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Foreword

The Data Era of Energy

This book provides an in-depth analysis that will help utility executives, 
as well as regulators, investors, large power users and entrepreneurs, 
understand some of the tectonic changes coming to an industry that 
from the outside can seem impervious to change. Making sense of a 
chaotic future, Carol charts a path where everyone can benefit.

– Dr. Amit Narayan

Predictive analytics and data systems will have a transformative impact on the 
electricity industry. Not only will the integration of Big Data technologies help 
make the grid more efficient, it will fundamentally change who sells electric 
power; how it gets priced; and how regulators, utilities, grid operators, and end-
users interact. 

To understand the full impact that software and hardware will have, one has 
to first take a step back and take a look at how vastly different the electric power 
industry is from most others. Utilities typically don’t compete over market share 
or increasing revenue and margins. Instead, they exist through legal monopolies, 
enjoy stable pricing, and can recover investments in fixed assets in a predictable 
way. Instead of revenue, their biggest concern is quality of service, stability, and 
reliability. They are public or quasi-public institutions with fiduciary responsi-
bilities that provide an essential service to everyone within a service territory, 
with a vital impact on public safety and well-being. If Facebook shuts down for 
two hours, Twitter is abuzz with jokes. If a utility experiences a two-hour black-
out, executives have to explain what happened to consumer groups and PUC 
officials. The Department of Energy estimates that blackouts and power quality 
issues currently cost American businesses more than $100 billion each year.
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To achieve these demanding levels of performance, utilities have focused on 
integrating multiple levels of redundancy and control. Peak power plants cost 
hundreds of millions of dollars and might only be used 50 hours a year, but 
utilities build them because they are a proven (if inefficient) tool for counteract-
ing temporal spikes in demand. Some of the objections to renewable sources 
like solar and wind have been because of the variability that they can introduce. 
Utilities have compensated for a lack of visibility and predictability through 
buffering, brute-force engineering, and deliberately circumscribing options for 
the sake of control and consistency.

An Internet for Energy changes this paradigm by providing utilities with 
real-time feedback and insight for the first time. Simply put, utilities are going 
to finally know what their customers are doing and what they want. Today, fore-
casting is done at the system level and it’s a fundamental operation that drives 
practically all operational and planning decisions at the utility. The ability to 
forecast every meter, transformer, feeder, and province allows us to improve the 
quality of these decisions and shave billions in operating expense. Just a 0.1% 
improvement in forecasting at a mid-size European utility can help reduce about 
$3 million in operating cost in the imbalance markets.

What will that empower them to do in practice? One of the first major 
impacts will be in the rapid acceptance of demand response. FERC estimates 
that demand response systems—which are essentially cloud-based platforms for 
dynamically controlling power consumption—can replace 188GW of demand 
and avoid $400 billion in peaker plant investments in the U.S. alone. Demand 
response, however, has largely been the province of large utilities and large cus-
tomers because the hardware systems required for conventional demand response 
have been unaffordable for most.

Software-based demand response reduces the cost of implementing demand 
response by up to 90 percent. More importantly, it introduces the concept of 
visibility to demand response. Utilities, or rather, the cloud-based platforms 
employed by utilities, can look at the consumption patterns of millions of its 
users at once and rapidly determine which customers would be willing to par-
ticipate in a DR event, how much these customers will charge for participation, 
and how much was actually saved. 

Demand response shifts from being an expensive technology deployed only a 
few times a year to a control system that a utility can use on a daily basis for help-
ing consumers save money, meet community emissions standards, and maximize 
the return on fixed assets like power plants. 

Software-based systems, unlike hardware, also improve over time. Think of 
your own experience with Google, Amazon, or Netflix. Those web platforms 
improve over time as they absorb and analyze more data. Similarly, software-
based demand response systems will become more surgical in how they harvest 
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power. Forecasts can be issued for millions of customers every few minutes to 
fine-tune predictions for power consumption across an entire region, in specific 
geographic areas, or users along particular distribution branches. The impact 
ultimately will be unobtrusive. Consumers and businesses won’t know they are 
saving power until they get a pleasant surprise on their bill. 

Similarly, software can supplant traditional hardware systems for frequency 
regulation and spinning reserves, lowering capital costs while improving 
 performance and accelerating adoption. Like we’ve seen with the Internet, the 
applications for systems that can provide granular predictability might as well 
be infinite. 

Greater control and flexibility in power consumption and delivery in turn 
will pave the way for increased solar, wind, EVs, and storage. These technologies 
can be integrated safely and more easily when supplemented by digital control 
system and give their owners a more rapid return on investment. The price gap 
between peak and off-peak power will begin to erode. 

From there, one can see how the underlying business will change. In fact, it 
is already changing. An estimated 44% of electricity in North America is sold in 
deregulated markets. Comcast and others are entering home energy and retail 
space. Electricity retailers in Europe, Australia, and New Zealand (where deregu-
lation has taken place) compete with others to acquire and retain customers and 
are using ways to micro-segment habits and load profiles.

With dynamic data analysis and control, more power providers will be able 
to link to the grid and sell power as supply and demand become more fluid and 
interconnected. Consumers and businesses, likewise, will become more adept at 
monetizing their consumption patterns. Electricity retailers—already a common 
feature in Texas and the U.K.—will expand to other markets as deregulation 
becomes feasible thanks to technology. 

Efficiency will also finally take off simply because it will be possible to 
take actions to curb power easily, as well as measure and monitor the results 
of efficiency initiatives. Consumers and business, meanwhile, are equally ham-
strung. Commercial buildings consume 18% of all of energy in America, but 
close to 30% of the total is lost through waste or inefficiency, according to the 
Department of Energy and Environmental Protection Agency. Lighting con-
sumes 19% of all electricity worldwide—more than is produced by nuclear 
plants and hydroelectric plants combined—but systems that automatically dim 
lights remain rare. When you look out on a glittering urban skyline at night, you 
aren’t just looking at a scenic vista. You’re looking at a tremendous, chronic, and 
seemingly unstoppable waste. 

Similarly, industrial customers will begin to adopt cloud-based systems to 
help control demand charges. Demand charges can account for 30 percent of a 
large power user’s bill. By employing intelligent automation, large power users 



can turn down less essential power consumption (like daytime lighting), main-
tain production flows, and avoid excessive peaks. Without data, large power 
users can only guess what their power demands might be; data effectively elimi-
nates risk by tightly defining probable outcomes. 

Data can also be used to throttle power theft. The World Bank estimates that 
$85 billion in power gets stolen every year. In emerging nations, the problem is 
a never-ending crisis: approximately 30 percent of the electricity gets stolen in 
India, leading to chronic outages, lower productivity, and higher rates. But it’s 
also a problem in the U.S., with $5 billion alone being siphoned off by illegal 
marijuana growing operations. 

The impacts will even be more eye-opening in emerging nations. The 
International Energy Agency estimates that over 1.2 billion people worldwide 
do not have access to electricity and over 2.6 billion do not have access to clean 
cooking facilities. To compound the problem, grid power in many of these coun-
tries continues to be supplied by dirty, expensive, and inefficient diesel genera-
tors. The root cause of the situation can be traced back to the limitations of the 
architecture of the supply-centric grid. Microgrids—animated by solar panels, 
battery banks, and intelligent data systems—will fill this gap. 

Granted, the energy-data nexus has had a rocky start. The initial rollout 
of smart meters—a foundational element of the data era—drew many critics. 
Customers of Pacific Gas & Electric staged protests against smart meter installa-
tions, asserting that the meters posed a health hazard and invaded privacy. 

But when you get past the some of the controversial headlines, a different 
picture emerges. Oklahoma Gas & Electric (OG&E) over the last five years 
has conducted one of the most successful projects to date for employing data 
to control energy costs, consumption, and emissions. The utility uses technol-
ogy from Silver Spring Networks, AutoGrid Systems, and others to deliver 
information to consumers about peak pricing, manage time-of-user programs, 
and other initiatives. In an early test with 6,500 customers, the reactions were 
almost uniformly positive. Customers said they didn’t know how peak pricing 
could lower their bills, and many changed how and when they used air condi-
tioners and washing machines.

OG&E has since expanded the program to 70,000 customers and antici-
pates growing the number of participants to 120,000 by the end of 2014. 
OG&E, which also won a J.D. Power Customer Service Award, a rarity for a 
utility, believes that data systems will help it avoid building any new fossil plants 
before 2020.

The global proliferation of smart devices will ultimately generate a veritable 
tidal wave of digitized information. A typical smart meter is serving up 2,880 
meter reads a month, versus the one per month delivered by an analog meter. 
By 2020, the 980 million smart meters worldwide alone will generate 431,000 
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petabytes of data a year. Building management systems for office buildings will 
generate around 100 gigabytes of information a year. 

Implementing and integrating data systems will take time. Caution and 
security must still underpin any changes. Still, change is inevitable. How exactly 
consumers will interact with data remains to be seen, but I don’t think the indus-
try will turn back. 

Data is the new power.

– Dr. Amit Narayan
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Preface

This is a practical book, to be sure, but it is also a book about hope and posi-
tive change. I am quite sincere. The delivery of electricity is deeply rooted 
in the principle of universal access; when clean, reliable energy is available it 
 contributes to poverty alleviation, improved social conditions, and enhanced 
economic development. In the developed world, we know this to be true. The 
digital fabric of our lives is a testimony to the importance of energy security. 
Across the globe, we have seen the vital contributions that electrification has 
brought to the development of economies and an enhanced quality of life. 
Nonetheless, this supreme engineering achievement has languished, and we are 
deeply challenged. 

Modern electrification systems are degrading and inefficient in myriad ways, 
yet the complex and difficult operating conditions of the energy business have 
been slow to adapt and advance to improve these circumstances. However, with 
the advent of the information-enabled, two-way grid, we have an opportunity 
to meet these challenges directly. It is the thesis of this book that through the 
application of big data analytics and subsequent improvements in situational 
awareness of the millions of miles of grid across the world, we will be able to 
integrate renewable energy systems, introduce economic and operating efficien-
cies, and bring energy services to the over 1 billion people across the world who 
have no electricity. It is also the view of this work that utilities are confronted 
with a very difficult charge indeed—to evolve rapidly towards a business stand-
point that capitalizes on these key technologies. It is going to take a resolute 
effort from technologists, utility stakeholders, political bodies, and energy con-
sumers to protect and improve the performance of the grid, as well as affect the 
change necessary to shield our economies and defend the environment.

I hope to shed light on the considerable potential that big data analytics 
brings to the electrical power system by virtue of a fully realized analytics 
 strategy. The unprecedented access to the immense and growing volumes of 
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data now available to describe the electrical system and its consumers can pro-
vide powerful and nearly instantaneous insight. This insight not only improves 
the ability to optimize day-to-day operations, but in times of stress, is the core 
enabler of effective decision-making and critical communications. When faced 
with uncertain conditions of extreme weather, terrorism, or other disasters, the 
safety and continuity of reliable energy delivery is without measure. 

One could hardly say that the grid is broken today, but system reliability 
and efficiency has degraded over the past several decades. And change has been 
slow to come. It is imperative that, as a society, we find ways to make the grid 
more resilient, secure, efficient, reliable, and capable of integrating with the lives 
of co nsumers. The technical innovations inherent in big data analytics for the 
smart grid are the first step and the future step. 

– Carol L. Stimmel, Nederland, Colorado
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 Chapter One

Putting the Smarts 
in the Smart Grid

 

1.1 Chapter Goal

Smart grid data analytics are playing an increasingly critical role in the business 
and physical operations of delivering electricity and managing consumption. 
And even though utilities are starting from a difficult position with integrat-
ing data analytics into the enterprise, data science is a critical function if the 

1 Image retrieved from the public domain at http://commons.wikimedia.org/wiki/
File:Analog_Computing_Machine_GPN-2000-000354.jpg.

Analog computing machine in fuel systems building. (Source: NASA1)
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mission of the modernized grid is to be achieved. This chapter describes the 
overall drivers for the smart grid; the key role of data analytics; the challenges 
of implementing those analytics; and why—without a comprehensive data ana-
lytics program—the expectation for a clean, reliable, and efficient grid will be 
impossible to achieve.

1.2 The Imperative for the Data-Driven Utility

When Hurricane Sandy tore through the United States’ Atlantic and Northeast 
regions, it left as many as 8.5 million people across 21 states without power, in 
some cases for weeks. The challenging situation demonstrated the fragility of 
the electricity grid infrastructure, and the difficult restoration underscored an 
inescapable fact: The largest machine in the world is crumbling in a graceless 
display of accelerating decay. While a smart grid certainly cannot totally pre-
vent outages during a natural disaster, its information infrastructure brings the 
promise of a new level of service to the customer during major disruptive events 
and to our daily lives. Yet, despite incremental improvements, the global electri-
cal grid is plagued by a worsening trend of severe blackouts caused by the com-
bined effect of aging infrastructure, high power demands, and natural events. 
In the US alone, the power system has experienced a major blackout about every 
10 years since the 1960s, and power disruptions have increased steadily both in 
frequency and duration over the last decade.2

Compounding the situation, research and development spending began to 
stagnate in the US and Europe in the 1970s in response to oil price shocks. 
Investment largely turned toward identifying new fossil-fuel resources.3  
Significant investment only experienced an upturn when the American Recovery 
and Reinvestment Act of 2009 (ARRA) directed billions of dollars toward build-
ing a modernized electricity grid and subsidizing progressive technology deploy-
ments, renewable energy projects, and advanced battery systems. However, much 
of the damage had already been done. The lethal combination of a business-as-
usual approach to grid management and a disregard for  technology innovation 
left a diminished capability to rapidly meet reliability demands.

2 Joe Eto, “Temporal Trends in U.S. Electricity Reliability” (October 2012), IEEE 
Smart Grid. Retrieved September 19, 2013, from http://smartgrid.ieee.org/
october-2012/687-temporal-trends-in-u-s-electricity-reliability.

3 Jan Martin Witte, “State and Trends of Public Energy and Electricity R&D: A 
Transatlantic Perspective” (2009), Global Public Policy Institute, Energy Policy Paper 
Series, Paper no. 4. Retrieved from http://www.gppi.net/fi leadmin/gppi/GPPiPP4-
Climate_RD_FINAL.pdf.
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While other developed nations fare somewhat better than the US at keeping 
the lights on, especially those that rebuilt their infrastructure after the wide-
spread devastation of the Second World War, decay and resiliency aren’t the 
only important issues. Other pressing problems motivate the smart grid: There 
are more than a billion people in the world who do not have electricity, and as 
the impact of anthropogenic climate change grows more alarming, nations are 
coming together to mitigate the threat with greater conservation, efficiency, and 
renewable forms of generation. The smart grid enables all of these approaches to 
treat the issues of resource scarcity and power delivery around the world.

The relationship between electricity availability and economic health is ines-
capable. High-quality energy delivery service is an imperative for developed 
nations, especially given the high cost of outages, which has been estimated to 
reach billions of dollars in a single year. In energy poverty–stricken nations, bil-
lions rely on health-damaging, dirty, and polluting fuels, and they spend hours 
every day collecting fuel to meet basic needs, such as cooking—not lighting, 
heating, or cooling. There is an opportunity to fill this dire electrification gap 
with clean technologies that is economically, socially, and environmentally viable. 

The strides that are made in smart power in the developed world can serve 
as a reference architecture for solutions across the globe. Despite the fact that 
demand will likely remain steady in developed nations due to increased build-
ing and vehicle efficiency improvements, demand in the developing nations is 
growing robustly as indicated by the US Energy Information Administration 
(EIA) (see Chart 1.1.), creating opportunities for intentional energy solutions 
that are sustainable. 

Economic drivers, carbon reduction, regulatory compliance, and an increase 
in the drive to provide residential, commercial, and industrial customer self-
management of energy costs and consumption are creating the perfect storm for 
grid modernization and smart electrification. 

The current centralized model of power delivery, with its fragile, legacy, 
and manual componentry, simply cannot accommodate energy and efficiency 
demands in the way that an intelligent, distributed power system can. An 
information-based grid solution that enables autonomous operation, efficiency, 
reliability, and higher power quality is the best solution we have for securing 
reliable electricity service and the energy future of global citizens. Smart grid 
technologies provide universal—and clean—electrification; alleviate climate 
change by enabling a variety of efficiencies and renewable generation; and get 
us closer to a guarantee of affordable, safe, and reliable electricity. To fully real-
ize this mandate, utilities have no other course but to transform themselves into 
data-driven businesses. 

As sensors, intelligent devices, advanced equipment, and distributed sys-
tems are integrated into the grid, various forms of data will empty into the 
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 utility at ever-increasing rates and volumes. With a carefully conceived, scalable 
approach, data analytics will quickly become the focal point to understanding 
real-time situations on the grid, past-event data, and the best and most efficient 
ways to meet customer needs, run a business, and improve both system design 
and performance.

1.3 Big Data: We’ll Know It When We See It

The utility industry is just seeing the beginning of the growing number of bytes 
that will increasingly flow through the energy network—and it’s unprecedented. 
Yet, defining “big data” is a constant cause of hand-wringing among those new 
to the concept, likely due to its buzzword status. It’s a relative term and frustrat-
ingly imprecise; while it has been widely reported that worldwide we gather 2.5 
quintillion bytes of information daily, that number is on track to grow by over 
4,000 percent by 2020. And though many analysts like to “munge” meter end 
points and data packet sizes into estimates of data volume for the utility, that 
number—even if accurately calculated—isn’t going to tell us much. “Big data” 
is just a way to describe a data question, a degree of difficulty, data management 
tools, data science problems, and the data sets themselves. While it was first 
described with the characteristics for which Doug Laney of Gartner Research is 
initially ascribed, it is now cleverly called “3V,” with the three V’s representing 
volume, velocity, and variety. Notably, there is an unofficial fourth V: value. 

McKinsey and Company takes the narrative route to describing big data: 
“[It] refers to datasets whose size is beyond the ability of typical database soft-
ware tools to capture, store, manage, and analyze.” And further, “[T]he defini-
tion can vary by sector, depending on what kinds of software tools are commonly 
available and what size of datasets are common in a particular industry.”4 So, in 
essence, when an organization’s data gets so voluminous that it starts to cause 
problems, then it becomes “big data.” I prefer the words of former US Associate 
Supreme Court Justice Potter Stewart in an opinion made in an obscenity case, 
“I know it when I see it.” Given the ever-increasing scope of data collection, a 
reflexive definition may indeed be the most useful: Big data is big data, and it’s 
getting bigger.

For the utility, harnessing these volumes of data means looking beyond 
legacy information sources to smart meters, digital sensors and control devices, 
wholesale market data, weather data, and even social media. The breadth and 

4 James Manyika, Michael Chui, Brad Brown, and Jacques Bughin, “Big data: Th e next 
frontier for innovation, competition, and productivity” (May 2011), McKinsey and 
Company. Retrieved from http://www.citeulike.org/group/18242/article/9341321.
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depth of data have been overwhelming to energy provider stakeholders. Yet 
there is progress. In the context of the smart grid, smart meter data has been the 
easiest to collect and manage, both technically and from a business perspective, 
because of it represents the lifeblood of the utility—meter to cash. Many ven-
dors who first moved into the smart meter data management system (MDMS) 
space tend to have long-term utility relationships and are trusted providers for 
this very sensitive function, which has served to calm the data analytics jitters. 

Although this should be a harbinger of good things to come, too many 
utilities with smart meters have not progressed to analyzing the more-granular 
meter data (which includes much more than consumption values) and have 
relied on monthly roll-ups of the smart meter data for easier integration with 
legacy systems, either spilling the leftovers on the floor or “saving it for later.” 
Leading MDMS vendors are trying to push these laggards forward by nomi-
nally including analytic tools with their offerings. Buyer beware, though; these 
“analytics” often amount to nothing more than glorified reporting features, 
falling far short of the true promise of the power of data analytics to the util-
ity and potentially undermining true data science efforts. Further, even when 
data analytics are usefully applied to smart meter data, the more-substantive 
value of these models only emerges when data from across the enterprise and 
third-party sources is fused together and leveraged in aggregate for maximum 
predictive strength.

1.4 What Are Data Analytics?

Similar to “big data,” the term “analytics” is a neologism, bringing a new and 
confusing usage to a well-worn word. It pays to deeply understand what analyt-
ics are and how they’re driven by data science. Compared to reports that are 
usually intended for the business stakeholder and answer very specific questions 
(in fact, report processes will often be tweaked repeatedly to precisely drive the 
kind of answer that is being sought), data analytics help raise and answer ques-
tions that have been unknown until the analysis is begun. In reality, analytic 
models could not be further from a spreadsheet and presentation layer that is 
often called the executive console. 

Utility big data analytics are the application of techniques within the 
digital energy ecosystem that are designed to reveal insights that help 
explain, predict, and expose hidden opportunities to improve operational 
and business efficiency and to deliver real-world situational awareness. 
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It’s not as simple as picking up some data and churning out statistics. The 
analysis itself is just a piece of the whole smart grid data analytics puzzle. Before 
the daunting techniques such as data fusion, network analysis, cluster analysis, 
time-series analysis, and machine learning are even contemplated, the underly-
ing data must be collected and organized. Collection itself is a challenge, given 
the wide variety of data available across the utility. Organizing data is where the 
coherence trial really begins. The process includes cleaning (fixing bad values, 
smoothing and filling in gaps), joining various data sets, and storing it all in 
a data warehouse of some type. Analysis can then begin, but even advanced 
analysis does not complete the picture. Once analyzed, the processed data must 
be presented to users in a functional and low-friction manner so that it improves 
actions and outcomes. Even squeaky-clean data and advanced analytical pro-
cesses amount to nothing if the resulting information cannot be understood by 
the users, if conclusions can’t be drawn, and if no action can be taken.

1.4.1 The Data Analytics Infrastructure

The advent of big data is putting stress on the familiar approaches to data han-
dling. Extract, transform, and load (ETL) processes have been the bread and 
butter of data warehousing since the banking and telecommunications industry 
first adopted them. With ETL, data flows predictably from data source to data 
store in a controlled and reliable manner. Most simply, ETL is:

• Extract. Reading the data from a data source that could be in a variety of 
formats, including relational or raw data.

• Transform. Converting the extracted data from its current form into the 
form of the target database. Data is combined with other data according 
to a predetermined model.

• Load. Writing the data into the target data warehouse.

ETL is the gold standard when the handling of data needs to be consistent, 
repeatable, and tagged with a verifiable chain of custody. Traditionally, there 
are different systems for data generation, transformation, and consumption. 
However, for big data, the ETL infrastructure is expensive and doesn’t scale as 
readily as new technologies—such as Hadoop, an open-source framework that 
allows for the distributed processing of large data sets across clusters of comput-
ers; and the “Swiss Army knife of the 21st century”—that support the ability 
to process, manage, and give users the ability to directly consume data without 
moving it around. New methods dramatically decrease data latency (no copy-
ing from system to system), additional hardware is not required, and software-
licensing fees can be reduced. At the same time, ETL purists persuasively argue 
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that tools like Hadoop simply consolidate the steps within the ETL process to 
adapt to big data performance and scale requirements by running on a single 
engine. They further argue that the benefits of time-tested best practices should 
not be carelessly dismissed. 

Figure 1.1 provides a high-level view of data movement from collection to 
action. The multimillion-dollar question to be answered for utilities implement-
ing a comprehensive data management program to support advanced analytics 
is how that movement will materialize in both virtual and physical space.

1.5 Starting from Scratch

Despite the obvious advantages that data analytics bring to utility operations 
and customer service, most utilities are not using their data efficiently and effec-
tively. The expense and monumental task of building an enterprisewide ana-
lytics program is intimidating, complex, and ongoing. Though utilities have 
made strides in sourcing and responding to data from smart meters, outage 
management systems, and supervisory control and data acquisition (SCADA) 
systems, only incremental progress has been made in using data and analytics 
to improve customer service, asset performance, network reliability, and opera-
tional efficiency.5 When it comes to big data science, utilities are starting from 
a very weak position.

The temptation to introduce modest changes in the use of data analytics 
may be an imprudent choice. Grid modernization challenges not only the tech-
nical approach to power delivery but also the very foundations of a century-old 
business model. The current energy delivery business model is faltering with 
the new push for distributed energy resources (DERs) and new economic con-
structs that are being driven by technology changes; utilities that don’t adapt to 
these shifts risk disintermediation, hollowing out, and ultimately an exodus of 
rate-paying customers. 

Utilities that are moving forward now with implementing advanced technol-
ogies to support the evolving power delivery model will be best poised to meet 
the challenges of the significant addition of renewables to the generation mix, 
zero-emissions load balancing, and energy efficiency. Small data analytics pet 
projects and skunkworks are not enough to thrive in this new ecosystem. A step 
function forward in implementing smart grid data analytics is a requirement for 
continued reliable operation and business optimization in this new ecosystem.

5 Oracle, “Utilities and Big Data: Accelerating the Drive to Value” (2013). 
Retrieved September 20, 2013, from http://www.oracle.com/us/dm/oracle-
utilities-2013-1979214.pdf.
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1.5.1 Mind the Gap

The significant expertise deficit related to big data management, analytics, and 
data science is one of the major reasons utilities have not been able to effectively 
use smart grid data. This problem is not unique to utilities, yet virtually every 
utility has this skills gap (in fact, almost every market sector that is data-driven 
is struggling). Specialized proficiencies are required to solve data problems, and 
up until very recently, very few academic programs have focused on big data 
and analytics. The pool of ready-to-go recruits just does not exist. With several 
million new jobs to be created in the field in the next several years, utilities, 
which historically aren’t highly sought-after career destinations, are fighting for 
talent. Already, those who have recognized this deficit are scrambling to train 
current employees, recruit new people, outsource analytics to a third party, or 
invest in prepackaged analytics solutions. 

But data science itself is not a simple discipline, which makes hiring to fill 
those roles in the highly specialized electricity industry, especially challenging. 
Data scientists not only need to know how to data wrangle, they must also know 
how to operate a variety of tools on a variety of platforms fed with vast amounts 
of varied data. On top of that, they must have business acumen and an under-
standing of arcane topics, like power engineering, energy markets, and demand 
response. Despite our best hopes, shrink-wrapped software is only going to go 
so far in solving the utility business problems. Energy-savvy data scientists are 
capable of changing the way the utility views the world and gets business done. 
Fundamentally, the point of data analysis is to carry us from raw data to infor-
mation. And information is only available when the wheat is separated from the 
chaff and underlying patterns are exposed. 

1.5.2 Culture Shift

Researchers have been raising the issue of information technology–opera-
tions technology convergence (IT-OT) for several years, and it’s unhappily yet 
another term that defies industry standard definition. It’s relative. Within the 
power industry, we often see stringent lines of demarcation between functions. 
The IT staff typically manages the transactional side of the enterprise: billing, 
accounting, asset management, human resources, and customer records. The 
OT side of the house manages the distribution operations, monitors infrastruc-
ture and control center–based systems, and oversees a lot of nonhuman inter-
action between systems on the grid. There just hasn’t been an overwhelming 
need for chitchat between the system operators and corporate functionaries; this 
structure has met organizational objectives for decades, and the systems in place 
pattern themselves along these functional lines.
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Now, grid modernization is driving not only technology changes but also 
business changes. IT and OT departments and systems must be integrated 
and work well together. There are many crosscutting business processes, and 
a lack of integration results in poor or uninformed decision-making, difficulty 
in meeting compliance requirements, poor communications, inefficient field 
operations, and the inability to effectively report to external stakeholders.

At the simplest, IT-OT convergence can mean allowing IT systems to dip 
into operational data, contributing to enterprise wide situational awareness. A 
key example is asset management analytics. Asset health models can be con-
structed by analyzing and seeking patterns in OT data based on information 
such as temperature, pressure, loading, and short-circuit, and fault events—all 
data that drives improved decision-making about how to manage a particular 
asset and conduct replacement scheduling. In fact, asset analytics characterizes 
one of the most important early smart grid wins for the business, reducing cata-
strophic outages while managing capital and maintenance outlays.

1.5.3 A Personal Case Study

Another, more personal illustration of how important IT-OT convergence is 
failing to handle major outage events. As I was writing this chapter, the lights 
went out. It wasn’t unexpected, as I was in the middle of what had come to be 
called the 1,000-Year Flood in my home state of Colorado. As the monsoon rains 
came down, our electricity infrastructure failed us. Not only did this mean we 
didn’t have lights, it also meant we didn’t have information. Evacuations were 
occurring in our community, homes hung precariously from cliffs, people were 
trapped, and roads were collapsing. Losing power added to the intense fear, 
stress, and confusion we were all feeling. 

As soon as the power cut, I loaded up the power company’s website on my 
smartphone and reported the outage over the phone (the cellular connections 
were completely unaffected). At that time, I received an automatic message that 
the power was out in my vicinity and they were aware of the problem. The res-
toration time given to me was precisely 23 hours and 59 minutes from my call. 
Since the most direct route to our community was now a four-wheel-drive road 
and in danger of further rockslides, I was quite dubious. We spent the rest of 
the night with camping lanterns and flashlights and listened to the pounding 
rain—but happily with secure shelter. Nobody was complaining.

The next morning, the power was still out, so I rechecked the restoration 
time. There was now an additional 23 hours and 59 minutes tacked onto 
the originally posted time. I expected this trend to continue, as it was clear 
that the announced restoration times were arbitrary. Yet, later that day, three 
things happened:
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 1. First, the lights came back on (easily inside of the initial 23-hour-and-
59-minute window).

 2. Two hours later, I received an automated phone call from the power com-
pany sharing “preliminary” information that power would be restored 
shortly.

 3. An hour after that, another recorded call from the power company 
apologetically informed me that, because of the extreme damage from 
the storm, it would be several days before the roads would be passable 
and power restored.

This short story of the Colorado 1,000-Year Flood demonstrates how the 
failure to successfully converge utility systems results in poor situational com-
prehension and communication both internally and externally to the utility; in 
this case, blending the capabilities of the outage management system (OMS) on 
the IT flank and the DMS that resides with OT would have greatly improved 
the power company’s crisis management. 

Figure 1.2 describes a straw-man convergence of IT-OT systems. While 
OMS applications include business functions like crew management and trou-
ble call management, the DMS applications perform the grid-facing operations 
such as fault isolation, switching, and state estimation. Both systems rest upon a 
shared network model that serves data to different applications across the enter-
prise. Grid-level data provides the best near-real-time situational intelligence 
across the enterprise, while IT systems make business sense of the information. 
As readily as the OT team can isolate the fault and estimate the recovery time, 
accurate communications can head out to news organizations, automated call 
routing, and social media.

1.5.4 Ouija Board Economics

In 2011, the Electric Power Research Institute (EPRI) estimated that an invest-
ment level of between USD $17 and $24 billion per year will be required for the 
next 20 years to bring the power delivery system to the performance levels of a 
fully realized smart grid. Using a complex cost allocation model, which included 
the infrastructure to integrate DERs and to achieve full customer connectivity, 
the model anticipated a benefit-to-cost ratio somewhere in the range of 2.8 to 
6.0.6 EPRI admits that the wide range in estimates  underscores the uncertainty 

6  Electric Power Research Institute, “Estimating the Costs and Benefi ts of the Smart 
Grid” (2011). Retrieved September 24, 2013, from http://ipu.msu.edu/programs/
MIGrid2011/presentations/pdfs/Reference Material - Estimating the Costs and 
Benefi ts of the Smart Grid.pdf.
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in the industry in estimating expenditures and projected savings. The concept 
of the smart grid grows ever more expansive with new technologies, and the side 
effects created by the impact of generativity complicate the ability to get a hold 
on the problem—new issues emerge from making interconnections among old 
approaches—and the more innovation we bring to creating the smart grid, the 
less order and predictability there are in calculating an end state, whatever that is. 

