5 and n = 3000. Each entry is an i.i.d.
Bernoulli random variable, taking the values +1 and −1 each with probability 1/2.
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Figure 6.37 Eigenvalues of the matrix n−1∕2𝐗n for 𝜌 = −0.5, 𝜃 = 30 and n = 3000. Each entry is an i.i.d.
Gaussian random variable.
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Figure 6.38 Eigenvalues of the matrix n−1∕2𝐗n for 𝜌 = −0.5, 𝜃 = 30 and n = 3, 000. Each entry is an
i.i.d. Bernoulli random variable, taking the values +1 and −1 each with probability 1/2.

for i_Try=1:N_Try
D=randn(n,1);
%Method 1 for generating two correlated random variables
mu = [0 0];
Sigma = [1 rho; rho 1]; R = chol(Sigma);

%Method 2 for generating two correlated random variables
%for i=1:n
%for j=1:n

%X(i,j)=randn(1,1);
%X(j,i)=rho *X(i,j) + sqrt(1-rho^2)*randn(1,1);
%end
%end
for i=1:n
% Gaussian random variable

z = repmat(mu,n,1) + randn(n,2)*R;
% Bernoulli random variable

%z = repmat(mu,n,1) + bernoulli(0.5,n,2)*R;
j=1:n;

X(i,j)=z(j,1);
X(j,i)=z(j,2);
end
for i=1:n
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Figure 6.39 Plotted above is the distribution of the eigenvalues of n−1∕2𝐗n + 𝐀n where𝐗n is an n × n
random matrix with n = 3000 and 𝜌 = 0.5. Each entry of𝐗n is an i.i.d. Gaussian random variable.
𝐀n = diag (1, 2.5 + i, 2.5 − i, 0,… , 0). The three circles with radius of 1∕n1∕4 are located at
1, 2.5 + i, 2.5 − i. Twenty Monte Carlo trials are performed.

X(i,i)=D(i); % diagonal elments are zero mean with finite
variance

end

lamda=eig(X/sqrt(n)+A); % eigenvalues are complex numbers
SNR_dB=10*log10(trace(A*A’)/trace(X*X’/n))
%*********** Figures *********
IFIG=0;
IFIG=IFIG+1;figure(IFIG);
t=0:2*pi/1000:2*pi;x=sin(t);y=cos(t); % unit circle
r=n^(-1/4); % radius of circle

plot(real(lamda),imag(lamda),’.’,1-r+r*x,r*y,’r*’,
2.5+-r+r*x,1+r*y,’r*’,...
2.5-r+r*x,-1+r*y,’r*’)
hold on;
axis([Axis_Length*(-1) Axis_Length Axis_Length*(-1)

Axis_Length])
grid on;
xlabel(’Real Part of Complex Value z’)
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ylabel(’Imaginary Part of Complex Value z’)
title([’Matrix size = ’,num2str(n),’, \rho= ’,num2str(rho),
’, # Monte Carlo Trials=’,num2str(i_Try)])
end % N_Try
hold off

function B=bernoulli(p,m,n);
% BERNOULLI.M
% This function generates n independent draws of a Bernoulli
% random variable with probability of success p.
% first, draw n uniform random variables

M = m;
N = n;
p = p;
B = rand(M,N) < p;
B=B*(-2)+ones(M,N);

In the following, we consider the outliers of perturbed elliptic random matrices.
For any matrix 𝐌, we denote the Frobenius norm (or Hilbert–Schmidt norm) ‖𝐌‖F

by the formula

‖𝐌‖F =
√
Tr (𝐌𝐌H) =

√
Tr (𝐌H𝐌)

We denote the spectral norm by ‖𝐌‖.

Definition 6.18.4 (condition 𝐂1) Let
(
𝜉1, 𝜉2

)
be a random vector in ℝ2, where both

𝜉1, 𝜉2 have mean zero and unit variance. We set 𝜌 ∶= 𝔼
[
𝜉1𝜉2

]
. Let

{
Xij

}

i,j⩾1 be an infinite
double array of real random variables. For each n ≥ 1, we define the n × n random matrix
𝐗n =

(
Xij

)n
i,j=1. We say the sequence of random matrices

{
𝐗n

}

n⩾1 satisfies condition 𝐂1
with atom variables

(
𝜉1, 𝜉2

)
if the following hold:

•
{

Yii ∶ 1 ⩽ i
}
∪

{(
Yij,Yji

)
∶ 1 ⩽ i ⩽ j

}
is a collection of independent random

elements;
•

{(
Yij,Yji

)
∶ 1 ⩽ i ⩽ j

}
is a collection of i.i.d. copies of

(
𝜉1, 𝜉2

)
;

•
{

Yii ∶ 1 ⩽ i
}

is a collection of i.i.d. random variables with mean zero and finite vari-
ance.

Let
{
𝐗n

}

n⩾1 be a sequence of random matrices that satisfy condition 𝐂1 with atom
variables

(
𝜉1, 𝜉2

)
. If 𝜌 ∶= 𝔼

[
𝜉1𝜉2

]
= 1, then

{
𝐗n

}

n⩾1 is a sequence of Wigner real sym-
metric matrices.

Let 𝜉 be a real random variable with mean zero and unit variance. For each n ≥ 1, let𝐗n
be an n × n matrix whose entries are i.i.d. copies of 𝜉. Then 𝐗n is a sequence of random
matrices that satisfy condition 𝐂1. If 𝐗n is a sequence of random matrices that satisfy
condition 𝐂1, then it was shown in [341] that the limiting empirical spectral density of
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1
√

n
𝐗n is given by the uniform distribution on the interior of an ellipse. For −1 < 𝜌 < 1,

define the ellipsoid

𝜌 ∶=
{

z = x + jy ∈ ℂ ∶ x2

(1 + 𝜌)2 +
y2

(1 − 𝜌)2 ⩽ 1
}

(6.223)

Let

F𝜌
(
x, y

)
∶= 𝜇𝜌

(
z ∈ ℂ ∶ Re (z) ⩽ x, Im (z) ⩽ y

)

where 𝜇𝜌 is the uniformly probability measure on 𝜌. It will also be convenient to define
𝜌 when 𝜌 = ±1. For 𝜌 = 1, let 1 be the line segment [−2, 2], and for 𝜌 = −1, let −1 be
the line segment [−2, 2]

√
−1 on the imaginary axis3.

Theorem 6.18.5 Let
{
𝐗n

}

n⩾1 be a sequence of random matrices that satisfies con-
dition 𝐂1 with atom variables

(
𝜉1, 𝜉2

)
, where 𝜌 = 𝔼

[
𝜉1𝜉2

]
, and assume −1 < 𝜌 < 1. For

n ≥ 1, let𝐀n be an n × n matrix, and assume the sequence
{
𝐀n

}

n⩾1 satisfies rank
(
𝐀n

)
=

o (n) and

sup
n⩾1

1
n2

‖
‖𝐀n

‖
‖

2
F <∞

Then the empirical spectral distribution (ESD) of 1
√

n

(
𝐗n + 𝐀n

)
converges almost surely

to F𝜌
(
x, y

)
as n → ∞.

A version of Theorem 6.18.5 holds when 𝜉1, 𝜉2 are complex random variables [341] .

Definition 6.18.6 (Condition 𝐂0) Let
(
𝜉1, 𝜉2

)
be a random vector in ℝ2, where both

𝜉1, 𝜉2 have mean zero and unit variance. We set 𝜌 ∶= 𝔼
[
𝜉1𝜉2

]
. For each n ≥ 1, let 𝐗n be

an n × n matrix. We say the sequence of random matrices
{
𝐗n

}

n⩾1 satisfies condition
𝐂0 with atom variables

(
𝜉1, 𝜉2

)
if the following conditions hold:

• the sequence
{
𝐗n

}

n⩾1 satisfies condition 𝐂1 with atom variables
(
𝜉1, 𝜉2

)
;

• we have

M4 ∶= max
{
𝔼||𝜉1

|
|

4
,𝔼||𝜉2

|
|

4
}
<∞

We define the distance between points 𝐱 and 𝐲 in ℝn as

d (𝐱, 𝐲) ∶=
( n∑

i=1

(
xi − yi

)2
)1∕2

= ‖𝐱 − 𝐲‖

which is the Euclidean norm. Let K be a closed and bounded convex set in ℝn. For each
𝐱0 ∈ ℝn we define the “distance from a point 𝐱0 to a convex set K” by

dist
(
𝐱𝟎,K

)
∶= min

𝐱∈K
d
(
𝐱0, 𝐱

)

3 We use
√
−1 to denote the imaginary unit.
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Since 𝜌 is a convex set and z is a point z ∈ ℝ2, we will define the neighborhoods

𝜌,𝛿 ∶= {
z ∈ ℂ ∶ dist

(
z, 𝜌) ⩽ 𝛿

}

for any 𝛿 > 0.

Theorem 6.18.7 Let
{
𝐗n

}

n⩾1 be a sequence of random matrices that satisfies condi-
tion 𝐂0 with atom variables (𝜉1, 𝜉2), where 𝜌 = 𝔼

[
𝜉1𝜉2

]
. Let 𝛿 > 0. Then, almost surely,

for n sufficiently large, all the eigenvalues of 1
√

n
𝐗n are contained in 𝜌,𝛿 .

Corollary 6.18.8 (Spectral radius of elliptic random matrices) Let
{
𝐗n

}

n⩾1 be a
sequence of random matrices that satisfies condition 𝐂0 with atom variables (𝜉1, 𝜉2),
where 𝜌 = 𝔼

[
𝜉1𝜉2

]
. Let 𝛿 > 0. Then the spectral radius of 1

√
n
𝐗n converges almost surely

to 1 + |𝜌| as n → ∞.

See figures above for illustrations.
Now we are in a position to state the main theorem in this section.

Theorem 6.18.9 (outliers for low rank perturbations of elliptic random matri-
ces) Let k ≥ 1 and 𝛿 > 0. Let

{
𝐗n

}

n⩾1 be a sequence of random matrices that satisfies
condition 𝐂0 with atom variables (𝜉1, 𝜉2), where 𝜌 = 𝔼

[
𝜉1𝜉2

]
. For each n ≥ 1, let 𝐂n be

a deterministic n × n matrix, where

sup
n⩾1

rank
(
𝐂n

)
⩽ k, and sup

n⩾1
‖
‖𝐂n

‖
‖ = O (1)

Suppose for n sufficiently large, there are no nonzero eigenvalues of 𝐂n that satisfy

𝜆i
(
𝐂n

)
+ 𝜌

𝜆i
(
𝐂n

) ∈ 𝜌,3𝛿∖𝜌,𝛿 with |
|
|
𝜆i

(
𝐂n

)|
|
|
> 1

and there are j eigenvalues 𝜆1
(
𝐂n

)
,… , 𝜆j

(
𝐂n

)
for some j ≤ k that satisfy

𝜆i
(
𝐂n

)
+ 𝜌

𝜆i
(
𝐂n

) ∈ ℂ∖𝜌,3𝛿 with |
|
|
𝜆i

(
𝐂n

)|
|
|
> 1

Then, almost surely, for n sufficiently large, there are exactly j eigenvalues of 1
√

n
𝐗n +

𝐂n in the region ℂ∖𝜌,2𝛿 , and after labeling the eigenvalues properly

𝜆i

(
1

√
n
𝐗n + 𝐂n

)

= 𝜆i
(
𝐂n

)
+ 𝜌

𝜆i
(
𝐂n

) + o (1)

for each 1 ≤ i ≤ j.

In [342, 343], spiked deformations of Wigner random matrices plus deterministic
matrices are considered. Theorem 6.18.9 can be viewed as a non-Hermitian extension
of the results in [342, 343].

We now consider the case of elliptic random matrices with nonzero mean:
1

√
n
𝐗n + 𝜇

√
n𝜑n𝜑

T
n
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where
{
𝐗n

}

n⩾1 that satisfies condition𝐂0 with atom variables 𝜉1, 𝜉2, 𝜇 is a fixed nonzero
complex number (independent of n), and 𝜑n = 1

√
n
(1,… , 1)T

. The outliers for elliptic
random matrices with nonzero means can be handled. The nonzero mean is a rank one
perturbation of 1

√
n
𝐗n. This corresponds to shifting the entries of 𝐗n by 𝜇 (so they have

mean 𝜇 instead of mean zero). The elliptic law still holds for this rank one perturbation
of 1

√
n
𝐗n, thanks to Theorem 6.18.5. In view of Theorem 6.18.9, we show there is a single

outlier for this ensemble near 𝜇
√

n.

Theorem 6.18.10 (outlier for elliptic random matrices with nonzero mean) Let
𝛿 > 0. Let

{
𝐗n

}

n⩾1 be a sequence of random matrices that satisfies condition 𝐂0 with
atom variables (𝜉1, 𝜉2), where 𝜌 = 𝔼

[
𝜉1𝜉2

]
, and let 𝜇 be a nonzero complex number

independent of n. Then almost surely, for a sufficiently large n, all the eigenvalues of
1

√
n
𝐗n + 𝜇

√
n𝜑n𝜑

T
n lie in 𝜌,𝛿 , with a single exception taking the value 𝜇

√
n + o (1).

A version of Theorem 2.7 was proven by Furedi and Komlos in [344] for a class of
real symmetric Wigner matrices. Moreover, Furedi and Komlos study the fuctuations of
the outlier eigenvalue. Tao (2013) [345] verified Theorem 6.18.10 when 𝐗n is a random
matrix with i.i.d. entries.
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Throughout this chapter we have taken the liberty of borrowing materials from [139].
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Section 6.10 is taken from [75].
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Section 6.12 primarily followed [352,353]. In [354] Akemann, Ipsen and Kieburg dis-

cuss the product of L rectangular random matrices with independent Gaussian entries.
In [287], Ipsen and Kieburg study the joint probability density of the eigenvalues of a
product of rectangular real, complex or quaternion random matrices in a unified way.
The random matrices are distributed according to arbitrary probability densities, whose
only restriction is the invariance under left and right multiplication by orthogonal, uni-
tary or unitary symplectic matrices, respectively. They show that a product of rectangu-
lar matrices is statistically equivalent to a product of square matrices. In this way they
prove a weak commutation relation of the random matrices at finite matrix sizes, which
have previously been discussed for infinite matrix size. In [355], Forrester studied the
probability that all eigenvalues are real for the matrix product𝐏L = 𝐗L𝐗L−1 · · ·𝐗1, where
𝐗i, i = 1,… , L independent N × N standard Gaussian random matrices.
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In Section 6.13, we follow [315, 318, 319, 356, 357] for our exposition.
In Section 6.14, our interest in Euclidean random matrices is inspired by their appli-

cations in physics [320, 321, 358–361]. The relevant mathematical literature includes
[362–366]. In high dimension space, concentration of measure phenomenon [40] natu-
rally occurs. Both Hermitian and Non-Hermitian Euclidean random matrices can be
studied. The theory is applied to the random Green’s matrix relevant to wave prop-
agation in an ensemble of point-like scattering centers [321, 358]. Wave propagation
in random media is directly relevant to massive MIMO, a disruptive technology in 5G
wireless technology. We closely follow [321], [320] and [358, 359] for the exposition.

In Section 6.14, despite the significance of the random Green’s matrix (6.157), little
is known about statistical properties of its eigenvalues complex and their probability
distribution is difficult to access. The principal difficulties that one encounters when
trying to develop a theory of non-Hermitian Euclidean random matrices stem from the
nontrivial statistics of their elements and the correlations between them. Both are not
known analytically and are often difficult to calculate. The first paper for an analytical
theory is [321]. Numerical simulations are typically used. Some analytic results are avail-
able in the limit of high density of points 𝐫i inside a sphere: 𝜌 = N∕V → ∞, when the
summation in the eigenvalue equation

∑

j
Gij𝜓i = 𝜆i𝜓i can be replaced by integration.

The work of Skipetrov and Goetschy (2011) [320], partially fills this gap by considering
eigenvalue distributions of the three matrices 𝐆,𝐒 = Im𝐆,𝐂 = Re𝐆 at finite densities
𝜌, with the distances between neighboring points 𝐫i that are larger than, comparable to,
or smaller than the wavelength 𝜆0 = 2𝜋∕k0. This situation is of particular importance
in the context of wave propagation in random media because in order to observe phe-
nomena due to scattering of waves on the heterogeneities of the medium, the density of
scattering centers (or scatterers) should be neither too low (in this case the scattering is
negligible), nor too high (in this case the medium responds as an effective homogeneous
medium).

This line of research introduced in Section 6.14 deserves further investigation in the
context of massive MIMO, with applications in both communications and sensing/radar.
Waveforms for modulation or sensing may be designed by using the metrics in terms of
eigenvalue distributions p (𝜆). This has been made possible by the analytical machinery
introduced in Section 6.14.

In Section 8.8, we will study how large random matrices are perturbed by finite rank
perturbations, drawing material from [367].

In Section 6.18, we take material from [340]. The discovery of outliers in Figure 6.39
was made in July 2013 during the writing of Section 6.18: See Figure 6.39 and the MAT-
LAB code “Outliers in the Elliptic Law.” The paper by O’Rourke and Renfrew (2013)
[368] was posted in September 2013. The outlier part of Section 6.18 is taken from this.
In Section 6.15, we drew material from [328, 329], [340] and [368].

In Section 6.16, outliers in the spectrum of i.i.d. matrices with bounded rank pertur-
bations were considered, taking material from [345]. Another good reference is [328].

In Section 6.17, we took the liberty of freely drawing material from [138].
Some parts of our exposition in Section 6.6 followed [302].
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7

The Mathematical Foundations of Data Collection

The previous chapters serve as the mathematical foundation for big data representa-
tion and analytics. We assume that massive datasets are available. This topic is very
important. We have postponed this topic until now because the necessary mathematical
foundation was not complete. The covariance matrix for big data is of central interest.
We will review methods for covariance matrix estimation. A sample covariance matrix,
a Hermitian positive non-negative random matrix, is traditionally used. This subject
needs to be revisited when the dimensions of data matrices are large. This subject is
naturally connected with compressive sensing.

For big data, we must rethink traditional data collection. We must focus on the global
picture, considering the collection, storage, cleaning and processing of data as a whole.
Among other things, a central task is to offer a principled and automated way of select-
ing regularization parameters in a variety of problems. The most important legacy of
compressive sensing may be that it has forced us to think about information, complex-
ity, hardware, and algorithms in a truly integrated manner. Compressive sensing can be
viewed as a good example of applications for large random matrices [40].

Data storage is central to big data. Real-time processing is demanding. For many appli-
cations, we often cannot afford the luxury of saving all the raw data generated by the
system (or network) for future processing. One fundamental challenge is to choose what
types of information are stored. As we are dealing with streaming data, real-time pro-
cessing is required.

Large random matrices are the unifying theme of this chapter. This starts with data
storage using large random matrices. High throughput real-time processing is required.

As pointed out in Section 1.1.5, it may be necessary to rethink data collection and
storage to facilitate big-data processing and inference tasks. How do we trade-off com-
plexity for accuracy in massive decentralized signal and data-analysis tasks? What are
the basic principles and useful methodologies to scale inference and learning algorithms
and trade off the computational resources (e.g., time, space and energy) according to the
needs of engineering practice (e.g. robustness versus real-time efficiency)?

7.1 Architectures and Applications for Big Data

Significant topics include:
• Scalable, distributed computing, for example MapReduce, Hadoop.
• Streaming for real-time analytics and graph processing, for example Pregel, Giraph.

Smart Grid using Big Data Analytics: A Random Matrix Theory Approach, First Edition.
Robert C. Qiu and Paul Antonik.
© 2017 John Wiley & Sons Ltd. Published 2017 by John Wiley & Sons Ltd.
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• Smart power-grid analytics.
• Multimodal sensing.
• Preference measurement; recommender systems; targeted advertising.
• Data collection, storage and transmission.
• Sampling.

In this chapter, we use the large random matrix as a single tool to explore these topics.
Streaming for real-time analytics is the aim of this chapter. Preference measurement
can be formulated in terms of covariance matrix estimation. We emphasize abstract
statistical models rather than specific applications so that the principles may be applied
more widely. In the infancy of big data, this philosophy is justified.

7.2 Covariance Matrix Estimation

High-dimensional covariance estimation is known to be a difficult problem, in the“large
p small n” setting. Our goal is to collect data to obtain the estimator �̂� for the true
covariance matrix 𝚺. During real-time data collection of streaming data, we sometimes
encounter the “large p small n,” to minimize the delay in data collection. In recent years,
the availability of high-throughput data from various applications has pushed this prob-
lem to an extreme where, in many situations, the number of samples (n) is often much
smaller than the number of parameters (p). When n < p, the sample covariance matrix
𝐒 is singular and not positive definite and hence it cannot be inverted to compute the
precision matrix (the inverse of the covariance matrix). However, even when n > p, the
eigenstructure tends to be systematically distorted unless p∕n is extremely small, result-
ing in ill-conditioned estimators for 𝚺; see [369] and [370].

Since the seminal work in [369] and [370] the problem of estimating 𝚺 has been rec-
ognized as highly challenging. Formally, given n independent sample vectors 𝐱1,… , 𝐱n ∈
ℝp from a zero-mean p-dimensional Gaussian distribution with an unknown covariance
matrix 𝚺, the log-likelihood function of the covariance matrix has the form

L(𝚺) = log
n∏

i=1

1
(2𝜋)p|𝚺|

exp
(
−1

2
𝐱T

i 𝚺
−1𝐱i

)

= −(np∕2) log(2𝜋) − (n∕2)
(
Tr

[
𝚺−1𝐒

])
− log det𝚺−1

where both |𝚺| and det𝚺 denote the determinant of𝚺, Tr(𝐀) denotes the trace of𝐀, and
𝐒 is the sample covariance matrix, i.e.,

𝐒 = 1
n

n∑

i=1
𝐱i𝐱T

i

The log-likelihood function is maximized by the sample covariance, i.e., the maximum
likelihood estimate (MLE) of the covariance is 𝐒 [371].

The negative log-likelihood function of 𝚺 given the sample, 𝐱1,… , 𝐱n, is propor-
tional to

Ln (𝚺) = − log det𝚺−1 + Tr
[
𝚺−1𝐒

]
(7.1)
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up to some constant. When p < n, 𝐒 is the maximum likelihood estimate of 𝚺. It is well
known that 𝐒 is not a stable estimate of 𝚺 when p is large or p is close to the sample
size n. As the dimension p increases, the largest eigenvalues of 𝐒 tend to be systemati-
cally distorted, which can give an ill-conditioned estimate of 𝚺 [177]. When p > n, 𝐒 is
singular and the smallest eigenvalue is zero. It is not appropriate to use 𝐒 to obtain the
estimate of 𝚺−1.

Research is done to explore better alternative estimators for 𝚺 (or 𝚺−1) in both the
frequentist and Bayesian frameworks. Many of these estimators give substantial risk
reductions compared to the sample covariance estimator 𝐒 in small sample sizes.
A common underlying property of many of these estimators is that they are shrinkage
estimators in the James–Stein sense [372] and [373]). Warton [374] minimizes
the predictive risk, which is estimated using a crossvalidation method. Many other
James–Stein type shrinkage estimators have been studied from a decision-theoretic
point of view.

A simple example is a family of linear shrinkage estimators, which take a convex com-
bination of the sample covariance and a suitably chosen target or regularization matrix.
Ledoit and Wolf [375] studied a linear shrinkage estimator towards a specified target
covariance matrix, and chose the optimal shrinkage to minimize the Frobenius risk.

Regularized likelihood methods for the multivariate Gaussian model provide estima-
tors with different types of shrinkage. Sheenaand Gupta [376] propose a constrained
maximum-likelihood estimator with constraints on the smallest or the largest eigenval-
ues. Generally speaking, the feasibility of using convex optimization for some real-time
computation opens the door for many applications, including data collection.

To take advantage of some prior information about 𝚺, we can use the loss functions
to estimate the true covariance matrix. We examine some properties of these loss func-
tions, recalled from Section 8.9.2 for convenience.

L
(
𝚺, �̂�

)
= Tr 𝚺−1�̂� − log det𝚺−1�̂� − p (7.2)

We will use the loss function defined by (8.65) largely because it is comparatively easy
to work with this loss function. However, it also has all the appealing properties of loss
functions:

1) L
(
𝚺, �̂�

)
⩾ 0, with equality if and only if 𝚺 = �̂�.

2) L
(
𝚺, �̂�

)
a convex function of its second argument;

3) L
(
𝚺, �̂�

)
invariant under linear transformations of ℝn, i.e., for any nonsingular p × p

matrix 𝐀,

L
(
𝐀𝚺𝐀H ,𝐀�̂�𝐀H) = L

(
𝚺, �̂�

)
(7.3)

We can formulate the data collection problem in terms of convex optimization:

minimize L
(
𝚺, �̂�

)

subject to Fi

(
𝚺, �̂�

)
= 1, i = 1,… ,N

(7.4)

where Fi

(
𝚺, �̂�

)
, i = 1,… ,N are convex functions that give constraints for data collec-

tion. Note that L
(
𝚺, �̂�

)
is a convex function of the second argument �̂�.
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Once a problem is formulated in terms of convex optimization, solving for the prob-
lem can call on a standard software solver such as CVX. Thus, (7.4) may be efficiently
solved using standard methods such as interior-point methods [377] when the num-
ber of variables (i.e., entries in the matrix) is modest, say, under 1000. As the number of
variables is about p(p + 1)∕2, the limit is around p = 45. In particular, we may use con-
vex optimizations toolboxes such as the CVX in MATLAB [378] and the CVXOPT in
Python programming language [379]. The challenge arises from the fact that the convex
optimization must be solved in real time manner for streaming data.

Consider an estimation with a condition number constraint. The condition number
of a positive definite matrix 𝐀 ≥ 0 is defined as

cond (𝐀) = 𝜆max (𝚺) ∕𝜆min (𝐀)

where 𝜆max (𝚺) and 𝜆min (𝚺) are the maximum and the minimum eigenvalues of 𝐀,
respectively. In several applications a stable well-conditioned estimate of the covariance
matrix is required. In other words, we require

cond (𝚺) ⩽ 𝜅max

for a given threshold 𝜅max.
The maximum likelihood estimation problem with the condition number constraint

can be formulated as

maximize L (𝚺)
subject to 𝜆max (𝚺) ∕𝜆min (𝚺) ⩽ 𝜅max

(7.5)

An implicit condition is that𝚺 is symmetric and positive definite. This problem is a gen-
eralization of the problem considered in [376], where only either the lower bound or the
upper bound is considered. The covariance estimation problem (7.5) can be reformu-
lated as a convex optimization problem.

Let us use another concrete example of matrix log-transformation to illustrate how
data collection is formulated in terms of convex optimization. Consider the spectral
decomposition of the covariance matrix 𝚺 = 𝐔𝐃𝐔T , where 𝐃 = diag

(
d1,… , dp

)
is a

diagonal matrix of the eigenvalues of 𝚺, and 𝐔 is an orthonormal matrix consisting of
eigenvectors of 𝚺. Assume that d1 ⩾ d2 ⩾ · · · ⩾ dp ⩾ 0. Let

𝐀 =
(
aij

)

p× p = log (𝚺)

be the matrix logarithm of 𝚺. That is

𝚺 =
∞∑

k=0

1
k!
𝐀k ≡ exp(𝐀)

where exp(𝐀) is called the matrix exponential of 𝐀. Then

𝐀 = 𝐔 diag
(
log

(
d1

)
,… , log

(
dp

))
𝐔T ≡ 𝐔𝐌𝐔T (7.6)

where𝐌 is a diagonal matrix. In terms of𝐀, the negative log-likelihood function in (1.1)
becomes

Ln(𝐀) = Tr(𝐀) + Tr
[
exp (−𝐀) 𝐒

]
(7.7)
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A major advantage of using the matrix logarithm transformation is that it converts the
problem of estimating a positive definite matrix 𝚺 into a problem of estimating a real
symmetric matrix A. Using the Volterra integral equation [380], we have

exp (𝐀t) = exp
(
𝐀0t

)
+ ∫

t

0
exp

(
𝐀0 (t − s)

) (
𝐀 − 𝐀0

)
exp (𝐀s) ds, 0 < t < ∞

(7.8)

Let 𝚺0 be an initial estimate of 𝚺 and 𝐀0 = log
(
𝚺0

)
. Using (7.8), and after some manip-

ulation, we approximate Ln(𝐀)

𝓁n(𝐀) = Tr
[
𝚺−1

0 𝐒
]
−
[

∫
1

0
Tr

[(
𝐀 − 𝐀0

)
𝚺−s

0 𝐒𝚺
s−1
0

]
ds − Tr(𝐀)

]

+ ∫
1

0 ∫
s

0
Tr

[(
𝐀 − 𝐀0

)
𝚺u−s

0
(
𝐀 − 𝐀0

)
𝚺−u

0 𝐒𝚺
s−1
0

]
duds

(7.9)

The integrations in (7.9) can be analytically solved through the spectral decomposition
𝚺0 = 𝐔0𝐃0𝐔T

0 . Define

𝐁 = 𝐔T
0
(
𝐀 − 𝐀0

)
𝐔0 =

(
bij

)

p× p ,

�̃� = 𝐔T
0 𝐒𝐔0 =

(
s̃ij
)

p× p ,𝐃0 = diag
(

d(0)
1 ,… , d(0)

p

)

We obtain

𝓁n(𝐀) =
p∑

i=1

1
2
𝜉iib2

ii +
∑

i<j
𝜉ijb2

ij + 2
p∑

i=1

∑

j≠i
𝜏ijbiibij+

p∑

i=1

∑

i<j,i≠k,j≠k
𝜂kijbikbkj

−

[ p∑

i=1
𝛽iibii + 2

∑

i<j
𝛽ijbij

] (7.10)

up to some constant. We see that 𝓁n(𝐀) in (7.10) is a quadratic function of bij. As the
matrix 𝐁 is a linear transformation of 𝐀, 𝓁n(𝐀) is also a quadratic function of 𝐀. The
coefficients in (7.10) are functions of

(
s̃ij
)

p× p and d(0)
1 ,… , d(0)

p .
We apply a regularized approach to estimating 𝚺 by using the approximate

log-likelihood function 𝓁n(𝐀) in (7.10). Consider the penalty function ‖𝐀‖2
F , the

Frobenius norm of 𝐀, which is equivalent to Tr
(
𝐀2). From (7.11)

Tr
(
𝐀2) =

p∑

i=1

(
log

(
di
))2

where di is the eigenvalue of the covariance matrix 𝚺. If di goes to zero or diverges to
infinity, the value of log(di) goes to infinity in both cases. Therefore, such a penalty func-
tion can simultaneously regularize the largest and smallest eigenvalues of the covariance
matrix estimate. We consider to estimate 𝚺, or equivalently 𝐀, by minimizing

𝓁n,𝜆(𝐀) = 𝓁n(𝐀) + 𝜆Tr
(
𝐀2) (7.11)

where 𝜆 is a tuning parameter. Note that Tr
(
𝐀2) = Tr

(
𝐔0𝐁𝐔T

0 + 𝐀0
)2 is equivalent

to Tr
(
𝐁2) + 2Tr (𝐁𝚪) up to some constant, where 𝚪 =

(
𝛾ij
)

p× p = 𝐔T
0𝐀0𝐔0. Then (7.11)

becomes



312 Smart Grid using Big Data Analytics

𝓁n,𝜆 (𝐁) =
p∑

i=1

1
2
𝜉iib2

ii +
∑

i<j
𝜉ijb2

ij + 2
p∑

i=1

∑

j≠i
𝜏ijbiibij

+
p∑

i=1

∑

i<j,i≠k,j≠k
𝜂kijbikbkj −

[ p∑

i=1
𝛽iibii + 2

∑

i<j
𝛽ijbij

]

+ 𝜆

[ p∑

i=1

1
2
𝜉iib2

ii +
p∑

i=1
b2

ij +
∑

i<j
𝛾iibii +

∑

i<j
𝛾ijbij

]

(7.12)

Let �̂� be the minimizer of (7.12). The iterative algorithm is described as follows:

1) Set an initial covariance matrix estimate 𝚺0, a positive definite matrix.
2) Obtain the spectral decomposition 𝚺0 = 𝐔0𝐃0𝐔T

0 , and set 𝐀0 = log
(
𝚺0

)
.

3) Compute �̂� by minimizing 𝓁n,𝜆 (𝐁) in (7.12). Then obtain �̂� = 𝐔0𝐁𝐔
T
0 + 𝐀0, update

the estimate of 𝚺 by

�̂� = exp
(
�̂�
)
= exp

(
𝐔0𝐁𝐔

T
0 + 𝐀0

)

4) Check if ‖‖
‖
�̂� − 𝚺‖‖

‖

2

F
is less than a prespecified positive tolerance value. Otherwise, set

𝚺0 = �̂� and go back to Step 2.

The performance of this iterative algorithm is the best among the state-of-the-art algo-
rithms with which it has been compared, including the sample covariance matrix, which
is the maximum likelihood estimator. It is also better than the maximum likelihood
covariance estimator with a condition number constraint. See [381] for details.

7.3 Spectral Estimators for Large Random Matrices

Only the spectrum properties (eigenvalues) of large random matrices can be stored for
future data processing. For an n × n matrix 𝐗, instead of storing the n2 entries of 𝐗,
we store the n eigenvalues of 𝐗. We reduce the dimensionality by n times. When n is
large, for instance n = 103, the saving of the required storage is significant (1000 times).
Real-time processing includes estimating covariance matrix and calculating eigenval-
ues. Principal component analysis (PCA) is a well established dimensionality reduction
method commonly used to denoise and visualize data.

Our problem is to recover an approximately low-rank data matrix from noisy obser-
vations. We introduce an unbiased risk estimate—holding in a Gaussian model—for any
spectral estimator obeying some mild regularity assumptions. In particular, we give an
unbiased risk estimate formula for singular-value thresholding (SVT), a popular esti-
mation strategy that applies a soft-thresholding rule to the singular values of the noisy
observations. Among other things, our formulas offer a principled and automated way
of selecting regularization parameters in a variety of problems.

Suppose we have noisy observation matrix 𝐘 about an m × n data matrix 𝐗0 of
interest:

𝐘 = 𝐗0 + 𝐙, where Zij ∼ i.i.d.  (0, 1) (7.13)
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We wish to estimate𝐗0 as accurately as possible. For our problem at hand, the estimation
process—part of data collection—must be done in real time. Our motivation is to reduce
dimensionality. The estimand has some structure, namely 𝐗0 has low rank or is well
approximated by a low-rank matrix. This assumption is often met in practice as the
columns of 𝐗0 can be quite correlated.

7.3.1 Singular Value Thresholding

Whenever the object of interest has (approximately) low rank, it is possible to improve
upon the naive estimate �̂�0 = 𝐘 by regularizing the maximum likelihood. A natural
approach consists in truncating the singular value decomposition of the observed matrix
𝐘, and solve

SVHT𝜆(𝐘) = arg min
𝐗∈ℝm× n

1
2
‖𝐘 − 𝐗‖2

F + 𝜆 rank (𝐗) (7.14)

where 𝜆 a positive scalar. If

𝐘 = 𝐔𝚺𝐕H =
min(m,n)∑

i=1
𝜎i𝐮i𝐯T

i (7.15)

is a singular value decomposition for 𝐘, the solution is given by retaining only the part
of the expansion with singular values exceeding the threshold 𝜆:

SVHT𝜆(𝐘) =
min(m,n)∑

i=1
𝕀
(
𝜎i > 𝜆

)
𝐮i𝐯T

i

where 𝕀 is the indicator function of the set. In other words, one applies a
hard-thresholding rule to the singular values of the observed matrix 𝐘. Such an
estimator is discontinuous in 𝐘 and a popular alternative approach applies, instead, a
soft-thresholding rule to the singular values:

SVST𝜆(𝐘) =
min(m,n)∑

i=1

(
𝜎i − 𝜆

)

+𝐮i𝐯T
i (7.16)

In other words, we shrink the singular values towards zero by a constant amount 𝜆. The
estimate SVST𝜆(𝐘) is a Lipschitz-continuous function. This follows from the fact that
the singular value thresholding operation (7.16) is the prox of the nuclear norm || ⋅ ||∗
(the nuclear norm of a matrix is sum of its singular values); it is the unique solution to

minimize 1
2
‖𝐘 − 𝐗‖2

F + 𝜆‖𝐗‖∗ (7.17)

Let g ∶ ℝM → ℝN : we regard the n × n (respectively, symmetric) matrix space as a
special case of ℝN with M = n2 (respectively, M = n(n + 1)∕2). Hence the discussions
here apply to matrix variable and/or matrix valued functions as well. Let || ⋅ || denote
the 𝓁2 norm in finite dimensional Euclidean spaces. Recall that g(𝐱) is said to be locally
Lipschitz continuous around 𝐱 ∈ ℝM if there exist a constant 𝜅 and an open neighbor-
hood  of 𝐱 such that

‖g (𝐲) − g (𝐳)‖ ⩽ 𝜅 ‖𝐲 − 𝐳‖ ∀𝐲, 𝐳 ∈ 
We call g a locally Lipschitz function if it is locally Lipschitz continuous around every
point of ℝM. Moreover, if the above inequality holds for  = ℝM, then g is said to be
globally Lipschitz continuous with Lipschitz constant 𝜅.
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7.3.2 Stein’s Unbiased Risk Estimate (SURE)

A function g ∶ ℝn → ℝ is said to be weakly differentiable with respect to the variable xi
if there exists h ∶ ℝn → ℝ such that for all compactly supported and infinitely differen-
tiable functions 𝜙

∫ 𝜑 (𝐱)h (𝐱) d𝐱 = −∫
𝜕𝜑 (𝐱)
𝜕xi

g (𝐱) d𝐱

where 𝐱 =
(
x1,… , xp

)T .
Stein [382] gave a formula for an unbiased estimate of the mean-squared error of an

estimator obeying a weak differentiability assumption and mild integrability conditions.
Roughly speaking, the derivatives can fail to exist over regions of Lebesgue measure
zero.

Proposition 7.3.1 (Stein (1981) [382] and Johnstone (2007) [383]) Suppose that
Yij ∼ i.i.d  (

Xij, 1
)
. Consider an estimator �̂� of the form 𝐗 = 𝐘 + g(𝐘), where gij ∶

ℝm×m → ℝ is weakly differentiable with respect to Yij and

𝔼

{

|
|
|
Yijgij(𝐘)

|
|
|
+
|
|
|
|
|

𝜕

𝜕Yij
gij(𝐘)

|
|
|
|
|

}

<∞

for
(
i, j

)
∈  ∶= {1,… ,m} × {1,… , n}. Then

𝔼 ‖
‖
‖
�̂� − 𝐗‖‖

‖

2

F
= 𝔼

{
mn + 2 div

(
g(𝐘)

)
+ ‖g(𝐘)‖2

F
}

(7.18)

It was established in [384] that SVST obeys these assumptions, and the deduction of
a closed-form expression for its divergence was obtained by the authors.

The classical question is how much shrinkage should be applied. Too much shrinkage
gives a large bias whereas too little results in a high variance. To find the correct tradeoff,
it would be desirable to have a method that would allow us to compare the quality of
estimation for different values of the parameter 𝜆. Ideally, we would like to select 𝜆 as to
minimize the mean-squared error or risk

MSE (𝜆) = 𝔼 ‖
‖𝐗0 − SVST𝜆(𝐘)‖‖

2
F (7.19)

This cannot be achieved, however, because the expectation in (7.19) depends on the
true𝐗0, and is thus unknown. When the observations follow the model (7.13), it is pos-
sible to construct an unbiased estimate of the risk, namely, Stein’s unbiased risk estimate
(SURE) [382] given by

SURE
(
SVST𝜆

)
(𝐘) = −mn𝜏2 +

min(m,n)∑

i=1
min

(
𝜆2, 𝜎2

i
)
+ 2𝜏2 div

(
SVST𝜆(𝐘)

)

(7.20)

where
{
𝜎i
}n

i=1 denotes the singular values of 𝐘. Here, ‘div’ is the divergence of the non-
linear mapping SVST𝜆, which is to be interpreted in a weak sense. Roughly speaking, it
can fail to exist on negligible sets.

The main contribution of [384] is to provide a closed-form expression for the diver-
gence of this estimator. They prove that, in the real-valued case
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div
(
SVST𝜆(𝐘)

)
=

min(m,n)∑

i=1

[

𝕀(𝜎i >𝜆) + |m− n|
(

1− 𝜆

𝜎i

)

+

]

+ 2
min(m,n)∑

i≠j,i,j=1

𝜎i(𝜎i − 𝜆)+
𝜎2

i − 𝜎
2
j

(7.21)
when 𝐘 is simple—it has no repeated singular values—and 0 otherwise, say, is a valid
expression for the weak divergence. Hence, this formula can be used in (7.20), and gives
the determination of a suitable threshold level by minimizing the estimate of the risk,
which only depends upon the observed data.

Example 7.3.2 (MATLAB experiments) We work with four matrices 𝐗(i)
0 , i =

1,… , 4 of size 200 × 500. Here, 𝐗(1)
0 has full rank; 𝐗(2)

0 has rank 100; 𝐗(3)
0 has rank 10;

and 𝐗(4)
0 has singular values equal to 𝜎i =

√
200∕

(
1 + e(i−100)∕20) , i = 1,… , 200. Each

matrix is normalized so that ‖
‖
‖
𝐗(i)

0
‖
‖
‖F

= 1, i = 1,… , 4. Next, two methods are used to
estimate the risk (7.20) of SVST𝜆 seen as a function of 𝜆. The first methods uses

R̂i (𝜆) =
1
N

N∑

j=1

‖
‖
‖
‖
SVST𝜆

(
𝐘(i)

j

)
− 𝐗(i)

0
‖
‖
‖
‖

2

F
(7.22)

where
{
𝐘(i)

j

}N

j=1
, i = 1,… , 4,N = 50 are independent samples drawn from model (7.13)

with 𝐗0 = 𝐗(i)
0 , i = 1,… , 4. The second uses SURE

(
SVST𝜆

)
(𝐘), where 𝐘 is drawn

from model (7.13) from
{
𝐘(i)

j

}N

j=1
, i = 1,… , 4. Finally, in each case we use values

of the signal-to-noise ratio, defined as SNR = ‖
‖
‖
𝐗(i)

0
‖
‖
‖F
∕
√

mn𝜏 = 1∕
√

mn𝜏 , and set
SNR = 0.5, 1, 2, 4. As shown in Figure 7.1 and Figure 7.2, SURE remains very close to
the true value of the risk, even though it is calculated from a single observation. Matlab
code reproducing the figures is available and computing SURE formulas for various
spectral estimators are available in [385]. ◽

Observations can take on complex values. The model (7.13) has to be modified as
𝐘 = 𝐗0 + 𝐙, where Re

(
Zij

)
, Im

(
Zij

)
∼ i.i.d.  (0, 1) (7.23)

where the real and imaginary parts are also independent. In this case, SURE becomes

SURE
(
SVST𝜆

)
(𝐘) = −2mn𝜏2 +

min(m,n)∑

i=1
min

(
𝜆2, 𝜎2

i
)
+ 2𝜏2 div

(
SVST𝜆(𝐘)

)

(7.24)
We also provide an expression for the weak divergence in this context, namely

div
(
SVST𝜆(𝐘)

)
=

min(m,n)∑

i=1

[

𝕀
(
𝜎i > 𝜆

)
+ (2 |m − n| + 1)

(

1 − 𝜆

𝜎i

)

+

]

+4
min(m,n)∑

i≠j,i,j=1

𝜎i
(
𝜎i − 𝜆

)

+

𝜎2
i − 𝜎

2
j

(7.25)

when 𝐘 is simple and 0 otherwise.
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Figure 7.1 Comparison of the risk estimate using Monte Carlo (solid line) and SURE (cross) versus
𝜆 × 𝜏 for𝐗0 ∈ ℝ200×500. SNR = 0.5
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Figure 7.2 The same as Figure 7.1
except SNR = 1

7.3.3 Extensions to Spectral Functions

Consider estimators given by spectral functions. These act on the singular values and
take the form

f (𝐘) =
min(m,n)∑

i=1
fi
(
𝜎i
)
𝐮i𝐯T

i = 𝐔f (𝚺)𝐕H , for all 𝐘 ∈ ℝm× n (7.26)
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where f (𝐘) = 𝐔f (𝚺)𝐕H is any SVD (SVST is in this class). These functions admit a
SURE formula, given by

SURE
(

f
)
(𝐘) = −mn𝜏2 + ‖ f (𝐘) − 𝐘‖2

F + 2𝜏2 div
(

f (𝐘)
)

and that under mild assumptions there exists a closed form for their divergence:

div
(
f (𝐘)

)
=

min(m,n)∑

i=1

(

f ′

i
(
𝜎i
)
+ |m − n|

f ′

i

(
𝜎i
)

𝜎i

)

+ 2
min(m,n)∑

i≠j,i,j=1

𝜎i fi
(
𝜎i
)

𝜎2
i − 𝜎

2
j

(7.27)

This is of interest because such estimators arise naturally in regularized regression
problems. For instance, let J ∶ ℝm× n → ℝ be a lower semicontinuous, proper convex
function of the form

J (𝐗) =
min(m,n)∑

i=1
Ji
(
𝜎i (𝐗)

)

Then, for 𝜆 > 0 the estimator

f𝜆(𝐘) = arg min
𝐗∈ℝm× n

1
2
‖𝐘 − 𝐗‖2

F + 𝜆J (𝐗) (7.28)

is spectral. We say a function is spectral if it depends on eigenvalues only.
An approach to recursively estimate the quadratic risk for matrix recovery problems

regularized with spectral functions [386]. A class of matrix valued functions defined by
singular values of nonsymmetric matrices is shown to have many properties analogous
to matrix valued functions defined by eigenvalues of symmetric matrices. The strong
semismoothness of singular values of a nonsymmetric matrix is discussed and used to
analyze the quadratic convergence of Newton’s method for solving the inverse singular
value problem.

Oymak and Hassibi [387] provided a sharp analysis of the minimax denoising problem
and established a relation between the minimax MSE and phase transitions for arbitrary
convex and continuous functions. Phase transitions deals with recovering a signal 𝐱0
from compressed linear observations 𝐀𝐱0 by minimizing a certain convex function f (⋅).
On the other hand, minimax denoising is the problem of optimally estimating a signal
𝐱0 from noisy observations

𝐲 = 𝐱0 + 𝐳
using the regularization

minimize 1
2
‖𝐲 − 𝐱‖2

2 + 𝜆f (𝐱)

where || ⋅ ||2 is the Euclidean norm of a vector. In general, these problems are more
meaningful and useful when the signal 𝐱0 has a certain structure and the convex
function f (⋅) is chosen to exploit this structure. Examples of f (⋅) include, 𝓁1 and 𝓁1 − 𝓁2
norms for sparse and block sparse vectors, and nuclear norm || ⋅ ||∗ for low-rank
matrices.

When the noise vector 𝐳 is i.i.d. Gaussian, it is shown in [388] that the normalized
estimation error (MSE) of the optimally tuned problem coincides with the compressed
sensing phase transitions: the number Δf

(
𝐱0
)

is such that one needs m > Δf
(
𝐱0
)

com-
pressed observations 𝐀𝐱0 ∈ ℝm to recover the signal 𝐱0 by solving

minimize f (𝐱)
subject to 𝐀𝐱 = 𝐀𝐱0
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Δf
(
𝐱0
)

can be obtained as an explicit formula based on the subdifferential
of f (⋅) at 𝐱0.

Following [389], we suppose we observe a single noisy matrix𝐘, generated by adding
noise 𝐙 to an unknown matrix 𝐗0, so that

𝐘 = 𝐗0 + 𝐙

where 𝐙 is a noise matrix. Our goal is to recover the matrix 𝐗0 with some bound on the
mean-squared error (MSE). This is hopeless if𝐗0 is a completely general matrix and the
noise 𝐙 is arbitrary; but if 𝐗0 happens to be of relatively low rank and the noise matrix
𝐙 is i.i.d standard Gaussian, we can indeed guarantee quantitatively accurate recovery.
Donoho and Gavish (2013) provided explicit formulas for the best possible guarantees
obtainable by a popular, computationally practical procedure.

Let𝐘,𝐗0, and𝐙 be m × m matrices and suppose that𝐙 has i.i.d entries, Zij ∼  (0, 1).
Consider the following nuclear-norm penalization problem:

�̂�𝜆 = arg min
𝐗∈m× n

1
2
‖𝐘 − 𝐗‖2

F + 𝜆‖𝐗‖∗ (7.29)

where ‖𝐗‖∗ denotes the sum of singular values of 𝐗 ∈ ℂm× n, also known as the nuclear
norm, and 𝜆 > 0 is a penalty factor. A solution to (7.29) is efficiently computable by mod-
ern convex optimization software CVX [378]; it shrinks away from 𝐘 in the direction
of a smaller nuclear norm.

Measure performance (risk) is by the use of mean-squared error (MSE). When the
unknown 𝐗0 is of known rank r and belongs to a matrix class m× n ⊂m× n, the min-
imax MSE of nuclear-norm penalization is

m× n (r | ) = inf
𝜆>0

sup
𝐗0∈m,n

rank(𝐗0)⩽r

1
mn

𝔼𝐗0

‖
‖
‖
�̂�𝜆

(
𝐗0 + 𝐙

)
− 𝐗0

‖
‖
‖

2

F
(7.30)

namely the worst case risk of �̂�𝜆⋆ where 𝜆⋆ is the threshold for which this worst case
risk is the smallest possible. In a very clear sense m× n (r | ) gives the best possible
guarantee for the MSE of nuclear-norm penalization (7.29), based solely on the rank
and problem size, and not on other properties of the matrix 𝐗0.

7.3.4 Regularized Principal Component Analysis

Principal component analysis (PCA) is a well established dimensionality reduction
method commonly used to denoise and visualize data. Regularized PCA [390] is
relevant to the SURE method. The SURE method relies on a soft thresholding strategy:

SVST𝜆 (𝐘) =
min(m,n)∑

i=1

(
𝜎i − 𝜆

)

+𝐮i𝐯T
i

The threshold parameter 𝜆 is automatically selected by minimizing Stein’s unbiased risk
estimate (SURE). As a tuning parameter, the SURE method does not require the num-
ber of underlying dimensions of the signal but it does require estimation of the noise
variance 𝜎2 to determine 𝜆.

When data can be seen as a true signal corrupted by error, PCA does not provide
the best recovery of the underlying signal. Shrinking the singular values improves the



The Mathematical Foundations of Data Collection 319

estimation of the underlying structure especially when data are noisy. Soft thresholding
is one of the most popular strategies and involves linearly shrinking the singular val-
ues. The regularized PCA suggested in [390] applies a nonlinear transformation of the
singular values associated with a hard thresholding rule. The regularized term is analyt-
ically derived from the MSE using asymptotic results from nonlinear regression models
or using Bayesian considerations.

7.4 Asymptotic Framework for Matrix Reconstruction

The purpose of this section is to introduce the method of using asymptotic limits of large
random matrices for matrix estimation. Random matrix theory underlies this method.
It is remarkable that the algorithm developed using this method is asymptotically opti-
mal and often optimal in practice. This method appears promising for future smart-grid
power systems and big data.

By studying the asymptotic framework, we focus on the deterministic aspects of the
problem, which is analogous to the method of studying the expectation of random vari-
ables (scalar, vector, matrix or tensor).

7.4.1 Matrix Estimation with Loss Functions

We address the problem of recovering a low rank signal matrix whose entries are
observed in the presence of additive Gaussian noise [391]. Our goal is to recover an
unknown m × n matrix𝐗0 of low rank that is observed in the presence of i.i.d. Gaussian
noise as matrix Y:

𝐘 = 𝐗0 +
𝜎
√

n
𝐙, where Zij ∼ i.i.d.  (0, 1)

The factor 1∕
√

n ensures that the signal and noise are comparable, and is employed for
the asymptotic study of matrix reconstruction. We can consider the variance of the noise
𝜎2 to be known, and assume that it is equal to one. We can also obtain an estimator for
𝜎, which we use in the proposed reconstruction method. In this case we have

𝐘 = 𝐗0 +
1

√
n
𝐙, where Zij ∼ i.i.d.  (0, 1) (7.31)

Formally, a matrix recovery scheme is a map g ∶ ℝm× n → ℝm× n from the space of
m × n matrices to itself. Given a recovery scheme g(⋅) and an observed matrix 𝐘
from the model (7.31), we regard �̂�0 = g(𝐘) as an estimate of 𝐗0, and measure the
performance of the estimate �̂�0 by

Loss
(
𝐗0, �̂�0

)
= ‖

‖
‖
𝐗0 − �̂�0

‖
‖
‖

2

F
(7.32)

where || ⋅ ||F denotes the Frobenius norm. The Frobenius norm of an m × n matrix 𝐀 ={
aij

}
is given by

‖𝐀‖2
F =

m∑

i=1

n∑

j=1
a2

ij



320 Smart Grid using Big Data Analytics

Note that the vector space ℝm×n is equipped with the inner product ⟨𝐀,𝐁⟩ = Tr
(
𝐀T𝐁

)
,

then ⟨𝐀,𝐀⟩ = ‖𝐀‖2
F .

A natural starting point for reconstruction of the target matrix A in (7.31) is the singu-
lar value decomposition (SVD) of the observed matrix 𝐘. Recall that the singular value
decomposition of an m × n matrix 𝐘 is given by the factorization

𝐘 = 𝐔𝐃𝐕T =
min(m,n)∑

i=1
di𝐮i𝐯

T
i

Here 𝐔 is an m × n orthogonal matrix whose columns are the left singular vectors 𝐮i, 𝐕
is an n × n orthogonal matrix whose columns are the right singular vectors 𝐯i, and 𝐃 is
an m × n matrix with singular values di = Dii ⩾ 0 on the diagonal and all other entries
equal zero.

Many matrix reconstruction schemes act by shrinking the singular values of the
observed matrix towards zero. Shrinkage is typically accomplished by hard or soft
thresholding. Hard thresholding schemes set every singular value of 𝐘 less than a given
positive threshold 𝜆 equal to zero, leaving other singular values unchanged. The family
of hard thresholding schemes is defined by

gH
𝜆
(𝐘) =

min(m,n)∑

i=1
diI

(
di ⩾ 𝜆

)
𝐮i𝐯

T
i , 𝜆 > 0

where I(⋅) is the indicator function. Soft thresholding schemes subtract a given positive
number 𝜈 from each singular value, setting values less than 𝜈 equal to zero. The family
of soft thresholding schemes is defined by

gS
𝜆
(𝐘) =

min(m,n)∑

i=1

(
di − 𝜈

)

+𝐮i𝐯
T
i , 𝜈 > 0

Hard and soft thresholding schemes can be defined equivalently in the penalized
forms

gH
𝜆
(𝐘) = arg min

𝐀

{
‖𝐘 − 𝐀‖2

F + 𝜆2 rank(𝐀)
}

gS
𝜆
(𝐘) = arg min

𝐀

{
‖𝐘 − 𝐀‖2

F + 2𝜈‖𝐀‖∗
}

where ||𝐀||F denotes the nuclear norm of 𝐀, which is equal to the sum of its singular
values.

We now deal with orthogonally invariant reconstruction methods. The addi-
tive model (7.31) and Frobenius loss (7.32) have several elementary invariance
properties, that lead naturally to the consideration of reconstruction methods
with analogous forms of invariance. Recall that a square matrix 𝐔 is said to be
orthogonal if 𝐔𝐔T = 𝐔T𝐔 = 𝐈, or equivalently, if the rows (or columns) of 𝐔 are
orthonormal. If we multiply each side of (7.31) from the left side and right side,
respectively, by orthogonal matrices 𝐔 and 𝐕T of appropriate dimensions, we
obtain

𝐔𝐘𝐕T = 𝐔𝐗0𝐕T + 1
√

n
𝐔𝐙𝐕T (7.33)
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(7.33) is a reconstruction problem of the form (7.31) with signal 𝐔𝐗0𝐕T and observed
matrix 𝐔𝐘𝐕T . If �̂�0 is an estimate of 𝐗0 in model (7.31), then 𝐔�̂�0𝐕T is an estimate of
𝐔𝐗0𝐕T in model (7.33) with the same loss. We have

Loss
(
𝐔𝐗0𝐕T ,𝐔�̂�0𝐕T

)
=

‖
‖
‖
‖
𝐔
(
𝐗0 − �̂�0

)
𝐕T‖‖

‖
‖

2

F

= ‖
‖
‖
𝐗0 − �̂�0

‖
‖
‖

2

F
= Loss

(
𝐗0, �̂�0

)

A random m × n matrix Z has an orthogonally invariant distribution if for any orthog-
onal matrices 𝐔 and 𝐕 of appropriate size the distribution of 𝐔𝐙𝐕T is the same as the
distribution of 𝐙.

It is natural to consider reconstruction schemes whose action does not change under
orthogonal transformations of the reconstruction problem. A reconstruction scheme
g(𝐘) is orthogonally invariant if for any m × n matrix 𝐘, and any orthogonal matrices 𝐔
and 𝐕 of appropriate size

g
(
𝐔𝐙𝐕T) = 𝐔g(𝐘)𝐕T

Theorem 7.4.1 Let 𝐘 = 𝐀 +𝐖, where 𝐀 is a random target matrix. Assume that 𝐀
and 𝐖 are independent and have orthogonally invariant distributions. Then, for every
reconstruction scheme g(⋅), there is an orthogonally invariant reconstruction scheme
g̃(⋅), whose expected loss is the same, or smaller, than that of g(⋅).

The next proposition follows from our ability to diagonalize the signal matrix𝐀 in the
reconstruction problem.

Proposition 7.4.2 Let 𝐘 = 𝐀 + 1
√

n
𝐖, where𝐖 has an orthogonally invariant distri-

bution. If g(⋅) is an orthogonally invariant reconstruction scheme, then for any fixed
signal matrix 𝐀, the distribution of Loss

(
𝐀, g(𝐘)

)
, and in particular 𝔼Loss

(
𝐀, g(𝐘)

)
,

depends only on the singular values of 𝐀.

Proof. Let 𝐔𝐃A𝐕T be the SVD of 𝐀. Then 𝐃A = 𝐔T𝐀𝐕, and as the Frobenius norm is
invariant under left and right orthogonal multiplications

Loss
(
𝐀, g(𝐘)

)
= ‖g(𝐘) − 𝐀‖2

F = ‖
‖
‖
𝐔T (

g(𝐘) − 𝐀
)
𝐕‖‖
‖

2

F

= ‖
‖𝐔

T g(𝐘)𝐕 − 𝐔T𝐀𝐕‖‖
2
F = ‖

‖
‖

g
(
𝐔T𝐘𝐕

)
− 𝐃A

‖
‖
‖

2

F

=
‖
‖
‖
‖

g
(
𝐃A + 1

√
n
𝐔T𝐖𝐕

)
− 𝐃A

‖
‖
‖
‖

2

F

The result now follows from the fact that 𝐔T𝐖𝐕 has the same distribution as𝐖. ◽
We now address the implications of our ability to diagonalize the observed matrix 𝐘.

Let g(⋅) be an orthogonally invariant reconstruction method, and let 𝐔𝐃𝐕T be the
singular value decomposition of 𝐘. It follows from the orthogonal invariance of
g(⋅) that

g(𝐘) = g
(
𝐔𝐙𝐕T) = 𝐔g (𝐃)𝐕T =

m∑

i=1

n∑

j=1
cij𝐮i𝐯T

j (7.34)
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where cij depend only on the singular values of 𝐘. In particular, any orthogonally
invariant g(⋅) reconstruction method is completely determined by how it acts on
diagonal matrices. The following theorem allows us to substantially refine the
representation (7.34).

Theorem 7.4.3 Let g(⋅) be an orthogonally invariant reconstruction scheme. Then
g(𝐘) is diagonal whenever 𝐘 is diagonal.

As an immediate corollary of Theorem 7.4.3 and Equation (7.34) we obtain a compact,
and useful, representation of any orthogonally invariant reconstruction scheme g(⋅).

Corollary 7.4.4 Let g(𝐘) be an orthogonally invariant reconstruction method. If the

observed matrix𝐘 has singular value decomposition𝐘 =
min(m,n)∑

i=1
di𝐮i𝐯T

i then the recon-

structed matrix has the form

�̂� = g(𝐘) =
min(m,n)∑

i=1
ci𝐮i𝐯T

i (7.35)

where the coefficients ci depend only on the singular values of 𝐘.

The converse of Corollary 7.4.4 is true under a mild additional condition. Let g(𝐘)
be a reconstruction scheme such that g(𝐘) = ∑

i
ci𝐮i𝐯T

i , where ci = ci
(
d1,… , dmin(m,n)

)

are fixed functions of the singular values of 𝐘. If the functions {ci(⋅)} are such that
ci(d) = cj(d) whenever di = dj, then g(⋅) is orthogonally invariant. This follows from the
uniqueness of the singular value decomposition.

Now we connect asymptotic matrix reconstruction with random matrix theory.
Random matrix theory deals roughly with the spectral properties (i.e. eigenvalues) of
random matrices, and is an obvious starting point for an analysis of matrix reconstruc-
tion. Using recent results on spiked population models, following [391], we establish
asymptotic connections between the singular values and vectors of the signal matrix
𝐀 and those of the observed matrix 𝐘. These asymptotic connections provide us with
finite-sample estimates that can be applied in a nonasymptotic setting to matrices of
small or moderate dimensions.

7.4.2 Connection with Large Random Matrices

The proposed reconstruction method is derived from an asymptotic version of the
matrix reconstruction problem (7.31). For n ≥ 1 let integers m = m(n) be defined in
such a way that

m
n

→ c > 0 as n → ∞ (7.36)

For each n, let 𝐘,A and𝐖 be m × n matrices such that

𝐘 = 𝐀 + 1
√

n
𝐖 (7.37)

where the entries of𝐖 are independent  (0, 1) random variables. We assume that the
signal matrix 𝐀 has fixed rank r ≥ 0 and fixed non-zero singular values 𝜎1(𝐀),… , 𝜎r(𝐀)
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that are independent of n. The constant c represents the limiting aspect ratio of the
observed matrices 𝐘. The scale factor 1

√
n

ensures that the singular values of the signal
matrix are comparable to those of the noise.

Proposition 7.4.5 Under the asymptotic reconstruction model with𝐀 = 0 the empir-
ical distribution of the singular values 𝜎1(𝐘) ⩾ · · · ⩾ 𝜎min(m,n)(𝐀) converges weakly to a
(non-random) limiting distribution with density

f𝐘 (t) =
1

𝜋min (1, c)
1
√

t

√
(a − t2) (t2 − b), t ∈

[√
a,

√
b
]

(7.38)

where a = (1 −
√

c)2 and b = (1 +
√

c)2. Moreover, 𝜎1(𝐘)
ℙ
−→ 1 +

√
c and 𝜎min(m,n)(𝐘)

ℙ
−→

1 −
√

c as n tends to infinity.
The existence and form of the density f𝐘(⋅) are a consequence of the classical

Marchenko–Pastur theorem [172, 173]. If c = 1, the density function f𝐘(⋅) simplifies to
the quarter-circle law f𝐘(t) = 𝜋−1

√
4 − t2, for t ∈ [0, 2].

The next two results concern the limiting eigenvalues and eigenvectors of𝐘when𝐀 is
nonzero. Proposition 7.4.6 relates the limiting eigenvalues of𝐘 to the (fixed) eigenvalues
of 𝐀, while Proposition 7.4.7 relates the limiting singular vectors of 𝐘 to the singular
vectors of 𝐀.

Proposition 7.4.6 ([392]) If 𝐘 follow the asymptotic matrix reconstruction model
(7.37) with signal singular values 𝜎1(𝐀) ⩾ · · · ⩾ 𝜎r(𝐀) > 0. For 1 ≤ i ≤ r, as n tends to
infinity

𝜎i(𝐘)
ℙ
−→

⎧
⎪
⎨
⎪
⎩

(
1 + 𝜎2

i (𝐀) + c + c
𝜎2

i (𝐀)

)1∕2
if 𝜎i(𝐀) > c1∕4

1 +
√

c if 0 < 𝜎i (A) ⩽ c1∕4.

The remaining singular values 𝜎r+1(𝐘),… , 𝜎min(m,n)(𝐘) of 𝐘 are associated with the zero
singular values of𝐀: their empirical distribution converges weakly to the limiting distri-
bution in Proposition 7.4.5.

Proposition 7.4.7 ([393–395]) Let 𝐘 follow the asymptotic matrix reconstruction
model (7.37) with distinct signal singular values 𝜎1(𝐀) > · · · > 𝜎r(𝐀) > 0. Fix i such that
𝜎i(𝐀) > c1∕4. Then, as n tends to infinity

⟨𝐮i(𝐘), 𝐮i(𝐀)⟩
2 ℙ
−→

(

1 − c
𝜎4

i (𝐀)

)/(

1 + c
𝜎4

i (𝐀)

)

and

⟨𝐯i(𝐘), 𝐯i(𝐀)⟩
2 ℙ
−→

(

1 − c
𝜎4

i (𝐀)

)/(

1 + c
𝜎4

i (𝐀)

)

Moreover, if j = 1,… , r not equal to i then
⟨
𝐮i(𝐘), 𝐮j(𝐀)

⟩ ℙ
−→ 0 and

⟨
𝐯i(𝐘), 𝐯j(𝐀)

⟩ ℙ
−→ 0

as n tends to infinity.
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The limits established in Proposition 7.4.6 indicate a phase transition. If the singular
value 𝜎i(𝐀) is less than or equal to c1∕4 asymptotically, the singular value 𝜎i(𝐘) lies within
the support of the Marchenko–Pastur distribution and is not distinguishable from the
noise singular values. On the other hand, if the singular value 𝜎i(𝐀) exceeds c1∕4, then,
asymptotically, 𝜎i(𝐘)lies outside the support of the Marchenko–Pastur distribution, and
the corresponding left and right singular vectors of 𝐘 are associated with those of 𝐀
(Proposition 7.4.7).

7.4.3 Asymptotic Matrix Reconstruction

Assume for the moment that the variance 𝜎2 of the noise is known, and equal to one.
Let 𝐘 be an observed m × n matrix generated from the additive model 𝐘 = 𝐀 + 1

√
n
𝐖,

and let

𝐘 =
min(m,n)∑

i=1
𝜎i(𝐘)𝐮i(𝐘)𝐯T

i (𝐘)

be the SVD of 𝐘. We seek an estimate �̂� of the signal matrix 𝐀 having the form

�̂� =
min(m,n)∑

i=1
ci𝐮i(𝐘)𝐯T

i (𝐘)

with each coefficient ci depending only on the singular values 𝜎1(𝐘),… , 𝜎min(m,n)(𝐘) of
𝐘. We derive �̂� from the limiting relations in Propositions 7.4.6 and 7.4.7. By way of
approximation, we treat these relations as exact in the nonasymptotic setting under

study, using the symbol
l
=,

l
⩽, and

l
> to denote limiting equality and inequality relations.

Suppose initially that the singular values and vectors of the signal matrix A are known.
In this case we wish to obtain coefficients {ci} minimizing

Loss
(
𝐀, �̂�

)
= ‖

‖
‖
�̂� − 𝐀‖‖

‖

2

F

=
‖
‖
‖
‖
‖
‖

min(m,n)∑

i=1
ci𝐮i(𝐘)𝐯T

i (𝐘) −
r∑

i=1
𝜎i(𝐀)𝐮i(𝐀)𝐯T

i (𝐀)
‖
‖
‖
‖
‖
‖

2

F

Proposition 7.4.6 shows that asymptotically the information about the singular values of
𝐀 that are smaller than c1∕4 is not recoverable from the singular values of 𝐘. As a result
we can restrict the first sum to the first r0 = #

{
i ∶ 𝜎i(𝐀) > c1∕4} terms

Loss
(
𝐀, �̂�

)
=

‖
‖
‖
‖
‖

r0∑

i=1
ci𝐮i(𝐘)𝐯T

i (𝐘) −
r∑

i=1
𝜎i(𝐀)𝐮i(𝐀)𝐯T

i (𝐀)
‖
‖
‖
‖
‖

2

F

Proposition 7.4.7 ensures that the left singular vectors𝐮i(𝐀) and𝐮j(𝐀) are asymptotically
orthogonal for i = 1,… , r not equal to j = 1,… , r0 and therefore

Loss
(
𝐀, �̂�

) l
=

r0∑

i=1

‖
‖ci𝐮i(𝐘)𝐯T

i (𝐘) − 𝜎i(𝐀)𝐮i(𝐀)𝐯T
i (𝐀)‖‖

2
F +

r∑

i=r0+1
𝜎2

i (𝐀)

Fix 1 ≤ i ≤ r0. Expanding the i-th term in the above sum gives
‖
‖𝜎i(𝐀)𝐮i(𝐀)𝐯T

i (𝐀) − ci𝐮i(𝐘)𝐯T
i (𝐘)‖‖

2
F

= c2
i
‖
‖𝐮i(𝐘)𝐯T

i (𝐘)‖‖
2
F + 𝜎2

i (𝐀) ‖‖𝐮i(𝐀)𝐯T
i (𝐀)‖‖

2
F
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− 2ci𝜎i(𝐀)
⟨
𝐮i(𝐀)𝐯T

i (𝐀), 𝐮i(𝐘)𝐯T
i (𝐘)

⟩

= 𝜎2
i (𝐀) + c2

i − 2ci𝜎i(𝐀) ⟨𝐮i(𝐀), 𝐮i(𝐘)⟩ ⟨𝐯i(𝐀), 𝐯i(𝐘)⟩

Differentiating the last expression with respect to ci yields the optimal value
c⋆i = 𝜎i(𝐀) ⟨𝐮i(𝐀), 𝐮i(𝐘)⟩ ⟨𝐯i(𝐀), 𝐯i(𝐘)⟩ (7.39)

In order to estimate the coefficient c⋆i , we consider separately singular values of 𝐘 that
are at most, or greater than 1 +

√
c, where c = m∕n is the aspect ratio of 𝐘. By Propo-

sition 7.4.6, the asymptotic relation 𝜎i(𝐘)
l
⩽ 1 +

√
c implies 𝜎i(𝐀) ⩽ c1∕4, and in this case

the i-th singular value of𝐀 is not recoverable from𝐘. Thus if 𝜎i(𝐘) ⩽ 1 +
√

c,we set the
corresponding coefficient c⋆i = 0.

On the other hand, the asymptotic relation 𝜎i(𝐘)
l
> 1 +

√
c implies 𝜎i(𝐀) > c1∕4,

and that each of the inner products in (7.39) is asymptotically positive. The displayed
equations in Propositions 7.4.6 and 7.4.7 can then be used to obtain estimates of each
term in (7.39) based only on the (observed) singular values of 𝐘 and its aspect ratio c.
These equations yield the following relations:

�̂�2
i (𝐀) =

1
2

[

𝜎2
i (𝐘) − (1 + c) +

√
[
𝜎2

i (𝐘) − (1 + c)
]2 − 4c

]

estimates 𝜎2
i (𝐀)

�̂�2
i =

(

1 − c
�̂�4

i (𝐀)

)

∕

(

1 + c
�̂�4

i (𝐀)

)

estimates ⟨𝐮i(𝐀), 𝐮i(𝐘)⟩
2

�̂�2
i =

(

1 − c
�̂�4

i (𝐀)

)

∕

(

1 + c
�̂�4

i (𝐀)

)

estimates ⟨𝐯i(𝐀), 𝐯i(𝐘)⟩
2

With these estimates in hand, the matrix reconstruction scheme is defined via the
equation

GRMT
o (𝐘) =

∑

𝜎i(𝐀)>1+
√

c

�̂�i(𝐀)�̂�i�̂�i𝐮i(𝐘)𝐯T
i (𝐘) (7.40)

where �̂�i(𝐀), �̂�i and �̂�i are the positive square roots of the estimates defined above.
The RMT method shares features with both hard and soft thresholding. It sets to zero

singular values of 𝐘 smaller than the threshold (1 +
√

c), and it shrinks the remaining
singular values towards zero. However, unlike soft thresholding, the amount of shrink-
age depends on the singular values, the larger singular values are shrunk less than the
smaller ones. Unlike hard and soft thresholding schemes, the proposed RMT method
has no tuning parameters. The only unknown, the noise variance, is estimated within
the procedure.

In the general version of the matrix reconstruction problem, the variance 𝜎2 of the
noise is not known. In this case, given an estimate �̂�2 of 𝜎2, such as that described below,
we may define

GRMT (𝐘) = �̂�GRMT
o

(𝐘
�̂�

)
(7.41)

7.4.4 Estimation of the Noise Variance

Now let us show how an estimate �̂�2 of 𝜎2 is obtained. Let𝐘 be derived from the asymp-
totic reconstruction model 𝐘 = 𝐀 + 𝜎 1

√
n
𝐖, with 𝜎 unknown.
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A function f (⋅) ∶ ℝm× n → ℝ is orthogonally invariant if for any m × n matrix 𝐘 and
any orthogonal matrices 𝐔 and 𝐕 of appropriate sizes,

f (𝐘) = f
(
𝐔𝐘𝐕T) (7.42)

Proposition 7.4.8 A function f (⋅) ∶ ℝm× n → ℝ is orthogonally invariant if and only
if f (𝐘) depends only on the singular values of 𝐘.

Proposition 7.4.9 Let f (⋅) ∶ ℝm× n → ℝ. Then there is an orthogonally invariant
function f̃ (⋅) with the following property. Let 𝐀 and𝐖 be independent m × n matrices
with orthogonally invariant distributions, and let 𝐘 = 𝐀 + 𝜎 1

√
n
𝐖 for some 𝜎. Then

f̃ (𝐘) has the same expected value as f (𝐘) and a smaller or equal variance.

Let F be the cumulative distribution function of the density (7.38). For each 𝜎 > 0, let
Ŝ𝜎 be the set of singular values 𝜎i(𝐘) that fall in the interval

[
𝜎
|
|
|
1 −

√
c||
|
, 𝜎

(
1 +

√
c
)]

,
and let F̂𝜎 be the empirical cumulative distribution function of Ŝ𝜎 . Then

K (𝜎) = sup
s

|
|
|
F (s∕𝜎) − F̂𝜎 (s)

|
|
|

is the Kolmogorov–Smirnov distance between the empirical and theoretical singular
value distribution functions [396], and we define

�̂�i(𝐘) = arg min
𝜎>0

K (𝜎) (7.43)

to be the value of 𝜎 minimizing K (𝜎). A routine argument shows that the estimator �̂� is
scale invariant in the sense that �̂� (𝛼𝐘) = 𝛼�̂�(𝐘) for each 𝛼 > 0.

By considering the jump points of the empirical cumulative distribution function
F̂𝜎 (s), the supremum in K (𝜎) simplifies to

K (𝜎) = max
si∈Ŝ𝜎

|
|
|
|
|
|
|

F
(
si∕𝜎

)
−

i − 1∕2
|
|
|
Ŝ𝜎

|
|
|

|
|
|
|
|
|
|

+ 1
2 |
|
|
Ŝ𝜎

|
|
|

(7.44)

where {si} are the ordered elements of Ŝ𝜎 . The objective function K (𝜎) is discontinuous
at points where the Ŝ𝜎 changes, so one minimizes it over a fine grid of points 𝜎 in the
range where |

|
|
Ŝ𝜎

|
|
|
>

1
2

min (m, n) and 𝜎
(

1 +
√

c
)
< 2𝜎1(𝐘).

The closed form of the cumulative distribution function F(⋅) is calculated as the
integral of f𝐖∕

√
n (t), which is defined in (7.38). For c = 1(a = 0, b = 4) it is a common

integral

F (t) = ∫
t

√
a

f (x) dx = 1
𝜋 ∫

t

0

√
b − x2dx = 1

2𝜋

(
t
√

4 − t2 + 4 arcsin t
2

)

For c ≠ 1 the calculations are more complicated. First we perform the change of vari-
ables, which yields

F(t) = ∫
t

√
a

f (x)dx = C ∫
t

√
a

1
x2

√
(b − x2)(x2 − a)dx

= ∫
t2

a

1
y
√
(b − y)(y − a)dy

where C = 1∕(2𝜋min(c, 1)). See [391] to find the closed form of F(t).
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7.4.5 Optimal Hard Threshold for Matrix Denoising

Suppose we are interested in an m × n matrix 𝐗, which is thought to be either exactly
or approximately of low rank, but we only observe a single noisy m × n matrix 𝐘, obey-
ing the additive model 𝐘 = 𝐀 + 𝜎𝐙; The noise matrix 𝐙 has independent, identically
distributed entries with zero mean and unit variance. We wish to recover the matrix 𝐗
with some bound on the mean squared error (MSE). The default estimation technique
for our task is Truncated SVD (TSVD) [397]: Write

𝐘 =
m∑

i=1
yi𝐮i𝐯T

i (7.45)

for the singular value decomposition of the data matrix 𝐘, where 𝐮i ∈ ℝm, and 𝐯i ∈
ℝn, i = 1,… ,m are the left and right singular vectors of𝐘 corresponding to the singular
value yi. The TSVD estimator is

�̂�r =
r∑

i=1
yi𝐮i𝐯T

i

where r = rank (𝐗), assumed known, and y1 ⩾ · · · ⩾ ym. Being the best approximation
of rank r to the data in the least squares sense and therefore the maximum likelihood
estimator when 𝐙 has Gaussian entries, the TSVD is arguably as ubiquitous in science
and engineering as linear regression.

