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Abstract

Manufacturing industries have recently promoted smart manufacturing (SM) for achieving intelligence, connectedness, and
responsiveness of manufacturing objects consisting of man, machine, and material. Traditional manufacturing platforms, which
identify generic frameworks where common functionalities are shareable and diverse applications are workable, mainly focused
on remote collaboration, distributed control, and data integration; however, they are limited to incorporating those characteristic
achievements. The present work introduces an SM-toward manufacturing platform. The proposed platform incorporates the
capabilities of (1) virtualization of manufacturing objects for their autonomy and cooperation, (2) processing of real and various
manufacturing data for mediating physical and virtual objects, and (3) data-driven decision-making for predictive planning on
those objects. For such capabilities, the proposed platform advances the framework of Holonic Manufacturing Systems with the
use of agent technology. It integrates a distributed data warehouse to encompass data specification, storage, processing, and
retrieval. It applies a data analytics approach to create empirical decision-making models based on real and historical data.
Furthermore, it uses open and standardized data interfaces to embody interoperable data exchange across shop floors and
manufacturing applications. We present the architecture and technical methods for implementing the proposed platform. We
also present a prototype implementation to demonstrate the feasibility and effectiveness of the platform in energy-efficient
machining.

Keywords Big data analytics - Holonic manufacturing system - Cyber-physical system - Agent system - Energy efficiency -
Predictive modeling

1 Introduction

The future ability of manufacturing industries depends on the
smartness of manufacturing systems; smart manufacturing
(SM) will make it possible to achieve higher agility, produc-
tivity, and sustainability [1, 2]. The Smart Manufacturing
Leadership Coalition defines SM as “the intensified applica-
tion of advanced intelligence systems to enable rapid
manufacturing of new products, dynamic response to product
demand, and real-time optimization of manufacturing
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production and the supply chain network [3].” Although there
are several definitions of SM apart from the definition above,
one remarkable and common understanding is that
manufacturing systems should evolve to accommodate the
characteristics below [3, 4]:

— Intelligence: manufacturing objects consisting of man,
machine, and material (3M) collect their data in real time
and act autonomously.

— Connectedness: manufacturing objects set up and use
connections to other objects of the system for collabora-
tion and for the knowledge and services available on the
Internet.

—  Responsiveness: manufacturing objects proactively or re-
sponsively cope with internal and external changes.

The concepts of these characteristics have been introduced

already by much research, such as [5—7]. However, their
implementations in reality were still far from reaching
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satisfactory outcomes due to practical problems, including the
disconnection of physical 3M with the virtual 3M in cyber-
space, the difficulty in creating accurate decision-making
models (hereafter, “models™) customized for individual ob-
jects, and the limitation in processing large-sized and various
formats of data acquired from those objects [2, 4, 8]. Recently,
the convergence of manufacturing technology (MT) with in-
formation and communication technology (ICT), such as ra-
dio frequency identification (RFID), Internet of Things (IoT),
and cyber-physical systems (CPS) is making those character-
istics implementable and feasible because current ICT and MT
have been advanced considerably to overcome those practical
problems [8, 9].

Particularly, the application of CPS in manufacturing,
cyber-physical production systems (CPPS), has recently re-
ceived attention as an advanced SM technology [4]. As CPS
are “physical and engineered systems whose operations are
monitored, coordinated, controlled, and integrated by a com-
puting and communication core [10],” CPPS aim at
implementing autonomous and collaborative manufacturing
objects and subsystems based on the context within and across
all levels of production [4]. For the pursuit of the three char-
acteristics above, CPPS are required to obtain more-
sophisticated capabilities, including improving decision-
making and self-optimizing beyond creating transparency
and increasing understanding [4]. However, obtaining these
capabilities is quite challenging from an implementation view-
point because CPPS should construct and integrate high-level
functionalities, from data acquisition through data analytics to
value creation (e.g., prediction, optimization, cognition, and
resilient control) [9]. Thus, what to implement effectively and
how to implement efficiently these high-level functionalities
are growing as critical issues for CPPS.

The platform technology is a key solution to these ques-
tions because it provides an integrated cyber-infrastructure
where generic functionalities are shareable and any piece of
3M or applications is workable. Such advanced manufactur-
ing platforms can help implement an autonomous and coop-
erative decision-making environment based on 3M’s data, and
interconnect the data and models with manufacturing applica-
tions including manufacturing execution system (MES) and
product lifecycle management (PLM). However, available
platforms are lacking (this will be discussed in Section 2.1).
The development of an advanced CPPS platform is the goal of
the present work.

In the implementation view of such CPPS platforms,
three technical challenges appear: object virtualization,
data control, and model control. Object virtualization
refers to identifying physical 3M and translating them
into cyberspace to make simulation capabilities available
and further improve agility and flexibility [8]. Object
virtualization is a commonly used concept in CPPS be-
cause the virtualized objects, so-called “digital twins,”
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carry out fundamental interactions with physical objects
to explore and implement autonomous, cooperative, op-
timal, and responsive tasks [4]. Without object
virtualization, physical objects hardly do these intelli-
gent tasks because they are designed to work on their
original missions as the top priority. They also have
limited hardware and software capabilities in processing
such intelligent tasks. Implementing virtualized objects
that can alleviate heavy loads on physical objects and
further make autonomous and cooperative decisions is
essential.

Data control corresponds to data management regarding
how data are generated, acquired, stored, and retrieved for
supporting intelligent decision-making on 3M. Much research
has been done in terms of data models, integrations, and pro-
tocols in manufacturing, and the Standard for the Exchange of
Product model data (STEP) is a representative example.
However, data control is an ICT problem and not covered
much in the manufacturing realm. Data control becomes more
significant due to increasing demand for big data, named for
the data containing three dimensions: volume (large amounts
of data), variety (different formats of data), and velocity (con-
tinuous generation of data with high-speed processing) [8].
Machines on shop floors obviously generate a huge amount
of data for representing machines’ motions, actions, and their
operational results (volume). Manufacturing data contain var-
ious data models and formats for their own purposes (variety).
Manufacturing data that are continuously generated need to be
analyzed and used for making decisions in a (near) real-time
manner (velocity). Data control is, therefore, an important
challenge for making high performance when dealing with
manufacturing data.

Model control, which applies the concept of data control to
models, is used with model management regarding how
models are created, stored, retrieved, and even perish. Data
itself have no value unless data analysis is performed [8].
Models that use data allow 3M to determine their specific
planning accurately and control themselves autonomously.
However, models should change along with continuous
change in data. In other words, models need to be managed
over their lifecycle due to their dependency on data that are
sensitive and changeable. For example, when calibration oc-
curs in a measurement device attached to a machine, the pre-
vious model would no longer be applicable, and a new model
is necessary because the calibration may produce different
data values than the old ones. Thus, it is vital to provide the
capability for efficient model control so that 3M create accu-
rate models in a timely manner and manage models during
their lifecycle. Data analytics (DA), which is a new method of
data analysis in that it analyzes and mines big data to produce
data-driven operational knowledge [11], will be an enabler for
model control. DA facilitates creating descriptive, prognostic,
predictive, and prescriptive models through exploratory
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solution searching [12]. Particularly, it is known that the im-
plementation of DA as part of CPPS enables machines to
continuously track and predict their performance [13].

In view of the above, the present work is motivated by a
strong need to develop big data analytics (BDA) platforms in
manufacturing. Unlike traditional platforms reported in the
literature, the proposed platform incorporates the capabilities
of (1) virtualization of 3M for their autonomy and cooperation
(object virtualization), (2) processing of real and various
manufacturing data for mediating physical and virtual 3M
(data control), and (3) data-driven decision-making for pre-
dictive planning on 3M (model control). It also enables 3M to
perform seamless data exchange using open and standardized
data interfaces. In the SM view, it is designed to integrate
CPPS with BDA so that it can implement the high-level func-
tionalities encompassing data acquisition, data analytics, and
predictive planning as value creation. Hence, the present work
is an attempt of designing a CPPS referential architecture that
helps achieve intelligence, connectedness, and responsive-
ness. For such purposes, architecture design for identifying
the platform, technical method design for implementing oper-
ational mechanisms in the platform, and a prototype imple-
mentation for demonstrating the feasibility and effectiveness
of the platform is discussed.

This paper is organized as follows. Section 2 describes the
design requirements, including a review of the literature and a
requirements analysis. Section 3 and Section 4, respectively,
present the design of the platform architecture and the techni-
cal methods. Section 5 gives an examination of a prototype
system, and Section 6 includes a summary and conclusions.
To explain the platform and its prototype, a metal cutting
process is chosen as the main domain, and energy consump-
tion, a major environmentally conscious metric, is used as the
key performance measure.

2 Design requirements

The proposed platform does not simply aim at utilizing BDA
techniques in the manufacturing realm, but implementing ef-
ficiently the three characteristics mentioned in Section 1.
Thus, we should consider capturing requirements in designing
the platform architecture. In addition, the three implementa-
tion challenges in Section 1 need to be converted to explicit
requirements. Section 2.1 includes a discussion of the relevant
literature, and Section 2.2 provides the requirements analysis.

2.1 Literature review

The term “platform” in the ICT domain normally means the
generic layers, including computers, networks, operating sys-
tems, database management systems, user interfaces, system
services, and middleware, needed to construct software

systems [14]. Meanwhile, in the manufacturing domain, the
platform typically represents a software-based framework that
supports cooperative works of team members who are sepa-
rated in time and distributed in space to achieve remote col-
laboration, distributed control, and data integration across
computer-aided technology (CAx) chain [15]. Valilai and
Houshmand [15], and Valilai and Houshmand [16] discussed
the previous studies relevant to manufacturing platforms, and
they classified these platforms into the following groups: (1)
remote collaboration, (2) distributed control, (3) data integra-
tion without STEP, and (4) data integration with STEP.