This lack of ability to prognosticate the costs to build a smarter grid has util-
ity executives worried. Data management and analytics are sure to be one of the 
most challenging tasks for the utility, especially in scaling to the massive levels 
required to handle the sheer preponderance of anticipated data. This is apart 
from the related challenges of cybersecurity and data privacy. It is a difficult fact 
that despite the vital advantages that smart grid technologies bring to society, 
the required investments are massive for the utility to bear. In particular, gen-
erators will lose profits as a direct effect of smart grid–enabled demand-response 
initiatives, and economists do not yet have a grasp on how the benefits of smart 
grids can be easily converted into revenue.7 

This may be a shock for utility leadership who have heard so much about 
the big data analytics opportunity, especially for improving operational met-
rics. While processes such as improving revenue protection and reducing asset 
maintenance and replacement costs are fairly straightforward, other functions 
such as assessments and improved planning are just not as clear-cut. With aver-
age utility investments in the smart grid rising to very significant levels over 
the next decade, many stakeholders expect a rapid return on investment (ROI), 
with more than half expecting a positive ROI in five years.8 Taking current 
approaches, utilities are indeed engaging in wishful thinking, as they turn 
toward incrementally building up their capabilities to reduce risk and capital 
expenditures. 

The desired level of return requires a more dramatic shift and efficiency of 
approaches to capitalize on smart grid data analytics opportunities in an indus-
try that has a low level of experience around such programs. This is a tall order.

Put Your Head in the Cloud

Cloud computing and managed services are becoming a large component 
of big data initiatives, primarily as a strategy to help control costs and speed 

7  Luciano De Castro and Dutra Joisa, “Paying for the smart grid” (2013), Energy 
Economics (forthcoming). Retrieved September 24, 2013, from http://www.kellogg.
northwestern.edu/faculty/decastro/htm/personal/payingsmartgrid.pdf.

8 Oracle (2013).
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up  deployment time frames. Just a few short years ago, cloud computing was 
soundly rejected by the utility industry, largely for its perceived lack of security 
and inability to tailor software to particular needs. But customization is not 
viable for infrastructure providers because the economies of the cloud depend 
upon spreading costs out across the customer base as well as automating data 
and software management. Therefore, a service provider simply can’t make 
bank if it focuses too much on custom development projects, rather than pro-
viding a menu of prebuilt options. 

Some utilities are starting to understand these realities and leverage cloud 
computing with a more informed approach, although many still are not even 
considering these solutions, favoring an enterprise IT approach out of concern 
for security and control. This is mostly cultural and will begin to shift as utili-
ties come to grips with the deep skills gap and the extraordinary capital outlay 
required to build up the required computing power and capacity to support 
comprehensive big data and analytics programs. Where computing scale is 
required, economies of scale are vital.

As a result, utilities must begin to look outside of their organizations into the 
cloud. Those that are seeking the benefits from cloud computing and managed 
services are likely to find them in improved speed of deployment, flexibility for 
meeting dynamic demand requirements, enhanced capacity, and most impor-
tantly, decreased capital expenditures. Most surprising to many utility stake-
holders is that fact that cloud computing may actually offer a more secure and 
standards-compliant environment as service providers can deliver a harmonized 
approach with focused attention on cybersecurity and data privacy. Overall, 
cloud computing may be the key to giving utilities the opportunity to flexibly 
manage and deploy data analytics applications for rapidly growing data volumes 
in a secure and scalable manner.

1.5.5 Business as Usual Is Fatal to the Utility

Excessively conservative decision-making and low investment levels by utilities 
and regulators have created a slow pace of innovation for grid modernization. 
A bias toward proven and mature solutions has retarded the implementation 
of technologies that may ultimately be required for cost-effective operations. 
Regulators exacerbate this problem by excoriating utilities and denying them 
cost recovery when the uncertainties of novel investments are overtaken by 
risk sensitivity and political concern. This has long-term negative impacts. 
Without advanced systems and analytics controlling the network and subse-
quent improved decision-making, the elevated costs for managing the network 
will only go higher. As energy efficiency and distributed generation grow and 
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consumption decreases, revenue will decline more quickly than delivery costs, 
resulting in revenue inadequacy. This alone sets the stage for spiraling rates 
and an exodus of customers who can buy energy from low-cost wholesalers, or 
self-generate.

Yet, the current approach to power delivery is not economically viable. 
Regulators and utilities must consider new cost-recovery approaches or risk dis-
intermediation of the utility. The primary focus on curbing costs has driven 
down innovation, and that strategy has become very expensive. The risk of the 
hollowed-out utility underscores the importance of technology innovation and 
a higher risk profile when deploying smart grid data analytics. It is the smart 
grid infrastructure and the associated use of the data to inform better decisions 
that will ultimately decrease operational costs related to improved forecasting 
of demand, better ability for customers to manage their loads, enhanced service 
delivery and reliability, and an infrastructure that will allow new cost-recovery 
mechanisms.

1.5.6 To Be or Not to Be

Those with a more philosophical bent claim that utilities are facing an “existen-
tial crisis.” That may sound like journalistic hyperbole, but utilities are indeed 
feeling the pressure of a bewildering collection of calls for enhanced energy 
services, including customer feedback tools, control and automation, cleaner 
energy, and customized rates and bundles for end-user applications such as roof-
top solar and electric vehicles. They really don’t know who they are anymore. 
While utilities begin to remake their business in various ways, they must fun-
damentally build a highly efficient and reliable infrastructure that can cheaply, 
reliably and efficiently deliver electrons. It is the advanced grid that will enable 
new opportunities, such as a move toward partnerships to deliver offerings 
through third parties or a complete restructuring to offer full-fledged energy 
services. No matter what ambition a utility has for its future, all emergent 
paths begin with a smarter grid and the enabling technologies that are found 
in advanced data analytics. Even a commodity approach to electricity delivery 
requires advanced systems that guarantee a platform upon which innovation 
can take place.

The following Figure 1.3 describes this continuum at a high level. It is most 
probable that energy providers will experiment and over time adopt a variety 
of these approaches. It is quite clear that to adapt the network to the two-way 
flow of energy and extend the network to meet the societal demands previously 
enumerated, energy providers must make a bold move toward infrastructure 
rearchitecture and alter how they make decisions across the enterprise—even 
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how they conduct even their most basic business operations. With the sensitiv-
ity toward risk management that is inherent in the industry, bold doesn’t neces-
sarily have to mean destabilization. At the same time, utilities should be wary of 
the call for incremental improvement. This is often just a way of hiding behind 
the fact that many in the industry have a superficial understanding of the issues.

This superficiality of understanding is an honest condition in the indus-
try due to the politicization of energy; climate change, subsidies to energy 
 companies, renewable energy, the business threat of microgeneration, the role 
of fossil fuels, and nuclear generation are all polarizing, bumper-sticker issues. 
With uncertainty surrounding whether these forces will impact the evolving 
utility business, it is no surprise that stakeholders favor an incremental approach. 
Unfortunately, this short-range vision ripples through to the private sector, 
making it very difficult to create affordable or innovative technology products 
or to ramp up production when utility buyers are so difficult to predict. Further, 
when private equity is willing to step in and invest in new technologies, a lack 
of foresight and extreme risk avoidance on the part of policymakers create lost 
opportunities.

1.6 Finding Opportunity with Smart Grid Data Analytics

Given the weak starting position of energy providers from the perspective of 
skills; cash; cultural challenges; and social, political, and regulatory forces, the 

Figure 1.3 The Evolving Utility Built on a Smarter Grid.
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rich and valuable flowing data will continue to pool on the floor until stake-
holders find a place to start that provides an early, quick win but anticipates a 
comprehensive strategy. This requires business planning, a perceptual adjust-
ment, and acceptance of innovation (and the special character of innovators). 
To realize the hoped-for societal gains, economic benefits, and ROI from the 
colossal investments being made in the smart grid, true data science must be 
applied to solving utility challenges both known and new.

Finding the low-hanging fruit is a compelling place to begin, as it helps 
build confidence in the role of data analytics with quick results and drives a fun-
damental understanding of big data, which is necessary for long-range strategic 
planning. Some utilities have found early value in analyzing consumption data 
to improve customer segmentation for improved demand-response targeting, 
revenue protection, and demand forecasting. A few system operators are already 
utilizing powerful data visualization tools to dramatically improve operational 
intelligence and management of their grid. And asset and finance managers 
are getting an improved handle on the impact of distributed generation on the 
system as well as the effects on revenue. 

All of these early steps demonstrate the critical role that smart grid data ana-
lytics brings to bear on the business of delivering electricity. Data analytics and 
scientific innovation are changing attitudes and operations; fully realized, they 
are the foundation for the future of the electric power grid and clean, reliable, 
high-quality power across the globe.
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Chapter Two

Building the Foundation 
for Data Analytics

 

One of the octagonal solar panels on the Phoenix Mars Lander. (Source: NASA1)

2.1 Chapter Goal 

The digital infrastructure of the smart grid is changing the nature of the power 
industry, and advanced analytics are the lever to realize the benefits of this intelli-
gent structure. Traditional approaches to data management and to  managing 
data truth in the enterprise fall short, where new software approaches can bring 
success. This chapter discusses the challenges of creating a highly scalable, easily 
managed, secure foundation for data management, and it explores techniques 

1 Image retrieved from the public domain at http://www.nasa.gov/mission_pages/
phoenix/images/press/SS000RAD_CYL_P_10C70_R111T2_full_001.html.
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that can drive the transformation necessary to meet society’s energy demands 
with a modernized grid.

2.2 Perseverance Is the Most Important Tool

Marilyn Monroe said, “My work is the only ground I’ve ever had to stand on. 
To put it bluntly, I seem to have a whole superstructure with no foundation, but 
I’m working on the foundation.” The utility that is working to implement a full 
range of smart grid technologies understands this problem. Utilities have been 
delivering reliable and safe electricity in a complex environment for decades. But 
now they’re grappling with how to create an entirely new technology infrastruc-
ture on a sophisticated, yet insufficient, baseline that cannot have a moment of 
fault. Serious mistakes and missteps don’t just upset customers who can’t charge 
their smartphones; they have the potential to shut down critical infrastructure 
and cause severe economic disruption.

Making it even more difficult to solve this problem, vendors and innovators 
in the big-data science space are hoping to save the day (and make some serious 
coin), yet they do not always seem to understand the unique challenges of the 
utility industry. This creates strained relationships, slows the pace of imple-
mentation, and leaves utilities in the wild, scrambling to evaluate new tech-
nologies they may not fully understand, assess the consequences of their plans 
and decisions, and identify whole-life costs. In some cases, this slow pace has 
even drummed out hopeful start-ups that couldn’t support such a long deploy-
ment cycle. This creates a difficult market environment. While partnerships 
are crucial in bringing the modernized grid to fruition through smart grid data 
analytics, the project requires the challenging step of building trust between 
old warhorses that can perform a Fourier transform in their sleep and a class of 
agile entrepreneurs who are fast-moving and masters of the sound bite. As if the 
technology problems weren’t hard enough, this cultural and social chasm is a 
major problem for the industry.

Building a sustainable foundation upon which to realize the benefits of the 
smart grid requires bringing the best minds from the utility, big data manage-
ment, and data science worlds together. It’s really up to utility leaders to create 
these vital relationships by helping their partners understand their mission and 
values. Despite remarkable success with numerous smart meter implementa-
tions, many utilities are trying to move forward with an overall smart grid strat-
egy, but they’re slowed by a seemingly perpetual science experiment of small, 
multiyear pilots, lab trials, and troubled implementations that stress and even 
destroy partner relationships. 

Times are changing, and this means utilities can no longer go it alone, 
no matter how passionate and committed they may be. The talent needed to 
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 succeed will come from many players, including power engineers, business spon-
sors, project managers, implementers, entrepreneurs, traditional and nontradi-
tional vendors, and their investors. Under the leadership of the utility, partners 
must rise above the concept of a “negotiated contribution” and work with these 
partners to develop a shared vision of what can be accomplished by combining 
talents under the auspices of a common mission.

As the world’s most famous starlet understood, when pretense is put aside, 
it’s never the wrong time to push forward to improve the fundamentals.

2.2.1 “It’s Too Hard” Is Not an Answer

Clearly, “doing analytics” can be extremely complicated and costly; the  barriers 
are both real and perceived. Fear is a completely reasonable response when faced 
with the challenge of achieving returns from high-performance analytics on the 
needed scale for a satisfactory return on investment (ROI) in a timely manner. 
Data science is hard, and so are governance, compliance, and securely manag-
ing sensitive data. There is no way around the fact that implementing  analytics 
requires investment and commitment from the organization, with the only 
guarantee that there are no easy answers. 

Apart from a strong character, the utility stakeholder who wants to drive the 
benefits of data analytics into the utility needs to:

• Implement infrastructure improvements
• Deploy and develop analytical software and models
• Hire data scientists who understand the domain
• Generate results

Most importantly, the utility must find a way to minimize risk so that an 
analytic program can be engaged that will reduce the scope of uncertainty in 
embarking on what for many is an entirely new undertaking. Analytics surely 
can enhance customer service, business performance, operations, and overall 
profitability, but long-term pain is likely if the underlying logical architecture is 
not designed from the outset to be flexible and scalable.

2.3 Building the Analytical Architecture

A fully transformed grid requires a digital infrastructure that won’t drain the 
enterprise by overly focusing on information technology at the cost of analyti-
cally driven strategic initiatives. As such, a well-conceived analytical architecture 
is derived from both the business strategy and the characteristics of the  network. 
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Before an appropriate data management solution can be comprehended, existing 
and future business needs must be identified, along with a complete assessment 
of the types of utility data that will be managed. Establishing this groundwork 
is essential to defining an architecture that can accommodate business require-
ments, measurement strategies, and the overall grid structure. 

In the early phases of smart grid data analytics, utilities may be tempted 
to inventory existing data from various systems and design discrete questions 
about the business or operation that can be answered by the data. However, 
this approach fails to capitalize on one of the most important goals of data sci-
ence: to uncover the unknown. It also encourages a philosophy of incremental 
improvement. This may be a reasonable approach due to budgeting cycles and 
project management interests, but it deserves pause and careful consideration. 
Incremental, or serial, approaches that are blind to the preponderance of data 
flowing into the utility will result in a costly patchwork of implementations that 
will not meet the needs of the utility over time. 

Think about it: You’d never attempt to build a house without a set of plans 
that documents accurately and unambiguously what is to be built. Further, an 
expectant homeowner isn’t likely to plan and build a kitchen and then attempt 
to construct a home around it, room by room. Worse, you’re not going to ask 
your son to go away and design the bathroom, your wife to design the hall, and 
your daughter to lay out the dining room in the hopes all the rooms fit together 
in the end. The builder needs to understand all the defining features of the site, 
the structure, and its mechanisms. Only with that knowledge will an architec-
tural blueprint convey adequate information to realize the design. These same 
principles should hold true when designing the analytical architecture. 

As described in Figure 2.1, the sources of data and how they will be col-
lected, stored, and organized defines how effectively that data may be analyzed 
and shared as information for both operations and enterprise functions. And it 
is clear that to be effective, any solution must have profound ability to scale with 
controlled costs: As utility data generation becomes cheaper with commoditized 
digital equipment, and as throughput increases with bigger pipes, only data 
management is the greatest constraint. A well-designed system helps diminish 
limitations and allows the utility to focus on the practice of data analysis, where 
a lack of appropriate action can be critical and costly.

Figure 2.1 Data Management Process.

Collect Store Organize Analyze Share 
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2.3.1 The Art of Data Management

Data management is an extremely rich and complex topic in its own right and 
encompasses a number of professions and technical competencies. According to 
the professional data organization Data Management International (DAMA, 
www.dama.org), the full data management life cycle includes “the development 
and execution of architectures, policies, practices and procedures that properly 
manage the full data lifecycle needs of an enterprise.” Data governance, archi-
tecture, security, quality, and deep technical data management issues, including 
the entire data management framework, are topically outside the scope of this 
book. However, certain data management topics lend a more complete under-
standing to the subject of data analytics as derived knowledge and information, 
and these are addressed in the following discussion.

2.3.2 Managing Big Data Is a Big Problem

As we try to dodge the barrage of acronyms inherent in technology, it is clear 
that enterprise architecture is a bucket of obscure references. It’s hard for anyone 
who is not a specialist to even begin to conceive of a data architecture project, let 
alone grasp arcane terminology and concepts. The despairing result is to leave 
it to the experts.

Hopefully, the experts that the utility works with will know plenty about 
data management and the special requirements of the analytics architecture. It 
is not the intention of this book to choose vendor solutions but, rather, to inform 
an educated discussion about what the best solutions might look like. Predicting 
or recommending the right data management techniques without understand-
ing the unique nature of any particular utility is a fool’s game, especially as soft-
ware vendors and integrators rush to provide new solutions and remake legacy 
approaches. The big data/analytics realm has clearly been  recognized as a robust 
market opportunity. Setting the direction for an analytics program requires 
an informed perspective; to make good choices in selecting technology and 
technology partners, utility stakeholders must understand a little bit about data 
management challenges, solutions, and the potential issues and limitations of 
these approaches. 

2.3.3 The Truth Won’t Set You Free

In the regulated world of the utility, where there is very little room for error, the 
quest for order and compliance is the dominant driver. And where there are so 
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many functions within the enterprise, enabling interdependence through data 
integration has significant traction. It is logical to think that enabling the data-
driven enterprise is dependent on the veracity of the data. The utility sector has 
always been pragmatic, and there is nothing more sensible than wanting a trust-
worthy view of the business. As you’ll see, when it comes to data management, 
the truth is a matter of perspective.

The Single Source of Truth (SSOT) is an information systems theory that 
asserts that every data element in the enterprise should be stored exactly once, 
preventing the possibility of a duplicate value somewhere in the distant enter-
prise that is out of date or incorrect. When a particular piece of data is required, 
SSOT defines where that data lives and how to get it. This is the uptight sibling 
of the Single Version of the Truth (SVOT), where multiple copies of data exist 
because of recognized data silos but are “resolved” when truth is requested. 
SSOT and SVOT are often confused with single source of data (SSOD), where 
enterprises consolidate data to serve as the canonical source of fresh and accu-
rate data. SSOT and SVOT are intended to free locked-up data wherever they 
reside in disparate sources across the enterprise for the greater good of data 
accuracy and consistency.

Many utilities implement a combination of a data warehouse and a master 
data management (MDM) system to standardize the truth. In this case, the 
data warehouse is usually considered to be the SSOT or SVOT. Data ware-
houses allow for the aggregation or congregation of data from multiple sources 
(including other databases) to provide a common repository of the data regard-
less of its source, thus, the single source. The MDM system governs the master 
data residing in the warehouse by brokering data from multiple sources, remov-
ing duplicates, and cleansing data to ensure consistency and control.

Although there is a ubiquitous passion in the industry to create this golden 
source of truth out of chaos (an example of which is described in Figure 2.2), 
master data may not be a silver bullet. It forces a normal perspective on data 
that may or may not be correct for the myriad users who access the records, and 
it can slow down loading and access to real-time data. For example, while both 
technically “customers,” the customer who pays the bill is a financial buyer to 
the revenue manager, and the customer whose house doesn’t have power is a 
technical end point to the field technician. A rigid version of the truth doesn’t 
easily accommodate this variance; it takes a lot of money and time to build this 
kind of system, and it can be equally expensive and complex to maintain and 
customize when the truth needs a schema change.

Many data management experts wonder aloud if it’s even possible—or 
wise—to attempt to create an SSOT in the enterprise. And unfortunately, this 
persistent desire for truth draws attention and resources away from solving busi-
ness problems. Stephen Colbert satirically captures this propensity well when he 
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defines “truthiness”: “We’re not talking about truth, we’re talking about some-
thing that seems like truth—the truth we want to exist.”2

As a way of managing data chaos, it may be less difficult and more advanta-
geous to seek to provide context for the extremes in utility data and users. The 
real challenge for the utility is to become comfortable with the fact that the 
most orderly integration may still fail to correct all data integrity problems and 
will certainly fail to adequately serve all users. At the risk of sounding obvious, 
the utility’s best choice is to consider architecting a system where the right data 
is delivered at the right time. This means eschewing orthodox data management 

Figure 2.2 A Single Source of Truth for Smart Grid Devices and Systems.

2 “Stephen Colbert Has America by the Ballots” (n.d.), New York Magazine. Retrieved 
October 8, 2013, from http://nymag.com/news/politics/22322/index1.html.
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practices for the benefit of advanced analytics problems where the data scientist 
is searching for something new and not yet understood or defined.

It can be uncomfortable to be dynamic and adaptive, but when core business 
practices are challenged, it is imperative. The art and science of data analytics 
is like listening to music: Why do audiophiles seem to appreciate vinyl so much 
over compressed digital audio? Vinyl offers higher fidelity, and the result is a 
more faithful rendition of its effect, technically because it contains the whole 
sound wave, which a digital signal can only approximate.  If the utility stan-
dardizes and normalizes all enterprise data by pushing it into a single version of 
the truth (such as the data warehouse), the ability to find the remarkable signals 
in the data is lost. Data scientists are information anarchists of sorts, and they 
need the latitude to consider chaos and decide what is useful to them to help 
solve the problems at hand. 

This is a sticky wicket for the utility: For transactional systems, governance, 
security, and predictable business process flow, unified versions of the truth 
may indeed be a worthy goal. But when it comes to advanced analytics, a single 
enterprise taxonomy will not suffice. Well-tested and predictable legacy data 
management approaches are in no way irrelevant; in fact, several integrators are 
finding ways to adapt existing systems to the needs of big data. The point is it 
may be time to shake off long-held assumptions about data management so that 
compliance does not inadvertently drive data irrelevance.

2.3.4 One Size Doesn’t Fit All

Part of the reason this really matters in the domain of analytics is that one 
size will never fit all. Even in one organization. And this is terrifying to IT 
teams that are enjoined in a day-to-day struggle with technical debt. Stressed 
IT  leaders will push the organization to build analytics on top of their existing 
stack and attempt to cobble together applications that will answer the business 
need for “analytics.” Far short of true data science, this is an endemic problem in 
IT management, and many utilities will fall prey to standard solutions, such as:

 1. Buy packaged software and customize it to fit the utility’s needs.
 2. Hire an integrator to build a custom solution.
 3. Use cloud services with analytics applications as a way to “bridge the gap.”
 4. Do nothing.

Each of these approaches has its own concerns, including exorbitant deploy-
ment, maintenance, and operations costs; the “I built your software and now 
you’re my hostage” situations; loss of control; or simply lost opportunity. These 
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are not new problems, but analytics presents a special challenge; simply distrib-
uting data to users with standard processes will prevent an analytics program 
from realizing its full capabilities and benefits. In fact, it won’t even come close. 
Analytics requires context-specific approaches to solve business problems as 
they arise, address operational issues in the moment, and find new efficiencies 
that can improve the bottom line and deliver a more reliable product. 

It seems that we’ve put a lot of effort into figuring out what doesn’t work 
effectively for a scalable analytics architecture that will serve the utility well over 
time. But, what may appear to be a fairly pessimistic view of application strategy 
actually helps lay the groundwork to confidently move forward with a course of 
action. Like people, technology evolves. The burgeoning analytics architecture 
in the utility is informed by all of the aforementioned responses, but we must 
shift our attention away from legacy or prepackaged solutions to discover how 
to deliver data to context-specific needs. This is really the only hope we have to 
meet the needs of high-performance analytics. And, yes, the beginning of that 
answer rests with another bunch of letters—API.

2.3.5 Solving the “Situation-Specifi c” Dilemma

API is the initialism for application programming interface (most people just 
say the letters A-P-I, as opposed to “app-ee,” “ape-y,” or “app-eye,” which are a 
bit inelegant). API, once solely a technical term to describe how software com-
ponents talk to each other, is now a way to describe a channel to retrieve the 
right data at the right time, wherever it resides and in whatever form it exists. 
It’s really a system of software hooks that allow access to the data of  interest 
 residing in the underlying system, all without having to change the system 
infra structure or a monolithic application. In essence, the API extends data 
to any authorized part of the organization (or to external parties) without ever 
exposing the underlying source code or master data. It is also the best mecha-
nism for the utility to reach outside its confines to access third-party data to 
strengthen their analytic findings.

Integrating with the World

A story is begging to be told. This story describes how a company went from 
online retailer to an Infrastructure-as-a-Service (IaaS) powerhouse worth over 
USD $122 billion in 2013 by learning to effectively use APIs (sometimes called 
a “service interface”). This bit of private history became public when former 
Amazon engineer Steve Yegge posted an internal memo on Google+ with the 
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wrong sharing setting. According to Yegge, one day in or around 2002, Jeff 
Bezos, CEO of Amazon, issued a so-called Big Mandate that was quite exten-
sive, but included the following points:

• All teams will henceforth expose their data and functionality through service 
interfaces.

• Teams must communicate with each other through these interfaces.
• There will be no other form of interprocess communication allowed …
• Anyone who doesn’t do this will be fired.3

Those who did not refuse the gambit saw their stock options soar, as Amazon 
enables killer apps—including Reddit, Coursera, Flipboard, Fast Company, 
Foursquare, Netflix, Pinterest, and Airbnb—to be built over and over on its 
cloud infrastructure. No one except Jeff Bezos knows for sure why he had the 
foresight to push an online book retailer toward a service-oriented architecture 
(SOA), what is now simply called a “platform.” Perhaps it was the realization 
that Amazon would never be all things to all people, or maybe it was just a 
grand experiment. Nevertheless, what became obvious was that a collection 
of various self-contained units of functionality collected into services could 
be combined in many ways to create multiple unique applications to meet the 
needs of the API consumer.

2.3.6 The Build-Versus-Buy War Rages On

No one is suggesting that utilities rush to deploy critical infrastructure or sen-
sitive applications on the Amazon cloud. That’s not the point. The point is 
that there is plenty of solid evidence that a platform approach—using a robust 
API—is a flexible and secure approach that can accommodate the fluid require-
ments of data analytics applications. In fact, it could—at the right price—be 
the ideal approach for analytics: flexible for the data consumer, easily secured, 
and able to accommodate both custom and packaged application projects. 

The development approach to meeting unique application needs used to 
be called “bespoke software” (in reference to tailor-made clothing constructed 
to a user’s specifications), and it allowed applications to be developed quickly, 
cheaply, and even more securely than commercial off-the-shelf (COTS) software 
or canned platform applications. Bespoke software gave us flexibility, but it also 
was often risky, expensive, and took a long time to develop. A better alternative 

3 John Furrier, “Google Engineer Accidently Shares His Internal Memo About Google + 
Platform,” SiliconANGLE. Retrieved from http://siliconangle.com/furrier/2011/10/12/
google-engineer-accidently-shares-his-internal-memo-about-google-platform.
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to both bespoke and COTS development is the concept of sharing components 
across many different business lines and across functional silos. Preconceived 
analytical applications will always require customization to meet utility needs, 
and it is an absolute that customization will be expensive, resource intensive, 
and likely to create unintended security loopholes. Figure 2.3 describes in gen-
eral how sharing components changes the focus from the heavy lifting and 
security concerns of monolithic application development toward user needs.  

Utilities have long used integrators for custom projects, and this often results 
in high initial costs for system design, coding, and deployment, as well as steep 
maintenance costs over the lifetime of the software; this is work that usually 
stays with the integrator because no one else really understands it. The expense 
and locked-in nature of custom development are at the root of the raging argu-
ment that has gone on for decades in business computing: build versus buy. 
Enterprises can’t afford this level of custom development and maintenance, yet 
COTS is inflexible, expensive to customize, and hard to upgrade once custom-
ized. Neither choice provides the kind of rapid ROI required in today’s financial 
ecosystem and crimps strategic innovation. 

The demands of enterprise-class data management have the potential to lock 
out financially constrained utilities from the opportunity to benefit from an 
effective analytics strategy. This lack of ability to make the required expendi-
tures can also slow the pace of innovation in the sector. Early big-data players 
are orienting their offerings toward more immediately lucrative opportunities 
such as the financial services industry, healthcare, government, and retail. The 
reason is obvious: The utility is slow moving and can be perceived as draconian. 
Furthermore, the diverse economic constructs and regulatory forces within the 

Figure 2.3 Example of Sharing Components Through a Service Layer.
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industry are difficult to cope with; application providers and integrators have a 
hard time identifying the key industry requirements that allow them to build 
cost-effective solutions. 

Given boundless financial, IT, and infrastructure resources, utilities would 
likely always select the bespoke way. But, a more reasonable solution from ROI, 
speed-to-integration, and long-term viability perspectives is packaged software 
that can be quickly customized to meet unique requirements (including finan-
cial constraints) without impacting a forward migration path. This is possible 
with the use of reusable application services that can be adapted and extended 
to create many distinctive applications. 

Traditional bespoke projects require cadres of programmers who understand 
the underlying data structures, relationships, and workflows, but an applica-
tion platform automatically handles arcane issues, including data quality, data 
consistency, and security. And it is by far more quality assured, consistent, and 
secure to solve these challenging issues in one place rather than within many 
applications. Programmers instead focus their skills on responding to business 
demands and building useful applications, including applications that can read-
ily link to service layers from a variety of sources, converging and mashing data 
from disparate systems to create a richer, more valuable result.

Currently, there is one predominant model that meets these needs: a plat-
form approach. A platform provides more than just packaged applications. A 
platform can be thought of as the foundation upon which to build applications 
complete with the required computing operations. This amounts to an  analytics 
engine combined with a services layer, as well as a toolkit to integrate the cus-
tom applications built on those services. While a hosted infrastructure that pro-
vides facilities, power, and bandwidth is one way to achieve this, because of 
cultural and governance challenges, utilities are also experimenting with other 
methods to incorporate a platform approach, including licensing schemes and 
preloaded appliances that are managed for the utility but that physically reside 
within the enterprise.

No matter where it lives, this so-called Analytics-as-a-Service approach 
(some vendors use the AaaS acronym; we will avoid that, as we await a more 
clever marketing touch) is beginning to make a lot of sense. Some of these pro-
viders are even offering analytical packages that can be easily customized to help 
utilities get started with their analytics efforts, especially for more- normalized 
problems like advanced load profiling and meter analytics. 

2.3.7 When the Cloud Makes Sense

These platform providers will encourage utilities to use cloud offerings because 
there are financial and operational benefits inherent in economies of scale for 
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both parties. We have moved beyond the hype and the buzz, and the managed-
services market has matured to the point where there is real opportunity to 
recognize business value from the cloud for both the provider and the customer. 
Noteworthy hosted offerings are working for many utilities that include tools 
to probe for greater demand-response opportunities by analyzing building-level 
profile data with publicly available consumer data, end-use disaggregation ana-
lytics, and very powerful visualization tools for grid operations. Utilities that 
first used cloud solutions to bridge the early gap with the intent to bring up their 
own in-house solutions are finding tremendous value, and over time the risks 
have been managed to meet their initial concerns.

Still, the reservations about handing over vital information to a cloud pro-
vider are neither insignificant nor unwarranted. While cloud solutions are 
gaining traction, there are reasonable issues related to losing direct control of 
sensitive data as well as meeting the requirement to comply with security and 
privacy mandates. Because they obscure visibility into how they secure and store 
data, managed-service providers are sometimes their own worst enemy. If these 
providers want to succeed, they must earn the trust of the utility sector by 
eliminating real vulnerabilities and ensuring that data is secured at every level.  
Cloud application and platform providers must be willing to undergo data secu-
rity audits that prove their adherence to security standards. They should also 
perform regular penetration testing, maintain a track record of high availability, 
and provide disaster-tolerant data centers. 

