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Preface

New technologies in manufacturing are tightly connected to innovation. They have
thus been the key factors that support and influence a nation’s economy since the
eighteenth century, from stream engines to Industry 4.0. As the primary driving
force behind economic growth and sustainable development, manufacturing serves
as the foundation of and contribute to other industries, with products ranging from
heavy-duty machinery to hi-tech home electronics. In the past centuries, they have
contributed significantly to modern civilisation and created the momentum that still
drives today’s economy and society. Despite many achievements, we are still facing
challenges due to growing complexity and uncertainty in manufacturing, such as
adaptability to uncertainty, resource and energy conservation, ageing workforce,
and secure information sharing. Researchers and engineers across organisations
often find themselves in situations that demand advanced new technologies when
dealing with new challenges in daily activities related to manufacturing, which
cannot be addressed by existing approaches.

Targeting the challenges in solving daily problems, over the past a few years,
researchers have focused their efforts on innovative approaches to improving the
adaptability to complex situations on shop floors and energy efficiency along the
life cycle of products. New technologies and innovations include cyber-physical
system (CPS), cloud manufacturing (CM), Internet of Things (IoT), big data ana-
lytics, which are related to embedded systems and system of systems. These new
technologies are now driving industry towards yet another revolution and are
referred to the German initiative Industry 4.0. While these efforts have resulted in a
large volume of publications recently and impacted both present and future prac-
tices in factories and beyond, there still exists a gap in the literature for a focused
collection of knowledge dedicated to cloud-based CPS in manufacturing. To bridge
this gap and present the state of the art to a much broader readership, from academic
researchers to practicing engineers, is the primary motivation behind this book.

The first three chapters form Part 1 of this book on the literature surveys and
trends. Chapter 1 begins with a clear definition of cloud computing (CC) versus
cloud manufacturing (CM). CC and CM represent the latest advancement and
applications of the cloud technologies in computing and manufacturing,
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respectively. The aim of Chap. 1 is to provide a comprehensive introduction to both
CC and CM and to present their status and advancement. The discussions on CC
and CM are extended in Chap. 2 to cover the latest advancement of CPS and IoT,
especially in manufacturing systems. To comprehensively understand CPS and IoT,
a brief introduction to both of them is given, and the key enabling technologies
related to CPS and IoT are outlined. Key features, characteristics, and advance-
ments are explained, and a few applications are reported to highlight the latest
advancement in CPS and IoT. Chapter 3 then provides an overview of cybersecurity
measures being considered to ensure the protection of data being sent to physical
machines in a cybernetic system. While common to other cybernetic systems,
security issues in CM are focused in this chapter for brevity.

Part 2 of this book focuses on cloud-based monitoring, planning, and control in
CPS and is constituted from four chapters. Targeting distributed manufacturing, the
scope of Chap. 4 is to present an Internet- and web-based service-oriented system
for machine availability monitoring and process planning. Particularly, this chapter
introduces a tiered system architecture and introduces IEC 61499 function blocks
for prototype implementation. It enables real-time monitoring of machine avail-
ability and execution status during metal-cutting operations, both locally or
remotely. The closed-loop information flow makes process planning and moni-
toring two feasible services for the distributed manufacturing. Based on the
machine availability and the execution status, Chap. 5 introduces Cloud-DPP for
collaborative and adaptive process planning in cloud environment. Cloud-DPP
supports parts machining with a combination of milling and turning features and
offers process planning services for multi-tasking machining centres with special
functionalities to minimise the total number of set ups. In Chap. 6, the Cloud-DPP
is linked to physical machines by function blocks to form a CPS. Within the CPS,
function blocks run at control level with embedded machining information such as
machining sequence and machining parameters to facilitate adaptive machining. To
utilise the machines properly, right maintenance strategies are required. Chapter 7
reviews the historical development of prognosis theories and techniques and pro-
jects their future growth in maintenance enabled by the cloud infrastructure.
Techniques for cloud computing are highlighted, as well as their influence on
cloud-enabled prognosis for manufacturing.

Sustainable robotic assembly in CPS settings is covered in Chaps. 8 through 11
and organised into Part 3 of this book. Chapter 8 explains how to minimise a
robot’s energy consumption during assembly. Given a trajectory and based on the
inverse kinematics and dynamics of the robot, a set of attainable configurations for
the robot can be determined, perused by calculating the suitable forces and torques
on the joints and links of the robot. The energy consumption is then calculated for
each configuration and based on the assigned trajectory. The ones with the lowest
energy consumption are chosen for robot motion control. This approach becomes
instrumental and can be wrapped as a cloud service for energy-efficient robotic
assembly. Another robotic application is for human–robot collaborative assembly.
Chapter 9 addresses safety issues in human–robot collaboration. This chapter first
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reviews the traditional safety systems and then presents the latest accomplishments
in active collision avoidance through immersive human–robot collaboration by
using two depth cameras installed carefully in a robotic assembly cell. A remote
robotic assembly system is then introduced in the second half of the chapter as one
cloud robotic application. In Chap. 10, recent cloud robotics approaches are
reviewed. Function block-based integration mechanisms are introduced to integrate
various types of manufacturing facilities including robots. By combining cloud with
robots in form of cloud robotics, it contributes to a ubiquitous and integrated
cloud-based CPS system in robotic assembly. Chapter 11 further explores the
potential of establishing context awareness between a human worker and an
industrial robot for physical human–robot collaborative assembly. The context
awareness between the human worker and the industrial robot is established by
applying gesture recognition, human motion recognition, and augmented reality
(AR)-based worker instruction technologies. Such a system works in a
cyber-physical environment, and its results are demonstrated through case studies.

In Part 4 of this book, the aspect of CPS systems design and lifecycle analysis is
shared by Chaps. 12–15. Chapter 12 presents the architecture design of cloud CPS in
manufacturing. Manufacturing resources and capabilities are discussed in terms of
cloud services. A service-oriented, interoperable CM system is introduced. Service
methodologies are developed to support two types of cloud users, customer user
versus enterprise user, along with standardised data models describing cloud service
and relevant features. Two case studies are revealed to evaluate the system. System
design is extended in Chap. 13 to cover lifecycle analysis and management of
products. In this chapter, CM is extended to the recovery and recycling of waste
electrical and electronic equipment (WEEE). Cloud services are used in the recovery
and recycling processes for WEEE tracking and management. These services
include all the stakeholders from the beginning to the end of life of the electrical and
electronic equipment. A product tracking mechanism is also introduced with the help
of the quick response (QR) code method. Chapter 14 focuses on big data analytics.
In order to minimise machining errors in advance, a big data analytics-based fault
prediction approach is presented for shop-floor job scheduling, where machining
jobs, machining resources, and machining processes are represented by data attri-
butes. Based on the available data on the shop floor, the potential fault/error patterns,
referring to machining errors, machine faults, maintenance states, etc., are mined to
discover unsuitable scheduling arrangements before machining as well as the pre-
diction of upcoming errors during machining. Chapter 15 presents a summary of the
current status and the latest advancement of CM, CPS, IoT, and big data in manu-
facturing. Cloud-based CPS shows great promise in factories of the future in the
areas of future trends as identified at the end of this chapter. It also offers an outlook
of research challenges and directions in the subject areas.

All together, the fifteen chapters provide an overview of some recent R&D
achievements of cloud-based CPS applied to manufacturing, especially machining
and assembly. We believe that this research field will continue to be active for years
to come.
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Chapter 1
Latest Advancement in Cloud
Technologies

1.1 Introduction to Cloud Computing

During the past decade, a new computing paradigm—cloud computing has emerged
as a result of the availability of high-performance networks, low-cost computers
and storage devices as well as the widespread adoption of hardware virtualisation,
Service-Oriented Architecture (SOA), and autonomic and utility computing. Cloud
computing is a model of service delivery and access where dynamically scalable
and virtualised resources are provided as a service with high reliability, scalability
and availability over the Internet. Cloud computing introduces a new operating and
business model that allows customers to pay only for resources they actually use
instead of making heavy upfront investments. It creates a brand new opportunity for
enterprises with the advantages of higher performance, lower cost, high scalability,
availability and accessibility, and reduced business risks and maintenance expenses.
Cloud computing relies on sharing of resources to achieve coherence and economy
of scale.

The objective of this section is to give a brief but comprehensive introduction to
cloud computing. Specifically, Sect. 1.1.1 presents the historical evolution and
background of cloud computing. Section 1.1.2 gives a comprehensive introduction
to the concept of cloud computing, including its definition, operation pattern, ar-
chitecture, service delivery models, deployment models, characteristics, and
architectural requirements with respect to cloud providers, enterprises that use the
cloud as a platform, and end users. Section 1.1.3 devotes to the core and related
technologies of cloud computing. Section 1.1.4 introduces a number of typical
cloud computing infrastructure and platforms. Some tools for implementing cloud
computing are presented in Sect. 1.1.5. Finally, in Sect. 1.1.6, challenges of cloud
computing to be addressed in the future are discussed.
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1.1.1 Historical Evolution and Background

The idea of cloud computing is not completely new. In fact, as early as in the 1960s,
John McCarthy already envisioned that computing facilities could be provided to
the general public as a utility. In 1969, Leonard Kleinrock [1], one of the chief
scientists of the original Advanced Research Projects Agency Network
(ARPANET) project, also anticipated that computing services could be obtained on
demand as conveniently as obtaining other utility services such as water, electricity,
gas, and telephony available in today’s society in the 21st century [2].

The advent of the Internet provides an important basis for achieving that vision.
Over the past decades, with the emergence of the Internet, many new computing
paradigms such as grid computing, peer-to-peer (P2P) computing, service computing,
market-oriented computing, and utility computing have been proposed and adopted to
edge closer towards achieving the vision of cloud computing. Grid computing [3, 4]
made it possible to share, select and aggregate a wide variety of geographically
distributed resources such as supercomputers, storage systems, data sources and
dedicated devices from different organisations for solving large-scale problems in
science, engineering and commerce. The idea of P2P computing [5] is to allows peer
nodes (i.e. computers) to share content directly with each other in a decentralised
environment. Services computing [6] establishes a linkage between business pro-
cesses and Information Technology (IT) services to enable seamless automation of
business processes by making use of IT services such as SOA and Web Services.
Market-oriented computing [7] views computing resources in economic terms such
that users can utilise computing resources needed by paying resource providers.

The latest paradigm is cloud computing, in which computing resources are
transformed into services that are commoditised and delivered in a similar manner
that traditional utilities such as water, electricity, gas and telephony are delivered. In
such a model, users can access services based on their requirements without
needing to know where the services are hosted or how they are delivered. In fact,
cloud computing emerges as a result of the evolution and convergence of several
computing trends such as Internet delivery, “pay-as-you-go/use” utility computing,
elasticity, virtualisation, distributed computing, storage, content outsourcing, Web
2.0 and grid computing. Cloud computing possesses several salient features that
differentiate it from traditional service computing, including multi-tenancy, shared
resource pooling, geo-distribution and ubiquitous network access, service oriented,
dynamic resource provisioning, self-organising, and utility-based pricing. Table 1.1
describes how cloud entered into the market [8].

1.1.2 Concept

Many definitions of cloud computing have been reported [9]. In particular, the
National Institute of Standards and Technology (NIST) [10] defined cloud
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manufacturing as “a model for enabling ubiquitous, on-demand access to a shared
pool of configurable computing resources (e.g. computer networks, servers, stor-
age, applications and services), which can be rapidly provisioned and released
with minimal management effort or service provider interaction”.

The typical operation model of cloud computing is as follows. Large companies
such as Google, Amazon and Microsoft build and manage their cloud infrastructure
and platforms and lease resources to enterprises using a usage-based pricing model.
In the ecosystem of cloud computing, there may also be service providers who
provide services to end users by renting resources from cloud infrastructure
providers.

Five essential characteristics of cloud computing have been identified by the
NIST [10]:

• On-demand self-service. A consumer can unilaterally provision computing
capabilities, such as server time and network storage, as needed automatically
without requiring human interaction with each service provider.

• Broad network access. Capabilities are available over the network and
accessed through standard mechanisms that promote use by heterogeneous thin
or thick client platforms (e.g. mobile phones, tablets, laptops, and workstations).

• Resource pooling. The provider’s computing resources are pooled to serve
multiple consumers using a multi-tenant model, with different physical and
virtual resources dynamically assigned and reassigned according to consumer
demands. There is a sense of location independence in that the customer gen-
erally has no control or knowledge over the exact location of the provided

Table 1.1 Cloud retrospective, adopted from [8]

Year Description

2000–2005 Dot.com bubble burst led to introduction of cloud

2006 Amazon entered the cloud market

2007–2008 The market disagreed on the understanding of cloud

2008 Cloud market expanded as more vendors joined

2008–2009 IT attention shifted to emerging private cloud

2009–2010 The open source cloud movement took hold (e.g. Openstack)

2009–2011,
2012

Cloud computing found its way, became popular, and every organisation
started implementing cloud platform. In 2011, a new deployment model
called hybrid cloud was born

2012–2013,
2014

The Australian Bureau of Statistics (ABS) 2013–14 Business Characteristics
Survey (BCS) showed that one in five businesses had been using some form
of paid cloud computing service. The overall results showed that between
2012–13 and 2013–14, businesses using information technology increased.
When examining the areas where businesses used IT to a high extent, 60%
used it for accounting, and 55% used it for invoicing business processes
(http://www.zdnet, ABS article, online, 24 September 2015)

2014–2015 Many IT companies moved towards adopting cloud technology because of its
effectiveness and fast growth

1.1 Introduction to Cloud Computing 5
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resources but may be able to specify location at a higher level of abstraction
(e.g. country, state, or data center). Examples of resources include storage,
processing, memory and network bandwidth.

• Rapid elasticity. Capabilities can be elastically provisioned and released, in
some cases automatically, to scale rapidly outward and inward commensurate
with demand. To the consumer, the capabilities available for provisioning often
appear to be unlimited and can be appropriated in any quantity at any time.

• Measured service. Cloud systems automatically control and optimise resource
use by leveraging a metering capability at some level of abstraction appropriate
to the type of service (e.g. storage, processing, bandwidth, and active user
accounts). Resource usage can be monitored, controlled, and reported, providing
transparency for both providers and consumers of the service utilised.

Cloud computing requires an architecture as a guidance for its implementation.
Generally speaking, the architecture of a cloud computing system can be divided
into four layers: hardware/datacentre layer, infrastructure layer, platform layer, and
application layer, as shown in Fig. 1.1. Each layer is loosely coupled with the
adjacent layers. This loose coupling between different layers allows each layer to
evolve separately. This layered and modularised architecture makes cloud com-
puting able to support a wide range of application requirements while reducing
management and maintenance overhead [11].

• Hardware layer. This layer is responsible for managing the physical resources
of the cloud, including physical servers, routers, switches, power and cooling
systems. In practice, the hardware layer is typically implemented in data centres.
A data centre usually contains thousands of servers that are organised in racks
and interconnected through switches, routers or other fabrics. Typical issues at
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Fig. 1.1 Cloud computing architecture, adopted from [11]
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hardware layer include hardware configuration, fault tolerance, traffic manage-
ment, power and cooling resource management.

• Infrastructure layer. This layer, also known as the virtualisation layer, creates
a pool of storage and computing resources by partitioning the physical resources
using the virtualisation technology. The infrastructure layer is an essential
component of cloud computing, since many key features, such as dynamic
resource assignment, are only made possible through virtualisation.

• Platform layer. Built on top of the infrastructure layer, the platform layer
consists of operating systems and application frameworks. The purpose of the
platform layer is to minimise the burden of deploying applications directly into
virtual machine containers. For example, Google App Engine operates at the
platform layer to provide Application Programming Interface (API) support for
implementing storage, database and business logic of typical web applications.

• Application layer. The application layer consists of actual cloud applications.
Different from traditional applications, cloud applications can leverage the
automatic-scaling feature to achieve better performance, availability and lower
operating costs.

In cloud computing, everything is treated as a service (i.e. XaaS), e.g. SaaS,
PaaS, and IaaS. These services are usually delivered through industry standard
interfaces such as Web services, SOA or REpresentational State Transfer (REST)
services.

• SaaS. In this service model, software applications that run on a cloud infras-
tructure are delivered to consumers over the Internet. As a result, this model is
sometimes referred to as Application as a Service (AaaS). Users can access SaaS
applications and services from any location using various client devices through
either a thin client interface, such as a web browser (e.g. web-based email), or a
program interface based on subscription whenever there is an Internet access.
For SaaS, consumers do not manage or control the underlying cloud infras-
tructure, including network, storage, servers, operating systems, or even indi-
vidual application capabilities, with the possible exception of limited
user-specific application configuration settings. Typical examples of SaaS are
the Salesforce Customer Relationships Management system, NetSuite, Google
Office Productivity application, Microsoft Office 365, Facebook, YouTube, and
Twitter.

• PaaS. PaaS is a collection of runtime environments such as software and
development tools hosted on the provider’s infrastructures. It acts as the
background that provides runtime environment, software deployment frame-
work and component to facilitate the direct deployment of application level
assets or web applications. Users access these tools over the Internet by means
of APIs, Web portals or gateway software. Application developers, imple-
menters, testers, and administrators can go for developing, testing and deploying
their software in this platform. Users does not manage or control the underlying
cloud infrastructure, including network, storage, servers, or operating systems,
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but has control over the deployed applications and possibly configuration set-
tings for the application-hosting environment. Commonly found PaaS includes
Facebook F8, Salesforge App Exchange, Google App Engine, Amazon EC2,
and Microsoft Azure.

• IaaS. IaaS provides consumers with processing, storage, networks, and other
fundamental computing resources where consumers are able to deploy and run
arbitrary software such as operating systems and applications. Hence, IaaS is
sometimes called Hardware as a Service (HaaS). Virtualisation is the backbone
behind this model where resources such as network, storage, virtualised servers,
routers and so are consumed by users through virtual desktop, provided by cloud
service providers (CSPs). Users are charged based on usage of CPU, storage
space, value added services (e.g. monitoring, auto-scaling etc.), network band-
width, and network infrastructure. The consumer does not manage or control the
underlying cloud infrastructure but has control over operating systems, storage,
and deployed application, and possibly limited control of selected networking
components (e.g. host firewalls). On-demand, self-sustaining or self-healing,
multi-tenant, customer segregation are the key requirements of IaaS. Examples
of IaaS include Mosso/Rackspace, VMWare, and storage services provided by
Amazon S3, Amazon EC2, and GoGrid.

Figure 1.2 illustrates the different service levels of cloud services in cloud
computing for different service models [12, 13]. It should be noted that IaaS, PaaS,
and SaaS are usually suitable for IT professionals, developers, and business end
users, respectively.

• Hybrid cloud. The cloud infrastructure is a composition of two or more distinct
cloud infrastructures (private and public) that remain unique entities, but are
bound together by standard or proprietary technology that enables data and
application portability (e.g. cloud bursting for load balancing between clouds).
A hybrid cloud allows one to extend either the capacity or the capability of a
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cloud service, by aggregation, integration or customisation with another cloud
services. Examples are Cybercon.com (US Microsoft Hybrid Cloud), Bluemix.
net (IBM Cloud App Development), etc.

Overall, there are several stakeholders involved in a cloud computing system,
including cloud providers, enterprises that use the cloud as a platform, and
end-users. There are specific architectural requirements with respect to the partic-
ipants mentioned above [14, 15]. From the service provider’s perspective, highly
efficient service architecture is needed to provide virtualised and dynamic services.
SaaS, PaaS, and IaaS are three effective service delivery models that can satisfy the
architectural requirement of cloud computing. There are also some other essential
requirements, including:

• Service-centric issues. To fulfil the requirements of enterprise’s IT manage-
ment, cloud architecture needs to take a unified service-centric approach. This
approach requires services to be autonomic, self-describing, etc. Autonomic
means that cloud systems/applications should be able to adapt dynamically to
changes with less human assistance, and self-describing means that clients will
be notified exactly about how services should be called and what type of data
services will return.

• QoS. QoS provides the guarantee of performance and availability as well as
other aspects of service quality such as security, reliability and dependability
etc. QoS requirements are associated with service providers and end-users.
SLAs are an effective means for assuring QoS between service providers and
end-users. QoS may entail systematic monitoring of resources, storage, network,
virtual machine, service migration and fault tolerance. From the perspective of a
cloud service provider, QoS should emphasise performance of virtualisation and
monitoring tools.

• Interoperability. Interoperability is an essential requirement for both service
providers and enterprises. It refers to the fact that applications should be able to
be ported between clouds or use multiple cloud infrastructures before business
applications are delivered from the cloud. In order to achieve interoperability, an
agreed-upon framework/ontology, open data format or open protocols/APIs that
enable easy migration and integration of applications and data between different
cloud service providers as well as facilities for the secure information exchange
across platforms should be created.

• Fault-tolerance. Fault-tolerance refers to the ability of a system to continue to
operate in the event of the failure of some of its components. Fault-tolerance
requires the falling components to be isolated, and the availability of reversion
mode, etc. Application-specific, self-healing, and self-diagnosis mechanisms
are, for example, enabling tools for cloud providers to detect failure. Cloud
providers need proper tools and mechanism such as application-specific
self-healing and self-diagnosis mechanism to detect failure in cloud systems/
applications. Inductive systems such as classification or clustering can also be
helpful for detection of failure and identification of possible causes.
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• Load balancing. A load balancer is a key requirement for cloud computing in
order to build dynamic and stable cloud architecture. Load balancing, which
represents the mechanism of self-regulating workloads properly within the
cloud’s entities (one or more servers, hard drives, network, and IT resources),
can be provided by software or hardware. Load balancing is often used to
implement failover in that the service components are monitored continually and
when one becomes non-responsive, the load balancer stops sending traffic,
de-provisions it and provisions a new service component.

• Virtualisation management. Virtualisation refers to abstraction of logical
resources from their underlying physical characteristics in order to improve
agility, enhance flexibility and reduce cost. There are many different types of
virtualisation in cloud computing, including server virtualisation, client/desktop/
application virtualisation, storage virtualisation, network virtualisation, and
service/application infrastructure virtualisation, etc. Handling a number of vir-
tualisation machines on the top of operating systems and evaluating, testing
servers and deployment to the targets are some of the important concerns of
virtualisation. Virtualisation is indispensable for a dynamic cloud infrastructure
as it brings important advantages in sharing of cloud facilities, management of
complex systems as well as isolation of data/application. Quality of virtualisa-
tion determines the robustness of a cloud infrastructure.

For enterprises that use cloud computing, the critical requirements are that they
should always know what services they are paying for, as well as be clear about
issues like service levels, privacy matters, compliances, data ownership, and data
mobility. This section describes some of the cloud deployment requirements for
enterprises.

• Cloud deployment for enterprises. As far as enterprise users are concerned, an
important requirement is how cloud is deployed because this can impact the way
they access services. As mentioned above, there are four types of cloud de-
ployment models, public, private, community and hybrid. Different types of
deployment models suit different situations. Public cloud enables sharing the
services and infrastructure provided by an offsite, third-party service provider in
a multi-tenant environment; private cloud aims to achieve sharing services and
infrastructure, which are provided either by an organisation or a specific service
provider in a single-tenant environment. Community cloud provides a means for
sharing resources among several organisations that have shared interests and
concerns. Hybrid cloud consists of multiple internal (private) or external
(public) clouds. Enterprises need to have a strategy that leverages all four
options mentioned above.

• Security. Security is the focal concern of enterprises. When corporate infor-
mation, including data of customers, consumers and employees, business
know-how and intellectual properties is stored and managed by external entities
on remote servers in the cloud, how to safeguard them in the shared environ-
ment will become a primary issue. Different service models provide different
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security levels in the cloud environment: IaaS is the foundation of all cloud
services, with PaaS built upon it and SaaS in turn built upon PaaS. Just as
capabilities are inherited, so are the information security issues and risks.

• Business Process Management (BPM). Typically, a business process man-
agement system concerns providing a business structure, security and consistent
rules across business processes, users, organisations and territories. Cloud-based
BPM (e.g. combining SaaS with a BPM application) enhances flexibility,
deployability and affordability for complex enterprise applications. With
cloud-based solution, the classical concept of BPM is enhanced as cloud
delivers a business operating platform for enterprises such as combining SaaS
and BPM applications (e.g. customer relationship management, workforce
performance management, enterprise resource planning, e-commerce portals
etc.) which helps achieve flexibility, deployability and affordability of complex
enterprise applications. When an enterprise adopts cloud-based services or
business processes, the return of investment of overall business measurement is
important.

Users’ requirements are the third key factor that need to be addressed for the
adoption of any cloud system. For users, the trust issues are a major concern for the
adoption of cloud services. In order to win users’ trust, cloud should be trustworthy,
stable, and secure. Stability and security can play a vital role to increase the trust
between user and service providers. Furthermore, cloud-based applications should
also be able to support personalisation, localisation and internationalisation to create
a user-friendly environment. This section describes users’ requirements from the
perspectives of consumption-based billing and metering, user centric privacy, ser-
vice level agreements and user experience.

• User consumption-based billing and metering. Users’ billing and metering
with respect to consumption of cloud services in a cloud system should be
similar to the consumption measurement and allocation of water, gas or elec-
tricity on a consumption unit basis as users have a strong need for transparency
of consumption and billings. Cost management is important for making plan-
ning and controlling decisions. Cost breakdown analysis, tracing the utilised
activity, adaptive cost management, transparency of consumption and billings
are also important considerations.

• User-centric privacy. User-centric privacy mainly concerns the storage of
users’ personal/enterprise sensitive data such as intellectual property at
mega-data centres located around the world. There is strong resistance and
reluctance for an enterprise to store any sensitive data in the cloud. Cloud
providers need to make every effort to win the trust of their users. Currently,
there are various technologies that can enhance data integrity, confidentiality,
and security in the clouds, e.g. data compressing and encrypting at the storage
level, virtual LANs and network middle-boxes (e.g. firewalls and packet filters).

• SLAs. SLAs are mutual contract between providers and users, representing the
ability to deliver services in line with predefined agreements. Currently, many
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cloud providers offer SLAs but these SLAs are rather weak on user compen-
sations on outages. There are some important architectural issues concerning
SLAs to be addressed including measurement of service delivery, method of
monitoring performance, and amendment of SLA over time.

• User Experience (UX). UX represents the overall feeling of users in using
cloud-based application/systems. The notion of UX can provide important
insights into the needs and behaviours of end-users so as to maximise the
usability, desirability and productivity of application/systems. Cloud-based
application/systems should be easy to use, capable of providing faster and
reliable services, easily scalable, and customisable to meet the goal of locali-
sation and standardisation. Human-Computer Interaction, ergonomics and
usability engineering are some of the key technologies that can be used for
designing UX-based cloud applications.

1.1.3 Technologies

Cloud computing evolves from the evolution and adoption of existing technologies
and paradigms. One of the most important technologies for cloud computing is
virtualisation. Other technologies are concerned with the architecture of data cen-
tres, distributed file system, as well as distributed application framework. Cloud
computing is also often compared to other technologies such as grid computing,
utility computing, and autonomous computing, each of which shares something in
common with cloud computing [11].

• Virtualisation. Virtualisation is a technology that abstracts details of physical
hardware and provides virtualised resources for high-level applications.
Virtualisation is able to separate a physical computing device into one or more
virtual devices, each of which can be used and managed to perform computing
tasks independently. With operating system-level virtualisation essentially cre-
ating a scalable system of multiple independent computing devices, idle com-
puting resources can be allocated and used more efficiently. Virtualisation
constitutes the foundation of cloud computing, as it provides the ability to pool
computing resources from clusters of servers and dynamically assigning or
reassigning virtual resources to applications on demand. Virtualisation provides
the agility needed to speed up IT business operations and reducing costs by
increasing infrastructure utilisation.

• Architectural design of data centres. A data centre is home to thousands of
devices like servers, switches and routers. Proper planning of this network
architecture is critical as it has a major impact on application performance and
throughput in such a distributed environment. Scalability and resiliency are
features that also need to be considered carefully. A common practice is
adopting the layered approach for the design of network architecture of a data
centre. Basically, the design of network architecture should be able to meet
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objectives such as high capacity, free VM migration, resiliency, scalability, and
backward compatibility.

• Distributed file system over clouds. There are two major file systems for cloud
computing: Google File System (GFS) and Hadoop Distributed File System
(HDFS). The former is a proprietary distributed file system designed especially
for providing efficient, reliable access to data using large clusters of commodity
servers by Google. Compared with traditional file systems, GFS is designed and
optimised to provide extremely high data throughput, low latency and survive
individual server failures. Inspired by GFS, the open source HDFS stores large
files across multiple machines, achieving high reliability by replicating the data
across multiple servers. Similar to GFS, data is stored on multiple geographi-
cally distributed nodes. The file system is built from a cluster of data nodes, each
of which serves blocks of data over the network using a block protocol specific
to HDFS. Data is also provided over HTTP, allowing access to all content from
a web browser or other types of clients. Data nodes can talk to each other to
rebalance data distribution, to move copies, and to keep the replication of data
high.

• Distributed application framework over clouds. MapReduce is a software
framework introduced by Google to support distributed computing on large
datasets on clusters of computers. MapReduce consists of one Master, to which
client applications submit MapReduce jobs. The Master pushes work to avail-
able task nodes in the data centre, striving to keep the tasks as close to the data
as possible. The open source Hadoop MapReduce project is inspired by
Google’s work. Today, many organisations are using Hadoop MapReduce to
run large data-intensive computations.

• Grid computing. Grid computing is a distributed and parallel computing model.
A grid computing system is a cluster of networked, loosely coupled computers
acting together to perform large tasks. The development of grid computing was
originally driven by computation-intensive scientific applications. Cloud com-
puting is similar to grid computing in that it also employs distributed resources.
However, cloud computing leverages virtualisation technologies at multiple
levels (hardware and application platform) which enable it to achieve resource
sharing and dynamic resource provisioning. Cloud computing can be considered
the business-oriented evolution of grid computing.

• Utility computing. Utility computing represents a model of providing resources
on demand and charging customers by a pay-per-use model. Cloud computing
can be perceived as a realisation of utility computing. With on-demand resource
provisioning and utility-based pricing, cloud computing service providers can
maximise resource utilisation and minimise their operating costs.

• Autonomic computing. Originally coined by IBM in 2001, autonomic com-
puting aims at building computing systems capable of self-management, i.e.
reacting to internal and external events without human intervention. The goal of
autonomic computing is to overcome the management complexity of today’s
computer systems. Cloud computing exhibits some autonomic features such as
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automatic resource provisioning. However, its objective is to lower resource
costs instead of reducing system complexity.

1.1.4 Cloud Platforms

A number of industrial organisations have developed their cloud computing
infrastructure, among which the dominant ones include Amazon Elastic Compute
Cloud (Amazon EC2), Google App Engine, and Microsoft Azure [2]. Table 1.2
describes the features of these cloud platforms from the perspectives of SLA,
reliability, auto-scaling, virtualisation, privacy, storage, and security.

• Amazon EC2. Amazon EC2 is a web service that provides secure, resizable
compute capacity in the cloud. It creates a virtual computing environment for
users to launch and manage server instances in data centres using APIs or
available tools and utilities. Users can either create a new Amazon Machine
Image (AMI) containing the applications, libraries, data and associated con-
figuration settings, or select from a library of globally available AMIs. Users
then need to upload the created or selected AMIs to Amazon Simple Storage
Service (S3) before they can perform some activities such as starting, stopping,

Table 1.2 Comparison of the representative cloud platforms, adapted from [2]

Property System

Amazon EC2 Google App
Engine

Microsoft
Azure

Focus Infrastructure Platform Platform

Service type Compute, storage (Amazon
S3)

Web application Web and
non-web

Virtualisation OS level running on a Xen
hypervisor

Application
container

OS level
through fabric
controller

Dynamic
negotiation of QoS
parameters

None None None

User access
interface

Amazon EC2 command-line
tools

Web-based
administration
console

Microsoft
Windows Azure
portal

Web APIs Yes Yes Yes

Value-added
service providers

Yes No Yes

Programming
framework

Customisable Linux-based
Amazon Machine Image
(AMI)

Python Microsoft .NET
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and monitoring instances of the AMIs uploaded. Amazon EC2 charges users for
the period of time during which the instance is alive, while Amazon S3 charges
for any data transfer.

• Google App Engine. Google App Engine is a platform for traditional web
applications in data centres managed by Google. It allows users to run web
applications written using the Python or Java programming language. In addi-
tion to the Python standard library, Google App Engine also supports
Application Programming Interfaces (APIs) for the data store, Google Accounts,
URL fetch, image manipulation, and email services. Current APIs support the
following features, including data storage and retrieval from a
BigTable non-relational database, making HTTP requests and caching. Google
App Engine provides a web-based Administration Console for facilitating users
to manage their web applications.

• Microsoft Windows Azure platform. Microsoft Windows Azure aims to
provide an integrated development, hosting, and control cloud computing
environment. Microsoft’s Windows Azure platform consists of three compo-
nents and each of them provides a specific set of services to cloud users,
including Windows Azure, SQL Azure, and .NET Services. Windows Azure
provides a Windows-based environment for running applications and storing
data on servers in data centres, SQL Azure provides data services in the cloud
based on SQL Server, and .NET Services offer distributed infrastructure services
to cloud-based and local applications. Windows Azure platform can be used
both by applications running in the cloud and applications running on local
systems. All of the physical resources, VMs and applications in the data centre
are monitored by software called the fabric controller.

1.1.5 Tools

Various tools for implementing cloud computing are available in the market [8].
These tools, open source and commercial, provide environments and platforms for
developing various cloud services and implementing their own algorithms and
mechanisms.

Open source tools, such as Open Nebula, Apache Cloud Stack, Nimbus and
Eucalyptus, can be used/accessed free of charge (Table 1.3). Each of these tools has
its own features, and shows a different degree of support for security, API, and
cloud types.

There are also some commercial tools for cloud computing in the market such as
RightScale, Gravitant, VMTurbo and Scalr. These commercial tools are explained
in more detail below.

• RightScale: RightScale grid framework can achieve automated management of
workflows of messages and jobs. It also provides the mechanism of imple-
menting the elasticity of grid processing solutions. Input queues of the system

1.1 Introduction to Cloud Computing 15



are continuously monitored when certain criteria are met. Additional, worker
instances are launched to handle the increased processing load.

• Gravitant: Gravitant’s cloudMatrix platform is a leading cloud services bro-
kerage and management platform that integrates multiple cloud providers’ ser-
vices (internal or external) into a catalogue and provisioning portal so that
enterprises can optimise the consumption of cloud services. Gravitant’s
cloudMatrix platform enables the core services and features, which can be
delivered as packages through a single user interface on myGravitant.com and
through a white labelled internal broker platform. Enterprises can deploy these

Table 1.3 Open source tools, adapted from [8]

Tool name Features Security API Cloud
type

Open Nebula: It
adopts
computing,
storage, security,
monitoring,
virtualisation and
networking in
their data centres

Cloud bursting,
on-demand
provision of
virtual data
centres, multiple
zones, multi-VM
application
management

Fine-grained
ACLs and user
quotas;
Integration with
LDAP, Active
Directory

AWS EC2 and
EBS APIs; OGF
OCCI APIs

Private

Apache Cloud
Stack: Easy
integration with
existing portal
and it is fully
AJAX-based
solution
compatible with
most of the latest
Internet browsers

Powerful API;
Multi-role
support;
On-demand
virtual data
centre hosting;
Dynamic
workload
management;
Broad network
virtualisation
capabilities

Secure AJAX
console access;
Secure single
sign on; Secure
cloud
deployments;
MPLS support in
the cloud

Cloud Stack
provides an API
that is
compatible with
AWS EC2 and
S3 for
organisations to
deploy hybrid
clouds

Public,
hybrid

Nimbus: Power
and versatility of
infrastructure
clouds to
scientific users; It
allows
combining
Nimbus,
OpenStack,
Amazon, etc.

Support for
proxy credentials
for scientific
community,
batch schedulers,
best-effort
allocations and
others are special
targeting features

– EC2/S3 an API
as a compatible
IaaS

Private,
public

Eucalyptus: It
helps customers
to design and
deploy cloud
solutions more
quickly

Multi-cluster
tunnelling and
LDAP
integration

– – Private,
hybrid
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capabilities independently or as an integrated suite based on their cloud service
needs.

• VMTurbo: VMTurbo provides a demand-driven cloud and virtualisation control
platform for enterprise businesses.

• Scalr: Scalr is suitable for those who look to explore the platform and to build
and test their projects on their own. It delivers self-service access to cloud
infrastructure and acts as an intermediary management layer between cloud
infrastructure and engineering, and provides the ownership of information se-
curity back to IT department hands. Scalr enforces cloud infrastructure security
such as governance and compliance to create and enforce policies on the basis of
budgets, configurations, and user access across entire cloud portfolio. Network
policy enforcement allows securing cloud infrastructure by regulating the use of
networks. It also enables the delivery of single sign-on across private and public
clouds through authentication and authorisation techniques.

1.1.6 Challenges

Despite enormous benefits of cloud computing, its adoption is slow due to potential
risks and limitations such as data loss, data cleaning, account hijacking, lack of
portability/migration from one service provider to another, less reliable, lack of
auditability, and less QoS. As a result, there are many challenges in terms of
security, interoperability, virtualisation, data leakage, resource sharing, load bal-
ancing, multi-tenancy, and SLAs, including those that are concerned with out-
sourcing data and applications, SLA, extensibility and shared responsibility, cloud
interoperability, heterogeneity, multi-tenancy, load balancing, resource scheduling,
virtualisation, and privacy and security, etc. The difficulties behind these challenges
were identified, and the possible solutions to these challenges were given in [8].

Especially, security is a critical issue in the cloud computing paradigm that can
significantly affect the widespread adoption of cloud computing because security is
a primary concern for businesses contemplating cloud adoption [16]. For the
security issues, the following objectives should be achieved: confidentiality,
integrity, availability, authenticity, and accountability. These five objectives rep-
resent the basic security requirements. Confidentiality refers to the fact that private
or sensitive information should be accessible only to the right people who are
authorised; Integrity means protecting against inappropriate information destruction
or modification, including ensuring information non-repudiation and authenticity;
Availability means ensuring reliable and timely access to and use of information;
Authenticity means that a message, transaction, or additional exchange of infor-
mation is from the source it claims to be from; Accountability means that actions of
an entity should be able to be traced uniquely.

Security issues can be divided into three categories [8]: data centre-related
security issues, network-related security issues, and other security issues. Data
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centre-related security issues include those that are concerned with multi-location of
service provider, data combination and commingling, restrictions on techniques and
logistics, data transfer across gateway, and multi-location of private data.
Network-related security issues includes those that are concerned with SQL
injection attack, cross-site scripting attack, man-in-middle attack, sniffer attack,
reuse IP addresses, security concerns with Hypervisor, DoS attack, cookie poi-
soning, DDoS attack, and COPTCHA splitting/breaking, Other common security
challenges include abuse and nefarious use of cloud computing, insecure applica-
tion programming interface, malicious insider, shared technology, vulnerability,
data loss/leakage, traffic hijacking and account, investigation, and data segregation.

1.2 Cloud Manufacturing

Cloud computing aims to realise the idea of offering computing resources as ser-
vices in a convenient pay-as-you-go manner. Expanding this idea into the manu-
facturing realm has given rise to the concept of cloud manufacturing [15]. The term
and complete concept system of cloud manufacturing were initially introduced by
Li et al. [17]. The most prominent and promising feature of cloud manufacturing is
the seamless and convenient sharing of a variety of different kinds of distributed
manufacturing resources, realising the idea of Manufacturing-as-a-Service (MaaS).
Following this concept, companies are provided with the ability to obtain various
manufacturing services from the Internet as conveniently as obtaining water and
electricity [18]. Cloud manufacturing is a new paradigm that will revolutionise the
manufacturing industry [19].

The objective of this section is to provide a comprehensive introduction to cloud
manufacturing, including the background for introducing the concept, the concept
itself, enabling technologies, research initiatives, applications and challenges.
Specifically, Sect. 1.2.1 presents the historical evolution and background of cloud
manufacturing. Section 1.2.2 gives a comprehensive introduction to the concept of
cloud manufacturing, including its definition, operation principle, resource classi-
fication, architecture, service delivery models, deployment models, etc.
Section 1.2.3 devotes to the core and supporting technologies that enables the
implementation of cloud manufacturing. Section 1.2.4 presents a number of research
initiatives of cloud manufacturing around the world. In Sect. 1.2.5, typical appli-
cations based on the idea of cloud manufacturing are presented. Finally, Sect. 1.2.6
discusses the challenges of cloud manufacturing to be addressed in the future.

1.2.1 Historical Evolution and Background

Over the last 40 years, many advanced manufacturing paradigms have been pro-
posed, including mass customisation, holonic manufacturing, reconfigurable
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manufacturing, lean manufacturing, agile manufacturing, networked manufactur-
ing, manufacturing grid, and sustainable manufacturing [20]. The manufacturing
focus has shifted from enlarging production scale in the 1960s to cost reduction in
the 1970s, from product quality in the 1980s to rapid market response in the 1990s,
and lately focusing on service, information and knowledge.

Today, many trends of manufacturing have emerged, including globalisation,
individualisation, customisation, deep customer involvement, servitisation, intelli-
gence, etc. In order to adapt to the development trends of the manufacturing
industry, companies need to focus on global resource sharing and manufacturing
operation collaboration for being agile, cost-effective. In this context, research on
collaboration and resource-sharing in all stages of the product lifecycle has received
more and more attention. However, there are some major limitations and short-
comings with existing networked manufacturing models and technologies in
resolving the collaboration and resource sharing issues. For example, networked
concepts such as Internet-based, distributed and manufacturing grid focus on
undertaking a single manufacturing task through integration of distributed resour-
ces. They do not have centralised operation management of services, freedom to
choose different operation modes and embedded access of physical manufacturing
equipment, applications and capabilities to the Internet, which are prerequisites for
achieving seamless, stable and quality transactions of manufacturing resources.
Having little coordination between providers and consumers, these concepts are
significantly less effective [17].

Recently, emerged computer, information and especially the Internet technolo-
gies, such as cloud computing, IoT, Semantic Web, embedded systems and virtu-
alisation technologies, provide new means for enabling seamless collaboration
activities for all the phases of product development. Especially, cloud computing,
which delivers computing services over the Internet based on cloud technologies,
provides important inspirations for the manufacturing industry, i.e. providing
manufacturing resources as services over the Internet, e.g. Design-as-a-Service
(DaaS), Machining-as-a-Service (MCaaS), Robot Control as a Service [21], etc.

In this context, cloud manufacturing as a manufacturing paradigm was proposed.
Cloud manufacturing promises elasticity, flexibility and adaptability through the
on-demand provisioning of manufacturing resources as services, enabling the
fundamental and necessary features such as convenient scalability and
pay-as-you-go of resources sharing. Cloud manufacturing can effectively address
the common challenges that many SME manufacturing companies are facing today
such as lack of core technologies, lack of skills of using and managing complex IT
systems, lack of opportunities of accessing external resources and capabilities, lack
of follow-up services, and more importantly, lack of resource- and capability-
sharing mode.
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1.2.2 Concept

The concept of cloud manufacturing was first introduced a couple of years ago.
Since then, there has been a growing interest in the academic and industrial com-
munities. Thus far, researchers from both academia and industry have purposed a
number of definitions of cloud manufacturing from different perspectives and
backgrounds. Li et al. [17] defined it as “a new networked manufacturing paradigm
that organises manufacturing resources (i.e. manufacturing cloud) according to
customers’ requirements for providing on-demand manufacturing services through
the Internet and cloud manufacturing platform”. Mirroring NIST’s definition of
cloud computing, Xu [15] subsequently defined cloud manufacturing as “a model
for enabling ubiquitous, convenient, on-demand network access to a shared pool of
configurable manufacturing resources (e.g. manufacturing software tools, manu-
facturing equipment, and manufacturing capabilities) that can be rapidly provi-
sioned and released with minimal management effort or service provider
interaction”. Looking at CPS, Wang et al. [22] defined cloud manufacturing as “an
integrated cyber-physical system that can provide on-demand manufacturing ser-
vices, digitally and physically, at the best utilisation of manufacturing resources”.

Although there are a number of different definitions, no one has been accepted as
the standard one. In spite of this, researchers and members from this particular area,
to a large extent, have had a quite clear view on what cloud manufacturing would
comprehend and facilitate such as the needs and requirements driving its devel-
opment and implementation, the services and solutions it would make available and
perform, and the concepts and technologies it could build upon are reaching a much
higher degree of consensus and agreement [18].

There are overall three categories of participants in a cloud manufacturing
system: operator (i.e. cloud provider), resource and service providers, and resource
and service consumers (Fig. 1.3) [18].

Manufacturing cloud 

Knowledge 

Cloud 
operator 

Manufacturing resoruces 
and capabili es

Product development 
life-cycle 

Resource providers Resource consumers

Fig. 1.3 Operation principle
of cloud manufacturing,
adapted from [18]
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• Operator (i.e. cloud provider). An operator is introduced for managing and
operating a cloud manufacturing platform. Introducing the operator is an
important feature that differentiates cloud manufacturing from previous manu-
facturing models. It is also a key means for providing continuous and
high-quality services. An operator of a cloud manufacturing platform plays the
same role with the cloud provider in cloud computing. Operation and man-
agement of the cloud manufacturing platform or system including delivering
required support and functions to providers and consumers and maintaining
services and technologies required to run the system, as well as finding, com-
bining, controlling and coordinating the required services for fulfilling consumer
requirements.

• Resource and service providers. Different from the cloud provider of cloud
computing (who owns and manages all computing resources necessary for
providing all types of computing services), the operator in cloud manufacturing,
in general, cannot own all types of manufacturing resources (or does not own
any manufacturing resources). As a result, resources in cloud manufacturing
come from different providers (e.g. enterprises). In cloud manufacturing, pro-
viders from different industries provide their various types of resources or ser-
vices to a cloud manufacturing platform for the sharing purpose. Hence,
manufacturing resources in cloud manufacturing may include all resources
encompassed in lifecycles of various types of products. All manufacturing
resources provided by different providers exist in the cloud manufacturing
platform as services. Depending on resource types and business models, pro-
viders may have complete, partial, or no control over resources and services they
provide.

• Resource and service consumers. The ultimate aim of cloud manufacturing is
to provide on-demand manufacturing services to consumers. Cloud manufac-
turing allows consumers to request services by submitting their requirements to
the cloud platform. Consumers are charged on a pay-per-use basis.

It should be noted that the classification of cloud users (including providers and
consumers) is based on their functional roles, which may change over time. For
example, if an enterprise requests services from a cloud platform, it is a provider.
An enterprise may provide some types of resources while request some other types
of resources, and in this case, it is a provider and a consumer concurrently.
Knowledge plays an important role in cloud manufacturing activities such as per-
ception, connection, virtualisation and encapsulation of manufacturing resources
and capabilities, cloud service description, matching, searching, aggregation, and
composition, optimal allocation and scheduling of activities and services, etc.

In cloud manufacturing, everything is provided as a service. Although some
different classifications of manufacturing resources exist, most agree to the fact that
manufacturing resources can be classified into physical manufacturing resources
and manufacturing capabilities. Physical resources can be either hard (e.g. manu-
facturing equipment, computers, networks, servers, materials, logistics facilities,
etc.) or soft (e.g. applications, product design and simulation software, analysis
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tools, models, data, standards, human resources such as personnel of different
professions and their knowledge, skills and experience, etc.). Manufacturing
capabilities are intangible and dynamic recourses that represent an organisation’s
capability of undertaking a specific task.

Cloud manufacturing needs a system architecture as a guidance for its imple-
mentation. Many research efforts have been made towards the architecture of a
cloud manufacturing system, and the proposed cloud manufacturing architectures
range from four layers to up to twelve layers. Summarising the architectures pro-
posed, a cloud manufacturing system architecture overall consists of the following
layers according to the functions and contents: resource layer, perception layer,
virtualisation layer, cloud service layer, application layer, and interface layer as well
as other supporting layers, including security layer, knowledge layer, and com-
munication layer (Fig. 1.4) [18].
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Fig. 1.4 Cloud manufacturing architecture, adopted from [18]
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• Resource layer. This layer belongs to the provider domain, encompassing
manufacturing resources for the complete product lifecycle from different
geographically distributed providers.

• Perception layer. This layer is responsible for intelligently sensing manufac-
turing resources using IoT technologies, enabling them to be connected to the
cloud manufacturing platform so as to achieve communication and interactions
between a cloud platform and real resources involved such as remote moni-
toring, prognosis, and control [23, 24].

• Virtualisation layer. This layer is responsible for virtualising manufacturing
resources and capabilities and encapsulating them into manufacturing cloud
services that can be accessed, invoked, and deployed by using virtualisation
technologies, service-oriented technologies, and cloud computing technologies.
The manufacturing cloud services are classified and aggregated according to
specific rules and algorithms, and different kinds of manufacturing clouds can
thus be constructed. This layer achieves transformation of manufacturing
resources into virtual services, and construction of different manufacturing
clouds, thus paving the way for subsequent cloud-based applications in the
cloud service layer.

• Cloud service layer (i.e. core middleware). This layer devotes to system,
service, resource, and task management, and also supports various service
activities and applications such as service description, registration, publication,
composition, monitoring, scheduling, and charging.

• Application layer. Depending on providers and their offered manufacturing
cloud services, dedicated manufacturing application systems such as collabo-
rative design, collaborative manufacturing, collaborative simulation, and col-
laborative supply chain can be aggregated. Consumers can browse and access
these application systems for manual or automatic service configurations.
A manufacturing resource provider provides consumers with the ability to select
from different possible part properties and predetermined manufacturing con-
straints (sizes, materials, tolerances, etc.).

• Interface layer. As the name implies, this layer serves as an interface between
consumers and the cloud platform, providing consumers with an interface for
submitting their requirements and browsing available services. The interface
supports manual selection and combination of available services, as well as
automatic cloud-generated suggested solutions.

• Knowledge layer. This layer provides knowledge needed in the different layers
above for virtualisation and encapsulation of resources, manufacturing domain
knowledge, process knowledge, etc.

• Security layer. This layer provides strategies, mechanisms, functions and ar-
chitecture for cloud manufacturing system security [25].

• Communication layer. This layer provides a communication environment for
users, operations, resources, services, etc. in the cloud manufacturing system.

Like cloud computing, cloud manufacturing can also be deployed in four
models: public, private, community, and hybrid. A public cloud platform is built for
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sharing manufacturing resources with the general public. It is therefore open for all
parties, which means that any enterprise can publish their resources to and request
services from the cloud platform. A private cloud is built within an enterprise with
the purpose of sharing resources among different subsidiaries of an enterprise.
A community cloud platform is built among business partners with shared concerns
for better sharing resources and business collaboration. The hybrid cloud, as its
name implies, is a combination of public and private clouds.

As in cloud computing, different delivery models of cloud manufacturing can be
developed, to support the integration of virtual, intangible and physical resources,
i.e. CAD applications and manufacturing capabilities and equipment, as services.
Infrastructure, platform and software applications can then be offered as services in
cloud manufacturing, all referring to a specific phase of the manufacturing lifecycle,
i.e. DaaS, MaaS, etc. [26].

Cloud manufacturing has a number of key characteristics, including Internet of
manufacturing resources and ubiquitous sensing, virtual manufacturing society and
flexible manufacturing system, service-oriented manufacturing and whole lifecycle
capability provisioning, efficient collaboration and seamless integration,
knowledge-intensive manufacturing and collective, and social manufacturing in-
novation [27].

1.2.3 Technologies

The development and implementation of cloud manufacturing is a huge systems
engineering. A wide range of technologies are needed for the development,
implementation, and operation of cloud manufacturing. In order to be concise, here
we focus on the following technologies: cloud computing, IoT, CPS, virtualisation,
service-oriented technology, high-performance computing technology, semantic
web technology, system management technologies, and big data analytics. Other
technologies such as security technology may also be necessary.

• Cloud computing. Cloud computing plays a fundamental and key role in the
development and implementation of cloud manufacturing. There are two types
of cloud computing adoptions in manufacturing: manufacturing with direct
adoption of cloud computing technologies and cloud manufacturing—the
manufacturing version of cloud computing [15]. In terms of the direct adoption
of cloud computing technologies in manufacturing, the key areas are around IT
and new business models that cloud computing can readily support, such as
pay-as-you-go, the convenience of scaling up and down per demand, and
flexibility in deploying and customising solutions. The adoption is typically
centred on the BPM applications such as Human Resources (HR), Customer
Relationship Management (CRM), and Enterprise Resource Planning (ERP)
functions. In cloud manufacturing, the core concept is
“Manufacturing-as-a-Service”, which is built on and coupled with IaaS, PaaS,
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and SaaS of cloud computing [26, 28]. Moreover, the business model and
related technologies (especially cloud technology) of cloud computing can also
provide important references for cloud manufacturing in terms of business
model and technology.

• IoT. IoT is a core technology for cloud manufacturing. IoT relies on tech-
nologies such as radio frequency identification (RFID) tags, sensor and actuator
networks, embedded systems and intelligence in smart objects. In cloud man-
ufacturing, IoT plays the role of intelligently sensing and connecting manu-
facturing resources into cloud manufacturing platform to achieve remote
monitoring and control, which paves the way for subsequent virtualisation and
servitisation of manufacturing resources. In order to achieve sensing and con-
nection, IoT is responsible for keeping track of resource states and order exe-
cution status, and collecting real-time data and information for remote tracking
and monitoring purpose. In fact, in the context of cloud manufacturing, IoT
helps achieve not only IoT, but also Internet of Services (IoS) and Internet of
Users (IoU) [29].

• CPS. Essentially, a cloud manufacturing system is a huge CPS with the physical
part being physical manufacturing resources on factory floors while the cyber
part being the cloud [22]. As a result, CPS can also be regarded as a core
technology for cloud manufacturing. Cyber-physical systems are systems that
integrate computation and physical processes where embedded computers and
networks monitor and control the physical processes with feedback loops where
physical processes affect computations. The role of CPS in cloud manufacturing
is different from that of IoT in that CPS emphasises the virtual part of a cloud
manufacturing system, and focuses more on the interaction and communication
aspect between the real and virtual manufacturing resources (i.e. cloud).

• Service-oriented technology. SOA refers to systems structured as networks of
loosely coupled communicating services and represents an emerging paradigm
for integrating heterogeneous systems, platforms, protocols and legacy systems.
Service-oriented technology is a technological paradigm that is based on
service-orientation paradigm and SOA with the ultimate goal of creating ser-
vices and assembling them together for large-granularity applications. As a
result, service-oriented technology is a key technology in the cloud service
layer.

• Virtualisation. Virtualisation refers to abstraction of logical resources from
their underlying physical characteristics to improve agility, enhance flexibility
and reduce cost. Virtualising resources and capabilities requires consideration of
resource characteristics and diversity, user requirements and demands as well as
performance requirements of resource management. Virtualisation of manu-
facturing equipment poses a great challenge to the implementation of cloud
manufacturing. The critical issues with virtualisation in cloud manufacturing are
manufacturing resource modelling. Mapping plays a critical role in the process
of virtualisation [15]. Generally, there are three mapping relationships between
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resources and services: one-to-one when the functionality or capability of a
resource matches one manufacturing requirement, one-to-many for a resource
with multiple functions or capabilities which each matches different manufac-
turing requirements independently, and many-to-one when multiple resources
are required to match a manufacturing requirement.

• Semantic Web. In cloud manufacturing, there is semantic heterogeneity in
business process integration and manufacturing resource and service capabili-
ties. Ontologies provide an effective means describing them in an unambiguous,
computer-understandable form. By utilising powerful representation and rea-
soning abilities of Semantic Web technology, successful matching between
requests and services is made possible [30].

• System management technologies. System management mainly includes
resource and service management, knowledge and data management, task
management, and platform management. Effective system management tech-
nologies and methods and service management are essential for smooth running
and operation of a cloud manufacturing system. Resource and service man-
agement activities are encompassed in the entire product lifecycle, and corre-
sponding technologies include those used for resource and service description,
publication, discovery, access, virtualisation and encapsulation, composition,
integration and scheduling, etc. [31]. In cloud manufacturing, all data, infor-
mation, models, algorithms, rules, and strategies can be considered as knowl-
edge. Knowledge engineering and management plays a crucial role in all the
activities encompassed in the product lifecycle such as resource virtualisation,
servitisation, and service composition and scheduling. Cloud manufacturing
aggregates numerous manufacturing tasks from different consumers, and thus
task management methods and technologies are also needed, including task
description, decomposition, classification, and scheduling. Platform manage-
ment is also part of system management, which focuses on the issues at the
platform level, including, for example, platform architecture, security, transac-
tion flows, etc.

• High-performance computing (HPC). Both cloud computing and IoT require
the support of HPC solutions. In cloud manufacturing, HPC is inevitable. HPC
refers to a broad set of architectures based on multi-processor configurations as a
means to enhance performance. It often uses supercomputers and computer
clusters to handle multiple tasks at a high speed.

• Big data analytics. In cloud manufacturing, huge amounts of data will be
generated during the service management and application processes concerning,
for example, manufacturing resources, manufacturing services, manufacturing
tasks, enterprises and users, as well as the application process. Big data analytics
can play a key role in cloud manufacturing. For example, big data about service
utilisation can be used for discerning high-value services and reveal cooperative
relationship between enterprises [12].
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1.2.4 Research Initiatives

There are a number of research initiatives on cloud manufacturing with both aca-
demic and industrial participants in local, national and international projects of
varying sizes and scopes [18]. Some of these initiatives are summarised below.

• CMfg. This national Chinese research initiative coordinated by Beihang
University is usually thought as the first source of the cloud manufacturing.
CMfg presents an application model of cloud manufacturing, describing cloud
manufacturing platform activities ranging from user requests to the return of
solutions. Also proposed is a cloud manufacturing architecture with the fol-
lowing five layers: (1) physical layer for provider resources and capabilities;
(2) virtualised resource layer for virtualising resources and encapsulate them as
services; (3) service layer for cloud manufacturing core functions such as service
management deployment, registration, searching, matching, composition,
scheduling, monitoring, cost and pricing, billing, etc.; (4) application layer for
requests within specific manufacturing applications; and (5) user layer with
interfaces for both consumers requests and provider input/registration of
resources. To demonstrate the feasibility of the CMfg concept, a cloud-based
application—cloud simulation—based on the COSIMCSP (Cloud Simulation
Platform) has been demonstrated, in which the collaborative work in the mul-
tidisciplinary design of a virtual flight vehicle prototype is simulated [17, 26,
32].

• Cmanufacturing. A research group at the University of Auckland, New
Zealand presented a public cloud infrastructure known as ICMS (Interoperable
Cloud-based Manufacturing System) [33]. ICMS has a three-layer architecture:
a Smart Cloud Manager, a User Cloud, and a Manufacturing Cloud, which are
responsible for assisting and supervising the interaction between consumers and
providers, for managing consumers and their requests, and for managing pro-
viders and their resources, respectively. It clarifies users into two types: cus-
tomer users (CUs) and enterprise users (EUs). CUs are defined as customers/
organisations requesting a self-contained production task, while EUs are
organisations/enterprises seeking additional capabilities and support to fulfil
bigger and more demanding production tasks in collaboration with temporary
partners and their services. Standard data models for cloud services and relevant
features were also developed and described.

• Cloud-based design and manufacturing (CBDM). A research group at
Georgia Institute of Technology presented a conceptual reference model called
CBDM for their interpretation of cloud manufacturing [34, 35]. CBDM is built
on the concept of cloud computing, with manufacturing resources being avail-
able as different services. For the implementation of CBDM, they proposed a
Distributed Infrastructure with the Centralised Interfacing System model. The
Distributed Infrastructure is composed of three groups of assets: human (in-
cluding consumers, producers, managers), communication (including commu-
nication network, network security and two interfaces for communicating with
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the human and manufacturing processes’ asset groups), and manufacturing
process (hardware and software resources). The Centralised Interface System
enables the system to function as a whole.

• Cloud-based Manufacturing-as-a-Service environment. ManuCloud, a
European project funded by the European Commission, has eight consortium
members from academy and industry, from four different EU member states (i.e.
Austria, Germany, Hungary and the United Kingdom) [36, 37]. The objective of
the project is to develop a service-oriented IT environment to support the
transition from mass production to personalised, customer-oriented and
eco-efficient manufacturing. A conceptual architecture with a front-end system
and MaaS infrastructure to support cloud-based manufacturing of customised
products has been proposed. The front-end is deployed as part of an integrated
web-based portal to support collaborative development, and consists of a
Customised Product Advisory System and interfaces for Infrastructure
Management. A manufacturing service description language provides a formal
description of both production and product-related information, and is used for
the integration of the front-end and the MaaS environment.

1.2.5 Applications

Many ongoing applications in different industries or fields that are related to or
inspired by the concept of cloud manufacturing have been reported, including
automotive industry [38], machine tool industry [39], semiconductor industry [40],
etc., and the related areas include waste electrical and electronic equipment
recovery/recycling [41, 42], and cloud robotics [43].

1.2.6 Challenges

The ongoing development of cloud manufacturing is facing many challenges in
concepts, technologies and standards [18], including (1) how to achieve the inte-
gration of various technologies such as cloud computing, IoT, Semantic Web,
high-performance computing, embedded systems; (2) how to bring various types of
resources and capabilities to the cloud as services, especially the implementation of
Hardware-as-a-Service (HaaS) (i.e. knowledge-based resource clouding); and
(3) how to achieve overall management and control of clouds (including service
composition, collaboration between cloud manufacturing applications, open com-
munication standards, distributed control and coordination of manufacturing
equipment, and user interfaces in cloud environments). In order to realise these, a
standard or technique for consistently describing equipment and its functionality,
behaviour, structure, etc., is required.
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1.3 Conclusions

This chapter systematically and comprehensively but briefly presented the status
and advancement of cloud technologies in cloud computing and cloud manufac-
turing, which represent the typical and the latest applications of cloud technologies
in computing and manufacturing. Cloud computing is an Internet-based computing
paradigm for delivering computing resources as service over the Internet.
Expanding the idea of offering computing resources as services in cloud computing
into the manufacturing field gave rise to the concept of cloud manufacturing. Cloud
computing and cloud manufacturing represent the latest status and advancement of
cloud technologies in IT and manufacturing industries, respectively. For cloud
computing, issues ranging from its evolution path and background to the concept
itself, from architecture requirements to platforms, tools, and challenges were
presented. The corresponding issues of cloud manufacturing has also been pre-
sented and discussed. However, it should be noted that manufacturing resources
involved in cloud manufacturing are much more diverse and complicated than those
in cloud computing, thus making it more challenging to implement it.

References

1. L. Kleinrock, A vision for the Internet. ST J. Res. 2(1), 4–5 (2005)
2. R. Buyya, C.S. Yeo, S. Venugopal, J. Broberg, I. Brandic, Cloud computing and emerging IT

platforms: Vision, hype, and reality for delivering computing as the 5th utility. Future Gener.
Comput. Syst. 25(6), 599–616 (2003)

3. F. Berman, G. Fox, A.J. Hey, in Grid Computing: Making The Global Infrastructure A
Reality, vol. 2, (John Wiley and sons, 2003)

4. I. Foster, Y. Zhao, I. Raicu, S. Lu, Cloud computing and grid computing 360-degree
compared. in Grid Computing Environments Workshop, GCE’08 (2008), pp. 1–10

5. D. Barkai, Peer-to-Peer Computing: Technologies For Sharing And Collaborating On The
Net (Intel Press, 2001)

6. L.J. Zhang, H. Cai, J. Zhang, Services Computing (Springer, 2007)
7. R. Buyya, C.S. Yeo, S. Venugopal, Market-oriented cloud computing: vision, hype, and

reality for delivering it services as computing utilities. in 10th IEEE International Conference
on High Performance Computing and Communications, HPCC’08 (2008)

8. M.N. Birje, P.S. Challagidad, R.H. Goudar, M.T. Tapale, Cloud computing review: concepts,
technology, challenges and security. Int. J. Cloud Comput. 6(1), 32–57 (2017)

9. L.M. Vaquero, L. Rodero-Merino, J. Caceres, M. Lindner, A break in the clouds: towards a
cloud definition. ACM SIGCOMM Comput. Commun. Rev. 39(1), 50–55 (2008)

10. P. Mell, T. Grance, The NIST Definition of Cloud Computing (2011)
11. Q. Zhang, L. Cheng, R. Boutaba, Cloud computing: state-of-the-art and research challenges.

J. Internet Serv. Appl. 1(1), 7–18 (2010)
12. L. Wang, M. Törngren, M. Onori, Current status and advancement of cyber-physical systems

in manufacturing. J. Manuf. Syst. 37, 517–527 (2015)
13. L. Wang, An overview of internet-enabled cloud-based cyber manufacturing. Trans. Inst.

Meas. Control 39(4), 388–397 (2017)
14. B.P. Rimal, A. Jukan, D. Katsaros, Y. Goeleven, Architectural requirements for cloud

computing systems: an enterprise cloud approach. J. Grid Comput. 9(1), 3–26 (2011)

1.3 Conclusions 29



15. X. Xu, From cloud computing to cloud manufacturing. Robot. Comput. Integr. Manuf. 28(1),
75–86 (2012)

16. R.L. Krutz, R.D. Vines, Cloud Security: A Comprehensive Guide to Secure Cloud Computing
(Wiley Publishing, 2010)

17. B.H. Li, L. Zhang, S.L. Wang, F. Tao, J.W. Cao, X.D. Jiang, X. Song, X.D. Chai, Cloud
manufacturing: a new service-oriented networked manufacturing model. Comput. Integr.
Manuf. Syst. 16(1), 1–7 (2010)

18. G. Adamson, L. Wang, M. Holm, P. Moore, Cloud manufacturing–a critical review of recent
development and future trends. Int. J. Comput. Integr. Manuf. 30(4–5), 347–380 (2017)

19. D. Wu, D.W. Rosen, L. Wang, D. Schaefer, Cloud-based manufacturing: Old wine in new
bottles? Procedia CIRP 17, 94–99 (2014)

20. F. Tao, Y. Cheng, L. Zhang, A.Y.C. Nee, Advanced manufacturing systems: socialization
characteristics and trends. J. Intell. Manuf. 28(5), 1079–1094 (2017)

21. G. Adamson, L. Wang, M. Holm, P. Moore, Adaptive robot control as a service in cloud
manufacturing. in ASME 2015 International Manufacturing Science and Engineering
Conference, MSEC 2015 (2015)

22. L. Wang, R. Gao, I. Ragai, An integrated cyber-physical system for cloud manufacturing. in
Proceedings of ASME 2014 International Manufacturing Science and Engineering
Conference, Michigan, USA, 9–13 June 2014

23. L. Wang, Machine availability monitoring and machining process planning towards cloud
manufacturing. CIRP J. Manufact. Sci. Technol. 6(4), 263–273 (2013)

24. R. Gao, L. Wang, R. Teti, D. Dornfeld, S. Kumara, M. Mori, M. Helu, Cloud-enabled
prognosis for manufacturing. CIRP Ann. Manuf. Technol. 64(2), 749–772 (2015)

25. B. Buckholtz, I. Ragai, L. Wang, Remote equipment security in cloud manufacturing systems.
Int. J. Manuf. Res. 11(2), 126–143 (2016)

26. B.H. Li, L. Zhang, L. Ren, X.D. Chai, F. Tao, Y.L. Luo, Y.Z. Wang, C. Yin, G. Huang, X.
P. Zhao, Further discussion on cloud manufacturing. Comput Integr. Manuf. Syst. 17(3), 449–
457 (2011)

27. L. Ren, L. Zhang, L. Wang, F. Tao, X. Chai, Cloud manufacturing: key characteristics and
applications. Int. J. Comput. Integr. Manuf. 30(6), 501–515 (2017)

28. Q. Lin, K, Xia, L. Wang, L. Gao, Research progress of cloud manufacturing in China: a
literature survey. in ASME 2013 International Manufacturing Science and Engineering
Conference Collocated with the 41st North American Manufacturing Research Conference,
MSEC 2013, (2013)

29. F. Tao, Y. Cheng, L.D. Xu, L. Zhang, B.H. Li, CCIoT-CMfg: cloud computing and internet
of things-based cloud manufacturing service system. IEEE Trans. Industr. Inf. 10(2), 1435–
1442 (2014)

30. K. Xia, L. Gao, L. Wang, W. Li, K.M. Chao, A semantic information services framework for
sustainable weee management toward cloud-based remanufacturing. J. Manuf. Sci. Eng. 137
(6), 061011 (2015)

31. F. Tao, L. Zhang, Y. Liu, Y. Cheng, L. Wang, X. Xu, Manufacturing service management in
cloud manufacturing: overview and future research directions. J. Manuf. Sci. Eng. 137(4),
040912 (2015)

32. B.H. Li, L. Zhang, L. Ren, X.D. Chai, F. Tao et al., Typical characteristics, technologies and
applications of cloud manufacturing. Comput. Integr. Manuf. Syst. 18(7), 1345–1356 (2012)

33. X.V. Wang, X.W. Xu, An interoperable solution for Cloud manufacturing. Robot. Comput.
Integr. Manuf. 29(4), 232–247 (2013)

34. D. Schaefer, J.L. Thames, R.D. Wellman Jr. D. Wu, S. Yim, D.W. Rosen, Distributed
collaborative design and manufacture in the cloud–motivation, infrastructure, and education.
in ASEE 2012 Annual Conference and Exposition, (University of Bath, Bath, 2012)

35. D. Wu, D.W. Rosen, L. Wang, D. Schaefer, Cloud-based design and manufacturing: a new
paradigm in digital manufacturing and design innovation. CAD Comput. Aided Des. 59, 1–14
(2015)

30 1 Latest Advancement in Cloud Technologies



36. M. Meier, J. Seidelmann, I. Mezgár, ManuCloud: the next-generation manufacturing as a
service environment. ERCIM News 83, 33–34 (2010)

37. M. Wang, J. Zhou, S. Jing, Cloud manufacturing: Needs, concept and architecture. in
Proceedings of the 2012 IEEE 16th International Conference on Computer Supported
Cooperative Work in Design, CSCWD 2012 (2012)

38. Z. Jin, Research on solutions of cloud manufacturing in automotive industry. in Lecture Notes
in Electrical Engineering (2013), pp. 225–234

39. M.H. Hung, Y.C. Lin, H.C. Huang, M.H. Hsieh, H.C. Yang, F.T. Cheng, Development of an
advanced manufacturing cloud for machine tool industry based on AVM technology. in IEEE
International Conference on Automation Science and Engineering, Madison, WI, USA, 2013

40. T. Chen, Strengthening the competitiveness and sustainability of a semiconductor manufac-
turer with cloud manufacturing. Sustainability (Switzerland) 6(1), 251–266 (2014)

41. L. Wang, X.V. Wang, L. Gao, J. Váncza, A cloud-based approach for WEEE remanufac-
turing. CIRP Ann. Manuf. Technol. 63(1), 409–412 (2014)

42. X.V. Wang, L. Wang, From cloud manufacturing to cloud remanufacturing: a cloud-based
approach for WEEE recovery. Manuf. Lett. 2(4), 91–95 (2014)

43. X.V. Wang, L. Wang, A. Mohammed, M. Givehchi, Ubiquitous manufacturing system based
on cloud: a robotics application. Robot. Comput. Integr. Manuf. 45, 116–125 (2017)

References 31



Chapter 2
Latest Advancement in CPS and IoT
Applications

2.1 Introduction

Internet of Things (IoT), as one of the most important new information technolo-
gies, has attracted great attention from governments, industries, and academia, and
has been widely used in many fields, such as production, healthcare, and logistics.
Originated from the radio frequency identification (RFID) systems, the term IoT
was first coined by Ashton in MIT Auto-ID Labs in 1999 [1], referring to wireless
communication abilities integrated with sensors and computing devices, thus
enabling uniquely identifiable things to provide data over the Internet with limited
or no human interaction. With the new information technologies integrated with
IoT, it is hard to define IoT clearly and uniformly, especially its various application
backgrounds. For brevity, IoT can be understood from two perspectives, which are
“Internet-oriented” and “Things-oriented” [2]. The former can be viewed as the
expansion of Internet applications. IP stack that already connects a huge amount of
communicating devices, has all the qualities to make IoT a reality, while the latter
means that a large number of things, which have identities and virtual personalities,
form a worldwide network based on standard communication protocols [3]. In
general, the architecture of IoT can be divided into four layers, i.e. sensing layer,
networking layer, middleware layer, and application layer. The sensing layer is
responsible for sensing and capturing the real-time information of resources,
devices, and further sharing among the identified units through a constructed
wireless network with tags and sensors. The networking layer is to connect all
things together to form the physical network of manufacturing systems, and allow
things to share the information with other connected things. The middleware layer
is to manage, control, and transmit information in real time through a cost-efficient
platform integrated by hardware and software functions. The main function of
application layer is to integrate the methodologies and functions of the system to
achieve IoT-enabled industrial applications (such as remote monitoring of robots,
tracking and tracing of manufacturing resources in real time), and IoT-enabled
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manufacturing systems. Within the powerful functionality, IoT is widely applied in
a number of industries [2], and these applications include four main domains:
(1) transportation and logistics, including assisted driving, mobile ticketing, mon-
itoring environmental parameters, augmented maps, and so on; (2) healthcare,
including tracking, identification and authentication, data collection, sensing, and
others; (3) smart environment (home, office, and plant), such as comfortable homes
and offices, smart building, smart cities, smart factories, smart museums, and so on;
and (4) personal and social domain, including social networking, historical queries,
losses, thefts, and so forth.