Remote collaboration provides the technical base for real-
izing distributed collaborative product development where en-
gineers concurrently and collaboratively participate in design,
planning, and manufacturing [17]. Wang and Zhang used a
feature-based product model to develop a computer-aided de-
sign (CAD) and computer-aided manufacturing (CAM) inte-
grated system to support collaborative work of distributed
groups [17]. Nylund and Andresson proposed a simulation-
based approach to make autonomous and cooperative entities
capable of fulfilling their individual activities in a dynamic
environment [18]. Wang presented a Web-based platform for
enabling distributed process planning, real-time monitoring,
and remote machining [19].

Distributed control exhibits intelligence, robustness, and
adaptation through decentralized control to cope with dynam-
ic change and disturbance in manufacturing [20]. An agent-
based system, “a computational system that is situated in a
dynamic environment and is capable of exhibiting autono-
mous and intelligent behaviors [21],” has been applied widely.
In such a system, agents can encapsulate manufacturing activ-
ities or wrap legacy software systems in an open and distrib-
uted environment, and represent physical 3M and their nego-
tiation for facilitating distributed control and collaboration.
Colombo et al. developed an agent-based control platform
for autonomous and cooperative manufacturing systems
[22]. Oztemel and Tekez introduced a reference platform to
make agents responsible for different manufacturing functions
in a distributed environment [23]. Yin et al. presented an
agent-based platform to support remote collaboration over
the Internet [24]. Lin and Long presented a simulation plat-
form to provide multi-agent-based collaborative and coordi-
nated control [25].

Data integration without STEP deals with product data
integration using product information models or data conver-
sion mappers, but it does not follow STEP [15]. Mikos et al.
developed a distributed knowledge sharing and reusing plat-
form for potential failure modes and effects analysis using the
ontology concept [26]. Meanwhile, data integration with
STEP focuses on product data integration based on STEP
[15]. STEP-based platforms are developed to help ensure data
integration and interoperability across various CAx applica-
tions [16, 27-30]. As the adoption of cloud computing in
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manufacturing, called cloud manufacturing, becomes more
common, the platform technology provides a fundamental
infrastructure to advance the capabilities of searching, map-
ping, recommending, and executing manufacturing services
[31]. Relevant studies, including [32-35], provide demand-
driven services with outsourcing ICT resources.

These previous manufacturing platforms have helped pro-
vide good solutions for remote collaboration, distributed con-
trol, and data integration; however, they are limited in incor-
porating object virtualization, data control, and model control
challenges into their design specifications. Especially, those
platforms do not much deal with the interconnection between
virtualized objects, their data and models. Their systematic
integration can indeed make physical 3M autonomous and
cooperative through the utilization of 3M’s data-driven cus-
tomized models adjusted to their real contexts. For clarifying
the scope of the present work, Table 1 summarizes the scopes
of'the previous and present platforms. The first four criteria are
taken from [15], and the object virtualization, data control,
and model control criteria are added.

2.2 Requirements analysis

The following subsections present the analysis of essential
requirements for object virtualization, data control, and model

control. We address that the requirements should be met to
integrate BDA and CPPS.

2.2.1 Object virtualization

The conventional hierarchical control architecture hardly
meets the characteristics in Section 1 because of its inflexibil-
ity to respond to changing products and production methods
[36]. It also limits the expandability and reconfigurability of
manufacturing systems [36]. These limitations inevitably re-
quire the control architecture to be autonomous, collaborative,
and flexible, which match with the pursuit of holonic
manufacturing system (HMS). HMS is a distributed control
paradigm using autonomous and cooperating agents, called
“holons” [5]. The HMS is regaining popularity as a promising
control paradigm in SM, because it originated from realizing
the concepts of autonomy (the capability of an entity to create
and control its own plans, strategies, and executions) and co-
operation (a process whereby a set of entities develops and
executes mutually acceptable plans) [4, 5]. In HMS, resource,
product, order, and staff holons are autonomous and coopera-
tive building blocks for transforming, transporting, storing,
and validating physical objects into a virtual world [5]. To
implement HMS, agent technology has been widely used,
because agents make it possible to implement efficiently

Table 1 Scopes of manufacturing

platforms Reference  Remote Distributed ~ Data Data Object Data Model
collaboration  control integration  integration  virtualization  control  control
without with STEP
STEP
[17] (0) O
[18] O
[19] (0) (0) O
[22] 0 o
[23] 0 o
[24] o O
[25] (o) (0] (0] (o)
[26] o (0) O
[27] (o) (0] (0]
[28] (0] (0] (@)
[29] (0] (0]
[16] (o) (0]
[30] (0) (0]
[15] (o) (0] (0]
[32] (0) (0] (0]
[33] (o) (0] (0]
[34] (0) O
[35] (0) (0] (0]
Present O O O O O O
work
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holons that contain a physical part as well as a software part
[21, 36].

Implementing agent-based systems in manufacturing sys-
tems, in reality, was a big challenge due to the disconnection
between physical and virtual objects, i.e., agents. Recently,
ICT, such as RFID, IoT, and CPS are making it possible to
interconnect these heterogeneous objects easily and efficiently
[4]. Meanwhile, in the MT domain, standardized data inter-
faces such as MTConnect [37] open up the possibility of
openness and interoperability of manufacturing data generated
on machines [31]. Thus, the HMS concept using agent-based
systems is getting closer to being implemented, and the major
requirements about HMS are as follows:

[Requirement No. 1] Virtualization: transport physical
3M’s objects to virtual objects in cyberspace using agent
technology.

[Requirement No. 2] Autonomy and cooperation: enable
virtual 3M objects to perform their autonomous and co-
operative decision-making across shop floors
[Requirement No. 3] Interconnection: interconnect a se-
ries of processes (sensing, acquisition, decision, and con-
trol) in the closed control loop of a virtual space with
physical 3M objects in real or on time

2.2.2 Data control

Developing an efficient data processing method is essential
because data are a mediator of interconnecting physical and
virtual 3M objects. In addition, the data are the foundation for
the models that must use the data collected from physical
objects. When queries for creating models are invoked, a cer-
tain data processing method should find relevant data sources
quickly, and it should return datasets as the input of models
without a time delay. Conventional databases, such as rela-
tional database (RDB), hardly meet acceptable performance
for big data capability, whereas distributed database (DDB)
have better performance because of their parallel-processing
ability [38]. The DDB will be key for scale-out (numbers of
nodes working together and providing an aggregated perfor-
mance) because it can cope efficiently with voluminous and
various manufacturing data with high-speed streaming.
Furthermore, open-source solutions, including the Hadoop
Distributed File System (HDFS) [39], MongoDB [40], and
HBase [41], are contributing to constructing an easy and
cost-effective implementation environment.

Beyond the scale-out capability that commercial vendors
mostly address in the above examples, data transparency is
critical in the manufacturing domain. It is necessary to access
and work easily with manufacturing data, no matter where
they are located or who created them. That is, securing data
assurance (determining whether the data are correct and come

from reliable sources) is important, because the model’s cor-
rectness largely depends on good datasets being acquired.
Data transparency, therefore, is required to provide accessible,
readable, and reliable manufacturing data for data assurance.
Second, data non-redundancy and consistency are critical fac-
tors in data management. Due to the nature of manufacturing
industries, many data are scattered across multiple locations,
and the data may contain information that are incompatible
with specific data or may have to be discarded after the expi-
ration date. Well-thought-out data systems often become too
inefficient and complicated to use unless they are regularly
managed. Last, data standardization is required for interoper-
able data exchange. As described in Section 2.2.1, open and
standardized data interfaces become good solutions to over-
come difficulty in data collection from real shop floors.
Moreover, data standardization is important to ensure data
quality. Lacking data standardization may cause so-called
“bad data” that have negative effects on the model’s correct-
ness and reliability by producing unreadable data in some
black-boxed machines. In addition, this standardization needs
to be applied not only to data but also to models for model
sharing and exchange. Thus, the design requirements are the
following:

[Requirement No. 4] Scale-out: enable efficiently coping
with voluminous and various manufacturing data with
high-speed streaming

[Requirement No. 5] Transparency: provide accessible,
readable, and reliable manufacturing data

[Requirement No. 6] Non-redundancy and consistency:
keep data systems healthy and efficiently

[Requirement No. 7] Standardization: use and analyze
high-qualified data and models in an interoperable ex-
change environment

2.2.3 Model control

In the metal cutting industry, much research has been carried
out to develop models for productivity and sustainability per-
formance [42]. Most studies strove to model causal relation-
ships between process planning and Key Performance Index
(KPI) due to the great influence of process planning on the
efficiency of manufacturing operations. Mostly, the modeling
depends on theoretical and/or experimental approaches [43].
The theoretical approach typically uses metal cutting statics
with some simplifications. However, it is unable to represent
other factors that the metal cutting statics do not reflect, and
this results in inaccurate output. For example, Kara and Li
pointed out the limitation of the theoretical approach by
reporting that theoretical energy consumption models do not
clearly quantify specific process energy, and thus, their energy
prediction is infeasible unless they provide the exact value for
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each variable and coefficient [43]. Meanwhile, the experimen-
tal approach conducts experiment within design of experi-
ments (DOE), “the application of geometric principles to sta-
tistical sampling to obtain desired results together with mini-
mizing the number of experiments [44].” This empirical ap-
proach can provide more reality and practicability than the
theoretical approach; however, it derives statistical models
that are only effective within the boundary covered by a small
number of experiments. It also hardly covers the diversity of
manufacturing conditions in real shop floors, where many
manufacturing conditions exist and dynamically change.