It is not surprising that utilities, as careful adopters of new technology, have 
been slow to embrace the cloud, preferring to manage the infrastructure and 
applications from within the enterprise. Even if the cloud is perfect for a start-up 
project looking for a leg up, when will it be a feasible option for the utility? It’s 
complicated; the economic advantages have been slow to develop, but down-
ward pressure is increasing and driving down costs. However, data governance, 
security, privacy, and loss of control over sensitive data continue to be barriers. 
The need for advanced analytics may be the turning point. With the impera-
tive to drive smart grid data applications into the utility with a rapid ROI, the 
significant cost savings and nontrivial productivity boost make it impossible not 
to seriously consider the cloud as a viable option.

Figure 2.4 describes how an analytically oriented platform is approached, 
from source to the production of useful intelligence. In later chapters, we will 
dive deeper into the elements of the big data platform, analytics, and the trans-
formation of data into actionable intelligence. For now, it is important to reflect 
upon the substantial operational competencies that are required at each level of 
the architecture. Only in a platform environment can the benefits of accumu-
lated economies of scale exist.  

The real issue for the utility is focus: Does the utility want to focus on 
expanding its information technology competences, or are there better long-
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term benefits to be achieved by focusing on business, reliable grid operations, 
and strategic issues? The answer to this question goes to the heart of the chang-
ing business model for the power delivery industry; utilities are likely to face a 
fork in the road where they must decide to be a wires-and-digital infrastructure 
for an intelligent network and begin developing and enabling partnerships that 
leverage that network, or turn toward bringing the capabilities online that will 
allow them to operate as a full-fledged service entity. A flexible approach to data 
analytics architecture will make the transition easier when that day arrives.

2.3.8 Change Is Danger and Opportunity

Building the foundation for an enduring data analytics program within the util-
ity is not trivial. The entire scope of the company must be considered, includ-
ing operations, business functions, and customer service operations. Unlike 
many IT projects, the determinations that utility stakeholders make about how 
to design their analytics architecture affect the future ability of the utility to 
do business in a cost-effective and efficient manner. Utilities in the era of the 
 modernized grid are more than just poles-and-wires companies. Instead, they’re 
at the center of a complicated and critical energy Internet (sometimes called the 
Enernet). Smart grid data analytics are changing the nature of how the utility 
makes every decision, and done poorly, it will inhibit the agility of the utility 
and prevent the realization of the effort to modernize the physical grid. 

The science of smart grid data analytics is irrevocably altering the power 
industry, and it is simultaneously rife with possibility and risk. How load is 
 balanced, outages detected and corrected, distributed energy resources inte-
grated and managed, energy purchased—even the nature of energy demand—is 
changing with the need for greater reliability, financial constraints, automa-
tion, and the desire for more-accurate, but quicker, decisions. That is the super-
structure that depends on a well-established data analytics foundation.

Some Questions to Ask When Thinking 
About a Data Analytics Strategy

How capable is our IT staff of taking on a major business initiative?

What kind of contractual commitments do we have for our existing data 
management solutions?

How are we prioritizing data analytics as they pertain to operations, business 
effi ciencies, reliability, and fl exibility?

How much does our current data management process cost us? 

What will it cost to scale our process to meet the needs of our smart grid initiatives?
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Chapter Three

Transforming Big Data for 
High-Value Action 

 

Dr. Thomas O. Paine (center), NASA administrator, several NASA offi cials, and others 
applaud the successful splashdown of the Apollo 13 crewmen. (Source: NASA1)

3.1 Chapter Goal

In this chapter, we build on the earlier concepts of the data analytics architec-
ture and examine the role of algorithms and data presentment as well as the use 

1 Image retrieved from the public domain at http://images.jsc.nasa.gov/luceneweb/
fullimage.jsp?photoId=S70-35148.
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of  visualization to achieve a fully realized data analytics program. The goal of 
this chapter is to solidify for the reader the foundation for understanding how 
to use analytics to drive value from the smart grid. The topics introduced in this 
chapter are the keys for later discussions on applications and implementation 
issues. Smart grid data classes are also examined, as is the processing layer of the 
analytics architecture.

3.2 The Utility as a Data Company

Utilities are already skilled at acting upon familiar, structured data at a very 
large scale. Using data to make critical operational and business decisions is not 
new to the industry, and to assert otherwise is to deny the efforts that the utility 
makes every day in delivering reliable electricity. Managing resources, forecast-
ing supply and demand, and administering demand-response programs, among 
many other functions, are all done today with the support of data analysis and 
automation. However, ongoing electrification goals, the significant addition 
of renewables, zero-emissions load balancing, flatlined revenue, and energy- 
efficiency mandates require more-accurate information, more-refined control, 
and tighter feedback. More-advanced forms of data analytics are required to 
achieve these goals.

While well-understood structured data will always be the foundation of a 
comprehensive data analytics program, much of the promise of smart grid data 
analytics based on the future of the more observable grid is the ability to lever-
age unfamiliar data sources and unstructured data. These forms of data, consid-
ered in aggregate, are very valuable for business analyses and operational rapid 
response. In many ways, the smart grid, with its variety of measurements, is an 
incredible opportunity for data scientists to make serious contributions to the 
industry and to society through key discoveries that improve operational and 
business advantages.

One of the most important goals of advanced analytics is to automate high-
volume decisions across the utility, producing results that are dependably fast, 
accurate, and adaptable. As we discussed in the previous chapter, finding data 
analytics solutions based on the context and characteristics of a combination of 
many classes of data helps meet the needs of energy traders, transmission and 
distribution (T&D) operations, customer service, and the business. And with 
analytics, the sum is greater than the parts. As an example, transformer mea-
surements have different uses depending on how they are analyzed: The data 
associated with the temperature of a substation transformer will be used differ-
ently in asset analytics management applications than the data from an opera-
tions alert that the transformer-monitoring nodes have identified anomalous 
measurements that require immediate action.
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In the previous chapter, we discussed the challenges of developing an 
 analytics architecture that includes flexible tools to help create flexible soft-
ware for the enterprise. We also explored data management and integration 
approaches that help the data scientist make the most of every available data 
source. There are other important considerations that are required to ultimately 
transform data into actionable intelligence. These include the algorithms that 
drive improved predications and analyses and the transformation of those find-
ings into actionable information.

3.2.1 Creating Results with the Pareto Principle

Vilfredo Pareto was an Italian economist and the father of the 80–20 (or Pareto) 
principle. First he observed that 80 percent of the land in Italy was owned by 
20 percent of the population, and later he observed that 20 percent of the pea 
pods in his garden contained 80 percent of the peas. The 80–20 rule seems to 
have endless applications, such as 20 percent of the customers accounting for 
80 percent of the sales, 80 percent of the results achieved by 20 percent of the 
group, and, of course, 20 percent of a company’s staff accounting for 80 percent 
of the production. 

For utilities that wish to quickly implement smart grid data analytics, we 
can see the Pareto principle operating in two distinct ways:

 1. Algorithms designed to solve a smart grid problem will usually provide 
about 80 percent of what a particular utility needs, but they’ll require 20 
percent customization.

 2. Data analytics applications designed specifically for the smart utility will 
be about 80 percent useful but will require 20 percent customization, 
especially when it comes to visualizing data.

The Pareto analysis has been used over and over again by management as 
a way to improve productivity, quality, and profitability by focusing on what 
matters most—mastering the 20 percent. For the utility, it reminds us to focus 
on finding and delivering quality and broad value in analytics as opposed to 
fixating on the infrastructure.

In fact, the Pareto principle teaches us little more than the fact that very 
few things in life are distributed evenly. It’s an observation, not a law of nature, 
but it drives a focus on quality. For the utility that needs the most bang for 
the buck in a very short time frame, focusing in the critical 20 percent may 
be a business saver. Instead of trying to solve the entire analytics puzzle from 
scratch with the aim of unique perfection, utilities should create partnerships 
that allow them to focus on the strategic implementation of data analytics that 
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help solve  well-defined business problems. The Pareto principle doesn’t mean 
only 80 percent of the work is valuable—all 100 percent is required in order for 
the program to work—but attention should only be paid to the efforts that will 
generate rapid results.

3.3 Algorithms

Using the broadest definition, an algorithm is a set of computational steps that 
takes input in the form of values and transforms those values into some output. 
It is the context of the problem that defines the relationship between the input 
and output. The algorithm itself describes the specific process for achieving that 
relationship. It is expected that the algorithm will produce the correct output 
(although incorrect algorithms do have some use, we will not concern ourselves 
with those here). The only real requirement for an algorithm is that it pro-
vides a precise enough description of the intended procedure to be carried out.2 
Obviously, as long as there have been problems, there have been algorithms to 
solve them. Computers just make it easier and faster, and they provide an almost 
infinite landscape of possible solutions.

Many of the smart grid–specific problems may be in their infancy, but as 
with any interesting problem, there are many candidate solutions based on what 
we already know about solving computational equations. Even the Human 
Genome Project, which has set out to identify all 100,000 genes that make 
up human DNA—a process that requires very sophisticated algorithms—uses 
well-known and well-understood  methods to solve its problems. And it’s not 
just data analysis that requires algorithmic treatment; the storage and manage-
ment of massive data sets (3 billion chemical base pairs, in the case of our bio-
logical matter) also demand this step-based mathematical approach.

There are a huge number of classification schemes for algorithms. Classifying 
knowledge is never an easy task. Schemes for algorithm classification include 
purpose, complexity, design paradigm, and implementation. However, given 
the way utility data can be repurposed for many problems, architects will likely 
find it useful to classify algorithms according to the problem they’re trying to 
solve. For example, an algorithm might use weather forecasting, seasonal vari-
ability, and demographic data as input data and create output in the form of 
optimal power-flow optimization metrics for managing a variable power source. 
This algorithmic approach could then be classified as a distributed generation 
process. That same input could also be used for customer demand modeling, 

2 Th omas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Cliff ord Stein (2009), 
Introduction to Algorithms, Th ird Edition, Massachusetts Institute of Technology.
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in which case it’s then a demand management process. Such a classification 
approach helps break down functional silos in the grid to focus on business 
problems that solve operational, business, and customer problems.

3.3.1 The Business of Algorithms

In the business of data analytics for the smart grid, “algorithms” is also a term 
used to capture an aspect of a commercial product that’s designed to address 
specific functional needs within the utility. Thus, when a utility is working to 
identify the best solution for its needs, understanding how a vendor implements 
algorithms is instructive in identifying the right tool or approach that will work 
across the system as well as the best application of data science to solve utility 
problems. Products may include “intelligent control algorithms” or “scheduling 
algorithms.” The key is to try to understand algorithms from the perspective 
of how utilities use them, what their input and output are, and how their usage 
maps to a distinct business need. 

One of the challenges with the purpose-based algorithmic viewpoint is 
properly framing the suite of utility problems. A business perspective is always 
the right place to begin and helps keep the focus on designing impactful 
solutions with measurable return on investment (ROI). As a starting point, 
classifying the characteristics of utility data available for problem solving is 
necessary to identify how that data can help solve the utility’s business and 
operational needs. Taken holistically, this effort will drive an overall analytics 
scheme that defines not only what can be analyzed but also where and how to 
best collect that data.

3.3.2 Data Classes

A recent industry analysis of utility data showed the usefulness of grouping util-
ity data into several classes and their characteristics. These five data classes are 
the basis of the data classes enumerated in Table 3.1.3

The business value of each of these data classes varies depending on how 
they’re used across the utility, and as discussed previously, the underlying sys-
tems architecture will need to reflect those uses. Advanced data analytics often 

3 Jeff rey Taft, Paul De Martini, and Leonardo von Prellwitz (2012), Utility Data 
Management & Intelligence: A Strategic Framework for Capturing Value from Data, 
Cisco Systems, Inc. Retrieved October 4, 2013, http://www.cisco.com/web/strategy/
docs/energy/managing_utility_data_intelligence.pdf.
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use data in new ways. Consumption data is a prime example of a data source 
that can be used to calculate real power (the actual power consumed by the 
load) to support operational requirements; it’s also used for billing, to evaluate 
asset utilization and maintenance, and to inform overall planning. In fact, it is 
the ability to repurpose data that enables positive economic outcomes for the 
smart grid. Data that is used in as many ways as possible can support many 
outcomes and potential benefits.

Data Type Description Functional Characteristics

Telemetry Continuous fl ow 
measurements of grid 
equipment parameters and 
other grid variables 

Telemetry allows the remote 
measurement and reporting of 
grid sensors. This kind of data is 
used for measurement that may 
be analyzed or used by control 
systems

Oscillographic Data made up of voltage 
and current waveform 
samples that can create a 
graphical record

Oscillographic data may be 
pushed continuously or pulled 
through the communication 
network. The data is often 
consumed close to the 
collection point by other 
systems or may be carried back 
for postprocessing

Consumption data This is most often smart 
meter data, but any node 
that measures usage data 
may be included

Consumption data is used for a 
variety of reasons, including 
billing and computing aspects 
of demand. This kind of data is 
collected and reported in 
varying time frames from 
seconds to days

Asynchronous 
event messages

Grid devices with embedded 
processors generating 
messages under a variety of 
conditions, both as 
responses and commands 

By its very nature, this data is 
bursty. This class of data is 
challenging because the burst 
rate is undefi ned and many 
devices may respond to the 
same grid conditions

Metadata Any data that is used to 
describe other data

Grid metadata is extremely 
varied and may include sensor 
information, location data, 
calibration data, node 
management data, and other 
device-unique information

Table 3.1 Five Classes of Utility Data

Adapted from http://www.cisco.com/web/strategy/docs/energy/managing_utility_data_
intelligence.pdf, with permission.
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3.3.3 Just in Time

Closely related to classes are the temporal aspects of data, or latency. Latency is 
the time delay of data movement within the system and is constrained by the 
maximum rate that information can be transmitted on a system as well as the 
amount of data that can be in motion at any particular time. Different opera-
tions have different tolerances to latency, and operations in particular may be 
sensitive to high latency. Every workflow is subject to latency, and, in fact, there 
may be multiple types of latency in effect during a particular system operation. 
Take a very simple example: It takes me 3.5 hours to travel by plane from my 
home in Colorado to Washington, DC. Even if there are 250 people on my 
plane, it’s still going to take 3.5 hours. My latency does not change based on 
how many people are traveling with me. All 250 passengers will leave and arrive 
together. Once the plane lands and the crew is turning the jet around, the clean-
ing takes about 30 minutes and refueling takes about 15 minutes—altogether, 
45 minutes of latency. However, if the cleaning and refueling happen at the 
same time, then my latency is reduced to 30 minutes, demonstrating, in some 
cases, latency can come at a bargain.

Latency considerations are extremely important in building a data analyt-
ics architecture. In fact, the failure to effectively manage latency can result in 
abject failure of the analytics program. If necessary data cannot be accessed in a 
timely manner to meet the goal of the analytics workflow, the application will 
fail. Because they can easily  create a choke point in the system, data storage 
methodologies—coupled with latency—must be planned for and their depen-
dencies avoided. 

One of the biggest surprises to data scientists new to the utility system is the 
fact that many forms of grid data may have a data life span of microseconds, 
may never be logged, or may be overwritten at regular frequencies. Protection 
relay and senor data used in closed loops is used and then discarded. Also, 
telemetry data and asynchronous event messages may be stored in first-in, first-
out (FIFO) queues or circular buffers where other applications may pick them 
up for use, stamping out the raw data as the queue or buffer refills. Transient 
data is very common, because only the freshest data is valuable in managing the 
state of the grid. In many utilities, only data that has been incorporated into 
business intelligence applications, or data that is subject to regulatory archival 
time frames, may be pulled into the data repositories or warehouses. 

This is by design because no centralized data storage model will satisfy the 
needs of very low-latency controller systems. This data is dynamic, often used 
very close to the point of generation, and was never designed to be carried to the 
enterprise data center. Until the popularization of the smart grid and distributed 
generation processes, the utility system had been managed deterministically. 
Now stochastic models of operation are becoming the norm. 
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For analytics that involve operations, energy trading, real-time demand 
response, or asset management, analytic models assume that the necessary data 
will be available for some period of time. This is part of the data management 
challenge. The evolution of the grid from hierarchical to distributed, with the 
wide variety of data classes and latencies, creates an incredibly complex data-
processing and analytics environment. Multiple schemes and a flexible architec-
ture are required to accommodate the instantaneous triggering of actions based 
on rapid-fire analytics to long-range planning. These tools are being imple-
mented now, and important new applications are taking advantage of this data 
across multiple business processes.

3.4 Seeing Intelligence

Leaving aside for the moment the vagaries of analytics designed for automation, 
the best way to transform big data and analytic opportunities and results into 
intelligence is a matter of context; what’s most important is that the human 
being, who needs the information, can effectively understand, work with, and 
take appropriate action from the presented information. Transforming big data 
analytics into actionable information, especially with the complexities and 
demands for near-real-time awareness, requires the use of geospatial and visual 
modalities. In many cases, this is also true for downstream analytic applica-
tions as utilities work to comply with regulations, meet customer demands, and 
develop more-reliable services.

In the operational environment, access to distributed network sensors and 
assets has greatly simplified the detection of issues and situations on the grid. 
Though not widely deployed yet, grid operations systems that can process huge 
volumes of data in a range of formats and frequencies in real time are becom-
ing a reality. Furthermore, by displaying disparate data classes in a visual and 
geospatial orientation, operators can see information across space and time to 
facilitate monitoring, rapid analysis, and action.

In the context of business intelligence, visualization is also an important 
tool, and nearly every vendor in the big data ecosystem that focuses on analytic 
tools and presentment provides some sort of visual access to data and intelli-
gence. Within this emerging ecosystem, both horizontal and vertical platform 
providers are opening their end points to databases and end-user tool sets for 
maximum flexibility. In addition to visual environments, downstream smart 
grid data analytic applications enable reports, ad hoc queries, dashboards, other 
analytical models, and data exploration in a variety of presentment metaphors. 
Figure 3.1 describes how data flows from processing to presentment through a 
series of steps that helps best describe analyzed information.
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In the distributed environment and with heightened concern about effi-
ciency and conservation, understanding relevant information is also important 
for the energy  customer. Nano- and microgeneration are becoming more and 
more affordable for  residential and commercial and industrial (C&I) customers. 
With C&I enterprises especially, these generation modes are growing in popu-
larity because these  customers cannot tolerate the financial exposure to low 
electric system quality or reliability. Additionally, demand-side management is 
quickly moving to customer devices, including computers, in-home automa-
tion devices, and the emergent Internet-of-Things (IoT) nodes. Even rudimen-
tary technical solutions, such as the so-called Green Button initiative, that are 
designed to meet policy pushes to deliver energy data to consumers require 
relevant information. Early attempts to meet these customer needs are using 
analytics that combine utility consumption data with building-envelope data 
and home orchestration automation management and feedback information.

Automation is an important aspect of the visualization process. If the pro-
cess for creating a particular visualization cannot be automated, then it simply 
cannot be scaled to many users or many delivery devices. Additionally, without 
automation, the systems must be continually updated and will likely lose their 
usefulness in a short period of time. Automation does bring risk, however, as 
source data changes or other bugs emerge. Just like the underlying data system, 
presentment systems must receive regular quality checks and attention must be 
paid to keep the information relevant and accurate.

It’s essential to recognize that we are in the earliest stages of the evolution 
of big data in the utility. With the advent of smart grid data analytics in full 
enough force to economically enable widespread innovation, we will see data 

Figure 3.1 Process Flow from Data-Processing Layer to Presentment.
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silos give way to intra company data and data ecosystems. This shift is largely 
driven by the need for comprehensive situational intelligence.

3.4.1 Remember the Human Being

Some of the greatest challenges for effective presentment are found in the opera-
tions room. Unfortunately, there is a tendency for the industry to be entranced 
with  information technology and advanced analytics, and to slough off the 
importance of the role that user-interface design plays in allowing a user to draw 
conclusions for quick and appropriate decision-making. 

Designing intuitive systems that users can operate with a minimum of cogni-
tive friction is the goal of user-interface designers who realize the stakes are high:

Managing the electricity grid is a complex job, and that complexity will only 
intensify as utilities incorporate two-way communicating meters, sensors, 
intelligent electronic devices, and myriad other technologies that monitor and 
report on the health of the grid. And while many utility stakeholders are 
worrying about establishing a return on investment from these modernization 
investments, engineers are working to make sense of a deluge of data that 
requires rapid response in changing situations. Without intuitive systems 
that provide good situational awareness, ineffective response (or the failure 
to respond at all) becomes more probable, and can lead to accidents with 
catastrophic consequences.4

Incorporating the art and science of industrial design for user-interface 
design is criti cal and should be built into the project very early as a discrete part 
of the requirements process. User acceptance testing and the ability to quickly 
iterate on the design features will improve the quality and life span of the pre-
sentment portion of the application.

3.4.2 The Problem with Customers

Data visualization is hard. While the end result of effective data presentation is 
hopefully one that is simple and beautiful, often the process to get there is quite 
messy. The effort of building data visualization requires many skills beyond 
the analytic and statistical. It requires conceptual thinkers, graphic designers, 
programmers, user-interface designers, and good storytellers. 

4 Carol L. Stimmel (2012), “Smart Grid: Smart Grid Data Analytics in the Real World,” 
Smart Grid News. Retrieved from http://www.smartgridnews.com/artman/publish/
Delivery_Asset_Management/Smart-grid-data-analytics-in-the-real-world-4967.
html#.Um6dw2RiIYg. Reprinted with permission.
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5 R. Hayes (2013), “Consumers Need Much More Th an Education” LinkedIn Smart Grid 
Executive Forum. Retrieved from http://www.linkedin.com/groupItem?view=&gid=17
15027&item=277903596&type=member&commentID=5800677694588866560&trk
=hb_ntf_COMMENTED_ON_GROUP_DISCUSSION_YOU_COMMENTED_
ON#commentID_5800677694588866560. Reprinted with permission.

In addition to telling a compelling and actionable story to grid operators and 
utility business stakeholders, utilities now need to present consumption data 
and other variables to consumers in the hopes that they will introduce more-
efficient end uses and conservation strategies. The challenges in  communicating 
data to consumers, especially, are a sore spot with some utility stakeholders. For 
all the effort put into building the smart grid and attempting to effectively 
respond to the sea change in the energy industry, it is hard to understand why 
things aren’t working that well when it comes to consumers. 

Here is some insight: In a recent online forum, a rather heated discussion 
about consumer engagement was taking place. A retired utility engineer wrote, 
“Utilities are essentially large project management/financial teams that are 
responsible for specifying, testing, buying, installing, and operating billions of 
dollars in assets to serve  millions of people in actual real time, with minimal ROI. 
. . . Smart Grid is a wave of innovation, following 100 years of earlier waves.”5

While likely not his intention, this retiree’s comment may hold the key as 
to why utilities are missing the mark when it comes to consumer tools and 
applications, and it’s not lack of effort, will, or intellectual prowess. It’s a lack 
of domain knowledge for an area of pursuit that is so far outside of the normal 
demands of utility personnel that it becomes a case of not knowing what you 
don’t know. And utilities really don’t know that much about the people who use 
their product. They haven’t had to know.

Utilities have been referring to customers as ratepayers and meter end-
points for as long as they have been collecting an energy tariff. And residential 
consumers especially—despite extensive educational, marketing, and product 
design efforts— stubbornly refuse to engage with utilities in any meaningful 
way. Many innovators are attempting to crack the residential consumer nut, 
but others are focusing on the opportunities found within the C&I sectors. For 
good reason, C&I customers consume the preponderance of electricity, and 
there are often financial rewards for participating in conservation, demand-
response, and efficiency efforts.

As described in Figure 3.2, in the United States, energy demand is projected 
to lift most in the C&I sectors, driven largely by the recovering economy. Due 
to increased efficiency in space heating, lighting, and other large appliances, 
the residential sector is not expected to begin growing again until at least 
2029, creating an important opportunity for innovation that brings advanced 
analytically based demand-response opportunities to C&I customers.
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Using advanced modeling tools, utilities can deliver actionable intelligence 
that allows demand management to transmute to engaged demand response, 
where end users can participate directly in utility dispatch strategies across a 
wide base of C&I facilities. The success of these systems ultimately depends 
solely on effective communication with these customers. Utilities have experi-
ence working with C&I customers on demand issues, and that expertise can be 
leveraged to drive further opportunity and innovation.

To capitalize on this opportunity, building owners, operators, and facility 
managers must be engaged to understand how they are using energy to learn 
how to participate in utility programs, analyze their buildings’ energy use, and 
track consumption to realize energy efficiency and conservation goals. While 
analytics may provide the powerful measurements, correlation, and analytics 
necessary to advance demand response from an emergency tool to a strategic 
tool for managing business operations, an engaging and interactive presentation 
truly creates the opportunity for insight and action.

3.4.3 The Transformation of the Utility

Up to this point, we have discussed the drivers for the smart grid and how data 
 analytics can help meet the goals of the modernized grid by transforming big 
data from the grid and other sources into transformative value for the utility. 
We have also reviewed tradi tional approaches to data management and dis-
cussed why these techniques may fall short in accommodating the full depth 
and breadth of the potential of data analytics. And we’ve identified the solutions 
inherent within a platform approach. But, at the end of the day, the real impact 
of analytics on the utility occurs when the applications enabled by the analytics 
architecture allow system users to see their business better and make more-
informed choices. By answering key questions about the business and allowing 
exploration and interaction with presented information, data makes the journey 
to intelligence. Figure 3.3 describes how the analytics platform employs myriad 
processing strategies that are then presented to various users for an opportunity 
to explore the data to find answers to complex, multifaceted questions.

3.4.4 Bigger Is Not Always Better

One reminder: “Big data” is an industry fetish. Remember to think of big data 
as simply a description of a problem, meaning that there is much more data 
than the utility has coped with ever before. It is not the “bigness” that brings 
the kind of value that utilities need to justify the costs of building and  operating 
the smart grid. In fact, the operational efficiencies gained by analytics are often 
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from tiny and transient—not  sizable—data sets. Big data flow, by nature of 
how it is collected, may be frequent and spurious, but the data itself may not be 
big, in and of itself. 

In time, it will become clear that the petabytes and petabytes of data are 
simply a storage and processing problem with pure technology solutions in 
search of economic value. What’s much more interesting are the challenges of 
meaningfully aggregating the disparate data sources that are produced at milli-
second velocity to create a useful view of the grid for business, operations, and 
customer management. This gets back to the crucial point that the most impor-
tant thing about designing and implementing data analytics is to identify the 
essential business questions. And then to acknowledge that all that big data 
doesn’t actually make it any easier to formulate those questions—in fact, it 
makes it a lot harder.

3.5 Assessing the Business Issues

In the beginning, utilities are best served by assessing their overall analytic strat-
egies and determining how those approaches will help them plan for growth 
and efficient operations. Understanding the data that the smart grid brings is 
undoubtedly the greatest issue that utilities are facing as they modernize their 
grid operations and business models. The information that’s gained from ana-
lytics is the best opportunity that utilities have to improve business perfor-
mance, energy quality and reliability, and customer relationships.

To begin this journey, utilities must look across the organization, above and 
beyond the current functional silos. The greatest value to emerge from data 
 analytics is the aggregation of diverse sources of data from both the utility and 
third-party data sources. Additionally, utilities will not only discover how current 
business processes can be improved by bringing in other data sources but also 
prepare for emergent business cases. Although operational analytics can bring 
immediate value, thinking about the business holistically brings opportunities 
to experiment with new  questions, such as adjusting and tweaking customer 
segmentation strategies by applying load profile data. 

This is precisely why data analytics are transformative: They force utilities to 
reexamine all aspects of their business, from operations to customer engagement. 

3.5.1 Start with a Framework

Determining the right solution based on business cases is a matter of  breaking 
down the problem across functions. With a firm grasp on data management 
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challenges and approaches, data classes, algorithms, and presentment, stake-
holders can begin to map commercial capabilities to utility needs. There are 
several smart grid frameworks, reference architectures, and maturity mod-
els provided by the Institute of Electrical and Electronics Engineers (IEEE), 
National Institute of Standards and Technology (NIST), Carnegie Mellon 
University, and well-known integrators.

A very well-defined approach to developing analytics architectures, The 
Open Group Architecture Framework (TOGAF, www.opengroup.org/togaf) is 
used globally to define enterprise systems in government and Fortune 50 corpo-
rations. TOGAF has found exceptional success because it creates a common lan-
guage for communication across the various skill sets required for the  analytics 
practice. Specifically, TOGAF is maintained by a consensus and emphasizes 
key business imperatives that may be integrated into the technical architectures. 
In the utility market sector, vendors and utilities in the United States, Canada, 

Figure 3.4 TOGAF Architecture Continuum Focuses on Requirements Management.
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the United Kingdom, Australia, and other countries have implemented enter-
prise architectures using TOGAF.

The TOGAF methodology was originally derived from the US Department 
of Defense Technical Architecture Framework for Information Management 
(TAFIM), but has been adapted since 1995 to better serve enterprise architec-
ture requirements. This methodology avoids proprietary methods, ensures con-
sistent standards, and professes to help implementers realize a greater ROI with 
an open approach. Figure 3.4 describes the TOGAF continuum, with require-
ments management as an integral focus of each step along the way.

 The characteristics of TOGAF are particularly suited to translate business 
needs and requirements into information technology requirements. However, 
as mentioned, there are several proprietary frameworks that are designed to 
specifically meet the needs of the smart grid–based utility enterprise. These 
frameworks (including TOGAF) are a way to guide thinking, but, as with any 
rigorous methodology, they can quickly become too complicated to use, or they 
themselves can become the focus of the effort rather than a tool to guide the 
outcome. Thus, these frameworks are best seen as organi zational tools. 

It’s very difficult to start from a blank page, and architectural frameworks 
and reference architectures are a reasonable and informed starting point. 
However, be warned about an overzealous adherence to any framework, espe-
cially since a  lack of knowledge about the desired end product—particularly in 
the case of analytics—can rope the organization into a flawed solution and can 
create a blind spot that prevents adaptation to new developments.

Widespread charges that utilities are dumb about their smart grid data are 
popular. However, while it may seem that it’s just the data that is overwhelm-
ing the utility, it’s even more challenging to figure out how to use the data to 
solve business problems. Data analysis just for the sake of doing analysis may 
actually bring negative results, with some stakeholders prematurely demanding 
expensive upgrades or redesigns to the overall business and operations. The way 
to manage a smart grid analytics program is to begin with a focus on answer-
ing high-value questions and on finding the necessary data to provide answers.

Framing Out the Problem

Defi ne and document the most important key business measurements of 
performance in the organization.

If performance can be improved, what are the best ways to go about it?

How can data and information help us advance toward improving performance?

What is the set of goals that emerges to help defi ne a data analytics business 
case?
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Chapter Four

Applying Analytical 
Models in the Utility 

 

The Apollo 1 crew in a parody portrait expressing their concerns about the fi tness 
of their spacecraft. (Source: NASA1)

4.1 Chapter Goal

This chapter introduces the analytical models specific to the utility enterprise, 
including the basic concept and goals of data modeling as well as the  benefits and 

1 Image retrieved from the public domain at http://www.hq.nasa.gov/alsj/apollo1.jpg.
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challenges of creating useful models. The use of appropriate analytical models 
is the foundation of process change within the utility to drive business value 
and return on smart grid investments. Additionally, we look at an optimization 
approach for taking steps toward balancing the forces of growth and  profitability 
through the well-balanced and rational use of advanced analytical models. 