In the past decades, advancements in Web- and Internet-based systems and
applications have opened up the possibility for industries to utilise the cyber
workspace to conduct efficient and effective daily collaborations from anywhere in
distributed manufacturing environments [4]. Recent advances in manufacturing
industry have paved way for a systematic deployment of Cyber-Physical Systems
(CPS), within which information from all related perspectives is closely monitored
and synchronised between the physical factory floors and the cyber computational
space. CPS are engineered systems that are built from and depend upon the
seamless integration of computational algorithms and physical components [5]. The
term Cyber-Physical Systems was first proposed in the US in 2006 [6]. With the
wide applications and development of CPS, the definition of CPS is multiple, and
not clear and unified. For example, CPS are integrations of computation and
physical processes. Embedded computers and networks monitor and control the
physical processes, usually with feedback loops where physical processes affect
computations and vice versa [7]. In other words, CPS use computations and
communication deeply embedded in and interacting with physical processes so as to
add new capabilities to physical systems [1]. Unlike traditional embedded systems
that are typically standalone, a full-fledged CPS is characterised by a network of
interacting elements with physical input and output, resembling the structure of a
sensor network. Tremendous progress has been made in advancing CPS technology
over the last five years. Certainly, new smart CPS will drive innovation and
competition in sectors as diverse as aerospace, automotive, chemical process, civil
infrastructure, energy, healthcare, manufacturing, transportation, and so forth. One
example of CPS is an intelligent manufacturing line, where a machine can perform
a variety of processes by communicating with the components. Ongoing
advancement in science and engineering will continue to enhance the link between
computational and physical elements, dramatically increasing the adaptability,
autonomy, efficiency, functionality, reliability, safety, and usability of CPS [5].
The final aim of CPS is to realise ‘‘intelligent monitoring” and ‘‘intelligent control”
[8, 9]. These are the processes that need to realise real-time information extraction,
data analysis, decision making and data transmission. CPS is an emerging discipline
and has attracted and engaged many researchers and vendors. For example, many
universities and institutes (such as UC Berkeley, Vanderbilt, Memphis, Michigan,
Notre Dame, Maryland, and General Motors Research and Development Centre)
have joined one research project (http://newsinfo.nd.edu/news/17248-nsf-funds-
cyber-physical-systems-project/). The European Union (EU) and other countries,
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such as China and Korea, also realised the importance and significance of CPS
research (http://www.artemis.eu/). In addition, the American Government named
CPS as a new development strategy [8]. In conclusions, research and applications of
CPS have been active in such areas like transportation, smart home, robotic surgery,
aviation, defence, critical infrastructure, etc. [1]. CPS also positively affected
manufacturing in form of Cyber-Physical Production Systems (CPPS) in process
automation and control [10].

The structure of CPS was outlined in [11], and the IoT, as the Internet layer,
networks the “cyber-physical” things for information transfer. IoT can be seen as a
bottom-up vision, an enabling technology, which can be used to create a special
class of CPS, i.e. systems including the Internet. However, CPS does not neces-
sarily include the Internet. Some visions of the IoT go beyond basic communica-
tion, and consider the ability to link “cloud” representations of the real things with
additional information such as location, status, and business related data. Therefore,
CPS forms the first level and IoT forms the second level of vertical digital
integration.

The progress of many research and applications of CPS and IoT is significant,
and this chapter systematically illustrates the latest advancements of CPS and IoT,
such as in technologies and industrial applications. The remainder of this chapter is
therefore organised as follows. The key enabling technologies of CPS and IoT are
presented in Sect. 2.2, followed by their key features and characteristics of CPS and
IoT in the literature. Advancements of CPS and IoT are provided in Sect. 2.3.
Section 2.4 introduces applications of CPS and IoT, before concluding the chapter
in Sect. 2.5.

2.2 Key Enabling Technologies in CPS and IoT

Along the progress of CPS and IoT research and applications, Wireless Sensor
Network (WSN), Cloud technologies, Big Data, and other enabling technologies
play an important role to support CPS and IoT. For example, several initiatives
cater for the CPS development, such as Advanced Manufacturing Partnership 2.0
[12] and Industrial Internet [13] in USA, Industry 4.0 [14] in Germany, Factories of
Future [15] in EU, and even the less-known Japanese “Monozukuri” that stands for
Coopetition. Other initiatives on this front include Wise-ShopFloor for web-based
sensor-driven e-shop floor [16] and Cyber-Physical European Roadmap and
Strategy (CyPhERS) [17]. In addition, IoT, as new emerging technology, is
expected to provide promising strategies and solutions to build intelligent and
powerful manufacturing systems and industrial applications by using the growing
ubiquity of RFID, and wireless sensor devices [18]. According to the International
Telecommunication Union (ITU), the key technologies of IoT contain the RFID
technology, Electronic Product Code technology, and ZigBee technology. In what
follows, a brief account of these technologies, including WSN, cloud technologies,
Big Data, RFID technology and Industry 4.0, is provided.
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2.2.1 Wireless Sensor Network

Wireless communication and networking is one of the fast-growing research areas.
Significant progress has been made in the fields of WSN [19]. WSN is designed
particularly for delivering sensor-related data. It consists of a number of sensor
nodes working together to monitor a region to obtain data about the environment.
The sensor nodes include MEMS components such as sensors, RF components, and
actuators, and CMOS building blocks such as interface pads, data fusion circuitry,
specialised and general-purpose signal processing engines, and microcontrollers
[20]. These sensors are equipped with wireless interfaces with which they can
communicate with one another to form a network. Data gathering is the foundation
of data processing and transmission. These sensor nodes can sense, measure, and
gather information from the environment and, based on some local decision pro-
cess, they can transmit the sensed data to the user through a communication pro-
tocol. A radio is implemented for wireless communication to transfer the data to a
base station (e.g. a laptop, a personal handheld device, or an access point to a fixed
infrastructure) [21]. Constraints on resources and design for WSN restrict wide
application and development with the demands on volume of data collection and
complexity of systems. As a result, by integrating WSNs from different domains,
CPS represents one of the major driving forces that go beyond the cyber world
towards the physical world [7].

2.2.2 Could Technologies

Due to the explosive growth of data volume and real-time service concept, more
rapid methods to deal with these data is required. Cloud computing is used to
address the problem of calculating speed and volume. Cloud computing refers to ‘a
large-scale distributed computing paradigm that is driven by economies of scale, in
which a pool of abstracted, virtualised, dynamically scalable, managed computing
power, storage, platforms, and services are delivered on demand to external cus-
tomers over the Internet [22]. Cloud computing is considered as a new business
paradigm describing supplement, consumption and delivery model for IT services
by utility computing based on the Internet [23]. Infrastructure as a Service (IaaS),
Platform as a Service (PaaS), and Software as a Service (SaaS) are the basic service
models of cloud computing, and they indicate hardware resources, cloud platforms
including operating systems, programme execution environments and databases,
enabling application developers to develop, test, deploy and run their applications
[24]. Cloud computing has changed the way of thinking of both IT service pro-
viders and their customers. It offers business and application models that deliver
infrastructure, platform, software and applications in forms of services [25].
Figure 2.1 illustrates different levels of services of cloud applications compared
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against standalone ones. Inspired by the success of cloud computing, the cloud
technology has recently been extended to the manufacturing contexts, leading to the
innovation of various cloud manufacturing systems. Cloud manufacturing implies
an integrated cyber-physical system that can provide on-demand manufacturing
services, digitally and physically, at the best utilisation of manufacturing resources
[26, 27]. It aims at offering a shared pool of resources, e.g. manufacturing software,
manufacturing facilities, and manufacturing capabilities. However, cloud manu-
facturing is more than simply deploying manufacturing software applications in the
cyber cloud. Besides data storage and virtual machines, the physical resources
integrated in the manufacturing cloud must be able to offer adaptive, secure and
on-demand manufacturing services, often over the IoT, including work-cells,
machine tools, robots, etc.

2.2.3 Big Data

Big data refers to the analytics based on large data collections. Advancements in
computing and memory performance, together with networking have made big data
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Fig. 2.1 Different service levels of cloud services
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analytics possible to gather and analyse unprecedented amounts of data. Big data
has strong interdependency with cloud computing. The lack of cloud computing
may result in huge and intensive data becoming useless. In other words, cloud
computing provides an effective approach to processing insignificant big data and
converting them to meaningful data, which can be efficiently used by end users.
With the rapid development of information technologies and industrialisation, the
demand for the value-added data services from enterprises and users is dramatically
increasing. This also requires patterns of manufacturing and services to transform
towards ones based on industrial big data. In addition, the quantity of manufac-
turing resources such as machines, devices, and materials, etc., have several times
as many as than before, and the large scale of data are generated from these
manufacturing resources. Industrial sensors, radio frequency identification systems,
barcodes, industrial automation control systems, enterprise resource planning,
computer aided design, and other technologies are increasingly rich in industrial
data volume. These data are huge and heterogeneous, which is difficult to process.
Therefore, methods in cleaning data and adding value of data are developed to
extract and integrate these data. Besides, professional algorithms are used to analyse
these data and find useful information. Therefore, applications of big data in many
fields, especially in manufacturing systems, can provide a new paradigm for
achieving data-based services and manufacturing pattern transformation. Another
important thing in this process is data exchange, including data/information inter-
action between huge manufacturing resources. The key characteristics of WSN in
terms of reliability, flexibility, usability, and security guarantee the stable,
high-efficient, and secure data transmissions. CPS and IoT enable further enormous
amounts of data related to physical systems to be made available for analysis. Big
data is relevant to non-technical systems and IT systems, but becomes even more
interesting when applied in the context of CPS due to the implications of physicality
in terms of capabilities, technical risks and costs.

2.2.4 Industry 4.0

The term Industry 4.0 was manifested for the first time at the Hannover Fair with
the presentation of the “Industry 4.0” initiative [28]. Industry 4.0 is a large German
initiative [14] that emphasises the extension of traditional manufacturing systems to
full integration of physical, embedded and IT systems including the Internet. It
highlights three features for implementation: (1) horizontal integration through
value networks, (2) end-to-end digital integration of engineering across the entire
value chain, and (3) vertical integration and networked manufacturing systems. The
implementation recommendations call for actions in eight key areas including
standardisation and reference architecture; managing complex systems; safety and
security; work organisation; professional training; regulations, and resource effi-
ciency. Germany’s implementation of Industry 4.0 has received great attention
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throughout the world from researchers and government, and therefore many
countries, institutes, and enterprises undertake this research and aim at improving
their manufacturing chains. Especially in the process of Industry 4.0, due to the
tight integration of micro controller and physical devices, machines and tools are
becoming more automated and self-sufficient, increasingly replacing manual labour.
Industry 4.0 is a representative of the emergency of the fourth Industrial Revolution
through the use of CPS and IoT, followed by digitisation through the use of
electronics and IT. The goal of the Industry 4.0 is the emergence of digital factories
that are to be characterised by the five key features: smart networking, mobility,
flexibility, integration of customers, and new innovative business models [29].

2.2.5 RFID Technology

IoT can be considered as a global network infrastructure composed of numerous
connected devices that rely on sensory, communication, networking, and infor-
mation processing technologies [30]. A foundational technology for IoT is the
RFID technology, which allows microchips to transmit identification information to
a reader through wireless communication. An RFID system is composed of an
RFID device (tag), a tag reader with an antenna and transceiver, and a host system
or connection to an enterprise system [31]. Radio frequency tags in the RFID
system are used to store information. RFID tags and readers communicate by
non-contact sensors, radio waves or microwaves. The key technologies of RFID
include high-adaptive wireless communication technology, high confidentiality;
low power consumption, high reliability of RFID devices; small volume,
high-efficiency antenna technology; low-cost chip and reader. The most prominent
advantage of RFID technology is: non-contact reading and writing, distance from a
few centimetres to dozens of metres, to recognise high-speed moving objects,
strong security, and can identify multiple targets simultaneously. Compared with
the concept, component parts of RFID technology, the industrial applications of
RFID technology attract more interests, for example, sensing and capturing infor-
mation of objects, and identification. Taking an RFID-enabled real-time informa-
tion sensing and capturing system as an example, auto-ID techniques such as RFID
tags will be employed to manufacturing resources such as machines, robots, and
raw materials, to make the smart manufacturing objects with the capability of
identifying the real-time status of the manufacturing things such as operators,
materials, locations, WIP items, etc. When a manufacturing thing comes to a
sensing area, this event can be sensed by the registered sensor. Through the
communication protocol, the sensor can capture and send the data of the coming
manufacturing things to the upper processing unit, which is responsible for pro-
cessing the primitive information to form the value-added information and data
storage.
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2.3 Key Features and Characteristics of CPS and IoT

In this section, the key features and characteristics of CPS and IoT are presented in
order to clarify the related advances. It first points out the key characteristics of
CPS, and then discusses some features that have been made. Representatives of the
industries reported that CPS are indeed not new technologies, but widely existing
and manifested by existing industrial manufacturing systems. Lee et al. [32] pointed
out that a CPS consists of two main functional components: (1) the advanced
connectivity that ensures real-time data acquisition from the physical world and
information feedback from the cyber workspace; and (2) intelligent data manage-
ment, analytics and computational capability that constructs the cyber space. The
case can be made to identify and embody CPS, due to the increasing digitalisation
and penetration of embedded systems. The increasing connectivity and capabilities
of computational systems promote the emergence of new systems with the typical
characteristics of CPS, and these characteristics can be concluded as follows: (1) the
deployment of CPS in mass-products applications, such as smart-phone enabled
services; (2) the chances for and emergence of new cross-domain applications, for
example, the intelligent transportation systems; (3) the increasing openness,
adaptability, and autonomy.

Wu et al. [33] identified some unique features of CPS applications as follows:

1. Cross-domain sensor sources and data flows: Multiple types of sensors will be
adopted at the same time in intelligent CPS applications. Moreover, these
cross-domain sensing data will be exchanged over heterogeneous networks.

2. Embedded and mobile sensing capacity: High-degree mobility of sensors based
on the mobile devices makes sensors have the capacity of the mobile sensing
coverage over time.

3. User contribution and cooperation through give-and-take-like models:
Participatory sensing would be common in CPS.

4. Elastic loads requiring cloud-supported storage and computing capability: With
the maturity of cloud computing, the pay-as-you-go concept is likely to be
adopted in CPS to serve storage, computing, and communication needs.

5. Accumulated intelligence and knowledge via learning and data mining tech-
nologies: Under high dynamics and uncertainty of data in CPS, learning and
data mining technologies can be used to retrieve useful knowledge. Then, the
feedback from users and actuators may help us to accumulate, or even discover
unknown knowledge.

6. Rich interactions among many objects and things through the Internet (such as
IoT): A lot of sensor–sensor, sensor–actuator, actuator–actuator, actuator–user,
user–user, user–object, object–object, object–thing, thing–thing, and thing–user
interactions may occur in CPS applications. Such rich and complex interactions
demand flexible communication channels, like the Internet, to facilitate our
applications.
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These characteristics and features of CPS led the CyPhERS (Cyber-Physical
European Roadmap and Strategy) project [17] to carry out a characterisation of
CPS, attempting to capture the evolving scope of CPS, from traditionally closed
systems, with single jurisdiction, limited adaptability and autonomy. Defining such
characteristics would be helpful beyond definitions, because definitions of CPS tend
to be very general; instead the characterisation helps to identify various types of
CPS. The following aspects of CPS have been identified [17]:

• Deeply embedded versus IT dominated. Resource-limited and dedicated com-
puter systems represent the traditional embedded systems, which tightly inte-
grates with the physical processes. The increasing connectivity and capabilities
of computing systems enable “embedded” versus IT systems for the intersec-
tion. This means that the two types of systems are becoming connected and
interacted.

• Single-domain versus cross-domain. A traditional embedded system generally is
represented by a single domain application system. New cost-efficient com-
munication creates the potential for the demands and applications of new ser-
vices that cut across existing domains, or for building new CPS domains. The
smart home and its connection to the electrical grid represent an example of this
trend.

• Open versus closed. A traditional embedded system represents a system that is
not connected to other computing systems. The difficulties of diagnosing,
maintaining and upgrading widely deployed embedded systems provide strong
driver towards more open systems. Another driver is provided by the ability to
provide new collaborative services.

• Automation levels and types. Systems with high autonomy can have the capacity
of operating without human supervision/intervention. Automation in many
fields is used to replace or relieve the workers’ load, especially in the dirty, dull,
and dangerous working situation [34]. Based on the environmental, resources
efficiency and safety considerations, autonomy is widely developed and applied
to all kinds of domains (such as intelligent manufacturing systems, and
robot-enabled assembly systems).

• Governance, indicating the entities responsible for dependable and efficient
system operation. The division of responsibility will associate with the system
of system nature.

• Distributed versus centralised control. Most CPS already constitute distributed
computer systems (or are likely to become so) because of the increasing con-
nectivity. This makes control become more or less decentralised. Control in this
context refers to the decision making within the distributed systems.

• Single jurisdiction versus cross-jurisdiction. This aspect refers to applicable
standards and legislation. Generally, the typical challenge faced by many
existing CPS is that jurisdiction is more complicated with more open and
cross-domain CPS.
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• Adaptability under uncertain conditions. The context of the typical CPS may be
always varying, such as the environmental conditions, system load, and failures.
Adaptable CPS has the capacity of dealing with such varying contexts within
given bounds, and potentially contributes to reducing maintenance costs and
increasing availability.

• Human in/outside the loop. Traditional CPS come in two types; those that are
more or less fully autonomous (i.e. act independently of humans, but may be
triggered by human inputs), and those with a much closer interaction with
humans, including shared control.

• Degree of integration. Various types of integration are built based on the
effective connectivity. A CPS will have a certain degree of horizontal and
vertical integration in a certain context and application domain. Horizontal in-
tegrationis the integration of services and functions of similar type, and vertical
integration refers to integration across system hierarchies.

CPS may pose a different mix of the key features and depend on their utilisation
domain. CPS consider the computational decisional components that use the shared
knowledge and information from physical processes to provide intelligence, re-
sponsiveness, and adaptation. In conclusion, the differentiating factor among all
areas, is not the distinct characteristics but which of them they employ (depending
on the scenario) and at which degree [35]. Similarly, IoT focuses mostly on the
interaction and integration part while cooperation is optional. According to the
definition and applications of IoT, characteristics of IoT are different because of
specific-domain applications with typical unique features. As discussed in the
previous section, IoT can provide technical support and new opportunities for
innovative applications in many fields. Some applications strictly belong to a
specific domain and exhibit characteristics peculiar of that domain. Conversely,
others applications exhibit characteristics cross-cutting multiple domains. As a
result, it is unsuitable or hard to identify characteristics of IoT, which is common
for applications in all the fields. Under the context of this chapter, the key IoT
features in manufacturing systems are introduced as follows, in contrast to the
current manufacturing systems [36].

• Introduce an easy-to-use and easy-to-deploy architecture and solution for
implementing smart manufacturing in the whole manufacturing systems using
the IoT.

• Design the smart framework and models for improving the intelligence of the
bottom-level manufacturing resources such as smart stations and smart vehicles
because they are the key to the intelligent manufacturing system.

• Develop a new decision strategy and method for real-time information based
production scheduling and internal logistics optimisation, which can be directly
applied to the manufacturing system, for example, shop floor, for improving the
efficiency.

• Present a critical event-based real-time key production performances analysis
model, so as to actively identify real-time production exceptions.
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These key IoT features provide the technical support and basis for addressing the
“4Cs” (Connection, Communication, Computing, and Control) of resources and
devices for the following different applications in manufacturing, and achieving the
connection of objects.

2.4 Applications of CPS and IoT

CPS has achieved varying applications in different sectors, and they include highly
reliable medical devices and systems, traffic control and safety systems, advanced
automotive systems, and systems for process control, environmental control, energy
conservation, instrumentation, critical infrastructure control, distributed robotics,
smart structures, manufacturing, and defence [1, 6, 37]. Widely recognised and
accepted attributes of a CPS, such as timeliness, distributed, reliability,
fault-tolerance, security, scalability and autonomous, are also identified. In addition,
the concept and technologies of IoT can be extended into many fields and various
application backgrounds to achieve connection, communication, and interaction of
the physical things in a constructed Internet-of-Manufacturing-Things environment,
such as manufacturing systems, logistics, intelligent transportation, and supply
chain management, etc. Moreover, in a constructed sensing environment, real-time
data of things, such as manufacturing resources, can be sensed and captured by the
registered sensors. Based on a carefully chosen communication protocol, these
accurate, timely, consistent, and value-added data can be transmitted to the upper
data processing units, and further shared among manufacturing managers and
suppliers. Real-time monitoring, tracking, and tracing of manufacturing resources
and devices through the entire manufacturing chain can be achieved. In this chapter,
by taking the main research topics into considerations, the main focus is given to
applications of CPS and IoT in manufacturing systems and services. Consequently,
typical and representative cases are introduced in the following sections, including
service oriented architecture, could manufacturing, an IoT-enabled manufacturing
system, and CPS in the cloud environment. These examples of manufacturing
systems and services can reflect many of the CPS and IoT characteristics and
features described in Sect. 2.4.

2.4.1 Service Oriented Architecture

Service-oriented architecture (SOA) is one of the key technologies for information
communication [38], and plays an important role in connection between the cyber
world and physical world. The advantages of SOA are essential for manufacturing
systems, and they are comprehensive, distributed, transparent, and secure [39].
These advantages provide technical and strategic support for enterprises to manage
their workflows, optimise their manufacturing chains, select the most optimal
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suppliers, share information, monitor the performance of devices, and guarantee the
information security. They cater for the requirements and demands of a growing
number of industrial systems, including integration flexibility and the ability for
processes to be composed. CPS has the capability of the integration of the com-
putational and physical worlds. Under the constructed infrastructure service plat-
form, sensors registered/installed in the workspaces of factories sense and capture
the physical information of manufacturing resources around them. After capturing
these data, instead of directly entering optimisation stage, adaptive control mech-
anisms are entailed to achieve the added value and management of real-time
information [40, 41]. These data are transformed to the upper control systems
integrating computation, sensors and actuators in devices, which will then give
instructs to actuators for execution. Finally, manufacturing systems supply the
support of M2M (including man-to-man, man-to-machine, and machine-to-
machine) communication, break the limitation of source constraints, and achieve
resource sharing and distributed computing.

In this section, a representative application of SOA is introduced and it is a Ford
Motor Company application to the Valencia assembly plant (Ford Transit models)
[1], which is one of the first service-oriented architectures effectively deployed in
industry and is still used at present. Developed by a system integrator (IntRoSys
SA), this approach left all current product lifecycles (PLCs) as they were.
According to the architecture shown in Fig. 2.2, agent technology (having Product,
Knowledge Manager, Machine agents) is the key enabling technology encapsulated
as “wrappers” to the PLCs.

As shown in Fig. 2.2, a Product Agent (PA), a Knowledge Manager Agent
(KMA), and a Machine Agent (MA) form the basis of agent enabling technology
for the service-oriented architecture of an IntRoSys Multi-Agent System. The PA is
responsible for formulating and dispatching the workflow, and the KMA is to
perform a check of the physical feasibility of the proposed workflows. The MA
translates the workflows into specific machine instructions. The procedure of these
agents can be described as follows. The PA receives the order and identifies the
Atomic Skills required. The following step is a match of such required Atomic
Skills with a database of workflows already executed in the past. If the order can be
executed with an existing workflow, then such a workflow is dispatched to the MA,
else the PA elaborates a new workflow that is sent for a feasibility check to the

Fig. 2.2 Service-oriented architecture of IntRoSys multi-agent system
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KMA. If the KMA does not detect any problems, the examined workflow is sent
back to the PA that dispatches it to the MA. The newly found feasible workflow is
also included in the database of existing workflows. Vice versa, in the case of
problems with the proposed workflow, the MA warns the System Integrator for the
necessity of a human intervention to sort out the related order. Finally, all the
dispatched workflows are processed by the MA that sends the necessary machine
instructions to the production system. This service-oriented agent architecture is
open in the sense that if a new atomic skill (for example a new process for a new
variant, or a safety routine) is required, it can be integrated in the system without
modifying the existing code but simply by coding it independently and eventually
adding it to the related database.

2.4.2 Could Manufacturing

Cloud manufacturing is emerging as a new manufacturing paradigm as well as an
integrated technology, which is promising in transforming today’s manufacturing
towards service-oriented, highly collaborative and innovative manufacturing in the
future. Combining recently emerged technologies, such as IoT, Cloud Computing,
Semantic Web, service-oriented technologies, virtualisation, and advanced high-
performance computing technologies, with advanced manufacturing models and
information technologies [42], Cloud Manufacturing is a new manufacturing
paradigm built on resource sharing, supporting and driving the flexible usage of
globally distributed, scalable, sustainable, service-oriented manufacturing systems
and resources [43]. Cloud manufacturing is also a smart networked manufacturing
model that embraces cloud computing, aiming at meeting growing demands for
higher product individualisation, broader global cooperation, knowledge-intensive
innovation and increased agility in market response. In cloud manufacturing, cus-
tomers can conveniently obtain on-demand services supporting the entire lifecycle
of a product through network access to a shared pool where distributed manufac-
turing resources are virtualised and under unified management in a configurable and
optimised manner [24]. Xu [44] defined could manufacturing as a model for
enabling ubiquitous, convenient and on-demand network access to a shared pool of
configurable manufacturing resources (e.g. manufacturing software tools, manu-
facturing equipment, and manufacturing capabilities), which can be rapidly provi-
sioned and released with minimal management effort or service provider
interaction. Over the past years, there have been different definitions of cloud
manufacturing. In general, cloud manufacturing is a system that can provide
manufacturing services digitally and physically to best utilise manufacturing
resources [27]. In essence, it must connect to the real manufacturing equipment to
form a CPS [37]. Along this direction, an integrated CPS for cloud manufacturing is
presented hereafter, aiming for improved remote accessibility and controllability of
factory equipment, such as CNC machines and robots, by combining 3D models,
sensor data and camera images in real-time. It is realised by significantly reducing
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network traffic over the Internet, and building cloud-based services of monitoring,
process planning, machining and assembly in a decentralised environment.

Cloud-DPP (cloud-based function-block enabled adaptive distributed process
planning) is a joint research effort between KTH and Sandvik, Sweden, aiming for
cloud-based distributed and adaptive process planning in a shared cyber workspace.
Figure 2.3 depicts the architecture of distributed process planning (DPP), real-time
process monitoring, dynamic resource scheduling, and remote device control of
CPS. Based on the real-time information of machines and their status, DPP handles
adaptive decision making of process planning. It is also possible for the Cloud-DPP
to generate machining process plans adaptively to changes through well-informed
decision making [45]. This is done by linking sensors embedded/attached to each
machine to a manufacturing cloud in the cyber workspace, and delivering process
plans in function blocks to the machine controller on the physical shop floor for
execution. By properly dividing process planning tasks and assigning them to the
cloud and function blocks, adaptive process planning and machining become
possible. Cloud-DPP elaborates a two-layer distributed adaptive process planning
based on function-block technology and cloud concept.

Cloud-DPP service obtains data from the monitoring service (machine tool ID,
current status, and available time windows) and the feature list of a new part to be
machined. The service uses a three-layer structure comprising supervisory planning
(SP), execution control (EC), and operation planning (OP) [46, 47] (Fig. 2.4). At
first, after having received input from the higher-level production planning, SP
generates a generic process plan through generic setup planning and sequencing.

Fig. 2.3 Could-DPP in a cyber-physical system
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A generic process plan is a nested directed graph in which the nodes are the
sequenced setups with machining features grouped in each setup, and the edges
represent precedency relations among the nodes. A generic setup is a group of
machining features with the same tool access direction that is possible to cut at least
on a 3-axis machine. Later, it would be possible to assign any generic setup to any
3-, 4-, or 5-axis machine independently or merge it with other generic setups if the
machine can handle them in a single setup. The precedence relations are decided by
sequencing algorithms that infer necessary and preferred precedence among the
machining features and setups by means of various rules addressing different
aspects such as datum references, tolerances, and machinability. For each
machining feature in the generic process plan, one machining feature function block
instance is created. A generic process plan is completely resource-independent and

Fig. 2.4 Workflow of Could-DPP
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the function blocks at this stage of their lifecycle are called meta function blocks.
Then, the EC performs machine selection, adaptive machine-specific setup plan-
ning, and job dispatching. During this phase, in case the machine tool has more than
three machining axes, the generated generic setups should be further merged and
adapted to the available machine configuration due to higher tool reachability [46].
This will also ensure a higher efficiency of machining process as the number of
setup changes decreases. When multiple machines of different characteristics are
available, it leads to an optimisation problem in which the best way of distributing
tasks among available machines based on defined criteria is targeted.

2.4.3 Cyber-Physical Production Systems

One example of CPS in manufacturing is a cyber-physical production system
(CPPS), which uses the combined strength of holons, agents and function blocks
[48]. In this context, a CPS is represented by a holarchy of multiple holons.
A logical and physical parts that mimic the cyber and physical entities of the CPPS
constitute a holon. When implementing this holonic CPPS, agents and function
blocks are adopted to realise the two aspects of a holon for information processing
and materials processing, respectively. Holons and agents have attracted growing
interests in the field of manufacturing control because of the typical challenges from
continuous changing manufacturing demands and patterns such as decentralisation,
frequently shifting technologies, and various market perturbations. Function blocks
as machine-level execution and control standards, are regarded a suitable approach
to modelling distributed manufacturing systems and fit well with the concepts of
holons and agents [49, 50]. Integration of holons, agents and function blocks can
represent and model a CPPS, which is intelligent and adaptive, and can cope with
challenges faced by manufacturing systems in the future. In order to understand the
holonic CPPS and its potential in manufacturing, in the following we briefly
introduce holons, agents and function blocks in terms characteristic.

Agent, as the core of agent technology, is defined as a software entity situated in
some environment, that is capable of autonomous action in this environment in
order to meet its design objectives. Another definition of agent is as follows: an
agent is an autonomous component that represents physical or logical objects in the
system, capable of acting in order to achieve its goals, and being able to interact
with other agents, when it does not possess knowledge and skills to reach alone its
objectives. This means that an agent should have the capacity of interaction without
the direct instruction of higher authorities or intervention of humans, but instead in
negotiation with other agents if necessary. A network of agents can be used to build
a multi-agent system (MAS), which can be best characterised as a software tech-
nology having the capacity of modelling and implementing the individual and
social behaviour in distributed systems. Six main characteristics of agents are
concluded as follows: (1) reactive: agents should be able to sense their surrounding
environment and react to the changes that occur; (2) proactive: agents should be
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capable of achieving their assigned goal; (3) autonomous: agents should have
enough knowledge and authority to operate and act on their own without direct
instructions or intervention from humans or other agents; (4) cooperative: agents
can interact with other agents if necessary to achieve the global objective of the
system; (5) adaptive: agents can learn from their previous behaviours and can apply
their experiences to future scenarios; and (6) mobile: agents can move through a
network [48].

Holonic manufacturing system (HMS) is defined as a group of holons that
integrate the whole process of manufacturing activities from order booking through
design, production and marketing to realise the agile manufacturing [51]. Where
holon is an autonomous and cooperative building block of a manufacturing system
for transforming, transporting, storing and/or validating information and physical
objects. A holon consists of an information processing part and often a physical
processing part, and also be a part of another holon. The characteristics of holon are
autonomous, cooperative, open, proactive, reactive, learner, and recursive. Some of
them have the similar attributes and capacities with that of agents. We briefly
introduce some of them, for example, autonomy indicates the capability of the
building block to create and control the execution of its own plans and strategies,
and cooperation is defined as a process whereby a set of building blocks develops
mutually acceptable plans and executes these plans. In addition, the holarchy
denotes a system of holons that can cooperate to achieve a goal or objective, and
defines the basic rules for the cooperation of the holons and thereby limits their
autonomy. A holon can dynamically belong to multiple holarchies.

Function blocks can be applied in distributed environments and can be dis-
patched to machine tool controllers. In fact, each function block is a control soft-
ware unit that is embedded with necessary information and algorithms that are
required for performing a task at the controller level. An internal finite state
machine would be responsible for controlling the different states and transition of
sub-tasks within the function block. Function blocks have the capacity of producing
different outputs using an identical input through changing the internal states of the
function block to automatically expand their application. Function blocks can be
classified into two main categories, namely basic function blocks and composite
function blocks. The basic function blocks use their internal data and algorithms to
perform a task, and a composite function block only relies on its containing basic
function blocks’ behaviours, but is not embedded with internal information. The
event input of the function block triggers the execution of tasks. An execution
control chart is responsible for denoting the execution control states, transitions and
actions of that function block instance. Finally, when the task is finished, the
function block’s event output will send triggering signal to the next function block.

To make a holonic CPPS clear, the overall architecture of a robot holon that can
be implemented by the multi-agent technology and function blocks is presented
shown in Fig. 2.5. It is composed of a layered structure from the bottom to the top,
including the physical part layer, the control system layer, and the planning,
scheduling and execution control layer. The physical part layer contains the actual
physical equipment on the shop floor, such as sensors, robots, and actuators, and is
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connected to the control system layer. In the control system layer, function
block-enabled control system completes the work of translating tasks to native
machine control codes that are transmitted into the physical part layer, then,
machines in the physical part layer execute operation instructs. The planning,
scheduling and execution control layer is responsible for planning and scheduling,
decision making, developing control instructions and transferring them to the
control layer where these instructions can be executed as runtime codes. The
software agents would be responsible for high-level decision-making and coordi-
nation, and function blocks at the lower controller level would be responsible for
execution of processes on the machine and quick fault recovery in case of distur-
bances on the shop floor. However, data will be processed by the software agents in
complex cases because of the lack of the capacity of fault recovery for function
blocks. The decision-making agent, and communication/collaboration agent are
integrated into the software agents at the information processing part of the holon,
where the decision-making agent achieves communication and interaction with
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other decision-making agents embedded in other individual holons within a hol-
archy and humans through the communication agent. As mentioned before, a CPS
considers two different layers of “cyber” and “physical”. The layered structure of
the robot holon shown in Fig. 2.5 matches the structure of CPS and allows for
distributed control. The information processing and physical processing of a holon
can be connected through a wide area network (WAN) that can be geographically
distributed. These separated parts of the holons can replace the traditional consti-
tutive elements of the CPS; for example, the logical parts of the holons as
decision-making units in the cyber part of the CPS, and the physical parts of the
holons as execution units in the physical part of the CPS. Agents in the logical part
of a holon for information processing can sense their surrounding environment and
the conditions of their representative physical part on the shop floor. Due to limited
awareness of a single agent, they need to build the intercommunication with other
agents to obtain knowledge of the surrounding environment. As a result, agents of
different holons can create cooperative groups (within a holarchy) for improving the
quality of decision making. Humans as another element of a CPS can monitor the
status and actions of physical entities through visual interfaces and can also enter
the decision-making process when needed via communication agents.

Finally, we introduce a hypothetic manufacturing CPS that consists of two
conveyors, two robots, and one machine, and produces a single type of product, and
this can show the future potential of CPS in manufacturing. The raw material is fed
through the first conveyor and is then transferred to the machine by a robot. Once
the machining process is finished, the second robot would unload the finished part
from the machine and place it on the second conveyor.

For the sake of modelling manufacturing CPS, the following assumptions are
made: there is no buffer limit for the products after the second conveyor and before
the first conveyor, and different robots are used for loading and unloading. One
holarchy of eight defined holons is used to represent the hypothetic CPS: (1) a raw
material holon, (2) a product holon, (3) an order holon, (4) conveyor holon-1,
(5) conveyor holon-2, (6) robot holon-1, (7) robot holon-2, and (8) a machine
holon. By applying the design concepts [48], CPS can be modelled. Different sets of
connections among these holons represent the possible inter-holon communications
for dynamic planning, scheduling and execution that can be implemented by agents
and function blocks. In the case of tool breakage occurring while machine holon is
in the middle of machining process. In order to stopping the spread of damage, the
hard real-time control system will halt the process in real time and retract the tool
away from the part. Considering the current conditions, function blocks will then
adjust the process plan using the remaining available tools. The information of the
new condition (i.e. tool breakage) is also sent to the information processing part of
the machine holon. The information processing part will then communicate with the
conveyor and robot holons, and updates them about the new condition so that they
can make appropriate decisions such as delaying their processes or slowing down.
To find an alternative process plan for the machine holon, its current machining
state, geometry, etc., will be updated through building the communication between
the machine holon and in-process part. For example, a second machine (machine
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holon-2) exists on the shopfloor in parallel to machine 1, and is currently off. It is
assumed that machine holon-1 has found the best alternative process plan with its
remaining tool sets, however, the cycle time using this plan would be more than the
previous approach. As a result, machine holon-1 communicates with order holon
and finds out that current production rate will not satisfy the demand in the
remaining timeframe. Furthermore, the replacement tool is not currently available in
the inventory and would not become available in time. Machine holon-1 will
communicate with machine holon-2, to see if it can help with the production of
parts in order to satisfy the demand in time. Machine holon-2 will then commu-
nicate with the part holon, raw material holon and order holon to get information on
the part and its specifications, and to see if it can fabricate the part. The process plan
is then generated, encapsulated in function blocks and dispatched to the machine 2
controller for execution. The presented scenario is a simple case that may frequently
occur on the shop floor. A CPS modelled through holons, function blocks and
multi-agent systems are capable of automatically processing these data and
adjusting the system to the new conditions. Humans can also monitor and control
the processes through designed user interfaces.

Different sets of connections among these holons (shown as dashed arrows in
Fig. 2.6) indicate the possible inter-holon communications for dynamic planning,
scheduling and execution that can be implemented by agents and function blocks.

2.4.4 IoT-Enabled Manufacturing System

In manufacturing, IoT technology is rapidly developing under the support of RFID,
sensors, smart technology, and nanotechnology, and it is expected to promote
interconnection of anything. Furthermore, IoT is helpful to construct a platform for
sharing and interconnecting all kinds of manufacturing resources. Applying the
generalised IoT into manufacturing industry can be used to address the connection,
communication, computing, and control of manufacturing resources. Coupled with
the rapid development of embedded systems and technologies, it provides enabling
technologies for realising intelligent embedding of physical terminal equipment and
the interconnection of M2M in manufacturing.

This section presents an IoT-enabled manufacturing system (IoTMS), and the
focus is placed on sensing and capturing real-time information of manufacturing
resources, real-time system monitoring, and the optimisation of manufacturing
systems. IoTMS denotes a multisource real-time data-driven manufacturing system,
covering monitoring, decision making and management from the production orders
assigned to the required work-in-progress or finished products [36]. Hardware such
as RFID devices, sensors, manufacturing resources, etc., are used to build an
IoT-enabled sensing environment through the configuration of RFID devices, and
sensors, and further sensing and capturing real-time information of manufacturing
resources. Software integrates algorithms, modelling methods, and communication
technologies, and therefore, has the capacity of analysing, computing, reasoning,
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controlling, and decision making. As one of the key technologies of the IoTMS, a
real-time and multisource manufacturing information sensing system is responsible
for sensing and capturing real-time information of manufacturing resources in the
IoTMS, and this is the foundation of IoTMS. The architecture of real-time and
multisource manufacturing information sensing system is designed as Fig. 2.7. This
architecture is composed of four layers from the bottom to the top, namely the
configuration of multiple sensors, sensors management, multisource manufacturing
information processing and sharing, and management systems.

The configuration of multiple sensors, as shown in the bottom of Fig. 2.7, is to
construct an IoT-enabled smart sensing environment for the physical manufacturing
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resources. There are many manufacturing resources in the shop floor/workspace,
such as machines, robots, raw materials, devices, and work-in-process, the status
information of these manufacturing resources are constantly changing along the
changes of manufacturing processes. As a result, huge amount of data related to
these manufacturing resources are created in real-time. However, these data are
heterogeneous because of the different attributes of manufacturing resources. To
select fitting type of sensors for the configuration of intelligent sensing environ-
ment, the manufacturing information that is required to be collected is analysed and
determined, and then, the needed sensors can be selected and configured in this
module. This is based on the consideration of cost in the construction of intelligent
sensing environment. For example, users in a manufacturing system show more
interest in data related to machines, process quality, production objects, worker, and
manufacturing environment. The information of different sensor, e.g. type, hard-
ware interface, cost, target manufacturing resource, function, and reliability, would
be analysed, and the fitting sensors are selected to build a smart sensing environ-
ment in the physical layer of manufacturing systems.

The sensors management module is responsible for managing sensors and
monitoring the working status of the sensors. First, the sensors deployed in the

Fig. 2.7 A real-time multisource manufacturing information sensing system [36]
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manufacturing systems are registered into the platform of this module. The
parameter information of the sensors is input in the registering system, including
type of the sensor, its frequency (UHF or HF), interface (USB or COM), inter-
communication protocol, data type, record means, reading method, etc. This step is
to ensure the data collection in real time after sensors installation. Then, right
sensors are installed in the right locations. In addition, the sensor drivers are
installed to ensure the sensors operate reliably. However, due to the fact that the
heterogeneous sensors have various embedded software, communication protocol,
and access right, and so forth, the standard interface and drive library are used to
address the heterogeneity of sensors. For example, the standard interfaces are used
to drive the sensor, and the system downloads the third-party driver from the
Internet according to sensor type, brand, and version, and then install it in the
system and update the driver library with the latest edition. The service-oriented
architecture is developed to integrate the sensors with different working mode into a
uniform pattern under the same platform. In this architecture, the heterogeneous
sensors can be published, searched, and invoked through the Internet. To invoke
and manage all the sensors registered in the manufacturing system, each sensor will
be designed and assigned a single service address and service ID, and all of the
service addresses and ID are encapsulated into the standard web service. As a result,
the heterogeneous sensors can be managed effectively, and the multisource and
heterogeneous manufacturing data can be captured easily. Finally, the operating
status of sensors is monitored by this module in real time, Further, the exceptions of
sensors can also be sensed and handled to guarantee a stable condition of the sensor
network.

The multisource manufacturing information processing and sharing module
consists of information processing, information encapsulation, and information
sharing. Huge amounts of real-time manufacturing data sensed and captured by the
sensors are chaotic, and insignificant. As a result, the information processing is
necessary and important to generate value-added information. On one hand, the
value-added sensor data are the real interest of the managers/users; on the other
hand, the processing of information added value can filter out the primitive and
meaningless data and reduce the size of data. Besides, the data storage space can be
saved. The information sensed by sensors originally is defined as the primitive
information, and the value-added information is defined as the key information.
After achieving the added value of information, information encapsulation is
used to encapsulate value-added manufacturing data into a standard information
template. After the encapsulation, the value-added manufacturing information
can be stored under a standard form, easily accessible by different managers.
Manufacturing information sharing module is responsible for sharing the valuable
information among managers and users. Information sharing relies on the infor-
mation communication technologies. Therefore, in the designed “Push model” and
“Get model” communication methods, users are required to register their infor-
mation first. Then the real-time and multisource manufacturing data can be pub-
lished, and users can subscribe, search, and invoke the data they need. For example,
in the Push model, the users submit their basic information, such as the user name,
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web address, and requirements, etc. Once submitted information is captured in the
system, value-added real-time information meeting the needs of the users will be
sent to the web address through wireless communication such as Wi-Fi.

Enterprise information system is responsible for providing information appli-
cation services, which consist of application in the workshops, and enterprises, as
well as among the big enterprise systems. The first is to provide the data service for
the access, identification, and control of the physical manufacturing execution
process from materials and semifinished products to the final products. The data
identified and acquired from the IoT-enabled workshop manufacturing layer are
materials, product, and production related the workshop information system. The
second is to provide data service of integrating the production-related information,
the product-related information, and other business management information, as
well as the integration of the IoT-based workshop and other enterprise information
subsystems. The third is to share the manufacturing data, manufacturing resources,
and manufacturing services with other enterprise systems. This can achieve the
optimal collaboration of manufacturing resources, and data sharing services, and
dynamic optimisation of enterprise information.

2.4.5 CPS in Cloud Environment

Over the last decades, Industry 4.0, initiated in Germany, is to promote the effective
use of the latest information and communications technologies in real industrial
applications towards smart factories of the future [52]. CPS, as the core tech-
nologies of Industry 4.0, is usually connected through the Internet, and recently
applied the concept of the cloud to form cyber manufacturing [4]. Using the power
of cloud computing and facilitated by the real-time connectivity to physical
machines and robots (IoT), cyber manufacturing is able to realise true-sense CPS
with various functions in one closed loop. In essence, cloud-based cyber manu-
facturing is an integrated CPS that can provide on-demand manufacturing services
digitally and physically to best utilise distributed manufacturing resources and
capabilities from anywhere [27]. The architecture of cloud-based cyber manufac-
turing system, shown in Fig. 2.8, adopts a three-tier view-control-model (VCM)
design pattern and a segmented (public vs. private) network structure to address the
requirement of efficient and secure data communication between cyber systems and
physical systems in the cloud environment.

The Application tier is the application server in the cloud, which handles major
security concerns; for example, session control, user registration, sensor data col-
lection and distribution, and physical systems manipulation. This tier connects with
the physical factory network, which contains the manufacturing resources and
devices of factories, such as machines, and robots. Signal Collector, a server-side
module, is responsible for collecting sensor data from networked physical machines
or robots. After capturing the sensor data, Signal Publisher receive these data, and
publishes and transmits the sensor data to the registered users, and uses the popular
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publish-subscribe design pattern to distribute the sensor data at the right time to the
right users. A Session Manager is designed to search for issues such as user
authentication, information synchronisation, session control and data logging. All
the initial transactions must pass this module for access rights authorisation. The
Registrar is designed to maintain a list of subscribers (users) together with the
requested sensor data. For the sake of security, the Commander that functions like a
proxy, through a distributed device network with tight security constraints, is used
to control a physical machine or robot [53]. The Signal Publisher uses a Pushlet
[54] for implementation.

The Presentation tier is essentially a browser-based user interface where planner
and scheduler can operate. Users still have the flexibility of monitoring machining
and assembly operations from different perspectives, even though, the real-time
sensor signals control the behaviours of the 3D models, e.g. selecting different 3D
models and viewpoint control and so forth through the Cyber Viewer. An autho-
rised user may submit a control command from anywhere to the cloud application
server through the Controller. The Commander at the server-side then takes over
the control rights for real machine/robot manipulations. The Monitor provides the
operator with runtime status of the real equipment. For troubleshooting purpose, a
user-side ChatRoom (not shown in Fig. 2.8) is designed for synchronised mes-
saging among connected users.

Fig. 2.8 Architecture of a cloud-based cyber manufacturing system

2.4 Applications of CPS and IoT 57



The Data tier is a data server that stores both 3D models and relevant engi-
neering data/knowledge, and machining strategy, resources information, and pro-
duction knowledge are integrated into this server. Data Accessor in the Application
tier is designed to provide a standard means for non-sensory data access, and the
purpose of this is to separate logical and physical views of data. Moreover,
obtaining runtime status of a robot for real-time monitoring is often limited by the
available network bandwidth. The best way to reduce network congestion and to
ensure quick data transmission in the cyber workspace is to have the data multicast
to only the users requiring the data whenever the data is changed. For example, user
subscribes to data pertaining to a specific robot, leaving an open connection to
receive events (or sensor data updates). When a new event for the robot is posted, it
is published only to this user who has subscribed to it. This task is handled by a
modified pair of Pushlet and Postlet. A physical system (a robot) can be modelled in
the cyber workspace using Java scene graphs for achieving visual monitoring [55].
The same is applied to implement the user interface, specified in the scene graph
that enables intuitive navigation in the cyber world. Cloud-based monitoring and
remote control for a physical robot can be achieved in the system configuration in
cyber-physical environment. TCP (Transmission Control Protocol) is adopted in the
design for data communication between the robot controller and the application
server, whereas (Hypertext Transfer Protocol: HTTP) streaming is used for data
sharing from the server to the remote users. These control and transfer protocol can
provide hardware and software protection for robots. Using this design, the CPS
allows a remote user to monitor the motions of all joints and to control the robot for
remote assembly operations. For the cloud-based remote monitoring and control
mentioned above, an operator mainly focuses on what is going on at the robot side,
once separated from a robot. This means that motion monitoring must be presented
intuitively to guide the operator for remote control. This is then facilitated by
condition monitoring in terms of vibration, force, temperature, and so forth, on how
well it is doing. While camera-based approach is common and instrumental for
motion monitoring, its bandwidth consumption can easily create a bottleneck for
cloud-based real-time applications, which is the main concern of this application.
To address this problem, a virtual 3D model entirely driven by real sensor data is
used for cloud-based monitoring. The testing results of a mini-cell assembly case
study reveal that a roundtrip latency of 30 ms is achieved using this approach,
which is fast enough to be considered as real-time at the system level. This delay
depends more on the network speed than the CPU speed.

2.5 Conclusions

This chapter introduces the latest advancement of Cyber-Physical Systems (CPS)
and Internet of Things (IoT) from multiple aspects. Firstly, a brief introduction is
presented to better understand CPS and IoT. Wireless sensor network, cloud
technologies, big data, Industry 4.0, and RFID technology, as the key enabling
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technologies related CPS and IoT, are also introduced. Then, key features, and
characteristics of CPS and IoT, especially in real applications and projects, are
explained. Finally, the typical and representative application examples of CPS and
IoT are outlined to highlight the latest advancements.
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Chapter 3
Challenges in Cybersecurity

3.1 Introduction

Manufacturing technology changes with the needs of consumers. For example, the
concept of Cloud Manufacturing (CM) was largely created due to the globalisation
of the world economy. Reference [1] notes that the 20th century had a “rapidly
accelerating rate of technological development, including vast improvements in
manufacturing abilities and global markets.” Following this trend, manufacturing in
the 21st century has shown the need to be versatile and scalable [2]. The authors
also mentioned that in order for manufacturing to be versatile, the method of
controlling machines must also be versatile; they currently are not. Though com-
plexity is increasing, low cost manufacturing is still desired to maintain profits.
Many of the key technologies have already been developed to make CM a
dependable configuration in today’s manufacturing industry.

While CM has the potential to solve issues in manufacturing, it has its concerns.
Among these is cybersecurity, which is collecting considerable attention because it
is a major reason that users or consumers are not confident in adopting CM [3].
More specifically, cybersecurity measures for remotely controlling machines and
the information sent to them is limited [1, 2]. Reference [4] defines this problem as
communication security; when using the Internet to communicate, information must
be maintained and managed from risk. Essentially, CM uses resources that can be
transmitted anywhere from a central location to a device with Internet access.
Cybersecurity is a topic growing in popularity, but it still lacks adequate infor-
mation available.

A major concern of implementing CM systems is the assurance that proprietary
information about the intellectual property owned by the organisation or informa-
tion about the company’s operations is available only to the authorised individuals.
Any cybernetic system must accommodate privacy of the individuals and organi-
sations involved. Privacy is intended to ensure data security and limit the data that
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any user can access. Protecting privacy during operations ensures the safety of
physical machines and their operators in the cloud manufacturing context.
Information discussing the safety of equipment operators is limited. Cybersecurity
is a must to protect both the privacy and safety in any cybernetic system. It is also
intended to protect the software and machines in a CM system.

The purpose of this chapter is to provide an overview of cybersecurity measures
for the protection of data being sent to physical machines in a CM system; the
cybersecurity measures will also ensure the protection of the physical machines.
While this chapter does not present new data, it does gather information about the
emerging topics of remote equipment security and allows the authors to provide
input on the issue. The remaining sections of the chapter are revealed as follows.
Section 3.2 introduces how Internet of Things (IoT) enables remote machine
control; Sect. 3.3 discusses remote equipment control and its applications in CM;
Sect. 3.4 covers cybersecurity concerns in remote equipment control and provides
security methods for ensuring data safety in CM; Sect. 3.5 discusses the future
outlook of remote equipment control and its security; and Sect. 3.6 brings the
chapter to a conclusion.

3.2 Internet of Things

A brief account of IoT is provided to understand its importance to remote equip-
ment control. It is understood that CM integrated technologies such as Cloud
Computing and IoT to provide more competitive and efficient manufacturing. IoT
allows distributed manufacturing resources to connect to one another virtually, thus
allowing them to become virtual resources that can be offered as services [3].

Sensors, such as RFID (Radio Frequency Identification) tags that are constantly
transmitting signals will be used to connect things with one another [5]. Sensors are
able to provide real-time machine information such as pressure, force, and tem-
perature in order to allow better machine management and be able to send the remote
operator an alarm should a problem arise; the problem can then quickly be corrected
[6]. Using sensors and RFIDs for example, IoT allows humans and machines to be
connected throughout the manufacturing process [7]. For example, these sensors will
allow a user at any location to view the operating conditions of a machine, how many
machines are being utilised, and also what quality the machines are producing [7].
These sensors can additionally be used for intelligent identification, locating, and
tracking parts and processes [6]. Figure 3.1 demonstrates the role of IoT in providing
machining data and feedback to the remote operator in a CM environment. As
wireless sensors become more advanced, communication from human to machine
and machine to machine will become more efficient and occur “from anywhere at
any time” [7]. Hitachi for example, currently has the smallest RFID in the world,
measuring only 0.15 mm� 0.15 mm � 7.5 µm. Reference [8] discusses additional
information on IoT and its implementation in CM.
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IoT is key to improving automation in manufacturing and implementing CM
[7, 9]. Reference [10] states that in order for IoT to be successful, the connections
must be omnipresent in all devices. Reference [11] concluded from a National
Compliance Management Services (NCMS) report that “there is a consensus that
linking factory devices to the Internet will become the backbone technology for
future manufacturing”. The application and cybersecurity measures of connecting
the Internet to industrial machines will be discussed in Sects. 3.3 and 3.4. However,
as IoT grows and expands, cybercrime is expected to grow as well [5, 12].
References [10, 13] foreshadow that security risks will be far greater with IoT than
with the current Internet.

3.3 Remote Equipment Control

One of the main applications of IoT is the ability to remotely control and monitor
machinery. Since machine operators will be physically separated from the machine
in a decentralised environment, what is happening on the machine is of primary
concern to the operator [11]. Using sensors, as described in the previous section,
events such as a machine tool moving can be tracked and transported over the
Internet and be viewed on a screen in order to assist the operator in making decisions
[7]. “In all kinds of manufacturing resources, the machining equipment is one of the
most important resources [14].” Remote equipment control is key in situations where
machines are too remote to reach or that have extreme hazards for human safety
[11, 15]. A rescue operation is another application for remote equipment control
[15]. For example, situations such as searching the ocean floor for a wrecked plane or
ship is a case for remote controlled equipment. Furthermore, remote equipment
control could be used to economically assemble components [15].

One method to assist in remotely operating machinery is to utilise Machine
Control as a Service (MCaaS). MCaaS physically separates the machine location
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from the location of the machine operator [1, 2]. MCaaS mainly facilitates com-
municating instructions to machinery and ensuring the instructions can be safely
completed. Safety protocols such as CIP (Common Industrial Protocol) Safety and
PROFI Safe can be used to detect errors in communication such as missing or old
data; when an error is detected, the machine will follow its programmed emergency
behaviour to protect itself [1]. CIP Safety is used to communicate information from
machinery; it is used to ensure that the machines are functioning safely [16]. This
can include notification if any of the machine safety mechanisms such as guards and
control hardware are at fault [16]. PROFI Safe is a method of communication
between two users to ensure that the correct data is delivered to the right location at
the right time [17]. The limited security of MCaaS is discussed in detail in Sect. 3.4.
While MCaaS focuses strictly on communicating safe machining instructions,
Wise-ShopFloor [18–20] is a framework that focuses on monitoring machinery and
limiting who has the ability to remotely control machinery.

Wise-ShopFloor is proposed for remotely monitoring and controlling machinery
in real time. Its architecture can be seen in Fig. 3.2 [21]. Reference [20] states that
real-time monitoring is impractical due to “real-time constraints”. This is because
most machines today do not have the capabilities built-into transmit and receive
data. There are existing systems to monitor machines, however, they can only
monitor machines online; they must do all other process planning offline. Reference
[6] refers to this as OnCloud and OffCloud. OnCloud refers to services provided
through the CM platform, such as monitoring machinery, while OffCloud refers to
activities that must be performed by a human such as material logistics [6]. Many
tasks require a combination of OnCloud and OffCloud activities [6]. Existing
systems use cameras to monitor equipment. To achieve real-time monitoring,
Wise-ShopFloor uses sensors rather than video streams to track the machine’s
motion. When comparing the number of bytes used in a 640 � 800 image for
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monitoring a machine to that used for a scene shown in Wise-ShopFloor using
sensors, the sensors require only 0.02% the number of bytes as video does [19].
Therefore, the sensors are able to monitor a machine with little time delay, unlike
the delay occurring using video [19]. The sensors send data to a 3D model in JAVA
which visually allows the user to look at the machine’s movements [19, 20]. Using
sensors, information such as temperature and machine vibration can be collected
and displayed on the 3D model in JAVA through the use of colours [20]. To reduce
bandwidth traffic and ensure quick data transfer, it is also suggested to relay
machine information to only the required users when an operating condition has
been changed [11]. Wise-ShopFloor aims to be able to control machine operations
from anywhere at any time [1].

3.4 Security Concerns and Methods

3.4.1 Security Concerns

Security in CM is a major concern [3, 6, 22]. It is causing the cloud to grow at a
much slower rate [23–27]. Security risk is increased because the cloud requires
two-way communication between a customer and service provider [28]. The
increasing collaboration in CM among companies is also causing security threats
with the amount of data interacting in the cloud [3]. Security related to remote
equipment control is focused on ensuring only those with proper access rights have
the ability to remotely operate machinery. For that reason, this section will mainly
focus on control who has the ability to remotely operate equipment and focus less
on CM security in general.

Risks in security are known to exist. Reference [29] categorises cloud security
risks into three categories: provider related vulnerabilities, availability, and
third-party data control. Security in regards to equipment control is covered in the
last category: third-party data control. Unfortunately, security risks with third-party
data control are the least known due to a lack of knowledge on how the third-party
stores data. The third-party has control over the data being stored and this causes
concern over who accesses the data [3, 29]. In an environment with multiple users,
access security measures must be created to ensure data is protected [27]. This
should include user authentication and authorisation [30]. Reference [30] feels that
firewalls will not ensure data access protection. Authentication is the process of
proving a user’s identity; once the user’s identity is proven, authorisation deter-
mines what privileges a user has and what actions they can perform [3]. Some
factors that can affect the effectiveness of these access controls include turnover of
employment in the third-party and also the changing roles of users within a com-
pany [3]. However, Reference [3] suggests auditing the authorisation records,
authentication process, and activities of users to ensure security is sufficient to
prevent and be able to detect data breaches.
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The Cloud Security Alliance (CSA) defined seven security issues that they see in
the cloud [31]. Some of the issues mentioned were malicious insiders, insecure
interfaces and APIs (Application Programming Interfaces), and account or service
hijacking. Companies are aware of the threats from malicious insiders [31]. Because
of their inside access, malicious insiders could control sensitive data with little
chance of being caught [31]. Some ways for a company to handle malicious insiders
are to separate system privileges, log server accessing, and implement two-factor
authentication [32]. The next issue mentioned, security of the API and interfaces,
directly controls the security of the cloud service because this is where the machines
are monitored and managed [31]. Reference [33] discussed how George Wrenn, the
Security Solutions Director at Unisys, feels that user authorisation might not be
enough to prevent unauthorised access to the API. To combat this risk, service
providers must use strong access controls with encrypted transmission [31]. The last
issue mentioned, account or service hijacking occurs when a user’s login infor-
mation is stolen [33]. Using this information, attackers can alter data, direct clients
to illegitimate sites, and send false information [31]. George Wrenn states that ways
to combat this are to employ cryptographic authentication systems and to only
authorise access using devices serving the company’s interest [33]. Devices con-
sidered to be serving the company’s interest could include workstation computers
or other company-owner equipment. Two-factor authentication and monitoring
worker activity are other solutions [31]. Additional security risks of using the cloud
can be found in [34, 35].

3.4.2 Security Methods and Architecture

Security protocol varies depending on the amount of cloud services being provided.
“Just as capabilities are inherited, so are the information security issues and risks”
[25, 36]. However, security is still a topic of debate with its capabilities in the cloud
still unclear [37]. Reference [38] discusses the requirements for a CM platform.
Data and communication security are key in providing cloud applications; security
aspects for infrastructure, communication, and application levels are described [38].
For infrastructure security, a firewall can be used to separate cloud data and allow
selective access from authorised users. Tracking which users access certain data can
also be used to prevent and detect data hacks. In communication security, JAVA
Messaging Service (JMS) is recommended to be used. This will allow security to be
set which can limit items such as message sizes and user interfaces. The JMS will
also prevent data access from unauthorised users. Security in applications will be
provided through setting access rights and encrypting data. Accessing data will
have set limits on what can be seen and also be protected with passwords.
Reference [39] mentions that limited access, data privacy, and accountability with
data access also need to be addressed. Security is a critical aspect in this platform
because it is key to gaining cloud acceptance in industry.
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To address security concerns, reference [3] presents a four-layer architecture as
shown in Fig. 3.3, being infrastructure security, identity and access management,
data protection and security, and cloud security as a service [3]. The infrastructure
security focuses on network security [3]. The identity and access management
maintains data privacy and protection by verifying users. This layer ensures that
only those who have rights to perform a certain action can do so; this maintains data
privacy. This is especially important when multiple users can have access to a
resource; it can also detect false identities and security threats [3]. The data pro-
tection and security ensures data is encrypted or secured in other ways; this is
because service providers may be lacking in data security. The cloud security as a
service provides the security to ensure privacy and data security against unwanted
users. Security is key in preventing cloud failure [3].

Another security platform for manufacturing is Virtual Fort Knox. As the name
implies, security is the main focus of this platform [40]. The security is divided into
five sections: physical, network, software, reliability, and data security. Physical
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security refers to the security of the physical servers from unwanted access, hard-
ware failure, and protection from natural disasters such as earthquakes. In network
security, access controls are in place to verify each user’s identification, authenti-
cation, and authorisation before being granted access. These access controls will
protect the system from intruders altering services or software. Next is software
security; software security implements the same measures as network security but it
also encrypts the services. Security with reliability focuses on the platform still
being able to perform basic functions even if an individual piece of hardware fails.
Lastly, data security focuses on ensuring only users that require access to certain
data are granted access.

Wise-ShopFloor, discussed in Sect. 3.3, proposes its own security methods to be
used in remotely operating equipment. Figure 3.4 demonstrates the connections
between the monitoring and control of a physical robot and the user interface [11].
Security concerns such as session control, user registration, robot manipulation, and
sensor position are dealt with in the application server. Within the application server
is a session manager; this manager controls the user authentication, session control,
and data logging. Before a user is granted access, the request must pass through the
session manager. Once having gained access, an authorised user can request control
of a physical machine by submitting a control command using the cyber controller.
To limit the security risks of the physical machines, the commander is the only
server-side module that has the ability to control the physical machine [18].
Wise-ShopFloor only allows one user being able to control the machine at a time;
this ensures the machine is only receiving one set of instructions.

Wise-ShopFloor also places further security measures that are used for com-
munication between the users and the robots as shown in Fig. 3.5 [11].
Transmission Control Protocol (TCP) is used for communication between the
machine and application server and Hypertext Transfer Protocol (HTTP) is used for
sharing data with the users. TCP can only occur on one server and between two
users at a time [41]. Data is sent in packet sizes that are controlled by the connection
speed; when a packet is sent, the sender waits to send another packet until the
receiver acknowledges it received the first packet. One security method built in is
that if the receiver detects that information was manipulated in sending, it ignores
the sent packet and waits for the sender to resend the packet again. One disad-
vantage with TCP is that the packets it sends may not be sent in the correct order.
One current use of TCP is in electronic mail applications [41]. TCP is only a
physical security, however HTTP utilises a firewall and is more protected over the
Internet. The security design of Wise-ShopFloor allows the system to monitor the
motions of the physical machine and also control machine movement [11].
Reference [15] sees Wise-ShopFloor as being proven through case studies to be a
viable and effective system for manufacturing floors.

Most security measures for MCaaS, discussed in Sect. 3.3, focus on ensuring
that the data is transmitted safely, not security on controlling who accesses the data.
However, security risk can still be reduced in MCaaS because it only allows users
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with granted access to control the machine rather than the traditional manufacturing
facility where any worker can access a machine [1]. The authors suggest also using
firewalls, virus scanners, and other existing IT security measures to protect the
process information [1]. Reference [21] suggests security measures such as virtual
LANs and packet filters as examples to ensure a security. However, to create an
effective MCaaS, further control engineering is still needed [1].
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3.4.3 Cyber-Physical Systems

The idea behind a cyber-physical system (CPS) is to connect the virtual and
physical worlds using sensors that are able to gather data and provide useful
feedback to a physical entity. Based on what has been discussed in Sects. 3.2 and
3.3, the conclusion can be made that the technology and processes involved in
remotely controlling equipment make the equipment control process a CPS. The
sensor data gathered from the physical machine is transmitted through IoT and
allows a remote operator to monitor and control the equipment based on the data
received. Therefore, the security of controlling who can access the remotely con-
trolled machines directly affects the security of the CPS. One of the challenges with
cyber-physical systems is security. However, research regarding security is limited.
A CPS allows the communication between machines and humans. These systems
can gather and process data and use interfaces to communicate with humans [42].
CPSs are expected to be a major contributor to the design of CM systems. As CPS
research continues, communication between physical machines, sensors, and
engineering software will improve and meet the levels needed for secure autono-
mous manufacturing in the future [7].

Several security protocols have been suggested to ensure data security in a CPS.
For example, Reference [43] suggests a convenient, low cost method of authenti-
cation to be used with IoT. The method requires no passwords or codes; it uses
telebiometric authentication. A biometric is a trait unique to a person such as their
fingerprint, voice, or face. The authentication works by using biometric sensors that
are registered to a user; these sensors are connected to telecommunication networks.
Therefore, as a user requests access to a resource on IoT, the sensors will provide
the authentication for the user to be granted access without having to enter a
password [43].
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3.5 Future Outlook

A number of web-based systems such as WebCADET, CyberCut, and
NegotiationLens have been developed to assist in the manufacturing environment
[15]. However, the systems are either for only monitoring machining or only
providing offline simulations of machining [15]. In addition, these systems cannot
communicate in real-time and often require special software to utilise them; this
limits their convenience of use [15]. Reference [11] confirms that when these
systems are considered for machine control and real-time monitoring, their appli-
cations are not practical. The need for real-time monitoring is achieved through
frameworks such as Wise-ShopFloor being researched; it can be assumed that
additional frameworks will be developed to meeting this need and to enable remote
machine operation.

Currently, equipment security through IoT is based on byte-code verification,
user permission, and security policies [11]. Byte-code verification is used when new
instructions are uploaded to a virtual machine; each byte-code is inspected and
verified that it can be performed without being damaging to the machine [44]. User
permission limits the number of tasks and files that a user can access [44]. However,
future considerations for security measures include data encryption, digital rights
management, confidentiality agreements, and equipment/operator protection [11].
When a user has been authorised, the data they were trying to access becomes
visible to them in the system; however, with encryption, once the user is authorised,
the data is visible, but not able to be understood without the necessary key [44].
This can ensure only those with permitted access can read the data to ensure
confidential data can be kept safe. Reference [3] warns that with limited support for
a standard method of identifying users, customers of cloud services may be required
to develop their own security controls. Other future security methods to control user
access to equipment have been discussed throughout the paper. For example,
telebiometric authentication and Wise-ShopFloor’s multiple security methods were
discussed in Sect. 3.4.

On the other hand, Reference [35] states that new cloud security measures are
not necessarily needed because security measures that already exist can be used.
Once information is into the cloud and is simply being stored in one place, it can be
protected using current security measures because the data is not moving [35, 45].
Current security measures that could be used are firewalls, endpoint security, and
network intrusion prevention systems because they can be adjusted to protect a
virtual server instead of protecting physical servers as they currently do [35].
Reference [46] discusses how a firewall is used to maintain security and accessi-
bility control by managing the incoming and outgoing traffic. The firewall secures
the user, data, and hardware in the manufacturing system. It also verifies user
identity to provide protection. By verifying the user’s identity, the safety of the
software and data are guaranteed. The user can only control a machine once they
successfully make it through the firewall and the request is delivered to the Interface
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Agent, as can be seen in Fig. 3.6 [46]. Furthermore, the firewall limits the user to
only be able to access what they have the rights to access. To protect the physical
machines, there are agreements which ensure that only one user can have access to
a machine at a time. Thus, the firewall helps solve the problem suggested by
Reference [3] of providing security when there are multiple users that can access a
resource.

Reference [22] states that in the future, a mature CM platform should only
require the inputs and service requirements from the user. The user should have
enough confidence in the cloud where they will not need to monitor or provide any
technical support during the manufacturing operations [22]. The cloud will be able
to accomplish the task and provide the user with their end product [22]. The users
will see the cloud as a “black box” only showing them the input and output of the
manufacturing process [22].

3.6 Conclusions

Issues such as ensuring the correct user is accessing the given data can be reduced
by implementing access controls that limit the user’s interface. Table 3.1 outlines
security measures that can be taken to improve remote equipment security. It is
acknowledged that controlling network devices, in this case, machines, is a concern
that is not yet solved [15]. One method of controlling machines is to employ
MCaaS which will allow the scalability of manufacturing equipment to meet the
varying needs of modern manufacturing; however, there is still research needed to
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Table 3.1 Possible security measures

Threat Equipment damage

Security method Byte-code verification [11, 44]

Benefit Inspects instructions to protect machine from performing destructive actions
[44]

Issue Verification can be easily disabled with a command [44]

Threat Equipment control and monitoring

Security method Wise-ShopFloor [18–20]

Benefit Collect various types of machine data in near real-time [20], multiple stages
to verify users and set access controls [18], only one user at a time can
control machine movement [18]

Issue Must install sensors on machine to track position [20]

Threat Communication data tampering

Security method Transmission Control Protocol (TCP) [41]

Benefit If system detects tampering in data being sent, data is ignored and new
machine instructions are sent until they are correct [41], sends data in small
file amounts instead of all at once [41]

Issue Limited by internet connection speed [41], data is sent and received in
random file order [41], only a physical security [41], users must be on same
server [41]

Threat Data access

Security method Encryption [3, 11, 31, 38, 40, 44]

Benefit Ensures data safety against unauthorised users, need a key to understand data
[7], serves as protection in case providers are lacking in security [3]

Issue None mentioned

Threat Equipment data tampering

Security method Hypertext Transfer Protocol (HTTP) [16, 41]

Benefit Same as TCP, uses a firewall to safely transfer data over the Internet [16]

Issue Limited by the Internet connection speed [41], data is sent and received in
random file order [41], users must be on the same server [41]

Threat Malicious insiders

Security method User authentication [30, 31, 40, 45]

Benefit Detects false users [3], can track data being accessed [31], keeps data private
[3, 40]

Issue User login information can be passed out to unauthorised users

Threat Insecure interface

Security method Access controls [27, 31, 33, 40, 44, 45]

Benefit Protects machines with multiple users [27, 44], restricts unwanted access
[3, 44]

Issue Might not prevent data from being accessed by unauthorised users [33]

Threat Account hijacking

Security method Monitor activity [31]

Benefit Tracks what data is being accessed [38]

Issue Does not prevent it, only detects it [33]
(continued)
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secure the data being sent to the machines. Using remote equipment security
methods such as mentioned in Wise-ShopFloor and Virtual Fort Knox, users will be
verified before being allowed to access data. For example, Reference [4] states that
it is important to implement “trust mechanisms” in all levels of CM to ensure data is
safe. The aim of this chapter is to provide an overview of current security measures
being considered to ensure the protection of data being sent to physical machines in
a CM system. While this chapter does not present new data, it does gather infor-
mation about the emerging topics of remote equipment security and allows the
authors to provide input on the issue. The authors outline existing security issues
and solutions in Table 3.1. This chapter also provides the reader a broad under-
standing of current and future outlook of related topics. These topics are still in
debate and more research needs to continue into the future.