When the true rank r of the signal𝐗 is unknown, one might try to form an estimate of
the rank r̂ and then apply the TSVD �̂�r . It is instructive to think about rank estimation
(using any method), followed by TSVD, simply as hard thresholding of the data singu-
lar values, where only components yi𝐮i𝐯T

i for which yi passes a specified threshold, are
included in �̂�r . Let

𝜂H
(
y; 𝜏

)
= y𝟏{y>𝜏}

denote the hard thresholding nonlinearity, and consider singular value hard threshold-
ing (SVHT)

�̂�𝜏 =
m∑

i=1
𝜂H

(
yi; 𝜏

)
𝐮i𝐯T

i (7.46)

In words, �̂�𝜏 sets to 0 any data singular value below 𝜏 .
Let us measure the denoising performance of a denoiser �̂� at a signal matrix using

mean square error

‖
‖
‖
�̂�(𝐘) − 𝐘‖‖

‖

2

F
=

∑

i,j

(
X̂(𝐘)ij − Xij

)2

The TSVD is an optimal rank-r approximation of the data matrix 𝐘. But this does
not necessarily mean that it is a good, or even reasonable, estimator for the signal
matrix 𝐗.

Following [391], we adopt an asymptotic framework where the matrix grows while
keeping the nonzero singular values of 𝐗 fixed, and the signal-to-noise ratio of those
singular values stays constant with increasing n.
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In this asymptotic framework, for a low-rank n × n matrix observed in white (not
necessarily Gaussian) noise of level 𝜎

𝜏⋆ = 4
√

3

√
n𝜎 ≈ 2.309

√
n𝜎

is the optimal location for the hard thresholding of singular values. For a nonsquare
m × n matrix with m ≠ n, the optimal location is

𝜏⋆ = 𝛾⋆ (c) ⋅
√

n𝜎 (7.47)

where c = m∕n. The value 𝛾⋆ is the optimal hard threshold coefficient for known 𝜎. It is
given by

𝛾⋆ (c) =
√

2 (c + 1) + 8c
(c + 1) +

√
c2 + 14c + 1

(7.48)

Many authors have considered matrix denoising by applying the soft thresholding
nonlinearity

𝜂S
(
y; s

)
=

(
|y| − s

)

+ ⋅ sign
(
y
)

instead of hard thresholding, to the data singular values. The denoiser

�̂�soft =
n∑

i=1
𝜂S

(
y; s

)
𝐮i𝐯T

i

is known as singular value soft thresholding (SVST) or SVT.
Consider an optimal singular value shrinker. In the asymptotic framework we are

using, Shabalin and Nobel [391]—see also Section 7.4.3—have derived an optimal sin-
gular value shrinker �̂�opt . Calibrated for the model 𝐘 = 𝐗 + 1

√
n
𝐙, in the square setting

m = n, this shrinker takes the form

�̂�opt ∶
n∑

i=1
yi𝐮i𝐯T

i →
n∑

i=1
𝜂opt

(
yi
)
𝐮i𝐯T

i

where

𝜂opt (t) =
√

(t2 − 4)+
In our asymptotic framework, this rule dominates, in asymptotic mean square error
(AMSE), any other estimator based on singular value shrinkage, at any configuration of
the singular values of the low-rank signal.

In our asymptotic framework, this thresholding rule adapts to unknown ranks and, if
needed, to unknown noise levels, in an optimal manner: it is always better than hard
thresholding at any other value, no matter what the matrix is that we are trying to
recover, and is always better than ideal truncated SVD (TSVD), which truncates at the
true rank of the low-rank matrix we are trying to recover.

Hard thresholding at the recommended value to recover an n × n matrix of rank r
guarantees an AMSE at most 3nr𝜎2. In comparison, the guarantee provided by TSVD
is 5nr𝜎2, the guarantee provided by optimally tuned singular value soft thresholding is
6nr𝜎2, and the best guarantee achievable by any shrinkage of the data singular values is
2nr𝜎2. Our recommended hard threshold value also offers, among hard thresholds, the
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best possible AMSE guarantees for recovering matrices with bounded nuclear norms.
Empirical evidence shows that these AMSE properties of the 4∕

√
3 thresholding rule

remain valid even for relatively small n, and that performance improvement over TSVD
and other popular shrinkage rules is often substantial, turning it into the practical hard
threshold of choice.

Example 7.4.10 (optimal singular value hard thresholding in practice) For a
low-rank n × n matrix observed in white (not necessarily Gaussian) noise of unknown
level, one can use the data to obtain an approximation of the optimal location 𝜏⋆. Define

𝜏⋆ ≈ 2.858 ⋅ ymedian

where ymedian is the median singular value of the data matrix 𝐘. The notation 𝜏⋆ is
meant to emphasize that this is not a fixed threshold chosen a priori, but rather a
data-dependent threshold. For a nonsquare m × n matrix with m ≠ n, the approximate
optimal location when 𝜎 is unknown is

𝜏⋆ = 𝜔 (c) ⋅ ymedian (7.49)

where 𝜔 (c) is approximated by

𝜔 (c) ≈ 0.56c3 − 0.95c2 + 1.82c + 1.43 (7.50)

The accurate computation can be done using the MATLAB script provided in the orig-
inal paper [398].

The optimal SVHT for unknown noise level, �̂�𝜏⋆ , is very simple to implement and does
not require any tuning parameters. The denoised matrix �̂�𝜏⋆ (𝐘) can be computed using
just a few code lines in a high-level scripting language. For example, in Matlab:

beta = size(Y,1) / size(Y,2)
omega = 0.56*beta^3 - 0.95*beta^2 + 1.82*beta + 1.43
[U D V] = svd(Y)
y = diag(Y)
y( y < (omega * median(y) ) = 0
Xhat = U * diag(y) * V’

In our asymptotic framework, 𝜏⋆ and 𝜏⋆ enjoy exactly the same optimality properties.
This means that �̂�𝜏⋆ adapts to unknown low rank and to unknown noise level. Empirical
evidence suggest that their performance for finite n is similar. ◽

7.5 Optimum Shrinkage

Consider m × n signal-plus-noise data or measurement matrix

𝐘 = 𝐀 + 𝐗 (7.51)

with

𝐀 =
r∑

i=1
𝜎i(𝐀)𝐮i(𝐀)𝐯T

i (𝐀) (7.52)
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where 𝐮i(𝐀) and 𝐯i(𝐀) are left and right “signal” singular vectors associated with singular
values 𝜎i(𝐀) of the signal matrix𝐀with rank r, and𝐗 is the noise-only matrix of random
(not necessarily i.i.d.) noises.

As pointed out above, when the rank r is known, the truncated singular value decom-
position (SVD) plays a prominent role in a widely used “optimal” solution to a problem
that is addressed by the famous Eckart–Young–Mirsky theorems [397,399,400]. We call
this solution truncated SVD

�̂�TSVD = arg min
rank(𝐀)=r

‖𝐘 − 𝐀‖F (7.53)

where

𝐘 =
min(m,n)∑

i=1
𝜎i(𝐘)𝐮i(𝐘)𝐯T

i (𝐘)

is the SVD of the noisy matrix𝐘. This is also the maximum likelikhood (ML), rank r esti-
mate when𝐗 is assumed to be a matrix with i.i.d. Gaussian entries because the negative
log-likelihood function is precisely the right-hand side of (7.53). Its use is also justified
in the small m, large n (or vice versa) regime, whenever local asymptotic normality [401]
has “kicked in.”

The solution to the optimization problem

𝐰TSVD ∶= arg min
‖𝐰‖𝓁0=r

‖
‖
‖
‖
‖
‖

r∑

i=1
𝜎i(𝐀)𝐮i(𝐀)𝐯T

i (𝐀) −
min(m,n)∑

i=1
wi𝐮i(𝐘)𝐯T

i (𝐘)
‖
‖
‖
‖
‖
‖F

(7.54)

is given by
wTSVD

i = 𝜎i(𝐘), i = 1,… , r
This yields the rank r signal matrix estimate

�̂�TSVD =
r∑

i=1
wTSVD

i 𝐮i(𝐘)𝐯H
i (𝐘)

which, by the Eckart–Young–Mirsky theorem, is also the solution to the representation
problem in (7.54).

Now suppose no structure is assumed in the low-rank matrix. Let ‖𝐰‖𝓁0
=

|
|
|

{
#i ∶ wi ≠ 0

}|
|
|

so that ‖𝐰‖𝓁0
= r denotes a vector 𝐰 with r nonzero entries.

𝐰opt ∶= arg min
‖𝐰‖𝓁0=r

‖
‖
‖
‖
‖
‖

r∑

i=1
𝜎i(𝐀)𝐮i(𝐀)𝐯T

i (𝐀) −
min(m,n)∑

i=1
wi𝐮i(𝐘)𝐯T

i (𝐘)
‖
‖
‖
‖
‖
‖F

(7.55)

The analysis shows that 𝐰opt takes the form of a shrinkage-and-thresholding operator
(on the singular values of 𝐘) that is completely characterized by the limiting singular
value distribution of the noise-only matrix. The resulting shrinkage function is noncon-
vex with

wopt
i ≈ 𝜎i(𝐘)

[
1 − O

(
1∕𝜎2

i (𝐘)
)]

for large 𝜎i(𝐘) and
wopt

i → 0, for 𝜎i(𝐘) ⩽ b + o (1)
where b is a critical threshold that depends on the limiting noise-only singular value
distribution.
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7.6 A Shrinkage Approach to Large-Scale Covariance Matrix
Estimation

Many applied problems require a covariance matrix estimator that is not only invertible
but is also well-conditioned (that is, inverting it does not amplify estimation error).
For large dimensional covariance matrices, the usual estimator, the sample covariance
matrix, is typically not well conditioned and may not even be invertible. Ledoit and
Wolf (2004) [402] introduced an estimator that is both well conditioned and more
accurate than the sample covariance matrix asymptotically. This estimator is distribu-
tion free and has a simple explicit formula that is easy to compute and interpret. It is
the asymptotically optimal convex linear combination of the sample covariance matrix
with the identity matrix. Optimality is meant with respect to a quadratic loss function,
asymptotically as both the number of observations n and the number of variables p go
to infinity together (called general asymptotics). The only constraint is the ratio p∕n
must remain bounded. Extensive Monte Carlo simulations indicate that 20 observations
and variables are enough for the asymptotic approximations to typically hold well in a
finite sample.

The empirical (sample) covariance matrix 𝐒 can not anymore be considered a good
approximation of the true covariance matrix 𝚺 (this is true also for moderately sized
data with n ∼ p).

The easiest way to explain what we do is first to analyze in detail the finite sample
case. Let 𝐗 denote a p × n matrix of n independent and identically distributed (i.i.d)
observations on a system of p random variables with mean zero and covariance matrix 𝚺.
We consider the Frobenius norm

‖𝐀‖2
F = 1

p
Tr

(
𝐀𝐀H) = 1

p

n∑

i=1

n∑

j=1

|
|
|
aij

|
|
|

2
= 1

p

n∑

i=1
𝜆2

i (𝐀) (7.56)

Dividing by p is not standard, but it does not matter here because p remain finite.
The advantages of this convention are that the norm of the identity matrix is simply
one and that it will be consistent. The norm of the pn-dimensional matrix 𝐀 is:‖𝐀‖2

F =
Tr

(
𝐀𝐀H)∕p.

Our goal is to find the linear combination 𝚺∗ = 𝜌1𝐈 + 𝜌2𝐒 of the identity matrix 𝐈 and
the sample covariance matrix 𝐒 = 𝐗𝐗H∕n whose expected quadratic loss𝔼

[
‖
‖𝚺

∗ − 𝚺‖‖
2
F

]

is minimum.
The squared Frobenius norm ‖⋅‖2

F is a quadratic form whose associated matrix inner
product is:

⟨𝐀,𝐁⟩ = Tr
(
𝐀𝐁H)∕p

In analogy with the inner product of two vectors, the matrix inner product can be
viewed as the similarity between two matrices. Four scalars play a central role in the
analysis:

𝜇 = ⟨𝐀, 𝐈⟩ , 𝛼2 = ‖𝚺 − 𝜇𝐈‖2
F , 𝛽

2 = ‖𝚺 − 𝐒‖2
F , and 𝛿2 = ‖𝐒 − 𝜇𝐈‖2

F

We do not need to assume that the entries (random variables) in 𝐗 follow a specific
distribution but we do need to assume that they have finite fourth moments, so that 𝛼2

and 𝛽2 are finite. It follows that
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𝔼 ‖𝐒 − 𝜇𝐈‖2
F = 𝔼 ‖𝐒 − 𝚺 + 𝚺 − 𝜇𝐈‖2

F

= 𝔼 ‖𝐒 − 𝚺‖2
F + 𝔼 ‖𝚺 − 𝜇𝐈‖2

F + 2𝔼 ⟨𝐒 − 𝚺,𝚺 − 𝜇𝐈⟩
= 𝔼 ‖𝐒 − 𝚺‖2

F + 𝔼 ‖𝚺 − 𝜇𝐈‖2
F + 2 ⟨𝔼 [𝐒 − 𝚺] ,𝚺 − 𝜇𝐈⟩

Note that 𝔼 [𝐒] = 𝚺; therefore, the third term on the right-hand side of line 3, is equal
to zero. Thus we have proven

‖𝚺 − 𝜇𝐈‖2
F + ‖𝚺 − 𝐒‖2

F = ‖𝐒 − 𝜇𝐈‖2
F

or

𝛼2 + 𝛽2 = 𝛿2 (7.57)

The optimal linear combination𝚺∗ = 𝜌1𝐈 + 𝜌2𝐒 of the identity matrix 𝐈 and the sample
covariance matrix 𝐒 = 𝐗𝐗H∕n is the standard solution to a simple quadratic program-
ming problem under the linear equality constraint.

Theorem 7.6.1 Consider the optimization problem:

min
𝜌1,𝜌2

𝔼
[
‖
‖𝚺

∗ − 𝚺‖‖
2
F

]

subject to 𝚺∗ = 𝜌1𝐈 + 𝜌2𝐒
(7.58)

where the coefficients 𝜌1 and 𝜌2 are nonrandom. Its solution verifies:

𝚺∗ = 𝛽2

𝛿2 𝜇𝐈 +
𝛼2

𝛿2 𝐒 (7.59)

𝔼
[
‖
‖𝚺

∗ − 𝚺‖‖
2
F

]
= 𝛼2𝛽2

𝛿2 (7.60)

See [402] for the proof of the above solution.
𝜇𝐈 can be interpreted as a shrinkage target and the weight 𝛽2

𝛿2 placed on 𝜇𝐈 as a shrink-
age intensity. The percentage relative improvement in average loss (PRIAL) over the
sample covariance matrix is equal to

[
‖𝐒 − 𝚺‖2

F
]
− 𝔼

[
‖
‖𝚺

∗ − 𝚺‖‖
2
F

]

𝔼
[
‖𝐒 − 𝚺‖2

F
] = 𝛽2

𝛿2 (7.61)

the same as the shrinkage intensity. Therefore, everything is controlled by the ratio
𝛽2

𝛿2 , which is a properly normalized measure of the error of the sample covariance
matrix 𝐒. Intuitively, if 𝐒 is relatively accurate, then you should not shrink it too much,
and shrinking it will not help you much either; if 𝐒 is relatively inaccurate, then you
should shrink it a lot and you also stand to gain a lot from shrinking. It is well known
that 𝐒 is inaccurate when n and p are large and comparable, so shrinking will benefit
us a lot.

The mathematics underlying Theorem 7.6.1 is so rich that we are able to provide
four complementary interpretations of it. One is geometric and the others echo
some of the most important ideas in finite sample multivariate statistics. First, we
can see Theorem 7.6.1 as a projection theorem in Hilbert space. See Figure 7.3 for an
illustration. The second way to interpret Theorem 7.6.1 is as a tradeoff between bias



The Mathematical Foundations of Data Collection 333

and variance. See Figure 7.4 for an illustration. We seek to minimize the mean-squared
error, which can be decomposed into variance and squared bias:

𝔼
[
‖
‖𝚺

∗ − 𝚺‖‖
2
F

]
= 𝔼

[
‖
‖
‖
𝚺∗ − 𝔼

[
𝚺∗]‖‖

‖

2

F

]
+ 𝔼

[
‖
‖
‖
𝔼
[
𝚺∗] − 𝚺‖‖

‖

2

F

]
(7.62)

The mean-squared error of the shrinkage target 𝜇𝐈 is all bias and no variance, while for
the sample covariance matrix S it is exactly the opposite: all variance and no bias. 𝚺∗

represents the optimal tradeoff between error due to bias and error due to variance. The
idea of a tradeoff between bias and variance was already central to the original James
and Stein [372] shrinkage technique.

The third interpretation is Bayesian. 𝚺∗ can be seen as the combination of two sig-
nals: prior information and sample information. Prior information states that the true
covariance matrix 𝚺 lies on the sphere centered around the shrinkage target 𝜇𝐈 with
radius 𝛼 ∶ Sample information states that 𝚺 lies on another sphere, centered around the
sample covariance matrix S with radius 𝛽. Bringing together prior and sample infor-
mation, 𝚺 must lie on the intersection of the two spheres, which is a circle. At the

α

Σ*

Σ

δ

β

μI S

Figure 7.3 Theorem 7.6.1 interpreted as a projection in Hilbert space. Source: Reproduced from [402]
with permission.

Figure 7.4 Theorem 7.6.1 interpreted
as tradeoff between bias and
variance: Shrinkage intensity 0
corresponds to the sample covariance
matrix 𝐒. Shrinkage intensity 1
corresponds to the shrinkage target
𝜇𝐈. Optimal shrinkage intensity
(represented by •) corresponds to the
minimum expected loss combination
𝚺∗ Source: Reproduced from [402]
with permission.

Shrinkage intesity
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center of this circle stands 𝚺∗. The relative importance given to prior vs. sample infor-
mation in determining 𝚺∗ depends on which one is more accurate. See Figure 7.5 for an
illustration.

The fourth and last interpretation involves the cross-sectional dispersion of covari-
ance matrix eigenvalues. Let 𝜆1,… , 𝜆p denote the eigenvalues of the true covariance
matrix 𝚺, and 𝓁1,… ,𝓁p those of the sample covariance matrix 𝐒. We can exploit the
Frobenius norm’s elegant relationship to eigenvalues. Note that

𝜇 = 1
p

p∑

i=1
𝜆i = 𝔼

[
1
p

p∑

i=1
𝓁i

]

(7.63)

represents the grand mean of both true and sample eigenvalues. Then (7.57) can be
rewritten as

𝔼

[
1
p

p∑

i=1

(
𝜆i − 𝜇

)2
]

= 1
p

p∑

i=1

(
𝜆i − 𝜇

)2 + 𝔼
[
‖𝐒 − 𝚺‖2

F
]

(7.64)

In words, sample eigenvalues are more dispersed around their grand mean than true
ones, and the excess dispersion is equal to the error of the sample covariance matrix.
Excess dispersion implies that the largest sample eigenvalues are biased upwards, and
the smallest ones downwards. See Figure 7.6 for an illustration. Therefore, we can
improve upon the sample covariance matrix by shrinking its eigenvalues towards their
grand mean, as in

∀i = 1,… , p 𝜆∗i = 𝛽2

𝛿2 𝜇 + 𝛼2

𝛿2 𝓁i (7.65)

Figure 7.5 Bayesian interpretation. The left sphere has center 𝜇𝐈 and radius 𝛼 and represents prior
information. The right sphere has center 𝐒 and radius 𝛽 . The distance between sphere centers is 𝛿 and
represents sample information. If all we knew was that the true covariance matrix 𝚺 lies on the left
sphere, our best guess would be its center: the shrinkage target 𝜇𝐈. If all we knew was that the true
covariance matrix 𝚺 lies on the right sphere, our best guess would be its center: the sample covariance
matrix 𝐒. Putting together both pieces of information, the true covariance matrix 𝚺must lie on the
circle where the two spheres intersect; therefore, our best guess is its center: the optimal linear
shrinkage 𝚺∗. Source: Reproduced from [402] with permission.
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Figure 7.6 Sample versus true eigenvalues. The solid line represents the distribution of the
eigenvalues of the sample covariance matrix. Eigenvalues are sorted from largest to smallest, then
plotted against their rank. In this case, the true covariance matrix is the identity, that is, the true
eigenvalues are all equal to one. The distribution of true eigenvalues is plotted as a dashed horizontal
line at one. Distributions are obtained in the limit as the number of observations n and the number of
variables p both go to infinity with the ratio p∕n converging to a finite positive limit. The four plots
correspond to different values of this limit. Source: Reproduced from [402] with permission.

Note that 𝜆∗1,… , 𝜆∗p defined in (7.65) are precisely the eigenvalues of 𝚺∗. Surprisingly,
their dispersion

1
p

p∑

i=1

(
𝜆∗i − 𝜇

)2 = 𝛼2

𝛿2

is even below the dispersion of true eigenvalues.

Example 7.6.2 (MATLAB Simulations) Computer code covCor.m in the Matlab
programming language implementing this improved estimator [403] is freely down-
loadable from http://www.ledoit.net. (accessed August 6, 2016). ◽

Example 7.6.3 (Stein’s phenomenon) A common key problem arises: how should
one obtain an accurate and reliable estimate of the true covariance matrix𝚺 if presented
with a data set that describes a large number of variables but only contains comparatively
few samples (n << p)?
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The simple solution is to rely either on the maximum likelihood estimate 𝐒ML or on
the related unbiased empirical covariance matrix 𝐒 = n

n−1
𝐒ML, with entries defined as

sij =
1

n − 1

n∑

k=1
(xki − xi)(xkj − xj)

where xi =
1
n

n∑

k=1
xki and xki is the k-th observation of the variable Xi.

Unfortunately both 𝐒 and 𝐒ML exhibit serious defects in the “small n, large p” data sets.
Empirical covariance matrix can no longer be considered a good approximation of the
true covariance matrix (this is also true for moderately sized data with n ≈ p).

It has long been known that the two widely employed estimators of the covariance
matrix, the unbiased 𝐒 and the related maximum likelihood 𝐒ML estimator, are both
statistically inefficient. This is due to the so-called “Stein phenomenon” discovered by
Stein (1956) [373] in the context of estimating the mean vector of a multivariate nor-
mal distribution. Stein demonstrated that in high-dimensional inference problems it is
often possible to improve (sometimes dramatically!) upon the maximum likelihood esti-
mator. This result is at first counterintuitive, as maximum likelihood can be proven to
be asymptotically optimal, and as such it seems not unreasonable to expect that these
favorable properties of maximum likelihood also extend to the case of finite data.

Further insight into the Stein effect is provided, [404], which points out that one needs
to distinguish between two different aspects of maximum-likelihood inference. First,
maximum likelihood as a means of summarizing the observed data and producing a
maximum-likelihood summary (MLS). Second, maximum likelihood as a procedure to
obtain a maximum-likelihood estimate (MLE). The conclusion is that maximum like-
lihood is unassailable as a data summarizer but that it has some clear defects as an
estimating procedure.

This applies directly to the estimation of covariance matrices: 𝐒ML constitutes the best
estimator in terms of actual fit to the data but for medium to small data sizes it is far
from being the optimal estimator for recovering the true covariance matrix 𝚺. Fortu-
nately, the Stein theorem also demonstrates that it is possible to construct a procedure
for improved covariance estimation. ◽

Example 7.6.4 (squared Frobenius norm) The linear shrinkage approach suggests a
weighted average

𝐐⋆ = 𝜆𝐓 + (1 − 𝜆)𝐐 (7.66)

where 𝜆 ∈ [0, 1] denotes the shrinkage intensity. For 𝜆 = 1, the shrinkage estimate
equals the shrinkage target 𝐓, whereas for 𝜆 = 0 the unrestricted estimate 𝐐 is recov-
ered. The key advantage of this construction is that it offers a systematic way to obtain
a regularized estimate 𝐐⋆ that outperforms the individual estimators 𝐐 and 𝐓 both in
terms of accuracy and statistical efficiency.

In a matrix setting the equivalent to the squared error loss function is the squared
Frobenius norm.

L(𝜆) = ‖
‖𝐒

⋆ − 𝚺‖‖
2
F

= ‖𝜆𝐓 + (1 − 𝜆)𝐒 − 𝚺‖2
F

=
p∑

i=1

p∑

j=1
(𝜆tij + (1 − 𝜆)sij − 𝜎ij)2 (7.67)
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is a natural quadratic measure of distance between the true 𝚺 and inferred covariance
matrix (𝐒⋆). In this formula the unconstrained unbiased empirical covariance matrix 𝐒
replaces the unconstrained estimate 𝐐 of (7.66).

It is advantageous to choose the parameter 𝜆 in a data-driven fashion by explicitly
minimizing a risk function

R(𝜆) = 𝔼[L(𝜆)]
It is less well known that the optimal regularization parameter 𝜆 may often also be

determined analytically. Specifically, Ledoit and Wolf (2003) [405] derived a simple
theorem for choosing 𝜆 that guarantees minimal MSE without the need of having to
specify any underlying distributions, and without requiring computationally expensive
procedures such as MCMC, the bootstrap, or crossvalidation.

The loss function is extremely intuitive: it is a quadratic measure of distance between
the true and the estimated covariance matrices based on the Frobenius norm ‖ ⋅ ‖F
defined in (7.56).

we have to choose the objective according to which the shrinkage intensity is “optimal.”
It follows from (7.67) that

R(𝜆) = 𝔼 [L(𝜆)]

=
p∑

i=1

p∑

j=1
𝔼
(
𝜆tij + (1 − 𝜆)sij − 𝜎ij

)2

=
p∑

i=1

p∑

j=1
Var

(
𝜆tij + (1 − 𝜆)sij

)
+
[
𝔼
(
𝜆tij + (1 − 𝜆)sij − 𝜎ij

)]2

=
p∑

i=1

p∑

j=1
𝜆2 Var

(
tij
)
+ (1 − 𝜆)2 Var

(
sij
)

+ 2𝜆(1 − 𝜆) Cov
(
tij, sij

)
+ 𝜆2 (𝜙ij − 𝜎ij

)2

The goal now is to minimize the risk R(𝜆) with respect to 𝜆. Calculating the first two
derivatives of R(𝜆) yields, after some basic algebra

R′(𝜆) = 2
p∑

i=1

p∑

j=1
𝜆Var

(
tij
)
− (1 − 𝜆) Var

(
sij
)

+ (1 − 2𝜆) Cov
(
tij, sij

)
+ 𝜆

(
𝜙ij − 𝜎ij

)2

R′′(𝜆) = 2
p∑

i=1

p∑

j=1
Var

(
tij − sij

)
+
(
𝜙ij − 𝜎ij

)2

where 𝜙ij is the (i, j) entry of some matrix 𝚽. See [406] for details. Setting R′(𝜆) and
solving for 𝜆⋆ we get

𝜆⋆ =

p∑

i=1

p∑

j=1
Var

(
sij
)
− Cov

(
tij, sij

)

p∑

i=1

p∑

j=1
Var

(
tij − sij

)
+
(
𝜙ij − 𝜎ij

)2
(7.68)

R′′(𝜆) is positive everywhere, so this solution is verified as a minimum of our
risk function. ◽
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7.7 Eigenvectors of Large Sample Covariance Matrix
Ensembles

Consider N independent samples 𝐳1,… , 𝐳N , all of which are n × 1 real or complex vec-
torsℝn orℂn. In this section, we are interested in the large-n-limiting spectral properties
of the sample covariance matrix

𝐒n = 1
N
𝐙𝐙H , 𝐙 =

[
𝐳1, 𝐳2,… , 𝐳N

]

when we assume that the sample size N = N(n) satisfies N∕n → 𝛾 as n → ∞ for some
𝛾 > 0. This framework is known as large-dimensional asymptotics. Throughout the
section, 𝟏 denotes the indicator function of a set. We make the following assumptions:
𝐳 = 𝚺1∕2𝐱 where

• (H1) 𝐗 is a n × N matrix of real or complex i.i.d random variables with zero mean,
unit variance, and the 12th absolute central moment is bounded by a constant C,
independent of n and N ;

• (H2) the true covariance matrix 𝚺 is a n-dimensional random Hermitian positive def-
inite matrix, independent of 𝐗;

• (H3) n∕N → 𝛾 > 0 as n → ∞;
• (H4) 𝜆1,… , 𝜆n is a system of eigenvalues of 𝚺, and the empirical spectral distribution

(e.s.d.) of the true covariance matrix given by

Hn (𝜆) =
1
n

n∑

i=1
𝟏[𝜆i,∞) (𝜆) (7.69)

converges almost surely to a nonrandom limit H(𝜆) at every point of continuity of H .
H defines a probability distribution function, whose support supp (H) is included in
the compact interval

[
h1, h2

]
with 0 < h1 ⩽ h2 < ∞.

7.7.1 Stieltjes Transform

The aim of this section is to investigate the asymptotic properties of the eigenvectors
of sample covariance matrices. In particular, we will quantify how the eigenvectors of
the sample covariance matrix deviate from those of a true covariance matrix under
large-dimensional asymptotics. This will enable us to characterize how the sample
covariance matrix deviates as a whole (i.e. through its eigenvalues and its eigenvectors)
from the true covariance matrix.

In this section, we denote
((
𝜆1,… , 𝜆n

)
;
(
𝐮1,… ,𝐮n

))
a system of eigenvalues and

orthonormal eigenvectors of the sample covariance matrix

𝐒 = 1
N
𝚺1∕2𝐗𝐗H𝚺1∕2

Without loss of generality, we assume that the eigenvalues are sorted in decreasing order:
𝜆1 ⩾ 𝜆2 ⩾ · · · ⩾ 𝜆n. We also denote by

(
𝐯1,… , 𝐯n

)
a system of orthonormal eigenvectors

of the true covariance matrix 𝚺.
The Stieltjes transform of a nondecreasing function R is defined by

mR(z) = ∫
+∞

−∞
(t − z)−1dR(t)
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for all z in ℂ+, where ℂ+ = {z ∈ ℂ, Im(z) > 0}. The use of the Stieltjes transform is moti-
vated by the following inversion formula: given any nondecreasing function R

R(b) − R(a) = lim
𝜂→∞

1
𝜋 ∫

b

a
Im

[
mR(𝜉 + j𝜂)

]
d𝜉

which holds if R is continuous at a and b.
The asymptotic behavior of the eigenvalues is now quite well understood. The “global

behavior” of the spectrum of 𝐒 for instance is characterized through the empirical spec-
trum density, defined as:

Fn (𝜆) =
1
n

n∑

i=1
𝟏[𝜆i,+∞)(𝜆), ∀𝜆 ∈ ℝ

The empirical spectrum density is usually described through its Stieltjes transform.
The first fundamental result concerning the asymptotic global behavior of the spec-

trum was obtained by Marchenko and Pastur in [219]. Their result was later made more
precise, for example in [173, 174, 221, 407, 408], and recent results are surveyed , for
example, in [39, 163, 176]. We quote the most recent version as given in [175].

Let

mFn
(z) = 1

n

n∑

i=1

1
𝜆i − z

= 1
n
Tr

[
(𝐒 − z𝐈)−1]

where 𝐈 denotes the n × n identity matrix.

Theorem 7.7.1 ([219]) Under Assumptions (H1)–(H4), for all z ∈ ℂ+, lim
n→∞

mFn
(z) =

mF (z) almost certainly where

∀z ∈ ℂ+, mF (z) = ∫
+∞

−∞

1
[
1 − 𝛾−1 − 𝛾−1zmF (z)

]
t − z

dH(t) (7.70)

Furthermore, the empirical spectrum density of the sample covariance matrix
given by

Fn (𝜆) =
1
n

n∑

i=1
𝟏[𝜆i,+∞)(𝜆)

converges almost certainly to the nonrandom limit F(𝜆) at all points of continuity of F .

In addition, [222] shows that the following limit exists:

∀𝜆 ∈ ℝ − {0} , lim
z∈ℂ+→𝜆

mF (z) ≡ m̃F (𝜆) (7.71)

They also prove that F has a continuous derivative, which is given by F ′ = 1
𝜋
Im

[
m̃F (𝜆)

]

on (0,+∞). More precisely, when 𝛾 > 1, lim
z∈ℂ+→𝜆

mF (z) ≡ m̃F (𝜆) exists for all 𝜆 ∈ ℝ, F has
a continuous derivative F? on all of ℝ, and F(𝜆) is identically equal to zero in a neigh-
borhood of 𝜆 = 0. When 𝛾 < 1, the proportion of sample eigenvalues equal to zero is
asymptotically 1 − 𝛾 . In this case, it is convenient to introduce the empirical distribution
function

G =
(
1 − 𝛾−1) 𝟏[0,∞) (𝜆) + 𝛾−1F (7.72)
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which is the limit of empirical distribution function of the eigenvalues of the
N-dimensional matrix 1

N
𝐗H𝚺𝐗. Then

lim
z∈ℂ+→𝜆

mG(z) ≡ m̃G (𝜆) (7.73)

exists for all 𝜆 ∈ ℝ, G has a continuous derivative G′ for all of ℝ, and G(𝜆) is iden-
tically equal to 0 in a neighborhood of 𝜆 = 0. When Y is exactly equal to 1, further
complications arise because the density of sample eigenvalues can be unbounded in
a neighborhood of zero; for this reason we sometimes have to rule out the possibility
that 𝛾 = 1.

The Marchenko–Pastur equation reveals much of the behavior of the eigenvalues of
sample covariance matrices under large-dimensional asymptotics. It is also of interest
to describe the asymptotic behavior of the eigenvectors. Such an issue is fundamental
to statistics (for instance both eigenvalues and eigenvectors are of interest in principal
components analysis), wireless communication [39, 136], and finance.

Much less is known about eigenvectors of sample covariance matrices. In the special
case where 𝚺 = 𝐈 and the Xij are i.i.d. standard (real or complex) Gaussian random vari-
ables, it is well known that the matrix of sample eigenvectors is Haar distributed (on the
orthogonal or unitary group). As far as we are aware these are the only ensembles for
which the distribution of the eigenvectors is explicitly known. A random matrix 𝐔 is
said to be asymptotically Haar distributed if 𝐔𝐱 is asymptotically uniformly distributed
on the unit sphere for any nonrandom unit vector 𝐱.

In the case where 𝚺 ≠ 𝐈, much less is known (see [409, 410]). One expects that the
distribution of the eigenvectors is far from being rotation invariant. This is precisely the
aspect with which this section is concerned.

Following [411], we present another approach to the study of eigenvectors of sample
covariance matrices. Roughly speaking, we study “functionals” of the type

∀z ∈ ℂ+, Φg
n (z) = 1

n

n∑

i=1

1
𝜆i−z

n∑

j=1

|
|
|
𝐮H

j 𝐯j
|
|
|

2
× g

(
𝜏j
)

= 1
n
Tr

[
(𝐒 − z𝐈)−1g (𝚺)

]
(7.74)

where g is any real-valued univariate function satisfying suitable regularity conditions.
By convention, g (𝚺) is the matrix with the same eigenvectors as 𝚺 and with eigenvalues
g
(
𝜏1
)
,… , g

(
𝜏n
)
. These functionals are generalizations of the Stieltjes transform used

in the Marchenko–Pastur equation. Indeed, one can rewrite the Stieltjes transform of
the empirical spectrum density as:

∀z ∈ ℂ+, mFn
(z) = 1

n

n∑

i=1

1
𝜆i − z

n∑

j=1

|
|
|
𝐮H

j 𝐯j
|
|
|

2
× 1 (7.75)

The constant 1 that appears at the end of (7.75) can be interpreted as a weighting
scheme placed on the true eigenvectors; specifically, it represents a constant weight-
ing scheme. The generalization we introduce here shows how the sample covariance
matrix relates to the true covariance matrix, or even any function of the true covariance
matrix.

The main result of this section is the following theorem.
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Theorem 7.7.2 ([411]) Assume that conditions (H1)–(H4) are satisfied. Let g be a (real
valued) bounded function defined on [h1, h2] with finitely many points of discontinuity.
Then there exists a nonrandom function Φg(z) defined over ℂ+ such that

Φg
n (z) =

1
n
Tr

[
(𝐒 − z𝐈)−1g (𝚺)

]

converges almost surely to Φg(z) for all z ∈ ℂ+. Furthermore, Φg(z) is given by

∀z ∈ ℂ+, Φg (z) = ∫
+∞

−∞

g(𝜏)
[
1 − 𝛾−1 − 𝛾−1zmF (z)

]
𝜏 − z

dH(𝜏) (7.76)

One can first observe that as we move from a flat weighting scheme of g ≡ 1 to any
arbitrary weighting scheme g(𝜏i), the integration kernel

1
[
1 − 𝛾−1 − 𝛾−1zmF (z)

]
𝜏 − z

remains unchanged. Therefore, (7.76) generalizes Marchenko and Pastur’s foundational
result.

The generalization of the Marchenko–Pastur equation allows the consideration of
a few unsolved problems regarding the overall relationship between sample and true
covariance matrices. The first of these questions is: how do the eigenvectors of the
sample covariance matrix deviate from those of the true covariance matrix? By injecting
functions g of the form 𝟏[𝜆i,+∞) into (7.76), we quantify the asymptotic relationship
between sample and true eigenvectors.

Another question is: how does the sample covariance matrix deviate from the true
covariance matrix as a whole, and how can we modify it to bring it closer to the true
covariance matrix? This is an important question in statistics, where a covariance matrix
estimator that improves upon the sample covariance matrix is sought. By injecting the
function g(𝜏) = 𝜏 into (7.76), we find the optimal asymptotic bias correction for the
eigenvalues of the sample covariance matrix. We also perform the same calculation for
the inverse covariance matrix this time by taking g(𝜏) = 1∕𝜏 .

7.7.2 Sample versus Population Eigenvectors

Each sample eigenvector 𝐮i lies in a space whose dimension is growing towards infinity.
Thus the only way to know “where” it lies is to project it onto a known orthonormal
basis that will serve as a reference grid. Given the nature of the problem, the most natural
choice for this reference grid is the orthonormal basis formed by the true eigenvectors(
𝐯1,… , 𝐯n

)
. Now we are dealing with the asymptotic behavior of

𝐮H
i 𝐯j, for all i, j = 1,… , n

that is, the projection of the sample eigenvectors onto the true eigenvectors. Yet as every
eigenvector is identified up to multiplication by a scalar of modulus one, the argument
(angle) of 𝐮H

i 𝐯j is devoid of mathematical relevance. Therefore, we can focus instead on
its square modulus |

|
|
𝐮H

i 𝐯j
|
|
|

without loss of information. Another issue that arises is that
of scaling. As

1
n2

n∑

i=1

n∑

j=1

|
|
|
𝐮H

i 𝐯j
|
|
|

2
= 1

n2

n∑

i=1
𝐮H

i

( n∑

j=1
𝐯H

i 𝐯j

)

𝐮i =
1
n2

n∑

i=1
𝐮H

i 𝐮i =
1
n
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we study n||
|
𝐮H

i 𝐯j
|
|
|

2
instead, so that its limit does not vanish under large-n asymptotics. We

choose to use an indexation system where “eigenvalues serve as labels for eigenvectors,”
that is 𝐮i is the eigenvector associated to the i-th largest eigenvalue 𝜆i.

All these considerations lead us to introduce the following key object:

∀𝜆, 𝜏 ∈ ℝ, 𝜙n (𝜆, 𝜏) =
1
n2

n∑

i=1

n∑

j=1

|
|
|
𝐮H

i 𝐯j
|
|
|

2
𝟏[𝜆i,∞) (𝜆) × 𝟏[𝜏j ,∞) (𝜏) (7.77)

This bivariate function is right continuous with left-hand limits and nondecreasing in
each of its arguments. It also verifies

lim
𝜆→−∞,𝜏→−∞

𝜙n (𝜆, 𝜏) = 0 and lim
𝜆→∞,𝜏→∞

𝜙n (𝜆, 𝜏) = 1

Therefore, it satisfies the properties of a bivariate cumulative distribution function.
From 𝜙n we can extract precise information about the sample eigenvectors. Our goal

of characterizing the behavior of sample eigenvectors would be achieved in principle by
determining the asymptotic behavior of 𝜙n. This can be deduced from Theorem 7.7.2
thanks to the inversion formula for the Stieltjes transform: for all (𝜆, 𝜏) ∈ ℝ2 such that
𝜙n is continuous at (𝜆, 𝜏)

𝜙n (𝜆, 𝜏) = lim
𝜂→0+

1
𝜋 ∫

𝜆

−∞
Im

[
Φg

n(𝜉 + j𝜂)
]
d𝜉 (7.78)

which holds in the special case where g = 𝟏[−∞,𝜏) (𝜆). We are now ready to state our
second main result.

Theorem 7.7.3 (Ledoit and Péché (2011) [411]) Assume that conditions (H1)–(H4)
hold true and let 𝜙n (𝜆, 𝜏) be defined by (7.77). Then there exists a nonrandom bivariate
function 𝜙 such that

𝜙n (𝜆, 𝜏)
almost surely
−−−−−−−−→ 𝜙 (𝜆, 𝜏)

at all points of continuity of𝜙. Furthermore, when 𝛾 ≠ 1, the function𝜙 can be expressed
as:

∀ (𝜆, 𝜏) ∈ ℝ2, 𝜙 (𝜆, 𝜏) = ∫
𝜆

−∞ ∫
𝜏

−∞
K (𝓁, t)dH(t)dF(𝓁)

where

∀ (𝜆, 𝜏) ∈ ℝ2, K (𝓁, t) =

⎧
⎪
⎪
⎨
⎪
⎪
⎩

𝛾−1𝓁t
(at−𝓁)2+b2t2 if 𝓁 > 0

1

(1−𝛾)
[

1+t lim
z∈ℂ+→0

mG(z)
] if 𝓁 = 0 and 𝛾 < 1

0 otherwise

(7.79)

and a (resp. b) is the real (resp. imaginary) part of 1 − 𝛾−1 − 𝛾−1𝓁m̃F (𝓁).

(7.79) quantifies how the eigenvectors of the sample covariance matrix deviate from
those of the population covariance matrix under large-dimensional asymptotics. The
result is explicit as a function of mF (z).
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Figure 7.7 Projection of first sample eigenvector onto population eigenvectors (indexed by their their
associated eigenvalues). We have taken H′ = 𝟏[5,6). Source: Reproduced from [411] with permission.

To illustrate Theorem 7.7.3, we can pick any sample eigenvector of our choosing, for
example the one that corresponds to the first (i.e. largest) eigenvalue, and plot how it
projects onto the true eigenvectors (indexed by their corresponding eigenvalues). The
resulting graph is Figure 7.7. This is a plot of K (𝓁, t) as a function of t, for fixed 𝓁 equal
to the supremum of supp (F), where supp(⋅) denotes the support of the function1. It is
the asymptotic equivalent to plotting n||

|
𝐮H

1 𝐯j
|
|
|

2
as a function of 𝜏j. It looks like a density

because, by construction, it must integrate to one. As soon as the sample size is of the
order of ten times the number of variables, we can see that the first sample eigenvector
starts to deviate quite strongly from the first true eigenvectors. This should have pre-
cautionary implications for principal component analysis (PCA), where the number of
variables is often so large that it is difficult to make the sample size more than ten times
bigger.

7.7.3 Asymptotically Optimal Bias Correction for the Sample Eigenvalues

We now bring the two preceding results together to quantify the relationship between
the sample covariance matrix and the true covariance matrix as a whole. This is
achieved by selecting the function g(𝜏) = 𝜏 in (7.76). The main problem with the sample
covariance matrix is that its eigenvalues are too dispersed: the smallest ones are biased
downwards, and the largest ones upwards. This is most easily visualized when the
true covariance matrix is the identity, in which case the limiting spectral of sample
eigenvalues F is known in closed form (see Figure 7.8).

It is reasonable to require that the estimation procedure be invariant with respect to
rotation by any p-dimensional orthogonal matrix 𝐖. If we rotate the variables by𝐖,
then we would also ask our estimator to rotate by the same orthogonal matrix 𝐖.

1 The support of a function is the set of points where the function is not zero, or the closure of that set.
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Figure 7.8 Limiting density of sample eigenvalues, in the particular case where all the eigenvalues of
the true covariance matrix are equal to one. The graph shows excess dispersion of the sample
eigenvalues. The formula for this plot comes from solving the Marchenko–Pastur equation for
H = 𝟏[1,∞). Source: Reproduced from [411] with permission.

The class of orthogonally invariant estimators of the covariance matrix is constituted
from all the estimators that have the same eigenvectors as the sample covariance
matrix (see [412, Lemma 5.3]). Every rotation-invariant estimator of 𝚺 is thus of
the form:

𝐔𝐃𝐔H , where 𝐃 = diag
(
d1,… , dn

)
is diagonal

and where 𝐔 is the matrix whose i-th column is the sample eigenvector 𝐮i.
Our objective is to find the matrix in this class that is closest to the true

covariance matrix. In order to measure distance, we choose the Frobenius norm,
defined as:

‖𝐀‖2
F = Tr

(
𝐀𝐀H)

for any matrix 𝐀. Note that the trace function Tr(𝐁) is linear in 𝐁. Thus we end up with
the following optimization problem:

minimize
𝐃

‖
‖𝐔𝐃𝐔

H − 𝚺‖‖F

Elementary matrix algebra shows that its solution is:

�̃� = diag
(
d̃1,… , d̃n

)
where ∀i = 1,… , n d̃i = 𝐮H

i 𝚺𝐮i

d̃i captures how the i-th sample eigenvector 𝐮i relates to the true covariance matrix 𝚺
as a whole.

The key object is the nondecreasing function

∀x ∈ ℝ, Δn(x) =
1
n

n∑

i=1
d̃i𝟏[𝜆i,+∞) (x) =

1
n

n∑

i=1
𝐮H

i 𝚺𝐮i×𝟏[𝜆i,+∞) (x) (7.80)
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When all the sample eigenvalues are distinct, it is straightforward to recover the d̃i
from Δn:

∀i = 1,… , n d̃i = lim
𝜀→0+

Δn(𝜆i + 𝜀) − Δn(𝜆i − 𝜀)
Fn(𝜆i + 𝜀) − Fn(𝜆i − 𝜀)

(7.81)

The asymptotic behavior of Δn can be deduced from Theorem 7.7.2 in the special case
where g(𝜏) = 𝜏 ∶ for all x ∈ ℝ such that Δn continuous at x

Δn(x) = lim
𝜂→0+

1
𝜋 ∫

x

−∞
Im

[
Φg

n(𝜉 + j𝜂)
]
d𝜉, g(x) ≡ x (7.82)

We are now ready to state our third main result.

Theorem 7.7.4 ([411]) Assume that conditions (H1)–(H4) hold true and let Δn be
defined as in (7.80). There exists a nonrandom functionΔ defined overℝ such thatΔn(x)
converges almost surely to Δ(x) for all x ∈ ℝ − {0}. If in addition 𝛾 ≠ 1, then Δ can be
expressed as:

∀x ∈ ℝ, Δ(x) = ∫
x

−∞
𝜓 {𝜆} dF (𝜆)

where

∀x ∈ ℝ, 𝜓 (𝜆) =
⎧
⎪
⎨
⎪
⎩

𝜆

|1−𝛾−1−𝛾−1𝜆m̃F (𝜆)|
2 if 𝜆 > 0

𝛾

(1−𝛾) lim
z∈ℂ+→0

m̃G(z)
if 𝜆 = 0 and 𝛾 < 1

0 otherwise

(7.83)

By (7.81) the asymptotic quantity that corresponds to d̃i = 𝐮H
i 𝚺𝐮i is 𝜓 {𝜆}, provided

that 𝜆 corresponds to 𝜆i. Therefore, the way to get closest to the true covariance matrix
(according to the Frobenius norm) would be to divide each sample eigenvalue 𝜆i by the
correction factor

|
|1 − 𝛾−1 − 𝛾−1𝜆m̃F (𝜆)||

2

This is what we call the optimal nonlinear shrinkage formula or asymptotically optimal
bias correction. Figure 7.9 shows how much it differs from Ledoit–Wolf [402] optimal
linear shrinkage formula. In addition, when 𝛾 < 1, the sample eigenvalues equal to zero
need to be replaced by

𝜓 (0) = 𝛾

(1 − 𝛾) m̃G (0)
For each set of simulations, we computed the percentage relative improvement in aver-

age loss (PRIAL). The PRIAL of an estimator𝐌 of 𝚺 is defined as

PRIAM(𝐌) = 100 ×
⎡
⎢
⎢
⎢
⎣

1 −
‖
‖
‖
𝐌 − 𝐔�̃�𝐔H‖‖

‖

2

F

‖
‖
‖
𝐒 − 𝐔�̃�𝐔H‖‖

‖

2

F

⎤
⎥
⎥
⎥
⎦

By construction, the PRIAL of the sample covariance matrix 𝐒 (resp. of 𝐔�̃�𝐔H) is
0% (resp. 100%), meaning no improvement (resp. meaning maximum attainable
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Figure 7.9 Comparison of the optimal linear versus nonlinear bias correction formula. The distribution
of true eigenvalues H places 20% mass at 1, 40% mass at 3 and 40% mass at 10. Source: Reproduced
from [411] with permission.

improvement). As shown in Figure 7.10, even with a modest sample size like N = 40,
we already get 95% of the maximum possible improvement.

A similar formula can be obtained for the purpose of estimating the inverse of the true
covariance matrix, 𝚺−1. To this aim, we set g(𝜏) = 1∕𝜏 in (7.76).

7.7.4 Estimating Precision Matrices

Suppose observations 𝐱1,… , 𝐱N independently from a multivariate model

𝐱i = 𝚺
1∕2
n 𝐲i + 𝜇0, i = 1,… ,N (7.84)

where 𝜇0 is a n-dimensional constant vector and 𝚺n is a n × n positive definite matrix,
which acts as the true covariance matrix. Here

𝐘 =
(
𝐲1,… , 𝐲N

)
=

(
Yij

)

n×N

and Yij, i, j = 1, 2,… are real independent and identically distributed (i.i.d.) random vari-
ables with common mean zero and unit variance. In multivariate analysis, estimation of
the covariance matrix𝚺n and precision matrix𝛀n = 𝚺−1

n is an important problem. Given
the samples 𝐱1,… , 𝐱N , the usual estimation of𝚺n is the sample covariance matrix which
is defined as

𝐒N = 1
N − 1

N∑

i=1

(
𝐱i − 𝐱

) (
𝐱i − 𝐱

)T (7.85)

where 𝐱 = 1
N

N∑

i=1
𝐱i and the superscript T denotes the transpose of a matrix or vector.

Naturally, in many areas of statistical analysis, 𝐒−1
N acts as the common estimator of

𝛀n = 𝚺−1
n .
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Figure 7.10 Percentage relative improvement in average loss (PRIAL) from applying the optimal
nonlinear shrinkage formula to the sample eigenvalues. The solid line shows the PRIAL obtained by

dividing the i-th sample eigenvalue by the correction factor ||
|
1 − 𝛾−1 − 𝛾−1𝜆im̃F

(
𝜆i

)|
|
|

2
, as a function of

sample size. The dotted line shows the PRIAL of the linear shrinkage estimator first proposed in [402].
For each sample size we ran 10 000 Monte Carlo simulations. As in Figure 7.9, we used 𝛾 = 2 and the
distribution of true eigenvalues H placing 20% mass at 1, 40% mass at 3 and 40% mass at 10. Source:
Reproduced from [411] with permission.

In classic statistics where the dimension n is fixed and the sample size N → ∞, 𝐒−1
N

is a good estimator for 𝛀n = 𝚺−1. In the large dimensional data setting where the data
dimension n is large compared to the sample size N , the usual estimator, which simply
takes the inverse of the sample covariance matrix, has two disadvantages. First, 𝐒−1

N is
singular if n > N , which means we cannot obtain a stable estimator for 𝛀n. Secondly,
even if n < N , 𝐒−1

N as the estimator of 𝛀n is known to perform poorly. For example, if
n∕N → 𝛾 ∈ (0, 1), by Remark 2 of Pan and Zhou (2011) [413], we have

Tr
(
𝚺𝐒−1

N − 𝐈n
)2 p

−→
𝛾
(
1 + 𝛾 − 𝛾2)

(1 − 𝛾)3 (7.86)

which shows that the estimation error is dramatically large, especially when 𝛾 → 1. Here
𝐈n is the n × n identity matrix.

Mestre and Lagunas (2006) [414] suggested

(1 − n∕N) 𝐒−1
N

to estimate 𝛀n = 𝚺−1. Although the shrinking estimators proposed in [402] and suc-
cessive works are invertible and more accurate than sample covariance matrix 𝐒N to
estimate 𝚺n, their inverses are usually not the best for 𝚺n among the combinations 𝐒N
and 𝐈n. Moreover, the methods in [414] and [415] are only applicable for n < N .
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Following [416], motivated by Ledoit and Peche (2011), we will study the asymptotic
properties of the matrix

𝚺1∕2
n

(
𝐒N + 𝜆𝐈n

)−1𝚺1∕2
n

and its relation with
(
𝐒N + 𝜆𝐈n

)−1. Based on these limiting results, [416] propose an
optimal linear combination of 𝐒N and 𝐈n under the quadratic loss function

1
n
Tr

(
𝚺n

(
𝜆1𝐒N + 𝜆2𝐈n

)−1 − 𝐈n
)2

The new estimation is nonparametric without assuming a specific parameter distri-
bution for the data and also there is no prior information about the structure of the
population covariance matrix. The new estimator has no restriction on n < N and is
applicable for n ≥ N . Even if n < N , the new estimator always dominates the standard
𝐒−1

N and (1 − n∕N) 𝐒−1
N proposed in [414]. It also performs comparably with the nonlinear

shrinkage estimator in [415].
Here, we make the following assumptions:

A1) n,N → ∞ such that n∕N = 𝛾 ∈ (0,∞) and and the fourth moment of Yij is bounded;
A2) The extreme eigenvalues of𝚺n is uniformly bounded so that there are constants c1, c2

satisfying c1 ⩽ 𝜆min
(
𝚺n

)
⩽ 𝜆max

(
𝚺n

)
⩽ c2 and F𝚺n

tends to a nonrandom probabil-
ity distribution H .
Now, we can introduce a lemma about the limiting spectral distribution of
𝚺1∕2

n
(
𝐒N + 𝜆𝐈n

)−1𝚺1∕2
n .

Theorem 7.7.5 (Wang, Pan and Cao (2012) [416]) Under the conditions of A1 and
A2, as N → ∞, F𝚺1∕2

n (𝐒N+𝜆𝐈n)−1𝚺1∕2
n

converges almost certainly to a nonrandom distribution
F , whose Stieltjes transform m(z) satisfies

m(z) = ∫
1

𝜆

t
− z + 1

1+𝛾m(z)

dH(t) (7.87)

where 𝜆 > 0 and z ∈ ℂ+ = {z ∈ ℂ, Im(z) > 0}.

The result of Theorem 7.7.5 also can be derived from Theorem 1.2 in [411] where the
12th moment is needed.

From [175], we know the Stieltjes transform m0(z) of the limiting spectral distribution
of 𝐒N is the solution to the following equation

m0(z) = ∫
1

t
(
1 − 𝛾 − 𝛾zm0 (z)

)
− z

dH(t) (7.88)

For more analytic behaviors of (7.88), see (1995) [222].
Now, we can study the relationships between𝚺1∕2

n
(
𝐒N + 𝜆𝐈n

)−1𝚺1∕2
n and

(
𝐒N + 𝜆𝐈n

)−1.

Theorem 7.7.6 ([416]) When 𝜆 > 0, under the conditions of A1 and A2, as N → ∞,
we almost certainly have

1
n
Tr

[
𝚺1∕2

n
(
𝐒N + 𝜆𝐈n

)−1𝚺1∕2
n

]
→ R1 (𝜆)

1
n
Tr

[
𝚺1∕2

n
(
𝐒N + 𝜆𝐈n

)−1𝚺1∕2
n

]2
→ R2 (𝜆)
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and
1
n
Tr

[(
𝐒N + 𝜆𝐈n

)−1
]
→ m0 (−𝜆)

Moreover

R1 (𝜆) =
1 − 𝜆m0 (−𝜆)

1 − 𝛾
(
1 − 𝜆m0 (−𝜆)

)

R2 (𝜆) =
1 − 𝜆m0 (−𝜆)

[
1 − 𝛾

(
1 − 𝜆m0 (−𝜆)

)]3 −
𝜆m0 (−𝜆) − 𝜆2m′

0 (−𝜆)
[
1 − 𝛾

(
1 − 𝜆m0 (−𝜆)

)]4

Here, almost surely, 1
n
Tr

[(
𝐒N + 𝜆𝐈n

)−2
]
→ m′ (−𝜆) = dm(z)

dz
|
|z=−𝜆

In applications, we cannot derive the statistics 1
n
Tr

[
𝚺1∕2

n
(
𝐒N + 𝜆𝐈n

)−1𝚺1∕2
n

]k
, k = 1, 2

directly because only 𝐒N is known. Theorem 7.7.6 provided a theoretical method to esti-
mate the statistics from the sample covariance matrix. In [417], the authors derived a
similar result to that of Theorem 2 under Gaussian assumptions and here no distribution
assumptions were needed.

About m0(−𝜆) and (7.88), we have the following result. In Theorem 7.7.6, m0(−𝜆) is
the unique solution of the equation

m(−𝜆) = ∫
1

t (1 − 𝛾 − 𝛾𝜆m (−𝜆)) + 𝜆
dH(t) (7.89)

where 1 − 𝛾 − 𝛾𝜆m (−𝜆) ⩾ 0. Assuming 𝚺n = 𝐈n, two solutions of (7.89) can be written
out as follows

m(1)(−𝜆) = 1
2𝛾𝜆

(

− (1 − 𝛾 + 𝜆) +
√

(1 − 𝛾 + 𝜆)2 + 4𝛾𝜆
)

m(2)(−𝜆) = 1
2𝛾𝜆

(

− (1 − 𝛾 + 𝜆) −
√

(1 − 𝛾 + 𝜆)2 + 4𝛾𝜆
)

Optimal Estimator
To estimate𝛀n = 𝚺−1

n , we consider a class of estimators such as �̂�n = 𝛼
(
𝐒N + 𝛽𝐈n

)−1. By
Theorem 7.7.6, with probability 1,

1
n
Tr

(
𝚺�̂�n − 𝐈n

)2
→ 𝛼2R2 (𝛽) − 2𝛼R1 (𝛽) + 1

= R2 (𝛽)
(
𝛼 − R1(𝛽)

R2(𝛽)

)2
+ 1 − (R1(𝛽))2

R2(𝛽)
.

(7.90)

Therefore, to minimize the loss function (7.90), 𝛼 should satisfy 𝛼 = R1(𝛽)
R2(𝛽)

and the corre-
sponding loss is

L (𝛽) = 1 −
(
R1 (𝛽)

)2

R2 (𝛽)
(7.91)

Intuitively, 𝛽 should minimize L (𝛽). About the optimal loss L0 = min𝛽>0L (𝛽), we have
the following results.
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Theorem 7.7.7 ([416]) When 𝛾 < 1, writing

LH
(
y
)
= 1 −

(

∫
t

t + y
dH(t)

)2 ⎛
⎜
⎜
⎝

1
∫ t2

(t+y)2 dH(t)
− 𝛾

⎞
⎟
⎟
⎠

, y ⩾ 0

we have L0 = miny>0LH
(
y
)
. Moreover,

I.𝚺n = 𝜎2𝐈n, which means H(x) is a degenerate distribution at 𝜎2, the optimal loss is
L0 = 0 and 𝛀⋆

n = 𝜎−2𝐈n.
II. For general distribution H(x), LH

(
y
)

achieves its global minimum values L0 at y⋆
satisfying

f1
(
y⋆

)
f3
(
y⋆

)
− f2

(
y⋆

)
f2
(
y⋆

)

f2
(
y⋆

)
f2
(
y⋆

) (
f1
(
y⋆

)
− f2

(
y⋆

)) = 𝛾 (7.92)

where fk(x) = ∫ (
t

t+y

)k
dH(t). Moreover, 𝛽⋆ satisfies the equation y⋆ = 𝛽⋆

1−𝛾(1−𝛽⋆m0(−𝛽⋆))
and 𝛼⋆ = R1(𝛽⋆)

R2(𝛽⋆)

For 𝛾 > 1, we can also obtain a similar result from the proofs of Theorem 7.7.7
and therefore will not pursue it due to limited space. The following corollary gives a
data-driven method to estimate the best 𝛽.

Corollary 7.7.8 (Wang, Pan and Cao (2012) [416] ) Under the assumptions of
Theorem 7.7.6 and writing �̂� = n∕N

a1 (𝜆) = 1 − 1
n
Tr

(
𝜆1𝐒N + 𝜆2𝐈n

)−1

a2 (𝜆) =
1
n
Tr

(1
𝜆
𝐒N + 𝐈n

)−1
− 1

n
Tr

(1
𝜆
𝐒N + 𝐈n

)−2

and

R̂1 (𝜆) =
a1 (𝜆)

1 − �̂�a1 (𝜆)

R̂2 (𝜆) =
a1 (𝜆)

(
1 − �̂�a1 (𝜆)

)3 −
a2 (𝜆)

(
1 − �̂�a1 (𝜆)

)4

almost surely, as N → ∞

R̂1 (𝜆) → R1 (𝜆)
R̂2 (𝜆) → R2 (𝜆)

By Corollary 7.7.8 and continuous mapping theorem, with probability 1

L̂ (𝛽) ∶= 1 −
(
R̂1 (𝛽)

)2

R̂2 (𝛽)
→ L (𝛽)

Therefore, for a real data or a sample covariance matrix 𝐒N , we can use a numerical
algorithm such as the Newton–Raphson method to find the optimal 𝛽⋆ from L̂ (𝛽).
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Compared with existing methods, the new estimator

𝛀⋆
n = 𝛼⋆

(
𝐒N + 𝛽⋆𝐈n

)−1

has the following properties. First, when 𝛾 < 1, by Remark 2 of Pan and Zhou (2011)
[413]

1
n
Tr

(
(1 − 𝛾)𝚺n𝐒−1

N − 𝐈n
)2 p

−→ 𝛾

1 − 𝛾
(7.93)

which is the loss of estimator in [414]. By proofs of Theorem 7.7.7, we know the optimal
loss of our estimator is L0 < LH(0) = 𝛾 . Together with formula (7.86), it is shown that
when 𝛾 < 1, the new estimator will always dominate the standard 𝐒−1

N and (1 − n∕N) 𝐒−1
N

proposed in [414]. Secondly, when 𝛾 ≥ 1, we can still use the new estimator while the
estimators based on 𝐒−1

N or the nonlinear shrinkage estimator based on the eigenvalues
of 𝐒N in [415] are not applicable any more.

7.8 A General Class of Random Matrices

Motivated by practical applications in Section 8.2, we address a general class of random
matrices that was first studied by Rubio and Mestre [418].

Let 𝐗 be an M × N complex random matrix with i.i.d. entries having mean zero
and variance 1∕N with finite 8 + 𝜀 moment (𝜀 > 0). Furthermore, consider an M × M
Hermitian non-negative definite matrix𝐑 and and its non-negative definite square-root
𝐑1∕2. Then, the matrix 𝐒 = 𝐑1∕2𝐗𝐓𝐗H𝐑1∕2 be viewed as a sample covariance matrix
constructed using the N columns of the data matrix 𝐑1∕2𝐗, namely having true
population covariance matrix 𝐑. Besides, consider an N × N diagonal matrix 𝐓 with
real non-negative entries. The matrix 𝐑1∕2𝐗𝐓𝐗H𝐑1∕2 can be interpreted as a sample
covariance matrix obtained by weighting the previous multivariate samples with the
entries of 𝐓.

We are interested in the asymptotic behavior of certain spectral functions of the
random matrix model

𝐁 = 𝐀 + 𝐑1∕2𝐗𝐓𝐗H𝐑1∕2 (7.94)

where 𝐀,R and 𝐓 are Hermitian non-negative definite matrices, such that 𝐑 and 𝐓
have bounded spectral norm with being diagonal, and 𝐑1∕2 is the non-negative defi-
nite square-root of𝐑. Under some assumptions on the moments of the entries of𝐗, it is
proved that, for any matrix𝚽 with bounded trace norm and for each complex z outside
the positive real line

|
|
|
|
Tr

[
𝚽
(
𝐁 − z𝐈M

)−1
]
− gM (z)

|
|
|
|
−→ 0 almost certainly (7.95)

as M,N → ∞ at the same rate, where gM(z) is deterministic and solely depends on
𝚽,𝐀,𝐑 and 𝐓. (7.95) can be particularized to the study of the limiting behavior of the
Stieltjes transform as well as the eigenvectors of the random matrix model 𝐁.

Example 7.8.1 (estimation of large dimensional precision matrix) Let𝚺N stand for
the true covariance matrix and 𝐒N denote the corresponding sample covariance matrix.
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The pairs (𝜏i, 𝐯i) for i = 1,… , n denote the collection of eigenvalues and the correspond-
ing orthonormal eigenvectors of the covariance matrix 𝚺N . HN (t) is the empirical dis-
tribution function of the eigenvalues of 𝚺n:

HN = 1
n

n∑

i=1
𝟏{𝜏i<t}(t), ∀t ∈ ℝ

where 𝟏{⋅} is the indicator function of the set. Let 𝐗N be a n × N matrix which consists
of independent and identically distributed (i.i.d.) real random variables with zero mean
and unit variance. The observation matrix is defined as

𝐘N = 𝚺1∕2
N 𝐗N

The pairs
(
𝜆i,𝐮i

)
for i = 1,… , n are the eigenvalues and the corresponding orthonormal

eigenvectors of the sample covariance matrix

𝐒N = 1
N
𝐘N𝐘H

N = 1
N
𝚺1∕2

N 𝐗N𝐗H
N𝚺

1∕2
N

Similarly, the empirical distribution function of the eigenvalues of the sample covariance
matrix 𝐒N is defined as

FN (𝜆) = 1
n

n∑

i=1
𝟏{𝜆i<𝜆}(𝜆), ∀𝜆 ∈ ℝ

The main assumptions are made here:

(A1) The true population covariance matrix𝚺N is a nonrandom n-dimensional positive
definite matrix.

(A2) Only the matrix 𝐘N is observable. We know neither 𝐗N nor 𝚺N itself.
(A3) We assume that HN (t) converges to a limit H(t) at all points of continuity

of H(t).
(A4) The elements of the matrix 𝐗N have uniformly bounded 4 + 𝜀, 𝜀 > 0 moments.
(A5) For all N large enough there exists the compact interval [h0, h1] in (0,+∞) which

contains the support of HN .

All of these assumptions are quite general and are satisfied in many practical
situations. The assumptions (A1)–(A3) are essential to prove the Marchenko–Pastur
equation.

Assume that (A1), (A2), (A4), (A5) hold and additionally some nonrandom matrix𝚽
has uniformly bounded trace norm at infinity then for n∕N → c > 0 as N → ∞

|
|
|
|
Tr

[
𝚽
(
𝐒N − z𝐈N

)−1
]
− Tr

[
𝚽
(
x (z)𝚺N − z𝐈N

)−1
]|
|
|
|
−→ 0 almost certainly,

where x(z) is a unique solution in ℂ+ of the following equation
1 − x(z)

x(z)
= c

p
Tr

(
x(z)𝐈N − z𝚺−1

N
)−1

See [419, 420] for proofs. ◽

Example 7.8.2 (array signal processing) Consider a sensor network with n sensors
observing N successive snapshots of K source signals. Most statistical inference meth-
ods for array processing assume an array of size N fixed and a number of snapshots
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N large. In addition, many works are based on the assumption of a white-noise model.
These two assumptions are increasingly less realistic in modern systems where n and N
are usually both large, and where the noise data can be correlated either across succes-
sive observations or across the sensor antennas. It is natural to assume the asymptotic
regime denoted by

N → ∞, n → ∞ but n∕N → c > 0

The number of transmitting sources K is fixed as N → ∞.
In this section, apart from n and N , all parameters including K are unknown. In par-

ticular, the noise spatial or temporal correlations are unknown. The angle taken in this
section to perform statistical inference on the signals is based on the spectral analysis
of the empirical covariance matrix of the received signals.

Consider K source signals received by an array of n sensors during N time slots. The
received signal 𝐲t ∈ ℂn×1 at time t is given by

𝐲t =
K∑

i=1

√
Pk𝐚N

(
𝜃k
)
𝐬k,t + 𝐯t

where Pk is the power of source k, 𝜃k ∈
[
−𝜋∕2, 𝜋∕2

]
is its angle of arrival (different for

each k), 𝐚N ∈ ℂn×1 is the steering vector defined in the classical uniform linear array
model as

𝐚N
(
𝜃k
)
= 1

√
n

[
1, e−j2𝜋d sin 𝜃k ,… , e−j2𝜋d(n−1) sin 𝜃k

]T

with d a positive constant. We can rewrite the input-output relationship by concatenat-
ing T successive signal realizations into the matrix

𝐘N = 𝐇N𝐏1∕2𝐒H
N + 𝐕N

where

𝐘N =
[
𝐲1,… ,𝐘N

]
,𝐇N =

[
𝐚N

(
𝜃1
)
,… , 𝐚N

(
𝜃K

)]
,

𝐏 = diag
(
P1,… ,Pk

)
,𝐒N = 1

√
N

[
s∗t,k

]N ,K

t,k=1

with st,k random i.i.d. with zero mean, unit variance, and finite eighth order moment, and
𝐕N =

[
𝐯1,… , 𝐯N

]
. We assume that the noise is temporally correlated, i.e., the columns

of 𝐕N are not independent. Although this is not a necessary condition for the validity
of the results here, we assume that the noise model is a causal stationary autoregressive
moving average (ARMA). process. For more details, we refer to [421, 422]. ◽

We illustrate a distributed system, in Figure 7.11, with a large number of sensors
that are connected with cloud storage and computing through fiber cables or wire-line
cables. By sensors we mean in a generic sense; examples include wireless communi-
cations for smart meters, PMUs, and a large array of antennas. We use this model
to highlight the aspects of large datasets, illustrating how large-dimensional random
matrices arise naturally in these situations. The receiver end of this is composed of a
large number of sensors and is unaware of the noise pattern.
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Figure 7.11 A distributed system with a large number of sensors.

Consider a very general information-plus-noise transmission model with multivariate
output 𝐲t ∈ ℂN at time t

𝐲t = 𝐇𝐱t + 𝐯t (7.96)

where 𝐱t ∈ ℂK is the vector of transmitted symbols at time t, 𝐇 ∈ ℂN×K is the linear
communication medium, and 𝐯t ∈ ℂN the noise experienced by the receiver at time t.
We assume the observation of T (not necessarily independent) vector samples 𝐲1,… , 𝐲T
of the vector process 𝐲t . We use the following notation

𝐘T = 1
√

T

[
𝐲1,… , 𝐲T

]
,𝐇 =

[
𝐡1,… ,𝐡K

]
,

𝐗T = 1
√

T

[
𝐱1,… , 𝐱T

]
,𝐕T = 1

√
T

[
𝐯1,… , 𝐯T

]

It is often of interest to retrieve information from the individual 𝐡k vectors. In wireless
communications, these represent channel beams that the receiver may want to iden-
tify in order to decode the entries. In array processing, they stand for steering vectors
parameterized by the angle-of-arrival of the source signals.

The standard inference approaches in the literature often rely on two strong assump-
tions: (i) T is large compared to N and (ii) the statistics of 𝐯t are partially or perfectly
known due to independent (information-free) observations of the process 𝐯t . In this
section we revisit these methods by surveying alternative algorithms in the recent liter-
ature to perform eigen inference for the model (7.96) accounting for the aforementioned
limitations (i) and (ii).

We assume a set of reasonable conditions:

• N → ∞,N∕T → c > 0, and K is constant. This allows for 𝐘T𝐘H
T to be seen as a small

rank perturbation of 𝐕T𝐕H
T .
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• 𝐕T =𝐖T𝚺
1∕2
T (i.e. white in space, correlated in time), where𝐖T ∈ ℂN×T is standard

complex Gaussian and 𝚺T is a deterministic unknown Hermitian non-negative, or
𝐕T = 𝚺1∕2

T 𝐖T (i.e. white in time, correlated in space).2
• As N∕T → c, the eigenvalues of 𝐕T𝐕H

T tend to cluster in a compact interval.
This assumption is satisfied by most noise models used in practice, for example
auto-regressive moving average (ARMA) noise processes.

• The source signals in 𝐱t are random, independent and identically distributed (i.i.d.),
even though this assumption can be relaxed in many cases.

Under these assumptions, [422] shows that a maximum of K isolated eigenvalues
of signal-plus-noise sample covariance matrix 𝐘T𝐘H

T can be found for all large N ,T
beyond the right edge of the limiting eigenvalue distribution support of noise only sam-
ple covariance matrix 𝐕T𝐕H

T . This phenomenon is at the origin of the detection and
estimation procedures. It is shown in [422] that the isolated eigenvalues of T can be
uniquely mapped to 𝐘T𝐘H

T individual signal sources. The presence of these eigenvalues
will be used to detect signal sources as well as to estimate their number K while their
values will be exploited to estimate the source powers. The associated eigenvectors will
then be used to retrieve information on the vectors 𝐡k .

An exemplary application of these methods to array processing is then studied in
greater detail, leading in particular to a novel MUSIC-like algorithm [423] assuming
unknown noise covariance.

7.8.1 Massive MIMO System

Section 7.8.1 is mainly based on [424], with some material drawing from other work.
The proper evaluation of the achievable rate in the MIMO setting relies on the knowl-

edge of the transmit-receive channel as well as of the interference pattern. It is fun-
damental for a receiver to be able to infer these achievable rates in a short sensing
period, hence it should be extremely fast. We present a novel estimator for fast esti-
mation of the MIMO mutual information in the presence of unknown interference in
the case where the number of available observations is of the same order as the number
of receive antennas. Novel algorithms, based on large-dimensional random matrix the-
ory, will not perform the (usually time-consuming) evaluation of the covariance matrix
of the interference.

Consider a wireless communication channel 𝐇t ∈ ℂN×n0 between a transmitter
equipped with n0 antennas and a receiver equipped with N antennas, the latter being
exposed to interfering signals. The objective of the receiver is to evaluate the mutual
information from this link during a sensing period assuming 𝐇t known at all time. For
this, we assume a block-fading scenario and denote by T ≥ 1 the number of channel
coherence intervals (or time slots) allocated for sensing. In other words, we suppose
that, within each channel coherence interval t ∈ {1,… ,T}, 𝐇t is deterministic and
constant. We also denote by M the number of channel uses employed for sensing during
each time slot (M times the channel use duration is therefore less than the channel

2 Assuming the general correlated noise in both time and space would lead to too much indetermination
and is so far too difficult to address.
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coherence time). The M concatenated signal vectors received in slot t are gathered in
the matrix 𝐘t ∈ ℂN×M defined as

𝐘t = 𝐇t𝐗t,0 +𝐖t

where 𝐗t,0 is the concatenated matrix of the transmitted signals and𝐖t ∈ ℂN×M stands
for the concatenated interference vectors.