4.2 Understanding Analytical Models

Uncertainties complicate our lives. As much as we might prefer a determinis-
tic view of the world, we rarely have complete command of the consequences 
of everyday life. It’s no different with analytic models, which must be flexible 
enough to provide strategic value under varying conditions. To make things 
simpler, we organize analytic approaches into categories. For the purposes 
of smart grid data analytics, we maintain four model categories: descrip-
tive, diagnostic, predictive, and prescriptive. Many categorizations do not 
 explicitly include diagnostic analytics, but given the operational requirements 
of the utility, it is important to specifically review this type of model and its 
role in the utility. 

There are two important things about categorization: First, analytic systems 
rarely use only one category of analytics to produce useful results in a specific 
problem domain. Second, there is no real progression in terms of value from 
one category to the next. That means that despite the fact that predictive and 
prescriptive analytics may be more complex in design, they fill specific needs 
related to solving particular problems. Descriptive and diagnostic analytics may 
be better understood as a discipline, but they are not less valuable. Table 4.1 
describes the analytic systems we will discuss in this chapter and how they func-
tion to help solve utility problems.

There are many examples of how these models can fit together to solve a busi-
ness problem. Consider the case of an energy-efficiency program designer who 
is working to create a new offering that includes installing smart  thermostats 
into homes for demand response. The utility is going to subsidize the rollout 

Table 4.1 Analytic Models Used in Smart Grid Data Analytics

Analytic Approach Function 

Descriptive What happened or what is happening now? 

Diagnostic Why did it happen or why is it happening now? 

Predictive What will happen next? What will happen under various 
conditions?

Prescriptive What are the options to create the most optimal or high-value 
outcome?
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with the ultimate goal of using automation to create a reliable source of demand-
side relief for days of high stress and high consumption. This is an expensive 
endeavor for the utility; how can it determine which consumers will be inter-
ested in the program and which are likely to participate? Also, what are the best 
messages and incentives to encourage customers who may show a propensity for 
implementing conservation and efficiency measures in their homes?

Using analytic models, here are some steps a utility analyst could take to 
answer these questions:

 1. Descriptive modeling. Of the customers who have previously partic-
ipated in demand-response programs (such as a one-way pager switch 
installed on an air-conditioning unit), what happened? Did they answer 
surveys, cooperate with the setup of the equipment and its signals, did 
they override the response, how often did they override it? Tracking this 
information provides a basic understanding of customers who participate 
in demand-response programs.

 2. Diagnostic modeling. Prudently, the analyst would then want to deter-
mine why certain customers behave in certain ways. Are they hardly ever 
home? What’s the impact of the incentive on their overall bill? Did they 
sign up for the incentive but then resist providing the utility access to 
their equipment? Are they sensitive to temperature fluctuations? What 
was the weather like during the opt-out behavior? Did they express dis-
like for utility control mechanisms? At this point, the utility knows some 
characteristics about the customers who participate in the switch pro-
gram, but they also have a sense of why they make some of the decisions 
they make in terms of their participation.

 3. Predictive modeling. Having a sense of the what and why of consumer 
behavior from previously treated data, the analyst now has the  appropriate 
inputs to devise a model that will attempt to predict how consumers will 
behave under certain conditions with smart thermostats placed in their 
homes. Specifically, under similar conditions, how can we expect con-
sumers to respond to smart thermostats? Manipulating the variables in 
the model allows the analyst to create a precise segmentation of custom-
ers who are likely to embrace the utility’s control of their home’s smart 
thermostat. In fact, a comprehensive model can help identify segments of 
consumers that the analyst might never have considered before.

 4. Prescriptive modeling. Finally, the analyst endeavors to understand 
what the next best steps are to take to drive program success. Based on 
what is now a deep understanding of customers who are likely to want 
to participate, a prescriptive model can provide insight into the best 
 marketing or engagement strategies and their relative trade-offs for reach-
ing the appropriate people.
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Figure 4.1 describes how an analytics program can be structured to drive fully 
optimized business insights and outcomes. As insights are turned into action, 
these actions will change how the business operates (sometimes un expectedly), 
and filter back through the analytical process in a cycle of continuous change 
and improvement. This is called generativity. The feedback loop of generativity 
may be one of the most important motivations for developing a comprehensive 
analytics program in the utility: New structures and behaviors are already emerg-
ing under the forces of a shifting business paradigm; by analyzing these shifts, the 
utility can gain deep insight into new ways to improve the value and operation of 
the energy delivery network.

4.2.1 What Exactly Are Models?

Models are the heart and lungs of advanced analytics. They use various algo-
rithms and statistics to uncover the patterns and relationships we hope will bring 
increased value. But the best models aren’t just the application of pure math. 
Yes, modeling is science, but it’s an art, too. Like the master craftsman, the 
data scientist must have the ability to envision how the data pieces fit together; 
she must measure and construct a vision, and then produce something of long-
lasting value that will be functional for the user.

To build a worthy model, the data scientist must be able to select the right 
data sources, algorithms, variables, and techniques that meet the needs of the 
business problem in question. These are the mechanical components, but they 
still require that the scientist have well-developed domain knowledge of the 
utilities enterprise. Both the development of the model and the communica-
tion of the model’s results tell a story. The storyline is constructed by pulling 
through the right data to estimate and classify values. 

Trust of the output that a model produces is perhaps the most difficult 
part of any analytics modeling process. For maximum perceived reliability, the 
model must reflect business realities—for example, showing how an asset main-
tenance model can drive down operating costs and demonstrating the value of 
the model’s output. It is, in fact, a lack of business connection that can explain 
much of the fear and distrust of analytics. Sometimes this “value” is not always 
expected. A very good asset maintenance model may expose issues that the util-
ity has not anticipated and has not grappled with, causing unforeseen workflow 
disruptions and expenditures.

It’s worth pointing out that even a very good model is not some sort of mythi-
cal panacea; breakthrough discoveries are simply not a day-to-day expectation. 
Such expectations clearly defy the very definition of breakthrough. Models can 
be valuable for the organization even if they serve to reinforce and concretize 
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implicit knowledge within the company. As discussed previously, this contrib-
utes greatly to improving and generating new insights for the system that makes 
up the utility business. To achieve this, the utility must hire or partner with 
data scientists who understand utility problems, data, and—perhaps even more 
importantly—utility processes and workflows that help them map analytical 
models to useful and trustworthy tools to improve the business.

4.2.2 Warning: Correlation Still Does Not Imply Causation

Part of the communication challenge for data modelers is helping analytic con-
sumers understand the distinction between causation and correlation. These 
two terms are so often conflated that it can cause seemingly hopeless confusion. 
Causality and correlation confusion can disrupt the very goal of analytics, which 
is to transform correlation into causality. But sometimes there is a rush to provide 
an explanation for an observation, and that is done by claiming false causality.

By way of definition, correlation simply describes how two sets of data are 
related. Causation, on the other hand, defines a relationship between two sets 
of data wherein one creates the conditions for the other to occur. Consider the 
following commonplace example: A study shows that as ice cream sales increase, 
so does the rate of drowning, indicating that the consumption of ice cream 
causes drowning. We understand intuitively that this is foolish. However, this 
sort of leap happens frequently with less-understood data. In our example, we 
have not taken into account two important data points: time and temperature. 
Consider, then: Ice cream is sold at a higher rate during the warm months of 
summer than during the colder months. During these warmer months, more 
people engage in water-related activities, such as swimming and boating. The 
increased drowning rates are caused by an increase in human exposure to water 
during the same period of time that more ice cream is sold. This is the structure 
for a very common kind of causality fallacy called the “lurking variable”—a 
variable that, once known, disentangles the issue.

In fact, no matter how excellent a correlation may seem, there may be one of 
several logical fallacies that create false interpretations of data. When consider-
ing causation, it’s helpful to think of the construct of cause and effect. Such as, 
when I throw a ball, it moves. Cause-and-effect relationships are rarely equally 
valid when inverted. Just because the ball moves, doesn’t mean it was thrown.  
Think about it: There’s a well-established causal relationship between obesity 
and an increased risk of gallstones. However, I may have gallstones and not be in 
the slightest bit overweight. The causative relationship is not true in either case.

No matter how profound the conclusion, it is obviously important to be 
wary of the logical pitfalls in rendering a series of correlations as causation. So 
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the real question, it seems, is how do we safely conclude a causal relationship? 
It’s difficult, but there are reliable methods we can use to prove that a correla-
tion is causation, including randomized controlled experiments or the applica-
tion of causal models. Put simply, the more powerful and robust we make the 
correlations, the easier it is to confidently draw a causative conclusion. Serious 
mistakes have happened, especially in medical science, where epidemiological 
studies have attempted to draw conclusions from data without fully understand-
ing other factors that were responsible for the issue at hand.

4.3 Using Descriptive Models for Analytics

Using a descriptive model for analysis is somewhat like looking at life in the 
rearview mirror. We use descriptive analytics and techniques to understand 
what has happened and to also comprehend the deeper context of how some-
thing may have happened. We also deploy the descriptive model to support real-
time analytic systems to understand what is happening in the moment. 

In general, descriptive analytics explain source data in a way that allows the 
user to develop future business strategies. While “what happened” models are 
not normally used to model a precise event, they are useful in creating approxi-
mate perspectives from large quantities of data. It’s not particularly useful to 
study why a single smart meter sent a last-gasp message, but it may be a very 
important data point if many meters of the same make and model consistently 
fail during read cycles.

In fact, descriptive smart meter analytics have already proved to be quite 
valuable for utilities that are searching for ways to use data to understand root 
causes with outside plant issues. In one case, after a major storm outage, the 
reporting system showed that there was extensive transformer damage. The 
utility wanted to understand more about the outages, and it determined with 
further data analysis that the root cause was breaking trees falling over the 
transformers during the storm. This information led the utility to make a 
strategic decision to identify at-risk transformers and provide treatment that 
would improve system performance and drive down corrective costs in future 
storm scenarios.2

Descriptive analytics are often relegated to the tombs of business intelli-
gence. This is a gross understatement of the value of descriptive models. Imagine 
trying to understand a study about how to better engage utility customers where 
you’re not presented with sample size, information about treatment groups, or 

2 Parmarth Naswa (June 12, 2013), “Analytics for Utilities,” Intelligent Utility. 
Retrieved from http://www.intelligentutility.com/article/13/06/analytics-utilities.
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demographic information such as sex or age. The descriptive model’s output 
provides key summaries about the data and forms the basis of further quantita-
tive analysis.

Descriptive analytics also form the basis for data summaries, which are a 
powerful way to understand a large set of observations. Consider a deployment 
of smart meters in an area that has a large number of service calls. To evaluate 
the performance of the system in this area, the smart meter outage statistics 
are collected and compiled, exposing low-voltage conditions that are creating 
brownouts and potentially damaging household electronics and appliances. 
This descriptive information becomes the basis of the decision to upgrade or 
reconfigure distribution lines within the area to improve reliability and quality.

Descriptive models are not well suited to expose the details of an event, 
and attempting to describe a large set of observations with a single indicator 
creates data distortion and the loss of important details. In a sense, descriptive 
analytics are self-limiting, but they do provide an essential summary of data 
that enables comparisons with data from other systems. Cross-referencing the 
output of a descriptive model that captures the characteristics of a collection 
of customer complaints by ZIP code with operational data is enough to pro-
vide better developed and more-varied models that support strategic decision- 
making within the utility.

4.4 Using Diagnostic Models for Analytics

Sometimes called inquisitive analytics, the use of diagnostic analytic models is 
closely coupled with descriptive ones. If you already asked the question about 
what happened or what’s happening, your next question is why. Diagnostic ana-
lytics are subject to several of the same benefits and challenges as descriptive 
analytics, including concerns related to the issue of not having all the necessary 
data captured and available in order to come to the right conclusions. 

Often, the questions of what and why are rather vague. For example, “Why 
is the customer backlash against smart meters gaining momentum?” The data 
that the utility may have available to answer this question could include struc-
tured information such as historical transactions with customers and billing 
data, but it could also include other sources of information such as news stories 
and social networking data, which are largely untapped. In fact, it is these out-
side sources that might be the real key to creating the full picture of customer 
dissatisfaction with the utility. 

Though similar, the case for answering the question as to why something is 
happening is quite different in approach for descriptive analytics than for diag-
nostic. Rather than just assess the main features of the issue under  consideration, 
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a diagnostic model will further analyze the data to look for trends and patterns. 
Diagnostic analytic models actually attempt to use the available information 
to test and validate or reject hypotheses drawn from the descriptive analysis. 
Thus, the successful model will use drill-downs, factor analytics, and advanced 
statistical exploration.

4.4.1 How Diagnostic Tools Help Utilities

In North America, blackouts are most often caused by unexpected disturbances, 
most frequently on the wires. We count among these events hurricanes, floods, 
superstorms, and extreme heat conditions, creating issues such as control errors, 
coordination failures, and overloads. One of the most powerful tools we can use 
to gain insight into these disturbances is diagnostic analytics that help uncover 
activities that will improve reliability under these conditions.

Consider the Northeast blackout on August 14, 2003: The mega transmis-
sion failure was blamed on inadequate tree trimming, but that is only a piece of 
the story. As the tale goes, the grid operators did not have enough information 
to understand the extent of the problem at its inception and to mitigate it before 
it became a massive problem. With diagnostic tools in play to help provide 
situational awareness, corrective action could have taken place that would have 
avoided the surge-and-trip cascade. If there was any doubt before, the 2003 
blackout demonstrated in earnest that excessive load on the transmission grid 
can lead to large-scale disaster. Knowing why there was lost voltage on the sys-
tem (it was a hot summer day, the lines were overloaded, they were sagging 
close to the trees, and the breaker was tripping off the circuit) and being able 
to quickly understand and communicate that information would have allowed 
the grid operators to isolate the failure before it cascaded. New diagnostic tools, 
especially interactive visual tools, now facilitate oversight of intelligent rout-
ing with technologies such as syncrophasors, the ability to call on distributed 
resources, and the capability to trigger automated demand response to decrease 
grid stress.

4.5 Predictive Analytics

In ancient times, an oracle was believed to be a portal to the gods, a vehi-
cle through which human beings could learn about the future, managing the 
in securities of everyday life. These mediums could interpret the messages using 
tools such as bird behaviors and human entrails, prophesying in a frenzied 
state of passion during their consultations. Not surprisingly, the oracles held 
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 considerable influence in society, and their powers were widely sought out, and 
never doubted.

Very little seems to have changed in the world of prognostication. Predictive 
analytics is the use of advanced analytical models that are intended to answer 
the question—What is likely to happen?—to help people prepare for future pos-
sibilities. And it is partly true that the frenzy to leverage big data and ana-
lytic models to understand the future is just a modern-day manifestation of the 
impulse to put asunder human insight in favor of technical prognostication. At 
its worst, it is nothing more than a desire to believe that the world is governed 
by predictable events and averages. However, at its best, predictive analytics 
is a powerful tool to expose risks, uncover opportunities, and reveal relation-
ships among myriad variables to guide better operational and business decision- 
making—certainly not a portal to the gods.

In the utility world, one high-value predictive analytics use case is the need 
for load balancing according to the day-to-day and hour-to-hour costs of power. 
The goal is to save both money and energy by predicting the costs of power 
and demand based on a constant flow of signals, allowing the distributors to 
buy and sell accordingly while shaving load during peak hours. The business 
problem is not new, but the approach that is enabled by predictive analytics 
is—specifically, creating an interaction layer between the bulk power system 
and the distribution systems.

An example of this kind of work was performed by the world’s largest inde-
pendent research and development organization, US-based Battelle. The Pacific 
Northwest Smart Grid Demonstration Project encompassed 11 utilities and tens 
of thousands of metered customers to create a system that engaged responsive 
assets throughout the power system to allow customers to voluntarily reduce 
energy use based on a control signal with data about power availability, price, 
and demand. The signal traveled throughout the system, altering the use and 
movement of power while driving down costs and simultaneously increasing 
opportunities to integrate reliability-challenging intermittent renewable sources 
of generation.

The project director, Ronald Melton PhD, explains how the system sent 
signals that communicated the actual cost of power delivery, to which the loads 
and energy resources could respond. For each communicating node, “a decision 
is made to increase the incentive signal value if less electric load is needed below 
that point, or decrease the incentive signal value if more electric load is needed. 
At the destination or end-use points, information about energy use is accumu-
lated and forwarded to the source.”3

3 Ian B. Murphy (2012) , “Utility Project Applies Predictive Analytics to Slice of Pacifi c 
Northwest Power Grid,” Data Informed. Retrieved from http://data-informed.com/
utility-project-applies-predictive-analytics-to-slice-of-pacifi c-northwest-power-grid.
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This study demonstrates how predictive analytics can contribute to improv-
ing business outcomes by addressing a classic utility problem with an innovative 
technology-driven approach. By using a predictive analytics model with various 
inputs such as weather conditions, forecasts, fuel costs, historical usage, and 
other factors that impact renewable systems, an accurate prediction of produc-
tion costs can drive the appropriate response throughout the system to meet 
both reliability and economic requirements.

Predictive analytics are best suited to well-understood and fairly stable situ-
ations, and they may perform poorly in situations where there is either little 
historical data or a significant possibility of rapid, dramatic change. Though 
predictive systems can be used to analyze data in flight or at rest, the utility 
will benefit from predictive systems that measure real-time information against 
historical data to identify fraud conditions, predict customer response to sales 
and marketing initiatives, forecast electricity demand to adjust production lev-
els, and create a variety of risk profiles. Predictive data analytics improve with 
great volumes of high-quality data, and thus, the analytical model itself grows 
in value by evaluating disparate data sets such as weather; geographic informa-
tion systems (GISs); and demographic, financial, sales, and social media data. 
Predictive applications for the utility include revenue protection, energy effi-
ciency, program design, distributed generation integration and management 
(including revenue impact assessment), and demand-side management.

As mentioned, predictive analytics are powerful but not a silver bullet. Keep 
this in mind: When data analysts or vendors suggest that their model can pre-
dict an event accurately 75 percent of the time, they are still wrong a quarter 
of the time. Yet, 75 percent is far better than many of the models currently 
being used to solve very expensive problems. There is absolutely no excuse for 
an analyst, a vendor, or an enterprise to overestimate the abilities of predictive 
analytics, as such a position will bring disillusionment and a premature end to 
important efforts before they even get started. If your data experts are not com-
municating the level of predictive ability of their models to drive decisions, they 
are a liability to your organization. The most important thing to understand 
about prediction is the level of risk involved in trusting the model (trust is never 
without risk) and the consequences of action, if the model is wrong. Think 
about it: Seventy-five percent accuracy on a model that predicts the uptake of a 
demand-response initiative is a huge step forward, but it’s a dangerous advisor 
when making threat-to-life or multibillion-dollar decisions.

4.6 Prescriptive Analytics

Prescriptive analytics are in their infancy, but they have significant prom-
ise. Taking the results of a predictive analysis, prescriptive analytics layer on 
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a  diagnostic model that ultimately produces recommendations for how to 
respond to likely events. In a sense, prescriptive analytics are the playing out of 
various predictions produced by changing variables to find the best decision in 
a particular context. The goal, simply, is to make a more informed guess about 
the most high-value action. 

The merit of prescriptive analytics can be explained with a very simple 
example: I’m driving my very capable four-wheel-drive vehicle down an icy 
mountain canyon drive. I can see the road is in terrible shape, and my experi-
ence with this commute tells me the cars are driving too closely together and 
the conditions are ripe for a pileup. I slow down to increase the room between 
my vehicle and the other vehicles on the road, but just as I tap on the brakes, 
the car behind me slides forward and crashes into the rear of my vehicle. The 
force of the car hitting me causes me to slide, rolling me into the very cold 
creek. In this situation, my predictive powers were spot-on, and I did indeed 
successfully avoid an accident with the cars in front of me. Unfortunately, in the 
process of avoiding one accident, I caused another. Prescriptive analytics could 
have helped me make a better decision by analyzing the possible results of my 
actions and advising me of options that would not compromise my intentions: 
Hey! You’re being tailgated. If you put on your brakes, that fool may slide into you. 
Instead, turn on your flashers, and when you can, move slowly to the shoulder to let 
that guy behind you pass.

Within the utility, it is anticipated that prescriptive analytics is especially 
valuable for taking preventive measures after outage-prone areas have been iden-
tified by earlier analytical models. Look to prescriptive analytics for answering 
the question of how best to do something—that’s the key to optimization. For 
example, once we understand the context of our problem and its root cause, we 
need to know what to do: We know how many bills were reported in error last 
month due to meter malfunctions and where those units are located (descriptive); 
we have determined the root cause of the issue to be the failure of certain meters 
due to a spike in the readings and a posting of fatal error messages from a par-
ticular meter make and model that is installed in the field (diagnostic); and based 
on certain attributes of that make and model and what is installed in the field, we 
can predict when and where we are likely to see the next batch of failures (predic-
tive). Additionally, with prescriptive analytics, we can create the most optimal 
plan to replace or repair those meters based on workforce constraints and loss 
of revenue, and we can plan to bring in further resources based on the financial 
consequences of not responding at the level we calculate we must. 

The various utility models can solve almost any issue the utility is facing—if 
those models are applied correctly and with a reasonable understanding of the 
limitations of each of those approaches. Analytics are clearly more than throw-
ing a bunch of tools at some aggregation of data. The right people with the 
right domain expertise are those who can use the tools correctly and are capable 
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of communicating the results fairly and effectively, with a vital understanding 
of the abilities and liabilities inherent in their approach to solving the business 
problem at hand.

4.7 An Optimization Model for the Utility

“Optimization” is a crafty term used to describe the rather nebulous goal of 
achieving business perfection. Perhaps a more useful way to think about opti-
mization is as an ongoing balancing act to meet the challenges of growth while 
maintaining profitability. In applied mathematics, optimization equations 
result in solutions where the controllable factors that determine the behavior 
of a system are minimized to avoid waste. In business terms, it’s more like an 
evolving compromise between various conflicting requirements and demands. 
In the case of the utility, the smart grid is supposed to be the magic optimize! 
A red button that, when pushed, will defeat the extreme pressures to adapt 
more quickly to shifting political, business, and technology requirements while 
meeting increasing regulatory or downward cost pressures. In reality, utility 
optimization requires a process of discovery and the ability to respond to those 
discoveries by adopting new business processes that integrate continuous tech-
nological and business process advancements while controlling for risk.

Thus, while utility leaders repeatedly express a desire to make more and 
more decisions based on data analytics (in fact, most utility leaders state that 
they plan to increase investments in analytics technologies over the next several 
years), if analytic implementation strategies don’t support business objectives, a 
lot of money stands to be wasted, and the result will be widespread disappoint-
ment and lackluster results. Instead, the introduction of analytic capabilities 
into the utility enterprise is best viewed as an enabler for change. 

Utility optimization empowered by analytics is not simply a result of ana-
lytic tools and models to make better decisions; it’s also the result of incremental 
advancements that occur from improving internal business processes based on 
what analytic results teach. Figure 4.2 describes the role that analytics play 
in creating optimal business value by striking a balance between growth and 
profitability. Once analytic capabilities are in play across the utility, process 
improvements will bring step changes in how the utility responds to operational 
events, business pressures, and regulatory shifts.

4.8 Toward Situational Intelligence

True situational intelligence is the foundation of an optimized utility, along 
the time continuum from hindsight to high-value future actions. Situational 
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 intelligence is the ability to derive understanding that allows the enterprise to 
make contextually relevant decisions with significant volumes of fast-moving and 
highly various forms of data. This means, as discussed previously, that data can 
and should be leveraged in many different ways across the organization in a man-
ner that will help solve specific business problems. As described in Figure 4.3, the 
fundamental data intelligence layers that feed the utility are grid; meter; asset; 
and distributed energy resources, including renewables, microgrids, and storage.

Currently, data and organizational silos are preventing the emergence of these 
potential enhanced operating results across the organization, but real progress 
is being made in what can best be described as a bottoms-up approach to data 
analytics, where ad hoc teams attempt to piece together systems in the hopes of 
creating a more emergent system that will link many of these efforts. However, 
it is a top-down approach to analytics that will streamline the ability to solve 
business problems, instead of a web of expensive and fragile manual aggregation 
processes. Visualizing the entire network and the relationships within the net-
work through a business lens will drive more accuracy in addressing real-time 
operational challenges, managing assets, and meeting performance metrics of 
every variety across the organization.

The smart grid is quickly becoming the de facto grid (let’s just call it the 
smarter grid), not just in North America and Europe, but also around the 

Figure 4.2 Creating Business Value Through Analytics-Driven Process Change.
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world. Analytics are the key to unlocking the value of the smarter grid, commu-
nicating output from complex models to be useful and sharable, and ultimately 
driving the utility to be an information-enabled entity. With analytics, true 
situational intelligence emerges within applications that serve business func-
tions, operations, customer management, and cybersecurity. We will discuss 
these applications in the next several chapters.

Figure 4.3 Origins of Utility Data That Promote Situational Intelligence.
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Chapter Five

Enterprise Analytics

In 2013, NASA Goddard scientists transmitted an image of the Mona Lisa from 
Earth to the Lunar Reconnaissance Orbiter on the moon by piggybacking on laser 
pulses that routinely track the spacecraft. (Source: NASA1)

5.1 Chapter Goal

In this chapter, we focus on the business-oriented, enterprise intelligence appli-
cations that are enabled by the various forms of data available within the  utility. 
Specifically, we discuss traditional business functions that are enhanced by 

1 Image retrieved from the public domain at http://sciences.gsfc.nasa.gov/sed/images/
featuredimage/featuredimage_317.png.
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 analytics, including energy forecasting, demand response, dynamic pricing, and 
revenue-protection analytics. These functions are separate from operations and 
customer management analytics, which are discussed in later chapters.

5.2 Moving Beyond Business Intelligence

Big data analytics for the enterprise include a new way of looking at what has 
traditionally been known as business intelligence (BI). BI is largely about gener-
ating standard reports that answer well-known questions, and though many BI 
vendors have attempted to expand the term to incorporate analytical capabili-
ties, enterprise analytics are much more than a synonym for BI. Even though 
analytics have been used within BI applications, enterprise analytics are not only 
more sophisticated than a reporting system, they are more about the quanti-
tative models that can be drawn from a deeper and broader availability of data, 
which can be analyzed and used to improve business performance. Analytics 
pioneer Thomas Davenport describes this potential succinctly: “The availability 
of all this data means that virtually every business or organizational activity can 
be viewed as a big-data problem or initiative.”2

Many companies approach enterprise analytics from a simple access per-
spective, where employees across the enterprise have entry to available analytic 
tools for their own projects and where organizations can provision analytically 
derived reports and dashboards to employees. Other companies take an  analytics 
approach, where multiple data sources, classes, and types are aggregated for use 
across the organization. With our focus on using analytics as an enabler to opti-
mize the utility, the discussion of enterprise analytics occurs through the lens 
of those applications that are valuable and that are made available through the 
integration of disparate data sources. More specifically, we highlight the use of 
appropriate models to enhance traditional business processes, apart from opera-
tions and customer management.

The use of advanced analytics has a generative effect on the organization, 
and thus we are only scratching the surface of the tools and approaches that can 
be leveraged for utility optimization and new efficiencies. In fact, any analyti-
cal model that helps the utility meet customer demands while controlling costs 
is valuable. To help start the conversation, we discuss some of the high-impact 
applications, including energy forecasting, asset management, demand-side 
management, price modeling, and revenue protection.

2 Th omas H. Davenport, International Institute for Analytics (September 13, 2012), 
“Enterprise Analytics: Optimize Performance, Process, and Decisions Th rough Big 
Data,” FT Press Operations Management, Pearson Education, Kindle Edition, p. 4.
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5.2.1 Energy Forecasting

Energy-forecasting analytic applications provide highly trusted and defensible 
load-forecasting models for short- to long-term planning horizons. These fore-
casts help the utility better plan and forecast resources, support energy-trading 
functions, and maximize return on investment (ROI) for smart meter and 
grid infrastructure.

Most simply, energy trading is the buying, selling, and moving of bulk elec-
tricity from the point of production to the point of use. As a commodity mar-
ket, it is inherently volatile, and traders are motivated to operate as efficiently as 
possible. Moreover, the energy-trading business depends on an efficient end-to-
end process, and undue complexity can lead to dramatically diminished results.

The drivers that impact energy trading and risk management are increas-
ingly complex, especially as regulations call for additional trading of renewables. 
To meet these pressures, utilities require dependable, trusted analytical models 
that accurately predict demand with the ever-increasing influx of intermittent 
generation. And to support load-planning analyses that avoid expensive and 
inefficient trading miscalculations, intermittent generation necessitates granu-
lar forecasting capabilities.

Energy-forecasting analytics are really the foundation for addressing many 
of the business problems within the utility and can be best represented as opti-
mization models that collect a variety of smart grid data operational sources, 
such as feeder demand profiles and capacity utilization data on a near-real-time 
basis. This data can be mined to support a multitude of advanced models that 
leverage the state of the network in a broad range of time horizons and sce-
narios. Especially in the enterprise, analytical models can be stacked and used 
in many contexts for many purposes. Energy-forecasting models benefit from 
a platform approach with a rich programming interface where common utility 
and third-party data sources can be accessed.

5.2.2 Asset Management

Asset management analytic applications—variously known as predictive asset 
management, preventive maintenance, or reliability-centered maintenance—
help utilities run assets at peak performance and predict events that might cause 
unexpected and costly outages. Asset management analytics help reduce down-
time, limit unscheduled maintenance, extend the useful life of assets, opti-
mize maintenance cycles, and provide root-cause analysis for troubled assets. 
Advanced asset management systems may also provide automated monitoring 
and alerts as well as predictive capabilities for supporting asset maintenance and 
replacement decisions. 
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Because the utility is an asset-intensive organization, the value of such  analytical 
power seems obvious. In the short term, though, asset management capabilities 
are a double-edged sword for utilities: There is a tremendous advantage to making 
asset-related decisions based on objective evidence; however, the costs of mak-
ing unplanned expenditures based on a proactive strategy may be burdensome, 
as is the potential liability of exposing at-risk assets that ultimately fail because 
they were not tended to in a timely manner. But this is likely a short-term effect 
that will resolve as utilities increasingly rely on analytical systems to manage their 
resources and plan for these operations in financial and long-range models.

Asset maintenance is a strong example of what can be done in the utility to 
leverage a variety of data sources for a high-value ROI but also support multiple 
functional areas, including engineering, operations, business, and even field 
crews. Asset management applications combine grid sensor data with main-
tenance data; historical information; and specific information about any par-
ticular asset (such as inventory and warranty data) to perform asset monitoring, 
advanced model development, and root-cause analysis. The most immediate 
value of predictive asset maintenance analytics is the ability to detect failures 
and anomalies on equipment and to mitigate the problem before it causes an 
outage. Root-cause analysis is a key piece of this capability, since it enables 
engineers to perform targeted repairs and decrease time spent on troubleshoot-
ing in the field. Unfortunately, proactive maintenance is not always possible 
or feasible, but utilities that strive for an 80–20 (Pareto principle) ratio of 
 proactive-to-reactive maintenance will fare well. Better analytical models are 
the foundational requirement for this achievement.

