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ARTICLE

PriMa: a prescriptive maintenance model for cyber-physical production systems
Fazel Ansari a,b, Robert Glawara,b and Tanja Nemetha,b

aResearch Group of Smart and Knowledge-Based Maintenance, Institute of Management Science, Vienna University of Technology (TU Wien),
Vienna, Austria; bDivision of Production and Logistics Management, Fraunhofer Austria Research GmbH, Vienna, Austria

ABSTRACT
Cyber-physical production systems (CPPS), as an emerging Industry 4.0’s technology, trigger a paradigm
shift from descriptive to prescriptive maintenance. In particular, maintenance management approaches
nowadays are more and more transformed to (semi-) automated knowledge-based decision support
systems. This paper is intended to examine existing approaches and challenges towards rethinking
maintenance in the context of Industry 4.0 and thus contributes to the literature of production
management and planning, by introducing a novel prescriptive maintenance model (PriMa). PriMa is
comprising of four layers (i.e. data management, predictive data analytic toolbox, recommender and
decision support dashboard as well as an overarching layer for semantic-based learning and reasoning).
The integrated approach of PriMa enhances two functional capabilities, namely i) efficiently processing
large amount of multi-modal and heterogeneous data collected from multidimensional data sources
and ii) effectively generating decision support measures and recommendations for improving and
optimising forthcoming maintenance plans correlated with production planning and control (PPC)
systems. An industry-oriented proof-of-concept study has been conducted to explore the feasibility of
applying PriMa in real production systems by implementing a decision support solution and achieving a
significant reduction of downtime. Finally, future research directions in this area are outlined.
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1. Introduction

1.1. Rethinking maintenance in the CPPS environment:
context and objectives

The emergence of Cyber-Physical Production Systems (CPPS)
(Monostori et al. 2016) and evolution of sensing and computa-
tional technologies in smart factories (Zühlke 2008), (Kagermann,
Wahlster, and Helbig 2013), (Wagner, Herrmann, and Thiede
2017) influences maintenance approaches to incorporate certain
functional capabilities for implementing smart and knowledge-
based solutions. A recent market report forecasts a Compound
Annual Growth Rate (CAGR) of 39% for predictive maintenance
investments within the period 2016–2022 (IoT Analytics 2017).
This corresponds with the key findings of an in-depth industry
survey including 151 analytics professionals and decision-makers
from industrial companies, in particular, Original Equipment
Manufacturers (OEMs), product manufacturers and service provi-
ders (Lueth et al. 2016). It reveals that predictive and prescriptive
maintenance of production systems including equipment, machi-
neries and physical assets will be the most important application
area of Industrial Analytics within the upcoming three years
(79%) (Lueth et al. 2016). In line with this fact, approximately
60% of the respondents emphasise on developing knowledge-
based decision-support systems to improve efficiency and effec-
tiveness of industrial processes (i.e. using data from operation to
automate maintenance planning decisions) (Lueth et al. 2016).
Furthermore, it is also well-known from production management
theories and empirical studies that efficient and effective

maintenance is an integral part of the production strategy and
is a critical factor for overall production system stability (Wireman
2014).

In spite of all the excitement about technological enhance-
ments with respect to automation, digitalisation and intelli-
gentisation of manufacturing industry; predictive maintenance
approaches implemented in real production systems have
been limited to the application of condition monitoring sys-
tems for detecting the outliers (anomalies) and forecasting the
moment of failure. In fact, prediction of a failure is the most
important aspect to prevent and resolve persistent dilemmas
in maintenance management (i.e. lack of availability, process
instability and resource inefficiency). However, the aforemen-
tioned dilemmas, which have been understood as fundamen-
tal deficiencies of maintenance in production systems over
several decades, are rooted in inappropriate maintenance
strategies, models and measures for planning, monitoring
and controlling. In other words, the lack of adequate, up-to-
date, comprehensive and mature knowledge is the foundation
for all failures. The missing link is a data-driven and knowl-
edge-based recommender and decision-support system for
maintenance management, including planning, monitoring
and controlling, which enables answering not only the ques-
tion ‘What will happen when?’ (i.e. Prediction) but also the
significant question ‘How should a specific event happen?’ (i.e.
Prescription). While no prediction techniques independent of
planning strategies yields to significant results, making an
informed decision based on a reliable prognosis of failure

CONTACT Fazel Ansari fazel.ansari@tuwien.ac.at Research Group of Smart and Knowledge-Based Maintenance, Institute of Management Science (IMW),
Vienna University of Technology (TU Wien), Theresianumgasse 27, Vienna 1040, Austria

INTERNATIONAL JOURNAL OF COMPUTER INTEGRATED MANUFACTURING
https://doi.org/10.1080/0951192X.2019.1571236

© 2019 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.

http://orcid.org/0000-0002-2705-0396
http://www.tandfonline.com
http://crossmark.crossref.org/dialog/?doi=10.1080/0951192X.2019.1571236&domain=pdf


events may achieve considerable system performance
improvements and continuously improves decision quality
and timeliness. This aspect has been largely neglected in the
recent literature and real-life use-cases demonstrating smart
and predictive maintenance applications (cf. Section 2).

In CPPS environment employing sensing and computa-
tional technologies and existing data-driven processes turn
on the light into the dark side of maintenance and trigger
rethinking maintenance approaches through continuing
exploration of new knowledge and enriching as well as pre-
serving existing knowledge. Hence, this paper investigates
establishing the missing link between predictive approaches
and maintenance planning strategies and decision-making. In
the view of the authors, ‘Prescriptive Maintenance Model’
(PriMa) bridges the missing link in the maintenance literature
and in fact, in industrial maintenance in order to achieve an
acceptance by the planner/operator using data-driven
approaches. PriMa completes the dynamic and iterative
process of exploiting and exploring maintenance knowledge
(cf. Section 3). While knowledge exploitation aims at search-
ing, retrieving, providing and using existing knowledge ele-
ments located in databases, knowledge exploration seeks
opportunities to discover new knowledge for deepening the
insights into the state of maintenance activities and to provide
recommendations for improving existing strategies and mea-
sures. The above discussion emerges the following key
questions:

● From a conceptual and theoretical perspective, how to
discover and preserve maintenance knowledge in CPPS
environment to enhance decision-making processes?
This research question investigates the lack of concep-
tual approaches in the literature of maintenance and
CPPS, focusing on integration and adaptation of existing
data analytic and semantic technology approaches for
continuing knowledge discovery and -preservation from
heterogeneous and multimodal data sources collected
from various dimensions of maintenance (i.e. opera-
tional, tactical and strategic level).

● From a practical perspective, how to apply such a con-
ceptual model in industrial use-cases where several tech-
nological and non-technological barriers exist? Notably,
in order to tailor theoretical and conceptual models to
real use-cases, several factors across industries should be
considered such as technology readiness levels (e.g. with
respect to ICT infrastructure, data accessibility, availabil-
ity and quality as well as staff qualifications) (cf. (Ansari
and Glawar 2018)).

1.2. The search for common ground for rethinking
maintenance and related challenges

In order to rethink maintenance approaches in CPPS environ-
ment, it is worth underscoring the diversity of terminologies
for this theme. While there are many similarities between
novel maintenance approaches enhanced by sensing and
computational technologies, there is a lack of consensus
among researchers regarding what qualifies a maintenance

approach in the era of Industry 4.0. This situation often leads
to a lack of standardised definitions and common terminology
for categorising maintenance approaches. Therefore, the fre-
quently used keywords (such as smart maintenance, mainte-
nance 4.0, intelligent maintenance, data-driven maintenance
and predictive or prescriptive maintenance) remain vague or
ambiguous. To arrive at a common ground of understanding,
the authors propose to identify five functional capabilities for
characterising maintenance in the context of smart factories,
namely i) Prediction capability to monitor, analyze and antici-
pate hidden patterns and anomalies and accordingly predict
critical and unexpected events (i.e. moment of failure), ii)
Optimisation capability to achieve an optimal point in main-
tenance planning through economically efficient use of
human and physical resources as well as knowledge assets,
iii) Adaptation capability to conform to (unexpected) changes
and reconfigurations in work-orders and production plans, iv)
Learnability to continuously learn from former experiences (i.e.
failure events and former decision-making instances), and
finally v) Capability of intelligent actions and self-direction to
(completely) automatise maintenance workflow and decision-
support systems (i.e. autonomous maintenance management).

Realisation and consolidation of the aforementioned func-
tional capabilities confront fundamental technological and
non-technological challenges in the CPPS environment.
According to the former investigations the main technological
and non-technological challenges for design and realisation of
CPPS, which directly or indirectly affect maintenance manage-
ment (cf. Section 1.3), are summarised in Table 1.