Since 𝐖t is not necessarily a white noise matrix in the present scenario, we
write

𝐖t = 𝐆t𝐖t

where 𝐆t ∈ ℂN×n is such that 𝐆t𝐆H
t ∈ ℂN×N is the deterministic matrix of the noise

variance during slot t, while𝐖t ∈ ℂn×M is a matrix filled with independent entries with
zero mean and unit variance. That is, we assume that the interference is stationary during
the coherence time of 𝐇t , which is a reasonable assumption in practical scenarios, as
illustrated in Figure 7.12. We assume that perfect decoding of𝐗t,0 (possibly transmitted
at low rate or not transmitted at all) is achieved during the sensing period. If so, since𝐇t
is assumed perfectly known, the residual signal to which the receiver has access is given
by the standard MIMO model

𝐘t = 𝐘t −𝐇t𝐗t,0 = 𝐆t𝐖t (7.97)

The system model for K = 2 is illustrated in Figure 7.12. Only a small number K of sig-
nal sources interfere in a colored-noise manner. Calling 𝐆t,k ∈ ℂN×nk the channel from
interferer k ∈ {1,… ,K}, equipped with nk antennas, to the receiver and 𝐗t,k ∈ ℂnk×M

the concatenated transmit signals from interferer k, the received signal 𝐘t can be mod-
eled as

𝐘t = 𝐇t𝐗t,0 +
K∑

k=1
𝐆t,k𝐗t,k + 𝜎𝐖⋆

t (7.98)

Interfering
user

Interfering
user

Receiver Transmitter

H

G1 G2

Figure 7.12 System with K = 2 interering users.
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where 𝜎𝐖⋆
t ∈ ℂN×M is the concatenated additional white Gaussian noise with variance

𝜎2 > 0. In this case, we find that denoting n = n1 + · · · + nK + N and

𝐆t =
[
𝐆t,1, · · · ,𝐆t,K , 𝜎𝐈N

]
, 𝐖t =

[
𝐗T

t,1, · · · ,𝐗
T
t,K ,𝐖

⋆T
t

]T

we fall back on the aforementioned standard MIMO model (7.97).
The statistical properties of the random variables 𝐗t,0 are as follows.
Assumption A1: For a given t where 1 ≤ t ≤ T , the entries of the matrices𝐗t,0 and𝐖t

are i.i.d. random variables with a standard complex Gaussian distribution.
The objective for the receiver is to evaluate the average (per antenna) mutual informa-

tion that can be achieved during the T ≥ 1 slots. In particular, for T = 1 , the expression
is that of the instantaneous mutual information which allows for an estimation of the rate
performance of the current channel. If is T large instead, this provides an approxima-
tion of the long-term ergodic mutual information. Under Assumption A1, the average
mutual information is given by

 = 1
NT

T∑

t=1

[
log det

(
𝐇t𝐇H

t +𝐆t𝐆H
t
)
− log det

(
𝐆t𝐆H

t
)]

(7.99)

Using log det (⋅) = Tr log (⋅), (7.99) is rewritten as

 = 1
NT

T∑

t=1

[
Tr log

(
𝐇t𝐇H

t +𝐆t𝐆H
t
)
− Tr log

(
𝐆t𝐆H

t
)]

(7.100)

The motivation here is to address the problem of estimating  based on T successive
observations 𝐘1,… ,𝐘T assuming perfect knowledge of, but 𝐇1,… ,𝐇T , but unknown
𝐆t for all t.

(7.100) has a form

Tr f
(
𝐀𝐀H) =

n∑

i=1
f
(
𝜆i
)
, 𝜆i eigenvalues of 𝐀𝐀H (7.101)

with f (x) = log(x), x ∈ ℝ, x > 0 where𝐀 = 1
√

n
𝚺1∕2

n 𝐙n. Here𝚺n is a non-negative definite
Hermitian matrix and 𝐙n is a random matrix with i.i.d. real or complex standardized
entries. When f is an analytic function, and both dimensions of matrix go to infinity at
the same pace, the fluctuations of the linear statistics of (7.101) are shown to be Gaus-
sian. See Example 3.6.3 and Section 3.7.

If the number M of available observations during the sensing period in each slot is
very large compared to the channel vector N , a natural estimator, called the standard
empirical (SE) estimator, is defined as

̂SE = 1
NT

T∑

t=1

[
log det

(
𝐇t𝐇H

t + 1
M
𝐘t𝐘H

t

)
− log det

( 1
M
𝐘t𝐘H

t

)]
(7.102)

When N is fixed, using the law of large numbers and of the continuous mapping
theorem, we have as M → ∞

̂SE −  almost surely
−−−−−−−−→ 0 (7.103)

The assumption of M >> N may be feasible in practical settings where sensing needs to
be performed fast, particularly under fast-fading conditions. In this case, the standard
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empirical estimator is asymptotically biased in the large M,N , regime, hence it is not
consistent, and (7.103) will not be valid any more.

Assumptions A2: M,N , n, n0 → +∞, and

0 < lim inf
N ,n→∞

N
n

⩽ lim sup
N ,n→∞

N
n
< +∞, 1 < lim inf

M,N→∞

M
N

⩽ lim sup
M,N→∞

M
N
< +∞

0 < lim inf
N ,n0→∞

n0

N
⩽ lim sup

N ,n0→∞

n0

N
< +∞

The constraints over N , n and n0 simply says that these quantities are of the same order.
The lower bound for M∕N says that M is larger than N , although of the same order.

In the remainder of this section, we refer to Assumption A2 as the convergence mode
M,N , n → ∞.

The channel matrices need be bounded in spectral norm, as M,N , n → ∞.
Assumptions A3: Let N = N(n) a sequence of integers indexed by n. For each t ∈

{1,… ,T}, consider the family of N × n matrices 𝐆t . Then, we have the following.
• The spectral norms of 𝐆t are uniformly bounded in the sense that

sup
1⩽t⩽T

sup
N ,n

‖
‖𝐆t

‖
‖ < ∞

• For t ∈ {1,… ,T}, the smallest eigenvalue of 𝐆t𝐆t
H denoted by 𝜆N

(
𝐆t𝐆H

t
)

is uni-
formly bounded away from zero, i.e., there exists 𝜎2 > 0 such that

inf
1⩽t⩽T

inf
N ,n

‖
‖𝐆t𝐆H

t
‖
‖ ⩾ 𝜎2 > 0

Assumptions A4: Let N = N(n) a sequence of integers indexed by n0. For each t ∈
{1,… ,T}, consider the family of N × n0 matrices 𝐇t . Then, the spectral norms of 𝐇t
are uniformly bounded in the sense that

sup
1⩽t⩽T

sup
N ,n0

‖
‖𝐇t

‖
‖ < ∞

Assumptions A5: The family of matrices (𝐇t) satisfies additionally the following
assumptions.
• Consider the rank of 𝐇t . Then

0 < lim inf
N ,n0→∞

rank
(
𝐇t

)

N
⩽ lim sup

N ,n0→∞

rank
(
𝐇t

)

N
< 1

• The smallest eigenvalue of 𝐇t𝐇t
H is uniformly bounded away from zero, i.e., there

exists 𝜅 > 0 such that
inf

1⩽t⩽T
inf
N ,n0

‖
‖
‖
𝜆i

(
𝐇t𝐇H

t
) |
|
|
𝜆i

(
𝐇t𝐇H

t
)
> 0‖‖

‖
⩾ 𝜅 > 0

The main result of this section is presented here.

Theorem 7.8.3 (G-estimator for the average mutual information) Assume that
A1–A5 hold and define the quantity

̂G = 1
NT

T∑

t=1
log det

(

𝐈N + ŷN ,t𝐇t𝐇H
t

( 1
M
𝐘t𝐘H

t

)−1)

+ 1
T

T∑

t=1

(M − N)
N

[
log

( M
M − N

ŷN ,t

)
+ 1

]
− M

N
ŷN ,t
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where ŷN ,t is the unique real positive solution of

ŷN ,t =
ŷN ,t

M
Tr

[

𝐇t𝐇H
t

(
ŷN ,t𝐇t𝐇H

t + 1
M
𝐘t𝐘H

t

)−1]

+ M − N
M

Then

̂G −  Almost Surely
−−−−−−−−→

M,N ,n→∞
0.

Theorem 7.8.4 (central limit theorem) Assume that A1–A5 hold true. Then
N

√
𝜃N

(̂G − ) Distribution
−−−−−−−→

N→∞
 (0, 1)

where 𝜃N is given by

𝜃N = 1
T2

T∑

t=1
2 log

(
MŷN ,t

)

− log
[

(M − N)
(

M − Tr
[(
𝐈N +𝐇t𝐇H

t
(
𝐆t𝐆H

t
)−1

)−2
])]

which is a well-defined quantity which satisfies

0 < lim inf
M,N ,n→∞

𝜃N ⩽ lim sup
M,N ,n→∞

𝜃N < +∞

Example 7.8.5 (Massive MIMO) This section is motivated by a massive MIMO sys-
tem, whose receiver is equipped with a large number N of antenna, such as N = 200 −
1, 000, and whose transmitter is equipped with n0 antennas. The receiver is exposed to
K interfering signals. Consider the uplink of the system illustrated in Figure 7.12. ◽

Bibliographical Remarks

In Section 7.3, we follow [384].
Section 7.4, is mainly based on [391]. In Section 7.4.5, we follow [398].
We follow [425] in Section 7.5.
El Karoui [178] has proposed a variational and nonparametric approach to this

problem based on an appropriate distance function using the Marchenko–Pastur
equation (4.5). In another important work [426] the authors propose useing a suitable
set of empirical moments, say the first q moments: for k = 1,… , q,

�̂�k = 1
N

Tr
(
𝐒k

n
)
= 1

N

N∑

i=1
𝜆k

i
(
𝐒n

)

where 𝜆i are the eigenvalues of 𝐒n (assuming N ≤ n).
In [53], a modification of the procedure in [426] is proposed to obtain a direct

moments estimator based on the sample moments (�̂�k). Compared to El Karoui [178]
and Rao et al. [426], this moment estimator is simpler and much easier to implement.
Moreover, the convergence rate of this estimator (asymptotic normality) is also estab-
lished. Chen et al. [427] have also analyzed the underlying order selection problem
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and proposed a solution based on the crossvalidation principle. We have followed Li
et al. (2013) [220] and [228] in Section 4.3. The new approach of Li et al. (2013) [220]
can be viewed as a synthesis of the optimization approach in El Karoui [178] and the
parametric setup in [53]. On one hand, the authors of [220] adopt the optimization
approach and prove that it is in general preferable to the moment approaches. On
the other hand, using a generic parametric approach for discrete population spectral
densities as well as continuous population spectral densities, they are able to avoid the
implementation difficulties in El Karoui [178]. Another important advantage of [220] is
that the optimization problem has been moved from the complex plan to the real line
by considering a characteristic equation (the Marchenko–Pastur equation) on the real
line. The optimization procedure obtained is then much simpler than the original one
in [178].

Consider the general matrix

𝐒𝐧 =
1
n
𝐓1∕2

n 𝐗n𝐗H
n 𝐓

1∕2
n

where𝐗n =
(
xij
)

is a p × p matrix consisting of independent complex entries with mean
zero and variance one, 𝐓n is a p × p nonrandom positive definite Hermitian matrix with
spectral norm uniformly bounded in p. Note that the entries of 𝐗nare not necessar-
ily i.i.d. In [428], assuming the eighth moment, the authors find that the rate of the
expected empirical spectral distribution of 𝐒n converging to its limit spectral distribu-
tion is O(1∕

√
n). Moreover, under the same assumption, we prove that for any 𝜀 > 0, the

rates of the convergence of the empirical spectral distribution of 𝐒n in probability and
the almost sure convergence are O

(
1∕n2∕5) and O

(
1∕n2∕5+𝜀) respectively.

In Section 7.6, we follow [402] and [416] for the development. We take material from
[372] for Example 8.9.2.

In Section 7.7, we take material from [405,406,411,416]. References [411] and [415]
can be viewed as two companion papers. Two papers from Ledoit and Wolf
are [429, 430]. High-dimensional covariance matrix estimation with missing observa-
tions is treated in [431].

The material in Section 7.8 is taken from [418–420]. Example 7.8.1 is taken from [419,
420]. Example 7.8.2 is taken from [421]. The model follows [422] closely. Reference
[421] is relevant in this context.

In Section 7.2, we draw some material from [381, 432].
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8

Matrix Hypothesis Testing using Large Random Matrices

This chapter can be viewed as the first application of big data. This chapter is relevant
to all the three applications we have in mind: smart grid, communications, and sensing.
We assume that massive datasets are at our disposal for data processing. The problem
may be conveniently formulated in terms of a matrix-valued hypothesis testing problem.
Here we emphasize the use of large random matrix 𝐗 as an elementary mathematical
object to study. We view 𝐗 as a whole and study the matrix-valued function f (𝐗). See
Section 8.2 for an example.

A new line of research in power system security has focused on cyber intrusion related
to intelligent electronic devices, such as remote terminal units, phasor measurement
units, and meters. In this chapter, we are motivated by big data aspects of the power
system grid. In particular, our goal is to model the large datasets using large dimen-
sional random matrices. The fundamentals of large random matrices were treated in
Chapter 3. The high dimensionality of the new formulation will unveil some unique fea-
tures of the problems. We, therefore, investigate the cyber security of the smart grid
from the viewpoint of anomaly detection, emphasizing the high dimensionality in the
framework of large random matrices. The application of these recent results (in the ran-
dom matrix theory literature) to the context of smart grid appears novel, as far as the
author is aware.

The Anomaly Detection at Multiple Scales program at the Defense Advanced
Projects Research Agency [42] creates, adapts and applies technology to anomaly char-
acterization and detection in massive data sets. Anomalies in data cue the collection
of additional, actionable information in a wide variety of real-world contexts. The
initial application domain is insider threat detection in which malevolent (or possibly
inadvertent) actions by a trusted individual are detected against a background of
everyday network activity.

Let the data speak (and only the data). This is a sound principle, provided that there
is enough data to trust the data.

The infinite-dimensional Hilbert operators are replaced with large, but finite random
matrices. By analogy, the massive data sets are naturally represented by large random
matrices. Data representation using large random matrices seems novel in the context of
big data. This representation facilitates dimension reduction and the study of scalability,
through the functions of their eigenvalues.

We view these metrics as (possibly nonlinear) functions of random matrices. Trace
function is linear. It is not obvious how to choose these functions for good performance.

Smart Grid using Big Data Analytics: A Random Matrix Theory Approach, First Edition.
Robert C. Qiu and Paul Antonik.
© 2017 John Wiley & Sons Ltd. Published 2017 by John Wiley & Sons Ltd.
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The analysis of these metrics requires advanced tools, such as the nonasymptotic theory
of random matrix. Concentration of measure is the foundation for this theory.

We demand a theory of random matrices, which is valid for arbitrary sizes of matrices.
The so-called scalability required for big data (Chapter 1.1) justifies the significance of
this nonasymptotic random matrix theory.

8.1 Motivating Examples

A large number of data samples can be summarized in the form of a large-dimensional
random matrix.

Example 8.1.1 (massive MIMO) For the large antenna array of N = 1, 000 antennas
at the base station, we assume K mobile users. Often we use multicarrer OFDM systems
with say M = 128 subcarriers. We collect together all the data for the k-th user into an
random vector 𝐱k

𝐱k =
[
X1k , ....,X(MN),k

]T ∈ ℂMN

and then form a random matrix 𝐗

𝐗 =
[
𝐱1, 𝐱2,… , 𝐱K

]
∈ ℂMN×K ◽

Example 8.1.2 (time series) For the above massive MIMO example, for each epoch
t, we associate the data matrix with𝐗t ∈ ℂMN ×K for t = 1,… ,T . We obtain a sequence
of large random matrices. If we put all the data together, a three-dimensional array (or
tensor) can be used to summarize the data. For the k-th user, we can study

𝐗k =
[
𝐱1, 𝐱2,… , 𝐱T

]
∈ ℂMN ×T

for every k = 1,… ,K . It is interesting to study the setting that T and MN are
comparable. ◽

Example 8.1.3 (matrix-valued distributions for dependence structure of the
data) Multivariate normal distribution plays a central role in the theory of mul-
tivariate statistical analysis. Even when the original data is not multivariate normal,
due to the central limit theorem, sampling distributions of certain statistics can be
approximated by normal distribution. When the central limit theorem is not valid,
the next best thing to do is the concentration inequalities of certain matrix functions
that describe the concentrations of measure phenomenon around their expectations
[40, p. 146].

The independent multivariate observations are often written in terms of a matrix,
which is known as a sample observation matrix. In such a matrix, when sampling from
multivariate normal distribution, the columns are distributed independently as mul-
tivariate normal with common mean vector and covariance matrix. The assumption
of independence of multivariate observations is not met in multivariate time series,
stochastic processes and repeated measurements on multivariate variables. In these
cases, the matrix of observations lead to the introduction of the matrix variate normal
distribution.
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Random matrices can be used to describe repeated measurements on multivariate
variables. The assumption of the independence of the observations is often not feasible.
When analyzing data sets lie these, the matrix variate elliptically contoured distributions
can be used to describe the dependence structure of the data.

Matrix variate elliptically contoured distributions represent an extension of the con-
cept of elliptical distributions from the vector to the matrix case [217,433]. The fact that
the distributions in this class possess certain properties, similar to those of the Gaus-
sian distribution, makes them especially useful. For example, many testing procedures
developed for the Gaussian theory to test various hypotheses can be used for this class
of distributions too.

For the i-th time series 𝐱i ∈ ℂ1×T , we can repeat N measurements to obtain the ran-
dom matrix 𝐗i ∈ ℂN×T . In other words, we extend the random vector to the random
matrix

𝐱i ∈ ℂ1×T → 𝐗i ∈ ℂN×T , i = 1,… , n

Although straightforward, the extension plays a central role in modeling the massive
amount of data. We are interested in the cases where N ,T and n are large, say in the
order of 1000. A total of 109 or one billion data points can be easily handled by today’s
computing capability.

This model has been used for stock markets when we assume the matrix of returns
follows a matrix of elliptically contoured distributions. This family turns out to be very
suitable to describe stock returns because the returns are neither assumed to indepen-
dent or to be normally distributed. We See Section 8.12 for details.

The applications include:

• time-varying complex network;
• large-scale intrusion detection and anomaly detection;
• preventing large-scale denial of service. ◽

8.2 Hypothesis Test of Two Alternative Random Matrices

We now consider the so-called matrix hypothesis testing problem:

0 ∶ 𝐗

1 ∶ 𝐘 =
√

SNR ⋅𝐇 + 𝐗
(8.1)

where SNR represents the signal-to-noise ratio, and 𝐇 and 𝐗 are two non-Hermitian
random matrices of m × n. We further assume that𝐇 is independent of𝐗. The problem
of (1.12) is equivalent to

0 ∶ 𝐗𝐗H

1 ∶ 𝐘𝐘H = SNR ⋅𝐇𝐇H + 𝐗𝐗H +
√

SNR
(
𝐇𝐗H + 𝐗𝐇H)

(8.2)

where 𝐇𝐇H ,𝐗𝐗H ,𝐘𝐘H are positive semidefinite random matrices. A matrix 𝐀 of
m × n is said to be positive semidefinite if all the eigenvalues of 𝐀 are non-negative,
i.e., 𝜆i(𝐀) ≥ 0, i = 1,… ,min(m, n). All matrices in (1.12) are non-Hermitian, while this
is not true in (1.13). In extremely low SNR, the cross terms 𝐇𝐗H and 𝐗𝐇H in (1.13)
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are non-Hermitian random matrices and may be dominant in the performance of the
detection. Most algorithms in the past focused on the formulation of (1.13); Perhaps
in the future we may pay more attention to (1.12) using the non-Hermitian random
matrix theory.

We need a statistic metric for hypothesis detection: decide on the hypothesis of
random matrix 𝐗𝐗H (0) or random matrix𝐘𝐘H (0). Scalar metrics are more
desirable than vectors and matrices. Natural candidates for these scalar metrics are:
(i) individual eigenvalues 𝜆i(𝐘𝐘H), i = 1,… ,min(m, n); (ii) the trace Tr

(
𝐗H𝐗

)
or

Tr
(
𝐘H𝐘

)
. We view these metrics as (possibly nonlinear) functions of random matrices.

Trace function is linear. It is not obvious how to choose these functions for good
performance.

The analysis of these metrics requires advanced tools, such as nonasymptotic theory
of random matrix. Concentration of measure is the foundation for this theory.

8.3 Eigenvalue Bounds for Expectation and Variance

The aim of this section is to provide sharp nonasymptotic bounds for the variance of
individual eigenvalues of sample covariance matrices, following [434, 435]. Eigenvalues
are treated as scalar-valued functions of a random matrix𝐗. This topic has been studied
extensively using concentration inequalities in [40]. Literature on this topic has been
comprehensively surveyed in [40].

Random covariance matrices, or Wishart matrices, were introduced by the statistician
Wishart in 1928 to model tables of random data in multivariate statistics. The spectral
properties of these matrices are critical to statistical tests and for principal component
analysis. Eigenvalues were studied asymptotically both at the global and local regimes,
considering the global behavior of the spectrum, the behavior of extreme eigenvalues
or the spacings between eigenvalues in the bulk of the spectrum. In the Gaussian case,
the eigenvalue joint distribution is explicitly known, allowing for a complete study of
the asymptotic spectral properties (see [35, 163, 436]. One of the main goals of random
matrix theory over the past decades was to extend these results to non-Gaussian covari-
ance matrices.

We demand a theory of random matrices, which is valid for arbitrary sizes of matrices.
The so-called scalability required for big data (Section 1.1) justifies the significance of
this nonasymptotic theory of random matrices.

Let 𝐙 be a N × n (real or complex) data matrix, with N ≥ n, such that its entries are
independent, centered and have variance 1. The sample covariance matrix is defined as
𝐒 = 1

N
𝐙H𝐙.

The hypothesis 0 of (1.13) is the case when the entries of 𝐗 are Gaussian. Recall
that our goal in Section 8.2 is to evaluate the performance of the metrics for hypothesis
detection: these metrics are treated as functions of random matrices. For any function
f (x), we can replace the scalar x with a matrix 𝐀 of n × n. The matrix function f (𝐀) is
described by the function of eigenvalues f

(
𝜆1,… , 𝜆n

)
. So we deal with scalar random

variables 𝜆1,… , 𝜆n, which are dependent on each other.
For a scalar random variable X, the expectation 𝜇 = 𝔼X and the variance 𝜎2 = Var X

are of fundamental interest in the context of hypothesis tests. In practice, we must esti-
mate them. For n samples or realizations of X, x1,… , xn, the expectation is estimated
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by �̂� = 1
n

n∑

i=1
xi and the variance is estimated by �̂�2 = 1

n

n∑

i=1

(

xi −
1
n

n∑

i=1
xi

)2

. The classical

limit theorems of probability [437–440] deal with a sequence of independent random
variables. Two of the most important propositions in probability theory are the law of
large numbers and the central limit theory [441].

Let us study an example to motivate this whole section.

Example 8.3.1 (matrix hypothesis test at multiple scales) Let us revisit the motivat-
ing problem in Section 8.2. We illustrate how eigenvalue inequalities are used to design
algorithms.

It is desirable to have a metric for hypothesis tests as a function of matrix size n. When
we are given a large data set, we start with a sample covariance random matrix. For
convenience, we reproduce (1.13) as follows

0 ∶ 𝐗𝐗H

1 ∶ 𝐘𝐘H = SNR ⋅𝐇𝐇H + 𝐗𝐗H +
√

SNR
(
𝐇𝐗H + 𝐗𝐇H)

(8.3)

where 𝐇𝐇H ,𝐗𝐗H ,𝐘𝐘H are positive semidefinite random matrices. For sample covari-
ance random matrix 𝐗𝐗H of n × n, let 𝜆i be the sorted eigenvalues and 𝛾i be their theo-
retical predictions. There exists a constant C such that

n∑

i=1
𝔼
[(
𝜆i − 𝛾i

)2
]
⩽ C

log n
n

(8.4)

which is identical to (8.16) below. Our algorithm is defined as follows

0 ∶
n∑

i=1
𝔼
[(
𝜆i − 𝛾i

)2
]
⩽ Λ

1 ∶
n∑

i=1
𝔼
[(
𝜆i − 𝛾i

)2
]
> Λ

(8.5)

where the decision threshold Λ is defined as

Λ = C
log n

n
Using (8.12) below, we have

Var
(
𝜆i
)
⩽ C

log n
n2 (8.6)

Similarly, we can design a hypothesis test algorithm as follows

0 ∶ Var
(
𝜆i
)
⩽ Λ

1 ∶ Var
(
𝜆i
)
> Λ

where

Λ = C
log n

n2

We conclude here that the decision threshold is an explicit function of the size n of a
large data set that is represented as a random data matrix𝐗. When we raise n to infinity,



366 Smart Grid using Big Data Analytics

we obtain the asymptotic regime. In practice, however, the central interest is in the scal-
ing speed as a function n. it is often studied in nonasymptotic theory of random matrix,
see for example [40, 442].

For hypothesis 1, the problem at hand is related to the outliers of 1
√

n
𝐙 + 𝐀, where

𝐙 is an i.i.d. random matrix of n × n and 𝐀 is a low-rank perturbation. See [333] for the
outlier problem. ◽

8.3.1 Theoretical Locations of Eigenvalues

Let𝐗 be a m × n (real or complex) matrix, with m ≥ n, such that its entries are indepen-
dent, centered, and have variance 1. Then 𝐒 = 1

m
𝐗H𝐗 is a sample covariance matrix. An

important example is the case when the entries of𝐗 are Gaussian. Then 𝐒 belongs to the
so-called Laguerre unitary ensemble (LUE) if the entries of 𝐗 are complex and to the
Laguerre orthogonal ensemble (LOE) if they are real. 𝐒 is Hermitian (or real symmetric)
and therefore has n real eigenvalues. As m ≥ n, none of these eigenvalues is trivial. These
eigenvalues are non-negative and will be denoted by 0 ⩽ 𝜆1 ⩽ · · · ⩽ 𝜆n.

Among universality results, the classical Marchenko–Pastur theorem states that if
m
n
→ y ⩾ 1 when n goes to infinity, the empirical spectral distribution

�̂� = 1
n

n∑

i=1
𝛿𝜆i

(8.7)

almost certainly converges to a deterministic measure 𝜇MP(x), called the Marchenko–
Pastur distribution of parameter y. �̂� is a random probability measure. The measure
𝜇MP(x) is compactly supported and is absolutely continuous with respect to Lebesgue
measure, with density

d𝜇MP(x) =
1

2𝜋x
√
(x − a) (b − x)𝟏[a,b] (x) dx

with a =
(
1 −
√

y
)2
, b =

(
1 +
√

y
)2. We denote by 𝜇m,n the approximate Marchenko–

Pastur density

𝜌m,n(x) =
1

2𝜋x

√(
x − am,n

) (
bm,n − x

)
𝟏[am,n,bm,n] (x)

with am,n =
(

1 −
√

m
n

)2
, bm,n =

(
1 +
√

m
n

)2
. The behavior of individual eigenvalues

was more difficult to achieve.
The following law of large numbers is obtained. For all 𝜂 > 0, and all 𝜂n ⩽ i ⩽ (1 − 𝜂)n,

i.e., the eigenvalues in the bulk of the spectrum,

𝜆i − 𝛾i −−−→n→∞
0, almost certainly,

where the theoretical location 𝛾i ∈
[
am,n, bm,n

]
of the i-th eigenvalue 𝜆i is defined by

i
n
= ∫

𝛾i

am,n

𝜌m,n(x)dx (8.8)

8.3.2 Wasserstein Distance

Assume we have access to the big data in ℝn, whose law is supposed to be the approxi-
mation of a probability measure 𝜇 of interest. �̂� is defined in
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�̂�n = 1
n

n∑

i=1
𝛿Xi

(8.9)

which is a random probability measure. Suppose that the empirical measure associated
with our big data system is a good approximation of 𝜇, with very high probability. More
precisely,

ℙ
(
Wp (�̂�n, 𝜇) ⩾ 𝜀

)
⩽ 𝜏p (n, 𝜀) (8.10)

where 𝜏p (n, 𝜀) is a known function of n and 𝜀, and ℙ is the probability measure on the
probability space.

8.3.3 Sample Covariance Matrices—Entries with Exponential Decay

For simplicity, we assume that y > 1. More precisely, we assume that 1 < 𝛼 ≤ m∕n ≤ 𝛽
where 𝛼, 𝛽 are fixed constants. Assume furthermore that 𝐒 is a complex covariance
matrix whose entries have an exponential decay and have the same first four moments as
those of an LUE (alternatively Laguerre Orthogonal Ensemble) matrix. This condition
is called condition (C0). Matrices which are considered in this subsection are sample
covariance matrices 𝐒 satisfying condition (C0). We say that 𝐒 = 1

m
𝐗H𝐗 satisfies condi-

tion (C0) if the entries Xij of𝐗 are independent and have an exponential decay: there are
positive constants C1 and C2 such that

∀i ∈ {1,… , n} ,∀j ∈ {1,… ,m}, ℙ
(
|
|
|
Xij
|
|
|
⩾ tC1

)
⩽ e−t (8.11)

for all t ≥ C2. For variance, compare the results below with (3.57).
In the bulk of the spectrum. Let 𝜂 ∈ (0, 1∕2). There exists a constant C > 0 (depend-

ing on 𝜂, 𝛼, 𝛽) such that for every sample covariance matrix 𝐒, for every 𝜂n ⩽ i ⩽ (1 − 𝜂)n

Var
(
𝜆i
)
⩽ C

log n
n2 (8.12)

Between the bulk and the edge of the spectrum. There exists a constant 𝜅 > 0
(depending on 𝛼, 𝛽) such that the following holds. For all K ≥ 𝜅, and 𝜂 ∈ (0, 1∕2],
these is a constant C > 0 such that for every sample covariance matrix 𝐒, for every
(1 − 𝜂) n ⩽ i ⩽ n − K log n

Var
(
𝜆i
)
⩽ C

log (n − i)
n4∕3(n − i)2∕3 (8.13)

where the constant C depends on K , 𝜂, 𝛼, 𝛽.
At the edge of the spectrum. There exists a constant C > 0 (depending on 𝛼, 𝛽) such

that, for every sample covariance matrix 𝐒

Var
(
𝜆i
)
⩽ C 1

n4∕3 (8.14)

Rate of convergence towards the Marchenko–Pastur distribution, Let 𝛾i be
defined in (8.8). The bounds on 𝔼

[(
𝜆i − 𝛾i

)2
]

lead to a bound on the rate of conver-
gence of the empirical spectral measure  towards the Marchenko–Pastur distribution
in terms of 2-Wasserstein distance. W 2

2 (, 𝜇) is a random variable defined by

W2 (, 𝜇) = inf
𝜋

(

∫ℝ2
|x − y|2d𝜋

(
x, y
)
)1∕2
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where the infimum is taken over all probability measures 𝜋 on ℝ2 such that its first
marginal is  and its second marginal is 𝜇. To achieve the expected bound, we rely on
another expression of W2 in terms of distribution functions, namely

W 2
2 (, 𝜇) = ∫

1

0

(
F−1(x) − G−1(x)

)2dx

where F−1(x) (respectively G−1(x)) is the generalized inverse of the distribution func-
tion F(x) (respectively G(x)) of  (respectively 𝜇) [443]. These functions depend on the
matrix size m, n.

There exists a constant C > 0 depending only on 𝛽 such that for all 1 ≤ m
n
≤ 𝛽

W 2
2 (, 𝜇) ⩽ 2

n

n∑

i=1

(
𝜆i − 𝛾i

)2 + C
n2 (8.15)

The intuition to study the sum of (possible dependent) random variables
(
𝜆i − 𝛾i

)2 is

satisfactory. The average 1
n

n∑

i=1

(
𝜆i − 𝛾i

)2 will greatly improve the accuracy of the estimate

of individual term
(
𝜆i − 𝛾i

)2 when n turns large.
Let 1 < 𝛼 < 𝛽. Then exists a constant C > 0 depending only on 𝛼 and 𝛽 such that, for

all m and n such that 1 < 𝛼 ≤ m
n
≤ 𝛽,

n∑

i=1
𝔼
[(
𝜆i − 𝛾i

)2
]
⩽ C

log n
n

(8.16)

Therefore

𝔼
[
W 2

2 (, 𝜇)] ⩽ C
log n

n2 (8.17)

The convergence rate of log n∕n2 is very impressive when n turns large, say 1000.
Comparing (8.17) with (3.56) for the expectation, we find that the rate of the expecta-

tion of moments decays with O(1∕n), in contrast with log n
n2 of 𝔼

[
W 2

2 (, 𝜇)].
8.3.4 Gaussian Covariance Matrices

This subsection is concerned with Gaussian covariance matrices. The results and tech-
niques used here rely heavily on the Gaussian structure, in particular on the determi-
nantal properties of the eigenvalues. Let 𝛾i be defined in (8.8).

Inside the bulk of the spectrum. Let 𝜂 ∈ (0, 1∕2] and 1 < 𝛼 < 𝛽. Let 𝐒 be an LUE
matrix. There exists a constant C > 0 (depending only on 𝜂, 𝛼, 𝛽) such that for all 𝛼 ⩽
m
n
⩽ 𝛽 and for every 𝜂n ⩽ i ⩽ (1 − 𝜂)n

𝔼
[
|
|𝜆i − 𝛾i

|
|

2
]
⩽ C

log n
n2 (8.18)

In particular

Var
(
𝜆i
)
⩽ C

log n
n2 (8.19)

Between the bulk and the edge of the spectrum. There exists a constant 𝜅 > 0
(depending on 𝛼, 𝛽) such that the following holds. For all K ≥ 𝜅, and 𝜂 ∈ (0, 1∕2]



Matrix Hypothesis Testing using Large Random Matrices 369

these is a constant C > 0 such that for every sample covariance matrix 𝐒, for every
(1 − 𝜂) n ⩽ i ⩽ n − K log n

𝔼
[(
𝜆i − 𝛾i

)2
]
⩽ C

log (n − i)
n4∕3(n − i)2∕3 (8.20)

In particular

Var
(
𝜆i
)
⩽ C

log (n − i)
n4∕3(n − i)2∕3 (8.21)

where the constant C depends on K , 𝜂, 𝛼, 𝛽.
At the edge of the spectrum. Let 𝛼 > 1. There exists a constant C > 0 depending only

on 𝛼 such that the following holds. Let 𝐒 be an LUE matrix. Denote by 𝜆max the maximal
eigenvalue of 𝐒. Then, for all n ∈ ℕ such that m > 𝛼n, and for all 0 < 𝜀 ≤ 1,

ℙ
(
𝜆max ⩽ bm,n (1 − t)

)
⩽ C2 exp

(
− 2

C
n2t3
)

(8.22)

and

ℙ
(
𝜆max ⩾ bm,n (1 + t)

)
⩽ C exp

(
− 2

C
nt3∕2

)

The large deviation tails are also known. Let 𝐒 be an LUE matrix. Then there exists a
universal constant C > 0 such that for all n ≥ 1, for all m ∈ ℕ such that m > 𝛼n

Var
(
𝜆max
)
⩽ 𝔼
[(
𝜆max − bm,n

)2
]
⩽ C 1

n4∕3 (8.23)

Similar results are probably true for the k-th largest eigenvalue (for k ∈ ℕ fixed). A
left-side deviation inequality for the smallest eigenvalue is established also in the case
when m > 𝛼n

ℙ
(
𝜆min ⩽ am,n (1 − t)

)
⩽ C exp

(
− 2

C
nt3∕2

)
(8.24)

for all 0 < t ≤ 1. But no right-side deviation inequality seems to be known for the small-
est eigenvalue 𝜆min and therefore we cannot deduce a precise bound on the variance of
the smallest eigenvalue.

8.4 Concentration of Empirical Distribution Functions

In this section we are interested in concentration as a function of matrix size n. Our
method is to convert a random matrix into a random vector of eigenvalues.

Let 𝐗 =
(
X1,… ,Xn

)
be a random vector in ℝn with distribution 𝜇. We study rates of

approximation of the average marginal distribution function

F(x) = 𝔼Fn(x) =
1
n

n∑

i=1
ℙ
{

Xi ⩽ x
}

by the empirical distribution function

Fn(x) =
1
n
card

{
i ⩽ n ∶ Xi ⩽ x

}
, x ∈ ℝ
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where card(⋅) denotes the cardinality of the set. We shall measure the distance between
F and Fn by means of the (uniform) Kolmogorov metric

‖
‖Fn − F‖‖ = sup

x
|
|Fn(x) − F(x)||

and as well as by means of the L1-metric

W1
(
Fn, F

)
= ∫

∞

−∞

|
|Fn(x) − F(x)||dx

The latter, also called the Kantorovich–Rubinstein distance, may be interpreted as the
minimal cost needed to transport the empirical measure Fn to F with cost function

d(x, y) = |x − y|

(the price paid to transport the point x to the point y).
The classical example is the case where all Xis are independent and identically

distributed (i.i.d.), that is, when 𝜇 represents a product measure on ℝn with equal
marginals, say, F .

On the other hand, the observations X1,… ,Xn may also be generated by nontriv-
ial functions of independent random variables. Of particular importance are random
symmetric matrices

(
1
√

n
𝜉ij

)
, 1 ⩽ i, j ⩽ n, with i.i.d. entries above and on the diagonal.

Arranging their eigenvalues X1 ⩽ · · · ⩽ Xn in increasing order, we arrive at the spectral
empirical measures Fn. In this case, the mean F = 𝔼Fn also depends on n and converges
to the semicircle law under appropriate moment assumptions on 𝜉ij. By studying the
spectral empirical measures, we reduce a random matrix problem to a simpler random
vector problem.

The study of matrices motivates the study of deviations of Fn from the mean F under
general analytical hypotheses on the joint distribution of the observations, such as
Poincare or logarithmic Sobolev inequalities. A probability measure 𝜇 on ℝn is said to
satisfy a Poincare-type or spectral gap inequality with constant 𝜎2 (𝜎 > 0) if, for any
bounded smooth function g on ℝn with gradient ∇g

Var𝜇
(
g
)
⩽ 𝜎2∫ |∇g|2d𝜇 (8.25)

Similarly, 𝜇 satisfies a logarithmic Sobolev inequality with constant 𝜎2 if, for all bounded
smooth g

Ent𝜇
(
g2) ⩽ 2𝜎2∫ |∇g|2d𝜇 (8.26)

In this case, we write PI(𝜎2) for short. Here, as usual,

Var𝜇
(
g
)
= ∫ g2d𝜇 −

(

∫ gd𝜇
)2

stands for the variance of g and

Ent𝜇
(
g2) = ∫ g log gd𝜇 − ∫ gd𝜇 log∫ gd𝜇

denotes the entropy of g ≥ 0 under the measure 𝜇. We write LSI(𝜎2). It is well known
that LSI(𝜎2) implies PI(𝜎2).
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These hypotheses are crucial in the study of the concentration of the spectral empir-
ical distributions, especially of the linear functionals ∫ fdFn with individual smooth f
on the line; See. for example [199, 444–446]. Qiu and Wicks [40] surveyed many recent
results. A remarkable feature of the above approach to spectral analysis is that no spe-
cific knowledge about the non-explicit mapping from a random matrix to its spectral
empirical measure is required. Instead, one may use general Lipschitz properties only,
which are satisfied by this mapping. As for the general (not necessarily matrix) scheme,
we shall only require hypotheses (8.25) and (8.26).

Theorem 8.4.1 Under PI(𝜎2) on ℝn (n ≥ 2),

𝔼∫
∞

−∞

|
|Fn(x) − F(x)||dx ⩽ C𝜎

(
M + log n

n

)1∕3

(8.27)

where M = 1
𝜎

max
i,j
|
|
|
𝔼Xi − 𝔼Xj

|
|
|

and C is an absolute constant.

Note that the Poincare-type inequality (8.25) is invariant under shifts of the measure
𝜇 while the left-hand side of (8.27) is not. This is why the bound on the right-hand side
of (8.27) should also depend on the means of the observations.

In terms of the ordered statistics X̃1 ⩽ · · · ⩽ X̃n of an arbitrary random vector
𝐗 =

(
X1,… ,Xn

)
in ℝn there is a general two-sided estimate for the mean of the

Kantorovich–Rubinstein distance:
1

2n

n∑

i=1

|
|X̃i − 𝔼X̃i

|
| ⩽ 𝔼W1

(
Fn, F

)
⩽ 2

n

n∑

i=1

|
|X̃i − 𝔼X̃i

|
| (8.28)

Hence, under the conditions of Theorem 8.4.1, one may control the local fluctua-
tions of X̃i (on average), which typically deviate from their mean by not more than
C𝜎
(

M+log n
n

)1∕3
.

Under a stronger hypothesis, such as (8.26), one can obtain more information about
the fluctuations of Fn(x) − F(x) for individual points x and thus gain some control of
the Kolmogorov distance. Like the bound (8.27), such fluctuations will, on average, be
shown to be at most

𝛽 =
(
‖F‖Lip𝜎

)2∕3

n1∕3

in the sense that
𝔼 ||Fn(x) − F(x)|| ⩽ C𝛽

where ‖F‖Lip, is the Lipschitz seminorm of F .

Theorem 8.4.2 Assume that F has a density, bounded by a number ‖F‖Lip, the Lips-
chitz seminorm of F . Under LSI(𝜎2), for any t > 0

ℙ
(
‖
‖Fn − F‖‖ ⩾ t

)
⩽ 4

t
e−c(t∕𝛽)3

(8.29)

In particular

𝔼 ‖‖Fn − F‖‖ ⩽ C𝛽log1∕3
(

1 + 1
𝛽

)

(8.30)

where c and C are positive absolute constants.
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Example 8.4.3 (random matrix with Bernoulli random variables) Let all Xi = 𝜉,
where 𝜉 is uniformly distributed in [−1,1]. Here all random variables are identically dis-
tributed with 𝔼Xi = 0. The joint distribution 𝜇 represents a uniform distribution on the
main diagonal of the cube [−1, 1]n, so it satisfies (8.25) and (8.26) with 𝜎 = c

√
n, where

c is absolute. In this case, F is a uniform distribution on [−1,1], so ‖F‖Lip = 1∕2 and 𝛽 is
of order 1. Hence, both sides of (8.30) are of order 1. ◽

8.4.1 Poincare-Type Inequalities, Tensorization

Poincare-type inequalities are known to hold with finite 𝜎 for many natural families
of probability measures 𝜇 on ℝn. However, the problem of effective bounding of the
Poincare constant 𝜎2 is not simple.

Definition 8.4.4 A probability measure 𝜇 on ℝn satisfies a Poincare-type inequality
with constant 𝜎2, 𝜎 > 0, called PI(𝜎2), if for any bounded smooth function f on ℝn with
gradient ∇f

Var𝜇
(

f
)
⩽ 𝜎2∫ |∇f |2d𝜇

Here, Var𝜇
(

f
)

is the variance of f under the measure 𝜇, and 𝜎 > 0 is a constant
depending on 𝜇 only. Note that the inequality itself is required to hold in the class of all
bounded smooth functions f ∶ ℝn → ℝ. However, the smoothness of f may be relaxed
to the property of being “locally Lipschitz,” which means that near every point x the
function f has a finite Lipschitz seminorm

‖f ‖Lip = sup
0<|x−y|<r

|f (x) − f (y)|
|x − y|

(8.31)

In this case the generalized modulus of the gradient

|∇g(x)| = lim sup
y→x

|g(x) − g(y)|
|x − y|

represents a finite Borel measurable function (see [447] for discussion and a general
theory).

Now we state a very useful result that extends the Poincare-type inequality to product
measures.

Lemma 8.4.5 Let (Ω, 𝜇) =
(
Ω1, 𝜇1

)
× · · · ×

(
Ωn, 𝜇n

)
and f ∶ Ω → ℝ be mea-

surable. Denote fi as function on Ωi as defined by fi(xi) = f
(
xi,… , xn

)
where

x1,… , xi−1, xi+1,… , xn are fixed. Then

Var𝜇
(

f
)
⩽

n∑

i=1
∫ Var𝜇i

(
f
)
d𝜇

As an application of the lemma, we get the following well known theorem (see [446]):

Theorem 8.4.6 Let 𝜇i satisfy the Poincare-type inequality. Then

Var𝜇i

(
f
)
⩽ 𝜎2 ∫

∞

−∞

|
|∇fi(x)||

2d𝜇i
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for every bounded smooth function fi on ℝ with some constant 𝜎2. Then the product
measure 𝜇 = 𝜇1 ⊗ · · ·⊗ 𝜇1 on the product space ℝn satisfies the Poincare-type inequal-
ity. So for every bounded smooth function f on Ω

Var𝜇
(

f
)
⩽ 𝜎2 ∫

∞

−∞
|∇f (x)|2d𝜇

Hence, the product measure also satisfies the Poincare-type inequality with the same
constant 𝜎2.

The Poincare-type inequality is also stable under Lipschitz transformation.

Theorem 8.4.7 (Poincare-type inequality is stable under Lipschitz transformation)
Let 𝜇 be a probability measure on ℝn that satisfies a Poincare-type inequality with con-
stant 𝜎2, called PI(𝜎2). Suppose T ∶ ℝn → ℝn is a Lipschitz transformation so that

‖T𝐱 − T𝐲‖ℝk ⩽ C‖𝐱 − 𝐲‖ℝn

Let 𝜈 = T𝜇−1. Then 𝜈 also satisfies a Poincare-type inequality with constant (C𝜎)2. So
we have

Var𝜈
(

f
)
⩽ C2𝜎2∫ |∇f |2d𝜈

8.4.2 Empirical Poincare-Type Inequalities

Now, we are ready to consider Poincare-type inequalities for empirical measures to
study the more general situation of an arbitrary random vector 𝐗 =

(
X1,… ,Xn

)
in ℝn

where X1,… ,Xn are not necessary independent or identically distributed. We consider
Fn, the empirical distribution associated with the observations X1,… ,Xn and F the mean
of the empirical distribution.

We want to measure the closeness of Fn to F . In general F is not continuous so it
is hardly possible to work with the Kolmogorov distance 𝜌(Fn, F) without additional
assumptions on F (such as the existence and boundedness of its density). So, it seems
more natural to choose weaker metrics, such as the Levy distance L(Fn, F) or the
Levy–Prokhorov distance 𝜋(Fn, F), both of which are responsible for the weak conver-
gence. Under moment assumptions, one may also involve the Kantorovich–Rubinstein
distance

W1
(
Fn, F

)
= ∫

+∞

−∞

|
|Fn(x) − F(x)||dx

Definition of Empirical Poincare-Type Inequality

By analytic hypotheses we mean integro-differential inequalities, imposed on the
joint distribution 𝜇 of 𝐗. As the simplest example, one may consider Poincare-type
inequalities

Var𝜇
(

f
)
⩽ 𝜎2 ∫ |∇f |2d𝜇

where Var𝜇
(

f
)

is the variance of f under the measure 𝜇 𝜎 > 0 is a constant depending
on 𝜇 only, and the inequality itself is required to hold in the class of all bounded smooth
functions f ∶ ℝn → ℝ.
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Let us apply the Poincare-type inequality to smooth functions of the form

f (𝐱) =
g(x1) + · · · + g(xn)

n
= ∫ gdFn, 𝐱 =

(
x1,… , xn

)
∈ ℝn

where

Fn = 1
n

n∑

i=1
𝛿xk

Then

|∇f (𝐱)|2 =
g′(x1)

2 + · · · + g′(xn)
2

n2 = 1
n ∫

(
g′
)2dFn

As ∫ Fnd𝜇 = F , the Poincare-type inequality will take the form

𝔼
|
|
|
|∫ gdFn − ∫ gdF

|
|
|
|

2
⩽ 𝜎

2

n ∫ |
|g

′|
|

2dF

This inequality may be called an “empirical Poincare-type inequality.” Note it remains
to hold for complex-valued functions g, as well (by separating the real and imaginary
parts of g).

Concentration of Empirical Characteristic Functions

The empirical Poincare-type inequality implies, for example

𝔼
|
|
|
|∫ gdFn − ∫ gdF

|
|
|
|
⩽ 𝜎
√

n

(

∫ |
|g

′|
|

2dF
)1∕2

So, linear functionals of the empirical measures, ∫ gdFn deviate from their mean ∫ gdF
on average at rate 1

√
n

like in the i.i.d. case—but under the additional assumption that g
is smooth, such that the integral ∫ |g′|2dF is finite.

In particular, we cannot apply it to an indicator function g = 1(−∞,x] to get

𝔼 ||Fn(x) − F(x)|| ⩽
C
√

n
which is known to be true in the i.i.d. case. Nevertheless, at the expense of the rate,
and properly changing the distance, one can suitably approximate indicator functions
g = 1(−∞,x] by smooth ones. The resulting bound should be weaker. Our problem is to
estimate 𝔼𝜌

(
Fn, F

)
in terms of 𝜎2 and n, where 𝜌 is a given metric, responsible for the

weak convergence on the real line. For example, it is known in [448] that if additionally
𝔼Xi = 𝔼Xj, for all i, j then

𝔼W1
(
Fn, F

)
⩽ C𝜎

(
log (n + 1)

n

)1∕3

which is stated in Theorem 8.4.1.

Concentration of Empirical Distributions in Levy Metric

It is well known that closeness of characteristic functions in some sense implies close-
ness of the distributions with respect to the metrics that generate the topology of the
weak convergence.
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As an example, we will mention a result of Zolotarev about the Levy distance. Let F
and G be distribution functions on the line with the characteristic functions

f (t) = ∫
+∞

−∞
eitxdF (x) , g (t) = ∫

+∞

−∞
eitxdG (x) , t ∈ ℝ,

respectively. Recall that the Levy distance L(F ,G) is defined as the minimal value h ≥ 0,
such that

F (x − h) − h ⩽ G (x) ⩽ F (x + h) + h, for all t ∈ ℝ

Theorem 8.4.8 (Zolotarev [449]) For any T > 0

L (F ,G) ⩽ c1 ∫
T

0

|f (t) − g (t)|
t

dt + c2
log (1 + T)

T
where c1, c2 > 0 are universal constants.

See Appendix A of [450] for more details of this theorem. Note that there is no restric-
tion on F and G. Hence, if f is close to g on a long interval [0,T], then L (F ,G) will be
small. The proofs of theorems rely heavily on this theorem.

Now we can apply Zolotarev’s theorem to the empirical distribution functions to get

L
(
Fn, F

)
⩽ c1 ∫

T

0

|
|fn (t) − f (t)||

t
dt + c2

log (1 + T)
T

where fn is the characteristic function of Fn and f is the characteristic function of F .
Taking the expectation and using Fubini’s theorem, we obtain

𝔼L
(
Fn, F

)
⩽ c1 ∫

T

0

𝔼 ||fn (t) − f (t)||
t

dt + c2
log (1 + T)

T
(8.32)

Now recall that an empirical Poincare-type inequality has the form

𝔼
|
|
|
|∫ gdFn − ∫ gdF

|
|
|
|

2
⩽ 𝜎

2

n ∫ |
|g

′ (x)||
2dF (x)

and taking g (x) = eitx with parameter t gives

∫ gdFn = 1
n

n∑

k=1
eitXk = fn (t) and ∫ gdF = ∫ eitXdF = f (t)

So with the above characteristic functions the empirical Poincare-type inequality
implies we get

𝔼 ||fn (t) − f (t)|| ⩽
√

𝔼||fn (t) − f (t)||
2 ⩽ 𝜎 |t|√

n
Substituting this back into (8.32), we can obtain the following inequality

𝔼L
(
Fn, F

)
⩽ c1 ∫

T

0

𝜎
√

n
dt + c2

log (1 + T)
T

= c1
𝜎T
√

n
+ c2

log (1 + T)
T

, for T > 0



376 Smart Grid using Big Data Analytics

In Zolotarev’s bound, we may take constants c1 = 0.4, and c2 = 4. So we can consider
following cases on the inequality

𝔼L
(
Fn, F

)
⩽ C

(
𝜎T
√

n
+

log (1 + T)
T

)

Case I: 0 < 𝜎 ≤ 1. Then choosing T = n1∕4 gives

𝔼L
(
Fn, F

)
⩽ C

1 + log
(
1 + n1∕4)

n1∕4

As 1 + log
(
1 + n1∕4) ⩽ 5 log (n + 1), we can obtain

𝔼L
(
Fn, F

)
⩽ C

log (n + 1)
n1∕4

for some universal constant C.
Case II: 𝜎 > 1. Then we choose T = n1∕4

√
𝜎

𝔼L
(
Fn, F

)
⩽ n1∕4
√
𝜎

(

1 + log

(

1 + n1∕4
√
𝜎

))

⩽
√
𝜎

n1∕4

(
1 + log

(
1 + n1∕4))

⩽ C
√
𝜎

n1∕4 log (n + 1) ,

where C is some universal constant.

One can summarize these results as the following theorem:

Theorem 8.4.9 Let 𝐗 =
(
X1,… ,Xn

)
be a random vector in ℝn and Fn be the

empirical distribution associated with 𝐗. Let F = 𝔼Fn and suppose 𝜇 =  (𝐗) satisfies a
Poincare-type inequality with constant 𝜎2. Then

1) if 0 ≤ 𝜎 ≤ 1, then

𝔼L
(
Fn, F

)
⩽ C

log (n + 1)
n1∕4

2) if 𝜎 > 1, then

𝔼L
(
Fn, F

)
⩽ C
√
𝜎 log (n + 1)

n1∕4

The two cases in the theorem may be united by one inequality such as

𝔼L
(
Fn, F

)
⩽ C
√

1 + 𝜎
n1∕4 log (n + 1) (8.33)

which holds for any 𝜎 (with some other constant C).
By similar methods, we can find a bound for higher moments. The Lp norm is

defined as
‖
‖
‖

L
(
Fn, F

)‖
‖
‖p

=
(
𝔼
(
L
(
Fn, F

))p)1∕p



Matrix Hypothesis Testing using Large Random Matrices 377

For p ≥ 2, after using the Zolotarev bound, we use Fubini’s theorem. With some other
constant c > 0, we obtain

c‖‖
‖

L
(
Fn, F

)‖
‖
‖p

⩽
p
√

n
T +

log (1 + T)
T

(8.34)

Theorem 8.4.10 Let 𝐗 =
(
X1,… ,Xn

)
be a random vector in ℝn and Fn be the

empirical distribution associated with 𝐗. Let F = 𝔼Fn and suppose 𝜇 =  (𝐗) satisfies a
Poincare-type inequality with constant 𝜎2. Then for p ≥ 1 we have

‖
‖
‖

L
(
Fn, F

)‖
‖
‖p

⩽ C
√
(1 + 𝜎) p

log (n + 1)
n1∕4

where C is an absolute constant.

When p = 1, we return to Theorem 8.4.9.

8.4.3 Concentration of Random Matrices

Now we study the empirical spectral measures Fn of the n ordered eigenvalues X1 ⩽
· · · ⩽ Xn of a random symmetric matrix𝐌 =

(
1
√

n
𝜉ij

)
, 1 ⩽ i, j ⩽ n

𝐌 = 1
√

n

⎡
⎢
⎢
⎢
⎣

𝜉11 𝜉12 · · · 𝜉1n
𝜉21 𝜉22 · · · 𝜉2n
⋮ ⋮ ⋱ ⋮
𝜉n1 𝜉n2 · · · 𝜉nn

⎤
⎥
⎥
⎥
⎦

for 𝜉ij = 𝜉ji with independent entries above and on the diagonal (n ≥ 2). Assume that
𝔼𝜉ij = 0 and Var

(
𝜉ij
)
= 1 so that the means F = 𝔼Fn converge to the semicircle law G

with mean zero and variance one. The symmetry condition ensures that 𝐌 has real
eigenvalues eigenvalues X1 ⩽ · · · ⩽ Xn. The boundedness of moments of 𝜉ij of any order

will be guaranteed by (8.25). Consider Fn(x) =
1
n

n∑

i=1
𝛿Xi

(x), the spectral empirical distri-

bution associated with the particular values

X1 = x1,X2 = X2,… ,Xn = xn

Theorem 8.4.11 If the distributions of the 𝜉ijs satisfy the Poincare-type inequality
PI(𝜎2) on the real line, then

𝔼∫
∞

−∞

|
|Fn(x) − F(x)||dx ⩽ C𝜎 1

n2∕3 (8.35)

where C is an absolute constant. Moreover, under logarithmic Sobolev inequality
LSI(𝜎2)

𝔼 ‖‖Fn(x) − G)‖‖ ⩽ C
(
𝜎

n

)2∕3
log1∕3n + ‖F − G‖ (8.36)

By the convexity of the distance, we always have 𝔼 ‖‖Fn(x) − G)‖‖ ⩾ ‖F − G‖. In some
random matrix models, the Kolmogorov distance ‖F − G‖ is known to tend to zero at
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maximum rate of 1∕n2∕3−𝜀. In the case of Gaussian 𝜉ij, the distance ‖F − G‖ is known to
be of order 1∕n.

The distribution of the eigenvalues when 𝜉ij are i.i.d. can be formulated as follows.

Theorem 8.4.12 (Wigner’s semicircle law [451]) Let𝐌 =
(

1
√

n
𝜉ij

)
, i ≤ j be an n × n

random symmetric matrix with eigenvalues X1 = x1 ⩽ · · · ⩽ Xn = xn. If (𝜉ij) are i.i.d.,

𝔼𝜉ij = 0,𝔼𝜉2
ij = 1, and Fn(x) =

1
n

n∑

i=1
𝛿Xi

(x), then

F = 𝔼Fn(x) ⇒ G weakly

where G is a distribution function of the semi-circle law with density

g(x) =

{
1

2𝜋

√
4 − x2, |x| ⩽ 2

0, |x| > 2

Now, we consider the case when 𝜉ij may be dependent and not necessarily have same
distributions. An important point to note in this case is that the joint distribution𝜇 of the
eigenvalues, as a probability measure onℝn represents the image of the joint distribution
of 𝜉ijs under a Lipschitz map T . We will use the following classical fact from the theory of
matrix inequalities: Let 𝐀 =

(
aij
)
,𝐁 =

(
bij
)
, i ≤ j be an n × n symmetric matrices with

eigenvalues x1 ⩽ · · · ⩽ xn and y1 ⩽ · · · ⩽ yn, respectively. Then
n∑

i=1

(
xi − yi

)2 ⩽
n∑

i=1

n∑

j=1

(
aij − bij

)2

Thus, if𝐌 = 1
√

n

(
𝜉ij
)

i⩽j, in terms of our map

T ∶𝐌 → 𝐱 =
(
x1,… , xn

)
∈ ℝn

we have
‖
‖𝐱 − 𝐱

′‖
‖

2
ℝn =

‖
‖
‖

T (𝐌) − T
(
𝐌′)‖‖
‖

2

ℝn

⩽ 1
n

n∑

i=1

n∑

j=1

(
𝜉ij − 𝜉

′

ij

)2

= ‖‖
‖

T (𝐌) − T
(
𝐌′)‖‖
‖

2

HS

⩽ 2
n
∑

i⩽j

(
𝜉ij − 𝜉

′

ij

)2

Therefore, we have the Lipschitz seminorm (defined in (8.31) below)

‖T‖Lip ⩽
√

2
n

Now, assume 𝐌 is random and symmetric as before. Then 𝐌 = 1
√

n

(
𝜉ij
)

i⩽j can be
viewed as a random vector in ℝn(n+1)∕2 with distribution Q = Q𝜉 . Assume that Q𝜉 satis-
fies Poincare-type inequality PI

(
𝜎2) on ℝn(n+1)∕2. Then, T pushes forward Q𝜉 to 𝜇 = 𝜇X
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on ℝn and by Theorem 8.4.7, 𝜇 = Q𝜉T−1 satisfies PI
(
𝜎2

n
)

on ℝn with 𝜎2
n = 2

n
𝜎2. Thus, we

obtain

Theorem 8.4.13 Let 𝐌 = 1
√

n

(
𝜉ij
)

i⩽j be an n × n random symmetric matrix
with eigenvalues X1 ⩽ · · · ⩽ Xn. Suppose that the joint distribution of 𝜉ij satis-
fies Poincare-type inequality PI

(
𝜎2), then the empirical spectral distributions

Fn (x) =
1
n

n∑

i=1
𝛿Xi

(x) satisfy the empirical Poincare-type inequality PI
(
𝜎2

n
)

ℝn with

𝜎2
n = 2

n
𝜎2. So

∫ gdFn − ∫ gdF ⩽ 2𝜎2

n ∫
(
g′
)2dF

where, as before, F = 𝔼Fn (x).

Here, we study the concentration of Fn around F in terms of Levy distance. The Lp

bound of the Levy distance in this situation using (8.34) will be

c‖‖
‖

L
(
Fn, F

)‖
‖
‖p

⩽
𝜎p
n

t +
log (1 + t)

t
, for t > 0

where we have replaced 𝜎 with 𝜎
√

2∕n. We consider two cases again and choose t.

Case I: 0 ≤ 𝜎 ≤ 1. Then choosing t =
√

n∕p gives

c ‖‖
‖

L
(
Fn, F

)‖
‖
‖p

⩽
𝜎p
n

t +
log (1 + t)

t

⩽
√

p
n

(
1 + log

(
1 +
√

n
))

⩽ C
√

p
n

log (n + 1)

Case II: 𝜎 > 1. Then choosing t =
√

n∕𝜎p gives

c ‖‖
‖

L
(
Fn, F

)‖
‖
‖p

⩽
𝜎p
n

t +
log (1 + t)

t

⩽
√
𝜎p
n

(
1 + log

(
1 +
√

n
))

⩽ C
√
𝜎

√
p
n

log (n + 1)

Therefore, the two cases can be combined in the following theorem.

Theorem 8.4.14 Let 𝐌 = 1
√

n

(
𝜉ij
)

i⩽j be an n × n random symmetric matrix with
eigenvalues X1 ⩽ · · · ⩽ Xn. Suppose that the joint distribution of 𝜉ij satisfies Poincare-
type inequality PI

(
𝜎2), then the empirical spectral distributions

‖
‖
‖

L
(
Fn, F

)‖
‖
‖p

⩽ C
√
(1 + 𝜎) p

log (n + 1)
√

n
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for some absolute constant C where, Fn(x) is the empirical spectral distribution, F(x) =
𝔼Fn (x), and L is the Levy distance.

Under the same assumption of Poincare-type inequality PI
(
𝜎2), we now have n1∕2 in

the denominator rather than n1∕4 as in Theorem 8.4.10. However,
√

p is still the same,
so derivation of the deviation inequalities is not different from that of Theorem 8.4.10.
In [450], the author followed the same procedure as before and apply Proposition B.3 of
the Appendix section to Theorem 8.4.14. He obtained

𝔼‖‖
‖

L
(
Fn, F

)‖
‖
‖𝜓2

⩽ C
√
(1 + 𝜎)

log (n + 1)
√

n

in terms of the Orlicz norm generated by the Young function 𝜓2 = et2 − 1. Let 𝜓 be a
Young function. For any measurable function Z on ℝ

‖Z‖𝜓 = inf
{

𝜆 > 0 ∶ 𝔼𝜓
(
|Z|
𝜆

)

⩽ 1
}

The Young function 𝜓(t) = |t|p in the examples yields the usual norm

‖Z‖𝜓 =
(
𝔼|Z|p

)1∕p = ‖Z‖p on Lp

Hence, by the definition of the Orlicz norm, we get

𝔼eL(Fn,F)2∕𝛼2 ⩽ 2

where

𝛼 = C
√
(1 + 𝜎)

log (n + 1)
√

n
Hence, by Chebyshev’s inequality, we obtain the following deviation inequality.

Corollary 8.4.15 Under Poincare-type inequality PI
(
𝜎2), for any t > 0, we have

ℙ
(
L
(
Fn, F

)
> t
)
⩽ 2e−t2∕𝛼2

where

𝛼 = C
√
(1 + 𝜎)

log (n + 1)
√

n
and C is an absolute constant.

Therefore, in terms of the deviation inequality, we find the same Gaussian-type
concentration. However, if we fix t > 0 and insert 𝛼 we now obtain a fast decay as
n → +∞ as

ℙ
(
L
(
Fn, F

)
> t
)
⩽ 2e−Ct2n∕log2(n+1)

Under the assumption that the entries 𝜉ij, i ≤ j are i.i.d., the concentration property of
spectral empirical distributions were studied by many authors. In particular, assuming
that each 𝜉ij satisfies a log-Sobolev inequality with common constant 𝜎2, an analog of
Corollary 8.4.15 can be found in a paper by Guionnet and Zeitouni [199].
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Example 8.4.16 (new test metric for hypothesis testing in large random
matrices) Consider the hypothesis test problem

0 ∶ 𝐀 = 1
√

n

(
𝜉ij
)

i⩽j, 1 ⩽ i, j ⩽ n

1 ∶ 𝐁 ≠ 1
√

n

(
𝜉ij
)

i⩽j, 1 ⩽ i, j ⩽ n

where 𝜉ij are independent may be dependent and not necessarily have same distributions
such that Theorem 8.4.14 can be valid. Motivated by Theorem 8.4.14, we propose the use
of the Levy distance as a new test metric:

0 ∶ ‖‖
‖

L
(
Fn, F

)‖
‖
‖p

⩽ C
√
(1 + 𝜎) p

log (n + 1)
√

n

1 ∶ ‖‖
‖

L
(
Fn, F

)‖
‖
‖p
> C
√
(1 + 𝜎) p

log (n + 1)
√

n
where C is an absolute constant. Or even better, we use the Orlicz norm

0 ∶ ‖‖
‖

L
(
Fn, F

)‖
‖
‖𝜓2

⩽ C
√
(1 + 𝜎)

log (n + 1)
√

n

1 ∶ ‖‖
‖

L
(
Fn, F

)‖
‖
‖𝜓2

> C
√
(1 + 𝜎)

log (n + 1)
√

n ◽

The use of the Levy distance for test metric in a hypothesis test appears new, first here
suggested by the author.

8.5 Random Quadratic Forms

Consider a quadratic form

𝐲 = 𝐱H𝐀𝐱
where 𝐱 =

(
X1,… ,Xn

)
is, as usual, a random vector and 𝐀 =

(
aij
)

1⩽i,j⩽n a deterministic
matrix. We say that X is sub-exponential with exponent 𝛼 if there are constants a, b > 0
such that for all t > 0

ℙ (|X − 𝔼X| ⩾ t𝛼) ⩽ a exp(−bt) (8.37)

If 𝛼 = 1∕2, then X is sub-Gaussian.
In 1971, Hanson and Wright [452] obtained the first important inequality for

sub-Gaussian random variables. If 𝐱 =
(
X1,… ,Xn

)
∈ ℝn be a random vector with Xi

being i.i.d symmetric and sub-Gaussian random variables with mean 0 and variance 1.
There exist constants C,C′ > 0 (which may depend on the constants in (8.37)) such that
the following holds. Let 𝐀 be a real matrix of size n with entries aij and 𝐁 ∶=

(
|
|
|
aij
|
|
|

)
.

Then

ℙ
(
|
|𝐱

H𝐀𝐱 − Tr 𝐀|| ⩾ t
)
⩽ C exp

(

−C′ min

{
t2

‖𝐀‖2
F
,

t
‖𝐁‖2

2

})

(8.38)
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for any t > 0. Here ‖𝐁‖F and ‖𝐁‖2 denote the Frobenius norm and the spectrum norm,
respectively. Later Hsu, Kakade and Zhang [453] showed that one can obtain a better
upper tail (notice that ‖𝐁‖2

2 is replaced by ‖𝐀‖2
2)

ℙ
(
|
|𝐱

H𝐀𝐱 − Tr 𝐀|| ⩾ t
)
⩽ C exp

(

−C′ min

{
t2

‖𝐀‖2
F
,

t
‖𝐀‖2

2

})

(8.39)

under a considerably weaker assumption (which, in particular, does not require the Xi
to be independent). For more recent results refer to [454].

8.6 Log-Determinant of Random Matrices

We say a random variable 𝜉 satisfies condition 𝐂𝟎 (with positive constants C1,C2) if

ℙ (|𝜉| ⩾ t) ⩽ C1 exp
(
−tC2

)
(8.40)

for all t > 0. Let 𝐀 be an n × n random matrix whose entries are independent real ran-
dom variables satisfying some natural conditions.

Theorem 8.6.1 ([455]) Assume that all atom variables aij of random matrix𝐀 of n × n
satisfy condition 𝐂𝟎 with some positive constants C1,C2. Then

sup
x∈ℝ

|
|
|
|
|
|
|
|

ℙ
⎛
⎜
⎜
⎜
⎝

log |det (𝐀)| − 1
2

log (n − 1)!
√

1
2

log n
⩽ x
⎞
⎟
⎟
⎟
⎠

− Φ(x)

|
|
|
|
|
|
|
|

⩽ log−1∕3+o(1)n (8.41)

Here, Φ(x) = ℙ
( (0, 1) < x

)
= 1
√

2𝜋
∫ x
−∞ exp

(
−t2∕2

)
dt.The following form

sup
x∈ℝ

|
|
|
|
|
|

ℙ

(
log det

(
𝐀2) − 1

2
log (n − 1)!

√
2 log n

⩽ x

)

− Φ(x)
|
|
|
|
|
|

⩽ log−1∕3+o(1)n (8.42)

is equivalent to (8.42). Using

log det (⋅) = Tr log (⋅)

we have

sup
x∈ℝ

|
|
|
|
|
|

ℙ

(
Tr log

(
𝐀2) − 1

2
log (n − 1)!

√
2 log n

⩽ x

)

− Φ(x)
|
|
|
|
|
|

⩽ log−1∕3+o(1)n (8.43)

Consider a hypothesis testing problem

0 ∶ 𝐗
1 ∶ 𝐗 + 𝐏

where𝐗 is a random matrix that is identical to𝐀 defined above, and𝐏 is the perturbation
matrix. The above theorem can be used for this problem.
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8.7 General MANOVA Matrices

Most material for Section 8.7 may be found in [456].
The three classical families of eigenvalue distributions of Gaussian random matri-

ces are the Hermite, Laguerre and Jacobi ensembles. Hermite ensembles correspond
to Wigner matrices,𝐗 = 𝐗H ; Laguerre ensembles describe sample covariance matrices,
𝐗𝐗H . The random n × n matrices yielding the Jacobi ensembles have the form of (8.45)
for the special case when 𝐗 and 𝐘 are Gaussian.

Consider the following matrix hypothesis problem

0 ∶ 𝐘𝐘H

1 ∶
(
𝐗𝐗H + 𝐘𝐘H)−1∕2𝐘𝐘H(𝐗𝐗H + 𝐘𝐘H)−1∕2 (8.44)

If𝐗 = 0, then the above two hypotheses are identical. As a result, the nonzero pertur-
bation matrix 𝐗 will make a difference in testing the two hypotheses.

The three classical families of eigenvalue distributions of Gaussian random matri-
ces are the Hermite, Laguerre and Jacobi ensembles. Hermite ensembles correspond
to Wigner matrices, 𝐗 = 𝐗H ; Laguerre ensembles describe sample covariance matrices
𝐗𝐗H . The random n × n matrices yielding the Jacobi ensembles have the form

(
𝐗𝐗H + 𝐘𝐘H)−1∕2𝐘𝐘H(𝐗𝐗H + 𝐘𝐘H)−1∕2 (8.45)

where𝐗 and𝐘 are matrices of sizes n × [bn] and n × [an], respectively, with independent
standard Gaussian entries. Here a, b > 1 are fixed parameters of the model, n is a large
number, eventually tending to infinity, and[⋅]denotes the integer part. The matrix entries
can be real, complex or self-dual quaternions, corresponding to the three symmetry
classes, commonly distinguished by the parameter 𝛽 = 1, 2, 4, respectively. The results
presented in this section are insensitive to the symmetry class and for simplicity we will
consider the complex case (𝛽 = 2).

Matrices of the form (8.45) are used in statistics for multivariate analysis of variance
to determine correlation coefficients (Section 3.3 of [37]). This analysis is called
MANOVA, though it has been largely limited to the special case when the entries
of (8.45) are Gaussian.

In this section we address the case when the entries of X and Y in (8.45) are indepen-
dent but have a general distribution with zero mean and unit variance. In particular, the
matrix entries are not required to be identically distributed. We will call such a matrix
with general entries a general MANOVA matrix.

Similarly to the Wigner and sample covariance matrices, the joint eigenvalue density
of (8.45) is explicitly known only for the Gaussian case. When the entries are standard
complex Gaussians, it is given by

density
(
𝜆1,… , 𝜆n

)
= Ca,b,n

n∏

i=1
𝜆
(a−1)n
i

(
1 − 𝜆(b−1)n

i

) ∏

1⩽i<j⩽n

|
|
|
𝜆i − 𝜆j

|
|
|

2
(8.46)

where Ca,b,n is a normalizing constant. The density has a similar form with different
exponents when the matrix entries are real, or self-dual quaternions; see Section 3.6
of [62]. (8.46) defines the Jacobi ensemble, where the name refers to the form of the
polynomial term in front of the Vandermonde determinant in (8.46).
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The empirical density of the eigenvalues of (8.45)—equivalently, the one-point corre-
lation function of (8.46)—converges almost certainly, as n → ∞, to the distribution with
density given by

fM (x) = (a + b)

√(
x − 𝜆−

) (
𝜆+ − x

)

2𝜋x (1 − x)
⋅ I[𝜆−,𝜆+] (x) (8.47)

where

𝜆± =

(√
a

a + b

(
1 − 1

a + b

)
±
√

1
a + b

(
1 − a

a + b

)
)2

(8.48)

The density fM was determined by Wachter [457] and is discussed in Section 3.6 of [62].
Note that 𝜆± ∈ (0, 1), so that fM is supported on a compact subinterval of (0, 1). We will
refer to fM(x) as the limiting distribution of the eigenvalues of (8.45) or as the MANOVA
distribution.

While the joint eigenvalue density (8.48) is valid only for the Gaussian case, the
limiting empirical density is expected to be correct for general distributions as well,
similarly to the universality of the Wigner semicircle law for Wigner matrices or the
Marchenko–Pastur (MP) law for sample covariance matrices. Thus, general MANOVA
matrices, the Jacobi ensemble and the distribution fM constitute a triplet analogous
to general Wigner matrices, the Hermite ensemble and the semicircle law or sample
covariance matrices, the Laguerre ensemble and the Marchenko–Pastur law.

Given two positive constants 𝛾 =
(
𝛾1, 𝛾2

)
, we say that a complex random variable Z is

𝛾-subexponential if it satisfies the following conditions:
⎧
⎪
⎨
⎪
⎩

𝔼Z = 0
𝔼|Z|2 = 1
ℙ (|Z| ⩾ t𝛾1 ) ⩽ 𝛾2e−t for all t > 0.

(8.49)

A set of random variables is uniformly 𝛾-subexponential if each random variable is 𝛾-
subexponential for a common 𝛾 .

The main tool for this approach is the Stieltjes transform. Let ℂ+ = {z ∈ ℂ ∶
Im(z) > 0}. The Stieltjes transform of a real random variable with distribution function
F(x) is a function ℂ+ → ℂ+ defined by

m (z) = ∫
1

t − z
dF (t) (8.50)

If the random variable has a density, then we also refer to the Stieltjes transform of the
density. The Stieltjes transform of fM is

m (z) = 1
2z (1 − z)

[

(2 − a − b) z + a − 1

+
√

(a + b)2z2 − (a + b)
(

2 (a + 1) − a
a + b

)
z + (a − 1)2

]

(8.51)

For Hermitian matrices, we misuse notation and refer to the function

m (z) = 1
n
Tr (𝐀 − z𝐈)−1
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as the Stieltjes transform of the Hermitian, n × n matrix𝐀. If 𝜆1,… , 𝜆n are the eigenval-
ues of 𝐀, then we equivalently have

m𝐀 (z) =
1
n

n∑

i=1

1
𝜆i − z

= 1
n
Tr (𝐀 − z𝐈)−1

which is the Stieltjes transform of the empirical measure.
It is found that that the eigenvalues of the general MANOVA matrix behave close to

what is indicated by mM(z) and fM in the bulk with high probability.
Let 𝜆+ and 𝜆− be given in (8.48). Define

 (𝜆)
𝜅,𝜂 ∶=

{
E + i𝜂 ∈ ℂ+ ∶ E ∈

(
𝜆−, 𝜆+

) (
𝜆+ − E

) (
E − 𝜆−

)
⩾ 𝜅
}

and set  (𝜆)
𝜅 =  (𝜆)

𝜅,0.