Gary Rackliffe, ABB vice president for smart grids in North America, explains 
the value of asset analytics in a conversation with the Utility Analytics Institute: 

There are a few dynamics that come into play in this new environ-
ment of improving asset health. First is regulatory compliance, which 
typically has very little gray area. Utilities need to inspect equipment at 
specific time intervals to comply with regulations. Additionally, there 
are two critical questions that utilities must address to maintain safe, 
reliable operations and to drive condition-based maintenance and asset 
investment decisions: what is the health of the asset, and how critical is 
the asset? These two questions enable utilities to determine asset total 
risk of failure. Criticality is an extremely important component. For 
example, the impact of an outage of a small cornfield distribution sub-
station transformer is not as critical as an unplanned outage of a large 
generator step-up unit.”3

3 Mike Smith (July 31, 2013), “Th e Changing Face of Asset Management: Making 
Better Informed Decisions About Assets,” Utility Analytics Institute. Retrieved from 
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Figure 5.1 shows the overview screen from the incumbent player in the enter-
prise analytics marketplace. The SAS Institute provides an asset reliability analy-
tics tool as part of its suite of predictive asset maintenance solutions to help 
reduce the number of unplanned outages and to optimize repair and mainte-
nance schedules. The dashboard view gives personnel the ability to visualize asset 
performance, with a focused view on a cost and capacity losses, detailed cost 
analysis, data drill-down by asset groups, and location-based visualization tools.

The use of asset analytics tools changes the process from a time-based main-
tenance practice to a data-driven, priority-based approach. But, as with the many 
challenges that analytics bring to the utility enterprise, with such a significant 
change, both processes and people will need to adapt to take full advantage of 
the benefits that asset analytics bring. Because the utility is particu larly sensitive 
to risk, and because asset analytics clearly mitigate risk, moving analytics-driven 
asset management forward within the utility will gain earlier acceptance with 
strategic planners who are working on a long-term (sometimes decades-long) 
horizon rather than the tactical needs within a year-to-year window. Supporting 
analytic models that aggregate the available data will greatly improve this core 
function within the utility.

5.2.3 Demand Response and Energy Analytics

Managing peak demand is a challenge for nearly every utility, and, year over 
year, this problem gets more difficult to sustain the percentage reductions. 
Driving customer engagement with utility demand-response and energy-effi-
ciency programs is a key part of meeting this challenge. Public utilities, espe-
cially in  developed nations, have been trying for decades to successfully engage 
residential consumers with incentives, subsidies, and educational initiatives to 
encourage participation in these programs. Unfortunately, their messages are 
notoriously ineffective. Conversely, commercial and industrial (C&I) customers 
tend to be more tapped into these programs because they are granted signifi-
cant financial incentives for participation; in fact, some companies make more 
money when they are paid by the utility to shut down or slow their operations 
than they do in the everyday functioning of their business. When grid reliabil-
ity and quality are additive to the bottom line, meeting regulatory mandates 
and effectively implementing energy-efficiency and conservation measures are 
extremely important. 

Theoretically, the aggregate of residential customers consumes a signifi-
cant portion of the load, but it is the C&I sector that is more manageable and 

http://www.utilityanalytics.com/resources/insights/changing-face-asset-management. 
Reprinted with permission.
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reliable. For example, shedding a single facility’s load is equivalent to many 
homes, making only a single customer—instead of innumerable ratepayers—
necessary to identify and reliably shed the necessary load. However, residen-
tial demand-side programs simply cannot be ignored, because these loads are 
increasingly representative of a disproportionate amount of consumption, and, 
historically, residential load drop can be delivered extremely quickly.4 Analytics 
for demand-response applications may be the key to capturing the kind of reli-
able demand-side savings necessary to truly realize the potential for grid man-
agement, especially in periods of grid stress and high prices. Demand-response 
models help the utility plan and manage its programs. These applications enable 
utility program managers to identify both residential and C&I  customers who 
are most likely to enroll, and, among those enrolled, who should be targeted 
and when.

Residential Demand-Response Analytics

It’s costing billions of dollars worldwide to install smart meters, but the ROI, 
which includes the facilitation of improved consumption behaviors from cus-
tomers’ use of smart meters, is far from being realized. Early missteps in smart 
meter installations caused backlash among consumers and a heightened distrust 
of utilities, ranging from privacy matters to concerns about the health and safety 
of the meters. In the first rollouts, utilities were quite bullish on the beneficial 
impact that the devices would have for consumers; they were the jewel in the 
crown of the smart grid. After bills shot up for many consumers (due to several 
factors, including the fact that many of the replaced analog meters were run-
ning slowly), fires erupted, lawsuits were filed, and, finally, smart meter opt-out 
initiatives emerged that allowed consumers to keep their legacy meters. Utility 
business cases began to shy away from customer advantages and focused almost 
exclusively on the operational benefits for ROI. 

Because the demand side of the conservation and efficiency equation is 
so important, this will not last. And as Warren Buffett is popularly credited 
with saying, “Only when the tide goes out do you discover who’s been swim-
ming naked.” Utilities that leave out the consumer in their planning are with-
out swimming trunks. Policymakers and regulators are beginning to demand 
that utilities explicitly consider the role that customers will play in the future 

4 R. Blake Young (August 28, 2013), “5 Reasons Why Residential Demand Response 
Matters,” Smart Grid News. Retrieved from http://www.smartgridnews.com/artman/
publish/Technologies_Demand_Response/5-reasons-why-residential-demand-
response-matters-5992.html#.Uo_PCmRiIYg.
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of energy delivery. As a sign of the changing tides, in 2011 Canada’s Ontario 
Energy Board published guidance and expectations regarding smart grid plan-
ning and investments and specifically called out the importance of customer 
control, education, and data access and underscored that plans would be evalu-
ated and measured based on customer value.5 Utilities that have avoided human 
contact must now find ways to effectively engage their consumers. Advanced 
analytical models that leverage both internal utility data and third-party data 
may be the most cost-effective way to succeed in an area that has historically 
proved to be very challenging for the utility enterprise.

That said, the problems of residential and small commercial engagement 
are substantively different than those of larger C&I entities. From an analytical 
perspective, C&I programs are focused on enabling responsive actions to price 
changes of energy over time, where it is financially beneficial for both the utility 
and the customer to interrupt operations during on-peak hours. Residential and 
smaller commercial enterprises—by virtue of the fact that they have less to give 
or do not have the latitude to shut down appliances like refrigerators, freezers, or 
home medical equipment—require a different approach. Some researchers and 
utilities believe that price-based mechanisms can be equally as effective with 
these customers, but in the short term, that assumption is questionable. 

Many surveys have shown that even when customers are willing to partici-
pate in utility programs, they want electricity-bill savings that are considerably 
out of proportion to what can be expected in any sustained manner. In the US, 
this is especially ironic considering the excessive amount that utilities spend on 
customer incentives versus delivering actual bill savings to energy-efficiency and 
demand-response program participants. Developing new and innovative cus-
tomer acquisition models is one of the key ways in which utilities can prioritize 
and begin to develop objective evidence about how best to engage customers, 
how to formulate a solid business case for utility programs, and how to estimate 
reasonable and reliable returns for their programs.

Disaggregation

One of the most promising energy-saving innovations designed to help 
bridge the gap between humans and technologies is disaggregation  analytics. 
Disaggregation is the ability to use statistical approaches to treat either 
smart meter data or measurements from submetering sensors, exposing how 

5 Ontario Energy Board (February 11, 2013), “Report of the Board: Supplemental 
Report on Smart Grid,” EB-2011-0004. Retrieved from http://www.
ontarioenergyboard.ca/OEB/_Documents/EB-2011-0004/Supplemental_Report_
on_Smart_Grid_20130211.pdf.
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much power is being used by appliances, especially large devices such as air 
 conditioners, water heaters, and furnaces. Clearly, this information can help 
customers understand how they are using their energy to identify savings 
opportunities and help them discover appliance inefficiencies and imminent 
equipment failures. Appliance-specific information is also valuable for research 
and development, improved utility-level sensitivity and accuracy in energy- 
efficiency and demand-response programs as well as load forecasting. 

Disaggregation can be accomplished in two basic ways: monitoring a dis-
crete load directly with an equipment-based solution using a device that mea-
sures spectral signature analysis or waveform-based analysis (both of which 
are highly accurate), or nonintrusive load monitoring (NILM), developed in 
the early 1980s at the Massachusetts Institute of Technology (MIT, US Patent 
4,858,141), which uses analytics on the measurements of both reactive and real 
power to identify appliances by examining the voltage and current going into 
the house over time. Figure 5.2 shows a figure from the MIT patent published 
in 1989, showing how transient events can be detected and identifying discrete 
appliance start-up and shutdown events.

It’s worth noting that NILM is far less accurate than hardware-based solu-
tions, but it is much less costly and cumbersome, since it doesn’t require cus-
tomer intervention to be implemented with attendant management systems 
and support.6 And while its modest results initially caused the technology to 
be largely ignored by the industry as a serious approach, with improved algo-
rithms and analytical tools, it is now clear that NILM is adequate—maybe 

6 Jeff  St. John (November 18, 2013), “Putting Energy Disaggregation Tech to the 
Test,” Greentech Media. Retrieved from http://www.greentechmedia.com/articles/
read/putting-energy-disaggregation-tech-to-the-test.

Figure 5.2 Model Transient Event Detection of Real Power (Watts) over Time. 
(Source: Figure 3 from US Patent 4,858,141, in the public domain)
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even a market-changer—for enabling the utility to maximize load planning, 
optimize energy pricing, improve demand-response and energy-efficiency 
 programs, help integrate electric vehicles, and serve as a source of data for asset 
management applications.

Now that the value of effective disaggregation is being recognized within 
the industry, vendors are rushing to improve the algorithms that can be used 
in conjunction with smart meters, creating cost-effective and scalable ways of 
reaping the benefits of appliance-level usage data. Stanford University iden-
tified the various data features that are used by disaggregation algorithms to 
identify as many as 100 specific appliances. They include visually observable 
patterns, power transitions, and harmonics analysis to identity the type of elec-
trical circuitry, transients, and appliance background noise. Disaggregation is 
surprisingly effective because, at different frequencies, various characteristics of 
appliance signatures can be identified.7

The potential of disaggregation analytics is close to full realization for smart 
meters. The cost to the customer is essentially nothing, the installation expenses 
and efforts are sunk, and the adoption rate will be virtually complete in the 
developed world in the next decade. Alternatively, hardware solutions with sub-
meter capabilities for load monitoring are expensive, can be very difficult to 
install and manage, and have, so far, an abysmal adoption rate. Given this reality, 
the business case for analytic-driven NILM is compelling and potentially market 
changing when it comes to the myriad benefits that disaggregation can provide.

Commercial and Industrial Analytics

Serious demand response for the C&I sector has been the purview of aggrega-
tors, with the goal of automating participation. And it’s big business. According 
to a report from the US-based PJM Interconnection (transmitting wholesale 
electricity in 13 eastern US states and the District of Columbia), USD $8.7 mil-
lion in revenue was generated during just seven months in 2012 compared with 
$7.1 USD million in a 41-month period between 2008 and 2012. 

As is often seen in cases of dramatic shifts in the industry, regulatory pres-
sures drive change—in this case, if we dig at all, we’ll find the Federal Energy 
Regulatory Commission’s (FERC’s) Order 745. This 2011 order mandates that, 
for generation and transmission, a demand-response resource must be paid the 

7 K. Carrie Armel, Abhay Gupta, Gireesh Shrimali, and Adrian Albert (2012), “Is 
Disaggregation the Holy Grail of Energy Effi  ciency? Th e Case of Electricity,” Precourt 
Energy Effi  ciency Center Technical Paper Series: PTP-2012-0501. Retrieved from http://
www.stanford.edu/group/peec/cgi-bin/docs/behavior/research/disaggregation-
armel.pdf.
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full wholesale price rather than the difference between the wholesale and the 
retail price. This changes the current approach, where the majority of the pay-
ments went to a small number of large customers that were able to commit 
more than 10 megawatts (MW) of shed.8 How this order will ultimately serve 
to broaden the appeal of demand response has not yet been fully evaluated, but 
demand-response aggregators are working to shift their offerings. One thing 
is clear, though: Demand response in the large C&I market is enabling big 
business to participate directly in the energy and ancillary markets. And many 
of the tools—which provide customers with analysis and charting capabili-
ties integrated with real-time and forecasted data from transmission organiza-
tions—are moving toward self-service. 

One of the side effects of rapidly emerging innovation in the industry is the 
breaking down of barriers between utilities, grid operators, aggregators, and the 
end customers themselves. End-to-end management functionality is becoming 
the gold standard for utilities that are working to reduce or eliminate functional 
silos as part of their overall modernization program. Who will ultimately offer 
these services remains to be seen. While aggregators are angling to become full-
service energy advisors that provide comprehensive software solutions, other 
utilities are working to bring this function back in-house.

Analytic capabilities both deeply embedded and as an enabling feature are 
key to moving from discrete demand-response applications to full-service offer-
ings that tie together the customer and the utility as a single operating unit. 
Such approaches benefit both the utility and the customer by creating an opera-
tional system that hooks into customer management systems. With these tools, 
the utility can perform customer enrollment; manage programs; use analytical 
models for load-shed forecasting; optimize its portfolio; and even send notifica-
tions, automated signals, and postevent reporting to customers. 

Clearly, predictive and prescriptive analytics that help the utility under-
stand its high-value actions are the key value generator in an advanced demand-
response system; yet, analytical models are working, albeit less obviously, in 
many ways, including generating forecasting and optimization models as well 
as user-friendly information for the C&I customer to understand its energy 
use and the benefits gained by participating in the utility program. Figure 5.3 
is derived from a model described by the company AutoGrid for its Demand 
Response Optimization and Management System (DROMS) and explains the 
role that analytics plays in an end-to-end approach to demand response.9

8 Katherine Tweed (April 2, 2013), “Demand Response Payments Increase Signifi cantly 
in PJM,” Greentech Media. Retrieved from http://www.greentechmedia.com/articles/
read/demand-response-payments-up-signifi cantly-in-pjm.

9 AutoGrid, AutoGrid DROMS. Retrieved from http://www.auto-grid.com/
technology/our-fi rst-application-droms.
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Very few vendors currently offer such a powerful approach to the use of 
analytics for C&I demand response, but the rapid application of analytics to 
solve utility problems combined with a cloud-based platform approach mark 
the beginning of a critical transition to end-to-end solutions. Entrepreneurial 
companies backed by advanced algorithmic models are setting this mark, 
but incumbents will certainly see the opportunity in moving their products 
beyond their traditional functional limits. Several cloud-based pilot programs 
are quickly leading to rollouts as utilities discover both the low-enablement and 
operating costs, as well as reliable load shed that is occurring with a unified and 
coherent approach to high-value C&I demand response.

5.2.4 Dynamic-Pricing Analytics

With the universal deployment of smart meters in the developed world a close 
reality, utilities, regulators, and customers are viewing dynamic pricing as a 
growing area of interest. Currently, most electricity customers pay a flat rate 
for every kilowatt-hour (kWh) they use, regardless of the time of day or the 
actual momentary cost to deliver that electricity. This disconnect in cost will 
only grow more difficult as renewable generation becomes a greater share of 
the energy mix, creating further volatility in the moment-to-moment costs of 
energy. The dynamic-pricing model changes the tariff system in such a way that 
a different price is charged at various times for the same amenity, but it’s a price 

Figure 5.3 AutoGrid Model for Shaping End-to-End Demand-Response with 
Analytics. (Adapted from http://www.auto-grid.com/technology/our-fi rst-
application-droms, with permission.)
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that reflects real costs. There are many challenges; utility rate-making is often 
a formal regulatory or government process for public utilities, and rate-making 
typically requires some attempt to set prices at just, reasonable, and nondis-
criminatory levels.10

Dynamic-pricing advocates argue that customers will have more control 
over their energy costs. Detractors, on the other hand, worry that low-income 
customers—particularly the elderly and those with children and health prob-
lems, especially in areas with temperature extremes—will be unfairly impacted. 
It is questionable whether residential customers can hedge the risk of high prices 
like C&I customers can. To guarantee distributive justice, but also bring a tariff 
system that accurately reflects the imposed costs of providing electricity under 
different demand scenarios, customers will need to be able to change their 
behavior and shift load when prices are high. This implies that one of the keys 
to realizing dynamic pricing is the ability to offer products and services that 
guarantee instant demand-side flexibility and that reliably influence customer 
behaviors. This can only be accomplished adequately and at scale with data 
analytics that can help match supply and demand coupled with customer-side 
technologies that can automatically respond to price signals.

Infl uencing Behavior Requires a Relationship

In 2013, it was announced that, depending on the opponent and the game 
time, Toronto Maple Leafs fans are required to pay a higher ticket price for 
“better” games. The Maple Leafs’ head office claims that it is simply market 
forces that are dictating prices, so it’s entirely fair. What do fans think? Well, 
they don’t seem to think it is a positive development. It makes them mad, actu-
ally. It doesn’t seem to amount to more than a price-discrimination scheme, 
with a helping of inventory rationing. It seems simple at first: If fans want to 
see their team at its best, they should be willing to fork over more cash to do it. 
But, the system could backfire. As one commentator claims, “Reliance on strict 
demand-based pricing will tend to reduce the fan-team relationship to a series of 
cold economic exchanges.”11 Only time will tell the true impact of this decision.

Perhaps it seems intellectually dishonest to compare utility dynamic-
pricing schemes with hockey ticket pricing. But, given the less-than-adoring 

10 J. P. Tomain and R. D. Cudahy (2004), Energy Law in a Nutshell (Nutshell Series), 
West Group, Chapter 4, p. 392. 

11 Mike Lewis and Manish Tripathi (2013), “Why Sports Fans Hate Dynamic 
Pricing,” Emory Sports Marketing Analytics (@sportsmktprof), Emory 
University. Retrieved from https://blogs.emory.edu/sportsmarketing/2013/08/21/
why-sports-fans-hate-dynamic-pricing.
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 relationships that customers have with their electricity providers—and the fact 
that utilities must build trusting relationships with customers in order to imple-
ment demand-response and energy-efficiency programs—it is worth a moment 
of consideration. Yes, electricity isn’t exactly an experience (but maybe it should 
be), and even if customers are used to paying a tariff for service, that is not the 
point. The point is that a dynamic-pricing paradigm shifts the focus from the 
receiving of an amenity to the fee itself. 

Unhappy and ambivalent customers are a new issue for many electricity pro-
viders; back in the day, customers were just revenue generators. Now, the utility 
model is under threat of disintermediation and hollowing brought on by the 
availability of affordable microgeneration, community aggregation models, and 
competition for customer attention. By the time this book is published, fully 
expect to see the cable company moving into the position of energy provider. 
Thus, the real challenge is not how to algorithmically exact maximum revenue, 
but how to balance revenue generation with the all-important relationship with 
the customer. And ironically, it may be customer trust and engagement that will 
bring the acceptance of dynamic-pricing schemes in partnership with demand-
response and efficiency applications, ultimately allowing utilities to implement 
effective pricing programs.

The Nuances of Pricing Schemes

It’s not just utilities that are struggling to find ways to match revenues with 
delivering customer value. Consider this excerpt from a SAS Institute white 
paper on the topic of customer relationship management in the banking and 
financial management sector. Of particular interest for banks is understanding 
who their high-value customers are and what kind of banking products they 
should offer them. Traditional information, such as a credit score, is being ana-
lyzed with external data with great success:

Many banks today are hoping to grow consumer and small business 
revenues . . . and also create “sticky” relationships that reduce attrition. 
. . . With high-performance analytics, the bank representative could 
assess the customer’s current use of existing bank products and services 
along with associated profitability and combine that information 
with in-house propensity, credit scores and external data (such as 
outstanding loans and other financial relationships). . . . The overall 
value to the bank through the addition of high-performance analytics is 
that every customer interaction can be based on optimizing the price of 
new products for each customer in a way that increases retention, grows 
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revenue and improves the bank’s profits while providing the optimal 
customer experience for each individual consumer or business client.12

Like the bank, the utility needs to maintain an increased understanding of 
customer behavior. Some analytic companies are beginning to make substan-
tive incursions into this space to aid utilities in influencing consumer energy-
use behaviors; although, because initial dynamic-pricing schemes are currently 
oriented toward C&I customers, residential solutions are lagging. Some of the 
analytical features that are proving fruitful in enabling new pricing programs 
include multidimensional analyses based on customer class, seasonality, and 
end-use characterizations, such as appliance type, integrated analyses to model 
the most effective ways to influence consumption choices, and elasticity model-
ing for price impact analysis. Visual analytics are an important part of creating 
a dynamic-pricing composite for the utility, and they provide visualization and 
simulation analytics of the impact of various pricing schemes on customers and 
their related load reduction trends.13

Effective analytical tools will help utilities gain the much-needed insight 
into which price schedules will drive the greatest influence on end-user con-
sumption behaviors across appliance type, customer class, seasonality, and other 
factors. Simulation based on predictive and prescriptive models will help match 
energy-use behavior to various dynamic-pricing schemes and substantiate fair-
ness for all customers by ensuring that they have the tools necessary to elasti-
cally respond to pricing schedules.

5.2.5 Revenue-Protection Analytics

Theft of electricity, euphemistically called “energy diversion,” is a worldwide 
problem, resulting not only in major economic losses in terms of electric utility 
revenue, but in some developing countries, energy diversion creates a serious 
drain on already-strained infrastructure. Smart grid data analytics are playing 
a key role in identifying diversion scenarios that support revenue protection, 
including prosecution and collection. Energy diversion is accomplished with 

12 Ana Brown (February 16, 2012), “A Win-Win: Customer Relationship Dynamic 
Pricing,” Th e Knowledge Exchange, SAS. Retrieved from http://www.sas.com/
knowledge-exchange/business-analytics/innovation/a-win-win-customer-relationship-
dynamic-pricing. Reprinted with permission.

13 Space, Time, Insight: Dynamic Pricing Composite. Retrieved from http://www.
spacetimeinsight.com/solutions/energy-and-utilities/smart-grid/dynamic-pricing-
composite.php.
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outright meter tampering, tapping into other premises, meter switching with 
low-consumption premises, or some form of meter bypass.

Methods for solving this costly problem are well suited to a wide variety of 
analytical applications. Accenture has developed a capability model for theft 
analytics based on grid infrastructure that correlates infrastructure maturity 
with analytic capabilities. The model begins with basic customer analytics and 
billing data and progresses toward smart grid feeder and transformer metrics. At 
the highest level of capability, the model emphasizes an aggregation of capabili-
ties from the earlier phases of the model, emphasizing network visualizing and 
geospatial analytics.14

Like many comprehensive analytical approaches, the Accenture model 
demonstrates the cross-cutting nature of a fully realized approach to solving a 
specific utility problem, beginning with detecting anomalies in historic billing 
information and then correlating smart meter interval data, status and events, 
feeder analysis, and geospatial network visualization. Part of the value in con-
structing a capability continuum that is viewed through the lens of a powerful 
business need is the usefulness of such a model in developing a road map of 
solutions that can be aligned with other smart grid projects in the enterprise. 

Specifically, the analytical techniques for utilities in detecting and closing 
energy-diversion incidents include analyzing data from customer information 
systems for similar classes and identifying usage anomalies and violations of 
predetermined thresholds and patterns based on a variety of characteristics and 
survey data. Smart meter data is especially useful because of the granularity 
of consumption data available to rapidly build a highly granular load profile 
that can be compared against other profiles and that accommodates seasonal 
or weather-related shifts. Third-party data can also be integrated into the data 
models, such as credit history, criminal history, and even social connections. 
Additionally, many of the techniques used to detect theft can be applied within 
the utility beyond diversion detection for distribution optimization, voltage and 
volt-ampere reactive (VAR) optimization, and fault location isolation and ser-
vice restoration (FLISR) applications.

5.2.6 Breaking Down Functional Barriers

While we continue our discussion in further chapters with an overview of 
operational, customer, and cybersecurity analytics, it is likely clear that in 

14 Accenture (2011) , “Achieving High Performance with Th eft Analytics.” Retrieved from 
http://www.accenture.com/SiteCollectionDocuments/PDF/Accenture-Achieving-
High-Performance-with-Th eft-Analytics.pdf.
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the smart grid–enabled utility, data and functional silos will be naturally 
eliminated. As demonstrated, many of the enterprise applications that carry 
significant ROI depend on operational, business, and third-party data. The 
functional delineations that have served the utility so well as a largely pro-
ject management–oriented operation are becoming more murky as the  utility 
begins its transition toward brokering information through analytics for future 
business optimization.
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Chapter Six

Operational Analytics

Apollo 10 fi ring r oom consultation among launch personnel. (Source: NASA1)

6.1 Chapter Goal

The topic of analytics in the operational context is a broad and deep sub-
ject. This chapter sheds light on some of the most important driving issues 

1 Image retrieved from the public domain at http://grin.hq.nasa.gov/IMAGES/
SMALL/GPN-2000-001849.jpg.
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 affecting how analytics are used in the control room and touches on some of 
the considera tions for developing operational big-data analytics systems. These 
include the nature of control-room activities, the presentation of analytics for 
quick and effective decision-making, the automation of integrated distribution, 
the use of resiliency analytics, and the important role of standards.

6.2 Aligning the Forces for Improved Decision-Making

A concise definition of operational analytics will most surely lack precision. 
Defined in the negative, operational analytics is not about those precious aha 
moments or storytelling; it’s about making better decisions in the moment. 
While there may be many beneficial side effects, such as customer satisfaction 
and optimization offered by a well-operating grid, improved decision-making is 
the primary reason for operational analytics. It is often assumed that only stra-
tegic analytics can have high economic impact on the business, but operational 
analytics run the gamut from low- to high-value decisions, with an aggregate of 
undeniably high-impact results.

As legendary business management consultant, educator, and teacher Peter 
Drucker said, 

Decisions are made at every level of the organization, beginning with 
individual professional contributors and frontline supervisors. [These] 
decisions are likely to have an impact throughout the company. Making 
good decisions is a crucial skill at every level.2

The relevant inference that we can draw from Drucker’s observation is that 
every functional area in the organization requires adequate insight that can lead 
employees to make informed decisions. In an era of data-driven operations, 
this is how maximum productivity and profitability are achieved. An effec-
tive operational analytical model not only helps drive this required insight and 
understanding but also helps drive decision-making toward maximum high-
value action. Operational functions especially require analytical capabilities 
that provide the tools necessary to make rapid decisions and use real-time data 
to solve critical problems in the moment.

Operational analytics are typically built on massive amounts of data with very 
low latency, and in many cases, they do not require human intervention. This 
is a function of automation often built and integrated on board grid devices. As 

2 Peter Drucker (2004), “What Makes an Eff ective Executive,” Harvard Business 
Review, vol. 82, no. 6. Retrieved from http://hbswk.hbs.edu/archive/4208.html.
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mentioned, since straight-through and onboard processing analytics are a highly 
specialized area, we will continue to focus on operational analytics that leverage 
the use of data mining, predictive analytics, optimization, and simulation.

6.3 The Opportunity for Insight

Providing insight into the grid from the substation to the customer meter is 
an excellent opportunity for utilities. The smart grid enables utilities to inte-
grate instantaneous reporting to system operators from sensors installed at sub-
stations, on transformers, and from the sensing abilities within smart meters. 
Clearly, utilities now have instrumentation to help perform tasks on the grid 
that were simply not possible before, or, at the least, very difficult. By aggregat-
ing performance characteristics and information about load, operators are capa-
ble of understanding system load and utilization to ensure that assets remain 
within their operational parameters over time. 

The management of intermittent renewable generation sources is another 
powerful use case that can provide a significant impact on reliability and coor-
dination that goes far beyond existing supervisory control and data acquisition 
(SCADA) capabilities. This is a growing opportunity, as distributed generation 
technology brings energy storage, plug-in electric vehicles (PEVs), rooftop solar 
feed-in, and demand-response programs into the supply mix. Unfortunately, 
there is significant evidence that most utilities have not been able to analyze 
data beyond basic tasks of description, classification, and clustering to benefit 
from diagnosis and prediction. This is very likely due to a lack of experience in 
understanding the value of operational analytics, how to invest, how to estab-
lish return on investment (ROI), and how to work operational analytics into 
business strategy and planning.3

There is industrywide concern about the unknowns of operational analyt-
ics within the utility, but the technology required for these processes is actu-
ally quite well established and proven. Even so, utility organizations are well 
advised to start small and grow their efforts incrementally, investing not just 
in a big-bang technology but also in a managed rollout that prevents chaotic 
organizational shifts. Enterprise data also plays a role in operational analytics 
programs, especially for making predictions and extrapolating trends; in some 
cases, operational models rely directly on historical and business data, which are 
then executed against live data for real-time decision-making.

3 BRIDGE Energy Group (September 17, 2013), “90% of Utilities Are Using Old 
Analytics Tools but Expecting New Results,” PRNewswire. Retrieved from http://
www.prnewswire.com/news-releases/90-of-utilities-are-using-old-analytics-tools-
but-expecting-new-results-224062561.html.
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6.3.1 Adaptive Models

In the operational domain, many of the most useful models employ adaptive 
methods that help improve the strength of predictive algorithms. With stan-
dard models, after deployment, they will continue to run until they are replaced 
with updated or refined models. Adaptive models continually self-tune based on 
the results they achieve. This means that the output itself is analyzed and based 
on a measure of success that’s built into the model, and it adjusts to improve 
its results within the operational environment, allowing the system to adapt to 
emerging conditions.

Adaptive models are complex, and an explicit review of these modeling tech-
niques is outside the scope of this book. However, it is helpful to understand 
that there are two types of adaptive models: those that take the content of the 
model into consideration and those that don’t. Just because a model doesn’t 
understand the content doesn’t mean it can’t be a useful and powerful tool. In 
fact, many early-warning systems comprise such adaptive models. If, in order to 
maintain ideal conditions, the model can identify when certain parameters fall 
out of bounds and can even correlate that data with other longitudinal types 
of data, the model can sound an alarm for action. What makes this approach 
adaptive is that it does not require a predefined workflow. Content-aware adap-
tive analytics (sometimes called semantic analytics) currently rely on the under-
lying data being tagged in some manner, but this will likely evolve as big-data 
processing technologies advance.

One of the aspects of adaptive analytics that makes it so well suited to the 
operational environment is that the data is described as entities—a location, 
a customer, or a service. Analytic models help improve confidence and have 
proved to be helpful for utility operators in developing confidence in their ana-
lytic models. For example, consider a predictive model that finds that a trans-
former that has been exposed to overstress events over a given period of time 
now has a 95 percent probability of failing within the next 30 days. However, 
if a certain detrimental event occurs (which can itself be predicted), there is 
a 50 percent greater chance that the transformer will fail in 15 days. When 
applied, the model uses refreshed data to adapt accordingly, providing much 
more power ful prescriptive insight.

6.4 Focus on Effectiveness

The utility operational context is really ideal for the application of analytics, 
and given a focus on effectiveness, it may be the best path forward to finding 
direct and tangible ROI from smart grid technology deployments. The authors 
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at BeyeNETWORK wrote about operational analytics and noted that, despite 
the fact that not all operationally focused decisions have singularly high eco-
nomic value, the sheer volume of these decisions can easily exceed in impact the 
value of one key strategic decision. In discussing how operational analytics can 
drive this value, the authors state, “Because operational decisions are repeated, 
they accumulate a large historical record of what works and what does not. Even 
when the historical data is missing, the repeatability of operational decisions 
lends itself to experimentation and testing to acquire data about what works 
and what does not.”4

As described in Figure 6.1, operational decision-making is a constant cycle 
of analytical processing, risk and opportunity assessment for a particular set of 
actions or nonactions, decision-making and effect, assessment of the impact 
of the taken action, and subsequent adaptive tuning of the analytical model. 
However, the most powerful and effective models require historical data because 
their strength is dependent on working in the context of previous results. 

4 BeyeNETWORK and Decision Management (2010), “Operational Analytics: 
Putting Analytics to Work in Operational Systems,” report prepared for Oracle. 
Retrieved from http://www.oracle.com/us/products/applications/hyperion/
operational-analytics-report-081829.pdf.