Taking the above discussion into account, the two key
aspects for (re-)defining maintenance in the context of smart
factories are proper identification of the functional capabilities
and optimal selection of the features in accordance with
technological readiness level of a factory and its capacity to
overcome non-technological challenges. The main focus of
this paper is on the challenge V (cf. Table 1). In particular,
the authors extend the scope of the challenge V towards
extracting knowledge from heterogeneous, multimodal, multi-
dimensional data sources. The authors propose that the term
‘Knowledge-Based Maintenance’ (KBM) should be used to
denote the entire range of functional capabilities and features.
KBM overarches multiple maintenance concepts and
approaches including descriptive, diagnostic, predictive and
prescriptive maintenance (cf. Section 2.1). Hence, the specific
contribution of this research is to conceptualise a knowledge-
based model (aka PriMa) for prescribing (high quality) main-
tenance measures and recommendations, based on multi-
modal data represented in heterogeneous structures, which
are acquired from multi-dimensional sources such as mainte-
nance (business) processes, machines and products. In addi-
tion, the paper investigates realisation of the PriMa in an
industrial use-case and provides a proof-of-concept study.
Accomplishing this task, this paper paves the way towards
establishing the missing link between predictive approaches
and prescriptive maintenance planning strategies and deci-
sion-making in industrial maintenance.

The rest of the paper is structured as follows. Aiming at
identifying research gaps in the identified literature and
also the competition in the field, Section 2 examines the
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state-of-the-art in KBM. In Section 2.1, the authors have
critically reviewed the KBM concepts and models appeared
in the literature and accordingly they have reflected their
own views on KBM. Section 2.2 provides an extended
discussion focusing on four aspects in the identified litera-
ture, namely prognostic-based and condition-based deci-
sion support, big data as an enabler to enhance
maintenance management, prescriptive maintenance
approaches, and finally integration of maintenance and
Planning and Control (PPC) systems. Section 2.3 sum-
marises the literature findings and indicates the most
notable theoretical and practical challenges for bridging
the existing gaps and establishing a missing link between
predictive and prescriptive approaches (cf. Section 1).
Section 3 introduces PriMa, as a knowledge-based
approach for prescriptive maintenance in CPPS. It elabo-

rates on the four-layer architecture of PriMa and related
methods to be employed for realisation of each layer.
Section 4 explores the feasibility for the realisation of
PriMa and provides a proof-of-concept study including a
step-wise methodology for industrial applications. Finally,
Section 5 summarises the key findings and identifies future
research directions.

2. State-of-the-art in knowledge-based maintenance

2.1. Review and synthesis of KBM terminologies and views

The term Knowledge-Based Maintenance (KBM) has been dis-
cussed in the literature of maintenance and assets management,
where the main assumption is that competitive advantages for
reducing maintenance cost are achieved through holistic

Table 1. Challenges for design and realization of CPPS (Adapted from (CPS Summit 2008), (Lee and Seshia 2015), (Seidenberg and Ansari 2017)).

Challenges Description Type

Technological
Non-

Technological

I Compositionality Compositionality problems may cause due to the integration of heterogeneous cyber and
physical elements of CPPS, i.e. in system integration of both subsystems and Cyber-
Physical Systems-of-Systems (CPSoS).

✓

II Distributed sensing,
computation and control

Key problems include (semi-)real-time collection of adequate information, processing and
asserting control in a distributed environment.

✓

III Physical interfaces and
integration

An essential feature of CPPS is to be able to contact with the physical world using various
sensor technologies.

✓

IV Human interfaces and
integration

Another essential feature of CPPS is the ability to effectively communicate with various
types of end-users in diverse qualification and competence levels through use of
human-machine interfaces.

✓ ✓

V Extracting knowledge from
heterogeneous data sources

Processing raw-data collected in structured, semi-structured and non-structured format
as well as various quality and veracity levels, and extracting knowledge for supporting
decision-making and learning from each decision instance, require deploying smart
data analytics and Artificial Intelligence (AI) techniques, in particular predictive data
analytics and deep learning.

✓

VI Modeling and analysis of
physical and cyber
components

A massive complexity is exhibited through modeling and analysis of heterogeneous
physical and cyber components with different notions of time, across different scales,
and integration of the feedback collected from them.

✓

VII Privacy, trust, security Application of CPPS in diverse sectors raises new issues in privacy, trust and security, inter
alia, revealing information from cyber-physical-socio space may require new rules on
accessibility and transparency of information, i.e. what information can be hidden.

In addition, new kinds of physical and cyber-physical attacks are possible e.g. in the
context of smart and connected factories, i.e. there is a demand to new concepts and
tools for cyber-security.

✓ ✓

VIII Robustness, adaptation,
reconfiguration

CPPS operates in dynamic (production) environments and thus needs to handle uncertain
situations and disturbances without affecting the outcome quality. In addition, CPPS
should be reconfigurable and adaptive to deal with (unexpected) faults in both
physical and cyber levels.

✓

IX Software technology Development and deployment of CPPS require new programming languages, which
could deal with complexity of cyber-physical spaces. In addition, CPPS requires
integrated software solutions to support performance planning, monitoring and
controlling of CPPS and dealing with high volume of (real-time) data fellow among
sub-systems, systems-of-systems and environment.

✓

X Verification, testing, (safety)
certification and guidelines

CPPS requires new approaches for verification and testing to check and regulate potential
events such as physical or cyber related faults by comparing with certain standards
derived from historical patterns, physical correlations and characteristics of a CPPS. For
this purpose, a detection, learning and reasoning module should be developed to
assure correctness of decisions and promote learning from former ones.

Application of CPPS in diverse industrial sectors also requires handling safety
certifications, e.g. to identify hazard sources and the way to deal with them in
accordance with health and safety legal requirements in the workplace.

✓ ✓

XI Societal impact Social aspects of CPPS may also affect the design, verifiability, validation, operation,
privacy, trust, and fault tolerance. Especially, developing human-centered CPPS
confronts several societal, cultural and ethical resistance to technological change e.g.
due to the risks that robots or intelligent systems may take over human jobs and
authorities in the workplace.

✓
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consideration, rather than atomistic, of all influential compo-
nents and gaining knowledge of maintenance (Sturm 2001),
(Reiner et al. 2005), (Pawellek 2013), (Biedermann 2014).
According to the model presented by (Pawellek 2013) illustrated
in Figure 1, KBM takes into account long-term effects of main-
tenance policies and decisions on economic terms, as a non-
isolated sub-domain of production systems, which influences on
organisational value creation. From this point of view, mainte-
nance should be considered as a learnable organisation
(Biedermann 2014). In the learnable organisation, knowledge is
created in different organisational levels (strategic, tactical and
operational levels) through comprehensive consideration of
maintenance consequences, system conditions, and processes
(Pawellek 2013).

KBM collects machine (systems), process, and products
data, which are then transmitted to three areas that provide
overall strategies of maintenance, namely i) risk-based main-
tenance, ii) condition- or time-based maintenance, and iii)
Total Productive Maintenance (TPM) and lean maintenance
(Pawellek 2013). KBM is responsible for unified consideration
of outcomes collected from the three areas (Pawellek 2013).

In the former studies, the authors have examined the above-
mentioned views on KBM and argued ‘although the proposed
approach to KBM is comprehensive, it only reveals the relation
between several management approaches without indicating
the logics of the relation, and the extent of deploying or produ-
cing knowledge. Moreover, no mechanism for acquisition, mod-
elling and representation of the knowledge is proposed. The
types and homogeneities of knowledge assets have not been
discussed’ (Ansari 2014). In fact, the concept of KBM in the
context of CPPS should necessarily hold or comply with princi-
ples of Artificial Intelligence (AI), in particular, Knowledge-Based
Systems (KBS) and pertained approaches (Beierle and Kern-
Isberner 2008), (Russell and Norvig 2010). Hence, the authors
have made efforts persistently to extend the definition of KBM
particularly from the perspective of semantic modelling and
representation as well as static rule-based or dynamic model-
based analytics (e.g. in Ansari 2014, Matyas et al. 2017, Ansari,
Glawar, and Sihn 2017, Nemeth et al. 2018, Kovacs et al. 2019,
respectively). From the perspective of knowledge management
(c.f. (Maier 2009), (North and Maier 2018), (Ansari and Glawar
2018)), KBM can be approached by focusing either on organisa-
tional and individual knowledge (human-oriented KBM) or data-
driven strategies and approaches, sensing-, computational-, digi-
tal technologies, analytical tools and platforms (technology-
oriented KBM). The main goal of technology-oriented KBM yet
is i) to enrich the aforementioned definition of KBM by introdu-
cing and categorising different approaches (i.e. subsets of KBM)
in relation to their complexity and maturity levels and ultimately
ii) to achieve both holistic and atomistic consideration of all
influential components for gaining and protecting the knowl-
edge of maintenance (cf. Figure 2). Further, the authors describe
how to tailor a KBM solution to a real use-case (cf. Section 4).
Notably, human-oriented KBM remains open for discussion in the
future (cf. Section 5).