Theorem 8.7.1 Fix two real parameters a, b > 1. Let 𝐗 be an n × an random matrix
and let𝐘 be an n × bn random matrix independent of𝐗. We assume that both matrices
have independent entries satisfying (8.49) for a common 𝛾 =

(
𝛾1, 𝛾2

)
. Let mn,M(z) be the

Stieltjes transform of the general MANOVA matrix
(
𝐗𝐗H + 𝐘𝐘H)−1∕2𝐘𝐘H(𝐗𝐗H + 𝐘𝐘H)−1∕2 (8.52)

• Then for any 𝜅, 𝜂 > 0 with 𝜂 > 1
n𝜅2

(
log n

)2C log log n, we have

ℙ

(

sup
z∈ (𝜆)

𝜅,𝜂

|
|mn,𝐌 (z) − m𝐌 (z)|| >

(
log n

)C log log n

√
𝜂𝜅n

)

< n−c log log n (8.53)

for all n ≥ n0 large enough and for constants C, c > 0. Here n0,C and c depend only
on 𝛾 .

• Let N𝜂 (E) denote the number of eigenvalues of (8.52) contained in [E − 𝜂

2
,E + 𝜂

2
] and

assume 𝜂 > 1
n𝜅2

(
log n

)3C log log n. Then

ℙ

(

sup
E∈ (𝜆)

𝜅

|
|
|
|
|

N𝜂 (E)
n𝜂

− f𝐌 (E)
|
|
|
|
|
>

(
log n

)C log log n

(𝜂𝜅n)1∕4

)

< n−c log log n. (8.54)

We note that the entries of the matrices 𝐗 and 𝐘 are not necessarily identically dis-
tributed.

For the hypothesis-testing problem (8.44), the idea is to transform the problem into
another domain, using the Stieltjes transform

0 ∶ m𝐘𝐘H (z)
1 ∶ m𝐌 (z)

(8.55)

As n → ∞, both (8.44) and (8.55) tend to their individual nonrandom limits. If this is the
case, hypothesis testing of two nonrandom functions can be easily handled. For example,
we can study the test functions of m𝐘𝐘H (z) and mM (z).
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8.8 Finite Rank Perturbations of Large Random Matrices

In many applications, the n × m signal-plus-noise data or measurement matrix formed
by stacking the m samples or measurements of n × 1 observation vectors alongside each
other can be modeled as

𝐘 =
r∑

i=1
𝜎i𝐮i𝐯H

i + 𝐗 (8.56)

where 𝐮i and 𝐯i are left and right “signal” column vectors, 𝜎i are the associated “signal”
values and 𝐗 is the noise-only matrix of random noises. This model is ubiquitous in
signal processing, statistics, and machine learning and is known under various guises as
a signal subspace model [458], a latent variable statistical model [459], or a probabilistic
PCA model [460].

The results presented in this section are very general in terms of possible distribu-
tions for the noise model 𝐗, in a sense that will be made more precise shortly. Consider
a particular case when 𝐗 is Gaussian. The results in this section brings to light a gen-
eral principle, which can be applied beyond the Gaussian case. Roughly speaking, this
principle says that for 𝐗 an n × m matrix (with n,m >> 1), if one adds an independent

small rank perturbation
r∑

i=1
𝜎i𝐮i𝐯H

i to 𝐗, then the extreme singular values will move to

positions which are approximately the solutions z of the equations
1
n
Tr z

z2𝐈 − 𝐗𝐗H × 1
m

Tr z
z2𝐈 − 𝐗H𝐗

= 1
𝜃2

i
, (1 ⩽ i ⩽ r)

where we use the notation Tr 1
𝐀
= Tr 𝐀−1. In the case where these equations have no

solutions (which means that the 𝜃i are below a certain threshold), then the extreme sin-
gular values of 𝐗 will not move significantly. Similarly, we obtain the associated left and
right singular vectors and give limit theorems for the fluctuations.

Let 𝐗n be an n × m real or complex random matrix. Throughout this section, we
assume that n ≤ m so that we may simplify the exposition of the proofs. We may do
so without loss of generality because in a setting where n > m, the expressions derived
will hold for 𝐗H

n . Recall that for n ≤ m, the singular values of an n × m complex matrix
𝐀 are the eigenvalues of the n × n matrix

√
𝐀𝐀H . Let the n ≤ m singular values of𝐗n be

sorted in nondecreasing order 𝜎1 ⩾ 𝜎2 ⩾ · · · ⩾ 𝜎n. Let 𝜇𝐗n
(⋅) be the empirical singular

value distribution, with the probability measure defined as

𝜇𝐗n
(x) = 1

n

n∑

i=1
𝛿𝜎i

(x)

Let m depend on n. We denote this dependence explicitly as mn. Assume that as n → ∞,
n∕mn → c ∈ [0, 1].

Assumption 8.8.1 The probability measure 𝜇𝐗n
(⋅) almost certainly coverges weakly

to a nonrandom compactly supported probability measure 𝜇𝐗 (⋅).

When 𝐗n has full rank (with high probability), the smallest singular value will be
greater than zero.
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Assumption 8.8.2 Let a be infimum of the support of 𝜇𝐗n
(⋅). The smallest singular

value of 𝐗n converges almost certainly to a.

Assumption 8.8.3 Let b be supremum of the support of 𝜇𝐗n
(⋅). The largest singular

value of 𝐗n converges almost certainly to b.

We shall consider the extreme singular values and the associated singular vectors of
𝐘n, which is the random n × m matrix:

𝐘n = 𝐗n + 𝐀n (8.57)

where the perturbation matrix 𝐀n is defined below.
For a given r ≥ 1, let 𝜃1 ⩾ · · · ⩾ 𝜃r > 0 be deterministic nonzero real numbers, cho-

sen independently of n. For every n, let 𝐆u, 𝐆v be two independent matrices with sizes
respectively n × r and m × r with i.i.d. entries distributed according to a fixed probability
measure 𝜈 on 𝕂 = ℝ or 𝕂 = ℂ. We introduce the column vectors 𝐮1,… ,𝐮r ∈ 𝕂n×1 and
𝐯1,… , 𝐯r ∈ 𝕂m×1 obtained from 𝐆u, 𝐆v by either:

• The i.i.d. model. Setting 𝐮i and 𝐯i to equal the i-th column of 1
√

n
and𝐆u

1
√

m
𝐆v, respec-

tively or,
• The Orthonormalized model. Setting 𝐮i and 𝐯i to equal vectors obtained from a

Gram-Schmidt (or QR factorization) of 𝐆u and 𝐆v, respectively.

We define the random perturbing matrix 𝐀n ∈ 𝕂n×m as

𝐀n =
r∑

i=1
𝜃i𝐮i𝐯H

i

In the orthonormalized model, the 𝜃is are the nonzero singular values of 𝐀n and the 𝐮is
and 𝐯is are the left and right associated singular vectors.

Assumption 8.8.4 The probability measure 𝜈 has mean zero, variance one and that
satisfies a log-Sobolev inequality.

See [49] for the treatment of log-Sobolev inequality. We make several remarks. First,
if 𝜈 is the standard real or complex Gaussian distribution, then the singular vectors pro-
duced using the orthonormalized model will have uniform distribution on the set of
r orthogonal random vectors. Second, if 𝐗n is random but has a bi-unitarily invariant
distribution and 𝐀n is nonrandom with rank r, then we are in the same setting as the
orthonormalized model for the results that follow. More generally, our idea in defin-
ing both of our models (the i.i.d. one and the orthonormalized one) was to show that
if 𝐀n is chosen independently from 𝐗n in a somehow “isotropic way,” i.e. via a distribu-
tion that is not far away from being invariant by the action of the orthogonal group by
conjugation, then a BBP phase transition [335] occurs, which is governed by a certain
integral transform of the limit empirical singular value distribution of𝐗n, namely𝜇𝐗n

(x).
Third, the framework could easily be adapted to the case where the distribution of the
entries of 𝐆u and the distribution of the entries of 𝐆v are not the same, both satisfying
Assumption 8.8.4.

In Theorems 8.8.5, we suppose Assumptions 8.8.1, 8.8.3, and 8.8.4 are valid.
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For a function f and t ∈ ℝ, we use the notation
f
(
t+
)
= lim

z↓t
f (z) ; f (t−) = lim

z↑t
f (z)

We define 𝜃c, the critical threshold of the phase transition, as

𝜃c ∶=
1

√
D𝜇X

(b+)

with the convention that (+∞)−1∕2 = 0, and where D𝜇X
(⋅), the D-transform of the mea-

sure 𝜇X is the function, depending on c, defined by

D𝜇X
(z) =

[

∫
z

z2 − t2 d𝜇X

]

×
[

c∫
z

z2 − t2 d𝜇X + 1 − c
z

]

for z > b

In the theorems below, D−1
𝜇X

(⋅)will denote its functional inverse on [b,+∞). We use nota-
tion

a.s.
−−→ denote almost sure convergence.

Theorem 8.8.5 Largest singular value phase transition. The r largest singular values of
the n × m perturbed matrix 𝐘n = 𝐗n + 𝐀n exhibit the following behavior as n,mn → ∞
and n∕mn → c. We have that for each fixed 1 ≤ i ≤ r

𝜎i
(
𝐗n + 𝐀n

) a.s.
−−→

{
D−1
𝜇X

(
1∕𝜃i
)

if 𝜃i > 𝜃c

b otherwise
(8.58)

Moreover, for each fixed i > r, we have that 𝜎i
(
𝐗n + 𝐀n

) a.s.
−−→ b.

The D-transform in free probability theory is critical. The C-transform with ratio c of
a probability measure 𝜇 on ℝ+, defined as

C𝜇 (z) = U
(

z
(
D−1
𝜇 (z)

)2 − 1
)

where

U (z) =

{
−c−1+[(c+1)2+4cz]1∕2

2c
when c > 0

z when c = 0

is the analog of the logarithm of the Fourier transform for the rectangular free convo-
lution with ratio c (see [461, 462] for an introduction to the theory of rectangular free
convolution) in the sense described next.

Let 𝐀n and 𝐁n be independent n × m rectangular random matrices that are invariant,
in law, by conjugation by any orthogonal (or unitary) matrix. Suppose that, as n,m → ∞
with n∕m → c, the empirical singular value distributions𝜇𝐀n

and𝜇𝐁n
of𝐀n and𝐁n satisfy

𝜇𝐀n
→ 𝜇𝐀, and 𝜇𝐁n

→ 𝜇𝐁. Then by [463] the empirical singular value distribution 𝜇𝐀n+𝐁n

of 𝐀n + 𝐁n satisfy
𝜇𝐀n+𝐁n

→ 𝜇𝐀⊞𝜇𝐁

where 𝜇𝐀⊞𝜇𝐁 is a probability measure which can be characterized in terms of the
C-transform as

C𝜇𝐀⊞𝜇𝐁 (z) = C𝜇𝐀 (z) + C𝜇𝐁 (z)
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The coefficients of the series expansion of U(z) are the rectangular free cumulants with
ratio c of 𝜇 (see [463] for an introduction to the rectangular free cumulants). The con-
nection between free rectangular additive convolution and D−1

𝜇 (z) (via the C-transform)
and the appearance of D−1

𝜇 (z) in Theorem 8.8.5 could be of independent interest to free
probabilists: the emergence of this transform in the study of isolated singular values
completes the picture of [464], where the transforms linearizing additive and multiplica-
tive free convolutions.

Example 8.8.6 (Gaussian rectangular random matrices with nonzero mean) Let
𝐗n be an n × m real (or complex) matrix with independent, zero mean, normally dis-
tributed entries with variance 1∕m. It is known [163,172] that, as n,m → ∞with n∕m →
c ∈ (0, 1], the spectral measure of the singular values of𝐗n converges to the distribution
with density

d𝜇𝐗 (x) =
1
𝜋c

1
x

√

4c − (x2 − 1 − c)2𝕀(a,b) (x) dx

where a = 1 −
√

c and b = 1 +
√

c are the end points of the support of 𝜇𝐗. It is known
[163] that the extreme eigenvalues converge to the bounds of this support.

Associated with this singular measure, we have, after some manipulation

D−1
𝜇𝐗

(z) =
√

(z + 1) (cz + 1)
z

,

D𝜇𝐗 (z) =
z2 − (c + 1) −

√
(z2 − (c + 1))2 − 4c
2c

, D𝜇𝐗
(
b+) = 1

√
c

Thus for any n × m deterministic matrix𝐀n with r nonzero singular values 𝜃1 ⩾ · · · ⩾
𝜃r > 0 (r independent of n,m), for any fixed i ≥ 1, by Theorem 8.8.5, we have

𝜎i
(
𝐗n + 𝐀n

) a.s.
−−→
⎧
⎪
⎨
⎪
⎩

√
(1+𝜃2

i )(c+𝜃2
i )

𝜃2
i

if i ⩽ r and 𝜃i > c1∕4

1 +
√

c otherwise

as n → ∞. For the i.i.d. model defined above, this formula allows us to recover some of
the results of [335]. Now, let us turn our attention to the singular vectors. Let �̃� and �̃� be
left and right unit singular vectors of𝐗n + 𝐀n. In the setting where r = 1, let𝐀n = 𝜃𝐮𝐯H .
Then using Theorems 2.10 and 2.11 in [367], we have

|⟨�̃�, 𝐮⟩|2
a.s.
−−→

{
1 − c(1+𝜃2)

𝜃2(𝜃2+c)
if 𝜃 ⩾ c1∕4

0 otherwise
where ⟨�̃�,𝐮⟩ is the inner product of the true leading eigenvector and the corre-
sponding perturbed leading eigenvector. The phase transitions for the eigenvectors of
(
𝐗n + 𝐀n

)H (𝐗n + 𝐀n
)

or for the pairs of singular vectors of 𝐗n + 𝐀n can be similarly
computed to yield the expression

|⟨�̃�, 𝐯⟩|2
a.s.
−−→

{
1 − (c+𝜃2)

𝜃2(𝜃2+1)
if 𝜃 ⩾ c1∕4

0 otherwise
◽
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Example 8.8.7 (square Haar unitary matrices) Let𝐗n be a Haar distributed unitary
(or orthogonal) random matrix. All of its singular values are equal to one, so that it has
limiting spectral measure

𝜇𝐗 (x) = 𝛿1,

with a = b = 1 being the end points of the support of 𝜇𝐗. Associated with this spectral
measure, we obtain (of course, c = 1)

D𝜇𝐗 (z) =
z2

(z2 − 1)2 , for z ⩾ 0, z ≠ 1

thus for 𝜃 > 0

D−1
𝜇𝐗

(
1∕𝜃2) =

⎧
⎪
⎨
⎪
⎩

𝜃+
√
𝜃2+4

2
if the inverse is computed on (1,+∞)

−𝜃+
√
𝜃2+4

2
if the inverse is computed on (0, 1)

Thus for any n × n, rank r perturbing matrix 𝐀n with r nonzero singular values
𝜃1 ⩾ · · · ⩾ 𝜃r > 0 where neither r, nor the 𝜃is depend on n, for any fixed i = 1,… , r, by
Theorem 8.8.5 we have

𝜎i
(
𝐗n + 𝐀n

) a.s.
−−→

𝜃i +
√
𝜃2

i + 4

2
and 𝜎n+1−i

(
𝐗n + 𝐀n

) a.s.
−−→

−𝜃i +
√
𝜃2

i + 4

2

while for any fixed i > r + 1, both 𝜎i
(
𝐗n + 𝐀n

)
and 𝜎n+1−i

(
𝐗n + 𝐀n

) a.s.
−−→ 1. ◽

8.8.1 Non-asymptoic, Finite-Sample Theory

The spiked true covariance matrix was first considered by the seminar paper [177],
which is highly cited. The spiked true covariance matrix 𝚺 has all but a few eigenvalues
equal one:

𝚺 ∼ diag
{
𝜃1

2
,… , 𝜃2

r+s, 1,… , 1
}
∈ ℝp×p

where

𝜃1 ⩾ · · · ⩾ 𝜃r > 1 > 𝜃r+1 ⩾ · · · ⩾ 𝜃r+s > 0

where there are (p − r) eigenvalues that are less than one and there are s nonzero eigen-
values. Let𝐗 ∈ ℝp×n with entries Xij being i.i.d. (0, 1). Consider the sample covariance
matrix

𝐒n = 1
n
(
𝚺1∕2𝐗

) (
𝚺1∕2𝐗

)T

and

𝜆1
(
𝐒n
)
⩾ · · · ⩾ 𝜆p

(
𝐒n
)

are eigenvalues sorted in a nondecreasing order. If𝚺 = 𝐈p, then𝐒n is a Wishart matrix. So
the spiked true covariance matrix model can be considered as a finite rank perturbation
of the Wishart matrix ensemble.

Our results about the spiked population model are divided into two parts. Theorem
3.2 of [465] established deviation bounds for the largest eigenvalues, and Theorem 3.3
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of [465] established deviation bounds for the smallest eigenvalues. We can summarize
these two theorems as the following.

Let 𝜃2 be an eigenvalue of the true covariance matrix 𝚺, 𝜃2 ≠ 1. Then the correspond-
ing “spiked eigenvalue” 𝜆

(
𝐒n
)
∈ ℝp×p of the sample covariance matrix will satisfy

ℙ
(
|
|
|
𝜆
(
𝐒n
)
− 𝜆𝜃,c

|
|
|
> t
)
⩽ C1e−C2nt2 (8.59)

where 𝜆𝜃,c is defined as

𝜆𝜃,c =

⎧
⎪
⎪
⎨
⎪
⎪
⎩

𝜃2 + c ⋅ 𝜃2

𝜃2−1
if 𝜃2 > 1 +

√
c, or c < 1, 𝜃2 < 1 −

√
c

(
1 +
√

c
)2

if 1 < 𝜃2 ⩽ 1 +
√

c
(

1 −
√

c
)2

if c < 1, 1 −
√

c ⩽ 𝜃2 ⩽ 1

where c = p−r
n

. The right-hand side of (8.59) is Gaussian with variance proportion to
1∕
√

n. The proof of (8.59) is based on the concentration of measure phenomenon, which
has a large literature, such as [40, 49, 446]. The approach of using the Stieltjes trans-
form is to study the asymptotic limits, as n → ∞. On the other hand, (8.59) applies to
the nonasymptotic case when n is large but finite. In practice, we can apply (8.59) to
moderate data size n.

8.9 Hypothesis Tests for High-Dimensional Datasets

This section analyzes whether standard covariance matrix tests work when dimension-
ality is large, and in particular larger than sample size. In the latter case, the singular-
ity of the sample covariance matrix makes likelihood ratio tests (LRT) degenerate, but
other tests based on quadratic forms of sample covariance matrix eigenvalues remain
well defined. Previous authors have noted that the LRT may not perform well in finite
samples.

Since the mid-1990s, the practical environment has changed dramatically, with the
spectacular evolution of data-acquisition technologies and computing facilities. At the
same time, applications have emerged in which the number of experimental units is
comparatively small but the underlying dimension is massive [466]. Ideas from random
matrix theory are connected with large covariance matrices. The most informative com-
ponents for inference may or may not be the principal components [467].

Data visualization [468] is important. Visual statistical methods are used with an
inferential framework and protocol, modeled on confirmatory statistical testing. In
this framework, plots take on the role of test statistics, and human cognition the role
of statistical tests. Statistical significance of “discoveries” is measured by having the
human viewer compare the plot of the real data set with collections of plots of simulated
data sets.

Many empirical problems involve large-dimensional covariance matrices. Sometimes
the dimensionality p is even larger than the sample size n, which makes the sample
covariance matrix 𝐒 singular. For concreteness, we focus on two common testing prob-
lems: (i) the covariance matrix 𝚺 is proportional to the identity 𝐈 (sphericity):

0 ∶ 𝚺 = 𝜎2𝐈 vs. 1 ∶ 𝚺 ≠ 𝜎2𝐈
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where 𝜎2 is unspecified. (ii) the covariance matrix𝚺 is equal to the identity 𝐈 (sphericity):

0 ∶ 𝚺 = 𝐈 vs. 1 ∶ 𝚺 ≠ 𝐈
The identity 𝐈 can be replaced with any other matrix𝚺0 by multiplying the data by𝚺−1∕2

0 .
For both hypotheses the likelihood ratio test statistic is degenerate when p exceeds n ∶
p > n. This steers us toward other test statistics that do not degenerate, such as

U = 1
p
Tr
[

𝐒
(1∕p) Tr (𝐒)

− 𝐈
]2

and V = 1
p
Tr
[
(𝐒 − 𝐈)2] (8.60)

The asymptotic framework assumes n goes to infinity while p remains fixed. It treats
terms of order p∕n like terms of order 1∕n, which is inappropriate if p is of the same order
of magnitude as n. The robustness of tests based on U and V against high dimensionality
was studied for the first time by Ledoit and Wolf [469].

We study the asymptotic behavior of U and V as p and n go to infinity together with
the ratio p∕n converging to a limit y ∈ (0,+∞). The singular case corresponds to y > 1.
The robustness issue boils down to power and size: is the test still consistent? Is the
n-limiting distribution under the null still a good approximation? Surprisingly, we find
opposite answers for U and V . The power and the size of the sphericity test based on U
turn out to be robust against p large, and even larger than n. But the test of 0 ∶ 𝚺 = 𝐈
based on V is not consistent against every alternative when p goes to infinity with n,
and its n-limiting distribution differs from its (n, p)-limiting distribution under the null.
This prompts us to introduce the modified statistic

W = 1
p
Tr
[
(𝐒 − 𝐈)2] −

p
n

[
1
p
Tr (𝐒)

]2

+
p
n

(8.61)

Note that W only involves diagonal elements of the sample covariance matrix 𝐒 through
the trace function.

The maximal invariant likelihood ratio test asymptotically has good power in the
spiked covariance matrix model, whereas the standard likelihood ratio test has no
power at all [470].

8.9.1 Motivation for Likelihood Ratio Test (LRT) and Covariance Matrix Tests

Traditional statistical theory, particularly in multivariate analysis, did not contemplate
the demands of high dimensionality [95,177] in data analysis. The classical multivariate
analysis textbooks [37, 371] were developed under the assumption that the dimension
of the dataset, conventionally denoted by p, is considered a fixed small constant or is
at least negligible compared with the sample size n. Because their dimensions can be
proportionally large compared with the sample size, this assumption, however, is no
longer true for many modern datasets, such as smart grid data, financial data, consumer
data, manufacturing data, and multimedia data.

In classic statistical inference, the likelihood ratio test (LRT) is one widely used
method for hypothesis testing. An advantage of using the LRT is that one does not
have to estimate the variance of the test statistics. It is well known that the asymptotic
distribution of the LRT is chi-square under certain regularity conditions when the
dimension p is a small constant or is negligible compared with the sample size n.
However, the chi-square approximation does not fit the distribution of the LRT
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very well for the high-dimension case, especially when p grows with the sample
size n.

The failure of the traditional multivariate method for high-dimensional data had been
observed by Dempster [471] in as early as 1958. Bai and Saranadasa [472] did some
further work. Bai et al. [160] studied the likelihood ratio test (LRT) for the covariance
matrix of a normal distribution and showed that using the traditional chi-square approx-
imation to the limiting distribution of the test statistic will result in a much inflated test
size (or alpha error) even with moderate size of p and n. They developed corrections
to the traditional likelihood ratio test to make it suitable for testing a high-dimensional
normal distribution p (𝛍,𝚺), with

0 ∶ 𝚺 = 𝜎2𝐈p vs. 1 ∶ 𝚺 ≠ 𝜎2𝐈p
The test statistic is chosen to be

Ln = Tr (𝐒) − log det(𝐒) − p

where𝐒 is the sample covariance matrix from the data. In their derivation, the dimension
p is no longer considered a fixed constant, but rather a variable that goes to infinity along
with the sample size n; and the ratio between p and n converges to a constant y:

lim
n→∞

pn

n
= y ∈ (0, 1) (8.62)

Jiang et al. [473] further extend Bai’s result to cover the case of y = 1. Jiang and
Yang [474] studied several other classical likelihood ratio tests for means and covari-
ance matrices of high-dimensional normal distributions. Most of these tests have the
asymptotic results for their test statistics derived decades ago under the assumption of
a large n but a fixed p. Their results supplement these traditional results in providing
alternatives to analyze high-dimensional datasets including the critical case p∕n → 1.

The central limit theorems of the LRT statistics mentioned in Jiang and Yang [474] the
context of lim

n→∞
p
n
= y ∈ (0, 1) are new in the literature. Similar results are Bai et al. [160]

and Jiang et al. [473]. The methods of the proofs in the three papers are different: the
random matrix theory is used in Bai et al. [160]; the Selberg integral is used in Jiang
et al. [473]. Jiang and Yang [474] obtained the central limit theorems by analyzing the
moments of the LRT statistics.

Let𝐗1,… ,𝐗n be independent and identically distributed p-dimensional random vec-
tors with mean𝝁 and covariance matrix𝚺. We form a random matrix𝐗 of n × p. Testing
the covariance matrix

0 ∶ 𝚺 = 𝜎2𝐈p vs. 1 ∶ 𝚺 ≠ 𝜎2𝐈p (8.63)

where 𝐈p is the p-dimensional identity matrix and 𝜎2 is an unknown but finite positive
constant. The identity hypothesis in (8.102) covers the hypothesis for

0 ∶ 𝚺 = 𝚺0 vs. 1 ∶ 𝚺 ≠ 𝚺0

for an arbitrary specifically known invertible covariance matrix 𝚺0. This comment is
true to all the tests. For convenience, we often deals with (8.63).

The traditional method based on the sample covariance 𝐗′𝐗 such as the likelihood
ratio test, see Anderson [371], can no longer function when p → ∞ as n → ∞. Almost
all statistical theories dealing with large samples were developed through probabilistic
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limiting theorems of fixed dimension p and increasing sample size n. Modern random
matrix theory, however, predicts that, when the dimension of 𝐱i, p is not negligible with
respect to the sample size n, the sample covariance matrix 𝐒 as a function of n

𝐒 = 1
n

n∑

i=1
𝐱i𝐱H

i = 1
n
𝐗𝐗H

does not approach 𝚺 of p × p. Therefore, classical statistical procedures based on an
approximation of 𝚺 by 𝐒 become inconsistent or very inefficient in situations with
high-dimensional data. There is thus a great need to develop new statistical tools
for high-dimensional data analysis [53]. Estimation of 𝚺 is among the central prob-
lems in high-dimensional statistics, with applications including principal component
analysis, Kalman filtering and independent component analysis.

When dimension p and the sample size n, are comparable, i.e. n∕p → c ∈ (0,∞), many
methods were developed based on random matrix theory [35]. By assuming 𝝁 = 0, the
largest eigenvalue has been considered for testing hypothesis in (8.63) by Johnstone
[177] in the Gaussian case, and by Péché [475] in the more general case where the dis-
tribution is assumed to be sub-Gaussian tails. Ledoit and Wolf [469] first used the trace
of the quadratic forms of the sample covariance as a new test statistic to test the null
hypothesis under the normality assumption. By weakening the conditions, Chen, Zhang
and Zhong [476] also introduced a similar test statistic.

Besides the likelihood ratio tests, many other traditional hypothesis tests in multi-
variate analysis have also been revisited in the past decade for high-dimensional cases.
Examples include Srivastava [477,478] and Schott [479–482]. Fujikoshi et al. [483] gave
a book-length survey on multivariate methods under the high-dimensional framework
when lim

n→∞
p
n
= y > 0. Cai and Ma [484] optimal hypothesis testing for high dimensional

covariance matrices. Wang, Cao and Miao [485] deal with asymptotic power of likeli-
hood ratio tests for high-dimensional data.

8.9.2 Estimation of Covariance Matrices Using Loss Functions

To take advantage of some prior information about 𝚺, we can use the loss functions
to estimate the true covariance matrix. We examine some properties of these loss
functions.

Let 𝐱1,… , 𝐱n in ℂp, be independent identically distributed p-dimensional normal vec-
tors with mean 0 and common unknown nonsingular covariance matrix 𝚺. From the
joint probability density function

ℙ𝚺 =
1

(2𝜋)np∕2(det𝚺)n∕2 exp
(
−1

2
Tr𝚺−1𝐱H𝐱

)
(8.64)

of the random vectors 𝐱1,… , 𝐱n, it is easy to see that 𝐒

𝐒 =
n∑

i=1
𝐱i𝐱H

i = 𝐗𝐗H

is a sufficient statistic, 𝐗 =
(
𝐱1,… , 𝐱n

)
, and that the maximum likelihood estimator of

the covariance matrix 𝚺 is

�̂�ML (𝐒) = 1
n
𝐒
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We will describe some estimators �̂�(𝐒), which are better than the maximum likelihood
estimator with respect to the loss function

L
(
𝚺, �̂�
)
= Tr 𝚺−1�̂� − log det𝚺−1�̂� − p (8.65)

We will use the loss function defined by (8.65) largely because it is comparatively easy
to work with this loss function. However, it also has all the appealing properties of loss
functions

• L
(
𝚺, �̂�
)
⩾ 0, with equality if and only if 𝚺 = �̂�.

• L
(
𝚺, �̂�
)

a convex function of its second argument;

• L
(
𝚺, �̂�
)

invariant under linear transformations of ℝn, i.e., for any nonsingular p × p
matrix 𝐀,

L
(
𝐀𝚺𝐀H ,𝐀�̂�𝐀H

)
= L
(
𝚺, �̂�
)
. (8.66)

Let us recall the theorem on diagonalization of any Hermitian matrix by orthogonal
transformations.

For any Hermitian p × p matrix 𝐇 there exist a unique diagonal matrix 𝐃 and an
orthogonal matrix 𝐕 such that

𝐇 = 𝐕𝐃𝐕H

and the diagonal elements di of 𝐃 satisfy the inequalities

d1 ⩾ d2 ⩾ · · · ⩾ dp ⩾ 0

If the matrix H is positive definite, then dp > 0. By the same theorem, the covariance
matrix 𝚺 and the observed sample matrix 𝐒 are representable in the form

𝚺 = 𝐔𝚲𝐔H
, 𝐒 = �̃��̃��̃�H

where 𝜆i is the i-th element of the diagonal matrix 𝚲 and �̃�i is the i-th element of the
diagonal matrix �̃�. Both 𝐔 and �̃� are orthogonal matrices and

𝜆1 ⩽ 𝜆2 ⩾ · · · ⩾ 𝜆p > 0, �̃�1 ⩽ �̃�2 ⩾ · · · ⩾ �̃�p > 0

It can be shown that, if p is sufficiently large and 𝚺 is close to the unit matrix, while i∕p
and 1 − i∕p are sufficiently small, then the i-th eigenvalue�̃�i∕n of the matrix 𝐒∕n are not
likely to be close to the 𝜆i. Furthermore, the ratio �̃�1∕�̃�p is likely to be much greater than
the ratio 𝜆1∕𝜆p. This suggests that instead of the traditional estimator

1
n
𝐒 = 1

n
�̃��̃��̃�H

it is better to use an estimator of the form

�̂� = 𝐔𝜑
(
�̃�
)
𝐔H , (8.67)

where 𝜑 is an appropriately chosen function mapping the space of positive diagonal
matrices onto itself. The function 𝜑 should be chosen so that the ratio 𝜑1

(
�̃�
)
∕𝜑p
(
�̃�
)

of the first and the last diagonal elements of the matrix 𝜑
(
�̃�
)

is considerably smaller
than the ratio �̃�1∕�̃�p.
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Let me describe briefly the theoretical results for the case when𝚺 = 𝐈, which has been
most extensively studied. A similar problem was considered by the physicist Wigner
before statisticians became interested in the problem. In particular, the following
theorem was proved by Wigner.

Theorem 8.9.1 As p → ∞ with n∕p → y > 1, the empirical distribution func-
tion of the eigenvalues �̃�1∕n,… , �̃�p∕n converges in probability to the nonrandom
function

F(x) = c∫
x

a

1
t
√
(t − a) (b − t)dt, a ⩽ t ⩽ b

where

a =
(

1 − 1
y

)2

; b =
(

1 + 1
y

)2

When estimating the inverse 𝚺−1, it may be better to use
[
�̂� (𝐒)

]−1
instead of

[
𝐒∕n
]−1,

because

𝔼
[
(𝐒∕n)−1] = n

n − p − 1
𝚺−1

whence it follows that if n − p − 1 is small, the diagonal elements of (𝐒∕n)−1 are always
greater than the elements of 𝚺−1.

Recall that if 𝐀 is an n × n Hermitian matrix then there exists 𝐕 unitary and
𝐃 = diag

(
d1,… , dn

)
such that 𝐀 = 𝐕𝐃𝐕H . Given a continuous function f we

define f (𝐀) as

f (𝐀) = 𝐕 diag
(
f
(
d1
)
,… , f

(
dn
))
𝐕H

To return to the estimators �̂� = 𝐔𝜑
(
�̃�
)
𝐔H , let us consider the choice of the function 𝜙.

With

𝜓i
(
�̃�
)
= 1
𝜆i
𝜑i
(
�̃�
)
, i = 1,… , p

we have the risk function of an estimator �̂� = 𝐔𝜑
(
�̃�
)
𝐔H :

𝔼𝚺
{

L
(
𝚺, �̂�
)}

= 𝔼𝚺
{
Tr 𝚺−1�̂� − log det𝚺−1�̂� − p

}

= 𝔼𝚺

{

(n − p + 1)
n∑

k=1
𝜓k
(
�̃�
)
−

n∑

k=1
log𝜓k

(
�̃�
)
+ (8.68)

− 2
p∑

j=1

p∑

i>j

�̃�j𝜓j
(
�̃�
)
− �̃�i𝜓i

(
�̃�
)

�̃�j − �̃�i

+ 2
p∑

j=1
�̃�j
𝜕

𝜕�̃�j
𝜓j
(
�̃�
)
−

p∑

j=1
log𝜒2

n−j+1 − p,

}

See Stein [486] for the proof of (8.68).
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If we choose𝜓i so as to minimize (8.68), ignoring the effect of
p∑

j=1
�̃�j

𝜕

𝜕�̃�j
𝜓j
(
�̃�
)
, we obtain

𝜑
(i)
j

(
�̃�
)
=

�̃�j

𝛼j
(
�̃�
) , j = 1,… , p

where

𝛼i
(
�̃�
)
= n + p − 2j + 1 + 2

∑

i>j

�̃�i

�̃�j − �̃�i
− 2
∑

i<j

�̃�i

�̃�j − �̃�i

These 𝜑(i)
1
(
�̃�
)

often turn out to vary excessively with the index. In particular, it happens
frequently that they do not satisfy 𝜑(i)

1
(
�̃�
)
⩾ · · · ⩾ 𝜑(i)

p
(
�̃�
)

and sometimes some of the
𝜑
(i)
1
(
�̃�
)

are even negative. Fairly reasonable estimators are obtained by defining

𝜑
(2)
j

(
�̃�
)
=

∑

i∈Ωi

�̃�i

∑

i∈Ωi

𝛼i
(
�̃�
)

where Ωi is the set of consecutive integers such that
j ∈ Ωj

i ∈ Ωj ⇔ j ∈ Ωi

and

𝜑
(2)
1
(
�̃�
)
⩾ 𝜑(2)

2
(
�̃�
)
⩾ · · · ⩾ 𝜑(2)

p
(
�̃�
)

For every j, the set Ωj depends on �̃� and among all the sets Ω having the properties of
the set Ωj the latter is the smallest.

Example 8.9.2 (estimator invariant under the linear transformation) Consider
the problem in which we observe 𝐱1,… , 𝐱n independently normally distributed
p-dimensional random vectors with mean 0 and unknown covariance matrix 𝚺 where
n ≥ p. Suppose we want to estimate 𝚺, say by �̂�, with loss (distance) function

L
(
𝚺, �̂�
)
= Tr 𝚺−1�̂� − log det𝚺−1�̂� − p (8.69)

The problem is invariant under the transformations

𝐱i → 𝐀𝐱i, 𝚺 → 𝐀𝚺𝐀H , �̂� → 𝐀�̂�𝐀H

where 𝐀 is an arbitrary nonsingular p × p matrix. Also

𝐒 =
n∑

i=1
𝐱i𝐱H

i

is a sufficient statistic and if we make the transformation 𝐱i → 𝐀𝐱i, then 𝐒→ 𝐀𝐒𝐀H . We
may confine our attention to estimators that are functions of 𝐒 alone. The condition of
invariance of an estimator 𝜑 (a function on the set of positive definite p × p Hermitian
matrices itself ) under transformation by the matrix 𝐀 is

𝜑
(
𝐀𝐓𝐀H) = 𝐀𝜑 (𝐓)𝐀H for all 𝐓 (8.70)
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We shall find that this 𝜑 (𝐒) is not a scalar multiple of 𝐒. Similar results hold for the
quadratic loss (distance) function

L0

(
𝚺, �̂�
)
= Tr

(
𝚺−1�̂� − 𝐈

)2

Putting 𝐓 = I in (8.70) we find
𝜑
(
𝐀𝐀H) = 𝐀𝜑 (𝐈)𝐀H .

When we let 𝐀 range over the set of diagonal matrices with ±1 on the diagonal, this
gives

𝜑 (𝐈) = 𝐀𝜑 (𝐈)𝐀H (8.71)
which implies that 𝜑 (𝐈) is a diagonal matrix, say 𝚫, with i-th diagonal element Δi. This,
together with (8.70), determines𝜑 since any positive definite Hermitian matrix 𝐒 can be
factored as 𝐒 = KKH with 𝐊 lower triangular (with positive diagonal elements) and we
then have

𝜑 (𝐒) = 𝐊𝜑 (𝚫)𝐊H (8.72)
Since the group of lower triangular matrices operates transitively on the parameter
space, the risk of an invariant procedure 𝜑 is constant. Thus we compute the risk only
for 𝚺 = 𝐈. Then we have

𝜌 (𝐈, 𝜑 (𝐒)) = 𝔼
[
Tr 𝜑 (𝐒) − log det𝜑 (𝐒) − p

]

= 𝔼
[
Tr𝐊𝚫𝐊H − log det𝐊𝚫𝐊H − p

]

= 𝔼Tr𝐊𝚫𝐊H − log det𝚫 − 𝔼 log det𝐒 − p (8.73)
But

𝔼Tr𝐊𝚫𝐊H =
∑

i,j
Δi𝔼K2

ij

=
∑

Δi𝔼𝜒2
n−i+1+p−i =

∑
(n + p − 2i + 1) Δi (8.74)

since the elements of 𝐊 are independent of each other, the i-th diagonal element being
distributed as 𝜒n−i+1 and the elements below the diagonal normal with mean 0 and vari-
ance 1. Also, for the same reason

𝔼 log det𝐒 =
p∑

i=1
𝔼 log𝜒2

n−i+1 (8.75)

It follows that
𝜌 (𝚺, 𝜑 (𝐒)) = 𝜌 (𝐈, 𝜑 (𝐒))

=
p∑

i=1

[
(n + p − 2i + 1) Δi − logΔi

]
−

p∑

i=1
𝔼 log𝜒2

n−i+1 − p (8.76)

This attains its minimum value of

𝜌 (𝚺, 𝜑∗ (𝐒)) =
p∑

i=1

[

1 − log 1
n + p − 2i + 1

− 𝔼 log𝜒2
n−i+1

]

− p

=
∑[

log (n + p − 2i + 1) − 𝔼 log𝜒2
n−i+1

]
(8.77)
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when

Δi =
1

n + p − 2i + 1
(8.78)

We have thus found the minimax estimator in a class of estimators that includes the
natural estimators (multiples of 𝐒) to be different from the natural estimators. ◽

Example 8.9.3 (relationship between two loss functions) The two loss functions
are defined as

L1

(
𝚺, �̂�
)
= Tr 𝚺−1�̂� − log det𝚺−1�̂� − p, L2

(
𝚺, �̂�
)
= Tr

(
𝚺−1�̂� − 𝐈

)
(8.79)

We define the risk function as

Ri

(
𝚺, �̂�
) ≡ 𝔼

[
Li

(
𝚺, �̂�
)
|𝚺
]
, i = 1, 2

Let 𝜀 be a real number, and 𝐀 a p × p Hermitian matrix. If we apply the expansion

log det (𝐈 + 𝜀𝐀) =
∞∑

k=1

(−1)k−1

k
𝜀k Tr

(
𝐀k) (8.80)

to L1, then a relationship is obtained between L1 and L2. The series converges if the spec-
tral radius of 𝐀 is less than unity and the radius of convergence 0 ≤ 𝜀 ≤ 1. In particular,
set 𝜀 = 1, factor 𝚺−1 as 𝚺−1 = 𝛀2, and expand

log det
(
𝚺−1�̂�

)
= log det

(
𝛀�̂�𝛀

)

= log det (𝐈 + 𝐀)
(
𝐀 = 𝛀�̂�𝛀 − 𝐈

)

= Tr (𝐀) − 1
2
Tr
(
𝐀2) + 1

3
Tr
(
𝐀3) − · · · + (−1)k−1

k
Tr
(
𝐀k) + · · ·

= Tr
(
�̂�𝚺−1 − 𝐈

)
− 1

2
Tr
(
𝚺−1�̂� − 𝐈

)2
+ · · · (8.81)

From (8.81), loss functions can be written as

L1

(
𝚺, �̂�
)
= 1

2
L2

(
𝚺, �̂�
)
− 1

3
Tr
(
𝚺−1�̂� − 𝐈

)3
+ · · · (8.82)

so it is plausible that estimators which perform well (mod L1) also perform well
(mod L2). ◽

8.9.3 Covariance Matrix Tests

As pointed out above, the likelihood ratio tests cannot be used when the sample size n
is smaller than the dimension p. The singularity of the sample covariance matrix makes
likelihood ratio tests degenerate but other tests based on sample covariance matrix
remain well defined. We use the so-called moment method [67].

Roughly, we have three methods to deal with large-dimensional random matrices: the
moment method (Section 3.12), the Stieltjes transform method (Section 3.13) and the
logarithmic potential method1.

1 The logarithmic potential method has been used first by Tao and Vu [326] to prove the circular law.
See [328, 329] for details.
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Recall from (3.53) that, for a positive integer k, the k-th moment of the empirical spec-
tral density is given by

mk = ∫ xkF𝐒 (dx) = 1
N

Tr
(
𝐒k) = 1

n
Tr
((1

n
𝐗H𝐗

)k)

(8.83)

This expression plays a fundamental role in random matrix theory. By the moment con-
vergence theorem, the problem of showing that the expected ESD of a sequence of
random matrices 𝐒 = 1

n
𝐗H𝐗 tends to a limit reduces to showing that, for each fixed

k, the sequence

1
n
𝔼Tr

((1
n
𝐗H𝐗

)k)

tends to a limit. We know that when the matrix sizes n × p of 𝐗 goes large together, mk
will reach their limits. The proof of the convergence of the ESD F𝐗H𝐗∕n to a limit usually
reduces to the estimation of the second or higher moments

1
n
Tr
((1

n
𝐗H𝐗

)k)

From (8.83), we have confidence in solely studying the statistics of the moments.
The basic idea behind a family of algorithms consists of finding the map

𝜃 → mk (𝜃) = ∫ xkdF(x)

that links the parameter 𝜃 of the observation model, the moments of the limiting
Marchenko–Pastur distribution. Because the sample moments m̂k

m̂k = 1
p
Tr 𝐒k = 1

p

p∑

i=1
𝜆k

i (𝐒) , k = 1,… , q

are consistent estimators of mk , it is then natural to use the moment method for the
inference of the parameters 𝜃.

Section 8.9.3
Define the true moments as

Yi = (1∕p) Tr 𝚺i, i = 1,… , 8

We make the following assumptions:

• (A) As p → ∞, Yi → Y 0
i , 0 < Y 0

i < ∞, i = 1,… , 8.
• (B) n = O

(
p𝛿
)
, 0 < 𝛿 < 1.

Under assumption (A), and as n → ∞, an unbiased and consistent estimators of Y1 and
Y2 are respectively given by

Ŷ1 = 1
p
Tr (𝐒) (8.84)

and

Ŷ2 = n2

(n − 1) (n + 2)
1
p

[
Tr
(
𝐒2) − 1

n
(Tr 𝐒)2

]
(8.85)
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From the definition of Ŷ1 and Ŷ2, it follows that
1
p
Tr 𝐒2 = Ŷ2 +

1
pn

(Tr 𝐒)2 = Ŷ2 +
p
n

Ŷ 2
1

Thus, unless p∕n goes to zero as n → ∞ and p → ∞, (Tr 𝐒)2∕p is not a consistent esti-
mator of (1∕p) Tr 𝚺2, while Ŷ2 is always a consistent estimator of Y2 irrespective of how
n → ∞, provided the assumption (A) is satisfied.

It can be shown that asymptotically,
(

Ŷ1
Ŷ2

)

∼ 
[(

Y1
Y2

)

,
1

np

(
2Y2 4Y3
4Y2 8Y4 + 4 (p∕n)Y 2

2

)]

(8.86)

Let n → ∞ and p → ∞ such that p∕n → c. Then, asymptotically
( 1

p
Tr 𝐒

1
p
Tr 𝐒2

)

∼ 
[(

Y1
Y2 + cY 2

1

)

,
1

n2c
Δ
]

(8.87)

where

Δ =
(

2Y2 4
(
cY1Y2 + Y3

)

4
(
cY1Y2 + Y3

)
4
(
2Y2 + cY 2

2 + 4cY1Y3 + 2c2Y 2
1 Y2
)

)

Now we are in a position to study a test for the sphericity. We consider the problem of
testing the hypothesis

0 ∶ 𝚺 = 𝜎2𝐈 vs. 1 ∶ 𝚺 ≠ 𝜎2𝐈 (8.88)

when the sample size n + 1, 𝐱1,… , 𝐱n+1 is drawn from p (𝝁,𝚺). When n > p, the most
appropriate commonly used test statistic is the likelihood ratio test, which has been
shown in [487] to have a monotone power function. However, when n < p the likelihood
ratio test is not available. Here we consider a test based on a consistent estimator of
a parametric function of 𝚺, which separates the null hypothesis from the alternative
hypothesis.

As with the likelihood ratio test in classical multivariate statistics, the testing problem
remains invariant under the transformation 𝐱 → 𝐆𝐱, where 𝐆 belongs to the group of
orthogonal matrices. The problem also remains invariant under the scalar transforma-
tion 𝐱 → c𝐱. Thus, we may assume without any loss of generality that

𝚺 = diag
(
𝜆1,… , 𝜆p

)
(8.89)

a p × p diagonal matrix. From the Cauchy–Schwarz inequality, it follows that
( p∑

i=1
𝜆i × 1

)2

⩽ p
p∑

i=1
𝜆2

i

with equality holding if and only if 𝜆i ≡ c for some constant c. Thus

𝛾 ≡
p∑

i=1
𝜆2

i ∕p
( p∑

i=1
𝜆i∕p

)2 ⩾ 1 (8.90)
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and is equal to 1 if and only if 𝜆i ≡ c for some constant c. Hence, we may consider
testing the hypothesis

0 ∶ 𝛾 − 1 = 0 vs. 1 ∶ 𝛾 − 1 > 0

A test for the above hypothesis can be based on a consistent estimator of 𝛾 .
From (8.84) and (8.85), it follows that, under the assumptions (A) and (B), a consistent

estimator of 𝛾 is given by

�̂� =
Ŷ2

Ŷ 2
1

= n2

(n − 1) (n + 2)
1
p

[
Tr 𝐒2 − 1

n
(Tr 𝐒)2

]
∕(Tr 𝐒∕p)2 (8.91)

Thus, a test for the sphericity can be based on the statistic

T1 = �̂� − 1

Under the assumptions (A) and (B), asymptotically
(n

2

) (
T1 − 𝛾 + 1

)
∼  (

0, 𝜏2)

where

𝜏2 =
2n
(
Y4Y 2

1 − 2Y1Y2Y3 + Y 3
2
)

pY 6
1

+
Y 2

2

Y 4
1

Under the hypothesis that 𝛾 = 1, and under the assumptions (A) and (B), asymptoti-
cally

(n
2

) (
T1
)
∼  (0, 1)

To evaluate (8.91), we need the following result:

• Assumption 1: p∕n → c ∈ (0,∞).
• Assumption 2: 1

p
Tr 𝚺k = O (1) , k = 1, 2.

• Assumption 3: 1
p
Tr 𝚺k = O (1) , k = 3, 4.

Theorem 8.9.4 (Law of large numbers) Under assumptions 1 through 3, we have

1
p
Tr 𝐒

p
−→ 1

p

p∑

i=1
𝜆i (𝚺) = 𝛼

1
p
Tr 𝐒2 p

−→ (1 + c) 1
p

p∑

i=1
𝜆i (𝚺) +

1
p

p∑

i=1

(
𝜆i (𝚺) − 𝛼

)2

Theorem 8.9.5 (central limit theorem) Under assumptions 1 and 2, if 1
p

p∑

i=1
(𝜆i(𝚺) −

𝛼)2 = 0, then

n ×

( 1
p
Tr 𝐒 − 𝛼

1
p
Tr 𝐒2 − n+p+1

n
𝛼2

)
d
−→ 

⎛
⎜
⎜
⎝

(
0
0

)

,

⎛
⎜
⎜
⎝

2
c
𝛼2 4

(
1 + 1

c

)
𝛼3

4
(

1 + 1
c

)
𝛼3 4

(
2
c
+ 5 + 2c

)
𝛼4

⎞
⎟
⎟
⎠

⎞
⎟
⎟
⎠

where d stands for convergence in distribution.
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See [483] for details.
Fisher, Sun and Gallagher [488] modified the tests above. Starting from (8.89), it

follows, from the Cauchy–Schwarz inequality, that
( p∑

i=1
𝜆r

i

)2

⩽ p

( p∑

i=1
𝜆2r

i

)

with equality holding if and only if 𝜆1 = · · · = 𝜆p = c, for all i = 1,… , p and some con-
stant c. Thus, we may consider testing

0 ∶ 𝛾 = 1 vs. 0 ∶ 𝛾 > 1

with

𝛾 ≡
p∑

i=1
𝜆2r

i ∕p
( p∑

i=1
𝜆r

i∕p
)2

We note this test is based on the ratio of arithmetic means of the sample eigen-
values. (8.90) considered in [477] and above where r = 1, below we look at the case
of r = 2.

We make the following assumptions:

• (C) As p → ∞, Yi → Y 0
i , 0 < Y 0

i < ∞, i = 1,… , 16.
• (D) (n, p) → ∞, p

n
→ c where 0 < c < ∞.

where

Yk = (1∕p) Tr 𝚺k = 1
p

p∑

j=1
𝜆k

j (𝚺)

An unbiased and (n, p)-consistent estimator of Y4 = 1
p

p∑

j=1
𝜆4

j (𝚺) is given by

Ŷ4 = 𝜏
p

[
Tr 𝐒4 + b ⋅ Tr 𝐒3 Tr 𝐒 + c1 ⋅

(
Tr 𝐒2)2 + d ⋅ Tr 𝐒2(Tr 𝐒2)2 + e ⋅

(
Tr 𝐒2)4

]

(8.92)

where

b = −4
n
, c1 = − 2n2 + 3n − 6

n (n2 + n + 2)
, d = 2 (5n + 6)

n (n2 + n + 2)
, e = 5n + 6

n (n2 + n + 2)
and

𝜏 =
n5 (n2 + n + 2

)

(n + 1) (n + 2)(n + 4)(n + 6)(n − 1)(n − 2)(n − 3)
An unbiased and consistent estimator for Y2 is given by (8.85). Thus an (n, p)-consistent
estimator for the ratio Y4∕Y2 is provided by

𝜓 =
Ŷ4

Ŷ 2
2



404 Smart Grid using Big Data Analytics

Under assumptions (C) and (D), as (n, p) → ∞, we have

n
√

8 (8 + 12c + c2)

(
Ŷ4

Ŷ 2
2

− 𝜓

)
d
−→  (

0, 𝜉2)

with

𝜉2 = 1
(8 + 12c + c2)Y 6

2

(4
c

Y 3
4 − 8

c
Y4Y2Y6 − 4Y4Y2Y 2

3 + 4
c

Y 2
2 Y8 + 4Y6Y 3

2

+ 8Y 2
2 Y5Y3 + 4cY4Y 4

2 + 8cY 2
3 Y 3

2 + c2Y 6
2
)

(8.93)

Under the null hypothesis, 𝜓 = 1, and under the assumptions (C) and (D), as
(n, p) → ∞

T = n
√

8 (8 + 12c + c2)

(
Ŷ4

Ŷ 2
2

− 1

)
d
−→  (0, 1) (8.94)

For large n and p, the power function of T is

Power𝛼 (T) ≈ Φ
⎛
⎜
⎜
⎜
⎝

n
(

Y4

Y 2
2
− 1
)

𝜉
√

8 (8 + 12c + c2)
−

z𝛼
𝜉

⎞
⎟
⎟
⎟
⎠

under the assumptions (C) and (D), as (n, p) → ∞, we know 𝜉2 from (8.93) is constant.
From the properties of Φ(⋅), it is clear that

Power𝛼 (T) → 1.

Thus the test statistic T in (8.94) is (n, p)-consistent.

Example 8.9.6 (spectrum sensing in cogniive radio) Consider formulating spec-
trum sensing as a problem of hypothesis testing (see [39]):

0 ∶ 𝚺 = 𝜎2𝐈
1 ∶ 𝚺 = 𝐑s + 𝜎2𝐈

where 𝜎2 is the power of white Gaussian noise (unknown in general) and 𝐑s is the true
covariance matrix of the signal vector. Obviously the above hypothesis testing problem
is in the form of (8.88). Many estimators can be used to estimate𝐑s which is of low rank.
See [40] for details. ◽

The one-sided tests in this subsection do not need information from the alternative
hypothesis. This would be required when using a two-sided test.

8.9.4 Optimal Hypothesis Testing for High-Dimensional Covariance Matrices

Here we use the structure of both 0 and 1. Covariance structure plays a fundamental
role in multivariate analysis and testing the covariance matrix is an important problem.
In a high-dimensional setting, where the dimension p can be comparable to or even
much larger than the sample size n, the conventional testing procedures such as the
likelihood ratio test (LRT) perform poorly or are not even well defined.
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Inspired by applications such as Example 8.9.6, here we consider

0 ∶ 𝚺 = 𝜎2𝐈 (8.95)

Cao and Ma [489] investigated this testing problem in high-dimensional settings
from a minimax point of view. Consider testing (8.95) against a composite alternative
hypothesis

1 ∶ 𝚺 ∈ Θ, Θ = Θn =
{
𝚺 ∶ ‖𝚺 − 𝐈‖F ⩾ 𝜖n

}
(8.96)

Here, ‖𝐒‖F =

(
∑

i,j
a2

ij

)1∕2

denotes the Frobenius norm of a matrix 𝐀 = (aij). It is clear

that the difficulty of testing between 0 and 1 depends on the value of 𝜖n. The smaller
the 𝜖n is, the harder it is to distinguish between the two hypotheses. One naturally
asks the following question: What is the boundary that separates the testable region,
where it is possible to reliably detect the alternative based on the observations, from the
untestable region, where it is impossible to do so? This problem is connected to classical
contiguity theory. It is also important to construct a test that can optimally distinguish
between the two hypotheses in the testable region. The high-dimensional settings here
include all the cases where the dimension p = pn → ∞ as the sample size n → ∞, and
there is no restriction on the limit of p∕n unless otherwise stated.

For a given the significance level 0𝛼 < 1, our first goal is to identify the separation rate
𝜖n at which there exists a test 𝜙 based on the random sample

{
𝐱1,… , 𝐱n

}
such that

inf
𝚺∈Θ

ℙ𝚺
(
𝜙 rejects 0

)
⩾ 𝛽 > 𝛼

Hence the test is able to detect any alternative that is separated away from the null by a
certain distance 𝜖n with a guaranteed power 𝛽 > 𝛼.

The lower and upper bounds together characterize the separation boundary between
the testable and nontestable regions when the ratio of the dimension p over the sample
size n is bounded. This separation boundary can then be used as a minimax benchmark
for the evaluation of the performance of a test in this asymptotic regime.

Lower Bound

We consider the lower bound first. A test𝜙 = 𝜙n
(
𝐱1,… , 𝐱n

)
refers to a measurable func-

tion that maps n random vectors to the closed interval [0, 1], where the value stands for
the probability of rejecting 0. So, the significance level of 𝜙 is

ℙI
(
𝜙 rejects 0

)
= 𝔼I𝜙

and its power at a certain alternative Σ is

ℙ𝚺
(
𝜙 rejects 0

)
= 𝔼𝚺𝜙

Here and after ℙ𝚺,𝔼𝚺,Var𝚺 and Cov𝚺 denote the induced probability measure, expecta-
tion, variance and covariance when

𝐱1,… , 𝐱n
i.i.d∼ p (0,𝚺)

Let 𝜖n = b
√

p∕n for some constant b, and define

Θ (b) =
{
𝚺 ∶ ‖𝚺 − 𝐈‖F ⩾ b

√
p∕n
}

(8.97)
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Theorem 8.9.7 (lower bound) Let 0 < 𝛼 < 𝛽 < 1. Suppose that n → ∞, p → ∞,
and that p∕n ≤ 𝜅 for some constant 𝜅 < ∞ and all n. Then there exists a constant
b = b (𝜅, 𝛽 − 𝛼) < 1, such that for any test 𝜙 with significance level 𝛼 for testing
0 ∶ 𝚺 = 𝐈,

lim sup
n→∞

inf
𝚺∈Θ(b)

𝔼𝚺𝜙 < 𝛽

Upper Bound

There is a level 𝛼 whose power over Θn is uniformly larger than a prescribed value 𝛽 > 𝛼,
if n = b

√
p∕n for a large-enough constant b. This is in agreement with the lower bound

result in Theorem 8.9.7 when p∕n is bounded.
In addition, the results in the current section remain valid even when p∕n is

unbounded. This is the ultra-high-dimensional setting: both n, p → ∞ and p∕n → ∞.
The LRT and corrected LRT [160] are not well defined in this case. The testing problem
in this asymptotic regime is not as well studied as in the previous categories. Birke
and Dette [490] derived the asymptotic null distribution of the Ledoit–Wolf test
under the current asymptotic regime. More recently, Chen et al. [476] proposed a new
test statistic and derived its asymptotic null distribution when both both n, p → ∞,
regardless of the limiting behavior of p∕n.

Let us first start with test statistic. Given a random i.i.d. sample 𝐱1,… , 𝐱n ∼  p (𝟎,𝚺),
a natural approach to test between (8.95) and (8.96) is to first estimate the squared
Frobenius norm

‖𝚺 − 𝐈‖2
F = Tr (𝚺 − 𝐈)2

by some statistic Tn = Tn
(
𝐱1,… , 𝐱n

)
, and then reject the null hypothesis 0 if Tn is too

large. To estimate ‖𝚺 − 𝐈‖2
F = Tr (𝚺 − 𝐈)2, note that

𝔼𝚺d
(
𝐱1, 𝐱2

)
= Tr (𝚺 − 𝐈)2

where
d
(
𝐱1, 𝐱2

)
=
(
𝐱H

1 𝐱2
)2 −

(
𝐱H

1 𝐱1 + 𝐱H
2 𝐱2
)
+ p (8.98)

Therefore, Tr (𝚺 − 𝐈)2 can be estimated by the following U-statistic

Tn = 2
n (n − 1)

∑

1⩽i<j⩽n
d
(
𝐱i, 𝐱j

)
(8.99)

for which we have

Varn (𝚺) = Var𝚺
(
Tn
)
= 4

n (n − 1)

[(
Tr
(
𝚺2))2 + Tr

(
𝚺4)
]
+ 8

n
Tr
(
𝚺2(𝚺 − 𝐈)2)

Proposition 8.9.8 (Theorem 2 of [476]) Suppose that p → ∞ as n → ∞. If a sequence
of covariance matrices satisfy Tr

(
𝚺2)→ ∞ and Tr

(
𝚺4) ∕Tr2 (𝚺2) → 0 as n → ∞. then

under ℙ𝚺, we have
Tn − 𝜇n (𝚺)
𝜎n (𝚺)

⇒  (0, 1)

Note that as n → ∞, the identity matrix 𝐈p×p satisfies the condition of the above
proposition. Also note that 𝜇n (𝐈) = 0, and 𝜎2

n (𝚺) =
4p(p−1)
n(n−1)

. Proposition 8.9.8 describes
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the behavior of test statistic Tn under 0, and we could define the test as the following.
For any 𝛼 ∈ (0, 1), an asymptotic level 𝛼 test based on Tn is given by

𝜓 = I
⎛
⎜
⎜
⎝

Tn > z1−𝛼 ⋅ 2

√
p (p − 1)
n (n − 1)

⎞
⎟
⎟
⎠

(8.100)

Here, I(⋅) is the indicator function, and z1−𝛼 denotes the 100 × (1 − 𝛼)-th percentile of
the standard normal distribution.

We now study the rate of convergence for the distribution of
[
Tn − 𝜇n (𝚺)

]
∕𝜎n (𝚺)

to its normal limit in Kolmogorov distance. Let Φ(⋅) be the cumulative distribution
function of the standard normal distribution. We have the following Berry–Essen type
bound.

Proposition 8.9.9 Under the condition of Proposition 8.9.8, there exists a numeric
constant C such that

sup
x∈ℝ

|
|
|
|
|
ℙ𝚺
(Tn − 𝜇n (𝚺)

𝜎n (𝚺)
⩽ x
)

− Φ (x)
|
|
|
|
|
⩽ C

[
1
n
+

Tr
(
𝚺4)

Tr2 (𝚺2)

]1∕5

Equipped with Proposition 8.9.9, we now investigate the power of the test (8.100) over
the composite alternative 1 ∶ 𝚺 ∈ Θ (b), with b < 1, Θ (b) is defined in (8.97).

Theorem 8.9.10 (upper bound) Suppose that p → ∞ as n → ∞. For any significance
level 𝛼 ∈ (0, 1), and Θ (b) defined in (8.97), the power of the test in (8.100) satisfies

lim
n→∞

inf
𝚺∈Θ(b)

𝔼𝚺𝜓 = 1 − Φ
(

z1−𝛼 −
b2

2

)

> 𝛼

Moreover, for bn → ∞, lim
n→∞

inf
𝚺∈Θ(bn)

𝔼𝚺𝜓 = 1

In the classical asymptotic regime where p is fixed and n → ∞, the likelihood ratio test
(LRT) is one of the most commonly used tests. In the high-dimensional setting where
both n and p are large and p < n, Bai et al. [160] showed that the LRT is not well behaved
as the chi-squared limiting distribution under 0 no longer holds.

When p fixed and n → ∞. In this classical asymptotic regime, conventional tests
for (8.95) include the likelihood ratio test (LRT) [371], Roy’s largest root test [491], and
Nagao’s test [492]. In particular, the LRT statistic is LRn = nLn, where

Ln = Tr 𝐒 − log det (𝐒) − p

The asymptotic distribution of LRn = nLn under 0 is chi-square distributed
𝜒2

p(p+1)∕2.
For testing (8.95), when p < n and p∕n → cn ∈ (0, 1), Bai et al. [160] proposed a cor-

rected likelihood ratio test (CLRT) with the test statistic CLRn given by

CLRn =
Ln − p

[
1 −
(
1 − c−1

n
)

log
(
1 − cn

)]
− 1

2
log
(
1 − cn

)

√

−2 log
(
1 − cn

)
− 2cn

(8.101)
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whose asymptotic null distribution is  (0, 1). No test based on the likelihood ratio can
be defined when p > n or cn > 1. The power of the CLRT is uniformly dominated by
that of given in (8.100) over the entire asymptotic regime under which the CLRT is
applicable.

We have focused in this section on testing the hypotheses under the Frobenius norm.
The technical arguments developed here can also be used for testing under other matrix
norms such as the spectral norm.

8.9.5 Sphericity Test

Let 𝐱1,… , 𝐱n be i.i.d. ℝp-valued random vectors from a normal distribution p (𝝁,𝚺),
where 𝝁 ∈ ℝp is the mean vector and 𝚺 the p × p covariance matrix. Consider the
hypothesis test:

0 ∶ 𝚺 = 𝜎2𝐈p vs. 1 ∶ 𝚺 ≠ 𝜎2𝐈p (8.102)

where 𝜎2 is unknown. The identity hypothesis in (8.102) covers the hypothesis for

0 ∶ 𝚺 = 𝚺0 vs. 1 ∶ 𝚺 ≠ 𝚺0

for an arbitrary specifically known invertible covariance matrix𝚺0. Thus the assumption
of (8.102) will not lose generality. Denote

𝐱 = 1
n

n∑

i=1
𝐱i, 𝐀 =

n∑

i=1

(
𝐱i − 𝐱

) (
𝐱i − 𝐱

)′
, and 𝐒 = 1

n − 1
𝐀 (8.103)

The likelihood ratio statistic of test (8.102) was first derived by Mauchly [493] as

Vn = det𝐀 ⋅
(

1
p

Tr𝐀
)−p

= det𝐒 ⋅
(

1
p

Tr𝐒
)−p

(8.104)

Note that the matrices𝐀,𝐒 are not of full rank when p > n and consequently their deter-
minants are equal to zero in this case. This says that the likelihood ratio test of (8.102)
only exists for p ≤ n. The statistic Vn is commonly known as the ellipticity statistic.

By Theorem 3.1.2 and Colollary 3.2.19 from Muirhead [37], under 0 in (8.102)
n
𝜎2 ⋅ 𝐒 and 𝐙′𝐙 have the same distribution (8.105)

where 𝐙 =
{

zij
}

(n)×p and z′ijs are i.i.d. with distribution with  (0, 1). This says that, with
probability one, 𝐒 is not of full rank when p ≥ n, and consequently det𝐀 = 0. This indi-
cates that the likelihood ratio test of (8.102) only exists when p < n.

Gleser [494] proved the likelihood ratio test with the rejection region
{

Vn ⩽ c𝛼
}

(where c𝛼 is chosen so that the test has a significant level of 𝛼) is unbiased. The
distribution of the test statistic Vn can be studied through its moments. When the
null hypothesis 0 ∶ 𝚺 = 𝜎2𝐈p is true, the following result is cited from p. 341 of
Muirhead [37]:

𝔼
(
V h

n
)
= pph

Γ
[

1
2
(n − 1) p

]

Γ
[

1
2
(n − 1) + ph

]

Γ
[

1
2
(n − 1) + h

]

Γp

[
1
2
(n − 1)

] for h > −1
2

(8.106)

When p is assumed a fixed integer, the following result, referenced from section 10.7.4
of of Muirhead [37] and and section 8.3.3 of Anderson [495], gives an explicit expansion
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of the distribution function of −2𝜌 log
(
Vn
)
, 𝜌 = 1 −

(
2p2 + p + 2

)
∕ (6np − 6p), as M =

𝜌 (n − 1) → ∞:

ℙ
(
− (n − 1) 𝜌 log

(
Vn
)
⩽ x
)

= ℙ
(
𝜒2

f ⩽ x
)
+ 𝛾

M2

[
ℙ
(
𝜒2

f +4 ⩽ x
)
− ℙ
(
𝜒2

f ⩽ x
)]

+ O
(
M−3) (8.107)

where f = (p + 2) (p − 1) ∕2, 𝛾 = (n − 1)2
𝜌2𝜔2, and 𝜔2 given by

𝜔2 =
(p − 1) (p − 2) (p + 2)

(
2p2 + 6p2 + 3p + 2

)

288p2(n − 1)2
𝜌2

(8.108)

In other words, this classical asymptotic result shows that

− n𝜌 log Vn converges to 𝜒2(f ) (8.109)

in distribution as n → ∞ with p fixed. The quantity 𝜌 is a correction term to improve
the convergence rate.

Nagarsenker and Pillai [496] tabulated the lower 5 percentile and 1 percentile of the
asymptotic distribution of Vn under the null hypothesis 0 ∶ 𝚺 = 𝜎2𝐈p.

A different test for sphericity other than the likelihood ratio test was recommended
by John [497] who studied the test statistic

U = 1
p

[
𝐒

(1∕pTr 𝐒)
− 𝐈p
]2

=
(1∕p) Tr 𝐒2

(1∕pTr 𝐒)2 − 1 (8.110)

It follows from John [497] that the test that rejects the null hypothesis when U > c𝛼 ,
where c𝛼 is determined by the significant level of 𝛼, is a locally most powerful invariant
test for sphericity and this test is more general than the aforementioned likelihood ratio
test because it can be performed even with p > n when the sample size is smaller than
the dimension. John [498] further showed that under the null hypothesis of (8.102), the
limiting distribution of the test statistic U , as the sample size n goes to infinity while the
dimension p remains fixed, is given by

1
2

npU
d
−→ 𝜒2

p(p+1)∕2−1 (8.111)

Finally, when p ≥ n, we know the LRT does not exist as mentioned below. There are
some recent works on choosing other statistics to study the spherical test of (8.102).
Along with this line, Ledoit and Wolf [469] re-examined the limiting distribution of the
test statistic U in the high-dimensional situation where lim

n→∞
p
n
= c ∈ (0,∞). They proved

that, under the null hypothesis of (8.102)

nUn − p
d
−→  (1, 4) (8.112)

Ledoit and Wolf further argued that since
2
p
𝜒2

p(p+1)∕2−1 − p
d
−→  (1, 4) (8.113)

John’s n-asymptotic results (assuming p is fixed) of test statistic U still remains
valid in the high-dimensional case (i.e. both p and n are large). Chen, Zhang and
Zhong [476] extended Ledoit and Wolf ’s asymptotic result to non-normal distributions
with certain conditions on their covariance matrices. Cai and Ma [484] considered
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testing a covariance matrix 𝚺 in a high-dimensional setting where the dimension
p can be comparable to, or much larger than, the sample size n. The problem of
testing the hypothesis 0 ∶ 𝚺 = 𝚺0 for a given covariance matrix 𝚺0 is studied from
a minimax point of view. A test based on a U-statistic is introduced and is shown to
be rate optimal over this asymptotic regime. It is shown that the power of this test
uniformly dominates that of the corrected likelihood ratio test (CLRT) (first proposed
by Bai et al. [160]) over the entire asymptotic regime under which the CLRT is
applicable.

Here we focus on the likelihood ratio test for sphericity in the high dimensional case
lim
n→∞

p
n
= y ∈ (0, 1), due to [499], and develop a central limit theorem for the likelihood

ratio test statistic log Vn as given in (8.104).

Theorem 8.9.11 Assume that p ∶= pn is a series of positive integers depending on n
such that n > 1 + p for all n ≥ 3 and p∕n → y ∈ (0, 1] as n → ∞. Let Vn be defined as
given in (3.3). Then under 0 ∶ 𝚺 = a2𝐈p (a2 unknown),

(
log Vn − 𝜇n

)
∕𝜎n converges in

distribution to  (0, 1) as n → ∞, where

𝜇n = −p − (n − p − 1.5) log
(

1 −
p

n − 1

)

𝜎2
n = −2

[ p
n − 1

+ log
(

1 −
p

n − 1

)]
> 0

Though a2 is unspecified, the limiting distribution in Theorem 8.9.11 is pivotal, that
is, it does not depend on a2. This is because a2 is canceled in the expression of (8.104):
det (𝛼𝐒) = 𝛼p det(𝐒) and (Tr (𝛼𝐒))−p = 𝛼−p ⋅ (Tr (𝐒))−p for any 𝛼 > 0.

Simulation by Yang [499] indicates that, in regard to the test size (or alpha error),
the proposed high-dimensional LRT using Theorem 8.9.11 shows noninferiority to the
traditional LRT when p is small, yet a significant improvement over the traditional one
when p becomes large.

Traditionally, the likelihood ratio tests (LRT) for the mean vectors and covariance
matrices of normal distributions were performed by using the chi-square approximation
to the limiting distributions of the likelihood ratio test statistics. However, this approxi-
mation relies on a theoretical assumption that the sample size n goes to infinity, while the
dimension p remains fixed. In practice, this requires the dataset to have a large sample
size n but a low dimension p. Simulation in [474] shows that the chi-square approxima-
tion in (8.109) is far from reasonable when p is large. As many modern datasets feature
high dimensions, these traditional likelihood ratio tests were shown to be less accurate
in analyzing those datasets.

On the sphericity test with large-dimensional observations see [500].

8.9.6 Testing Equality of Multiple Covariance Matrices of Normal Distributions

Suppose that the sample covariance matrices 𝐒1,… ,𝐒k have been computed from inde-
pendent random samples from multivariate normal distributions with covariance matri-
ces 𝚺1, ....,𝚺k , respectively. We test whether the hypothesis

0 ∶ 𝚺1 = · · · = 𝚺k

is true. The alternative hypothesis 1 is that 0 is not true.
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Let 𝐱i1,… , 𝐱ini
be i.i.d. ℝp-valued random vectors from k p-variate normal distribu-

tions p
(
𝝁i,𝚺i

)
for i = 1,… , k, where k ≥ 2 is a fixed integer. Consider the hypoth-

esis test that these k normal distributions have a common but unknown covariance
matrix:

0 ∶ 𝚺1 = · · · = 𝚺k (8.114)

Denote

𝐱i =
1
ni

ni∑

j=1
𝐱ij, 𝐀i =

ni∑

j=1

(
𝐱ij − 𝐱i

) (
𝐱ij − 𝐱i

)′
, for i = 1,… , k

and

𝐀 = 𝐀i + · · ·𝐀k , n = n1 + · · · + nk (8.115)

Wilks [501] gave the likelihood ratio test of (8.114) with a test statistic

Λn =

k∏

i=1

(
det𝐀i

)ni∕2

(det𝐀)n∕2 ⋅
nnp∕2

k∏

i=1
nnip∕2

i

(8.116)

and the test rejects the null hypothesis 0 at Λn ⩽ c𝛼 , where the critical value c𝛼 is deter-
mined so that the test has the significant level of 𝛼.

Any of the matrices 𝐀i, i = 1, 2,… , k will not have a full rank when p > ni for any i =
1,… , k and consequently its determinants are equal to zero, so are the test statistic Λn.
Therefore, the likelihood ratio test of (8.114) only exists when p ≤ ni for all i = 1,… , k.
Another drawback of the likelihood ratio test is on its bias (see section 8.2.2 of [37]).
Bartlett [502] suggested using a modiffied likelihood ratio test statisticΛ∗

n by substituting
every sample size ni with its degree of freedom ni − 1 and substituting the total sample
size n with n − k:

Λ∗
n =

k∏

i=1

(
det𝐀i

)(ni−1)∕2

(
det𝐀i

)(n−k)∕2 ⋅
(n − k)(n−k)p∕2

k∏

i=1

(
ni − 1

)(ni−1)p∕2
(8.117)

The unbiased property of this modified likelihood ratio test was proved by Sugiura and
Nagao [503] for k = 2 and by Perlman [504] for a general k.

Many traditional tests assume a fixed p. Recently, Schott [505] studied an alternative
test of (8.114) based on the Wald statistic

T = n
2

k∑

i≠j
Tr
{(

1
ni
𝐒i −

1
nj
𝐒j

)(1
n
𝐒
)−1}2

(8.118)

where the Wald statistic is well defined as long as 𝐒 is nonsingular, hence it only requires
n = n1 + · · · + nk ⩾ p. Schott [505] showed that if p remains fixed, then the limiting null
distribution of T as ni → ∞ for i = 1,… , k, is a chi-square distribution with degree of
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freedom (k − 1)p(p + 1)∕2. For the high-dimensional settings, Schott [481] proposed a
modified Wald statistic

Tnp =
∑

i<j

{
Tr
(
𝐒i − 𝐒j

)2 − 1
ni𝜂i

[
ni
(
ni − 2

)
Tr 𝐒2

i + n2
i (Tr 𝐒)

2]

− 1
nj𝜂j

[
nj
(
nj − 2

)
Tr 𝐒2

j + n2
j (Tr 𝐒)

2
]}

(8.119)

with 𝜂i =
(
ni + 2

) (
ni − 1

)
and showed that this statistic Tnp is an unbiased estimator

for
∑

i≠j
Tr
(
𝚺i − 𝚺j

)2. Schott further proved that assuming

• (1) pi∕n → yi ∈ [0,∞), and at least one yi > 0;
• (2) lim

n→∞
1
p
Tr 𝚺k = 𝛾k ∈ [0,∞), for k = 1,… , 8

this statistic Tnp as defined in (8.119) converges in distribution to  (0, 𝜎2),
where

𝜎2 = 4

[
∑

i≠j

(
yi + yj

)2 + (k − 1) (k − 2)
k∑

i=1
y2

i

]

𝛾2
2

Here we develop the likelihood ratio test for testing equality of multiple covariance
matrices of normal distributions in the high-dimensional settings p

n
→ y ∈ (0, 1),

as n, p → ∞. Our proposed test is based on the following central limit theorem
due to [499] for the likelihood ratio statistic logΛn under the null hypothesis
(8.114).