Figure 6.1 The Virtuous Cycle of Adaptive Analytics in an Operational Domain.
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It is important to begin gathering entity-level data as it becomes available, 
and likely well before operational analytical programs have been well defined. 
One approach is to examine the low-value and low-complexity business deci-
sions that can be automated, thereby freeing up the organization to focus on 
more-multifaceted and more-expensive decisions that require expert interven-
tion. Begin by ensuring that this data is being collected and aggregated for use 
when the program begins to scale up. Properly designed, operational analytics 
translate into positive ROI directly by reducing the costs required to run the 
grid and indirectly by enabling better utilization of senior personnel skills and 
talents in an increasingly resource-constrained environment.

6.4.1 Visualizing the Grid

Real-time visualization of the grid is growing to be an important way to pro-
vide a coordinated response to leveraging powerful analytical models, which 
is discussed further in Chapter 12 but introduced here as a key to a fully real-
ized operational analytics program. One excellent case study of the effectiveness 
of visualization for operational functions is the California independent system 
operator (CAISO, www.caiso.com) that manages the flow of 50,000 megawatts 
of electricity across the high-voltage transmission system in the state. These 
long-distance power lines make up approximately 80 percent of California’s 
power grid in a state of nearly 39 million people with an economy comparable to 
Russia’s.5 The stakes are clearly very high, and reliable and safe electricity opera-
tions are demanded. Before grid modernization, CAISO was facing an operat-
ing environment where diagnostic support for the grid was not acceptable—or 
even available, in some cases. As part of smartening the grid in California, the 
ISO focused on providing situational intelligence to the dispatchers and opera-
tors in the control center through advanced visualization. 

The program introduced the ability to gain real-time information of the grid 
through geospatial, visual feedback. Outfitting an entire 80-foot video wall, 
CAISO worked with analytics vendor Space-Time Insight to provide visual 
applications that correlate a wide variety of information, such as fire danger 
and crisis management data, the characteristics of various grid elements, and 
the weather impacts on distributed generation. Across the control room, var-
ied actionable information is displayed and interacted with, including market, 
grid, and crisis intelligence; system planning information; and data required to 

5 Bloomberg Businessweek (2010), “California Retains Economy Th at Would Be 
8th Largest.” Retrieved from http://www.businessweek.com/ap/fi nancialnews/
D9JS1MLO0.htm.
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 successfully manage the intermittent renewables on the grid. Data tables to spot 
anomalies are very difficult for the operator to use without increasing fatigue; 
scanning visually across contours and colors provides feedback that a human 
being can quickly understand. CAISO reports that its ability to collaborate 
across functional areas has increased because the organization does not lose 
information that might be valuable to others, minimizing misunderstanding 
across multiple disciplines within the group and improving effectiveness.6

Unfortunately, a visual display does not necessarily mean that the value of 
an analytics application is improved. In fact, just the opposite can be true if the 
presentation of the data is junky and inappropriate. A well-designed presenta-
tion breaks down the barriers between how the operator thinks about solving 
its problems and accessing the information it needs to act. Intuitive systems 
can provide heightened situational awareness, increase the likelihood of an 
effective response, and enhance the prevention of accidents with catastrophic 
consequences. This is a very important issue, as described in an article about 
implementing data analytics situational-intelligence applications:

Humans create mental models of the real world that help describe how 
things work; those models aid us in solving problems. Grid engineers 
use their own models, with system feedback, to make choices about 
the best possible course of action to keep the grid functioning. If the 
data presented does not align with that mental model, the engineer is 
left to continuously translate the information coming in, resulting in 
slower responses, fatigue, and a higher danger of making mistakes. A 
classic example of this phenomenon is the Three Mile Island accident, 
where the post-event inquiry concluded that the design of the control 
panel—specifically, a poorly designed and misunderstood light—was 
partly responsible for the disaster.7

Effective systems are not just analytically powerful and accurate. They also 
combine aspects of behavioral science and industrial engineering knowledge 

6 Space-Time Insight (2011), “California ISO: Bringing State-of-the-Art to California’s 
Grid.” Retrieved from http://www.spacetimeinsight.com/pdf/Success_Story_Cal_
ISO.pdf.

7 Carol L. Stimmel (2012), “Smart Grid Data Analytics in the Real World,” Smart 
Grid News. Retrieved from http://www.smartgridnews.com/artman/publish/
Delivery_Asset_Management/Smart-grid-data-analytics-in-the-real-world-4967.
html#.Upp_8WST6xM. Reprinted with permission.
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and experience for creating graphical display and interaction systems that are 
effective and usable by human beings working in high-stress environments. 
Data readiness is always a consideration in pushing fine-grained analytical 
models into the operational environment, but an ease of interpretation is what 
makes these models really useful.

6.5 Distributed Generation Operations: 
Managing the Mix-Up

Is the CAISO success with operational analytics enough to stave off antici-
pated grid problems caused by aggressive renewables mandates with intermit-
tent renewables penetration approaching the 40 percent mark?8 How about 
Germany, where the energy revolution (Energiewende) has brought a major shift 
toward green energy but also major problems related to integration issues, excess 
wind spillage, rising costs, and even a measured increase in year-over-year car-
bon dioxide emissions as coal plants are required to shore up generation in the 
cold months?9 Certainly, wind and solar are becoming a significant part of the 
energy mix across the globe, and emissions standards are not slackening. But a 
lack of grid stability and flexibility to manage renewables is a grave concern; in 
fact, it is an impending crisis. 

According to superintegrator IBM, there is a defined maturity model related 
to the operation and maintenance of renewables within the system that drives 
optimal functionality of these assets. This model is quite helpful in measur-
ing the development of a renewables integration program against the business 
value that can be derived through optimal operations upon which the appropri-
ate analytical capabilities rest. As it applies to analytics, within its end-to-end 
model, IBM includes monitoring, management, and optimization. Figure 6.2 
describes just these elements.

Monitoring. Visibility is the first step to gaining control over what is often a 
very fragmented system of wind and solar generators. Analytical models con-
tribute to dashboards, key performance indicators (KPIs) compliance, and real-

8 Jesse Berst (2013), “WSJ Says What We’re All Th inking: California Will Soon Have 
Grid Problems,” Smart Grid News. Retrieved from http://www.smartgridnews.com/
artman/publish/Business_Policy_Regulation/WSJ-says-what-we-re-all-thinking-
CA-will-soon-have-grid-problems-5557.html#.UpqQtmST6xN. 

9 Spiegel Online International (2013), “High Costs and Errors of German Transition 
to Renewable Energy.” Retrieved from http://www.spiegel.de/international/germany/
high-costs-and-errors-of-german-transition-to-renewable-energy-a-920288.html.
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time monitoring capabilities. To even begin to achieve a useful monitoring state, 
utilities must also implement a complete data management solution, including 
acquisition, storage, processing, and presentation.

Management. For renewables operations and maintenance (O&M), manage-
ment functions are largely dependent upon weather forecasting and high-quality 
prediction. Advanced analytics include models for numerical wind prediction 
to drive forecasted power outputs, enabling coordinated dispatch operations 
via linkages with conventional power sources, such as coal, gas, and storage. 
Integration issues for intermittent power sources are by far the most challeng-
ing obstacle for increasing the renewables mix; in fact, in some cases, they may 
actually result in system operators curtailing generated electricity that could 
otherwise serve the electrical grid. Additionally, analytics are also useful for 
predictive maintenance support to reduce overall downtime, report imminent 
loss of a system asset, and subsequently increase availability.

Optimization. As mentioned, generating capacity is not the issue with 
renewables; grid flexibility is. The greatest business value is achieved when 
 analytical-driven tools serve to increase automation opportunities. Additionally, 
fully realized integration of intermittent energy brings opportunities for alterna-
tive business and economic models, such as transactive pricing and support for 
carbon and emissions trading. Fully optimized renewable-generating assets are 
critical to meeting social, political, and regulatory demands.10

Analytics are the keystone of the full industrialization of renewable 
energy worldwide. Predictive models are especially important to reducing the 

Figure 6.2 Business Model–Driven Approach to Optimizing Renewables 
Operations.

10 Rolf Gibbels and Matt Futch (2012), “Smarter Energy: Optimizing and Integrating 
Renewable Energy Resources,” IBM: Th ought Leadership White Paper. Retrieved 
from http://public.dhe.ibm.com/common/ssi/ecm/en/euw03067usen/EUW03067
USEN.PDF.
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 uncertainty caused by weather variations. At least in the short term, consumer 
demand and market conditions cannot flex to the granular fluctuations in 
weather that, through its impact on generation intermittency, can carry a gross 
impact on generating output. A viable and sustainable renewables program 
requires both accurate prediction models and automation to accommodate 
 rapidly shifting power output from variable sources over time. 

6.6 Grid Management

Analytics used for advanced, real-time distribution management are largely 
focused on optimization. These models are concerned with the functions within 
the grid’s distribution network and may be used for performing state analysis; 
managing workforce; conducting fault location, isolation, and service restora-
tion (FLISR); maintaining frequency and voltage levels; managing outages; and 
modeling and managing load. Other analytical models are quickly emerging 
out of operational necessity to help monitor and manage electric vehicles, dis-
tributed energy resources (DERs), and microgrids.

What are collectively called a distribution management system (DMS), vari-
ous applications support control-room operators with monitoring and decision 
support for control of the electricity grid. In the United States, the real-time 
management found in today’s DMSs evolved from outage management sys-
tem (OMS) technologies, which comprehensively manage outage restoration 
across operations, crew management, and related customer support activities. In 
other parts of the world, pictures and papers were the heart of operations until 
SCADA systems allowed electronic control of operations. SCADA functional-
ities still play a role in the DMS topology, as do communication and remote-
control capabilities. 

Now, the smart grid brings a new level of complexity and capability to the 
DMS arena with distribution automation (DA) technologies such as reclosers, 
automated feeder switches, capacitor banks, and voltage regulators. As dis-
cussed, the relationship between DERs and DMSs is being defined even as 
these devices hit the network; new protection schemes and updated feeder con-
figurations are required to prevent system disturbances, a meiotic term used to 
describe transformer explosions and blackouts. 

Even the applications within the control room itself have tended toward 
point-to-point solutions that create both data and functional silos. In the era of 
the smart grid, we are going to see systems emerge that leverage a common net-
work model and platform integration upon which traditional DMS—as well as 
OMS and SCADA—features are deployed. This unified approach brings flexi-
bility, a simpler system, and the ability to quickly drive strategic initiatives into 
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the action-driven operational zone. The benefits may be terrifically convincing, 
but making major changes to the DMS is what some in the industry call a “big 
bite.” To imagine how difficult it is to upgrade command and control in the 
utility, consider how difficult it is to change the tires on your car—while it’s 
speeding down the interstate. It’s about the same thing.

It remains to be seen what predominant architectures will emerge to meet 
the grid operation requirements for integrated solutions that manage the entire 
smart grid life cycle, from DA to OMS to demand-response programs. Some 
vendors are calling for completely decentralized models that shift intelligence 
and control to the edges of the networks. That approach would necessitate pre-
dominantly onboard analytics of analytically driven control applications that 
would execute very close to the collection of sensor and other device data. Other 
architectures are much more of what could be described as hybrid. Specifically, 
this is a position of nonparticipation in the debate between distributed and 
centralized systems; instead, data is shared between the edge of the network 
and the central system. At this point, it is very unlikely that a utility would be 
comfortable adopting a totally distributed model; the evidenced conviction that 
these devices are truly capable of performing without human intervention is just 
not yet there. 

In the cases of both the centralized and hybrid models, standards will be 
an important consideration for coherent information exchange. Working 
Group 14 of the Technical Committee 57 of the International Electrotechnical 
Commission (IEC TC 57 WG14) is developing IEC 61968, more accessibly 
known as the Common Information Model (CIM), which defines the interface 
between the major elements of the DMS. The standard specification can be 
found at the IEC smart grid standards website (http://www.iec.ch/smartgrid/
standards). Given the sheer volume and variety of legacy and emerging types of 
data flowing off the smart grid, extending DMS capabilities to the utility with-
out the benefit of communication standards is likely a foolish move. However, it 
remains to be seen if CIM is the answer to standardized data formats or if other 
definitions will provide better interoperability. For example, MultiSpeak, which 
is funded by the National Rural Electric Cooperative Association (NRECA), 
is already considered the de facto standard for interoperability. And more than 
600 utilities in an estimated 15 countries are already using the format.11 Also, 
importantly, the National Institute of Standards and Technology (NIST) has 
chosen MultiSpeak as a key standard for operations in the organization’s con-
ceptual model. There has also been some initiative to harmonize CIM and 
MultiSpeak and to enable interoperability between the two, a translation that 
allows end points that speak either CIM or MultiSpeak. Confusion abounds.

11 MultiSpeak (2013). Retrieved from http://www.multispeak.org.
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6.6.1 The Relationship Between Standards and Analytics

Analytic projects can be stressed and driven to failure by uncertainty. They can 
take too long to complete, and strategies can change. Standard communica-
tion models described by both CIM and MultiSpeak prevent redundancy in 
development efforts and facilitate the creation of unified, high-quality, reliable 
libraries that can become part of the analytics framework and, in platform ser-
vice-based architectures, can be accessed through an application programming 
interface (API). Consider the example of an operational dashboard designed for 
two different consumers: a control-room operator and an executive overseeing 
operational outcomes. These two stakeholders require very different outcomes 
from their analytical software. The operator needs to be able to make deci-
sions in the moment and to analyze a situation, she also needs the ability to 
rapidly drill down into root causes. The executive, on the other hand, is seeking 
to understand the story of what happened and why, and to analyze potential 
outcomes. Analytics help expose relationships between events, and even with 
the same data, different perspectives emerge. Standards at every level allow the 
utility to accelerate all efforts to modernize. And given the key role that ana-
lytics play in making sense of the state of the grid, standards are critical to the 
coordination of the innumerable disparate, point-to-point, legacy systems with 
digital sensors and other intelligent devices.

Utilities across the globe have invested heavily in advanced metering infra-
structure (AMI) and smart grid technologies and continue to do so. However, 
these distribution devices are far from a full recognition of the technologies’ 
value and potential benefits. At the same time, utilities are simultaneously in 
danger from underinvesting in analytics and overcommitting on smart grid per-
formance. Distribution management, especially, does not lend itself to a project-
based approach to analytics; though in the short term, progress can be made 
by building analytical models that rest on top of current data systems. Moving 
from the tactical phase of analytics for productivity toward more-strategic and 
more-predictive opportunities is when ROI will begin to reach its potential. 
Understanding the full capabilities of predictive and prescriptive analytics for 
the control room will bring the grid to express the vision of resiliency.

6.7 Resiliency Analytics

Making decisions to manage risk is the raison d’être for the utility control room. 
As DERs and unexpected phenomena such as significant weather events, both 
of which are impacting the grid at an increasing pace, are coupled with utilities’ 
overall quest for efficiency and optimization, energy providers will need to take 
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a proactive stance. Analytic tools that support both quantitative and qualitative 
techniques designed to manage the effect of reliability risks are emerging as one 
of the most important tools that the utility has at its disposal to address these 
unique challenges. Thus, in the domain of operations, analytics must incorpo-
rate well-developed and trustworthy risk models.

Developing effective risk analytics absolutely requires improving certain 
capabilities; these include the integration of models across many data sources, 
establishing linkages across functions, securely harvesting data in a manner that 
solves quality and integrity issues, acquiring skilled resources and expertise, and 
communicating insights effectively. Crisis management models, especially, raise 
the specter of resiliency within the grid and smooth restoration operations by 
providing damage estimation with improved situational awareness; they also 
manage work dispatch and predict time to restore. Strategic crisis models are 
certainly nothing new for the utility. 

When Hurricane Sandy struck the northeastern United States on October 
29, 2012, tens of millions of people were left without power, in some cases 
for weeks. Obviously, the grid cannot be completely hardened against flying 
debris and flooding, but resiliency measures are different than hardening in 
that they are designed to enable electric facilities to continue operating and 
to promote a rapid return to normal operations. An Institute of Electrical and 
Electronics Engineers (IEEE) Spectrum magazine assessment of the storm noted 
that smart grid design can be advantageous to resiliency, and included the fol-
lowing observation:

When an electrical outage occurs, the smart grid’s intelligent switches can detect 
a short circuit, block power fl ows to the aff ected area, communicate with other 
nearby switches, and then reroute power around the problem to keep as many 
customers energized as possible.12

Analytical modeling is the key to this resiliency. Because sensors and devices 
are able to report their status at microsecond intervals, it is possible to reconfig-
ure the grid in subsecond ranges to restore power. However, any such reconfigu-
ration must be able to support the load. One way to manage this is to tap DERs, 
such as battery storage and generators, as well as to kick off demand response, 
reduce voltage, and leverage available microgrid resources that allow certain 
parts of the grid to be isolated. To achieve this, the network must be modeled 

12 Nicolas C. Abi-Samra (2013), “One Year Later: Superstorm Sandy 
Underscores Need for a Resilient Grid,” IEEE Spectrum. Retrieved from 
http://spectrum.ieee.org/energy/the-smarter-grid/one-year-later-superstorm-
sandy-underscores-need-for-a-resilient-grid.
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and able to predict what is likely to happen next in the grid under a multitude of 
scenarios, and it must then be able to prescribe the best course of action.

Currently, most network models are used for planning purposes and not for 
operations. The Cooperative Research Network’s (CRN’s) description of the 
internal processes that lead to enhanced grid resiliency is interpreted in Figure 
6.3. CRN project managers noted that improved accuracy and situational intel-
ligence result from a better understanding of the network topology and lead to 
improved capabilities within operational functions.

6.8 Extracting Value from Operational Data Analytics

Once deployed, analytics can result in dramatic changes in how decisions are 
made as well as the rate at which they are executed. But getting there will take 

Figure 6.3 Creating a Resilient Grid Using Planning Models and Analytics.
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time and patience, since the investment return for analytics skitters around after 
the low-hanging fruit is picked. Automating reports and plugging in systems 
that drive productivity within operational functions will immediately provide 
an easily measured financial benefit. 

The rest of the picture may not be so rosy, due to cultural and system  barriers 
that make anything more than incremental improvement in using grid data dif-
ficult. For example, Oracle reported in 2013 that utilities are collecting a lot 
more data than they are using. This includes diagnostic flags, tamper events, 
voltage information, interval consumption data, outage information, and 
power-quality data. Nearly 40 percent of the data that 150 US and Canadian 
utilities are collecting on outages and 20 percent of the data they’ve collected on 
AMI is not being used in any manner.13 This demonstrates an incredible missed 
opportunity. 

It is easy to make the assumption that utilities are storing data for later; 
perhaps they’re determined to put that data to good use as soon as they get 
their data management systems in place. Well, maybe. However, there is a con-
cern that much of that data is actually being spilled on the floor and never 
even makes it to a data store. This is simple lack of preparedness. Utilities may 
have indeed created what Bob Meltcalf, co-inventor of Ethernet, has termed the 
“Enernet,” but the capabilities and advantages are being wasted.14 However, like 
the Internet before it, the advanced capabilities of the so-called Enernet will 
change many things about power delivery, including how energy is consumed. 
The operational domain, because of its characteristics of many low-value deci-
sions with collective high impact, is the ideal first place to put analytics to work 
on the large amounts of very granular data that are now flowing from the grid.

Perhaps utilities have much to learn from the analytically based prowess 
exhibited by the telecommunications and financial industries. But there’s a 
fundamental difference: In most cases, high-quality operations do not result 
in an increased sale of their product or a growing customer base. Instead, for 
the utility, analytical models must be focused on efficiency, cost reductions, 
and the careful management of challenges that can become very expensive and 
dangerous if they aren’t contained. Operational analytics are required to meet 
the mandates for carbon management and greenhouse gas reduction, as well as 
the growing demand from customers to generate their own power, feed excess 

13 Jeff  St. John (2013), “Smart Meters Must Better Integrate into Utility Operations,” 
Greentech Media. Retrieved from http://www.greentechmedia.com/articles/read/
Smart-Meters-Must-Better-Integrate-Into-Utility-Operations.

14 Erik Palm (2009), “‘Enernet’—A Smart-Grid Vision from a Net Tycoon,” Green 
Tech, CNET News. Retrieved from http://news.cnet.com/8301-11128_3-10203683-
54.html.
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power in, and still rely on the macrogrid when they can’t generate enough. 
Stakeholders who are designing analytical programs in utilities must realize 
that returns on big data investments are not easily comparable to other indus-
tries. The extraction of value from utility operations is much more about better 
decision-making in a rapidly changing and dynamic environment.
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Chapter Seven

Customer Operations and 
Engagement Analytics

7.1 Chapter Goal

The smart grid provides both direct and indirect advantages to customers, 
yet customer engagement may be the most important, albeit most difficult, 

1 Image retrieved from the public domain at http://grin.hq.nasa.gov/IMAGES/
SMALL/GPN-2002-000016.jpg.

Apollo 11 astronauts swarmed by thousands in a Mexico City parade during the 
1969 presidential goodwill tour. (Source: NASA1)
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 strategic imperative for the utility. In this chapter we explore some of the key 
drivers for integrated customer analytics that can serve both utility operations 
and  customers within their homes. We focus on how to use analytics to increase 
residential customer lifetime value, improve satisfaction and trust, and incor-
porate the role of third parties in the customer relationship through the use of 
both well-known structured forms of data and data from emerging unstruc-
tured sources.

7.2 Increasing Customer Value

Most customer analytics systems are designed with the goal of predicting cus-
tomer behaviors, largely as they relate to buying habits and lifestyle preferences. 
They are used predominantly in retail, finance, and customer relationship 
manage ment (CRM) systems to calculate a dollar value for each household and 
to determine that household’s value to a company, all with the objective of keep-
ing valuable customers from switching to competitive products and services. 
Within the utility, until recently, gaining improved visibility into customers has 
not been a priority, simply because in many markets, customers are “captive” 
and cannot readily go buy electricity from a competitor. However, a perfect 
storm has formed in the electricity industry that requires the utility to better 
understand its customers: Rooftop solar has become more affordable, and the 
requirements for energy-efficiency and demand-response programs are growing. 
Even with the smart grid raising the specter for greater operational efficiencies, 
lowered costs of doing business, and improved billings and collections, the cus-
tomer is becoming part of a participatory market and can no longer be ignored. 
Smart grids and smart meters are relied upon to provide the foundational data 
for developing powerful intelligence about customers that contributes to key 
utility functions and improves return on investment (ROI).

7.2.1 Customer Service

With the exception of competitive markets, the traditional role of the utility 
has been to deliver a single product to everyone; there has not been a high level 
of focus on customer service. In fact, the single most important concentration 
of the business has been meter-to-cash operations, which ensure that the utility 
is compensated for its service and that customers are billed a fair amount. In 
this situation, the utility seeks to drive down the costs of customer service while 
simultaneously maintaining reliable electricity delivery. However, with signifi-
cant regulatory and political pressure to implement cleaner energy solutions and 
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grid modernization activities, as well as the pressure of third-party competition, 
utilities must move in a much more service-oriented direction.

These services include managing distributed energy resources, supporting 
electric vehicles and home area networks, and finding a better way to engage 
the customer in energy-efficiency, demand-response, and conservation activi-
ties. Because of this, both regulated and deregulated utilities must now begin to 
understand their customers at a much more intimate level, and define and build 
authentic, trusted customer relationships. Traditional approaches simply do not 
meet these requirements.

In competitive markets especially, understanding how profitable a customer 
is to the business can be invaluable and is a key part of creating targeted service 
models. For example, a utility will want to retain a customer who has a low cost 
to serve. The best way to achieve this insight is to construct robust behavior 
models that help identify those customers whom the utility wants to retain for 
maximum profitability, and to concentrate strategic customer service programs 
that appeal directly to those consumers. Analytic models can be applied to raise 
awareness about what contributes to customer profitability, and those learnings 
can then be driven to frontline operations.

Overall, there are several key approaches that support enhanced utility 
customer service initiatives. They include the microsegmentation of custom-
ers, support for better targeting of and more-resonant marketing messages, 
customer sentiment analysis, and methodologies and approaches that can help 
 create better customer engagement with utility programs.

7.2.2 Advanced Customer Segmentation

Because of the implementation of smart meters, utilities are moving toward 
using granular consumption data by combining it with other third-party infor-
mation to develop enhanced customer segmentation models. For utilities that 
need to rapidly evolve with the changing landscape of energy delivery, the use 
of highly targeted segmentation models can help improve energy efficiency and 
peak-load-reduction outcomes. By better understanding residential and small 
commercial customer consumption behaviors, the utility is able to develop 
energy products and services that better target consumer needs, thereby increas-
ing enrollment, ROI from grid modernization efforts, and customer satisfaction.

In the industry overall, the current utility understanding of customers is so 
poor that it is likely new business strategies based on a deeper understanding 
of the electricity consumer will quickly emerge. Unfortunately, the industry 
media has focused on helping utilities “survive” the smart grid evolution, and 
that dangerously distracts from identifying business models that will drive new 
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products, services, and future prosperity. And in the future, leveraging the capa-
bilities of the smart grid with the participation of the customer is key. Founder 
and chairman of the Smart Cities Council Jesse Berst underscores the peril 
in not understanding the customer: “[T]he smart grid’s profound technology 
changes will be followed by profound business model changes. Unless a util-
ity is working hard to profit and prosper from those changes, other companies 
will snatch them away.”2 As the technology of the grid changes, utilities must 
be prepared to serve as a bridge between regulatory and political mandates and 
customer needs. Either the utilities become optimizers or they will watch their 
business decline, and angry customers will move off-grid.

Predictive analytics are enabled by fusing  utility data with a variety of third-
party sources such as financial records, social media behavior, geographic infor-
mation systems (GISs), and demographic data. Most utilities segment customers 
using an approach where historical data on transactions and other structured 
information on customer interactions are processed using rule-based systems. 
This approach is expensive and slow. Rules must be maintained and adapted 
and are usually quite simplistic. The influences that consumers are subjected to 
from news sources, events, entertainment, and especially social media are lost. 
In fact, they never even make it into the signal pool. 

Alternatively, big data allows a more sophisticated approach by driving 
microsegmentation that creates a very precise view of a market. Instead of ana-
lysts creating stable rules, machine-learning techniques can be applied that 
make it possible to automatically generate multifactor rules with little human 
effort from the data itself. This allows the system to capture a large number 
of signals from both structured and unstructured data, and to adapt targeting 
approaches very quickly as consumer actions change. However, it is also impor-
tant to remember that even the most sophisticated man–machine collaboration 
correlation requires human intuition to validate and apply, even when the rules 
are beyond human reasoning.

7.2.3 Sentiment Analysis

Sentiment analysis, also known as opinion mining, employs a combination of 
natural-language processing, text analysis, and computational linguistics to 

2 Jesse Berst (2012), “Why Utility CEOs Are Asking the Wrong Question (and 
What Th ey Should Ask Instead),” Smart Grid News. Retrieved from http://www.
smartgridnews.com/artman/publish/Business_Electronomics/Why-utility-CEOs-
are-asking-the-wrong-question-and-what-they-should-ask-instead-4485.html?utm_
medium=email&utm_source=Act-On+Software&utm_content=email&utm_
campaign=Why utility CEOs a#.Up_fCWST6xM.
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extract information from unstructured data. The goal of this form of analysis is 
to determine the attitude of the speaker or customer based on the context of the 
content, to understand online opinion, and to monitor reputation. 

It has taken a few hard hits to drive utilities into considering the usefulness 
of maintaining currency and consideration for the importance of social media, 
blogs, and social networks, which are having a growing impact on smart grid 
implementations and programs. There have been three areas of major impact 
that have driven utilities to pay more attention to activities in the social sphere: 
health and safety concerns, privacy, and smart meter accuracy. The ability for 
formerly noninfluential people to gain credibility and efficacy for their opinions 
in social media has resulted in regulatory bodies demanding smart meter opt-out 
capabilities; it’s also caused utilities to revise business models that once explicitly 
called for consumer benefits, motivated utility backpedaling on initiatives when 
technology solutions fell short, and prompted a growing overall social awareness 
of how electricity is delivered. Social media is also raising cultural-impact issues 
related to prosumer activity, affordability, and social responsibility.

These factors are ensuring that utilities begin incorporating consumer-
related issues directly into business requirements and even technology designs. 
Consumer confidence indicators have long been relied upon by utilities as 
informers for marketing programs, but the relationship between these indica-
tors and actual customer sentiment are not well understood. Consumer confi-
dence surveys show that trust for utilities is dwindling, but these surveys do not 
tell us why and are rather coarse tools for watching trends and understanding 
the impact of utility initiatives. A 2013 Accenture survey reported that positive 
sentiment has been dropping: “Less than 25 percent of consumers trust their 
utilities. . . . Specifically, just 24 percent of consumers trust their utility to 
inform them of actions they can take to optimize energy consumption—drop-
ping nine percent from 2012.”3 This is the lowest level of trust found since the 
survey was initiated in 2009.

This finding should be quite concerning for utilities that have a new level 
of dependence on customer satisfaction, and it underscores the need for utili-
ties across the globe to get the basics of doing business with their customers 
right. That includes, more than ever, finding opportunities to maximize every 
energy consumer touchpoint, from social interactions to the bill. Part of this 
radical rethinking of how to create an “energy experience” for customers must 
include capturing subjective information, tracking trends, and employing this 
information for better marketing, detection of opportunities and threats, brand 

3 Barbara Vergetis Lundin (2013), “Consumer Trust in Utilities Lowest Since 
2009,” Fierce Energy. Retrieved from http://www.fi erceenergy.com/story/
consumer-trust-utilities-lowest-2009/2013-07-03#ixzz2ZEVWftnC.
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 protection, and ROI. There is a whole spectrum of tools, data sources, and 
analytical modalities that can be integrated to achieve these outcomes. The best 
early approach for utilities is an incremental one that contains up-front costs, 
keeping the adoption burden low for new sentiment analysis projects.   

7.2.4 Revenue Collections

In almost every other industry, bad debt can be collected on by foreclosure or 
repossession. Utilities cannot do that; electricity that has been delivered and 
consumed is gone. Collection efforts can only happen in arrears. Predictive ana-
lytics help utilities see bad debt coming, allowing the utility to identify triggers 
and events as customers begin to show signs that they are going to have diffi-
culty paying their electricity obligations. Once these triggers are identified, util-
ities can provide appropriate messaging to help avoid delinquency, using custom 
communications with strategies to help consumers conserve or use energy more 
efficiently, such as payment plans or low-income assistance plans. Reactive col-
lections also benefit from predictive analytics by helping utilities optimize their 
collections strategies, reducing the costs of the collections process, and even 
ranking customers who are most likely to pay their debt.

Like every good analytics programs, breaking down both data and func-
tional silos is paramount. A credits-and-collections suite of models can benefit 
from an extensive aggregation of data, including customer care data, consump-
tion data, previous billing and payments data, grid data (such as outages and 
grid health that impact the customer), demographic and geographic data, sat-
isfaction data, provisioning and repair data, marketing data, competitive data, 
adjacent market data, and a customer lifetime value assessment. A model might 
include customer behavior characteristics such as the number of automated 
teller machine (ATM) withdrawals in a month, bank balances, account arrears 
scores, and interest charges.