In view of the above discussion, the authors define KBM as
a functional unit responsible to i) continuously support value

generation and ii) facilitate developing and protecting main-
tenance collective knowledge across smart factories, which is
enhanced by need- or opportunity-driven knowledge detec-
tion, discovery, modelling and representation approaches.
Hence, KBM employs a variety of methods including advanced
statistics, stochastics, real-time computing (cf. (Lee 2017)) and
analytics, machine learning algorithms, static rule-based or
dynamic model-based analytics, and sematic modelling and
representations. In the context of CPPS, KBM is demonstrated
by its advanced functional capabilities, namely, knowledge
discovery, prediction, optimisation, adaptation, (self-)learning
and ideally self-direction. As depicted in Figure 2, in the view
of the authors, KBM is categorised into four instances depend-
ing on the maturity and complexity of its functional capabil-
ities. Each type of KBM can answer a certain competence
question as follows:

● Descriptive maintenance (Type I, Low Complexity,
Low Maturity) answers the question ‘What happened?’
by providing information about previous maintenance
operations. Thus, it supports information collection and
analysis and increases the level of information visibility.

● Diagnostic maintenance (Type II, Medium
Complexity, Low Maturity) answers the question ‘Why
did it happen?’ by analyzing cause-effect relations, rea-
soning, and providing further technical details about
former maintenance operations. Therefore, it supports
knowledge generation and increases the level of knowl-
edge transparency.

● Predictive maintenance (Type III, High Complexity,
Medium Maturity) answers the question ‘What will hap-
pen when?’ by learning from historical maintenance
data, possibly in real-time, and predicting future events.
Thus, it supports knowledge discovery and enhances the
level of (semi-)supervised or unsupervised prognostic
capabilities. Notably, this is often referred to as ‘Smart
Maintenance’, ‘Data-Driven Maintenance’ and
‘Maintenance 4.0’, not only in scientific but also in com-
mercial contexts.

● Prescriptive maintenance (Type IV, High Complexity,
High Maturity) answers the question ‘How can we con-
trol the occurrence of a specific event?’ (How should it
happen?) by providing actionable recommendations for
decision-making and improving and/or optimising forth-
coming maintenance processes. It also refers to the
recent advances in enhancing self-organisation and
self-direction capabilities of CPPS, which ideally aim at
machine self-diagnosis and self-scheduled maintenance.
Hence, prescriptive maintenance may reach the highest
degree of maturity which involves complex methods to
produce and reinforce adaptation and optimisation cap-
abilities.

In the context of CPPS, the authors propose to interlink the
predictive and prescriptive capabilities by providing a feed-
back loop, which examines the belief value on former
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predictions and aims at improving the quality of maintenance
measures and recommendations (cf. Figure 2). The most pop-
ular way is to distinguish between predictive and prescriptive
maintenance. Instead, the authors stress on combining these
two types to achieve synergistic capabilities on both predic-
tion of forthcoming events and improvement of related out-
comes (action plans). The combination of predictive and
prescriptive maintenance involves i) modelling and represent-
ing (domain-specific or expert) knowledge, ii) predictive data
analytics and iii) semantic reasoning. It, therefore, enhances
and automatises decision-making processes by optimal selec-
tion and proposing the right strategies, tactics and action
plans for foreseeing and handling problems pertained to the
entire maintenance management. From this point of view,
prescriptive maintenance, as the highest level of maturity
and complexity of KBM, combines descriptive, diagnostic and
predictive analytics to not only understand and reason out
past events, but also to anticipate the likelihood of future
events and potential effects of each decision alternative (asso-
ciated with maintenance strategies) on the physical (machine)
space and associated business processes.

2.2. Review of related KBM approaches

Considering the above discussion on KBM, the literature
review presented in this section focuses on four aspects, i)
Evolution of prognostic-based decision support solutions for
Condition-Based Maintenance (CBM) based on various combi-
nations of mathematical, statistical, stochastic and rule-based
models, ii) Big data as an enabler to enhance maturity of
maintenance approaches through gaining insights and depths
to solve the aforementioned persistent dilemmas in mainte-
nance management, iii) Emergence of prescriptive mainte-
nance approaches, and finally iv) Integration of maintenance
and Production Planning and Control (PPC).

In the past decade, several research works have been con-
ducted on knowledge discovery in maintenance with the focus
on big data analytics. A large body of literature deals with
specific challenges such as predicting the health state of
machinery, based on historical and real-time data as well as
expert knowledge. In this context, different combinations of
methods have been selected for developing prognostic-based
decision support solutions for CBM. In this way, Bousdekis et al.
(2015) provided insights into the literature and paved the way
for the state-of-the-art analysis. They systematically reviewed
and synthesised an extensive body of literature on prognostic-
based decision support for CBM and provided a practical tech-
nique to effectively identify and select appropriate combina-
tions of methods (Bousdekis et al. 2015). In particular, they
identified a hierarchical structure for selection of i) prognostic-
and ii) decision-support methods using condition monitoring
data. The former, prognostic methods, is comparable to ‘pre-
dictive maintenance’ and the latter, decision support methods
(equivalent to decision-making and recommendation methods
in the literature), with ‘prescriptive maintenance’, respectively.
In the view of their proposed hierarchical structure, they identi-
fied a pattern of prognostic and decision support methods
reported in the literature. The authors examined and validated

the proposed structure by cross-checking the body of the
literature reviewed by (Bousdekis et al. 2015) and recently
published articles appear in multiple scientific databases,
namely Scopus, Springer-Link, IEEE Xplore and Google Scholar
(2015–2017). Likewise, prognostic methods have been cate-
gorised into three classes (P-X) as follows:

● P-I) Statistics subdivided into P-I-A) Statistical analysis
such as statistical quality control, support vector machine,
moving average, and P-I-B) Degradation modelling;

● P-II) Machine Learning (ML) subdivided into P-II-A)
(Dynamic) Bayesian Network (DBN), P-II-B) Artificial
Neural Network (ANN), and P-II-C) Reinforcement
Learning (RL), and finally

● P-III) Markov Chain consisting of P-III-A) Continuous time
and P-III-B) Discrete time.

Similarly, decision support methods have been categorised
into two classes (D-X), namely:

● D-I) Operation Research (OR) approaches subdivided into D-
I-A)Mathematical Programming (MP) including Linear-, Non-
linear- and Stochastic Dynamic Programming, and D-I-B)
Markov Decision Process (MDP), including Markov Decision
Process, Semi-Markov Decision Process, and Partially
Observable Markov Decision Process, and

● D-II) Rules subdivided into D-II-A) IF-THEN and D-II-B)
Event-Condition-Action (ECA).

As a result, employing various P-X methods or different
combinations of P-I, P-II and P-III has been reported for build-
ing prognostics models. However, decision support methods
reported in the literature shape two clusters, namely, 1) a
combination of Mathematical Programming (D-I-A) and opti-
misation rules (D-II) is typically used when the decision sup-
port objective function intends to estimate ‘optimal time for a
predefined action’, and 2) Rules (D-II) are used when the
decision support objective function targets ‘optimal action
AND optimal time for action’ (cf. (Bousdekis et al. 2015)).

As mentioned earlier, within the recent literature (beyond
the time horizons of the Bousdekis et al. 2015), the same trend
on selecting various combinations of statistics and machine
learning methods for predictive maintenance is apparent. As
an example, one may refer to the following selected studies:
for developing a periodic preventive maintenance model
(Franciosi, Lambiase, and Miranda 2017), enhancing preven-
tive maintenance through integrating probabilistic and pre-
dictive models (Ruschel, Santos, and Loures 2017), establishing
a generic simulation-based predictive maintenance (Zarte,
Wunder, and Pechmann 2017), developing cloud-based pre-
dictive maintenance framework (Schmidt, Wang, and Galar
2017), and introducing a smart maintenance decision support
using corporate big data analytics (Bumblauskas et al. 2017) as
well as applying various combinations of statistical data-
mining and supervised machine learning for condition-based
maintenance examined in (Accorsi et al. 2017). Specifically,
dynamic-based prognostic models are used for predicting
dependability in (Aizpurua et al. 2017), Bayesian modelling is
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employed for optimisation of maintenance strategies in (Belyi
et al. 2017), and application of various machine learning
methods for self-parameterising process monitoring and self-
adjusting process strategies for series production has been
investigated in (Denkena et al. 2017). In this perspective,
Wöstmann, Strauss, and Deuse (2017) examined existing pre-
dictive maintenance applications and their transferability to
production systems considering a set of prerequisites for a
successful implementation (i.e. a catalogue of preconditions
and requirements to achieve business understanding, proper
collection, exploration and modelling of data as well as deal-
ing with data availability and quality issues) (Wöstmann,
Strauss, and Deuse 2017).