One solution to overcome the limitations of the tradi-
tional approaches is to use real and historical data that
have been collected and accumulated from previous
manufacturing operations. We call this approach “data an-
alytics modeling approach,” because it is associated with
the pursuit of DA (see Section 1), which depends on real
data and is independent of theoretical and experimental
data (these are still important when identifying the data
collected and designing model structures). This approach,
as an empirical approach, creates models by identifying
the data needed, collecting relevant historical datasets (this
step largely relates to data control), and generating and
validating empirical models from the datasets. It calculates
accurate outputs because it provides the exact value for
each variable and coefficient by using real data rather than
assumptions. It can also create multiple and machine-
specific models that cover the diversity of manufacturing
conditions, because it depends on the data collected from
previous operations, independently of DOE.

The DA approach can be more beneficial when it achieves
model granularity, which scales down the decomposition of
models at the designated minimum level. The model granu-
larity leads to precise and flexible modeling because it can
decompose and re-compose models dynamically in terms of
stratification. For example, an energy prediction model dedi-
cated to a machining feature can anticipate an energy value for
the feature; however, it cannot work when the feature geom-
etry changes. If energy models are created in terms of tool
paths (the minimum criterion is the type of tool path), the
changed energy value can be obtained through the appropriate
re-composition of these models aligning with tool paths on the
changed feature. Hence, the design requirements are:

[Requirement No. 8] Data-driven model: apply a DA
modeling approach, creating models by identifying the
data needed, collecting datasets, and generating and val-
idating models.

[Requirement No. 9] Model specificity: create models
specific to and customized for dedicated machines based
on their own data

[Requirement No. 10] Model granularity: scale down the
granularity of models for precise and flexible modeling
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3 Architecture design

Based on the design requirements in Section 2, we design a
BDA platform. In Section 3.1, we introduce its conceptual
architecture, and in Section 3.2, we present its detailed func-
tional architecture.

3.1 Conceptual architecture

Figure 1 shows the conceptual architecture. The proposed
platform is designed to incorporate intelligence, connected-
ness, and responsiveness described in Section 1. The funda-
mental idea is that the virtual 3M mirrored with their physical
objects gain data insights through the interconnection of their
data and models. These data and models have been generally
dealt with in the DA domain, whereas those virtual objects in
the industrial control domain. By coupling virtual objects and
their data and models tightly, the proposed platform pursues
the implementation of an autonomous and collaborative CPPS
over the traditional industrial control, which limits executing
restricted instructions automatically. Based on the require-
ments addressed in Section 2, this architecture consists of
three parts (virtual shop floor, data warehouse, and data ana-
lytics center) for carrying out the mechanisms below.

The main mechanism of the virtual shop floor is (1) to
perform the necessary decision-making using status data and
models, at present, (2) to plan or control a physical shop floor
by the input of decisions made, and (3) to monitor model
performance and report it to the data analytics. The main
mechanism of the data warehouse is (1) to preprocess sensor
and status data coming from a physical shop floor, (2) to store
the shop floor data refined, and (3) to provide the data analyt-
ics center with datasets for model creation. The following is
the main mechanism of the data analytics center: (1) to create
models and optimal strategies for individual agents to meet the
goals given by a parent application and (2) to manage the
model lifecycle based on the performance report. Besides
the fundamental mechanisms above, the assistant mechanisms
include (1) managing agents during their lifecycle, (2)
governing the quality, uncertainty, and lifecycle of
manufacturing data, (3) processing automated workflow for
timely creation and use of models, and (4) controlling security
for protecting proprietary models and data.

3.2 Detailed architecture

Figure 2 presents the detailed architecture based on the con-
ceptual architecture illustrated in Fig. 1. The following items
explain rationales and functions of the designed modules. In
Section 4, we will describe the technical methods needed to
implement the virtual shop floor, data warehouse, and data
analytics center as the core modules of the platform.
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Physical shop floor: This is the shop floor where real
production takes place as the creating point of
manufacturing data. Physical 3M objects perform the
work assigned for achieving goals under given process
planning and configurations. They simultaneously output
many operation and sensor data that involve resources,
planning, control, monitoring, and metrology. Data col-
lection systems, like supervisory control and data acqui-
sition systems, gather and transmit such collected data
into a data warehouse. Open data interfaces, such as an
MTConnect agent, i.e., software that receives and stores a
time series of data samples or events and acts as a bridge
between a machine and a client application [37], support
efficient data collection.

Virtual shop floor: This is the virtualized shop floor of a
physical one using agent technology. Each agent has in-
formation regarding its IDentification (ID), authorization,
configuration, capability, and mission. It also identifies the
operation and status data needed to collect from its corre-
sponding physical object, and transmits them and their
metadata, i.c., the data representing a source, time, means,
purpose, type, and size of raw data, to the data warehouse.
In addition, it autonomously decides individual planning
and control by accessing the model through a broker
agent, i.e., a model connection facilitator. Multi-agents, a
set of agents, communicate together in a hierarchical and/
or heterarchical manner and make decisions cooperatively
to achieve given goals. (relevant requirements: no. 1, no.
2,no0. 3, no. 5, no. 7, no. §, no. 9)

Data warehouse: This is an information hub that stores
and exchanges manufacturing data. This warehouse re-
ceives raw manufacturing data and their metadata from
the physical shop floor and stores them structurally in
terms of designated attributes. It then processes the raw
data and returns datasets when queries are called by the
data analytics center. In addition, it transmits the current
state of the physical shop floor to the virtual shop floor in
real time, enabling synchronization between both shop
floors. Basically, standardized manufacturing data are ex-
changed to ensure data interoperability. (requirements: no.
4, no. 5, no. 6, no. 7, no. 8)

Data analytics center: This manages the model’s creation,
storage, retrieval and uncertainty over the life cycle.
Regarding the duration of the model, this center continues
to observe the accuracy of the model and determines
whether the model expires when it detects a drop in accu-
racy below a certain threshold. It retrieves a workflow to
create a model that can substitute for the expired model.
The uncertainty is used to measure the difference between
a model and its respective system [45]. Uncertainty arises
from natural variability and information uncertainty due to
poor data and modeling uncertainty induced by assump-
tions and approximations [46]. Because determining the
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accuracy and duration of the model is important, the un-
certainty of the model needs to be quantified. The center
also provides machine-learning, statistical, or stochastic-
based models that build on mathematical functions needed
to create data-driven models. Each agent retrieves such
models through a broker agent and decides predictive op-
erations and controls, based on the results that models
output. Here, the DA approach is applied to specify a
structural and logical procedure for model creation. (re-
quirements: no. 2, no. 5, no. 7, no. §, no. 9, no. 10)
Manufacturing application: This represents existing
manufacturing applications, such as MES, PLM, and
computer-aided process planning (CAPP) systems.
These applications need to communicate with the platform
through their application interfaces because they eventu-
ally supervise and manage all activities and events occur-
ring on the physical shop floor. Decisions made by
manufacturing applications are then delivered to the
physical/virtual shop floors in real time or on time. For
example, a manufacturer that uses a CAPP system can
build predictive planning by determining controllable pa-
rameters (e.g., feedrate, spindle speed, and cutting depth)
whose energy can be foreseen by relevant models. (re-
quirements: no. 2, no. 3, no. 5, no. 8, no. 9)

Agent manager: This registers agents with their ID,
searches adequate agents, and manages them during their
lifecycles. Each agent must register with its ID in an agent
directory, so that agents are retrieved from the directory for
achieving specific goals. Some agents may perish in the
directory due to expiration (e.g., when an old machine
agent is replaced by a new one). Agents should be man-
aged throughout their lifecycle as with model lifecycle
management. (requirements: no. 1, no. 2, no. 3)

Data governor: This manages master data as well as the
lifecycle and quality of raw data. Data lifecycle manage-
ment is necessary in a high-volume data environment,
because indiscriminate and permanent data retention inev-
itably increases data-archiving cost in database systems.
Because data quality directly relates to the model’s perfor-
mance, as addressed in Section 2.2, data refinement by
data cleaning rules or algorithms needs to be applied to
provide high quality of data. (requirements: no. 4, no. 5,
no. 6, no. 7)

Workflow manager: This controls workflows to automate
the tasks performed on the platform, manages the rules
designed to handle workflow appropriately, and engages
in model representation. The manual effort to create, use,
and terminate models is formidable, which makes the plat-
form inefficient. Workflow automation helps achieve op-
timal operations in the platform, providing the capabilities
of connecting data and models, integrating the platform
with manufacturing applications, assigning software re-
sources, and progressing unit-tasks under given rules.
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The rules ensure the task sequence in such a way that the
next task is invoked or a user is notified once the former
task is complete. (requirements: no. 6, no. 8, no. 9, no. 10)

»  Security controller: This protects against computer viruses
and hacking, and controls electronic authorization and au-
thentication. Data and models that incorporate
manufacturing experience and knowledge are valuable
and, thus, must be protected. Security control is important,
even in the environment where open and interoperable
data exchange takes place on the platform. Such firewalls
are required to ensure the protection of data and models.
Authenticated users must access and maintain data and
models through rigorous authentication procedures. (re-
quirements: no. 3, no. 5, no. 6, no. 7)

4 Implementation method

This section describes the implemental aspect, i.e., how to
implement the platform technically. This section introduces
technical methods for the three core modules: virtual shop
floor, data warchouse, and data analytics center.