Table 3.1 (continued)

Threat Equipment damage

Threat Unwanted data access

Security method Firewall [1, 38, 46]

Benefit Limits accessible data and verifies users [38, 46], monitors user access [46],
protects machines from multiple users [46]

Issue Cannot guarantee protection [27]

Threat Communication security

Security method JAVA messaging service [38]

Benefit Limits message sizes and sets access controls [38], removes unwanted users
[38], encrypts data [38]

Issue None mentioned

Threat Data tampering

Security method Digital rights management [47]

Benefit Prevents data from being saved or altered unless the provider permits it [47],
may require special software to view data [47]

Issue None mentioned

Threat Equipment control

Security method MCaaS [1, 2]

Benefit Physically separates machine from controls [1, 2], ensures data is not
tampered as it is sent to machines [1]

Issue Does not limit user access [1]

Threat Platform security

Security method Virtual Fort Knox [40]

Benefit Secures physical and virtual knowledge from accidents and unwanted access
[40], verifies each user [40], encrypts data [40]

Issue Requires users to have substantial in-house IT infrastructure [40], data must
be stored by company, not stored in the cloud [40]
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Chapter 4
Machine Availability Monitoring
and Process Planning

4.1 Introduction

Today, the global market is characterised by turbulent demands for highly cus-
tomised products. Customers are increasingly demanding for higher quality prod-
ucts at low cost with quick delivery, and for shorter times between successive
product generations. Cooperation among different companies becomes product-
specific, customer-centric and dynamic. Manufacturing jobs are diversified and
urgent. Moreover, outsourcing, joint ventures, and cross-border collaborations have
led to a shop-floor environment geographically distributed across corporate and
national boundaries. Moreover, the uncertainties of today’s machining operations
make this distributed environment further complicated. Companies and decision
systems must be more flexible and adaptive to unplanned deviations on turbulent
shop floors where metal-cutting processes should be adjusted dynamically to the
changes. It is evident that factories of the future must contain smart decision
modules that can fine-tune runtime operations adaptively to achieve specified
production objectives. However, today’s manufacturing systems still exhibit vari-
ous limitations, especially in flexibility and adaptability.

On the other hand, modern manufacturing industries have shown clear trends in
recent years—away from long standing and well-established products and relevant
production that have been stable over many years, away from comprehensive trusts
that may cover all the processes of production, and also away from the single
economic consideration of production; instead, companies increasingly focus on
their core manufacturing competencies, develop and produce adaptive and cus-
tomised products, enter more often into alliances for manufacturing and resource
optimisation, and integrate environmental and social responsibilities into their
operations. This trend will lead to an Internet- and Web-based service-oriented
Cloud manufacturing in the future to overcome today’s limitations in rigid system
structure, standalone software usage, centralised resource utilisation, unidirectional
information flow and offline decision making.
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As one of the core components of a manufacturing system, computer-aided
process planning (CAPP) is desired to be responsive and adaptive to the changes in
production capacity and functionality. Unfortunately, conventional CAPP systems
are neither flexible nor adaptive, if applied directly to dynamic operations. Quite
often, a process plan generated in advance is found unfeasible or even unusable to
targeted resources, resulting in wasted time and effort spent in early process
planning—a productivity drop when idle machines must wait for re-planning the
remaining operations. Within the context, an adaptive approach is considered
suitable and is thus introduced in this chapter for dealing with the dynamic situa-
tion, e.g. job-shop machining.

Targeting cloud manufacturing, the aim of this chapter is to present an Internet-
and Web-based service-oriented system for machine availability monitoring and
process planning. Particularly, this chapter introduces a tiered system architecture
and introduces an event-driven approach using IEC 61499 function blocks. By
connecting to Wise-ShopFloor framework, it enables real-time machine availability
monitoring and machining status monitoring during metal cutting, locally or
remotely. The closed-loop information flow makes process planning and moni-
toring feasible services for the cloud manufacturing.

The remainder of the chapter is organised as follows. Section 4.2 reviews the
state of the art of the relevant research works. Section 4.3 introduces a new
Web-DPP concept, which is extended to system architecture design in Sect. 4.4.
System analysis of the Web-DPP is reported in Sect. 4.5 in form of IDEF0. The
system is implemented and outlined in Sect. 4.6. In Sect. 4.7, a sample part
machining is chosen to demonstrate and validate the capability of the prototype
system in terms of process planning and machine availability monitoring. Finally,
scientific contributions and future directions are summarised in Sect. 4.8.

4.2 Literature Review

The concept of cloud manufacturing is based on cloud computing, e.g. Software as
a Service (SaaS), Platform as a Service (PaaS) and Infrastructure as a Service
(IaaS). It is a new-generation service-oriented approach to supporting multiple
companies to deploy and manage services for manufacturing operations over the
Internet. Cloud manufacturing would provide cost-effective, flexible and scalable
solutions to companies by sharing complex manufacturing software tools as ser-
vices with lower support and maintenance costs. The development of cloud man-
ufacturing includes design of four layers [1]:

• Manufacturing resource layer, such as manufacturing equipment, sensors, ser-
vers, etc.;

• Manufacturing virtual service layer, in which manufacturing resources are
identified, virtualised and packaged as services. Identification and
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communication technologies have been researched, including wireless sensor
network, RFID, Internet of Things, MTConnect [2], etc.;

• Global service layer, which relies on a suite of cloud computing technologies
such as PaaS to take global service computing and supporting for various
demands and requirements;

• Application layer, which is the interface for users to invoke services for
applications. Wise-ShopFloor [3] is such an example.

Although cloud computing has been active during the past decade, there have
been no research projects on cloud development for process planning at machine
and execution control level, which is an imperative research area for developing a
comprehensive cloud manufacturing environment for factories of the future.

Process planning is commonly known as a bridge between design and manu-
facturing of a mechanical product. The tasks involved are generally preparatory,
including process sequencing, resource (machine and cutter) selection, cutting
parameter assignment, tool path planning, operation optimisation, and numerical
control code generation. Process planning also relates to setup and fixture planning,
closely. Computer-aided process planning (CAPP) dates back to 1960s when
computers were first introduced to the field. Two decades later, more than 156 CAPP
systems were reported in the literature [4]. Since its beginning, CAPP research has
continuously attracted a large amount of interest over the past four decades. To date,
a huge volume of literature has been published on this very subject. Among many
others, previous research studies on CAPP include machining feature-driven
approach [5], object-oriented approach [6], Petri net-based approach [7], neural
network-based approach [8–10], genetic algorithm-based approach [11],
constraint-based approach [12], multi-agent bidding-based approach [13], and
knowledge-based approach [14, 15]. In terms of specific application domains, the
reported approaches, together with their variants, have been applied to process
sequencing [16], cutter selection [17], cutting parameter selection [18], tool path
planning [19], and setup planning [20], etc. Today, machining feature-based
approaches combined with artificial intelligence-based methods are the popular
choices for process planners. Although the existing approaches can address the core
decision-making problems involved in process planning, they are often centralised
in decision making, static in system structure, and time consuming in computation,
with many unrealistic assumptions on the availability of resources and production
environment.

In terms of process planning methodologies, research efforts have recently been
shifted to distributed process planning [21, 22], reconfigurable process planning
[23], integrated planning and scheduling [24], and energy-efficient process planning
based on the capacity profile of machine tools [25, 26]. Despite the naming dif-
ferences, their common objective is to generate robust, flexible, precise yet
adaptable process plans, effectively. Nevertheless, process planning research is
facing new challenges today owing to the dynamic market and business globali-
sation in much more decentralised manufacturing environment than ever before. It
demands for a new way of thinking in process planning that is collaborative among
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engineering teams and adaptive to environmental changes on manufacturing shop
floors. On this front, the latest ICT technologies including the Internet, Web, Java,
and XML etc. are popularly used for collaborative process planning to support a
networked manufacturing environment. Within this context, a process planning
system must be able to accommodate the variation and distribution of manufac-
turing resources and materials processing tasks, in collaboration with different
process planners. In other words, it deals with how to support collaborative process
planning among the planners at different places, and how to improve instantaneous
communication among each other. In the work by Xu et al. [27], they put forward
an idea that used computer screen-sharing technique to support a multi-user co-
operation. This approach overcomes the limitation on processing resources and
knowledge in the traditional narrow-sense process planning, and improves plan-
ners’ collaborative work. In the same year, Java language was adopted to transfer a
CAPP system to Web-based environment so that its functions and operations can be
distributed to various computer systems to reduce the computational load on a
single computer [28]. The distributed computing environment is based on J2EE,
enabling the manufacturing processes to be planned effectively over the Internet. In
the research by Qiu et al. [29], a distributed multi-user environment over the
Internet was suggested. It was implemented as a web-based system by combining
an external authoring interface and Java. This system allows users carrying out
manufacturability evaluation based on a predefined process plan. Another
Internet-enabled system was reported in [30] for setup planning in machining op-
erations using Java and Web technologies, where XML was used to transfer data
and information between various manufacturing systems. Agent technology was
also popularly used in collaborative process planning in recent years. A multi-agent
system for distributed process planning was presented in [31]. Three autonomous
agents, (i.e. Global Manager Agent, Design Agent, and Optimisation Agent) are
capable of communicating with each other through XML. Hence, it enables process
planning in a distributed e-manufacturing environment.

Another dimension of process planning is the adaptability of a process plan to
unforeseen changes on manufacturing shop floors. Here, the dynamic changes are
dubbed uncertainty, such as frequent production change, job delay, missing or
broken cutters, unavailable fixtures/machines, rush orders from clients, and even the
short notice of sick leave of a chief operator. Such dynamic characteristics of
manufacturing shop floors pose an unprecedented challenge to CAPP systems. In
this situation, a process plan generated in advance is often found unfeasible and
non-applicable due to the dynamic changes. Subjecting to re-planning, the process
plan may jeopardise production by putting those available machines on hold. In
order to address this problem effectively, Wang et al. [32, 33] proposed to using
enriched machining features and function blocks to handle the uncertainty. The goal
is to generate detailed and adaptive operation plans at runtime by CNC controllers
to best utilise the capability of the available machines. However, monitoring the
availability of distributed manufacturing resources, yet in real time, is missing from
the CAPP systems reported in the literature. The absence of up-to-date information
on machine availability leads directly to the problem that a generated process plan
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may be inapplicable to the anticipated machine (non-availability of the machine)
and unfit to an alternative machine. This is also due to the disconnection between
process planning and resource scheduling systems. The latter has led to the research
topic of process planning and scheduling integration. On this front, an integrated
CAPP system (ICAPPS) was developed [34], aiming for single-piece, small-lot and
make-to-order production. On the basis of the integrated model, the functions of
ICAPPS were implemented on design layer, part planning layer, shop planning
layer and scheduling layer. Another integrated process planning and scheduling tool
was reported in [35], using the integrated definition (IDEF) methodology. An
activity model was used to develop their system that allows a user to plan both the
process and the production at the same time. Sormaz and Khoshnevis [36] dis-
cussed a method for generating alternative process plans that takes production
schedules into due consideration.

With mounting environmental concerns, remanufacturing from end-of-life pro-
duct components has gained more attention in recent years. In addition to the tra-
ditional objectives such as time, cost and quality of machining, economic viability
and energy consumption are also taken into consideration during process planning.
One example along this direction is the process planning for IT-equipment reman-
ufacturing by Kernbaum et al. [37], which derived a process planning method based
on the description of the market situation and the involved actors for remanufac-
turing processes in a given facility. For more comprehensive review of process
planning activities during the past decade, readers are referred to [38] for details.

From the literature survey, it is found that the reported process planning
approaches and systems are mostly limited to problems of a static nature, with
decisions made well in advance of their actual use. Their adaptability to unfore-
seeable changes on shop floors, however, remains limited and insufficient.
The CAPP software tools available today are centralised in decision making, static
in system structure, and offline in data processing. Due to the lack of actual con-
ditions on the shop floors, it is difficult for a centralised offline system to make
adaptive decisions. In the case of machining, any number of possible process plans
may exist depending on the actual machine chosen. Even if the same machine tool
is considered, it is likely that there is more than one way of doing the job.
Therefore, planning with alternatives is likely a practical approach, which is
sometimes called non-linear process planning (NLPP). NLPP is further compli-
cated by issues such as possible alternative feature-based interpretations of the same
part; hence different final process plans can be generated for the same part. NLPP
deserves further research as it opens avenues for scheduling with alternative rout-
ings, which is in fact one of the key issues addressed in this chapter.

Addressing the aforementioned shop-floor uncertainty, this chapter introduces an
approach for distributed process planning [39] over the Web. In this chapter, the
latest development is presented towards the implementation of a prototype system,
the ultimate goal of which is to improve system performance when planning
machining operations on a shop floor with frequent unplanned changes, with high
adaptability, by integrating real-time monitoring information of machine avail-
ability into service-oriented process planning.
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4.3 Concept of Distributed Process Planning

Figure 4.1 depicts the relationship among real-time machine availability monitor-
ing, dynamic resource scheduling, distributed process planning (DPP), integrated
process simulation, and remote machine control in a shared cyber workspace, where
DPP as one of cloud services handles adaptive decision making of process planning
based on real-time process status, machine availability, and dynamic resource
scheduling. As shown in Fig. 4.1, the five modules close the loop of information
flow to address the uncertainty or changes of machines and machining processes on
shop floors. Based on the real-time information of machines and their availability, it
is possible for DPP to generate process plans adaptively to the changes through
well-informed decision making.

As mentioned earlier, machining process planning is the task that transforms the
design information of a product into relevant machining operations, and determines
at the same time an optimal or near-optimal sequence of the machining operations.
A process plan generally consists of two types of information: generic ones (ma-
chining method, machining sequence and machining strategy) and machine-specific
ones (cutter data, cutting parameters, and tool paths). A two-tier system architecture
is, therefore, considered suitable to separate the generic data from those
machine-specific ones in DPP. This concept is illustrated in Fig. 4.2.
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According to the DPP concept, machining features and function blocks are two
enabling technologies. They carry the machining technological information and
pass through various system modules until final machining. Machining features,
such as hole, pocket and step shown in Fig. 4.2, are first defined, created and stored
in a machining feature library for ready use by a machining feature-based CAD
system (for non-feature-based CAD systems, a third-party utility tool may be used
for features extraction and recognition). In the DPP, the divide-and-conquer strat-
egy is adopted. The tasks of process planning are first divided into two groups and
then accomplished at two different stages (both in time and in location): factory-
level supervisory planning (SP) and machine-level operation planning (OP).
The SP module handles product data parsing, machining feature decomposition,
initial setup planning, machining process sequencing, fixture and machine selection,
etc. The OP module, on the other hand, focuses on the detailed operation proce-
dures for each machining operations, including cutter selection, cutting parameters
assignment, tool path planning, and numerical control code generation. Between SP
and OP, dynamic scheduling functions can be integrated by event-driven function
blocks. Owing to the two-tier system structure, the decision-making in DPP
becomes distributed in terms of timing (SP in advance vs. OP at runtime) and
location (SP in one computer vs. OP in many controllers). The objective of the
decisions separation is to make the high-level SP plans generic and portable to
alternative machines in case of the non-availability of a given machine. In other
words, since the final OP plans are generated adaptively at runtime by machine
controllers, there is no need to prepare for redundant process plans, resulting in
significantly reduced re-planning effort and machine idle time.
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4.4 Architecture Design of a Web-Based DPP

As an extension to DPP, a Web-based DPP (or Web-DPP) is not limited to process
planning. It also handles machining job dispatching and oversees job execution in
machines. Such functionalities are designed into the Wise-ShopFloor framework
[3] as shown in Fig. 4.3. Web-DPP in the Logic Container shares information with
other modules, e.g. Monitoring and Scheduling, for adaptive decision making.
Facilitated by the Monitoring module, the availability of machining resources and
their current status are made available for dynamic resource scheduling, which in
turn helps the Web-DPP for job dispatching to the available machines.

A detailed system architecture design of Web-DPP is shown in Fig. 4.4, where
Supervisory Planning, Execution Control and Operation Planning are the three
major system modules. In this design, the Execution Control module is placed
in-between the Supervisory Planning and Operation Planning modules, and looks
after jobs dispatching (in the unit of setups) based on real-time monitoring infor-
mation, availability of machines and scheduling decisions.

Web-DPP assumes that machining features are already made available in the
product data–they are either generated directly by using a feature-based design tool
or recognised by a third-party machining feature recognition solution.

Setup planning is generally considered as a part of process planning. During SP,
a generic setup plan is generated by grouping machining features according to their
tool access directions (TAD). Since 3-axis machines are most common on
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machining shop floors and constitute the basic configuration of machining
resources, a generic setup plan at this stage is made for 3-axis machines only.
Although a generic setup plan is applicable to other types of machines, setup
merging for 4- or 5-axis machines is needed to best utilise the capability of the
higher-end machines. This is performed before job dispatching by the Execution
Control. Setup merging is beyond the scope of this chapter and will be reported
separately.

4.5 Functional Analysis of Web-DPP

IDEF0 is adopted for analysing Web-DPP functionalities. The three core modules
of the Web-DPP in Fig. 4.4 are modelled in IDEF0 in Fig. 4.5, together with the
relationship and data/information flow among the three modules, where M1–M5
represent human, computer, network, security and machine, respectively.

Different from conventional process planning approaches, function blocks of
varying types are applied in Web-DPP. Meta function blocks (MFBs) are the output
of SP. They are used to encapsulate machining sequences (of both setups and
machining features). An MFB only contains generic process information of a
product. In other words, it serves as a high-level process template, with suggested
cutter types (e.g. drill, square end mill, etc.) and tool-path patterns (e.g. zigzag,
spiral-out, etc.), for subsequent machining tasks. (Readers are referred to [33] for
more details on how to design function blocks.) Execution function blocks (EFBs)
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are those function blocks that are ready to be dispatched to a chosen machine.
An EFB is created by instantiating an appropriate MFB when associated with a
specific machining operation like drilling a hole. Each job with multiple operations
corresponds to its own set of EFBs, so that a monitoring function can be integrated
with the set of EFBs. The structure of an operation function block (OFB) is similar
to that of an EFB. However, an OFB specifies and completes an EFB with
machine-specific details about a machining operation. Moreover, during OP, it is
possible to update and override the values of variables of an EFB, so as to make it
optimal and adaptable to actual situations during machining operations. The two
different terms of EFB and OFB are used to distinguish a given function block. This
is because they are two separate entities with different level of details, fulfilling
different level of execution, residing in different resources, and moreover, they may
be deployed to physically distributed machine controllers.

In summary, a function block contains a set of predefined functions/algorithms
that can be triggered by a known event arriving at the function block. By executing
its associated algorithm, a planning decision can be made at runtime to process a
machining feature. The process of information enrichment from machining features
to function blocks together with their relationship is depicted in Fig. 4.6.
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4.5.1 Supervisory Planning

Incoming from a higher-level production planning system, a main manufacturing
plan triggers the SP to make a generic machining sequence plan of a given product.
In Web-DPP, machining feature-based reasoning is adopted in the SP by consid-
ering the most common machining resources (e.g. 3-axis machine tools, standard
jigs and fixtures, and popular cutters, etc.), established machining technology and
known manufacturing constraints. A so-generated machining sequence plan is then
passed to a function block designer and packed as a network of MFBs (Fig. 4.4).
Details of the internal structure and data flow of SP are illustrated in Fig. 4.7.
Within the SP, the function block designer is used to: (1) define new function block
types, (2) specify task-specific algorithms for each defined function block type, and
(3) map machining features to MFBs according to the generated machining
sequences.

4.5.2 Execution Control

The execution control module receives scheduling information and monitoring
events, making itself an important integration point of actions and decision making
of the entire Web-DPP system. The functionalities of the execution control module
include setup merging (on a 4- or 5-axis machine, if chosen), job (EFB) dis-
patching, and execution monitoring of an OFB, as shown in Fig. 4.8. Within the
context, the job execution monitoring is facilitated by triggering a function
block-embedded algorithm that can collect the current machining status (including
machining feature ID, machine tool ID, current cutting conditions, job completion
rate, etc.) and send them back to the execution control module. The real-time job
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execution information is crucial for dynamic resource scheduling and job dis-
patching of the next batch of machining jobs between machines according to the
availability of the machines on the shop floor.

4.5.3 Operation Planning

Inside of a machine controller, OP functions as a real-time execution module of
OFBs. In other words, OP is runnable in a machine controller. The OP module not
only specifies and optimises the process plan received from the SP, including cutter
selection, machining sequence optimisation, machining parameters assignment, and
tool path planning, but also sequentially executes the OFBs in an explanation
engine (the Executor in Fig. 4.9). According to this design, the operation planning
process in a machine controller can be truly adaptive, meaning it can dynamically
modify the process plan depending on the dynamics of the actual machining pro-
cess. At the current stage, since most commercial CNC controllers are of closed
nature and do not recognise instructions other than G codes, the proposed function
blocks cannot be executed directly by the existing commercial controllers yet.
Alternatively, our implementation and testing were carried out in an open-
architecture CNC controller. In order to utilise the legacy machine tools already
installed in industry, conventional G codes can be generated by OFBs as an option.
Details of the OP are illustrated in Fig. 4.9.
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4.6 Web-DPP Prototype Implementing

Being a part of the Wise-ShopFloor framework, Web-DPP adopts the same
browser/server architecture and view-control-model (VCM) design pattern for
prototype implementation. It has been designed with the built-in secure session
control and data protection as shown in Fig. 4.3. In order to meet the user
requirements of rich visual data sharing and satisfy the real-time constraint of data
transmission over the Internet, the following solutions are implemented in the
Web-DPP prototype:

• Use interactive 3D models (scene graph-based Java 3D) for visualisation;
• Provide process planning functions as services via web-based graphical user

interface;
• Deploy major services (process planning and control logics) in a secure appli-

cation server.

The Web-DPP prototype is implemented according to the package diagram
depicted in Fig. 4.10. The eight core modules are clustered into supervisory
planning, execution control and operation planning, to deliver the designed func-
tionalities as illustrated in Fig. 4.5. These system modules are accessible via the
dedicated web user interfaces. Figure 4.11 reveals one snapshot of the Web-DPP
user interface implemented in Java applet. The prismatic sample part shown in
Fig. 4.11 is used in the case study in Sect. 4.7 to showcase the capability and
validate the feasibility of the two-tier DPP concept.

Web-based 
DPP (GUI)

Feature
Parser (GUI)

Feature
Sequencer

(GUI)

Function 
Block

Designer 
(GUI)

Setup
Planner

(GUI)

Executor
Controller 

(GUI)

Process
Monitor 

(GUI)

Operation
Planning & 
Simulation 

(GUI)

Function 
Block

Execution
(GUI)

Machining 
Feature
Parser

Machining 
Sequence
Generator

Function 
Block

Designer

Local
Operation
Planning

Local
Operation

Scheduling
ExecutorTask

Planning

Set-up 
Merging & 

Dispatching

Event
Handler

FB
Monitoring

Supervisory Planning Operation PlanningExecution Control

Fig. 4.10 A package diagram for Web-DPP implementation

96 4 Machine Availability Monitoring and Process Planning



4.7 A Case Study

The prismatic part shown in Fig. 4.11 consists of 14 machining features. Each
machining feature is a basic geometrical shape such as step, slot, pocket or hole that
can be readily machined by using a standard cutter. After applying the five defined
feature-based geometry-reasoning rules reported in [32], the 14 machining features
are grouped into two setups, each with a primary machining sequence that must be
followed. The reasoning at this stage only considers datum references and manu-
facturing constraints. Other non-critical machining sequence (neither datum refer-
ence nor manufacturing constraint involved) remains in parallel. For example, the
four holes F11–F14 in Fig. 4.11, their machining sequence is not linear at this stage
and will be determined later by the controller-level operation planning.

For the sake of brevity, only Setup 1 of the sample part is mapped to a single
composite function block (CFB) as shown in Fig. 4.12, consisting of seven basic
function blocks (BFBs). Each BFB represents one type of machining feature, and
each CFB forms one setup for dispatching to one machine. After the mapping
process, the required machining sequence of the sample part is represented by the
event flow among the BFBs. Note that the same BFB can be called more than once to
fabricate the machining features of the same type, e.g. the four holes on the top
surface of the sample part. In Web-DPP, a CFB (setup) is the basic units for job
dispatching to the available machines. Here, machine selection is dealt with by a
separate scheduling utility of Wise-ShopFloor. Upon dispatching to a chosen
machine, detailed operation planning takes place for each machining feature to
specify machine-specific operations, including cutter and cutting parameter

Fig. 4.11 Setup grouping and process sequencing
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selection, and tool-path planning. Due to the limited access to existing controllers
with closed architecture, the operation planning in its current implementation is
performed in a front-end computer of the machine.

A pictorial view on how OP works during operation planning is illustrated in
Fig. 4.13. The final machining sequence ➊, setup formation ➋, cutter data ➌,
cutting parameters ➍, and optional G-code ➎ for legacy machines, are all derived
by the embedded algorithms of the function blocks; whereas each line of ➌ and ➍ is
used to cut one corresponding machining feature. The ultimate goal in the future is
to execute the function blocks directly when they can be recognised by CNC
controllers, instead of generating optional G-code at the last minute. It would give
controllers more flexibility for adaptive machining.

As shown in Figs. 4.2 and 4.8, execution monitoring is one of the designed
features of Web-DPP, which is realised by triggering one algorithm embedded in a
function block in running state. This situation is further visualised in Fig. 4.14,
where the cutting conditions of a 3-side pocket are displayed together with the
current cutter location (x, y, z) and the job completion rate (running progress) of
64%. The added feature of status monitoring provides a process planner or a
production manager with a holistic view of the entire shop floor, if every machine is
networked and monitored. According to the job completion rate of a machining job
on a given machine, it is possible to predict the availability of the machine in the
near future. The execution monitoring information retrieved in real-time can thus
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Fig. 4.13 Operation planning by function blocks
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contribute to resource planning, dynamic scheduling, job routing, line balancing,
and shop floor execution control. Consequently, a closed-loop decision making
concept of adaptive machining process planning and control become possible. The
sample part (slightly altered from what is shown in Figs. 4.11 and 4.14, with
surrounding supporting materials for quick fixturing) is processed (in Fig. 4.13) and
machined on a 5-axis legacy machine tool as shown in Fig. 4.15. The G-code used
for machining the part is generated at runtime by function blocks.

DPP Execution Control

CNC Machine

Ethernet

Fig. 4.14 Execution monitoring by a function block-embedded algorithm

Fig. 4.15 Function block-enabled machining
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4.8 Conclusions

Targeting the future manufacturing shifting towards cyber-physical manufacturing,
this chapter introduces a web-based and service-oriented approach for distributed
machining process planning in a decentralised and dynamic manufacturing envi-
ronment, particularly for SMEs of job-shop machining operations with uncertainty.
The advantages of this approach include network-wide accessibility and adaptive
decision-making capability to process planning with unpredictable shop-floor
changes. This is facilitated by a web-based user interface and a real-time execution
monitoring service of machine availability. A Web-DPP prototype has been
designed and implemented as web services, which was extended from a
Wise-ShopFloor framework to separate generic information from machine-specific
ones. The advantages of this work can be summarised as:

• Two-tier system architecture for distributed decision making;
• Machining feature-based geometry reasoning for machining sequence planning;
• Design of function blocks for controller-level operation planning;
• Algorithm-based process execution and machine availability monitoring; and
• Closed-loop information flow for scheduling and job dispatching via real-time

monitoring.

The presented Web-DPP prototype runs inside a standard web browser, whereas
the decision modules reside in one or more application servers, constituting a part of
the cloud manufacturing services. As a result of cloud manufacturing, no dedicated
software is needed to be installed in local computers at client side. The limitation of
this prototype in its current implementation is the inability of dealing with complex
products with freeform surfaces. The future work should be aligned to explore
along the direction to cover more product variety and complexity. At the same time,
more research efforts need to focus on functionality enhancement, innovative
processing algorithm development, and testing using real-world cases via
open-architecture CNC controllers in dynamic shop-floor environment. Moreover,
integration with a third-party scheduling system, a more sophisticated
feature-parsing system and a function block compliant CNC controller also
deserves to be investigated, the results of which will be of great interest to peer
researchers and practitioners.

It is envisioned that cloud manufacturing will reorganise the manufacturing
practices of today by means of cloud services, where resources (software and
hardware) can be shared cost-effectively by many. It is particularly useful and
beneficial to SMEs who do not have the luxury of resources that are expensive for
hosting and maintenance. Web-DPP intends to share knowledge and solutions in
machining process planning with SMEs based on a pay-as-you-go or pay-per-use
business model. Clients willing to use the service would open their machining
resources for availability monitoring and thus adaptive machining by function
blocks will become a reality in the future.
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Chapter 5
Cloud-Enabled Distributed Process
Planning

5.1 Introduction

Manufacturing companies nowadays face an intense global competition. To remain
competitive, companies are urged to apply a responsive and adaptable approach.
Manufacturing responsiveness is referred to the ability of a production system to
respond to disturbances that impact upon production goals, and consequently, its
ability to adapt to changing market conditions [1]. The changing market conditions
can highly affect small-to-medium-sized enterprises (SMEs) that are mainly
engaged in job-shop operations coupled with operation complexity. Customised
products with large varieties and small batch sizes as well as the shortened product
lifecycles contribute to complexities. Specifically, SMEs active in machining and
metal-cutting sector who normally deal with complex and intensive process plan-
ning problems are experiencing more shop-floor uncertainties today than ever
before, e.g. frequent product changeover, urgent job insertion, job delay, broken or
missing tools, and unavailability of machines, fixture and labour shortage [2].
Therefore, it is critical that SMEs can cope with such dynamic environments.

Despite the existence of computer-aided technologies (CAX: CAD/CAPP/CAM,
etc.) for more than three decades and their accomplishments in many different
aspects of design, process planning, and manufacturing, they are still not adaptive
to dynamic manufacturing shop floor environments [3]. Particularly, in case of a
change at the shop floor level, the manufacturing procedure has to be re-assessed by
expert process planners according to the newly introduced limitations (for example
a machine breakdown, fixture shortage or even a prioritised order). However, such
evaluations are usually time consuming and can reduce the efficiency of a system,
as the machines have to remain idle until the new alternative plans are generated.
On the other hand, the increasing trend of outsourcing, joint ventures, and
cross-border collaborations have led to a job environment geographically dis-
tributed across organisational and even national boundaries [2]. As the manufac-
turing industry becomes more and more globalised and mass customisation
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becomes a norm for many industrial sectors, process planning systems need to
become more adaptive, distributed, agile and integrated [4]. Also, assigning
machining tasks to available manufacturing resources over time (or scheduling) in
an integrated way is another aspect of complexity [5]. Therefore, a two-layer
hierarchical structure for adaptive distributed process planning was proposed con-
sisting of supervisory planning and operation planning [3].

Distributed process planning (DPP) is introduced as a link between product
design and NC control and should be capable of transferring and processing the
design data so as to meet the requirements of subsequent NC machining. The
supervisory planning layer as the top shop-floor layer of this architecture design is
responsible for generating a generic and machine-neutral process plan from product
design data and machining features. The steps for developing such process plan are
product data analysis, machining feature recognition or feature parsing, setup
generation and feature sequencing. The operation planning layer as the bottom
controller layer on the other hand is responsible for transforming the generic plan
into a machine-specific one where all the cutting parameters, machine specifica-
tions, G-codes, etc. are specified. Function blocks (FBs) have also been introduced
as one of the main enabling technologies for such system [6, 7], mainly due to their
portability, reusability and adaptability in real-time control applications. Function
blocks can encapsulate a generic process plan generated during supervisory plan-
ning and transfer it to the operation planning. Furthermore, they are provided with
know-hows and logics to complete and generate some parts of the process plan at
the operation planning level. FB design and some necessary FBs including
machining feature FB, event switching FB, communication FB and management
FB are reported in [8] with their relevant input and output data. Moreover, a
framework has been proposed in [9] that by using the function block concept as
well as the proposed architecture of DPP in [3] allows for collaborative manufac-
turing, including distributed process planning, dynamic scheduling, real-time
monitoring, and remote control through a shared web-based environment.
However, by making some modifications, adjustments and extensions, and by using
the cloud concept, the DPP framework can be presented in a shared cloud envi-
ronment where different partners have access to different modules of the system.

Because of the dynamic changes in the market and different shop floor uncer-
tainties, SMEs active in the metal cutting industry face many cost and time min-
imisation challenges on a daily basis. One of the challenges in machining is to
machine as many part features as possible in a single setup on a single machine in
order to reduce setup time and cost. Furthermore, lack of appropriate machining
quality against the customer’s requirements is another factor that can increase the
cost due to material wastes. Recently, multi-tasking machines have been introduced
and are widely used nowadays due to their various advantages, particularly the
cycle time reduction resulted from the integrated machining capabilities in one
single machine. Moreover, the multi-tasking machines may possess special func-
tionalities that can automatically carry out many manual tasks such as part transition
(to transfer the part from one fixturing status to another) or part switching (to
remove or move the finished parts to another position and load new parts for
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machining). This further reduces the non-value-adding time. Transferring a manual
task into an automated task can also decrease the cycle time and as a result con-
tribute to the cost and time minimisation.

This chapter presents an extended FB-enabled adaptive process planning
approach for mill-turn parts (parts with both milling and turning features) in
multi-tasking machines with special functionalities, which can be implemented in a
cloud-based distributed process planning framework. The extension presented in
this chapter is based on a proven method, including process planning functionalities
to support turning features and combination of them with milling features in dif-
ferent aspects. The concept of machine mode is introduced to identify different
machining and configuration states in a multi-tasking machine. Switching between
each pair of different machine modes, if possible, needs to be addressed specifically
and special actions should be performed for the transition. Knowing the special
functionalities of the multi-tasking machine, all valid combinations of machine
mode transitions can be categorised as either manual or automatic. This information
is further used for setup merging through a cost estimation and optimisation pro-
cess. Special FBs for handling the above activities are explained through a case
study.

The rest of this chapter is organised as follows: Sect. 5.2 gives an overview of
multi-tasking machines and related research studies on the process planning of
mill-turn parts. Section 5.3 presents the methodology and its extensions to the
previous adaptive distributed process planning systems. The methodology is
employed in a case study in Sect. 5.4, followed by discussions in Sect. 5.5. Finally,
Sect. 5.6 concludes the chapter.

5.2 Multi-tasking Machines and Mill-Turn Parts

Diversified, low-volume production has always been a great challenge for SMEs.
Setup planning is one of the key elements in such a diversified production system.
Especially, reducing the setup time as well as reducing the number of setups can be
challenging. In order to increase the profit and decrease both the time and cost of
production, SMEs have to apply different methods to reduce their setup times and
the number of setups. The concept of SMED (single-minute exchange of die) was
introduced by [10] in 1985 where different methods for reducing the setup time was
suggested for companies with different production strategies (different product
variants and batch sizes). As a solution, parallel machine tools were introduced
which had the capability of performing multiple operations simultaneously by using
multiple cutting tools or turrets (at least two) [11]. Their introduction had a revo-
lutionary impact on cycle time reduction and material removal rate increment of
machining tasks. Process planning and sequencing on parallel machines has been a
major challenge and many researchers have worked on this subject such as [11, 12].
Despite the advantages of parallel machine tools, dynamic interaction and vibration
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control between the tools in such an environment can be challenging and might
affect the quality of the machined part [13].

In a similar approach to decrease the cycle time and increase productivity,
multi-function or multi-tasking machines are introduced [14]. Multi-tasking is
defined as “an ability to execute simple and complex turning, milling, drilling,
boring, reaming and tapping operations on a specially designed machine with less
human intervention such as workpiece setup change, tool change, etc.” [14]. As a
consequence of less intervention, the number of setup changes can be minimised
and a higher quality of the machined part is guaranteed as there is no loss of datum
due to re-location and re-clamping. Djassemi [15] has studied multi-tasking
machines (MTM), their applications and advantages, and defined multi-tasking
machines as “machines with five or more axes of motion (capable of utilising any
combination of x, y, z, a, b, and/or c-axes), and equipped with two or more tool
systems and spindles and can operate in synchronous or asynchronous machine
modes”. Based on this definition, it can be interpreted that MTM can perform
parallel machining operations. Djassemi also presented the taxonomy of
multi-tasking machines as shown in Fig. 5.1.

Although multi-tasking machining refers to multiple machining functionalities
(milling, turning, drilling, etc.), it does not necessarily require simultaneous
machining capabilities as in parallel machining. Therefore, it is necessary to make a
distinction between parallel machining and multi-tasking machining. In other
words, the method presented in this chapter uses multi-tasking machining with the
definition of multiple functionalities that are not being performed simultaneously
but can each be individually active. A comprehensive survey on multi-tasking
machines (noted as multi-functional machine tools) used for metal cutting, their
kinematic configurations, control and programming technologies can be found in

All Multi-task 
Manufacturing 

Systems

Turning 
MTMsHybrid MTMs Milling MMs

Mill/Grind Mill/Turn ... Horizontal Vertical Horizontal Vertical

Single turrent 2-turrent ... n-turrent Carousel-type 
tool magzine

Chain-type 
tool magzine

5-axis 6-axis ... n-axis

Single Spindle 2-Spindle ... N-Spindle

Fig. 5.1 Taxonomy of multi-tasking machining systems, adapted from [15]

108 5 Cloud-Enabled Distributed Process Planning



[16]. Selvaraj et al. [17] defined multi-tasking machines, as “a class of new CNC
machines that enable to combine different family of operations on to a single
machine in single workpiece setup without manual intervention”. Park [18] has also
discussed the importance of multi-tasking in today’s industries. Multi-machines (i.e.
moving from one machine to another for finishing a part) and multi-tasking
machines have been compared in terms of time, cost, number of setups involved,
etc. for the manufacture of aircraft components [14]. It was concluded that,
multi-tasking machines can reduce the number of required machines for machining
a part, shop floor space, number of setups, setup time, tool change time, and the
number of operators. A general methodology for the calculation and comparison of
time and cost of manufacturing for a class of mechanical system components using
both multi-machines and multi-tasking machines is presented in [17].

Some of the major contributions of multi-tasking machines can be presented as
follows, which can altogether contribute to the increase of profitability, productivity
and resource efficiency in production.

1. Better quality and consistency: In contrast to the conventional production sys-
tems where multiple machines were used for the manufacturing of one part and
the part had to be transferred between machines, multi-tasking machines allow
the machining to be performed on one single machine. As a result and due to
less re-location and re-fixturing of the part, the risk of stacked tolerances can be
eliminated. Consequently, in an ideal environment with similar conditions, a
better quality of final product can be achieved.

2. Production flexibility: Having multiple axes and spindles allows a better
adoption to changes in market demand. In addition, less fixturing equipment,
and labour involvement would be very beneficial for diversified production
(high varieties of products with small batch sizes) where tool changeover time
can be significant [15].

3. Setup and setup time reduction: The number of setups can be reduced for those
parts that require multiple setups. This is mainly due to the capability of using
multiple axes and spindles. The capability to change from one machining
function to another while the part is fixed in a specific setup can reduce the setup
time. In addition, some special functionalities of multi-tasking machines, e.g.
automatic part transition between different fixturing states, can further contribute
to setup time reduction.

4. Process simplification: Multi-tasking machines allow the machining process of
complex parts in one single machine and as a result facilitating the machining
process [15]. The research reported in [19] presented some examples of
complex-shaped workpieces machined on an integrated multi-tasking machine.

Multi-tasking machines are now significantly popular in metal-cutting industry
and have become increasingly sophisticated in design and configuration. Despite
their numerous advantages, multi-tasking machines possess programing challenges
because of their complex configuration and multiple machining functions [20]. This
problem has led the software industry to develop a number of simulation, CAM,
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and verification systems to aid this complex process. The advances of virtual ma-
chine tool technology [21] in recent years have simplified the verification of NC
programs and collision avoidance through real-time modelling and simulation.
A smart decision-making system that supports multi-tasking machining is necessary
for adaptive process planning in an integrated machining environment. According
to [22], the introduction of STEP-NC highlights a need for new programming
methods and software tools for multi-tasking machining of components, which
requires further research to support industrial developments.

Mill-turn machine tools are a subset or a class of multi-tasking machines that can
perform both milling and turning operations [23]. Consequently, the term “mill-turn
part” was assigned to those parts with both rotational turning and prismatic milling
features [24]. Mill-turn parts are also referred as prisronal parts in [25]. In order to
produce a mill-turn part, both milling and turning operations are required. Mill-turn
machine tools allow mill-turn parts to be machined and finished in one single
machine instead of being transferred between two (or even more) milling and
turning machines. Miska [26] refers to “mill-turn machine tools” as “turning cen-
tres” and recognises them as suitable alternative to machining centres for work-
pieces that require cylindrical as well as prismatic machining [27]. Different
research studies have been performed on mill-turn machining centres and mill-turn
parts. In [27], computational techniques for determining the Maximum Turnable
State (MTS) of a mill-turn part are presented with the applied rule of thumb that
“the total percentage of milled features should be between 30 and 40% for the part
to be cost effectively machined on a mill-turn”. In other words, the authors men-
tioned the fact that it is more efficient to remove material by turning than by milling
in a mill-turn machine. Machining non-coaxial parts on mill-turn machines has been
studied in [28]. A methodology for automating the process planning and NC code
generation for a widely encountered class of freeform features that can be machined
on a 3-axis mill-turn centre has been proposed in [29]. Feature recognition in
mill-turn parts is usually a complex task as many feature interactions between
turning and milling features occur [23]. To solve this problem, the authors of [30]
presented a machining volume generation method for recognition of interacting
prismatic and rotational features.

Due to their multiple functionalities, multi-tasking machines have also affected
process planning research [31]. A feature-based geometric reasoning system for part
modelling and process planning as applied to mill-turn machined parts is proposed
in [32], which applied feature recognition system based on convex decomposition
and the mapping method to relate the negative feature volumes to machining
process classes. A concurrent analysis model for analysing machining sequences
and fixturing setups of mill-turn parts has been proposed in [24] where the best
machining sequences can be found with the minimum number of machine changes
and fixturing setup changes. An intelligent expert process planning system has been
proposed in [25] for five-axis mill-turn parts where a feature-based process planning
approach is applied using both variant and generative approaches, and a new
machining features classification is reported. In addition, a new group code has
been defined based on a survey from different industries in order to classify
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mill-turn parts. Furthermore, the authors mentioned that a machining feature rep-
resentation scheme consists of open and hidden layers that store different types of
data from information of the initial stock and geometrical data to the machining
processes and sequencing rules. A three-module knowledge-based approach is then
applied for process planning. Authors in [33] have developed a CAM system that
can recognise the machining features of a mill-turn part and automatically generate
its tool paths. Another automatic process planning system for mill-turn parts has
been proposed and developed in [34, 35], which by applying machining feature
recognition, can generate alternative machining plans and identify the one with the
shortest processing time. A graph-based process planning system for multi-tasking
machines was reported in [36] where the manufacturing features are recognised
based on graph isomorphism and geometrical rules, and feasible machining
sequences are generated. Finally, optimal machining plans are identified according
to the user-defined cost evaluation.

Common to all process planning systems, one difficult problem is how to solve
the complex iterations between interim feature geometry and process parameters in
each individual machining operation and transformation among different machining
operations, especially for mill-turn machining. Li et al. [37, 38] converted this to the
elimination of non-machining configuration spaces or C-spaces, making the com-
plex iteration problem solvable.

5.3 Methodology

This chapter aims to present an extension to Cloud-DPP (cloud-based
function-block enabled adaptive distributed process planning) methodology [6]
that supports (1) mill-turn parts, (2) process planning for multi-tasking machining
centres specifically mill-turns class, and (3) special functionalities in some machine
tools such as part transfer to further reduce the total number of setups. Furthermore,
applying this methodology can facilitate the complex programing and planning step
required for multi-tasking machining. The extension has been made to the adaptive
distributed process planning approach reported in [3] where a two-layer process
planning is suggested. The supervisory planning generates a generic process plan
featuring a generic setup plan with sequenced machining features, which will be
later merged and adapted to available machines. The process plan represented by a
function-block network is then deployed to the machine controllers for execution.
The process plan is finally detailed by feature-based operation planning algorithms
at execution time. In this chapter, the proposed extensions are:

• generic setup planning for turning features in addition to milling,
• definition of machine modes and machine mode transitions to extend machine

tool model so as to include multi-tasking machines,
• indicating the possible fixturing states of the workpiece using the candidate

setup frames,
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• defining new function blocks for handling mode transitions, sub-setups, and
turning features, and

• developing an adaptive setup planning and task assignment algorithm that
performs a semi-optimal decision making on merging generic setups together
and assigning them to one or more of available machines.

Generic setups for turning features are similar to 3-axis setups of milling features
applying the following rule that the turning features with similar turning vector will
be grouped together [39]. Also, generic turning setups precede generic milling
setups. Sequencing of the generic turning setups and assigned turning features are
to be performed in a similar way as was introduced by the authors in [40] based on
[41]. Details about the rest of the extensions are described in this section.

5.3.1 Machine Modes

In multi-tasking machines research, the term machine mode was used for addressing
the state or functionality of a machine during a machining operation [11]. In this
section, a machine mode represents a defined state of a machine with a specified
machining function and active kinematic mechanisms. The definition of a machine
mode data model consists of the following:

• Functionality of the machine: Determines what machining function is active at a
specific state of machining.

• Kinematics of the machine: A machine consists of different kinematic config-
urations that can be either active or inactive in different states of the machine. In
each machine mode the active kinematic chain is defined which consists of the
data about involved moving links, joints and their freedom of movement.

• Part fixturing reference frame in the machine: The machine mode also provides
information about the fixturing reference frame based on which the part will be
positioned on the machine. By knowing the fixturing reference frame in relation
to the machine coordinate system, the accessibility to the part in that specific
configuration can be assessed. Moreover, the active fixturing reference frame of
the machine mode is required for geometric calculations of the tool paths. The
orientation of this frame is important in particular and is to be defined by two X
and Z unique vectors of the frame represented in the machine coordinate system.

The combination of the above information forms a model representing a
multi-tasking machine in different states to be used in planning and control algo-
rithms of the system. In other words, a machine can be active in different machine
modes that are each represented by the set of the mentioned attributes. For example,
Table 5.1 presents a machine mode data model with information of the machine
kinematics (degrees of freedom of rotational axes and the orientations of the axes).
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AL, AU, BL, BU, CL and CU refer to upper and lower boundaries of the rotary
axes A, B and C, respectively. Moreover, [Ix, Iy, Iz] and [Kx, Ky, Kz] are unit
vectors of the fixturing reference frame according to the machine coordinate
system.

5.3.2 Machine Mode Transitions

Once the different machine modes have been defined, the transition between the
modes during the machining process should also be defined. First of all, the pos-
sibility of switching from one mode to another has to be determined. Secondly, the
possibility of an automated transition among the valid modes (by analysing the
machine’s special functionalities) can be specified. Special functionalities are those
extra functionalities that are embedded in the machine in addition to its main
expected functionalities and can increase the efficiency of machining in different
ways. For example, a two-spindle mill-turn machine is expected to be capable of
both turning and milling functions. However, functionality of an automated part
transition between the main and sub spindles can be added to the machine by
equipping the machine with hydraulic chucks and additional controllable axis. As a
result, the sub spindle can approach towards the main spindle, take the part and
retract away. This additional functionality can decrease the setup time and increase
the quality as the setup changeover is performed automatically. Another special
functionality that can be added is for example an automated switch between parts
by means of a rotary table. The machine mode transition can be represented by a
n � n square matrix where n is the number of existing machine modes The values
of transitions can be assigned with either A (automated), M (manual) or X (not
applicable, on the main diagonal of the matrix).

5.3.3 Setup Frames

To involve fixturing of a workpiece, the term setup frame is introduced. Setup
frames are those candidate frames defined on the workpiece that can provide
guidance on orientation of potentially possible workpiece fixturing on the machine.

Table 5.1 Representation of a machine mode data model

Machine mode ID Type Kinematics AL AU BL BU CL CU

2 Milling XYZ-CB 0 0 0 90 0 360

Machine mode ID Ix Iy Iz Kx Ky Kz

2 1 0 0 0 0 1
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All potentially possible fixturing alternatives of the workpiece for each machine
mode are all possible combinations where orientation of one candidate setup frame
of the workpiece matches that of the fixturing reference frame of the machine mode.
As an example, Fig. 5.2b shows a cylindrical workpiece and both A and B are its
given candidate setup frames. F is the fixturing reference frame of a machine mode
for milling (Fig. 5.2a). Two possible ways of fixturing the workpiece on the
machine are known by orienting the part in the way that candidate setup frames
have similar orientation as the fixturing reference frame (Fig. 5.2c, d).

5.3.4 Setup Planning and Setup Merging

Setup planning is one of the sub-tasks of the supervisory planning in adaptive
DPP. An initial generic and machine-neutral setup plan is generated at this level. To
do so, the same approach suggested in [40] has been applied. In case the machine
tool has more than three machining axes, the generated 3-axis setups will be merged
due to higher machine reachability. Since multi-tasking machines normally possess
more than 3 degrees of freedom, a setup merging is necessary for generating an
optimal process plan. To perform setup merging, the following information is
required:

• Generic setups: The 3-axis setups including milling features with the same
TADs (tool approach directions) and generic turning setups including turning
features with the same turning vector.

• Precedence graph: A graph indicating the precedence relations among available
generic setups and machining features belonging to the same generic setups can
be provided based on a number of requirements such as the machinability rule or
datum references among machining features [40].

• Available machines and machine modes.
• Candidate setup frames of the workpiece.
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Fig. 5.2 a Fixture’s coordinate system; b candidate setup frames (A and B); c and d part fixed
according to setup frames A and B, respectively
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A cost matrix can be generated based on the transition matrix. The cost matrix
estimates the cost of a transition between two different modes. The main factor for
estimating the cost would be the time of transition (which is also affected by the
possibility to automate the transition). Other factors such as energy consumption,
power, stability, and accuracy of the employed kinematics, etc. can affect the cost of
transition. The time can therefore be translated in terms of cost for the valid mode
transitions. However, this section does not provide guidelines for cost matrix
generation but uses the following approach. Overall cost of an adaptive setup plan
can be calculated as summation of the cost of each assigned setup conditions
according to the previous assigned setup conditions in the sequence. For Si and Si+1,
two consecutive generic setups in an adaptive setup plan, the assigned cost
increases in the following order (when Si and Si+1 are):

1. Merged into the same setup group in one machine mode.
2. Merged into different setup groups in different machine modes of the same

machine with automatic transition.
3. Merged into different setup groups in different machines with automatic

transition.
4. Merged into different setup groups in different machine modes of the same

machine without automatic transition.
5. Merged into different setup groups in different machines without automatic

transition.

Using the inputs mentioned earlier as well as the cost estimations, the greedy
algorithm is applied in setup merging. The greedy algorithm follows the problem
solving heuristic of making the locally optimal choice at each stage with the hope of
finding a global optimum. However, this method does not necessarily provide a
global optimum but usually yields local optimal solutions that approximate a global
optimal solution in a reasonable time.

5.3.5 New FBs and FB Network Generation

Function blocks (FBs) are necessary elements in Cloud-DPP and are responsible for
adaptive execution control of the machining process. AutoTrans FB is developed
for handling machine mode initialisation and transition between machine modes.
The developed Sub Setup FB handles 3-axis sub-setups in the context of a merged
setup assigned to a specific machine. Also for every involved milling/turning ma-
chining feature type, one specific FB is developed. These FBs encapsulate
machining know-hows of those features and are able to control the machining
process. The system then generates an FB network that is deployed to the chosen
machine for execution. The generated function blocks are illustrated in Fig. 5.3.
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5.4 Case Study

The selected workpiece (Fig. 5.4) consists of both turning (2 outer step faces and 1
outer diameter) and milling (4 steps, 1 chamfered blind hole, and 2 rectangular
pockets) features. The part is machined from a cylindrical stock. The selected
multi-tasking machine is a Mazak Integrex e410h with two turning spindles, one
milling spindle, seven controllable axes, and the special functionality of workpiece
transfer between its main and sub spindles (linear movement of axis W). The
configuration of the machine and its movable axes is shown in Fig. 5.5. According
to the methodology, the following steps are required for setup planning.

• Three-axis setup generation and sequencing

The ten existing features are grouped into generic setups according to their TADs or
turning vectors. They are then sequenced based on available mandatory referencing
or accessibility rules. As a result of this step, six setups are generated. The setups
and their sequences are depicted in Fig. 5.6.

Fig. 5.3 Function blocks for handling multi-tasking machining process

Fig. 5.4 A mill-turn part with some highlighted milling and turning features: outer step face
turning features (a and b); step milling feature (c); and outer diameter turning feature (d)
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Fig. 5.5 A Mazak multi-tasking machine (top), and its axes configuration (bottom)

Fig. 5.6 Generic setup planning and sequencing
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• Candidate setup frames indication

Since the stock has a cylindrical shape, it can be fixed in the turning chuck on either
one of its two ends. Therefore, two different candidate setup frames can be defined
for the workpiece.

• Machine mode and transition matrix definition

Four different machine modes are defined according to the capabilities of the
available multi-tasking machine, as listed in Table 5.2. Each machine mode rep-
resents a specific state of the machine that is different from the rest of the states in at
least one of the attributes of functionality, kinematics, or fixturing. The transition
matrix is presented in Table 5.3 where A and X represent automated and not
applicable transitions, respectively. Note that in case that W axis does not exist, the
transitions between main and sub spindles (such as mode 1–mode 2) would have
been manual.

• Adaptive setup planning

Figure 5.7 shows the result of the adaptive setup planning process where the greedy
algorithm and the heuristic rules presented in the previous sections have been
applied. The six existing generic setups have been merged into three setups. Two of
the new setups are marked automatic due to either pure function switching with no
need for re-fixturing or special functionality such as part transfer. Therefore, only
one setup needs to be performed manually.

• Function block generation and deployment

According to the results of generic process planning, adaptive setup planning and
job assignment, a function block network (Fig. 5.8) is generated in which the
instances of the previously defined function blocks [8] and newly introduced ones
in Sect. 5.3.5 are used. Once deployed to a machine, FBs can automatically and

Table 5.2 Machine mode definitions

Machine
modes

Functionality Kinematics Fixturing

MM1 Milling XYZ-CA (main spindle as
C axis)

Main spindle chuck
(I[1,0,0], K[0,0,1])

MM2 Milling XYZ-CA (sub spindle C2
as C axis)

Sub spindle chuck (I[1,0,0],
K[0,0,−1])

MM3 Turning XZ-A (main spindle as
turning spindle)

Main spindle chuck
(I[1,0,0], K[0,0,1])

MM4 Turning XZ-A (sub spindle as turning
spindle)

Sub spindle chuck (I[1,0,0],
K[0,0,−1])
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adaptively control and execute the machining process of the mill-turn part
according to the available tools on the machine and other conditions (Fig. 5.9).
Finally, in Fig. 5.10, the machined part on the multi-tasking machine is revealed.

Table 5.3 Transition matrix Transition matrix MM1 MM2 MM3 MM4

MM1 X A A A

MM2 A X A A

MM3 A A X A

MM4 A A A X

Fig. 5.7 Setup merging

Fig. 5.8 Generated FB network
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5.5 Discussions

To be able to compare the solution with other existing solutions, the comparison
criteria need to be determined. The main objective of Cloud-DPP is adaptability and
thus considers process planning as an embedded part of run-time production system
to achieve the objective. Therefore, adaptiveness should be considered as the main
comparison criterion. Considering the class of parts represented by the test part in
the case study, the present system possesses the equivalent functionalities of other
systems presented in [25, 33–36], except machining feature recognition that is out
of the scope of process planning. However, none of those systems are designed to

Fig. 5.9 Process execution on a hybrid FB-enabled controller

Fig. 5.10 Machined
mill-turn workpiece
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achieve the adaptability that the Cloud-DPP offers. This is due to the fact that
Cloud-DPP is designed by considering the adaptability as the essential principle and
therefore employs a different multi-layer process planning and execution method
with feed-back loops from shop floor monitoring data. In comparison, other
aforementioned systems are mainly based on traditional process planning and CAM
practice which follows unidirectional data/information flow with no adaptability.
Moreover, Cloud-DPP supports process planning and execution functionalities for
machines with special capabilities such as automatic part transfer among their
redundant subsystems. This can significantly increase the productivity by reducing
the number of setups and relax planning and programming complexities. This is not
possible for other aforementioned systems. Another unique aspect in contrast is that
Cloud-DPP as an embedded part of a production system is intended to seamlessly
provide and consume process planning and process execution services on the cloud
to enable collaborative work in cloud manufacturing.

5.6 Conclusions

A cloud-based function block enabled distributed adaptive process planning and
execution system for machining of mill-turn parts is presented in this chapter. The
contribution has been in form of extending the current Cloud-DPP methodology for
supporting mill-turn parts machining on multi-tasking machines with special
functionalities, and validating the methodology through a case study. Turning
features are introduced to the system and generic process planning algorithms are
outlined accordingly. The concept of machine mode is used for representing the
machining function, its kinematic configuration, and fixturing reference. Transition
matrix indicates the possible transitions among different machine modes as well as
the characteristics of the transition. Such characteristics can be specified according
to the special functionalities of the multi-tasking machines. Greedy algorithm is
then used for adaptive setup planning and job assignment according to a cost
function representing the optimisation objectives. Tool orientation accessibility
analysis is performed to check validity of assigning setups to different machine
modes and the possibility of merging generic setups together. Finally, five function
blocks are explained that can handle machine mode initiations and transitions,
adopting generic setups in a specific machine mode, and detailed operation plan-
ning and execution for newly introduced turning features. A case study is carried
out with a mill-turn part machined on a mill-turn multi-tasking machine for system
validation.

As a future work, the genetic algorithm should be applied to find near-optimal
solutions in adaptive setup planning. Research on more sophisticated fixturing
models and dynamics should also be considered.
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Chapter 6
Adaptive Machining Using Function
Blocks

6.1 Introduction

As stated in [1], in general, the main requirements of a Cyber-Physical System
(CPS) are: high predictive skills and capabilities, real-time intelligent distributed
computation and control approaches, and reliable and secure network connection.
CPS has recently gained a lot of attention and has shown promising applications in
different fields of healthcare, traffic control, etc. [2]. Different attempts have been
made for modelling CPS [3] and the 5C architecture has recently been proposed for
CPS in Industry 4.0 manufacturing systems [4]. In the field of manufacturing,
different applications of CPS have also been studied [5]. A CPS consists of a
“cyber” part and a “physical” part (refer to Chap. 2 for details on CPS). In a CPS,
sensors or other communicating tools embedded in physical entities are responsible
for real-time data acquisitions. The data is then sent to the computational part of the
system through a network/cloud environment, allowing decentralised control. The
computational part is responsible for monitoring and controlling the actions of the
physical entity through the embedded communicating equipment such as actuators.
However, humans as the third part of the system can also interact with the system
when necessary/desired through embedded user interfaces. This whole process is
performed dynamically through feedback loops from the physical world to the
cyber world and vice versa. Due to the specific characteristics of CPS, modelling a
CPS requires techniques that can address both the software and the hardware [6].
Interestingly, holon shares a similar feature as CPS and has two sides representing
both the digital and the physical attributes of an object (e.g. a device, a machine, or
a fixture). This distributed architecture of holon, makes holonic paradigm a suitable
approach to constructing and modelling a CPS system in form of a holarchy. While
a CPS connected to smart sensor networks can learn over time, a holarchy is also
capable of learning through evolutionary self-organisation. Both CPS and Holons
and holonic manufacturing systems (HMS) allow the integration of the physical
world with the computational world where decisions are adaptively made according
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to the physical inputs, and are transferred to the physical entities in order to opti-
mise the performance of the system. However, the holonic concept and represen-
tation must be realised in real-world applications. To implement this concept,
agents and function blocks are the key enablers. To address their specific charac-
teristics, these two technologies are adopted at different levels of control. The cyber
part of a CPS (or a holarchy) in most cases is non-real-time and can be implemented
using the multi-agent approach. Once it comes to the physical part of the CPS,
real-time behaviours must be respected and controlled. Function blocks are most
suitable for the low-level device monitoring and control. This chapter describes the
application of function blocks at different control levels of a holarchy representing a
CPS for adaptive machining. See more details on holons, agents and function
blocks in [1].

At the shop-floor level, not all the events are entirely predictable. Therefore, CPS
has to be able to operate in a random environment where unexpected conditions may
occur at any time. Failing to respond and adapt to disturbances and subsystem
failures can affect the system’s performance and cause critical issues. In other words,
at the shop-floor level, reaction to changes should occur according to specific
timeframes and within strict deadlines e.g. change or halt of a robot movement due to
human interferences should occur within milliseconds to avoid injuries. Therefore, a
holon representing a physical equipment would require a hard real-time control
system that can control the behaviours of the physical entity within a strict deadline.
The IEC 61499 standard using function blocks for decentralised control has shown
promising applications in this area and has been recognised by the HMS community.
Aside from the process encapsulation, function blocks as reusable modules are used
for real-time, distributed, intelligent and event-driven control, and execution of
processes on physical equipment. The embedded algorithms in a function block can
be controlled through its execution control chart, and the internal variables and
algorithms can be tuned to match the environment conditions. For example, when a
tool breakage occurs during machining, function blocks can automatically modify
the current process and adjust to the new conditions by triggering the right algo-
rithms (i.e. finding an alternative option to finish the machining process with the
remaining tools). Moreover, with the help of function blocks, the process can be
immediately paused at any moment and resumed when necessary (e.g. robot and
human interference). This quick self-adjustment process not only saves a lot of time
(in contrast to traditional re-planning scenarios) but also prevents system suspension
or physical damages/human injuries, which can impose unnecessary costs. This
ability makes function block (FB) a good candidate for low-level control and exe-
cution. Low-level control is the closest control layer to the physical equipment on the
shop floor and is responsible for both executing the transferred plans and handling
disturbances in a real-time manner. FB-enabled controllers are necessary for
implementing this idea but few FB-enabled commercial controllers are currently
available in the market. One solution would be to integrate an FB runtime envi-
ronment hosted in a frontend computer with a commercial controller and consider
the whole combination as an FB-enabled controller [7].
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6.2 Function Block Concept

6.2.1 Function Blocks

An FB is a block that encapsulates functionality. According to the IEC 61499, a
function block instance has the following characteristics:

• Type name and instance name,
• Event inputs, interface of an FB receives events from an event connection, and

can affect the execution of one or more algorithms,
• Event outputs, interface of an FB issues events to an event connection,
• Data inputs, interface of an FB receives data from a data connection and cor-

responds to the input variables,
• Data outputs, interface of an FB supplies data to a data connection and may

correspond to output variables,
• Internal data mapped also as internal variables,
• Functional characteristics, which are divided into the Execution Control and the

Internal Algorithms.

Figure 6.1 shows how all these characteristic features can be mapped to an FB.
Taking IEC 61499 into account, the function block type specifications should
include: (1) type name; (2) the number, names, type names and order of events
inputs and events outputs; and (3) the number, names, data type and order of data
input, data output and internal variables.

6.2.2 Function Block Types

In the IEC 61499 standard, the basic unit for encapsulating and reusing Intellectual
Property (IP = “know-how”) is the function block type. In object-oriented terms,
this is a class defining the behaviour of possibly multiple instances. It includes
event inputs and outputs as well as the more traditional data inputs and outputs, to
provide for synchronisation between data transfer and programme execution in
distributed systems.

6.2.2.1 Basic Function Blocks

As its name implies, the basic function block type is the “atom” out of which
higher-level “molecules” are constructed. With IEC 61499 compliant software
tools, software developers can encapsulate IP in form of algorithms. Execution of
these algorithms is triggered by Execution Control Charts (ECCs), which are
event-driven state machines. Figure 6.2a illustrates a basic function block with
event input (EI), event output (EO), data input, data output, and internal variables.
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6.2.2.2 Composite Function Block

Function blocks can be connected via event and data connections to form FB
networks. The event connections and behaviour of every single function block
completely determine the joint behaviours of the networks. Such networks can be
encapsulated into composite function blocks for future reuse as shown as in
Fig. 6.2b. Similar to basic function blocks, composite function blocks have inter-
face with input and output event and data variables. Composite function blocks do
not have internal variables. Elements of an FB network can be other composite
function blocks. Thus, FB applications can be structured hierarchically and the
levels of hierarchy are unlimited.

Moreover, composite function blocks do not have ECCs. However, an additional
component block with a composite function block can play this role as illustrated in
Fig. 6.3.

The Behaviour of a composite function block is purely determined by a network
of function block instances. A composite function block is simply a container for a
network of other function blocks. The container as such performs no specific
actions except for setting input and output variables and for the activities of its
components. The network can include basic, service interface and composite
function block types, and function block applications can be hierarchical as men-
tioned earlier.

A basic FB is able to represent a small task, having a similar behaviour as an
electronic device or circuit, and can solve simple problems, but joining different
FBs (including composite FB), a more complex problem can be solved.

6.2.2.3 Service Interface Function Block and Sub-application

Service interface FB, as the name suggests, is an interface function block, which
allows interfering between the FB domain and external services [8], such as

Fig. 6.3 ECC in a composite
function block
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hardware target or remote device (PLC, microcontroller, etc.). Explained in an easy
way, they can be described as readers and writers.

Sub-application is another category of function block similar to composite FB,
but they can be distributed to run on more than one resource. It is constructed from
networks of basic FBs and composites FBs that also could contain sub-application
of lower level inside. This type of block can be distributable [8].

6.2.3 Execution of Function Block

The execution model of a function block describes eight phases that defines the
behaviour of a basic FB when it is running. In this case, a scheduling function is
used in order to ensure that each phase is executed in a correct order and at the
correct priority [8]. The phases are the illustrated in Fig. 6.4.

• Data inputs of the function blocks have a stable value;
• An event which is associated with a data input is arrived to the event input of the

FB;
• The execution controller indicates to the scheduling function that it has a signal

and it is ready to execute an algorithm;
• After a time, the scheduling function executes the algorithm;
• Algorithm produces an output value after processing the input values and if

there are internal variables, which also can be changed;

Fig. 6.4 Execution of
function block
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• The internal algorithm sends a signal to the scheduling function notifying that
the execution is finished;

• The scheduling function invokes the FB’s execution control, informing that the
algorithm has finished its execution;

• The execution control creates an output event in the FB’s output event interface
according to the execution of the internal algorithm.

6.2.4 Internal Behaviour of Function Block

The internal behaviour of a basic FB takes into account the algorithm bodies and
the algorithm execution control. A basic FB usually contains one or more algo-
rithm; however, there are cases in which an FB only uses an ECC without any
algorithm. Each algorithm is invoked by the scheduling function that depends on an
event input. As it is explained before, one of the most important parts of the
behaviour of an FB consists of the relation between the events and the algorithms,
and this is joined by a concept named Execution Control Chart (ECC), the con-
figuration of which was developed in this [8].

An Execution Control Chart (ECC) is the graphical or textual representation
among the relations of Event Inputs, Event Outputs and algorithms [4], including
execution control states, transitions and actions. An example of a basic function
block and its ECC is depicted in Fig. 6.5.

IEC 61499 [8] defines the following characteristics for the ECC:

• it resides in the upper portion of an FB,
• it has one initial Execution Control (EC) state, represented graphically with a

double outlined shape like START in Fig. 6.5,
• there will be one or more EC states, which are represented graphically with a

single outlined shape, and the states could have one or more associated EC
actions, and
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Fig. 6.5 A sample basic function block and its ECC
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• the ECC can use but not modify variables declared in the function block type
specification.

Taking all these characteristics into account, it can be said that an ECC is divided
into EC states, EC transitions and EC actions.

• EC states: An EC state is a part of the ECC which is defined by the IEC 61499
as the “situation in which the behaviour of a basic FB with respect to its
variables is determined by the algorithm associated with a specified set of
execution control actions”. There are two types of EC states:

– Initial EC state, and
– Common EC state.

The initial EC state is the state in which the ECC starts when it is executed in the
beginning, and after an EC transition, the state will be changed to a common EC
state, but also can be returned to the initial EC state. An EC state can have one
or more EC actions.

• EC transitions: An EC transition is a Boolean expression, part of the ECC that
allows “jumping” between an EC state to another. This Boolean expression can
be used with Event Input variable, input variable, output variable, or internal
variable.

• EC actions: An EC action is an “element associated to EC state that identifies
algorithm(s) to be executed and event(s) to be issued upon completion of
execution of the algorithm”. The differences between EC states and EC actions
can be seen in Fig. 6.5.

An ECC executes algorithms as “finite set of well-defined rules for the solution
of a problem in a finite number of operations”. The algorithms are invoked fol-
lowing some rules. When an FB is not executing any algorithm and an Event Input
occurs, EC transitions in the ECC are evaluated following the active EC state. If
there is not a true condition, no action will be performed, and the FB will wait until
another Event Input arrives. If there is a true condition, EC action will be per-
formed, and an algorithm could be invoked after a request to the scheduling
function that will schedule the execution of the algorithm’s operation. Once the
actions are completed, EC transitions will be evaluated again.

6.3 Enriched Machining Features

6.3.1 Machining Features

Machining features are mapped to FBs in distributed process planning (DPP, see
Chap. 4 for details). Machining processes are carried out by executing the relevant
FBs with MFs embedded.
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Machining features are those shapes, such as step, slot, pocket and hole, which
can be easily achieved by the available machining resources and defined machining
technologies. Different from design features, as standard shapes that can be
machined, each machining feature holds a set of loosely-coupled information on
how to fabricate it, such as cutting tool type, machine-independent machining
sequence, tool path generation logic, cutting strategy, and suggested cutting con-
ditions, which provide an indication as to what kind of operations and tools will be
required to manufacture the feature. Some typical machining features are shown in
Fig. 6.6. Since milling and drilling operations are dominant in machining, only
milling and drilling features on prismatic workpieces are covered in this chapter.

Within the context, each machining feature can be represented by its geometric
feature, surface feature, volume feature, and loosely-coupled cutting information.
A geometric feature is a topological unit that holds the main information of the
machining feature itself, such as geometry, dimension, and tolerance; a surface
feature captures the attributes and the relationship of faces defining the surface of
the machining feature; a volume feature is the solid volume enclosed in the
machining feature. Figure 6.7 shows the combined feature models of a machining
feature step.
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Fig. 6.6 Typical machining features
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Definition 1 A machining feature is a machinable unit that satisfies the following
conditions:

• Its removal creates a portion of the part surface without destroying the part.
• It can be removed from the workpiece by one or more operations in one setup

with a three-axis milling machine or machining centre.
• It not only contains design information, such as geometric dimensioning and

tolerancing (GD&T), surface finishing, but also possesses a set of
loosely-coupled information on how to fabricate it.

• It can be modelled by surface feature, geometric feature, volume feature, and
supported by a loosely-coupled machining knowledge base.

Here, it is focused on machining process sequencing, and is assumed that the
machining feature list of a part is given. Such a feature list can be obtained either by
adopting third-party feature recognition solutions or incorporating machining fea-
ture based design methodology—designing a part in the same way of ‘machining’
by subtracting machining features from its blank.