Theorem 8.9.12 Assume ni = ni(p) for all 1 ≤ i ≤ k such that min1⩽i⩽kni > p + 1
and lim

p→∞
p∕ni = yi ∈ (0, 1] as p → ∞ for each 1 ≤ i ≤ k. Let n = n1 + · · · + nk and Λ∗

n be
defined as in (8.117). Then under

0 ∶ 𝚺1 = · · · = 𝚺k

the sequence

logΛ∗
n − 𝜇n

(n − k) 𝜎n

converges in distribution to  (0, 1) as p → ∞, where

𝜇n = 1
2

[
(n − k) (n − k − 0.5) log

(
1 −

p
n − k

)

−
k∑

i=1

(
ni − 1

) (
ni − p − 1.5

)
log
(

1 −
p

ni − k

)]

𝜎2
n = 1

2

[

log
(

1 −
p

n − k

)
−

k∑

i=1

(ni − 1
n − k

)2

log
(

1 −
p

ni − k

)]

> 0
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8.9.7 Testing Independence of Components of Normal Distribution

For a multivariate distribution p (𝝁,𝚺), we partition a set of p variates with a joint
normal distribution into k subsets and ask whether the k subsets are mutually inde-
pendent, or equivalently, we want to test whether variables among different subsets are
dependent. In particular, let 𝐱1,… , 𝐱n be i.i.d. ℝp-valued random vectors with normal
distribution p (𝝁,𝚺).

Let the p-component vector 𝐱 be distributed according to p (𝝁,𝚺). We partition 𝐱
into k subvectors:

𝐱 =
(
𝐱(1),… , 𝐱(k)

)′ (8.120)

where each 𝐱(i) has dimension pi, respectively, with p =
∑k

i=1 pi. The vector of means 𝝁
and the covariance matrices 𝚺 are partitioned similarly:

𝝁 =
(
𝝁
(1),… ,𝝁(k))′ (8.121)

and

𝚺 =
⎛
⎜
⎜
⎜
⎝

𝚺11 𝚺12 · · · 𝚺1k
𝚺21 𝚺22 · · · 𝚺2k
⋮ ⋮ ⋱ ⋮
𝚺k1 𝚺k2 · · · 𝚺kk

⎞
⎟
⎟
⎟
⎠

The null hypothesis is that the subvectors 𝐱(1),… , 𝐱(k) are mutually independently dis-
tributed: the density of 𝐱 factors into the product of the density functions of 𝐱(1),… , 𝐱(k):

0 ∶ f (𝐱 |𝝁,𝚺 ) =
k∏

i=1
f
(
𝐱(i) ||
|
𝝁
(i),𝚺ii

)
(8.122)

If 𝐱(1),… , 𝐱(k) are independent subvectors, then the covariance matrix is block diagonal
and denoted by 𝚺0.

The block diagonal covariance matrix 𝚺0 is written as

𝚺0 =
⎛
⎜
⎜
⎜
⎝

𝚺11 0 · · · 0
0 𝚺22 · · · 0
⋮ ⋮ ⋱ ⋮
0 0 · · · 𝚺kk

⎞
⎟
⎟
⎟
⎠

with 𝚺ii unspecified for 1 ≤ i ≤ k. Given a sample of size n, 𝐱1,… , 𝐱n are n observations
on random vector 𝐱, the likelihood ratio is

Λn =
max
𝝁,𝚺0

L
(
𝜇,𝚺0

)

max
𝝁,𝚺

L (𝜇,𝚺)
(8.123)

where the likelihood function is

L (𝝁,𝚺) =
k∏

i=1

1
(2𝜋)p∕2det1∕2 (𝚺)

exp
{
−1

2
(
𝐱i − 𝝁

)′ 𝚺
(
𝐱i − 𝝁

)}
(8.124)

L
(
𝝁,𝚺0

)
is L (𝝁,𝚺) with {𝚺ij = 0, i ≠ j, for all 0 ≤ i, j ≤ k; and the maximum is taken

with respect to all vectors 𝝁 and positive definite matrices 𝚺 and 𝚺0. According to
Theorem 11.2.2 of Muirhead [37], we have
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max
𝝁,𝚺

L (𝝁,𝚺) = 1

(2𝜋)pn∕2detn∕2
(
�̂�Ω
) exp

{
−1

2
pn
}

(8.125)

where

�̂� = 1
n − 1

𝐒 = 1
n − 1

n∑

i=1

(
𝐱i − 𝐱

)′ (𝐱i − 𝐱
)

(8.126)

Under the null hypothesis,

max
𝝁,𝚺0

L
(
𝝁,𝚺0

)
=

k∏

i=1
max Li

(
𝝁
(i),𝚺ii

)

=
k∏

i=1

1

(2𝜋)pin∕2detn∕2
(
�̂�ii

) exp
{
−1

2
pin
}

= 1

(2𝜋)pn∕2
k∏

i=1
detn∕2

(
�̂�ii

)
exp
{
−1

2
pn
}

where

�̂�ii =
1

n − 1

n∑

j=1

(
𝐱(i)j − 𝐱(i)

)(
𝐱(i)j − 𝐱(i)

)′
(8.127)

If we partition 𝐒 and �̂� in the same way as 𝚺, we find that

�̂�ii =
1

n − 1
𝐒ii

Then the likelihood ratio becomes

Λn =
max
𝝁,𝚺0

L
(
𝝁,𝚺0

)

max
𝜇,𝚺

L (𝜇,𝚺)
=

detn∕2
(
�̂�Ω
)

k∏

i=1
detn∕2

(
�̂�ii

)
= detn∕2 (𝐒)

k∏

i=1
detn∕2 (𝐒ii

)
(8.128)

The critical region of the likelihood ratio test is

Λn ⩽ Λn (𝛼) (8.129)
where Λn (𝛼) is a number such that the probability of (8.129) is 𝛼 when 𝚺 = 𝚺0.

Wilks’ Statistic

We want to test the hypothesis

0 ∶ 𝚺 = 𝚺0 vs. 1 ∶ 𝚺 ≠ 𝚺0 (8.130)
Now we employ Wilks’ statistic to do the test. Let

Wn = det (𝐒)
k∏

i=1
det
(
𝐒ii
)

(8.131)
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Wn can be expressed entirely in terms of sample correlation coefficients. Λn = W n∕2
n is a

monotonically increasing function of Wn. The critical region can be equivalently written
as Wn ⩽ Wn (𝛼). Wn = 0 if p > n, since the matrix 𝐒 is not of full rank in this case. Set

f = 1
2

(

p2 −
k∑

i=1
p2

i

)

and 𝜌 = 1 −

2

(

p3 −
k∑

i=1
p3

i

)

+ 9

(

p2 −
k∑

i=1
p2

i

)

6 (n + 1)

(

p2 −
k∑

i=1
p2

i

)

(8.132)

When n → ∞ while all p′
i s remain fixed, the traditional 𝜒2 approximation to the dis-

tribution of Λn is found in Theorem 11.2.5 in Muirhead [37]:

−2𝜌 log
(
Λn
) d
−→ 𝜒2

f

When p is large enough or is proportional to n, this chi-square approximation may
fail [474]. In fact, their results show that the central limit theorem (CLT) holds:(
log Wn − 𝜇n

)
∕𝜎n actually converges to the standard normal for a fixed number of

partition k, where 𝜇n and 𝜎n can be expressed explicitly as a function of sample size and
partition.

Considering the insufficiency of the LRT when p is large, Bai et al. [160] suggested a
so-called corrected likelihood ratio test for covariance matrices of Gaussian populations
when the dimension is large compared to the sample size. They also used a LRT to fit
high-dimensional normal distribution p (𝛍,𝚺) with 0 ∶ 𝚺 = 𝐈p. In their derivation,
the dimension p is no longer a fixed constant, but rather is a variable that goes to infinity
along with the sample size n, and the ratio between p = pn, and converges to a constant y:

lim
n→∞

p
n
= y ∈ (0, 1)

Jiang et al. [473] further extend Bai’s result to cover the case of y = 1, and reached
the CLT of the LRT used for testing dependence of k groups of components for
high-dimensional datasets, where k is a fixed number. Jiang and Yang [474] studied
several other classical likelihood ratio tests for means and covariance matrices of
high-dimensional normal distributions. Most of these tests have the asymptotic results
for their test statistics derived decades ago under the assumption of a large n but a
fixed p. Their results supplement these traditional results in providing alternatives to
analyze high-dimensional datasets including the critical case p∕n → 1.

Zhang [506] has proven the CLT for the LRT, allowing that k changes with n and the
partition can be unbalanced in the sense that numbers of components within subsets
are not necessarily proportional. The main result is summarized below.

Let k ≥ 2, p1,… , pk be an arbitrary partition of dimension p. Denote p =
∑k

k=1 pi,
and let

𝚺 =
(
𝚺ij
)

p×p (8.133)

be the covariance matrix (positive definite), where 𝚺ij is a pi × pi sub-matrix for all 1 ≤
i, j ≤ k. Consider the following hypothesis

0 ∶ 𝚺 = 𝚺0 vs. 1 ∶ 𝚺 ≠ 𝚺0 (8.134)
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which is equivalent to hypothesis (8.122). Let 𝐒 be the sample covariance matrix. Then
partition 𝐀 = (n − 1)𝐒 in the following way:

⎛
⎜
⎜
⎜
⎝

𝐀11 𝐀12 · · · 𝐀1k
𝐀21 𝐀22 · · · 𝐀2k
⋮ ⋮ ⋱ ⋮
𝐀k1 𝐀k2 · · · 𝐀kk

⎞
⎟
⎟
⎟
⎠

where 𝐀ij is a pi × pj matrix. Wilks [501] suggested the likelihood ratio statistic for
test (8.122)

Λn = detn∕2 (𝐀)
k∏

i=1
detn∕2 (𝐀ii

)
=
(
Wn
)n∕2 (8.135)

When p > n + 1, the matrix 𝐀 is not full rank, and thus Λn is degenerate. We have the
following theorem due to [506].

Theorem 8.9.13 Let p satisfy p < n − 1 and p → ∞ as n → ∞. p1,… , pk are k integers
such that p =

∑k
i=1 pi and maxipi

p
⩽ 1 − 𝛿, for a fixed 𝛿 ∈ (0, 1∕2) and all large n. Wn is the

Wilks likelihood ratio statistics described as (8.135). Then

log Wn − 𝜇n

𝜎n

d
−→  (0, 1) (8.136)

as n → ∞, where

𝜇n = −c log
(

1 −
p

n − 1

)
+

k∑

i=1
ci log

(
1 −

pi

n − 1

)

𝜎2
n = − log

(
1 −

p
n − 1

)
+

k∑

i=1
ci log

(
1 −

pi

n − 1

)

with c = p − n + 3
2
, ci = pi − n + 3

2
.

In the theorem above, integers k, p1,… , pk and p all can depend on sample size n. The
assumption that maxipi

p
⩽ 1 − 𝛿 rules out the situation where maxipi

p
→ 1 along the entire

sequence or any subsequence.

8.9.8 Test of Mutual Dependence

A prominent feature of data collection nowadays is that the number of variables is
comparable with the sample size. This is the opposite of the classical situations where
many observations are made on low-dimensional data. Measuring mutual dependence
is important in time-series analysis and cross-sectional panel-data analysis. While
serial dependence can be characterized by the general spectral density function, mutual
dependence is difficult to be described by a single criteria. This paper proposes a
new statistic, due to [507], to test mutual dependence for a large number of high
dimensional random vectors, including multiple time series and cross-sectional panel
data.
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Suppose that
{

Xji
}
, j = 1,… , n, i = 1,… , p are complex-valued random variables.

For 1 ≤ i ≤ p, let 𝐱i =
(
X1i,… ,Xni

)T denote the i-th time series and 𝐱1,… , 𝐱p be a
panel of p time series, where n usually denotes the sample size in each of the time
series data. In both theory and practice, it is common to assume that each of the time
series

(
X1i,… ,Xni

)
is statistically independent, but it may be unrealistic to assume that

𝐱1,… , 𝐱p are independent or even uncorrelated. This is because there is no natural
ordering for cross-sectional indices.

It may be necessary to test whether 𝐱1,… , 𝐱p are independent before a statistical
model is used to model such data. The main motivation of including this section is
to show how to use an empirical spectral distribution function-based test statistic for
cross-sectional independence of 𝐱1,… , 𝐱p. The aim is to test

0 ∶ 𝐱1,… , 𝐱p are independent
1 ∶ 𝐱1,… , 𝐱p are not independent

(8.137)

where 𝐱i =
(
X1i,… ,Xni

)T , for i = 1,… , p.
Our approach essentially uses the characteristic function of the empirical spectral dis-

tribution of sample covariance matrices in large random-matrix theory. When 𝐱1,… , 𝐱p
are mutual independent, the limiting spectral distribution (LSD) of the corresponding
sample covariance matrix is the Marcenko–Pastur (M–P) law (see Section 3.5). From
this point, any deviation of the LSD from M-P law is evidence of dependence. Indeed,
Silverstein [175] and Bai and Zhou [508] report the LSD of the sample covariance
matrix with correlations in columns and it is different from the M–P law. We need
not draw observations again from the set of vectors of 𝐱1,… , 𝐱p due to the high
dimensionality.

Assumption 8.9.14 For each i = 1,… , p, Y1i,… ,Yni are independent and identically
distributed (i.i.d) random variables with mean zero, variance one and finite fourth
moment. When Yji are complex random variables we require 𝔼X2

ji = 0. Let

𝐱i = 𝚺
1∕2
n 𝐲i

with 𝐲i =
(
Y1i,… ,Yni

)T and 𝚺1∕2
n being a Hermitian square root of the non-negative

definite Hermitian matrix 𝚺n.

Assumption 8.9.15 p = p(n) with p∕n → c ∈ (0,∞).

We stack p time series 𝐱i one by one to form a data matrix 𝐗 =
(
𝐱1,… , 𝐱p

)
∈ ℂn×p.

Moreover, denote the sample covariance matrix by

𝐒n = 1
n
𝐗H𝐗 ∈ ℂp×p

where H stands for Hermitian transpose of the matrix 𝐗. The empirical spectral distri-
bution (ESD) of the sample covariance matrix 𝐒n is defined as

F𝐒n
(x) = 1

p

p∑

i=1
𝕀
(
𝜆i ⩽ x

)
(8.138)

where 𝜆1 ⩽ 𝜆2 ⩽ · · · ⩽ 𝜆p are eigenvalues of 𝐒n.
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It is well-known that if 𝐱1,… , 𝐱p are independent and cn = p∕n → c ∈ (0,∞) then
F𝐒n

(x) converges with probability one to the Marchenko–Pastur law Fc(x) whose density
has an explicit expression

fc (x) =

{
1

2𝜋c
1
x

√
(b − x) (a − x), a ⩽ x ⩽ b
0, otherwise

(8.139)

and a point mass 1 − 1∕c at the origin if c > 1, where a =
(

1 −
√

c
)2

and b =
(

1 +
√

c
)2

.
When there is some correlation among 𝐱1,… , 𝐱p, denoted by 𝚺n, the covariance

matrix of the first row, 𝐲T
1 , of 𝐗. Then, under Assumption 8.9.14, when F𝚺n

(x)
D
−→ H (x),

F𝐒n
(x) converges with probability one to a nonrandom distribution function Fc,H(x)

whose Stieltjes transform satisfies

m (z) = ∫
1

x (1 − c − czm (z)) − z
dH (x) (8.140)

The construction of our test statistic relies on the following observation: the limit of
the ESD of the sample covariance matrix 𝐒n is the M–P law by (8.139) when 𝐱1,… , 𝐱p
are independent and satisfy Assumption 8.9.14 (Hypothesis 0), while the limit of the
ESD is determined from (8.140) when there is some correlation among 𝐱1,… , 𝐱p with
the covariance matrix 𝚺p different from the identity matrix 𝐈p: 𝚺p ≠ 𝐈p (Hypothesis 1).

Moreover, preliminary investigations indicate that when 𝐱1,… , 𝐱n are only uncorre-
lated (without any further assumptions), the limit of the ESD of 𝐒n is not the M–P law
(see [281]). These therefore motivate us to employ the ESD of 𝐒n, F𝐒n

(x), as a test statis-
tic. There is no central limit theorem for F𝐒n

(x) − Fc,H (x) however, as argued in [188].
We instead consider the characteristic function of F𝐒n

(x).
The characteristic function of F𝐒n

(x) is

sn(t) ≜ ∫ ejtxdF𝐒n
(x) = 1

p

p∑

i=1
ejt𝜆i (8.141)

where 𝜆i, i = 1,… , p are eigenvalues of the sample covariance matrix of 𝐒n. Our test
statistic is then proposed as follows:

Mn = ∫
T2

T1

|
|sn(t) − s (t)||dU (t) (8.142)

where s (t) ∶= s
(
t, cn
)

is the characteristic function of Fcn
(x), obtained from the M–P law

Fc(x) with c replaced by cn = p∕n, and U(t) is a distributional function with its support
on a compact interval, say [T1,T2].

Assumption 8.9.16 Let𝚺p be a p × p random Hermitian non-negative definite matrix

with a bounded spectral norm. Let 𝐲T
j = 𝐳T

j 𝚺
1∕2
p , where 𝚺p satisfies

(
𝚺1∕2

p

)2
= 𝚺p and

𝐳j =
(
Zj1,… ,Zjp

)T
, j = 1,… , n are i.i.d random vectors, in which Zji, j ⩽ n, i ⩽ p are i.i.d

with mean zero, variance one and finite fourth moment.
The empirical spectral distribution F𝚺n

(x) of 𝚺p converges weakly to a distribution H
on [0,∞) as n → ∞; all the diagonal elements of the matrix 𝚺p are equal to 1.
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Under Assumption 8.9.16, 𝐒n becomes

𝐒n = 𝚺1∕2
p 𝐙H𝐙𝚺1∕2

p (8.143)

where 𝐙 =
(
𝐳1,… , 𝐳n

)T . Under Assumption 3, when 𝚺p = 𝐈p, the random vectors
𝐱1,… , 𝐱p are independent and when 𝚺p ≠ 𝐈p, they are not independent.

To develop the asymptotic distribution of the test statistic, we introduce

Gn (x) = p
[
F𝚺n

(x) − Fcn
(x)
]

(8.144)

Then, p
(
sn(t) − s (t)

)
can be decomposed as a sum of the random part and the nonran-

dom part as follows:

p
(
sn(t) − s (t)

)
= ∫ ejtxdGn (x)

= ∫ ejtxd
(
p
[
F𝚺n

(x) − Fcn,Hn
(x)
])

(8.145)

+ ∫ ejtxd
(
p
[
Fcn,Hn

(x) − Fcn
(x)
])

where Fcn,Hn
(x) is obtained from Fc,H with c and H replaced by cn = p∕n and Hn = F𝚺p

.

Example 8.9.17 (a general panel data model) Consider a panel data model of the
form

vij = wij +
1
√

p
ui, i = 1,… , p; j = 1,… , n (8.146)

where
{

wij
}

is a sequence of i.i.d. real random variables with 𝔼w11 = 0, and 𝔼w2
11 = 1,

and ui, i = 1,… , p are real random variables, and independent of
{

wij
}

, i = 1,… , p; j =
1,… , n.

For any i = 1,… , p, set

𝐯i =
(
vi1,… , vin

)T (8.147)

(8.146) can be written as

𝐕 =𝐖 + 𝐮𝟏T (8.148)

where

𝐕 =
(
𝐯1,… , 𝐯p

)T
,𝐮 =

(
1
√

p
u1,… ,

1
√

p
up

)T

, 𝟏 = (1,… , 1)T ∈ ℝp

Consider the sample covariance matrix

𝐒n = 1
n
𝐕𝐕T = 1

n
(
𝐖 + 𝐮𝟏T) (𝐖 + 𝐮𝟏T)T (8.149)

By Lemma 5 of [507] and the fact that rank
(
𝐮𝟏T) ⩽ 1, it can be concluded that the limit

of the ESD of the matrix 𝐒n is the same as that of the matrix 1
n
𝐖𝐖T , i.e. the M-P law.

Even so, it is desirable to use the proposed statistic Mn to test the null hypothesis of
mutual independence.
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For the model (8.146), in addition to Assumptions 8.9.14 and 8.9.15, we assume that

𝔼 ‖𝐮‖4
< ∞, and 1

p2 𝔼

[ p∑

i≠j

(
u2

i − u
) (

u2
j − u

)
]

→ 0 as n → ∞ (8.150)

where u is a positive constant. Then, the proposed test statistic p2Mn converges in dis-
tribution to the random variable R2 given by

R2 = ∫
t2

t1

(
|W (t)|2 + |Q (t)|2

)
dU (t) (8.151)

where (W (t) ,Q (t)) is a Gaussian vector whose mean and covariance are specified
in [507].

When u1,… ,up are independent and hence 𝐯1,… , 𝐯p are independent, condi-
tion (8.150) is true. ◽

8.9.9 Test of Presence of Spike Eigenvalues

We follow the notation of Section 8.9.8, unless defined otherwise.
Let𝚺p be a sequence of p × p nonrandom and non-negative definite Hermitian matri-

ces. We consider the spiked population model introduced in [177] where the eigenvalues
of the 𝚺p are

a1,… , a1
⏟⏞⏞⏟⏞⏞⏟

n1

,… , ak ,… , ak
⏟⏞⏞⏟⏞⏞⏟

nk

, 1,… , 1
⏟⏟⏟

p−M

(8.152)

Here M and the multiplicity numbers (nk) are fixed and satisfy n1 + · · · + nk = M. In
other words, all the population eigenvalues are unit except some fixed number of them
(the spikes). The model can be viewed as a finite-rank perturbation of the null case.

We analyze the effects caused by the spike eigenvalues on the fluctuations of linear
spectral statistics of the form

Tn
(

f
)
=

p∑

i=1
f
(
𝜆n,i
)
= F𝐒n

(
f
)

(8.153)

where f is a given function.𝐒n is the sample covariance matrix defined in (8.143). As with
the convergence of the spectral distributions, the presence of the spikes does not prevent
a central limit theorem for Tn

(
f
)
; the centering term in the central limit theorem will,

however, be modified according to the values of the spikes.
The spectral density Hn of 𝚺n is

Hn =
p − M

p
𝛿1 +

1
p

k∑

i=1
ni𝛿ai

(8.154)

The term

1
p

k∑

i=1
ni𝛿ai

vanishes when p tends to infinity, so it has no influence when considering limiting spec-
tral distributions. However for the CLT, the term pFcn,Hn

(
f
)

has a p in the front, and
1
p

k∑

i=1
ni𝛿ai

is of order O(1), and thus cannot be neglected.
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In [160], a corrected likelihood ratio statistic L is proposed to test the hypothesis
0 ∶ 𝚺p = 𝐈p
1 ∶ 𝚺p ≠ 𝐈p

They prove that, under 0, where
L = Tr

(
𝐒n
)
− log det

(
𝐒n
)
− p

Gcn,Hn

(
g
)
= 1 −

cn − 1
cn

log
(
1 − cn

)

m
(
g
)
= −

log (1 − c)
2

v
(
g
)
= −2 log (1 − c) − 2c

At a significance level 𝛼 (usually 0.05), the test will reject 0 when

L − pGcn,Hn

(
g
)
> m

(
g
)
+ Φ−1 (1 − 𝛼)

√

v
(
g
)

where Φ is the standard normal cumulative distribution function.
However, the power function of this test remains unknown because the distribution

of L under the general alternative hypothesis1 is ill-defined. Consider the general case:
0 ∶ 𝚺p = 𝐈p
1 ∶ 𝚺p has the spiked structure (8.152)

(8.155)

In other words, we want to test the absence against the presence of possible spike eigen-
values in the population covariance matrix.

Recall that Fcn,Hn
(x)is defined below (8.145) from Fc,H with c and H replaced by cn =

p∕n and Hn = F𝚺p
.

Under the alternative 1 and for f (x) = x − log x − 1 used in the statistic L, the cen-
tering term Fcn,Hn

(
f
)

can be found to be

1 + 1
p

k∑

i=1
niai −

M
p

− 1
p

k∑

i=1
ni log ai −

(

1 − 1
cn

)

log
(
1 − ci

)
+ O

( 1
n2

)

due to the following formulas

Fcn,Hn
(x) = 1 + 1

p

k∑

i=1
ni log ai −

M
p

+ O
( 1

n2

)
(8.156)

and

Fcn,Hn

(
log x

)
= 1

p

k∑

i=1
ni log ai − 1 +

(

1 − 1
cn

)

log
(
1 − ci

)
+ O

( 1
n2

)
(8.157)

Therefore we have found that under 1,
L − pFcn,Hn

(
f
)
⇒  (

m
(
g
)
, v
(
g
))

It follows that the asymptotic power function of the test is

𝛽 (𝛼) = 1 − Φ

⎛
⎜
⎜
⎜
⎜
⎝

Φ−1 (1 − 𝛼) −

k∑

i=1
ni
(
ai − 1 − log ai

)

√
−2 log (1 − c) − 2c

⎞
⎟
⎟
⎟
⎟
⎠

(8.158)
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Example 8.9.18 (spectrum sensing in cognitive radio network) Consider an appli-
cation to spectrum sensing in a cognitive radio network, see, for example, [39]. Consider
the problem

0 ∶ 𝐲 = 𝐰
1 ∶ 𝐲 = 𝐬 + 𝐰

where 𝐰 is the white Gaussian random vector and 𝐬, independent of 𝐰, is the signal
vector in presence. Then the true covariance matrix has the form

0 ∶ 𝜎2𝐈
1 ∶ 𝚺s + 𝜎2𝐈

where 𝜎2 is the noise variance and 𝚺s is the covariance matrix of the signal vector. Using
the eigenvalue decomposition

𝚺x = 𝐔 diag
(
𝜆1, 𝜆2,… , 𝜆p

)
𝐔H , 𝐈 = 𝐔𝐔H

we have
0 ∶ 𝜎2𝐈
1 ∶ 𝐔 diag

(
𝜆1 + 𝜎2, 𝜆2 + 𝜎2,… , 𝜆p + 𝜎2)𝐔H

which is equivalent to (8.155). ◽

8.9.10 Large Dimension and Small Sample Size

The last few decades have seen explosive growth in data analysis, due to the rapid devel-
opment of modern information technology. We are now in a setting where many very
important data analysis problems are high dimensional. In many scientific areas the data
dimension p can even be a lot larger than the sample size n. The main purpose of this
section is to establish central limit theorems (CLTs) of linear functionals of eigenvlaues
of sample covariance matrix when the dimension p is much larger than the sample size
n, i.e., p∕n → ∞.

Consider the sample covariance matrix 𝐒n = 1
n
𝐗n𝐗T

n , where𝐗n =
(
Xij
)

p×n and Xij, i =
1,… , p, j = 1,… , n are i.i.d. real random variables with mean zero and variance one. As
we know, linear functionals of eigenvalues 𝐒n are closely related to its empirical spectral
distribution (ESD) function F𝐒n

(x). Here for any n × n Hermitian matrix 𝐌 with real
eigenvalues 𝜆1,… , 𝜆n, its empirical spectral distribution of𝐌 is defined by

F𝐌 (x) = 1
n

n∑

j=1
𝕀
(
𝜆j ⩽ x

)

where 𝕀 is the indicator function for the event
(
𝜆j ⩽ x

)
. However, it is inappropriate to

use F𝐒n
(x) when p∕n → ∞ because 𝐒n has (p − n) zero eigenvalues and hence F𝐒n

(x)
converges to a degenerate distribution with probability one. Note that the eigenvalues
of 𝐒n are the same as those of 1

n
𝐗T

n𝐗n except (p − n) zero eigenvalues. Thus, instead, we
turn to investigate the spectral of 1

p
𝐗T

n𝐗n and renormalize it as

𝐀 = 1
√

np
(
𝐗T𝐗 − p𝐈n

)
(8.159)
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where 𝐈n is the n × n identity matrix. When p∕n → ∞, under fourth moment conditions
the central limit theorem (CLT) for linear spectral statistics (LSS) of 𝐀 defined by the
eigenvalues is established below.

The first breakthrough regarding 𝐀 in (8.159) was made in Bai and Yin [509]. They
proved with probability one

F𝐀 (x) → F (x)

which is the so-called semicircle law with the density

F ′ (x) =

{
1

2𝜋

√
4 − x2, if |x| ⩽ 2
0 if |x| > 2

(8.160)

In random matrix theory, F(x) is named as the limiting spectral distribution (LSD) of
empirical spectral distribution (ESD) F𝐀 (x).

In order to study the central limit theorem (CLT) of the linear functions of eigenvalues
of𝐀, let denote any open region on the real plane including [2, 2], which is the support
of F(x), and  be the set of functions analytic on  . For any f ∈  , define

Qn
(

f
) ≜ n∫

+∞

−∞
f (x)d

(
F𝐀 (x) − F (x)

)
− 1
𝜋

√
n3

p ∫
1

−1
f (2x)4x3 − 3x

√
1 − x2

dx (8.161)

and its random part

Q(1)
n
(

f
) ≜ n∫

+∞

−∞
f (x)d

(
F𝐀 (x) − 𝔼F𝐀 (x)

)
(8.162)

Let{Tk} be the family of Chebyshev polynomials, which is defined as

T0 (x) = 1, T1 (x) = x, Tk+1 (x) = 2xTk (x) − Tk−1 (x)

To give an alternative way of calculating the asymptotic covariance of X( f ) in
Theorem 8.9.19 below, for any f ∈  and any integer k > 0, we define

Ψk
(

f
) ≜ 1

2𝜋 ∫
+𝜋

−𝜋
f (2 cos 𝜃)eik𝜃d𝜃

= 1
2𝜋 ∫

+𝜋

−𝜋
f (2 cos 𝜃) cos k𝜃d𝜃 = 1

𝜋 ∫
+1

−1
f (2x)Tk (x) dx

The main result is formulated in the following theorem.

Theorem 8.9.19 Suppose that

(a) 𝐗 =
(
Xij
)

p×n where
{

Xij ∶ i = 1, 2,… , p; j = 1, 2,… , n
}

are i.i.d. real random vari-
ables with 𝔼X11 = 0, 𝔼X2

11 = 1, and 𝜈4 = 𝔼X4
11 < ∞.

(b1) n3∕p = O(1) as n → ∞.
Then, for any f1,… , fk ∈  , the finite dimensional random vector (Qn( f1),… ,Qn( fk))
converges weakly to a Gaussian vector (X( f1),… ,X( fk)) with mean function

𝔼X(f ) = 1
𝜋 ∫

+1

−1
f (2x)

[
2(𝜈4 − 3)x3 −

(
𝜈4 −

5
2

)] 1
√

1 − x2
dx + 1

4
(f (2) + f (−2))

(8.163)
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and variance function

cov
(
X
(
f1
)
,X
(
f2
))

=
(
𝜈4 − 3

)
Ψ1
(
f1
)
Ψ1
(
f2
)
+ 2

∞∑

k=1
kΨk

(
f1
)
Ψk
(
f2
)

= 1
4𝜋2 ∫

2

−2 ∫
2

−2
f ′

1 (x) f ′

2
(
y
)

H
(
x, y
)

dxdy (8.164)

where

H
(
x, y
)
=
(
𝜈4 − 3

)√
4 − x2

√
4 − y2 + 2 log

⎛
⎜
⎜
⎜
⎝

4 − xy +
√

(4 − x2)
(
4 − y2

)

4 − xy −
√

(4 − x2)
(
4 − y2

)

⎞
⎟
⎟
⎟
⎠

If we interchange the roles of p and n, Birke and Dette [490] established the CLT for
Qn(f ) when f (x) = x2 and Xij ∼  (0, 1).

Note that Theorem 8.9.19 is established under the restriction n3∕p = O(1). The next
theorem extends it to the general framework n∕p → 0. For this purpose, instead of using
Qn(f ) we define Gn(f ) as

Gn
(

f
) ≜ n∫

∞

−∞
f (x) d

(
F𝐀 (x) − F (x)

)

− n
2𝜋i ∮|m|=𝜌 f

(
−m − m−1)n (m) 1 − m2

m2 dm (8.165)

where

n (m) ≜ − +
√2 − 4

2 ,  = m −
√

n
p
(
1 + m2)

 = m2 − 1 −
√

n
p

m
(
1 + 2m2) ,  = m3

n

(
m2

1 − m2 + 𝜈4 − 2
)

−
√

n
p

m4

(8.166)

and
√2 − 4 is the complex number whose imaginary part has the same sign as the

imaginary part of . The integral’s contour is taken as |m| = 𝜌 with 𝜌 < 1.

Theorem 8.9.20 Suppose that

(a) 𝐗 =
(
Xij
)

p×n where
{

Xij ∶ i = 1, 2,… , p; j = 1, 2,… , n
}

are i.i.d. real random vari-
ables with 𝔼X11 = 0, 𝔼X2

11 = 1 and 𝜈4 = 𝔼X4
11 < ∞

(b2) n∕p → 0 as n → ∞
Then, for any f1,… , fk ∈  , the finite dimensional random vector (Gn(f1),… ,Gn(fk))
converges weakly to a Gaussian vector (Y (f1),… ,Y (fk))with mean function𝔼Y (f ) = 0
and covariance function cov(Y ( f ),Y (g)) the same as that given in (8.164).

Therefore Theorem 8.9.19 is a special case of Theorem 8.9.20 when n3∕p = O(1). The
mean correction term in Theorem 8.9.19 has a simple and explicit expression and it van-
ishes when f (x) is even or n3∕p → 0. The proofs for the two theorems are almost the
same.
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If n3∕p = O(1), Theorem 8.9.20 is consistent with Theorem 8.9.19. Indeed, since
n3∕p = O(1), we have 4 = o (1),  = m2 − 1. By (8.166)

nn (m) = n ⋅
− +

√2 − 4
2 = −2n

 +
√2 − 4

= m2

1 − m2

(
m2

1 − m2 − 𝜈4 − 2
)

+
√

n3

p
m4

1 − m2 + o (1)

So, by the same calculation as that in Section 5.1 in [510], we have

− n
2𝜋i ∮|m|=𝜌 f

(
−m − m−1)n (m) 1 − m2

m2 dm

= − 1
2𝜋i ∮|m|=𝜌 f

(
−m − m−1)m

[
m2

1 − m2 − 𝜈4 − 2 +
√

n3

p

]

dm + o (1)

= −
[1

4
(
f (2) + f (−2)

)
− 1

2
Ψ0
(

f
)
+
(
𝜈4 − 3

)
Ψ2
(

f
)]

−
√

n3

p
Ψ3
(

f
)
+ o (1) (8.167)

Example 8.9.21 (hypothesis test) Suppose that 𝐲 = 𝐇𝐬 is a p-dimensional vector
with covariance matrix 𝚺 = 𝐇𝐇T with 𝐇 being a p × p matrix whose eigenvalues are
positive and the entries of 𝐬 being i.i.d random variables with mean zero and variance
one. We want to test

0 ∶ 𝚺p = 𝐈p
1 ∶ 𝚺p ≠ 𝐈p (8.168)

We are interested in (8.168) in the setting p∕n → ∞, for large p and small n. We often
study the functions of the sample covariance matrix 𝐒n, especially the functions of
its eigenvalues. Here we take f (x) = x2 in (8.161) or (8.165). By Theorem 8.9.19 or
Theorem 8.9.20, we then propose the test statistic as follows:

Ln = 1
2

[

n
(

∫ x2dF𝐁 (x) − ∫ x2dF (x)
)

−
(
𝜈4 − 2

)
]

= 1
2
(
Tr 𝐁𝐁T − n −

(
𝜈4 − 2

))
(8.169)

where 𝐁 =
√

p
n

(
1
p
𝐗T𝐗 − 𝐈n

)
and 𝐘 =

(
𝐲1,… , 𝐲n

)
. Since 𝐇T𝐇 = 𝐈𝐩 is equivalent to

𝐇𝐇T = 𝐈𝐩, under the null hypothesis 0, we have

Ln
d
−→  (0, 1) (8.170)

◽

For comparison, let us introduce the work of [511] on the asymptotic power of like-
lihood ratio test (LRT) for the identity test in the setting when the dimension p is large
compared to the sample size n. A natural approach to test (8.168) is to conduct estima-
tions for some distance measures between𝚺p and 𝐈p and there are two types of measures
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that are widely used in literature. The first is based on the likelihood function, also called
Stein’s loss function:

LStein
(
𝚺p
)
= Tr

(
𝚺p
)
− log det

(
𝚺p
)
− p (8.171)

and the second is based on quadratic loss function:

LQuad
(
𝚺p
)
= Tr

(
𝚺p − 𝐈p

)2 (8.172)

To relax the Gaussian assumptions, we assume that the observations 𝐱1,… , 𝐱n ∈ ℝp

satisfy a multivariate model

𝐱i = 𝚺
1∕2
p 𝐳i + 𝝁, i = 1,… , n (8.173)

where 𝝁 is a p-dimensional constant vector and the entries of 𝐙n =
(
Zij
)

p×n =
(
𝐳1,… , 𝐳n

)
are i.i.d. with

𝔼Zij = 0, 𝔼Z2
ij = 1, and 𝔼Z4

ij = 4 + Δ

The sample covariance matrix 𝐒n is defined using

𝐒n = 1
n − 1

n∑

k=1

(
𝐱k − 𝐱

)(
𝐱k − 𝐱

)T

where 𝐱 = 1
n

n∑

k=1
𝐱k

Writing cn = p∕n < 1, the likelihood ratio test (LRT) statistic is defined as

Ln = 1
p
Tr
(
𝐒n
)
− log det

(
𝐒n
)
− 1 − d

(
cn
)

(8.174)

where d (x) = 1 + (1∕x − 1) log (1 − x), 0 < x < 1. Under the null hypothesis, Wang et al.
[511] derived the following asymptotic normality of Ln by using random matrix theories.

Theorem 8.9.22 When 𝚺p = 𝐈p, and cn = p∕n → c ∈ (0, 1)
pLn − 𝜇n

𝜎n

D
−→  (0, 1)

where
𝜇n = cn (Δ∕2 − 1) − 3∕2 log

(
1 − cn

)
, 𝜎2

n = −2cn − 2 log
(
1 − cn

)

and
D
−→ denotes convergence in distribution.

When 𝐱1,… , 𝐱n ∈ ℝp be i.i.d. multivariate normal distributions  (
𝝁,𝚺p

)
where

Δ = 0, Jiang et al. [473] derived a similar result as Theorem 8.9.22 by using the Selberg
integral and they also considered the special situation where p∕n → 1. Based on the
asymptotic normality under the respective null hypothesis, an asymptotic level 𝛼 test
based on Ln is given by

𝜙 = 𝕀
(pLn − 𝜇n

𝜎n
> z1−𝛼

)

(8.175)
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where z1−𝛼 denotes the 100 × (1 − 𝛼)-th percentile of the standard normal distribution.
In the following theorem, we establish the convergence of Ln under the alternative 1 ∶
𝚺p ≠ 𝐈p.

Theorem 8.9.23 When Tr
(
𝚺p − 𝐈p

)2∕p → 0 and cn = p∕n → c ∈ (0, 1), we have

pLn − LStein
(
𝚺p
)
− 𝜇n

𝜎n

D
−→  (0, 1)

where 𝜇n = cn (Δ∕2 − 1) − 3∕2 log
(
1 − cn

)
, 𝜎2

n = −2cn − 2 log
(
1 − cn

)

In particular, when LStein
(
𝚺p
)

tends to a constant, we have the following result.

Theorem 8.9.24 When K2
(
𝚺p
)
→ b ∈ (0,∞) and cn = p∕n → c ∈ (0, 1), we have

lim
n→∞

ℙ𝚺p

(
𝜙 rejects 0

)
= 1 − Φ

(

z1−𝛼 −
b

√
−2c − 2 log (1 − c)

)

,

where Φ(⋅) is the cumulative distribution function of the standard normal
distribution.

It can be seen from Theorems 8.9.23 and 8.9.24 that the expression

1 − Φ

(

z1−𝛼 −
LStein

(
𝚺p
)

𝜎n

)

(8.176)

gives good approximation to the power of the test in (8.175) until the power is extremely
close to 1. In particular, when LStein

(
𝚺p
)

is large, the power of the test 𝜙 will be close to
1 and it is hard for 𝜙 to distinguish between the two hypotheses if LStein

(
𝚺p
)

tends to
zero.

To derive the asymptotic power, a special covariance matrix was used in [484] and
[512] as follows

𝚺⋆p = 𝐈p + h
√

p
n
𝐯𝐯T (8.177)

where h is a constant and 𝐯 is an arbitrarily fixed unit vector. Here, by Theorem 8.9.24,
we know that the asymptotic power of the LRT test (8.174) is

1 − Φ
⎛
⎜
⎜
⎜
⎝

z1−𝛼 −
h
√

c − log
(

1 + h
√

c
)

√

−2cn − 2 log
(
1 − cn

)

⎞
⎟
⎟
⎟
⎠

Therefore, compared with the tests based on LQuad
(
𝚺p
)

( [469, 476, 484]) whose power
for 𝚺⋆p is 1 − Φ

(
z1−𝛼 − h2∕2

)
, LRT is more sensitive to small eigenvalues (h < 0), not

any bigger than one (h > 0). In particular, when 1 + h
√

c is close to 0, that is 𝚺⋆p has a
very small eigenvalue, the power will tend to 1.
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8.10 Roy’s Largest Root Test

In this section relatively accurate expressions for the distribution of Roy’s largest root
test were derived in the extreme setting of a rank-one concentrated noncentrality matrix.
Deriving such expressions, even in this restricted case, has been an open problem in
multivariate analysis for several decades and has potentially limited the practical use
of Roy’s test. The new distributions derived in [513] are simple and straightforward to
compute. Moreover, as shown in the simulations, for small sample sizes and strong sig-
nals, they provide much more accurate expressions for the distribution of the largest
root, compared to the classical Gaussian approximation. This section is also motivated
for massive MIMO in Section 15.3.

First we consider an example for the motivation.

Example 8.10.1 (multiple response linear regression) Consider a linear model with
n observations on an m−variate response

𝐘 = 𝐗𝐁 + 𝐙 (8.178)
where 𝐘 is n × m and the known design matrix 𝐗 is n × p, so that the unknown
coefficient matrix 𝐁 is p × m. Assume that 𝐗 has full rank p. The Gaussian noise 𝐙
is assumed to have independent rows, each with mean zero and covariance 𝚺, thus
𝐙 ∼  (

0, 𝐈n ⊗ 𝚺
)
, where⊗ represents the Kronecker product.

A common null hypothesis is 𝐂𝐁 = 0. This is used, for example, to test (differences
among) subsets of coefficients. We assume that the “contrast” matrix 𝐂 has full rank
r ≤ p. Generalizing the univariate F test, it is traditional to form “hypothesis” and “error”
sums of squares and cross products matrices, which under our Gaussian assumptions
have independent Wishart distributions:

𝐇 = 𝐘T𝐏H𝐘 ∼ Wm
(
nH ,𝚺,𝛀

)

𝐄 = 𝐘T𝐏E𝐘 ∼ Wm
(
nH ,𝚺

)

𝐏E is orthogonal projection of rank nE = n − p onto the error subspace, 𝐏H is orthogonal
projection of rank nE = r onto the hypothesis subspace for𝐂𝐁, and𝛀 is the noncentral-
ity matrix corresponding to the regression mean 𝔼𝐘 = 𝐗𝐁.

Classical tests use the eigenvalues of the F-like matrix 𝐄−1𝐇; our interest here is with
Roy’s largest root test, which is based on the largest of the eigenvalues, 𝓁1

(
𝐄−1𝐇

)
. Our

approximation, valid for the case of rank one noncentrality matrix, employs the linear
combination of two independent F distributions, one of which is noncentral.

Proposition 8.10.2 Suppose that𝐇 ∼ Wm
(
nH ,𝚺,𝛀

)
, and 𝐄 ∼ Wm

(
nH ,𝚺

)
are inde-

pendent Wishart matrices with m > 1 and 𝜈 = nE − m > 1. Assume that the noncentral-
ity matrix has rank one, 𝛀 = 𝜔𝚺−1𝐯𝐯T , for 𝜔 > 0 and 𝐯 of length one. If m, nH , and nE
remains fixed and 𝜔→ ∞, then

𝓁1
(
𝐄−1𝐇

)
≈ c1Fa1,b1

(𝜔) + c2Fa2,b2
(𝜔) + c3 (8.179)

where the F-variates are independent, and the numerator and denominator degrees of
freedom are given by

a1 = nH , b1 = 𝜈 + 1, a2 = m − 1, b2 = 𝜈 + 2 (8.180)
c1 = a1∕b1, c2 = a2∕b2, c3 = a2∕(𝜈(𝜈 − 1)) (8.181)
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Consider a measurement system consisting of m sensors (antennas, smart meters,
PMUs, etc). A standard model for the observed samples in the presence of a single
signal is

𝐱 =
√
𝜌s𝜉𝐡 + 𝜎𝐧 (8.182)

where 𝐡 is an unknown m-dimensional vector, which is assumed to be fixed during the
measurement time window, 𝜉 is a random variable distributed  (0, 1), 𝜌s is the signal
strength, 𝜎 is the noise level and 𝐧 is a random noise vector that follows a multivariate
Gaussian distribution  (𝟎,𝚺).

In this section, for the sake of simplicity, we assume real valued signals and noise. The
complex-valued case can be handled in a similar manner. Let 𝐱i ∈ ℝm, for i = 1,… , nH ,
denote nH i.i.d. observations from (8.182), and let 1

nH
𝐇 denote their sample covariance

matrix:

𝐇 =
nH∑

i=1
𝐱i𝐱T

i ∼ Wm
(
nH ,𝚺 +𝛀

)
(8.183)

where 𝛀 = 𝜌s𝐡𝐡T has rank one. A fundamental problem in statistical signal pro-
cessing is to test 0 ∶ 𝜌s = 0, no signal present, versus 1 ∶ 𝜌s > 0. If the noise
covariance matrix 𝚺 is known, the observed data can be whitened by the trans-
formation 𝚺−1∕2𝐱i. Standard detection schemes then depend on the eigenvalues
of 𝚺−1𝐇.

The second important case assumes that the noise covariance matrix 𝚺 is arbi-
trary and unknown, but we have additional “noise-only” observations 𝐳j ∼  (𝟎,𝚺)
for j = 1,… , nE. It is then traditional to estimate the noise covariance by 1

nE
𝐄,

where

𝐄 =
nE∑

i=1
𝐳i𝐳T

i ∼ Wm
(
nE,𝚺

)
(8.184)

and devise detection schemes using the eigenvalues of 𝐄−1𝐇.
Let 𝓁1 be the largest eigenvalue of either 𝚺−1𝐇 or 𝐄−1𝐇, depending on the specific

setting. Roy’s test accepts the alternative if 𝓁1 > t(𝛼) where t(𝛼) is the threshold corre-
sponding to a false alarm or type I error rate of 𝛼. The probability of detection, or power
of Roy’s test is defined as

PD = ℙ
[
𝓁1 > t (𝛼) ||1

]

If the matrix 𝚺 is assumed to be known, without loss of generality we assume that 𝚺 = 𝐈
and study the largest eigenvalue of 𝐇, instead of 𝐄−1𝐇.

Proposition 8.10.3 Let 𝐇 ∼ Wm
(
nH , 𝜎

2𝐈 + 𝜆H𝐯𝐯T) with ||𝐯|| = 1 and let 𝜆max be its
largest eigenvalue. Then, with (m, 𝜆H , nH) fixed, as 𝜎 → 0

𝜆max =
(
𝜆H + 𝜎2)𝜒2

nH
+ 𝜒2

m−1𝜎
2 +

𝜒2
m−1𝜒

2
nH−1

(
𝜆H + 𝜎2

)
𝜒2

nH

𝜎4 + op
(
𝜎4) (8.185)

where the three chi-square variates 𝜒2
nH
, 𝜒2

m−1 and 𝜒2
nH−1 are independent.
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Approximations to the moments of 𝜆max follow directly. From (8.185), independence
of the chi-square variates and 𝔼

(
1∕𝜒2

n
)
= 1∕ (n − 2), we obtain

𝔼𝜆max ≈ nH𝜆H +
(
m − 1 + nH

)
𝜎2 +

(m − 1)
(
nH − 1

)

(
𝜆H + 𝜎2

) (
nH − 2

)𝜎4 (8.186)

It is natural to set 𝜔 = 𝜆HnH . Set 𝜎 = 1 and suppose that 𝜆H = 𝜔∕nH is large. Then the
variance of 𝜆max

Var
(
𝜆max
)
= 2nH𝜆

2
H + 4nH𝜆H + 2

(
m − 1 + nH

)
+ o(1) (8.187)

In the joint limit m → ∞, nH → ∞ with m∕nH → c > 0, there is a large recent liter-
ature in random matrix theory on the behavior of the “spiked model,” beginning for
example with [335]. The basic phenomenon is a phase transition at 𝜆 =

√
c (for 𝜎 = 1):

for 𝜆 <
√

c, 𝓁1(𝐇) has asymptotically a Tracy–Widom distribution with zero power,
while 𝜆 >

√
c, 𝓁1(𝐇) follows an approximate Gaussian distribution with different scal-

ing and asymptotic power one. We will see that in the fixed (m, nH) cases we consider,
corresponding to 𝜆 >

√
c, the Gaussian approximation is typically inferior to the ones

developed here.
Next, we consider the two matrix case, where 𝚺 is unknown and estimated from data.

The following proposition considers the signal detection setting under the alternative
hypothesis of a single Gaussian signal present.

Proposition 8.10.4 Suppose that𝐇 ∼ Wm
(
nH , 𝜎

2𝐈 + 𝜆H𝐯𝐯T) and𝐄 ∼ Wm
(
nE, 𝐈
)

are
independent Wishart matrices, with m > 1 and ||𝐯|| = 1. If m, nH and nE remain fixed
and 𝜆H → ∞, then

𝓁1
(
𝐄−1𝐇

)
≈ c1

(
1 + 𝜆H

)
Fa1,b1

+ c2Fa2,b2
+ c3 (8.188)

where the F-variates are independent, and with 𝜈 = nE − m > 1, the numerator and
denominator degrees of freedom are given by (8.180) and (8.181).

When the covariance is unknown, we have

𝔼𝓁1
(
𝐄−1𝐇

)
≈ 1

nE − m − 1
[(
𝜆H + 1

)
nH + m − 1

]
(8.189)

Let �̂� = 1
nE
𝐄 be an unbiased estimator of 𝚺. Comparison with Proposition 8.10.3

shows that 𝔼𝓁1

(
�̂�−1𝐇

)
exceeds 𝔼𝓁1

(
𝚺−1𝐇

)
by a multiplicative factor nE

nE−m−1
,

so that the largest eigenvalue of nE𝐄−1𝐇 is thus typically larger than that of the
matrix 𝚺−1𝐇.

Nadakuditi and Silverstein [514] studied the limiting value (but not the distribution)
of the largest eigenvalue of

(
nE∕nH

)
𝓁1
(
𝐄−1𝐇

)
in the limit m, nE, nH → ∞ with

m∕nE → cE,m∕nH → cE (also in non-Gaussian cases). It can be verified that, in this
limit, our formula (8.189) agrees with the large 𝜆H limit of their expression to leading
order terms. Hence, our analysis shows that their limiting expressions (Eq. (23)) are
in fact quite accurate for the mean of 𝓁1

(
𝐄−1𝐇

)
, even at relatively small values of

m, nE, nH .



Matrix Hypothesis Testing using Large Random Matrices 431

8.11 Optimal Tests of Hypotheses for Large Random Matrices

Theorem 8.11.1 (Neyman–Pearson Theorem [515]) Let X1,X2,… ,Xn, where n is a
fixed positive integer, denote a random sample from a distribution that has pdf or pmf
f (x; 𝜃). Then the likelihood of X1,X2,… ,Xn is

L (𝜃; 𝐱) =
n∏

i=1
f
(
xi; 𝜃
)
, for 𝐱′ =

(
x1,… , xn

)

Let 𝜃′ and 𝜃′′ be distinct values of 𝜃 so that Ω = {𝜃 ∶ 𝜃 = 𝜃′, 𝜃′′}, and let k be a positive
number. Let C be a subset of the sample space such that:

(a) L(𝜃′;𝐱)
L(𝜃′′;𝐱)

⩽ k, for each point 𝐱 ∈ C

(b) L(𝜃′;𝐱)
L(𝜃′′;𝐱)

⩾ k, for each point 𝐱 ∈ C
(c) 𝛼 = P0

[𝐗 ∈ C]

Then C is a best critical region of size 𝛼 for testing the simple hypothesis 0 ∶ 𝜃 = 𝜃′
against the alternative simple hypothesis 1 ∶ 𝜃 = 𝜃′′.

Example 8.11.2 (likelihood ratio test formulated with random vectors [515]) Let
𝐗′ =

(
X1,… ,Xn

)
denote a random sample from the distribution that has the pdf

f (x; 𝜃) = 1
√

2𝜋
exp
(

−(x − 𝜃)2

2

)

, −∞ < x < ∞

We want to test the simple hypothesis 0 ∶ 𝜃 = 𝜃′ = 0 against the alternative simple
hypothesis 1 ∶ 𝜃 = 𝜃′′ = 1. Now the likelihood ratio rest is

L (𝜃′; 𝐱)
L (𝜃′′; 𝐱)

=

n∏

i=1
f
(
xi; 𝜃′

)

n∏

i=1
f
(
xi; 𝜃′′

)
=

(
1∕
√

2𝜋
)n

exp
(

−
n∑

i=1
x2∕2

)

(
1∕
√

2𝜋
)n

exp
(

−
n∑

i=1
(x − 1)2∕2

)

= exp

(

−
n∑

i=1
xi +

n
2

)

◽

We assume that the observations space corresponds to a set of n observations:
𝐫1, 𝐫2, 𝐫3,… , 𝐫n. Thus each set can be thought of as a point in the n-dimensional space
and can be denoted by a vector

𝐫 ≜
⎡
⎢
⎢
⎢
⎣

𝐫1
𝐫2
⋮
𝐫n

⎤
⎥
⎥
⎥
⎦

In the binary hypothesis problem we know that either 0 or 1 is true. The likelihood
ratio is denoted by Λ (𝐑)

Λ (𝐑) ≜ p𝐫||1

(
𝐑|1

)

p𝐫|0

(
𝐑|0

) (8.190)
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where 𝐑 is a random vector while 𝐫 represents one realization of the random vector 𝐑.
The Bayes criterion leads us to a likelihood ratio test

Λ (𝐑)
1
>

<0

𝜂 (8.191)

Because the natural logarithm is a monotonic function, and both sides of (8.191) are
positive, an equivalent test is the log-likelihood ratio test

lnΛ (𝐑)
1
>

<0

ln 𝜂 (8.192)

Example 8.11.3 (likelihood ratio test formulated with scalar valued random vari-
ables [516]) We consider an example. We assume that under 1 the source output
is a constant voltage A. Under 0, the source output is zero. Before observation, the
voltage is corrupted by an additive noise. We sample the output waveform each second
and obtain N samples. Each noise sample ni is a zero-mean Gaussian random vari-
able n with variance 𝜎2. The noise samples at various instants are independent random
variables and are independent of the source output. The observations under the two
hypotheses are

1 ∶ ri = A + ni i = 1, 2,… ,N
0 ∶ ri = ni i = 1, 2,… ,N

(8.193)

and

pni
(x) = 1

√
2𝜋

exp
(

− x2

2𝜎2

)

(8.194)

because the noise samples are Gaussian.
The probability density of ri under each hypothesis follows readily:

p𝐫|1

(
𝐑|1

)
= pni

(
Ri − A

)
= 1
√

2𝜋𝜎
exp

(

−
(
Ri − A

)2

2𝜎2

)

(8.195)

and

p𝐫|0

(
𝐑|0

)
= pni

(
Ri
)
= 1
√

2𝜋𝜎
exp

(

−
R2

i

2𝜎2

)

(8.196)

Because the ni are statistically independent, the joint probability density of the ri (or,
equivalently, of the vector 𝐫) is simply the product of the individual probability densities.
Thus

p𝐫|1

(
𝐑|1

)
=

N∏

i=1

1
√

2𝜋𝜎
exp

(

−
(
Ri − m

)2

2𝜎2

)

(8.197)

and

p𝐫|0

(
𝐑|0

)
=

N∏

i=1

1
√

2𝜋𝜎
exp

(

−
R2

i

2𝜎2

)

(8.198)
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Inserting into (8.190), we have

Λ (𝐑) =
p𝐫||1

(
𝐑|1

)

p𝐫|0

(
𝐑|0

) =

N∏

i=1

1
√

2𝜋𝜎
exp
(

−(Ri−A)2

2𝜎2

)

N∏

i=1

1
√

2𝜋𝜎
exp
(
− R2

i

2𝜎2

)
(8.199)

After canceling common terms and taking the logarithm, we have

lnΛ (𝐑) = A
𝜎2

N∑

i=1
Ri −

NA2

2𝜎2 (8.200)

Thus the likelihood ratio test is

A
𝜎2

N∑

i=1
Ri −

NA2

2𝜎2

1
>

<0

ln 𝜂

or, equivalently
N∑

i=1
Ri

1
>

<0

𝜎2

A
ln 𝜂 + NA

2
≜ 𝛾 (8.201)

We see that the processor simply adds the observations and compares them with a
threshold. ◽

Example 8.11.4 (likelihood ratio test formulated with vector valued random vari-
ables [516]) A set of scalar-valued random variables r1, r2,… , rN is defined as jointly
Gaussian if all their linear combinations are Gaussian random variables.

A vector 𝐫 is a Gaussian random vector when its components r1, r2,… , rN are jointly
Gaussian random variables.

In words, if

z =
N∑

i=1
giri ≜ 𝐆T𝐫 (8.202)

If we define

𝔼 [𝐫] = 𝐦 (8.203)

and

Cov [𝐫] = 𝔼
[
(𝐫 −𝐦)

(
(𝐫 −𝐦)T)] ≜ 𝚺 (8.204)

then (8.202) implies that the characteristic function (Fourier transform) of 𝐫 is

M𝐫
(
j𝐯
) ≜ 𝔼

[
ej𝐯T𝐫
]
= exp

(
+j𝐯T𝐦 − 1

2
𝐯T𝚺𝐯

)
(8.205)

and assuming 𝚺 is nonsingular, the probability density of 𝐫 is

p𝐫 (𝐑) =
[
(2𝜋)N∕2(det𝚺)1∕2]−1 exp

[
− 1

2
(𝐑 −𝐦)T𝚺 (𝐑 −𝐦)

]
(8.206)
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A hypothesis-testing problem is called a general Gaussian problem if p𝐫|0
(𝐑|0) and

p𝐫|1
(𝐑|1) are Gaussian densities. An estimation problem is called a general Gaussian

problem if p𝐫|𝐛(𝐑|𝐁) for all 𝐁.
Let us focus on the binary hypothesis testing of the general Gaussian problem. We

assume that the observations space is N-dimensional. Points in the space are denoted
by the N-point vector (or column matrix) 𝐫:

𝐫 =

⎛
⎜
⎜
⎜
⎜
⎝

r1
r2
⋮

rN

⎞
⎟
⎟
⎟
⎟
⎠

Under the first hypothesis 1, we assume that 𝐫 is a Gaussian random vector, which
is completely specified by its mean vector and covariance matrix. We denote these
quantities as

𝔼
[
𝐫|1

]
=

⎛
⎜
⎜
⎜
⎜
⎝

𝔼
[
r1|1

]

𝔼
[
r2|1

]

⋮
𝔼
[
rN |1

]

⎞
⎟
⎟
⎟
⎟
⎠

≜
⎛
⎜
⎜
⎜
⎜
⎝

m11
m21
⋮

mN1

⎞
⎟
⎟
⎟
⎟
⎠

≜ 𝐦1 (8.207)

The covariance matrix is

𝐊1 ≜ 𝔼
[(
𝐫 −𝐦1

) ((
𝐫 −𝐦1

)T
)
|1

]
(8.208)

The probability density of 𝐫 on 1,

p𝐫|1

(
𝐑|1

)
=
[
(2𝜋)N∕2(det𝐊1

)1∕2
]−1

exp
[
− 1

2

(
𝐑 −𝐦1

)T𝐊−1
1
(
𝐑 −𝐦1

)]

(8.209)

Similarly, we have for 0

p𝐫|0

(
𝐑|0

)
=
[
(2𝜋)N∕2(det𝐊0

)1∕2
]−1

exp
[
− 1

2

(
𝐑 −𝐦0

)T𝐊−1
0
(
𝐑 −𝐦0

)]

(8.210)

where

𝐊0 ≜ 𝔼
[(
𝐫 −𝐦0

) ((
𝐫 −𝐦0

)T
)
|0

]

Using the definition of (8.190), the likelihood ratio test follows easily

Λ (𝐑) ≜ p𝐫|1

(
𝐑|1

)

p𝐫|0

(
𝐑|0

) (8.211)

=

[
(2𝜋)N∕2(det𝐊1

)1∕2
]−1

exp
[
− 1

2

(
𝐑 −𝐦1

)T𝐊−1
1
(
𝐑 −𝐦1

)]

[
(2𝜋)N∕2(det𝐊0

)1∕2
]−1

exp
[
− 1

2

(
𝐑 −𝐦0

)T𝐊−1
0
(
𝐑 −𝐦0

)]

1
>

<0

𝜂
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Taking the logarithms, we obtain
1
2

(
𝐑 −𝐦1

)T𝐊−1
1
(
𝐑 −𝐦1

)
− 1

2

(
𝐑 −𝐦0

)T𝐊−1
0
(
𝐑 −𝐦0

)
(8.212)

1
>

<0

ln 𝜂 + 1
2

ln
(
det𝐊1

)
− 1

2
ln
(
det𝐊0

) ≜ 𝛾 ∗
We see that the test consists of finding the difference between two quadratic forms.

Let us now consider the repeated measurements. The hypothesis testing problem is
expressed as

0 ∶ 𝐲i = 𝐳i, 𝐲i ∈ ℂp×1, 𝐦i ∈ ℂp×1, 𝐳i ∈ ℂp×1

1 ∶ 𝐲i = 𝐦i + 𝐳i, i = 1, 2,… ,N
(8.213)

for complex Gaussian noise vectors 𝐳i ∼  (
𝟎, 𝜎2𝐈p

)
, i = 1, 2,… ,N , the pdf of a ran-

dom vector is

p𝐳i (𝐱) =
1

(𝜋𝜎2)p exp
[
− 1
𝜎2 𝐱

H𝐱
]

The joint pdf of N random vectors is given by

p𝐳1
(
𝐱1
)

p𝐳2
(
𝐱2
)
· · · p𝐳N

(
𝐱N
)
= 1

(𝜋𝜎2)Np

N∏

i=1
exp
[
− 1
𝜎2 𝐱

H
i 𝐱i

]

The likelihood ratio is

Λ =
p1

(
𝐱1, 𝐱2,… , 𝐱N

)

p0

(
𝐱1, 𝐱2,… , 𝐱N

) =

N∏

i=1
exp
[
− 1
𝜎2

(
𝐲i −𝐦i

)H (𝐲i −𝐦i
)]

N∏

i=1
exp
[
− 1
𝜎2 𝐲H

i 𝐲i

]

The likelihood ratio test is

Λ
(
𝐱1, 𝐱2,… , 𝐱N

)
1
>

<0

𝜂

The log-likelihood ratio test becomes

lnΛ
(
𝐱1, 𝐱2,… , 𝐱N

)
= − 1

𝜎2

N∑

i=1

(
𝐲i −𝐦i

)H (𝐲i −𝐦i
)
+ 1
𝜎2

N∑

i=1
𝐲H

i 𝐲i

1
>

<0

ln 𝜂

By eliminating the non-data-dependent terms we have

2Re

( N∑

i=1
𝐦H

i 𝐲i

) 1
>

<0

𝜎2 ln 𝜂 +
N∑

i=1
𝐦H

i 𝐦i (8.214)

This is the replica correlator for complex vector data. ◽

Before we present the likelihood ratio test in terms of large random matrices, we need
to recall some known results in random matrix theory. The whole matrix𝐗 is treated as
an element in the matrix probability space.
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Now we have prepared all the ingredients to present the core results in this section,
which appear here for the first time, to the best of our knowledge. Our goal is to make
a parallel development with scalar and vector random variables of Van Tree. Here, we
deal with matrix-valued random variables in the matrix probability space.

Example 8.11.5 (likelihood ratio test formulated with Gaussian random
matrices) The observation is corrupted by an additive noise. We sample the
data each second and obtain N matrix-valued samples. The entries of each noise sample
𝐙i, which is matrix-valued, are zero-mean Gaussian random variables with variance 𝜎2.
The noise samples at various instants are independent (matrix-valued) random variables
and are independent of the source input. The observations under each hypothesis are

0 ∶ 𝐘i = 𝐙i, 𝐙i ∈ ℂp×n, i = 1,… ,N
1 ∶ 𝐘i =𝐌i + 𝐙i, 𝐌i ∈ ℂp×n, 𝐙i ∈ ℂp×n, i = 1,… ,N

(8.215)

where𝐌i may be a random or deterministic matrix, and from (3.43), we have

p𝐙i
(𝐗) = c exp

(
− 1
𝜎2 Tr

(
𝐗H𝐗

))
, i = 1,… ,N (8.216)

because the entries of all the noise samples are Gaussian.
The probability density of 𝐘i under each hypothesis follows readily:

1 ∶ p𝐙i

(
𝐘i −𝐌i

)
= c exp

(
− 1
𝜎2 Tr

((
𝐘i −𝐌i

)H (𝐘i −𝐌i
)))

(8.217)

and

0 ∶ p𝐙i

(
𝐘i
)
= c exp

(
− 1
𝜎2 Tr

(
𝐘H

i 𝐘i
))

(8.218)

Because the 𝐙i are statistically independent, the joint probability density of all the N
random matrices 𝐙i, i = 1, 2,… ,N is simply the product of the independent individ-
ual probability density functions. See the derivation of (3.36). See also Example 3.9.4, in
particular (3.45) and (3.46). Thus

1 ∶ p1
(
𝐘i −𝐌i

)
= cN

N∏

i=1
exp
(
− 1
𝜎2 Tr

((
𝐘i −𝐌i

)H (𝐘i −𝐌i
)))

(8.219)

and

0 ∶ p0
(
𝐘i
)
= cN

N∏

i=1
exp
(
− 1
𝜎2 Tr

(
𝐘H

i 𝐘i
))

(8.220)

Using the likelihood ratio test principle, in analogy with (8.191), we have

Λ =

N∏

i=1
exp
(
− 1
𝜎2 Tr

((
𝐘i −𝐌i

)H (𝐘i −𝐌i
)))

N∏

i=1
exp
(
− 1
𝜎2 Tr

(
𝐘H

i 𝐘i
))

1
>

<0

𝜂 (8.221)

Taking the logarithm to both sides, we have

lnΛ = − 1
𝜎2

N∑

i=1
Tr
((
𝐘i −𝐌i

)H (𝐘i −𝐌i
))

+ 1
𝜎2

N∑

i=1
Tr
(
𝐘H

i 𝐘i
)

1
>

<0

ln 𝜂
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Canceling the common term, and with some simplification, we obtain

1
N

N∑

i=1

[
Tr
(
𝐘H

i 𝐌i
)
+ Tr

(
𝐌i

H𝐘i
)]

1
>

<0

𝜎2

N
ln 𝜂 +

N∑

i=1
Tr(𝐌H

i 𝐌i) (8.222)

Since Tr
(
𝐀H) = (Tr 𝐀)∗, where z∗ is the conjugate of a complex number z, identifying

𝐀 = 𝐘H
i 𝐌i gives

1
N

N∑

i=1

[
⟨𝐘i,𝐌i⟩ + ⟨𝐘i,𝐌i⟩

∗]
1
>

<0

𝜎2

N
ln 𝜂 + ⟨𝐌i,𝐌i⟩ (8.223)

where the notation ⟨𝐀,𝐁⟩ = Tr
(
𝐀H𝐁

)
represents the inner product (scalar prod-

uct) of two matrices. For square n × n Hermitian matrices 𝐘H
i = 𝐘, and 𝐌H

i =𝐌i,
we have

1
N

N∑

i=1
⟨𝐘i,𝐌i⟩

1
>

<0

𝜎2

2N
ln 𝜂 + 1

2
⟨𝐌i,𝐌i⟩ (8.224)

For n = 1, we have𝐌i = 𝐦i ∈ ℂp×1,𝐘i = 𝐲i ∈ ℂp×1, where random matrices reduce to
random vectors (or rank-1 matrices). For this case, from (8.223) we obtain

2Re
N∑

i=1
𝐦i𝐲i

1
>

<0

𝜎2 ln 𝜂 +
N∑

i=1
𝐦H

i 𝐦i (8.225)

which is exactly (8.214) for random vectors. The difference between (8.225) and (8.222)
is fundamental. To be explicit, we rewrite (8.222) as the sum of random matrices

Tr

(
1
N

N∑

i=1
𝐘H

i 𝐌i

)

+ Tr

(
1
N

N∑

i=1
𝐌i

H𝐘i

) 1
>

<0

𝜎2

N
ln 𝜂 + Tr

( N∑

i=1
𝐌H

i 𝐌i

)

or

2Re

{

Tr

(
1
N

N∑

i=1
𝐘H

i 𝐌i

)} 1
>

<0

𝜎2

N
ln 𝜂 + Tr

( N∑

i=1
𝐌H

i 𝐌i

)

Concentration of spectral measure, unique to high dimensions, can be exploited when
large random matrices are summed up. See Qiu and Wicks [40] for a treatment of this
topic. The trace function of the sum of random matrices is of basic role.

For a special case 𝐌i = A,𝐘i = Yi, which are scalar random variables for both,
we have

N∑

i=1
Yi

1
>

<0

𝜎2

2A
ln 𝜂 + 1

2
NA (8.226)

which is identical to (8.201), the case for scalar random variables. The minor difference
between (8.201) and (8.226) stems from a difference in the convention of 𝜎2, (a factor
of 2), in (8.194) and (8.216).
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Using the linearity of the trace, (8.222) can be expressed as

Tr
⎛
⎜
⎜
⎝

(
1
N

N∑

i=1
𝐘i

)H

𝐌i

⎞
⎟
⎟
⎠

+ Tr

(

𝐌H
i

(
1
N

N∑

i=1
𝐘i

)) 1
>

<0

𝜎2

N
ln 𝜂 + Tr(𝐌H

i 𝐌)

Writing

𝐘 = 1
N

N∑

i=1
𝐘i

we have

Tr
(
𝐘

H
𝐌i

)
+ Tr

(
𝐌H

i 𝐘
) 1
>

<0

𝜎2

N
ln 𝜂 + Tr(𝐌H

i 𝐌i)

or
⟨
𝐘,𝐌i

⟩
+
⟨
𝐘,𝐌i

⟩∗
1
>

<0

𝜎2

N
ln 𝜂 + Tr(𝐌H

i 𝐌i)

For 1, we are able to move 𝐌i to the left side to obtain 𝐙i = 𝐘i −𝐌i. We can use
free probability theory to extend from the above𝐌i to a large random matrix 𝐀i; thus
we have

1 ∶ 𝐘i = 𝐀i + 𝐙i, 𝐀i ∈ ℂp×n , 𝐙i ∈ ℂp×n, i = 1,… ,N

Non-Hermitian random matrices in free probability (see Chapter 6) can be used. In this
generalized case, we use the asymptotically free random variables

𝐙i = 𝐘i ⊟ 𝐀i (8.227)

where⊟ denotes the free deconvolution [517].
For more generalized density, from (3.44), we have

p𝐙i
(𝐗) = c exp

(
−Tr V

(
𝐗H𝐗

))
(8.228)

For illustration, we only consider the special case of Gaussian matrices in the above.
In practice, we muse estimate𝐌 in (8.215).
Now the observations under each hypothesis are

0 ∶ 𝐘i = 𝐙i, 𝐙i ∈ ℂp×n, i = 1,… ,N

1 ∶ 𝐘i =
√

SNR𝐀i + 𝐙i, 𝐀i ∈ ℂp×n, 𝐙i ∈ ℂp×n, i = 1,… ,N
(8.229)

where𝐀i is a random matrix, independent of𝐙i, and SNR represents the signal-to-noise
ratio. Here 𝐀i and 𝐙i are two independent Gaussian random matrices given by (8.216).
The log-likelihood ratio test becomes

lnΛ = − 1
𝜎2 Tr

( N∑

i=1

(
𝐘i −

√
SNR𝐀i

)H (
𝐘i −

√
SNR𝐀i

)
)

+ 1
𝜎2 Tr

( N∑

i=1
𝐘i

H𝐘i

) 1
>

<0

ln 𝜂 (8.230)
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Figure 8.1 Log-likelihood functions defined in (8.230) under hypothesis 0 and hypothesis 1 for
different Monte Carlo realizations. p = 200, n = 100, SNR = −30dB, N=100.

Hypothesis 0 can be viewed as the case SNR = 0. Our intuition leads us to study
what is the minimum value of SNR, such that, on the left-hand-side of (8.230), the first
term (hypothesis 1) can be found to be different from the second term (hypothesis
0). Figure 8.1 illustrates this intuition. In [40, p. 494], by empirical argument, we have
obtained metric functions for hypothesis testing, similar to (8.230). The MATLAB code
given below has been used to generate Figure 8.1.

clear all;
m=200;n=100; N=100;N_try=100;
SNR_dB=-30;
SNR=10^(SNR_dB/10)

Concentration=0;
STD= 0.38395;
t=1;

%***********************

for H1=0:1
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Number=0;
for i_try=1:N_try % Hypothesis Testing

MatrixAB=zeros(n,n);

for i=1:N %Monte Carlo for Expectation
X=1/sqrt(2)*randn(m,n)+sqrt(-1)/sqrt(2)*randn(m,n);
X1=1/sqrt(2)*randn(m,n)+sqrt(-1)/sqrt(2)*randn(m,n);
if H1==1
C=(X-sqrt(SNR)*X1)’*(X-sqrt(SNR)*X1); % H1 SNR
else
C=X’*X; % H0 SNR=0
end

MatrixAB=MatrixAB+C; % H1: Signal plus noise H0: noise only
end

Expectation_MatrixAB=MatrixAB/N; % expectation
Metric_Trace=real(trace((Expectation_MatrixAB)));

% covariance
Metric_Trace=Metric_Trace-m*n;
Metric_Trace=(Metric_Trace)/m/n/SNR % mn

if abs(Metric_Trace- Concentration)> t*STD
Number=Number+1 % H1

end
Record_Trace(i_try,H1+1)=Metric_Trace;
end %i_try
MEAN=sum(Record_Trace)/N_try;

Mean_Metric=MEAN
Prob=Number/N_try
STD=std(Record_Trace);
STD_True=1/m/n/SNR*sqrt(N);
end %H

p=m;
figure(1)
plot(1:N_try,Record_Trace(1:N_try,1),’r-*’,1:N_try,

Record_Trace(1:N_try,2),’b’)
xlabel([’Monto Carlo Index’ ’

True STD=’ num2str(STD_True) ])
ylabel(’Trace/m/n/SNR ’)
legend(’Hypothesis H_0’,’Hypothesis H_1’)
title([’p=’ num2str(p) ’ n=’ num2str(n) ’

SNR = ’ num2str(10*log10(SNR)) ’dB,\ldots
N=’ num2str(N) ’ Prob=’ num2str(Prob) ’
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Mean=’ num2str(MEAN) ’ STD=’ num2str(STD) ])
grid

◽

Example 8.11.6 (likelihood ratio test formulated with Wishart random matrices) We
refer to Example 3.9.2 for Wishart random matrices. For an n × m complex Gaussian
matrix

p (𝐗) = 1
𝜋nm exp

(
−Tr𝐗H𝐗

)

Following (3.39), the p.d.f. of 𝐀 = 𝐗H𝐗 as

p (𝐀) = 1
C𝛽,n

exp
(

−𝛽
2

Tr𝐀
)

(det𝐀)𝛽∕2(n−m+1−2∕𝛽) (8.231)

where C𝛽,n is a normalization constant.
Consider the hypothesis-testing problem

0 ∶ 𝐑 = 𝐀
1 ∶ 𝐑 = 𝐁 + 𝐀, 𝐀 ∈ ℂm×m, 𝐁 ∈ ℂm×m (8.232)

where 𝐁 is a deterministic matrix with 𝐑 − 𝐁 > 0. Obviously, we have 𝐀 ≥ 0, because
𝐀 = 𝐗H𝐗. But in general, 𝐀 is a large random matrix.