4.1 Virtual shop floor

Many studies have highlighted the effectiveness of multi-
agent systems (MAS) in HMS by demonstrating the benefits
of material handling, planning, scheduling, and control [36,
47]. MAS have also evolved into data-driven intelligence,
distributed control, and system integration with virtual factory
and manufacturing applications [20]. Considering these fea-
tures, MAS are effective and efficient to implement in HMS,
and they can underlie implementing a virtual shop floor.
Figure 3 presents a use case of the virtual shop floor. It
needs to reach dynamic manufacturing intelligence in HMS
because the HMS should arrive in real or on time for decision-
making and flexibility. This can be achieved by the integration

Manufacturing

e Virtual Factory

{

Agent Systems
Data Analytics Data
Center EIEErgtocol Warehouse

JADE Framework

Other Manufacturing Systems

Virtual Shop Floor

Manufacturing System

Fig. 3 Use cases of multi-agent systems in virtual shop floor

of data-driven models. For example, predictive planning al-
lows 3M objects to decide their process plans based on the
anticipated KPI using the prediction models that have been
generated from their data. The virtual shop floor also needs to
achieve multi-level optimization, i.e., the optimization of mul-
tiple KPIs in multi-levels of a manufacturing system.
Depending on 3M objects’ decisions and negotiations, each
object optimizes multiple KPIs for itself at the machine level.
A production line consisting of 3M objects successively opti-
mizes multiple KPIs at the line level. An example is that a
machine tool explores process parameters for minimizing both
machining time and energy, and then a shop floor allocates an
optimal path to minimize production time and energy. In an-
other view, the virtual shop floor needs to embody systems
integration efficiently by using the advantage of agent tech-
nology. N-to-N implementation as a traditional approach has
no linking point; thus, much cost and time are spent as the
number of applications (V) increases. In the virtual shop floor,
MAS using a standard communication protocol can be the
linking point for 1-to-N implementation across heterogeneous
applications.

The Foundation for Intelligent Physical Agents (FIPA) can
be used to implement such virtual shop floor. FIPA is the
standardized protocol to produce MAS specifications for
supporting interoperability, open service interaction, and het-
erogeneous development [48]. The FIPA-based MAS commu-
nicates and operates within cooperation domains, conforming
to the concept of HMS [22]. FIPA also allows interconnection
between agents and external applications through Web ser-
vices within the Java Agent Development Framework
(JADE), a widespread agent-oriented middleware complying
with FIPA [49].

Based on the use cases above, a structure of the virtual shop
floor is designed, as shown in Fig. 4. This structure builds on
the HMS referential structure, which contains basic holons,
i.e., agents, consisting of resource, product, and order [5].
Furthermore, we add two distinct design factors in the system
design, compared with conventional HMS structures. First,
two staff agents are added to interconnect the basic HMS
agents with the data warehouse and data analytics center. In
conventional HMS structures, staff holons have been designed
to carry out evaluation, mediation, management, and coordi-
nation to support the basic holons that intensively work for
achieving goals such as task allocation, fault-tolerance, and
scheduling [21, 36, 47]. However, there were few staff holons
to interconnect with data repositories for extracting data, as
well as model repositories for creating and retrieving models.
Second, basic holons are redesigned to obtain the capability of
making autonomous and collaborative decisions using their
dedicated data and models. We intensify performance
prediction/optimization and disturbance handling in the basic
holons’ functions beyond their typical functionalities, includ-
ing identification, monitoring, management, and execution.

@ Springer
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Fig. 4 Structure of virtual shop e
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Figure 5 shows the operational flow that identifies func-
tions and interactions of individual agents inside the virtual
shop floor. This flow basically complies with the FIPA
Contract Net Interaction Protocol [49]. This protocol builds
upon the Contract Net Protocol (CNP), a high-level negotia-
tion protocol for agent-based manufacturing systems [50], to
realize autonomous and collaborative decision-making be-
tween the three basic agents. We improve the FIPA CNP by
adding the functions interactive with the data and model bro-
ker agents to accommodate prediction, optimization, and dis-
turbance handling.

In Fig. 5, when an order agent announces and proposes a
task requested from a product agent, each resource agent
checks its availability. The resource agent, for itself, predicts
the KPI and finds an optimal process plan with regard to the
announced task, using product and process planning data de-
livered from a data broker agent as well as prediction and
optimization models delivered from a model broker agent.
Available resource agents generate counterproposals for
grasping the task and feed them forward to the order agent.
The order agent evaluates the counterproposals to select the
best resource agent and carries out remaining functions with
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Fig. 5 Operational flow chart for product, order, and resource agents
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communication of product and resource agents. Because an
order agent gathers the proposals transmitted from available
resource agents, it can have visibility for performing higher-
level prediction and optimization in a production line. If an
emergency occurs in a resource agent who is executing the
task, the agent immediately stops and reports the task to order
and product agents who are monitoring the task. The product
agent updates the task state, and the order agent reassigns the
task to another resource agent in the same manner.

Table 2 identifies the functions and relevant data on all
these agents to make the association with the virtual shop
floor. Here, a “domain” represents the applications of agents
or the modules connected via staff agents. “Function” means
the functions that the agent should perform. “Relevant data”
indicates the data associated to perform their functions with
some relevant standards (bracket).

Figure 6 presents the schematic structure of the virtual shop
floor for the systems integration by means of 1-to-N

implementation using JADE. This structure, re-edited from
the architecture of the Web Service Integration Gateway
(WSIG) [49], identifies the fundamental components and the
operational protocol in JADE to communicate with external
applications. Because the WSIG offers bidirectional intercon-
nectivity between agents and Web services [49], the three
basic agents are allowed to exchange individually their infor-
mation with external applications, and vice versa. The JADE
Directory Facilitator (DF) registers, deregisters, modifies, and
searches agents. The JADE Gateway Agent (GA) receives and
translates agent service or Web service registrations, respec-
tively, from JADE DF or Universal Description Discovery
and Integration (UDDI), which is the directory service
supporting the description and discovery of Web services
and their providers [51]. JADE GA also receives and process-
es agents and Web service invocation. The ACL<>SOAP
Message Codec translates Agent Communication Language
(ACL) messages into Simple Object Access Protocol

Table 2  Domain, functions, and data of agents
Agent type Resource agent Product agent Order agent Data broker ~ Model broker agent
agent
Domain Production resource Part, work-In-process, Orders of customer, Data Data analytics
product make-to-Stock, maintain warehouse center
Common - Identification (RFID, Barcode, Universal ID, IoT, etc.) - Access authorization
function

- Communication (FIPA, IPv6, TCP/IP, etc.)
- Data creation

- Data retrieval

- Model creation
- Model retrieval
- State monitoring
- Reporting

Stand-alone - Task request

function

- Health diagnosis

- Predictive control - Task verification

- Optimal control - Task solving

- Verification
- Resource allocation

- Resource execution
- Measurement

Relevant data - Product design

(ISO10303-203)

- Machine specification
(ISO14649, ISO15531)

- Tool specification (ISO13399,
ISO14649)

- Machine-execution (ISO6983)

- Process plan (ISO14649,
1SO10303-238)

- Machine-monitoring
(MTConnect, OPC-UA)

- Measurement (ISO10303-242)

ISO10303-238)

- Product lifecycle
(ISO10303-239)

- Process plan (1SO14649,

- Quality (ISO10303-242)

- Workflow control

- Planning - Data - Model
transmis- transmission
sion

- Scheduling - Data - Model collection
collection

- Prediction - Metadata - Model criteria
collection transmission

- Optimization - Metadata - Model criteria

- Process alignment supply collection

- Disturbance handling

- Verification

- Measurement

- Production planning Data JSON)  Model (PMML,

(ISO10303-240) OPL, MML)

- Resource (ISO15531,

1SO14649)

- Order (ISO10303-240)
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Fig. 6 Systems integration structure on virtual shop floor (re-edited from
[49])

(SOAP) messages, and vice versa. The ACL/SLO<>WSDL
Message Codec translates FIPA-ACL/SLO service descrip-
tions into Web Services Description Language (WSDL), and
vice versa. The Axis Web Server is the server to send and
receive SOAP messages to and from Web services [49].

4.2 Data warehouse

Figure 7 shows a use case of the data warehouse. The data
warehouse is responsible for storing and managing data

Fig. 7 Use cases of data
warehouse

Manufacturing

Applications
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produced and used by all the modules. Its main work is to store
design and control data from manufacturing applications, to gath-
er and store manufacturing data generated from the physical shop
floor, to provide datasets needed to create models in the data
analytics center, and to provide current states to the virtual shop
floor, as mentioned in Section 3.2.

In this module, it is important to clarify the relationship be-
tween design/control data (such as CAD, CAPP, and CAM data)
from manufacturing applications and manufacturing data (such
as MTConnect data) from the physical shop floor. This module
extracts metadata from shop floor data (e.g., MTConnect) that
come up in real time, finds out which design/control data corre-
spond to the shop floor data, and stores this relation as pairwise
cause—effect datasets. HBase is used to make this metadata anal-
ysis possible. As HBase is a highly scalable, open-source, and
non-relational database that runs on HDFS [41], it maintains
performance while scaling out to hundreds of nodes, supporting
billions of rows and millions of columns. Additionally, HBase
adds a timestamp to each cell and can keep previous versions,
allowing applications to store and access the lineage of a dataset
easily. This capability makes it possible to collect easily and
quickly up-to-date data into collections based on metadata,
hence, this technology is suitable for a manufacturing environ-
ment that contains many sensors and generates data at very high
speeds on each sensor at work.