6.3.2 Enriched Machining Features

6.3.2.1 Maximum Machining Volumes

Traditionally, machining (e.g. milling, turning) is the process that removes mate-
rials from its blank or raw material. Therefore, raw materials must be considered in
process sequencing. The materials to be removed from a blank are in the shape of
machining features. Their volumes are usually bigger than the desired ones as far as
the blank is concerned. This chapter treats the task of machining process
sequencing as the task of machining feature sequencing, if a machining feature list
is given. In other words, it is the task of deciding how the materials (in the shape of

Surface feature

Geometric feature

Volume feature

Machining feature: Step

Loosely coupled 
cutting information

Fig. 6.7 Embedded feature models of a machining feature
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machining features) should be removed sequentially to achieve a final
part. A concept of maximal feature for feature recognition is used here. This
concept is extended as the maximum machining volume (MMV) for machining
feature sequencing by combining the tool access directions of machining features in
Fig. 6.6.

Definition 2 The MMV of a machining feature is the volume to be removed to
create the machining feature directly from the raw material along its defined tool
access direction(s) without destroying the part.

Figure 6.8 shows the MMVs of two machining features (a step and a blind slot)
for a given raw material (shown in dashed lines), which are generated by extending
their volumes to the surfaces of the raw material along X and Z directions,
accordingly. MMVs are used extensively in the enriched MF-based reasoning to
identify a sequential order amongst machining features.

6.3.2.2 Intermediate Machining Volumes

The machining features achieved from design side often cannot be used in process
planning directly unless the part is simple in shape. The reason behind this is that
the information of machining features is static, which only represents the final
requirements of a part; whereas the machining process is rather dynamic. During
the machining process, the shape of a workpiece keeps changing because of the
material removal. To capture the dynamic change of a workpiece for feature
recognition in 2.5D components, it considers a workpiece change as an intermediate
workpiece for the next step feature recognition. The updated workpiece also helps
in recognition of machining features for roughing, semi-finishing or finishing
operations. Rather than updating the entire workpiece, it targets the dynamic change
of each individual machining feature for machining sequence determination.
A concept of intermediate machining volume (IMV) is therefore introduced to
reflect the dynamic change of a machining feature during machining operations.

Fig. 6.8 Maximum machining volumes

6.3 Enriched Machining Features 135



Definition 3 An IMV of a machining feature is the intersection of its MMV and the
current workpiece.

Figure 6.9 shows the concept of IMV through a hole. The IMV of the machining
feature hole varies between its MMV and its actual machining volume
(AMV) along the machining process of the part. The upper limit of the IMV is the
volume (or MMV) to be removed from the raw material; the lower limit of the IMV
is the volume feature (or AMV) of this machining feature. Collectively, the change
of IMVs of machining features demonstrates the change of a workpiece while the
workpiece is gradually taking its shape during the machining operation. Together
with MMVs, intermediate machining features play an important role in feature
sequencing.

6.3.2.3 Machining Feature Interference

Machining Limit Value (MLV) is a dimensional value that is related to both the
minimum size of an MF and the interference size of the MF. MLV is used to decide
the size of cutting tools and is obtained by comparing two parameters, the minimum
size and the interference size of an MF [9]. The two parameters are defined as
follows.

• MF minimum size: It includes several geometrical dimensions of material
removal volume of MF, as shown in Fig. 6.10a. Also, the dimensional values
are closely related to MF types, and for instance MF width and MF height are
the MF minimum size of a semi-blind slot. They provide a reference for the
decision of cutting tool diameter and cutting edge length.

• MF interference size: It refers to the relationship between the neighbouring MFs,
and includes minimum horizontal distance (MHD) and minimum vertical
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Fig. 6.9 Intermediate machining volumes
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distance (MVD), as shown in Fig. 6.10a, the semi-blind slot MF and the forward
MF. MHD is defined as the minimum distance at the horizontal direction
between two neighbouring MFs, and MVD is defined as the minimum distance
at the vertical direction between the two MFs. There are 4 sides of interference
at most, i.e. forward (F), backward (B), rightward (R) and leftward (L), as
shown in Fig. 6.10b.

MF minimum size and MF interference size are related to MFs. Based on the
geometrical properties of all the MFs, the current MFs are divided into three
classes: closed, semi-closed and open MFs, as shown in Fig. 6.11, respectively. MF
minimum and interference sizes are thus determined. Consequently, based on the
comparison of the two sizes, MLV can be calculated.

• Closed MF: Fig. 6.11a shows a series of closed MFs. Here, the MF is created by
removing the material that is located in a closed space, i.e. interference MF does
not exist. Therefore, MLV is only related to MF minimum size.

• Semi-closed MF: Fig. 6.11b shows four types of semi-closed MFs. In this class,
an MF is created by removing the material that has a semi-closed surrounding
space, i.e. there may be some interference MFs in the side of open space.
Therefore, MLV depends on both the MF minimum size and the interference
size.

• Open MF: Four types of open MFs, as shown in Fig. 6.11c, are generated by
removing the material that is located in an open surrounding space. Therefore,
MLVs are only decided by MF interference size.

MFs are widely used in design and manufacturing for the ease of information
retrieval and processing. However, only the geometry information of MFs is
insufficient for DPP due to the dynamic nature of underlying machining processes.
The shape of a workpiece evolves at different stages along its machining process. In
order to embody the dynamic changes of MFs in DPP, extra needed information is
analysed and an EMF (enriched machining feature) concept is introduced.
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Fig. 6.10 Machining feature interference
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6.3.2.4 Enriched Machining Features

For the purpose of effective process planning, particularly for machining process
sequencing, the IMV is combined with each machining feature to reflect the
dynamic change of its machining volume. A combined machining feature is named
EMF in this research.
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Definition 4 An EMF is an entity that possesses information of the machining
feature itself (e.g. GD&T, suggested tool type, tool access directions, tool path
generation logic and suggested cutting conditions, etc.) and its current IMV [10].

6.3.2.5 Representation Scheme of an EMF

The detailed representation of an EMF, especially its surface feature, volume fea-
ture, and IMV, is formulated using the basic geometric entity—surface. Here, a
surface refers to a basic individual face shape, such as planar surface, cylindrical
surface. Jointly, they define the geometry of the EMF. A surface is termed real
when the inside of its boundary is solid or imaginary when the boundary is
enveloping an empty area.

Taking the four-side pocket F10 (Fig. 6.12) as an example, its detailed repre-
sentation can be described as follows, where S27–35 are real surfaces and
S101–111 are imaginary surfaces.

Representation Scheme of 4-side pocket {

Feature ID: F10;
Feature type: 4-side pocket;
Reference feature/Reference face: none;
Main surface: S27;

Fig. 6.12 Test part with a four-sided pocket
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Associated surfaces: S28, S29, S30, S31, S32, S33, S34, S35;
Length: 110, Tol.: 0.01;
Width: 80, Tol.: 0.01;
Depth: 20, Tol.: 0.01;
Corner radius: 10;
Volume feature: (S27, S28, S29, S30, S31, S32, S33, S34, S35, S101, S102);
Primary tool access direction: [0, 0, −1];
Secondary tool access direction: none;
Tool type: 2-Flute-End-Mill with diameter no more than 20;
Tool path generation logic: loop (wall) and zigzag (island);
Shell of IMV: (S27, S28, S29, S30, S31, S32, S33, S34, S35, S101, S103, S104,
S105, S106, S107, S108, S109, S110, S111);
IMV: (S27, S28, S29, S30, S31, S32, S33, S34, S35, S101, S102, S102, S103,
S104, S105, S106, S107, S108, S109, S110, S111);

} End of Representation Scheme.

6.3.3 Generic Machining Process Sequencing

The task of machining process sequencing is treated as the task of EMF sequencing
in this book, provided that a list of all machining features of a part is given. Within
the context, the task can be accomplished by grouping the EMFs first into setups
and then sequencing the EMFs in each setup using EMF-based reasoning approach.

6.3.3.1 EMF Grouping

In a mechanical design, functional requirements of a part are normally expressed by
geometrical dimensions and tolerances. To eliminate as much machining error
stack-up as possible, it is suggested that the machining features with certain
functional relationships should be grouped together and machined in one single
setup, based on an appropriate datum reference frame. A datum reference frame is a
reference coordinate system used to secure other machining features in the same
part, and is determined by the functional relationships (e.g.//, ?, ⊕, etc.) among the
machining features. The EMF grouping includes three steps: choosing datum ref-
erences, finding a primary locating direction, and grouping EMFs into appropriate
setups.

• Step 1: Choosing datum references. One of the relationships among EMFs is the
datum dependency precedence given in the representation scheme of an EMF as
reference feature and/or reference face, which expresses the position, orienta-
tion or profile tolerance requirements of the EMF. By tracing the reference
feature/face of each EMF, a primary datum reference frame and its dependency
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precedence of multiple datum references (if any) can be identified. The first item
of the sorted results of datum dependency is the primary datum reference.
The EMF grouping must be arranged according to the sequence of the datum
reference frame and their dependency.

• Step 2: Finding a primary locating direction. Here, a primary locating direction
is the surface normal ~V of the primary locating surface (PLS), which usually
serves as the primary datum reference for determining the spatial position and
orientation of a workpiece and constrains at least three degrees of freedom. It
should align with or be orthogonal to the Z-axis of a machine tool, depending on
the configuration of the machine tool.

• Step 3: Grouping EMFs into appropriate setups. Based on the primary locating
direction ~V (setup orientation) determined in Step 2, the EMF grouping can be
accomplished by searching for those EMFs whose tool access directions TEMF

are opposite to ~V , and grouping them into setup ST~V .

To be generic, the setups at this stage are planned for 3-axis machines, as their
configurations form the basis of other machines with more axes. In other words, the
3-axis-based setup planning makes a process plan generic and applicable to other
machines with different configurations. However, a setup merging is required for 4-
or 5-axis machines, after a specific CNC machine is selected. The machining
environment where the workpiece is to be machined is considered as a constraint
during setup merging. This setup merging is straightforward if a machine’s con-
figuration is given, and can be carried out by the Execution Controller before
downloading them to specific machines. Fixturing information is also integrated
with DPP. Specific fixturing constraints are input to DPP, against which each
machining feature is checked during EMF grouping into a specific setup. Details on
setup planning for fixturing are to be described separately.

6.3.3.2 EMF Sequencing

The EMF sequencing normally consists of two parts: multiple setup sequencing and
EMF sequencing within each setup. The issue of multi-setup sequencing is
addressed implicitly when selecting locating directions (primary, secondary, etc.)
for the EMF grouping, in terms of the generalised accuracy grade and critical datum
reference. The true challenge of EMF sequencing is now shifted to how to sequence
EMFs within each setup, when their machining sequence cannot be determined
simply by the datum relationships and manufacturing constraints among the EMFs.
An EMF-based geometric reasoning approach is adopted by tracking and com-
paring the IMV against AMV (or volume feature) of each EMF. By applying the
following five reasoning rules sequentially, a machine-neutral sequence plan with
multiple setups can be created. For example, in the case shown in Fig. 6.9, the IMV
of the hole varies between its MMV and its AMV along the machining process. As
a rule of thumb, if the IMV of an EMF equals the AMV of the EMF, it is the time to
machine the EMF.
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Rule 1 During sequencing, when the IMV of a machining feature equals the AMV
of the machining feature or IMV = AMV, this machining feature is ready for
machining.

Applying Rule 1 to the case shown in Fig. 6.9, it is easy to conclude a sequence
of Step 1! Step 2! Hole for machining. Figure 6.13 shows 30 typical cases after
applying Rule 1.

This rule works effectively for EMF sequencing with feature interactions.
However, after applying Rule 1, there still exist some cases that cannot be handled
by this rule, in which the sequence of two machining features is remained in parallel
(as shown in Fig. 6.13), such as Case 8: Thru slot + Step. In this case, if the thru
slot is cut first, the Step will be divided into two smaller ones, which is against the
definition of a machining feature being a basic single machinable shape.

Rule 2 If the IMV of machining feature A is to be divided into more than one piece
as a result of the machining operation of machining feature B, the machining
feature A should be cut first.

In addition to the feature-splitting case encountered in Rule 2, there are cases
that incorrect sequences may result in different types of machining features, such as
Case 2: Slot + Face. In this case, if the Face is milled first, the Face feature in

Fig. 6.13 Enriched machining feature sequencing results after applying Rule 1
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machining is actually changed to a Step. This is not allowed, as different EMF types
require different machining data (tool type, tool access direction, and tool path
pattern, etc.). Rule 3 is therefore established to prevent such ill cases.

Rule 3 If a machining feature is to be changed to another feature type as a result
of its own machining operation, this machining feature is not ready and should be
cut later.

The remaining parallel cases after applying Rule 1 to Rule 3 do not have feature
interactions and their machining sequences are non-critical. They are further han-
dled by adopting the knowledge of best practices or know-how of operators. One
rule commonly used by machinists is that the bigger volume is to be removed first,
because removing a bigger volume generally produces greater cutting force and
cutting heat that result in more deformation and poorer surface quality, especially
for large workpieces.

Rule 4 A bigger machining volume is to be cut first.
Figure 6.14 shows the EMF sequencing results after applying the reasoning

Rules 2–4 to those parallel cases remained in Fig. 6.13.
Although Rules 1–4 are applied sequentially during EMF sequencing, Face and

Side features are handled differently, except Case 2. These two types of EMFs
usually cover large surface areas and are frequently used as datum references. They
are normally removed first in each setup. In addition, the tool type information
embedded in each EMF is used to group the sequenced EMFs in each setup to
minimise the tool-change time.

Rule 5 In a setup, the machining features sharing the same tool types are grouped
into clusters.

By applying the five rules, a machine-neutral sequence plan can be generated.
These rules cover all critical EMF sequences of a prismatic part. The remained
parallel sequences, if any, are non-critical and will be up to the controller-level
operation planning to determine.

6.4 Adaptive Machining Feature Sequencing

For adaptive machining feature sequencing, a reachability-based approach [11] is
introduced in this section.

Fig. 6.14 Sequenced results of the six parallel cases
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6.4.1 Reachability-Based Approach

In graph theory, reachability refers to the ability to get from one vertex to another in
a graph. Using similar logic, the reachability-based approach uses the reachability
matrix for representing an MF sequence in a graph structure. Reachability matrix is
developed from the adjacency matrix that is formed from the MFs path graph [12].
The method has been used in operation sequencing, considering different aspects of
operations, e.g. dimensional tolerance, geometrical tolerance, surface finish, accu-
racy, and cost [13, 14]. In order to use the reachability matrix for MF sequencing, it
is necessary to introduce two basic application conditions:

• MFs obtained from the workpiece can be regarded as the nodes in a path graph,
and

• The path can represent the relationship between MFs.

Based on the two conditions, MF path graph can be mapped. It is assumed that
MFs have already been obtained during MF recognition. Thereafter, the path can be
mapped according to the relationships of MFs. Figure 6.15 shows the reachability
based MF sequencing approach, where MF path graph, adjacency and reachability
matrices are the three key elements. First, MF path graph is mapped according to
the four mapping principles (MPs), i.e. Basic MP, Cutting Tool MP, Cross-Setup
MP, and Particular Requirement MP. These MPs are derived from the MF infor-
mation of the workpiece, selected cutting tools, setup plans, and machining
requirements. Adjacency matrix can then be obtained from the MF path graph.
Reachability matrix can thus be calculated based on the generated adjacency matrix.
In addition, if there are dynamic links due to the similarity of cutting tools in MF
path graph, the remaining MFs will be rescheduled after the relevant MF is cut.
Moreover, if “No Pointing End-MFs (NPE-MFs)” exist in the MF path graph, they
need to be sequenced through a two-step NPE-MF sequencing process. Finally,
combining all the results, the final sequence strategy can be determined.

Given that the reachability-based method aims to provide the MF sequence after
setup planning, the test part and setup plans are depicted beforehand to make the
process clearer. Figure 6.16 shows (a) a test part with 29 MFs, and (b) 3-axis and
4-axis based setup plans and the MFs under the same cutting tool. In SP of the DPP
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Fig. 6.15 Reachability based MF sequencing method
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Fig. 6.16 Information of the test part and its setup plans
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system, the setup plan is generated for a 3-axis machine tool, as Setups-1, 2, 3, 4, 5
shown in Fig. 6.16b. In the execution control process, a 4-axis machine tool is
chosen. Therefore, after adaptive setup merging, the test part can be cut in 2 setups;
Setup-① and Setup-②. Here, Setup-① only consists of Setup-1, while Setups 2, 3,
4, and 5 are grouped into Setup-②.

6.4.1.1 Development of MF Path Graph

MF path graph is generated according to the MF information, e.g. geometry
information, tolerance requirement, and machining operation. Different rules have
been defined for MF sequencing which are derived directly from MF information.
These rules are the key references for mapping MF path graph. Once these rules are
applied, the precedence of MFs among each other will be obtained where the MFs
with higher precedence for machining will be connected to the MFs with lower
precedence using an outgoing arrow. As a result, the MF path graph can be
obtained. Note that after applying these rules, some MFs can be grouped together.
In this case, the sequencing approach discussed here will be performed on the
grouped MFs. However, within the group, the sequence of MFs is determined by
their precedence relation before grouping and/or the volume rule (explained in
Sect. 6.3.3.2). The four developed mapping principles (MPs) are as follows.

(1) Basic mapping principle

Basic mapping principle (B-MP) is a mandatory rule that must be followed, i.e. if
there is an arrow line from MF1 to MF2, MF2 cannot be cut before MF1. This type
of relationship among features can be derived from the MF geometry information,
position relationship, intersection relationship and tolerance requirement. These
requirements can be summarised by the following rules:

Rule B1 If the reference faces required by a cutting tool to machine MF1 are
removed by the machining of MF2, or MF1 is a reference feature for machining
MF2, then MF1 has precedence to MF2 [15]. These references are usually defined at
the design stage and can be obtained from the part design.

In Fig. 6.17, MFs 3, 19 are side features, and are related through a parallelism
requirement where MF3 is considered a reference for MF19. According to Rule B1,
MF3 should be cut before MF19.

Rule B2 During sequencing, when the intermediate machining volume (IMV) of an
MF equals the machining volume (the actual machining volume: AMV) of the MF,
or IMV = AMV, this MF is ready for machining [16].

In Fig. 6.18, MF1 (face) and MF2 (4-side pocket) can be sequenced using Rule
B2. Before MF1 is cut, IMV of MF2 is the sum of the volumes shown inside the
green and blue lines. Therefore, IMV > AMV (only the volume shown in blue
lines) and as a result, MF2 cannot be cut. Whereas after MF1 is cut, IMV of MF2
would be the blue part (equal to AMV) and MF2 can be cut. Hence, MF1 should be
cut before MF2.
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Rule B3 If the IMV of MF1 is to be divided into more than one piece as a result of
the machining operation of MF2, then MF1 should be cut first [16].

In Fig. 6.19, MF18 (brown area) is a hole, and MF16 (red area) is a slot. If
MF18 is cut first, MF16 would be divided into two parts. Hence, after applying
Rule B3, MF16 should be cut before MF18.
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B-B
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0.01 A

MF3

MF19

Fig. 6.17 Sequencing machining features with reference relationship

MF1

MF2

Fig. 6.18 Machining feature sequencing related to intermediate machining volume

MF18 MF16 MF13

Fig. 6.19 Machining feature sequencing related to intersection
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Rule B4 If an MF is to be changed to another feature type as a result of its own
machining operation, this machining feature is not ready and should be cut later
[16].

Rules B1-B4 specify the basic relationships of MFs, and are used to determine
the sequence between the MFs and obtain the B-MP.

B-MP If the sequence of two MFs can be determined by applying Rules B1, B2, B3
and B4, these two MFs can be mapped by B-MP. Meanwhile, a single-arrow line
should be mapped from the high-precedence MF to the low-precedence one in the
MF path graph.

After applying the B-MP, the basic schema of MF path graph can be obtained, as
shown by the black arrows and MF elements in Fig. 6.20. Moreover, all of MFs can
be linked and divided into different layers. The first MF(s) to be machined will be
placed in the first layer, its neighbouring MFs are located in the second layer, and
other layers can be obtained in a similar way, as shown in Fig. 6.20.

(2) Particular requirement mapping principle

Each workpiece consists of different particular structures which require specific
machining strategies different from the traditional approaches e.g. machining of thin
walls or material splice structures. In such a case, all of the MFs involved in those
structures need to be cut together with special machining methods. Hence,
Particular Requirement MP (PR-MP) is introduced for this purpose.

MF1

MF2 MF3 MF4

MF5 MF6 MF8 MF9MF7

Basic Mapping Principle Fixed connection based on tool

La
ye

r 
1

La
ye

r 
2

La
ye

r 
3

Dynamic connection based on tool

La
ye

r 
4

MF12MF10 MF11

Fig. 6.20 Machining feature path graph
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PR-MP All MFs involved in a particular structure should be merged together and
treated as one unique MF in the sequencing process. Therefore, there is no need to
map arrows among these MFs.

The MF2 ! MF5 area in Fig. 6.20 illustrates one scenario where PR-MP is
applied. After applying PR-MP, related MFs are represented by the related MF
located in the highest layer (MF2 in this case), i.e. all of the low-layer MFs are
removed in the sequencing process. Also, all of the arrows between these MFs are
removed. In addition, all of the arrows pointing to these MFs need to be mapped to
the related MF located in the highest layer. As shown in Fig. 6.20, both MF5 and
the arrow connecting MF2 to MF5 are removed from the sequencing process.

(3) Cutting tool mapping principle

In the current manufacturing environment, more and more multi-functional cutting
tools can be found in the market. As a result, a single type of cutting tool is capable
of machining different types of MFs. This issue should be considered in the MF
sequencing process in order to reduce the number of tool changes. Also, sometimes
different unexpected conditions might occur during the machining process, espe-
cially when a cutting tool is broken and no similar cutting tool is available to
replace it. In this case, the MF sequence needs to be changed in case another type of
tool is selected for machining. Hence, the cutting tool MPs should be considered.
However, depending on the positions of the involved MFs (similar or different
layers), different types of mappings have to be taken into account.

• Same layer mapping principle

When the MFs in the same layer could be cut with the same cutting tool, Same
Layer Mapping Principles (SL-MPs) should be used.

SL-MP 1 If MFs in the same layer could be cut with the same cutting tool, and
have the same up-layer MF, they should be grouped as one MF for sequencing, and
represented by the smallest ID.

The yellow area in Fig. 6.20 shows a scenario where SL-MP 1 can be applied.
After applying this MP, MF6 represents the merged MF6 and MF7. In addition, the
arrows pointing to those MFs that should be removed from the sequencing process
are removed (e.g. the arrow from MF3 to MF7).

As shown in Fig. 6.16b, MFs 6, 12, 21, 29, 3, 9, 26, 8 are in Setup-1, positioned
in the same layer, and can be machined by the same cutting tool T04. Therefore,
according to SL-MP 1, they can be treated as one unique MF in the sequencing
process. Hence, the MF path graph for Setup-1 can be revised as shown in
Fig. 6.21, where MF3 represents MFs 6, 12, 21, 29, 3, 9, 26, 8. Thereafter, it is easy
to achieve the MF sequence, MF20!MF3 (MF3, 6, 12, 21, 29, 9, 26, 8)!MF19.

SL-MP 2 If MFs in the same layer could be cut with the same cutting tool, and
have different up-layer MFs, they should be linked with a dynamic two-arrow line.
The sequencing strategy is that as long as one of the linked MFs can be cut (i.e. one
of the up-layer MFs has been cut), the two-arrow line among linked MFs should be
changed to a single-arrow line pointing from the second MF to the current
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machinable MF. In this case, MF sequence should be rescheduled where a first-
layer MF has to be selected among the remaining MFs. Generally, first-layer MF
should be the MF with the least reference lines (arrows pointing to it from other
MFs). However, if there were more than one MF with the same least reference
lines, the Volume Rule should be used.

Volume Rule A bigger machining volume is to be cut first between MFs.
In Fig. 6.20, MF7 and MF8 can be cut with the same tool and have different

up-layer MFs. A dynamic arrow (dotted blue line) represents their relationship. In
case MF3 (or MF4) is cut, the rescheduling process should be targeted (SL-MP 2)
and the first-layer MF has to be selected. If MF3 or MF4 is cut, both MF4/MF3 and
MF2 can be candidates for first-layer MF since they have similar least number of
reference lines, i.e. 1. As can be seen, since both MFs have similar reference lines,
the Volume Rule should be used for selecting the first-layer MF. Therefore, the MF
with the largest machining volume will become the first-layer MF. Finally, the
sequencing process will be carried out based on the new MF path graph.

• Different layer mapping principle

When the MFs in different layers could be cut with the same cutting tool, different
layer mapping principles (DL-MPs) should be used.

DL-MP 1 If two MFs are in neighbouring layers, and there is a single-arrow line
between them, they should be grouped together for sequencing.

For example, as shown in Fig. 6.20, MF4 and MF9 can be cut with the same
cutting tool; they are merged together (the blue area) and represented by MF4 for
the sequencing purpose.

DL-MP 2 If two MFs are in neighbouring layers, and there is no line between
them, a single-arrow line should be mapped from the lower-layer MF to the upper-
layer MF.

As shown in Fig. 6.20, MF2 and MF6 could be cut using the same tool, and
therefore a single-arrow line (orange line) is mapped from MF6 to MF2.

MF20

MF3

MF19

MFs 6, 12, 21, 
29, 9, 26, 8 

Fig. 6.21 Path graph of MFs
in Setup-1
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DL-MP 3 If two MFs are not in neighbouring layers, and there are no path ways
from the upper-layer to the lower-layer, a single-arrow line should be drawn from
the lower-layer MF to the upper-layer MF.

In Fig. 6.20, MF3 and MF12 can be cut with the same cutting tool, and a
single-arrow line (orange line) is therefore mapped from MF12 to MF3.

(4) Cross-setup mapping principle

In the DPP system, the setup plan in SP is for 3-axis based setups; therefore, when a
4-axis or 5-axis machine tool is selected, some of the 3-axis setups need to be
merged in a new setup [17]. In this case, MF sequence needs to be adjusted, and all
of the first-layer MFs of the merged 3-axis setups can be the candidates of the
first-layer MF in the new setup. Hence, Cross-Setup Mapping Principle (CS-MP) is
introduced to decide the first-layer MF among the first-layer MFs in all of the
original setups.

CS-MP If MF sequencing is carried out for cross-setups, the first-layer MF in a
new setup should be the one with the most links among the first MFs of the original
setups. In other words, the MF that has precedence to more MFs should be selected
in order to ensure that more MFs can be exposed for sequencing. In case there are
more than one MF with similar number of the most lines, Volume Rule should be
applied and the biggest machining volume among the MFs should be selected as
the first-layer MF.

In Fig. 6.16, in the new Setup-②, MF1, MF16, MF14 (23), MF17 are the
first-layer MFs in the original Setups-2, 3, 4, 5. MF1 has the most linked lines, and
after applying CS-MP, it becomes the first-layer MF in the new Setup-②.

6.4.1.2 Basic Algorithm of Reachability Matrix

(1) Adjacency matrix

Adjacency matrix M is derived from the generated MF path graph, and can be used
for calculating the reachability matrix Mr. Matrix M is shown as follows:
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where xij is either 0 or 1, depending on the relationship between MFs i and j. When
there is an arrow line from MF i to j, xij ¼ 1; otherwise, xij = 0.

(2) Reachability matrix calculation

Based on the adjacency matrix M, the reachability matrix Mr can be obtained
through the step-by-step procedure explained below. To compute the matrix Mr
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from the adjacency matrix, the 0 and 1 elements will be processed using the
Boolean arithmetic concept which differs from ordinary arithmetic only in that:

1þ anything ¼ 1 ð6:2Þ

In general, to go from Mk−1 to Mk for every row in Mk−1 that has a 1 in column
k, add row k to that row. Continue until Mn is obtained, and the reachability matrix
Mr = Mn.

(3) Sequence calculation

According to the reachability matrix, the sum SR of every row can be calculated,
and the MF sequence can be scheduled by following the value of SR from the
biggest to the smallest.
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where yij = 0 or 1, based on the calculation result of reachability matrix.

6.4.1.3 Sequencing for no Pointing End Machining Feature

No Pointing End Machining Features (NPE-MF) are located at the end of MF path
graph. Therefore, they do not have any outgoing arrows (precedence) to other MFs
and have only one incoming arrow from another MF, e.g. MF10 and MF11 shown
in Fig. 6.20. The sequence of these MFs cannot be obtained by reachability matrix
calculation.

In addition, NPE-MFs can also be obtained from the final adjacency matrix
(without dynamic two-arrow lines in the path graph) and according to the every-row
sum SAR and every-column sum SAC. Any MF with the following condition:
SAR = 0 and SAC = 1, is considered a NPE-MF. Therefore, checking SAR and SAC
of an MF is one way of recognising NPE-MFs, which can easily be performed by
computer.

1 � � � n SAR
1
..
.

n

x11 � � � x1n
..
.

xij ..
.

xn1 � � � xnn

2
64

3
75 Pn

j¼1
xij

SAC
Pn
i¼1

xij

ð6:4Þ
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The sequence of NPE-MFs cannot be obtained from the calculation of the
reachability matrix. Therefore, the sequence needs to be determined according to
the characteristics of those MFs. First, it is important to consider whether they are in
the same 3-axis based setup in order to reduce the number of setup changes.
Second, if they are not in the same setup, it has to be determined whether they can
be cut with the same tool in order to reduce the number of tool changes. The
following steps have been adopted for sequencing NPE-MFs while considering the
above concerns.

• Step 1: If there are NPE-MFs in a setup including the last MF (the last MF that
can be sequenced before this step), the machining should start from the MFs
without the same tool relationships with other NPE-MFs. The sequence for them
is organised from the biggest machining volume to the smallest one. Then the
MFs with the same tool should be cut immediately.

• Step 2: For the remaining MFs mentioned in Step 1, if the last MF is in a
different setup from Step 1, apply Step 1 again. If the last MF is in the setup of
Step 1, the MFs with the biggest machining volume should be cut first.

• Step 3: If there are MFs that can be machined by the same tool of the last
machined MF, all of those MFs should be cut accordingly, before re-applying
Step 1. Otherwise, go back to Step 1.

After applying Steps 1–3, the sequence of all of the NPE-MFs can be obtained.

6.4.2 Case Study

In order to demonstrate the effectiveness of the proposed method in this chapter, it
is necessary to compare it with the DPP approach [18]. The test part depicted in
Fig. 6.16a is used for the case study. The MF sequence of the test part and the
number of tool changes are calculated and presented for both methods.

6.4.2.1 Current Method

MF sequence in DPP can be generated based on the rules within 3-axis setup in SP,
which does not change during execution control. Figure 6.16b shows the results of
the setup plan, where Setups-1, 2, 3, 4 and 5 are based on 3-axis machining.

• In Setup-1, the MF sequence is MF20 ! MF3 (including MFs 6, 12, 21, 29, 9,
26, 8) ! MF19, as shown in Fig. 6.21. Two types of cutting tools are needed.
Therefore, the number of tool changes C1 is 2.

• In Setup-2, the MF sequence is MF1 ! MF2 ! (MFs 4, 10, 24, 27) ! MF25
! MF7 ! (MFs 5, 11, 22, 28), and six types of cutting tools are used.
Therefore, the number of tool changes C2 is 6.
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• In Setup-3, the MF sequence is MF16 ! MF13 ! (MFs 15, 18), which can be
machined by three types of tools. Therefore, the number of tool changes C3 is 3.

• Similarly, in Setup-4, MFs 14 and 23 can be cut by the same tool. Therefore, the
number of tool change C4 is 1.

• In Setup-5, only one MF (MF17) exists, which uses a different tool from the one
used in Setup-4. Therefore, the number of tool change C5 is also 1.

After setup merging, Setup-① and Setup-② are obtained, as shown in
Fig. 6.16b. According to the MF sequences in the original setups, the new MF
sequence can be determined as follows:

• Setup-①: MF20 ! MF3 (MFs 6, 12, 21, 29, 9, 26, 8) ! MF19
• Setup-②: MF1 ! MF2 ! MF4 (MFs 10, 24, 27) ! MF25 ! MF7 ! MF5

(MFs 11, 22, 28) ! MF16 ! MF13 ! MF15 (MF18) ! MF14 (MF23) !
MF17.

6.4.2.2 Reachability Matrix

Setup-① only consists of Setup-1, and MF sequence is shown in Fig. 6.16b.
Therefore, the number of tool changes is 2.

Setups-2, 3, 4 and 5 are merged into Setup-②. In this case, MFs sequence is to
be adjusted. According to the present method, the MF path graph should be mapped
first. Figure 6.22 shows the MF path graph obtained by applying B-MP, SL-MP
1-2, and DL-MP 2 in CT-MPs.

Adjacency matrix can be obtained, as shown in Eq. (6.5), according to the
relationship of MFs shown in Fig. 6.22.

MF1

MF2MF4 MF5

MF25 MF13MF15

MF7 MF17

MFs 10,24,27 
MFs 14,23

MFs 11,
22,28

MF18

MF16

Fig. 6.22 MF path graph in Setup-②
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Based on the adjacency matrix and the reachability matrix calculation steps, the
reachability matrix can be determined as follows:
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According to the reachability matrix, the sequence is derived as: MF1 ! MF7
! MF2 or MF13 ! MF4 (MFs 5, 15, 17, 25), on the basis of which, after
machining MF1 and MF7 (MFs 7 and 16), MF15 can be cut. In this case, SL-MP 2
is applied so that the remaining MFs are adjusted and the dynamic line is changed
to a single-arrow line from MF25 to MF15. Also, MF13 and MF17 are grouped
according to SL-MP 1, and MF13 (MFs 13, 17) becomes the first-layer MF based
on SL-MP 2. Therefore, the new MF path graph can be mapped, as shown in
Fig. 6.23.

MF2MF4 MF5

MF25

MF13

MF15

MFs 10,24,27 
and MFs 14,23

MFs 11,22,28 MF18

MF17
Fig. 6.23 Rescheduled MF
path graph in Setup-②
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Based on the above revised MF path graph, adjacency matrix is updated. Since
the new graph includes no dynamic lines, NPE-MFs can be determined. According
to the definition of NPE-MFs, MFs 4 and 5 belong to this category.
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Reachability matrix can thereafter be calculated:
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According to the result of the reachability matrix, the sequence can be refined as:
MF13!MF2!MF25!MF4, MF5 or MF15. Since MF15 (MFs 15 and 18) and
MF25 can be machined with the same tool, after machining MF25, MF15 should be
cut immediately. Therefore, the sequence can be finalised as: MF13 ! MF2 !
MF25 ! MF15 ! MF4 or MF5.

For sequencing the NPE-MFs (MFs 4, 10, 24, 27), MFs 14, 23, and MFs 5, 11,
22, 28, after applying the method, the following sequence is obtained: MFs 5, 11,
22, 28 are cut first, followed by MFs 4, 10, 24, 27, and finally MFs 14, 23 are cut.
According to the cutting tool information shown in Fig. 6.16b, the number of tool
changes is 7.

Therefore, from the calculations above, the final MF sequences are,

• Setup-①: MF20 ! MF3 (MFs 6, 12, 21, 29, 9, 26, 8) and MF19
• Setup-②: MF1 ! MF7 (MF16) ! MF13 (MF17) ! MF2 ! MF25 ! MF15

(MF18) ! MF5 (MFs 11, 22, 28) ! MF4 (MFs 10, 24, 27) and MF14 (MF23).

The number of tool changes for machining the whole part are 9 (Setup-①: 2,
Setup-②: 7). From the results of the case study, the number of tool changes is
reduced from 13 to 9, leading to a considerable performance improvement.
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6.5 Adaptive Setup Merging and Dispatching

The supervisory planning [19] within DPP can generate a generic sequence plan. At
the same time, a setup plan is created for 3-axis machines, as their configurations
form the basis of other machines having more axes. However, setup merging is
required for a 4- or 5-axis machine to best utilise the capability of the higher-end
machine tool, after the non 3-axis machine is selected. This is explained through an
example.

According to the geometric reasoning rules [16], a 3-axis based generic setup
plan of a test part (shown in Fig. 6.24a) with 26 machining features can be gen-
erated. It consists of 5 setups, each of which contains a set of partially-sequenced
machining features, as shown in Fig. 6.24b. The light grey areas are setups and the
dark grey areas indicate the feature groups sharing the same cutting tools. Each
3-axis based setup can be represented by a unique unit vector u indicating its
tool-access direction (TAD). When a 5-axis machine {X, Y, Z, A (around X),
B (around Y)} is selected, more than one of the 3-axis based setups of the test part
may have a chance to be machined in one final setup through setup merging.

The setup merging examines whether other setups can be included in a final
setup by checking the unit vector u of each setup against the tool orientation space
(TOS) of the selected machine. The procedure is straightforward by following two
steps and their iterations, i.e. (1) aligning the locating direction of a final setup to
the spindle axis Z, and (2) searching for an orientation that includes a maximum
number of 3-axis based setups by rotating the part around the spindle axis Z. This
merging process is repeated for all setups until a minimum number of 5-axis based
final setups can be reached. Since the first step can be done easily by using matrix
transformation, we only provide details on the second step due to page limitation.

Figure 6.25a shows a typical scenario, where a setup has been aligned with -
Z axis and another 3-axis based setup with a tool access direction ui (xi, yi, zi) is
under consideration. The goal is to rotate the vector ui (or the test part) around
Z and at the same time determine a mergable range (or ranges) within 2p, where ui
can fit in the TOS of the machine. The TOS is represented as a spherical surface
patch denoted by EFGH in Fig. 6.25a.

As shown in Fig. 6.25a, the spherical coordinates of ui are (1, ci, hi). By rotating
ui around Z, a circle Ci is obtained.

xi ¼ sin hi cos ci
yi ¼ sin hi sin ci
zi ¼ � cos hi

8<
: ð6:9Þ

where, hi is a constant and ci 2 [0, 2p]. The Ci may intersect with the spherical
surface patch EFGH defined by
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If zij j\ zj jmin, the segment EF : /A ¼ Uþ
A ;/B 2 U�

B ;U
þ
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� �� �
, and the circle Ci

has no intersection. If zi\0 and zij j[ zj jmax, the segment EF and circle Ci intersect
over the entire range of [0, 2p]. Otherwise, if zi\0 and zj jmin\ zij j\ zj jmax, EF and
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Fig. 6.25 Setup merging for a 5-axis machine
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Ci intersect with each other along the edge of the TOS. Figure 6.25b gives the
mergable range of the case shown in Fig. 6.25a, which can be calculated for every
3-axis based setup.

As shown in Fig. 6.26, a pose (position and orientation) of the test part that
provides the most overlapping mergable range determines a 5-axis based setup.

Figure 6.27 depicts the result of the test part after the five generic setups in
Fig. 6.24b have been merged to two setups (light grey areas) for the 5-axis machine.
This final setup plan in the form of two composite function blocks can then be
dispatched to a chosen machine for machining.

6.6 Conclusions

This chapter introduces a function block enabled distributed process planning
(DPP) system including supervisory planning and operation planning. The former is
done in a central computer in the cyber world and the latter is carried out in a
machine controller in the physical world. Particular focus is given to machining
process sequencing, which is treated as sequencing of machining features in
varying setups. Tool change reduction is also considered in the process planning in
improve the overall machining performance. For interested readers, further reading
is referred to the following references.
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Chapter 7
Condition Monitoring for Predictive
Maintenance

7.1 Introduction

Predictive maintenance is based on condition monitoring and prognosis. Condition
monitoring observes the current status of a situation, whereas prognosis refers to
forecasting the likely outcome of the situation which typically involves two
inherently related steps. First, analytical models are established to summarise the
historical evolution of the situation (e.g., variation in stock price, deterioration of
machine conditions, or spread of infectious disease) in a quantitative manner. These
models are then modified by updated information to predict the future development
of the situation [1]. The predicted value is associated with a confidence level, which
results from the uncertainty involved in the prediction process.

Prognosis has been investigated for a wide range of applications, including
disease [2] and epidemiology prediction [3], weather forecasting [4], and mainte-
nance scheduling [5] (see Fig. 7.1). In the context of manufacturing, prognosis has
been used to identify short-term and long-term actions or decisions to estimate the
remaining useful life (RUL) of a tool, machine or system [6–8] based on the
conditions monitored and diagnosis obtained [9, 10]. It provides a scientific and
technological basis for maintenance scheduling, asset management, and more
reliable system design [11, 12].

The operational reliability of industrial machines and assets significantly influ-
ences the sustainability of manufacturing [13] and competitiveness of the industry.
Because the operational reliability of a machine system decreases as the duration of
its operation progresses, ensuring reliability during the designed lifecycle of the
machine becomes a critical task for maintenance. In traditional time-based main-
tenance, machine inspections are performed periodically independent of a
machine’s current condition. Although such an approach is effective in reducing
equipment failures, it generally does not provide information on the RUL of a
machine. Furthermore, time-based maintenance can be expensive with the
increasing complexity of machines and equipment in modern manufacturing.
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Addressing this challenge, condition-based maintenance (CBM) has been
developed as a maintenance strategy that schedules maintenance actions based on
the machine conditions without interrupting normal machine operations [14]. Fault
diagnosis is a critical part of this process that links the identified abnormal beha-
viours in a machine to possible root causes [15]. Maintenance actions may then be
performed based on the identified failure type and underlying mechanism. With the
advancement of predictive science, prognosis has been increasingly recognised as a
valuable complement to CBM in manufacturing. This has led to a more efficient
maintenance approach termed intelligent preventive maintenance (IPM), which
minimises the machine down time, maintenance cost, and reliance on human
experience for maintenance scheduling.

The remainder of this chapter reviews the historical development of prognosis
theories and techniques and projects their future growth enabled by the emerging
cloud infrastructure. Techniques for cloud computing are highlighted, as well
as their influence on cloud-enabled prognosis. Finally, this chapter discusses
the envisioned architecture and challenges of cloud-enabled prognosis in
manufacturing.

Fig. 7.1 Predictive science and its application in manufacturing [1]
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7.2 Fundamentals of Prognosis

Failure in a machine progresses through several stages from failure initiation to
eventual functional failure. Predictive techniques can help determine how quickly a
machine’s functional degradation is expected to progress from its current state to its
final failure [16]. Figure 7.2 illustrates the relationship between maintenance cost
and reliability of machines [11].

Prognosis and preventive maintenance can specifically [17]:

• Increase system safety, improve operational reliability, and extend service life of
machines;

• Increase maintenance effectiveness and optimisation of logistic supply chains;
and

• Reduce maintenance costs created by repair-induced failures or unnecessary
replacement of components.

Research on prognostic technologies has grown and provides the basis for
prognosis-centred maintenance. Jardine et al. [8] summarised technologies for di-
agnosis and prognosis that implement CBM. Peng et al. [11] reviewed typical
prognostic techniques and presented a strengths-and-weaknesses analysis of the
candidate techniques. Si [18] discussed statistical approaches. Sikorska et al. [19]
compared different modelling options for RUL estimation, from the perspective of
industry and business applications. Baraldi [20] investigated the capabilities of
prognostic approaches to deal with various sources of uncertainty in RUL predic-
tion, focusing on particle filtering (PF) and bootstrap-centred techniques. Heng
et al. [21] and Sun et al. [17] discussed the potential benefits, challenges, and
opportunities associated with rotating machinery prognosis.

Depending on the types of data and information needed to characterise the systems
of interest and predict its future behaviour, prognosis techniques can be classified into
three categories: physics-based, data-driven, and model-based (see Fig. 7.3).

Remaining useful life 

Maintenance Cost
Reliability

30 20 10 0

Optimum time for 
maintenance

Cost of unreliability Cost to improve reliability

Fig. 7.2 Relationship between RUL, reliability, and maintenance cost, adapted from [11]
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Physics-based techniques describe the system behaviour with empirical formulae, for
which the related parameters are determined experimentally. In comparison,
data-driven methods rely exclusively on historical data, and numerically establish the
relationship between a machine’s current damage state and future health state.
Data-driven methods can be further divided into artificial intelligence-based (AI) and
statistical methods. In contrast to AI-based methods, the relationship between current
and future states in statistical methods is presumed to have specific probability
distributions, for which the parameters are obtained through regression or maximum
probability distribution algorithms. Model-based prognostic techniques combine the
above-mentioned two methods to improve the prediction accuracy and robustness. In
addition to this classification scheme, prognosis techniques can also be specified by
how uncertainty is handled in the prediction process, in terms of deterministic or
probabilistic properties. Compared to deterministic methods, probabilistic methods
regard machine health states and observations as probability distributions instead of a
defined value. Accordingly, damage degradation can be modelled as evolution of the
distributions. Furthermore, the results of prognosis, such as future state or RUL, are
also presented as probability distributions, with which confidence intervals for
evaluation of prognosis results can be obtained.

7.3 Prognostic Methods

Prognosis determines the expected progression of degradation in a machine or its
components from its current state to functional failure, and the confidence associ-
ated with the prediction. The confidence level quantifies the uncertainty that affects
the RUL prediction [22].
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Fig. 7.3 Classification of prognosis methods [1]
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Machine-specific data plays an essential role in prognosis. Data used in various
prognostic models can be categorised into condition monitoring data and event
data. Condition monitoring data refer to the data measured by sensors (e.g. force,
vibration, acoustic emission, or temperature) that are reflective of the current health
condition or state of the machines [10]. Characteristic features can be extracted
from the raw data and used as input to establishing analytical models for RUL
estimation. Event data includes information on what happened (e.g. installation,
breakdown, and overhaul) and what was done (e.g. component change and pre-
ventive maintenance) to the machine or component.

7.3.1 Physics-Based Models

Physics-based approaches provide a reliable and accurate estimate of all modelling
options by estimating the RUL using a mathematical representation of the physical
behaviour of the degradation processes. The difficulty is that this process requires
detailed and complete knowledge of the system behaviour, which is not readily
available for many manufacturing systems. Moreover, the majority of coefficients
or parameters involved in the physical models need to be determined experimen-
tally, which makes physical models application specific.

A common approach to assessing machine performance and degradation is to
evaluate tool wear or tool life, which directly correlates with the parameters for
machining (e.g. cutting speed, temperature, and feed rate). Among physical models
describing tool life, an important branch is based on Taylor’s tool life equation. As
described in Mills and Redford [23], Taylor’s basic equation relates tool life to
cutting speed in a reverse exponential relationship, VTn = C, where the exponential
coefficient n is experimentally determined.

On the other hand, tool wear rate models provide information about wear growth
rate (volume loss per unit contact area/unit time) due to some wear mechanisms
(e.g. abrasive wear, adhesive wear, diffusion wear). It has been indicated experi-
mentally that the cutting velocity and the index of diffusion coefficient have the
most significant effect on tool wear rate [24]. The tool wear rate model can be seen
as a particular type of crack growth model or fatigue spall progression model.
Generally, a crack growth model is characterised by the stress intensity factor at the
tip of a crack K = f (a, r), where a is the half crack length and r is the nominal
stress. Theoretically, the crack is assumed to not propagate when K is smaller than a
threshold value. After exceeding the value, the crack growth rate will be governed
by a power law, such as Paris’ law da/dN = CDKm, where C and m are material
parameters [25]. However, Paris’ law does not account for the mean stress effects
and is only valid under conditions with uniaxial loading and “long cracks”.

More recently, Fan et al. [26] proposed a mathematical model for the wear
analysis of the slide guideway under cutting conditions by revealing the inherent
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interactions between cutting force, wear, and deformation of the slide guideway,
geometric errors, and final accuracy degradation of machine tools. Like other
physics-based models, these techniques require experimental estimation of various
model parameters.

7.3.2 AI-Based Data-Driven Models

Data-driven methods utilise information extracted from historical data to numeri-
cally establish a relationship between the current damage state and future state,
including AI-based and statistical methods.

Among AI-based methods, artificial neural network (ANN) and fuzzy logic are
the common approaches in RUL estimation to determine the next measurements or
extract feature indices based on the values measured at several preceding time units
[27]. A neural network applies historical data to train a model, which is in turn used
for prediction. Fuzzy logic compares the transformed input to a series of fuzzy rules
to obtain the prediction.

ANN provides an estimated output for the remaining useful life of a machine or
component based on measured condition-monitoring data or event data rather than a
physical understanding of the wear or failure mechanism. Because ANN is a purely
data-based method, it is insensitive to linear or nonlinear characteristics of a studied
system and does not require an analytical expression of the system behaviour. Its
drawbacks include that: (a) it requires a comprehensive data set to train the model;
(b) its performance relies largely on the selected model (network architecture,
activation function, etc.); and (c) it provides no uncertainty quantification on the
estimated output. It should also be noted that one developed neural network gen-
erally cannot be extended to other neural network architectures, other kinds of
machining operations, or other materials or tools. ANN is not able to process
linguistic and inaccurate input data. To overcome this problem, past research has
focused on integrating ANN with other methods, e.g. expert systems [28], Bayesian
inference [29], and fuzzy logic.

Fuzzy logic is a technique for arriving at a definite conclusion using linguistic
rules rather than empirically derived if-then rules. Compared to traditional expert
systems and other estimation techniques, fuzzy systems enable: (1) modelling
system behaviour in continuous mathematics of fuzzy sets rather than discrete
statements (true or false) and offering a reasonable compromise between rigorous
analytical modelling and purely qualitative simulation; and (2) qualitative and
imprecise reasoning statements to be incorporated with rule bases, which enables
these systems to process vague, imprecise, and noisy inputs.

For system behaviour and state forecasting, a fuzzy system estimates future
system states based on the information collected from previous states. To differ-
entiate the impacts of inputs at different times on the next step value prediction,
information weights are added to previous states. However, fuzzy logic systems
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have a major drawback in that fuzzy rules are developed by experts; therefore,
fuzzy logic cannot be applied when there is no sufficient knowledge and experience
for a problem.

7.3.3 Statistical Data-Driven Models

With presumed known knowledge of fault propagation characteristics, statistical
techniques assume that system performance degradation or fault deterioration fol-
low a certain distribution, such as Gaussian, Wiener, or Gamma distribution.
Unknown variables in the distributions that determine the moments are estimated
through regression, given available observations. Once the probability distribution
is determined, future state and RUL can be predicted from the current state, through
evaluation of the distribution. The benefit of this modelling concept is that pre-
diction results are probability distributions instead of deterministic values, hence a
confidence interval can be provided.

The Wiener process is a stochastic regression model with random noise that can
be used for modelling degradation processes and RUL prediction. It was first
proposed to model the movement of small particles in fluids and air with small
fluctuations, and can now be used to model the path of degradation processes where
successive and accumulative fluctuations in degradation can be observed.
Regarding practical applications, it has the following assumptions or limitations:

• The estimation of degradation uses only the current measurement data. This
assumption however can introduce problems.

• It was designed to model the non-monotonic motion of small particles. Thus, it
is inappropriate to process the monotonic machine degradations.

• The mean representation of modelled degradation, kt, is linear, and thus the
application limitation exists when handling nonlinear situations.

In contrast to the Wiener process, which is a non-monotonic process, the Gamma
process monotonically models gradual degradation accumulating over time, such as
wear, crack growth, and corrosion [30]. The major advantage of degradation
modelling using a Gamma process is the straightforward mathematical calculation.
However, the strict assumptions of the Gamma process limit its applications: (1) the
Gamma process is only appropriate to characterise a monotonic degradation pro-
cess; (2) due to its independent increment property, the estimation of a future state
is independent of the historical behaviour, which is similar to the assumption of a
Wiener process; and (3) the noise involved in the Gamma process that is used to
quantify the estimation uncertainty must follow the Gamma distribution.

Hidden Markov model (HMM) is defined as a combination of two stochastic
processes. The underlying stochastic process is a finite-state homogeneous Markov
chain that is not observable (i.e. hidden), which affects another stochastic process
that produces a sequence of observations [31]. A HMM is characterised by five
elements: number of model states; number of distinct observation symbols; an
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initial state distribution; a state transition probability distribution; and an observa-
tion symbol probability distribution [32]. HMM deals with three basic problems:

• Computing the probability of an observation sequence given the specific model;
• Identifying the most likely state sequence that might produce the observation

sequence; and
• Adjusting the parameters of the model to maximise the likelihood of the given

observation sequence.

When conducting RUL estimation, the implementation of HMMs includes two
stages: training and predicting. Typically, each HMM can only represent two states:
normal and failed. Thus, if the entire life of a piece of equipment is segmented into
M distinct sequential ranges, M different HMMs should be trained to characterise
each range. The presentation of temporally ordered observation sequences from
such a process would yield the sorts of log-likelihood trajectories.

If one HMM results in the largest log-likelihood for a given observation
sequence acquired within one duration, this HMM can be declared as the best
estimate describing the process during this duration, as shown in Fig. 7.4 [33].
Once parameters in HMMs are determined, RUL prediction is fulfilled by fore-
casting the progression of health states from the current state (the largest likelihood
HMM) to the failure state using transition probability between states and sojourn
time in each state (the duration of staying in one state) [34].

Regular HMMs tend to be limited in their ability to represent complex systems.
More importantly, in the absence of labelled state and measurement data, the
unsupervised training process is computationally tedious. In addition, regular
HMMs do not have intrinsic transition probabilities between underlying states since
each HMM represents a distinct health state. Hence, they require additional
methods to calculate health-state transition probabilities to be utilised in RUL
estimation.

Fig. 7.4 Log-likelihood for
different HMMs, adapted
from [1, 33]
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7.3.4 Model-Based Approach

Model-based technique uses probability distribution for its formulation. Unlike the
statistical data-driven method that regards a single variable (such as extracted signal
feature or one specific failure) as probability distribution, it considers all the related
variables (such as system states and measurements) as distributions. Based on the
relevant physical mechanisms, state evolution models and measurement models that
relate sensor output to the underlying machine states are established. Subsequently,
the machine state can be inferred given new measurements, by means of estimating
the posterior probability density function (PDF) [35]. For RUL prediction, once a
posterior PDF is determined, the RUL is defined as the conditional expected time to
failure, given the current state. In addition, model-based approach is capable of
evaluating uncertainty due to process and measurement noise when quantifying
accuracy, precision, and confidence (see Fig. 7.5). Accuracy is a measure for how
close a point estimate of the failure time is to the actual one, whereas precision is a
measure for the narrowness of an interval in which the remaining life falls. In
comparison, confidence is the probability of the actual RUL falling between the
bounds as defined by the precision [36].

A general way to estimate and update the posterior PDF is Bayesian inference.
Based on the assumptions of selected models and noise, RUL prognosis based on
Bayesian inference can be implemented by Kalman and particle filtering methods.
Figure 7.6 summarises various methods for calculating the posteriori distribution
under the framework of Bayesian inference.

The Kalman filter (KF) is a computationally efficient recursive data processing
technique used to optimally estimate the underlying state of a dynamic system
given a set of noisy measurements in the way that minimises the mean squared error
(MSE) of predictions [37]. The general process of Kalman filter includes state and
covariance prediction and update as shown in Fig. 7.7.

It should be noted that the state estimate is just the conditional expectation and
the covariance of the estimation error is actually the same as the covariance of the
state. KF is based on the Gaussian-Markov process assumption that both process
and measurement noise are zero-mean white stochastic processes. Meanwhile, the
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initial state, process, and measurement noise are assumed to be mutually inde-
pendent. Under this assumption, the KF is the optimal minimum MSE state esti-
mator [38]. For an observable time-invariant system, the state estimation covariance
will be finite and the filter will finally converge to a steady state. However, this
introduces another limitation besides Gaussian-Markov assumption that the esti-
mation model for time-variant system degradation can be unstable and its estima-
tions divergent.

An alternative to KF under Bayesian inference models and without requiring
strict modelling hypotheses such as linearity and Gaussian assumptions, are Particle
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Fig. 7.6 Overview of methods for calculating posteriori PDF [19]

Fig. 7.7 General flow of
Kalman filter process [38]
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filters (PF). The PF process provides a different approach to estimating the posterior
PDF via a set of random samples with associated weights. Similar to KF and other
Bayesian inference methods, the PF process contains two steps: (1) prediction:
updated posterior PDF of the model parameters at the previous step are used to
calculate the system states at the current time through underlying physical models;
and (2) update: predicted model parameters and system states, (i.e. particles and
their weights) are corrected based on the likelihood function combined with con-
dition monitoring data.

Along the evolution history of PF, sequential importance sampling (SIS) with
weights forms the basis for other variants. A common problem with SIS is however
the degeneracy phenomenon where after a few iterations all but few particles will
have negligible weight. This degeneracy implies that a large computational effort is
devoted to updating particles whose contribution to the approximation of the
posterior PDF is almost zero [39]. A potential solution to the degeneracy problem
derives the second representative of PF: sequential importance resampling (SIR).
The basic idea is to eliminate particles that have small weights and to concentrate
on particles with large weights as shown in Fig. 7.8b. After the resampling step, the
particles are no longer uniformly generated over the search range, but concentrate
on the positions with relatively large possibilities [40]. It is however important to
realise that the resampling process can result in many repeated particles: those
corresponding to the largest likelihoods. This leads to a loss of diversity among the
particles. Wang et al. [41] proposed a local search particle filter, which employs the
particles that are intentionally inherited from previous iteration to explore a wide
range of prior distributions based on the estimation result from last iteration as
depicted in Fig. 7.8c.
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Compared to KF, which is mature and established, PF is still fast evolving in the
field. Wang et al. [41, 42] developed a PF-based framework for precise RUL
estimation through a case study on tool wear, as shown in Fig. 7.9.

7.3.5 Comparison of Prognostic Models

The strengths and weaknesses of prognostic methods are individually summarised
in the previous sections. It should be noted that all the prognostic techniques
presented in the chapter face the same challenges, as listed below:

• Prognostic models are typically developed for specific type of machine or
component under certain operating conditions. As a result, it is difficult to
generalise a model to be universally employable;

• Uncertainties involved in the prognosis process are difficult to address. Even
though probabilistic models based on statistical data-driven and model-based
approaches provide a mathematical framework for tracking the evaluation of
sensor observation, they are not able to handle uncertainties caused by mod-
elling errors or other sources.

Fig. 7.9 RUL prediction and uncertainty estimation by PF, adapted from [42]
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Practically, evaluation metrics will be needed both quantitatively and qualita-
tively for selecting the most appropriate method for a specific application. Saxena
et al. [43] summarised metrics for prognosis performance evaluation in three
groups: algorithm performance, computational performance, and cost benefit.
Under algorithm performance, accuracy, robustness, precision and convergence are
included. Different methods can be applied to quantify accuracy, such as a-k
accuracy (see Fig. 7.10) and relative accuracy. One indicator of computational
performance is the computational complexity, which is especially important for
applications where data needs to be monitored in real time to make safety-critical
decisions. Other indicators are qualitative in nature, such as robustness within
algorithm performance (e.g. practicability of model requirements, sensitivity) and
cost benefit.

One major factor that needs to be considered for selecting an appropriate
prognostic method is the required information input and assumptions for prognostic
models. As described in Sects. 7.3.1 and 7.3.4, both physics-based and model-
based prognostic models require good understanding of the physical principles
related to machines and the mechanism of fault deterioration. However, the char-
acteristics of and relationships among the various components in a physical system
are always too complicated to be modelled effectively. A trade-off between prog-
nosis accuracy and computational cost needs to be carefully considered to be
practically meaningful and acceptable.

Another factor for evaluating the prognostic methods is the quantification of
uncertainty involved in the prognosis process [44]. The source of this uncertainty
can be classified as [20]:

• Modelling error: The failure model that degradation follows should be first
determined for prognosis. Various failure models have different triggers to
initiate failure and to model failure propagation [45]. Uncertainty in
physics-based prognosis models comes from assumptions and simplifications of
model structures. Incomplete coverage of data for training empirical models
introduces additional uncertainty in data-driven approaches [46].

• Data quality: The selection of condition monitoring features can directly
determine the performance of a prognosis system [47], and affect the nonlinear

Fig. 7.10 a-k accuracy with
the accuracy cone shrinking
with time on RUL [43]
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relationship between features and actual machine health and the sensitivity of
features to operating conditions [21].

• Randomness in future degradation: Events, such as changes in operating con-
ditions, maintenance actions, and new failure occurrence, may change the de-
terioration modes of existing failures [48].

Most of the existing prognostic techniques predefine a threshold for the feature
to estimate the RUL by assuming the failure takes place at the instant in time when
the increased or decreased feature reaches the predetermined threshold. Practical
applications of prognosis systems may commonly yield false-negative and
false-positive alarms under the effect of uncertainties discussed above. This prob-
lem, caused by an insufficient understanding of prognosis, highlights a future
direction for research.

7.4 Prognosis-as-a-Service in Cloud Manufacturing

Motivated by the potential of cloud computing (CC) [49, 50] and cloud manu-
facturing (CM) [51, 52], cloud-enabled prognosis or prognosis-as-a-service repre-
sents a new type of service-oriented technology to support multiple enterprises in
deploying and managing prognostic services over the Internet. Here, the “cloud”
refers to the Internet as a communication network for distributed storage and
delivery of computational services. CC brings new opportunity in accelerating the
acceptance of advanced manufacturing technologies such as CM. Prognosis, as an
integral component of manufacturing, can benefit significantly from CC and CM.
The architecture of cloud-enabled prognosis is illustrated in Fig. 7.11.

7.4.1 Benefits of Cloud-Enabled Prognosis

Various assets, such as sensor networks, embedded systems, RFID, and GPS, are
integrated in the CM where manufacturing resources (machines, robots, etc.) can be
sensed intelligently and connected to the Internet, as well as monitored, controlled,
and managed remotely. This creates the Internet of Things (IoT), which is essential
to CM. First, machine condition monitoring realised by sensors and data acquisition
systems gather data remotely and dynamically on the shop floor. Based on these
measurements, remote data analysis and degradation root-cause diagnosis and
prognosis are performed. For this purpose, collaborative engineering teams can
provide expert knowledge in the cloud, which forms the knowledge base that can be
referenced by users through the Internet. The results of prognostic services form the
basis for predictive maintenance planning, which can be remotely and dynamically
materialised on the factory floor [53].
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Comparing to the state-of-the-art prognostic methods, cloud-enabled prognosis
has the following benefits:

• Improved accessibility and robustness: By offering an integrated solution to
modular and configurable prognostic services, cloud can increase the robustness
of prognosis in manufacturing. Pay-as-you-go prognostic services and varying
maintenance options can also be selected from the cloud when necessary or
applicable, leading to improved accessibility from customers.

• Improved computational efficiency: Cloud-enabled computation provides effi-
cient computing cycles for complex calculations, due to the higher speed
(parallel computing) and lower communication overhead. The characteristics of
distributed data storage and computing are essential for cloud.

• Collaboration and distribution: The cloud enables treating machine prognosis as
remote services instead of a centralised capability. Through information sharing
and fusion realised by crowdsourcing, cloud enables more efficient and effective
selection of prognosis models as well as data interpretation, with better inter-
operability and security.
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As stated in Chap. 1, similar to the emergence of cloud-enabled prognosis, there
is an ongoing paradigm shift in manufacturing towards global manufacturing net-
works, which adopt new computing and Internet-based technology such as cloud
computing, to meet new challenges. This development leads to the flexible usage of
globally distributed, scalable, and service-oriented manufacturing resources.
Sharing resources, data, information, and knowledge among geographically dis-
tributed manufacturing entities improves their agility, cost-effectiveness, and better
resource utilisation. The success of many manufacturing firms relies on the distri-
bution of their manufacturing capacities around the globe [54].

While the initial introduction to CM is given by Li et al. [55], the core concept
can be traced back to the research on Manufacturing-as-a-Service (MaaS) [56]. The
most prominent and promising feature of CM is the seamless and convenient
sharing of a variety of distributed manufacturing resources, which helps realise
MaaS. Cloud manufacturing can be regarded as an integrated cyber-physical system
that can provide on-demand manufacturing services digitally and physically to best
utilise manufacturing resources. Moreover, condition monitoring, remote data
analysis, degradation/fault root-cause diagnosis and prognosis all provide sup-
porting information for maintenance decision-making. However, massive data
analysis is involved in these processes, which requires significant computing
resources to perform online real-time computation. CC techniques can make these
tasks more efficient by leveraging infrastructure-oriented services in the cloud for
data storage and analysis, while software-oriented services can be performed in a
distributive fashion as web-based programmes to interface with manufacturers and
consumers.

As illustrated in Fig. 7.12, CM supported by CC in the core encompasses the
entire manufacturing process chain within a cloud-enabled environment, from order
placement and product design (in a manufacturing system) to machining and asset
management (e.g. diagnosis, prognosis and maintenance) [51, 57], where cloud
computing represents the core competence of a CM. Based on this concept, more
companies in the future would obtain various manufacturing services, including
prognosis-as-a-service, through the cloud as conveniently as obtaining utilities in
daily operations. Around the outer circle, the conditions of a manufacturing system
can be monitored in real-time for diagnosis and prognosis before any well-informed
predictive maintenance actions take place.

Within the context, prognosis can support the prediction of resource availability
worldwide in addition to predicting machine status and facility performance, which
helps determine the most effective and efficient means to manufacture a particular
product. Furthermore, cloud-enabled prognosis shares information from similar
machines at different stages of service and utilises the power of cloud computing to
more efficiently execute the prognostic models in the distributed cloud environment
for enhanced decision-making. Challenges in accomplishing this goal include
network bandwidth and data transmission speed, security, privacy, reliability, and
robustness, which are discussed later in this chapter and in Chap. 3.
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7.4.2 Supporting Technologies

The supporting technologies to implement cloud-enabled prognosis include:

• Internet of Things (IoT)—IoT integrates and connects physical assets (e.g.
machines, sensors) into an information network, which enables device inter-
operability and universal manufacturing resource availability and accessibility
[58]. IoT is quickly growing with RFID and other sensor technologies, which
promotes interconnection between things.

• Embedded Systems—The rapid development of embedded systems with IoT
enables convenient access to manufacturing resources for status retrieval and
control [59].

• Semantic Web—The semantic web facilitates knowledge-based intelligent
computation and enables users to search and share data and information easily
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by allowing data from different sources to be processed directly by machines
[60]. It provides a common framework for data to be represented and reused
across applications and promotes the use of different common formats for data
exchange.

• MTConnect—It is an open and non-proprietary communication standard for
machine-to-machine communications and offers interoperability between
existing technologies [61].

Many attempts have been made and reported in the literature to define CM
system architecture (see Chap. 1). Some proposed architectures have 3–4 layers,
while more detailed architectures have up to 12 layers. The naming and content of
these layers also differ between architectures. Figure 7.13 presents a typical 3-layer
conceptual CM architecture [62]:

Fig. 7.13 A 3-layer CM architecture, adapted from [62]
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• Manufacturing capability layer: This layer contains the core manufacturing
services such as computer-aided process planning (CAPP), computer-aided
manufacturing (CAM), computer numerical control (CNC), etc. in a service
application cloud. The services and user data can be safely stored in a cloud
storage. Physical manufacturing resources are connected to this layer for
on-demand access and service realisation.

• Virtual service layer: A central server is placed in this layer for cloud man-
agement. Virtual services are matched and mapped to the real services and
physical resources based on their availability and capability.

• Application layer: This layer concerns the end users (business and private users)
of the cloud services. Comprehensive user interfaces and convenient access to
the cloud is the key. User friendliness, thin-client user interface design and
timely information presentation are dealt with at this layer.

Despite the difference in architectures, there is an agreement that a CM system
has three types of participants: (1) resource/service provider, (2) resource/service
consumer, and (3) cloud operator (see more details in Chap. 1).

When implementing prognosis-as-a service in a CM system, security is a major
concern. Corporate information often contains sensitive data about operations, trade
secrets, and intellectual property. Securing sensitive machine condition data and the
ubiquitous availability of requested applications in the cloud are a must for potential
users of cloud services. Manifestations of these concerns regularly appear in many
existing CC services as a profound unwillingness and anxiety in letting sensitive
and important data escape outside the boundaries of the physical company pre-
mises. The service models (IasS, PaaS, and SaaS) require different levels of security
in a cloud environment. IaaS is the base of all CC and CM services, with PaaS built
upon it and SaaS in turn built upon PaaS. Just as capabilities are inherited, so are the
cloud security issues and risks [63]. Today, most SaaS business and manufacturing
applications that vendors offer are hosted in ISO 27001 and Statement on Auditing
(SAS) 70 Type II certified data-centres with service-level agreements offered for
applications of 99% and above [64]. More information about CC and CM can be
found in [49, 52, 65, 66].

7.4.3 Implementing Prognosis in the Cloud

The emerging cloud infrastructure benefits the adoption of prognostic techniques
through enhanced computational capability, which not only improves the execution
efficiency of prognosis models but also enables more robust decision-making due to
information and knowledge sharing by new techniques such as crowdsourcing.

Besides elasticity and cost-effectiveness, another major advantage of
cloud-based technologies is the enhanced capability in data storage and computa-
tion, which results from the availability of distributed resources. This is especially
beneficial in applications involving big data. A typical scenario is depicted in
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Fig. 7.14, where the hypervisor running in the driver domain is responsible for
assigning storage/processing resources and managing the uploaded data [67].
Assuming either the data set can be partitioned and processed independently, or the
prognostic programme can be partitioned into sub-tasks via programming models
such as Mapreduce, distributed data storage and computation can be performed
[49]. Data collected from each component within a machine will be uploaded on to
different storage disks and routed into different processors. The prognosis algo-
rithms executed by the processors can vary according to the specific data types and
physics of the monitored components. The prognostic results of the various com-
ponents can be fused to represent the health status of the entire system, which can
then be utilised for maintenance decision-making. Such a distributed and parallel
computing mode can greatly improve the computing efficiency, to realise real-time
condition monitoring and prognosis.

Due to the limitation in network bandwidth, it is impractical to directly transmit
raw data from individual machines to the cloud. A cost-effective approach is to have
data collected on the shop floor pre-processed, during which failure features or
signatures are extracted and subsequently transmitted.

Introducing sensors and networked communication into the shop floor can
facilitate smart in-process diagnosis and prognosis, as well as efficient human
intervention that improve the robustness and adaptability of processes and systems.
Figure 7.15 illustrates the trend of developing cloud-enabled and knowledge-based
tools for dispersed engineering teams to perform machine state identification [68],
condition-based monitoring, prognosis, and maintenance actions collaboratively,
using services enabled by the cloud. All functions of monitoring, prognosis and
maintenance are delivered as cloud-based services accessible via web browsers. No
expensive software packages are needed for local installation and maintenance.

In recent years, technology advancement in sensing and diagnosis has made an
appreciable impact on condition-based monitoring. It can be predicted that research
in prognosis and predictive maintenance will continue in the direction of supporting
an Internet-based environment. Such a trend is consistent with recent development
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in manufacturing enterprises. For example, the concept of “Industrial Internet”
proposed by General Electric enables industries to gather and analyse data from
physical objects via IoT, manage operations, and provide value-added services such
as predictive maintenance [69]. To support such a collaborative and distributive
platform, there is a need for developing the ability to share process and machine
data between different applications at different locations seamlessly and collabo-
ratively. Service-oriented cloud manufacturing is a clear path for prognosis and
predictive maintenance in the future.

7.4.4 Prognosis Applications

In the area of remote condition monitoring and diagnosis, Teti et al. [70] provided
an extensive list of industrial efforts. As an example, the company DMG MORI
SEIKI has developed a remote machine monitoring system termed “Mori Net”, with
the structure shown in Fig. 7.16 [71]. Both machine tool data and corresponding
customer information are collected and stored in unified databases located at service
centres, where maintenance services such as fault diagnosis and system update are
performed. Data collection and communication among machines are based on
MTConnect protocol, which enables unified communication interface for different
devices and machines by defining a standard set of data types for data collection
and storage.
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Currently, the development of condition monitoring, diagnosis, and prognosis in
enterprises remains focused on remote monitoring. While not strictly defined as
cloud-enabled monitoring and prognosis, remote monitoring employs IoT tech-
niques for data acquisition and network techniques for data and information
interaction. The achievement of cloud-enabled monitoring in enterprises still needs
to address several challenges, including those presented by communication,
information security, and interoperability concerns.

The most important two attributes for maintenance are cost-effectiveness and
accuracy, which is a comprehensive factor that includes reliability and probability.
A significant advantage of prognosis-enabled condition-based maintenance
(CBM) over traditional scheduled maintenance is its effectiveness in reducing
maintenance cost. Studies have shown that predictive maintenance can reduce
maintenance costs up to 30% and eliminate breakdowns up to 75% relative to
scheduled maintenance [72].