Besides, the emergence of CPPS and Industrial Internet of
Things (IIoT) as well as data-driven technologies brings the atten-
tion of maintenance professionals to ‘data’, in particular, ‘big
data’. Apart from the debates over the definition and character-
istics of big data in maintenance (cf. (Ansari and Glawar 2018)),
maintenance is supposed to gain benefits from big data to
enhance its functional capabilities (i.e. ability to predict and
react to failure). Hence, KBMmay contribute to the enhancement
of business values by manufacturing companies, based on
decreasing maintenance costs and most importantly retaining
and increasing availability of facilities over time. Focusing on big
data in the literature of maintenance management, Yan et al.
(2017) addressed the challenge for structuring multisource het-
erogeneous information for predictive maintenance and pro-
posed a framework for characterising structured data with
multi-scale analysis (Yan et al. 2017). The proposed multi-scale
analysis takes into consideration the spatio-temporal properties
(i.e. system-dependent and time-dependent) andmodelling invi-
sible factors (i.e. hidden root-causes and cause-effect interrela-
tions) for causality mining (Yan et al. 2017). Zhang et al. (2017)
also provided a big data analytics architecture for maintenance
processes of complex products, which deals with structuring
multi-source heterogeneous data (Zhang et al. 2017).

An emerging trend in the literature of maintenance is on
knowledge-based decision support approaches for prescriptive
maintenance. However, the authors’ investigations reveal that
this area is not yet extensively explored. Karim et al. (2016)
discussed the maintenance analytics process including discov-
ery, understanding, and communication of maintenance data
(Karim et al. 2016). Aligned to the categorisation of KBM
approaches in Figure 2, the maintenance analytics process is
correlated with four perspectives, namely; descriptive, diagnos-
tic, predictive and prescriptivemaintenance (Karim et al. 2016). In
order to develop a maintenance analytic-based decision support
solution, the need of an overarching approach has been indi-
cated, which should combine modelling of data, knowledge and
context (Karim et al. 2016). The solution for information logistics,
therefore, should not only answer the key questions such as
‘when to deliver’ (time management), ‘what to deliver’ (content
management), and ‘how to deliver’ (communication manage-
ment), but also should deal with ‘where and why to deliver’
(context management). Applying this concept, Famurewa,
Zhang, and Asplund (2017) developed a decision support frame-
work for the assessments of rail conditions (Famurewa, Zhang,
and Asplund 2017). Moreover, Mourtzis, Boli, and Fotia (2017)
proposed a reasoning methodology for knowledge-based

estimation of maintenance time, based on monitoring of Key
Performance Indicators (KPIs) (Mourtzis, Boli, and Fotia 2017),
using a Case-Based Reasoning (CBR) technique. The proposed
approach supports knowledge capturing and reuse in mainte-
nance activities within Product Service Systems (PSS) (Mourtzis,
Boli, and Fotia 2017). Miebach, Schmidt, and Nyhuis (2017) pre-
sented a knowledge-based approach to design a self-learning
maintenance library using Artificial Neural Networks (ANN), for
selecting the right maintenance measures at the right time.

From a planning and controlling perspective, the weak link-
age between maintenance and PPC approaches is evident. In
particular, the meta-analysis of 54 job shop models published
between 2014 and 2018 conducted by the authors (cf. (Glawar et
al. 2018)) reveal that only 10 models consider a kind of linkage
mainly to capture and use (feedback) information about main-
tenance for PPC by focusing either on periodic maintenance (e.g.
for flexible job-shop scheduling using heuristic methods cf. (Li,
Pan, and Tasgetiren 2014), (Fnaiech et al. 2015) and (El Khoukhi,
Boukachour, and Alaoui 2017), minimising makes pan under
availability constraints cf. (Benttaleb, Hnaien, and Yalaoui 2016),
energy-efficient flexible job-shop scheduling cf. (Mokhtari and
Hasani 2017), and production scheduling with different orders
(Liao and Wang 2018), or on CBM for solving various job-shop
scheduling problems cf. (Shamsaei and Van Vyve 2017),
(Zandieh, Khatami, and Rahmati 2017) and (Rahmati, Ahmadi,
and Karimi 2018)). A few models address the link between PPC
and predictive maintenance (e.g. for job-shop scheduling
depending on degradation rates and forecasting failures
moments cf. (Mokhtari and Dadgar 2015) and time-varying
machine failure rate (Fitouri et al. 2016)).

2.3. Summary of literature findings

The discussion in Section 2.1 and 2.2 reveals two particular issues.
First, the advancement of KBM theory requires an integrated
analytical framework that systematically and continuously seeks
to exploit existing knowledge and explore new knowledge (i.e.
comply with the dynamics of knowledge assets (cf. (Schiuma
2009))). Most of the approaches presented in Section 2.2 aim at
solving a certain isolated problem under the premise of ensuring
accurate estimation of a failure moment. However, they do not
consider incompleteness and incomprehensiveness of informa-
tion in decision situations aswell as dynamics of decision-making
in maintenance, especially under risky and exceptional choices.

Second, decision-makingmodels inmaintenance cannot afford
to ignore the multi-dimensionality of maintenance organisation
and processes, heterogeneity of IT-landscape and data sources as
well as the fundamental demand for establishing a bidirectional
communication channel between PPC and maintenance.

Therefore, in order to establish the missing link (cf. Section 1.1),
the most notable theoretical and practical gaps and challenges
confronting KBM are summarised in the followings.

Multiple maintenance strategies and approaches evolved over
several decades increase the complexity in modeling of knowledge
and identifying decision-making measures and related processes.
Maintenance strategies that should be considered canbe classified
into threemajor groups as follows (cf. (Ansari and Glawar 2018), 1).
Management strategies like total productive maintenance (TPM),
total life cycle cost strategy (TLC) or reliability-centredmaintenance
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(RCM), which provide certain recommendations and standard
measures for goal-setting and proper definition and implementa-
tion of maintenance activities including division of tasks, cost
monitoring and controlling strategies, quality and performance
management, organisational learning, documentation and con-
tent management, knowledge transfer, etc., 2) Maintenance stra-
tegies and approaches without sensing and computing
technologies, which can be categorised into three approaches,
namely run-to-failure-strategy, preventive maintenance, and
proactive maintenance, and 3) Maintenance strategies and
approaches with sensing and computing technologies, which
can be categorised into three approaches, namely CBM, predictive
maintenance, and prescriptive maintenance.

Multi-dimensionality of maintenance organisation, processes,
actors and IT-systems shapes a complex knowledge landscape. In
particular, a maintenance organisation consists of operational,
tactical and strategic levels, in which different internal/external
actors (i.e. knowledge-holder, -producers and -users) ranging
from operators, engineers, project managers, top management
and suppliers play a certain role. In addition, maintenance IT-
landscape consists of several production information systems
(PIMs) and (centralised or decentralised) databases, which con-
tinuously store and provide (meta-level) knowledge about
machines, processes, resources (personnel, material, etc.), plans,
quality control, costs as well as operational, tactical and strategic
measures and key performance indicators (KPIs), such as overall
equipment effectiveness (OEE), availability, productivity, etc.

Multi-modality of data is highly affected by big data or industrial
data space (cf. (Otto et al. 2016)) consisting structured and unstruc-
tured data sources linked to multiple maintenance strategies and
dimensions of maintenance organisation, actors and IT-systems.
Hence, invisible semantics and interrelations among data sources
may cause inevitable lack of comprehensiveness. This lack makes it
difficult to properly solve (scalable) multi-objective optimisation
problems and leads to incomplete information in decision-making
situations. For example, linking single data elements collected
from machine’s Programmable Logic Controller (PLC) or mainte-
nance processes may provide independent information about
different aspects of maintenance (i.e. while machine failure signal
can reflect malfunction of one of its subsystem; it can also indicate
inappropriate planning, which causes subsystem degradation and
affects its remaining useful lifetime). Furthermore, establishing a
bidirectional communication channel for exchanging knowledge
between maintenance and PPC may contribute to discover hid-
den relational patterns across multiple databases and to support
learning invisible correlations and cause-effect relations (i.e.
exploring new knowledge). In manufacturing companies, one
may envisage two possibilities to establish a bidirectional commu-
nication channel as follows: i) Integration of condition monitoring
and PPC systems to correlate (e.g. equipment’s condition data and
the production program or tool-wear and product quality (toler-
ances) data), ii) Integration of maintenance planning, monitoring
and controlling and PPC to not only correlate (e.g. equipment
condition and production program); but also establish reciprocal
relations between maintenance and PPC to correlate strategies,
programs, measures, processes and databases. Hence, changes
and priority settings (e.g. for critical products or orders) could be
communicated to maintenance and vice versa (e.g. to avoid qual-
ity loss or increasing unplanned maintenance costs).

3. PriMa: prescriptive maintenance model

Following the above-discussed line of research and the gaps
identified in Section 2.3, Section 3 introduces a novel
Prescriptive Maintenance Model (PriMa) towards realising KBM
in CPPS environment. PriMa deals with i) multidimensionality of
maintenance processes and ii) multi-modality and heterogeneity
of maintenance records, while establishes iii) a linkage to PPC
systems. In particular, Section 3.1 elaborates on the four-layer
architecture and building blocks of the model and Section 3.2
discusses the interaction of PriMa with PPC systems.