Using (8.231), the likelihood ratio is

Λ (𝐀) =
p1 (𝐀)
p0 (𝐀)

=
p1 (𝐑 − 𝐁)

p0 (𝐑)
=

exp
(
− 𝛽

2
Tr (𝐑 − 𝐁)

)
(det (𝐑 − 𝐁))𝛽∕2(n−m+1−2∕𝛽)

exp
(
− 𝛽

2
Tr𝐑

)
(det𝐑)𝛽∕2(n−m+1−2∕𝛽)

The likelihood ratio test is given by

Λ (𝐀)
1
>

<0

𝜂

or equivalently

lnΛ (𝐀)
1
>

<0

ln 𝜂

We have

lnΛ (𝐀) = 𝛽
2

(

n − m + 1 − 2
𝛽

)

ln det (𝐑 − 𝐁) − 𝛽
2

Tr (𝐑 − 𝐁)

− 𝛽
2

(

n − m + 1 − 2
𝛽

)

ln det (𝐑) + 𝛽
2

Tr𝐑

= 𝛽
2

(

n − m + 1 − 2
𝛽

)

ln det (𝐑 − 𝐁)
det (𝐑)

+ 𝛽
2

Tr𝐁

For an m × m positive definitive matrix 𝐂 > 0, following (3.18), we have

log det (𝐂) = Tr log (𝐂)
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Using this relation, we obtain

log det (𝐑 − 𝐁)
det (𝐑)

= Tr log (𝐑 − 𝐁) − Tr log (𝐑) = Tr log
(
𝐑−1 (𝐑 − 𝐁)

)

= Tr log
(
𝐈 − 𝐑−1𝐁

)

where 𝐈 − 𝐑−1𝐁 > 0 implied by the assumption 𝐑 − 𝐁 > 0. Finally, we have

Tr log
(
𝐈 − 𝐑−1𝐁

)
+ 𝛽

2
Tr (𝐁)

1
>

<0

2

𝛽

(
n − m + 1 − 2

𝛽

) ln 𝜂 (8.233)

where 𝐈 − 𝐑−1𝐁 > 0, as pointed out before.
Let us inspect the test metric in (8.233). We have the form of

Tr f (𝐘) =
m∑

i=1
f
(
𝜆i (𝐘)

)

where 𝐘 > 0 is a large random matrix and f (x) is a convex function. In (8.233), f (x) =
ln (1 − x) for x < 1 is a convex function. The concentration of spectral measure phe-
nomenon, unique to problems in high dimensions, is relevant here. See [40] for a sys-
temic treatment.

See also Example 3.6.3 for the form of

𝔼
[
Tr
(
f
(
𝐗𝐘𝐗H))] , 𝐘 > 0

where𝐗 is an n × n Gaussian random matrix with complex, independent, and identically
distributed entries of zero mean and unit variance.

Now consider a sample problem:

0 ∶ 𝐑i = 𝐀i

1 ∶ 𝐑i = 𝐁i + 𝐀i, 𝐀 ∈ ℂm×m, 𝐁i ∈ ℂm×m, i = 1,… ,N
(8.234)

where 𝐀i is given by (8.231) and 𝐁is are random matrices with the assumption of 𝐑i −
𝐁i > 0. All the N random matrices𝐀i, i = 1,… ,N are independent from each other. All
the N random matrices 𝐁i, i = 1,… ,N are independent of each other. 𝐀i, i = 1,… ,N
are independent of𝐁i, i = 1,… ,N . The joint pdf of all the N independent random matri-
ces is the product of their individual pdfs:

p
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)

p
(
𝐀2
)
· · · p
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𝐀N
)
=

N∏

i=1
p
(
𝐀i
)

= 1
(
C𝛽,n
)N

N∏
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(

−𝛽
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)
(
det𝐀i

)𝛽∕2(n−m+1−2∕𝛽)
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(
C𝛽,n
)N exp

(

−𝛽
2

N∑

i=1
𝐀i

)( N∏

i=1
det𝐀i

)𝛽∕2(n−m+1−2∕𝛽)
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Using (8.231), the likelihood ratio is
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=

N∏

i=1
p
(
𝐀i
)

= 1
(
C𝛽,n
)N

N∏

i=1
exp
(

−𝛽
2

Tr𝐀i

)
(
det𝐀i

)𝛽∕2(n−m+1−2∕𝛽)

= 1
(C𝛽,n)N exp

(

−𝛽
2

Tr
N∑

i=1
𝐀i

)( N∏

i=1
det𝐀i

)𝛽∕2(n−m+1−2∕𝛽)

The log-likelihood ratio is obtained as

lnΛ = −𝛽
2
Tr

[ N∑

i=1

(
𝐑i − 𝐁i

)
−

N∑

i=1
𝐑i

]

+ 𝛽
2

(

n − m + 1 − 2
𝛽

)[ N∑

i=1
ln det

(
𝐑i − 𝐁i

)
−

N∑

i=1
ln det

(
𝐑i
)
]

= 𝛽
2
Tr

N∑

i=1
𝐁i +

𝛽

2

(

n − m + 1 − 2
𝛽

) N∑

i=1
ln det

(
𝐑−1

i
(
𝐑i − 𝐁i

))

= 𝛽
2
Tr

N∑

i=1
𝐁i +

𝛽

2

(

n − m + 1 − 2
𝛽

) N∑

i=1
ln det

(
𝐈 − 𝐑−1

i 𝐁i
)

where we have used the property det (𝐀𝐁) = det (𝐀) det (𝐁) in the second line. Some-
times the inverse of the random matrices𝐑−1

i do not exist. Using the relation log det (⋅) =
Tr log (⋅), we obtain

lnΛ (𝐀) = 𝛽
2

Tr
N∑

i=1
𝐁i +

𝛽

2

(

n − m + 1 − 2
𝛽

) N∑

i=1
Tr ln

(
𝐈 − 𝐑−1

i 𝐁i
)

which reduces to the case of N = 1 that we have studied before. Here 𝐈 − 𝐑−1
i 𝐁i > 0

implied by the assumption of 𝐑i − 𝐁i > 0. The sum of random matrices (appearing in
the above equation) have been systemically studied in [40].

The log-likelihood ratio test becomes

lnΛ (𝐀)
1
>

<0

ln 𝜂 ◽

The results in Example 8.11.5 and Example 8.11.6 appear novel, first obtained by the
first author (Qiu) on February 21, 2014. He has been motivated to understand the finding
in [61]: the trace function of random matrices performs the best among a number of
algorithms. This deceptively simple finding has a far-reaching impact on his research
program. A discussed in [40, Section 13.1], the trace function exploits the concentration
of spectral measure phenomenon in a better manner than the matrix functions such the
maximum or the minimum eigenvalue. The significance of the novel results is to justify
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the empirical findings using the classical likelihood ratio test principle, by reformulating
the problem in terms of large Gaussian random matrices.

We must treat the whole random matrix 𝐗 as a whole element in some matrix prob-
ability space. This way we may use the probability density functions for a Gaussian
random matrix (8.216) and a Wishart random matrix (8.231). Other generalized ran-
dom matrices may be studied in this framework as well. As we pointed out previously,
the power of random matrix theory is twofold. First, the eigenvalue distribution (empir-
ical spectral measure) is universal: it is the same for many different distributions of the
matrix entries. Second, we can treat the whole matrix as one element in some matrix
probability space.

At an extremely low SNR of −30 dB, the noise is 1000 times larger than the signal,
and any attempt to use eigenvectors and eigenvalues seems useless. Rather, our focus
should be on the control of uncertainties (measured by variance) of the matrix func-
tions that are used for hypothesis testing metrics. As a result, concentration of spectral
measure—unique to high-dimensional problems—plays a central role in this frame-
work. We are no longer satisfied with the assumption that a true covariance matrix can
be estimated. Rather, we make a direct approach of formulating the problem in terms of
large random matrices.

8.12 Matrix Elliptically Contoured Distributions

Matrix elliptically contoured distributions can be used to model data that are neither
independent nor Gaussian.

The distribution of the sample covariance matrix, which has Wishart distribu-
tion [116], plays a central role in almost all multivariate inferential procedures. These
techniques depend on functions of random matrices such as determinants, traces, and
eigenvalues. Thus random matrices are the backbone of multivariate statistical analysis.
Observed random phenomena often can be described by random matrices that include
the dependence structure of the relevant random vectors.

Let 𝐗 be a random matrix of dimension p × n. Then, 𝐗 is said to have a matrix variate
elliptically contoured (m.e.c.) distribution if its characteristic functions have the form

𝜙𝐗 (𝐓) = etr
(
j𝐓T𝐌

)
𝜓
(
Tr
(
𝐓T𝚺𝐓𝚽

))

with 𝐓 ∶ p × n,𝐌 ∶ p × n,𝚺 ∶ p × p,𝚽 ∶ n × n,𝚺 ⩾ 0,𝚽 ⩾ 0, and 𝜓 ∶ [0,∞) → ℝ.
Here etr (⋅) = exp (Tr (⋅))

This distribution will be denoted by Ep,n (𝐌,𝚺⊗𝚽,Ψ).
For n = 1, we say that 𝐗 has a vector variate elliptically contoured distribution. It is

also called multivariate elliptical distribution. Then the characteristic function of𝐗 takes
the form

𝜙𝐱 (𝐭) = exp
(
j𝐭T𝐦

)
𝜓
(
𝐭T𝐦
)
,

where 𝐭 and𝐦 are p-dimensional vectors. In this case, in the notation Ep,n (𝐌,𝚺⊗𝚽,Ψ),
the index n can be dropped; that is, Ep (𝐦,𝚺,Ψ)will denote the distribution Ep,1 (𝐦,𝚺,Ψ)

Let 𝐦 be a p × 1 constant vector, and 𝐀 be a p × p constant matrix. Random vector
𝐱 is said to have an multivariate elliptic distribution with parameter𝐦 and 𝚺 = 𝐀T𝐀, if
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it can be put in the form 𝐱 = 𝐦 + 𝐀𝐳, where 𝐳 is a random vector following a spherical
distribution.

The following three statements are equivalent.

• Ep,1 (𝐦,𝚺,Ψ).
• The probability density function of 𝐱 is of the form 1

√
det𝚺

g
(
(𝐱 −𝐦)T𝚺−1 (𝐱 −𝐦)

)
.

• The characteristic function of 𝐱 is of the form exp
(
j𝐭T𝐦

)
Ψ
(
𝐭T𝚺𝐭

)
.

The next result shows the relationship between matrix variate and vector variate ellip-
tically contoured distributions. Let𝐗 be a p × n random matrix and 𝐱 = vec

(
𝐗T). Then,

𝐗 ∼ Ep,n (𝐌,𝚺⊗𝚽,Ψ) if and only if 𝐱 ∼ Ep,n
(
vec
(
𝐌T) ,𝚺⊗𝚽,Ψ

)
.

Linear functions of a random matrix with m.e.c. distribution also have ellip-
tic contoured distributions. Let 𝐗 ∼ Ep,n (𝐌,𝚺⊗𝚽,Ψ). Assume 𝐂 ∶ q × m,𝐀 ∶
q × p, and 𝐁 ∶ n × m are constant matrices. Then,

𝐀𝐗𝐁 + 𝐂 ∼ Eq,m
(
𝐀𝐌𝐁 + 𝐂,

(
𝐀T𝚺𝐀

)
⊗
(
𝐁T𝚽𝐁

)
,Ψ
)

Proof: The characteristic function of 𝐘 = 𝐀𝐗𝐁 + 𝐂 can be written as

𝜙𝐘 (𝐓) ≜ 𝔼
(
etr
(
j𝐓T𝐘

))

= 𝔼
(
etr
(
j𝐓T (𝐀𝐗𝐁 + 𝐂)

))

= 𝔼
(
etr
(
j𝐓T𝐀𝐗𝐁

))
etr
(
j𝐓T𝐂

)

= 𝔼
(
etr
(
j𝐁𝐓T𝐀𝐗

))
etr
(
j𝐓T𝐂

)

= 𝜙𝐗
(
𝐀T𝐓𝐁T) etr

(
j𝐓T𝐂

)

= etr
(
j𝐁𝐓T𝐀𝐌

)
𝜓
(
Tr
(
𝐁𝐓T𝐀𝚺𝐀T𝐓𝐁T𝚽

))
etr
(
j𝐓T𝐂

)

= etr
(
j𝐓T (𝐀𝐌𝐁 + 𝐂)

)
𝜓
(
Tr
(
𝐓T (𝐀𝚺𝐀T)𝐓

(
𝐁T𝚽𝐁

)))

This is the characteristic function of Eq,m
(
𝐀𝐌𝐁 + 𝐂,

(
𝐀T𝚺𝐀

)
⊗
(
𝐁T𝚽𝐁

)
,Ψ
)
. ◽

Example 8.12.1 (massive MIMO) Consider an MIMO channel

𝐲 = 𝐇𝐱 + 𝐰

where𝐇 is the channel transfer function and 𝐰 the Gaussian random vector. If we con-
sider repeated measurements, we obtain the random matrix model

𝐘 = 𝐇𝐗 +𝐖

The above model is relevant. ◽

Let 𝐗 ∼ Ep,n (𝐌,𝚺⊗𝚽,Ψ), and let 𝚺 = 𝐀𝐀T , and𝚽 = 𝐁T𝐁 be rank factorization
of 𝚺 and 𝚽. That is, 𝐀 is p × p1 and 𝐁 is n × n1, where p1 = rank (𝚺) , n1 = rank (𝚽).
Then,

𝐀† (𝐗 −𝐌)𝐁† ∼ Ep,n
(
𝟎, 𝐈p1

⊗ 𝐈n1
,Ψ
)

where the dagger of 𝐀† represents the generalized inverse of 𝐀, i.e., 𝐀𝐀†𝐀 = 𝐀. Con-
versely, if 𝐘 ∼ Ep,n

(
𝟎, 𝐈p1

⊗ 𝐈n1
,Ψ
)
, then
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𝐀𝐘𝐁T +𝐌 ∼ Ep,n (𝐌,𝚺⊗𝚽,Ψ)

where 𝚺 = 𝐀𝐀T , and𝚽 = 𝐁T𝐁
The distribution of Ep

(
𝟎, 𝐈p,Ψ

)
is called spherical distribution.

A consequence of the definition of the m.e.c. distribution is that if 𝐗 has m.e.c. distri-
bution, then its transpose 𝐗T has also m.e.c. distribution. Let 𝐗 ∼ Ep,n (𝐌,𝚺⊗𝚽,Ψ),
then, 𝐗T ∼ Ep,n

(
𝐌T ,𝚽⊗ 𝚺,Ψ

)
.

The question arises whether the parameters in the definition of a m.e.c. distribution
are uniquely defined. The answer is that they are not.

An important subclass of the class of the m.e.c. distribution is the class of matrix vari-
ate normal (or Gaussian) distributions. The p × n random matrix 𝐗 is said to have a
matrix variate normal distribution if its characteristic function has the form

𝜙𝐗 (𝐓) = etr
(
j𝐓T𝐌

)
etr
(
−1

2
𝐓T𝚺𝐓𝚽

)

with 𝐓 ∶ p × n,𝐌 ∶ p × n,𝚺 ∶ p × p,𝚽 ∶ n × n,𝚺 ⩾ 0,𝚽 ⩾ 0. This distribution is
denoted by p,n (𝐌,𝚺⊗𝚽).

The next theorem shows that the matrix variate normal distribution can be
used to represent samples taken from multivariate normal distributions. Let
𝐗 ∼ p,n

(
𝐦𝐞Tn ,𝚺⊗ 𝐈n

)
, where 𝐦 ∈ ℂp. Let 𝐱1, 𝐱2,… , 𝐱n be columns of 𝐗. Then,

𝐱1, 𝐱2,… , 𝐱n are independent identically distributed random vectors with common
distribution p (𝐦,𝚺). Here 𝐞n is the n-dimensional vector whose elements are 1s; that
is, 𝐞n = (1, 1,… , 1)T real matrix.

8.13 Hypothesis Testing for Matrix Elliptically Contoured
Distributions

8.13.1 General Results

If 𝐗 ∼ Ep,n (𝐌,𝚺⊗𝚽,Ψ) defines an absolutely continuous elliptically contoured distri-
bution, 𝚺 and𝚽must be positive definite. The probability density function (p.d.f.) of an
m.e.c. distribution is of a special form as the following theorem shows.

Let 𝐗 be a p × n dimensional random matrix whose distribution is absolutely contin-
uous. Then, 𝐗 ∼ Ep,n (𝐌,𝚺⊗𝚽,Ψ), if and only if the p.d.f. of 𝐗 has the form

f (𝐗) = (det𝚺)−n∕2(det𝚽)−p∕2h
(
Tr
(
(𝐗 −𝐌)T𝚺−1 (𝐗 −𝐌)𝚽−1))

where h and Ψ determine each other for the specified p and n.
If 𝐗 ∼ Ep,n (𝐌,𝚺⊗𝚽,Ψ), (a) if 𝐗 has a finite first moment, then 𝔼 (𝐗) =𝐌; (b) if 𝐗

has a finite second moment, then Cov (𝐗) = c𝚺⊗𝚽, where c = −2𝜓 ′ (0), with𝜓 ′ (t) the
first derivative.

We can give the stochastic representation of a m.e.c. distribution. Let 𝐗 be a p × n
random matrix. Let𝐌 ∶ p × n,𝚺 ∶ p × p,𝚽 ∶ n × n be constant matrices,𝚺 ⩾ 0,𝚽 ⩾ 0,
rank (𝚺) = p1, rank (𝚽) = n1. Then

𝐗 ∼ Ep,n (𝐌,𝚺⊗𝚽,Ψ)
if and only if

𝐗 ≈𝐌 + r𝐀𝐔𝐁T
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where𝐔 is p1 × n1 and vec
(
𝐔T) is uniformly distributed on Sp1n1

, r is a non-negative ran-
dom variable, r and𝐔 are independent,𝚺 = 𝐀𝐀T , and𝚽 = 𝐁𝐁T are rank factorizations
of 𝚺 and𝚽. Moreover

𝜓 (u) = ∫
∞

0
Ωp1n1

(
r2u
)

dF (r),u ⩾ 0

where Ωp1n1

(
𝐭T 𝐭
)
, 𝐭 ∈ ℝp1n1 denotes the characteristic function of vec

(
𝐔T), and F(r)

denotes the distribution function of r. The expression𝐌 + r𝐀𝐔𝐁T is called the stochas-
tic representation of 𝐗. Let us denote the unit sphere in ℝk by Sk

Sk =
{
𝐱|𝐱 ∈ ℝk; 𝐱T𝐱 = 1

}

Let 𝐗 ∼ Ep,n (𝐌,𝚺⊗𝚽,Ψ), and r𝐀𝐔𝐁T be a stochastic representation of 𝐗. Assume 𝐗
is absolutely continuous and has the p.d.f.

f (𝐗) = (det𝚺)−n∕2(det𝚽)−p∕2h
(
Tr
(
𝐗T𝚺−1𝐗𝚽−1))

Then, r is also absolutely continuous and has the p.d.f.

g (r) = 2𝜋pn∕2

Γ
(

pn
2

) rpn−1h
(
r2) , r ⩾ 0

The stochastic representation is a major tool in the study of m.e.c. distributions.

Theorem 8.13.1 Let 𝐗 ∼ Ep,n (𝐌,𝚺⊗𝚽,Ψ), with p.d.f.

f (𝐗) = (det𝚺)−n∕2(det𝚽)−p∕2h
(
Tr
(
(𝐗 −𝐌)T𝚺−1 (𝐗 −𝐌)𝚽−1))

where h(z) is monotone decreasing on [0,∞). Suppose h,𝚺 and 𝚽 are known and we
want to find the maximum likelihood estimate (MLE) of𝐌 (say �̂�), based on a single
observation 𝐗. Then,

(a) �̂� = 𝐗
(b) If𝐌 = 𝝁𝐯T , where𝝁 is p-dimensional, 𝐯 is n-dimensional vector and 𝐯 ≠ 𝟎 is known,

the MLE of 𝝁 is �̂� = 𝐗 𝚽−1𝐯
𝐯T𝚽−1𝐯

, and
(c) if𝐌 is of the form𝐌 = 𝝁𝐞Tn , the MLE of 𝝁 is 𝝁 = 𝐗 𝚽−1𝐞n

𝐞Tn𝚽−1𝐞n

Now we are ready to state our result on the likelihood ratio test (LRT) statistic. Assume
we have an observation 𝐗 from the distribution Ep,n (𝐌,𝚺⊗𝚽,Ψ), and we want to test

0 ∶ (𝐌,𝚺⊗𝚽) ∈ 𝜔 against 1 ∶ (𝐌,𝚺⊗𝚽) ∈ Ω − 𝜔 (8.235)

where 𝜔 ⊂ Ω. Suppose Ω and 𝜔 have the properties that if 𝐐 ∈ ℝp×n,𝐒 ∈ ℝpn×pn, then
(𝐐,𝐒) ∈ Ω implies (𝐐, c𝐒) ∈ Ω , and (𝐐,𝐒) ∈ 𝜔 implies (𝐐, c𝐒) ∈ 𝜔 for any positive
scalar c. Moreover, let 𝐗 have the p.d.f.

f (𝐗) = (det𝚺)−n∕2(det𝚽)−p∕2h
(
Tr
(
(𝐗 −𝐌)T𝚺−1 (𝐗 −𝐌)𝚽−1))

where l (z) = zpn∕2h (z) (z ⩾ 0) has a finite maximum at z = zh > 0.
Furthermore, suppose that under the assumption 1 that 𝐗 ∼ p,n (𝐌,𝚺⊗𝚽),

(𝐌,𝚺⊗𝚽) ∈ Ω, the MLE’s of 𝐌 and 𝚺⊗𝚽 are 𝐌∗ and 𝚺⊗𝚽∗, which are
unique and ℙ

(
(𝚺⊗𝚽)∗ > 0

)
= 1. Assume also that under the assumption 0
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𝐗 ∼ p,n (𝐌,𝚺⊗𝚽), (𝐌,𝚺⊗𝚽) ∈ 𝜔, the MLE’s are 𝐌 and 𝚺⊗𝚽 are 𝐌∗
0 and

𝚺⊗𝚽∗
0, which are unique and ℙ

(
(𝚺⊗𝚽)∗0 > 0

)
= 1.

Then, the likelihood ratio test (LRT) statistic for testing (8.235) under the
assumption that 𝐗 ∼ Ep,n (𝐌,𝚺⊗𝚽,Ψ), is the same as under the assumption
that 𝐗 ∼ p,n (𝐌,𝚺⊗𝚽), namely

det (𝚺⊗𝚽)∗

det (𝚺⊗𝚽)∗0

8.13.2 Two Models

Now, we describe the parameter spaces in which we want to study hypothesis testing
problems.

Model I

Let 𝐱1, 𝐱2,… , 𝐱n be p-dimensional random vectors, such that n > p and 𝐱i ∼
Ep (𝝁,𝚺, 𝜓) , i = 1,… , n. Moreover, assume that 𝐱i, i = 1,… , n are uncorrelated
and their joint distribution is elliptically contoured and absolutely continuous. This
model can be expressed as

𝐗 ∼ Ep,n
(
𝝁𝐞Tn ,𝚺⊗ 𝐈n, 𝜓

)
(8.236)

where 𝐗 =
(
𝐱1, 𝐱2, .., 𝐱n

)
. Then the joint p.d.f. of 𝐱1, 𝐱2, .., 𝐱n can be written as

f (𝐗) = 1
(det𝚺)n h

( n∑

i=1

(
𝐱i − 𝝁

)T𝚺−1 (𝐱i − 𝝁
)
)

(8.237)

Assume l (z) = zpn∕2h (z) , z ⩾ 0 has a finite maximum at z = zh > 0. Define

𝐱 = 1
n

n∑

i=1
𝐱i and 𝐀 =

n∑

i=1

(
𝐱i − 𝐱

) (
𝐱i − 𝐱

)T

Then 𝐱 = 1
n
𝐗𝐞n,𝐀 = 𝐗

(
𝐈n −

1
n
𝐞n𝐞Tn

)
𝐗T , and the statistic T (𝐗) =

(
𝐱,𝐀
)

is sufficient for
(𝝁,𝚺).

If 𝜓 (z) = exp
(
− z

2

)
, then𝐗 ∼ p,n

(
𝝁𝐞Tn ,𝚺⊗ 𝐈n, 𝜓

)
. In this case, 𝐱i are independent,

and identically distributed random vectors each with distribution p (𝝁,𝚺). Inference
for this structure has been extensively studied in Anderson [371].

Model II

Let 𝐱(i)1 , 𝐱
(i)
2 ,… , 𝐱

(i)
ni

be p-dimensional random vectors, such that ni > p, i = 1,… , q, and
𝐱(i)j ∼ Ep

(
𝜇i,𝚺i, 𝜓

)
, j = 1,… , ni, i = 1,… , q. Moreover, assume that 𝐱(i)j , i = 1,… , q, j =

1,… , ni are uncorrelated and their joint distribution is also elliptically contoured and
absolutely continuous. This model can be expressed as

𝐱 ∼ Ep,n

⎛
⎜
⎜
⎜
⎝

⎛
⎜
⎜
⎜
⎝

𝐞n1
⊗ 𝝁1

𝐞n1
⊗ 𝝁2
⋮

𝐞n1
⊗ 𝝁q

⎞
⎟
⎟
⎟
⎠

,

⎛
⎜
⎜
⎜
⎝

𝐈n1
⊗ 𝚺1

𝐈n2
⊗ 𝚺2
⋮

𝐈nq
⊗ 𝚺q

⎞
⎟
⎟
⎟
⎠

, 𝜓

⎞
⎟
⎟
⎟
⎠

(8.238)
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where n =
q∑

i=1
ni and

𝐱 =
[
𝐱(1)1 ,… , 𝐱

(1)
n1
, 𝐱(2)1 ,… , 𝐱

(2)
n2
, 𝐱(q)1 ,… , 𝐱

(q)
nq

]T

Then, the joint p.d.f. of 𝐱(i)j , i = 1,… , q, j = 1,… , ni can be written as

f (𝐱) = 1
q∏

i=1

(
det𝚺i

)ni

h

( q∑

i=1

ni∑

j=1

(
𝐱(i)j − 𝝁i

)T
𝚺−1

i

(
𝐱(i)j − 𝝁i

)
)

(8.239)

Assume l (z) = zpn∕2h (z) , z ⩾ 0 has a finite maximum at z = zh > 0. Define

𝐱i =
1
ni

ni∑

j=1
𝐱(i)j , 𝐀i =

ni∑

j=1

(
𝐱(i)j − 𝐱i

)(
𝐱(i)j − 𝐱i

)T

and 𝐀 =
q∑

i=1
𝐀i. Also let 𝐱 =

q∑

i=1

ni∑

j=1
𝐱(i)j and 𝐁 =

q∑

i=1

ni∑

j=1

(
𝐱(i)j − 𝐱

)(
𝐱(i)j − 𝐱

)T
. Then, we get

ni∑

j=1

(
𝐱(i)j − 𝝁i

)T
𝚺−1

i

(
𝐱(i)j − 𝝁i

)

= Tr

( ni∑

j=1

(
𝐱(i)j − 𝝁i

)T
𝚺−1

i

(
𝐱(i)j − 𝝁i

)
)

= Tr

(

𝚺−1
i

ni∑

j=1

(
𝐱(i)j − 𝝁i

)T (
𝐱(i)j − 𝝁i

)
)

= Tr

(

𝚺−1
i

( ni∑

j=1

(
𝐱(i)j − 𝐱i

)T (
𝐱(i)j − 𝐱i

)
+ n
(
𝐱i − 𝝁i

) (
𝐱i − 𝝁i

)T
))

= Tr
(
𝚺−1

i

(
𝐀i + n

(
𝐱i − 𝝁i

) (
𝐱i − 𝝁i

)T
))

Thus,

f (𝐱) = 1
q∏

i=1

(
det𝚺i

)ni

h

( q∑

i=1
Tr
(
𝚺−1

i

(
𝐀i + n

(
𝐱i − 𝝁i

) (
𝐱i − 𝝁i

)T
))
)

hence the statistic
(
𝐱(1),… , 𝐱(q),𝐀1,… ,𝐀q

)
is sufficient for

(
𝝁1,… ,𝝁q,𝚺1,… ,𝚺q

)

If 𝜓 (z) = exp
(
− z

2

)
, then

𝐱 ∼ p,n
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⎜
⎜
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⎠
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In this case, 𝐱(i)1 , 𝐱
(i)
2 ,… , 𝐱

(i)
ni

are independent, and identically distributed random
variables each with distribution p

(
𝝁i,𝚺i

)
, i = 1,… , q. Moreover, 𝐱(i)j , i = 1,… , q, j =

1,… , ni are jointly independent. Inference for this structure has been studied in [371].
A special case of Model II is when 𝚺1 = · · · = 𝚺q = 𝚺. Then the model can also be

expressed as

𝐗 ∼ Ep,n

((
𝝁1𝐞Tn1

,𝝁2𝐞Tn2
,… ,𝝁q𝐞Tnq

)
,𝚺⊗ 𝐈n, 𝜓

)

where n =
q∑

i=1
ni and

𝐱 =
(
𝐱(1)1 ,… , 𝐱

(1)
n1
, 𝐱(2)1 ,… , 𝐱

(2)
n2
, 𝐱(q)1 ,… , 𝐱

(q)
nq

)

This leads to the same joint p.d.f. of 𝐱(i)j , i = 1,… , q, j = 1,… , ni as (8.238); that is

f (𝐱) = 1
(detΣ)n h

( q∑

i=1

ni∑

j=1

(
𝐱(i)j − 𝝁i

)T
Σ−1
(
𝐱(i)j − 𝝁i

)
)

8.13.3 Testing Criteria

We only list criteria that are of interest to us.

Testing that a Covariance Matrix is Equal to a Given Matrix

In Model I (Section 8.13.2), assume that h is decreasing. We want to test

0 ∶ 𝚺 = 𝚺0 against 1 ∶ 𝚺 ≠ 𝚺0 (8.240)

We assume that 𝝁 and 𝚺 are unknown and 𝚺0 > 𝟎 is given. We can show that (8.240) is
equivalent to testing

0 ∶ 𝚺 = 𝐈p against 1 ∶ 𝚺 ≠ 𝐈p (8.241)

Theorem 8.13.2 The LRT statistic for the problem (8.240) is

𝜏 =
(
det
(
𝚺−1

0 𝐀
))n∕2h

(
Tr
(
𝚺−1

0 𝐀
))

The critical region at level 𝛼 is

𝜏 ⩽ 𝜏𝜓 (𝛼)

where 𝜏𝜓 (𝛼) depends on 𝜓 , but not on 𝚺0. The null distribution of 𝜏 does not depend
on 𝚺0.

Testing that a Covariance Matrix is Proportional to a Given Matrix

In Model I (Section 8.13.2), we want to test

0 ∶ 𝚺 = 𝜎2𝚺0 against 1 ∶ 𝚺 ≠ 𝜎2𝚺0 (8.242)

where 𝝁,𝚺, 𝜎2 are unknown, and 𝜎2 > 0 is a scalar, and 𝚺0 > 𝟎 is given. Problem (8.242)
remains invariant under group G, where G is generated by the linear transformations
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• g (𝐗) = c𝐗, c > 0 scalar and
• g (𝐗) = 𝐗 + 𝐯𝐞Tn , 𝐯 is a p - dimensional vector.

It is easy to show that (8.242) is equivalent to testing

0 ∶ 𝚺 = 𝜎2𝐈p against 1 ∶ 𝚺 ≠ 𝜎2𝐈p (8.243)

Theorem 8.13.3 The LRT statistic for the problem (8.242) is

𝜏2∕n =
det
(
𝚺−1

0 𝐀
)

(
Tr
(

1
p
𝚺−1

0 𝐀
))p

The critical region at level 𝛼 is

𝜏 ⩽ 𝜏𝜓 (𝛼)

where 𝜏𝜓 (𝛼) is the same as in the normal (Gaussian) case and does not depend
on 𝚺0.

The distribution of 𝜏 is the same as in the normal (Gaussian) case. The null distribu-
tion of 𝜏 does not depend on 𝚺0. 𝜏 is an invariant of the sufficient statistic under the
group G.

Testing Equality of Covariance Matrices

In Model II (Section 8.13.2), we want to test

0 ∶ 𝚺1 = 𝚺2 = · · · = 𝚺q

1 ∶ there exist 1 ⩽ j ⩽ k ⩽ q, such that 𝚺j ≠ 𝚺k
(8.244)

where 𝝁i and 𝚺i, i = 1, 2,… , q are unknown. Problem (8.244) remains invariant under
group G, where G is generated by the linear transformations

• g (𝐗) =
(
𝐈n ⊗ 𝐂

)
𝐗, where 𝐂 is p × p nonsingular matrix;

• g (𝐗) = 𝐗 −
⎛
⎜
⎜
⎜
⎝

𝐞n1
⊗ 𝐯1

𝐞n2
⊗ 𝐯2
⋮

𝐞nq
⊗ 𝐯q

⎞
⎟
⎟
⎟
⎠

, 𝐯i is p–dimensional vector, i = 1, 2,… , q.

Theorem 8.13.4 The LRT statistic for the problem (8.244) is

𝜏 =

q∏

i=1

[
det
(
𝐀i
)]ni∕2 q∏

i=1

(
ni
)pni∕2

(det𝐀)n∕2npn∕2

The critical region at level 𝛼 is

𝜏 ⩽ 𝜏𝜓 (𝛼)

where 𝜏𝜓 (𝛼) is the same as in the normal (Gaussian) case. The distribution of 𝜏 is the
same as in the normal (Gaussian) case. 𝜏 is an invariant of the sufficient statistic under
the group G.
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Testing Equality of Means and Covariance Matrices

In Model II (Section 8.13.2), we want to test
0 ∶ 𝝁1 = 𝝁2 = · · · = 𝝁q and 𝚺1 = 𝚺2 = · · · = 𝚺q

1 ∶ there exist 1 ⩽ j ⩽ k ⩽ q, such that 𝝁1 ≠ 𝝁2 or 𝚺j ≠ 𝚺k
(8.245)

where 𝝁i and 𝚺i, i = 1, 2,… , q are unknown. Problem (8.245) remains invariant under
group G, where G is generated by the linear transformations

• g (𝐗) =
(
𝐈n ⊗ 𝐂

)
𝐗, where 𝐂 is p × p nonsingular matrix;

• g (𝐗) = 𝐗 − 𝐞n ⊗ 𝐯, where 𝐯 is p–dimensional vector.

Theorem 8.13.5 The LRT statistic for the problem (8.245) is

𝜏 =

q∏

i=1

[
det
(
𝐀i
)]ni∕2

(det𝐁)n∕2

The critical region at level 𝛼 is

𝜏 ⩽ 𝜏𝜓 (𝛼)

where 𝜏𝜓 (𝛼) is the same as in the normal (Gaussian) case. The distribution of 𝜏 is the
same as in the normal (Gaussian) case. 𝜏 is an invariant of the sufficient statistic under
the group G.
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introduction to the subject and is the first treatment to organize the materials in a unified
manner.



455

Part II

Smart Grid



457

9

Applications and Requirements of Smart Grid

9.1 History

The shift in the development of transmission grids that has made them more intelli-
gent has been summarized as “smart grid”. Other terms such as IntelliGrid, GridWise,
FutureGrid, have also been used.

The IntelliGrid program, initiated by the Electric Power Research Institution
(EPRI), is to create the technical foundation for a smart power grid that links elec-
tricity with communications and computer control to achieve tremendous gains
in the enhancement of reliability, capacity, and customer service [527, 528]. Elec-
trical Power Research Institute (EPRI) first proposed the concept of Intelli-Grid
around the year 2000, detailing trends in power grids and the solutions to the
problems facing the twenty-first century. The Department of Energy (DOE)
launched the Grid-Wise project around 2004, with the goal of distribution
systems.

Europe used the terminology of Smart Grid. In 2005, the European Smart-Grids
Technology Platform [529, 530] was formed, and a report [531] on roadmaps
and ideas was issued in 2006. It identified the important features of Europe’s
electricity networks as being flexible in response to customers’ requests, being
accessible to network users, being reliable in terms of the security and quality of the
power supply, and being economical to provide the best value and energy-efficient
management.

A Federal Smart Grid Task Force was established by the US Department of
Energy (DoE) under Title XIII of the Energy Independence and Security Act of
2007. In its Grid 2030 vision, the objective is to construct a twenty-first century
electric system to provide abundant, affordable, clean, efficient, and reliable electric
power anytime, anywhere [532]. The expected achievements, through smart-grid
development, will not merely enhance the reliability, efficiency, and security of the
nation’s electric grid but also contribute to the strategic goal of reducing carbon
emissions.

“Release 1.0 NIST Framework and Roadmap for Smart Grid Interoperability” was
published in January 2010 [533].

The Smart Grid is expected to be fully functional by 2030. The future electric grid is
illustrated in Figure 9.1 [534].

Smart Grid using Big Data Analytics: A Random Matrix Theory Approach, First Edition.
Robert C. Qiu and Paul Antonik.
© 2017 John Wiley & Sons Ltd. Published 2017 by John Wiley & Sons Ltd.
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Figure 9.1 The future electric grid. RE: renewable energy. Source: Reproduced from [534] with
permission of IEEE.

9.2 Concepts and Vision

The electric grid was cited by the National Academy of Engineering as the supreme
engineering achievement of the twentieth century [536]. Industrialization and eco-
nomic development have historically been associated with man’s ability to harness
natural energy resources to improve his condition (Figure 9.2). Three dominant factors
are affecting the world’s future electric systems: governmental policies at both federal
and state levels, customer efficiency needs, and new intelligent computer software
and hardware technologies. Environmental concerns are also driving the entire energy
system to efficiency, conservation, and renewable sources of electricity. Customers are
becoming more proactive and are being empowered to engage in energy consumption
decisions affecting their day-to-day lives.

The smart grid can be defined as an electric system that uses information, two-way,
cyber-secure communication technologies, and computational intelligence in an inte-
grated fashion across the entire spectrum of the energy system from the generation to the
end points of consumption of the electricity [538]. Smart grid is not a thing but a vision.
Modernization of the electric grid is a significant long-term undertaking that will span
decades. A conceptual model of the envisioned future smart grid is shown in Figure 9.3.
Domains (Figure 9.7) in the smart grid conceptual model are defined in Table 9.1. It is
envisioned that the electric power grid will move from an electromechanically controlled
system to an electronically controlled network in the next two decades [539].

With emerging requirements for renewable portfolio standards, limits on greenhouse
gases, and demand response and energy conservation measures, environmental issues
have moved to the forefront of the utility business [540]. Figure 9.4 shows projected
power generation additions for 2020. Figure 9.5 shows next-generation cost comparison.
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Figure 9.2 Visual history of industrial revolutions: from energy to services and communication and
back again to energy. Source: Reproduced from [535] with permission of IEEE.
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Figure 9.3 Conceptual model of the smart grid. Source: Reproduced from NIST Report.
http://www.nist.gov/smartgrid/upload/NISTSP-1108r3.pdf (accessed September 8, 2016).

During 2009, NIST engaged over 1500 stakeholders representing hundreds of organi-
zations in a series of public workshops over a nine-month period to create a high-level
architectural model for the smart grid (see Figure 9.6 and Figure 9.7). The result of this
work, was published in January 2010 [533].

9.3 Today’s Electric Grid

Today’s conventional power delivery can be broken into mostly isolated components of
generation, transmission, substation, distribution, and customers. The features include
[538]:
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Table 9.1 Domains in the smart grid conceptual model.

Domain Actors in the domain

Customers The end users of electricity. May also generate, store, and manage the use of
energy.
Traditionally, three customer types are discussed, each with its own domain:
residential, commercial/building, and industrial.

Markets The operators and participants in electricity markets.
Service providers The organizations providing services to electrical customers and utilities.
Dispatchers The managers of power dispatch.
Bulk generation The generators of electricity in bulk quantities. May also store energy for later

distribution.
Transmission The carriers of bulk electricity over long distances.
Distribution The distributors of electricity to and from customers. May also store and

generate electricity.

• centralized sources of power generation;
• unidirectional flow of energy from the sources to the customers;
• passive participation by customers: customer knowledge of electrical energy usage is

limited to a monthly bill received, after the fact, at the end of the month;
• real-time monitoring and control is mainly limited to generation and transmission,

and only at some utilities does it extend to the distribution system;
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Figure 9.4 Projected power generation additions: 2020. Source: Reproduced from [541] with
permission of IEEE.
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Figure 9.5 Next-generation cost comparison. Source: Reproduced from [540] with permission of
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Table 9.2 The smart grid compared with the existing grid.

Existing grid Intelligent grid

Electromechanical Digital
One-way communication Two-way communication
Centralized generation Distributed generation
Hierarchical Network
Few sensors Sensors throughout
Blind Self-monitoring
Manual restoration Self-healing
Failures and blackouts Adaptive and islanding
Manual check/test Remote check/test
Limited control Pervasive control
Few customer choices Many customer choices

Source: From [542].

Table 9.3 Evolution of the power system from a static to a dynamic infrastructure.

From To

Central generation and control Central and distributed generation with intelligence
Load flow following Kirchoff’s law Load flow control by power electronics
Power generation according to load demand Controllable generation, variable in feed and demand

in equilibrium
Manual switching and trouble response Automatic response and predictive avoidance
Deterministic response to power flow Monitored overload of bottlenecks
Periodic maintenance Prioritized condition-based predictive maintenance

Source: From [541].

• the system is not flexible, so that it is difficult either to inject electricity from alterna-
tive sources at any point along the grid, or to efficiently manage new services desired
by the users of electricity.

9.4 Future Smart Electrical Energy System

Some of the key requirements of the smart grid include [538] the need for it to allow
for:

• the integration of renewable energy resources to address global climate change;
• active customer participation to enable far better energy conservation;
• secure communications;
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Figure 9.8 Smart grid pyramid. Source: Reproduced from [542] with permission of the IEEE.

• better utilization of existing assets to address long term sustainability;
• optimized energy flow to reduce losses and lower the costs of energy;
• the integration of electric vehicles to reduce dependence on hydrocarbon fuels;
• the management of distributed generation and energy storage to eliminate or defer

system expansion and reduce the overall cost of energy;
• allow for the integration of communication and control across the energy system to

promote interoperability and open systems and to increase safety and operational
flexibility.

The ultimate smart grid is a vision, and it will require cost justification at every step
before implementation, then testing and verification before extensive deployment.

The fully implemented smart grid will have the following characteristics [538]:

• Self-healing: automatic repair or removal of potentially faulty equipment from ser-
vice before it fails, and reconfiguration of the system to reroute supplies of energy to
sustain power to all customers.

• Flexible: the rapid and safe interconnection of distributed generation and energy stor-
age at any point on the system at any time.

• Predictive: use of machine learning, weather-impact projections, and stochastic anal-
ysis predict the next most likely events so that appropriate actions are taken to recon-
figure the system before next worst events can happen.

• Interactive: appropriate information regarding the status of the system is provided
not only to the operators, but also to the customers to allow all key participants in the
energy system to play an active role in optimal management of contingencies.



Corporate

Power marketing

System operations

Utility grade

distributed gen.

Corporate

Engineering and

maintenance

System planning

Customer service

Data Acq. and

control

Backhaul

comms
Last-mile

comms
Meters

and

gateways
Customers

HR

Trading

Scheduling

GIS

DSM
DMS

EMS

SCADA

OMS

Real-time
frontend

AMI
frontend

T1

RF
Mesh

BPL/PLC

CDMA

Fiber

Wifi/Wimax

RF

Microwave

IEDs
automationXfrm

Switch

Cap

MDM

CIS

IVR

System
planning

Data
warehouse

Work Mgmt

Asset Mgmt

Forecasting

Ops data
warehouse Settlements

DG

DR

DG

PV

PV

DG

DR

DR

PV

PV

PHEV

PHEV

Finance

Billing and
Acct’ing

Doc Mgmt

ERPIndustrial

Residential

Com
m

ercial

Substation

automation

Distribution

assets

Wind

Figure 9.9 A view of the utility information system impacted by smart grid strategies. Source:
Reproduced from [540] with permission of the IEEE.



W
eb-based sm

art

grid platform

Apps 1

Substation

automation

Mashups

geo-

spatial

maps

Third-party

systems

ISO/RTO

markets

Web-based integration middleware

Wind

Backhaul

comms

Last-mile

comms

Meters and

gateways

Customers

HR

Trading

GIS

DSM

EMS

SCADA
OMS

Real-time
frontend

AMI
frontend

T1

RF
Mesh

BPL/PLC

CDMA

Fiber

Wifi/Wimax

RF

Microwave

IEDs
automationXfrm

Switch

Cap

MDM

CIS

IVR

System
planning

Data
warehouse

Work Mgmt

Asset Mgmt

DG

DR

DG

PV

PV

DG

DR

DR

PV

PV

PHEV

PHEV

Finance

Doc Mgmt

ERP

Industrial

Residential

Com
m

ercial

Apps N

Apps 2

Distribution

assets

Scheduling

DMS

Forecasting

Ops data
warehouse

Settlements

Billing and Acct’ing

Figure 9.10 Using the cloud for smart-grid applications. Source: Reproduced from [540] with
permission of the IEEE.



P
ow

er
 fa

ct
or

Feeder
breaker

Substation

Capacitor
controller

Regulator
controller

Meter

EMS Solar PV

Demand response

PHEV, storage

=

Electrical network
Information network

Data communications

Integration middleware

GIS DMS CIS MDMSCADA

Scheduling
dispatch

Billing and
acct’ing

Asset
Mgmt

Forecasting

1

0.9

0.8

0.7
1/1 4/10 7/19 10/27

Figure 9.11 Systems required to support the high penetration of distributed resources. Source:
Reproduced from [540] with permission of the IEEE.



Applications and Requirements of Smart Grid 469

• Optimized: knowing the status of every major component in real or near real time and
having control equipment to provide optional routing paths provide the capability for
autonomous optimization of the flow of electricity throughout the system.

• Secure: considering the two-way communication capability of the Smart Grid cover-
ing the end-to-end system, there is an essential need for physical and as cyber security
of all critical assets.

Table 9.2 and Table 9.3 compare the existing grid with the smart grid. Figure 9.8 gives
the smart grid pyramid.

Communications and information technology (IT) are critical to the smart grid. The
smart grid will ultimately involve networking vast numbers of sensors in transmission
and distribution facilities, smart meters, SCADA systems, back-office systems, and
devices in the home, which will interact with the grid. Large amounts of data (hence
big data) will be generated by meters, sensors, and synchrophasors [543].

Figure 9.9 shows a view of the utility information system impacted by smart-grid
strategies.

One of the emerging and, perhaps, game-changing developments in the IT industry
has been the use of the Web (the cloud) as the computing and information management
platform. This will allow the integration of data and capabilities from multiple, diverse
sources to deliver powerful composite applications over the Web [540]. Figure 9.10 pro-
vides a conceptual illustration of this model.

In addition to advanced metering and utilitywide communications infrastructure
enabling demand response, and distributed resource management, the smart grid
impacts many of the operational and enterprise information systems, including
supervisory control and data acquisition (SCADA), feeder and substation automation,
customer-service systems, planning, engineering and field operations, grid operations,
scheduling, and power marketing. The smart grid also impacts corporate enterprise
systems for asset management, billing and accounting, and business management. As
illustrated in Figure 9.11, many information technology (IT) systems will be impacted,
including those for distribution management and automation, operations planning,
scheduling and dispatch, market operations, and billing and settlements.

China prefers to use a “supply-side policy”, with a focus on “public enterprise, scien-
tific and technical development and legal regulatory” policies. The United States on the
other hand, prefers to use an “environmental-side policy”, with a focus on “scientific and
technical development, financial, political and public enterprise” policies [544].
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Technical Challenges for Smart Grid

The potential ramifications of grid failures have never been greater as transport,
communications, finance, and other critical infrastructures depend on secure, reli-
able electricity supplies for energy and control. Several specific pertinent grand
challenges to our power systems, economics, and control community persist,
including [539]:
• the lack of transmission capability;
• grid operation in a competitive market environment (open access created new and

heavy, long-distance power transfer for which the grid was not designed);
• the redefinition of power-system planning and operation in the competitive era;
• the determination of the optimum type, mix, and placement of sensing, communica-

tion, and control hardware;
• the coordination of centralized and decentralized control.

10.1 The Conceptual Foundation of a Self-Healing
Power System

The Electric Power Research Institute (EPRI)/DoD Complex Interactive Networks/
Systems Initiative (CIN/SI) aimed to develop modeling, simulation, analysis, and
synthesis tools for the robust, adaptive, and reconfigurable control of the electric
power grid and infrastructures connected to it. The intelligent flight control system
was designed to provide consistent handling response to the pilot under normal
conditions and during unforeseen damage to the aircraft or failure conditions
(Figure 10.1).

The damage-adaptive intelligent flight-control system laid the conceptual foundation
of a self-healing power system [539], where analogously a squadron of aircraft can be
viewed in the same manner as components of a larger interconnected power-delivery
infrastructure, a system in which system stability and reliability must be maintained
under all conditions, even when one (N − 1 contingency) or more (N − k contingencies)
components are disabled.

The extensions of CIN/SI are discussed in [545].

Smart Grid using Big Data Analytics: A Random Matrix Theory Approach, First Edition.
Robert C. Qiu and Paul Antonik.
© 2017 John Wiley & Sons Ltd. Published 2017 by John Wiley & Sons Ltd.
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Flight critical
parameters

Optimize control
response

Figure 10.1 A damage-adaptive intelligent flight-control system (IFCS). Source: Reproduced from
cite [539] with permission of IEEE.

Table 10.1 A comparison of the protection systems, smart grid, and central control system.

Protection systems Smart grid SCADA/EMS central control systems

Local Fast SCADA system gathers system status and analog
measurements information

Very fast Distributed Topology of the power system to determine islands
and locate split buses

Few connections to other
protection systems

Accurate Alarms

Secure State estimation
Intelligent Contingency analysis

Security dispatch using optimal power flow (OPF)

Source: From [539].

10.2 How to Make an Electric Power Transmission
System Smart

Power transmission systems suffer from the fact that intelligence is only applied locally
by protection systems and by central control through the supervisory control and data
acquisition (SCADA) system. In some cases, the central control system is too slow, and
the protection systems (by design) are limited to protection of specific components
only [539].

To add intelligence to an electric power transmission system, we need to have
independent processors in each component and at each substation and power plant.
Table 10.1 compares the smart grid to the protection systems and SCADA/energy
management system (EMS) central systems.
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Figure 10.2 How energy management systems can help to avoid blackouts. Source: Reproduced
from [541] with permission of the IEEE.

Modern computer and communications technologies now allow us to think beyond
the existing protection systems and the central control systems to a fully distributed
system that places intelligent devices at each component, substation, and power plant.
This distributed system will enable us to build a truly smart grid.

The evolution to smart grids will bring about significant changes to the functionality
of energy management and control systems. With the eventual deployment of phasor
measurement units to monitor grid performance across heavily loaded regional inter-
connections, there will be advances in state estimators that are capable of real-time
simulations for large networks. As a reuslt, these innovations will assist operators in
avoiding major blackouts in the future (Figure 10.2).

10.3 The Electric Power System as a Complex
Adaptive System

The electric power grid, made up of many geographically dispersed components, is itself
a complex adaptive system that can exhibit global change almost instantaneously as
a result of local actions. The Electric Power Research Institute (EPRI) utilized a com-
plex adaptive system to develop modeling, simulation, and analysis tools for adaptive
and reconfigurable control of the electric power grid [539]. The underlying concept for
the self-healing, distributed control of an electric power system involves treating the
individual components as independent intelligent agents, competing and cooperating
to achieve global optimization in the context of the whole system environment.

The design includes modeling, computation, sensing, and control. At the system level,
each agent in a substation or power plant knows its own state and can communicate with
its neighboring agents in other parts of the power system.
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Figure 10.3 A sample system with processors connected by communication links. Source:
Reproduced from [539] with permission from the IEEE.

10.4 Making the Power System a Self-Healing Network Using
Distributed Computer Agents

In Figure 10.3 we show three power plants connected to load substations through a set
of looped transmission lines. Each plant and each substation will have its own processor
(designated by a small red box in the figure). Each plant and substation processor is now
interconnected in the same manner as the transmission system itself.

How to effectively sense and control a widely dispersed, globally interconnected sys-
tem is a serious technological problem [539].

10.5 Distribution Grid

In recent decades, more and more stress has been placed on the electricity supply and
infrastructure. Electricity usage increased significantly and fluctuated more. Demand
peaks have to be generated and transmitted, and they define the minimal requirements
in the chain. The goal of our control methodology is to exploit the optimization potential
of domestic technologies [546].

A crucial application area for information and communication technology in distri-
bution grids is the fostering of demand-side management (DSM) and demand response
programs. It is of vital interest to distribution grid operators to know about the actual
grid load and to reshape it if it imperils grid stability. (Figure 10.4). Various price- and
incentive-based demand-response programmes have been developed.

Figure 10.5 shows a model of domestic energy streams. Every house consists of
(several) microgenerators, heat and electricity buffers, appliances, and a local con-
troller. Multiple houses are combined into a (micro)grid, exchanging electricity and
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Figure 10.4 Role of demand response in electric system planning and operations. Source:
Reproduced from [547].
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Figure 10.6 Three step control methodology. Source: Reproduced from [546] with permission from
IEEE.

information between the houses. Electricity can be imported from and exported into
the grid. Heat is produced, stored and used only within the house.

Figure 10.6 shows three-step control methodology. The combination of prediction,
planning and real-time control exploits potential. The hierarchical structure with intel-
ligence on the different levels ensures scalability, reduces the amount of communication,
and decreases the computation time required for planning.

Since electricity is nonstorable economically, wholesale prices (i.e., the prices set by
competing generators to regional electricity retailers) vary from day to day and usually
fluctuate by an order of magnitude from low-demand night-time hours to high-demand
afternoons. However, in general, almost all retail consumers are currently charged some
average price that does not reflect the actual wholesale price at the time of consumption
[548].

10.6 Cyber Security

As a critical infrastructure element, smart grid requires the highest levels of security.
A comprehensive architecture with security built in from the beginning is necessary.
The smart-grid security solution requires a holistic approach including PKI technology
elements based on industry standards, and trusted computing elements.
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The diagram in Figure 10.7 shows an example of the possible interconnection of a
subset of the various networks, with a WAN wireless network as the backbone of the
entire system [549]. Note that the wireless interfaces between similar devices are shown
as a dashed, double-hashed line.

10.7 Smart Metering Network

A smart meter is an advanced meter (usually an electrical meter, but it could also
integrate or work together with gas, water, and heat meters) that measures energy
consumption in much more detail than a conventional meter. Future smart meters will
communicate information back to the local utility for monitoring and billing purposes.
A smart meter may also potentially communicate with a number of appliances and
devices within future smart homes.

Smart meters are expected to provide accurate readings automatically at requested
time intervals to the utility company, electricity distribution network or to the wider
smart grid. The expected frequency of such readings could be as high as every few (1–5)
minutes. Figure 10.8 shows household electricity-demand profile.

Figure 10.9 shows an example for distribution of network smart-metering data.
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Figure 10.8 Household electricity demand profile. Source: Reproduced from [550] with permission of
IEEE.

10.8 Communication Infrastructure for Smart Grid

This section addresses communications topics for smart grids. To control the power
electrical grid, we need sensing and communications to tie together the whole grid.
High-performance computing and distributed computing are two enablers.

Information plays a crucial role in smart grids, and the communication infrastruc-
ture is the decisive component that connects all distributed network elements, enables
exchange of information, and therefore makes the grid truly smart [540].

From a communication technology point of view, information exchange in the upper
grid levels for SCADA applications is usually covered by existing communication net-
works belonging to utilities or grid operators (Figure 10.10).

In an increasingly deregulated and distributed energy market, communication
between the points of energy generation, distribution, and consumption becomes an
essential constituent of efficient grid control [551]. Smart grids rely to a large extent on
communication, and the respective infrastructure comprises heterogeneous networks.
In order to interconnect them, pure tunneling and gateway approaches are too simple
for real-world scenarios. Reference [551] showed that, in reality, a combination of the
two plus further tricks are necessary.

• High reliability and availability. Nodes should be reachable under all circumstances.
It may be challenging for wireless or powerline infrastructures because communica-
tion channels can change during operation.
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• Automatic management of redundancies. As some applications are time critical,
real-time properties of the network have to be maintained even during topology
changes.

• High coverage and distances. The communication network are distributed in a wide
area.

• Large number of communication nodes. There are tens of thousands of nodes, partic-
ularly in areas of large apartment-block concentration. Even though the commands
and data packets are usually short, total data volume to be transferred in the network
is substantial, and communication overheads can become an issue.
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Figure 10.10 Communication Infrastructure for Smart Grid. Source: Reproduced from [535] with
permission of the IEEE.

• Appropriate communication delay and system responsiveness. The quality-of-service
(QoS) management needs to take care of different data classes such as metering, con-
trol, or alarm data.

• Communication security. Integrity (no malicious modification) and authenticity (ori-
gin and access rights are guaranteed) are the most important security goals for energy
distribution networks,

• Ease of deployment and maintenance.

The existing grid is lack of communication capabilities, while a smart power grid
infrastructure is full of enhanced sensing and advanced communication and comput-
ing abilities as illustrated in Figure 10.11 and Table 10.2. Different components of the
system are linked together with communication paths and sensor nodes to provide inter-
operability between them, for example distribution, transmission, and other substa-
tions, such as residential, commercial, and industrial sites. In the smart grid, reliable
and real-time information becomes the key factors for reliable delivery of power from
the generating units to the end users.

10.9 Wireless Sensor Networks

The collaborative operation of wireless sensor networks (WSNs) brings significant
advantages over traditional communication technologies, including rapid deployment,
low cost, flexibility, and aggregated intelligence via parallel processing. The recent
advances of WSNs have made it feasible to realize low-cost embedded electric utility
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monitoring and diagnostic systems. The existing and potential applications of WSNs
on smart grid span a wide range, including wireless automatic meter reading (WAMR),
remote system monitoring, and equipment fault diagnostics.

Electric power systems contain three major subsystems, power generation, power
delivery, and power utilization. Recently, WSNs have been widely recognized as a
promising technology that can enhance all these three subsystems, making WSNs a
vital component of the next-generation electric power system, the smart grid.

The major technical challenges of WSNs in smart-grid applications can be outlined
as follows: (i) harsh environmental conditions; (ii) reliability and latency requirements;
(iii) packet errors and variable link capacity; (iv) resource constraints.

Bibliographical Remarks

Communications for smart grid is a topic for a whole monograph. See [552] for details.
In this book, our approach is to unify many different systems under the umbrella of big
data systems.
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Big Data for Smart Grid

Utilities are on the cusp of a tremendous wave of innovation that will change the way
that they operate for ever [553]. We use analytics to prepare for and manage the advent
of both the smart grid and the big data age. How do yesterday’s AMI and DA deploy-
ments affect today’s and tomorrow’s IT enterprise architectures, command-and-control
systems, and next-generation customer services? How will the meteoric growth of elec-
tric meter, distributed PV, grid sensor, and electric vehicle data necessitate, influence, or
change the software/application layer of smart grid, and the types of systems, platforms,
and databases that are relied upon?

11.1 Power in Numbers: Big Data and Grid Infrastructure

Just as intelligent analytics has helped evolve industries, and associated products and
services, from IT to healthcare to air travel to social media and online commerce, the
same will hold true for the electric power industry, as data is becoming the currency for
market transformation.

As the fundamental smart-grid infrastructure continues to be built out via new com-
munication networks and smart hardware, such as meters and control and protection
equipment, the stage is being set for an exponential growth in the amount of data that
utilities will confront. Challenges, including modeling and simulation, asset manage-
ment, energy theft detection, DMS/OMS, fault detection and correction, weather data
integration, crisis management and mobile workforce management, are revolutionizing
grid operations [553].

The majority of smart grid use cases are characterized by the exponential growth of
data from the many intelligent communicating devices to be rolled out and the need for
fast information retrieval from mass data. The smart grid will be the largest increase
in data any energy company has ever seen. The preliminary estimate at one utility
is that the smart grid will generate 22 gigabytes of data each day from its 2 million
customers [554].

Just collecting the data is not sufficient. Data management has to start at the initial
reception of the data, reviewing it for events that should trigger alarms into outage
management systems and other real-time systems such as portfolio management
of a virtual power-plant operator. The timeframe and volume of available data for
information retrieval can reach from real-time data streams to data archived over
years [554].

Smart Grid using Big Data Analytics: A Random Matrix Theory Approach, First Edition.
Robert C. Qiu and Paul Antonik.
© 2017 John Wiley & Sons Ltd. Published 2017 by John Wiley & Sons Ltd.
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11.2 Energy’s Internet: The Convergence of Big Data and
the Cloud

To extract the greatest value from big data, utilities will need the right tools and
the right architecture for both their employees and customers so that they can offer
self-service (instant Web-based access), speed (in memory analytics) and wide data
access and collaboration. Increasingly utilities are turning their attention to the cloud
as a way to manage and present new and improved applications, as well as segmenting
and prioritizing data. Clouds have already proven very effective in avoiding accidental
architecture complexities for utilities looking to pilot new systems without disturbing
existing legacy systems. Questions include how, why, when, and what utilities will
upload to the cloud, to what degree utilities will rely on both private and public clouds,
and how they will continue to rely on and move to cloud-based software-as-a-service
products and applications.

11.3 Edge Analytics: Consumers, Electric Vehicles, and
Distributed Generation

Consumer engagement is critical for the growth and success of smarter grids. In order
to excel with consumer engagement, utilities need to understand consumer behavior
through sophisticated analytics [553]. Without a smart grid in place, distributed gener-
ation (i.e. renewables), electric vehicles and other consumer advancements would not be
able to gain meaningful traction, and to scale to mass penetration and adoption. As solar
panels, EVs, and other new grid “assets” begin to “plug in” and communicate, not only
will we see the birth of machine-to-machine (M2M) communication; we will also see
the immediate need for advanced analytics to manage energy dispatch and usage, volt-
age irregularities, and other grid operation challenges initiating from the edge of the
grid. Challenges lie in the domains of software analytics, grid operations, and renew-
able energy. The goal is to understand how analytics will optimize and protect the grid
while meanwhile empowering consumers to move towards clean energy and Web-based
energy management.

11.4 Crosscutting Themes: Big Data

Data collected, analyzed, visualized and warehoused from the smart grid will contribute
to many new ideas and inventions that can improve lives [555]. What is needed is a
nearly ubiquitous IP transport network operating at bandwidths robust enough to han-
dle traditional utility power delivery applications along with vast amounts of new data
from the smart grid. Rather than relying on public communication carriers (AT&T,
Sprint, Verizon, etc.), utilities justify the costs of building and operating their own pri-
vate WANs because of the highly critical nature of these applications for maintaining a
reliable and secure power grid.

The enhancement of the monitoring, control, and protection of power systems
through smart-grid solutions primarily means availability of more data of better quality
than before and availability of new applications that will utilize the data to produce
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better decision making [556]. To allow such benefits, the process of data collection,
integration, and usage needs to be improved. One example utilizes new data to create
improved decision making after occurrence of a fault.

Opportunities and challenges of wireless communication technologies for smart
grid applications is treated in [557]. Some potential applications are shown in
Figure 11.1.

The Smart Grid will generate billions of data points from thousands of system devices
and hundreds of thousands of customers. Data must be converted to useful information
through a knowledge-management life cycle in which the data from meters and appli-
ances or substations and distribution systems are analyzed and integrated in a manner
that leads to action [555].

The first phase of the knowledge management effort and a key component in the sys-
tem of information ecology is data conservation in a data warehouse. Data storage needs
will explode.
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Figure 11.1 Smart grid framework. Source: Reproduced from [557] with permission from IEEE.
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11.5 Cloud Computing for Smart Grid

In a cloud-computing environment, flexible data centers offer scalable computing, stor-
age, and network resources to any Internet-enabled device on demand. The drawbacks of
traditional information and communication technology in tackling the new challenges
are the main obstacle preventing the energy market actors from maximizing the benefits
of smart grid as a single entity [554].

Smart-grid operation needs panoramic state data, and, during the operation, main-
tenance and management of smart grid, massive heterogeneous and multistate data,
namely the big data, are generated [558].

11.6 Data Storage, Data Access and Data Analysis

How to store the big data efficiently, reliably and cheaply, and how to access and analyze
those data sets rapidly are critical. The source of the big data generated in various pro-
cess of smart grid, such as power generation, transmission, transformation and power
utilization, and the features of the big data are analyzed first.

11.7 The State-of-the-Art Processing Techniques of Big Data

Secondly, existing big-data processing techniques adopted in the fields of business,
Internet, and industrial monitoring are summarized, and the advantages and disadvan-
tages of these techniques in coping with the construction of smart grid and big data
processing are analyzed in detail.

Finally, aspects of big-data storage, real-time data processing, fusion of heterogeneous
multidata sources, visualization of big data, the opportunities and challenges brought by
smart-grid big data are expounded [558].

11.8 Big Data Meets the Smart Electrical Grid

Transform the Utility Network
One of the key big data challenges comes with managing data generated by smart

meters and smart grids [559]. Issues such as understanding which components of the
network are being stressed, determining where future investments can be best made,
and identifying which conditions are indicative of future outages can now be addressed.

Pacific Gas & Electric has installed 9 million smart meters to collect data of more than
3 TB. The idea is to lead to innovative uses of information and the ability to pinpoint
real-time outages to help the utility more quickly restore power to customers [560]. Big
data is a big deal here. The challenges include collecting and effectively analyzing the
massive amount of data from smart grid hardware. Another challenge is to correlate the
related data, in order to have unprecedented insight into how the grid is operating.
Transform Customer Operations

One way to think about smart grid is the convergence of the Internet and a lot of intel-
ligent devices and sensors spread throughout the power system [561]. For example, one
of the underlying enabling technologies is advanced metering infrastructure, which puts
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smart meters at the end use point. One uses bidirectional communication so the utility
can receive information from the meter and communicate to businesses and individual
appliances in a home. A single water heater will not make much difference but across
3 million households being able to cut off power to hot water heaters, clothing dryers,
and heating and air conditioning adds up.

The objective is to show a high correlation between the transaction incentive signal
and the variability of wind, how the transaction can interact with heaters and care and
analyze the prospects if we scale this up, if instead of 60 000 points of end users there
were 3 million.

In addition to basic operational data on transaction incentives and transaction feed-
back flowing every 5 minutes, we have to collect data from the utilities on the operation
of the technology they have bought and installed. Some of the data is related to trans-
actions and some is related to the smart grid operations. All that data flows back to the
data center of the operator.
Improve Generation Performance

Generation leads to big data, too [24]. Firstly large data sets are collected and stored in
digitized power plant. These data are used for operation analysis, control and optimiza-
tion, diagnosis analysis, knowledge discovery, and data mining. Secondly data-driven
fault diagnosis techniques are used for dynamics systems; using big data for opera-
tions, we can obtain new results that are not available when using traditional techniques
that are based on models and qualitative empirical knowledge of monitoring. Third, to
understand accurately utilities and operation of the distributed generation, we need to
monitor and control a large number of distributed sources in real time [562].

By collecting and analyzing key performance and sensor data, it is possible to under-
stand patterns that lead to equipment failure. Big-data analytics supports the change to
renewables and microgeneration while providing the necessary mechanism to optimize
generation and introduce the necessary demand response capabilities.

Consider one example. In 2006, the DOE and the Federal Energy Regulatory Commis-
sion (FERC) recommended that utilities and grid operators install synchrophasor-based
transmission-monitoring systems to collect the real-time data needed to predict and
manage blackout-related problems, in close to real time, to catch the initial errors and
fix them before they lead to disaster. There are up to 6.2 billion data points per day at
a size of up to 60 gigabytes with 100 phasor measurement units (PMUs). Increase that
to 1000 phasor measurement units, and we obtain up to 41.5 billion data points, or 402
gigabytes of data per day. A lot of that data is flowing into back-end IT systems at the
microsecond speed.

11.9 4Vs of Big Data: Volume, Variety, Value and Velocity

The “4Vs” for smart grid are:

1) Volume. The volume jumps from TB level to Petabytes (PB) level. In conventional
SCADA system, there are 10 000 sampled points. If we collect data every 3–4 s, annu-
ally we have a data size of 1.03 TB (1.03 TB = 12 bytes/frame × 0.3 frame/second ×
10 000 sampled points × 86,400 seconds/day × 365 days); In a WAMS system, there
are 10 000 sampled points, the rate for data collection, however, is increased to 100
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times per second (rather than once per 3–4 s); thus, the resultant new data size grows
to 495 TB annually.

2) Variety. The types of data include: real-time data, historical data, archived data, mul-
timedia data, and time-series data. Some data are structured, semistructured, and
unstructured. The requirements for access frequency and data processing speeds are
different. The performance requirement is also different.

3) Value. In video data, data are collected during continuous monitoring. The useful
data may last only for 1–2 s. This is true of the monitoring of transmission utility; the
majority of data are normal and a very few of those data are abnormal—the abnormal
data are the most important evidence, however.

4) Velocity. Within a fraction of second, a massive amount of data be analyzed to support
decision making. The performance requirement for online processing is far above the
requirement for offline processing. The online analysis and mining of data streams is
fundamentally different from the traditional data mining.

11.10 Cloud Computing for Big Data

Cloud computing is part of data storage and processing for big data. Traditional data
management is not suitable for big data, which has massive volume and is distributed
in nature. The core of cloud computing is data storage for massive data and parallel
processing. Google uses distributed file system (DFS) and MapReduce technology (first
proposed in 2004).

Designed using low-cost hardware, DFS is highly tolerant of errors and provides high
access to data. So the DFS is suitable for computer programs using large data sets.
MapReduce is a programming model and an associated implementation for process-
ing and generating large datasets that are amenable to a broad variety of real-world
tasks [25]. Users specify the computation in terms of a map and a reduce function,
and the underlying runtime system automatically parallelizes the computation across
large-scale clusters of machines, handles machine failures, and schedules intermachine
communication to make efficient use of the network and disks. Their work provides
a simple and powerful interface that enables automatic parallelization and distribu-
tion of large-scale computations, combined with an implementation of this interface
that achieves high performance on large clusters of commodity PCs. The programming
model can also be used to parallelize computations across multiple cores of the same
machine.

Hadoop [563] includes the open-source implementation of MapReduce.

11.11 Big Data for Smart Grid

Attack of big data is a new challenge [564]. The use of big data for smart grid is in its
infancy [564]. The progress may be applications driven, rather than technology driven.
Visualization is critical to big data in smart grid [565].

A wide-area measurement system (WAMS) is a real-time dynamic power grid
monitoring system. Massive WAMS log data processing is based on the platform of
Hadoop [566].
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11.12 Information Platforms for Smart Grid

The information platform for smart grid based on cloud computing is discussed
in [567]

Bibliographical Remarks

For big data in smart grid, see [24].
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Grid Monitoring and State Estimation

This chapter introduces grid monitoring and state estimation using phasor measure-
ment units (PMUs).

A cornerstone of the smart grid is the advanced monitorability on its assets and
operations. Increasingly pervasive installation of PMUs allows so-called synchrophasor
measurements to be taken roughly 100 times faster than the legacy supervisory
control and data acquisition (SCADA) measurements, time-stamped using the global
positioning system (GPS) signals to capture the grid dynamics. On the other hand,
the availability of low-latency two-way communication networks will pave the way to
high-precision, real-time grid state estimation and detection, remedial actions upon
network instability, and accurate risk analysis and postevent assessment for failure
prevention.

12.1 Phase Measurement Unit

Synchronized PMUs were first introduced in the early 1980s, and since then have
become a mature technology with many applications that are currently under devel-
opment around the world. Phasor measurement units are power system devices that
provide synchronized measurements of real-time phasors of voltages and currents.
Synchronization is achieved by same-time sampling of voltage and current waveforms
using timing signals from the GPS. The occurrence of major blackouts in many major
power systems around the world has given a new impetus for large-scale implemen-
tation of wide-area measurement systems (WAMS) using PMUs and phasor data
concentrators (PDCs) in a hierarchical structure. Synchronized phasor measurements
elevate the standards of power system monitoring, control, and protection to a new
level [568].

Data provided by the PMUs are very accurate and enable system analysts to deter-
mine the exact sequence of events that have led to the blackouts [569]. One of the most
important issues that need to be addressed in the emerging technology of PMUs is site
selection [570]. Synchronized phasor measurements have enabled effective and accu-
rate monitoring of the condition of the network in real time with latencies of the order
of milliseconds [568].

Smart Grid using Big Data Analytics: A Random Matrix Theory Approach, First Edition.
Robert C. Qiu and Paul Antonik.
© 2017 John Wiley & Sons Ltd. Published 2017 by John Wiley & Sons Ltd.
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12.1.1 Classical Definition of a Phasor

A pure sinusoidal waveform can be represented by a unique complex number known as
a phasor. Consider a sinusoidal signal

x(t) = Xm cos (𝜔t + 𝜙) (12.1)

The phasor representation of this sinusoid is given by

X ≡ Xm
√

2
ej𝜙 =

Xm
√

2
(cos𝜙 + sin𝜙) (12.2)

The signal frequency 𝜔 is not explicitly defined in the phasor representation.

12.1.2 Phasor Measurement Concepts

The most common technique for determining the phasor representation of an input
signal is to use data samples taken from the waveform, and apply the discrete Fourier
transform (DFT) to compute the phasor.

If xk {k = 0, 1,… ,N − 1} are the N samples of the input signal taken over period, then
the phasor representation is given by

X =
√

2
N

N−1∑

k=0
xke−jk 2𝜋

N (12.3)

12.1.3 Synchrophasor Definition and Measurements

In order to obtain simultaneous measurement of phasors across a wide area of the power
system, we must synchronize these time tags. As a result, all phasor measurements
belonging to the same time tag are truly simultaneous. The PMU must then provide
the phasor given by (12.2) using the sampled data of the input signal.

The synchronization is achieved by using a sampling clock which is phase-locked to
the one-pulse-per-second signal provided by a GPS receiver. The receiver may be built in
the PMU, or may be installed in the substation and the synchronizing pulse distributed
to the PMU and to any other device which requires it.

Figure 12.1 shows compensating for signal delay introduced by the antialiasing
filter.

Input
signal

Synchronized
sampling

Anti-
aliasing

filter
PMU

Delayed
signal

Compensated
phasor

Figure 12.1 Compensating for signal
delay introduced by the antialiasing
filter. Source: Reproduced from [569]
with permission of the IEEE.
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12.2 Optimal PMU Placement

When a PMU is placed at a bus, it can measure the voltage phasor at that bus, as well as
at the buses at the other end of all the incident lines, using the measured current phasor
and the known line parameters [571].

We formulate the problem of determining the minimum number and the optimal loca-
tions of the PMUs in terms of an integer quadratic programming approach. The topology
of a power system can be expressed by its connectivity matrix 𝐇, whose elements are

hij =
⎧
⎪
⎨
⎪
⎩

1, if i = j
1, if bus i and bus j are connected
0, otherwise.

(12.4)

The binary vector 𝐱 ∈ ℝn of PMU placements is defined as

xi =
{

1, if a PMU is placed at bus i
0, otherwise (12.5)

The entries of the product 𝐇𝐱 represent the number of times a bus is observed by the
PMU placement set defined by 𝐱. The objective function V (x) for optimization is for-
mulated as in an integer quadratic programming problem

J (𝐱) = 𝛾 (𝐍 −𝐇𝐱)T 𝐑 (𝐍 −𝐇𝐱) + 𝐱T𝐐𝐱 (12.6)

where 𝛾 ∈ ℝ is a weight, and 𝐍 ∈ ℝn is a vector representing the upper limits of the
number of times each bus can be observed. The diagonal matrix 𝐑 ∈ ℝn×n has entries
rii representing the “significance” of each bus i, and the diagonal matrix 𝐐 ∈ ℝn×n has
entries qii representing the cost of placing a PMU at bus i. In the generic case where all
buses are equally significant and the PMU installation costs at each bus are the same,
𝐐 and 𝐑 are equal to the identity matrix 𝐈n×n.

12.3 State Estimation

State estimators (SE) constitute the cornerstone of modern energy management
systems, where diverse applications rely on accurate information about the system
state [538].