Figure 8 presents a technical framework of the data ware-
house. Here, large-sized and various formats of data, even if they
are standardized data, inevitably decrease the efficiency of data
handling, because they are originally formalized for representing
their designated contents rather than supporting efficient data
handling. Thus, there is a need to use a unique and simple way
for unifying data representations. For this purpose, Java Script
Object Notation (JSON), a lightweight data-interchange format
built on a collection of name—value pairs and an ordered list of
values [52], is used. For example, a STEP-compliant data

Physical Shop Floor

Manufacturing data

Failure Alarms Data Query Data
Warehouse .
Analytics
HDFS
Center
_ _

Design/Control Data Cause/Effect Data

Current Status
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Fig. 8 Technical framework of data warechouse

interface for numerical controls (STEP-NC) part program, which
identifies process planning for machining operations, is trans-
formed to the JSON format for making it readable and usable.
Therefore, the original raw data and their associated JSON-
formatted data are stored in the data warehouse. Table 3 explains
the details of the components included in the service layer in
Fig. 8.

4.3 Data analytics center

The objective for the data analytics center is to create and manage
data-driven models. Thus, this center needs to incorporate a log-
ical modeling approach for creating models and provide a sys-
tematic structure for managing models. The following subsec-
tions, respectively, describe the modeling approach and the struc-
ture design.

4.3.1 Data analytics modeling approach

As mentioned in Section 2.2.3, the data analytics modeling ap-
proach aims at creating machine-specific and granular models
using manufacturing data. Some good approaches, such as
CRISP-DM, which defines a standardized process model for data
mining from a business perspective [53], have been introduced;
however, they are not specific to the manufacturing domain. The
proposed approach identifies a logical modeling procedure for
creating models based on machine-learning, statistical, or sto-
chastic analysis, as shown in Fig. 9. Here, “component model”
means the model that figures out a numerical relationship be-
tween cause-and-effect (CE) data up to the designated level
and, thus, can predict target performance at a certain manufactur-
ing configuration.

1. Process data attribute (PDA) identification: This iden-
tifies the data attributes needed to collect manufacturing
data. These data attributes comprise manufacturing con-
figuration (MC) and CE data attributes. The MC attri-
butes specify a process context where a component model

Table 3

Components and functions in data warehouse

Component

Function

Data storing service

Data retrieving
service

JSON translation

Metadata
management

Document/image
handling

Batch processing

Real-time
decision-making
On time
decision-making
JSON/document
repository
Metadata/Record
repository

Provide the data interface to collect raw
manufacturing data from legacy manufacturing
databases and data acquisition systems

Provide the data interface to invoke queries and
return datasets with applications

Formalize raw manufacturing data into JSON
format, and transmit the JSON-formatted data to
JSON/Document repository

Generate and manage metadata to identify
manufacturing data for data querying and
retrieving

Handle unstructured data formats such as image
and PDF files

Process large datasets to respond to the queries that
request a series of jobs at one time

Support real-time control by monitoring abnormal
data signals

Support on time control derived from applications

Store raw manufacturing data and their
JSON-formatted data

Store the metadata that associate with retrieving raw
and JSON-formatted data from JSON/Document
repository
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Fig. 9 Procedure of data analytics modeling approach

can be applied. That means the identical MC set uses the
same component model; meanwhile, a different MC set
requires another model. A machine, cutting tool, work-
piece material, coolant, and machining operation can be
MC attributes, because a selection of those attributes de-
termines a specific machining context. For example,
when the attribute of workpiece material changes in an
MC set, a model for the old material is not valid and
should be replaced by a new one for the new material,
because the latter material has different material proper-
ties from the former one. The appropriate identification of
MC attributes will decide the granularity of models, as
explained in Section 2.2.3. Meanwhile, the CE attribute
identifies the data attributes collected to make numerical
CE relationships under a set of MC attributes. The CE
attributes correspond to input-and-output variables, and
their instantiated datasets make it possible to generate
numerical functions, y= f(X). Due to influences of pro-
cess plan decisions on machining performance, as known
from the literature, process parameters—feedrate, spindle
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speed, and cutting depth and width—can be cause attri-
butes (X variables); on the other hand, KPIs such as en-
ergy, machining time, and surface roughness can be effect
attributes (y variable). For example, given a set of MC
attributes, Eq. (1) expresses an energy component model
where f'and ¢ (error term) are derived from the numerical
relationships mined from instances of CE attributes.

Energy = f'(feedrate, spindle speed, cutting depth, cutting width) (1)
+e€

2. Data acquisition: This searches and collects the instances
of MC and CE attributes from raw manufacturing data
stored in the data warehouse. Creating models invokes a
query for requesting necessary data instances from the
data warehouse that searches the data using their metadata
and returns them in accordance with a requested data for-
mat (the details are in Section 4.2).

3. Data pre-processing: This is a process of cleaning, nor-
malizing, and transforming data to make datasets of high
quality. Preparing training datasets is necessary for
machine-learning and statistical analysis so that a comput-
er directly acquires knowledge and learns to solve prob-
lems. Machine-learning and statistical analysis relies
heavily on training datasets. Because manufacturing data
typically contain erroneous or missing data, data cleaning
is needed to eliminate or correct these data, thereby de-
creasing the data uncertainty mentioned in Section 2.2.2.
Data normalization scales down the large difference be-
tween maximum and minimum values appropriately
using min—max or z-score normalization [54]. Data trans-
formation augments the space of data attributes by infer-
ring or creating additional data attributes [54].

4. Context synchronization: This matches and synchronizes

MC and CE data attribute instances on timestamps to
make training datasets. MC and cause attributes are gen-
erally located in process planning and NC programming
data formalized into time-independent and structural data
types, whereas effect attributes are found in machine-
monitoring data, which typically form in a time series
type. These two heterogeneous data sources need to be
merged into one dataset, because machine-learning and
statistical analysis require training datasets consisting of
tuples of cause data and their corresponding effect data. In
metal cutting, machine-monitoring data (effect data) rep-
resent snapshots of the observation and measurement of a
machine’s actions on timestamps. They need to be syn-
chronized along with their process planning and numeri-
cal control (NC) programming data (cause data), because
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certain actions of a machine are not understandable with-
out these cause data.

Training dataset preparation: This divides the entire train-
ing dataset into separate datasets in terms of the combina-
tion of MC attributes. As a set of MC attributes deter-
mines a component model, MC attributes can be used as
the classification criteria to divide into a set of datasets, as
shown in Fig. 10. Each training dataset contains multiple
CE data tuples given a set of MC attributes.

Component model computation: This computes numeri-
cal functions by machine-learning or statistical analysis
using training datasets, and it results in creating compo-
nent models. Because a numerical function represents the
relationship between CE data attributes, it can be used to
predict the KPI by a certain input of process plan deci-
sions, as illustrated in Fig. 10. For example, an energy
value can be calculated from the input of process param-
eters once we obtain a numerical function where the en-
ergy value corresponds to y and the process parameters to
X. Many machine-learning techniques, such as the sup-
port vector machine, Bayesian network, and artificial neu-
ral network (ANN), are available (ANN is used in
Fig. 10). Equation (2) expresses the mathematical nota-
tion associated with the ANN-based model (Fig. 10).
Statistical or stochastic analysis can be similarly applica-
ble in computing such numerical functions because both
analyses are widely accepted to predict future values
based on probability theory. For example, a regression
technique, as a statistical analysis, provides explicitness
and usefulness for computing statistically significant rela-
tionships between input and output parameters [55].
Equation (3) expresses an example of a polynomial re-
gression model, which has the same objective but a dif-
ferent structure from Eq. (2). In several stochastic tech-
niques, for example, the Markov process estimates perfor-
mance measures through historical data [56].

y:fo<i0W0jfh<iwjkxk>>+€ (2)
=

k=0

where p, g: the number of neurons (i.e., information-
processing units) at each layer, w,; and wy: weight values
between layers, £, and f;: activation functions.

b b
y=ao+ Y axi+ Y ax; +e 3)
=1 =

1
where «: coefficients of terms, b: the number of x variables.

7. Model validation and uncertainty quantification (UQ):
This validates the reliability of models and quantifies the
uncertainty of the models. The numerical functions com-
puted require measurable validation to ensure that their
performance is above a satisfactory threshold. Those
functions can be validated through the cross-validation
technique that partitions the data into training or valida-
tion datasets to check the model’s performance in an iter-
ative way. The correctness of the functions can be mea-
sured using root-mean-square error (RMSE), which ana-
lyzes the differences between predicted and measured
values. UQ needs to be performed to characterize the
sources of the uncertainty, and measure the probability
distribution of models [46]. The uncertainty in such com-
puted models can be generally represented as model form
error (€model) and numerical error (€,um) [57]. Emodeal T€-
lates to whether models and their parameters correctly
reflect the real phenomenon. £,,,,4¢ can be evaluated using
calibration and validation data, based on the comparison
of model prediction against physical observation [46].
Meanwhile, €.y, i.€., solution approximation etror, in-
volves the errors in solving the computational models
itself such as discretization or surrogate model error
[46]. The discretization error can be quantified by com-
paring solutions with different levels of discretization

Machine tool: Machine 1
Workpiece: Aluminum x;
Cutting tool: Turning
Insert: TiN-coated
Operation: Contouring rough X,
Coolant: On

Tool path trajectory: Feed

X3

[ Sl xy

Manufacturing Configuration Set 7 l Energy Component Model at / l
Manufacturing Configuration Set 21 Energy Component Model at 2 |
Manufacturing Configuration Set 3 Energy Component Model at 3 l
Manufacturing Configuration Set N Energy Component Model at N
Input layer Hidden layer Output layer

Fig. 10 Relations of manufacturing configuration sets with component models
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while the surrogate model error can be estimated by com-
paring the output of the surrogate model along with mul-
tiple running [57]. Once UQ is made, it can be used to
decide the lifespan of models. If model uncertainty (error
values) exceeds a certain threshold, the model can be in-
valid and thus a new model should substitute for the old
model using different model forms or new training
datasets. If €,04e1 OF Equm €Xceeds a threshold, the DA
procedure can be preferably re-taken from the first step
(PDA identification) or the second step (data acquisition),
respectively.