The approach of remote monitoring and predictive maintenance has been widely
adopted by industries. For example, SANY Heavy Industry has built a remote
equipment management system that collects and analyses the real-time data of their
equipment sold all over the world, to provide efficient after-sale services including
the information support for equipment maintenance [73]. However, predictive
maintenance requires a better understanding of the nature of maintenance policies in
a mathematical way and incorporation of diagnosis and prognosis results into
maintenance rules (i.e. the adaption of maintenance polices). The overall objective
of formulating or selecting maintenance rules is to minimise the total maintenance
cost, including the hidden cost of risk and reliability. Niu et al. [74] proposed a

Machine
Manufacturer

Mail Server

Monitor Server

Remote
Maintenance

Data
Base

Customer

Machine Tools

1. Operation History
2. Remote Maintenance
3. Software Input/output

Office

NC data input/
output

Mobile
Phone
Carrier

Private 
network line

Mobile phone 
network

Internet
Operation status 
of machine tools

Fig. 7.16 Remote monitoring and maintenance system developed by DMG MORI SEIKI,
adapted from [71]
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CBM system that employed a reliability-centred maintenance mechanism to opti-
mise maintenance cost, as shown in Fig. 7.17.

For predictive maintenance, the maintenance decision rules should be incorpo-
rated with the information obtained from online measurement, data processing
(diagnosis and prognosis), or data fusion, which makes sense especially when
equipment works in a complex situation and undergoes a different deterioration
rate. The maintenance rules should be adapted after the change points where the
transitions of mode of system deterioration are assumed to occur. Grall et al. [75]
proposed a maintenance strategy with sequential inspection times taking into
account the current system state for the choice of the next inspection, as shown in
Fig. 7.18. The system deterioration is modelled as a Gamma process, and the
system is considered failed if its condition jumps above a pre-set failure level.
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7.5 Challenges and Limitations

One of the most important characteristics of data processing in manufacturing is
that it is real time with three issues involved in this process: data transmission, data
storage, and data analysis. Real-time data measured on shop floor are expected to be
transmitted to a cloud server over the Internet in a timely fashion, followed by
effective data analysis and transmission of the result back to the machine site for
operation/process control and/or maintenance. Unlike traditional architectures, a
cloud server is an aggregation of distributed computing resources, which may split
data files uploaded from clients into several portions to be stored in distributed
servers. This poses a challenge for data consistency.

Sensors (e.g. force, vibration) monitoring manufacturing processes that work at
high sampling rates can generate a large amount of data within a short time period.
The specific application requires high quality cloud service, especially with respect
to network and computational performance. Network performance in the cloud
environment is determined and affected by the input/output (I/O) virtualisation—
network bandwidth is shared by multiple virtual machines (VMs). Recent research
has indicated that the most important issue affecting I/O virtualisation performance
is communication between VMs and virtual machine monitor (VMM), which is
responsible for assigning storage/computing resources. 30–40% of execution time
for a network to transmit or receive an operation is spent in VMM to remap
addresses contained in the transmitted data package. It has been demonstrated that
the overhead of central processing units (CPUs) and latency increase with the
transmitted package rate due to increased communication between the server
(VMM) and client (VMs) domains. Especially when dealing with small packets but
high packet rate, the throughput is even lower since the software stack does not
have enough CPU resources to process.

An important issue determining the virtualisation performance and consequent
network and computation performance is dynamic resource management. The most
popular option for resource allocation among current cloud-oriented services is to
seek trade-off execution quality by the assigned resources via a load balancing
mechanism or high availability mechanism.

Today, cloud manufacturing and cloud-enabled monitoring techniques have not
been widely accepted in industry practices yet, primarily due to potential problems
such as (1) lack of unified definition and standardisation for interoperability, (2) lack
of well-established business models, (3) lack of effective mechanisms for privacy
and IP protections, and (4) possible security leak. Effective and comprehensive
solutions to these problems are key to adoption of cloud-based technologies by the
industry, and represent one of the future research directions in manufacturing.

An important goal of IoT in cloud manufacturing is to leverage machine-
to-machine (M2M) communication to collect and contextualise data from sources
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across the manufacturing enterprise. Data analytics may then be used to assess the
data and generate information to support different goals, such as prognosis. The
difficulty is that M2M communication in a manufacturing environment can be
challenging due to considerations related to interoperability and cybersecurity.

Data collection is also a significant challenge because manufacturing equipment
is usually old and low in computational power. Many facilities also use a variety of
machine-tool types and each may require an interface to communicate with other
machines. Every networked device relies on one of several communications pro-
tocols (e.g. Modbus, Fieldbus, or Profibus). These interfaces and protocols can
grow rapidly if without the appropriate standards that allow for “out-of-the-box”
communication. The lack of commonly adopted interfaces and protocols increases
the knowledge and resources needed for implementation, which can be substantial
given the significant training and setup time required even if expertise is available.

The architecture needed for M2M communication must also enable data and
information exchange within one and across several levels of the manufacturing
hierarchy (i.e. process to enterprise). It should be scalable for large data volumes
and capable of dealing with different time scales (microseconds to days) present in
manufacturing data and decision-making. While these characteristics increase the
complexity of data collection and analysis, they enable automated monitoring that
can support autonomous manufacturing systems where machines identify patterns
or disturbances using a cumulated set of knowledge and experiences. These
machines can then work with other machines to respond to the disturbance and
ensure the continued performance of the manufacturing system.

Cybersecurity remains a significant concern hindering cloud manufacturing
applications and services. Chapter 3 highlights some of the issues related to the
protection of IP and sensitive information, but the threat to the security of net-
worked devices and assets may be the more important concern for cloud manu-
facturing. Existing infrastructure, such as supervisory control and data acquisition
(SCADA) networks, can be a significant vulnerability given its designed function.
Stuxnet is one example of a cyberattack that exploited SCADA networks.
Developed to target Iranian efforts to enrich uranium, Stuxnet exploits the
SCADA’s dynamic-link library (DLL), through which SCADA receives informa-
tion about the system being controlled [76]. Through the DLL, Stuxnet reprograms
the programmable logic controller (PLC) so that the system (i.e. Iranian enrichment
reactors) operates as the attacker intends.

Through M2M communication, opportunities exist to target any part of the
product lifecycle and its supply chain if these machines are connected through the
cloud. Potential attacks could include altering design files, toolpaths, or quality
control. Furthermore, the safety of operators and consumers may also be threatened
if an attacker can control these systems. Ultimately, the risks must be understood
and acknowledged so that technologies can be developed to address them.
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7.6 Conclusions

Cloud-enabled prognosis can leverage advanced manufacturing by using data and
information from across the manufacturing hierarchy to improve efficiency, pro-
ductivity, and profitability. Recent advances in cloud manufacturing have increased
the accessibility to many technologies, such as M2M communications, IoT, and
semantic web, and now provide an opportunity to transfer prognosis models and
techniques from research labs to industry. Much of the current technological
development has focused on providing the infrastructure and architecture to
implement prognosis models and techniques. For example, a variety of cloud ini-
tiatives and platforms have been suggested to offer different services (e.g. IaaS,
PaaS, or SaaS) to manufacturers, and interoperability standards have been proposed
for data integration, such as MTConnect. Hardware and software vendors have also
started to provide cloud-enabled diagnosis and prognosis solutions, such as remote
monitoring and diagnosis of machine tools and shop floor equipment.

The key challenges for cloud-enabled prognosis will be in data collection and
management. Standards will be needed for data interfaces, collection, transmission,
and interoperability. Methods to anonymise and remove sensitive information from
data and to synthesise data streams from multiple and varied sources will be critical
in dealing with the large data volume that may be collected from across the man-
ufacturing hierarchy. Cybersecurity must protect IP sensitive information and the
security of networked devices and assets to deploy much of this technology in
industry. If these issues are resolved, the potential exists to exploit many aspects of
the cloud, such as crowdsourcing, to improve manufacturing efficiently and effec-
tively by providing knowledge and value to actors throughout the product lifecycle,
which would drive innovation beyond manufacturing.

Currently, most of the research activities related to prognosis are confined within
controlled laboratory conditions, due to the fact that prognosis models are appli-
cation specific. For example, the parameters involved in the Paris’ formula for tool
wear prediction vary with the type of tools used. Crowdsourcing, if integrated with
cloud-based techniques, presents an opportunity for prognosis in an industrial
setting. A challenge, as well as an opportunity, in crowdsourcing is the feasibility
and interoperability of data for the purpose of fusion given the variety of data (e.g.
condition monitoring data and features). Establishing guidelines for designing a
prognosis system in a cloud environment, including sensor selection, data trans-
mission, database creation, prognostic method selection, and cooperative, and
intelligent decisions, would have a significant impact on advancing the state of
prognosis in the context of cloud.

As with cloud-enabled prognosis and its computing capability, dynamic resource
allocation can be another research direction, especially in the context of big data
analytics. Typically, sensor outputs, after pre-processing by local agents, are
transmitted to computing resources in the cloud. Challenges and opportunities lie in
how to allocate efficiently these data and fuse analytical results to ensure remote yet
online and real-time manufacturing process and equipment monitoring and
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prognosis. Also of interest is effective and efficient M2M communication, including
data collection, sharing, and transmission, to minimise the bottleneck of current
cloud-based techniques and maximise cloud resource utilisation.

Cloud-enabled prognosis benefits from both advanced computing capability and
information sharing for intelligent decision-making. Cloud-enabled prognosis, as
well as cloud-enabled design and manufacturing services allocation, is part of cloud
manufacturing, which requires an association of distributed manufacturing service
providers for information and resource sharing. Significant challenges exist in the
creation of mechanisms or standards for information and resource sharing, to
maximise the benefit and minimise the potential hazards for industries. Another
challenge is effective communication between clients and encapsulated service
providers. It is expected that specific service requirements can be intelligently and
automatically assigned to one or several industries associated with the cloud with
minimal human intervention. Overcoming these challenges will make
cloud-enabled prognosis an effective tool for the widespread adoption of cloud
manufacturing.
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Chapter 8
Resource Efficiency Calculation
as a Cloud Service

8.1 Introduction

The environmental impact of energy consumption became an increasingly important
matter in industry. The optimisation of energy consumption needs to be performed in
order to reserve natural resources and lower the production cost. Therefore, different
companies nowadays are focusing on improving energy efficiency and sustain high
product quality and production throughput at the same time. However, finding a
practical yet industrially feasible solution is still a challenge. The aim of this chapter
is to discover how to minimise the energy consumption of the assembly robots
used in today’s factories with minimum investment.

This chapter first presents a novel approach to minimise the energy consumption
of a robot. This approach in particular determines the most energy-efficient joint
configurations of the robot when a predefined assembly task is given. The approach
is then evaluated using two case studies to compare its results with both commercial
software and real robot measurements. In the next section, a summary of the related
work is presented to prepare readers for the right context.

8.2 Related Work

The significance of minimising energy consumption has been understood by several
researchers and equipment manufacturers. Related efforts are numerous. Okwudire
and Rodgers [1] presented an approach to control a hybrid feed drive for energy-
efficient NC machining, their results showed several improvements in energy
consumption and performance over the traditional approaches. Other researchers
[2, 3] focused on planning a collision-free trajectory of the robot. On the other hand,
some researchers focused on minimising the energy consumption for robots with
relatively complex kinematics such as the work presented in [4, 5], which consider
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the energy consumption of a hexapod robot and a hopping robot, respectively.
Another research [6] presented a thorough analysis of energy consumed during the
production of a single product. The approach reported many improvements focused
on product production and its design, these improvements reduced the energy
consumption up to 50%. Another method presented by Weinert et al. [7] focused on
the reduction of energy consumption and managed to reduce the energy con-
sumption by describing the production operations as a set of energy blocks and then
determining the energy consumed in each block. Several researchers, on the other
hand, examined the possibilities of minimising the energy consumption of machine
tools. For Example, the work presented in [8] which proposed a cloud-based
framework to provide adaptive process planning based on the availability and
capability of machine tools. Another example is the work reported by Mori et al. [9]
who demonstrated the ability to reduce the energy consumption by adjusting
specific cutting conditions as well as controlling the acceleration to maintain a
proper synchronisation between the spindle acceleration and its feed system. This
approach provides a useful tool for changeable machining operations. Furthermore,
the work presented by Vijayaraghavana and Dornfeld [10] highlighted the impact of
monitoring the energy consumption of machine tools by associating consumed
energy with performed machining tasks.

Behrendta et al. [11] investigated the nature of energy consumption in different
machine tools and evaluated their efficiencies, accompanied by energy demand
modelling [12]. Within the assembly domain, many research teams focused their
work on studying the energy efficiency of industrial robots. Several tools have been
developed to calculate and analyse the energy consumption of the robots. For
example, the work presented by [13] analysed the energy consumption of an ABB
IRB140 robot and suggested an optimisation module to efficiently reduce energy
consumption in robot-related applications. Other researchers [14] presented a
method to determine the schedule that minimises the energy consumption of a
robotic production line. The work reported in [15] showed the importance of
minimising the energy consumption of a 6-axis robot in industrial environment.

Other research groups looked at the robot energy efficiency from the time per-
spective. As an example, the work reported by [16] stated that the optimal
time-energy path for the robot can be determined with a few seconds with the help
of the modern computing units. By taking the robot smooth movement into account,
a similar approach described in [17] performed an energy optimisation on a defined
smooth robot trajectory. By defining the energy consumption as a cost function, the
approach was tested on a SCARA robot and proved that it can save the energy
consumption of the robot in the long run. Another approach reported in [18]
examined the impact of the robot operating parameters such as the payload and the
velocity on the energy consumption by studying the dynamic behaviour of a
6-degree-of-freedom robot. Nevertheless, others like [19] highlighted the difficulty
of simulating the dynamic model of the robot since it depends on the accurate
information about the mass properties of the robot.

At the same time, several researchers [20, 21] focused on constructing the
mathematical model of the mechatronic components of the robot to be able to
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analyse the robotic energy consumption and find methods to minimise it. It is clear
that many research projects have focused on the planning of energy-efficient tra-
jectories for robots. One of these projects is the work reported [22], which defined
holonomic constraints to move a robot on a prescribed path with the existence of
obstacles. Another project [23] focused on the effect of payload on the energy
consumption of a robotic system. Furthermore, researchers like [24] focused on
optimising the velocity of the robot to minimise the electromechanical losses of the
robot’s motors. In addition, a research group [25] developed an approach to gen-
erating an energy-efficient trajectory using a cost function and implemented it on an
industrial robot.

Building the dynamic model of a robot is the key to analyse its energy con-
sumption. However, building that model accurately requires the understanding of
several losses (mechanical, electrical, etc.) involved in the calculation of the energy
consumption [26]. Despite the significant effort made toward energy-efficient
machines and machining processes, successful use of energy during robotic
assembly remains a challenge and requires further investigations. This is due to the
fact that kinematic and dynamic features of the robots are governed by robot
controllers instead of shop-floor operators.

8.3 System Overview

In order to fulfil the research objective, an optimisation module has been developed
using MATLAB®. As shown in Fig. 8.1, this module aims to accomplish five tasks:
❶ to affiliate the predefined trajectory of a robot’s TCP (tool centre point) with its
velocity and acceleration; ❷ to solve the inverse kinematics for the trajectory and
determine the robot’s joint configurations; ❸ to calculate both the forward and
backward recursions of the robot model, the results of which are used for solving
the inverse dynamics of the robot trajectory; ❹ to determine the energy con-
sumption for each joint configuration; and ❺ to select the robot’s optimal joint
configuration based on the calculated values of energy consumption. Here, each
joint configuration represents one set of joint angles to place the TCP in the defined
position and orientation along the trajectory.

8.4 Methodology and Implementation

The optimisation module is based on the mathematical model of a robot, which can
describe the kinematic and dynamic behaviours of the robot in particular. After
analysing the force and torque on each joint, the most energy-efficient joint con-
figuration of the robot is determined. An ABB IRB 1600 industrial robot is selected
to demonstrate the feasibility of this approach.
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8.4.1 Denavit-Hartenberg (D-H) Notation

By implementing the D-H notation [27], the kinematic coefficients are identified
and the joint frames of the robot are defined. The notation assigns frames at the
joints of the robot from the base to the end-effector. The Z-axes of these frames are
aligned with the joints’ rotational axes, as shown in Fig. 8.2. For simplification,
frames 4–6 are placed on the robot wrist with the same origin.

8.4.2 Forward Kinematics

The forward kinematics of the robot is calculated by multiplying the transformation
matrices of the robot joints as clarified in Eq. (8.1) to define the position and
orientation of the end-effector of the robot with respect to its base.

0
TCPT h1. . .h6ð Þ ¼ 0
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where, ijT is the transformation matrix between link i and j, 6
TCPT is that between

joint 6 and TCP, 0
TCPR and P are the rotation matrix and translation vector,

respectively.

8.4.3 Inverse Kinematics

Based on the kinematic features of the robot, the first three joints control the
end-effector’s position and the last three joints control its orientation. The process is
started first by solving the configuration of the first joint h1 in Eq. (8.2). It is
accomplished by considering that h1 changes the position of robot’s wrist in the
X-Y plane as illustrated in Fig. 8.3.

h1 ¼ atan2 Pyw;Pxw
� �

atan2 �Pyw;�Pxw
� ��

ð8:2Þ

The calculation continues by determining the values of the next two joints. It is
achieved by using Link2 and Link3 to form XY0-Z0 plane as shown in Fig. 8.4.
Equation (8.3) shows the calculation for joint3 value, resulting in two possible
results.
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h3 ¼
atan2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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The calculations then continue by finding joint2 value h2 using Eq. (8.4).

h2 ¼ atan
Pzw � d1

r
� atan

a2 þ a3ð Þsinh3
d2 þ a2 þ a3ð Þcosh3 ð8:4Þ

The orientation of the robot wrist against the base is then determined by using
Eq. (8.5). The rotation matrix of the rest of the joints can be calculated by Eq. (8.6).

0
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3R h1; h2; h3ð Þ:34R h4 ¼ 0ð Þ ð8:5Þ
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3
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The configurations of the last three joints can be computed in Eqs. (8.7)–(8.10)
using Euler angles a, b, and c.
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h4 ¼ a; h5 ¼ �b; h6 ¼ c ð8:7Þ
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;� r23
sinb


 �
ð8:8Þ
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 �
ð8:10Þ

8.4.4 Inverse Dynamics

Recursive Newton-Euler Algorithm (RNEA) [28] is adopted in this chapter for its
reliable results. The first step is to calculate the inertial tensor matrices of the robot
using the 3D model of the robot together with SolidWorks® software.

The procedure of solving the inverse dynamics is divided into two steps: forward
and backward recursions as explained below.

8.4.4.1 Forward Recursion

Starting from the first robot link to the last one, the algorithm determines the linear
and angular motions of each link of the robot. Since the robot will start from a
standstill state, the initial values of velocities and accelerations are set to zeros.
Consequently, the angular velocity xi and acceleration ai of link i are calculated
together with the linear accelerations ai and aci of link i, using Eq. (8.11).

xi ¼ i�1
i RT :xi�1 þ zi: _hi

ai ¼ i�1
i RT :ai�1 þ zi:€hi þxi � zi: _hi

ai ¼ i�1
i RT :ai�1 þ _xi þ ri�1;i þxi � xi � ri�1;i

� �
aci ¼ i�1

i R:ai�1 þ _xi � ri�1;ci þxi xi � ri�1;ci
� �

ð8:11Þ

8.4.4.2 Backward Recursion

The process continues by obtaining the force and torque that affect the movement of
each joint. The calculation begins with the last link and ends with the base of the
robot. Using the angular velocities and accelerations calculated in the previous step,
the gravity vector g0 is represented in a frame for each link in Eq. (8.12).
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gi ¼ 0
iR

T :g0 ð8:12Þ

The force fiþ 1 and torque si of link i are calculated using Eqs. (8.13)–(8.14). At
the same time, the external force fNþ 1 and torque sNþ 1 applied to the robot’s
end-effector are considered implicitly. The mechanical losses are modelled through
Coulomb and viscous friction with respective coefficients sci and svi.

fi ¼ i
iþ 1R � fiþ 1 þmi aci � gið Þ ð8:13Þ

si ¼ i
iþ 1R � siþ 1 � fi � ri�1;ci þ i

iþ 1R � fiþ 1 � ri;ci þxi � Ii � xið Þþ Ii � ai
þ scisign _hi

� 	
:zi þ svi _hi:zi

ð8:14Þ

8.4.5 Energy Consumption

At the beginning, the power consumption at each joint in a certain time interval k is
calculated in Eq. (8.15), based on joint velocity obtained from inverse kinematics
and required torque from backward recursion step of inverse dynamics.
Consequently, the power consumptions of all joints are accumulated to get the total
power consumption of the robot, as described in Eq. (8.16).

Pi kð Þ ¼ si kð Þ � _hi kð Þ
� 	

ð8:15Þ

P kð Þ ¼
Xn
i¼1

Pi kð Þ ð8:16Þ

The process continues by computing the energy consumption in Eq. (8.17),
where dtk is the time duration of the robot path.

E ¼ ZtM

t0

P tð Þdt ffi
XM
k¼0

P kð Þ:dtk ð8:17Þ

8.4.6 Energy Optimisation

Energy optimisation is performed as a final step to select the most energy-efficient
robot configuration from the calculated configurations to perform the assembly
tasks.

By looking at Eqs. (8.2)–(8.10), it is possible to see that there are two solutions
for first joint h1, each solution is used to calculate two solutions for both second
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joint h2 using Eq. (8.4) and third joint h3 using Eq. (8.3), This leads to four
solutions for the first three joints. The process continues by using Eqs. (8.7) and
(8.9) to find two solutions for the fifth joint h5, each solution for h5 is then used to
calculate h4 and h6 using Eqs. (8.7), (8.8) and (8.10), which generates a single
solution for each case. Therefore, the solutions for the last three joints of the robot
are two. The total number of solutions for the robot is then equal to eight, calculated
by combining the solutions of the first three joints with the ones from the last three
joints. Without a doubt some of the calculated solutions are unfeasible among the
whole path, in that case they are omitted and the total number of solutions can be
less than eight. Having this limited number of solutions for the robot makes the
optimisation a simple and straightforward step. Finding the suitable configuration
can be performed quickly by selecting the one that has the lowest energy
consumption.

8.5 Case Studies

Two case studies have been examined to evaluate the capability of the proposed
energy optimisation approach as described in the following subsections.

8.5.1 Energy Map of Robot Workspace

In this case study, a square shape path was examined at different locations within
the robot’s workspace. Energy consumption is optimised at each location in the
workspace. Figure 8.5 depicts a 3D energy map of the robot, where the energy
consumptions are represented in colours from green to red. Using the energy map as
a guide, an engineer can place a workpiece in a location of low energy level in a
robotic assembly cell. It is obvious that the areas in red or close to red should be
avoided for energy saving.

8.5.2 Energy Measurement in Predefined Paths

A case study emulates collision-free assembly operations which require moving the
robot in a certain hypothetical trajectory is introduced. As shown in Fig. 8.6, this
path is tested in two different locations to examine the correctness of using the
energy map. Two identical paths placed respectively in “red” and “green” zones are
considered.

Table 8.1 describes the robot’s joints values of the first target in the first and
second path for two possible joint configurations, respectively.
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The case study is introduced to the optimisation module as well as to ABB
RobotStudio® and the real robot. The results of energy-optimised path-following
are illustrated in Fig. 8.7.

The case study is conducted in RobotStudio® and the results are recorded for
later comparison. Furthermore, the energy consumptions of the hypothetical paths

X [m]

Z [m]

Y [m]

[J]

Fig. 8.5 An energy map in the workspace of an ABB IRB 1600 robot

Second PathFirst Path

Fig. 8.6 The hypothetical paths
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are measured on a real robot (ABB IRB1600) to evaluate the accuracy of the
optimisation. The results are illustrated in Fig. 8.8.

The measurements are conducted using a 3-phase voltage module (NI 9244) and
a current module (NI 9238) from National Instrument™. Table 8.2 summarises the
results of the optimisation module introduced in this chapter and the ones from

Table 8.1 The joint values (deg) of the experiment paths with corresponding simulated energy
consumption

Path First
Joint

Second
Joint

Third
Joint

Fourth
Joint

Fifth
Joint

Sixth
Joint

Energy
[J]

First Conf. A 53 38 -13 30 -91 -139 463

Conf. B -126 68 -2 90 149 131 434

Second Conf. A -6 -9 -29 45 -22 -153 201

Conf. B 173 110 1 18 121 79 451

Fig. 8.7 The output of the energy optimisation for the hypothetical paths
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RobotStudio®, respectively. Due to different placements of the path, a difference in
energy consumption is clear from the results. The results showed that the robot can
have energy harvesting during its movement, such as the energy in Joint 2 illus-
trated in Fig. 8.8.

The results illustrated in Fig. 8.7 and Fig. 8.8 for the case study show that the
energy map can be used as a tool to study the robot envelop and design the robotic
cell based on that. Furthermore, the results show that the energy map can identify
how sustainable the robot is from the energy efficiency perspective.

Fig. 8.8 The measurements on the real robot of the hypothetical paths

Table 8.2 Comparison for
the energy consumption
results

Path Energy consumption [J]

Measured RobotStudio® Optimisation
module

First 635 170 463

Second 275 60 201
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8.6 Conclusions

Energy consumption of machines and robots is an important factor in a production
line, from both environmental and economical aspects. Robots heavily used in
assembly lines can contribute to the reduction of energy consumption by selecting
energy-efficient configurations together with the wise usage of the robot workspace
in the low-energy area. The optimisation method introduced in this chapter uses this
strategy to select the robot’s joint configurations that consume the minimum energy.
Given that the energy consumption also relies on the position and orientation of a
workpiece in the robot workspace, the concept of energy map is proposed to advise
shop floor engineers for workpiece placement towards low energy consumption. On
the other hand, energy consumption in robotic assembly is influenced by robot
kinematics, dynamics, task requirements and the technical features of robots in
terms of design. Except the last one, the energy behaviours of robots are modelled
mathematically, which is useful for energy-efficient robot control.

With few modifications, the presented energy module can be used for a wide
range of industrial robots. These modifications are needed to identify the robot and
the payload properties (kinematic model, mass properties, payload on the
end-effector, etc.). Several other robots have the same kinematic structure like the
one presented in the chapter, only parameters of kinematics and dynamics models
need to be identified and applied to integrate those robots with the presented energy
module. On the other hand, integrating robots that have different kinematic structure
needs new calculation for the inverse kinematics as well.

The experimental results presented previously showed a noticeable difference
between the measured energy consumption and the simulated one in RobotStudio®.
This indicates that the mathematical model of the robot in RobotStudio® is not fully
identical to the real robot. Addressing the main reasons for the difference is not
possible at the moment because RobotStudio® is proprietary software which means
that its source code is not publicly available. This difference can be clarified if the
robot manufacturer decides in the future to open their software to developers.

The model used in the reported optimisation can be improved further, so that the
approach can have better identification of the robot’s dynamic specifications. The
technical features of robots such as energy loss in motors, gears and couplings are
the remaining challenges of energy modelling as future work. Further validation of
the energy model and the optimisation approach deserves more attentions from the
research community.
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Chapter 9
Safety in Human-Robot Collaborative
Assembly

9.1 Introduction

A human-robot collaborative system requires the coexistence of both humans and
robots. The consistent safety of human in such environment is paramount, including
both passive collision detection and active collision avoidance by monitoring the
operators and controlling the robots, respectively, at runtime.

Several approaches for human-robot collaborations have been reported, recently.
Agravante et al. [1] and Monje et al. [2] introduced a control system for a humanoid
robot to carry out a joint operation with an operator. Takata and Hirano [3] pre-
sented a solution that adaptively allocates human operators and industrial robots in
a shared assembly environment. Chen et al. [4] revealed an optimisation process
with multiple objectives based on simulation for assigning and strategy generation
of human-robot assembly subtasks. Krüger et al. [5] highlighted the merits and
available technologies of human-robot collaborative assembly cells. Using a
human-robot shared approach can offer both the reliability of robots and the
adaptability of humans. On the other hand, however, such a system can provoke
additional stress to human operators if implemented in poorly designed assembly
lines. Therefore, Arai et al. [6] measured an operator’s mental strain caused by the
location and speed of a robot with respect to the operator, intending to establish a
beneficial hybrid assembly environment. Furthermore, Kuli and Croft [7] used
robot motion as a stimulus to estimate the human effective state in real time; the
developed system analysed human biological indicators like heart pulse, perspira-
tion level and facial expression.

Several recent approaches attempted to detect and protect operators in locations
shared by humans and robots. Two methods were widely considered: (1) using a
vision system to perform 3D inspection [8] through 3D models as well as skin
colour detection to perform 3D tracking of human body in a robotic cell, and
(2) inertial sensor-based approach [9] using geometry representation of operators
through a special suit for motion capturing. Real-world experiments indicate that
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the latter approach may not be considered as realistic solutions as it relies on the
existence of a particular uniform with sensing devices and the inadequacy of
capturing the movement around the person wearing the uniform, leaving the
neighbouring objects unsupervised. This can create a safety leak, as there may be a
possibility of collision between a moving object and a standing-still operator. More
details of varying sensing methods can be found in a 2010 literature survey [10].

Among vision-based methods, the efficiency of collision detection has been the
motivation for many researchers. For example, Gecks and Henrich [11] imple-
mented a multi-camera collision detection system, whereas a high-speed emergency
stop was utilised in [12] to avoid a collision using a specialised vision chip for
tracking. A projector-camera based approach was presented in [13], which consists
of defining a protected zone around the robot by projecting the boundary of the
zone. The approach is able to dynamically and visually detect any safety inter-
ruption. In [14], a triple stereovision system was reported for capturing the motion
of a seated operator (upper-body only) by wearing colour markers. Nonetheless,
relying on the colour consistency may not be suitable in uneven environmental
lighting conditions. In addition, the tracking markers of mobile operators may not
appear clearly in the monitored area. Instead of markers, a ToF (time-of-flight)
camera was adopted in [15] for collision detection, and an approach using 3D depth
information was proposed in [16] for the same purpose. Using laser scanners in
these approaches offers suitable resolution but requires longer computational time,
since each pixel or row of the captured scene is processed independently. On the
other hand, ToF cameras provide high performance solution for depth images
acquisition, but with insufficient level of pixel resolution (capable of reaching
200 � 200) and with rather high expense. Lately, Rybski et al. [17] acquired data
from 3D imaging sensors to construct a three-dimensional grid for locating foreign
objects and identifying human operators, robots and background. More recently, an
integrated approach for collision avoidance using depth information from single
Kinect sensor was reported in [18].

In addition, other researchers focused on combining different sensing techniques
to track the human and the robot on the shop floor like the work presented in [19]
which used both the ultrasonic and the infrared proximity sensor to establish a
collision free robotic environment. Meanwhile, other researchers like Cherubini
et al. [20] incorporated both the force/torque sensors and the vision systems into a
hybrid assembly environment to provide a direct contact between the human and
the robot.

Among commercial systems of safety protection solutions, SafetyEYE® [21] is a
popular choice. It computes 2½D data of a monitored region using a single stereo
image and detects violation of predefined safety zones. Accessing into any of the
safety zones will trigger an emergency stop of the monitored environment.
However, these safety zones cannot be updated during operation.

To maintain high productivity in human-robot collaboration, there is a necessity
to introduce an inexpensive and reliable online protection system for assembly lines
where onsite operators share the tasks with industrial robots in a fenceless envi-
ronment. Although there have been advancements in safety protection in the past
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decade, the surveyed methods and systems are either too expensive or excessively
limited in handling real-world applications. Aiming to solve this problem, this
chapter presents a novel approach to providing a safe and protected environment for
human operators to work with robots alongside. Its novelty consists of: (1) effective
detection of any collision between 3D models of robots and depth camera images of
humans in an augmented reality environment, and (2) active avoidance of any
possible collision through online robot control.

During the recent years, researchers have developed various tools to programme,
monitor and control industrial robots. The aim is to reduce possible robot downtime
and avoid collisions caused by inaccurate programming, through simulation and/or
augmented reality [22]. However, these tools require pre-knowledge about a robotic
system. Introducing unknown objects to the robotic system may produce unrealistic
solutions that cause a breakdown to the physical robotic system due to no-longer
valid robot programmes.

Laser scanners and vision cameras are common techniques to convert unknown
objects to virtual 3D models. Modelling objects using stereo vision cameras was a
main focus for research [23–25], whereas others including [26] adopted a prede-
fined library of 3D models to match the real desired objects. However, the stereo
vision camera-based approach suffers from two drawbacks: (1) it requires expensive
and less compact equipment, and (2) it lacks the ability to capture and model
complex shapes from a fixed single viewpoint due to limited visibility.

2D vision systems can also be applied to model unknown objects. By taking a
number of snapshots of an object from different viewports, the object can be
modelled based on analysing the captured silhouette in each snapshot. For example,
Petit et al. [27], and Atsushi et al. [28] focused on modelling the object in high
accuracy and with details.

Despite the fact that these approaches were successful in their reported appli-
cations, they are unable to model multiple objects in a single run, besides their lack
of ability to model objects remotely.

In this chapter, we introduce a new approach for constructing 3D models of
multiple arbitrary objects, simultaneously, based on a set of snapshots taken for the
objects from different angles. This approach is implemented through a system that
analyses the captured silhouettes of the objects and constructs 3D representations
for the objects in a web-based environment, allowing an operator to perform
assembly operations from a distance.

9.2 Human Robot Collaboration

Based on Wise-ShopFloor architecture [29–31], an active collision avoidance
solution is illustrated in Fig. 9.1. Due to their high performance and flexibility, both
C++ and Java are used for developing the system. An industrial robot, ABB IRB
140, is employed to construct a physical human-robot collaborative assembly cell
for testing and verification. A local server responsible for collision avoidance is
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configured in a PC of Intel 2.7 GHz Core i7 CPU with 12 GB RAM, and running a
64-bit Windows operating system. With the help of Java 3D, this collision avoid-
ance server is used for image processing and establishing a collision-free envi-
ronment. Furthermore, two Microsoft Kinect sensors (depth cameras) are installed
to obtain the depth images of operators in the robotic cell.
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Fig. 9.1 System design for active collision avoidance
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Initially in Wise-ShopFloor, the robot controller has two tasks running simul-
taneously to control and monitor the robot. For the purpose of active collision
avoidance, a third task is added to the robot controller as shown in Fig. 9.2.

The collaboration scenario shown in Fig. 9.3 is typical where the robot follows
the operator’s hand to deliver needed assistance during a shared assembly opera-
tion. Another scenario could be that the robot keeps a safety distance from the
operator during assembly. For example, in Fig. 9.4, the robot is used to assemble a
shaft and a washer, and insert the assembled parts in an output magazine. The
operator’s responsibility is to take out the assembled parts from the output maga-
zine and fill fresh parts into an input magazine. The active collision avoidance is
activated when the robot moves to/from the two magazines. Avoiding collision is
restricted only to control the robot at the time of picking and delivering parts. For
seamless human-robot collaboration, switching between the two behaviours of the
robot (i.e. hand following and collision avoiding) can be implemented by a simple
button press or through a voice command.
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Fig. 9.2 Task configurations of robot controller
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Fig. 9.4 A mini robotic assembly cell for testing
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9.3 Depth Sensor-Driven Active Collision Avoidance

The present approach starts by calibrating the Kinect sensors, followed by acquiring
the depth information from them. The process continues by determining the closest
distance between the robot and obstacles (including operators), and active collision
avoidance is then performed. The velocity of the approaching operator is also
calculated to improve the system responsiveness. The following sections describe in
detail the mechanism of this approach.

9.3.1 Kinect Sensors Calibration

The depth vision systems selected in this system are Microsoft Kinect sensors
(depth cameras) equipped with spatial resolution of 640 � 480, 11-bit depth, and a
field of view of 58 � 40°, which can measure the depth information from 0.8 to
3.5 m, as illustrated in Fig. 9.5. A calibration of the Kinect sensors is needed to
calculate the distance values. It is accomplished by measuring a particular surface
from different distances. To improve the accuracy in the distance calculation,
Eq. (9.1) is implemented for optimising the sensors’ parameters.

d ¼ k3 tan
n
k2

þ k1

� �
� k4 ð9:1Þ

3.4 m

2.7 m

0.8 m

2.4 m

0.78 m

0.54 m

Fig. 9.5 Kinect sensor’s field of view
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where n represents the raw 11-bit to describe the distance from one Kinect sensor
and k1–k4 are the calibration parameters. The parameters are determined after
optimisation with their values described in Table 9.1.

Taking one of the sensors as an example, its calibration outcomes of distance
calculation versus sensor accuracy are described in Figs. 9.6 and 9.7, respectively,
where the raw disparity is based on the difference between the projected and the
recorded infrared image. In order to decide a suitable threshold value for safety
protection, both the robot environmental conditions and the measurement accura-
cies, shown in Fig. 9.7, must be taken into consideration so as not to compromise
the safety.

9.3.2 Depth Image Capturing

The libfreenect userspace driver of Microsoft Kinect is utilised to communicate
with the depth sensors and access to the raw data (colour, depth, etc.). The first step
is to initialise the driver so as to detect all connected Kinect sensors, followed by
the second step of reading depth streams through a call-back function. Retrieving
the depth frame in the third step and processing the depth data pixel by pixel in the
fourth step complete the whole process as shown in Fig. 9.8. A call-back function is

Table 9.1 Kinect sensors’
parameters after calibration

Parameter Measured value Unit

Kinect sensor 1 Kinect sensor 2

k1 1.1873 1.18721 rad

k2 2844.7 2844.1 1/rad

k3 0.12423 0.1242 m

k4 0.0045 0.01 m
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triggered when a new depth frame is available to copy the data, pre-process the data
and pass the data to the processing stage.

9.3.3 Depth Image Processing

In this section, 3D models are introduced to represent a well-defined shop-floor
environment. Physical motion sensors are linked to the collision avoidance system
to drive the behaviour of the 3D models and monitor the shop-floor in real time. By
reading the joint values of a robot from its controller, the present pose of the robot
can be retrieved to the basic human-robot shared environment for visualising the 3D
model of the robot. At the same time the human operator can be represented as
point cloud with the help of the depth images from the Kinect sensors. Two Kinect
sensors are employed for surveillance of unstructured foreign objects in the robotic
cell, including mobile operators who lack the representation in the 3D space. The
concept is depicted in Fig. 9.9. To sustain the rapid processing, the closest range
between the virtual 3D model of the robot and camera information about the
operator’s location is used to detect any collision in an augmented environment.
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Supported by the calculated minimum distance, suitable decision can be made,
which leads to efficient prevention of any possible collision.

The detailed procedures of depth images capturing and analysis are given in
Fig. 9.10. To maintain the efficiency of the system, the procedure begins by
removing the background from the depth images using the background images
captured during calibration. Depth information related to the movement of the robot
is subtracted as well from the captured depth images by projecting back the robot
model to the depth images. Therefore, merely the unknown objects are retained, as
shown in Fig. 9.10 where the images in the third row depict a human operator as the
subject of interest after employing a noise-removal filter and a connected-compo-
nent algorithm. After the background removal, the noise in the captured point cloud
is eliminated by adding a statistical outlier removal filter.

Identifying the human operator from both cameras is achieved by converting the
captured images to point clouds represented in the robot coordinate system, then
combining them into one point cloud after registering the images. The captured
point cloud of the human operator is superimposed to the 3D model of the robot to
generate an augmented environment, allowing the system to calculate the minimum
distance between the point cloud and the 3D robot model effectively. Figure 9.10
also illustrates the outcome of the depth images processing at varying stages.
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Fig. 9.9 Concept of collision detection in an augmented environment
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9.3.4 Minimum Distance Calculation

The point cloud of the human operator contains a large quantity of data, despite the
fact that the size of the image is considerably decreased after background removal.
Therefore, minimising the point cloud representation becomes a necessity, which
leads to the performance improvement of the system. Minimum bounding boxes are
chosen and assigned to the 3D point clouds to accelerate the calculation of collision
detection. A bounding box aligned with the axes of the 3D space is introduced in
the system for smooth visualisation and simple representation using the two
opposite corners of the box. Figure 9.11 illustrates the point cloud and bounding
boxes in different granularity. Controlled by a threshold value, the level of gran-
ularity is based on the collision detection sensitivity. Every one of the boxes is
considered as the smallest sphere defining the sub-box that further helps to accel-
erate the distance calculation. Hence, the problem of collision detection is treated as
the distance calculation from the robot model to the centre of every sub-box.

9.3.5 Active Collision Avoidance

It is not difficult to identify two scenarios of possible collisions during human-robot
collaboration. The first one is to stop the movement of the robot if operators are
detected in close proximity, and resume the robot motion as soon as the operators
walk away. Tasks with limited degrees of freedom can benefit from such a scenario,
for instance an inserting operation in assembly. The second one is to dynamically

Fig. 9.11 Simple representation of point cloud: a a minimum box bounding the captured point
cloud, and b a matrix of sub-boxes
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modify a robot’s trajectory to avoid collision with any foreign obstacles (including
humans). It is more appropriate to be employed for such applications as material
transfer where the path modification can less affect the operations while keeping the
humans safe.

Detecting an obstacle in a planned robot path triggers the system to dynamically
alter the robot’s trajectory. The change in the robot trajectory is driven by the
calculated distance to the obstacle. Figure 9.12a shows the vectors needed for
dynamic robot path control. Collision vector c is determined and represented as the
vector from the robot’s end-effector to the nearest obstacle. The vector symbolising
the robot’s direction of movement vc can be decomposed into a parallel component
vc||c and a perpendicular component vc⊥c against the collision vector c. The par-
allel component is determined in Eq. (9.2) by calculating the dot product between
the movement vector and a collision versor pointing to the direction of the collision
vector. The collision versor represents a unit vector and shares the same direction of
the collision vector. The perpendicular component is then computed using
Eq. (9.3). The parallel component representing the motion approaching the obstacle
is thus modified to prevent any possible collision. The modification is supported by
the computation of the distance between the obstacle and the robot end-effector in
this case, resulting in a vector va||c. A new vector of modified robot motion can then
be generated from vc⊥c and va||c as explained in Eq. (9.4).

(b)

(a)

Fig. 9.12 Robot trajectory modification in real-time (a), and collision avoidance in a
multi-operator environment (b)
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vcjjc ¼ vc � ĉð Þ � ĉ; where ĉ ¼ c
cj j ð9:2Þ

vc?c ¼ vc � vcjjc ð9:3Þ

va ¼ vajjcþ vc?c ð9:4Þ

Taking distance-to-obstacle ||c|| into account, Fig. 9.13 shows the variation of
the parallel component against the movement vector. The colour spectrum indicates
the modified value of the parallel component va||c of the collision vector. The line
indicated by ❶ is the anticipated movement toward the obstacle, and line ❷ is the
anticipated movement in the opposite direction. To modify the parallel component
of the movement vector, two threshold values dth1 and dth2 are defined. The parallel
component remains the same as long as the distance-to-obstacle ||c|| is greater than
dth2. When ||c|| is smaller than dth1, the parallel component receives a negative
defined value, pointing to the opposite direction of the obstacle. In the case that
dth1 < ||c|| < dth2, the parallel component is modified linearly as shown in Fig. 9.13
to maintain the continuity of the movement.

Based on the calculated shortest distance-to-obstacle, one of four safety strate-
gies is applied to control the robot. Figure 9.14 explains four cases where the four
safety strategies can be employed: ❶ an audio warning is fired as soon as an
operator walks into the monitored area, and at the same time the speed of the robot
is reduced to prepare for a full stop; ❷ a retrievable stop interruption is sent to the

1

2

dth1

dth2

Fig. 9.13 Modification of movement vector
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robotic system if the human steps into a defined hazard zone; nonetheless; ❸ when
the human continues to move towards the robot (e.g. for inspection, etc.), the robot
arm will move away automatically to keep a safe distance from the operator for
collision avoidance; and ❹ in light of the possibility to change the path, the current
robot trajectory to the target is modified dynamically to prevent any collision with
the operator while the robot is moving. As soon as the operator exits the monitored
area, the robot (in cases ❷ and ❸) will resume the task from where it stopped.
Implementing the four safety strategies ensures a minimum downtime on the robot
side as it replaces the traditional emergency stops with recoverable temporary
interruptions. At the same time, the operator is assured to step in and out the robotic
cell freely and safely, despite the fact that the robot is moving, which leads to
enhanced productivity on the human side. It is inevitable to notice that the last three
safety strategies are especially important for operators to perform tasks sharing the
same space with robots. Switching between the three safety strategies is possible at
any moment. It is also possible to integrate the strategies into an assembly plan
created for human-robot collaborative assembly.

9.3.6 Velocity Detection

Further analyses of system performance have been performed to identify its
capability of calculating the velocity of any foreign object in the robotic cell. This
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Fig. 9.14 Four safety strategies for active collision avoidance
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has been achieved by monitoring the object’s positions in 3D space with regard to
time. To evaluate the efficiency of the velocity calculation, an experimental setup
was established by mounting a pendulum in the robotic cell and detecting its
movement during the steady state swinging. Equations (9.5) and (9.6) provide the
basis for calculating the maximum velocity of the pendulum mathematically and for
comparing it with actual measured velocity. Figure 9.15 shows the pendulum setup
in the robotic cell, and Fig. 9.16 depicts the measured velocity of the pendulum
during the experiment.

PEþEk ¼ const ) mghþ mv2

2
¼ const ) mghmax ¼ mv2max

2
ð9:5Þ

vmax ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ghmax

p
) vmax ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 � 9:80665m=s2 � 0:2m

p
) vmax

¼ �1:98m=s ð9:6Þ

where PE is potential energy, Ek is kinetic energy, m is mass of the pendulum, g is
gravity of Earth, h is pendulum position over the reference level, hmax is pendulum
position in its highest point, v is pendulum velocity, vmax is maximal velocity of
pendulum in its lowest point.
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A Kalman filter can be used to reduce the measurement uncertainty and statistical
noise captured by Kinect, and it uses a recursive approach to estimate the object
velocity based on a series of measurements perceived by Kinect over time. Using
this filter gives more accurate results than those based on single measurements.

The results indicate that the system can be used to detect the velocity of any
foreign object and control the robot accordingly. Further development is suggested
to integrate the results of this section to the collision avoidance system. For instance,
detecting the velocity allow the system to predict the position of the obstacle which
can help in the presence of processing delays and fast movement of humans.

9.4 System Verification

A verified example of the robot’s TCP (tool centre point) path during active col-
lision avoidance is illustrated in Fig. 9.17. The first target of the robot path is
marked by ⓪, followed by the targets: ①, ②, and then back to ①. In the absence
of identified obstacle, the robot follows the linear movement ❶ between the planned
targets. Once the system detects an obstacle within a certain distance to the
end-effector, the present path of the robot is modified adaptively to prevent any
possible collision during the movement to the following position. Locations along
the modified path are indicated by circles ❷. These locations are taken into account
during adaptive trajectory planning and are indicated by crosses ❸; they represent
the nearest locations to the robot end-effector. Lines ❹ describe the distances
between the end-effector and the detected nearby obstacle along the robot’s path.

The verified outcomes of the robot’s end-effector when following an operator are
plotted in Fig. 9.18. The identified locations of the operator’s hand are indicated by
red crosses. These locations are concentrated in areas indicated by ①, ② and ③
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which represent the locations where the hand of the operator stayed for longer
periods of time. The blue crosses indicate the locations of the robot’s end-effector,
where ❶, ❷ and ❸ are the robot end-effector’s ponding locations corresponding to
the operator’s hand.
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Fig. 9.17 Recorded path of robot TCP for collision avoidance
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9.5 A Remote Assembly Application

As mentioned before, human safety can be assured by active collision avoidance in
a shared human-robot collaborative environment. Although less critical, human
safety remains as an important issue in remote human-robot collaborations. One
example is remote assembly via human-robot collaboration as explained in this
section.

Instead of video image streaming, 3D models can be used to guide an offsite
operator during remote assembly to meet real-time constraint over the Internet. The
3D models of the parts to be assembled by a robot can be constructed based on a
sequence of images captured in varying poses by a robot-mounted camera. The
camera is then turned off during robotic assembly to save network bandwidth for
better performance. In this context, the robot is treated as a manipulator, which
mimics the human’s operations but from distance. To safeguard people around the
remote robot, the aforementioned active collision avoidance system can be applied.

9.5.1 System Configuration

The remote assembly system is configured with four modules as shown in
Fig. 9.19: (1) an application server for image processing and 3D modelling, (2) a
real robot for physical assembly, (3) a vision camera for capturing unknown
objects, and (4) a user interface to a remote operator for monitoring and control of
the entire system. Note that the safety module is not discussed here. This system is
capable of identifying and modelling incoming parts of unknown geometries to be
assembled. The new parts are then merged into a virtual environment, Wise-
ShopFloor [29], with existing 3D models of the robotic cell for 3D model-driven
remote assembly.

In the system implementation, the camera is placed near the robot’s end-effector
to capture objects freely. The process starts by moving the camera facing the objects
from above when taking the first snapshot. The system creates the initial models of
the objects by converting the silhouettes in the top-view snapshot to a set of vertical
pillars of a given height. Moving the camera, the system then takes a set of new
snapshots of the objects from different angles. Projecting the silhouettes of the
snapshots back to the 3D space can trim the pillars (3D models) to approximate the
objects. Figure 9.20 shows one scenario of 2D trimming, where the outer bounding
polygon approximates the inner actual object.
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9.5.2 System Implementation

9.5.2.1 Image Processing

The aim of image processing is to extract the silhouettes of the captured objects.
The processing details are explained below.

Converting to grayscale—To minimise the computational load, the captured
colour images are converted to grayscale by taking the average RGB value of each
pixel in the images.

Gaussian filtering—Noise in an image affects the accuracy of the silhouette.
A zero-mean Gaussian filter given in Eq. (9.7) is applied to each pixel at (i, j) in the
image matrix of (m � n) to remove the noise and to smooth the image. The output
image H(i, j) is the convolution of an input image f(i, j) and Gaussian mask g(a, b).

Hði; jÞ ¼ f ði; jÞgða; bÞ

¼
Xðn�1Þ=2

a¼� ðn�1Þ=2½ �

Pðm�1Þ=2

b¼� ðm�1Þ=2½ �
f ði� a; j� bÞgða; bÞ ð9:7Þ

Image thresholding—This process extracts the silhouette pixels from the image.
It is achieved by scanning the image pixel by pixel while comparing its intensity
value with a threshold value. Based on the comparison, the pixel is converted to
white or black.

Silhouettes labelling—This process identifies the silhouettes in an image by
assigning a unique label to each of them, using the component labelling algorithm
[32]. The process scans the image pixel by pixel to find a match to one of the
silhouettes, followed by checking its neighbouring pixels. If one or more neigh-
bouring pixels hold a label, the algorithm assigns the lowest label to the pixel;
otherwise, a new label is assigned. The result of this process is a two-dimensional
array in which each element represents a pixel, and each silhouette is represented by
a unique label. The background holds a zero value.

9.5.2.2 3D Modelling

Constructing 3D models of the captured objects is based on the silhouettes retrieved
from the captured images, as follows:

• Calibration of camera

A pinhole camera model [33] is adopted for camera calibration. Constructing 3D
models precisely requires calibrating the camera to determine its parameters and
identify its physical location, e.g. the camera’s optical centre, image centre, focal
coefficients fx and fy (Fig. 9.21Ⓐ), and radial and tangential distortion coefficients
(not shown). A 2D coordinate system U-V is defined on the image plane, specifying
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pixel locations in a captured image. Moreover, the camera with respect to the
robot’s end-effector is specified by a transformation matrix, and its relationship to
the robot base is defined as shown in Fig. 9.21Ⓑ. The calibration needs to be
performed only once when the camera is mounted on the robot for the first time,
with minor adjustments at regular service intervals to minimise any deviations.

• Construction of pillars

The first snapshot providing the top view of the objects is used to construct initial
3D models, using the extracted silhouettes. These models are represented by a set of
pillars of pixel diameter in 3D space. Figure 9.22 depicts the construction of the
initial pillars.

An initial value is assigned as the height to all pillars. This value is the maximum
possible height of the objects. The construction of the initial pillars is accomplished
by applying Tsai’s pinhole camera model [33], as shown in Fig. 9.21Ⓐ. Given a
3D point (x, y, z), its projected 2D point (u, v) on the U-V plane is described as

u ¼ fx � x00 þ cx; v ¼ fy � y00 þ cy ð9:8Þ

x00 ¼ x0ð1þ k1r
2 þ k2r

4 þ k3r
6Þþ 2p1x0y0 þ p2ðr2 þ 2x02Þ ð9:9Þ

(a) (b)

Fig. 9.21 Parameters and coordinate systems for camera calibration

232 9 Safety in Human-Robot Collaborative Assembly



X

Z

Y

3D 
point

2D image 
array

Camera in 
top view 
posiƟon

Camera 
coordinate 

system

Pillar

2D silhoueƩe

Projected 
2D point

M
ax

im
um

 h
ei

gh
t

Fig. 9.22 Construction of initial pillars

9.5 A Remote Assembly Application 233



y00 ¼ y0ð1þ k1r
2 þ k2r

4 þ k3r
6Þþ 2p2x0y0 þ p1ðr2 þ 2y02Þ ð9:10Þ

x0 ¼ x
z
; y0 ¼ y

z
; r2 ¼ x02 þ y02 ð9:11Þ

fx ¼ f � sx; fy ¼ f � sy ð9:12Þ

where k1, k2, k3 and p1, p2 are the radial distortion coefficients and tangential
distortion coefficients, respectively. The dimensions of a pixel are defined by sx and
sy. Equations (9.8) and (9.12) introduce two different focal coefficients: fx and fy.
This is because the individual pixels on a typical CCD image sensor are rectangles
in shape.

• Trimming of pillars

The trimming operation takes place after the second snapshot has been processed
(silhouette extracted), and continues until the trimming by the last silhouette is
done. Figure 9.23 shows the trimming process of two sample pillars with reference
to one silhouette.

In other words, the trimming operation projects the pillars one by one from the
3D space to the image plane. Since each pillar is represented by two 3D end points,
the projection is only for the points. The projection of a pillar creates two 2D points,
calculated by Eq. (9.8), which are then connected using Bresenham algorithm [34].
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Fig. 9.23 Example of pillar-trimming process
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Extracting the pixels shared by the projected line and the silhouette reveals a
trimmed line. Finally, the trimmed 2D line is projected back to the 3D space,
resulting in a trimmed pillar. The trimming process is repeated for all pillars and all
snapshots. For more complex shape, the concavity of the object results in pillars
with multiple subsections.

• Solid prism representation

Despite the fact that the aforementioned processes can trim the pillars as closely as
possible to mimic the real objects, the pillars alone are neither intuitive nor com-
putationally efficient for 3D visualisation due to the fact of non-solid geometry.
Moreover, the modelled shapes need to be compatible with the robot 3D model in
Wise-ShopFloor [29]. This, however, can be achieved by creating a solid prism
representation for the trimmed pillars.

Two objectives are considered here: (1) to localise the process, and (2) to create
a uniform representation of a given object. The pillars are first divided into groups
of three according to their immediate neighbouring connectivity. The prism creation
is then divided into three steps to construct: (1) the top surface, (2) the bottom
surface, and (3) the three sides of each prism. The order of the end points is crucial
when building a surface patch of each prism as its surface normal affects its visi-
bility. As shown in Fig. 9.24, three end points in counter-clockwise order are used
to create a surface patch with an outer visibility. Moreover, three cases of pillar
division (cut) caused by the subsections of pillars are also considered during prism
creation, as illustrated in Fig. 9.24.

9.5.3 Case Study

As shown in Fig. 9.25, three simple parts are chosen for a proof-of-concept case
study to validate the functionality of the 3D model-driven remote assembly system.
Once the 3D models of the randomly placed parts are generated and integrated with
the 3D model of the robotic assembly cell, the camera is switched off to save
network bandwidth, leaving a low-volume data connection with the robot controller
alive. A remote operator assembles the ‘parts’ (3D models) using the 3D robot
model in the cyber world, whereas the real robot mimics the virtual robot and
assembles the actual parts simultaneously in the physical world—a typical
cyber-physical system. During remote assembly, only the robot control commands
are transmitted from the virtual robot to the real one instantly and automatically,
without extra robot programming. It is worth mentioning that image processing can
also identify the geometric centres and orientations of the parts, leading to semi-
automate pick-and-place and grasping operations during remote assembly.
Figure 9.26 depicts the results of 3D model creation of the parts, as well as those of
3D model-driven remote assembly.
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In this case study, seven snapshots taken from different angles are used to model
the parts. More snapshots would improve the quality of the 3D models, although the
processing time would be longer. A performance analysis is therefore conducted
under the following specifications to understand its relationship: Intel Core i5
processor of 2.6 GHz, graphics card of GeForce GT 240, a 4 GB RAM, and
running under the operating system of Windows Vista.

The image-based 3D model generation has been tested for ten times and the
average computation time for each processing step was calculated and recorded as
illustrated in Fig. 9.27, with error bars indicating deviations in the recorded
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processing times. It is found that the silhouette labelling process consumes in
average 1.75 s in processing time, with the highest deviation. The reason is due to
the fact that the labelling algorithm employed examines all the neighbouring pixels
when spotting a non-zero pixel in an image during the pixel-by-pixel scanning. It
consumes a high percentage of processing time that varies from one test to another.
Despite this fact, the system can process one image in about 4.8 s.

The results of the pillar trimming process for each snapshot are also recorded.
Figure 9.28 manifests the accuracy by comparing the actual height of a real object
and the trimmed pillar height of its 3D model after processing each snapshot
excluding the first top-view image. As can be seen in the figure, the accuracy of
pillar trimming is reasonably high after processing the 7th snapshot as the error has
converged quickly to a small value in 22 s. with a modelling accuracy of less than
1 mm. In terms of the efficiency of remote assembly, the real robot lags behind the
virtual robot by 30 ms over the Internet.
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Fig. 9.25 3D model-driven remote assembly
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Fig. 9.26 Results of case study for 3D modelling and remote assembly
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9.6 Conclusions

Human safety is an important necessity in any human-robot collaborative systems.
Targeting this necessity, this chapter introduced a cost-effective and time-efficient
solution for actively avoiding collisions that can provide consistent and reliable
safety protection in a human-robot collaborative environment. The aim of this
solution is to improve the overall robotic system performance by associating robot’s
virtual 3D models with human operators to a series of depth and vision sensing
units for online collision detection and avoidance in an augmented environment.
Instead of using the traditional emergency stops that do not allow human-robot
coexistence but increase the downtime of a robotic cell, the introduced approach
detects in real-time any possible collision and actively control the robot via four
safety modes: alarming a human operator, stopping a robot, moving the robot away
from the approaching operator via recoverable interruptions, or modifying the robot
trajectory at runtime. The approach provides better flexibility and productivity.
Furthermore, a human-robot collaborative scenario has been verified for the pur-
pose of enabling the robot to track the operator to facilitate a shared assembly task.
Introducing the four safety strategies to assembly planning is the future aim along
this direction so that the behaviour of a robot fits the nature of a required task,
leading to more advanced human-robot collaborative assembly.

A 3D model-driven robot-in-the-loop approach is presented in the second half of
this chapter for remote assembly, where an off-site operator can manipulate a real
robot instantly via cyber robot control. The 3D models of the parts to be assembled
are generated based on a set of snapshots of the parts captured by a robot-mounted
camera. The generated 3D models are then integrated with the 3D model of a real
robotic cell. The advantages are: (1) elimination of video-image streaming during
remote assembly, and (2) robot programming-free to users. The needed robot
control commands are generated automatically and transmitted from the virtual
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robot to the real one for physical assembly. This method can generate a set of 3D
models in 22 s from seven snapshots. The efficiency can be improved by per-
forming image processing in parallel with moving the camera to the next position.
For complex geometries, more snapshots can be used to improve the modelling
accuracy. This remote assembly system is for manual assembly where the robot is
treated as a manipulator. No matter simple or complex, assembly sequence is up to
the assembler. The future work includes more comprehensive feature identification,
e.g. centre of a hole, etc., during 3D modelling and more tests of realistic and
complex parts assembly. This contributes to remote human-robot collaboration.

References

1. D.J. Agravante, A. Cherubini, A. Kheddar, Using vision and haptic sensing for
human-humanoid joint actions, in Proceedings of the IEEE Conference on Robotics,
Automation and Mechatronics, RAM (2013), pp. 13–18

2. C.A. Monje, P. Pierro, C. Balaguer, A new approach on human–robot collaboration with
humanoid robot RH-2. Robotica 29(6), 949–957 (2011)

3. S. Takata, T. Hirano, Human and robot allocation method for hybrid assembly systems. CIRP
Ann.-Manuf. Technol. 60(1), 9–12 (2011)

4. F. Chen, K. Sekiyama, H. Sasaki, J. Huang, B. Sun, T. Fukuda, An assembly strategy
scheduling method for human and robot coordinated cell manufacturing, in IEEE
International Conference on Intelligent Robots and Systems (2011), pp. 4670–4675

5. J. Krüger, T.K. Lien, A. Verl, Cooperation of human and machines in assembly lines. CIRP
Ann.-Manuf. Technol. 58(2), 628–646 (2009)

6. T. Arai, R. Kato, M. Fujita, Assessment of operator stress induced by robot collaboration in
assembly. CIRP Ann.-Manuf. Technol. 59(1), 5–8 (2010)

7. D. Kuli, E.A. Croft, Affective state estimation for human–robot interaction. IEEE Trans.
Robot. 23(5), pp. 991–1000 (2007)

8. J. Krüger, B. Nickolay, P. Heyer, G. Seliger, Image based 3D surveillance for flexible
man-robot-cooperation. CIRP Ann.-Manuf. Technol. 54(1), 19–22 (2005)

9. J.A. Corrales, F.A. Candelas, F. Torres, Safe human-robot interaction based on dynamic
sphere-swept line bounding volumes. Robot. Comput. Integr. Manuf. 27(1), 177–185 (2011)

10. Z.M. Bi, L. Wang, Advances in 3D data acquisition and processing for industrial applications.
Robot. Comput. Integr. Manuf. 26(5), 403–413 (2010)

11. T. Gecks, D. Henrich, Human-robot cooperation: safe pick-and-place operations, in
Proceedings of the IEEE International on Robot and Human Interactive Communication,
vol. 2005 (2005), pp. 549–554

12. D. Ebert, T. Komuro, A. Namiki, M. Ishikawa, Safe human-robot-coexistence:
emergency-stop using a high-speed vision-chip, in 2005 IEEE/RSJ International
Conference on Intelligent Robots and Systems, IROS (2005), pp. 1821–1826

13. C. Vogel, C. Walter, N. Elkmann, A projection-based sensor system for safe physical
human-robot collaboration, in IEEE International Conference on Intelligent Robots and
Systems (2013), pp. 5359–5364

14. J.T.C. Tan, T. Arai, Triple stereo vision system for safety monitoring of human-robot
collaboration in cellular manufacturing, in Proceedings of the 2011 IEEE International
Symposium on Assembly and Manufacturing, ISAM (2011), pp. 1–6

15. R. Schiavi, A. Bicchi, F. Flacco, Integration of active and passive compliance control for safe
human-robot coexistence, in Proceedings of the IEEE International Conference on Robotics
and Automation (2009), pp. 259–264

240 9 Safety in Human-Robot Collaborative Assembly



16. M. Fischer, D. Henrich, 3D collision detection for industrial robots and unknown obstacles
using multiple depth images, in Advances in Robotics Research (2009), pp. 111–122

17. P. Rybski, P. Anderson-Sprecher, D. Huber, C. Niessl, R. Simmons, Sensor fusion for human
safety in industrial workcells, in IEEE International Conference on Intelligent Robots and
Systems (2012), pp. 3612–3619

18. F. Flacco, T. Kroeger, A. De Luca, O. Khatib, A depth space approach for evaluating distance
to objects: with application to human-robot collision avoidance. J. Intell. Robot. Syst. Theory
Appl. 80, 7–22 (2015)

19. B. Dániel, P. Korondi, T. Thomessen, Joint level collision avoidance for industrial robots.
IFAC Proc. 45(22), 655–658 (2012)

20. A. Cherubini, R. Passama, A. Crosnier, A. Lasnier, P. Fraisse, Collaborative manufacturing
with physical human-robot interaction. Robot. Comput. Integr. Manuf. 40, 1–13 (2016)

21. Pilz GmbH & Co. KG (2016), [Online]. Available: http://www.safetyeye.com/
22. A.Y.C. Nee, S.K. Ong, G. Chryssolouris, D. Mourtzis, Augmented reality applications in

design and manufacturing. CIRP Ann.-Manuf. Technol. 61(2), 657–679 (2012)
23. S. Tzafestas, D. Aristos, Simultaneous object recognition and position tracking for robotic

applications. in Proceedings of the 2009 IEEE International Conference on Mechatronics
(2009), pp. 145–169

24. X. Tian, H. Deng, M. Fujishima, K. Yamazaki, Quick 3D modeling of machining
environment by means of on-machine stereo vision with digital decomposition. CIRP Ann.-
Manuf. Technol. 56(1), 411–414 (2007)

25. D. Samak, A. Fischer, D. Rittel, 3D reconstruction and visualization of microstructure
surfaces from 2D images. CIRP Ann.-Manuf. Technol. 56(1), 149–152 (2007)

26. Y. Sumi, Y. Kawai, T. Yoshimi, F. Tomita, 3D object recognition in cluttered environments
by segment-based stereo vision. Int. J. Comput. Vis. 46(1), 5–23 (2002)

27. B. Petit et al., Multicamera real-time 3D modeling for telepresence and remote collaboration.
Int. J. Digit. Multimedia Broadcast. 2010, 1–12 (2010)

28. K. Atsushi, H. Sueyasu, Y. Funayama, T. Maekawa, System for reconstruction of
three-dimensional micro objects from multiple photographic images. Comput. Aided Des.
43(8), 1045–1055 (2011)

29. L. Wang, Wise-ShopFloor: an integrated approach for web-based collaborative manufactur-
ing. IEEE Trans. Syst. Man Cybern. Part C Appl. Rev. 38(4), 562–573 (2008)

30. L. Wang, R. Sams, M. Verner, F. Xi, Integrating Java 3D model and sensor data for remote
monitoring and control. Robot. Comput. Integr. Manuf. 19(1–2), 13–19 (2003)

31. L. Wang, M. Givehchi, G. Adamson, M. Holm, A sensor-driven 3D model-based approach to
remote real-time monitoring. CIRP Ann.-Manuf. Technol. 60(1), 493–496 (2011)

32. M. Jankowski, J.-P. Kuska, Connected components labelling—algorithms in Mathematica,
Java, C++ and C#, in International Mathematica Symposium (2004)

33. R. Tsai, A versatile camera calibration technique for high-accuracy 3D machine vision
metrology using off-the-shelf tv cameras and lenses. IEEE J. Robot. Autom. 3(4), 323–344
(1987)

34. M.S. Fawad, Adapting Bresenham algorithm. J. Theor. Appl. Inf. Technol. 2(2), 27–30
(2007)

References 241

http://www.safetyeye.com/


Chapter 10
Cloud Robotics Towards a CPS
Assembly System

10.1 Introduction

In recent years, cloud has become a popular technology which gained huge market
success globally. Cloud concept indicates a model for enabling ubiquitous, con-
venient, on-demand network access to a shared pool of configurable computing
resources (e.g. networks, servers, storages, applications, and services) that can be
rapidly provisioned and released with minimal management effort or service pro-
vider interaction [1]. It provides elastic and flexible supports for service-oriented
production models. Instead of investing on costly IT equipment or software licenses
as a whole, the cloud users are able to pay for the exact amount of software or
hardware usage based on pay-as-you-go principle. It is particularly helpful for small
and medium-sized enterprises (SMEs) that are normally short of start-up capitals for
new investments on equipment.

It is thus logical and reasonable for manufacturing researchers and stakeholders
to adopt cloud into the manufacturing industry so as to improve current production
performance. Based on NIST’s definition, Xu [2] extended the cloud concept to
manufacturing as a model enabling ubiquitous, convenient, on-demand network
access to a shared pool of configurable manufacturing resources (e.g. manufacturing
software tools, manufacturing equipment, and manufacturing capabilities) that can
be rapidly provisioned and released with minimal management effort or service
provider interaction. The cloud-based automation is predicted to alter the
automation landscape by means of improved perception, faster planning, accurate
modelling, lifelong learning, large-scale systems, new ways of interacting with
humans, and so forth [3]. The availability of new technologies, e.g. computing
cloud, big data management, open platform, and broad bandwidth, and their pos-
sible uses in robotics have opened the door to a whole new line of research called
Cloud Robotics [4]. However, manufacturing facilities are conducted by different
vendors using different standards, platforms, communication protocols, and inter-
faces. Thus, it forms a heterogeneous environment which experiences difficulties in
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interaction and integration. Compared with cloud computing systems, one of the
biggest challenges cloud manufacturing facing is involving numerous types of
physical resources, e.g. machine tools and robots.

As a matter of fact, the proposal of integrating robots with cloud was made
20 years ago. In 1995, Bohus et al. [5] suggested implementing remote robot
control over the Internet cloud. In 2010, James Kuner at Google introduced the term
Cloud Robotics [6] to describe a new approach to robotics that takes advantage of
the Internet as a resource for massively parallel computation and real-time sharing
of vast data resources. As a new way of merging robots and ICT, cloud robots are
predicted as an evolutionary jump for robots and a transformational change of
paradigm [3].

This chapter focuses on merging the technologies from both computing cloud
and industrial applications in the manufacturing sector. In the first half of this
chapter, relevant cloud manufacturing research works are reviewed. In the second
half, a novel cloud manufacturing system is presented to integrate manufacturing
applications in the cloud paradigm. The system is introduced from the perspective
of system architecture, integration mechanisms and robotic applications.

10.2 Cloud Robotics

In the past years, the cloud robotics research has been conducted worldwide. Many
approaches are proposed in different sectors. In this section, cloud robotics related
research are reviewed and discussed from two perspectives, i.e. robotic systems and
applications.

10.2.1 Cloud Robotics at System Level

As an important spirit of cloud, SOA (service-oriented architecture) refers to a
system consisting of a collection of loosely coupled services that communicate with
each other through standard interfaces and via standard message-exchanging pro-
tocols [7]. In the cloud robotic centre, Du et al. [8] proposed a framework following
the general cloud computing paradigm, which was suggested to address the current
limitations in capacity and versatility of robotic applications. A broker mechanism
was deployed to look up the services and applications available in the unit’s
directory. Chu et al. [9] proposed a platform offering telematics services deployed
to form the cloud platform, namely Cargo. This architecture assisted the service
providers to establish a service platform in order to include varied developing
technologies.

In cloud computing, there are different levels of service deployments from high
to low, such as Infrastructure-as-a-Service (IaaS), Platform-as-a-Service (PaaS),
Software-as-a-Service (SaaS) [1]. These models are reflected in the robotic clouds
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as well. Mourandian et al. [10] focused on the IaaS aspects of robotic applications
as cloud computing services. They proposed an architecture that enabled cost
efficiency through virtualisation and dynamic task delegation to robots, including
the robots that might belong to other clouds. Gherardi et al. [11] suggested a PaaS
approach for configurable product lines based on cloud robotic applications. It
allowed robot developers to relieve end users from the low-level decisions required
for configuring the architecture of complex systems distributed on the robot and the
cloud. It was predicted that numerous robotic applications could be developed in
this area; for instance, REALabs platform was built based on the PaaS model [12].
Mohanarajah et al. [13, 14] presented the design and implementation of Rapyuta.
Rapyuta was an open source PaaS framework designed specifically for robotic
applications. It helped robots to offload heavy computation by providing secured
customisable computing environments in the cloud. Artificial neural network was
used for the training of locations [15]. The idea was to establish the communication
between the cloud and robot over a large environment and identify the location
from the images sent by the robot at the SaaS level.

Chen and Hu [16] discussed Internet of intelligent things and Robot-as-a-Service
(RaaS). The idea of achieving RaaS was through autonomous and intelligent mobile
physical services or robots to form a local pool of intelligent devices and that could
make local decisions without communications with the cloud. Bekris et al. [17]
described how solutions from the recent literature could be employed on the cloud
during a periodically updated pre-processing phase to efficiently answer manipu-
lation queries on the robot given changes in the workspace. In this setup, interesting
trade-offs arose between path quality and computational efficiency. These trade-offs
motivated further research on how motion planning should be executed given
access to a computing cloud.