These models can be built by examining historical data and then attribut-
ing a score to each customer who establishes the probability of delinquency 
occurring. For collections analytics specifically, the best outcome is to develop 
a communications strategy that is automated and hooked into the models, so 
customers get the right message at the right time. The goal is to reduce the 
need for reactive collections that are increasingly ineffective with rising  societal 
indebtedness, and to identify customers far earlier in the debt management 
life cycle for effective and appropriate customer engagement and intervention. 
Implementation of similar models in utilities has proved the application of pre-
dictive analytics for collections (or collection avoidance) to be quite efficient. In 
at least one case, Pitney Bowes reports that it found approximately 75 percent of 
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the delinquents in the top 30 percent of the model population, a discovery that 
can speed up prediction cycles and response times for customer engagement.4

Revenue-collection analytics use a sophisticated approach that can help 
the utility drive customer loyalty and satisfaction, accelerate collections, and 
lower costs by supporting both short- and long-term strategies. A fully realized 
analytics-driven revenue-collection process can help continuously identify at-
risk accounts and revenue bottlenecks, and intelligently prioritize efforts in a 
customer-specific, situation-appropriate manner.

7.2.5 Call Center Operations

With the emphasis on data flowing from the grid, the data generated by call 
center activities can be overlooked in the context of grid modernization. It 
is quite conceivable that, as the utility transgresses the smart meter into the 
home through in-home networking, automation, and interconnected nano-
grids, the call center representative will be doing much more to support con-
sumers, much in the same way that telecommunications companies adapted to 
support in-home networking for Internet services (“You sent me this modem, 
and I can’t load a web page!”). The call center owns many important customer-
related data streams, from accounting and claims adjudication to outage 
communications.

As utilities move from the simple delivery of a commodity product toward 
service orientation, they will need to implement more-sophisticated ways to 
measure the number of calls, their duration, average hold time, and resolution 
rates. Currently, the orientation of these measurements is agent- and efficiency-
specific, but as more-technical queries and social media influence flow into the 
work stream, analytics are the key to providing real-time guidance that delivers 
greater quality of service to contain and drive out costs from the process.

Call center data analytics, like many powerful analytic models, bring 
together historical and real-time information to support decision analysis and 
improved product development. For example, analytics can help predict the 
root causes of customer dissatisfaction, understand the dynamics of expensive 
repeat callers, and distinguish revenue-related calls for special handling. Also, 
analytical models can be developed that can help improve agent responses with 
targeted training tools, even down to each agent. Some of these techniques 
relate to integrating sentiment analysis into contact center capabilities. For 

4 Pitney Bowes (2013), “Predictive Analytics + Customer Engagement = Bad-Debt 
Prevention,” webcast presented by Energy Central. Retrieved from http://www.youtube
.com/watch?v=wF3YlFc7GZk&feature=youtu.be.
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example, identifying when problems or customer complaints are emerging gives 
the utility the opportunity to tackle them transparently and quickly. 

Analytics are well poised to drive down operational costs even while pro-
viding richer, more-satisfying customer experiences. As mentioned, root-cause 
analysis is a key business motivator, and understanding customer pain points 
can even help teach an agent when deflection is the most appropriate response 
and when it will create a negative response. In fact, every customer action can 
be scored and quickly analyzed, improving the opportunity to efficiently turn 
around an at-risk interaction and improve overall customer satisfaction ratings. 
All these tools have one singular purpose that in many ways is similar to the goal 
of operational analytics—to drive the most appropriate, proactive, high-value 
action from the known information. The results of better decisions can be mea-
sured for their contribution to a positive ROI and position the utility to manage 
the inevitable rising complexity in the service-oriented, distributed organization.

7.2.6 Utility Communications

Due to the nature of the captive ratepayer found in many utility territories, 
customer churn is not a prevailing concern, with a low rate at approximately 9 
percent in both emerging and mature markets.5 However, declining revenue per 
meter is under downward pressure, and the changing utility business models 
and a new kind of churn are bringing the issues related to effective customer 
communication to the forefront. There are so many variations of energy regula-
tion across the world that there are a number of specific reasons that any utility 
might want to improve utility communications.  However, there are two driv-
ing issues that are key for the modernized utility: distributed generation and 
energy efficiency. These two issues require a level of service from the utility to 
manage its impacts, which include the physical and operational effects on the 
grid, declining energy consumption (and lower revenues) in developed nations, 
and the new technologies and diminishing costs of nano- and microgenera-
tion that allow customers to “churn off the grid” altogether. In these instances, 
customers are accessing renewable sources of cheap energy, rendering the grid 
nothing more than a backup source of power.

Big data analytics are changing our ability to gain visibility into customer 
behaviors, but in many ways it has raised the difficulty level. For example, tele-
communications used to seek to understand the duration of a call or to whom 

5 Astrid Bohe, Joon Seong Lee, Jim Perkins, and Jonathon Wright (2011), “Winning 
the Intensifying Battle for Customers,” Accenture. Retrieved from http://www.
accenture.com/SiteCollectionDocuments/PDF/Accenture-Communications-Next-
generation-Customer-Analytics-Big-Data.pdf.
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it was made; now it looks at which apps were used for texting, when Skype was 
used for a call, how Twitter and Facebook are incorporated into communica-
tions, and what story all of it tells about the life of a customer. With energy, it 
used to just be about keeping the lights on (KTLO); now the demands for reli-
ability and quality are sky-high—every device needs charging, and the price is 
very high when commercial and industrial entities lose power.

 Electricity is much less transparent than it has been in its most reliable 
years. We fight for outlets in airports, portable batteries are considered essential 
devices, and any outage is greeted with very little customer patience. Consider, 
for example, this tweet that @michaelsola made to his more than 1,500 Twitter 
followers about Baltimore Gas and Electric on June 2, 2013:

Hey BG&E, who looses [sic] power at 630 on a Sunday morning in clear 
blue skies? don’t make me fire up the generator. #fail #poweroutage

Since when is it cool to talk about backup power generators to over a thou-
sand people? Maybe since February 2013, when a nationally televised power 
outage became the country’s primary conversation. US-based Louisiana utility 
Entergy got the real-time drubbing of a lifetime after the Super Bowl outage 
that lasted for 30 minutes. Fast-thinking marketers jumped on the power out-
age, including such brands as Oreo, Tide, Audi, Volkswagen, even the Motel 
6 chain, which chimed in with, “Next Year’s Superbowl [sic] will be played at 
Motel 6. They’ll leave the lights on.”6 All of sudden the social sphere lit up with 
messages about power surges, posts about relay-switch settings, jokes about car-
bon offsets, and speculation about the health of Entergy’s grid assets. 

The world of customer communication has changed for utilities. An online 
outage map and restoration estimations of 24 hours, followed by a very public 
argument about whose fault the outage was, are simply not going to assuage the 
digitally savvy customer anymore. Social media amusement was a huge embar-
rassment for New Orleans, which has been struggling since 2005’s Hurricane 
Katrina, and changed the landscape of utility communications forever.

How Data Can Improve Communications

Currently, the utility relies on structured, transactional records such as cus-
tomer interaction details that are usually of low volume and aged with low pre-
dictive value when they finally reach the modeling tools of the analysts and data 

6 Alex Kantrowitz (2013), “Th at Oreo Tweet Was Cool, but Is Real Time 
Marketing Worth the Hype?” Forbes. Retrieved from http://www.forbes.com/sites/
alexkantrowitz/2013/02/06/that-oreo-tweet-was-cool-but-is-real-time-marketing-
worth-the-hype.
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scientists charged with improving customer communications. For real predic-
tive value, analysts need access to unstructured forms of data, including social 
data, news and weather, in-home smart devices, and internal information such 
as outage and restoration activities delivered in real time. 

Analytical tools—including web data extraction, text mining, and social 
media analytics that can detect sentiment and reputation—are frequently used 
in more-competitive industries such as retail and telecommunications. In the 
utility industry, these tools can be used to help identify key influencers that 
motivate the utility to craft timely, salient, and meaningful responses. It is 
emerging insights about customers and their communication needs that will 
drive the next generation of customer service. 

As discussed previously, utilities are being compelled to move from project-
based-operations companies that are focused on the delivery of the electricity 
commodity to service-oriented organizations that are uniquely defined by how 
their commodity is used by consumers, much like how we tailor our cell phone 
service to best fit our demand for mobile services. This will require improved 
agility in utilities’ ability to respond to customer behaviors, actions, and market 
movements. Advanced customer microsegmentation also plays an important 
role in this agility by sending the right messages across geographies, genders, 
age groups, and other profiles. The most useful customer communication ana-
lytic tools will integrate measurement over results and the ability to help drive 
appropriate improvements.

Effective customer communication is fundamental to building trusted rela-
tionships with consumers. The examples demonstrate the rapidity of social com-
munication in outage scenarios, establishing the absolute necessity for improved 
strategies for engaging with customers. Additionally, extreme weather events 
have shown the weaknesses in engagement strategies, and legislative and regula-
tory requirements are emerging that place specific requirements on utilities for 
communication during outage events. In fact, the New Jersey Board of Public 
Utilities is requiring the state’s utilities to provide pre-event communications 
when possible, real-time outage maps, and estimated restoration times bound by 
strict guidelines.7 Customer communication analytics are the key to  developing 
and implementing integrated customer communications plans that are appro-
priate, timely, and effective at enhancing customer trust and satisfaction.

It is worth considering that customer communication, as a component of 
a customer analytics program overall, may be important to the industry in a 

7 iFactor Consulting (2013), “Th ree Important New Reasons Utilities Must Engage 
Customers,” Smart Grid News. Retrieved from http://www.smartgridnews.com/
artman/publish/Business_Consumer_Engagement/Th ree-important-new-reasons-
utilities-MUST-engage-customers-6103.html#.Uq0XFmST6xM.
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more pointed way as well. Shareholders show that a high value is placed on 
the management of information (Twitter and Facebook initial public offerings 
[IPOs] are demonstrable); thus, they are sure to expect the utility to learn how 
to monetize information assets for the benefit of customers. It will be demanded 
that utilities begin to think more strategically about improving customer value, 
with communications, energy products, and services as a hedge for future value.

How to Start Building an Analytically Driven 
Customer Operations Strategy

• Identify key customer service initiatives; understand who is doing the work, how 
work gets done, and the perceived benefi ts for customers

• Design analytical models that help identify your customers at a 
microsegmentation level

• Measure how your key initiatives are meeting the goals of your customers
• Try to understand why your customers’ desires (or their perceived desires) deviate 

from what you are providing
• Strategize to tune your operations
• Measure and adjust 

7.3 What’s in It for the Customer?

It has been quite clear since the inception of the smart grid undertaking that 
the key to success was for energy consumers to take a proactive role in their use 
of energy. Optimists will call this process of learning to engage the customer 
“evolutionary,” but the more cynical among us will refer to the difficulties in 
winning utility customer trust as the industry’s most difficult moment. 

In the context of advanced metering, the notion of customer engagement 
seems to make the most sense, as these meters provide data that can be directly 
applied to nudging consumers toward conservation behaviors with better infor-
mation and the opportunity for automation. However, customer engagement 
principles can also be applied more broadly with respect to dynamic-pricing 
programs, demand response, and even distribution automation as it applies to 
outage communication and restoration efforts. In any case, it is overwhelmingly 
clear that building customer acceptance and trust requires adaptation for the 
utility in a rapidly changing business environment. Clearly, this is not a one-
size-fits-all effort.

The lack of successful customer engagement in the early phases of grid 
moderni zation was hopefully dismissed by utilities and regulators, but this 
failure to fully engage can no longer be ignored. Disenfranchisement among 
electricity customers continues to grow. With regard to the smart grid, their 
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concerns are threefold: First, they are concerned about electromagnetic emis-
sions that could have negative health effects; second, they have security and 
privacy concerns; and third, they don’t understand the benefits of the smart 
grid and resent fees or charges that support its installation. This pushback can 
have far-reaching consequences and has caused regulators and utilities to take 
actions that are contrary to the goals of a unified smart grid, including adjusting 
technology approaches such as focusing on power-line carrier (PLC) instead of 
wireless, taking reactive defensive marketing approaches, and providing opt-
outs from smart meter installations.

Neglecting to focus on the consumer directly in all aspects of strategic plan-
ning is risking future financial success; specifically, the utility that continues to 
target customers as captive ratepayers risks disintermediation. This will happen 
in much the same way that consumers stopped funding their savings accounts 
and began investing directly in the capital markets, cutting out the banking 
middleman. Without strong customer relationships, utilities too will be cut out, 
losing the opportunity to leverage their direct relationship with customers to 
protect both their core business and to sell enhanced services. Instead, compa-
nies like home security providers, cable companies, and telecommunications 
companies that can offer a compelling bundle of energy management services 
will prevail. These companies are already moving to fill the void for energy 
management services. As the incumbents, utilities have the advantage today, 
but they must move quickly to deepen their customer relationships to avoid 
squandering their natural leadership position. 

7.3.1 Enhanced Billing and Customer-Facing Web Portals

The ability to influence future customer behavior is to effectively engage those 
customers. This is not an easy task for any organization and requires a variety of 
initiatives that map the promise of a brand to the customer journey. Enhanced 
paper bills have been the earliest and most successful way that utilities have 
found of capturing the attention of the consumer. These bills are personalized 
to customers and can directly help them take a proactive stance toward the 
issue of energy management; they can also provide learning opportunities and 
a rationale for taking efficiency and conservation action. Paper bills are also the 
primary channel to customers and can be used to integrate the utility into each 
customer’s “energy journey,” and as his or her level of engagement deepens, the 
utility can deliver new opportunities for learning, action, and adaptation.

The US-based Sacramento Municipal Utility District (SMUD) was the 
first utility out of the gate to conduct a fully controlled study of the impact of 
enhanced paper bills, called home energy reports (HERs). In a three-year pilot 
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of the Opower HER program, which began in 2008, 35,000 residential cus-
tomers received reports stating custom information, resulting in a remarkable 
estimated average savings yield of 2.9 percent per year, with an upward trend in 
savings.8 The reports included three types of information: (1) how the custom-
er’s electricity consumption compared to his or her historical usage; (2) tips for 
reducing consumption based on custom information about the home; and (3) 
normative information that described how the customer’s energy use compared 
to that of neighbors living in homes with similar characteristics.

The learnings from this study, especially the influence of normative behav-
ioral messaging (peer comparisons), have led to new approaches. Some of these 
new tacks include customized web portals that leverage analytical models, such 
as dynamic tips based on results from questionnaires, populated on the fly, and 
combined with information from the customer’s smart meter, weather data, 
physics-based building models, and other salient information such as the desire 
of the customer to maintain his or her comfort or to maximize cost savings. In 
a white paper on the topic, industry observer Bob Lockhart states: 

Effective customer engagement opens up new opportunities for utilities by 
creating a dialogue where before there had been none. Once the customer 
and utility have a way to talk, then there is a channel to introduce [new] 
initiatives. . . . As with any other form of engagement, the message on paper 
bills should be framed in terms that have meaning to the customer: why 
paperless billing is good for them (or the environment), how much they 
can save on their annual energy bills with dynamic rate plans, or how much 
easier life will be with the utility’s web portal.9 

HERs are now provided by several vendors globally to virtually millions 
of homes and have been touted as a revolutionary step forward for the util-
ity that desires to create a new, more positive relationship with its customers. 
Using behavioral science and targeted messaging, vendors of HER products are 
reporting increased customer satisfaction, higher participation rates in other 
utility programs, growing acceptance of dynamic rates, and an increasing pro-
pensity to seek other ways to conserve energy, such as with in-home displays 
(IHDs). Further, this success is leading to new approaches to improving the 

8 Kevin Cooney (2011). “Evaluation Report: Opower SMUD Pilot Year 2,” Navigant 
Consulting. Retrieved from http://opower.com/uploads/library/fi le/6/opower_
smud_yr2_eval_report_-_fi nal-1.pdf.

9 B. Lockhart (2013). “Eff ective Customer Engagement: Utilities Must Speak 
Customers’ Language,” Opower. Retrieved from http://opower.com/uploads/library/
fi le/24/Opower_WP_Eff ective_Customer_Engagement.pdf.pdf. Reprinted with 
permission.
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effectiveness of other smart grid imperatives, such as demand response in near 
real time. These efforts are only possible as vendors are increasingly coming to 
market with advanced analytical platforms that are able to leverage a variety of 
big data sources such as weather stats, smart meter consumption data, real-time 
data from the home (for example, service-status and load-control data), and 
other disparate data, both structured and unstructured. However, the aggregate 
data is so voluminous that analytical models are absolutely required to not only 
carry out advanced-feedback and demand-response programs but also to design 
them to be engaging and effective.

7.3.2 Home Energy Management

The success of HERs has been a relief to utilities that rushed in early with 
new feedback technology projects that often—though not always—resulted in 
costly pilots and early missteps. As implemented, many home energy manage-
ment system (HEMS) projects with IHDs were simply not effective ways of 
promoting response among customers, and it became an industry joke to mea-
sure the value of these devices with “mean time to kitchen drawer” (MTKD). 
MTKD rates the length of time it takes for the customer to stuff the display 
into the back of the junk drawer when it either runs out of batteries or becomes 
too ugly to maintain its pose on the kitchen counter. Yet, despite these early 
setbacks, HEMSs are beginning to catch on (though not the acronym) and they 
are now more captivatingly and collectively known as the “connected home.”

The connected home is a powerful lever for the utility that must operate 
more efficiently, provide efficiency and conservation opportunities, and rely 
more on the management of end-use loads than ever before. Engaging devices 
such as Apple-like thermostats with powerful onboard adaptive analytics and 
within-reach price points are growing more attractive as these smart stuffs have 
begun to hit the “cheap suggestion list” in holiday gift guides.10 It seems the 
utility sorely missed the boat with the IHD, but the hidden gem for utilities is 
in the growing consumer interest in the connected home. For example, instead 
of the utility having to provide and manage specially programmed hardware, 
such as a wireless thermostat capable of receiving setback commands from the 
utility, the new generation of connected devices allows the customer to choose 
from a wide range of options. The utility simply provides rebates or bill credits 
for every kilowatt-hour saved during peak times. Who or how these thermostats 

10 Katherine Tweed (2013), “7 Trends in Home Energy in 2013 and What Th ey Mean 
for 2014,” Greentech Media. Retrieved from http://www.greentechmedia.com/
articles/read/7-trends-in-home-energy-in-2013-and-what-it-means-for-2014.
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are managed to achieve their savings is of no interest to utilities because these 
devices simply signal the service provider that then manages the energy for the 
customer, while smart meters percolate along, providing accurate measurement 
and verification of participation.

Despite the advantages to the utility, this emerging market belies the notion 
that the utility will be in control of these services. In fact, the idea of routing 
information through the more ubiquitous broadband connection is a likely out-
come as third-party service providers rush the market. For the well-positioned 
utility that has made progress in breaking down functional and data silos, this 
may not be a bad thing. These utilities have already been working to open their 
billing and other back-end systems to more easily integrate across the organiza-
tion. The trajectory that the connected home has taken from its difficult start as 
a HEMS network is an early indicator that the energy services market is primed 
to break open and increasingly become attractive to new market entrants. In 
fact, utilities are beginning to understand that they can reach their goals with 
customers by focusing not on energy management but on comfort and conve-
nience: better appliances, lighting controls, and automatic window shades that 
happen to drive efficiency goals. Utilities that can adapt to their role as either 
service provider or partner will benefit from the lower costs related to managing 
and installing hardware themselves and from a renewed focus on operational 
excellence for their customers. 

7.3.3 Strategic Value

The implementation of customer-focused analytics can move the utility toward 
meeting strategic challenges. Unfortunately, it has been slow going when it 
comes to fulfilling the mission for customer engagement; often goals are lofty 
and vague at best. However, a truly comprehensive analytics platform allows the 
utility to understand how it’s doing and to meet the dynamic forces of regula-
tion, customer vicissitudes, and other shifts, while allowing tactical course cor-
rection against those factors. Analytics provide crucial insight into the success 
of engagement efforts by delivering:

• A pathway to increasing and sustained energy savings with information 
programs and the connected home

• Higher response rates to utility marketing campaigns, such as appliance 
rebates; appliance recycling; home audits; heating, ventilation, and air 
conditioning (HVAC); rebates; weatherization; and demand response

• Daily peak savings with greater efficiencies on the demand side of the meter
• Increased customer benevolence and satisfaction metrics
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A fully integrated analytics platform incorporates both utility- and third-
party-sourced data. This includes data that is native to utility operations, such as 
meter data values, program participation information, and weather and demo-
graphic data. Analytics not only enhance the effectiveness of customer-focused 
operations and engagement but also can provide the necessary measure ment to 
dynamically adjust systems and services that evolve with customer engagement 
over time.

How to Start Engaging Customers with Analytics

•  Identify and understand the value to your business if customers are engaged, 
invested, and motivated to have a relationship with your brand

•  Align the vision for customer engagement, including how an authentic relationship 
becomes a corporate strategy

•  Create a unifi ed approach that transcends cultural divisions that can translate the 
utility’s engagement goals into strategies, including marketing, communications, 
program management, and product management, as well as others that are 
empowered to make decisions and coordinate with one another

•  Identify key performance indicators (KPIs)
•  Work to align the information strategy for internal and external data management 

with the service strategy for engagement metrics
•  Experiment with techniques and data sources to develop approaches incrementally
•  Measure programs
•  Adapt models and approaches
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 Chapter Eight

Analytics for Cybersecurity

8.1 Chapter Goal

Cybersecurity is a major challenge for protecting the utility’s critical infrastruc-
ture amid the growing population of critical cyber assets within the electric 
system. In this chapter, we explore the vulnerabilities, threats, and analytic 
approaches to responding to cyberwarfare against the utility, especially in the 

Scientist analyzing the impact test results of a .22-caliber gun setup at NASA’s 
Langley Research Center. (Source: NASA1)

1 Image retrieved from the public domain at http://grin.hq.nasa.gov/IMAGES/
SMALL/GPN-2000-001886.jpg.
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context of the smart grid and the digital network that drives the modernized 
grid. Also discussed is the looming failure of traditional cybersecurity tactics in 
meeting the increased threat levels against the utility, as well as why a program 
of security analytics may be the best option for proactively and cost-effectively 
containing threats from the field, the enterprise, and even the physical plant.

8.2 Cybersecurity in the Utility Industry

There is very little clarity in the utility for understanding cybersecurity and 
cyberterrorism. Cultural and institutional fears range from the so-called digital 
Pearl Harbor to hacktivism, privacy violations, and Stuxnet-like sabotage. And 
anyone charged with critical infrastructure protection (CIP) who studies and 
seeks to prevent security breaches has the privilege of being a flat-out paranoiac 
(also known as someone who knows exactly what’s going on). Yet, despite the 
popular media characterizations of cheese-puff-eating, Red Bull–drinking lib-
erationists with bolt cutters, potential attackers may be nascent script kiddies, 
revenge seekers, organized criminals, or state-sponsored cyberwarriors. 

Apart from these threat agents, it has been estimated that as much as 80 
percent of information technology breaches are caused or assisted by people 
“inside” the enterprise. Either willingly or unwillingly (through social engi-
neering) and with or without malice, security breaches are often enabled by a 
weakness created by people within the organization.2 This doesn’t mean that 
external cyber-attacks are overblown. In fact, the targeted advanced persistent 
threat (APT) is likely to be the most damaging to life and property through a 
grid security breach. It does mean, however, that assessing and managing risk 
with tools must include accounting for all attack vectors, including those from 
the field, the corporate network, and the physical plant.

8.2.1 The Threat Against Critical Infrastructure

In the past decade, the most secure systems in the world have been breached, 
including the National Aeronautics and Space Administration (NASA), the 
Space and Naval Warfare Systems Command (SPAWAR), the Federal Aviation 
Administration (FAA), the United States Air Force (USAF), and the White 

2 Major Barry R. Greene, CIO, G-6 Headquarters, New York Guard, as presented 
at the GovSec 2013 conference in Washington, DC, during the session “Critical 
Infrastructure Protection: The Enemy Within.”
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House. Clearly, utilities will never be immune to cyber, physical, or blended 
attacks. In August 2012, a power-line support tower was dismantled in the US 
state of Arkansas, and just weeks later, a substation was set on fire with a mes-
sage carved into a control panel: “You should have expected U.S. [sic]”3 And 
sometime around 2009, “Stuxnet,” the digital worm designed to sabotage Iran’s 
uranium enrichment program by damaging centrifuges, was unleashed, ulti-
mately demonstrating the destructive power of the world’s first widely known 
cyberweapon. In the United States in 2012, according to the US Department 
of Homeland Security Cyber Emergency Response Team (CERT), about half 
of the reported critical infrastructure-related cyber incidents impacted the energy 
sector. As the number of vulnerable points on the grid grows exponentially, this 
problem is only going to get worse.4 Certainly, the notoriety and widespread 
damage that could occur from a successful attack on the grid are of interest to 
political hackers, lone wolves, and state-sponsored hacker gangs alike.

The nature of the intensifying problem is frighteningly straightforward: 
Because electric energy is generated and consumed almost instantaneously, sys-
tem operators must continuously balance the generation and consumption of 
power. And the distribution of smart grid components requires a digital two-
way communicating infrastructure to achieve this goal. Disruption of this infra-
structure at a single point in the grid can have significant impact. As described 
in Figure 8.1, the smart grid adds layers of technology—such as data-transport 
and command-and-response applications—to the electricity infrastructure 
from network operations. With the increased use of smart devices enabled by 
computers, software, networks, and the enterprise, the risk of cyberthreats—
both intentional and unintentional—has grown tremendously. 

Not surprisingly, the United States Government Accountability Office 
(GAO) in congressional testimony in 2012 stated that malicious cyber  activity 
targeting US computers and networks more than tripled between 2009 and 
2011. The GAO states, “All of the onsite incident response engagements 
involved sophisticated threat actors who had successfully compromised and 
gained access to business networks.”5

3 Rod Kuckro (2013), “FBI Investigating Ark. Grid Attacks,” Utility Dive. Retrieved 
from http://www.utilitydive.com/news/fbi-investigating-ark-grid-attacks/178875.

4 Department of Homeland Security (June 2013), “Incident Response Activity on 
Internet-Facing Industrial Control Systems,” ICS-CERT Monitor. Retrieved at http://
ics-cert.us-cert.gov/sites/default/files/ICS-CERT_Monitor_April-June2013.pdf.

5 Gregory Wilshusen and David Trimble (2012), “Challenges in Securing the 
Modernized Electricity Grid,” GAO Testimony Before the Subcommittee on Oversight 
and Investigations, Committee on Energy and Commerce, House of Representatives. 
Retrieved from http://www.gao.gov/products/GAO-12-507T.
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8.2.2 How the Smart Grid Increases Risk

In the United States alone, it has been estimated that by the middle of the first 
decade of the 21st century, there will be more than 440 million vulnerable points 
on the grid.6 This approximation includes smart meters, routers, smart building 
and home devices, and substation and distribution automation components. 
With the advent of the smart grid, the entire energy delivery process is digitized 
from generation to the point of consumption. Simply put, if any component on 
the grid can be communicated with, it can be exploited and controlled. 

At its most rudimentary, the smart grid is a patchwork of supervisory con-
trol and data acquisition (SCADA) systems designed to operate in a distributed 
manner and bolted onto a digital control backbone that now is now managed 
through centralized operations. At its best, it is a well-coordinated system of 
networks, advanced devices, and industrial control systems. In either case, the 
grid has many digital touchpoints, and, consequently, weaknesses and vulner-
abilities. What is more difficult to understand is the scope of the threat to 
these vulnerabilities. As Michael Assante, CEO of North American Electric 
Reliability Corporation (NERC), noted in a 2009 memo to industry stakehold-
ers, “For cyber security, we must recognize the potential for simultaneous loss 
of assets and common modal failure in scale in identifying what needs to be 
protected. This is why protection planning requires additional, new thinking 
on top of sound operating and planning analysis.”7

To help meet this anxiety, engineers, cybersecurity experts, federal secu-
rity experts, and utility stakeholders perform simulations to grapple with the 
onslaught of computer viruses, exploding transformers and substations, and 
downed power lines. In late 2013, NERC ran a drill called GridEx II, which 
played out simulated loss of human life, denial-of-service attacks, and coordi-
nated communication drills among power companies, local law enforcement, 
and cybersecurity control centers.8 Called a necessary fire drill by its propo-
nents, GridEx II has been labeled an exercise of academic interest by some 
industry watchers, suggesting that practices like this are doing very little to 

6 Darlene Storm (2010), “440 Million New Hackable Smart Grid Points,” 
blog, Computerworld. Retrieved from http://blogs.computerworld.
com/17120/400_million_new_hackable_smart_grid_points.

7 Michael Assante (2009), “Critical Cyber Asset Identification,” NERC. Retrieved 
from http://online.wsj.com/public/resources/documents/CIP-002-Identification-
Letter-040609.pdf.

8 Matthew L. Wald (2013), “Attack Ravages Power Grid. (Just a Test.).” 
NYTimes.com. Retrieved from http://www.nytimes.com/2013/11/15/us/coast-
to-coast-simulating-onslaught-against-power-grid.html?_r=2&adxnnl=1&
smid=tw-nytimes&adxnnlx=1384501226-AiLoSrpp3l0LspF4Ovg/hw&.
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address the current threats. Perhaps the only clear point is that concrete steps 
and investment are required to begin addressing the most critical vulnerabilities 
in the system and face the reality of the threats that have been validated by a 
multitude of research studies, media exposés, and government assessments.

8.2.3 The Smart Grid as Opportunity for Dark Mischief

The consequences of a cyber-attack on the grid infrastructure include poten-
tially massive and large-scale outages that could ravage the power grid. This is a 
reality that Joel Gordes, research director for the US Cyber Consequences Unit, 
describes as one that “[w]e are woefully unprepared for.”9 The following are the 
high-level scenarios for cyber-attack on the grid:

 1. Reprogramming of critical electricity infrastructure components, result-
ing in major power delivery disruption

 2. Theft of sensitive digital information used to mount later, more- 
coordinated attacks 

 3. Blended threats using a combination of hacking with a physical attack 
such as a fire or bombing

Due to the sheer number of points, their orientation in the outside plant 
(where they’re hanging on people’s homes, businesses, or nestled in their base-
ments), and the subsequent ease of physical access, smart meters have drawn 
much attention for their ability to be hacked with just a modicum of skill. Some 
smart meters employ optical ports that allow utility technicians to diagnose 
problems in the field without disassembling the meter. These same ports have 
been used to reset the meters with an optical converter and downloadable soft-
ware from the Internet to change consumption readings. This hack—or even 
the simple use of a magnet on the meter to disrupt recording during high-use 
times—can decrease a customer’s bill by up to 75 percent. In one case, it was 
reported that upwards of 10 percent of the smart meters in one territory were 
tampered with and will continue to cost the utility over USD $400 million 
annually unless the situation is fully remedied. In this instance, the US Federal 
Bureau of Investigation (FBI) examined the fraud and concluded that former 
employees of the meter manufacturer and utility personnel were to blame, 

9 Patrick Kiger (2013), “‘American Blackout’: Four Major Real-Life Threats to 
the Electric Grid,” blog, National Geographic: The Great Energy Challenge. 
Retrieved from http://energyblog.nationalgeographic.com/2013/10/25/american-
blackout-four-major-real-life-threats-to-the-electric-grid.
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charging a few hundred dollars to make the alterations for residential meters 
and several thousand for commercial devices.10

The safety of the data within the meters is also a concern. In the UK, this 
was one of the driving reasons that the Department of Energy & Climate 
Change delayed its 2013 rollout for more than a year. Part of the apprehension 
was that meter hacking can be used for more than just reducing consumption 
values; it can also be used for artificially inflating meter values or prices for per-
sonal revenge. More-catastrophic concerns related to hacking the entire nation’s 
power grid via the smart meter network were also identified in the UK decision 
to delay its rollout. Acknowledging that the meter network is a strategic vul-
nerability makes it clear to governments and utilities that, despite the low-cost 
nature of digital meters, considerable investment is required to make both the 
devices and the systems more secure. This includes defending against hardware 
hacking and the mobile communication network through which the meter data 
is transmitted.11

Table 8.1 describes several of the common exploits that could be used within 
the context of the power grid. While a few approaches are enumerated, there are 
literally hundreds of these exploits and many frameworks that can be easily down-
loaded from the web to help even a novice attempt these attacks. It’s impossible in 
a single book chapter to be exhaustive in a discussion as nuanced and complex as 
cybersecurity, but it’s important to begin to appreciate the challenges in securing 
the grid and to provide a foundation for asking the right questions in developing 
initiatives and programs that are effective. Many of the exploits bear clever and 
arcane names, and their complete descriptions are out of scope. However, there 
are very comprehensive courses, books, experts, and other resources available 
to gain further knowledge to define and implement defensive approaches. The 
System Administration, Networking, and Security (SANS) Institute, a trusted 
cooperative research and education organization, is an excellent place to build 
foundational knowledge about information security principles.