3.1. Description of the model

Figure 3 reveals the overall architecture and building compo-
nents of PriMa. PriMa consists of four layers, namely i) data
management, ii) predictive data analytic toolbox, iii) recom-
mender and decision-support dashboard, and finally an over-
arching layer iv) semantic-based learning and reasoning. These
layers are described in the followings.

The data management layer employs a scalable data ware-
housing solution, which continuously collects temporal main-
tenance records, in particular management and cost data as
well as operation-related data from three dimensions, namely,
machines (through collecting conditions, diagnoses etc., as
well as via direct query from machine’s PLC), processes, and
products. These three dimensions could be mapped to the
horizontal and vertical data flow of CPPS and associated pro-
cesses, including actors (maintenance managers and engi-
neers, operators, technicians, administrative staff) and
production (maintenance) information management systems
(i.e. Supervisory Control and Data Acquisition (SCADA),
Computerised Maintenance Management System (CMMS),
Manufacturing Execution System (MES) and Enterprise
Resource Planning (ERP)). The horizontal perspective denotes
data flow within either maintenance operation (i.e. machine or
shop floor level) or maintenance management (i.e. tactical or
strategic level of maintenance organisation). The vertical per-
spective considers semantic interlinking of operation and
management data. Considering both horizontal and vertical
perspectives, PriMa deals with multimodality of maintenance
records. The multimodality reveals that each signal or single
record provides independent information about different
aspects of maintenance. For example, a failure signal can
reflect the malfunction of a subsystem or component of a
machine. At the same time, it may also indicate inappropriate
workload planning in correlation with Remaining Useful
Lifetime (RUL) of the machine. The latter may cause subsystem
degradation and may lead to unscheduled downtime and
unplanned maintenance costs. Hence, multiple influential fac-
tors should be interlinked to provide a complete picture of
maintenance management, system conditions and related/
dependent consequences and accordingly gain maintenance
knowledge (cf. the foundation of KBM presented in Figure 1).

To this end, PriMa’s Database Schema (cf. Figure 4) is
developed using Data Vault 2.0 (Linstedt and Olschimke
2015). The Data Vault 2.0 allows modelling, interlinking multi-
modal data and building a scalable data warehouse (Linstedt
and Olschimke 2015). Thus, PriMa’s Database Schema deals
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with the multiple dimensions of scalability and complexity of
big data due to volume, velocity, variety and veracity of data
as well as secure accessibility to integrated data (Linstedt and
Olschimke 2015). Figure 4 depicts PriMa’s Database Schema
consisting four main Hubs. Each Hub refers to a key functional
area, namely i) maintenance organisation (MO), ii) production
planning and controlling (PPC), iii) cost controlling (CC), and
iv) event tracking (ET). Hub-MO represents the maintenance
activities, including ID number, type, category and timestamp.
Hub-PPC establishes the relations between various data
sources used for production planning (P) and controlling (C),
including material and (human) resources as well as PPC pro-
cesses. Hub-CC represents hierarchical cost relations, including
infrastructure (IC), logistics (LC), personnel (PC), and external/
residual service costs (ES) associated with maintenance activ-
ities. Finally, Hub-ET presents the event-sensor(-network)-sys-
tem relations on the shop floor, including the type of event,
which is determined through processing sensor (sensor-net-
work) signals in conjoined with analysis of (sub-)system states.
The relationships between the Hubs are stored in the Link (L)
such as L-MO-CC-ET-PPC, which enables associative tracking of
maintenance plan-activity-costs-events relations in both plan-
ning and controlling phases.

Furthermore, maintenance records represent heteroge-
neous data (i.e. structural heterogeneity). In particular, the
recorded data can be either directly used by analytical tools,
independent of its quality, or may require pre-processing (i.e.
structured or semi-/unstructured maintenance records (cf.
(Baars and Kemper 2008))). Structured data includes, for
instance, conditions or environmental data captured by con-
dition monitoring systems or via direct queries from the
machine’s PLC. The unstructured or semi-structured mainte-
nance records are, for example, text reports or emails captured
via reporting and documentation tools, or audio or images
collected by means of microphones and cameras, respectively.
The pre-processing time may vary depending on the volume

and quality of unstructured temporal data using text-mining
approaches introduced in (Klahold et al. 2013) and (Ansari,
Uhr, and Fathi 2014), or signal and/or image processing algo-
rithms discussed in (Perner 2008). Notably, the present version
of PriMa deals only with one type of unstructured data (i.e.
textual maintenance records).

In the second layer of PriMa, several machine learning and
knowledge discovery algorithms are used depending on the
purpose of data analysis. In particular, four families of machine
learning approaches are foreseen, namely, information-based,
similarity-based, probability-based, and error-based learning
(cf. Table 2). In addition to the practical technique proposed
by (Bousdekis et al. 2015), extensively discussed in Section 2.2,
the authors discussed the process for systematic selection of a
single algorithm or combination of various algorithms tailored
to specific problem characteristics under different data quality
conditions in (Nemeth et al. 2018). As an example, the process
for application of Dynamic Bayesian Networks (DBN) has been
elaborated in (Ansari, Glawar, and Sihn 2017).

Moreover, extracting and learning new concepts and
knowledge from textual data is supported by textual-meta
analytic algorithms. In particular, word associative measuring
and associative gravity force calculation are employed, which
has been introduced and evaluated in (Klahold et al. 2013) and
(Ansari, Uhr, and Fathi 2014) (cf. Section 4.3.2).

In the third layer, the outcome of various data analytic
algorithms should be correlated to exclude processing errors,
to identify the interrelations and aggregate the findings (i.e.
provision of evidences for causality detection and finding
patterns), to improve maintenance measures, and finally to
recommend appropriate actions (decision alternatives). In
order to accomplish this task, there are two possible and in
fact compatible approaches. First, various decision support
methods can be used such as (dynamic) rule-based techniques
(cf. the discussion in Section 2.2 and (Bousdekis et al. 2015)
and (Nemeth et al. 2018)). Second, knowledge modelling,

Figure 1. The basic model of KBM – Adopted from (Pawellek 2013).
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representation and reasoning methods can be used to estab-
lish maintenance knowledge-base for storing and preserving
knowledge created in each decision-making and problem-sol-
ving iteration. Furthermore, enriching existing knowledge as
well as learning new semantic relations in various iteration of
problem-solving (i.e. learning from former experiences as well
as meta-learning) should be considered to keep the knowl-
edge-base up-to-date over time. The former approach is part
of the third layer and the latter is considered in an overarching
layer linking second and third layers.

In particular, the overarching layer is responsible for semantic-
based learning and reasoning. To achieve this goal, two types of

knowledge-based methods can be employed, ontology and
case-based reasoning (CBR). In an earlier publication, one of the
authors has extensively discussed the methodology for establish-
ing an ontological knowledge-base in human-centred CPPS (cf.
problem-solving ontology discussed in (Ansari et al. 2018)).
Ontology is a method to structure and build up a domain-
specific knowledge-base (Studer, Benjamins, and Fensel 1998).
Ontology conceptualises and structures the domain of the inter-
est (i.e. maintenance) from an abstract to a detail level in a
taxonomy form and provides possibilities to incorporate ontolo-
gical and non-ontological resources as well as editing, discarding,
updating and matching stored knowledge (Gruber 1993),

Figure 2. Evolution of KBM – Maturity and complexity levels.

Figure 3. Overall architecture of PriMa.
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(Guarino and Giaretta 1995). Ontology has been used in produc-
tion management to build up domain-specific knowledge-bases
(e.g. in the automation domain (Legat et al. 2014), human-robot
collaboration on the shop floor (Ullrich 2016) and CPPS in the
field of process technology (Engel, Greiner, and Seifert 2018)).
Nevertheless, the problem-solving and learning from experiences
(i.e. solution of similar past problems) remains incomplete. The
method to accomplish this task is CBR (Aamodt and Plaza 1994).
The CBR cycle consists of four steps to solve a problem ‘1)
Retrieve the most similar case or cases, 2) Reuse the information
and knowledge in that case to solve the problem, 3) Revise the
proposed solution, and 4) Retain the parts of this experience
likely to be useful for future problem solving’ (Aamodt and Plaza
1994). Various studies in engineering and production manage-
ment reveal the capability of CBR in comparison with other AI
methods (e.g. for managing order-picking operations in

warehouses (Poon et al. 2009), estimation of maintenance time
for complex engineered-to-order products (Mourtzis, Boli, and
Fotia 2017), detection of mechanical faults (Nasiri, Khosravani,
and Weinberg 2017), and decision support on diagnosis and
maintenance in the aircraft domain (Reuss et al. 2018)). In parti-
cular, PriMa gains benefits from the systematic approach for
knowledge engineering and implementing the CBR cycle pre-
sented in (Reuss et al. 2018).

3.2. Interaction of PriMa with PPC systems

As highlighted in the state-of-the-art analysis (cf. Section 2),
far-reaching research has been performed aiming at develop-
ing innovative maintenance planning, including predictive or
prescriptive maintenance planning. Furthermore, plentiful
research has been done in the fields of PPC. However, little

Figure 4. PriMa’s database schema – Interlinking multimodal data and building a scalable data warehouse.