To recap, the current cloud robotic systems aim to improve the robot perfor-
mance with the help of enhanced computing power and data/knowledge manage-
ment capability from the cloud. Extended from Kato et al. [18], the comparison
among conventional, web-based and cloud-based robotics is shown in Fig. 10.1. In
a traditional robotic cell, all knowledge and service modules are integrated along
with the control system and physical components locally. In contrast, web-based
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robotic cell aims to control the physical devices remotely over the network. Thus,
the information and operating systems are deployed in remote servers.

However, this system structure is challenged by technical issues, e.g. real-time
control, synchronisations and stability risks. As an intermediate solution,
cloud-based robotics is able to resolve the conflict between heavy computing needs
and local control requirements. Information sharing and data management is able to
be implemented remotely in the cloud, while the physical applications are imaged
and maintained in terms of virtual cloud services.

10.2.2 Cloud Robotics at Application Level

At the application level, numerous cloud-related robotic applications are developed.
Kamei et al. [19] discussed networked robotics connected to the cloud. New fields
are predicted, e.g. daily activity and accessible support. Some of the issues were
identified as future challenges including multi-robot management, multi-area
management, user attribute management, and service coordination management.
A Human-Robot Cloud (HRC) was also proposed as an extension to cloud com-
puting across the support of physical human and the cognitive “components” of the
cloud, which were neither expected to be experts nor to be engaged with the cloud
in full-time [20].

From the machine intelligence’s perspective, Ren [21] proposed the concept of
an advanced intelligence machine, which was a device that used both natural and
artificial intelligence and was capable of effective recognition and generation of
effective speech and behaviour. Morariu et al. [22] introduced a classification of
virtualised manufacturing execution systems and shop floor devices, which was
presented focusing on the virtualisation techniques suitable for each device type,
considering the level of distributed intelligence and the virtualisation overhead. The
implementation using six Adapt robots and an IBM Cloud-Burst 2.1 private cloud,
was described; and virtualisation overhead in terms of event propagation delays was
measured and presented in several scenarios of resource workload collocation on
physical cloud blades.

During the development of cloud robotics, a number of supportive technologies
can also be observed. At data level, Liu et al. [23] presented a comprehensive view
on a system level information fusion design using cloud computing technology.
A systematic comparison among four different distributed computing paradigms
was given, which illustrated the advantages and constraints of cluster computing,
peer-to-peer (P2P) computing, grid computing, and cloud computing. Apache
Hadoop was suggested to support large data sets across different machines by
several researchers [9, 24]. Kato et al. [18] proposed a system for integrating robot
services with Internet services. The feature was to use a standardised communi-
cation protocol, which is Robot Service Network Protocol. The key mechanism of
the proposed framework was a robot assignment function, which discovered dis-
tributed robot resources and assigned the requested tasks by end users to suitable
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robots [25]. Aguero and Veloso [26] developed a transparent multi-robot com-
munication exchange mechanism for executing robot behaviours. Jang and Kim
[27] developed a script language-based template for the source code generation and
exchange.

To summarise, despite the above-mentioned achievements in cloud-based
manufacturing, there is still a lack of research in a cloud system that is able to
support manufacturing chain as a whole solution. Thus in this chapter, the
Interoperable Cloud Manufacturing System (ICMS) is presented along with the
system structure and integration mechanisms.

10.3 ICMS: an Example of Cloud Robotics System

The ICMS system architecture is illustrated in Fig. 10.2. Physical production
resources are integrated in the system in terms of manufacturing services. The
Cloud layer works as the service coordinator and supervisor of the whole pro-
duction system. Cloud users and administrators are able to access the cloud over the
network, with the help of standardised Application Programming Interface (API).
Inside the Cloud layer, the Service Manager mechanism is the core execution
module which interacts with cloud users, and executes the service packages
accordingly. The Cloud Database maintains information regarding cloud user,
cloud service packages, service histories, and most importantly resource profiles
that are utilised to schedule and execute cloud services. These specifications
guarantee the capability, availability and feasibility of production facilities at the
Physical Resource level.

At the Physical Resource Layer, manufacturing tasks assigned by cloud are
taken by control units of production devices, e.g. Robot-as-a-Service (RaaS) unit
and Machine-as-a-Service (MaaS) unit. Robot Operating Systems (ROS) and CNC
controllers interpret the production documents from cloud into process working
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steps and then controlling signals that directly drive physical devices eventually. In
this top-down approach, human operators are also able to interact with the Cloud
layer via devices like smart phones, PCs and PDAs. Real performance on
shop-floor is monitored by range cameras, sensors, smart meters and device con-
trollers. Monitoring results are fed back to cloud for service supervision and future
improvements. Thus, it forms a closed-loop production system.

Between the Cloud layer and Physical Resource Layer, Local Servers are
optional due to two main reasons. First, during the monitoring process, shop-floor
sensors generate huge amount of data dynamically, e.g. power, current, vibration,
and force readings. It is inefficient to stream all raw data to cloud directly, since
most contents are not essential but generate heavy network traffics. Thus a local PC
or server is necessary in this case to play as the data filter and pre-processor. Raw
data is locally filtered and processed by the server, and then uploaded to the cloud.
It thus balances bandwidth loads and cloud data management.

Second, in some cases the local server needs to work as an interface between the
Cloud layer and the Physical Resource Layer. In practice, many commercial control
units (ROS and CNC controller) are designed as a semi-closed system. To some
degree it guarantees the robustness and safety of the unit. However, these systems
are difficult to interact with the cloud directly. Thus in these cases, a local PC or
server is needed to interact with operating systems at low level via user interface on
one hand (over local network in most cases), and communicate with the cloud via
the Internet on the other hand. It is particularly suitable for the integration of robotic
applications and related devices, since most of the legacy devices, monitors,
cameras, measuring devices, etc. are not cloud-ready. The Local Server is able to
interface with the legacy devices via native Application Programming Interfaces or
User-Defined Interfaces at lower level, and interact with the Cloud Layer at higher
level directly. It guarantees the connectivity of the production environment.

10.3.1 Integration Mechanisms in ICMS

The communication methods between manufacturing facilities and cloud are shown
in Fig. 10.3. Localised production plan is possible thanks to cloud databases and
local monitoring devices. For instance, detailed industrial robot specifications are
kept in the cloud, including working envelope, handling capacity, working range
and energy history (Fig. 10.3a). When path planning and optimisation is needed,
the cloud is able to pull the data regarding positioning, kinematics/joint status from
shop floor and profile specifications in cloud database. Then the cloud is able to
take heavy computing task and output optimised path to the robotic cell.

For CNC machines (Fig. 10.3b), the limitations and physical characters can be
maintained in the profile database, e.g. feed force, maximum acceleration, position
tolerance and energy parameters, etc. In this way, localised machining process plans
can be generated which is suitable for the specific machine tools.
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As a specific type of resource, human resource can be integrated with ICMS as
well, considering physical and ergonomic factors of individual operators specifi-
cally (Fig. 10.3c). Exclusive human factors differ among individual operators, e.g.
height, weight, strength, handedness (left or right), and other ergonomic factors.
Before an operator starts to work, his or her staff barcode can be quickly scanned
and the personalised ergonomic specification can be identified in cloud database.
Based on these profiles, a personalised work plan is generated. It is especially
helpful during the implementation of human-robot collaborations, since robot
movement strategies can be adjusted based on aforementioned human factors.
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10.3.2 Cloud Robotic Application

In ICMS, the robotic application follows the cloud robotic structure illustrated in
Fig. 10.1. In this three-layer application (Fig. 10.4), a local server bridges the gap
between the physical robotic cell and remote computing cloud. As mentioned
before, the cloud-based robots suffer from the conflict between local control
requirements and remote cloud communication. Especially in the context of
industrial robotic cells, the stability and security of the ROS are critically essential.
Hence in ICMS, the ROS unit and hardware are locally connected, while a local
server works as the data buffer and filter between the physical layer and the Cloud
layer. The local server coordinates the computing loads between cloud and itself.
When the amount of computing work is low, the local PC or server executes the
task by itself. When the heavy computing load is required, e.g. optimisation,
simulation or point cloud processing, the local server packages the data and pushes
it to the cloud along with the service query.

Besides central computing, the cloud also works as the service manager and
data/knowledge pool of the cloud robots. Based on the cloud manufacturing system
[28, 29], RaaS is adopted in the cloud as a specific type of production service.
Virtualised robotic applications are maintained in the service database in the cloud
in terms of cloud services, e.g. assembly service, moving service, planning service,
etc. When a user requests specific robot service via standardised API, the service
broker interprets the query and allocates suitable robot service maintained in the
database. Then localised robot task is generated and passed to the local server and
then to the physical robotic cell. During execution stage, the service manager plays
as the service supervisor which monitors and manipulates the RaaS unit and
guarantees the service is proceeded as scheduled.

In practice, it is not necessary or practical to stream all the sensor data collected
form the shop floor to the cloud, since it contains primary data sets and meaningless
information. To optimise the utilisation of bandwidth, storage space and computing
capability in the cloud, it is especially necessary to separate the low-level data
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selectively. If the data is valuable of being maintained in the cloud repository, the
local server works as the data filter and buffer before the generic data is
pre-processed and streamed to the cloud database.

With the help of sensor and monitor devices, e.g. cameras, sensors, controllers
and smart meters, the trustworthy status of the robotic cell can be collected by the
local server in real-time. The monitoring history and data can be stored and pro-
cessed in the local machines if necessary. When high-performance computing
power is needed, for example for path optimisation or energy analysis, the local
machine works as the data buffer and pre-processes the data into standalone data
package, and then sends the package to the cloud over the network. Thus the cloud
computing capability can be utilised to deliver the query in faster speed with higher
quality. Additionally, the valuable information and knowledge are maintained and
shared in the cloud database, which supports the other cloud robot/manufacturing
services in the future. After the computing task is completed, the cloud sends back
the results to the local server, which utilises the results as inputs and references for
the physical robot control. Thus it forms a feasible solution which guarantees the
hardware stability and remote computing capability at the same time.

In the cloud computing paradigm, there are different deployment models, i.e.
private, community, public and hybrid cloud. These models can be introduced into
the robot clouds. During the implementation of cloud robots, different connection
methods are deployed and evaluated. Local Area Network (LAN) is conventionally
well appreciated due to its stability and high speed. In recent years Wi-Fi and
Bluetooth are popular for connecting mobile and humanoid robots to the cloud
thanks to their high speed and easy configuration. However, these connections are
limited by stability, cost, distance and security issues. Especially in a factory
environment, the data transmission scenarios are critical and a flexible and reliable
deployment model is required. In the private robot cloud, the robots, server and
cloud are connected inside the boundary of a manufacturing enterprise or company
(Fig. 10.5). These devices can be configured based on the local specifications and
environments. In a community robot cloud, multiple enterprises share the data and
knowledge collaboratively while sensitive information needs to be restrained within
the enterprise scope. Thus the local server plays an important role as the data filter.
Filtered and pre-processed data is transmitted to the community cloud over the
Internet. In the public cloud model, a big amount of data and information is
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exchanged over the network and cloud. Hence it is necessary to identify and protect
the data at different levels, especially when it is passed through the enterprise or
community boundary.

10.4 Implementation and Case Studies

To validate and evaluate the aforementioned production system based on cloud,
ICMS is implemented based on previous research works [30–32]. In the cloud that
hosts virtual environments and service modules, 32 cores and 132 gigabyte
memories are deployed to provide the computing power for the proposed system
(Fig. 10.6). In this work, Java applet is utilised to develop the user interface since it
offers light weight environment of ICMS and good mobility among different
systems/environments. MySQL databases are established to maintain production
specifications mentioned above. To secure the safety of the cloud system and
privacy of users, Secure Sockets Layer Virtual Private Network (SSL VPN) is
utilised to provide protected remote access to the cloud.

10.4.1 Cloud-Based Manufacturing Chain

ICMS’ cloud production service flow is illustrated in Fig. 10.7. A user firstly
accesses to the cloud environment through VPN over the Internet. Command

Fig. 10.6 Cloud servers in the black cabinet and an industrial robot
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dashboards are developed for cloud administrators and users, respectively. A cloud
administrator is able to manage broadcasted services, customer orders and user
profiles remotely. After the product 3D design is uploaded to the cloud, the user’s
requirements of machining service are interpreted by the smart manager mecha-
nism. Multiple candidate solutions are identified in the cloud database. Among
multiple machining providers, the user is able to filter the candidate pool based on
different preference criteria, e.g. price, duration and quality priority.

Being part of the cloud service, process planning is generated based on generic
feature information from the product 3D design. After the machining service pro-
vider is determined, generic production document is converted to localised NC
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codes which are specifically amended for the chosen machine and cutters based on
the technical specifications maintained in the physical resource profile database
(Fig. 10.3a). It forms a from-design-to-production environment on the cloud.

10.4.2 Human-Robot Collaboration

This case study introduces an approach to providing safe and protected environment
for human operators. Its main objectives are twofold: (1) effective collision
detection between a robot’s 3D model and a human’s point cloud captured by depth
cameras in an augmented environment; and (2) providing a safe robotic environ-
ment by online robot control.

To establish a safe robotic environment, a shop-floor is developed for integrating
a collision avoidance server with the cloud to distribute the system tasks and
improve the performance of this approach as shown in Fig. 10.8. An ABB
industrial robot is utilised to establish an assembly cell for experimentation and
verification. A PC with Intel Core i7 CPU of 2.9 GHz and 12 GB of RAM is
utilised as a local collision avoidance server. The server is responsible for main-
taining the communication with the depth cameras and the robot. Furthermore, it
prepares the visualisations for the end user and controls the robot to avoid the
collision with the human. Additionally, two Microsoft Kinect depth cameras have
been installed to capture the depth information of the robotic cell.

A local database server is also introduced to the system to define the specifi-
cations of the robot and its tools. The system also takes advantage of the computing
cloud to perform efficient analyses for the 3D point cloud captured by the Kinect
cameras. The analyses lead to an accurate calculation of the distance between the
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robot and the human. This allows the system to avoid any collision in the robotic
cell and plan the robot’s path accordingly. The cloud is utilised together with the
database server to schedule the tasks (in this case assembly tasks) for the robotic
cell based on the existence of the human and the availability of the robot and its
tools. Sharing the availability information with other robotic cells improves the
production performance in terms of speed and quality, and leads to a better machine
utilisation. In the experimental results, the capability of collision-free path planning
is validated for the robotic system, without the need for programming. The robot is
also controlled online by the system to follow the operators hand and perform
collaborative assembly tasks.

10.4.3 Minimisation of Robot Energy Consumption

This case study presented an approach to minimising the energy consumption of an
industrial robot’s movements. An optimisation module is introduced to choose the
most energy-efficient robot joint configuration and fulfil the time-critical trajectory
requirements defined by an operator. The capability of this system was measured by
comparing the results of the optimisation module with those of commercial simu-
lation software of the robot. On the other hand, the performance of the developed
module was evaluated using three scenarios; with and without a payload at the
robot’s end-effector. Detailed analyses for the robot working envelope are per-
formed to identify the regions with the lowest level of energy consumption.

A local server in the middle layer is installed and configured to prepare the robot
parameters needed for the optimisation (Fig. 10.9). With the help of the well-known
Denavit-Hartenberg notation, the server is able to describe mathematically the
robot’s joints and the relationships between them. The local server is also

Torques at each jointSimulation Module

Local Server

Client

Inverse 
Kinema cs

Forward 
Kinema cs

Inverse Dynamics
Forward 

Recursion
Backward 
Recursion

Energy 
Consump on 

Calculator

T(t)

θ1(t)

θ6(t)

,θ’1(t)

θ’’1(t)

θ’’6(t)

,θ’6(t)

...

Danevit-Hartenberg
 Nota on Robot’s iner al data

Industrial Robot

Robot’s
 TCP 

Accelera on

Robot’s 
TCP 

Velocity

Robot’s 
TCP 

Payload

C
lo

ud
Lo

ca
l S

er
ve

r
P

hy
si

ca
l R

es
ou

rc
e

Fa
ct

or
y 

N
et

w
or

k

Robot’s 
TCP 

Trajectory

Robot’s 
Mechanical 

Specifica ons

System EvaluatonOp misa on Algorithm

Config. 1
Config. 6

Energy 1

In
te

rn
et

Energy 6 ....

Robot’s energy analyses 

Fig. 10.9 Minimising robot energy consumption

10.4 Implementation and Case Studies 255



responsible for calculating the inertial tensors of the robot’s joints, which are
important for solving the inverse dynamics of the robot.

The developed system benefits from the cloud capabilities to construct a
MATLAB®-based simulation module. It consists of four parts: the forward kine-
matics is solved in the first part; the second part is dedicated to solve the inverse
kinematics of the trajectory. The third part is responsible for determining forward
and backward recursions to solve the inverse dynamics of the robot. The fourth part
calculates the energy consumption of each robot’s joints configuration and sends
them back to the local server. The local server optimises the robot’s calculated
energy consumption and sends the suitable configuration to the robot. The devel-
oped approach allows the local operator to specify the task requirements (trajectory,
velocity, acceleration and payload). The energy consumption of the robot’s working
envelop is analysed based on the proposed approach. Therefore, it is an effective
tool to design the robotic layout and decide the locations of the equipment in the
robotic cell to achieve optimised energy consumption.

10.5 Conclusions

Morden production industry calls for a new generation of manufacturing systems.
Nowadays, fast-changing ICT technologies have dramatically altered the way
people think and do business. However, most of current production systems still
function as 20 years ago. As a disruptive technology, cloud offers an environment
with remote access, resource pooling and customisation.

Cloud technologies provide a shared environment of manufacturing capability,
computing power, knowledge and resource. It can contribute with innovative
robotic technologies to factories of the future. It offers an environment to connect
the computing and service resources in the cyber world to the machines and robots
in the physical world, thus forming a cyber-physical system. As an enabling
technology, the current robotic cells can be strengthened by the cloud as follows.

• Fast response/process speed: image processing, simulation and point cloud
generation/optimisation requires a big amount of computing powers, e.g.
computing cores and memories. Traditionally the simulation and optimisation
task takes long time on local computers that stand beside robots onsite. With the
help of the cloud, the local computer is responsible for onsite data acquisition
and filtering only. The heavy computing task can be passed to the cloud in terms
of a standalone task or metadata file. The task is processed quickly on the cloud
and the results are fed back to the local PC/server. In this way, the bottleneck
caused by the local computing capability is overcome and the computing power
of the robotic cell is strengthened via cloud-based simulation, optimisation,
image processing, point cloud generation, and so forth.

• Flexibility: the workload among multiple robotic cells can be balanced at two
levels, i.e. computing level and task level. At the computing level, multiple
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CPUs and RAMs can be shared by different robotic stations. The computing
resource can be dynamically balanced between different tasks. Thus the total
computing performance and reaction speed are improved, and initial investment
on cloud are shared and distributed by multiple stations. At the task level,
different jobs can be analysed by the cloud and dispatched to different robots
based on the robot capability, task nature, availability, etc. It forms an optimised
robotic collaboration network at global level.

• Human-robot collaboration and adaptiveness: with the help of centralised Cloud
database, the detailed specifications of human operators can be maintained
dynamically, for example the physical human factors (height, weight, capabil-
ity), work habits (left-/right-handed), ergonomic statistics and records. This
knowledge is especially helpful for decision making of human-robot collabo-
rative tasks. Additionally, when the job is switched from one robotic cell to
another, e.g. in case that the original robot is down, new TCP path can be
quickly generated which is suitable for the new robotic environment on the
cloud. It improves the adaptability and flexibility of the robots as well.

• Energy consumption: with the help of the cloud database, the energy con-
sumption profile/record can be integrated on the cloud. The energy consumption
maps can be shared and updated on the cloud dynamically. Thus, eco-friendly
and energy-saving strategies can be made at higher level.

In this chapter, a cloud-based system is introduced especially for ubiquitous
manufacturing. Integration mechanisms of physical resources are outlined, and
customised production planning methods are presented. The introduced system is
evaluated through three case studies. A local server-driven architecture is adopted
to combat the conflicts between local connections and Internet communications. In
practice, safety and security challenges for cloud robotics include resource con-
straints, information and learning constraints and communication constraints [33].
In the future, the cloud-based manufacturing systems can benefit from the related
technologies utilised by computing and manufacturing cloud. Firewalls and access
control keeps an ICMS system from unwilling access and effects. Meanwhile
network encryption and private keys are helpful to keep sensitive data in specific
working domains. In the past years, private cloud models were welcomed by the
production enterprises since the company is enabled to protect the cloud infras-
tructure within their own fences in both cyber and physical worlds. In the future, the
cloud manufacturing systems can be further supported by other successful methods,
e.g. secure gateways, coding, antivirus software, etc.
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Chapter 11
Context-Aware Human-Robot
Collaborative Assembly

11.1 Introduction

Robotic systems are the key assets in various industrial sectors. How to utilise them
efficiently and effectively is a practical challenge. Recently, the concept of
Human-Robot Collaboration (HRC) has generated many interests. The existing
literature suggests that human workers have incomparable problem-solving skills
and sensory-motor capabilities, but are restricted in force and precision [1, 2].
Robotic systems however provide better fatigue, higher speed, higher repeatability
and better productivity, but are restricted in flexibility. When integrated, HRC can
release human workers from heavy tasks and establish communication channels
between human workers and robots for better overall performance. By combining
the advantages of both human workers and industrial robots, an HRC system has
the potential to achieve higher productivity and better sustainability in modern
factories.

Ideally, an HRC team should work similarly as a human-human collaborative
team. However, traditionally, time-separation or space-separation approaches have
been applied in HRC systems, which reduced productivity for both humans and
robots [1]. In order to build an efficient HRC team, human-human collaboration
teams can be analysed as examples. In human teamwork and collaboration, there
are two theories: joint intention theory and situated learning theory [3–6]. To apply
the theories to an HRC team, humans and robots should collaborate symbiotically:

• All team members in an HRC team should share the same plan of execution;
• An HRC team should have structured ways of communication; and
• All team members in an HRC team should be aware of the context of the

collaborative environment.

Recent researches revealed that the acquisition and processing of 3D data is
already available for industrial applications [7]. In HRC environment, the safety of
human workers can be protected by depth sensors and compatible algorithms [8].
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Recognised human motions can be used as input for industrial robot control [9].
However, current industrial robots still cannot establish the context awareness as we
introduced previously. Human workers cannot control industrial robots intuitively,
either. The information feedback channel from industrial robots to human workers
is still limited.

In modern HRC manufacturing environment, products are highly customised
and flexible. It requires that the human worker be the leader of the HRC team in an
HRC manufacturing system. A human worker should be able to flexibly re-assign
assembly tasks to industrial robots based on availability and capability. Thus, the
assembly task should be available for re-assignment in the HRC system once the
human worker’s task re-assignment intent or command is detected. The information
feedback from industrial robots to human workers should also be established.

As shown in Fig. 11.1, in this chapter, the context awareness based symbiotic
HRC is achieved by three key technical components: gesture recognition, human
motion prediction, and AR-based worker support system.

11.2 Gesture Recognition

Gesture is a communication method. Head nodding, hand gestures and body pos-
tures are effective communication channels in human-human collaboration [2, 10].
Gestures can be categorised into three types [11]:

AR displayGestue command

Mo on recogni on 
and predic on

Fig. 11.1 Symbiotic human-robot collaborative assembly based on context awareness
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• Body gestures: full body actions or motions,
• Hand and arm gestures: arm poses, hand gestures, and
• Head and facial gestures: nodding or shaking head, winking lips.

Gesture recognition refers to the mathematical interpretation of human motions
by a computing device. In order to collaborate with human workers, robots need to
understand human gestures correctly and act based on the gestures efficiently.
In HRC environment, a natural way of gesture communication between robots and
humans should be available.

11.2.1 Gesture Recognition for Human-Robot
Collaboration

To recognise gestures in the HRC context, it is beneficial to investigate into a
generic and simplified human information processing model. As shown in
Fig. 11.2, Parasuraman et al. [12] generalised human information processing into a
four-stage model. Based on the generic model in Fig. 11.2, a specific model for
gesture recognition in HRC is introduced here. As shown in Fig. 11.3, there are five
essential parts related to gesture recognition for HRC, i.e.:

• Sensor data collection: gesture raw data is captured by sensors.
• Gesture identification: in each frame, a gesture is located from the raw data.
• Gesture tracking: the located gesture is tracked during the gesture movement.

For static gestures, gesture tracking is unnecessary.
• Gesture classification: tracked gesture movement is classified according to

pre-defined gesture types.
• Gesture mapping: gesture recognition result is translated into robot commands

and sent back to workers.

11.2.2 Sensor Technologies

Before gesture recognition process started, gesture raw data need to be collected by
sensors. In this section, different sensors in the literature are analysed based on
different sensing technologies. As shown in Fig. 11.4, there are two basic categories
for data acquisition: image based and non-image based approaches.

Information 
Acquisition

Information 
Analysis

Decision
Making

Response
Action

Fig. 11.2 A four-stage model of human information processing [12]
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Fig. 11.3 A process model of gesture recognition for human-robot collaboration
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Fig. 11.4 Different types of sensors for gesture recognition
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Image based approaches

Technologies are often inspired by nature. As human being, we use our eyes to
recognise gestures. Therefore, for robots, it is reasonable to use cameras to “see”
gestures. The image-based approaches are further divided into four categories.

• Marker: In marker-based approaches, the sensor is a normal optical camera. In
most marker-based solutions, users need to wear obvious markers [11]. Today,
we enjoy much faster graphical processing speed as compared with twenty years
ago. There are more gesture recognition sensors available.

• Single camera: In the early 90th, researchers started to analyse gestures using a
single camera [13, 14]. A drawback of single-camera approaches is the
restriction of view angles, which affects a system’s robustness [15]. Recent
research, however, applied single-camera approaches in high-speed gesture
recognition [16]. The system utilises a speed image sensor and a specially
designed visual computing processor to achieve fast gesture recognition.

• Stereo camera: In order to achieve robust gesture recognition, researchers
suggested stereo camera based approaches to construct 3D vision. Here, we
define stereo camera based approaches as applications that use two cameras
(optical stereo camera) to construct 3D depth information. Many stereo camera
based approaches followed a similar workflow [17, 18]. Although stereo camera
systems have improved robustness in outdoor environment, they still suffered
from problems such as computational complexity and calibration difficulties [19].

• Depth sensor: Recently, depth sensing technologies have emerged rapidly. We
define a depth sensor as a non-stereo depth sensing device. Non-stereo depth
sensors enjoy several advantages compared to the traditional stereo cameras. For
example, the problems of setup calibration and illumination conditions can be
prevented [20]. Moreover, the output of a depth sensor is 3D depth information.
Compared with colour information, the 3D depth information simplifies the
problem of gesture identification [11]. A comparison of gesture identification
accuracy by using colour and depth information can be found in [21]. There are
two types of common non-stereo depth sensors: Time-of-Flight (ToF) camera,
and Microsoft Kinect (or similar IR sensors).

Non-image based approaches

Gesture recognition has been dominated by image-based sensors for a long time.
Recent developments in MEMS and sensor technology have greatly boosted
non-image based gesture recognition technologies.

• Glove: Glove-based gestural interfaces are commonly used for gesture recog-
nition. Usually, glove-based approaches require wire connections, accelerome-
ters and gyroscopes. However, a cumbersome glove with a load of cables can
potentially cause problems in HRC [11, 22]. Glove-based approaches also
introduced complex calibration and setup procedures [23].
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• Band: Another contactless technology uses band-based sensors. Band-based
sensors rely on a wristband or similar wearable devices. Band-based sensors use
wireless technology and electromyogram, which avoids connecting cables. The
sensor only needs to contact with wrist; user’s hand and fingers can be released.
An example of band-based sensor is Myo gesture control armband [24].
Recently, several band-based sensor gesture control systems were reported
[25–27].

• Non-wearable: The third type of non-image based technologies adopts
non-wearable sensors. Non-wearable sensors can detect gestures without con-
tacting human body. Google introduced Project Soli, a radio frequency spectrum
(radar) based hand gesture tracking and recognition system [28]. The device is
capable of recognising different hand gestures within a short distance. MIT has
been leading non-wearable gesture recognition technology for years. Electric
Field Sensing technology was pioneered by MIT [29]. A recent discovery by
Adib et al. [30–32] from MIT introduced WiTrack and RF-Capture system1 that
capture user motion by radio frequency signals reflected from human body. The
systems are able to capture human gestures even from another room through a
wall with a precision of 20 cm. In summary, non-wearable sensor based tech-
nologies are promising and fast growing for gesture recognition.

Comparison of sensor technologies

A comparison of different sensor technologies is provided in Table 11.1. The
advantages and disadvantages of different approaches are indicated. It is clear that
there is no sensor fits all applications. Two observations of sensor technologies are
provided based on the above analyses.

Table 11.1 Advantages and disadvantages of different sensor technologies

Advantage Disadvantage

Markers Low computational workload Markers on user body

Single
camera

Easy setup Low robustness

Stereo camera Robust Computational complexity,
calibration difficulties

ToF camera High frame rate Resolution depends on light
power and reflection

Microsoft
Kinect

Fast emerging, software support for
body gesture recognition

Cannot be used for hand gesture
recognition over 2 m

Glove Fast response, precise tracking Cumbersome device with load of
cables

Band sensor Fast response, large sensing area Band needs to contact with human
body

Non-wearable Avoid contact with human body Low resolution, technology not
mature enough
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• With indoor applications, depth sensor approaches are the most promising
image-based technologies. Depth sensors possess advantages of easy setup
calibration and easy data processing. A large application development com-
munity exists, which provides ready solutions.

• Non-wearable approaches are the most promising technology among non-image
based approaches. They avoid direct contact with users. Non-wearable sensing
is also a fast-growing field.

11.2.3 Gesture Identification

Gesture identification is the first step in the gesture recognition process after raw
data are captured from sensors. Gesture identification refers to the detection of
gestural information and segmentation of the corresponding gestural information
from the raw data. Popular technologies to solve the gesture identification problem
are based on visual features, learning algorithms, and human models.

Visual features

Human hands and body have unique visual features. In image-based gesture
recognition, gestures consist of human hands or body. Therefore, it is straightfor-
ward to utilise such visual features in gesture identification.

• Colour: Colour is a simple visual feature to identify a gesture from background
information. However, colour-based gesture recognition systems are easily
influenced by illumination and shadows in a complex HRC environment [33].
Another common problem in skin colour detection is that human skin colour
actually varies among human races. Due to the problems above, in recent
approaches, skin colour is only considered to be one of many cues in gesture
identification.

• Local features: In image-based gesture recognition, illumination conditions
greatly influence gesture identification quality. Therefore, many researchers
utilise local features method that is not sensitive to illumination conditions.
Local features approach is a detailed texture-based approach. It decomposes an
image into smaller regions that are not corresponding to body parts [34]. As
shown in Fig. 11.5, one of the most important local features is Scale Invariant
Feature Transform (SIFT) [35]. The SIFT method is rotational, translational,
scaling and partly illumination invariant. Several similar local feature approa-
ches, for example, SURF and ORB are proposed in later years [36, 37].
Normally, local features approaches are also only considered as one of many
cues in gesture identification. Several identification methods such as shape and
contour methods, motion methods, and learning methods are based on local
features.
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• Shape and contour: Another intuitive and simple way to identify gestures is to
utilise the unique shape and contour of a human body in HRC environment.
Shape model based approach matches a pre-constructed shape model and shape
features from observation. A milestone for shape detection and matching was
reported by Belongie et al. [38]. They introduced a shape context descriptor
method. Shape context descriptor is used for detection of similar shapes in
different images. The development of depth sensor provides opportunities to
measure surface shapes. The 3D models generated from the technologies enable
highly detailed representation of human body shape [39, 40].

• Motion: In certain HRC manufacturing environment, a human worker is the
only moving object in the raw data. Therefore, the human motion is a useful
feature to detect human gestures. Optical flow is a key technology for
motion-based gesture identification. Optical flow does not need background
subtraction, which is an advantage compared to shape and contour based
approaches. Several gesture recognition applications were implemented based
on optical flow method [41, 42]. Dalal and Thurau [43] introduced the famous
Histograms of Oriented Gradients (HOG) method. The HOG descriptors divide
image frames into blocks. For each block, a histogram is computed. Among

(a) (b)
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Detection

Feature 
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Fig. 11.5 SIFT algorithm: a SIFT algorithm for gesture identification; b SIFT feature description
example [35]
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non-image based sensors, motion-based gesture identification is also a popular
method [31, 44]. Usually, thresholding and filtering are applied to raw sensor
data to identify human gestures.

Learning algorithms

A recent trend of gesture identification is to use learning algorithms, especially for
static gesture detection that can be represented in a single frame. The visual feature
methods are based on various visual features, while learning algorithms utilise
machine learning algorithms to identify gestures from raw sensor data. Although
some algorithms are based on the visual feature methods, image background
removal is not always necessary for learning algorithms. Learning algorithms such
as Support Vector Machine (SVM), Artificial Neural Networks (ANN) and Random
Decision Forests (RDF) are widely applied in gesture recognition systems [45–47].

Skeleton model

To identify body gestures, a detailed model of the human body is useless. Different
from the aforementioned approaches, skeleton model approach uses a human
skeleton to recover human body poses [48]. Skeleton model is a simplified human
body model that preserves only the most valuable information from a human body.
Skeleton model approach also provides advantages for simplifying the gesture
classification process [49]. With benefits mentioned above, the skeleton model
approach has become an attractive solution for depth sensors [49, 50].

Summary of gesture identification approaches

A gesture identification quality comparison case study was presented by Han [49].
It can be summarised that depth-based approach outperforms RGB-based approach.
Skeleton model belongs to depth-based approach. Most of the visual features
approaches belong to RGB-based approach. In Table 11.2, both advantages and
disadvantages of different gesture identification methods are summarised.
Moreover, according to different sensors, different gesture identification method
should be applied. Due to the nature of HRC in the manufacturing environment,
human workers are the most important members of an HRC team. Despite
understanding human body gestures, the skeleton model approach will also monitor
human movements, which provides a secure environment for the human-robot
team. As mentioned earlier, skeleton model simplifies human body, while valuable

Table 11.2 Advantages and disadvantages for different gesture identification methods

Advantage Disadvantage

Visual
features

Low computational workload Low quality

Learning
algorithms

Background removal can be avoided Higher computational
expenses

Skeleton
model

Only the most important information is
abstracted from a human body

Only possible to use with
depth sensor based systems
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information is well preserved. Subsequent gesture classification process can be
simplified by the skeleton models. Therefore, currently, skeleton model approach is
an appropriate solution for gesture recognition in HRC manufacturing systems.

11.2.4 Gesture Tracking

In gesture recognition, the notion of tracking is used differently in different liter-
atures. We define the notion of tracking as the process of finding temporal corre-
spondences between image frames. Specifically, we focus on the continuous gesture
tracking problem that associates the identified gesture in the previous frames with
the current frame. As for static gestures that can be represented by a single frame,
gesture tracking is unnecessary. An example of gesture tracking is shown in
Fig. 11.6.

Single hypothesis tracking

Single hypothesis tracking refers to a best-fit estimation with minimum-error
matching. Therefore, in single hypothesis tracking, a gesture is represented by only
one hypothesis. Most of the advanced tracking algorithms are based on the single
hypothesis tracking technologies.

• Mean shift: Mean shift tracker is a basic tracking technology. Mean shift tracker
performs matching with RGB-colour histograms [51]. For each new frame,
mean shift tracker compares the Bhattacharyya distance between the target
window histograms of the new frame with those of the old frame. A complete
mathematical explanation can be found in [51].

• Kalman filter: Kalman filter (KF) is a real-time recursive algorithm used to
optimally estimate the underlying states of a series of noisy and inaccurate
measurement results observed over time. A complete KF mathematical
derivation can be found in [52, 53]. Nowadays, KF has evolved and been
applied in different fields such as aerospace, robotics, and economics.

Representation 
Prediction

Matching and 
Optimization

Representation 
Update

Gesture 
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Gesture 
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K 1

Frame K
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Fig. 11.6 A gesture tracking example
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• Kalman filter extensions: KF is given a prerequisite that the state vector is a
linear model. Extend Kalman Filter (EKF) is a functional tracking algorithm
even if the model is nonlinear [54]. Another algorithm that solves the same
problem from a different angle is Unscented Kalman Filter (UKF) [55]. UKF
solves the problem by applying a deterministic weighted sampling approach.
The state distribution is represented using a minimal set of chosen sample
points.

Multiple hypotheses tracking

In HRC manufacturing scenarios, many human workers are working in the same
station at the same time [1]. To track multiple workers’ gesture simultaneously,
multiple hypotheses tracking technologies should be applied.

• Particle filter: Particle filter (PF) is a popular technology in solving robotic
problems. Different from KF, PF does not make assumption on posterior model.
The PF representation is a nonparametric approximation which can represent a
broader space of distribution. Therefore, PF satisfies multiple hypotheses tracking
requirement [56]. An example of PF is shown in Fig. 11.7. Several advanced
tracking algorithms also apply PF to scan probability density function [57–59].

• Particle filter extensions: Many researchers attempted to combine PF with
other algorithms, for example with mean shift tracker, genetic algorithm, PSO,
ant colony optimisation, and other machine learning algorithms to solve the
sample degeneracy and impoverishment problem [61]. Other researchers also
improved PF resampling strategy [62, 63].

Weight 

Particles

Weight 
Particles

(a)

(b)

Weight 

Particles

(c)

Fig. 11.7 Particles and
weight factors: a after
particles initialisation; b after
weight factor calculation;
c after resampling [60]
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Advanced tracking methods

Recently, there are many advanced tracking methods introduced. Some of these
advanced methods utilised part of the tracking algorithms mentioned above. Other
methods improved tracking performance by detection or learning algorithms.

• Extended model tracking: For long-term tracking problems, many tracking
algorithms would fail because target maintains fixed models. Extended model
tracking saves target behaviour or appearance from the past few image frames.
Therefore, more target information is reserved for target estimation. Incremental
Visual Tracker uses extended model to preserve more details for tracking pro-
cess [64]. Kwon et al. [58] presented Tracking by Sampling Tracker. The
extended model is preserved by a sampling process. The tracker samples many
trackers and accordingly the appropriate tracker is selected.

• Tracking by detection: Another type of tracking algorithms is built together
with the gesture identification learning algorithms introduced in the earlier
sections. For these tracking algorithms, a classifier or detector is applied in
image frames to identify gesture from the background information [59]. One
representative approach is Tracking, Learning and Detection Tracker [65]. The
approach integrates the result of an object detector with an optical flow tracker.
Another typical tracking-by-detection technology is to apply Multiple Instance
Learning [66]. The learning algorithm can increase tracker robustness and
decrease parameter tweaks.

Comparison of different gesture tracking approaches

Smeulders et al. [67] presented a test result of different gesture tracking algorithms.
The resulting score is normalised F-score. F-score provides us an insight of the
average coverage of the tracked object bounding box and the ground truth bounding
box. Therefore, the tracking algorithms with higher F-scores have better tracking
quality. In Fig. 11.8, the test results in different video conditions are presented.

Fig. 11.8 Test results of tracking algorithms in different video conditions [67]
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Kalman Appearance Tracker and Mean Shift Tracker belong to the single
hypothesis tracker. Tracking by Sampling Tacker and Incremental Visual Tracker
belong to the extended model tracker. Multiple Instance Learning Tracker, and
Tracking, Learning and Detection Tracker belong to the tracking-by-detection
method. It is easy to observe that the single hypothesis trackers perform lower than
the others. However, simple gesture tracking algorithms also provide a lighter
computational load. Depending on computation power and tracking quality
requirement, an appropriate gesture tracking algorithm can be selected for HRC
manufacturing system.

11.2.5 Gesture Classification

Gesture classification is the last and the most important step in gesture recognition.
As a typical machine learning problem, gesture classification can be solved by
many popular machine learning algorithms.

K-nearest neighbours

K-nearest neighbours (KNN) algorithm is a fundamental gesture classification
algorithm that classifies input data according to the closest training examples [68].

Hidden Markov model

Hidden Markov model (HMM) is a popular gesture classification algorithm. HMM
is a combination of an unobservable Markov chain and a stochastic process. An
example of HMM is shown in Fig. 11.9. To solve the problem, Expectation-
Maximisation (EM) algorithm is applied [69]. Many papers discussed HMM

X1 X2

O1

X3

a21

O2 O3

b11

b12

a31Fig. 11.9 Example of hidden
Markov model [100]
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gesture recognition applications [70–72]. Some articles combined HMM with other
classification approaches [71]. Others extended HMM algorithm into wider range of
applications [72].

Support vector machine

Support Vector Machine (SVM) is a discriminative classifier defined by a sepa-
rating hyperplane [73]. Classification decision boundaries are identified by max-
imising a margin distance. The optimal separation hyperplane maximises the
margin of training data. The training examples closest to the optimal hyperplane are
called support vectors. A common problem for SVM is that the number of support
vectors grows linearly with the size of the training set. Some researchers proposed
Relevance Vector Machine (RVM) to solve the problem [74]. SVM kernel trick
was introduced by Scholkopf [75]. SVM kernel trick enables linear SVM in non-
linear problems. SVM kernel transforms low-dimensional training data into
high-dimensional feature space with nonlinear method [76]. There are also research
efforts that combined SVM with other classification methods to improve gesture
classification performance [77–79].

Ensemble method

Ensemble method is another type of widely-used gesture classification algorithm.
The primary assumption of ensemble method is that ensembles are more accurate
than individual weak classifiers. One of the well-known ensemble methods is
Boosting by Schapire et al. [80, 81]. The boosting algorithm starts with several
weak classifiers. The weak classifiers are repeatedly applied. In a training iteration,
part of training samples is used as input data. After the training iteration, a new
classification boundary is generated. After all iterations, the boosting algorithm
combines these boundaries and merges into one final prediction boundary.

Dynamic time warping

Dynamic time warping (DTW) is an optimal alignment algorithm for two
sequences. DTW generates a cumulative distance matrix that warps the sequences
in a nonlinear way to match each other. Originally, DTW is used for speech
recognition. Recently, there have been many DTW applications in gesture recog-
nition as well [82]. Some papers also introduced Derivative Dynamic Time
Warping (DDTW) as an extension of DTW [83].

Artificial neural network

Artificial neural network (ANN) is a family of information processing models
inspired by biological neural networks [84]. ANN consists of many interconnected
processing unions (neurons) that work in parallel. Each union (neuron) receives
input data, processes input data and gives output data. ANN can be used to estimate
functions that depend on a large number of input data. Recently, many researchers
have utilised ANN for gesture recognition [85–87]. Several papers also presented
gesture recognition systems that combined ANN with other classification methods
[88–90].
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Deep learning

Deep learning is an emerging and fast-growing branch of machine learning. Deep
learning enables data modelling with high-level abstractions by using multiple
processing layer neural networks. Moreover, different from traditional learning
algorithms, deep learning needs little engineering by hands, which enables the
possibility to take advantages of exponentially increasing available data and
computational power [91]. Today, deep learning is applied in image recognition,
speech recognition, particle accelerator data analysis, etc. [92]. Especially, deep
learning is employed for solving the problem of human action recognition in
real-time video monitoring, which contains a large number of data [93, 94].
Convolutional Neural Networks (CNN) and Recurrent Neural Networks (RNN) are
two popular deep learning algorithms [91]. Several gesture recognition systems
have applied above deep learning algorithms, recently [95, 96].

Comparison of gesture classification approaches

Table 11.3 lists the advantages and disadvantages of varying gesture classification
approaches. One of the potentials for HRC manufacturing systems is deep learning
approach. The primary constraint of deep learning is the limited computational
power. However, the exponentially increasing computation power can solve the
problem quickly. The number of deep learning based gesture classification

Table 11.3 Advantages and disadvantages of gesture classification approaches

Approach Advantages Disadvantages

K-nearest
neighbours

Simple K needs to be chosen carefully

Hidden
Markov
model

Flexibility of training and verification,
model transparency

Many free parameters need to
be adjusted

Support
vector
machine

Different kernel function can be applied Number of support vectors
grows linearly with the size of
training set

Ensemble
method

Do not need large number of training data Overfitting easily, sensitive to
noise and outliers

Dynamic
time
warping

Reliable nonlinear alignment between
patterns

Time and space complexity

Artificial
neural
network

Can detect complex nonlinear relationships
between variables

“Black box” nature and cannot
be used for small training data
set

Deep
learning

Do not need good design of features,
outperform other machine learning methods

Need large number of training
data and computationally
expensive
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applications is growing rapidly. Another trend is to combine different classification
algorithms. Every classification algorithm has own advantages and disadvantages.
To utilise that, different classifiers can be combined to achieve better performance
in a manufacturing environment. It is also important to coordinate gesture classi-
fication algorithms with gesture identification and gesture tracking algorithms.

11.2.6 Future Trends of Gesture Recognition

Although the above sections provided a general picture of gesture recognition for
HRC, it is never easy to summarise such an interdisciplinary and fast-developing field
in any capacity. Sensor related technologies usually started from hardware. Software
technologies and algorithms are designed to utilise the performance of hardware.
Therefore, we would predict future trends starting with sensor technologies.

• Depth sensor and skeleton model based gesture recognition: due to the nature of
HRC, human workers are the most important members of any HRC team.
Despite understanding human body gestures, depth sensor together with
skeleton model approach will monitor human movements, which provides a
safer environment for HRC. Moreover, skeleton model will simplify gesture
classification process. Therefore, simpler gesture tracking and classification
method can be applied.

• Non-wearable sensor and deep learning based gesture recognition: although
non-wearable sensor technologies are not ready, it is still the most promising
non-image based sensor. In HRC manufacturing systems, human workers
should be able to communicate with robots naturally. For this very purpose,
nothing should be attached to workers’ body. Non-wearable sensors still suffer
from low gesture identification and classification quality. The problem can
potentially be solved using deep learning methods.

• Hard real-time gesture recognition system: one of the most important require-
ments in manufacturing is the real-time requirement. Especially, in HRC
manufacturing systems, the safety of human workers is always the priority.
Therefore, real-time gesture recognition system is another future direction.
Currently, band and glove sensors provide the fastest response. Moreover,
high-speed single-camera gesture recognition system is also emerging recently.
In gesture identification, tracking and classification, quick and effective methods
can be applied.

• Multi-sensor gesture recognition system: all the sensors have advantages and
disadvantages. For instance, band sensor has large sensing area; Kinect has good
performance in body gesture recognition. To best utilise the system perfor-
mance, different gesture recognition sensors can be used in the same system.

• Algorithms combination approach: similar with sensors, different gesture clas-
sification algorithms also have their advantages and disadvantages. As we
mentioned in gesture classification section, the combination of algorithms
improves efficiency.
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11.3 Human Motion Prediction

As discussed in the previous sections, an HRC manufacturing system is more
customised and flexible than conventional manufacturing systems. An efficient
HRC system should be able to understand a human worker’s intention and assist the
human when performing an assembly task.

Since a worker’s (work-related) motions are limited and repetitive, a sequence of
human motions can be modelled to represent an assembly task. Existing human
motion recognition techniques can be applied to recognise the human motions
associated with the assembly task. The recognised human motions are modelled by
Hidden Markov model (HMM). A motion transition probability matrix is then
generated after solving the HMM. Based on the result, human motion prediction
becomes possible. The human intent is analysed with the input of predicted human
motion. The predicted human intent can be used as input for robot motion planning.
The robot can thus be controlled to support and collaborate with the human worker.
The workflow of human motion prediction in HRC is shown in Fig. 11.10.

11.3.1 Assembly Tasks Sequence

We intend to model an assembly task as a sequence of human motions. In this
section, the problem is formulated. Task-level assembly and motion recognition is
introduced. Based on formulated problem and analysis, statistic model solution is
selected.

Robot

Pre-recognised 
mo ons

Mo ons

Sensor 
monitor

Support

Command

Mo on 
recogni on

Mo on 
predic on

Mo on 
transi on 

probabili es

Task from 
cockpit

Assis ve robot 
mo on planning

Fig. 11.10 Workflow of human motion prediction in HRC
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Task-level assembly

In modern manufacturing, operator instruction sheets (OIS) are widely used.
An OIS provides detailed instructions and explanations of the assembly tasks in an
assembly station. Generally, an OIS provides task-level instructions and references
for the human worker who is working in the assembly station. According to the
OIS, the task sequence of the assembly station is pre-defined and fixed. However, in
an HRC manufacturing system, the human worker’s motion can be different and
flexible when doing a task. Different workers may prefer to perform the same task
in a variety of ways. With current motion capturing sensors [7], human worker’s
motions can be obtained. Therefore, it is possible to generalise task-level human
motions as a discrete model. An example of a task-level representation is shown in
Fig. 11.11. To apply this approach to HRC, the human worker’s motions need to be
further recognised and described by a mathematical model. In the next section, the
motion recognition process is introduced.

Motion recognition

As shown in Fig. 11.10, motion recognition is a pre-process of human motion
prediction for HRC. The output information from motion recognition is the input of
human motion prediction. Although motion recognition technologies are not the
focus of this section, the motion recognition result still needs to be analysed and
cleaned for human motion prediction.

As introduced in [9], there exist different motion observation and detection
technologies. Strong and well-developed motion recognition technologies possess
higher observation reliability but are limited in application feasibility, whereas

Task 1 Task 2

Mo on 2

Mo on 4

Mo on 5Mo on 2

Mo on 4

Task 3 Task N

Mo on 1

Mo on 2

Mo on 3

Mo on 1

Mo on 5

Mo on 5

Fig. 11.11 Example of task-level representation in an assembly station
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weak and evolving technologies possess lower observation reliability but can be
applied in more practical situations. For the strong motion recognition technologies,
RFID tags can be used as an example. RFID tags are widely used in the current
assembly line. RFID tag detection relies on the distance between the human body
and the detector. In a part-taking motion, for example, an RFID tag is fixed on the
worker’s clothes, and an RFID reader is placed near the parts storage. The obser-
vation probability can be generalised as a step function:

Ph ¼ 1 if detected
0 otherwise

�
ð11:1Þ

For the weak motion recognition technologies, vision-based motion sensors can
serve as an example. Vision-based motion sensors rely on the captured visual data.
In the part-taking motion, the start of the motion can be defined when the arm starts
to approach the parts storage. The end of the motion can be defined when the arm
takes assembly part in hand. The closer to the end of the motion, the higher
probability the motion is detected. The observation likelihood of a vision-based
motion detector can be generalised as a continuous detection distribution:

Pl ¼ P os:eð Þ if detected
0 otherwise

�
ð11:2Þ

where os:e represents the observation of a gesture from the start to the end.

Statistical model selection

As shown in Fig. 11.10, the input to human motion prediction is the result from
human motion recognition. The output of human motion prediction is a prediction
probability of a human worker’s subsequent motion that can be used in the assistive
robot motion planning. The human motion prediction problem can be regarded as a
machine learning problem. The results of human motion recognition can easily be
discretised. Therefore, several standard machine learning classification solutions
can be applied, such as HMM, SVM, KNN, HSOM and dynamic bag-of-words, to
the human motion recognition and prediction problem [97–99]. Among these
algorithms, HMM is a well-developed discrete sequence based algorithm. Markov
chain is a well fit to the applications of human motion prediction for HRC. The
hidden state transition can also be used in scenarios that highly uncertain results are
generated by some weak motion recognition technologies. Therefore, it is reason-
able to utilise HMM for human motion prediction. The HMM algorithm for human
motion prediction will be introduced in the next section.
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11.3.2 HMM Human Motion Prediction

In this section, a brief introduction to HMM is presented. The assembly task rep-
resentation in the HMM context is analysed. Finally, an HMM solution for human
motion prediction is illustrated.

Hidden Markov model

HMM is a statistical Markov model with hidden states. The states in HMM is not
observable. The hidden states have different transition probabilities. The output
generated from the states is observable. Each state has a probability distribution for
generating different outputs. As the example shown in Fig. 11.9, an HMM can be
defined from the following elements [100]:

• The states are denoted as S ¼ s1; s2; . . .; sNf g. N is the number of states in the
model. The state sequence is Q ¼ q1; q2; . . .; qtf g. The state at time t is qt.

• The observation symbols are denoted as V ¼ v1; v2; . . .; vMf g. M is the number
of distinct observation symbols per state. The observation sequence is
O ¼ o1; o2; . . .; otf g. ot is the observation at t.

• The state transition probability distribution is A ¼ aij
� �

, where

aij ¼ P qtþ 1 ¼ sjjqt ¼ si
� �

; 1� i; j�N: ð11:3Þ

• The observation symbol probability distribution is B ¼ bj kð Þ� �
, where

bj kð Þ ¼ P ot ¼ vkjqt ¼ sj
� �

; 1� j�N; 1� k�M: ð11:4Þ

• The initial state distribution p ¼ pif g, where

pi ¼ P q1 ¼ sið Þ; 1� i�N: ð11:5Þ

It is possible to summarise from the above that one complete HMM requires the
specification of parameters N and M, observation symbols, and probability mea-
sures A, B, and p. A compact notation is introduced to indicate the complete model
parameters:

k ¼ A;B; pð Þ ð11:6Þ

Task representation

As shown in Fig. 11.12, the representation of a human worker’s motions is a linear
sequence. For each task, different motion sequences can be observed from various
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human workers. In this model, the human worker’s motions are modelled as a
Markov process that each motion starts after the end of the previous motion. qst
represents the start of a motion t. qet represents the end of the motion t. The motion
is presented between qst and qet . On a shop floor, the industrial robot needs to
respond in a continuous time domain. However, the system models an HRC task as
a discrete HMM model. Therefore, during each motion, only one observation ot is
generated. The time between two motions is ignored.

The observation of motion qt is ot. Therefore, the observation probability given
the start and end of the motion can be described as:

P ots:ejqst ; qet
� � ð11:7Þ

Equation (11.1) can be explained in an HMM model:

Ph ots:ejqts:e
� � ¼ 1 ifdetected

0 otherwise

�
ð11:8Þ

where Ph ots:ejqts:e
� �

represents strong motion recognition technologies. As explained
earlier, the motion recognition technologies represented by Eq. (11.8) possess
higher observation reliability.

The observation of HMM model requires discretised probability input.
Therefore, Eq. (11.2) can be discretised as:

Pl o
t
s:e q

t
s:e

��� � ¼
Lh if Lh �P os:eð Þ� 1
Ll if Ll\P os:eð Þ\Lh
0 if 0�P os:eð Þ� Ll

8<
: ð11:9Þ

where Pl ots:ejqts:e
� �

is the probability of motion recognition results. P os:eð Þ repre-
sents the observation probability of a motion from the start to the end. Lh and Ll are
parameters that represent the limits of high and low detection probabilities. The
parameters can be adjusted according to different motion detectors. As explained in
earlier sections, the weak motion recognition technologies represented by
Eq. (11.9) possess lower observation reliability.

HMM solution

As introduced by Rabiner [100], the following three fundamental problems can be
solved by HMM in real applications:

sq1
eq1

sq2
eq2

s
tq e

tq

1o 2o to

Fig. 11.12 An HMM model
representation of a human
worker’s motions
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• Given observation sequence O ¼ o1; o2. . .otf g and a model k ¼ A;B; pð Þ, how
to compute the probability of the observation sequence P Ojkð Þ;

• Given observation sequence O ¼ o1; o2. . .otf g and a model k ¼ A;B; pð Þ, how
to choose the optimal state sequence Q ¼ q1; q2. . .qtf g; and

• How to adjust model parameters k ¼ A;B; pð Þ to maximise P Ojkð Þ.
Here, the observation sequence O ¼ o1; o2. . .otf g is known, whereas A and

B need to be learned. The prediction of a human worker’s motion mainly relies on
A. Therefore, the third problem needs to be solved.

11.3.3 Experiment

Car engine assembly is a complicated process. In this section, a car engine assembly
case is utilised to demonstrate the potential of human motion prediction as an HRC
application. The parts before assembly are shown in Fig. 11.13a, the right corner of
which shows four electric control plugs. Each plug needs to be plugged in the
engine and fastened with one screw. Figure 11.13a also shows a plastic cover to be
placed on top of the engine and fastened with screws. Figure 11.13b shows the car
engine after the assembly task.

To represent the case study above, five different worker motions are defined:

1. Take a screwdriver
2. Take the plastic part (take a big part)
3. Take an electric control plug (take a small part)
4. Take a screw
5. Assembly the screw with the screwdriver (assembly).

Four of the motions (take a screwdriver, take a plastic part, take an electric
control plug, take a screw) can be detected by RFID tags. One of the motions
(assembly) can be detected by vision-based motion observer. Therefore, the states

Fig. 11.13 Example assembly task, a parts before assembly; b engine after assembly
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and the observation symbols are defined in Table 11.4. The five different states are:
S ¼ s1; s2; s3; s4; s5f g. According to the previous sections and Eqs. (11.8) and
(11.9), the six different observation symbols are: V ¼ v1; v2; v3; v4; v5; v6f g.

In this case study, a human worker is invited to perform the same assembly task
for ten times. The initial motion is defined as s1: take a screwdriver. The record of
the assembly task is used for HMM training. The trained state transition probability
distribution matrix graph is illustrated in Fig. 11.14a. The state observation prob-
ability graph is shown in Fig. 11.14b. The differences between weak and strong
motion recognition technologies are well illustrated by the observation probability
graph. Also, it can be reflected from the state transition probability matrix that the
worker explored many different assembly motion sequences. Compared to s1 and
s5, s2, s3, s4 have less uncertainty with regard to the next state. s5 has many different
next states. However, s5 is the end of a ‘sub-sequence’. Therefore, it is reasonable to
have different possibilities after assembly. It is also noticed from the observation
symbol probability matrix that sometimes v6 is observed after v5.

Table 11.4 States and observation symbols defined for the assembly task

State State meaning Observation
symbol

Symbol meaning

s1 Take
screwdriver

v1 Take screwdriver observed

s2 Take big part v2 Take big part observed

s3 Take small part v3 Take small part observed

s4 Take screw v4 Take screw observed

s5 Assembly v5 Assembly observed (with low
probability)

v6 Assembly observed (with high
probability)

s1 s2 s3

0.67

s4 s5

1

0.46

s1 s2

v1

s3

v2 v3

1

s4 s5

v4 v5 v6

(a) (b)

Fig. 11.14 a HMM states transition probability matrix graph of the assembly case; b HMM states
observation probability graph of the assembly case
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11.3.4 Discussions

The case study showcased one example of human motion prediction for HRC.
Although the worker explored different assembly motion sequences, there are still
patterns that can be used to predict the worker’s motion for HRC. As mentioned
earlier, s2; s3; s4 have comparatively certain next states. Therefore, it is possible to
control an industrial robot to prepare or help accordingly. s5 has many state tran-
sition probabilities. However, the transition probabilities to s1 and s2 are rather
small. In this HRC application, these two possibilities can be ignored. In this case
study, the source of the components is not considered yet. In the HRC application,
the number of the components is fixed for each assembly task. The available
assembly components can be used to improve motion prediction result. It is worth
to mention that the unstableness of the current vision-based motion recognition
technology also affects the prediction result. To solve the problem, v6 and v5 are
defined as observations with high probability and low probability, respectively. By
changing detection probability limit, it can be utilised to eliminate a false alarm. It is
also possible to combine different motion detection and recognition technologies to
increase the system robustness. A false-correction system can be designed to further
improve the robustness of the HRC system.

11.4 AR-Based Worker Support System

A worker support system should be able to provide information feedback and
support to human worker instantly and intuitively in the HRC context. This section
introduces the potential of adopting augmented reality (AR) technologies in worker
support system for HRC manufacturing. As shown in Fig. 11.15, in an HRC
manufacturing system, the human worker is placed at the central control position.
Based on the assembly tasks from a cockpit, the task sequence planning system
generates robot control commands and human worker assembly instructions. With
commands from task sequence planner, an industrial robot is controlled to assist
human worker at task level. The assembly instructions and robot control infor-
mation are translated into intuitive AR visualisation by an AR-based instruction
system. The human worker is supported by AR visualisation to perform the
assembly tasks with the support of the industrial robot. During the assembly
operation, human worker is monitored by a worker monitoring system. The worker
monitoring system ensures worker’s safety [8], recognises worker’s commands [9]
and predicts worker’s intentions. The task re-planner can be activated once human
worker’s command is detected or worker’s task re-assignment intention is pre-
dicted. According to the assembly context, modified robot control commands and
assembly instructions can be generated by the task re-planner. Modified assembly
instructions are translated again by AR-based instruction system. Therefore, after
the re-assignment of assembly task, the human worker is instantly supported by the
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updated AR visualisation and the industrial robot. Utilising the intuitive visuali-
sation, the highly customised and flexible HRC manufacturing is achievable with
the help from AR-based worker support system.

11.4.1 System Architecture

As mentioned in the previous section, an HRC worker support system should be
able to provide instant and intuitive information feedback and support to a human
worker. The worker support system requires a real-time display for the human
worker to facilitate assembly. In this section, the AR-based HRC worker support
system is introduced. The system architecture of the AR-based HRC worker sup-
port system is shown in Fig. 11.16. The AR-based HRC worker support system
mainly consists of four sub-systems: AR-based instruction system, task sequence
planning and re-planning system, worker monitoring system, and industrial robot
control system.

AR-based instruction system: the AR-based instruction system mainly consists of
assembly information registrar and AR device. The assembly information registrar
receives human worker assembly instruction and robot information generated from
task sequence planner. In Fig. 11.16, the assembly information consists of human
worker assembly instructions and robot information. The assembly information
registrar places the received assembly information at the correct location once the
corresponding assembly parts are detected in the world coordinate system. The
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Tasks from 
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Fig. 11.15 Information flow of AR-based HRC worker support system
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detection is achieved by comparing the assembly parts captured by the sensor and
the assembly parts saved in a database. The detailed assembly information registrar
technologies are explained in next section. The AR device receives the registered
graphical information and displays the information according to the world coor-
dinate system. Finally, the human worker performs the assembly task with the
support of the AR graphical information and the industrial robot.

Task sequence planning and re-planning system: the task sequence planning and
re-planning system receives the predicted human worker intention and outputs
human worker assembly information and industrial robot assembly commands. The
task sequence planner decides the updated assembly plan according to the initial
assembly task and the recognised worker commands or predicted worker intentions.
The assembly plan is further translated into assembly instructions for the human
worker and assembly commands for the robot. The assembly information for the
robot is also sent to the AR-based instruction system to keep the human worker in
the loop. In Fig. 11.16, the assembly information sent from the task sequence
planner to the assembly information registrar includes both worker assembly
instructions and robot information.

Worker monitoring system: the worker monitoring system consists of motion
recogniser, predictor and worker safety monitor. A depth sensor is utilised as the
data input of the worker monitoring system. The worker safety monitor calculates
the distance between a worker and a robot in real-time to ensure a safe distance
between the two in the HRC environment [8]. The robot can be slowed down or
stopped if the distance between the human and the robot is smaller than the safe
distance. The processed worker motions are sent to motion recogniser and predictor
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Fig. 11.16 System architecture of AR-based HRC worker support system
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for further analysis. The motion recogniser recognises human gesture commands
and assembly motions. Worker intentions are predicted based on the analysis of
recognised worker’s assembly motions and the worker’s assembly motions history.
Recognised worker commands and predicted worker intentions are sent to task
sequence planner for further processing. Estimated human worker’s position is sent
to an AR device for AR visual registration.

Industrial robot control system: the industrial robot control system consists of a
robot controller, a robot, and a robot assembly monitor. The robot controller
receives assembly commands from the task sequence planner. The output of the
robot controller is translated control commands for the robot. The robot assists the
human worker during assembly. The assembly process is observed by the robot
assembly monitor in real-time. The observed information is sent to the worker
monitoring system.

With the above mentioned four sub-systems, the AR-based HRC worker support
system is fully integrated.

11.4.2 AR Assembly Information Registrar

The AR assembly information registrar empowers a human worker to access the
assembly instructions and robot information from an AR device. It is an essential
component in the AR-based instruction system. As shown in Fig. 11.17, the AR

New frame from 
environment

Feature 
detection

Feature 
matching

Festure 
extruction

Visual tracking

Homography 
matching

Graphical 
registration

Feature 
detection

Feature 
extruction

Assembly parts 
from database

Fig. 11.17 Information
flowchart of AR-based
instruction registrar

11.4 AR-Based Worker Support System 287



assembly information registrar enables the registration of graphical instructions and
robot information with the real-world assembly parts. Since the AR assembly in-
structions need to be registered around the real assembly parts, the virtual assembly
parts need to be stored in the database for recognition. Feature detection and
extraction should be applied on the virtual assembly parts. For each new video
frame of the assembly environment, the same feature detection and extraction
process are applied. The processed video frames are matched with all the virtual
assembly parts. If one or more assembly parts are recognised, the homography is
computed. The visual tracker provides a smooth homography matching between
different video frames. Based on the matched homography, the registration of
graphical instruction and robot information becomes possible.

11.4.3 Case Study

As shown in Fig. 11.18, the case study setup consists of a camera, a robot, a screen
and part of a car engine to be assembled. The assembly information registrar is
developed by computer vision library OpenCV and game engine Unity. The object
and tool models are saved in a database. As explained in the previous section, the
feature detection and extraction is done once the database receives object and tool
models. For every new image frame, the feature detection and extraction is per-
formed. If there is an object matched by the feature matching algorithm, the

Fig. 11.18 Setup of case study
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homography will be computed. The 3D text or object will be registered at the
location according to the homography. The screen will display the registered 3D
text or object. A human worker will be instructed and informed by the 3D text or
object.

The case study is designed to demonstrate the usability of the AR-based
instruction system. A pre-designed assembly sequence plan is shown in Table 11.5.
The goal of the designed case study is to assemble objects 1 and 2 on the car engine
with help of an industrial robot. Two assembly parts and a tool are presented in the
setup. Above each assembly part and tool, a 3D text is registered. The text is used
for intuitive assembly instructions. A cylinder shaped red object is registered above
the text label of object 1, which indicates the next assembly part planned for the
robot. The first step of the planned assembly sequence is to take tool 1. After tool 1
is taken by the worker, the robot will be activated and pick object 1 and place it on
the engine. The worker will be instructed to assemble object 1 on the engine. Upon
completion, the robot will be activated and pick object 2 and place it on the engine.
The worker will be instructed to assemble object 2 on the engine. Finally, the
worker will be instructed to put back tool 1, which indicates the end of the assembly
sequence.

11.5 Conclusions

This chapter introduces both gesture recognition and AR-based worker support.
A generic model of gesture recognition for human-robot collaboration is also
reported. There are four essential technical components in the model of gesture
recognition: sensor technologies, gesture identification, gesture tracking and gesture
classification. Reviewed approaches are classified according to the four essential
technical components. In the section part, assembly tasks are modelled as a
sequence of human motions. Existing human motion recognition techniques are
applied to recognise the human motions. Hidden Markov model is used in the
motion sequence to generate a motion transition probability matrix. Based on the
result, human motion prediction becomes possible. The predicted human motions
are evaluated and applied in task-level human-robot collaborative assembly.

Table 11.5 Planned assembly sequence

Number Task description Task type

1 Take tool 1 Human worker

2 Take object 1, place it on the engine Industrial robot

3 Assembly object 1 on engine Human worker

4 Take object 2, place it on the engine Industrial robot

5 Assembly object 2 on engine Human worker

6 Put back tool 1 Human worker
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Finally, the potential of adopting AR technologies in a worker support system is
explored. The robot commands and worker instructions can be virtually augmented
for human workers intuitively and instantly. The designed AR-based worker sup-
port system is demonstrated in a case study.

As the future work of gesture recognition and human motion prediction, the
assembly resources can also be considered into human worker’s motion prediction.
Assembly resources give a major constraint on human worker’s motion. The human
motion prediction could be more accurate. The combination of different motion
recognition technologies can increase the system’s robustness. Therefore, the fusion
of motion recognition technologies can also be considered in the future. Besides,
the human motion prediction system needs to be tested in a real production envi-
ronment with more workers and assembly tasks involved. By applying to different
scenarios, the system’s reliability can be further improved.
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Chapter 12
Architecture Design of Cloud CPS
in Manufacturing

12.1 Introduction

Cloud Computing (CComputing) is a model for enabling ubiquitous, convenient
and on-demand network access to a shared pool of configurable computing
resources (e.g. networks, servers, storage, applications, and services) that can be
rapidly provisioned and released with minimal management effort or service pro-
vider interactions [1, 2]. It provides resources to a user on the “pay-as-you-go”
basis. There are three common types of CComputing structure, i.e. Infrastructure as
a Service (IaaS), Platform as a Service (PaaS), and Software as a Service (SaaS).
IaaS provides a bunch of physical and virtual machines, based on which users are
able to install and deploy their own operation systems and working environments.
A PaaS model packages a computing platform including operating system, pro-
gramming language execution environment, database, and web server. A PaaS
client is able to develop and run its applications at the software layer. Finally, SaaS
simplifies the utilisation of a large amount of software applications remotely,
elastically and seamlessly.

During the past years, many successful CComputing business cases are found
worldwide [3–7]. Among various types of models, the key characteristic of
CComputing is that of pay-as-you-go. In the increasingly globalised manufacturing
context, customer-oriented manufacturing is a promising approach to improving the
service quality and competitiveness, in particular for the Small and Medium-sized
Enterprises (SMEs). Thus, a new concept of advanced manufacturing model is
proposed worldwide, namely Cloud Manufacturing (CManufacturing). In the first
half of this paper, recent CManufacturing research is reviewed, followed by dis-
cussions on related works that support building and maintaining a CManufacturing
system. In the second half, a novel manufacturing platform is introduced to archive
manufacturing interoperability in the cloud paradigm.
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CManufacturing is a model for enabling ubiquitous, convenient and on-demand
network access to a shared pool of configurable manufacturing resources (e.g.
manufacturing software tools, manufacturing equipment, and manufacturing capa-
bilities) that can be rapidly provisioned and released with minimal management
effort or service provider interactions [8]. Like the CComputing concept, manu-
facturing infrastructure, platform and software application in CManufacturing can
be offered as a service to a CUser. By extending the concept to a broader scope, all
the production objects and features can be treated as services, hence
Everything-as-a-Service (XaaS). The rest of this section discusses the
CManufacturing structure and related technologies.

12.1.1 State-of-the-Art Cloud Manufacturing Approaches

Cloud concept presents a promising future for computing business and the same can
be said for manufacturing business. Tao et al. [9] proposed a framework of
CManufacturing with discussions of key advantages and challenges for future
CManufacturing systems. CManufacturing is described as a computing and
service-oriented manufacturing model developed from existing advanced manu-
facturing models (e.g. Application Service Provider, Agile Manufacturing,
Networked Manufacturing, and Manufacturing Grid), enterprise information tech-
nologies under the support of cloud computing, Internet of Things, virtualisation
and service-oriented technologies, and advanced computing technologies. It is
predicted that a CManufacturing system would reduce the cost and increase the
utilisation rate of resources. Li et al. [10] proposed a service-oriented networked
manufacturing model. The paper also discussed a number of methods to support the
model. Intelligent agent, Product Lifecycle Management (PLM), resource mod-
elling and evaluating technologies are considered as the supporting technologies for
cloud architecture.

A cloud-based manufacturing research project [11] was launched in Europe in
2010, sponsored by the European Commission. The goal of this project is to pro-
vide users with the ability to utilise the manufacturing capabilities of configurable
and virtualised production networks. CManufacturing is described as a
service-oriented IT environment as a basis for the next level of manufacturing
networks by enabling production-related interenterprise integration down to shop
floor level [12]. A set of software-as-a-service applications have been developed. In
the proposed system, customised production of technologically complex products is
enabled by dynamically configuring a manufacturing supply chain [13, 14]. It is
believed that the development of a front-end system with a next level of integration
to a cloud-based manufacturing infrastructure is able to better support on-demand
manufacturing of customised products.

To facilitate a CManufacturing environment, existing resources need to be
scaled, modelled and adapted into the cloud. Wu and Yang [15] proposed a method
to describe and scale manufacturing resources in a cloud. Hu et al. [16] analysed the
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factors that affect the classification of virtual resources in CManufacturing.
Examples are introduced to validate the effect of these factors to task assignment.
Luo et al. [17] discussed a CManufacturing system from the viewpoint of network,
function and running. A multi-dimensional information model was proposed to
describe manufacturing abilities [18]. This knowledge-based data model helps
provide a user with manufacturing services via network.