8. Model composition and use: This composes and uses
models for making decisions in process planning and ma-
chining stages once reliable models are obtained.
Composing sequentially individual component models
in regard to sets of MC attributes can derive the KPIL.
For example, component models can be composed to pre-
dict the energy consumed during the execution of an NC
program, because each code block on the NC program
associates with a set of MC attributes.

4.3.2 Model structure

Model structuring is significant because the structure decides
how efficiently a group of component models is segmented
and classified [12]. Efficient design and operation of hundreds
or even thousands of models can be promoted through the
creation of a well-organized structure, which can configure
the model pool in Fig. 2. Figure 11 shows the concept of the
model structure. This structure contains a group of individual

Fig. 11 Concept of model
structure

Component model

'ﬁaz ” BN
Ar\
|

L §

component models, which are classified by the MC attributes
set. The structure constructs the common model pool that
combines building blocks (component models). Here, such
model standardization can enhance the model’s interoperabil-
ity. Predictive Model Markup Language (PMML), which pro-
vides a standardized structure and format to represent regres-
sion and machine-learning functions [58], can be used for
representing models in a standardized way. By these, the
structure will enable common, reusable, and extensible appli-
cations of component models across shop floors.

5 Prototype implementation

To demonstrate the present work, this section describes proto-
type systems that we are implementing. It shows clearly that
the data analytics modeling approach is demonstrated in ad-
vance of the data warechouse and virtual shop floor The ware-
house plays the role of a data supplier for acting the approach,
and the shop floor acts as a model user. In Section 5.1, the data
analytics modeling for energy prediction and machining time
prediction is explained. Section 5.2 and Section 5.3, respec-
tively, present the prototype of the data warehouse and virtual
shop floor.

5.1 Data analytics modeling in machining

This section demonstrates the data analytics modeling ap-
proach described in Section 4.3. This approach is applied to
two different applications to check the effectiveness of the
approach in multiple applications and, thus, to confirm the
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generality of the approach. In Section 5.1.1 and Section 5.1.2,
respectively, we describe energy prediction modeling for
energy-efficient machining and time prediction modeling for
production-efficient machining.

5.1.1 Energy prediction

Actual machining was carried out to create energy prediction
models (hereafter, energy models) to anticipate the energy
consumed during the execution of an NC program for produc-
ing a 2.5-dimensional milling part. Figure 12 shows a ma-
chined part and its tool path trajectories. Table 4 lists sets of
process parameters for producing 12 parts. Here, three process
parameters—feedrate, spindle speed, and cutting depth—were
arbitrarily assigned with allowable ranges. The experimental
environment was Mori Seiki NVD 1500 DCG for a machine
tool, Fanuc 0i for a CNC, System Insights High Speed (aver-

age 0.365-s interval) for a power meter, Cold Finish Mild

Steel 1018 (10.16 x 10.16 x 1.27 cm) for a workpiece, and a

solid carbide flat end mill (8-mm diameter, four flutes) for a

cutting tool. The following numbers describe the details of the

modeling procedure.

(1) PDA identification: A set of PDA is identified based on
the influences of individual data attributes on energy. A
machine, workpiece, cutting tool, operation (e.g.,
contouring, slotting, pocketing, and drilling), command
(e.g., GO1, GO2, and GO3), and trajectory (e.g., ap-
proach, linear feed, circular feed, retract, stepover, and
back) can be MC data attributes, because much research
including [55, 59-61] found their influences on energy
(the rationales are out of the scope of this work). Here,
the data attributes, including the machine, workpiece,
and cutting tool, are fixed values, because they are iden-
tically used in this experimental environment, whereas
operation, command, and trajectory are changeable, de-
pending on each block in an NC program. Feedrate,
spindle speed, and cutting depth are set to cause data

Table 4  List of process parameters

Trial Feedrate (mm/tooth) Spindle speed (RPM) Cutting depth (mm)

1 0.0127 1500 1.5
2 0.0127 2000 1.5
3 0.0127 1750 1
4 0.0229 1750 1
5 0.0127 1750 2
6 0.0178 1500 1
7 0.0178 2000 1
8 0.0178 2000 2
9 0.0178 1750 1.5
10 0.0076 1750 1.5
11 0.0152 1750 1.5
12 0.0127 1750 1.5

attributes (cutting width is fixed as the tool diameter)
and energy to the effect data attribute. Consequently,
PDA can be identified below, and Eq. (4) expresses the
numerical function we need to derive:

MC data attributes = {operation, command, trajectory }
Cause data attributes = {feedrate, spindle speed, cutting depth}
Effect data attribute = {energy}

Energy = f(feedrate, spindle speed, cutting depth) +¢

(4)

(2) Data acquisition: Process planning (STEP-NC pro-
grams), NC programming (NC programs), and
machine-monitoring (MTConnect documents) data are
collected in a way that will be described in Section 5.2.
STEP-NC programs are used to acquire the MC and
cause data attributes, including operation, feedrate, spin-
dle speed, and cutting depth. NC programs are used to
acquire the other data attributes, including command and
trajectory. MTConnect documents are used to acquire
the effect data attribute, energy.

Fig. 12 Test part and tool path trajectories

1: Profile

o
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(3) Data pre-processing: Null and less than 1500-watt power MC data attributes given in all the NC programs are
values are removed, because they are missing or errone- created. Here, an ANN technique (two hidden layers
ous data where a minimum of 1500-watt is consumed and five neurons/layer) is applied using KNIME, a sta-
when the machine is turned on. The uppermost 0.5% tistics, and data mining tool [62]. For example, the NC
and the lowermost 0.5% power values among the entire blocks for the slotting of Slot 1 in Fig. 12 successively
dataset are eliminated, because these values can be treat- create five component models for approach, linear feed,
ed as outliers. circular feed, and back and retract trajectories on each

(4) Context synchronization: STEP-NC and NC programs cutting layer. Their ANN models vary with commands
and MTConnect documents are synchronized on and trajectories in the experimental environment where
timestamps. Individual MTConnect data attributes match the rest of the MC data attributes remain the same.
with their corresponding data attributes in the STEP-NC ~ (7) Model validation: ANN-based energy models make it
and NC programs. Figure 13 presents an example. The possible to predict the energy consumed during the exe-
two wattage values in the MTConnect can be synchro- cution of an NC program. Table 5 shows the comparison
nized with the N101 block in the NC program, because result between the measured and predicted energy.
their associating positions exist between the start and end Table 5 first compares the predicted energy values in
points of the N101 block. By inferring from the coordi- the case of the DA approach applied (with DA) or not
nates and the geometry of the machining feature where (without DA). In “without DA,” energy models without
the N101 block is executing, the moving direction (-Y) the granularity of models are directly computed from the
derived from the start and end points indicates that the numerical relationships between sets of process parame-
N101 block is doing feed trajectory. In turn, the N101 ters and their total measured values on all the trials using
block is synchronized with its associating machining op- the same ANN technique above. In “with DA,” this table
eration in the STEP-NC program due to the inference then compares statistical significance of two different
from the feature geometry and the tool path strategy. techniques: ANN- (see Eq. (2)) and second-order poly-

(5) Training dataset preparation: The bottom table in Fig. 13 nomial regression (see Eq. (3))-based models. Table 5
presents an example of training datasets. The first line includes RMSE as well as total relative error (TRE),
(red boxed) includes the MC and CE data attributes at a which measures the difference between total measured
given timestamp. In such a way, multiple training and predicted energy values. The result shows the supe-
datasets that are separated by the MC data attributes riority of the DA applied case than the case without the
can be derived. DA approach. In the two DA cases, it is observable that

(6) Component model computation: Fifty-one component the ANN-based models make a slightly better perfor-
models that correspond to all the combinations of the mance than the regression-based models due to the

MTConnect document NC program STEP-NC program
N95 GOO #1=PROJECT('EXECUTE EXAMPLEI'#2,(#4),$,8,$.#10);
|<ComponentStream name="X_AXIS" component="Linear” componentld="x_axis"> N6 X-.103 Y48.8 #2=WORKPLAN(MAIN WORKPLAN',(#30.#36....).$#8.9);

[<Position dataltemlId="X_POSITION" ... timestamp="2014-12-11T22:57:58.835 ”>-6.071</Pusiti¢>l~ NO7 Z2. #4=WORKPIECE('QUBICAL WORKPIECE'#5,0.001,$,$.#80,());

<Position dataltemld="X_POSITION” ... timestamp="2014-12-11T22:57:59.143Z">-6.071</Position> N98 GO1 F25 #5=MATERIAL(‘CR-1018''STEEL',(#6));

N99 Z-15 #10=MACHINE_TOOL_SPECIFICATION(MILLING_MACHINE. #11,...);

<ComponentStream name="Y_AXIS” component="Linear” componentId="y_axis”> N
<Position dataltemld="Y_POSITION” ... timestamp="2014-12-1 lT22:57:58.8352”>47.808</Positi0n2|' £
<Position dataltemId="Y_POSITION” ... timestamp="2014-12-11T22:57:59.143Z">47.125</Position>