Table 2. Four main families of machine learning algorithms (Adopted from (Kelleher, Mac Namee, and D’Arcy, 2015), (Ansari et al. 2018)).

Learning Approach Description Example of algorithm

Machine Learning
Families

Information-based Learning Employing concepts from information theory to build
models.

Decision Trees

Similarity-based Learning Building a model based on comparing features of known and
unknown objects, or measuring similarity between past
and forthcoming occurrences.

k nearest neighbor (k-NN), Case-Based Learning

Probability-based Learning Building a model based on measuring how likely it is that
some event will occur.

Dynamic Bayesian Network

Error-based Learning Building a model based on minimizing the total error
through a set of training instances.

Multivariable linear regression
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literature exists, where those two disciplines are integrated.
Existing models are not applied in the operational praxis since
they often do not provide realistic results. Moreover, the
interaction between innovative maintenance planning, the
scheduled production plan and current quality measurements
of the produced parts is not considered in most of the avail-
able approaches. Since a holistic optimisation of these factors
is generally not done, these models are only based on idea-
lised assumptions and therefore lack a validation in real indus-
try environments (Glawar et al. 2018).

In Figure 5 the possible interaction between PriMa and
the area of PPC is illustrated. From a strategical long term
perspective, the results of PriMa can be used for the optimi-
sation of the strategic spare part management. In particular,
availability of spare parts can be planned based on the
recommendations provided by PriMa rather than historical
knowledge gained through experience. Furthermore, the
production cost model may use the results of the analysis
for the purpose of adjustment. On the other hand, the model
uses the input from the cost model in order to derive pre-
scriptive maintenance measures. From a tactical medium-
term perspective, PriMa is used for decision support regard-
ing the adjustments of service intervals and therefore directly
influences the production planning. At the operational short
term perspective, the interaction between PriMa and produc-
tion control is quite strong. On the one hand, the derived
prescriptive measures are influenced by the current produc-
tion scheduling. On the other, the maintenance measures,
which were carried out, may be again used for the forth-
coming production scheduling and production control. Such
an integrative planning control can be implemented in either
a PPC or MES tool within an industrial IT-landscape, or in an
autonomous production system. Of course, the results of
PriMa can also be used for the integration in a reporting
system on the short term perspective.

4. Application of PriMa within an industrial use-case

Section 3 discusses the theoretical foundations of PriMa and
elaborates on four layers including various sets of analytical
and knowledge-based methods. Especially, the bidirectional
communication channel between PriMa and PPC has been
introduced in Section 3.2. In order to discuss the industrial
application of PriMa, an industrial use-case is presented in
Section 4. The methodology for industrial application of
PriMa (cf. Section 4.3) relies on the premise of supervised
learning and reasoning, in which a group of data analysts
and knowledge engineers collaborate with domain and busi-
ness experts. Hence, the use-case study contributes to realisa-
tion of layer one to three of PriMa. Notably, implementing a
(semi-)automatise semantic learning and reasoning using the
CBR framework provided by (Reuss et al. 2018) remains for
future works (i.e. consolidating and validating key-findings),
based on research in progress on developing the CBR compo-
nent of PriMa. In addition, building an ontological knowledge-
base for problem-solving in maintenance has been discussed
in an earlier paper (Ansari et al. 2018). The above-mentioned
limitation of the proof-of-concept study is due to the time-
consuming and step-wise approach to realise layer one to
three of PriMa, especially in cooperation with an industry
parthner, consisting several verification and validation
iterations.

4.1. Description of the use-case

The proof-of-concept study was carried out at an international
manufacturer of gearboxes and engines for the automotive
sector. The primary objective of the manufacturing company
was to explore possibilities to employ data-driven approaches
and develop a new knowledge-based maintenance strategy,
which predicts critical events on the basis of machine, process

Figure 5. Relation between PriMa and PPC.
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and product quality data and (semi-)automatically derives
measures for decision support on maintenance (cf. Figure 6).
To explore and demonstrate the feasibility of the new con-
cept, a three-axis machining centre for milling, turning and
honing has been selected as a pilot machine type. In particu-
lar, two different machines are investigated as reference
machines (machine instances). Due to the fact that the
selected industrial company runs around 60 structurally iden-
tical machines from this machine type, a high amount of data
is available and a big multiplication effect regarding the suc-
cessful implementation is expected.

Applying PriMa for components with different load/wear beha-
viour (cf. Figure 7), those components have been categorised into
three cases: 1) load dependent correlations, 2) load independent
correlations and 3) functional modules. For the load-dependent
calculation, this categorisation includes the ball screws and linear
guides of themain axes, as well as the bearings of the tool spindle.
For the load independent behaviour, the clampingmechanism for
the workpiece and the tool clamping of the main spindle is

considered, because their wear behaviour depends on the
amount of switching cycles. For the functional modules, the flow
sensor of the cooling system is used to demonstrate the applica-
tion of PriMa for time-dependent components. Notably, for spe-
cific type of components, neither sufficient analytical nor empirical
rules for lifetime (i.e. RUL) or wear are known nor statistical rele-
vant correlation could be identified. For this reason, such compo-
nents are not considered within this use-case.

4.2. Description of relevant data sources

For a defined time frame of two and a half year; data from various
data sources (c.f. Table 3) has been gathered for two different
reference machines. Therefore, it was possible to compare if a
different production program leads to different load spectra on
the respective machines. For the validation of the appliedmodel;
data from another two years’ period has been gathered from the
same data sources. After the model has proven to deliver
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Figure 6. Different data perspectives of the industrial use-case. Reprinted from (Glawar et al. 2016a).

Figure 7. Different types of component behaviour.
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significant results, the evaluation has been performed using the
data for the whole time span of four and a half years.

The analysis of the before listed data sources revealed that
three of them may play a key role, namely;

(1) The documentation of failure events represents the main
basis providing information when a failure event has
occurred. This information has been documented in
two databases. Historically this information was docu-
mented in an Excel file. Currently documentations are
stored in an Access-based Database. Therefore, these
two data sources need to be aligned, consolidated, and
together pre-processed for further considerations.
Within this data source, the occurring failure events
have been reported by operators and documented in
full-text. Furthermore, the timestamps for report of the
failure as well as the end of the failure handling are
presented in the same data source.

(2) The quality measurement data are used within the qual-
ity control database. For every produced product per
shift, a detailed measurement process is initiated and
the results are stored in a failure protocol. Therefore,
different kinds of quality factors are derived, which
build a meaningful basis regarding an analysis of corre-
lations between quality and failure effects.

(3) Finally, historic and future production programs using
MES system provide information regarding the load
spectrum and planned load on the machines. As a
consequence, for load depending on machine compo-
nents, such as ball-bearing, an analytical or empirical
calculation of the lifetime based on the respective NC
program is possible.

4.3. Methodology for applying PriMa

Considering the above discussion on the state-of-the-art in the
manufacturing company as well as the objectives of the study, a

methodology for industrial application of PriMa has been pre-
sented in Figure 8.

The four-step methodology is based on the Cross
Industry Standard Process for Data Mining (CRISP-DM),
which comprises six phases, namely i) business under-
standing, ii) data understanding, iii) data preparation, iv)
modelling, v) evaluation and vi) deployment (Chapman et
al. 2000) and (Kelleher, Mac Namee, and D’Arcy 2015). The
methodology for applying PriMa merges phases (i) and (ii)
and (iii) of CRIS-DM into Step 1 ‘Data Acquisition and
Preprocessing’, which involves business and domain
experts of the manufacturing company as well as data
and knowledge engineers of the project team. Building
and modelling predictive data analytic framework (Phase
iv) is distributed across Step 2 and 3. Step 2 ‘Data analysis
and simulation’ focuses on building and simulating a pre-
dictive model for failure detection and Step 3 ‘Reaction
model’ on defining a set of decision rules satisfying the
given requirements. Both steps consist of several inter-
mediate evaluations (Phase v). Finally, Step 4 ‘Prescriptive
Maintenance Decision Support System’ is aimed at creating
the decision support system framework including prescrip-
tive measures, developing a (mobile) maintenance control
centre as well as evaluation and deployment (Phase v and
vi) of the entire system. In particular, in the first step, data
of the relevant data source has been gathered and pre-
processed for further analysis. Therefore, it was necessary
to perform a data transformation to a target data structure,
and derive meaningful information from the unstructured
data (i.e. by using text-mining methods). In the second
step, the data has been analyzed in order to identify the
correlations between quality and failure effect and there-
fore reduce the amount of significant features for the
reaction model in the next step. Furthermore, a simula-
tion-based digital shadow of the machine may derive the
wear-reserve of the machine in real-time. In the third step,
the results of the data analysis and wear calculation have
been combined in a dynamic set of rules. These rules have
been used for the prescriptive maintenance decision

Table 3. Relevant data sources and information.