To control and manage the flexibility of the resource service composition in
CManufacturing, Zhang et al. [19] proposed architecture considering major
uncertain dynamic changing factors in the lifecycle of a resource service.
Multi-agent is proved to be an effective tool in solving problems through sharing
knowledge during the implementation of CManufacturing [20]. An Agent-based
mechanism provides flexible and effective sharing and utilising of elastic resources.

After resource modelling, the next challenge is resource integration. Fan and
Xiao [21] proposed an integrated architecture of CManufacturing based on a fed-
eration principle. Federation integration rules are applied before resources are
connected to the system. Thus, joining or exiting of a resource would not affect
operation of the whole cloud environment. To maintain the CManufacturing
resources, an Optimal Allocation of Computing Resources (OACR) system was
proposed [22]. In OACR, improved Niche immune algorithm is introduced to solve
the resource scheduling problem in a grid system or CComputing system, associ-
ated with the Niche strategy.

12.1.2 Supporting Technologies for Cloud Manufacturing

Although CManufacturing is a relatively new concept, it draws upon technologies
such as virtual enterprise, distributed and collaborative manufacturing systems. Xu
[8] reviewed the systematic requirements of CManufacturing systems. Advanced
manufacturing technologies are discussed to fulfil these specifications and support a
CManufacturing environment. Research contributions are reviewed regarding col-
laborative manufacturing and interoperable systems [23]. Manufacturing systems
are re-evaluated from the cloud perspective, e.g. IaaS and SaaS. In addition, ERP
(Enterprise Resource Planning), SOA (Service-Oriented Architecture), and mod-
elling systems are also relevant to the concept of CManufacturing.

After the manufacturing activities are properly modelled, the next step is to
integrate their operational processes. To represent a business in a Manufacturing
Cloud (MCloud), the first step is to understand and model an enterprise. ERP
systems have been studied extensively [24–28], including the inter-organisation
performance [29] and the behaviour throughout the supply chain with multiple
stakeholders [30]. With the help of ERPs, inter-organisation behaviours/reactions
can be modelled and mapped in a standardised manner as neutral APIs (Application
Protocol Interfaces). Based on these APIs, MCloud can be established via inte-
grating these reactions in standardised semantics, without changing the organisa-
tional structure of an enterprise.
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Papazoglou and Van den Heuvel [31] proposed a framework named Enterprise
Service Bus. It is an integration platform that utilises web services standards to
support SOA applications within an enterprise. The extended SOA system can be
further adopted by CManufacturing to enable capabilities e.g. service orchestration,
‘intelligent’ routing, provisioning, integrity and security of message as well as
service management. In an SOA system, business procedures can be modelled and
componentised to support seamless business integration [32]. Schmidt et al. [33]
proposed architecture declaring clear definitions of service capability and require-
ments in a service-oriented context. Models have been proposed to evaluate the
quality/feedback in the business-to-business context [34].

It has been suggested that a commonly used data model/schema should be
utilised for a wide range of products [35]. Data management should be encapsulated
by schema and manipulation rules in a data model. In the perspective of
CManufacturing, international standards, e.g. STEP/STEP-NC have a role to play
in ensuring product data interoperability. STEP (the Standard for Exchange of
Product data [36]) is one of such standards, providing mechanisms for describing
product information throughout the lifecycle. Different Application Protocols have
been developed for different applications/domains. As an extension of STEP,
STEP-NC [37] is developed to support CNC (Computer Numerical Control)
manufacturing. Compared with previous standards, these data models offer a set of
effective tools for interoperability solutions in the computer-aided manufacturing
context [38].

12.1.3 Recap

CManufacturing is not just an implementation of CComputing in manufacturing.
Manufacturing enterprises and related resource/capability need to be described,
componentised, virtualised and integrated in an MCloud. Some existing research
work provides some enabling tools to the CManufacturing concept. This said, there
is still a lack of Cloud solution for the entire manufacturing supply chain. It is
necessary to implement a supervision mechanism to organise and control Cloud
Services (CService) at upper level. Moreover, an interoperable environment is also
needed to integrate current and future manufacturing resources. The next section
describes a proposed service-oriented CManufacturing system named Interoperable
Cloud-based Manufacturing System (ICMS).

12.2 Cloud Manufacturing Framework

Nowadays, a manufacturing enterprise would not survive without Computer Aided
applications (CAx) technologies. Deploying CAx software on the Cloud improves
the performance in terms of flexibility, extendibility, integrity and easy/unlimited
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data storage. With a cloud structure, software is easily maintained and utilised on a
cloud server. Version updating, maintaining and integrating is remotely done by the
cloud provider, which replaces periodic services by onsite maintenance specialists.
Thus, the cost of IT infrastructure is cut down via reduced management and
maintenance effort. Additionally, thanks to the pay-as-you-go basis of a CService,
the cost of expensive applications is spread over multiple CUsers. Costly but rarely
used software can be priced by the amount of usage.

CManufacturing faces a tougher challenge than implementing
manufacturing-related software in CComputing. Unlike software programme and IT
infrastructure, physical machines, monitors, and facilities cannot be readily
deployed on the cloud. There is also a need to understand the intermediate pro-
cesses from raw material to finished products.

12.2.1 Manufacturing Capability and Manufacturing
Resource

Zhang et al. [39] identified manufacturing ability as a kind of resource. In practice,
the main reason for acquiring a manufacturing facility is the functionality of the
equipment but not the equipment itself. It is therefore necessary to recognise a
Cloud resource, its capability and services at different levels. In the cloud back-
ground, the definitions of a resource, capability and service are given below.

• Manufacturing Resource (MResource): material and nonmaterial manufacturing
supplies including equipment, machine, device and intelligent properties.

• Manufacturing Capability (MCapability): ability of transforming one form into
another in manufacturing domain. It is realised via related MResources.

• Cloud Manufacturing Service (CMService): self-contained, configurable and
on-demand manufacturing service package to fulfil user’s original needs.
A CMService can be random, short-term, long-term, or strategic.

The containment relationships of MResource, MCapability and CMService can
be summarised as shown in Fig. 12.1. MResources are contained within
MCapability as one of the essential requirements, since MCapability is realised and
implemented via MResource. MCapabilities are re-packaged and deployed in the
MCloud as CMService as a convenient feature that can be rapidly provisioned and
released by a CUser.

A CManufacturing system encapsulates and implements MCapability in the
cloud as CMService packages. Manufacturing Capability is composed of Design,
Production, Experimentation, Management, and Communication Capability.

• Design Capability (DC) refers to domain-specific design knowledge, expertise
of the organisation and past experience from previous design activities.

• Production Capability (PC) relies on the speed and quality of creating an output,
i.e. product or service, to fulfil a production order.
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• Experimentation Capability (EC) entails the experimentation knowledge and
specialists.

• Management Capability (MC) includes planning, organising, staffing, leading
and controlling of an organisation. It relies on the ability of the operational
business and organisational activities.

• Communication Capability (CC) refers to the data exchangeability between
applications/devices. It includes data transportation, speed, storage, conversion
and QoS.

From the resource’s perspective, each kind of manufacturing capability requires
support from the related MResource(s). For each type of MCapability, its related
MResource(s) comes in two forms, soft resources and hard resources. The soft
resources include:

• Software: software applications throughout the product lifecycle including
design, analysis, simulation, process planning, etc.

• Knowledge: experience and know-how needed to complete a production task,
i.e. engineering knowledge, product models, standards, evaluation procedures
and results, customer feedback, etc.

• Skill: expertise in performing a specific manufacturing task.
• Personnel: human resource engaged in manufacturing process, i.e. designers,

operators, managers, technicians, project teams, customer service, etc.
• Experience: performance, quality, client evaluation, etc.

Cloud Manufacturing Service
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Fig. 12.1 MCapability and
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• Business Network: business relationships and business opportunity networks
that exist in an enterprise.

The hard resources contain:

• Manufacturing Equipment: facilities needed for completing a manufacturing
task, e.g. machine tools, cutters, test and monitoring equipment and other fab-
rication tools.

• Monitoring/Control Resource: devices used to identify and control other man-
ufacturing resource, for instance, RFID (Radio-Frequency IDentification), WSN
(Wireless Sensor Network), virtual managers and remote controllers.

• Computational Resource: computing devices to support production process, e.g.
servers, computers, storage media, control devices, etc.

• Materials: inputs and outputs in a production system, e.g. raw material,
product-in-progress, finished product, power, water, lubricants, etc.

• Storage: automated storage and retrieval systems, logic controllers, location of
warehouses, volume capacity and schedule/optimisation methods.

• Transportation: movement of manufacturing inputs/outputs from one location to
another. It includes the modes of transportation, e.g. air, rail, road, water, cable,
pipeline and space, and the related price, and time taken.

To formulate MCapability, a MCapability Description Model (MCDM) as a
5-tuple is adopted,

MCapability ¼ fDC RSoftDC;RHardDC
� �

;

EC RSoftEC;RHardEC
� �

;PC RSoftPC;RHardPC
� �

;

MC RSoftMC;RHardMC
� �

;CC RSoftCC;RHardCC
� �g

ð12:1Þ

where R is MResource for all the resources required to carry out a task, including
hard resource RHard and soft resource RSoft.

High-performance service needs sufficient resource and suitable methodology to
exploit it. Hence, an effective MCapability is contributed by the domain-specific
ability and its related resource. MCDM includes the capability of both an individual
enterprise and an alliance made up of multiple participants. This means an
MCapability meeting a CUser’s need could be provided by a single Service
Provider (SProvider) or a union of them. A comprehensive cloud solution is
required to take care of all the capabilities and resources mentioned above and
provide an optimal solution. Eventually, identified MCapabilities are packaged as
CMServices and deployed in the MCloud. During the conversion from current
manufacturing status into CManufacturing, existing capabilities and resources
should be integrated and utilised in the CManufacturing environment. Thus, an
interoperable, service-oriented CManufacturing system can be realised.
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12.2.2 Cloud Architecture

As mentioned above, cloud technology provides an opportunity to reshape manu-
facturing business, in particular SMEs. Combined with SOA, it is capable of cre-
ating new economic growth for customised production or One-of-a-Kind
Production (OKP) businesses. Specialised and customised demands can be better
served due to the flexible and fast-reaction nature of a CManufacturing system.
Compared with the Business-to-Business (B2B) and Business-to-Consumer (B2C)
models, an X2C (Everything-to-Cloud) model is presented. The preliminary con-
cept of ICMS has been reported in [23]. As public cloud infrastructure, ICMS
consists of three layers, i.e. Smart Cloud Manager (SCM), User Cloud (UCloud),
and MCloud (Fig. 12.2).

12.2.2.1 Customer and Enterprise User

At the UCloud layer, the CMService consumer is divided into two categories:
Customer User (CU) and Enterprise User (EU). ICMS takes care of traditional
manufacturing tasks for CUs as well as collaborative production requests from
multiple organisations. By combining the Consumer-to-Cloud and Business-to-
Cloud models, ICMS provides an X2C structure from the industrial context.
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CU is defined as a customer or organisation with the request of a self-contained
production task. Assisted by the Customer Interface Agent (CIA) of SCM, the
manufacturing request of a CU is analysed and located by SCM, and provided by
the MCloud. Thus, it forms a Request-Find-Provide service chain. Original user’s
requests are taken care of by SCM. SCM searches for potential solutions and feeds
back the results to the user. The user is able to optimise the solution based on his/
her original needs and finalise the service request. ICMS provides a user with a big
range of flexible manufacturing capabilities. Customised and original requirements
can be realised easily, compared with the traditional manufacturing practice. For
industry, it offers new opportunities especially for OKP enterprises and SMEs. The
enterprises are loosely integrated in MCloud as ICMS SProviders. MCapabilities
and business opportunities are integrated and broadcasted in a larger resource pool,
which enhances the competiveness of the entire team. Thus, more manufacturing
objects can be achieved with minimum additional investment and effort.

Besides CUs, ICMS takes care of organisations/enterprises (EU) who are
seeking additional MCapabilities and supports. In practice, customers occasionally
come to a manufacturing enterprise requiring products or capability that the
enterprise by itself cannot fulfil. With the help of the Enterprise Interface Agent
(EIA), an EU can search for qualified SProviders who are able to “fill in the gap”.
The EU is able to recognise related MResources and allocate the temporary partner
(s) for the task. In this case, the original EU plays a role of the “leading company”
in the virtual organisation. The leading company is in charge of interacting with the
customer, and collaborating with other participants as a coordinator. From the
ICMS perspective, the leading company is considered as the EU, who will be
assisted by the SCM module. This way, the CUsers are able to accomplish bigger
and more demanding production tasks that are otherwise not possible by a single
enterprise. As a matter of fact, the partner network of a company is made
boundary-less (Fig. 12.3).

12.2.2.2 Smart Cloud Manager

Intelligent agent technology is capable of supporting manufacturing procedures/
decisions [40–42]. The SCM module is constructed by intelligent agents. In an ideal
system, user should have full confidence of the system’s intelligence. The interaction
between a human being and the system intelligence should be minimised as long as
the service request is well-defined by the cloud user. Intelligence kernel is capable of
optimising and executing the task with the preference variables from the user.
However, manufacturing decisions are difficult to make due to the complexity of
manufacturing processes, variety of machines and devices, and the uncertainty of
resources status. When multiple resources and variables are involved, it is even
harder to predict a reliable and optimum service solution for the user. Thus, to fully
utilise AI and human expertise/knowledge, a decision-making model is in need.
SCM works in a neutral manner and consists of EIA, CIA, Broker Agent (BA),
Supervision Agent (SA), and Firewall Module (see Fig. 12.4). EIA works with EUs,
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and CIA handles requests from CUs. Although the GUIs (Graphical User Interface)
and algorithms of EIA and CIA are different, the service procedures are almost the
same (from the SCM perspective). After the user’s request is collected by the
Interface Agent (IA), BA communicates with the Provider Database and maps the
requirement to the available CMServices. As long as the user modifies and confirms
the service package, an ICMS Service Template (ST) is generated and delivered to
the SCM. Based on ST, Supervision Agent starts up and works with the Service
Application Cloud (SACloud). Specific CMServices are organised and launched to
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meet the user’s expectations. The final service output, which can be a product,
computing data or a technical document, is then sent to the cloud user. After the
feedback/evaluation document is finished by the user, the CMService is terminated.

As the supervisor or brain of ICMS, SCM analyses and controls the CMServices
to fulfil the user’s demand. Inside SCM, the interactions among IA, BA, and SA are
summarised in Fig. 12.5. After a user’s request is collected by the IA, the details are
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converted into a standard format. Based on these details, an internal request doc-
ument is generated and sent to BA. According to the request document, BA sear-
ches in the MRsource database for potential solutions. Afterward, an initial ST file
is created and sent back to the user. Cloud consumer is able to view all these
solutions along with the suggestions from SCM. Based on the factors such as cost,
quality, functionality etc., SCM recommendation is visible to the user in different
levels of details. If the cloud customer is not satisfied with any of the suggestions
provided, he/she is able to modify the ST.

At this stage, the cloud customer is able to either optimise the ST via BA
intelligence or do it manually. If the customer prefers to utilise AI continuously,
CUser is requested to modify his/her original searching request by providing more
details or to modify technical variables. Then, the altered request condition is sent
back to BA, who will process one more round of analysis and service detection. On
the other hand, if the cloud customer chooses to improve the ST manually, he/she
can work on it via GUI and allocate a preferred provider. This way, both of expert
knowledge and optimisation are utilised in SCM.

As long as the user confirms ST, the specific Cloud Services are launched by the
SA. SA is responsible for monitoring and controlling all the activities of the cloud
service modules. By marking and manipulating the event and data flows of all the
application modules, the ST is executed accurately as it is defined.

12.3 Interoperability and Other Issues

In recent years, research has been carried out worldwide in an attempt to develop an
interoperable and collaborative environment with heterogeneous software applica-
tions. In the following part of this section, recent research works are reviewed and
discussed.

12.3.1 Standardised File Formats

System integration and interoperability is addressed as one of the key needs to be
met [43]. A widely recognised information model is in need, especially for a
collaborative and distributed environment.

To work on multiple versions and views of a shared model, [44] proposed a
collaborative architecture to allow experts to share and exchange design informa-
tion. In this architecture, product design is exchanged through a standardised,
constraint-based model to maintain complex relationships in multidisciplinary
collaborative design. Thanks to this data model, conflicts happening during syn-
chronisation process can be resolved via the notification mechanism.
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Besides the design applications, research has also been carried out to integrate
the whole CAD/CAM/CNC chain. For facilitating a web-based
design-manufacturing environment, [45] proposed a web-based system using a
data structure similar to that of ISO14649 data. In this system, files in neutral
formats are passed along a serial software chain composed by WebCADFeatures,
WebCAPP and WebTuring applications. To integrate more applications seamlessly
and efficiently, [46] proposed an Open Computer-Based Manufacturing system
(OpenCBM in short). In this system, standardised file formats are chosen to reduce
the cost of data transferring and exchange.

In a heterogeneous environment, data exchange is a challenging issue when
proprietary software tools are integrated within the same architecture. [47] pre-
sented a method for semantically mapping different business documents to a con-
forming document format, given inevitable existence of multiple product
representations. In this research, XML format is adopted to support web-based
applications and an SOA (Service-Oriented Architecture) model through WWW
(World Wide Web).

12.3.2 STEP/STEP-NC to Bridge the Gap

Since standardised format is a potential solution to realising interoperability, the
International Organisation for Standardisation (ISO) has been making its effort in
the development of some international standards. STEP (the Standard for the
Exchange of Product data [36]) is such an example. It has been established to
describe the entire product data throughout the lifecycle of a product. STEP con-
tains different Application Protocols (APs) which provide data models for targeted
applications, activities or environments. Compared with previous standards, these
data models offer a set of effective tools for computer-aided interoperability solu-
tions [38].

Zhang et al. reviewed the fundamental structure of STEP data models [48].
Recently, a system named INFELT STEP was proposed to maintain the integration
of CAD/CAM/CNC operations based on STEP data models [49]. In this
three-layered system, different sections are defined in each layer to provide inter-
faces between different CAD, CAPP, CAM and CNC software packages.
INFELT STEP has a distinct capability of enabling collaboration of different
enterprise-wide CAD/CAPP/CAM/CNC systems in the design and production of a
product using multiple APs of the STEP standard.

In the past few years many companies have implemented PDM (Product Data
Management) systems, focusing on cost-cutting and shortening the product
development cycle. To provide a solution via a common method of sharing standard
product and design information, a STEP-compliant PDM system was developed to
fulfil the demand for logically integrated product data which is stored physically in
a distributed environment [50]. In this system, a STEP-based PDM schema was
defined in XML format to support the Web service connecting PDM systems of
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several partners through an open network accessible via the Internet. As another
implementation via XML, [51] developed an approach providing efficient data
exchange in which the Web is utilised as a communication layer. Combining the
STEP concept with XML, this work supports the integration of decentralised
business partners and enables the information flow within the value added chain
[52]. Additionally, the standard formats in STEP and XML is also utilised in the
virtual reality (VR) platform to realise seamless design integration [53, 54].

As the extension of XML, Automation Markup Language (AutomationML) is
utilised to support remote data management. A web based AutomationML server is
developed to provide data space to support the entire production engineering pro-
cess [54, 55].

Moreover, the data model for computerised numerical controllers, otherwise
known as STEP-NC [37], was established as an international standard in 2003. As a
data model to connect CAD/CAM systems with CNC machines, STEP-NC com-
pletes the integrated loop of CAD/CAM/CNC. It has been proven that STEP-NC
provides contribution to both system interoperability and data traceability [56].
Hence, it becomes possible to implement interoperability in a STEP/STEP-NC
complaint environment [57].

Nessehi et al. proposed a framework to combat the incompatibility problem
among CAx systems [58]. In this framework, STEP-NC data model is utilised as the
basis for representing manufacturing knowledge augmented with XML schema
while a comprehensive data warehouse is utilised to store CNC information. The
system consists of manufacturing data warehouse, manufacturing knowledgebase,
intercommunication bus, and diverse CAx interfaces as main structures [59].
Mobile agent technology is used to support the intercommunication bus and CAx
interfaces.

Recently, Mokhtar and Houshmand [60] studied a similar manufacturing plat-
form utilising an axiomatic design theory to realise interoperability in the CAx
chain. Two basic approaches are considered, utilising interfaces and utilising
neutral format based on STEP. The methodology of axiomatic design is proposed to
generate a systematic roadmap of an optimum combination of data exchange via
direct (using the STEP neutral format) or indirect (using bidirectional interfaces)
solution in the CAx environment.

In addition to the approaches mentioned above, more methods have been
developed to strengthen the interoperability along STEP/STEP-NC based CAD/
CAM/CNC chain. For instance, Vichare et al. [61] developed data models to
describe all the elements of a CNC machine tool. In this approach called UMRM
(Unified Manufacturing Resource Model), machine specific data is defined in the
form of an STEP-compliant schema. This data model acts as a complementary part
to the STEP-NC standard to represent various machine tools in a standardised form,
which provide a universal representation of the manufacturing information at the
tail of CAD/CAM/CNC chain.
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12.3.3 Approaches to Achieving Product Information
Sharing

To achieve an effective product data sharing environment, Do and Chae [62]
developed a product data management architecture supporting collaborative product
design. In this architecture, additional data model is proposed as an extension linked
to the STEP standard. With the help of this system, different configurations or
modifications made by various engenderers can be brought together. Hardware
engineers and software programmers are able to share the same user environment,
on a consistent database during the process of collaborative product development.
In another piece of work regarding to EC (Engineering Change), Hwang et al. [63]
proposed a data model representing and propagating EC information. In this col-
laborative product development environment, a neutral reference model is devel-
oped based on the STEP data structure. The EC conducted by collaborating
companies can be applied and reflected in the product design. Within the reference
model, a neutral skeleton model and an external reference model are developed to
support the distributed collaborative design environment.

Choi et al. [64] defined a standard data format using XML for a neutral file
containing product, process and resource (PPR) information, named PPRX (PPR
eXchange). The information model mapped from ISO 10303-214 STEP models
supports PPR information exchanges between commercial heterogeneous PLM
(Product Lifecycle Management) systems and other systems. With the XML-based
data exchange methodology, information exchange can be made without loss,
which reduces unnecessary effort and supports effective integration and information
sharing.

As an example of specific application protocol of STEP, Jardim-Goncalvas et al.
[65] proposed a knowledge framework called funSTEP which provides enterprise
and manufacturing systems with a semantically seamless communication with other
stakeholders up and down the supply chain. Based on STEP AP236 standard [66],
semantically enriched international product data standards, and knowledge repre-
sentation elements are utilised as a basis for achieving seamless enterprise
interoperability.

To speed up a specific task, a web service architecture called WSC (Web Service
for CAD), was proposed by Kim et al. [67]. It can support collaborative product
development of CAD assembly and part data. XML product models have been
developed based on multiple STEP APs. Using these models, parallel processing is
deployed to make an assigned task run faster because more than one processor can
be used to run the tasks. The result of the experiment demonstrates that it is possible
to retrieve product data partially, and improve the computing performance by
processing these data subsets.

In order to display a specific range of data, ST-Developer [68] enables users to
view allocated types of entities defined in a STEP Part 21 file. By using the
functionality called “working set”, which is embedded in the STEP file browser,
user is able to exclude/include assigned type of entities, e.g. showing all the
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machining working steps in the document only, or hiding all the material infor-
mation in a project. It demonstrates the capability of the object-oriented STEP data
structure in the context of processing data subsets.

When the product file is shared and exchanged in the collaborative environment,
the quality of the data itself needs to be considered as well. Kikuchi et al. [69]
proposed Product Data Quality model as a resource model of the STEP interna-
tional standards. In this way, quality of product data and in particular the shape data
can be modelled and stored along with the product document.

Besides the aforementioned STEP-based achievements, a data structure called
Linked Data was proposed by Graube et al. [70]. Through this generic data
structure, distributed information spaces from different domains are condensed into
an interlinked cloud, while there are two integration methods. The first is to merge
them into a single Linked Data Cloud using appropriate adapters and converters,
and the second is the complete migration of the databases to native Linked Data
stores. In this approach, graph theory is utilised, which is possible to describe
object-oriented data structure such as STEP.

Lee et al. [71] proposed a web-based neutral data format amongst heterogeneous
simulation software. The data model is named NESIS (NEutral SImulation
Schema). Defined and categorised product elements are in different levels, which
clearly describes product, process, sim_list (multiple simulation versions) and
configuration information. In the four-layer, NESIS acts as the central internal data
structure of the system. At the Client Layer, interfaces are developed to enable
collaboration of commercial simulation applications and NESIS, which act as
central internal data structure of the system. Developed using Java programming
language, these interfaces automatically generate simulation models using simula-
tion information and related data that are received from NESIS, and conversely
send simulation information and related data that are generated by commercial
simulation applications. Thanks to the interfaces and natural data format, com-
munication between various software applications is realised, and the reusability of
simulation data model is achieved.

In the middleware of a CAE system developed by Song et al. [72], a structure of
the proprietary file format was proposed to interface multiple CAE software tools.
Using VRML, heterogeneous CAE data is translated into chunks described by
entity-attribute data structures which are similar to STEP structures. It is proven to
be effective deriving data in a chunk-type form. Even if new entities are subse-
quently added, the structure is enabled to be read in a supplementary form, in spite
of the addition of new entities; these entities are described as new chunks. To
integrate heterogeneous business organisations, a Collaboration Point (CP) concept
is proposed by Li et al. [73]. CP is located on the boundary of different organi-
sations, acting as the interface for processes to be interoperated across various
organisations. The operational processes of the enterprise and cloud services could
be described by business process models of CP. Then, the common activities of two
kinds of processes could be identified. CPs are introduced and connected to the
common activities as the modelling interpretation of interoperation. This interface
can support data exchange, command transferring, monitoring and so forth.
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To recap, utilising neutral product document is a propitious methodology to
achieve system interoperability. Standardised data formats (e.g. STEP and
STEP-NC) enable seamless data exchange environment along the CAD/CAM/CNC
chain. However, there is a lack of solution integrating product information
throughout the lifecycle at high levels, and providing user-specific data at the same
time. In the following section, an advanced product data exchange mechanism is
introduced to meet user’s specific needs.

12.4 Standardisation for Cloud Manufacturing

At the Manufacturing Capability Layer, MCapabilities are integrated as
self-contained service modules in the SACloud. The operational processes
throughout the supply chain stay in form of CMService applications at this layer.
By controlling the service input and output, CMServices are shared and published
in the high-performance resource pool. The plug-and-play ability of service
applications enables flexibility and adaptability to cope with uncertain and changing
manufacturing market.

In Storage Cloud (SCloud), database maintains the product/project data as well
as the information of the MResources meshed in SACloud. To model and recognise
these application modules, three smart agents are developed, i.e. Resource
Recognition Agent (RRA), Change Detection Agent (CDA) and Billing Agent
(BiA). RRA is responsible for identifying newly-published capability and termi-
nation of existing ones. Since MCapabilities are loosely merged in the SACloud,
the performance of the entire MCloud is not affected by binding or detaching an
individual CMService. CDA is in charge of detecting and updating resource
changes, such as its availability, price adjustment, facility maintaining, etc. Thus,
the up-to-date data of resource can be supplied while SCM is searching for
applications for the CUser. BiA works with Storage Cloud and SCM directly.
When ST is generated, BA provides the service quote based on the predefined
service description in SC. Thus, real-time information exchanging between
MCapabilities and MCloud is enabled.

To clearly describe and present CMService, CProvider and CUser’s requests,
efficient data models are needed. A number of modelling languages can be used,
e.g. Web Services Description Language (WSDL) for web-service description, Web
Ontology Language (OWL) for knowledge representations, Web Services Business
Process Execution Language (WS-BPEL) for executable business processes with
web services, and EXPRESS. Among them, EXPRESS is chosen since it provides
more robust modelling methods. EXPRESS is a standardised data modelling lan-
guage for product data which is formalised in an ISO standard [74]. As the
graphical notation of EXPRESS, Provider & Service models in EXPRESS-G
provide the portability with standard data models such as STEP and STEP-NC.

As shown in Fig. 12.6, the enterprise which provides CMServices is defined as a
SProvider. Therefore, a manufacturing enterprise can be described in cloud
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terminology, as provider profile and service properties. The provider specifications
describe the information of the organisation, while service specifications present the
MCapability in terms of service that it provides. Note that one company has a
unique Enterprise Entity, while its service entities can be multiple. Hence, the
organisation consistency and service variety are maintained concurrently. Entity
Enterprise outlines the properties of a CManufacturing via the entities like
Provider_ID, Company_Name, Provider_Size, Provider_Capability,
Provider_Location, Provider_Contact, Prior_Experience, Provider_Evaluation and
Provider_Description.

Entity Provider_ID provides a unique identifier in the MCloud for a SProvider.
Based on its Provider_ID, all the CMServices from a provider and its related service
history can easily be traced.

Entity Provider_Capabilities describes the MCapability of a SProvider via
sub-entities Design_Capability, Experimentation_Capability,
Production_Capability, Management_Capability, and Manufacturing_Resource,
which are compliant with the aforementioned MCDM model. Entity
Hard_Resource and Entity Soft_Resource describe the MResources that support a
specific MCapability. These entities can be connected to a standardised data model
directly, for example ISO14949-201 for machine tools, and ISO10303-45 for
material and engineering properties. Hence, the MCapability of a SProvider is
described in an explicit and scalable data model.

Entity Prior_Experience records the service history of one SProvider which is
visible to the cloud administrator and provider itself, but not entirely to the users.

Fig. 12.6 Cloud service provider model in EXPRESS-G
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Entity Provider_Evaluation documents the feedback from these service consumers.
Based on these two entities, the performance of the service experiences are mod-
elled explicitly.

As the second category of enterprise attributes, the recognition of the specific
CMService is modelled via Entity Cloud_Service_Specification and its entities, i.e.
Service_ID, Service_Cost, Price, Time, Shipping_Price, Shipping_Time,
Service_Status, Service_Document, Data_Object, Pre_Condition, Availability,
Resource, Quality_Evaluation, Technical_Support_Capability, Warranties and
Service_Description (Fig. 12.7).

Entity Service_Cost documents the value of CMService in the monetary form.
This entity provides an explicit model of the value that has been used to accomplish
a service object. Service_Cost is only visible for SProviders to understand their
MCapability internally, and to make reasonable price for external CUsers.
Service_Cost is described with the help of entities Cost_Per_Unit and
Cost_Quantity. The Service_Cost model structure is inherited by four sub-types,
which divides the service cost into four categories, Cost_Material, Cost_Machining,
Cost_Labour, and Cost_Management.

Entity Service_Status contains the information about the running stages after a
CMService is launched. Stages of implementation are described via entities Initial,
Ready, Running, Skipped, Completed, Overload, Paused, and Cancelled.

Entity ST_Document keeps the path and version of an ST file as abovemen-
tioned. When a CUser is working on an ST, all versions of the ST are recorded by
this entity. Thus, the service/modification history is maintained.

Fig. 12.7 Cloud service model
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Entity Data_Object records the technical document(s) related to the CMService.
The optional attribute of this entity is Entity Project, which is compliant with the
top level of a neutral data format defined in ISO10303 [75].

Entity Pre_Condition defines the requirements prior to the start of CMService.
Limitations or preparations of the service input are recorded and published, e.g.
limits of size, material preparation, heat treatment and so forth.

Entity Availability represents the availability and working condition of a
CMService. This entity is dynamically updated by CDA. With the help of CDA,
CUser is informed by the trustworthy situation of availability without major delays.
CUsers are able to select the available CMService only, or queue in the list waiting
for the preferred package till it is ready-to-be-used. The availability information is
further described by its attributes, i.e. Module_Completion, Function_Fitness and
Security.

Entity Resource defines the manufacturing resource that is required for a specific
service. Its structural attributes (Hard_Resouce and Soft_Resource) are compliant
with the resource representation of entity Enterprise. Thus, the resource specifica-
tions, from both service point of view and enterprise point of view, are shaped and
integrated in SCloud.

To describe the user’s query of a CMService, Cloud_Service_Request model is
used (Fig. 12.8). Cloud_Service_Request is compliant with the SProvider and
Cloud_Service_Template data structure. As a bridge between user’s original

Fig. 12.8 Service request model
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demand and CMService in the MCloud, it provides a neutral and standardised
methodology to document the query. Via GUI, the service description is arranged in
the structured statement and transmitted to the SCM. Based on this piece of data,
SCM is able to suggest the solution from the resource pool based on the terms and
mapping preference. The request data is shaped via entities such as Request_ID,
CUser, Request_Status, Service_Type, Data_Object, Service_Time, Service_Price,
Preference, Request_Description, Service_Document, and optional entities
Preferred_Resource, Preferred_Provider, Preferred_Region, Quantity_Of_Service_
Output, and Keywords.

Entity Request_ID gives a unique serial number for a CUser’s request. When a
new query case is created, a permanent Request_ID is assigned. Users are able to
resume, modify, and review the request case. Additionally, all the related cloud
behaviour and history are traceable based on a Request_ID.

Entity Request_Status maintains the operational condition of a request. The
variables of a process status are Created, Under_Evaluation, Approved, Running,
Waiting, Terminated, and Finished.

Optional Entity Preferred_Resource keeps the user’s predilection of resource and
facility, for example specific machine tools, testing method or design software. The
structure of this entity is compliant with the Hard_Resource and Soft_Resource
entities of SProvider model aforementioned. Thus, the user’s request can be directly
connected to the MCapabilities in the cloud.

Thanks to the service request, CMService and SProvider models, the data is
modelled from the initialisation to implementation stage in the SCloud. Information
packages can be submitted, retrieved, and maintained over the Internet regardless
the locations of the central database and server. For data storage queries, customer’s
private data is not maintained in the SCloud directly. In the background, data
centres are hosted by third parties that are integrated as SProviders in the MCloud.
Thus, the storage task is integrated as one of the CMServices in the virtualised
service pools.

12.5 Conclusions

To recap, ICMS provides a flexible and distributed environment for shared
MCapabilities. In particular, it offers a number of benefits as listed below.

• Data Interoperability: manufacturing business is commonly troubled by data
interoperability issues. CAx applications are widely utilised throughout the
production stages. However, these applications are provided by multiple pro-
viders using different programming languages and document formats, leading to
a heterogeneous data environment. Software tools using different kernels are
difficult to communicate with each other. Data loss and errors often occur during
format conversions. By using ICMS, standardised (STEP-based) communica-
tion methodologies have been deployed to support collaborative interactions in
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the cloud environment. Moreover, ICMS offers explicit specifications of man-
ufacturing resources in the MCloud. Detailed descriptions, e.g. input and output
format requirements, are visible to all the CUsers. Interoperable problems can be
easily identified and avoided. Users are able to choose the SPs that can smoothly
communicate with each other, or alternately allocate reliable data conversion
service beforehand as one of the CMServices. Therefore, interoperability is
achieved even before a CMService is launched.

• Globalisation/Sub-Contracting: with the help of Internet of Things, manufac-
turing services/capabilities are virtualised in the MCloud. Compared with
web-based manufacturing, ICMS provides a more distributed and flexible
environment which knocks down the boundaries between organisations/
enterprises. It is easier to find business partners/sub-contractors based on their
performance of service, regardless of who and where they are.

• Customised Service and Specialised Demand: customisation is becoming more
and more important in modern manufacturing, especially for SMEs. In a
machine shop, specific cutter/machine tools are required for a particular job.
With SCM, it is easy to locate required facilities in the resource pool. Therefore,
specialised objects are achieved without additional investment on costly facil-
ities and expertise.

• Facility Utilisation: resource can be shared in a cloud. Technical details and
availability can be dynamically updated and published in the SCloud. Thus,
manufacturing resources/capabilities can be better utilised. Production tasks can
be easily balanced between high-usage facilities and the low-usage ones. From
the user’s perspective, CUsers are able to choose the available qualified pro-
viders for urgent jobs, or to wait for the preferred facility in the queue.
Therefore, the facility utilisation is improved by widely shared environment and
reasonable schedule.

• Global Optimisation: since services are broadcasted in the cloud, service solu-
tion can be improved and optimised based on the virtualised service modules
implemented in the cloud. SCM predicts the service performance features
beforehand, e.g. cost/time caused by preparing, machining, transporting and
packing stages. So much so, the global solution is optimised based on particular
factors or user’s preferences.

• Cost-Saving: by adopting the CManufacturing concept, the manufacturing cost
can be reduced. With the shared MCapabilities available in the cloud, optimised
business solution is easily found according to optimised results. Since the fea-
tures of SProviders are virtualised in the SC, it is more likely to find supplier
with better performance, cheaper labour, higher productivity, and better geo-
graphical location. As a consequence of time-critical or cost-critical optimisation
strategies, the performance of the service solution is predicted and improved
from a higher level and in a bigger scope of cloud. Besides the cost of the
service itself, the cost of strategic decision is reduced as well. With the technical
specifications highly integrated in the SCloud, the cost of management, analysis,
and comparison decreases, too.
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• Better Enterprise Performance: when it comes to cost/time management, ICMS
improves not only the experience of the CUsers but also the enterprise’s per-
formance as a CMService provider. The MCapabilities are accessible in the
cloud, bringing more business opportunities. With the help of SCM, a SProvider
is able to increase its production volume and react rapidly to market changes.

In this chapter, a cloud-based system is developed especially for ubiquitous
manufacturing. Integration mechanisms of physical resources are proposed. A local
server-driven architecture is developed to combat the conflicts between local con-
nections and Internet communications. In practice, safety and security challenges
for cloud includes Resource Constraints, Information and Learning Constraints and
Communication Constraints [76]. In future works, the cloud-based manufacturing
systems can benefit from the related technologies utilised by computing and
manufacturing cloud. Firewalls and access control keeps an ICMS system from
unwilling access and attack. Meanwhile network encryption and private keys are
helpful to keep sensitive date in specific working domains. In the past years, private
cloud models were welcome by the production enterprises since the company is
enabled to protect the cloud infrastructure within their own fences in both cyber and
physical worlds. In the future, the cloud manufacturing systems can be further
supported by other successful methods, e.g. secure gateways, coding, antivirus
software, etc.
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Chapter 13
Product Tracking and WEEE
Management

13.1 Introduction

The amount of Waste Electrical and Electronic Equipment (WEEE) has grown
significantly in recent years, due to increased Electrical and Electronic Equipment
(EEE) and its shorter lifecycle. Different types of EEE are principally classified as
shown in Table 13.1. The replacements of these devices (e.g. televisions, com-
puters, cell phones, etc.) are more frequent than ever before because of the
fast-changing market demand and planned obsolescence. New products offer
attractive functionalities and convenience to the consumer, but also push the
in-service products from Middle-of-Life (MOL) to End-of-Life (EOL) phase. From
the manufacturers’ perspectives, shorter lifecycle brings greater profits and keeps
their positions on the competitive market. Compared with high-value products,
most household appliances have shorter lifecycle and need litter maintenance ser-
vice, e.g. cell phones, kettles, and lightening bulbs. When it stops service, the
consumer intends to dispose them directly instead of repairing, since it is more
cost-effective to purchase a new one in most cases. Even though selling new
products brings profits to the manufacturers, it also contributes huge amount of
WEEE out of the total tons of waste.

The huge volume of WEEE leads to global environmental issues on many scales.
According to the statistics of the US Environmental Protection Agency [1], 438
million new electronic devices were sold in 2009 in America, which represented a
doubling of sales from 1997. 2.37 million tons of them reached EOL in 2009, but
only 25% of them were collected for recycling. Among different kinds of electrical
and electronic products, the recycling rate of mobile devices (cell phones, smart
phones, PDAs) was lowest, even less than 9%.

Thus it is important to manage and control WEEE with practical strategies. In
the EU, handling WEEE is a high priority for all member states. Countries such as
Switzerland, Denmark, Netherlands, Norway, Belgium, Sweden and Germany
already have an established Extended Producer Responsibility (EPR) for WEEE.
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In the case of WEEE facilities, many developed countries including the USA,
Europe and Japan have mature technologies for the treatment of this waste stream
[2]. However, in developing countries primitive activities predominate, as in the
case of the largest e-waste recycling place in Guiyu, China where the practices
include: manually classification and dismantling of e-waste, manual separation and
solder recovery for mounted printed circuit board, precious metal extraction by
acid, among others [3]. Also the informal sector has a predominant presence in
these activities, as in the case of Nigeria, Ghana and Thailand [2]. Traditionally, the
recycling of WEEE mainly stays at material level. The target of recycling is either
separating hazardous elements from resources, e.g. mercury and brominated flame
retardant or extracting valuable materials that can be utilised again, e.g. gold, silver,
plastics, steel and aluminium. The risk in WEEE treatment is largely due to its
toxicity. During WEEE recycling, three groups of substances may be released: the
constituents of the EEE, the substances used in the recycling techniques, and the
by-products formed during transformation of the original constituents [4, 5]. The
toxicity of these substances is related to the presence of heavy metals and halo-
genated flame retardants. When treated by poorly controlled processes, it leads to
damage and risk in multiple scales: soil and sediment pollution [6, 7], water [8], air
[9], and human health [10, 11]. Additionally, the pollution may also infiltrate into
the environment directly through municipal solid waste disposal [12].

The traditional path of WEEE is limited to recycling, for the sake of obtaining
raw materials. In practice, it is possible to treat WEEE as used products, before it is
considered as a discharged waste [13]. The EOL processes include the secondary
market processing and component recovery (such as repair, reconditioning, and
remanufacturing) or material recovery (recycling) [14]. According to the EU WEEE
Directive, after electronics reach the end phase of their lifecycle, they should be
filtered based on their status and their economic and functional potentials. Then the
WEEE is processed via different paths after proper treatment, but principally WEEE
is recycled. In practice, it is also important to consider other EOL processing routes,
for example the BS 8887 standard serials give six EOL routes as follows, along
with the likely change at warranty level compared with the original product [15],

Table 13.1 Principal EEE categories

Category Examples

Information and communication Computer, tablet, mobile phone

Large household appliances Refrigerator, air conditioner, washing machine

Small household appliances Iron, dryer, rice cooker

Lighting equipment Household luminary, outdoor lighting, automotive
lighting

Electrical and electronic tools Volt-ohm-millimetre, soldering iron

Toys, leisure and sports
equipment

Coin slot machines, car racing set

Automatic dispensers Water dispenser, coffee machine

Medical equipment Ultrasound machine, heart-lung machine
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including reuse, remanufacture, recondition, repurpose, recycle, and dispose. In this
roadmap, WEEE are handled not only as a waste, but also as a special category of
product that can be reused through an extended lifecycle [13]. Although the term
WEEE indicates the equipment as a waste, a huge proportion of the equipment can
be defined as Used Electrical and Electronic Equipment (UEEE), which plays an
important role for component recovery or extended usage. These activities are at a
higher level than recycling in the environmental hierarchy of EOL strategies [14].
Considering this, such understanding can be included in the new perception of the
EEE lifecycle. It is possible to put UEEE back to the market via proper recovery
processes and treatments (Fig. 13.1).

Recovery activities aim to get usage of the components from UEEE, before they
are disposed as waste, i.e. repair, reconditioning and remanufacturing. The
assessment and utilisation can be extended to the functionality level [14]. After
being disassembled, the parts from UEEE can be reutilised for different purposes
based on their warranty conditions. Even though the product as a whole has reached
its end of lifecycle, many parts inside it may still be functional [16]. One of the most
successful business examples of profitable component recovery is the remanufac-
turing of parts in the automotive industry, and large mechanical and electrome-
chanical products. Since the waste vehicles are able to provide profitable parts for
repairing other vehicles still in service, these parts are not treated as waste any
longer. They can be tagged as used products and be offered back to the market with
reasonable warranties. It is similar in UEEE scenarios. Instead of treatment for
valuable or dangerous materials, many parts within UEEE can be reutilised at
functionality level. It is necessary to establish a platform that understands both the
nature of WEEE/UEEE and integrates related processes. Then a collaborative
environment can be established to maintain the data/knowledge and support com-
ponent recovery and recycling processes.

In this chapter, a cloud based system is introduced to support not only the
management of WEEE, considered as a waste, by recycling, but also the fraction of
WEEE that is an UEEE by recovery and related processes, including remanufac-
turing, reconditioning and repairing. The architecture of the proposed system,

Fig. 13.1 WEEE physical flow and UEEE
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namely WEEE Recovery/Recycling Cloud (WR2Cloud), and developments are
presented below.

13.2 System Framework

As mentioned above, an intelligent recovery and recycling system is required to
support the management of WEEE at both material and functionality level. In recent
years, cloud technology has been introduced in different scenarios since it provides
the capability of scalable and flexible services in a customised manner. The cloud
concept was initially proposed to describe the large number of computers that are
connected via runtime communications over a network [17]. Then the cloud was
extended to other areas supporting customised services, e.g. manufacturing
[18–25]. Cloud manufacturing can be understood as the manufacturing model that
enables scalable, on-demand access to manufacturing services, both digitally and
physically [26]. As a specific category of manufacturing, the reproduction based on
WEEE, especially UEEE can also be supported by the cloud via its integrated
manufacturing solutions, high-level data management/control and flexible service
models [27–31]. Thus, a cloud-based system is to fulfil the needs of WEEE.

13.2.1 System Requirements and Roles

In the manufacturing paradigm, raw material is treated as the input for the start of a
physical flow. The order, payment and transportation of raw materials can proceed
within a mature supplier network. This is one of the major differences between
traditional manufacturing and the WEEE component recovery/recycling business.
In WEEE component recovery/recycling, used products are owned by random end
users. These users’ locations are usually unknown and their behaviour, e.g. in terms
of where and when they would discard their used products are unpredictable. It is
specifically difficult to maintain the knowledge of WEEE and organise related
services due to the interrupted information flow.

With the help of cloud, all the data of individual WEEE can be maintained in an
integrated and shared information pool. The centralised cloud repository also keeps
the Beginning-of-Life (BOL) and Middle-of-Life (MOL) specifications of products.
In this way, remote customers, who are connected to the Cloud via the network, can
access and so update the status at all stages of a product’s lifecycle. The system
would also assist service scheduling after the product reaches EOL. The system
requirement for data management can be summarised as shown in Fig. 13.2. The
maintenance and update are categorised into different stages since an electronic
device travels among different stakeholders throughout its lifecycle. After an EEE is
manufactured, it is the manufacturer’s responsibility to register the basic informa-
tion about the EEE, e.g. important components, technical specifications and bill of
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material. After the EEE is sold to a customer, the retailer needs to update the EEE as
a final product and update the basic information about the customer, including name
and contact information. Thus data is valuable for both maintenance and recovery
services in the future. When the product meets the end of the lifecycle, the user is
able to interact with the cloud, turn the registration from product to WEEE and
organise related recycle or recovery service accordingly.

Even though the cloud-based solutions are implemented based on some
web-based technologies, it needs to be pointed out that there are fundamental
differences between traditional WEEE systems and the recovery/recycling cloud.
From the stakeholder’s perspective, in traditional web-based recovery and recycling
systems [32, 33], the users of the system or platform are mainly recyclers or
remanufacturers. The system helps them to communicate with remote resources
over the network. Toyasaki et al. [34] highlighted the value of information systems
for product recovery management. Conceptual models and methodological con-
cepts were introduced to assist a green WEEE supply chain [35, 36].

At the BOL stage, Van Shaik and Reuter [37] developed dynamic models of
e-waste recycling system performance based on product design. This model
allowed for the design-driven modelling of material liberation in the shredding
process. Yang et al. [38] proposed an intelligent product. It was based on a service
enabling scheme which uses the product lifecycle data in a systematic and

Fig. 13.2 Cloud-based WEEE data maintenance
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integrated manner to facilitate the creation and delivery of suitable services during
the lifecycle of a product. It also contained an intelligent data unit which maintains
the options for recycling and reuse of the products. Kuo [39] proposed a collabo-
rative design platform to support waste electrical and electronic equipment recy-
cling. A collaborative design platform was constructed and collected the needed
information using computer-aided design (CAD), enterprise resource planning
(ERP), and product lifecycle management (PLM) systems. Rahimifard et al. [40]
developed a Computer Aided Recycling Process Planning (CARPP) system. This
system determines the bespoke EOL recycling process plan for individual WEEE.
The different plans could be stored in an operational database and applied to similar
products families. It is able to support designers, manufacturers, and recyclers.

At the transportation stage, a WEEE transportation network was proposed by
means of an integrated solution approach [41]. The methodological steps regard the
following topics: data collection techniques, vehicle routing methods and heuristic
procedures for creating different system scenarios, and simulation modelling for
obtaining solutions satisfying technical performance measures. Achillas et al. [42]
developed a decision support system for the optimal location of electrical and
electronic waste treatment plants. Optimising reverse logistics network was also
developed to support policy-making in the case of Electrical and Electronic
Equipment [43]. Che [44] proposed an optimisation mechanism to balance and
detect supply chain problems considering WEEE/RoHS directives.

Despite the IT technologies supporting sustainable WEEE design, transportation
and decision making, there is still a lack of an integrated system that manages the
whole WEEE lifecycle and coordinates recovery process collaboratively. Thus in
WR2Cloud, the capability offered by the cloud recovery/recycling system is different
from conventional solutions. In the cloud, recovery resources and capabilities are
packaged as service modules and published, for example quoting-as-a-service and
warehouse-as-a-service. In this way, the users do not directly interact with the
recovery and recycle activities. Instead they are supported by the everything-
as-a-service (XaaS) model that is deployed by the service providers in the cloud.

In this system information management needs support from manufacturers,
retailers and end users. A key differentiating factor of this new system from typical
production activities is that the WR2Cloud is able to integrate product knowledge
and data throughout the lifecycle of products. An integrated and unified data
sharing/management mechanism is an important prerequisite for recovery and
recycling services. With the help of cloud databases, cloud participants are able to
retrieve and stream WEEE data dynamically. The business model for this cloud
system is shown in Fig. 13.3. In a conventional WEEE recovery system, the user is
the recovery stakeholder who works with the industrial process directly. In
WR2Cloud, the users of the system are the consumers of the EEE. Participants that
are related to recovery and recycling service act as the service providers in the
cloud, e.g. collecting and recycling service providers. The role of the recyclers and
remanufacturers changes from end users to providers at the back end, while the
consumers interact with the cloud at the frontend. It provides a clear classification
and interact mechanism for different stakeholders in the cloud.
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From the perspective of a business model, the traditional web-based system
supports the customer with the whole infrastructure, which forms a one-to-one
business model. In the cloud, multiple service objectives are achieved by the whole
cloud. The customers may or may not need to know the identities of the providers
or their whereabouts or vice versa. It forms a many-to-many model. Service requests
and results are transferred by the coordinator mechanism between users and cloud.
Thus it forms a “request-find-provide” procedure for the recycling/recovery
business.

13.2.2 WR2Cloud: System Framework

To meet the requirements mentioned above, a three layer system is introduced to
support WEEE recovery/recycling activities (see Fig. 13.4). In the WR2Cloud,
component recovery and recycling facilities and capabilities are provided as cloud
service packages in the cloud layer. The outlines and specifications of these services
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are maintained in the cloud database and published at the cloud service coordinator
layer. The service coordinator acts as the neutral supervisor or orchestrator of the
cloud system. When a user needs one or multiple service package(s), he or she
interacts with the service coordinator and provides the request specifications in a
standardised manner. After these queries are interpreted, the coordinator searches
into the cloud layer and finds all the candidates that are capable of delivering the
service. The search results are fed back to the user for selection and confirmation.
After the service plan is finalised, the coordinator executes the service stage by
stage according to the schedule. In this way, WR2Cloud offers a search-find-
provide service loop.

Based on these detailed descriptions, the service coordinator is able to search for
appropriate service solutions, to organise optimised service combinations, and to
execute service tasks. As a Service-Oriented Architecture (SOA), the WR2Cloud is
able to coordinate the input/output flow through service packages and offer them as
a concrete virtual service combination. At the user layer, the end-users are able to
access the system from their local web browsers over the network. Different
interfaces are developed to support their needs in recovery and recycling, e.g.
registration, updating, service querying, resource tracking, etc.

As mentioned above, web-based WEEE systems aim to connect multiple
modules via the network. It mainly supports the business within one organisation
and there is a lack of orchestration mechanism to coordinate the process across
different enterprises. In WR2Cloud, WEEE recovery/recycling processes are inte-
grated in terms of cloud manufacturing services. A coordinator mechanism is
developed to deliver remanufacturing resources and capabilities as services pack-
ages. Users are able to work with the shared service pool regardless the boundaries
between different stakeholders. Compared with conventional cloud manufacturing
systems, WR2Cloud extends the service scope from typical production processes to
WEEE recovery services. Moreover, supporting technologies are developed to
assist the WEEE remanufacturing, i.e. standardised data management and product
tracking mechanism. These technologies also combat the data exchange and pro-
duct management difficulties observed in current manufacturing clouds.

13.3 Product Tracking Mechanism

Comparison of different treatments of WEEE is important for evaluating related
environmental impacts. The factors to be considered include benefits and risks from
different stages in WEEE management, emission rate (quantity of WEEE produced
or expected to be produced), reverse logistic chain, toxicity (hazardous materials
content), and the extent of environmental impact among different treatments.

The materials present in the EEE or future WEEE play an important role [14].
A wide variety and large quantity of products exist in the EEE context (Table 13.1),
and their internal composition is also complex. First it is important to understand
that the materials content depends on the kind of equipment under consideration.
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For example, for large domestic appliances, there is a considerable quantity of
metals. However, in the case of small appliances, there are individual components
such as cartridges, batteries, cables, printed circuit boards, ferrous and nonferrous
fractions thus a wider range of materials is present and typically in smaller quan-
tities. With the help of the cloud-based environment, it is possible to document
different types of EEE products and maintain the knowledge database of their
compositions.

Environmental impacts of WEEE need to be evaluated before decision making.
It has to be admitted that both positive and negative impact factors exist during the
recovery and recycling processes. For example, component recovery (also called
remarket process) adds new value to the WEEE (especially UEEE), to bring the
used products back to working order and this can be considered a positive factor.
However, these recovery activities could also bring negative impacts to the envi-
ronment occasionally, for example due to the chemicals and energy used in the
product recovery process. In the recycling (material recovery) cases, when the
products are reversed back to their raw materials, the energy and resources used for
its original manufacture are lost. Moreover, energy and resource is required to
enable this return to raw material thus energy and resource are lost twice over; and
even more energy and resource would be needed to turn the raw material into a
useable form. Thus it is important to assess the environmental impacts of different
strategies of component recovery or material recycling before they are processed
[14]. It is well known that inappropriate recycling procedures output high envi-
ronmental impact, such as the air pollution from burning and dismantling activities,
ashes from incineration, fly ashes and bottom ashes with high concentration of
dioxins, Pb (industrial soils), PBDEs (urban soils), and also leaching potential [4].

Yet the systematic recycling process offers important environmental benefits in
saving natural resources. Another issue to consider is the transportation of WEEE,
which leads to high cost and negative environment impacts as well because of the
energy and resources consumption during transportation. One solution could be
locating processing plants in close proximity, for example recyclers and remanu-
facturers. Thus products that are not suitable for remanufacturing could be put
through recycling (and vice versa) without much resource spent on transportation.
Finally, the highest negative environmental impact is the landfill of WEEE without
processing, which implies disposal of toxic materials without treatment. Therefore,
the cloud-based approach is expected to be able to evaluate and optimise the WEEE
recovery and recycling processes at a high level and also deliver sustainable service
strategies.

13.3.1 WR2Cloud

In the WR2Cloud, the information management and data sharing is supported by a
standardised environment. Data models are developed to describe the important
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elements throughout the recovery and recycling chain, e.g. end-user, service pro-
vider, service model, etc. Uniformed Application Protocol Interfaces (APIs) are
utilised to connect these models and provide an interoperable solution for the
processes and interactions in the cloud (Fig. 13.5). In this SOA, the data description
methodology is also built based on the service-oriented principle. The core of the
data model set is the Cloud Service data model that documents what kind of
recovery or recycling service is requested and how it is archived. The EEE data
model set is established based on current ISO 10303 standards [45, 46] and
extensive developments on Cloud Manufacturing [23, 24]. The top entity of cloud
recovery and recycling service is defined as “project”. For one service case or task,
it is maintained as a project that is supported by related recovery and recycling
resources and service providers.

For WEEE, its knowledge maintenance starts from EEE product registration at
the BOL phase. The Original Equipment Manufacturer is responsible for estab-
lishing and maintaining the details and specifications as discussed above. The
components/sub-components information is integrated with the product data model.
In WR2Cloud, the data is documented at both component and material levels of the
product. This information is especially valuable for the recovery and recycling
processes afterwards. For instance, special element treatments are organised by the
service coordinator based on the hazard element list of the WEEE product model,
and the disassembly service can be assigned specifically for the valuable
components.

After the EEE reaches the MOL stage, the end-users play an important role in
updating the status of EEE or registering WEEE after its service ends. In practice,
the WR2Cloud not only takes care of the WEEE process at the EOL phase, it also
supports the EEE maintenance throughout the lifecycle of the product. The main-
tenance can be categorised in three groups, i.e. reactive maintenance, preventive
maintenance and predictive maintenance [47].

Fig. 13.5 WEEE data model set
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• Reactive maintenance, or breakdown maintenance, can be described as a
fire-fighting approach which allows the equipment/products to work till failure.
With the integrated information sharing environment, the users are able to easily
report faults or breakdowns via the cloud platform. Customised maintenance
solutions can be quickly organised based on the existing product specifications
in the cloud database, e.g. warranty status, model, customer location, etc.

• Preventive maintenance is often referred to as use-based maintenance. It is
comprised of maintenance activities that are undertaken after a period of time or
amount of use. In the cloud-based system, the service provider is also able to
interact with customers actively, e.g. reminding them of key component expi-
ration and offering safety check/maintenance based on the usage/duration data in
the cloud.

• Predictive maintenance is frequently referred to as condition-based maintenance.
For costly or important EEE products, the maintenance can be initialised with
additional monitoring/diagnostic data, e.g. noise, temperature, corrosion, and so
forth. Predictive maintenance reduces the possibility of the breakdowns on
critical devices and parts.

13.3.2 ‘Cloud + QR’-based Tracking Methodology

To further improve the performance and portability of WR2Cloud, the data inte-
gration mechanism can be supported by the Quick Response Code (QR Code). QR
code is a type of matrix barcode or two-dimensional barcode that is an optically
machine-readable label [48]. The labels can be attached to products or even com-
ponents inside. The capacity of QR code has been improved greatly in recent years.
The latest version is able to obtain up to 1852 characters with high error correction.
In this chapter, an LCD television is chosen as the WEEE that is owned by an
end-user. The basic information of the product is recorded in its QR code tag that is
attached on the back of the product (Fig. 13.6). In this case, 764 characters are
utilised to document the information of the device, e.g. the product type, model,
OEM and most importantly the unique product reference number. The user is able
to scan the code via smart phones, tablets or camera devices and then submit
queries to the cloud via web browsers or mobile apps. Based on the serial number,
the detailed product specifications can be quickly retrieved from the cloud database.
The user then links the latest WEEE status to the product profiles and registers it as
WEEE. Related recovery and recycling services can be organised according to the
information at both material level and component level. Compared with traditional
barcode methods, more pollution and recovery data can be stored in the QR code
tag, and additionally, for example, specifications compliant with the Restriction of
the Hazardous Substances Directive. In this LCD case the pollutants and recyclable
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parts are recorded in the QR code that is visible to the end user. In this way, the user
is able to understand the environmental, and recovery information in detail and
request for the preferred services accordingly.

13.4 Implementations and Case Studies

To evaluate the methods mentioned above, a cloud-based remanufacturing system
is implemented. At the preliminary phase, the virtual environment is built in the
cloud environment which contains 32 computing cores and more than 132 GB
memories in total. With the help of extendable cloud resources, customers are able
to access and maintain the WEEE cloud without installing or configuring any local
applications. The working environment of cloud is capable of virtualising multiple
operating environments, i.e. Linux, MS Windows, and UNIX family. Thanks to the
platform independency of JAVA, the developments can be deployed across dif-
ferent environments to suit the different needs or requirements of the users.

13.4.1 Case Study 1: Cloud WEEE Management
at Product Level

In the QR code management module, the remanufacturing stakeholders are able to
generate the code tag and attach it on the product (Fig. 13.7). When the product
stops functioning, the customer is able to scan the tag and quickly upload it onto the
cloud. The basic information of the WEEE stored in the QR tag is directly inter-
preted by the system, and further details can be tracked based on the unique product
ID kept in the tag.

End userEnd user

QR Code Label Fundamental Product Data
Detailed WEEE & Component 

Specifica on

Cloud RepositoryEnd user

QR Code Label Fundamental Product Data
Detailed WEEE & Component 

Specifica on

Cloud RepositoryService 
Coordinator

Service 
Coordinator

Fig. 13.6 QR code enabled cloud service
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In the WEEE management module, MySQL databases are also established in the
cloud. To better access and maintain the dynamic data of WEEE, a meta-model is
adopted in a flat structure. The object-oriented WR2Cloud standard is interpreted
into the meta-model. Thus the cloud user is able to understand and maintain the
database without the expertise of the standards and schemas. Besides standardised
product data, the cloud database also maintains supporting documents, e.g. in-
structions, designs, disassembly directives, etc.

In the graphical user interface, the user is able to view all the running databases
and quickly locate more details of the product specifications based on the unique
product ID (see Fig. 13.8). In the study case, the user is able to select from multiple
databases, and also maintain the WEEE profile dynamically, including adding,
deleting, and updating. In this case, the replacement of the LCD screen is added to the
product specifications. When the product needs to be recovered in the future, all the
changing and repairing records are integrated and extracted without further efforts.

Fig. 13.7 QR code processors
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13.4.2 Case Study 2: Cloud-based WEEE Management
at National/International Level

After the WEEE information is maintained and integrated on the WR2Cloud, this
method can be applied at the global level. Take another type of product, Used Lead
Acid Batteries (ULAB), as an example: the ULAB case can represent how the
information is organised. With the help of WR2Cloud, the decision makers are able
to be informed of an item’s whereabouts as raw material or product.

In this case study, lead metal and LAB is monitored and managed by the
proposed WR2Cloud from a global perspective. The material flow could be
explained as follows: currently more than 80% [49] of lead metal productions are
used in Lead Acid Batteries (LAB) and their recycling reproduces lead that could be
used in future production of LAB, which is called secondary lead production.
Another source of lead is from the primary production, which is produced by

Fig. 13.8 WEEE management module
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mining, especially as by-product of Pb-Zn mines. The sum of the primary and
secondary production is the total lead metal, which can be utilised by industry for
lead acid batteries production. In this way, these two products are interconnected.
Furthermore, the secondary production started to act as an important source for lead
metal ingot also, due to its high recyclability [50]. Therefore, it is logical to
investigate the management of the information about the movements of these two
products in order to get the location information of the suppliers and consumers.
The major consumers and suppliers in the world are China, USA, UK, Germany,
Canada, Japan and India. These countries represent more than 75% of the global
lead metal production in 2011. WR2Cloud, in this case, functions as a data and
material bank, in order to understand the usage of lead metal. The material flow of
lead metal includes production, consumption and export/import, which could be
represented by the Physical Trade Balance (PTB). With the help of WR2Cloud, the
PTB indicates if a country is a consumer or supplier in principle [51]. Thus, the total
consumption of lead in a country is the result from its production plus its PTB. At
the international level there are two data sessions maintained in the cloud domain
(Fig. 13.9): one corresponds to import/export refined lead as raw material, while the
other refers to LAB as a product. The distribution of them during year 2011 is
illustrated. In this case WR2Cloud is to monitor and documents these trades.

In conclusion, it can be observed that the biggest producers and consumers of
refined lead and LAB are China and USA. However, the quantity that they rep-
resent in trade (no more than 10%) is quite small compared with their production,
which means that there is a substantial amount of lead located in these two
countries. Canada’s production of lead is one quarter of that produced in the USA.
However, the majority of the production is directly exported to the USA (more than
90%) with no significant material flow to anywhere else.
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Since all the information from the different countries is properly maintained in
WR2Cloud, it is easy to locate the principal markets, producers and consumers.
Additionally, it also provides an opportunity to modify the production strategy by
considering the financial and environmental impacts. The lifecycle could be com-
pleted by using ULAB to produce new LAB that is the currently the principal lead
production method. These circumstances would help create regional management
that could significantly reduce the environmental impact due to transportation and
other informal practices.

13.5 Conclusions

During the development of WR2Cloud, interviews were taken with different experts
in the fields of component recovery and material recycling within the UK. From
these interviews, some barriers for WEEE recovery were identified as follows:

Barrier Solution

Quantity The volume of WEEE is huge and
the variety is wide

Awareness about WEEE production

Recovery
processes

– It is difficult to establish universal
operations due to the diversity of
WEEE in the market

– The disassembly process is
difficult due to the lack of design
considerations for material
recovery (recycling) or repairing
(product recovery) at EOL. Some
joining methods may simplify the
manufacturing process and
minimise the product size and
weight but hinder EOL
manipulation by for example
preventing non-destructive
disassembly as in the case where
components are soldered or fused
together or where the material is so
fragile that dissemble without
breaking is impossible

– Moreover, it is difficult to
differentiate the different materials
of which the parts are composed

Incentives to the OEM for design
considering component recovery or
recycling aspects

Lifetime – The lifecycle of EEE is
unpredictable due to different
reasons for recovery. Some EEE
are destined for recycling and
others for component recovery but
currently there is no system to

Incentives to the OEM for design
considering component recovery or
recycling aspects

(continued)
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(continued)

indicate which products or
components should be routed
towards product recovery

– The MOL is often shorter than the
design lifetime from OEMs
Nondurable materials are widely
used in EEE, especially for small
electronic devices. These materials
may break or sustain other damage
during the recovery processes.
However, it is difficult to predict in
advance the condition of these
materials at product EOL and thus
set up an appropriate recovery
process

– The evolution of EEE products is
rapid due to the swift changes in
market trends. This volatility of
EEE products’ technology makes
it more difficult to find customers
for the recovered EEE

Rapid
obsolescence

– As the product and process
technology for EEE is rapid. Some
products are withdrawn because of
the arrival of new models/versions
as customers may no longer want
them because they do not offer the
latest functionality. The OEM may
prefer to stop their manufacture to
make way for the new models in
order to compete on a novelty
basis with their competitors

Awareness about WEEE production/
recovery

Recovery
cost

– In some cases, the cost for
recovering UEEE is higher than
producing or purchasing new
alternatives

– From the customer’s point of view,
the price advantage of a recovered
product may be little due to labour,
resource and facility utilisation
required. In other cases, the
remanufactured EEE is even more
expensive than new ones, despite
the environmental benefits

– The general preference is directed
to new products from the
economic point of view

– In the case of considering
producing competitive UEEE,
special facilities are required,
which are costly; skilled operators

Incentives to the OEM for design
considering component recovery or
recycling aspects
Incentives for the consumers
To consider the EEE, UEEE and
WEEE management in a holistic
way, as in a hub, where OEM,
recovers and recyclers are located
closer

(continued)
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(continued)

and technicians are also needed.
Currently skilled operators and
technicians are not yet available,
especially in the component
recovery sector

– Transportation of WEEE is another
gap that is identified. Since WEEE
is considered as waste, it contains a
large volume of hazardous
materials after filtered and
centralised. In many countries,
specific permission is needed,
which increases the cost and effort
of transportation

Awareness – Despite the impacts on
environment, it is challenging to
convince manufacturers to
commercialise WEEE recovering
and adopt remanufacturing
processes in the current supply
chain

– The current market still lacks
awareness of social and
environmental factors

– It is also challenging to convince
customers to accept recovered
EEE, or products containing
UEEE components

– Since the warranty condition of
these products may be changed, it
is difficult to persuade consumers
to choose recovered EEE or
components over premium
models. It is necessary to define
the warranties respectively, e.g.
warranty for the whole product
and warranty for the recovered
components

– Although in some countries the
disposal of WEEE is separated
from Municipal Solid Waste, the
end users still need more
assistance for the WEEE recovery,
e.g. knowledge of classification
and disposal. Especially for
recovery services, consumers need
to be supported by sufficient
information and knowledge
regarding the options for
component recovery and recycling

Awareness to build customer’s
purchase motivation as sharing
knowledge related to the hazardous
materials that could be reduced
thanks to the extended lifecycle and
the recovery and recycling service

(continued)
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(continued)

WEEE chain – The business model of WEEE
recovering needs to be reviewed
and improved to encourage more
interactions with end users in order
to take a bigger market share

– It is also difficult to involve end
users in the recovery supply chain

Generate a channel where all the
stakeholders (manufacturers,
collectors, dissemblers, repair shops
and remanufacturers) are involved
and able to access to the information
and find the better path

In conclusion, the cloud is a promising approach that provides better manage-
ment and treatment of WEEE. It creates the opportunity of changing waste to
valuable UEEE for end-users, with numerous environmental benefits when properly
applied. A WEEE recovery/recycling cloud offers an organised platform where not
only end-users are able to know how to deal with their used equipment, but also the
whole of the supply and resupply chain including manufacturers, recyclers,
remanufacturers, repairing shops and collectors are able to interact with the
knowledge stored in the cloud.

In this chapter, a cloud-based recovery system is introduced, namely WR2Cloud.
The current recovering/recycling resources and capabilities are integrated as cloud
services in the service-oriented infrastructure. With the help of the cloud structure,
the communication between users and service providers are supported by a dis-
tributed, flexible and intelligent network. Data sharing and exchange are further
enhanced by the QR code method. It is possible to track and manage the physical
flow of WEEEs at both material level and component level. The cloud environment
provides a distributed platform to highlight, broadcast and share the advantage of
WEEE recovery throughout the EEE supply and resupply chain. With reliable and
dynamic information, the effectiveness of WEEE management will be greatly
improved. The lead recycling was chosen as a case study to demonstrate how the
WR2Cloud could be used in the global management of a substance as raw material
and product, especially in order to locate the consumers and producers. Since
WR2Cloud can act as the virtual depository of refined lead and LAB due to the fact
that they are interrelated for primary and secondary lead production, it would enable
the users to decide where would be the most convenient location for the suppliers or
consumers. It is expected that, this type of global management could bring envi-
ronmental and economic benefits.

The interviews undertaken during the development of the WR2Cloud showed
barriers related to quantity, recovery processes, and length of lifetime, obsolescence
cost, customer awareness and understanding as well as the WEEE supply chain.
These issues could be overcome by implementing legislation to ensure better col-
lection channels. Standardised WEEE/UEEE definitions would also assist in cre-
ating a filter process before used electrical and electronic products are considered as
waste. The commercialisation of WEEE recovery/recycling options could be
boosted through awareness, as this would help to gradually increase customers’
willingness to purchase recovered WEEE. It also generates a channel in which all
participants are involved in the EEE lifecycle. The consumers are able to access the
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information and find better path for their EEE when it reaches the EOL stage.
Hazardous material management is another important consideration. End users
should be aware of what is contained in their WEEE and the options of WEEE
recovery. The generation of hazardous material can be reduced, thanks to the
extended lifecycle and the recovery service from WR2Cloud. Additionally, the
recycling of WEEE has an important impact on the environment, because it reduces
raw materials utilisation from primary production, which leads to a decrease in the
pollution generated from mining and industrial processes.

Future work would include further development of the supervisory mechanism
of the recycling and component recovery cloud to integrate and coordinate the
services within one package. Quantitative validations can be conducted in particular
to compare with conventional approaches in terms of speed, service circle, quality
and so forth. Customisation and optimisation solutions can be established with the
help of a shared pool of knowledge and resources in the cloud. User-friendly
interfaces and mobile phone applications are also needed to evaluate the system and
related methods. Mobile apps have particularly become powerful in recent years
due to the increase in their mobility and flexibility. It will be helpful for the users to
update WEEE data on mobile devices, and to easily link the service case with their
location and contact details. As discussed above, the tracking and management of
WEEE is difficult due to the lack of data feedback from end users. With the help of
the cloud and QR code mechanism, it is possible to establish closed-loop control on
the EEE/WEEE flow and achieve a high-level integration of the data and services.
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Chapter 14
Big Data Analytics for Scheduling
and Machining

14.1 Introduction

14.1.1 Algorithms Used in Big Data Analytics

Methods employed in big data analytics are basically developed from the traditional
approaches for data analytics. The principal methods are summarised as follows.