#11=DEVICE_ID(‘MILLING_MACHINEI’, ‘NVD1500DCG", $, ", $):

IN102 X-6.073 Y31.7 #36=MACHINING_WORKINGSTEP('OPEN SLOT1'#60,#3400,#500,$);
IN103 GO3 X1.848 Y31.7 13.9¢
N104 GO1
IN105 X1.846 Y31.8

IN106 Y48.8

J-.099

500=-BOTTOM_AND_SIDE_ROUGH_MILLING(S,$,OPEN_SLOT1',
10.0,8,#510,#530,#540,8,#550,#560,#570,2.0,8.0,0.0,0.0);
#510=MILLING_CUTTING_TOOL(‘ENDMILL'#511,(#513),80.0,$,5);
#530=MILLING_TECHNOLOGY (0.007,.TCP.,$,209.4,8, F.,.F., F.,S);
#540=-MILLING_MACHINE_FUNCTIONS(.T.,$.$,.F..$,0),.T..$,5,0);
#570=CONTOUR_PARALLEL(0.05,.T.,.CW.,.CONVENTIONAL.);

<ComponentStream name="Z_AXIS” component="Linear” componentld="z_axis”>
<Position dataltemld="Z_POSITION” ... timestamp="2014-12-11T22:57:58.835Z">-1.500</Position> ||
<Position dataltemId="Z_POSITION" ... timestamp="2014-12-11T22:57:59.143Z">-1.500</Position>

<ComponentStream name="Systems” ="Electric”
<Wattage dataltemld="WATTAGE” ... timestamp="2014-12-11T22:57:58.8357">2811.500</Wattage]

<Wattage dataltemld="WATTAGE"” ... timestamp="2014-12-11T22:57:59.143Z">2884.900</W attage>|

Id="Systems”>

#3400=SLOT('SLOT1'#4,(#500),#3401,#3410,(),$,#3415,8,#3418,#3420);

L

-

Input-and-output dataset

Ti Manufacturing Configuration Attribute Input Attribute Output
m; m, m; my mg meg | my X .53 X3 Xy Yy
I 2014-10-30T21:58:50.718Z NVD1500DCG Endmill Wet CR-1018 Slotting GO01 Feed | 0.007 209.4 2.0 8.0 2811.500 I
2014-10-30T21:58:50.967Z NVDI1500DCG Endmill [ Wet CR-1018 Slotting | GOl | Feed | 0.007 | 209.4 2.0 8.0 2884.900
2014-11-01T20:37:17.367Z | NVDI1500DCG Endmill Wet | CR-1018 Slotting | GOI | Feed | 0.013 157.1 1.5 8.0 2588.8
2014-11-01T20:37:17.568Z NVD1500DCG Endmill [ Wet | CR-1018 Slotting | GOl | Feed | 0.013 157.1 1.5 8.0 2586.4

Fig. 13 Example of context synchronization and training dataset preparation
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suitability for reducing the model form error (€,04e1)
when training datasets are learned in this experiment.
We conjecture that the proposed approach can provide
good predictability because it scales down the granular-
ity of prediction up to specific tool path trajectories.

Compared with the theoretical and experimental ap-

proaches mentioned in Section 2.2.3, the proposed approach
can enhance practicability. Many of the previous models are

unable to predict the energy consumed during the execution of

an NC program because they only focused on finding the

relationships between process parameters and the total energy

(see the result of “without DA” in Table 5). Their focus re-
quires the DOE to investigate the cutting energy, which is

affected by process parameters, within a single or a few feed

trajectories. Whereas, the proposed approach that excludes the

DOE but uses real data can generate component models that

predict energy accurately, along with the execution of an NC
program.

5.1.2 Machining time prediction

Time prediction modeling was performed in the identical ex-
periment environment specified in Section 5.1.1. The purpose
of this experiment was to create time prediction models (here-
after, time models) to forecast the machining time spent during

the execution of an NC program for fabricating the same part

visualized in Fig. 12. We use the same 12 sets of process

Table 5 Comparison result between measured and predicted energy

parameters listed in Table 4. The differences with the energy
modeling explained in Section 5.1.1 are as follows:

(1) PDA identification: The effect data attribute is set to time

because the machining time is the indicator focused on in
this experiment. PDA can be identified below, and Eq.
(5) expresses the numerical function we need to derive:

MC data attributes = {operation, command, trajectory }

Cause data attributes = {feedrate, spindle speed, cutting depth}
Effect data attribute = {time}

Time = f(feedrate, spindle speed, cutting depth) + &

(5)

Data acquisition: MTConnect documents are used to ac-
quire the effect data attribute—machining time. The ma-
chining time value on each trajectory can be obtained by
subtracting the starting time from the finishing time on
the identical trajectory.

Data pre-processing: The datasets that contain missing or
incomplete data are removed. For example, we remove
the data tuples that exist between the data tuple starting
with a feed trajectory and the data tuple ending with a
back trajectory. These data have a high possibility of
including missing data in-between the starting and
finishing data tuples.

Context synchronization: Timestamps in MTConnect
documents are used to calculate the starting and finishing
time values on a trajectory. We can match the location
coordinate on each timestamp with its associated NC
block in the same manner described in Section 5.1.1.
Because the first timestamp or the last timestamp that

Trial Measured energy Without DA With DA
kJ)
ANN Regression

Predicted energy TRE Predicted energy TRE RMSE Predicted energy TRE RMSE

((3)) (%) k9 (%) Q) ((3)) (%) ()
1 13,592.5 14,267.4 2.26 13,950.3 —0.02 28.29 13,901.1 -0.37 28.67
2 11,382.1 11,309.5 —0.64 11,385.4 0.03 29.41 11,4142 0.28 29.72
3 19,535.2 18,808.2 -3.72 19,530.0 —0.03 23.34 19,457.8 —0.40 23.62
4 9830.3 9570.3 —2.65 9834.1 0.04 28.29 9823.5 —-0.07 28.39
5 9943.1 9763.8 -1.80 9967.9 0.25 34.03 10,007.9 0.65 34.50
6 13,365.9 13,300.4 —0.49 13,371.7 0.04 24.90 13,417.1 0.38 25.30
7 11,044.0 11,300.0 2.32 11,045.8 0.02 25.92 11,076.5 0.30 26.26
8 6012.6 7093.1 17.97 5978.5 -0.57 40.40 5947.6 -1.08 41.10
9 9750.7 9473.6 —2.84 9741.2 —-0.10 32.31 9720.8 —0.31 32.58
10 19,281.6 18,916.3 -1.89 19,292.8 0.06 21.82 19,298.4 0.09 21.82
11 10,791.6 10,360.8 -3.99 10,847.7 0.52 29.55 10,873.6 0.76 30.12
12 12,580.1 12,725.1 1.15 12,522.2 —0.46 29.97 12,529.8 -0.40 29.98
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appeared in an NC block corresponds to the starting time
or the finishing time for the NC block, respectively, ma-
chining time can be calculated from subtracting the
starting time from the finishing time. In such a way, the
context synchronization for machining time can be per-
formed to make training datasets.

(5) Component model computation: Fifty-one component
models (the same number of component models as in
Section 5.1.1) are created. Similarly with energy predic-
tion (Section 5.1.1), the ANN and second-order polyno-
mial techniques are applied using KNIME.

(6) Model validation: Both ANN and regression-based
models can predict the machining time consumed during
the execution of an NC program. Table 6 also shows the
statistical comparison between the measured and pre-
dicted time values. The result shows that the two tech-
niques used for the DA approach predict machining time
more accurately, and the ANN-based models score better
TRE values (the less, the better) in nine trials among the
12 trials. The proposed approach can also result in good
predictability in another application, machining time
prediction.

5.2 Prototype of data warehouse

A prototype of the data warehouse was implemented based on
the methods presented in Section 4.2. This warehouse consists
of'two sub-warehouses, (a) Static Data Warehouse (SDW) and
(b) Dynamic Data Warehouse (DDW), as shown in Fig. 14.
The SDW imports and exports static design/planning data

through the connections to existing manufacturing databases,
while the DDW processes dynamic data coming from data
acquisition systems during machining. The reason for splitting
into two different warehouses is the nature of the difference
between static and dynamic data. The static data (e.g., re-
source description, process planning, and NC programming)
are typically time independent, structured, and, often, average-
sized documents, most of which have schemas that define
their syntax or structure. The dynamic data (e.g., machine-
monitoring, measurement, and quality), however, are time se-
ries and are not structured, and each data size is small but
generated in large quantities in a short time. In other words,
while the static data are rarely inserted and retrieved of rela-
tively large amounts of data, the dynamic data insert very
small amounts of data at very high speed. Also, when retriev-
ing the dynamic data, it is necessary to find small data among
large sets of data.