Data Source Relevant Information Quality/Granularity of Data

ERP System Cost of spare parts, availability of spare parts Real time information

ERP System
MES System

Hourly cost rates Cost rates for skill groups
Total downtime of machine & machine performance
(Overall Equipment Effectiveness (OEE))

Downtime manually entered by operator

MES System
Maintenance Management
Software (CMMS)

Historical production programme, (planned) future
production program

Planned/Produced parts (per product type) per machine per shift

Process parameters Process parameters for each manufacturing job
Periodic service plans Service intervals for each components, planned service dates

(monthly, quarterly, yearly)
Access data base for failure
documentation

Documented Failure events (Report of failure event, and
documentation of failure handling)

Manual documentation by operator (full-text)

Access data base for failure
documentation
Historical Knowledge Data
base (Excel)

Time stamp (Report of failure, failure handling finished) Manual documented by operator

Failure classification Rough classification (Mechanical, electrical, etc.)
Historical Documentation of failure events Analog to Access DB

Quality Control Database Quality data of products Measurement of one product of each produced product type per
shift (value for each quality criteria)
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support system in the fourth step as a basis in order to
derive maintenance measures.

4.3.1. Data acquisition and pre-processing
In this step, data from the relevant data sources (cf. Table 3)
has been gathered, structured and analyzed. Since different
sets of data usually represent a different data structure, infor-
mation quality and veracity, it was essential to provide a target
data structure before using the data for further analysis and
simulation. Certain data sets have been generated automati-
cally (such as product quality measures) and therefore provide
unique metadata structures as well as high accuracy of data. In
contrast, the other data sets that have been documented
manually by the operators represent no clear structure of
metadata and usually cause extra (pre-)processing time when
dealing with full-text entries. Within the first meta-analysis as
well as explorative analysis of the present data, a data trans-
formation has been conducted and a new target data format
has been introduced (cf. Table 4). Within this target data
structure, all sets of data are linked by a unique time-stamp
key, which enables further data analysis and simulation.

In order to provide a meaningful context to the data, a
special focus has been laid on the operative maintenance
processes. In Figure 9, the relevant systems and tools for the
operative maintenance processes are shown.

As a result, important requirements and restrictions regard-
ing the application of PriMa have been derived, which are
summarised in the followings:

(1) Process parameters do not vary significantly due to the
produced product types at the reference machines and
thus do not lead to meaningful information. Therefore,
this data source has not been further used within this
use-case.

(2) For this kind of machine type, no explicit condition
monitoring signals have been available. The applica-
tion of additional sensors has not been in the scope
of the use-case. However, the integration of motor-
current signal analysis has firstly shown positive
results.

(3) The already available maintenance KPI´s of the indus-
trial company (such as Mean Time Between Failures
(MTBF) and Mean Time To Repair (MTTR)) have not
been used since short downtime events are
neglected within their calculation. Thus, additional
analysis has been carried out for the use-case,
based on the actual downtime data extracted from
the MES system.

(4) And finally, the documentation of the failure event do
not exist in a structured format and therefore has to be

Figure 8. Four-Step methodology for applying PriMa. Adopted from (Matyas et al. 2017)

Table 4. Target data structure.

Failure
documentation Time stamp Machine ID Module Group Component Classification Root cause

Quality data Time stamp Machine ID Product ID Quality- factor Value of Measurement Target Value Upper limit Lower limit
Production Program Time stamp Machine ID Product ID # Parts

Process data Time stamp Machine ID Product ID Process Parameter Value Target Value Upper limit Lower limit
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further pre-processed.

4.3.2. Application of text-mining with unstructured data:
pre-processing and association (gravity) measuring
In order to process unstructured data (i.e. free text passages) and
extracting meaningful information from the documentation of
failure events, text-mining approaches are employed. As exem-
plified in Figure 10, the free text passages are initially prepro-
cessed consisting several steps, namely splitting each report to
sentences, tokenizing the sentences, lowercasing each single
token of the input text and removing stop words.

Afterwards, the extracted keywords are used for the purpose
of meta-analysis. Firstly, CIMAWA method is used for measuring
the strength of association between two words (i.e. word (x)
and word (y)). CIMAWA has been introduced earlier in (Klahold
et al. 2013) and applied in the context of maintenance (Ansari,
Uhr, and Fathi 2014). CIMAWA combines symmetric and asym-
metric co-occurrences between two words. ‘Co-occurrence is a
statistical measure that expresses how many times two words
coexist in a defined text window’ (Klahold et al. 2013). Secondly,
the strength of attraction of word (x) in relation to word (y) is
calculated using a statistical measure known as Associative
Gravity Force (AGF). AGF has been introduced earlier in
(Klahold et al. 2013). CIMAWA and AGF support the identifica-

Figure 10. Example for pre-processing of free text passages.

Figure 9. Relevant systems and tools for the operative maintenance processes.
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tion of keywords relations in the maintenance text corpora,
which reveal additional information. For example, the associa-
tive gravity measuring could lead to discovering a new category
such as module or assembly, which was hidden. In every step,
the results should be validated by the domain expert to
improve the performance of the text-mining algorithms (e.g.
by manually adding a new category). The information extracted
from documentation of failure events has been then structured
in three different layers regarding the failure events (i.e. mod-
ule, assembly, and component). If possible, a layer regarding
the root cause of the failure has been added. After an intensive
coordination and harmonisation of the new data structure with
the domain experts of the industrial partner, the new set of
data has been used for further analysis and application of
PriMa.

4.3.3. Data analysis and simulation
At this stage, different steps of data analysis have been carried
out in order to identify relevant cause and effect coherences
between product quality- and failure event data. Furthermore,
the RUL of a machine component has been determined based
on a simulation approach, which will be discussed later in this
section. In order to be able to derive correlations, the first step
was to reduce all available quality factors to just the relevant
ones and therefore reduce the amount of significant measure-
ment values for the reaction model. For this purpose, the
quality factors were correlated with each other (cf. Figure 11).
If two measuring points were strongly correlated, one of the
affected measuring points has been excluded, because they
may reflect a redundant information content.

The list of features for significant quality factors is the basis for
the determination of relevant cause and effect coherences
between product quality- and failure event data. Hence, a quality
matrix has been created; listing all possible failure effects as well

as significant quality factors and their respective measuring
points (cf. Figure 12). In this matrix, two types of knowledge
sources have been integrated: i) the already known coherences,
based on the experience of the operators in the industrial com-
pany, and ii) results of a detailed explorative analysis of the
quality data. It is important to mention that this was performed
as an iterative process. On the one hand, the results of the
explorative analysis have been discussed with the experts. On
the other, the experts’ opinions have been questioned based on
the results of the analysis. Finally, a correlation matrix with four
degrees of significance (very strong, strong, medium and weak
correlation) has been derived. For the features with a significant
correlation between quality effects, it is possible to identify
statistically significant deviations in the next step.

Based on a simulation-based digital shadow of the
machine the wear out of certain machine components has
been derived (cf. Figure 13). The simulation approach has
been extensively discussed in (Matyas et al. 2017) and
(Glawar et al. 2016a, 2016b). As illustrated in Figure 13, in
a first step, the preparation of the simulation requires the
NC programs, the archive files of the control, the CAD data
of the machine and the work piece. These data are trans-
ferred to the dynamic calculation, which determines the
temporal load of the individual components such as guides
and drive elements. Based on these data and the compo-
nent properties, the wear calculation computes the theore-
tical wear. This dynamic calculation is based on the process
forces derived from the kinetic data, the cutting volume and
its position. In order to solve this problem, the empirical
approach according to Otto Kienzle (Sekulić et al. 2014) has
been chosen. It is based on a correlation of cutting volume
and the direction vector. The simulated process forces have
been compared to conducted measurements of the process
force within the machine in order to ensure the validity of

Figure 11. Correlation matrix of the quality factors.
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the approach. Based on this approach it is not only possible
to derive the wear out on certain components for all his-
torically produced parts but also to anticipate the wear out
for the planned production program even for parts that
have never been produced earlier (as long as a respective
NC file for these parts does exist).

4.3.4. Development of the reaction model
Within the reaction model, a dynamic set of rules has been
derived using i) defined single parametrised quality-based
rules and ii) RUL on the basis of the dynamic wear calculation.
Considering the results of the correlation analysis, individually
parameterisable rules for each of the considered machine
components have been derived. These rules are based on
the determined failure effects, deviations and trends in the

product quality. Each of these rules is represented by a math-
ematical function and in case of rule violation, a warning is
visualised in the maintenance control centre. Four generally
valid, component-independent rule-modules have been
defined in Table 5.

In order to apply generally valid rules to the various com-
ponents, they need to be parameterised for the respective
components. This parameterisation is based on the evaluated
quality data and the recorded trends in the explorative data
analysis. The RUL is based on the wear of a single part, which
has been calculated and stored in a database. The RUL is
calculated on the basis of the production plan. Thus, a wear
for a larger time span can be defined. Subsequently, it is
possible to create a forecast, that provides information about
when and which component should be replaced in order to

Figure 12. Correlations between quality factors and failure effects as revealed in (Glawar et al. 2016b).