• Cluster analysis: It captures the natural structure of data. Originated in anthro-
pology in 1932 and introduced to psychology in 1938 [1, 2], it was then used for
trait theory classification of personality psychology in 1943 [2].

• Factor analysis: It is a statistical method used to describe variability among
observed and correlated variables in terms of a potentially lower number of
unobserved variables called factors [3].

• Analysis of correlation and dependence: In statistics, dependence or association
is a statistical relationship between two random variables or two sets of data.
Correlation is any of a broad class of statistical relationships involving depen-
dence, though it was usually used to refer to the linear relationship between two
variables. Similarly, dependent phenomena include the correlation between the
parental physical statures and the offspring, and the correlation between the
demanded product and price of product.

• Regression analysis: It is a statistical process for estimating the relationships
among variables. It includes many techniques for modelling and analysing
several variables, when the focus is on the relationship between a dependent
variable and one or more independent variables.

• A/B testing: It is a term of a randomised experiment with two variants, A and B,
which are the control and variation in a controlled experiment [4].

• Data mining: It is an interdisciplinary subfield of computer science. The com-
putational process discovers patterns in large datasets involving methods at the
intersection of AI, machine learning, statistics, and database systems [5].
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14.1.2 Tools Used in Big Data Analytics

The tools used in big data analytics have been collected by K.Dnuggets™ News, a
popular site on business analytics, data mining, big data, and data science etc. [6].
As shown in Table 14.1, 1453 of 3285 voters mentioned that they used
RapidMiner, while 35% of RapidMiner users indicated that RapidMiner was the
single software that they used.

14.2 Background Information

14.2.1 Related Works on Scheduling

The research on scheduling started with static scheduling useful for the develop-
ment of shop-floor scheduling systems for mass production. A mathematical model
was developed by Manne [7]. Laporte et al. [8] analysed two integer linear pro-
gramming formulas to address job sequencing and tool switching problems, in
which branch-and-cut and branch-and-bound algorithms were developed and
compared. Asokan et al. [9] used adaptive genetic algorithm and particle swarm
optimisation to obtain optimal schedules and storage assignments.

The concept of integration of both process planning and scheduling was
developed by Khoshnevis and Chen [10]. In their method, the feasible process for a
given feature of a part was not found in the shop, in case of which, the real-time
system was then applied to generate process plans and schedules together. Within
the context, Chen and Khoshnevis [11] also presented some methods for the
integrated system and the performance of the algorithm. Tan and Khoshnevis [12]
further extended the approach. Mohapatra et al. [13] proposed an improved

Table 14.1 Most popular
tools used in big data
analytics [6]

No. Tool Alone
(%)

User ratio (%)

2014 2013

1 RapidMiner 35.1 44.2 39.2

2 R 2.1 38.5 37.4

3 Excel 0.1 25.8 28.0

4 SQL 0.1 25.3 n/a

5 Python 0.9 19.5 13.3

6 Weka 0.4 17.0 14.3

7 KNIME 10.6 15.0 5.9

8 Hadoop 0 12.7 9.3

9 SAS base 0 10.9 10.7

10 Microsoft SQL
server

0 10.5 7.0

348 14 Big Data Analytics for Scheduling and Machining



controlled elitist non-dominated sorting genetic algorithm to reduce scheduling
objectives, for instance makespan, cost, idle time and efficiency for the integration
of process planning and scheduling. Freitag and Hildebrandt [14] proposed a
simulation-based multi-objective hyper-heuristic to develop optimisation dis-
patching rules for complex manufacturing systems. Li et al. [15] pointed out that the
integration of process planning and scheduling would be developed towards
multi-objectives, dynamic and hybrid algorithm application. Rajkumar et al. [16]
applied greedy randomised adaptive search procedures algorithm to the integration
of process planning with production scheduling, with regard to the process prob-
lems having multi-objectives of makespan, maximum workload, total workload,
tardiness and total flow time. In addition, scheduling was also carried out for some
of special objectives, e.g. sustainable development. Gahm et al. [17] suggested
developing energy-efficient scheduling for manufacturing companies.

However, the static scheduling does not have the capacity to handle the situation
with growing products of both small batch and wide variety, in particular unex-
pected faults. Therefore, dynamic scheduling method was developed, where the
decisions can be made with rapid response automatically. Real-time scheduling of a
manufacturing system involves scheduling and revised scheduling [18]. Vieira et al.
[19] proposed a rescheduling method based on a wide variety of experimental and
practical approaches. In the method, two common strategies were introduced,
dynamic scheduling and predictive–reactive scheduling. Ham et al. [20] proposed a
three-stage flexible job-shop scheduling method to deal with unpredictable system
disturbances. Iwamura et al. [21] introduced an estimation of future status based
real-time scheduling approach for holonic manufacturing systems (HMS). In their
method, the future status of an HMS is predicted by applying a neural network
model based simulation model. In addition, an agent-based service-oriented ar-
chitecture was presented for real-time distributed shop-floor scheduling [22].
Semi-Markov decision models were also applied to real-time scheduling by Yih and
Thesen [23]. Ant colony optimisation was applied to two dynamic job scheduling
by Zhou et al. [24]. Within real-time scheduling, real-time decision making is a key.
There are many algorithms. By constructing a decision tree, Metan et al. [25]
proposed a new scheduling system for selecting dispatching rules in real-time. The
proposed scheduling system was developed by combining the techniques of sim-
ulation, data mining, and statistical process control charts. Bayesian algorithm was
used to discover priority dispatching rules from large amounts of structured or
unstructured data for the single machine scheduling problem [26]. In addition,
real-time monitoring methods were also developed. Kohn et al. [27] proposed
repair-control of manufacturing systems using real-time RFID information.
Through applying RFID on shop floor, the real-time information of objects
including operators, machines and materials, can be automatically captured, bound
and synchronised with manufacturing orders [28, 29]. According to the literature,
dynamism, flexibility and adaptability are the important features in modern
scheduling, and a scheduling system should be able to perform task rearrangement
in case of unexpected events.
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14.2.2 Related Works on Machining Optimisation

Nowadays, machine tool selection is basically out of the scope of process planning
due to limited machine tools on a shop floor; however, in the cloud manufacturing
environment, there are so many machine tool resources that can be selected. For
machining condition generation and cutting tool selection, there are two common
ways: (1) in most of reported process planning methods, cutting tool is regarded as
a standard machining resource, where machine tool and cutting tool optimisation is
not considered; and (2) machining conditions are optimised after tool selection [30].
The three decisions on machine selection, cutter selection and machining parameter
assignment are made sequentially during process planning, hindering the loss of
both machining accuracy and efficiency.

Machining process optimisation started with mathematical model based methods
that were popular in the 1990s. Chua et al. [31] proposed a series of mathematical
formulations to optimise cutting conditions and to reduce operation time. Yeo [32]
developed a multi-pass optimisation methods for a CNC lathe, in which
near-optimum solutions were obtained. Akturk and Avci [33] presented a hierar-
chical method for a CNC machine tool. In their method, the mathematical models
were established regarding system characterisation, to minimise the total production
cost. Lazoglu and Liang [34] developed a model of the mathematical characteri-
sation of cutter-workpiece interaction to plan machining operations and to optimise
cutting parameters.

Experimental methods were applied for some specific aims. Yang et al. [35]
applied a Taguchi experiment method to optimise the cutting parameters regarding
the groove difference and the average roughness. Chen et al. [36] proposed an
experimental plan of a four-factor D-optimal design to obtain the optimal spindle
speed, feed rate, cutting depth, and the status of lubrication concerning vibration
and surface roughness in precision turning. The cutting tool geometries were
optimised in the high feed rate experiment considering surface roughness and
cutting force [37]. Zhang et al. [38] proposed an experimental optimisation method
in turning of hardened steel.

The machining optimisation problem, regarded as a search problem, was treated
based on search algorithms in which tabu search (TS) is a popular one.
A constraint-based TS approach was applied in optimisation of the processes of
selecting machining resources, determining setup plans and sequencing operations
for process planning of a prismatic part [39]. Taiber [40] proposed a set of modified
algorithms from the field of combinatorial search problems, gradient projection
method named as von Rosen, branch and bound algorithm, and shortest common
super sequence algorithm, etc. The method was to assist a human planner fulfil
machine tool and cutter selection, determination of setup and process sequence,
definition of tool paths and optimisation of cutting parameters. In addition, many
other search algorithms were applied, e.g. throughput profit [41], simulated
annealing (SA) [42], search heuristics based on SA and TS [43], branch and
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fathoming algorithms [44], iterative approach [45], evolutionary strategy based
optimisation [46], and harmony search [47].

Genetic algorithm (GA), a most basic evolutionary algorithm, was a popular
method used for optimisation. Swarm intelligence based optimisation algorithms
are also popular in process planning, e.g. particle swarm optimisation (PSO), ant
colony optimisation (ACO) and honey bees mating optimisation. Moreover, expert
systems were developed to utilise the machining knowledge. In order to minimise
the cost of machining, Gupta et al. [48] developed an expert system based model to
sequence operations among a set of machines, select cutting tools, and determine
process parameters. Data classification methods, e.g. decision trees and artificial
neural networks (ANN), were also applied. Sluga et al. [49] developed a decision
tree based method to predict tool features, cutting geometry and cutting parameters
to improve and automate the tool selection and determination of cutting parameters.
Monostori et al. [50] used a general ANN based process to satisfy various
requirements.

In general, process planning is treated as an NP-hard problem. Hybrid methods
are therefore applied to relax the limitation of one singe algorithm. Li et al. [51]
developed a genetic algorithm and simulated annealing approach to optimising
process plans for prismatic parts. Wong et al. [52] proposed a fuzzy expert system
and GA to sequence machining process. A hybrid GA and intelligent search method
was also reported [53] and applied to optimise machine tool, cutting tool and tool
access direction for each operation. Moreover, Petrovic et al. [54] utilised PSO
algorithm and chaos theory to optimise process plans, in which PSO was used in
early stages of the optimisation process by implementing ten different chaotic maps
that enlarged the search space and provided diversity.

From the literature, optimisations in machining have been focused on specific
cases and processes due to the limitations of traditional physical and experimental
based methods in terms of high-dimensional data optimisation and high-accuracy
optimisation. Nowadays, hybrid methods and big data analytics popularly used in
many other areas show promise of providing high-accuracy solution strategies, in
particular, for optimisation problems of high-dimensional data. Big data analytics
combining hybrid algorithms for integrated optimisation of cutting tools and
machining conditions are explained hereafter.

14.2.3 Big Data Analytics Application

Although limited in achievements, big data analytics shed lights in fault prediction.
In big data research, many reported work have focused on applications of big data
in production lifecycle and supply chain management [55]. Zhang et al. [56] pro-
posed a big data-based analytics for product lifecycle, supply chain management
and maintenance of complex product, where big data analytics and service-driven
patterns were used. Zhong et al. [57] reviewed the state of big data technology used
in services and manufacturing supply chain management, including six aspects of
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challenges, opportunities and future perspectives: data collection, data transmission,
data storage, processing technologies, big data-enabled decision-making models,
and big data interpretation and applications. Babiceanu and Seker [58] reviewed
relevant research and indicated that big data analytics will be used for
cyber-physical manufacturing systems. Woo et al. [59] developed a big data ana-
lytics platform for manufacturing systems, in order to create prediction models
specific for the target machine tools. In summary, big data analytics has been used
widely and shows the potential of fault prediction in shop-floor scheduling [60].

14.3 Big Data Analytics for Shop-Floor Scheduling

14.3.1 Big Data Analytics Based Fault Prediction
in Scheduling

The main aim of a manufacturing shop floor is to finish and deliver products timely
and in good quality. The main elements on the manufacturing shop floor can be
divided into several categories, as shown in Fig. 14.1, according to their functions
and properties.

• Physical operation level: human, robots, machine tools, forklift, automatic
guided vehicle (AGV), and accessories (fixture and cutting tool)

• Physical monitor and control level: monitoring equipment, control equipment,
and computers (connecting with the controller of robots or machine tools)

Robots 
Machine

 tools

Inspection

Control system

Computers

Materials and 
semi-finished parts

Fixtures / cutting tools 

Material handling

Orders

Product
Shop floor

Monitoring

Fig. 14.1 Main elements on a manufacturing shop floor
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• Product level: materials (including blanks), semi-finish products, and products
• Cyber level: nets and database

On a real manufacturing shop floor, the main tasks include task scheduling,
material handling, machining and inspection. Basically, the tasks of scheduling
consider currently available equipment where cost and time are the main concerns.
However, the condition prediction of machines is not included in the considerations
due to the limitation of traditional techniques.

As shown in Fig. 14.2, the planned tasks are compared with the mined fault
patterns from shop-floor databases, as a result of which, the similarity used to make
a decision can be obtained. Real-time data are collected as well and compared with
the mined fault patterns by combining with the data attributes of the ongoing tasks.
Consequently, the similarity as a reference for rescheduling the remaining tasks can
be obtained. Within the context, the historical data related to the shop floor are
collected in advance of prediction and used in data analysis for fault patterns
generation. Tasks are represented by relevant data attributes, and then the similarity
or difference are calculated by comparing the mined fault patterns with the planned
task. Moreover, the risk probability of the planned task can be obtained, which
provides a reference for the final scheduling decision making.

14.3.2 System Architecture

This section addresses two challenges: (1) to avoid any mismatch of machining
tasks on machines before scheduling, and (2) to prevent faults from happening

Data Fault
Patterns

Tasks Scheduling Resources

Similarity
xx%

Attribute a

Attribute b

Attribute c

Attribute d

Date attributes Algorithms Databases 

Fig. 14.2 Concept of fault prediction in scheduling

14.3 Big Data Analytics for Shop-Floor Scheduling 353



during machining via real-time monitoring and rescheduling. A big data analytics
based fault prediction approach is therefore introduced for shop-floor scheduling.
Figure 14.3 depicts the system architecture of three steps in horizontal direction and
three levels in vertical direction. The Analysis step consists of order analysis and
workpiece representation. The Prediction step contains pre-scheduling and fault
prediction. These two steps are introduced before scheduling in order to predict
potential machining faults due to machine conditions and machining status via
real-time monitoring. In the last Operation step, scheduling, material handling and
machining take place. During machining, real-time data are collected and passed to
the fault prediction module for fault predictions. Moreover, if there are still
unpredicted errors during machining, the error message is sent to the pre-scheduling
module, and the unfinished task is re-arranged for defect prevention.

In the analytics level, big data analytics is carried out resulting in the patterns
used by fault prediction are discovered. Finally, suggestions if any are given to the
shop floor operations. In the shop-floor hardware level, equipment such as machine
tools, robots, AGVs and forklifts are connected by a local area network. For the
sake of page limit, only fault prediction and big data analytics are further explained.

14.3.2.1 Fault Prediction

Figure 14.4 shows the workflow of fault prediction, including initialisation,
pre-scheduling, prediction, termination criteria judgment, and error probability
evaluation. Initial parameters are set up during initialisation, e.g. maximum number
of calculation (generation) and the probability. Then the task plans are generated
(by using the same procedures as in normal scheduling) in the pre-scheduling
process, based on which the error probabilities in statistics level are calculated for
the planned task in the prediction process. If the error probabilities are greater than
the initial one PI, the high-risk tasks will be rescheduled. However, the task plans
may still be undecided after the number of generations reaches the initially-defined
threshold value NI. In such a case, the values of the initial parameters must be
properly adjusted.

PredicƟon

Order 
analysis

Machine 
tools

Scheduling

PaƩerns
(dynamic)

Fault 
predicƟon 

Workpiece 
representaƟon 

Pre-
scheduling

Local networks

Cloud

Material 
handling

Machining
site

AGVsRobots ForkliŌs

Big data 
analyƟcs

Sh
op

 fl
oo

r 
ha

rd
w

ar
e Local data

SuggesƟons

Sc
he

du
lin

g 

Databases

An
al

yƟ
cs

Databases

Real-Ɵme data
monitoring 

Databases

Fig. 14.3 Architecture of big data analytics in shop-floor scheduling

354 14 Big Data Analytics for Scheduling and Machining



Among the processes, the fault prediction is the key, where potential error
patterns are mined by big data analytics based on the databases of the shop floor.
Together, they provide a reference for scheduling decision making. The potential
patterns from big data analytics are as follows:

• Potential faults of machine and workpiece: it refers to the fault probability of a
class of machine tools or a single machine tool before task scheduling, and
potential errors during machining regarding real-time data.

• Maintenance state of machine and workpiece: maintenance state of machine tool
is related to its usage time, basically. However, if an unsuitable task is scheduled
for the machine, the machine should be maintained in advance.

• Machining quality of workpiece and machine tool: machining quality is coupled
with the state of the machine tool, e.g. stiffness, repeatability, and stability.
Therefore, if the state of the machine tool is not suitable to machine a workpiece,
the task should not be assigned to the machine.

14.3.2.2 Data Treatment

Considering the size of data, data should be divided and stored in different data-
bases, i.e. local data, local network data and cloud data, as shown in Fig. 14.5.
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Local data are stored in distributed computers, including both historical data and
real-time data from monitoring systems, and covering the information of machining
features, machine tools, processes, operators, quality measurement and time. Local
data analysis considers the patterns of each single machine tool with respect to the
special characteristics of each machine tool. The local network data refer to the
historical data covering machine tool class, parts, time and technical capability (one
kind of evaluation based on process, operator and machining quality in the local
data level). Local network data analysis focuses on the patterns of machine tool
classes with respect to their performances. The cloud data also refer to the historical
data involving time, shop floor level, manufacturing capacity and tasks. Cloud data
analysis is to obtain the pattern of a shop floor, which is used to evaluate the
manufacturing capacity of the shop floor.

14.3.2.3 Data Attributes

The attributes of big data include the information regarding machine tools, work-
piece, machining processes, machining time, machining results and operators (see
Fig. 14.5). The details of those information cover all the factors affecting the
manufacturing tasks. A sample data sheet is depicted in Table 14.2. The details of
the data attributes include:

1. Data attributes of workpiece: workpiece information includes the quantity of
parts, part geometries, part materials and machining requirements, etc. Here, the
part geometries and quantity can be represented by machining features and their
quantity. Part materials refer to the material profiles with respect to the material
machinability, e.g. hardness, brittleness, and plasticity, etc., so that every
material can be represented by a series of parameters.

2. Data attributes of machining time: machining time refers to the duration of
machining period which is related to the usage of a machine tool, and also the
machining time, where machining time includes two cases: (1) uncovered shop
floor: environmental factors change over time, e.g. the temperature in the
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morning is lower than in the afternoon; (2) closed shop floor: the controlled
environmental factors include temperature, humidity, and dust content, etc.

3. Data attributes of machine tools: machine tool information usually involves the
number of machine tools, machine tool types, machine tool structures, power of
spindle, linear axis and rotational axis, errors of each axis, and energy con-
sumption of each component.

4. Data attributes of machining processes: machining processes refer to the cutting
conditions, cutting tools, cutting accessories and physical data of cutting pro-
cess. Cutting conditions include cutting parameters, cutting fluid and its pres-
sure. Cutting tools involve tool types, tool materials, tool coats, and tool
geometrical parameters. Cutting accessories include fixture types, and their
feature parameters. The physical data consist of cutting force, cutting vibration,
and cutting temperature, etc.

5. Data attributes of machining results: machining results mean the machining
qualities in terms of geometrical errors and surface integrity. The geometrical
errors include geometric and dimensional errors against the nominal tolerances.
Surface integrity indicates surface roughness, surface morphology and

Table 14.2 A sample data sheet

No. Workpiece

Quantity MFs Volume
per MF
(cm3)

Hardness
(HRC)

Yield
strength
(MPa)

Density
(g/cm3)

Roughness
(Ra)

Accuracy
(mm)

000001 20 Face 100 35 690 7.9 1 ±0.02

Time Machine tool

When Duration
(min)

No. Type Structure X\Y\Z error
(mm)

A\B\C error
(mm)

XYZ power
(kw)

14:30 30 M15 4-axis XYZBC 0.0005\0.0008
\0.0007

0.0\0.0015
\0.001

2.8\3.0\3.5

Machine tool Machining process

Spindle
power
(kw)

Maintenance
date

Fault date Fault
type

Cutting
speed
(m/min)

Feed
(mm/
min)

Cutting
depth
(mm)

Cutting
width
(mm)

Fluid
type/
pressure

26 2016-03-05 2016-02-28 A 50 2000 0.2 20 F01/
30 bar

Machining process

Tool
type

Tool
mate.
\coat

Tool
radius
(mm)

Tool
length
(mm)

Entrance
angle (°)

Rake
angle
(°)

Flank
angle
(°)

X\Y\Z
cutting
force (N)

X\Y\Z
vibration
(m/s2)

IT K2\
TiCN

30 50 60 10 10 400\400
\300

40\35\20

Machining result Human factor

Error
(mm)

Ra
(lm)

White layer
(lm)

Dark layer
(lm)

Hardened layer
(lm)

Operator Level

0.01 0.8 No No No 0001 T02
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subsurface layer qualities (e.g. white layer, dark layer, grain deformation layer,
and residual stress).

6. Data attributes of human factors: human factors refer to operators, especially the
workers who perform the machining tasks manually. The skills of the operators
are the core factors, closely related to the machining results.

14.3.2.4 Data Cleansing

High-quality data increase the accuracy of prediction. The data quality depends on a
set of quality criteria [61]: (1) validity: data constraint is the key part and there are
many types of constraints like data type, range, mandatory, uniqueness,
set-membership, foreign-key, regular expression patterns, and cross-field valida-
tion; (2) decleansing: error detection and syntactically removing; (3) accuracy: it
refers to the degree of conformity of a measured value to a standard or a true value;
(4) completeness: it mentions all the required measures that should be known;
(5) consistency: the degree to which a set of measures are equivalent across all
systems; and (6) uniformity: the degree to which a set of data measures are specified
using the same units of measures in all systems.

Data cleansing, also called data cleaning, is the process of correcting or
removing inaccurate records from databases. The main processes of data cleansing
consist of data auditing, workflow specification, workflow execution,
post-processing and controlling [61]. Here, in the data auditing process, the sta-
tistical methods are applied to detect anomalies and contradictions in the databases.
In order to gain information about the existing anomalies in the data collection,
detection and elimination are carried out by a sequence of operations on the data, in
workflow specification. After the data cleansing workflow is executed, the results
are inspected to verify the correctness during post-processing and controlling. The
methods for data cleansing are parsing, data transformation, integrity constraint
enforcement, duplicate elimination and statistical methods.

14.3.2.5 Data Integration

Databases are built for each individual machine tools, where the real-time data from
the sensors embedded in the machine tools are collected and stored in the databases,
together with the historical data. Then the local databases are obtained for each
machine class by integrating the machine tool databases. Based on the machine
class databases, a shop-floor database can be generated. In this process, data inte-
gration is the key operation from databases to data warehouse, and it includes
combining data residing in different sources and providing users with a unified view
of these data [62]. Data integration takes place with increasing frequency as the
volume and the need to share existing data explodes.
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In the process of data integration, a specific rule related to the shop floor should
be followed, i.e. the unique patterns of individual machine are kept for scheduling
of the machine, and the shared patterns of the machine classes are used for
high-level scheduling.

14.3.2.6 Process Operators

Among big data analytic methods, data mining is used widely and can fully satisfy
the requirements of fault prediction for shop-floor scheduling. Generally, there are
two types of approaches used in data mining: classification and clustering. In
classification, the task is to assign instances to pre-defined classes, whereas in
clustering, the task is to group related data points together without labelling them.
Classification is considered an instance of supervised learning, while clustering is
considered an instance of unsupervised learning. Therefore, classification is suitable
for error prediction on shop floor. There are many algorithms used as classifiers,
e.g. decision tree [63], Naïve Bayesian classifier [64], Bayesian network [65],
artificial neural network [66], support vector machine (SVM) [67], frequent pattern
[68], lazy learner [69], genetic algorithm [70], rough set [71], and fuzzy set [72].

There are other important processes for implementing big data analytics based
fault prediction, e.g. accuracy and error measures for classifier and predictor,
accuracy evaluation, ensemble methods (for accuracy improvement), and model
selection [73]. By following the processes carefully, the accuracy of fault prediction
can be guaranteed.

14.3.3 A Simplified Case Study

A simplified proof-of-concept case is illustrated to show the process of the proposed
method. This case only focuses on the fault prediction at the beginning of
scheduling. The processes of the fault prediction regarding real-time monitoring
and maintenance state are similar to the prediction at the beginning of scheduling, at
least at the big data analytics level.

On a shop floor, there are four machine tools, M1–M4. Two machining tasks
have been arranged to the shop floor (Fig. 14.6). Two machining features (MFs,
one for each task) are selected together with material hardness, required tolerance
and roughness, and delivery deadline (see Table 14.3).

Due to the fact that meaningful big data are not available to the authors at the
time of performing the case study, a hypothetic data sheet is generated randomly
(Fig. 14.7a) to test the system. The generated data are imported to RapidMiner
where the decision tree operators are applied (Fig. 14.7b). The running process and
results are depicted in Fig. 14.7c. According to the results, if Task 1 is arranged to
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M2, the error probability would be over 50% (indicated by the red line in
Fig. 14.7c), while it is feasible if Task 2 is arranged to M4 (see the blue line in
Fig. 14.7c). Therefore, the risk of the current plan is too high, hindering the timely
delivery. Machine tool carrying out Task 1 is thus rescheduled to M1 as shown in
Fig. 14.6. According to the prediction result, the error probability drops to 0% for
the new arrangement (shown in the green line in Fig. 14.7c).

Time

M4

M3

M2

M1

Task 1 Deadline 
T1

Task 2 Deadline
 T2

Task1

Task1

Task2

Scheduling without predicƟon

Scheduling with predicƟon

M
ac

hi
ne

 to
ol

s

Unavailable  stage

Fig. 14.6 Gantt chart of two machine tools

Table 14.3 Details of two machining tasks

Task MF Hardness (HRC) Tolerance (mm) Roughness (Ra) Deadline

1 Side 31 0.005 1.2 T1

2 Slot 45 0.05 0.8 T2

Error Probability

(a) Data

(b) Process
Rapidminer

(c) Calculation result 

Task 2

Task 1

Rescheduled Task 1

Fig. 14.7 Result of classification using decision tree
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14.4 Big Data Analytics Based Optimisation
for Machining

14.4.1 Analysis of Machining Process

In manufacturing industry, orders are made to selected manufacturers, produced by
machine tools, and then delivered [74], as shown in Fig. 14.8. A manufacturer
concerns machining efficiency, cost and quality, whereas in machining, the right
decisions of cutting conditions and cutting tools are the major objectives. A cutting
tool refers to tool geometries, tool quality, tool material, and the match between the
geometry and the material. Machining conditions include cutting parameters, cut-
ting conditions, and tool position. Performance related force, heat and deformation
consist of chip control, dynamics, wear, fracture, etc., and they relate the machining
conditions to the cutting tool. There are some connections, e.g. geometric con-
straint, cutting force distribution, and cutting layer, etc. among cutting tool,
machining condition, and performance factors, as shown in ❶–❻ of Fig. 14.8, and
their details are described as follows:

• Geometric constraint ❶: it refers to the geometric interferences constraining the
process of cutting, such as, the description of relationships between tool
geometries and chips.

• Cutting force distribution ❷: it is related to cutting vibration and cutting sta-
bility, and used to establish the relationship of cutting force with cutting tool,
cutting parameters and tool positions.

Matc

6

Manufacturer 

Machining

1 1 2
4

5
5

4
6

4
2

3

4

5
2

4
3

2 2

5

6

6
6

3

1

4

Orders

Parts

Geometric constraint

Cuƫng force distribuƟon

Cuƫng layer 

Strength of tool 
and cuƫng edge

High temperature 
material & tribology

❻ Chemical reacƟon

❺

❹

❸

❷

❶

Fig. 14.8 Relationship between cutting tool and machining condition
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• Cutting layer ❸: it concerns material deformation and cutting area analysis
within the generations of chip and machined surface, e.g. the relationship
between tool geometries, cutting parameters and tool wear.

• Strength of tool and cutting edge ❹: it is to describe the strength of tool and
cutting edge in cutting process, which refers to the safety of cutting tool and
workpiece. For instance, it can be used to descript the relationship between tool
fracture, cutting parameters, tool geometries and tool materials.

• High temperature material and tribology ❺: it is related to material properties
and friction with another material in high temperature, and it deals with the
interaction between tool wear, tool fracture and cutting conditions.

• Chemical process ❻: it refers to some of chemical reactions which may take
place during machining to avoid unsuitable patterns related to tool material,
workpiece, cutting fluid, and atmosphere.

14.4.2 Enriched Distributed Process Planning (DPP)

14.4.2.1 DPP Concept

As described in Chap. 5, the system architecture of DPP consists of supervisory
planning, execution control and operation planning, as shown in Fig. 14.9. In this
design, the execution control module is placed in-between the supervisory planning
and operation planning modules, and looks after jobs dispatching (in the unit of
setups) based on up-to-date monitoring data, availability of machines and
scheduling decisions [75, 76]. Distribution is a key feature of DPP. Combining with
web-based knowledge sharing, dynamic scheduling, real-time monitoring and
remote control, DPP can be embedded into web-based environment, which is
named Web-DPP [77]. Towards cloud manufacturing, a Cloud-DPP was also
developed as one of the applications of cyber-physical systems for more complex
manufacturing environment [78, 79].

Within DPP, feature-based design and machining feature recognition are beyond
the scope of this book. DPP assumes that machining features are already made
available in the product data—they are either generated directly by using a
feature-based design tool or recognised by a third-party machining feature recog-
nition solution. However, Execution Control and Operation Planning in the original
DPP do not consider the global machining process optimisation due to the com-
plexity of relevant machining resources, i.e. machine tool, cutting tool and
machining conditions. Targeting that issue, this section introduces an enriched DPP
combining it with big data analytics. Within the context, the suitable machine tool is
selected in Execution Control, and the suitable cutting tool and machining condi-
tions will be selected and optimised accordingly.
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14.4.2.2 Enriched DPP

Machine tool selection, cutting tool selection and machining condition decision are
the major processes after Supervisory Planning in the original DPP (Fig. 14.9).
They are treated separately by using the existing methods (experimental- and
physical-based), as shown in Fig. 14.10, where their relationships are ignored,
resulting in the feasible sets of those elements are bounded. Targeting this issue, the
present method is to address the whole process from customer orders to final parts,
and to develop a generalised system in which those processes are merged together,
as shown in Fig. 14.10. The optimisation can thus be treated as an integrated one
towards the globally best solution.

14.4.3 Solution Strategy of Enriched DPP

14.4.3.1 Problem Transformation

The machining process is transformed into a statistic problem in the enriched
DPP. The available parameters of machine tool, cutting tool and machining con-
dition form the original solution space So with multi-dimensional data, as shown in
Fig. 14.11.

The optimisation in the enriched DPP includes initialisation, optimisations ①,

② and ③. Initialisation specifies the workpiece and machining requirements which
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Fig. 14.9 System architecture of DPP, adapted from Ref. [76]
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are the two constraints to the original solution space, i.e. workpiece constraint Wc

and machining requirement Mr. Current solution space Smcm can be calculated by
Smcm ¼ So \Wc \Mr. Then the global optimisation ① is carried out within space S1,
as a result of which machining tools, machining conditions and cutting tools are
determined. The results provide a reference for selecting machine tools. Once the
optimal machine tool is chosen, the machining conditions and tool are decided
simultaneously. On the contrary, a substitute machine tool as a constraintMt bounds
solution space Smcm. Then, the current feasible set Scm, Scm ¼ Smcm \Mt, defines the
updated solution space for execution of optimisation ② for selecting cutting tool
and machining conditions. Similar to the selection process of machine tool, the
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Cuƫng tools
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Fig. 14.10 Differences in cutting tool and machining conditions optimisation
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selected cutting tool, as a constraint Mc, bounds the feasible set Scm, resulting in the
machining condition solution space Sm, Sm ¼ Scm \Mc.

14.4.3.2 A Hybrid Algorithm for Enriched DPP

Hybrid algorithms can enhance optimisation performance by relaxing the limita-
tions of each single algorithm. This section introduces an optimisation method
combining three algorithms, as shown in Fig. 14.12, i.e. evolution based algorithms
(EBA) or swarm intelligence based algorithms (SIBA), a neural network
(NN) based model trained by big data, and analytic hierarchy process (AHP) based
weight decision. Within the context, a global optimisation is carried out by EBA or
SIBA, and those algorithms refer to several steps, e.g. parameter selection (sample),
operation, and criterion. A NN model trained by big data, supervised learning, is
employed to obtain individual objective fitness with high accuracy, which plays a
key role as oppose to the existing methods. AHP, based on expert questionnaires, is
applied to calculate weights for multi-objective optimisation, and its pairwise
comparison matrix is established by big data analytics in statistics level, in case that
the higher accuracy can be obtained by comparing with the questionnaires.

14.4.4 A Simplified Case Study

A simplified case study is chosen to show the process of the reported method as a
proof of concept. A set of hypothetic data generated in-house are applied to train the
BPNN model used to calculate the fitness of GA.

14.4.4.1 Data Attributes

The attributes of big data include the information regarding workpiece, machining
requirements, machine tools, machining processes, and machining results. Also the

FitnessNN based model

Results

OperaƟons

Criterion

AHP weight decision

Op misa on calcula on
EBA
SIBA

Big data Big data

Fig. 14.12 Optimisation
processes
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details of such information cover all the factors affecting the part machining, as
shown in Table 14.4, including:

• Data attributes of workpiece: workpiece information includes the quantity of
parts, part geometry, and part materials, etc. Here, the structural part geometry
and quantity are represented by machining features and their quantity, whereas
the curved or freeform parts are described by tool paths. Part materials refer to
the material profiles with respect to the material machinability, e.g. hardness,
brittleness, toughness and plasticity, etc., so that each material can be repre-
sented by a series of parameters.

• Data attributes of machining requirements: machining requirements refer to the
designed machining quality in terms of tolerances and surface integrity, e.g.
dimensional tolerance, geometrical tolerance, roughness, white layer, and dark
layer.

• Data attributes of machine tool: machine tool information usually involves the
number of machine tool, machine type, machine structure, structure and power
of spindle, linear axis and rotational axis, errors of each axis, energy con-
sumption of each component, and other related parameters. In this way, each
machine tool can be represented by a set of parameters.

• Data attributes of machining process: machining process refers to machining
conditions, cutting tools, accessories and physical data of the cutting process.
The machining conditions include cutting parameters, cutting fluid and its
parameters. The cutting tool involves tool type, tool material, tool coating, and
tool geometrical parameters. The cutting accessories include the fixture types
and their parameters. The physical data of the cutting process consist of cutting
force, cutting vibration, etc.

• Data attributes of machining results: machining results mean the machining
quality in terms of geometrical errors and surface integrity against the machining
requirements. Such data are obtained through inspections of machined parts
both qualified and unqualified.

14.4.4.2 Data Generation

The attributes of the hypothetic data include: (1) workpiece consisting of machining
feature and material information, including Poisson’s ratio (0.25, 0.45), Young’s
modulus (100, 250 GPa), and hardness (20, 70 HRC); (2) machining requirements
referring to surface roughness Ra (0.4, 6.3) and white layer depth (0.3, 10 lm);
(3) machine tool involving errors of linear axis (1, 10 lm) and maximum spindle
speed (3000, 20000 RPM); (4) machining conditions including cutting parameters,
i.e. cutting speed (30, 150 m/min) and feed rate (0.05, 0.5 mm/z); (5) cutting tool
referring to rake angle (0, 30°) and flank angle (6, 20°); and (6) machining results,
covering the machine requirements, including surface roughness and white layer
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depth, and labelled for training the BPNN model. The selected data are bounded
within the limited feasible sets, and they include 10,000 row data generated ran-
domly using Matlab®.

14.4.4.3 A Detailed Algorithm

Figure 14.13 depicts a hybrid algorithm of BPNN and GA, where the BPNN model
trained by big data is employed to calculate the fitness, and GA is applied to
perform the optimisation computation. The workpiece and machining requirements
are set firstly. S1: Their parameters combining the target factors are divided into
two classifications: (1) proceeded to GA calculation processes, and (2) passed to the
trained model. S2: The former, as a population, is treated in the GA process,
generating a new population. Then the latter filters the data which is used to train
the BPNN model. The population generated in S1 is decoded into a set of
parameters which are imported to the trained model, obtaining a calculation fitness.
S3: The fitness is compared with the termination criterion, and once the compu-
tation is finished, the results provide a reference for machine tool selection, opti-
misations of cutting tools and machining conditions.

If the selected machine tool is not the optimal one, the parameters of the machine
tool are directed sent back to the parameter classification process, and then the steps
(S1), (S2) and (S3) are performed again, finally resulting the optimised results of
cutting tools and machining conditions.

14.4.4.4 Optimisation Processes and Results

A batch of parts is planned to be produced by a manufacturer, and its material
parameters consist of 0.3 (Poisson’s ratio), 200 GPa (Young’s modulus), and 40
HRC (hardness). Its machining requirements involve Ra 1.6 (surface roughness)
and 7 lm (white layer depth).

The hypothetic data filtered by the machining requirements filter, are applied to
train the BPNN model whose parameters consist of 1 hidden layer, 10,000 training
cycles, 0.001 error epsilon, and 0.2 learning rate. In this case, Matlab® is used for
the computation, as a result of which the mean square error is stabilised around
0.375, as shown in Fig. 14.14, when the number of iteration is reaching approxi-
mately 4 � 104 (due to that these is no pattern in the random data).

Then the GA computation is performed to optimise machine tools, cutting tools
and cutting parameters. The parameters of GA consist of (1) generations: 1000;
(2) population size: 100; (3) crossover probability: 0.8; (4) mutation probability:
0.01; and (5) computation accuracy: 0.001. The fitness of machining requirements
is stable after approximately 650 generations, as shown in Fig. 14.15a, together
with the parameters of machine tool, cutting tool and cutting parameters, detailed as
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follows: (1) machine tool: 10 lm (errors of linear axis) and approximately 4000
RPM (maximum spindle speed) (in Fig. 14.15b); (2) cutting tool: 30° (rake angle)
and 6° (flank angle) (in Fig. 14.15c); and (3) cutting parameters: 30 m/min (cutting
speed) and 0.05 mm/z (feed rate) (in Fig. 14.15d).
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The optimised machine tool (if available), cutting tool geometries and cutting
parameters are determined, simultaneously. In case of no optimal machine tool, an
alternative machine is selected, and its parameters are imported to GA. A machine
tool, for instance, is equipped with a linear axis of 3 lm in error and a maximum
spindle speed of 8000 RPM. Based on the selected machine tool and the initial
workpiece parameters, the GA calculation is performed again. Figure 14.16a
depicts the fitness of machining requirements after approximately 90 generations.
The optimised results of cutting tools and cutting parameters consist of: (1) cutting
tool: 28° (rake angle) and 20° (flank angle) (as shown in Fig. 14.16b); and
(2) cutting parameters: 30 m/min (cutting speed) and 0.3 mm/z (feed rate) (in
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Fig. 14.16c). The subsequent processes, i.e. cutting tool selection and machining
condition optimisation, are the same in the statistics level, and are omitted in this
chapter for the sake of page limit.

14.5 Conclusions

Big data analytics can identify hidden patterns from a large amount of historical
data to help predicting potential defects of machining. This is useful for scheduling
and task assignment to available machines. Based on the past experience and
know-how, it helps prevent machining defects and guarantee the product quality.

Different from the conventional optimisation methods in which machine tool,
cutting tool and machining condition are decided separately, this chapter also
introduces a big data analytics based approach for machining process planning in an
enriched DPP, combining the optimisations of the three as an entire package.
Within the context, each machining resource is represented by the data attributes
and is regarded as a constraint bounding the solution space. Big data analytics then
specifies the relationship among those attributes. A hybrid method combining NN
and AHP is employed for the optimisations. This approach is validated by a sim-
plified case in which a GA and BPNN hybrid algorithm is implemented based on a
set of hypothetic data for proof of concept.

The future work of applying big data analytics in factory shop floors includes:
(1) detailed machining resource representation; (2) data collection from real-world
machining environment for data filtering and cleansing; and (3) real-time decision
making that requires more efficient algorithms for big data analytics. The results of
these will bring big data analytics closer to industrial practice.
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Chapter 15
Outlook of Cloud, CPS and IoT
in Manufacturing

15.1 Introduction

In the past decades, advancements in Web-/Internet-based systems and applications
have opened up the possibility for industries to utilise the cyber workspace to
conduct efficient and effective daily collaborations from anywhere in distributed
manufacturing environments [1]. For example, remote robot control becomes rel-
evant not only in rescue operations but also in cyber and/or cloud manufacturing
environments where distant operations can be done quickly and economically.
Among many recently emerging technologies, CPS is treated as the main thread and
summarised below together with Cloud and IoT concepts.

The term Cyber-Physical Systems (CPS), was coined in the US in 2006 [2], with
the realisation of the increasing importance of the interactions between intercon-
nected computing systems and the physical world. CPS can be characterised as a
thematic subject as opposed to a disciplinary topic. Multidisciplinary areas such as
mechatronics, robotics and CPS typically start as themes, and then eventually
evolve into disciplinary areas [3]. It is interesting to note that mechatronics was
adopted and promoted from electrical or mechanical engineering disciplines
whereas CPS has initially been driven from computer science and electrical engi-
neering directions. It is currently not fully clear to whether CPS will evolve into a
discipline in itself.

Correspondingly, there are multiple definitions of CPS, for example the early
one from 2008 [4]: CPS are integrations of computation and physical processes.
Embedded computers and networks monitor and control the physical processes,
usually with feedback loops where physical processes affect computations and vice
versa. In other words, CPS use computations and communication deeply embedded
in and interacting with physical processes so as to add new capabilities to physical
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systems. A CPS may range from minuscule (a pace maker) to large scale (a national
power grid). Figure 15.1 illustrates schematically a concept map of CPS.

In recent years, research and applications of CPS have been active in such areas
like transportation, smart home, robotic surgery, aviation, critical infrastructure,
defence, etc. CPS also positively affected manufacturing in form of cyber-physical
production systems (CPPS) in process automation and control [6]. Due to the huge
application potentials of CPS in manufacturing and yet the lack of common
understanding of CPS in manufacturing sector, there is a need to systematically
document the current status and the latest advancement of CPS with future trends
clearly identified. The remainder of this chapter is therefore organised as follows.
The drivers, barriers and initiatives of CPS are presented in Sect. 15.2, followed by
their characteristics and requirements in Sect. 15.3. Section 15.4 provides examples
of CPS in cloud manufacturing in connection with IoT, which highlight key
characteristics of such systems. Section 15.5 identifies the future trends and R&D
directions of Cloud, CPS and IoT, before concluding the key findings of this
chapter in Sect. 15.6.

Fig. 15.1 A concept map of CPS [5]
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15.2 Drivers, Barriers and Initiatives

Depending on the formalities of the definition, CPS may be viewed as having been
present in the manufacturing sector for quite some time. For example, embedded
controllers, sensor systems, collaborating robots and others may represent the early
technologies that contributed to the development of CPS. The advent of advanced
communication technologies has now brought new possibilities, as will be shown in
the next sections.

The needs of industry have been clear and strong for most stakeholders. The
Time-to-Volume and Time-to-Market aspects of most producing companies
demand for very rapid product introductions to markets and, if successful, a very
quick production increase. As products become more complex, with greater levels
of miniaturisation and with embedded electronics, the production needs to adapt
just as quickly as possible. If one adds that most manufacturing companies would
like to offer personalised products (and services), then the immense variety of
products sets obvious challenges.

Recently, there have been new drivers surfacing, mostly related to the need of
society to attain sustainability: reuse of end-of-life equipment, reuse of materials,
energy efficiency of production systems, self-organising and self-maintenance, as
well as online customers support. The main barrier to a full exploitation of CPS
technologies, however, remains a rather conservative industry which operates under
incredibly tight margins, thus not allowing for major uncertainties at strategic level.
The CPS technology must, therefore, find transitional technologies through which
the truly novel ideas may be gradually introduced at the shop-floor level, without
incurring major investments. The CODESYS solutions by the German software
company 3S (Smart Software Solutions) [7] may be viewed as such a transitional
step. Secondly, the use of architectural approaches, which is fundamental in
industrial CPS applications, needs to be addressed as a global issue instead of a
local one. As reported in [8], most manufacturing engineers are mechanical experts,
the notion of abstract architectural work does find resistance, and hence the need to
bridge the gap between the disciplines, as proven in several recent European pro-
jects (IDEAS, EUPASS, GRACE).

Specific to manufacturing, integration is the key that can be facilitated by CPS.
Manufacturing industry involves multi-sector activities with a quite broad range of
stakeholders. Typical industrial processes include the fabrication of parts, assembly,
packaging, transport, quality control, and many more. These activities are operated
by producers, system integrators, sub-suppliers, logistics/supply chain experts, and
many others. At the heart of these activities is the production of the product itself.
Manufacturing has been a rather conservative industry as the costs are very high
and have to be minutely monitored to ensure final product quality. This results in
production systems that consist of an enormous variety of equipment, ranging from
vision systems and sensors to robots and conveyors, including metrology equip-
ment, different controllers, different levels of users, and so forth. Such variety is
also affected by the multitude of stakeholders (in sectors of machinery, control
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systems, robots, etc.). The challenge in manufacturing is the integration of the
equipment such that all levels of production may communicate, and CPS shows the
promise of potential applications in manufacturing.

Current aspects such as the absence of tailored software approaches,
under-performing controllers and limited protocols are addressed by current ini-
tiatives. Initially, the non-deterministic nature of multi-agent control was often cited
as being the major drawback, but new paradigms that limit this to almost deter-
ministic levels have reverted this barrier (also see Holonic [9], Changeable [10] and
Evolvable Systems [11] for more details).

The initial thrust towards a new way of controlling manufacturing and assembly
systems was given in [12], in which the idea of industrial agents was proven to
hold. This led to Service-Oriented Architectures (SOA), where Rockwell
Automation [13] and Schneider Electric [14] developed interesting solutions. In
later years a great deal of work has been carried out by academia [15, 16], which
has consolidated this approach. In 2011, the first self-organising assembly system
was demonstrated at FESTO in Germany, this approach being based on Agent
Oriented Architectures (AoA). The advent of AoA architectures meant that the
swarm approaches of computer science had now been taken up at industrial level
[17] (see Fig. 15.2). An ambitious effort of the swarm approaches is the UC
Berkeley led TerraSwarm project addressing design methodology, techniques and

Fig. 15.2 Swarms of modules creating “system societies” [17]
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platforms for pervasive integration of smart, networked sensors and actuators into a
connected world [18].

The above examples have recently been expended to include ARM processors
that enable devices to communicate with one another via embedded communication
systems (e.g. BLE, Wi-Fi, etc.). It is therefore safe to say that CPS, even in its more
stringent traditional definition, is now part of many manufacturing systems. To date
there are several initiatives that cater for the CPS development. These include
Advanced Manufacturing Partnership 2.0 [19], Industrial Internet [20] and CPS
[21] in the USA, Industry 4.0 [22] in Germany, ECSEL (EU, with ARTEMIS),
Factories of the Future [23] in EU, and even the less-known Japanese
“Monozukuri” which stands for Coopetition. Other initiatives on this front include
Wise-ShopFloor for web-based sensor-driven e-shop floor [24, 25] and the ongoing
Cyber-Physical European Roadmap and Strategy [26].

With the above in mind, we will now address a number of pertinent questions
that emerge when discussing any cyber-physical systems: (1) What is new with
CPS and what characterises does CPS have? (2) How does the term CPS relate to
other concepts such as IoT, big data and systems of systems? (3) How does CPS
relate to manufacturing? and (4) What are the challenges in dealing with CPS?
These questions are answered by analysing the characteristics and requirements of
CPS in the next section.

15.3 Characteristics and Requirements

Industrial representatives rightfully pointed out that CPS, according to the previous
definition, are indeed not new but already existing and manifested by for example
existing industrial distributed control systems. Indeed, the case can be made that it
is becoming easier to identify non CPS, due to the increasing digitalisation and
penetration of embedded systems [27].

The increasing connectivity and capabilities of computational systems, largely
driven by the consumer market, however drive the creation of entirely new systems,
characterised by:

• Deployment of CPS in mass-products for use in all kinds of applications in
society, for example exemplified by smartphone enabled services;

• Opportunities for and introduction of new cross-domain applications, exem-
plified by intelligent transportation systems that integrate among other com-
munications, mobility, entertainment and safety-related services;

• New cross-domain collaboration typically calling for new business models and
interoperability standards; and

• Increasing openness, adaptability and autonomy.

These trends and traits of CPS led the CyPhERS project to carry out a charac-
terisation of CPS, attempting to capture the evolving scope of CPS, from
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traditionally closed systems, with single jurisdiction, limited adaptability and
autonomy. Defining such characteristics would be helpful beyond definitions,
because definitions of CPS tend to be very general; instead the characterisation
helps to identify various types of CPS. The following aspects of CPS have been
identified (elaborated from CyPhERS D2.2 [26]):

1. Deeply embedded versus IT dominated. Traditional embedded systems are
represented by resource limited and dedicated computer systems, tightly inte-
grated with the physical processes that they are interacting with (compare for
example with an automotive engine controller, directly mounted on the com-
bustion engine). With the increasing connectivity and capabilities of computing
systems, there is now rather a grey zone in what encompasses “embedded”
versus IT systems. The two types of systems are increasingly becoming con-
nected and a new design choice is where to place functionality (online,
embedded) or as part of a remote system, possibly with real-time capabilities.
As an example, consider a modern engine controller (e.g. aircraft or automotive
application) where the engine controller will be connected to an IT system for
remote diagnosis and maintenance. A particular CPS can nevertheless be
characterised w.r.t. its “embedded” versus “IT” dominance.

2. Single-domain versus cross-domain. A traditional embedded system often
represents a single domain application, compare for example with a refrigerator
and temperature control in a building. New cost-efficient communication leads
to opportunities for new services that cut across existing domains, or potentially
for creating new CPS domains. The smart home and its connection to the
electrical grid represent an example of this trend.

3. Open versus closed. A traditional embedded system represents a system which
is not connected to other computing systems. The difficulties of diagnosing,
maintaining and upgrading widely deployed embedded systems provide strong
driver towards more open systems. Another driver is provided by the ability to
provide new collaborative services.

4. Automation levels and types. Autonomy can be considered as the ability to
operate without constant human supervision/intervention. Automation has tra-
ditionally been introduced to relieve humans of dirty, dull, and dangerous
operations [28]. Driven by environmental, resources efficiency and safety
considerations, autonomy is now moving to all kinds of domains and appli-
cations (compare for example with integrated transportation systems to increase
transport efficiency).

5. Governance, referring to the entities responsible for dependable and efficient
system operation. The division of responsibility will correlate with the system
of system nature; for example, a car OEM will be primarily responsible for the
functioning of a car, but responsibilities also lie on the driver and road oper-
ators. In an intelligent transportation system, responsibilities will be divided
even further.

6. Distributed versus centralised control. The increasing connectivity implies that
most CPS already constitute distributed computer systems (or are likely to
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become so), implying that control will be more or less decentralised. Control in
this context refers to the decision making within the distributed system. A CPS
will thus as a whole, or in its various parts, be characterised by the degree to
which control is centralised/decentralised. Note that “controllers” may well
include both humans as well as computerised control.

7. Single jurisdiction versus cross-jurisdiction. This aspect refers to applicable
standards and legislation. Generally, the more open and cross-domain a CPS
becomes, the more complicated the jurisdiction is. It can be noted that many
existing CPS already face this challenge, for example a truck, where “body
builders” will add features such as cranes and pumps to a truck platform,
implying that a number of standards and laws are applicable. The aspect has a
number of implications referring to responsibilities, liability and business
models.

8. Adaptability under uncertain conditions. A typical CPS will face varying
contexts, in terms of for example environmental conditions, system load and
failures. Making a CPS adaptable implies that it has ability to cope with such
varying contexts within given bounds, potentially providing benefits in terms of
reduced maintenance costs and increased availability. Enhanced adaptability
will on the other hand increase the system complexity, providing interesting
and important design trade-offs.

9. Human in/outside the loop. Traditional CPS come in two types; those that are
more or less fully autonomous (i.e. act independently of humans, but may be
triggered by human inputs; for example, a stability controller in a car), and
those with a much closer interaction with humans, including shared control. An
example of the latter includes gear control in a car where the driver in an
automated gearing system can choose to relay on the computer control or
override it. In shared control, it becomes crucial to clarify who is in control at
any point in time and making sure that unintended control does not take place.

10. Degree of integration. Connectivity paves the way for various types of inte-
gration. A CPS, in a certain context and application domain, will have a certain
degree of horizontal and vertical integration. Horizontal integration refers to
integrating services and functions of similar type (at the same level of ab-
straction), for example referring to integration of factory floor sensors and
actuators. Initial integrations of this type were made in the 1970s in the man-
ufacturing domain. Vertical integration refers to integration across system
hierarchies, considering for example smart buildings by integrating energy
meters and heating/ventilation devices with building control, up to entire
buildings, and further towards local energy distribution and power systems of
cities. Extended levels of integration are likely to cut across domains and
jurisdictions, thus involving several non-technical challenges.

Several of the proposed aspects refer to a scale or degree, e.g. of openness,
shared control, and automation levels. For some of these scales, existing reference
models could be used to quantify the aspect, such as proposed in [29]. The aspects
may not be fully orthogonal, for example automation is related to adaptability, and
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the number of domains involved may relate to single-/cross-jurisdiction. Mobility
relates to many aspects when comes to manufacturing applications [30]. Moreover,
CPS are generally characterised as software intensive systems, in which software
provides a major part of the investment and value as part of an integrated system.
The connectivity provides opportunities to extend traditional products with addi-
tional services.

The increasing connectivity and related opportunities have given rise to multiple
terms that provide different perspectives to the enabling technology and the con-
nected society. In the following we briefly contrast CPS with Systems of Systems
(SoS), Internet of Things (IoT), Cloud, Big Data, and manufacturing related terms
such as Industry 4.0 initiatives.

15.3.1 Systems of Systems (SoS)

The SoS term has a background in the defence domain, but now is increasingly
used in and across domains e.g. automotive, rail, aerospace, maritime and logistics
[31]. Coordination and collaboration are the keywords for SoS. SoS have the
following characteristics [32]:

• Operational and Managerial Independence of Elements—corresponding to dif-
ferent jurisdiction and autonomy in the CPS characterisation.

• Evolutionary Development—systems that are “never” finished, for example a
transportation system, also implying legacy.

• Emergent Behaviour—where uncertainties in behaviours and interactions make
it impossible to fully anticipate all SoS behaviours.

• Geographical Distribution of Elements.

Most (if not all) SoS will indeed be systems of CPS! We can therefore conclude
that most SoS constitute a special class of CPS.

15.3.2 Internet of Things (IoT)

The term IoT was coined in 1999 by Kevin Ashton [33], referring to wireless
communication abilities integrated with sensors and computing, thus enabling
uniquely identifiable things to provide data over the Internet with limited or no
human interaction. IoT can be seen as a bottom-up vision, an enabling technology,
which can be used to create a special class of CPS, i.e. systems including the
Internet. A CPS does not necessarily include the Internet. Some visions of the IoT
go beyond basic communication, and consider the ability to link “cloud” repre-
sentations of the real things with additional information such as location, status, and
business related data.
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Given the above discussions, it follows that IoT systems will be CPS systems.
A given CPS does not however necessarily need to involve the Internet. CPS thus
constitute a larger class of systems.

15.3.3 Cloud Manufacturing (CM)

Recently, cloud computing has changed the way of thinking of both IT service
providers and their customers. It offers business and application models that deliver
infrastructure, platform, software and applications in forms of services [34], which
provide different levels of services of cloud applications compared against stan-
dalone ones. Inspired by the success of cloud computing, the cloud technology has
been extended to the manufacturing contexts, leading to the innovation of various
cloud manufacturing systems. Cloud manufacturing implies an integrated
cyber-physical system that can provide on-demand manufacturing services, digi-
tally and physically, at the best utilisation of manufacturing resources [35]. It aims
at offering a shared pool of resources such as manufacturing software, manufac-
turing facilities, and manufacturing capabilities. However, cloud manufacturing is
more than simply deploying manufacturing software applications in the cyber
cloud. Besides data storage and virtual machines, the physical resources integrated
in the manufacturing cloud are able to offer adaptive, secure, scalable and
on-demand manufacturing services over the Internet of Things, including
work-cells, machine tools, robots, etc.

Figure 15.3 illustrates the idea of cloud manufacturing with cloud computing as
its core. The additional services of cloud manufacturing around cloud computing
connect with physical machines, robots and even factories in the real world.

15.3.4 Big Data

Big data, one of the hottest buzzwords of the era, refers to analytics based on large
data collections. Advancements in computing and memory performance, together
with networking (not the least social networks) have made it possible to gather
unprecedented amounts of data. CPS and IoT enable further enormous amounts of
data related to physical systems to be made available for analysis, and thus pave the
way for new applications of big data in the future. Big data is relevant to
non-technical systems and IT systems, but becomes even more interesting when
applied in the context of CPS due to the implications of physicality in terms of
capabilities, technical risks and costs. Nevertheless, in order not to lose the focus of
this chapter we keep the big data aspect short.
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15.3.5 Industry 4.0

Industry 4.0 is a large German initiative [22] that emphasises the extension of
traditional manufacturing systems to full integration of physical, embedded and IT
systems including the Internet. It highlights three features for implementation:
(1) horizontal integration through value networks, (2) end-to-end digital integration
of engineering across the entire value chain, and (3) vertical integration and net-
worked manufacturing systems. The implementation recommendations call for
actions in eight key areas including standardisation and reference architecture;
managing complex systems; safety and security; work organisation; professional
training; regulations, and resource efficiency.
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Fig. 15.3 Cloud manufacturing services connected with the physical world
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15.3.6 Challenges

While CPS provides a huge amount of opportunities, it also brings and emphasises
several challenges (see [36]). A key challenge refers to competence provision and
being able to bridge the gaps between previously more or less isolated domains
(such as embedded systems and IT systems). Bridging these gaps will require an
emphasis on technical as well as non-technical aspects. Among non-technical
aspects we would like to emphasise education, life-long learning and work
organisation. Among technical aspects we would like to highlight complexity
management, interoperability (including technical standards), and the development
of adequate technical platforms.

In connecting the physical, embedded and IT systems, a particular (technical as
well as organisational) challenge becomes that of security.

The issue of security is most probably a sub-domain that could make or break
future advances of CPS technology in industry. The addition of cloud computing
only enhances the importance of this aspect, and will have to bring about a har-
monisation of security control levels as well as regulations.

Unknown to many industrial engineers, an entire industrial PLC network can be
easily accessed by a single search engine (such as SHODAN). This has prompted
the US Department of Homeland Security to issue a clear warning that potential
hackers had an almost free entry to almost any industrial site. This was further
demonstrated in an article posted in Ars Tecnica, Dan Goodin [37] in which the
popular CODESYS platform was shown to be extremely vulnerable.

Typical examples include:

• Higgins [38] reported on backdoor exploits that targeted Siemens PLCs
allowing the capture of passwords and ability to manipulate the PLC code.

• In 2012, the Saudi Aramco oil and natural gas company had 30,000 computers
on their corporate network infected and damaged by a piece of malware called
Shamoon [39].

• StuxNet [40] was used to selectively target Iranian nuclear facilities.

The major issue at stake is that security cannot be an add-on. It has to be well
developed and integrated within the reference architectures and systems from the
very start of the design process. In the meantime there will be only ad hoc solutions,
some of which quite capable at limiting damages: see Dunlap [41] and Schuett [42].
Security is moreover closely related to safety; both these system level properties
have to be considered in conjunction (where security essentially protects the sys-
tems from humans (as attackers), and where safety protects humans from the
systems). Cost-efficient safety will not be feasible without considering new security
threats arising due to increasing openness and levels of integration.

If CPS and/or cloud computing are to be truly successful and exploitable by
industry, the security equation thus needs to be seriously addressed. This is a task
for both engineers and legislators, as pointed out by Williams [43].
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15.3.7 Discussions

The authors believe that there has been some confusion between the terms dis-
cussed in this section. Characterisation is the best constructive remedy that we can
provide to counter this confusion. As seen from the above descriptions, all the terms
rely strongly on networked software-intensive systems, while emphasising different
aspects of the corresponding systems. IoT mainly refers to technology and infor-
mation (from bottom up) while big data emphasises data analysis (regardless of
sources; connecting and collecting information from the physical world will defi-
nitely create much more data!). CPS instead emphasises interactions between
physical and cyber parts, including humans, whereas SoS emphasis interactions
within large-scale evolutionary systems. The terms provide different perspectives
and from the previous discussion it is clear that there is no overall encompassing
term today. CPS however covers a larger scope compared to IoT, embedded sys-
tems and mechatronics, and will become increasingly important in the context of
SoS and big data (see CyPhERS deliverable D2.1 [44]).

15.4 Representative Examples of CPS in Manufacturing

As described previously, CPS applications in manufacturing are not new although
the term of CPS was not used explicitly in early applications. In the following we
provide four examples of CPS in manufacturing. The examples reflect many of the
CPS characteristics as described in Sect. 15.3, in particular increasing openness,
autonomy, distributed control, adaptability and degree of integration (refer to the
characteristics numbered 3, 4, 6, 8 and 10 in Sect. 15.3).

15.4.1 Example 1: Service-Oriented Architecture

One of the first service-oriented architectures which was effectively deployed in
industry and is still active at present is the Ford Motor Company application to the
Valencia assembly plant (Ford Transit models). Developed by a system integrator
(IntRoSys SA), this approach left all current PLCs as they were. Specific agent
technology was embedded as “wrappers” to the PLCs according to the architecture
given in Fig. 15.4.

As shown in Fig. 15.4, the IMASA approach is based on three different agents:
(1) a Product Agent (PA) that formulates and dispatches the workflow, (2) a
Knowledge Manager Agent (KMA) that performs a check of the physical feasibility
of the proposed workflows, and (3) a Machine Agent (MA) that translates the
workflows into specific machine instructions.
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The PA receives the order and identifies the Atomic Skills required. The fol-
lowing step is a match of such required Atomic Skills with a database of workflows
already executed in the past. If the order can be executed with an existing workflow,
then such a workflow is dispatched to the MA, else the PA elaborates a new
workflow that is sent for a feasibility check to the KMA. If the KMA does not
detect any problem, the examined workflow is sent back to the PA that dispatches it
to the MA. The newly found feasible workflow is also included in the database of
existing workflows. Vice versa, in case of problems with the proposed workflow,
the MA warns the System Integrator for the necessity of a human intervention to
sort out the related order. Finally, all the dispatched workflows are processed by the
MA that sends the necessary machine instructions to the production system.

This IMASA agent architecture is open in the sense that if a new atomic skill (for
example a new process for a new variant, or a safety routine) is required, it can be
integrated in the system without modifying the existing code but simply by coding
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it independently and eventually adding it to the related database (see Atomic Skill
earlier). Figure 15.5 illustrates the relationship between common skills and specific
skills. The fundamental aspect here is the parameterisation of common processes, as
defined by the evolvable systems approach [45]. In this context, agents and PLCs
function as a highly adaptable cyber-physical system.
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Fig. 15.5 Common skills and specific skills [17]
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15.4.2 Example 2: Cloud Manufacturing

Cloud-DPP (Cloud-based Distributed Process Planning) is an EU-funded project
and particularly a joint research effort between KTH and Sandvik, Sweden, aiming
for cloud-based distributed and adaptive process planning in a shared cyber
workspace [46]. As depicted in Fig. 15.6, the four system modules close the loop of
information flow. Based on real-time status/information of machines as well as their
availability and capability, it is possible for the Cloud-DPP to generate machining
process plans adaptively to changes through well-informed decision making [47].
This is accomplished by linking sensors embedded/attached to each machine to a
manufacturing cloud in the cyber workspace, and delivering process plans in form
of function blocks [48] to the machine controller on the physical shop floor for
execution. By properly dividing process planning tasks and assigning them to the
cloud and embedded in function blocks, adaptive process planning and machining
become possible.

15.4.3 Example 3: Adaptive Manufacturing Systems

Another example of CPS in manufacturing is the FESTO pre-industrial system,
MiniProd, which was demonstrated in January 2011. It ran with a multi-agent
control setup (Agent-oriented Architecture), could be reconfigured on-the-fly, and
consisted of modules self-configured thanks to their embedded controllers. The
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MiniProd system relied on many years research [16, 49] and the following
developments:

• A simple and effective mechatronic architecture
• Control boards developed for multi-agent applications
• An elaborated and well-structured methodology
• Industrial commitment.

The mechatronic architecture is, first of all, an architecture that considers the
control demands from an embedded-system point of view. That is, each assembly
system module is an entity with its own controls, hence mechatronic. The difficulty
was in creating an architecture out of which an effective control structure could be
instantiated for any assembly system layout.

The final mechatronic architecture is based on four basic agents:

• Machine Resource Agent
• Coalition Leader Agent
• Transportation System Agent
• Human Machine Interface Agent.

The second main development has been the one of commercial control boards
capable of running the multi-agent setup; these are as follows:

• run on WinCe6
• implemented CrEme™, a Java Virtual Machine (NSI.com)
• implementation of 24V I/Os, Ethernet, CAN and RS232/RS485 connections
• runs CoDeSys V3
• implementation of different drivers (CAN, Ethernet, RS232/RS485)
• implementation of I/Os, Stepper/Frequency-count in FPGA and SW.

ELREST provided the project with several alternatives, out of which Combo211
shown in Fig. 15.7 was chosen. This required some developments:

Fig. 15.7 Combo211 control board [17]
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• Combo200 series runs on WinCe6
• Implemented CrEme™, a Java Virtual Machine (NSI.com)
• Fits to the above needs of the four agents and supports JADE
• Implementation of 24 V I/Os, Ethernet, CAN and RS232/RS485 connections.

The project currently intends to develop three variants of these control boards,
depending on the required granularity and number of agents/module. The assem-
bled products are an ECU (electronic control unit) for a commercial vehicle.
Figure 15.8 illustrates the layout of the consolidated assembly system.

15.4.4 Example 4: Model-Driven Manufacturing Systems

A 3D model-driven robot-in-the-loop approach is presented in [50, 51] for remote
assembly in a cloud environment, where an off-site operator can manipulate a
physical robot instantly via virtual robot control in cyber-workspace. Instead of
video image streaming, 3D models are used to guide the operator during remote
assembly to meet real-time constraint over the Internet. The 3D models of the parts
to be assembled are generated based on a sequence of snapshots of the parts

Fig. 15.8 Electronic control unit assembly system [17]
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captured by a robot-mounted camera at the initiation phase. The camera is then
turned off during robotic assembly to save network bandwidth for better overall
performance. The generated 3D models are integrated with the 3D model of a real
robotic cell with built-in kinematic models.

In this context, the robot is treated as a manipulator which mimics the operator’s
assembly operations from distance. As shown in Fig. 15.9, three simple parts are
chosen for a proof-of-concept case study to validate the functionality of the 3D
model-driven remote assembly system. The remote operator assembles the ‘parts’
(3D models) using the 3D robot model in the cyber world, whereas the real robot
mimics the virtual robot and assembles the actual parts simultaneously in the
physical world. During remote assembly, only the robot control commands are
transmitted from the virtual robot to the real one instantly and automatically,
without extra robot programming at runtime. Facilitated by the cyber-physical
system, it thus enables virtual-to-real remote component assembly in real-time and
paves the way towards factories of the future.

15.5 Future Research Directions

Whereas the above sections may help predict foreseeable future research directions
for CPS in manufacturing, it is never an easy task to do so in any capacity.
Technologies in the domain of IoT, CPS and SoS have made a sizeable impact on
their applications in the last decade in smart grid and transportation. It is though not
quite the case in manufacturing, with an exception of research lab based approaches
that have been reported in this chapter and in the literature. Nevertheless, one can
safely expect CPS research to continue in the direction of integrating IoT, cloud
technology and SoS in an Internet-based environment, particularly in
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manufacturing settings. Such a trend echoes the regime in which current manu-
facturing firms function. This regime is featured as collaborative and distributive.
Hence, there is a need for the ability to share manufacturing data and information
between different stakeholders at different locations, seamlessly and collaboratively.
CPS will continue to play a critical role in serving the need to share the data and
information between cyber and physical worlds.

It is clear that there is no “silver bullet” to address the aforementioned need. The
following research directions are listed based on the authors’ literature analysis.

• Self-organising manufacturing rests on smart sensor networks and adaptive
event-driven control. It also relies on the machine level ability of communica-
tion and cognition among constituent manufacturing equipment (or device
controllers). Multi-agent systems for cognition and negotiation combined with
CPS for communication and execution are important elements towards
self-organising manufacturing. Legacy manufacturing process and performance
can be integrated and maintained in a cloud-based knowledge repository.
Combined with intelligent controllers, the future manufacturing processes can
be improved continuously. Research in this area deals with what information is
transferred, how it is used and how uncertainty is dealt with. The impact of
every manufacturing process needs to be clarified in order to realise fully
self-organising manufacturing. Event-driven control mechanisms at low-level
controllers linking to the cyber workspace at high-level provides a holistic
approach for self-learning and self-organisation. Thus, a cloud-enabled CPS
approach will be the research focus.

• Context- and situation-aware control based on multi-dimensional data com-
munications with low-level sensors/actuators and high-level planning systems
can be facilitated by the CPS approach. Tedious and error-prone native pro-
gramming of machines and robots by operators today will be replaced by smart
decision algorithms tomorrow, runnable in machine controllers for robust and
adaptive control. The research in this area includes closed-loop data analysis,
sensor fusion and smart algorithms development. The research focus is on the
device level with new interfaces with legacy control devices and new design of
next-generation intelligent controllers with networking capability, capable of
running algorithms than rigid codes.

• Symbiotic human-robot collaboration in a fenceless environment will improve
productivity and resource effectiveness by combining the flexibility of humans
and the accuracy of machines. CPS enables such human-robot collaboration in
areas of dynamic task planning, active collision avoidance, and adaptive robot
control. Humans can instruct robots by speech, signs, gestures and their com-
binations during collaborative assembly. On the other hand, in situ human
assistance by, for example, 3D goggles will be possible and feasible.
Standardisation is one more effort required to turn human-robot collaboration
into a reality in the factories of the future.

• CPS methodology providing supporting methods and tools with which we will
be able to cost-efficiently develop, operate and maintain SoS with the desired
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capabilities and quality attributes. The increasing complexity of heterogeneous
manufacturing systems is manifested in many ways, including as nonlinear
hybrid systems with behaviours which are hard to predict and verify, and in
terms of multiple and variable structures, composed of many interacting parts
and properties. Research challenges include (1) development of techniques for
efficiently integrating and/or relating multiple models, viewpoints and data sets,
(2) CPS design methodology for trustworthy end-to-end services including
adaptive/autonomous systems, and (3) platforms for safe and secure CPS design
that underpin design methodology, facilitating integration and establishing
desired system level properties.

15.6 Conclusions

This chapter presents the current status and advancement of cyber-physical systems
and their future directions when applied to manufacturing. The characteristics of
CPS are outlined together with those of SoS, IoT, Big Data and Cloud technology.
Relevant initiatives, e.g. Industry 4.0, AMP 2.0 and Industrial Internet, are also
briefly mentioned. In the authors’ humble opinion, CPS research and applications
will continue in the years to come, not only for the unsolved issues but also for the
complex and intriguing nature of the problems that never failed to fascinate and
challenge researchers and engineers. This is especially true when CPS are applied in
manufacturing sector in the future, where self-organising manufacturing, context-/
situation-aware control and symbiotic human-robot collaboration can play an
important role in turning today’s manufacturing shop floors into factories of the
future with enhanced safety and security. The unique features of CPS in net-
working, communication and integrated device control attribute to the smartness
and intelligence of manufacturing in the horizon. When combined with Cloud, IoT
and Big Data, CPS will become feasible and practical in smart factories soon.
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