For handling the static data, we implemented a Plain Old
Java Object (POJO) model mapper based on the document
schema, as explained in Section 4.2. It enabled the documents
to be serialized and converted seamlessly to simple JSON
scripts [63]. For example, a STEP-NC part program can be
converted to a JSON-formatted file using this mapper.
Whereas, we implemented a message queue as well as another
POJO model for dynamic data handling. The message queue
is a queue of data messages sent from machines to the DDW. It
enables high-speed streaming communication between multi-
ple machines and the DDW through sequential data process-
ing. The below items are the details of operations in these two
sub-warehouses. We use STEP-NC and NC programs as ex-
amples of the static data and MTConnect documents as an

Table 6 Comparison result

between measured and predicted Trial Measured ~ Without DA With DA
machining time time (s)
ANN Regression
Predicted  TRE Predicted  TRE RMSE  Predicted TRE RMSE
time (s) (%) time () (%) (ms) time (s) (%) (ms)
1 4673.9 4710.3 0.78 4671.2 -0.06 107.36  4760.2 1.85 107.51
2 38214 3902.7 2.13 38359 0.38 117.19 38455 0.63 117.21
3 6762.1 6693.0 -1.02 67717 0.14 23.88 6835.4 1.08 24.09
4 3580.9 3539.2 -1.16  3583.6 0.08 13.45 3619.8 1.09 13.84
5 3380.9 3381.7 0.02 3393.8 0.38 17.35 3380.3 -0.02 17.26
6 4932.5 4952.2 0.40 4927.7 -0.10 105.73  4843.6 -1.80 105.89
7 4027.5 4047.4 0.49 4022.0 -0.14 113.15  4001.2 -0.65 113.17
8 2063.6 2063.8 0.01 2019.6 -2.13  18.70 2063.5 -0.01 17.39
9 3279.1 3289.9 0.33 3291.0 0.36 18.09 3286.9 0.24 18.06
10 6756.2 6713.7 -0.63  6730.5 —0.38  124.05  6709.9 -0.68  124.06
11 3697.7 3624.1 =199  3699.7 0.06 20.82 3662.5 -0.95 21.00
12 4293.7 4230.1 -1.48 43077 0.32 110.64 42494 -1.03 110.69
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example of the dynamic data for the data acquisition described
in Section 5.1.

(a) SDW, see Fig. 14a: The format adaptor in the data storing
service parses the data instances formatted by the original
data representations (e.g., an EXPRESS file for a STEP-
NC part program). The JSON translator translates and
forms these data instances into the format of JSON ob-
jects under compliance with POJO model mappers,
which predefined the mapping rules between the JSON
scheme and those original schemas of the STEP-NC and
NC programs. MongoDB, a distributed database man-
agement system [40], stores JSON-formatted data in-
stances in multiple data nodes. HDFS, which is designed
to store very large datasets and to stream those datasets at
high bandwidth [39], and HBase generates and manages
the metadata that provide searching and locating infor-
mation about data instances. MySQL stores the metadata
and helps retrieve JSON objects from MongoDB.
Hibernate not only creates query languages but also re-
trieves and maps JSON objects into tuples of MongoDB
[64]. The format adaptor in the data retrieving service
transforms the tuples of the returned JSON objects into
designated data formats, such as a comma-separated
values file.

(b) DDW, see Fig. 14b: Format adaptors parse the data in-
stances given through MTConnect agents. RabbitMQ is
used to make queues and allocate keys for identifying
data instances received from multiple machines [65].
The JSON translator translates and forms these data in-
stances in the format of JSON, which is a similar struc-
ture to MongoDB documentation. Spark provides appli-
cation programming interfaces for large-scale data pro-
cessing [66]. MapReduce, which defines a programming
model for processing and generating large datasets [67],
supports the creation of large-scale datasets for
responding to query invoking.

The performance of the data warehouse prototype was
measured. We measured the inserting performance in SDW
and DDW in regard to the increase in the number of records
inserted. The insert transaction is expected to be performed
most frequently in a typical manufacturing environment, es-
pecially high-speed processing. The test environment is Xeon
x5460 for CPU, 8 GB for RAM, StorageTek Controller
(256 MB, write-back) for Storage, and 4 x 10 K SAS/RAID
0 for hard drive.

Figure 15a shows the insert performance comparison be-
tween SDW and DDW. As the amount of data inserted in-
creases, the DDW processes at a relatively constant rate,
whereas the SDW demonstrates a drastically slower process-
ing speed. That is, it is observable that the DDW is superior for
high-speed data processing. We also measure query
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RabbitMQ
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“XML” :
Machine Shop T
MTConnect Agent

(b) Dynamic Data Warehouse

Fig. 14 a, b Implementation architecture of data warehouse

performance in SDW and DDW. The query transaction typi-
cally takes the longest time among insert, query, update, and
delete transactions in relational database systems. The test was
performed in the same experimental environment, and 10% of
the inserted data were retrieved. Figure 15b shows the query
performance comparison between the SDW and DDW. The
SDW gives slightly better results than the DDW. This is
thought to be an efficient search using the metadata in
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Fig. 15 a, b Performance comparison between SDW and DDW

structured documents. These performance measurements im-
ply that the two different sub-warehouses cause optimal per-
formance in their heterogeneous natures and result in experi-
mental rationales for splitting them into two sub-warehouses.

5.3 Prototype of virtual shop floor

A prototype of the virtual shop floor was implemented based
on the methods described in Section 4.1. The implementation
environment was Eclipse Neon for computer programing, and
JADE for agent-based software development and deployment
[49].

Figure 16 shows an implementation scenario. A given sce-
nario is that an order agent (order 1) tries to find the best
energy-efficient machine among three machine agents (ma-
chines 1, 2, and 3) after a product agent (product 1) requests
a milling machining task from the order agent. Once the order
agent announces the task, each machine receives relevant
product and task information (see Section 5.2) via a data bro-
ker agent (data broker 1) with the connection of the data ware-
house. It then requests associated energy models (see Section
5.1) from a model broker agent (model broker 1). The model
broker links with the data analytics model pool for searching
energy models and returns the associated energy models to the

@ Springer

individual machine agents. Here, process parameters given in
three machines are as follows: machine 1 (feedrate:
0.0127 mm/tooth, spindle speed: 1500 RPM, cutting depth:
1.5 mm), machine 2 (0.0178, 2000, 2.0, respectively), and
machine 3 (0.0127, 1750, 1.0, respectively). Each set of pro-
cess parameters, respectively, associates with the set of pro-
cess parameters given in trial 1, trial 8, and trial 3 in Table 4.
These machine agents calculate anticipated energy using the
received energy models and propose their bids for taking the
task. The order agent accepts the best proposal that suggests
the minimum energy demand and informs this bid result to the
product agent. The selected machine is assigned to process the
given task.

Figure 17 shows a screen shot of the prototype to imple-
ment the scenario in Fig. 16 and visualizes automatic message
interactions between agents without human intervention. Each
agent is registered on JADE DF to connect with the Web
service in the initial stage. The three machine agents retrieve
associated energy models via model broker 1, and they calcu-
late their respective energy values as follows: MACHINE 1
(13,950.3 kJ), machine 2 (5978.5 kJ), and machine 3
(19,530.0 kJ). Finally, machine 2 is accepted from order 1,
because it submits the minimum energy value. These energy
values, respectively, match with the predicted energy values in
trial 1, trial 8, and trial 3 in Table 5.

6 Conclusion

We presented the design and implementation of a BDA plat-
form in manufacturing to achieve intelligent, autonomous, and
collaborative decision-making and seamless data exchange,
which were addressed as the three major characteristics in
Section 1. The proposed platform focuses on embodying the
three implementation challenges—object virtualization, data
control, and model control—that traditional platforms have
hardly covered. For these purposes, we analyzed design re-
quirements, designed a system architecture for the platform,
developed technical methods for running the operational
mechanism in the platform, and implemented a prototype sys-
tem for demonstrating the feasibility and effectiveness of the
platform.

It is currently known that CPPS should ensure data
streamlining from the physical space to cyber space, informa-
tion feedback from the cyber space, and data analytics that
constructs the cyber space; however, these requirements are
not specific enough for implementation purpose [9, 13]. The
present work dealt with such requirements in terms of data
control, object virtualization, and model control, respectively,
and introduced their technical solutions with their prototype
implementation. Thus, we expect the proposed platform can
be a referential architecture that accommodates BDA and
CPPS.
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Fig. 16 Implementation scenario

In designing the proposed platform, we strived to increas-
ing generality of the platform and interoperability with other
manufacturing platforms through the utilization of de jure and
de facto standards. Data integration using MT standards such
as STEP-NC and MTConnect and ICT standards like JSON
was considered to facilitate seamless data exchange across
multiple platforms. Systems integration using JADE and
FIPA was taken into account for open interaction between
heterogeneous applications. These integration capabilities ex-
pectedly make the proposed platform interoperable with gen-
eral manufacturing platforms.

The completion of implementing the proposed platform
helps manufacturers (e.g., machine tool builders, application
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developers, and process engineers) gain manufacturing intel-
ligence through the use of models specific for 3M, implement
a cost-effective environment especially for small-and-
medium-sized enterprises through the use of standards and
open-source solutions, obtain a technical reference for
implementing a data analytics environment time-efficiently,
and, eventually, increase productivity and sustainability
performance.

However, some issues remain. The present work excluded
the implementation of optimization and disturbance handling,
which directly relate to increasing productivity and sustain-
ability performance on shop floors. The present work also
excluded UQ integration, which should be accompanied with
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@ ModelBroker1@192.168.0.11:1099/JADE a
@ Order1@192.168.0.11:1099/JADE 5
@ Product1@192.168.0.11:1099/JADE 8
@ ams@192.168.0.11:1099/JADE 7
B df@192.168.0.11:1099/JADE 8
@ ma@192.168.0.11:1099/JADE 9
@ sniffer0-on-Main-Container@192.168.0.11:1099/JADE 10
sniffer0@192.168.0.11:1099/JADE 1

Fig. 17 Screen shot of the virtual shop floor prototype
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data-driven modeling. The proposed platform is under con-
struction to raise the degree of completion, which requires
assistant module implementation and module integration, al-
though basic functionalities of the platform have been imple-
mented. We plan to address these issues in future research.
Furthermore, we plan to advance a real-time CPPS environ-
ment where real-time control will be more challenging.
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