Figure 13. Dynamic calculation of wear – reproduced from (Matyas et al. 2017) & (Glawar et al. 2016a).
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avoid failures due to an anticipated critical wear condition.
This is possible due to a combination of a known, future
production program, which determines the number of the
products to be manufactured, and the implemented wear
calculation of the components. A rule is violated as soon as
the calculated wear reserve of a component falls below a
predefined value, which again has to be parameterised for
each of the respective machine components (according to
DIN 31051 (DIN 2012)). Based on these two sets of rules the
reaction model has been established. A dynamic set of rules
has been developed, which combines the defined individual
rules and predicts possible failure times. The reaction model
uses incoming input data sets to calculate current and future
machine states and to analyze trends in the quality data in
order to compare these with stored state patterns derived
from historical data sets. The so-called combination rules con-
sist of a logical combination (AND/OR) of the individual para-
meterised rules and have, therefore, a higher priority than the
individual rules. Hence, it is ensured that maintenance actions

provided in the decision support are meaningful for the plan-
ner and do not result in a high amount of false alarms. Figure
14 shows the aforementioned violation state, which has been
parameterised for the component air hose. In this example,
the number of measurements is 25 (n = 25). The arithmetic
mean should not exceed 123.4 and at the same time the
gradient of the regression line should not be between
9.00*10–5 and 9.05*10–5; otherwise, the combination rule is
violated (Matyas et al. 2017).

4.3.5. Prescriptive maintenance decision support system
The violation of one or more combination rules in the control
centre provides the planner with additional information about
the urgency of a corresponding countermeasure. He/she is,
thus, supported in decision-making. In addition to the combi-
nation rules in the control centre, the planner will also be
notified of pending (periodic) maintenance during this period.
Because of this, the planner can independently decide whether
to bundle the maintenance and predictive maintenance

Table 5. Defined rule-modules.

Type of rule
Mathematical
function Parameters

Gradient of the regression curve of n-measuring
points b ¼

Pn

i¼1
xi�xð Þ� yi�yð Þ
n�1

1
n�1

Pn

i¼1
xi�xð Þ2

n = number of measured values
yi = considered values

xi = 1… n (represents the date of measurements)
x = arithmetic mean
xi = considered values

Mean value of n measured values �y < >ð Þt
�y ¼ 1

n

Pn

i¼1
yi

y = arithmetical mean
yi = measured value

n = amount of considered measurements
t = predefined value

Comparison of variances of measured value S2n
S2N
< >ð Þt

S2n ¼
Pn

i¼N�nþ1
yi��ynð Þ2

n�1

S2N ¼
PN

i¼1
yi��ynð Þ2

N�1

sn
2 = empirical variance of N
sN

2 = empirical variance of n
t = pre-defined value

n = considered values (the last n measured values out of N)
N = amount of measured values yi

yi = considered values
yn = arithmetical mean of n
yN = arithmetical mean of N

Number of limit violations fn > m

fn
Pn

i¼1
fi

fi = function describing correlation between value and pre-defined value
n = amount of measured values

m = amount of measured values exceeding or falling below a pre-defined
value

Wear reserve wr � ws wr = actual wear reserve of component
ws = pre-defined wear stock

Figure 14. Example of violation of a combination rule – Adapted from (Matyas et al. 2017).
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measures in order to save time and therefore may achieve cost
savings according to the logic shown in Figure 15.

4.4. Achieved results

The result of the application-project is a ‘maintenance con-
trol center’ which has been used to derive rule-based pre-
scriptive maintenance measures. In addition, a ‘mobile
control center’ has been developed, which makes it possible
to present relevant key figures as well as their time course
and technical data of the plant and its wear stock. Thus, a
real-time monitoring of the machine and the system data as
a meaningful supplement to the stationary ‘maintenance
control center’ is possible. Selected cases were used to
explore and demonstrate the feasibility of applying PriMa in
an industrial use-case. Occasions were identified for the
machine components for which a positive effect could be
achieved during test operations of the control centre demon-
strator. For the identified cases, a potential reduction in
downtimes of 12–25% and an improvement in the ratio of
unplanned to planned downtime of 8–13% has been already
achieved (cf. Table 6). Due to the improved scheduling, a
realisation of savings (by targeted spare part stocking, exploi-
tation of the wear stock, etc.) and an increase in plant avail-
ability are possible.

5. Conclusion and outlook

The undertaking paradigm shift known as Industry 4.0 and
smart manufacturing technologies leads to evolution and
transformation of KBM strategies and models from diagnostic
to predictive and prescriptive. The main objective of this paper
is to introduce PriMa in both conceptual and application

levels. In fact, there are certain technological and non-techno-
logical barriers and limitations to realize PriMa in an industrial
context, including company’s technology readiness level, (in-
house) competency in data management and industrial data
science covering predictive data analytics and knowledge
engineering, historical evolution of IT-landscape, data accessi-
bility, availability and quality, (cyber-)security and data privacy,
as well as integration of PPC and maintenance systems and
processes. Therefore, this paper is to pave the way for more
detailed exploration and suggests some directions for future
research.

In the conceptual level, the fundamental aspects of KBM
have been elaborated, especially creating and learning
dynamic models for predicting future events and prescrib-
ing optimal action plans considering multimodality and
structural heterogeneity of maintenance data. In addition,
building semantic learning and reasoning models using
ontology and CBR is discussed. Previous investigations of
the authors have been led to establish a methodology for
building an ontological knowledge-base in maintenance
problem-solving (cf. the discussion in Section 3). However,
a CBR-based decision support system framework is an
essential component for realisation of the semantic learning
and reasoning layer of PriMa in industrial use-cases, which is
currently under development. The results will be reported in
a forthcoming paper.

Applying PriMa in an industrial use-case results in demon-
strating and verifying its practical potential, which has been
revealed by significant improvements (e.g. in the reduction of
downtime and the ratio of downtime, especially for load depen-
dent behaviour of parts). To cope with temporal characteristics
of loads, it is, however, essential to extend the scope of the
study and apply the model for time-dependent components.
Considering load independent analysis, identifying a correlation
between quality and failure effects is essential. However, it has
not been achieved due to data collection problems as well as
incomprehensiveness of data sources for all selected machine
components. Furthermore, machine components without a fre-
quent failure pattern (such as linear guides) do not provide the
necessary information for this kind of prescriptive maintenance
application. While the developed maintenance control centre
provides a positive impact for the maintenance operator, there

Proposed 
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Ordering Spare Parts
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inspection

Performing inspection / 
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Figure 15. Decision flowchart for prescriptive maintenance decision support.

Table 6. Summary of results regarding the application of PriMa.

Machine Part

Reduction
of

Downtime

Planned/
Unplanned
downtime Behavior type

Tool Spindle (Ref. machine A) 12.1% 8.3% Load dependent
Tool Spindle (Ref. machine B) 25% 12.5% Load dependent
Clamping mechanism 14.3% 9.1% Load independent
Ball screws 23.1% 10.0% Load dependent
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are still a significant number of ‘false alarms’. Hence, advanced
machine learning approaches are required to improve the false
alarm detection, support detection of false-positive and false-
negative errors, and ultimately automate the decision support
process.

Moreover, instantiation of PriMa for various use-cases (contexts
of application) should be examined (e.g. the procedure for selec-
tionof data analyticsmethods tailored to thepurposeof analysis or
in accordance with the digital readiness of companies). In particu-
lar, the scope of unstructured data should be extended to a
combination of audio, video and textual maintenance records.

Furthermore, research works should be conducted to deal
with technological challenges for the realisation of CPPS in an
industrial context, which directly or indirectly affect the imple-
mentation of PriMa. In particular, the major challenges are i)
dealing with (cyber-)security (i.e. how to perform data analysis
on encrypted data, how to make analytics platform more
secured and efficient, (e.g. by means of Blockchain technology),
ii) Integrating real-time data streams into simulation-based and
digital models of machines for real-time (re-)configuration and
online directing of machines (i.e. Digital Twin for maintenance),
and iii) integrating autonomous maintenance workflow man-
agement and decision support into production control models
(i.e. how to integrate prescriptive maintenance in production
control models to reach a higher degree of autonomy in CPPS).

Finally, yet importantly, from knowledge management per-
spective, technology-oriented and human-oriented aspects of
maintenance should be correlatively explored considering new
division of (shared) tasks between human andmachine workforce.
Mutual learning strategies, models, approaches and novel didac-
tical concepts should be developed for achieving optimal colla-
boration between humans and robot (AI) systems on performing
maintenance tasks. Notably, the novel concept of human-machine
mutual (reciprocal) learning and related referencemodel for realis-
ing mutual learning in smart factories has been introduced in
(Ansari, Erol, and Sihn 2018) and (Ansari et al., 2018), respectively.

The outlined directions will be considered in the context of
future research.
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