12.4 Basics of State Estimation

The crystallizing vision of the smart grid aspires to build a cyber-physical network that
can address these challenges by capitalizing on state-of-the-art information technolo-
gies in sensing, control, communication, optimization, and machine learning [573].
Advanced metering systems are needed; also data communication networks throughout
the grid are needed. As a result, algorithms that optimally exploit the pervasive sensing
and control capabilities of the envisioned advanced metering infrastructure (AMI) are
needed to make the necessary breakthroughs in the key problems in power grid moni-
toring and energy management.
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Since the pioneering work of F. C. Schweppe in 1970 [574], state estimation
has become a key function in supervisory control and planning of electric power
grids [575]. It serves to monitor the state of the grid and enables energy-management
systems (EMS) to perform various important control and planning tasks such as
establishing near real-time network models for the grid, optimizing power flows, and
bad data detection/analysis (see, for example [576] and [577] and the references
therein). Another example of the utility of state estimation is the state estimation-based
reliability/security assessment deployed to analyze contingencies and determine
necessary corrective actions against possible failures in the power systems.

There are at least three major aspects in the future power grid that will directly affect
state estimation research. First, more advanced measurement technologies like phase
measurement units (PMUs) have offered hope for near real-time monitoring of the
power grid; see [578]. Typically, a PMU takes 30 measurements per second, thereby
giving a much more timely view of the power system dynamics than conventional
measurements. More importantly, all PMUs’ measurements are synchronized; they are
time stamped by the GPS’s universal clock. The PMUs’ higher measurement frequency,
however, put pressure on the communication and data-processing infrastructure of the
grid.

Second, new regulations and market pricing competition may require utility com-
panies to share information and monitor the grid over large geographical areas.
This calls for distributed control and thus distributed state estimation to facilitate
interconnect-wide coordinated monitoring [579].

Finally, to facilitate smart grid features such as demand response and two-way power
flow, utility companies will need to have more timely and accurate models for their dis-
tribution systems.

12.5 Evolution of State Estimation

Figure 12.2 gives the electricity ecosystem of the future grid featuring various players
and levels of interaction [575]. We envision that state estimation in the future grid
will likely be performed at different levels; specifically, the transmission system oper-
ator (TSO) level, the local level or substransmission level, and the distribution level;
see, for example the multilevel state estimation paradigm [580]. The TSO is an entity
that operates the transmission grid to supply electricity from the generating companies
(GENCOs) [581] to the utility companies and then to the consumer. Substations are a
vital link between the transmission and distribution networks and are responsible for
converting voltage and current levels. The trend of deregulation of vertically integrated
utilities, particularly in the United States, would mean that market forces would play
an increasing role in the future grid. The state of a power system can be described by
the voltage magnitudes and phase angles at every bus. This information, along with the
knowledge of the topology and impedance parameters of the grid, can be used to char-
acterize the entire system. The EMS/supervisory control and data acquisition (SCADA)
system is a set of computational tools used to monitor, control, and optimize the perfor-
mance of a power system. State estimation is a critical component here; the relationship
between state estimation and the SCADA system is shown in Figure 12.3. The data acqui-
sition system obtains measurements from devices like remote terminal units (RTUs)
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Figure 12.2 Electricity ecosystem of the future grid featuring various of players and levels of
interactions. Reproduced from [575] with permission of the IEEE.

and, more recently, phasor data concentrators (PDCs). The state estimator calculates the
system state and provides the necessary information to the supervisory control system,
which then takes action by sending control signals to the switchgear (circuit breakers).

Depending on the timing and evolution of the estimates, state estimation schemes
may be classified into two basic distinct paradigms: static state estimation and
forecasting-aided state estimation.

12.6 Static State Estimation

Since the mid-1970s, much of the research on state estimation has been focused on
static state estimation, primarily due to the fact that the traditional monitoring technolo-
gies, such as those implemented in the SCADA system, can only take nonsynchronized
measurements once every 2 to 4 s. To reduce the computational complexity required
in implementing state estimation, the estimates are usually updated only once every
few minutes. As a result, the usefulness of static state estimation as a means to provide
real-time monitoring of the power grid is quite limited in practice.

State estimation [582] processes the whole set of measurements globally and takes
advantage of its redundancy to detect any data errors. In this section we first review
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Figure 12.3 Relationship between different elements that collectively constitute the EMS/SCADA.
Source: Reproduced from [575] with permission of the IEEE.

the classical formulation of the state estimation using the normal equations, and the
linearized decoupled version of it. The nonlinear equations relating the measurements
z and the state vector x are

𝐳 = 𝐡(𝐱) + 𝐞 (12.7)

where 𝐞 is the measurement error vector, which is assumed to be jointly Gaussian.
In an N-bus system, the (2N − 1) × 1 state vector has the form 𝐱 =

[
𝜃2, 𝜃3,… , 𝜃N ,

|
|V1

|
| ,… , ||VN

|
|
]T where 𝜃i denotes the phase angles and |

|Vi
|
| denotes the magnitudes

of the voltages at the i-th bus. The phase angle 𝜃1 at the reference bus is assumed
to be known and is normally set to zero radians. To estimate the state 𝐱, a set of
measurements 𝐳 ∈ ℝL×1, L > 2N − 1, is collected. These measurements consist of
nonsynchronized active and reactive power flows in network elements, bus injections,
and voltage magnitudes at the buses. The measurements are typically obtained within
SCADA systems, and related to the state vector by an overdetermined system of
nonlinear equations, (12.8).

The state estimation problem is formulated mathematically as a weighted least-square
problem and solved by an iterative scheme [582]. At each iteration the procedure
is equivalent to solving a linearized weighted least-square (WLS) problem. We may
further decouple the real and reactive part of the measurements and the state vec-
tor [583, 584]. The resulting linearized decoupled state estimator solves two linear
weighted least-square problems of the following form:

𝐳 = 𝐇𝐱 + 𝐞 (12.8)
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where, for the real power case, 𝐳 is the set of real power measurements, 𝐱 is the set of real
part of the state vector (bus angles), 𝐇 is the Jacobian matrix of the real measurements
with respect to phase angles. Similarly for the reactive case. The solution of the WLS
problem (12.8) is

(𝐇T𝐖𝐇)�̂� = 𝐇T𝐖𝐳 (12.9)

or

�̂� = (𝐇T𝐖𝐇)−1𝐇T𝐖𝐳 (12.10)

where �̂� is the estimated state, 𝐖 is the diagonal matrix of weighting factors (i.e. inverse
of the covariance matrix of 𝐞), and (𝐇T𝐖𝐇) is called the gain matrix.

The residual vector r is defined to be the difference between the measured quality and
the calculated value from the estimated state:

𝐫 = 𝐳 −𝐇�̂� (12.11)

After some manipulation, we easily obtain

𝐫 = (𝐈 −𝐌)𝐞 (12.12)
𝐌 = 𝐇(𝐇T𝐖𝐇)−1𝐇T𝐖 (12.13)

and the expected value and the covariance of the residual vector 𝐫 are:

𝔼 {𝐫} = 0
𝔼
{
𝐫𝐫T} = (𝐈 −𝐌)𝐖−1 (12.14)

Topology error can be detected. We assume that errors in the status data of breakers
and switches will result in erroneous assertion of network topology in terms of either
(i) branch outage, (ii) bus split, or (iii) shunt capacitor/reactor switching.

Example 12.6.1 (topology error) The branch outage includes transmission line or
transformer outage. In most practical cases, errors in recognizing line or transformer
outages may involve only a single outage. Without topology error, we have 𝔼 (𝐫) = 0. If
a topology error is present, 𝔼 (𝐫) is equal to something else.

The effect of topology error appears in the matrix 𝐇. Let 𝐇 be the true measurement
Jacobian matrix, and �̃� be the one from the topology processor with errors, and Δ𝐇 be
the resulting error in the measurement Jacobian matrix:

𝐇 = �̃� + Δ𝐇 (12.15)

The true equation for the state estimation should be

𝐳 = 𝐇𝐱 + 𝐞 (12.16)

However, due to topology error, the following equation instead is obtained for estimating
the state:

𝐳 = 𝐇𝐱 + 𝐞 (12.17)

The estimated error �̃� is

�̂� =
(
�̃�T𝐖�̃�

)−1 �̃�T𝐖𝐳 (12.18)



500 Smart Grid using Big Data Analytics

The residual vector can be obtained by substituting (12.21) and (12.18) into (12.19)

𝐫 = 𝐳 − �̃��̂� (12.19)

and we have

𝐫 = (𝐈 −𝐌) (Δ𝐇𝐱 + 𝐞) (12.20)

Thus, we have

𝔼 (𝐫) = (𝐈 −𝐌) Δ𝐇𝐱
Cov (𝐫) = (𝐈 −𝐌)𝐖−1 (12.21)

where Cov (𝐫) is the covariance matrix of the vector 𝐫. ◽

State estimation is based on the hypothesis that there is no gross error (𝐞 is Gaussian)
in the measurements. This hypothesis may be tested using the normalized residuals.
This, so called 𝐫N test, is based on the fact that there is no gross error: 𝔼(𝐫) = 0. So, the
hypothesis is accepted if

max
i

|
|r

N
i
|
| < 𝛾

where 𝛾 is the detection threshold. The 𝐫N test has been shown to be effective in detect-
ing and identifying bad data.

As 𝐞 is standardized Gaussian, 𝐫 is also Gaussian with covariance Cov (𝐫); hence, ‖𝐫‖2
2

is a 𝜒2 distribution with degrees of freedom (L − 2N + 1). The 𝜒2 test then declares a
least square-based power system state estimation possibly affected by outliers whenever
‖𝐫‖2

2 exceeds a predefined threshold.
Recently, a semidefinite relaxation (SDR) approach has been recognized to develop

polynomial-time PSSE algorithms with the potential to find a globally optimal solution
[585, 586].

12.7 Forecasting-Aided State Estimation

Conventional statistic state estimation relies on a single set of measurements all taken
at one snapshot in time. So, it disregards the evolution of the state over consecutive
measurement instants. The basic idea of forecasting-aided state estimation is to pro-
vide a recursive update of the state estimate that can also track the changes occurring
during normal system operation. One of the advantages of forecasting-aided state esti-
mation is that it includes by design a forecasting feature that can avoid the problem
of missing measurements, as the predicted states may be used to replace those missing
measurements. Note that forecasting-aided state estimation is somewhat different from
the true dynamic state estimation because the transients in power systems are usually
in a much faster time scale than those considered in forecasting-aided state estimation.
An extensive survey is given in [587].

A typical forecasting-aided state estimation is formulated with the following dynamic
model [588]:

𝐱 (k + 1) = 𝐅(k)𝐱(k) + 𝐠(k) + 𝐰(k) (12.22)
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where for time constant k, 𝐅(k) ∈ ℝ(2N−1)×(2N−1) is the state transition matrix, vector
𝐠(k) is associated with the trend behavior of the state-trajectory, and 𝐰(k) is assumed to
be zero-mean Gaussian noise with covariance matrix 𝐂w defined in (12.21); hence ‖𝐫‖2

2
follows a 𝜒2 distribution with (m − n) degrees of freedom.

Using (12.22) and the measurements arriving at instant k + 1

𝐳 (k + 1) = 𝐡 (𝐱(k)) + 𝐧 (k + 1)

where 𝐧 (k + 1) is a zero-mean Gaussian measurement noise vector with covariance
matrix𝐂n ∈ ℝL× L, the majority of the forecasting-aided state estimation algorithms that
appear in the literature are based on the extended Kalman filter (EFL), whose recursions
are given by

�̂� (k + 1) = �̃� (k + 1) +𝐊 (k + 1)
[
𝐳 (k + 1) − 𝐡 (�̃�(k + 1))

]
(12.23)

where
�̃� (k + 1) = 𝐅(k)�̂�(k) + 𝐠(k)
𝐊 (k + 1) = 𝚺 (k + 1)𝐇T (k + 1)𝐂−1

n

𝚺 (k + 1) =
[
𝐇T (k + 1)𝐂−1

n 𝐇 (k + 1) +𝐌−1 (k + 1)
]−1

𝐌 (k + 1) = 𝐅(k)𝚺 (k)𝐅T (k) + 𝐂w

with 𝐇 (k + 1) being the measurement Jacobian evaluated at �̃� (k + 1).
Since the power grid is inevitably a large network, a centralized solution to the asso-

ciated state estimation problem poses tremendous computational complexity. An alter-
native is to divide the large power system into smaller areas, each equipped with a local
processor to provide a local state estimation solution. As compared with a centralized
state estimation approach, multiarea state estimation reduces the amount of data that
each state estimator needs to process (and hence reduces complexity) and it improves
the robustness of the system by distributing the knowledge of the state. However, its
implementation requires additional communication overhead and it comes with the
time-skewness problem that results from asynchronous measurements obtained in dif-
ferent areas.

Each area has local measurements formulated by

𝐳m = 𝐡m
(
𝐱m

)
+ 𝐧m, m = 1,… ,M (12.24)

where 𝐱m =
[
𝐱T

im𝐱
T
bm

]T is the local state vector of area m, which is further partitioned
into internal state variables, 𝐱T

im, and border state variables, 𝐱T
bm. Internal variables are

those state variables that are observable for the particular area while border variables
are states of those buses with lines connecting two areas (so-called tie lines).

12.8 Phasor Measurement Units

The PMUs sample at a much higher frequency (roughly two orders of magnitude faster)
compared to the traditional sensors in the SCADA system. The PMUs provide more
accurate and more timely measurements with many more samples. The main challenges
faced by engineers today include (i) combining those PMU measurements with conven-
tional measurements to obtain an optimal state estimate, and (ii) dealing with the large
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number of data rendered by PMUs. Novel techniques need to be developed to extract
relevant state information from the tidal wave of measurement data.

12.9 Distributed System State Estimation

Research on distribution system state estimation dates back to the early 1990s; see, for
example [589]. This scheme has not been truly brought into fruition, probably due to
the lack of proper infrastructure.

The most popular method used in traditional power system state estimation is the
maximum likelihood estimation (MLE). It assumes the state of the system is a set of
deterministic variables and determines the most likely state via error included interval
measurements. In the distribution system, the measurements are often too sparse to
fulfill the system observability. Instead of introducing pseudo-measurements, authors
in [590] propose a belief propagation (BP) based distribution system state estimator.
This new approach assumes that the system state is a set of stochastic variables. With a
set of prior distributions, it calculates the posterior distributions of the state variables
via real-time sparse measurements from both traditional measurements and the high
resolution smart metering data.

12.10 Event-Triggered Approaches to State Estimation

The future grid will be equipped with a myriad of smart meters, which will collect and
transmit massive amount of data, and the control center will need to process those data,
convert data into information and transform information into actionable intelligence. In
fact, the deployment of PMUs at the transmission level has already resulted in more data
than the legacy grid’s control center can handle. When the smart grid is fully deployed,
the so-called big data phenomenon occurs naturally.

It is desirable to make the communication infrastructure throughout the grid energy
and bandwidth efficient. As a result, an event-triggered approach to sensing, communi-
cating and information processing would be quite appealing.

12.11 Bad Data Detection

One of the essential benefits of using a state estimator is the ability to detect, identify,
and correct measurement errors. This procedure is referred to as bad data processing.
This is especially relevant in the context of cyber security. Depending upon the state
estimation method used, bad data processing may be carried out as part of the state
estimation or as a postestimation procedure. Irrespective of the state estimation method
employed, detectability of bad data depends upon the measurement configuration and
redundancy [591].

The purpose of a static state estimator is to find the estimate �̂� of the true state 𝐱 that
best fits the measurement 𝐳 related to 𝐱 through the nonlinear model:

𝐳 = 𝐡 (𝐱) + 𝐰 (12.25)
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where we have used the customary notation:
• 𝐳: the m-dimensional measurement vector;
• 𝐱: the n-dimensional state vector of voltage magnitudes and phase angles;
• n = 2N − 1, N being the number of system nodes; in estimation, n < m, i.e., the

redundancy 𝜂 = m∕n > 1;
• 𝐰: the m-dimensional measurement error vector; its i-th component is: (i) a white

Gaussian noise  (
0, 𝜎2

i

)
if the corresponding measurement is valid; (ii) an unknown

deterministic quantity otherwise.
The weighted least square (WLS) estimate �̂� based on the quadratic criterion J(𝐱) satis-
fies the optimality condition

𝐇T (�̂�)𝐑−1 (𝐳 − 𝐡 (�̂�)) = 𝐇T (�̂�)𝐑−1𝐫 = 0 (12.26)
where 𝐇 ≜ 𝜕𝐡∕𝜕𝐱 represents the Jacobian matrix, 𝐑 = diag

(
𝜎2

i

)
and the measurement

residual vector 𝐫 is defined as
𝐫 ≜ 𝐳 − 𝐡 (�̂�) = 𝐐𝐰 (12.27)

In the latter expression, the residual sensitivity matrix 𝐐 is given by
𝐐 = 𝐈 −𝐇𝚺x𝐇T𝐑−1 (12.28)

with 𝚺x, the covariance matrix of the estimation error Δ𝐱 = 𝐱 − �̂�:

𝚺x = 𝔼
[
Δ𝐱 (Δ𝐱)T ]

=
(
𝐇T𝐑−1𝐇

)−1 (12.29)
Note the following important properties of matrix 𝐐:

rank (𝐐) = m − n = k, 𝐈 > 𝐐 ⩾ 0, 𝐐2 = 𝐐 (12.30)
For two Hermitian matrices 𝐀 and 𝐁, we say 𝐀 ≥ 𝐁 if 𝐀 − 𝐁 is a positive semi-definite
matrix.

In the absence of bad data, the measurement residual vector is distributed:
 (

0,𝐐𝐑𝐐T) =  (0,𝐐𝐑) (12.31)
The detection criteria currently used in this section are:

the weighted residual vector 𝐫W =
√
𝐑−1𝐫 (12.32)

the normalized residual vector 𝐫N =
√
𝐃−1𝐫with 𝐃 = diag (𝐐𝐑) (12.33)

the quadratic cost function J (�̂�) = 𝐫T𝐑−1𝐫 = 𝐫T
W𝐫W (12.34)

The detection of bad data is based on a hypothesis testing with the two hypotheses 0
and the alternative 1 where:

0 ∶ no bad data are present
1 ∶ 0 is not true, i.e., there are bad data

(12.35)

Denoting by Pe the probability of rejecting 0 when 0 is actually true and Pd the
probability of accepting 1 when 1 is true (probability of detection), the hypothesis
testing consists in comparing J (�̂�), ||

|
rWi

|
|
|

or ||
|
rNi

|
|
|

with a “detection threshold” 𝛾 , which
depends on Pe. For example, considering the normalized residuals, one has:

• accepting 0 if ||
|
rNi

|
|
|
< 𝛾 , i = 1, 2,… ,m;

• rejecting 0 (and hence accept 1) otherwise.
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12.12 Improved Bad Data Detection

Interesting links between outlier identification and 𝓁0-(pseudo)-norm minimization
are presented in [592] and [593] under the Bayesian and the frequentist frameworks,
respectively. Recently, 𝓁1-norm-based methods have been devised [592–594].

While the primary purpose of the installation of PMUs is not related to
state estimation, widespread placement of PMUs presents an opportunity to improve
state estimation. Capability of a state estimator to detect bad data is directly related
to the measurement configuration. Bad data associated with critical measurements
cannot be detected. Transforming critical measurements into redundant measure-
ments requires adding extra measurements at strategic locations. See [595] for details.
Besides, the authors in [596] used PMUs to transform the critical measurements into
redundant measurements such that the bad measurements can be detected by the
measurement residual testing.

12.13 Cyber-Attacks

As a complex cyber-physical system spanning a large geographical area, the power grid
inevitably faces challenges in terms of cyber security. With more data acquisition and
two-way communication required for the future grid, enhancing cyber security is of
paramount importance.

12.14 Line Outage Detection

Although phasor measurement units (PMUs) have become increasingly widespread
throughout power networks, the buses monitored by PMUs still constitute a very small
percentage of the total number of system buses. Our problem is to derive useful infor-
mation from PMU data in spite of this limited coverage. In particular, we can exploit
known system topology information, together with PMU phasor angle measurements,
to detect system line outages.

It is possible to use PMU data, even when coverage is extremely limited, to detect sys-
tem events. The knowledge of topology changes outside of the local control area could
be obtained by using data that is currently available on the North American power grid.
The algorithm of [597] can provide a robust way to increase operator awareness of line
statuses throughout an electric interconnection.

Bibliographical Remarks

We have drawn material freely from [145] in scattered places throughout the whole of
this chapter.

We followed [569] for the modeling of the PMUs in Section 12.1.
In Section 12.6, we followed [598, 599] for the classical scheme for state estimation.
In Section 12.11, we followed [598,600] for the classical results on bad data detection.
Section 12.14 was taken from [597].



505

13

False Data Injection Attacks against State Estimation

This chapter gives an exhaustive treatment of false data injection attacks in the context of
state estimation. It is well known that maintaining cyber security is the most important
task facing engineers and researchers. We use false data injection to attack against state
estimation.

Triggered by the seminar work of Liu and Ning and Reiter [601], a new line of
research in power system security has focused on cyber intrusion related to intelligent
electronic devices, such as remote terminal units, phasor measurement units and
meters.

As an important module in the modern power control system, the state estimation
program uses the measurements from intelligent electronic devices to estimate state
variables like voltage angles and magnitudes at each bus in a power system. Statistical
techniques successfully identify and remove obvious bad data from state estimation pro-
cedures. As state estimation cleans the data, this process also prevents the bad data from
being stored in databases for future use.

13.1 State Estimation

Monitoring power flows and voltages in a power system is critical to system reliabil-
ity. To ensure that a power system continues to operate even when some components
fail, a number of meters are used to monitor system components and report readings
to the control center, which estimates the state of power system variables according to
these meter measurements. The state variables of interest include bus voltage angle and
magnitudes.

The state estimation problem is to estimate power system state variables 𝐱 =
(
x1,

x2,… , xn
)T ∈ ℝn× 1 based on the meter measures 𝐳 =

(
z1, z2,… , zm

)T ∈ ℝm× 1, where
n and m are integers. The measurements errors (or uncertainties) are modeled as 𝐞 =
(
e1, e2,… , em

)T ∈ ℝm× 1. As a result, the state variables are related to the measurements
through the following model

𝐳 = 𝐡 (𝐱) + 𝐞 (13.1)

where 𝐡 (𝐱) =
(
h1

(
x1, x2,… , xn

)
,… , hm

(
x1, x2,… , xn

))
∈ ℝm× 1 and hi

(
x1, x2,… , xn

)

is a function of x1, x2,… , xn. The state estimation problem is to find an estimate �̂� of 𝐱
that is the best fit of the measurement 𝐳 according to (13.1).

Smart Grid using Big Data Analytics: A Random Matrix Theory Approach, First Edition.
Robert C. Qiu and Paul Antonik.
© 2017 John Wiley & Sons Ltd. Published 2017 by John Wiley & Sons Ltd.
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For state estimation using the DC power flow model, (13.1) can be represented by a
linear regression model

𝐲 = 𝐇𝐱 + 𝐞 (13.2)

where 𝐇 =
(
hi,j

)
∈ ℝm× b, a Jacobian matrix, while 𝐇𝐱 is a vector of m linear functions

linking measurements to states.
Of course, the linear model of (13.2) is much easier to handle than the nonlinear

model of (13.1). Three basic statistical criteria are commonly used in state estimation
[602]: the maximum likelihood criterion, the weighted least-square criterion, and the
minimum variance criterion. When meter error is assumed to be normally distributed
with zero mean, these three criteria lead to an identical estimator with the following
matrix solution

�̂� =
(
𝐇T𝐖𝐇

)−1 𝐇T𝐖𝐇 (13.3)

where 𝐖 is a diagonal matrix whose elements are reciprocals of the variances of meter
errors. That is

𝐖 =
⎛
⎜
⎜
⎝

𝜎−2
1 0

⋱
0 𝜎−2

n

⎞
⎟
⎟
⎠

(13.4)

where 𝜎2
i is the variance of the i-th meter (1 ≤ i ≤ n).

Bad measurement detection (also called bad data detection) may be introduced
due to various reasons such as meter failures and malicious attack. Techniques
for bad measurements detection have been developed to protect state estimation
[602, 603].

The measurement residual 𝐳 −𝐇�̂� and its 𝓁2-norm ‖𝐳 −𝐇�̂�‖ are used to detect the
presence of bad measurements. Specifically, ‖𝐳 −𝐇�̂�‖ is compared with a threshold 𝜏 ,
and the presence of bad measurements is assumed if

‖𝐳 −𝐇�̂�‖ > 𝜏 (13.5)

The selection of 𝜏 is a key issue. Assume that all the state variables are mutually
independent and the meter errors follow the normal distribution. It is known that
‖𝐳 −𝐇�̂�‖2 follows a 𝜒2(m − n)-distribution with the degree of freedom m − n. Accord-
ing to [602], 𝜏 can be determined through a hypothesis test with a significance level 𝛼.
Thus, ‖𝐳 −𝐇�̂�‖2 ⩾ 𝛼 indicates the presence of bad measurements, with the probability
of a false alarm being 𝛼.

Recently, the focus in bad measurement processing is on the improvement of
the robustness using phasor measurement units (PMUs) [591, 595, 596, 604]. See
Section 12.11 for the background on bad data detection.

It seems that these approaches targeting arbitrary, interacting bad measurements
(e.g. [598, 600, 605, 606]) can also defeat the malicious ones injected by attackers,
because such malicious measurements are indeed arbitrary, interacting bad measure-
ments. A fundamental flaw of these approaches is that all of them use the same method,
i.e., ‖𝐳 −𝐇�̂�‖2 ⩾ 𝜏 , to detect the presence of bad measurements. In the next section,
following [601], we will show that an attacker can systematically bypass this detection
method, and thus all existing approaches.
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13.2 False Data Injection Attacks

We assume that there are m meters that provide m measurements z1,… , zm and there
are n state variables x1,… , xn. The relationship between these m meter measurements
and n state variables can be characterized by a linear m × n matrix 𝐇, as given by (13.2).
Of course the nonlinear relation between 𝐳 and 𝐱 can be addressed later. In general,
the matrix 𝐗 of a power system is a constant matrix determined by the topology
and line impedances of the system. In [603], how the control center constructs 𝐇 is
illustrated.

Key assumptions for the model are:

• The meter measurements 𝐳 and the state variables 𝐱 are related by the linear matrix
𝐇, i.e., given by (13.2).

• The matrix 𝐇 is constant.
• The attacker can have access to the matrix 𝐇 of the target power system.
• The attacker can inject malicious measurements into compromised meters to under-

mine the state estimation process.

13.2.1 Basic Principle

Let 𝐳 + 𝐚 represent the vector of observed measurements that may contain mali-
cious data, where 𝐳 =

(
z1,… , zm

)T is the vector of original measurements and
𝐚 =

(
a1,… , am

)T is the malicious data added to the original measurements. We refer
to 𝐚 as an attack vector. Let �̂�bad and �̂� denote the estimates of 𝐱 using the malicious
measurements 𝐳 + 𝐚 and the original measurements 𝐳, respectively. �̂�bad can be repre-
sented as �̂� + 𝐛, where 𝐛 is a nonzero vector of length n. 𝐛 reflects the estimation error
injected by the attacker.

Theorem 13.2.1 Suppose the original measurements 𝐳 can pass the bad measurement
detection defined by (13.5). Then, the malicious measurements 𝐳 + 𝐚 can also pass the
bad measurement detection (13.5), if 𝐚 is a linear combination of the column vectors of
𝐇, i.e., 𝐚 = 𝐇𝐛.

Proof. As 𝐳 can pass the detection (13.5), we have

‖𝐳 −𝐇�̂�‖ ⩽ 𝜏, (13.6)

where 𝜏 is the detection threshold. Recall that �̂�bad can be represented as �̂� + 𝐛, where 𝐛
is a nonzero vector of length n. Considering the condition that 𝐚 = 𝐇𝐛, so 𝐚 is a linear
combination of the column vectors 𝐡1,… ,𝐡n of 𝐇, then the resulting 𝓁2-norm of the
measurement residual satisfies

‖(𝐳 + 𝐚) −𝐇 (�̂� + 𝐛)‖
= ‖𝐳 −𝐇�̂� + (𝐚 −𝐇𝐛)‖ (13.7)
= ‖𝐳 −𝐇�̂�‖ ⩽ 𝜏

Thus, the 𝓁2-norm of the measurement residual of 𝐳 + 𝐚 is less than the threshold 𝜏 . This
means 𝐳 + 𝐚 can also pass the bad measurement detection. ◽
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Observing the derivation in (13.7), it is sufficient to consider the relaxed requirement
with high probability for 𝜀 > 0

‖(𝐳 + 𝐚) −𝐇 (𝐇�̂� + 𝐛)‖ = ‖𝐳 −𝐇�̂� + (𝐚 −𝐇𝐛)‖
= ‖𝐳 −𝐇�̂�‖ + ‖𝐚 −𝐇𝐛‖
⩽ 𝜏 + 𝜀𝜏 = (1 + 𝜀) 𝜏 (13.8)

provided that with high probability

‖𝐚 −𝐇𝐛‖ ⩽ 𝜀𝜏 (13.9)

Liu, Ning and Reiter observe in [601] that if there exists a nonzero k-sparse 𝐚 for
which 𝐚 = 𝐇𝐛 for some 𝐛, then

𝐳 = 𝐇𝐱 + 𝐚 + 𝐞 = 𝐇 (𝐱 + 𝐛) + 𝐞

Thus as a deterministic quantity, 𝐱 is observationally equivalent to 𝐱 + 𝐛. No detector
can distinguish 𝐱 from 𝐱 + 𝐛, so we will call an attack vector 𝐚 unobservable if it has the
form 𝐚 = 𝐇𝐛.

It is unlikely that random bad data 𝐚 will satisfy 𝐚 = 𝐇𝐛. But an adversary can synthe-
size its attack vector to satisfy the unobserved condition.

13.3 MMSE State Estimation and Generalized Likelihood
Ratio Test

A power system is composed of a collection of buses, transmission lines, and power
flow meters. We adopt a graph-theoretical model for such a system. The power system
is modeled as an undirected graph ( , ), where  is the set of buses, and  is the set of
transmission lines. Each line connect two meters, so each element e ∈  is an unordered
pair of buses in  .

The control center receives measurements from various meters deployed throughout
the system, from which it performs state estimation. The goal of state estimation is to
recover the full state of the system: the voltage and phase of every bus in the network.
Meters come in two types: transmission line-flow meters, which measure the power
flow through a single transmission line, and bus injection meters, which measure the
total outgoing flow on all transmission lines connected to a single bus. So each meter is
associated with either a bus in  or a line in  . We allow for the possibility of multiple
meters on the same bus or line.

The 𝐇 matrix in (13.12) arises from the graph theoretical model as follows. For each
transmission line

(
i, j
)
∈  , the DC power flow through i to j is Bij

(
xi − xj

)
, where Bij is

the susceptance of the transmission line (i, j). We may also write this power flow as 𝐡ij𝐱,
where

𝐡ij =

⎡
⎢
⎢
⎢
⎢
⎣

0 · · · 0 Bij
⏟⏟⏟

i-th element

0 · · · 0 −Bij
⏟⏟⏟

j-th element

0 · · · 0

⎤
⎥
⎥
⎥
⎥
⎦

(13.10)

If a meter measures the flow through the transmission line connecting buses i and j, the
associated row of 𝐇 is therefore obtained by 𝐡ij. A bus injection meter measures the
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total power flow on all lines incident to a particular node. The row of 𝐇 associated with
a meter on bus i is therefore given by

∑

j∶(i,j)∈
𝐡ij (13.11)

The graph-theoretical model for the power system gives the following DC power flow
model, a linearized version of the AC flow model:

𝐳 = 𝐇𝐱 + 𝐚 + 𝐞 (13.12)

where

𝐞 ∼  (
𝟎,𝚺e

)
, 𝐚 ∈ k =

{
𝐚 ∈ ℝm ∶ ‖𝐚‖0 ⩽ k

}

Here, 𝐳 ∈ ℝm is the vector power flow measurements, 𝐱 ∈ ℝn the system state, 𝐞 ∈ ℝm

the Gaussian measurement noise with zero mean and covariance matrix 𝚺e, and vector
𝐚 is malicious data injected by an adversary. Below we assume that the adversary can at
most control k meters: 𝐚 is a vector with at most k nonzero entries (‖𝐚‖0 ⩽ k). A vector
𝐚 is said to have sparsity k if ‖𝐚‖0 ⩽ k where ‖𝐚‖0 represents the 𝓁0-norm, equal to the
number of the nonzero entries of 𝐚.

We assume that the adversary has access to network parameters 𝐇 and is able to coor-
dinate attacks from different meters. These assumptions, and the assumption that the
adversary may choose any set of k meters it likes, give the adversary more power than
perhaps possible in practice, which is a well adopted practice when analyzing security.

13.3.1 A Bayesian Framework and MMSE Estimation

In a Bayesian framework, the state variables are random vectors with Gaussian distribu-
tion  (

𝝁x,𝚺x
)
. We assume that, in practice, the mean vector 𝝁x and covariance matrix

𝚺x can be estimated from historical data. By subtracting the mean vector from the data,
we can assume without loss of generality that 𝝁x = 𝟎.

In the absence of an attack, where 𝐚 = 𝟎 in (13.12), (𝐱, 𝐳) are jointly Gaussian. The
minimum mean square error (MMSE) estimator of the state vector is a linear vector
given by

�̂�(𝐳) = arg min
�̂�

𝔼
(
‖𝐱 − �̂�(𝐳)‖2) = 𝐊𝐳 (13.13)

where

𝐊 = 𝚺x𝐇T (
𝚺x𝐇T𝚺x + 𝚺e

)−1 (13.14)

The minimum mean-square error, in the absence of an attack, is given by

0 = min
�̂�

𝔼
(
‖𝐱 − �̂�(𝐳)‖2) = Tr

(
𝚺x −𝐊𝐇𝚺x

)

If an adversary injects malicious data 𝐚 ∈ k , and the control center is unaware of the
attack, then the state estimator defined in (13.13) is no longer the true MMSE estimator
(in the presence of attack); the estimator �̂�(𝐳) = 𝐊𝐳 ignores the possibility of attack and
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it will cause a higher mean square error (MSE). In particular, it is easy to see that the
MSE in the presence of 𝐚 is given by

0 + ‖𝐊𝐚‖2
2 (13.15)

The second term in (13.15) represents the impact on the estimator from a particular
attack vector 𝐚. To increase the MSE at the state estimator, the adversary necessarily has
to increase the “energy” of the attack, which increases the probability of being detected
at the control center.

13.3.2 Statistical Model and Attack Hypotheses

Following [592], we present a formulation of the detection problem at the control center.
We assume a Bayesian model where the state variables are random with a multivariate
Gaussian distribution 𝐱 ∼  (

𝟎,𝚺x
)
. The detection model, on the other hand, is not

Bayesian in the sense that we do not assume any prior probability of the attack, nor do
we assume any statistical model for the attack vector 𝐚.

Under the observation model (13.12), we consider the following composite binary
hypothesis:

0∶ 𝐚 = 𝟎 versus 1∶ 𝐚 ∈ k∖ {𝟎} (13.16)
Given observation 𝐳 ∈ ℝm, we wish to design a detector Λ: ℝm → {0, 1} with Λ (𝐳) = 1
indicating a detection of attack 1 and Λ (𝐳) = 0 the null hypothesis 0.

An alternative formulation is based on the extra MSE ‖𝐊𝐚‖2
2 at the state estimator.

See (13.15). In particular, we may want to distinguish, for ‖𝐚‖0 ⩽ k
0∶ ‖𝐊𝐚‖2

2 ⩽ 𝜏 versus 1∶ ‖𝐊𝐚‖2
2 > 𝜏 (13.17)

where 𝜏 is the detection threshold.

13.3.3 Generalized Likelihood Ratio Detector with 𝓵1-Norm Regularization

For the hypothesis test given by (13.16), the uniformly most powerful test does not exist.
We propose a detector based on the generalized likelihood ratio test (GLRT). We note
that if we have multiple measurements under the same 𝐚, the GLRT is asymptotically
optimal in the sense that it offers the fatest decay rate of missing detection probability
[607].

The distribution of the measurement 𝐳 under the two hypotheses differ only in their
means:

0 ∶𝐳 ∼  (
𝟎,𝚺z

)

1 ∶𝐳 ∼  (
𝐚,𝚺z

)
, 𝐚 ∈ k∖ {𝟎}

where 𝚺z = 𝐇𝚺x𝐇T + 𝚺e. The GLRT is given by

L(𝐳) ≜
max
𝐚∈k

f (𝐳|𝐚)

f (𝐳|𝐚 = 𝟎)

1
>

<0

𝜏 (13.18)

where f (𝐳 |𝐚 ) is the Gaussian density function with mean 𝐚 and covariance matrix 𝚺z,
and the threshold is chosen from considering the null hypothesis at a certain false alarm
rate. This is equivalent to

min
𝐚∈k

𝐚T𝚺−1
z 𝐚 − 2𝐳T𝚺−1

z 𝐚
1
>

<0

𝜏 (13.19)
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Then the GLRT reduces to solving
minimize 𝐚T𝚺−1

z 𝐚 − 2𝐳T𝚺−1
z 𝐚

subject to ‖𝐚‖0 ⩽ k
(13.20)

which is a nonconvex optimization since the 𝓁0-norm is nonconvex. It is well known
that (13.20) can be approximated by a convex optimization:

minimize 𝐚T𝚺−1
z 𝐚 − 2𝐳T𝚺−1

z 𝐚
subject to ‖𝐚‖1 ⩽ 𝜈

(13.21)

where the 𝓁1-norm constraint is a heuristic for the sparsity of 𝐚. The constant 𝜈 needs to
be adjusted until the solution involves an 𝐚 with sparsity k. This requires solving (13.21)
several times. A similar approach is used in [608].

13.3.4 Classical Detectors with MMSE State Estimation

Two classical bad data detectors [574, 609] are based on the residual error 𝐫 = 𝐳 −𝐇�̂�
resulting from the MMSE state estimator.

The first is the J (�̂�) detector, defined as

𝐫T𝚺−1
e 𝐫

1
>

<0

𝜏 (13.22)

The second is the largest normalized residue (LNR) test given by

max
i

|
|ri
|
|

𝜎ri

1
>

<0

𝜏 (13.23)

where 𝜎ri
is the standard deviation of the i-th residual error ri. This test can be viewed

as the test on the 𝓁∞-norm of the measurement residual, which is normalized so that
each element has unit variance.

The asymptotic optimality of the GLRT detector implies a better performance of
GLRT over the above two detectors when the sample size is large.

13.3.5 Optimal Attacks for the MMSE and the GLRT Detector

We assume that the attacker has the prior knowledge that the MMSE and the GLRT
detector are used by the control center. We also assume that the attacker can choose k
meters arbitrarily in which for the attacker to inject malicious data.

The attacker has two conflicting objectives: maximizing the MSE by choosing the best
data injection 𝐚 versus avoiding being detected by the control center. Using (13.23), we
can formulate the problem as

maximize
𝐚∈k

‖𝐊𝐚‖2
2

subject to Pr (Λ (𝐳) = 1 |𝐚 ) ⩽ 𝛽
(13.24)

or equivalently
minimize Pr (Λ (𝐳) = 1 |𝐚 )

subject to ‖𝐊𝐚‖2
2 ⩾ C

‖𝐚‖0 = k
(13.25)
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Due to the lack of analytical expressions for the detection error probability
Pr (Λ (𝐳) = 1 |𝐚 ), the solution of (13.24) and (13.25) is very difficult. We present a
heuristic for Pr (Λ (𝐳) = 1 |𝐚 ), which allows us to get the approximation solution.

Given the naive MMSE state estimator �̂� = 𝐊𝐳 (13.13) and (13.14), the estimation
residual error is given by

𝐫 = 𝐆𝐳, 𝐆 = 𝐈 −𝐇𝐊 (13.26)

Inserting the measurement model, we obtain

𝐫 = 𝐆𝐇𝐱 +𝐆𝐚 +𝐆𝐞

where 𝐆𝐚 is the only term from the attack. From (13.15), the damage in MSE done by
injecting 𝐚 is ‖𝐊𝐚‖2

2. So we can consider the equivalent problems:

maximize ‖𝐊𝐚‖2
2

subject to ‖𝐆𝐚‖2
2 ⩽ 𝜂

‖𝐚‖0 = k
(13.27)

or equivalently,

minimize ‖𝐆𝐚‖2
2

subject to ‖𝐊𝐚‖2
2 ⩾ C

‖𝐚‖0 = k
(13.28)

After some procedures, solving the optimal attack vector 𝐚 for the above two formula-
tions amounts to a standard generalized eigenvalue problem. See [592] for details.

The state estimation is used to set prices and calculating payment. As malicious attacks
can change the state estimation significantly, it is natural to consider the impact of an
attack on the electricity market [592].

13.4 Sparse Recovery from Nonlinear Measurements

State estimation for nonlinear electrical power networks is considered for bad data
detection. The problem is formulated in terms of sparse recovery from nonlinear
measurements. In the presence of bad data vector 𝐯, the nonlinear model (13.1) is
rewritten as

𝐳 = 𝐡 (𝐱) + 𝐞 + 𝐚 (13.29)

where 𝐡 (𝐱) is a set of n general functions, which may be linear or nonlinear, and 𝐞 is the
vector of the additive measurement noise. Here we assume that 𝐞 is an n-dimensional
vector with i.i.d. zero mean Gaussian elements of variance 𝜎2. We also assume that 𝐚
is a vector with at most k nonzero entries, and the nonzero entries can take arbitrary
real-number values. The sparsity k of gross errors reflects the nature of bad data because
generally only a few faulty sensing results are present or an adversary party may control
only a few malicious meters.

In the absence of bad data, it is well known that the standard least square (LS) method
can be used to suppress the effect of observation noise on state estimations. Here, we
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consider the nonlinear LS method, where we try to find a vector 𝐱 that minimizes the
least-square error:

minimize ‖𝐲 − 𝐡 (𝐱)‖2 (13.30)

However, the LS method generally only works well in the absence of bad data 𝐚. If the
magnitudes of bad data are large, the estimation result can be very far from the true
state.

Bad data detection in power grids can be viewed as a sparse error detection prob-
lem, which shares mathematical structures similar to sparse recovery problems in com-
pressed sensing. Since 𝐡 (𝐱) is a nonlinear mapping instead of a linear mapping in the
compressed sensing, the problem here is different from that of the conventional com-
pressed sensing.

13.4.1 Bad Data Detection for Linear Systems

For a special case of 𝐡 (𝐱) = 𝐇𝐱, (13.29) becomes

𝐲 = 𝐇𝐱 + 𝐚 + 𝐞 (13.31)

where 𝐱 is an m × 1 signal vector (m < n), 𝐇 is an n × m matrix, 𝐚 is a sparse error vector
with at most k nonzero elements, and 𝐞 is a noise vector with ‖𝐞‖2 ⩽ 𝜀.

We solve the following optimization problem involving optimization variables 𝐱 and
𝐳. The state estimation �̂� is the optimizer value for 𝐱

minimize
𝐱,𝐳

‖𝐲 −𝐇𝐱 − 𝐳‖1

subject to ‖𝐳‖2 ⩽ 𝜀
(13.32)

A subspace in ℝn satisfies the almost Euclidean property [610, 611] for a constant
𝛼 ≤ 1, if

𝛼
√

n‖𝐱‖2 ⩽ ‖𝐱‖1

holds true for every 𝐱 in the subspace.
We denote the part of any vector 𝐰 over any index set K as 𝐰K .

Theorem 13.4.1 ([594]) Suppose that the minimum nonzero singular value of 𝐇 is
𝜎min. Let C > 1 be a real number, and suppose that every vector 𝐰 in range of the matrix
𝐇 satisfies C‖

‖𝐰K
‖
‖1 ⩽ ‖

‖𝐰K
‖
‖1 for any subset K ⊆ {1, 2,… , n} with cardinality |K | ⩽ k,

where k is an integer, and K = {1, 2,… , n} ∖K . We also assume the subspace generated
by 𝐇 satisfies the almost Euclidean property for a constant 𝛼 ≤ 1. Then the solution �̂�
to (13.32) satisfies

‖𝐱 − �̂�‖2 ⩽ 2 (C + 1)
𝜎min𝛼 (C − 1)

𝜀 (13.33)

Proof. The proof is taken from [594]. Suppose that one optimal solution pair to (13.32)
is (�̂�, �̂�). Since ‖�̂�‖2 ⩽ 𝜀, we obtain ‖�̂�‖1 ⩽

√
n‖�̂�‖2 ⩽

√
n𝜀.

Since 𝐱 and 𝐳 = 𝐞 are feasible for (13.32) and 𝐲 = 𝐇𝐱 + 𝐚 + 𝐞, then
‖𝐲 −𝐇�̂� − �̂�‖1 = ‖𝐇 (𝐱 − �̂�) + 𝐚 + 𝐞 − �̂�‖1

⩽ ‖𝐇 (𝐱 − 𝐱) + 𝐚 + 𝐞 − 𝐞‖1 = ‖𝐚‖1
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Applying the triangle inequality to ‖𝐇 (𝐱 − �̂�) + 𝐚 + 𝐞 − �̂�‖1, we have

‖𝐇 (𝐱 − �̂�) + 𝐚‖1 − ‖𝐞‖1 − ‖�̂�‖1 ⩽ ‖𝐚‖1

Denoting 𝐇 (𝐱 − �̂�) by 𝐰, since 𝐚 is supported on a set K with cardinality |K | ⩽ k, by
the triangle inequality for 𝓁1-norm,

‖𝐚‖1 − ‖
‖𝐰K

‖
‖1 + ‖

‖𝐰K
‖
‖1 − ‖𝐞‖1 − ‖�̂�‖1 ⩽ ‖𝐚‖1

Thus we have

− ‖
‖𝐰K

‖
‖1 + ‖

‖𝐰K
‖
‖1 ⩽ ‖�̂�‖1 + ‖𝐞‖1 ⩽ 2

√
n𝜀 (13.34)

With C‖
‖𝐰K

‖
‖1 ⩽ ‖

‖𝐰K
‖
‖1 in the assumption, we know

C + 1
C − 1

‖𝐰‖1 ⩽ −‖‖𝐰K
‖
‖1 + ‖

‖𝐰K
‖
‖1

Combining this with (13.34), we have

C + 1
C − 1

‖𝐰‖1 ⩽ 2
√

n𝜀

By the almost Euclidean property 𝛼
√

n‖𝐱‖2 ⩽ ‖𝐱‖1, we have

‖𝐰‖2 ⩽ 2 (C + 1)
𝛼 (C − 1)

𝜀 (13.35)

By the definition of singular values

𝜎min‖𝐱 − �̂�‖2 ⩽ ‖𝐇 (𝐱 − �̂�)‖2 = ‖𝐰‖2 (13.36)

so combing this with (13.35), we obtain the desired result

‖𝐱 − �̂�‖2 ⩽ 2 (C + 1)
𝜎min𝛼 (C − 1)

𝜀

◽

In the absence of sparse errors, the decoding error bound using the standard LS
method satisfies [612] ‖𝐱 − �̂�‖2 ⩽ 1

𝜎min
𝜀.

13.4.2 Bad Data Detection for Nonlinear Systems

Theorem 13.4.2 ([594]) Let 𝐲 = 𝐡 (𝐱) + 𝐚. A state 𝐱 can be recovered correctly from
any error with ‖𝐚‖0 ⩽ k from solving the optimization

minimize
𝐱

‖𝐲 − 𝐡 (𝐱)‖0 (13.37)

if and only if for any 𝐱⋆ ≠ 𝐱, ‖‖
‖
𝐡 (𝐱) − 𝐡

(
𝐱⋆

)‖
‖
‖0

⩾ 2k + 1.

Theorem 13.4.3 ([594]) Let 𝐲 = 𝐡 (𝐱) + 𝐚. A state 𝐱 can be recovered correctly from
any error with ‖𝐚‖0 ⩽ k from solving the optimization

minimize
𝐱

‖𝐲 − 𝐡 (𝐱)‖1 (13.38)
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if and only if for any 𝐱⋆ ≠ 𝐱, ‖‖
‖

(
𝐡 (𝐱) − 𝐡

(
𝐱⋆

))

K
‖
‖
‖1
<
‖
‖
‖

(
𝐡 (𝐱) − 𝐡

(
𝐱⋆

))

K
‖
‖
‖1

, where K is
the support of the error vector 𝐚.

Direct 𝓁0 and 𝓁1 minimization may be computationally costly because 𝓁0 norm and
nonlinear 𝐡(⋅) may lead to nonconvex optimization problems. Reference [594] proposes
a computationally efficient iterative sparse recovery algorithm for the general setting of
the additive noise 𝐞.

13.5 Real-Time Intrusion Detection

Recent research in power-system security has focused entirely on cyber intrusion
related to intelligent electronic devices (IEDs) like remote terminal units (RTUs),
phasor measurement units (PMUs), and meters. These attacks are referred to as mali-
cious data injection attacks. The research in [613] defines a new class of cyber attacks
to power systems—malicious modification of network data stored in an accessible
database—which is different from the research on malicious data injection attacks.

Network data stored in databases is also vulnerable to cyber attack. These
cyber attacks are different from previously researched data integrity attacks in the
sense that these physical transmission line data do not depend on the measurements
from IEDs.

Bibliographical Remarks

The material in Section 13.1 is taken from [601].
The material in Section 13.2 is taken from [601].
In Section 13.3, we take material from [592, 614]. Relevant work is [601] and [608].

Bad data detection is a classical problem that is part of the original formulation of state
estimation [574]. The formulation in Section 13.4 is taken from [594].

See [615] for a survey. It is a key task in smart grid to send the readings of smart meters
to an access point (AP) in a wireless manner. Compressed sensing can be used [616].
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14

Demand Response

Smart grid is primarily envisioned as a quantum leap in harnessing communication and
information technologies to enhance grid reliability and to enable integration of various
smart grid resources such as renewable resources, demand response, electric storage,
and electric transportation.

14.1 Why Engage Demand?

The concept of smart grid started with the notion of advanced metering infrastructure to
improve demand-side management, energy efficiency, and a self-healing electrical grid
to improve supply reliability and respond to natural disasters or malicious sabotage. One
emerging paradigm shift is the increased and bidirectional interaction between whole-
sale markets/transmission operations and retail markets/distribution operations. The
expected profusion of demand response, renewable resources, and distributed genera-
tion and storage at the distribution/retail level has direct implications on the operation
of the transmission system and the wholesale energy markets. Enabling technologies,
such as enhancements in the communication and information technologies, make it
possible to turn these new resources into useful controllable products for wholesale
market and transmission system operators.

For smart grid, the efforts are categorized into the following trends: (i) reliability;
(ii) renewable resources; (iii) demand response; (iv) electric storage; (v) electric trans-
portation.

System reliability has always been a major focus area for the design and operation of
modern grids. Demand response and electric storage resources are necessary to address
the economics of the grid and are perceived to support grid reliability by mitigating peak
demand and load variability. Electric transportation resources are deemed helpful for
meeting environmental targets and can be used to mitigate load variability. Balancing
the diversity of the characteristics of these resource types presents challenges in main-
taining grid reliability.

Meeting these reliability challenges while effectively integrating the above resources
requires a quantum leap in harnessing communication and information technologies.
Wide-area monitoring and control is important. This involves gathering data from
and controlling a large region of the grid through the use of time-synchronized
phasor measurement units (PMUs). Big data analytics are promising in this
direction.

Smart Grid using Big Data Analytics: A Random Matrix Theory Approach, First Edition.
Robert C. Qiu and Paul Antonik.
© 2017 John Wiley & Sons Ltd. Published 2017 by John Wiley & Sons Ltd.
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Demand and resource forecasting is usually done at a macroscopic level, such
as control area and load zone. As the need for more discrete and intelligent local
control increases, better forecast at the local level will be required for demand
and distributed resources. One approach is to use forecasting agents throughout
the grid to communicate and access required data and information to produce
more accurate load and generation models throughout the system. We need
failproof geographically and temporally coordinated hierarchical monitoring and
control actions over timescales ranging from milliseconds to operational planning
horizon.
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Figure 14.1 Demand response connectivity and information flow. Source: Reproduced from [617]
with permission.
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AMISolar Thermal
storage

Demand
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Figure 14.2 Interaction of demand response, variable generation, and storage. Source: Reproduced
from [617] with permission.

In Figure 14.1, demand response connectivity and information flow are illustrated.
In Figure 14.2, the interaction of demand response, variable generation, and storage is
illustrated. See Section 9.4 for more illustrations.

We illustrate the general wholesale electricity market scenario shown in Figure 14.3,
where each retailer/utility serves a number of end users. The real-time pricing informa-
tion, reflecting the wholesale prices, is informed by the retailer to the users over a digital
communication infrastructure, for example, a local area network (LAN).

This is the right moment to make links with the rest of the book on big data analytics.
In Figure 14.1 and Figure 14.2, it is vividly shown that the grid is distributed. Information
flow is behind the control of this distributed grid. Massive amounts of data are generated
in this system for big physical data. Mathematically, these data are modeled as a matrix
valued time series 𝐗1,𝐗2,… ,𝐗n, where 𝐗i, i = 1,… , n are large random matrices of
N × T . For N sensors, we can zoom in the time period (in milliseconds) of t = 1,… ,T
for one basic building block. We deal with a total of time window (in milliseconds) t = T ,
2T ,… , nT . We are especally interested in the asymptotic regime when both N and T
go large with the fixed concentration c = N∕T . For example, the values of N and T are
in the order of 100 − 10000. Examples of sensors include: (i) PMUs; (ii) smart meters;
(iii) antennas. The examples are almost endless.

In Figure 14.3, we can apply the large random matrices similarly to Figure 14.1 and
Figure 14.2.
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Figure 14.3 A simplified illustration of the wholesale electricity market formed by multiple generators
and several regional retail companies. Each retailer provides electricity for a number of users. Retailers
are connected to the users via local area networks which are used to announce real-time prices to the
users. Source: Reproduced from [548] with permission of the IEEE.

14.2 Optimal Real-time Pricing Algorithms

Electricity is currently provided through an infrastructure consisting of utility com-
panies, power plants, and transmission lines, which serve millions of customers. The
dependency of almost all parts of industry and different aspects of our life on electrical
energy makes this massive infrastructure a strategic entity.

Currently, electricity consumption is not efficient in most buildings (e.g., due to poor
thermal isolation). This results in the waste of a large amount of natural resources,
since most of the electricity consumption occurs in buildings. Besides, new types of
demand such as plug-in hybrids will potentially double the average household load.
For the above reasons, there is a need to develop new methods for demand-side
management (DSM).

There is a wide range of DSM techniques such as voluntary load management pro-
grams and direct load control. Smart pricing is known as one of the most common tools
that can encourage users to consume wisely and more efficiently. Users are often will-
ing to improve the insulation conditions of their buildings or try to shift the energy
consumption schedule of their high-load household appliances to off-peak hours. It is
important to understand the real-time interactions among subscribers and the energy
provider and real-time pricing algorithms for the future smart grid.

The problem of demand-side management is essentially a problem of economy—
understanding the scarcity of resources and finding ways to allocate them. In econ-
omy, optimization plays a central role. By analogy, in the context of demand side
management, optimization plays a fundamental role. The traditional work horse for
optimization is linear programing (LP). In recent years, convex optimization such as
semidefinite programing (SDP) has been the standard tool for researchers and engi-
neers who work in the field of communications and signal processing. The formulated
convex problems can be solved using convex programming techniques such as the
interior point method [377]. Standard software packages such as CVX (written in
MATLAB) [378] and CVXOPT (written in Python) [379] can be used. As we know,
once the problem is formulated in terms of convex optimization, the rest is essentially
the technical details. Linear programing is a special case of convex optimization. We
often take advantage of the special structure of LP, rather than treating it as a convex
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optimization problem. The main motivation of the work horse like SDP is to extend
the LP.

We now give several examples to illustrate how the problems are formulated in terms
of the above framework of convex optimization.

Example 14.2.1 (linear programing [618]) A simple LP algorithm to be integrated
into the energy management system of a household or a small business. Via bidirectional
communication with the electricity supplier, such an algorithm allows maximizing the
consumer utility or minimizing its energy cost. The interaction takes place on a hourly
basis using a rolling window algorithm to consider the energy consumption throughout
the day. ◽

Example 14.2.2 (distributed concave optimization [619]) The formulated problem
is a concave maximization problem and can be solved using convex programming tech-
niques such as the interior point method in a central fashion. As this central formulation
depends on the exact utility function of users that may not known, they formulate the
problem in a distributed manner. The proposed algorithm is based on utility maximiza-
tion. It can be implemented in a distributed manner to maximize the aggregate utility
of all users and minimize the cost to the energy provider while keeping the total power
consumption below the generating capacity. ◽

Example 14.2.3 (energy consumption scheduling [620]) The problem is formu-
lated in terms of convex optimization. An optimal, autonomous, and incentive-based
energy consumption scheduling algorithm can be used to balance the load among
residential subscribers who share a common energy source. This kind of algorithm is
designed to be implemented in energy consumption scheduling (ECS) devices inside
smart meters in a smart-grid infrastructure. A simple pricing and billing model provides
the incentives for the subscribers encouraging them to actually use the ECS devices
and run the proposed distributed algorithm in order to be charged less. ◽
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Figure 14.4 Daily residential load curve. Source: Reproduced from [621] with permission.
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market energy pricing. Source: Reproduced from [621] with permission.

14.3 Transportation Electrification and Vehicle-to-Grid
Applications

Plug-in electric vehicles (PEVs) are growing in popularity as more efficient low-emission
alternatives to the conventional fuel-based automobiles.

A new real-time smart load management (RT-SLM) approach for the coordination of
PEV charging is used to improve the security and reliability of smart grids by minimiz-
ing voltage deviations, overloads, and power losses that would otherwise be impaired
by random uncoordinated PEV charging. The random and unpredictable nature of PEV
activity in a domestic household situation calls for a fast and adaptable real-time coor-
dination strategy.

A real-time smart load management (RT-SLM) control strategy appropriately con-
siders random plug-ins of PEVs and utilizes a maximum sensitivities selection (MSS)
optimization approach to minimize system losses.

In Figure 14.4, the daily residential load curve is shown. In Figure 14.5, subscription
options of charging time zones for PEV owners and variable short-term market energy
pricing are shown.

14.4 Grid Storage

Large-scale energy storage system is an important part of the smart grid. It is the sixth
part of the electric system besides generation, transmission, substation, distribution, and
users.
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15

Big Data for Communications

In [39], we treat a communication system as a big data system and model the mas-
sive amount of data with the aid of large random matrices. This book follows the same
viewpoint—see Figure 1.6 for illustration.

15.1 5G and Big Data

We argue that the fifth-generation (5G) wireless communication network should be
aware of big data [39, 40]. From the viewpoint of data processing, it is natural to model
the massive amount of data using (large) random matrices. The theme of the 5G network
(five disruptive technologies) belongs in a unified framework of big data.

15.2 5G Wireless Communication Networks

The 5G network is expected to be standardized around 2020. Compared with the 4G
network, the 5G network should achieve 1000 times the system capacity, 10 times the
spectral efficiency, energy efficiency and data rate (i.e., peak data rate of 10 Gb/s for low
mobility and peak data rate of 1 Gb/s for high mobility), and 25 times the average cell
throughput.

A proposed architecture for 5G wireless communication networks is shown in [141].
There are five disruptive technologies.

• Device-centric architectures. The base-station-centric architecture of cellular sys-
tems may change in 5G. We present device-centric architectures.

• Millimeter wave (mmWave). While spectrum has become scarce at microwave
frequencies, it is plentiful in the mmWave realm. There is an mmWave “gold rush.”
Although far from being fully understood, mmWave technologies have already
been standardized for short-range services (IEEE 802.11ad) and deployed for niche
applications such as small-cell backhaul.

• Massive MIMO. Massive multiple-input multiple-output (MIMO) proposes utiliz-
ing a very high number of antennas to multiplex messages for several devices on each
time-frequency resource, focusing the radiated energy toward the intended directions
while minimizing intracell and intercell interference. Massive MIMO may require
major architectural changes, particularly in the design of macro base stations, and
it may also lead to new types of deployments.

Smart Grid using Big Data Analytics: A Random Matrix Theory Approach, First Edition.
Robert C. Qiu and Paul Antonik.
© 2017 John Wiley & Sons Ltd. Published 2017 by John Wiley & Sons Ltd.
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• Smarter devices. 2G-3G-4G cellular networks were built under the design premise of
having complete control at the infrastructure side. We argue that 5G systems should
drop this design assumption and exploit intelligence at the device side within dif-
ferent layers of the protocol stack, for example by allowing device-to-device (D2D)
connectivity or exploiting smart caching at the mobile side. While this design phi-
losophy mainly requires a change at the node level (component change) it also has
implications at the architectural level.

• Native support for machine-to-machine (M2M) communication. A native inclu-
sion of M2M communication in 5G involves satisfying three fundamentally different
requirements associated with different classes of low-data-rate services: support for
a massive number of low-rate devices, sustaining a minimal data rate in virtually all
circumstances, and very-low-latency data transfer. Addressing these requirements in
5G requires new methods and ideas at both the component and architectural levels,
and such is the focus of a later section.

Wireless communication is becoming a commodity, just like electricity or water. A
massive number of connected devices are supported by the 5G network. Whereas
current systems typically operate with, at most, a few hundred devices per base station,
some M2M services might require over 104 connected devices. Examples include
metering, sensors, smart grid components, and other enablers of services targeting
wide-area coverage.

15.3 Massive Multiple Input, Multiple Output

Massive MIMO is a promising technology for next-generation wireless systems. Its rele-
vance to sm grid (which is the next-generation power grid) is clear. The central message
of this section is to tie together the massive MIMO system and the large random matri-
ces. At the heart of problems of massive MIMO lie the big data challenges.

15.3.1 Multiuser-MIMO System Model

Consider the uplink of a multiuser-MIMO system. The system has one base station
equipped with an array of M antennas that receive data from K single-antenna users.
The users transmit their data in the same time-frequency resource. The M × 1 received
vector at the base station is

𝐲 =
√

Pavg𝐆𝐱 + 𝐧 (15.1)

where𝐆 represents the M × K channel matrix between the base station and the K users,
i.e., gmk ≜ [𝐆]mk is the channel coefficient between the m-th antenna of the base station
and the k-th user,

√
Pavg𝐱 is the vector of symbols simultaneously transmitted by the K

users (the average transmitted power of each user is Pavg), and 𝐧 is a vector of additive
white, zero-mean Gaussian noise. We take the noise variance to be 1, to minimize nota-
tion, but without loss of generality. With this convention, Pavg has the interpretation of
normalized “transmit” signal-to-noise ratio (SNR) and is therefore dimensionless. The
model (15.1) also applies to wideband channels handled by OFDM over restricted inter-
vals of frequency.
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Figure 15.1 A proposed 5G heterogeneous wireless cellular architecture. Source: Reproduced with
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The channel matrix 𝐆 models independent fast fading, geometric attenuation, and
log-normal shadow fading. The coefficient gmk can be written as

gmk = hmk
√
𝛽k , m − 1, 2,… ,M (15.2)

where hmk is the fast fading coefficient from the k-th user to the m-th antenna of the base
station.

√
𝛽k models the geometric attenuation and shadow fading, which is assumed

to be independent over m and to be constant over many coherence time intervals and
known a priori. Then, we have

𝐆 = 𝐇𝐃1∕2 (15.3)

where 𝐇 is the M × K matrix of fast fading coefficients between the K users and the base
station, i.e., [𝐇]mk = hmk , and 𝐃 is a K × K diagonal matrix, where [𝐃]kk = 𝛽k .

15.3.2 Very Long Random Vectors

We review some results for random vectors from Cramer [626]. Let 𝐱 ≜ [
X1,… ,Xn

]T

and 𝐲 ≜ [
Y1,… ,Yn

]T be mutually independent n × 1 random vectors whose ele-
ments are i.i.d. zero-mean random variables (RVs) with 𝔼||Xi

|
|

2 = 𝜎2
x , and 𝔼||Yi

|
|

2 = 𝜎2
y ,

i = 1,… , n. Then from the law of large numbers, we have
1
n
𝐱H𝐱

a.s.
−−→ 𝜎2

x and 1
n
𝐱H𝐲

a.s.
−−→ 0, as n → ∞ (15.4)

where
a.s.
−−→ denotes the almost sure convergence. Also, from the Lindeberg–Lévy

central-limit theorem, we have
1
√

n
𝐱H𝐲

d
−→  (

0, 𝜎2
x𝜎

2
y
)

, as n → ∞ (15.5)

where
d
−→ denotes convergence in distribution.

15.3.3 Favorable Propagation

Throughout the section, we assume that the fast fading coefficients, the elements of 𝐇,
are i.i.d. RVs with zero mean and unit variance. Then conditions (15.4) and (15.5) are
satisfied with 𝐱 and 𝐲 being any two distinct columns of 𝐆. In this case we obtain

1
M

𝐆H𝐆 = 1
M

𝐃1∕2𝐇H𝐇𝐃1∕2 ≈ 𝐃, M ≫ K (15.6)

and we say that we have favorable propagation. Obviously, if all fading coefficients are
i.i.d. and zero mean, we have favorable propagation.

Remarkably, the total throughput (e.g., the achievable sum rate) of reverse link
MU-MIMO is given by [627]

Rsum = log2 det
(

𝐈K +
Pavg

M
𝐆𝐆H

)

(15.7)

where 𝐆 is a random matrix. This form of log-determinant of random matrices has
been treated elsewhere in this book. See Section 15.3.6 and Section 15.4.1 for the
connections.
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To understand why favorable propagation is desirable, consider an M × K uplink
(multiple-access) MIMO channel 𝐇, where M ≥ K , neglecting for now path loss and
shadowing factors in 𝐃. This channel can offer a sum-rate of

Rsum =
K∑

k=1
log2

(
1 + Pavg𝜆

2
k
)

(15.8)

where Pavg is the average power spent per terminal and
{
𝜆k
}K

k=1 are the singular values
of 𝐇. If the channel matrix is normalized such that ||

|
Hij

|
|
|
∼ 1 (where ∼ means equality

of the order of magnitude), then
K∑

k=1
𝜆2

k = ‖𝐇‖2
F ≈ MK , ‖⋅‖F represents the Frobenius

norm. Under this constraint the sum rate Rsum is bounded as

log2
(
1 + MKPavg

)
⩽ Rsum ⩽ K log2

(
1 + MPavg

)
(15.9)

The lower bound (left inequality) is satisfied with equality if 𝜆2
1 = MK and 𝜆2

2 = · · · =
𝜆2

k = 0 and corresponds to a rank-one (line-of-sight) channel. The upper bound (right
inequality) is achieved if𝜆2

1 = · · · = 𝜆2
k = M.This occurs if the columns of𝐇 are mutually

orthogonal and have the same norm, which is the case when we have favorable propa-
gation.

Under this assumption of favorable propagation defined by (15.6), the base station
could process its received signal by a matched-filter (MF)

𝐆H𝐲 =
√

Pavg𝐆H𝐆𝐱 +𝐆H𝐧

≈ M
√

Pavg𝐃𝐱 +𝐆H𝐧, for M >> K (15.10)

where we have used 𝐆H𝐆 ≈ M𝐃, which follows from (15.6).

Remarks and Links with Large Random Matrices

The bounds in (15.9) are too loose. Starting with (15.7) or (15.8), we can derive
much tighter bounds. The key is the observation that 𝐆 is a large-dimensional
random matrix, and thus 1

M
𝐆𝐆H is the sample covariance matrix. The matrix

type 1
M
𝐆H𝐆 = 1

M
𝐃1∕2𝐇H𝐇𝐃1∕2 has been widely investigated in the random matrix

literature. For example, see Section 15.3.6 and Section 15.4.1.
Roughly speaking, to obtain (15.6), the assumption of M ≫ K (this condition is

required by the classical law of large numbers) is too strong, and can be greatly relaxed
in the modern random matrix theory. This direction of research may be pursued.

The sample covariance matrix 1
M
𝐆𝐆H is of paramount significance to high-dimensional

statistics. The sample covariance matrix 1
M
𝐆𝐆H also plays a central role here in obtain-

ing both the bounds of the sum rate (15.9) and the precoding techniques (15.10)
or (15.13).

Our departure point for statistical analysis usually starts with the sample covariance
matrix 1

n
𝐙𝐙H . Here𝐙 is a complex p × n random matrix, and p and n go to infinity simul-

taneously: p → ∞, n → ∞, but their ratio is concentrated around c, p∕n → c ∈ (0,∞).
Let us first assume that the entries of 𝐙 are i.i.d with variance 1. Results on the global

behavior of the eigenvalues of 1
n
𝐙𝐙H mostly concern the spectral distribution, that is
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the 1
p

p∑

i=1
𝛿𝜆i

, where 𝛿 denotes the Dirac measure. The spectral distribution converges,

n → ∞, p → ∞ with p∕n → c ∈ (0, 1], to a deterministic measure with density
function

1
2𝜋c

√
(a − x) (b − x)𝕀(a,b) (x) , a =

(
1 +

√
c
)2
, b =

(
1 −

√
c
)2

where 𝕀(x) is the indicator function. This is the so-called Marchenko–Pastur law.
The remarkable observation is when the size of random matrices is sufficiently large,

we are able to exploit the unique phenomenon: deterministic spectral distribution is
reached. The statistical properties of the entries of the large random matrix are so gen-
eral and flexible.

15.3.4 Precoding Techniques

Assume that the base station has perfect knowledge of 𝐆. Let 𝐀 be an M × K linear
detector matrix. By using the linear detector, the received signal vector 𝐫 is separated
into streams by multiplying it with 𝐀H as follows

𝐫 = 𝐀H𝐲 (15.11)

We have three conventional linear detectors: maximum ratio combining (MRC), zero
forcing (ZF) and minimum mean-square error (MMSE)

𝐀 =
⎧
⎪
⎨
⎪
⎩

𝐆 for MRC
𝐆
(
𝐆H𝐆

)−1 for ZF

𝐆
(
𝐆H𝐆 + 1

Pavg
𝐈K

)−1
for MMSE

(15.12)

From (15.1) and (15.11), the received vector after using the linear detector is given by

𝐫 =
√

Pavg𝐀H𝐆𝐱 + 𝐀H𝐧 (15.13)

Let rk and xk be the k-th elements of the K × 1 vectors 𝐫 and 𝐱, respectively. Then

rk =
√

Pavg𝐚H
k 𝐠kxk +

√
Pavg

K∑

i=1,i≠k
𝐚H

i 𝐠ixi + 𝐚H
i 𝐧 (15.14)

where 𝐚k and 𝐠k are the k-th columns of the matrices 𝐀 and 𝐆, respectively. For a
fixed-channel realization 𝐆, the noise-plus-interference term is a random variable with

zero mean and variance Pavg

K∑

i=1,i≠k

|
|
|
𝐚H

k 𝐠i
|
|
|

2
+ ‖
‖𝐚k

‖
‖, where || ⋅ || represents the Euclidean

norm. By modeling this term as additive Gaussian noise independent of xk , we can
obtain a lower bound on the achievable rate. Assuming further that the channel is
ergodic so that each codeword spans over a large (infinite) number of realizations of
the fast-fading factor of 𝐆, the ergodic achievable uplink rate of the k-th user is

Rsum = 𝔼log2 det (1 + SNR) (15.15)
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where

SNR =
Pavg

|
|
|
𝐚H

k 𝐠k
|
|
|

2

Pavg

K∑

i=1,i≠k

|
|
|
𝐚H

k 𝐠i
|
|
|

2
+ ‖
‖𝐚k

‖
‖

(15.16)

When M grows large, M → ∞, it follows from (15.6) that 1
M
𝐆H𝐆 → 𝐃, and hence the

ZF and MMSE filters tend to that of the MRC. Thus, by using the law of large numbers,
we can arrive at the same result for the ZF and MMSE receivers.

15.3.5 Downlink System Model

For each use of the channel the base station transmits an M × 1 vector, 𝐱 through its M
antennas, and the K terminals collectively receive a K × 1 vector, 𝐲,

𝐲 =
√
𝜌𝐆T𝐱 + 𝐧 (15.17)

where 𝐧 is the K × 1 vector of receiver noise whose components are independent
and distributed as N(0, 1). The quantity 𝜌 is proportional to the ratio of power to
noise variance. The total transmit power is independent of the number of antennas,

𝔼
(
‖𝐱‖2) = 1 (15.18)

where || ⋅ || represents the Euclidean norm of a vector.
The known capacity result for this channel, see, for example [628] and [629], assumes

that the terminals as well as the base station know the channel 𝐆. Let 𝚪 [628, 629] be a
diagonal matrix whose diagonal elements constitute a K × 1 vector 𝜸 = (𝛾1,… , 𝛾K )T . To
obtain the sum capacity requires performing a constrained optimization:

Rsum = max
𝛾k

log2 det
(
𝐈M + 𝜌𝐆𝚪𝐆H)

subject to
K∑

k=1
𝛾k = 1, 𝛾k ⩾ 0, ∀k

(15.19)

Under favorable propagation conditions (15.6) and a large excess of antennas, the
sum capacity has a simple asymptotic form, By using the fundamental matrix identity
(or Sylvester determinant theorem) that for all 𝐀 ∈ ℂp×q,𝐁 ∈ ℂq×p

det
(
𝐈p + 𝐀𝐁

)
= det

(
𝐈q + 𝐁𝐀

)
(15.20)

we have

Rsum = max
𝛾k

log det
2

(
𝐈K + 𝜌𝚪1∕2𝐆𝐆H𝚪1∕2)

≈ max
𝛾k

log det
2

(
𝐈K + M𝜌𝚪𝐃

)

= max
𝛾k

K∑

k=1
log2

(
1 + M𝜌𝛾k𝛽k

)
(15.21)

The significance of (15.20) is emphasized here in the context of random matrix theory
[67, 345]. According to [67, p. 252], Percy Deift has half-jokingly termed this “the most
important identity in mathematics.” This formula is particular useful when computing
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determinants of large matrices (or infinite-dimensional operators), as one can often use
it to transform such determinants into much smaller determinants. In particular, the
asymptotic behavior of p × p determinants as p → ∞ can be converted via this formula
into determinants of a fixed size (independent of p), which is often a more favorable
situation to analyze.

We can use Roy’s largest root test (Section 8.10) for the detection in (15.13)
and (15.17).

15.3.6 Random Matrix Theory

So-called favorable propagation, or (15.6), plays a central role in the above asymptotic
system analysis.

We have two asymptotic regimes: (i) K is fixed and M → ∞, or M ≫ K ; (ii) K → ∞,
M → ∞, but the ratio K∕M tends to a fixed ratio K∕M → c ∈ (0,∞). Case (i) has been
assumed in (15.6).

Now we consider case (ii), which belongs to the territory of random matrix the-
ory [39]. The details can be found in the previous chapters. Our treatment of this new
paradigm for massive MIMO is beyond the scope of this book and will be reported
elsewhere.

• In Example 4.3.6, the MMSE receiver is treated using large random matrices.
• See also Section 7.8.1 for massive MIMO systems.
• In Example 3.6.3, the mutual information expression is valid for the massive MIMO

analysis.
• The log-determinant of random matrices in 8.6 can be used for massive MIMO.

To some degree, the massive MIMO system may be viewed as a big data system in the
sense of Table 3.1 in Section 3.2.

The goal of this example is to illustrate how the massive MIMO can be viewed to
mimic the large CDMA systems.

Example 15.3.1 (multiuser CDMA systems) Consider a symbol synchronous
direct sequence code division multiple access (DS-CDMA) system with K users. The
discrete-time model for the received signal y in a symbol interval is

𝐲 =
K∑

k=1
xk𝐬k + 𝐰 (15.22)

where the xk is the symbol transmitted by user k, 𝐬k ∈ ℝN is the signature sequence of
user k and 𝐰k ∈ ℝN is the noise vector with mean zero and covariance matrix 𝜎2𝐈. We
also assume that the symbol vector 𝐱 = (x1,… , xK )T has a covariance matrix 𝐏 where
𝐏 = diag

(
P1,… ,PK

)
with Pk being the received power of user k, that is, 𝔼x2

k = Pk and
that the symbol vector is uncorrelated with the noise. Putting 𝐒 =

(
𝐬1,… , 𝐬K

)
∈ ℝN×K ,

we rewrite (15.22) as

𝐲 = 𝐒𝐱 + 𝐰 (15.23)

Recall (15.1) that

𝐲 =
√

Pavg𝐆𝐱 + 𝐰 (15.24)
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where we replace 𝐧 with 𝐰 to use the same notation here. Using 𝐆 as the precoder, we
have

𝐫 = 1
M

𝐆H𝐲 = 1
M

𝐆H𝐆𝐱 + 1
M

𝐆H𝐰 (15.25)

or

𝐫 = 𝐓𝐱 + 𝐰′ (15.26)

where 𝐓 = 1
M
𝐆H𝐆 and the filtered noise 𝐰′ = 1

M
𝐆H𝐰 is also Gaussian. Clearly, the

matrices 𝐒 and 𝐓 play similar roles. We can design the system to mimic the CDMA
system, using this analogy.

The engineering goal is to demodulate the transmitted x + k for each user. Assume
that the receiver has already acquired the knowledge of the signature sequences. For
user k, the linear minimum mean-square error (LMMSE) receiver generates an output
in a form 𝐚T

k 𝐲 where 𝐚k is chosen to minimize the mean-squared error

𝔼||
|
xk − 𝐚T

k 𝐲
|
|
|

2
(15.27)

The relevant performance measure is the signal-to-interference ratio (SIR) of the esti-
mate, which is defined by

𝛽k = Pk𝐬T
k
(
𝐒k𝐏k𝐒T

k + 𝜎2𝐈
)−1𝐬k , k = 1,… ,K (15.28)

where 𝐒k and 𝐏k are obtained from 𝐒 and 𝐏 by deleting the k-th column, respectively.
If signature sequences are modeled as being random, one may further proceed with

the analysis using random matrix theory when the number of users K and the processing
gain N approach infinity, that is, suppose

𝐬k = 1
√

N

(
v1k ,… , vNk

)T

for k = 1,… ,K , where
{

vik , i, k = 1,…
}

are independent and identically distributed
(i.i.d.) random variables.

Example 15.3.2 (capacity of the MIMO communication channel) Example 3.6.3,
addresses massive MIMO capacity. We highlight some points. Denoting the number of
transmitting antennas by M and the number of receiving antennas by N , the channel
model is

𝐲 = 𝐇𝐬 + 𝐧 (15.29)

where 𝐬 ∈ ℂM is the transmitted vector, 𝐲 ∈ ℂ is the received vector,𝐇 ∈ ℂN×M is a com-
plex matrix and 𝐧 ∈ ℂN is the zero mean complex Gaussian vector with independent,
equal variance entries.

Let 𝐇 be an n × n Gaussian random matrix with complex, independent, and identi-
cally distributed entries of zero mean and unit variance. Given an n × n positive definite
matrix 𝐀, and a continuous function f ∶ ℝ+ → ℝ such that ∫ ∞

0 e−𝛼t|f (t)|2dt <∞ for
every 𝛼 > 0, Tucci and Vega [54] find a new formula for the expectation

𝔼
[
Tr

(
f
(
𝐇𝐀𝐇H))]
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Taking f (x) = log (1 + x) gives another formula for the capacity of the MIMO communi-
cation channel, and taking f (x) = (1 + x)−1 gives the MMSE achieved by a linear receiver.
In this example, the matrix size n is arbitrary for n ≥ 2.The 2 × 2 case is explicitly given
in Example 3.6.3.

Example 15.3.3 (distributed MIMO) Section 6.14 addresses Euclidean random
matrices. This model may be applied to massive MIMO, where each antenna is viewed
as a scattering center located at a random position 𝐫i, i = 1,… ,N . We are interested
in the collective radiation from the region V containing N random located antennas.
This is interesting when N is large, say N = 104. This is analogous with collective
spontaneous emission in dense atomic systems consisting of N atoms [320]. One
extension of the work in this section is to consider the impact of multipath on the
eigenvalue distributions, because only the free-space Green’s function is considered for
the path with the line of sight (LOS) between the transmitter and the receiver.

For an arbitrary V , we have

𝐀 = 𝐇𝐓𝐇H (15.30)

The advantage of this representation lies in the separation of two different sources of
complexity: the matrix 𝐇 is random, but independent of the function f , whereas the
matrix𝐓depends on f but is not random. Often𝐓 is a Hermitian positive definite matrix.

Furthermore, if we assume that 𝔼Hij = 0, we readily find that Hij are identically dis-
tributed random variables with zero mean and variance equal to 1∕N .

We will assume, in addition, that Hij are independent Gaussian random variables. This
assumption largely simplifies calculations but may limit applicability of our results at
high densities of points 𝜌.

Now we can check that our model satisfies the conditions of Example 15.3.2, and thus
use the results there to obtain the capacity. ◽

Example 15.3.4 (decentralized computing for eigenvalues) Large-data processing
and analysis, often in real or near-real time, drives nearly every aspect of computing
engineering. The ability to gather and analyze massive amounts of information will be
a decisive factor for the fifth generation (5G) wireless communication system that must
support a massive number of low-rate devices [140, 141]. A cognitive radio network
(CRN) is also part of a proposed 5G heterogeneous wireless cellular architecture [140,
141]. To support this architecture, distributed computing is central to a large-scale cog-
nitive radio network.

We require global solutions that optimize data collection, data modeling, and com-
puting. The general solutions are not tractable analytically. We make two fundamental
assumptions: (i) the massive data are modeled as large random matrices; (ii) algorithms
only depend on eigenvalues of these random matrices.

We make assumption (ii) to simplify the algorithms required for distributed comput-
ing. Computing is critical to real-time applications such as detection and estimation.
Often the eigenvalues of large random matrices need be computed in real time. As far
as we are aware, all previous works (except a few papers) assume a centralized architec-
ture, in which a fusion center gathers the signal samples received by all sensors, process
the data, and forwards the decision back to all nodes. Such an architecture suffers from
scalability issues and is not suitable for large-scale, multi-hop networks, where the fusion
center may be many hops away from peripheral nodes.
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For this reason, we seek a decentralized implementation of eigenvalue-based applica-
tions, so that computational effort is distributed across multiple sensor nodes commu-
nicating iteratively with neighbors (i.e., gossip algorithms) and the algorithm’s statistics
are computed locally by each node. We propose two solutions based on iterative eigen-
value algorithms—the power method and the Lanczos algorithm. In our large-scale
network testbed at TTU, these algorithms can be implemented in a distributed fashion
by applying distributed average consensus algorithms. The only relevant work is listed
in [630–632]. ◽

15.4 Free Probability for the Capacity of the Massive
MIMO Channel

See Section 5.8 for the basics of free probability. The deformed quarter-circle law has
very important role in many practical fields. Consider the wireless MIMO system is
defined as

𝐲 =
√
𝛾𝐇𝐱 + 𝐧

The mutual information is derived as
1
N

I (𝛾) = ∫ log (1 + 𝛾x)dℙ𝐇𝐇H (x) (15.31)

As an example in MIMO system, Rayleigh i.i.d. channel 𝐇 ∈ ℂN×M is a simple applica-
tion of the deformed quarter circle law and the mutual information reads the following
expression:

lim
N→∞

1
N

log det
(
𝐈 + 𝛾𝐇𝐇H) = lim

N→∞

1
N

Tr log
(
𝐈 + 𝛾𝐇𝐇H)

= 𝜙

(
𝐈 + 1

𝜎2 𝐇𝐇H
)

= ∫
(

1+
√

c
)2

(
1−

√
c
)2 log (1 + 𝛾x)

√
4c − (x − 1 − c)2

2𝜋x
dx

(15.32)

as M,N → ∞ with the ratio c = M∕N fixed. It follows from (15.31) that

1
N

I (𝛾) = log
(

g (𝛾, c) − 2
2𝛾g(𝛾, c)c

)

+
g (𝛾, c)

2𝛾
+ c2 log c𝛾 (15.33)

where g
(
x, y

) ≜ 1 + x − xy −
√

(x + 1)2 + xy
(
xy + 2 − 2x

)

15.4.1 Nonasymptotic Theory: Concentration Inequalities

The treatment in the literature belongs to the asymptotic regimes we mentioned above.
There is the third regime: nonasymptotic theory using concentration of measure phe-
nomenon. Qiu and Wicks [40] give an applied treatment of this topic. Due to space,
we cannot go in depth here but we can highlight some points in the context of massive
MIMO and big data.
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• In Section 3.14, concentration of the spectral measure for large random matrices is
studied in the form of Tr f (𝐗) where 𝐗 is a random matrix and f is a convex function.

• See Section 8.5 for some commonly used concentration inequalities.
• In Section 8.8.1, the eigenvalues apply to nonasymptotic, finite sample regimes.

Combing this result with (15.8), we can obtain a new expression for the achievable
sum rate.

• In Section 8.3, the eigenvalue bounds for expectation and variance are obtained. We
can leverage these bounds by studying the functions of eigenvalues such as (15.8).

Let log𝜀 (x) = log (max (𝜀, x)) , and det𝜀 (𝐗) =
∏

i
max

(
𝜆i (𝐗) , 𝜀

)
where 𝐗 is a square

Hermitian matrix.

Lemma 15.4.1 ([213]) Suppose that n∕p ∈ (0, 1] is a fixed constant. Consider a
real-valued random matrix 𝐀 =

[
𝜉ij
]

1⩽i⩽n,1⩽j⩽p where 𝜉ij are jointly independent with
zero mean and unit variance, and satisfy one of the following conditions:

• 𝜉ij is almost surely bounded by a constant C.
• 𝜉ij satisfies the logarithmic Sobolev inequality with uniformly bounded constant cLS.

Then, for any 𝜀 > 0 and t > 4C
√
𝜋

√
n(n+p)

, there exists a constant c > 0 such that

ℙ
(
|
|
|
|

1
n

log det
(
𝜀+ 1

n
𝐀𝐀T

)
−𝔼

(1
n

log det
(
𝜀+ 1

n
𝐀𝐀T

))|
|
|
|
> t

)

⩽ 4 exp(−c𝜀2t2n3)

(15.34)

and

ℙ

(
|
|
|
|
|

1
p

log det𝜀
(1

n
𝐀𝐀T

)
− 𝔼

(
1
p

log det𝜀
(

1
p
𝐀𝐀T

))|
|
|
|
|
> t

)

⩽ 4 exp
(
−c𝜀2t2p3)

(15.35)

Proof. Observe that the Lipschitz constant of log(𝜀 + x) is upper bounded by 1∕𝜀when
x ≥ 0. If 𝜉ij is almost surely bounded by C and hence each entry of 1

√
n
𝐀 is bounded by

1
√

n
C, then applying Part (a) of Corollary 3.14.2 (which is [199, 1.8(a)]) leads to

ℙ
(
|
|
|
|

1
n

log det
(
𝜀𝐈 + 1

n
𝐀𝐀T

)
− 𝔼

(1
n

log det
(
𝜀𝐈 + 1

n
𝐀𝐀T

))|
|
|
|
>

n + p
n

t
)

⩽ 4 exp

(

− 𝜀2

4C2

(

t −
2C

√
𝜋

𝜀
√

n (n + p)

)

n(n + p)2

)

Setting t to be a positive constant independent of n, we have for sufficiently large n
that

ℙ
(
|
|
|
|

1
n

log det
(
𝜀𝐈 + 1

n
𝐀𝐀T

)
− 𝔼

(1
n

log det
(
𝜀𝐈 + 1

n
𝐀𝐀T

))|
|
|
|
>

n + p
n

t
)

⩽ 4 exp
(

−𝜀
2t2

4C2 n3
)
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If 𝜉ij satisfies the logarithmic Sobolev inequality with uniformly bounded constant cLS,

then the logarithmic Sobolev constant is bounded above by 1
n

cLS, and hence Part (b) of
Corollary 3.14.2 (which is [199, 1.8(b)]) leads to

ℙ
(
|
|
|
|

1
n

log det
(
𝜀𝐈 + 1

n
𝐀𝐀T

)
− 𝔼

(1
n

log det
(
𝜀𝐈 + 1

n
𝐀𝐀T

))|
|
|
|
>

n + p
n

t
)

⩽ 2 exp
(

−
𝜀2t2(n + p)2

2cLS

)

The proof is completed by observing that n∕p is a given constant.
Given that the Lipschitz constant of the function log𝜀 (x) is also 1∕𝜀, the concentration

result for 1
p

log det𝜀
(

1
n
𝐀𝐀T

)
follows with the same machinery.

Now that we have established the concentration results for 1
n

log det
(
𝜀𝐈 + 1

n
𝐀𝐀T

)
, it

remains to determine 𝔼
(

1
n

log det
(
𝜀𝐈 + 1

n
𝐀𝐀T

))
. There are many ways. One is given

above in Example 3.6.3. Here we show another approach.

Lemma 15.4.2 ([213]) Let 𝐀 =
[
𝜉ij
]

1⩽i⩽n,1⩽j⩽p be a real-valued random matrix such
that 𝜉ij are jointly independent with zero mean and unit variance. For any small constant
𝜀 > 0, we have

𝔼
(1

n
log det

(
𝜀𝐈 + 1

n
𝐀𝐀T

))
⩽ 1

n
log𝔼

[
det

(
𝜀𝐈 + 1

n
𝐀𝐀T

)]

⩽ −1 + O
(

log n
n

)

+ 2
√
𝜀 (15.36)

Additionally, under Condition (a) or (b) of Lemma 15.4.1, 𝐀 satisfies

𝔼
(1

n
log det

(
𝜀𝐈 + 1

n
𝐀𝐀T

))
⩾ −1 − O

(
log n

n

)

(15.37)

15.5 Spectral Sensing for Cognitive Radio

Spectral sensing is a basic function in a cognitive radio [39, 61, 633]. Large random
matrices are connected with spectral sensing through matrix functions [39, 61].

When the sizes of random matrices are large, concentration inequalities become
inevitable. To account for this basic phenomenon, the monograph [40] develops the
theory from the mathematical foundation to the algorithms.

Bibliographical Remarks

Communication is a critical ingredient for smart grid. It will require more discussion in
future.

Early important references include [546,551,552,634,635] and the IEEE special issue
in [636].
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Section 15.3 draws material from [637]and [638]. We mainly follow the notation of
[637].

Example 15.3.1 is taken from [639], [640] and [410] with some modification for the
massive MIMO, to illustrate how the massive MIMO can be viewed to mimic the large
CDMA systems.

In Section 15.4.1, we draw material from [213] and [286] to put in our context.
The results in Section 5.8 can be found in [139].
The paper [641] gives a first glimpse into, and opens up future work in, many unex-

ploited research areas of applying wireless sensor networks (WSNs) in smart grid by
providing an overview of the opportunities and challenges. In Section 10.9, we draw
material from [641].

Distributed detection and estimation in wireless sensor networks is reviewed in [46].
In Section 16.1, we draw material from this paper. Section 16.3 draws from [642].
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16

Big Data for Sensing

In [40], we treat a sensing system as a big data system and model the massive amount
of data with the aid of large random matrices—see Fig. 1.6 for illustration. This chapter
takes the same viewpoint and complements the above book.

16.1 Distributed Detection and Estimation

An emerging field is the use of wireless sensor networks (WSNs) as a support for smart
grids. In such a case, a WSN is useful to: (i) monitor and predict energy production from
renewable sources of energy such as wind or solar energy; (ii) monitor energy consump-
tion; (iii) detect anomalies in the network.

Our problem can be stated as follows: given a large number of sensor nodes (say from
tens to hundreds), how can we obtain functions of estimation and detection in a dis-
tributed manner? A sensor is defined in a very general sense. Examples include wireless
sensors and cognitive radios. A cognitive radio deals with much more data [44].

16.1.1 Computing while Communicating

In a very general setting, taking a decision based on the data collected by the sen-
sors can be interpreted as computing a function of these data. Let us denote by
xi, i = 1,… ,N , by the measurements collected by the i-th node of the network, and by
f (𝐱) = f

(
x1,… , xN

)
the function to be computed.

To exploit the structure of the function f (𝐱) = f
(
x1,… , xN

)
to be computed, it is nec-

essary to define some relevant structural properties. One important property is divisi-
bility. Let  be a subset of {1, 2,… ,N} and let 𝜋 ∶=

{
C1,… ,Cs

}
be a partition of .We

denote by 𝐱Ci
the vector composed by the set of measurements collected by the nodes

whose indices belong to Ci. A function f (𝐱) = f
(
x1,… , xN

)
is said to be divisible, for

any  ⊂ {1, 2,… ,N} and any partition 𝜋, there exists a function g(𝜋) such that

f
(
𝐱C

)
= g(𝜋)

(
f
(
𝐱C1

)
, f

(
𝐱C2

)
,… , f

(
𝐱Cs

))
(16.1)

In words, (16.1) represents a sort of “divide and conquer” property: a function f (𝐱) is
divisible if it is possible to split its computation into partial computations over subsets
of data and then recombine the partial results to yield the desired outcome.

The idea of mingling computations and communications was proposed in [643]. An
interesting link is established in [644] between the properties of the function f (𝐱) to

Smart Grid using Big Data Analytics: A Random Matrix Theory Approach, First Edition.
Robert C. Qiu and Paul Antonik.
© 2017 John Wiley & Sons Ltd. Published 2017 by John Wiley & Sons Ltd.
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be computed by the network and the topology of the communication network. Let
 (

f ,N
)

be the range of f (𝐱) and |
|
|
 (

f ,N
)|
|
|

the cardinality of  (
f ,N

)
. Under the

following assumptions, we have

A.1 f (𝐱) is divisible;
A.2 the network is connected;
A.3 the degree of each node is chosen as d (N) ⩽ k1 log |

|
|
 (

f ,N
)|
|
|
;

then, the rate for computing f (𝐱) scales with N as

R (N) ⩾
c1

log |
|
|
 (

f ,N
)|
|
|

(16.2)

Data uploading. Suppose it is necessary to convey all the data to the sink node. If each
observed vector belongs to an alphabet  with cardinality ||, the cardinality of the
whole data set is |

|
|
 (

f ,N
)|
|
|
= ||N

. So, log |
|
|
 (

f ,N
)|
|
|
= N log || . From (16.2), the

capacity of the network scales as 1∕N .
Decision based on the histogram of the measurements. Let us suppose now that the

decision to be taken at the control node can be based on the histogram of the data
collected by the nodes, with no information loss. In this case, the function f (𝐱) is the
histogram. It can be verified that the histogram is a divisible function. In this case the
rate in (16.2) scales as 1∕ log N . If the decision can be based on the histogram of the data,
rather than on each single measurement, adopting the right communication scheme, the
rate per node behaves 1∕ log N , rather than 1∕N , with a rate gain N∕ log N .

Symmetric functions. Let us consider the case where f (𝐱) is a symmetric function. We
recall that a function f (𝐱) is symmetric if it is invariant to permutations of its arguments:
f (𝐱) = f (𝚷𝐱) for any permutation matrix 𝚷 and any argument vector 𝐱. This property
reflects the so called datacentric view. Examples of symmetric functions include the
mean, median, maximum/minimum, and the histogram. The key property of symmetric
functions is that it can be shown that they depend on the argument 𝐱 only through the
histogram of 𝐱. Hence, the computation of symmetric functions is a particular case of
the example examined before. Thus, the rate scales again as 1∕ log N .

16.1.2 Distributed Detection

Consider the hypothesis-testing problem
0 ∶ p

(
𝐱1,… , 𝐱N ;0

)

1 ∶ p
(
𝐱1,… , 𝐱N ;1

)

where p
(
𝐱1,… , 𝐱N ;0

)
and p

(
𝐱1,… , 𝐱N ;1

)
the joint probability density function of

the whole set of observed data, under the hypotheses 0 and 1, respectively. The like-
lihood ratio test amounts to comparing the likelihood ratio (LR) with a threshold 𝛾, and
decide for 1, if the threshold is exceeded or for 0, otherwise. In formulas

Λ (𝐱) ∶= Λ
(
𝐱1,… , 𝐱N

)
=

p
(
𝐱1,… , 𝐱N ;1

)

p
(
𝐱1,… , 𝐱N ;0

)

1
⩾
⩽0

𝛾 (16.3)

The LR test (LRT) is asymptotically optimal under a Bayes or a Neyman–Pearson crite-
rion [423], in the sense that the length of random vector 𝐱 goes infinite.
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Let us now assume that the observations taken by different sensors are statistically
independent, conditioned to each hypothesis. This is an assumption valid in many cases.
Under such an assumption, the LR can be factorized as follows

Λ (𝐱) ∶=

N∏

n=1
p
(
𝐱n;1

)

N∏

n=1
p
(
𝐱n;0

)
=

N∏

n=1
Λn

(
𝐱n

)
1
⩾
⩽0

𝛾 (16.4)

where

Λn
(
𝐱n

)
=

p
(
𝐱n;1

)

p
(
𝐱n;0

)

denotes the local LR at the n-th node. In this case, the global function Λ (𝐱) in (16.4)
possesses a clear structure: it is factorizable in the product of the local LR functions. A
factorizable function is also divisible.

The logarithm of the likelihood ratio can be written as

logΛ
(
𝐱1,… , 𝐱N

)
=

N∑

i=1
logΛi

(
𝐱i
)
=

N∑

i=1
log

[
log pXi

(
𝐱i;1

)
− log pXi

(
𝐱i;0

)]

(16.5)

This formula shows that, in the conditionally independent case, running a consensus
algorithm is sufficient to enable every node to compute the global LR. It is only required
that every sensor initializes its own state with the local log-LR logΛi

(
𝐱i
)

and then runs
the consensus iterations. If the network is connected, every node will end up with the
average value of the local LRs.

16.1.3 Distributed Estimation

Let us denote by 𝜽 ∈ ℝN the parameter vector to be estimated. In some cases, there is
no prior information about 𝜽. In other cases, 𝜽 is known to belong to a given set . In
some applications, 𝜽 may be the outcome of a random variable described by a known
pdf pΘ (𝜽).

Let us denote by 𝐱i the measurement vector collected node i and by 𝐱 ∶=
[
𝐱T

1 ,… , 𝐱T
N

]

the whole set of data collected by all the nodes. The estimation is obtained as the solution
of the following optimization problem

maximize
𝜽

pX|Θ (𝐱|𝜽) pΘ (𝜽) (16.6)

where pΘ (𝜽) is the (known) prior pdf of the parameter vector and pX∕Θ (𝐱|𝜽) is the pdf
of 𝐱 conditioned to 𝜽. Let us consider the case where the pdf can be factorized as

pX;Θ (𝐱;𝜽) = g [𝐓 (𝐱) ,𝜽] h (𝐱) (16.7)

where g(⋅, ⋅) depends on 𝐱 only through 𝐓 (𝐱) where h(⋅) does not depend on 𝜽. The
function 𝐓 (𝐱) is called a sufficient statistic for 𝜽 [423].

A simple (yet common) example is given by the so called exponential family of pdf

p (𝐱;𝜽) = exp [A (𝜽)B (𝐱) + C (𝐱) + D (𝜽)] (16.8)
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Examples of random variables described by this class include the Gaussian, Rayleigh,
and exponential pdfs. Let us assume now that the observations 𝐱i collected by different
nodes are statistically independent and identically distributed (i.i.d.), according to (16.8).
It is easy to check, simply applying the definition in (16.7), that a sufficient statistic in
such a case is the scalar function:

T (𝐱) =
N∑

i=1
B
(
𝐱i
)

(16.9)

This structure suggests that a simple distributed way to enable every node in the network
to estimate the vector 𝜽 locally, without loss of optimality with respect to the centralized
approach, is to run a consensus algorithm, where the initial state of every node is set equal
to B

(
𝐱i
)
. At convergence, if the network is connected, every node has a state equal to

the consensus value: T (𝐱) ∕N . This enables every node to implement the optimal estima-
tion by simply interacting with its neighbors to achieve a consensus. The only necessary
condition for this simple method to work properly is that the network is connected. This
is indeed a very simple example illustrating how consensus can be a fundamental step
in deriving an optimal estimation through a purely decentralized approach relying only
upon the exchange of data among neighbors.

16.1.4 Consensus Algorithms

Consensus algorithms are fundamental to distributed algorithms including detection,
estimation, and computing [645].

Given a set of measurements xi (0) , for i = 1,… ,N , collected by the network nodes,
the goal of a consensus algorithm is to minimize the disagreement among the nodes. This
can be useful, for example, when the nodes are measuring some common variable and
their measurement is affected by error. The scope of the interaction among the nodes is
to reduce the effect of local errors on the final estimate. Consensus is one of fundamental
tools to design distributed decision algorithms that satisfy a global optimality principle,
as corroborated by many works on distributed optimization.

The proper way to describe the interactions among the network nodes is to introduce
the graph model of the network.

Example 16.1.1 (the graph model for N sensors) Let us consider a network com-
posed of N sensors. The flow of information across the sensing nodes implementing
some form of distributed computation can be properly described by introducing a
graph model whose vertices are the sensors, and there is an edge between two nodes
if they exchange information with each other. Let us denote the graph by  = { , }
where  denotes the set of N vertices (nodes) vi and  ⊆  ×  is the set of edges
eij

(
vi, vj

)
.

The most powerful tool to grasp the properties of a graph is algebraic graph theory
[646], which is based on the description of the graph through appropriate matrices.

Let 𝐀 ∈ ℝN×N be the adjacency matrix of the graph , whose elements aij represent the
weights associated to each edge with aij > 0 if eij ∈  and aij = 0 otherwise. According
to this notation and assuming no self-loops, i.e., aii = 0, ∀i = 1,… ,N , the out-degree

of node vi is defined as degout
(
vi
)
=

N∑

j=1
aji. Similarly, the in-degree of node vi is degin
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(
vi
)
=

N∑

j=1
aji. The degree matrix 𝐃 is defined as the diagonal matrix whose i-th diago-

nal entry is dii = deg
(
vi
)
. Let i denote the set of neighbors of node i, so that ||i

|
| =

degin
(
vi
)
, where by | ⋅ | we denote the cardinality of the set. The Laplace matrix of

𝐋 ∈ ℝN×N is defined as
𝐋 ∶= 𝐃 − 𝐀

Some properties of the Laplacian will be used in the distributed algorithms to be pre-
sented later on, and then it is useful to recall them.

Properties of the Laplacian matrix 𝐋 include:

P.1: 𝐋 has, by construction, a null eigenvalue with associated eigenvector the vector 𝟏
composed by all ones. This property can be easily checked verifying that 𝐋1 = 0 since

by construction,
N∑

j=1
aij = dii.

P.2: The multiplicity of the null eigenvalue is equal to the number of connected compo-
nents of the graph. Hence, the null eigenvalue is simple (it has multiplicity one) if and
only if the graph is connected.

P.3: If we associate a state variable xi to each node of the graph, if the graph is undirected,
the disagreement between the values assumed by the variables is a quadratic form
built on the Laplacian [646]:

J (𝐱) = 1
4

N∑

i=1

∑

j∈i

aij
(
xi − xj

)2 =1
2
𝐱T𝐋𝐱 (16.10)

where 𝐱 ∶=
[
𝐱T

1 ,… , 𝐱T
N

]
denote the network state vector and i indicates the set of

neighbors of node i. ◽

Example 16.1.2 (average values) The nodes are measuring a temperature and the
goal is to find the average temperature. In this case, reaching a consensus over the
average temperature can be seen as the minimization of the disagreement, as defined
in (16.10), between the states xi(0) associated with the nodes. The minimization of the
disagreement can be obtained by using a simple gradient-descent algorithm. More
specifically, using a continuous-time system, the minimum of (16.10) can be achieved
by running the following dynamic system

d𝐱 (t)
dt

= −𝐋𝐱 (t) (16.11)

initialized with 𝐱 (0) = 𝐱0,where 𝐱0 is the vector containing all the initial measurements
collected by the network nodes. This means that the state of each node evolves in time
according to the first order differential equation

dxi (t)
dt

=
∑

j∈i

aij
(
xi − xj

)
(16.12)

Hence, every node updates its own state only by interacting with its neighbors.
The solution of (16.11) is given by

𝐱 (t) = exp (−𝐋t) 𝐱 (0) (16.13)
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The convergence of (16.13) is guaranteed because all the eigenvalues of 𝐋 are
non-negative, by construction. If the graph is connected, using P.2, the eigenvalue zero
has multiplicity one. Furthermore, the eigenvector associated to the zero eigenvalue is
the vector 1. Hence, the system (16.11) converges to the consensus state:

lim
t→∞

𝐱 (t) = 1
N
𝟏𝟏T𝐱 (0)

This means that every node converges to the average value of the measurements col-
lected by the whole network:

lim
t→∞

𝐱 (t) = 1
N

N∑

i=1
xi (0) = x∗

Alternatively, the minimization of (16.13) can be achieved in discrete-time through
the following iterative algorithm

𝐱
[
k + 1

]
= 𝐱

[
k
]
− 𝜀𝐋𝐱

[
k
]
∶= 𝐖𝐱

[
k
]

(16.14)

where 𝐖 = 𝐈 − 𝜀𝐋 is the transition matrix. In this case, the discrete time equation is
initialized with the measurements taken by the sensor nodes at time 0, i.e., 𝐱 [0] ∶= 𝐱0.

The convergence is guaranteed. ◽

16.1.5 Random Geometric Graph with Euclidean Random Matrix (ERM)

A random graph is obtained by distributing N points randomly over the d-dimensional
space ℝd and connecting the nodes according to a given rule. The graph topology is
captured by the adjacency matrix 𝐀, which, in this case, is a random matrix. An impor-
tant class of Random Matrices, is the so called Euclidean random matrix (ERM) class.
See also Section 6.14 and Section 16.2. Given a set of N points located at positions 𝐱i,
i = 1,… ,N , an N × N adjacency matrix 𝐀 is an ERM if its generic (i, j) entry depends
only on the difference 𝐱i − 𝐱j:

aij = F
(
𝐱i − 𝐱j

)

where F is a measurable mapping from ℝd to ℝ.An important subclass of ERM is given
by the adjacency matrices of the so called random geometric graphs (RGG). In such a
case, the entries aij of the adjacency matrix are either zero or one depending only on the
distance between nodes i and j:

aij = F
(
𝐱i − 𝐱j

)
=

{
1 if ‖

‖
‖
𝐱i − 𝐱j

‖
‖
‖
⩽ r

0 otherwise
(16.15)

where r is the coverage radius.

Example 16.1.3 (concentration of spectral measure for a random geometric
graph) Assuming that the RGG G(N , r) is connected with high probability, [647]
derived an analytical expression for the algebraic connectivity of the graph: the second
eigenvalue of the symmetric Laplacian, 𝐋 = D − A, where 𝐃 is the degree matrix and 𝐀
is the adjacency matrix.

The analytical tool they used is the concentration of spectral measure [40].
In [648, 649], it was shown that the eigenvalues of the adjacency matrix tend to be
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concentrated, as the number of nodes tend to infinity. In [649], it was shown that
the eigenvalues of the normalized adjacency matrix 𝐀N = 𝐀∕N of an RGG G(N , r),
composed of points uniformly distributed over a unitary two-dimensional torus, tend
to the Fourier series

F̂ (𝐳) = ∫Ωr

exp
(
−j2𝜋𝐳T𝐱

)
d𝐱

coefficients of the function F defined in (16.15), almost surely, for all 𝐳 =
[
z1, z2

]
∈

ℤ2, where Ωr =
{
𝐱 =

[
x1, x2

]T ∈ ℝ2 ∶ ‖𝐱‖ ⩽ r
}

. ◽

16.2 Euclidean Random Matrix

The Euclidean random matrix is introduced in [363,649,650]. See also the outstanding
work of [321, 358, 360] and the PhD dissertation [360]. An n × n Euclidean random
matrix 𝐀n =

(
Aij

)

n×n is defined in [364, 651, 652] with the help of some function g of
n points 𝐱1, 𝐱2,… , 𝐱n that are randomly distributed to g

(
𝐱i, 𝐱j

)
. The elements Aij are

equal to g
(
𝐱i, 𝐱j

)
.

Euclidean random matrices play an important role in description of many physical
models including the electronic levels in amorphous systems, very diluted impurities, and
the spectrum of vibrations in glasses. Here we want to point out the connection between
the Euclidean random matrix and the massive MIMO (or wireless sensor network).

Here we point out a special class of Euclidean random matrices such that [651]

𝐌n =
(

fn
‖
‖
‖
𝐱i − 𝐱j

‖
‖
‖

2)

n×n
(16.16)

where fn(x) is a real function defined on [0,∞), and || ⋅ || is the Euclidean distance with
‖𝐱‖ =

√
x2

1 + · · · x2
N for any vector 𝐱 =

(
x1, .., xN

)
∈ ℝN .

Some literature already exists on the Euclidean matrix model (1.1) for different func-
tions of fn(x). For example, [650] first considered the Gaussian Euclidean random matrix
corresponding to fn (x) = (2𝜋)−3∕2 exp (−x∕2) in (16.16). And taking fn (x) =

√
x for all

n ≥ 2, (16.16) is reduced to

𝐁n =
(
‖
‖
‖
𝐱i − 𝐱j

‖
‖
‖

)

n×n
(16.17)

which is referred as the Euclidean distance matrix. There are also cardinal sine Euclidean
random matrices and cosine Euclidean random matrices with

fn (x) = sin
(

k0
√

x
)
∕
(

k0
√

x
)

and fn (x) =
(
1 − 𝛿ij

)
cos

(
k0
√

x
)
∕
(

k0
√

x
)

where k0 is a constant, and 𝛿ij is the Kronecker symbol. One can study the exponential
Euclidean random matrices with fn (x) = exp

(
−
√

x∕𝜉
)
, where 𝜉 is the location length.

Very recently, Jiang [364] investigated Euclidean random matrices with random vec-
tors generated from geometrical shapes G and obtained some important and interesting
results. Specifically:

1) When the dimension N of the geometry G is fixed and the number of sample points
n → ∞, Jiang [364] showed the empirical distribution of the eigenvaluesof 𝐌n
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converges weakly to 𝛿0 for a big class functions of fn(x). Further, the conclusion holds
regardless of the shape of 𝐆.

2) When N = N(n) becomes large as n increases, some simulations made in [364]
showed that the behavior of the empirical spectral distribution of 𝐌n depends on
the topology of 𝐆. Further, when 𝐌n is generated from lp unit ball BN ,p or sphere SN ,p
with p ≥ 1 and both N and n go to infinity proportionally, Jiang [364] derived the
explicit nice expression for the limiting spectral distribution of scaled 𝐌n. It is in the
form of a + bV where a, b are constants and V has the famous Marchenko– Pastur
distribution. And the condition on fn(x) is that fn(x) is locally twice differential at an
explicit value.

Here BN ,p or sphere SN ,p are defined as

BN ,p =
{
𝐲 ∈ ℝN ; ‖𝐲‖p ⩽ 1

}
and SN ,p =

{
𝐲 ∈ ℝN ; ‖𝐲‖p = 1

}

16.3 Decentralized Computing

Due to the distributed nature of the 5G network, decentralized computing is critical.
Very often, algorithms only depend on eigenvalues of these random matrices. We make
this assumption to simplify the algorithms required for distributed computing.

Computing is critical to real-time applications such as detection and estimation. Often
the eigenvalues of large random matrices need be computed in real time. As far as we
are aware, all previous works (except a few papers) assume a centralized architecture,
in which a fusion center gathers the signal samples received by all sensors, processes
the data, and forwards the decision back to all nodes. Such an architecture suffers from
scalability issues and is not suitable for large-scale, multihop networks, where the fusion
center may be many hops away from peripheral nodes.

For this reason, we seek a decentralized implementation of eigenvalue-based appli-
cations, such that the computational effort is distributed across multiple sensor nodes
communicating iteratively with neighbors (i.e., gossip algorithms) and the algorithm’s
statistics are computed locally by each node. We propose two solutions based on
iterative eigenvalue algorithms—the power method and the Lanczos algorithm. In our
large-scale network testbed, these algorithms can be implemented in a distributed
fashion by applying distributed average consensus algorithms. The only relevant work
is listed in [630–632, 642].

Consider a wireless network consisting of K sensor nodes. During a given time inter-
view (sensing period) each node collects N complex signal samples. Our typical values
for N and K vary from tens to hundreds and to even thousands. The global received
sample matrix is denoted by

𝐘 =
[
𝐲1,… , 𝐲N

]
=

⎡
⎢
⎢
⎣

𝐲[1]T

⋮
𝐲[K]T

⎤
⎥
⎥
⎦

∈ ℂK×N (16.18)

where symbols 𝐲i ∈ ℂK×1, i = 1,… ,N and 𝐲
[
k
]
∈ ℂN×1, k = 1,… ,K are used to denote,

respectively, the columns and (transpose) rows of 𝐘. Physically, column 𝐲i, i = 1,… ,N
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contains the samples received by all nodes at time t = iTs, (where 1∕Ts is the sampling
rate), whereas row 𝐲

[
k
]T contains all samples available at node k at the end of the sensing

period. We then define the sample covariance matrix as

𝐑 ≜ 1
N
𝐘𝐘H (16.19)

Let 𝜆1 ⩾ · · · ⩾ 𝜆K ⩾ 0 be the eigenvalues of 𝐑, without loss of generality sorted in
decreasing order, and 𝐮1,… ,𝐮k the corresponding eigenvectors. The problem can be
stated as follows:

Problem statement for decentralized computing. How can a network compute (or
estimate) one or more of the above eigenvalues without a fusion center that collects
all samples (data matrix) 𝐘, and without explicitly constructing the sample covariance
matrix 𝐑?

Penna and Stanczak [642] derive and analyze two general-purpose algorithms—
referred to as the decentralized power method (DPM) and the decentralized Lanczos
algorithm (DLA)—for distributed computation of one (the largest) or multiple eigen-
values of a sample covariance matrix over a wireless network (K = 40 nodes and N = 10
samples per node were assumed in [642]). Given the increasing popularity of dense,
large-scale wireless sensor networks, applications of eigenvalue-based inference tech-
niques in distributed settings are of great interest. They seek a decentralized method to
compute the eigenvalues of sample covariance matrices over a wireless network, such
that the computational effort is distributed across multiple nodes and the many-to-one
communication protocol is replaced by a more scalable neighbor-to-neighbor protocol.
Eigenvalue-based hypothesis tests can be implemented in a decentralized setting by
using the proposed algorithms—the DPM and the DLA. Such decentralized signal
detection techniques enable sensor nodes to compute global test statistics locally,
thereby performing hypothesis tests without relying on a fusion center.

The popular cooperative energy detector, the test based on the (possibly weighted)
sum of the received signal energies at different sensors, also admits a natural decen-
tralized implementation via average consensus algorithms [653]. This problem was
investigated in [654]. Decentralized energy detection is computationally simpler
than eigenvalue-based techniques, but clearly inherits the well-known shortcomings
of energy detection (suboptimality in multisensor settings and sensitivity to noise
uncertainty).

Possible statistics include:

• Roy’s largest root test: the largest eigenvalue normalized by the noise variance
(optimal under the Neyman–Pearson criterion: 𝜆1∕𝜎2

v ;

• the generalized likelihood ratio test (GLRT) statistic: 𝜆1∕

(
K∑

i=2
𝜆i

)

;

• the sphericity test statistic:

(
K∏

i=1
𝜆i

)

∕

(

1
K

K∑

i=1
𝜆i

)

. Taking the logarithm, we obtain

K∑

i=1
log 𝜆i − log

(
1
K

K∑

i=1
𝜆i

)

= Tr
[
log (𝐑)

]
− log

[ 1
K

Tr (𝐑)
]
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• John’s test:
K∑

i=1
𝜆2

i ∕

(
K∑

i=1
𝜆i

)2

. Or Tr 𝐑2∕(Tr (𝐑))2
.

In the sphericity test statistic, we end up with the trace function Tr f
(
𝐗𝐗H) where

f ∶ ℝ+ → ℝ+ is some continuous function. The concentration of spectral measure phe-
nomenon occurs for this type of trace matrix functions. See Qiu and Wicks [40] for
details.

When the number of sensor nodes K is large, few samples N per node are needed
to achieve high detection performance, thus reducing the size of messages exchanged
between neighboring nodes.

For distributed estimation in a wireless sensor network, multiple spatially distributed
sensors collaborate to estimate the system state of interest, without the support of a
central fusion center due to physical constraints such as large system size and limited
communications infrastructure. Specifically, each sensor makes local partial observa-
tions and communicates with its neighbors to exchange certain information, in order
to enable this collaboration. Due to its scalability for large systems, and robustness to
sensor failures, distributed estimation techniques find promising and wide applications
including in battlefield surveillance, environment sensing, and power-grid monitoring.
Especially in the era of big data and large systems, which usually require overwhelming
computation if implemented in a centralized way, distributed schemes become critical
because they can decompose the computational burden into local parallel procedures.
A principal challenge in distributed sensing, and in distributed estimation in particular,
is to design the distributed algorithm to achieve reliable and mutually agreeable estima-
tion results across all sensors, without the help of a central fusion center. See [655–657]
for the above concerns. See [653, 658] for recent surveys.
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Appendix A: Some Basic Results on Free Probability

A.1 Non-Commutative Probability Spaces

Let  be an algebra of operators that act on a Hilbert space. We will assume that 
contains the identity operator (such algebras are called unital) and that it is closed under
the operation of taking adjoints, that is, if 𝐗 ∈ , then 𝐗∗ ∈ .

It is often convenient to assume further that  is closed either with respect to uniform
operator norm (‖𝐗‖ = sup

‖𝐯‖=1
‖𝐗𝐯‖), or with respect to weak topology (𝐗i → 𝐗 if and only

if ⟨𝐮,𝐗i𝐯⟩ → ⟨𝐮,𝐗𝐯⟩ for all vectors 𝐮 and 𝐯).
In the first case, the algebra is called a C∗-algebra, and in the second case, it is called

a W ∗-algebra or a von Neumann algebra.
A state on the algebra  is a linear functional E ∶  → ℂ, which has the following

positivity property: for all operators 𝐗
E (𝐗∗𝐗) ⩾ 0

A typical example of a state is E (𝐗) = ⟨𝐮,𝐗𝐮⟩ where 𝐮 is a unit vector. Typically, a state
is denoted by letters 𝜑 or 𝜏 but we will use letter E to emphasize the parallel with expec-
tation functional 𝔼 in the classical probability theory.

The name “state” is due to the relation of operator algebras to quantum mechanics.
In this Appendix we will use the words “state” and “expectation” interchangeably. States
may have some additional properties. If E (𝐀∗𝐀) = 0 implies that A = 0, then the state
is called faithful. If 𝐗i → 𝐗 weakly implies that E

(
𝐗i
)
→ E (𝐗) then the state is called

normal. If E (𝐗𝐘) = E (𝐘𝐗) , then the state is called tracial, or simply trace.

Definition A.1.1 A noncommutative probability space (,E) is a pair of a unital
C∗-operator algebra  and a state E with additional property E (𝐈) = 1.

If the state E is tracial, then we call (,E) a tracial noncommutative probability space.
If  is a von Neumann algebra and E is normal, then we call (,E) a W ∗-probability
space.

Here are several examples.
• A classical probability space.
• The algebra of N-by-N matrices. In this case, we can use the normalized trace1 as

the expectation:

1 We use Tr (⋅) to denote the unnormalized trace.

Smart Grid using Big Data Analytics: A Random Matrix Theory Approach, First Edition.
Robert C. Qiu and Paul Antonik.
© 2017 John Wiley & Sons Ltd. Published 2017 by John Wiley & Sons Ltd.
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E𝐗 = tr (𝐗) ∶= 1
N

N∑

i=1
Xii

• The algebra of random N-by-N matrices. The joint probability distribution of the
entries of these matrices is such that all joint moments of these entries are finite. We
define the functional E as the expectation of the trace:

E𝐗 = ⟨tr (𝐗)⟩
Here we used a convenient notation from the physical literature: ⟨Z⟩ denotes the aver-
age of Z over the statistical ensemble, that is, the expectation of the random variable
Z. We often use 𝔼 (Z) to represent ⟨Z⟩ , too.

A.2 Distributions

Suppose that 𝐗1,𝐗2,… ,𝐗n are elements of a noncommutative probability space (,E) .
We will call them random variables. Their distribution is the linear map from the algebra
of polynomials in non-commuting variables 𝐱1, 𝐱2,… , 𝐱n to ℂ

f
(
𝐱1, 𝐱2,… , 𝐱n

)
→ E

[
f
(
𝐗1,𝐗2,… ,𝐗n

)]

The ∗-distribution is a similar map for polynomials in noncommutative variables
𝐱1,… , 𝐱n, 𝐲1,… , 𝐲n, which is given by the formula:

f
(
𝐱1,… , 𝐱n, 𝐲1,… , 𝐲n

)
→ E

[
f
(
𝐗1,… ,𝐗n,𝐗∗

1,… ,𝐗∗
n
)]

In other words, the distribution of a family of random variables is a collection of their
joint moments.

Proposition A.2.1 Suppose that 𝐗 is a bounded self-adjoint element of a
W ∗-probability space (,E) . Then there exists a probability measure 𝜇 on ℝ
such that

E
(
𝐗k) = ∫ℝ

xk𝜇 (dx).

For an N × N random matrix 𝐙, we have

E
(
𝐗k) = 1

N
𝔼
[
Tr

(
𝐙k)] = ∫ℝ

xk𝜇N (dx)

Examples:
• If 𝐗 is a Hermitian matrix, then

𝜇 = 1
N

N∑

i=1
𝛿𝜆i

where 𝜆i are eigenvalues of 𝐗, counted with multiplicity.
• If 𝐗 is a Hermitian random matrix consider as an element of noncommutative prob-

ability space, the spectral probability distribution of 𝐗 is

𝜇 = 1
N
𝔼

( N∑

i=1
𝛿𝜆i

)
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A.3 Asymptotic Freeness of Large Random Matrices

For two random matrices, the statistical independence is replaced with asymptotic free-
ness in free probability theory.

Theorem A.3.1 Let AN and BN be N × N Hermitian matrices that converge in distri-
bution to the pair {a, b}. Let UN be a sequence of N × N independent random unitary
matrices that have the Haar distribution on the unitary group  (N). Then AN and
𝐔N𝐁N𝐔H

N converge in distribution to random variables a and b̃, where b̃ has the same
distribution as b, and a and b̃ are free.

A.4 Limit Theorems

The following theorem is an analog of the central limit theorem for sums of i.i.d. random
variables.

Theorem A.4.1 (limit theorem for sums of free random variables) Let 𝐗1,… ,𝐗n be a
sequence of identically distributed bounded self-adjoint (matrix-valued) random vari-
ables. Assume thatTr

(
𝐗i
)
= 0,Tr

(
𝐗2

i

)
= 1, and that Xi are free. Define𝐒n = 𝐗1 + · · · +

𝐗n.Then the sequence 𝐒n∕
√

n converges in distribution to the standard semicircle ran-
dom variable.

Let us now discuss a free analog of another theorem from classical probability theory,
which is sometimes called the law of small numbers. In the classical case, this law says
that counts of rare events are distributed by the Poisson law.

Let us define the free analog of the Poisson law. Let 𝜇 be a distribution with the density

p (x) = 1
2𝜋x

√

4x − (1 − c + x)2 if x ∈
[(

1 −
√

c
)2
,

(
1 +

√
c
)2
]

where c is is a positive parameter. If x is outside of this interval, then the den-
sity is zero. In addition, if c < 1, then the distribution has an atom at 0 with
weight (1 − c).

This distribution is called the free Poisson distribution with parameter c. It
is also known as the Marchenko–Pastur distribution because it was discovered
in [219].

Theorem A.4.2 Let 𝐗1, ...,𝐗n be self-adjoint random variables with the Bernoulli dis-
tribution

𝜇 =
(

1 − c
n

)
𝛿0 +

c
n
𝛿1

Assume that Xi are free and define

𝐒n = 𝐗1 + · · · + 𝐗n

Then, Sn∕
√

n converges in distribution to the free Poisson distribution with the
parameter c.
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A.5 R-diagonal Random Variables

Generalizations of Haar unitaries based on this property are called R-diagonal random
variables. This generalization seems to be the simplest class of non-Hermitian operators
which that be handled using the methods of free probability.

Theorem A.5.1 Suppose that 𝐔 is a Haar unitary, 𝐇 is an arbitrary operator, and 𝐔
and 𝐇 are free. Then the variable 𝐗 = UH is R-diagonal.

Theorem A.5.2 Suppose that𝐗 is an R-diagonal element in a tracial noncommutative
probability space. Then it can be represented in distribution by a product 𝐔H where 𝐔
is a Haar unitary and 𝐇 is a positive operator that has the same distribution as

√
𝐗H𝐗.

The above theorems say that the sum and the product of two free R-diagonal ele-
ments is R-diagonal. What is more surprising is that powers of an R-diagonal element
are R-diagonal. We write𝐀 ≅ 𝐁 if two random matrices𝐀 and𝐁 are equivalent, meaning
that they have the same ∗-distributions.

Theorem A.5.3 Let 𝐚1, 𝐚2,… , 𝐚n be free R-diagonal random variables in a
C∗-probability space 1 and 𝐀1,𝐀2,… ,𝐀n be self-adjoint random variables in a prob-
ability space 2. Assume that Ai has the same probability distribution as ||𝐚i

|
| ∶=

√
𝐚∗i 𝐚i

for every i. Let 𝐔 be a Haar unitary in 2, which is free from
{
𝐀1,𝐀2,… ,𝐀n

}
. Let

𝚷 = 𝐚n · · · 𝐚1 and 𝐗 = 𝐔𝐀n · · ·𝐔𝐀1. Then 𝚷 ≅ 𝐗.

In other words, if we multiply variables Ai by the Haar-distributed rotation 𝐔, then
we will lose all dependencies and the distribution of the product of these variables will
be the same as if they all were R-diagonal and free. The surprising fact is that 𝐔 is the
same for all Ai.

An important particular case is when all ai are identically distributed.

Proposition A.5.4 Suppose that𝐗 is R-diagonal. Then Xn is R-diagonal for every inte-
ger n ≥ 1.

Proof: Let 𝐗 ≅ 𝐗i and Xi be free. Then 𝐗n ≅ 𝐗n · · ·𝐗1 and the product 𝐗n · · ·𝐗1 is
R-diagonal as a product of free R-diagonal elements. ◽

A.6 Brown Measure of R-diagonal Random Variables

We define a generalization of the eigenvalue distribution for infinite-dimensional
non-normal operators. It is defined only for operators in von Neumann algebras and
uses the fact that in these algebras one can define an analog of the determinant, which
is called the Fuglede–Kadison determinant.

Definition A.6.1 Let 𝐗 be a bounded random variable in a tracial W ∗-probability
space (,E) . Then the Fuglede–Kadison determinant of 𝐗 is defined as

det𝐗 ∶= exp
[1

2
E log (𝐗∗𝐗)

]
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Consider the algebra of N × N matrices with E (𝐗) = 1
N
Tr (𝐗). Then, we can write the

Fuglede–Kadison determinant as det𝐗 =

(
N∏

i=1
si

)1∕N

, where si are the singular values

of the matrix 𝐗∗𝐗. By using results from linear algebra, we have

det𝐗 = (Det (𝐗∗𝐗))
1

2N = |Det (𝐗)|1∕N

where Det (𝐗) is the usual determinant. It follows that

log det (𝐗 − 𝜆𝐈) = 1
N

N∑

i=1
log ||𝜆i − 𝜆||

Here 𝜆i are eigenvalues of 𝐗 taken with multiplicities that are equal to the number of
times that 𝜆i is repeated on the diagonal of the Jordan form of 𝐗.

We can think about function log det (𝐗 − 𝜆𝐈) as a suitable generalization of the loga-
rithm of the modulus of characteristic polynomial.

Definition A.6.2 The L-function of random variable 𝐗 is defined as L𝐗 (𝜆) ∶=
log det (𝐗 − 𝜆𝐈) = E log |𝐗 − 𝜆𝐈| , where |𝐗 − 𝜆𝐈| =

[
(𝐗 − 𝜆𝐈)∗ (𝐗 − 𝜆𝐈)

]1∕2
.

Definition A.6.3 Let 𝐗 be a bounded random variable in a tracial W ∗-probability
space (,E). Then its Brown measure is a measure 𝜇X on the complex plane ℂ defined
by the following equation. Let 𝜆 = x + iy. Then

𝜇𝐗 = 1
2𝜋

ΔL𝐗 (𝜆) dxdy

where Δ = 𝜕2

𝜕x2 +
𝜕2

𝜕y2 is the Laplace operator, and the equality holds in the sense of
(Schwarz) distributions.

For an R-diagonal operator, the Brown measure is invariant with respect to rotations
of the complex plane around the origin and we can write it as a product of the radial and
polar part. Let us list (without proof) some of the properties of the Brown measure:

• It is a unique measure such that L𝐗 (𝜆) = ∫ℂ log |z − 𝜆|d𝜇𝐗 (z) ;
• For every integer k ≥ 0, we have E

(
𝐗k) = ∫ℂ znd𝜇𝐗 (z) ,

• The Brown measure of a normal operator 𝐗 coincides with its spectral probability
distribution.

Theorem A.6.4 Let 𝐗 and 𝐘 be two bounded random variables in a tracial W ∗-
probability space (,E) . Then (i) det (𝐗𝐘) = det𝐗 det𝐘, and (ii) det

(
e𝐗
)
= |
|eE(𝐗)|

| =
exp (Re E (𝐗)).

If 𝐇 is a self-adjoint random variable, and 𝐀 is an arbitrary bounded variable, then

det
[
exp (𝐀∗) exp (𝐇) exp (𝐀)

]
= exp (E (𝐀∗ + 𝐀)) det

[
exp (𝐇)

]
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Appendix B: Matrix-Valued Random Variables

At the heart of modeling big data is the methodology of using large random matrices as
the basic building blocks. Then we study the distribution of the matrix-valued random
variables.

B.1 Random Vectors and Random Matrices

Multivariate analysis deals with issues related to the observations of correlated random
variables. We denote a set of p random variables X1,… ,Xp by a vector

𝐗 =
(
X1,… ,Xp

)T

which is called a random vector. The mean or expectation of𝐗 is defined to be the vector
of expectations:

𝔼 (𝐗) =
⎛
⎜
⎜
⎝

𝔼
(
X1

)

⋮
𝔼
(
Xp

)

⎞
⎟
⎟
⎠

A typical set of multivariate random samples,
{
𝐗1,… ,𝐗n

}
, arises from taking mea-

surements on a p × 1 random vectors 𝐗 for each of n objects or people. It is convenient
to express these observations in matrix form

𝐗 =
(
𝐗1,… ,𝐗n

)T =
⎛
⎜
⎜
⎜
⎝

𝐗T
1

𝐗T
2
⋮
𝐗T

n

⎞
⎟
⎟
⎟
⎠

=
⎛
⎜
⎜
⎜
⎝

X11 X12 · · · X1p
X21 X22 · · · X2p
⋮ ⋮ ⋮

Xn1 Xn2 · · · Xnp

⎞
⎟
⎟
⎟
⎠n×p

Let 𝐗 be a matrix of random variables, which we call a random matrix. Here the rows
of 𝐗 may or may not be random observations of 𝐗. More generally, the expectation of
a random matrix 𝐗 =

(
Xij

)
is defined by the matrix whose (i, j)-th element is 𝔼

(
Xij

)
:

namely, 𝔼 (𝐗) =
(
𝔼
(
Xij

))
.

To model the large datasets, we often require n and p to be large but finite. In practice,
both n and p are comparable, or

n → ∞, p → ∞ but
p
n
→ c ∈ [0,∞)

We call these large-dimensional random matrices or shortly large random matrices.

Smart Grid using Big Data Analytics: A Random Matrix Theory Approach, First Edition.
Robert C. Qiu and Paul Antonik.
© 2017 John Wiley & Sons Ltd. Published 2017 by John Wiley & Sons Ltd.
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If a p × 1 random vector 𝐗 =
(
X1,… ,Xp

)T has mean vector 𝝁 =
(
𝜇1,… , 𝜇p

)T
, the

covariance matrix of 𝐗 is defined by

𝚺 ≡ Var (𝐗) = 𝔼
[
(𝐗 − 𝝁) (𝐗 − 𝝁)T]

Furthermore, if q × 1 random vector 𝐘 =
(
Y1,… ,Yq

)T with a mean vector
𝜼 =

(
𝜂1,… , 𝜂q

)T
, the covariance matrix of 𝐗 and 𝐘 is defined by

Cov (𝐗,𝐘) = 𝔼
[
(𝐗 − 𝝁) (𝐘 − 𝜼)T]

In particular, Cov (𝐗,𝐗) = Var (𝐗) .
The eigenvalue decomposition is

𝚺 = 𝐔𝚲𝐔T

where𝐔T𝐔 = 𝐔𝐔T = 𝐈,𝐔 is the unitary matrix, and𝚲 = diag
(
𝜆1,… , 𝜆p

)
is the diagonal

matrix with positive eigenvalues 𝜆1,… , 𝜆p. The generalized variance is defined as

det (𝚺) = det (𝚲) = 𝜆1 · · · 𝜆p

The other overall measure is

Tr (𝚺) = Tr
(
𝐔𝚲𝐔T) = Tr

(
𝚲𝐔T𝐔

)
= Tr (𝚲) = 𝜆1 + · · · + 𝜆p

which is called the total variance. The eigenvalues of the matrix logarithm function
log (𝚺) are log 𝜆i. Thus we have

log
[
det (𝚺)

]
=

p∑

i=1
log 𝜆i, and Tr

(
log (𝚺)

)
=

p∑

i=1
log 𝜆i

So

Tr
(
log (𝚺)

)
= log

[
det (𝚺)

]

which is valid for any positive definite matrix 𝚺 > 0.
Let 𝐗 be a p-dimensional random vector. Suppose that the probability of the ran-

dom point falling in any (measurable) set E in the p-dimensional Euclidean space ℝp is
expressed as

ℙ (𝐗 ∈ E) = ∫E
f (𝐱) d𝐱

where d𝐱 = dx1 · · · dxp.Then the function f (x) is called the probability density function,
or simply, the density of 𝐗. The characteristic function of 𝐗 is defined as

Φ (𝐭) = 𝔼
[
ej𝐭T𝐗

]

where j =
√
−1, 𝐭 =

[
t1,… , tp

]T , and−∞ < ti < ∞, i = 1,… , p.There exists one-to-one
correspondence between the distribution of 𝐗 and its characteristic function.

If the p × 1 random vector 𝐗 has the density function f (x) and the characteristic func-
tion Φ (𝐭), then

f (𝐱) = 1
(2𝜋)p ∫

∞

−∞
· · ·∫

∞

−∞
e−j𝐭T𝐱Φ (𝐭) dt1 · · · dtp
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B.2 Multivariate Normal Distribution

The density function of a random variable Z with the standard normal (or Gaussian)
distribution  (0, 1) is

f (z) ≡ 1
√

2𝜋
e−z2∕2, −∞ < x < ∞.

A random variable X with a general normal distribution with mean 𝜇 and variance 𝜎2 is
obtained by the linear transformation

X = 𝜎Z + 𝜇
Thus we have

f (x) ≡ 1
√

2𝜋𝜎
e−(x−𝜇)

2∕2𝜎2
, −∞ < x <∞

The approach is generalized as follows. The probability density function of
𝐙 =

(
Z1,… ,Zp

)T
, where Z1,… ,Zp are independent and identically distributed

(i.i.d)  (0, 1) , is given by
n∏

i=1

1
√

2𝜋
e−x2

i ∕2 =

(
1

√
2𝜋

)p

e−𝐳T𝐳∕2

Consider the transformation
𝐗 = 𝚺1∕2𝐙 + 𝝁

The density function is given by

f (𝐱) = 1
(2𝜋)p∕2

1
√

det𝚺
exp

{
−1

2
(𝐱 − 𝝁)T𝚺−1 (𝐱 − 𝝁)

}
(B.1)

where 𝝁 =
(
𝜇1,… , 𝜇p

)T
, and 𝚺 > 0.

Let 𝝁 be a p-dimensional fixed vector and 𝚺 be a p × p positive definite matrix. The
following two statements are equivalent:
• 𝐗 ∼ p (𝝁,𝚺);
• 𝐙 ≡ 𝚺−1∕2 (𝐱 − 𝜇) ∼ p

(
𝟎, 𝐈p

)
.

Let 𝐗1,… ,𝐗p be independent p-dimensional normal vectors with means 𝝁1,… ,𝝁p and
the same covariance matrix 𝚺. Put 𝐗 =

(
𝐗1,… ,𝐗n

)T
, and consider the transform

𝐘 =
(
𝐘1,… ,𝐘n

)T = 𝐇𝐗
where 𝐇 is an n × n orthogonal matrix. Then 𝐘 has the same properties as 𝐗 except that
the means of 𝐘 is changed to 𝔼 (𝐘) = 𝐇𝔼 (𝐗) .

The density function of the n × p random matrix 𝐗 is given by
n∏

i=1

1
(2𝜋)p∕2

1
√

det𝚺
etr

{
−1

2
(𝐱 − 𝜇)T𝚺−1 (𝐱 − 𝜇)

}

= 1
(2𝜋)pn∕2

1
(det𝚺)n∕2 etr

{
−1

2
𝚺−1(𝐗 −𝐌)T (𝐗 −𝐌)

}

where etr (•) represents exp (Tr (•)) and 𝐗 =
(
𝐗1,… ,𝐗n

)T
, and 𝐌 = 𝔼 (𝐗).
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The distribution of an n × p matrix 𝐗 =
(
𝐗(1), · · · ,𝐗(p)

)
is said to be normal if the

random vector defined by

vec (𝐗) ≡
⎛
⎜
⎜
⎝

𝐗(1)
⋮

𝐗(p)

⎞
⎟
⎟
⎠

follows an np-variate normal distribution. If this is the case we simply write Ξ = 𝔼 (𝐗)
and Ψ = Var (vec (𝐗)).

By using the matrix normal distribution, we have

𝐗 ∼ n×p
(
Ξ,𝚺⊗ 𝐈n

)
⇒ 𝐘 = 𝐇𝐗 ∼ n×p

(
𝐇Ξ,𝚺⊗ 𝐈n

)

where 𝐇 is an orthogonal matrix. Here⊗ denotes the Kronecker or direct product; that
is, for matrices 𝐀 =

(
aij

)
and 𝐁, 𝐀⊗ 𝐁 =

(
aij𝐁

)
.

When we write that an r × s random matrix 𝐘 is normally distributed, say, 𝐘 is
r×s (𝐌,𝐂⊗ 𝐃), where 𝐌 is r × s, and 𝐂 and 𝐃 are the positive definite matrices, we
simply mean that 𝔼 (𝐘) = 𝐌 and that 𝐂⊗ 𝐃 is the covariance matrix of the vector
𝐲 = vec (𝐘) .

If the r × s matrix 𝐘 is r×s (𝐌,𝐂⊗ 𝐃) , where 𝐂 (r × r) and 𝐃 (s × s) are positive
definite, then the density function of 𝐘 is

(2𝜋)−rs∕2(det𝐂)−s∕2(det𝐃)−r∕2 etr
[
−1

2
𝐂−1 (𝐘 −𝐌)𝐃−1(𝐘 −𝐌)T

]

B.3 Wishart Distribution

B.3.1 Central Wishart Distribution

The Wishart distribution is a multivariate generalization of the chi-square distribution.
The distributions of sample covariance matrix and various sums of squares and products
are Wishart, provided the underlying distribution is normal.

Let 𝐗 be a p-dimensional random vector that is distributed as p (𝝁,𝚺) and
𝐗1, · · · ,𝐗n are a random sample of 𝐗 with size n. Then the sample mean vector and
covariance matrices are defined by

𝐗 = 1
n

n∑

i=1
𝐗i and 𝐒 = 1

n − 1

n∑

i=1

(
𝐗i − 𝐗

)(
𝐗i − 𝐗

)T

respectively. We know 𝐗 ∼ p (𝝁, (1∕n)𝚺) .
If a p × p random matrix 𝐖 is expressed as

𝐖 =
n∑

i=1
𝐙i𝐙T

i

where 𝐙i ∼ p
(
𝝁i,𝚺

)
and 𝐙1,… ,𝐙n are independent, 𝐖 is said to be a noncentral

Wishart distribution with n degrees of freedom, covariance matrix 𝚺, and noncentrality
matrix𝚫 = 𝝁1𝝁

T
1 + · · · + 𝝁n𝝁

T
n .We write𝐖 ∼ p (n,𝚺;𝚫). In the special case of𝚫 = 0,

we write 𝐖 ∼ p (n,𝚺) .
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If 𝐀 is m (n,𝚺) with n ≥ m, then the density function of 𝐀 is
1

2mn∕2Γ
(

1
2
n
)
(det𝚺)n∕2

(det𝐀)(n−m−1)∕2 etr
(
−1

2
𝚺−1𝐀

)
(𝐀 > 0)

where Γm(⋅) denotes the multivariate gamma function. The multivariate gamma func-
tion is defined as

Γm (a) = ∫𝐀>0
etr (−𝐀) (det𝐀)a−(m+1)∕2 (d𝐀)

where Re a > 1
2
(m − 1) , and the integral is over the space of positive definite (and hence

symmetric) m × m matrices. When m = 1, we drop m in Γm (a) .
If
(
𝐗1,… ,𝐗n

)
are independent p

(
𝝁i,𝚺

)
random vectors and n > p, the density of

the sample covariance matrix

𝐒 = 1
n − 1

n∑

i=1

(
𝐗i − 𝐗

)(
𝐗i − 𝐗

)T

is
1

Γ
(

1
2
n
)
(det𝚺)n∕2

(
1
2
n
)mn∕2

(det𝐒)(n−m−1)∕2 etr
(
−1

2
n𝚺−1𝐒

)
(𝐒 > 0)

The sum of independent Wishart matrices with the same covariance matrix is also
Wishart. If the m × m random matrices 𝐀1,… ,𝐀N are all independent and Ai is

m (n,𝚺) , i = 1,… ,N , then
N∑

i=1
𝐀i is also m (n,𝚺) , where n =

N∑

i=1
ni.

B.3.2 Noncentral Wishart Distribution

The noncentral Wishart distribution generalizes the noncentral 𝜒2 distribution in the
same way that the usual or central Wishart distribution generalizes the 𝜒2 distribution.
It forms a major block for noncentral distributions.

If 𝐀 = 𝐙T𝐙,where the n × m matrix 𝐙 is n×m
(
𝐌, 𝐈n ⊗ 𝚺

)
, then 𝐀 is said to have the

noncentral Wishart distribution with n degrees of freedom, covariance matrix 𝚺, and
matrix of noncentrality parameters 𝛀 = 𝚺−1𝐌T𝐌.We will write that 𝐀 is m (n,𝚺;𝛀) .

If the n × m matrix 𝐙 is n×m
(
𝐌, 𝐈n ⊗ 𝚺

)
, with n ≥ m, then the density function of

𝐀 = 𝐙T𝐙 is
1

2mn∕2Γm

(
1
2
n
)
(det𝚺)n∕2

(det𝐀)(n−m−1)∕2 etr
(
−1

2
𝛀
)

0F1

(
1
2
n; 1

4
𝛀𝚺−1𝐀

)
(𝐀 > 0)

where 𝛀 = 𝚺−1𝐌T𝐌. Here the hypergeometric function of matrix argument 0F1 (a;𝐗)
is defined as

0F1 (a;𝐗) = det (𝐈 − 𝐗)a

The sum of independent noncentral Wishart matrices with the same covariance
matrix is also noncentral Wishart. If the m × m matrices 𝐀1,… ,𝐀N are all independent
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and Ai is m
(
ni,𝚺;𝛀i

)
, i = 1,… ,N , then

N∑

i=1
𝐀i is also m (n,𝚺;𝛀), with n =

N∑

i=1
ni

and 𝛀 =
N∑

i=1
𝛀i.

If the n × m matrix Z is n×m
(
𝐌, 𝐈n ⊗ 𝚺

)
, and 𝐐 is k × m of rank k, then 𝐐𝐙T𝐙𝐐T

is k

(
n,𝐐𝚺𝐐T ;

(
𝐐𝚺𝐐T)−1𝐐𝐌T𝐌𝐐T

)
.

If 𝐀 is m (n,𝚺;𝛀) , with n ≥ m

𝔼
[
(det𝐀)r] = (det𝚺) 2mr

Γm

(
1
2
n + r

)

Γm

(
1
2
n
) 1F1

(
−r; 1

2
n; − 1

2
𝛀
)

Note that this is a polynomial of degree mr if r is a positive integer. Here the “confluent”
hypergeometric function 1F1 is defined as

1F1 (a; c;𝐗) =
Γm (c)

Γm (a) Γm (c − a) ∫0<𝐘<𝐈m

etr (𝐗𝐘)

(det𝐘)a−(m+1)∕2 det (𝐈 − 𝐘)c−a−(m+1)∕2 (d𝐘)

valid for all symmetric 𝐗, Re (a) > 1
2
(m − 1) ,Re (c) > 1

2
(m − 1), and Re (c − a) >

1
2
(m − 1).

B.4 Multivariate Linear Model

The multivariate linear model is ubiquitous; for example, it is such as in the MIMO and
state estimation. We are interested in high-dimensional applications. The multivariate
linear model allows a vector of observations, given by the rows of a matrix 𝐘, to cor-
respond to the rows of the known matrix 𝐇. The multivariate linear model takes the
form

𝐘 = 𝐇𝐗 + 𝐍 (B.2)
where 𝐘 and 𝐍 are m × m random matrices, 𝐇 is a known n × p matrix, and 𝐗 is
an unknown p × m matrix of parameters called regression coefficients. We assume
throughout this section that 𝐇 has rank p, that n ≥ m + p, and the rows of the noise
matrix 𝐍 are independent m (𝟎,𝚺) random vectors. Using the notation introduced
above, this means that 𝐍 is n×m

(
𝟎, 𝐈n ⊗ 𝚺

)
, so that 𝐘 is n×m

(
𝐇𝐗, 𝐈n ⊗ 𝚺

)
.

We now find the maximum likelihood estimates of 𝐗 and 𝚺 and show that they are
sufficient.

Theorem B.4.1 If 𝐘 is n×m
(
𝐇𝐗, 𝐈n ⊗ 𝚺

)
, and n ≥ m + p the maximum likelihood

estimates of 𝐗 and 𝚺 are
�̂� =

(
𝐇T𝐇

)−1𝐇T𝐘 (B.3)
and

�̂� = 1
n

(
𝐘 −𝐇�̂�

)T (
𝐘 −𝐇�̂�

)
(B.4)

Moreover,
(
�̂�, �̂�

)
is sufficient for

(
𝐗,𝚺

)
.
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If 𝐘 is n×m
(
𝐇𝐗, 𝐈n ⊗ 𝚺

)
, the maximum likelihood estimates of 𝐗 and 𝚺 are given

by (B.3) and (B.4), respectively. Then, �̂� and �̂� are independently distributed; �̂� is
p×m

(
𝐗,

(
𝐇T𝐇

)−1
⊗ 𝚺

)
and n�̂� is m (n − p,𝚺) .

B.5 General Linear Hypothesis Testing

In this section, we consider testing the hypothesis testing
0 ∶ 𝐂𝐗 = 0
1 ∶ 𝐂𝐗 ≠ 0

where 𝐂 is a known r × p matrix of rank r. We partition 𝐗 as

𝐗 =
[
𝐗1
𝐗2

]

where X1 is r × m and X2 is (p − r) × m.The null hypothesis 𝐗1 = 𝟎 is the same as 𝐂𝐗 =
𝟎,𝐂 =

[
𝐈r; 𝟎

]
.

By transforming the variables and parameters in the model 𝐘 = 𝐇𝐗 + 𝐍, the problem
in the transformed domain can be assumed to be following form:

�̃� =
⎡
⎢
⎢
⎣

�̃�1
�̃�2
�̃�3

⎤
⎥
⎥
⎦

where �̃�1 is r × m, �̃�2 is (p − r) × m, and �̃�3 is (n − p) × m. Let �̃� be a random matrix
whose rows are independent m-variate normal with common covariance matrix 𝚺 and
expectations give by

𝔼
(
�̃�1

)
= 𝐌1, 𝔼

(
�̃�2

)
= 𝐌2, 𝔼

(
�̃�1

)
= 𝟎

The null hypothesis 0 ∶ 𝐂𝐗 = 0, is equivalent to 0: 𝐌1 = 𝟎.

Theorem B.5.1 The likelihood ratio test of size 𝛼 of 0: 𝐌1 = 𝟎 against 1: 𝐌1 ≠ 𝟎
rejects 0 if Λ ⩽ c𝛼, where

W = Λ2∕n = det𝐁
det (𝐀 + 𝐁)

with 𝐀 = �̃�T
1 �̃�1 is m (r,𝚺;𝛀) , 𝐁 = �̃�T

3 �̃�3 is m (n − p,𝚺) , 𝛀 = 𝚺−1𝐌T
1 𝐌1, and c𝛼 is

chosen so that the size of the test is 𝛼.

The likelihood ratio test is equivalent to rejecting 0 ∶ 𝐌1 = 𝟎 for small values of
W = Λ2∕n. This is an invariant test for

W = det𝐁
det

(
�̃�T

1 �̃�1 + 𝐁
)

= det
(
𝐈 + �̃�T

1 𝐁
−1�̃�

)−1

=
s∏

i=1

(
1 + 𝜆i

)−1
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where s = min (r,m) = rank
(
�̃�T

1 𝐁−1�̃�
)

and 𝜆1 ⩾ · · · ⩾ 𝜆s > 0 are the nonzero eigenval-
ues of �̃�T

1 𝐁−1�̃�. Or we consider

− log W =
s∑

i=1
log

(
1 + 𝜆i

)

which is in the form of linear eigenvalue statistics. Central limit theorem for linear eigen-
value statistics of sample covariance random matrices [214, 215] can be used. We refer
to Section 3.7 for details. See also [474] and references there.

When the dimensions of the matrices are high, concentration of spectral measure
phenomenon occurs. We refer to Qiu and Wicks [40] for details. The statistic W h can
be shown to be highly concentrated around some value (most often its expectation).
General MANOVA matrices [456] are an extension of the multivariate analysis of vari-
ance to determine correlation coefficients (Section 3.3 of [37]).

The h-th moment of W , when n − p ≥ m, r ≥ m, is

𝔼
(
W h) =

Γm(
1
2
(n − p) + h)Γm

(
1
2
(n + r − p)

)

Γm

(
1
2
(n − p)

)
Γm

(
1
2
(n + r − p) + h

)

1

F1

(
h; 1

2
(n + r − p) + h; 1

2
𝛀
)

where 𝛀 = 𝚺−1𝐌T
1 𝐌1, for r ≥ m.

The moments of W when 0 ∶ 𝐌1 = 𝟎 are obtained by putting 𝛀 = 𝟎. In this case,
the moments of W are given by
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Bibliographical Remarks

Classical multivariate analysis provides a good starting point for us to become familiar
with matrix-valued random variables. We extract some of the most relevant facts from
classical texts. More details can be found from the classical texts: Scrivastava and Khatri
[659], Siotani et al. (1985) [660], Anderon [371], Muirhead [37], and Fujikoshi et al.
[483]. The role of this appendix has been to provide some preliminary materials. We
make no attempt to make this appendix comprehensive. At most, we want to give readers
a feel of the key mathematical concepts in the classical settings.

The general motivation is to study large random matrices. We have tried our best to
make the book self-contained. One general application is for hypothesis testing in high
dimensions. See [474] and references there for some applications. We need to revisit
some classical algorithms. For the dimension p of the dataset and the sample size n,
the classical algorithms make the assumption that p is a fixed small constant or at least
negligible compared with the sample size n.This assumption is no longer true for many
modern datasets, such as big data, because their dimensions can be proportionally large
compared with the sample size. For example, financial data, consumer data, sensors,
data, the communication network data, the smart grid data, the modern manufacturing
data, and the multimedia data all have this feature.
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Most contents of this book, together with its two companion books [39, 40], are
beyond the scope of the above classical books. Our three books are founded upon two
themes: (i) random matrix theory; (ii) concentration of spectral measures. The first
theme deals with statistics when the dimensions of random matrices are asymptotically
large—both n and p go to infinity at the same rate. The second theme, on the other
hand, deals with an nonasymptotic analysis of random matrices—both n and p are large
but finite!

Our three books are, in some sense, complementary to the listed classical books. Our
books are structured using mathematics. From our point of view, big data is a statistical
science that uses large random matrices to model the datasets.

Appendix B is adapted from [292, 661].
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