8.3 The Role of Big Data Cybersecurity Analytics

Even where utilities are using big data analytics for various information and 
operational functions, the role of analytics for cybersecurity is not well  realized. 

10 Brian Krebs (2012), “FBI: Smart Meter Hacks Likely to Spread,” 
Krebs on Security. Retrieved from http://krebsonsecurity.com/2012/04/
fbi-smart-meter-hacks-likely-to-spread.

11 Zoe Kleinman (2013), “Smart Meters Need to Be Harder to Hack, Experts Say,” 
BBC News. Retrieved from http://www.bbc.co.uk/news/technology-22608085.
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Yet, big data may be the lever that moves the industry from a reactive position 
on cybersecurity to one that allows for trusted prediction and a strategic posture. 

As part of a holistic approach, cybersecurity analytics is just a piece of the 
puzzle for creating an in-depth defense of the grid. Imagine for a moment that 
your beloved grandmother lives alone in an apartment in the city, but she is very 
careful to lock her door for her safety and security, just as you ask her. However, 
the front doors of the apartment building are never lit or locked, the loading 
docks are unmonitored, and the windows over the fire escapes are unattended. 
Surely, this is not a comprehensive strategy for the personal welfare of your 
loved one—and we all know that hope is not a strategy. Building toward what 
cybersecurity experts call “defense in depth” is what we would expect: lock-
ing the building, hiring a doorman, installing security cameras on the loading 
docks, and developing policies that help the building residents work together 
for their mutual benefit. The same principles hold true for securing the grid: 

Utility System Example Functions Possible Exploits

Communications Data transport, such as over 
broadband over power line 
(BPL), cellular, wireless, or 
satellite networks

Passive wiretapping
Man-in-the-middle attacks
Data modifi cation
Internet Protocol (IP) 
spoofi ng

Advanced 
components

Smart switches, storage 
devices, smart appliances, 
transformers

Routing attacks
Denial-of-service attacks
Node subversion
Message corruption

Automated control 
systems

Monitoring and control 
systems such as voltage 
regulators and substation and 
distribution equipment

Botnets
Zero-day exploits
Modifi cations on controllers
Spearfi shing

Sensing and 
measurement 

Smart meters and phasor 
measurement units (PMUs)

Wardriving
Node capture
Routing attacks
Node subversion

Decision support Operational applications to 
manage the electricity system

Structured Query Language 
(SQL) injection
Buffer overfl ow
Cross-site scripting
Cross-site request forgery

Customer-facing 
systems

Web-based systems that 
provide account access to 
customers

SQL injection
Cross-site scripting
Denial-of-service attack
Impersonation attacks

Table 8.1 Description of Common Exploits on a 
Sample of Utility Systems
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authenticate, authorize, encrypt, detect policy violations, log events, and audit 
data. Cybersecurity analytics are a key part of building the required depth for 
maintaining a protected and resilient grid. 

Critical systems are best secured by designing in security from the outset; 
that is by far the best approach to comprehensive risk management. However, 
where digital bolt-ons and legacy upgrades have occurred, it is crucial that the 
grid security architecture be augmented to provide the most secure operation. 
A program that constitutes a patchwork of reactive actions to address some 
discovered vulnerability is a program of denial for the role that utilities have in 
protecting civil society; it is also completely insufficient as cyberwarfare inevi-
tably reaches the level of armed attack. 

8.3.1 Predict and Protect

Incorporating cybersecurity analytics into the mix will begin to usher utili-
ties out of a severe condition of vulnerability and address security requirements 
across the grid. There are several roles that analytical models can play that con-
tribute to the overall protection and resiliency of the digital grid, including:

 1. Gathering intelligence
 2. Identifying industrial control system weaknesses and vulnerabilities
 3. Quantifying identified threat levels and characteristics
 4. Identifying real-time incidents
 5. Predicting and preventing future incidents

Cybersecurity analytics has the potential to be a step-function improvement 
from traditional security models, which are largely passive defense systems and 
are fortresses only inasmuch as they resemble sandcastles on the beach. Current 
protections primarily focus on detection, but they ultimately fall to persistent 
attackers who avail themselves of an endless bevy of cheap exploits. In a quest 
for a more strategic and sustainable approach, big data intelligence strives to 
produce predictive results that give utility security analysts the ability to do 
more than just respond to attacks; they can actually stop them in their tracks. 
One approach to proactive cybersecurity is to become effective and efficient at 
recognizing attack patterns that represent threats. Big data analytics, by virtue 
of their ability to analyze massive volumes of data to drive actionable insights, 
are particularly well suited to detecting anomalous behavior on the grid.

A successful cybersecurity program in the utility will provide for full situ-
ational awareness across the grid and within the enterprise, deliver the abil-
ity to properly contextualize collected information, and enable the facility to 
quickly respond to and contain emerging threats. However, it must be said that 
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one of the greatest impediments to fleshing out such a strategy is not political, 
organizational, or cultural; it is the lack of security features being built into 
smart grid devices. For example, there are smart meters available on the mar-
ket that do not include such basic security features as event logging.12 Without 
logging, it is nearly impossible to detect and analyze attacks, let alone prevent 
recurring threats. Not surprisingly, when the Industrial Control Systems Cyber 
Emergency Response Team (ICS-CERT) deployed several units in 2012—half 
of which were in the energy sector—to provide incident-response forensics, the 
team discovered that in many cases, conclusive analysis of the situation was 
impossible because of limited or nonexistent logging and the lack of other foren-
sic data from the network.13

Big data analytics platforms combine security intelligence with power-
ful processing capabilities. The goal of such platforms is to provide repeat-
able  pattern-detection algorithms with both structured and unstructured data 
sources, forensic capabilities, storage technologies, and enterprise integration 
functionality to identify both internal and external threats. And as with all 
advanced analytical solutions, these platforms will allow the utility to answer 
questions that have never been asked before. As Figure 8.2 describes, an inte-
grated solution that provides closed-loop, continuous learning can furnish 
situational intelligence previously unavailable to security programs within the 
utility, both for information and operational concerns.

There are a variety of capabilities that are offered by a big data approach to 
cybersecurity, including:

 1. The ability to detect anomalies by identifying correlations across  disparate 
data

 2. Real-time query capabilities
 3. Visualization and exploratory tools
 4. Postincident forensics that help improve detection algorithms 

To successfully realize these capabilities in practice, a particular techni-
cal challenge needs to be addressed: the lack of a known baseline from which 
risky situations can be derived. To overcome this, the utility must be capable 

12 Wilshusen [5].
13 Department of Homeland Security [4].

Figure 8.2 Situational Intelligence from Collection to Response.
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of analyzing many months of network traffic, device information and para-
meters, communication characteristics, and user behavior to understand both 
the device and human linkages that make up the system. This is especially 
crucial for identifying more-random or more-infrequent forms of activity on 
the network that may exist in high-volume, high-velocity data traffic as found 
in many of the grid’s command-and-control systems.

8.3.2 Cybersecurity Applications

Lessons from other industries, especially large-scale financial systems, are 
instructive and low risk in terms of cost to initial deployment. Continuous 
monitoring is a process that is especially efficient and effective at addressing 
operational systems. Born from traditional auditing processes, continuous-mon-
itoring systems can be a key piece of the puzzle in identifying problems or weak-
nesses. Mark Nigrini, in his book Forensic Analytics: Methods and Techniques 
for Forensic Accounting Investigations, focuses on the discovery of anomalies in 
transactional systems, but two of his approaches are informative for the utility 
system as well. 

First, he describes the approach of parallel scanning, which uses descriptive 
analytics for one period of time and compares the information to data from a 
prior period. Large differences indicate a signal for an anomaly. This can be 
done in a matter of minutes and can suggest that a system is experiencing an 
out-of-bounds condition. Secondly, risk scoring can be used as a method of pre-
diction that, based on predetermined characteristics, assigns a risk value. A high 
score can help the utility orient and prioritize the devices or areas of operation 
that require high-priority attention.14

Big data cybersecurity applications must be able to manage and process 
millions of events per second with microsecond latency from both traditional 
and nontraditional sources of data. They must also be levers across multiple 
outputs, including:

 1. Reporting
 2. Visualization and exploration
 3. Predictive analytics
 4. Content analytics
 5. Energy industry–specific applications

These platforms support the continuous ingestion and analysis of data, with 
as little impact as possible on the underlying infrastructure by using scheduled 

14 Mark Nigrini (June 2011), Forensic Analytics: Methods and Techniques for Forensic 
Accounting Investigations, John Wiley & Sons Inc., Hoboken, New Jersey.
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polling and streaming of data sources. Scale is a challenge, and some solutions 
will fuse data elements to produce efficiencies and decrease latency in commu-
nication networks.

8.3.3 Proactive Approaches

The scope of the threat is beginning to drive innovation that works to actively 
and more directly deter the movements of attackers. CrowdStrike’s co-founder 
and chief technology officer (CTO) Dmitri Alperovitch has coined this approach 
known variously as “active defense” or “proactive response.” Alperovitch notes 
that current passive security models will continually drive up costs without 
a coincident level of effectiveness. Turning the tables on the adversary, active 
defense attempts to drive up the costs and risks associated with their hackers’ 
activities. Instead of focusing on the often mutable characteristics of each dis-
crete attack, the active defender focuses on identifying the mission of the attack 
and the tradecraft employed by the intruder. 

Once the mission of an attack is understood, passive defense strategies are 
augmented by deceiving, containing, tying up resources, and creating confu-
sion that increases the costs to the attacker and allows defenders to both isolate 
the attack and continue to collect additional intelligence.15 Information col-
lected about unique attackers can serve much like a fingerprint, allowing joint 
action with other utilities and government agencies to prosecute threat actors. 
This approach amplifies the efforts of cybersecurity to exclusively identify and 
predict patterns based on attack vectors, and it exploits characteristics to greatly 
improve the forward-looking stance of the utility defense model.

8.3.4 Global Action for Coordinated Cybersecurity

Expanding awareness of cybersecurity threats has brought attention from 
regulators and governments striving to produce suitable laws and standards 
within the utility. Industry standards for cybersecurity have been most prolific 
in North America, particularly the United States, Canada, and a portion of 
Mexico; though it is a global concern, and the lack of resolution has slowed 
further smart grid deployment in some regions. Several initiatives are serving to 
progress cybersecurity, but the most important first step in developing a com-
prehensive program is to not only understand but to also engage and comply 
with the NERC CIP standards. 

15 Dmitri Alperovitch (n.d.), “What Is Active Defense?” Retrieved from http://www.
crowdstrike.com/active-defense/index.html.
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NERC is the electricity sector’s coordinator for CIP, and the firm has invested 
heavily in standards development, compliance enforcement, and the provision 
of extensive technical material and subject-matter expertise. The NERC CIP 
standards are the only mandatory cybersecurity standards in place to address 
the security and reliability of the electricity grid. The nine standards include 
mandates for incident reporting, authorization protocols, minimum security 
management controls, and disaster recovery. It is indisputable that the efforts 
of NERC CIP have reduced risk and improved the security posture of North 
American bulk electricity systems. However, it is equally indisputable that it is 
impossible to address every security risk, and this is precisely why the oppor-
tunity for predictive cybersecurity analytics may hold such profound value for 
more-advanced security controls.

Collaborative approaches to cybersecurity are taking hold and are an 
acknowledgment of the hugely complex problem that cybersecurity raises for 
CIP. The National Institute of Standards (NIST) and the Edison Electric 
Institute (EEI) are both working to improve responses to grid threats and vul-
nerabilities. To that end, NIST has founded the National Cybersecurity Center 
of Excellence (NCCoE), which brings together researchers, users, and vendors 
to perform targeted testing to improve cybersecurity outcomes. Focused solely 
on the mandate to deliver reliable power, EEI develops principles and provides 
clarity in the field of CIP. Among developing legislation across the globe, there 
are also several other public and private partnerships designed to strengthen the 
cybersecurity posture of the electricity sector. Information sharing will only 
improve the ability to develop more-effective practices and approaches to pro-
tect grid assets from all levels of attack.

Collaboration is particularly important among various stakeholders, because 
one way to dramatically improve the effectiveness of cybersecurity analytics is for 
utilities to share information. Despite a few steps forward in this direction, there 
is currently a lack of effective mechanisms to disclose vulnerabilities, threats, 
best practices, and actual incidents. This is likely due to the natural avoidance 
of publicizing attacks against the utility, but it carries the negative impacts of 
stifling informed corrective action, future defense, and maximized cybersecu-
rity investments. Progress is being made, however. In 2013, the US House of 
Representatives passed the National Cybersecurity and Critical Infrastructure 
Protection Act (NCCIP Act), which is designed to help facilitate the real-time 
sharing of threat information across critical infrastructure sectors.16

16 Jones, S. (2014), “National Cyber Security and Critical Infrastructure Protection 
Act Passed,” Incident Communications Solutions. Retrieved March 13, 2014, from 
http://incidentcommunications.com/blog/national-cyber-security-and-critical-
infrastructure-protection-act-passed?utm_source=Plazabridge&utm_medium=
email&utm_campaign=ICSMarchInsights%3ANewsletter.
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On a global level, this much-needed collaboration is also beginning to  solidify. 
In 2013, at the Group of Eight summit, a finalized agreement was announced 
between US President Barack Obama and Russian President Vladimir Putin 
that introduces measures in the cyberdomain, including information exchange 
and crisis communication. China and the US also made progress through the 
creation of a working group on cybersecurity issues—a major step forward, 
given the mutual accusations of cyberwarfare. Both of these agreements were 
the reinforcements for the generation of a groundbreaking UN report that pro-
poses international cooperation measures, confidence-building, and improve-
ments for protecting critical ICT infrastructures.17

8.3.5 The Changing Landscape of Risk

It’s a truism that absolute cybersecurity is not an attainable goal, and the grid 
will never be gold-plated either. It’s also a fact that, despite the critical nature 
of the grid, cybersecurity must always be approached pragmatically, through a 
combination of assessment of perceived risk and the costs of security. Utilities 
must fully account for the risk of losing various grid functions; the impact 
of that loss; and how they can protect, detect, and respond to various cyber-
attacks. However, utility stakeholders must also understand that even the hint 
of a cyberthreat in a cross-cutting network means that multiple assets can be 
remotely attacked at once. Unlike reliability risks prior to the smart grid that 
could be accounted for in operating assumptions and planning exercises, as they 
are largely probabilistic failures, the digital-communicating nature of the smart 
grid requires a broad perspective and a shift in risk analysis. 

The traditional perspective of risk is a simple algebraic equation that multi-
plies the probability of an occurrence with a measure of impact. To make more-
informed decisions related to cybersecurity-related risks, the FBI recommends 
an expansion on this equation. Specifically:

risk = threat × vulnerability × consequence18

According to the FBI, each factor is crucial because it moves the organiza-
tion beyond a rigid focus on threat vectors and actors. As FBI experts point out, 

17 Detlev Wolter (2013), “The UN Takes a Big Step Forward on Cybersecurity,” Arms 
Control Association. Retrieved from http://www.armscontrol.org/act/2013_09/
The-UN-Takes-a-Big-Step-Forward-on-Cybersecurity.

18 Ben Bain (2010), “FBI Outlines Three Components of Cyber-Risk.” FCW. Retrieved 
from http://fcw.com/articles/2010/02/24/web-afcea-cyber-panel.aspx.
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the risk model is quite useful when a strategic viewpoint is needed, and it helps 
define goals by pushing any of the variables in the equation toward zero, which 
would close the risk. 

Many have noted that a literal interpretation of this equation is complete 
nonsense; despite its relevance to understanding the probability of an incident 
occurring, it cannot signify absolute risk because the variables do not carry 
units of measurement. Do not for a moment be tempted to populate a massive 
spreadsheet cluttered with assets to determine threat-ranking outputs that help 
you design a cybersecurity program. This would be just as useful as multiply-
ing “purple” × “meat thermometer” × “lamp” (to severely overstate the case) to 
calculate risk. Risk-profiling of this nature may be a useful management tool 
to aid decision-making, but it quickly becomes absurd for use in developing a 
defensive strategy. 

Cybersecurity analytic approaches that provide real predictive value to the 
utility more closely resemble models of complex systems. By viewing the net-
work as a system of relationships, we can understand that the couplings within 
the smart grid are more similar to the human brain and are thus not well suited 
to linear analysis. Complex systems theory shows how these relationships within 
a system give rise to a form of collective behavior that in many ways is defined 
by its relationship with its environment. Making predictions about the behavior 
of the grid under attack conditions is what we need to understand in order to 
move from a reactive to a proactive posture. As the Nobel Prize–winning econo-
mist and philosopher Friedrich Hayek observed, complex systems’ behavior is 
best predicted through modeling and an understanding of its patterns rather 
than precise predictions. Big data cybersecurity analytics can provide just that.

Key Considerations for Establishing Big Data 
Cybersecurity Analytics in the Utility

• Identify information security issues and evaluate the role of big data analytics
• Seek to resolve defi ciencies in cyber-readiness, including in professional staff, 

governance, and information technologies
• Work to move from a defensive, reactive posture to a proactive system that 

accounts for the nonlinear characteristics of the smart grid
• Consider the roles of collection, storage, and processing apart from desired 

analytics and workfl ows
• Enable data and information sharing with other entities, including other utilities 

and cybersecurity entities
• Create a small pilot opportunity to prove the value of big data analytics to the 

role of cybersecurity 
• Develop use cases that support business and operational vulnerability and 

threat detection
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 Chapter Nine

Sourcing Data

This B-5713 airplane is designed to collect radiation from an experiment mounted 
on its wings. (Source: NASA1)

9.1 Chapter Goal

Preparing to successfully introduce a big data analytics program into the utility 
is predicated on a deep understanding of available and desired data sources as 
well as the business value of that data. A variety of data sources are discussed in 

1 Image retrieved from the public domain at http://d3.static.dvidshub.net/media/
thumbs/photos/1302/861971/450x360_q75.jpg.
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terms of how their characteristics bring value to the optimization of the utility, 
from both an operational and a business perspective. Data fusion, the implica-
tions on privacy, and the value of collaboration among utilities is also evalu-
ated. We’ll cover the devices on the grid that provide situational intelligence, 
how aggregated data can drive new insights, and the complexities of data-fusion 
models used to create those aggregations.

9.2 Sourcing the Data

Mark Twain is thought to have said, “The secret of getting ahead is getting 
started.” So, where do we begin when it comes to approaching big data projects 
for analytics in the utility? Often, when faced with the onslaught of information 
flowing off the grid, all utility stakeholders will ask, “Where are we going to put 
all this data?” In fact, most consultants working with utilities on early projects 
will begin with the repository—specifically, capturing and organizing data. It’s 
reasonable; after all, we don’t always know the value of the various forms of data 
even once they’re in the system, and it is certainly fair that we don’t know at 
all the scope of the questions and answers that will be enabled by the data (or 
that may materialize later). In fact, unlike typical data warehouse projects that 
anticipate how the data will be analyzed and that categorize the information at 
the point of entry in preparation for specific analyses, big data projects are best 
served by massive data stores where the information can be easily retrieved in 
myriad ways by many analytical applications.

Even with the need for extensive infrastructure and tools, big data analytics 
are at the very core a business challenge, not a technology problem. Focusing 
on data management issues right up front is premature and can cause expensive 
missteps. Focusing primarily on the technology problems to “get data” instead 
of solving issues and finding new opportunities by using analytics is putting 
things out of order. It doesn’t make sense to create a haystack and then go 
looking for a needle; meaning, it is not always necessary to collect lots and lots 
of data just because it might be useful later. That’s called hoarding, and it’s 
a fear-based response to not understanding the problem domain. Even with 
the rapidly diminishing costs of hardware and the low-cost scalability of new 
big data systems (thanks to open-source entrepreneurs), the expenses of opera-
tion, application development, and skilled management are not scaling nearly 
so efficiently. The inconvenient truth of big data analytics is that the costs of 
processing, querying, managing, and trying to extract value from stale data may 
be slowing things down.

The challenge is not to start hiding data in the data closet, but to understand 
and distill what is useful within the flowing river of data, and to minimize the 
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rest. Thus, every enterprise must determine what can be extracted from the raw 
data, and companies should try to build an understanding of future value that 
leads to a rational architecture. Tools and techniques are evolving quickly and 
largely meeting the needs of big data analytics from a technical perspective, but 
for the goals of the utility, we must closely examine how to best exploit the big 
data opportunity. A good starting point is to bring the organization together 
to ask, “What kind of problems do we have in the company that we think data 
will help us solve?” quickly followed by “Do we have the data that will help solve 
those problems?” “How do we get the data we need?” and “How fast do we need 
to get there?”

To begin answering those questions, the utility must take stock of its assets 
to understand what it has, what the possibilities are, and what additional data 
is necessary to generate the necessary benefit and establish rapid and acceptable 
return on investment (ROI) from what will ultimately comprise a cross-cutting 
effort. Determining what data will feed the requirements is a more difficult 
thought exercise, but it’s impossible until the existing business value of the grid 
and enterprise data is understood.

In Chapter 3, we examined the functional characteristics of grid data classes 
that are in use at the utility (Table 3.1). To recap, these classes are telemetry, 
oscillographic, consumption data, asynchronous event messages, and meta-
data. Additionally, customer, enterprise, historical, and third-party data must 
be accounted for. The business value of each of these data classes, however, is 
variable depending on how it is used by the utility. With data analytics, a single 
data class may have value, but when it’s combined and analyzed with other 
classes, it can support many other surprising business needs. Understanding the 
underlying data is the key to aligning the subsequent architectural and technol-
ogy decisions that must be made with solving high-value present and future 
business needs.

9.2.1 Smart Meters

Smart meters are often believed to be primarily consumption devices, mostly 
because the smart device has replaced scalar meters for meter-to-cash opera-
tions. However, despite the lack of global specifications about the capabilities 
that a smart meter must meet in order to be considered a smart meter, most of 
these devices will provide power-quality measurements, such as line voltage, 
current, and frequency, above and beyond the clocking of interval data. With 
these enhanced capabilities, smart meters can play an unexpected role in grid 
troubleshooting, maintenance, load planning, and—in the case of smart meters 
that are designed to carry signals to in-home devices—demand response.
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Meter data collection has largely been the purview of meter data manage-
ment system (MDMS) vendors, and many vendors are pushing the traditional 
confines of MDMS to provide analytics—most often outage-notification and 
revenue-protection analytics. MDMS has been a natural starting point for smart 
meter data analytics because it is already a working repository for consumption 
data and is often designed to interface directly with billing, maintenance, fore-
casting, and customer service systems. 

Meter-to-cash operations will always be a utility business function and cer-
tainly one of the most valued and protected functions in the enterprise. Some 
industry leaders have demonstrated trepidation and concern over anything that 
could suggest tampering with this core function. Yet, there are several business 
problems that smart meter data, through the use of analytics, can help address 
powerfully and effectively:

• Improve the uptake of demand-side management (DSM) programs
• Boost customer satisfaction ratings with better outage responsiveness and 

communication
• Reduce revenue loss through better identification of theft
• Improve load forecasting
• Enable the provision of new energy services
• Develop new rate plans and services

Smart meter data analytics are well poised to lead the way to improved 
relationships with energy customers, notably by solving relevant problems for 
consumers. Analytics can also drive the profitability of the utility itself by help-
ing to identify failing transformers and improving demand forecasts, revenue 
protection, and overall operating efficiencies. Leveraging just the data stored 
in the MDMS database, utilities can make significant gains by analyzing the 
meter events and readings. Truly, this is an excellent starting point for bringing 
analytics to the utility enterprise, particularly given the advantage of immediate 
ROI achieved by augmenting a business function that enduring. 

Not surprisingly, the need for meter data does not stop at the MDMS 
boundary, despite the advantages of isolating the meter-to-cash operation. 
Depending on the overall architecture of the system, while some analytic pro-
cesses may reside directly in the MDMS database, the data can be shared into 
a greater analytics platform. This can be accomplished using either a scheduled 
extract, transform, load (ETL) process (though this solution will strain under 
billions of transactions) or a real-time message bus that carries the data to the 
 analytics platform, which may reside in the enterprise or in the cloud. To sup-
port functions such as theft detection, outage restoration, mobile workforce 
management, voltage/volt-ampere reactive (VAR) management, and predictive 
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load  modeling, it is crucial that the data from the meter get into the system 
expeditiously. This new phase of innovation will occur as utilities become more 
comfortable with the stability of their meter-to-cash functionality. It will also 
materialize as utilities begin to merge their meter data into a gridwide platform 
that feeds various applications, including visualization and geographic informa-
tion systems (GISs), outage management systems (OMSs), distribution manage-
ment systems (DMSs), and demand-response management systems (DRMSs), 
but especially for the broader analytics effort, where a deeper understanding of 
grid and customer behaviors will be realized.

9.2.2 Sensors

While smart meters can and do serve as sensors, other network data is collected 
from sensors along the transformers, power lines, voltage detection devices, and 
DSM equipment on the load side of the meter. All this data is key in address-
ing business and operational issues. In addition to sensors, other monitoring 
equipment provides a complete view of the state of the grid with information 
about overall operating parameters. These sensors may be state-of-the-art digi-
tal nodes or retrofits on legacy equipment, including clamp-on devices, and 
they maintain wireless communication. Many smart grid sensors are composed 
of a transducer that converts physical forms of information to an electronic 
signature, a central processing unit (CPU) for onboard processing, and a com-
munications module that transmits the information over a high-speed network 
or wirelessly through a transceiver. Of course, in a distributed environment, not 
all sensors are designed to return data to the utility, as they employ circular or 
first-in, first-out (FIFO) buffers and are built to automatically respond to cer-
tain inputs. Sensor data that does provide near-real-time input for operational 
analytics can be selectively stored to help solve operational efficiency problems 
and support asset management. 

Eyes and Ears

Data-analytic solutions are already well accepted, though not fully realized, 
within the utility as a key tool to improve reliability and avoid high-risk power 
outages. After the blackout of 2003 in the northeastern and midwestern United 
States, phasor measurement units (PMUs) were implemented to measure line 
condition at a rate as high as 30 times per second to avoid a similar widespread 
outage. The need for sensors is continuing to expand in response to the rapidly 
growing penetration of distributed energy resources (DERs) and the anticipated 
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growth of plug-in electric vehicles (PEVs) at the connected home and office. 
As sensor technology becomes ubiquitous on the grid in homes and in com-
mercial building management systems, the utility will have the opportunity for 
un precedented visibility into the demand side of the equation, including the 
ability to shed load on discrete devices, enabling precise load shaping.

Utility stakeholders have been known to fondly call their sensors “eyes and 
ears.” However, it is the ability to analyze the data with grid-specific models 
that is the brain for this ever-growing sensory system. This fact is not yet well 
understood, especially among device vendors who tend to concentrate on the 
functional characteristics of their units and how they can help grid operators 
build situational awareness. The growing availability of sensor data is advanta-
geous to the operation of the grid in ways only limited by the ability to think 
resourcefully. 

As an example of a novel use of sensor-data analytics, cellular base stations 
are significant consumers of energy, and the highly variable traffic load on the 
mobile networks constitutes a direct relationship between base-station traffic 
load and power consumption. Using sensors to understand this relationship can 
provide collaboration opportunities between telecommunications providers and 
utilities to identify energy-efficiency opportunities within the cellular access 
network. Without sensor data and analytics, these kinds of opportunities will 
continue to go unrealized. Data aggregation of sensor data with other forms of 
data will drive massive, unimaginable opportunity to make our business and 
living environments smarter, more sustainable, and efficient. 

Smart grid digital-sensor technology has also expanded the capabilities for 
monitoring substation power-flow conditions and obtaining real-time report-
ing and analytics. However, the technology has been implemented quickly due 
to decreasing costs and, while many more data points are available, utilities 
have not been able to take advantage of installed monitoring functionality. 
Additionally, despite the substantial value that fault analytics hold, some types 
are not currently communicated back to the utility, resulting in missed oppor-
tunities to identify situations for rectification. Thus, some utilities find it dif-
ficult to create strong strategic business cases because the benefits expected from 
current implementations are not being recognized.

9.2.3 Control Devices

As in an organic system, once the grid can sense, it can respond. With the smart 
grid, communicating control devices allow the grid to responsively shed load 
during grid stress, maintain grid stability for managing complex DERs, and 
respond to unpredictable challenges to grid stability. The fully realized goal of 



Sourcing Data 147

smart grid control is called the “self-healing grid.” This realization combines 
the visibility enabled by sensors, the flexibility provided by automated control 
devices, and the ability of embedded analytic software to automatically detect 
and isolate faults while quickly (within one to five minutes) reconfiguring the 
distribution network to minimize the impact of a grid disturbance. In one appli-
cation of control devices, switches and reclosers on the distribution feeder will 
isolate the faulted section and allow service to be reestablished from alternate 
feeders or sources of generation. Control devices also facilitate the coordination 
of the grid in managing renewable resources, solar, and distributed generation.

The distribution area is especially improved by the deployment of control 
devices in the face of changing load dynamic on the distribution system. In 
heavily loaded systems, many of the distribution switches are controlled by either 
operators or by predetermined system settings. The control devices within the 
domain of advanced distribution automation, when combined with monitoring 
data, can be maximized by helping operators optimize the values in the systems 
necessary to provide volt-VAR support for improved decision-making.

Control devices are critical to the vision of smart grid automation, adjust-
ing for power disturbances, providing the facility with remote repair, and 
delivering command and control from a centralized management system. 
Though this technology is key to the transformation of the modernized 
grid, outages and other problems that are detected, analyzed, and corrected 
in minutes must still be understood. Postprocessing analytics, which can be 
reconstructed from various sensors and intelligent devices on the grid, allow 
engineers to identify trends.

9.2.4 Intelligent Electronic Devices

Microprocessor based, intelligent electronic devices (IEDs) function as grid 
controllers among utilities and feature onboard capabilities that can receive data 
from sensors and other power equipment on the network; they can also issue 
control commands based on the received data. Typical uses of IEDs include 
tripping circuit breakers based on voltage, current, or frequency irregulari-
ties and the ability to serve as protective relaying devices, such as on load-tap 
 changers, circuit breakers, capacitor bank switches, reclosers, and voltage regu-
lators. The functions of IEDs within the grid infrastructure are varied and 
include protection, control, monitoring, and metering. The protection func-
tion  covers a wide swath of grid-protection activities related to various faults, 
voltage, frequency, and thermal overload. The control features may be local or 
remote, and monitoring oversight can exist for various condition-monitoring 
and supervisory functions, such as circuits, switchgear monitoring, and event 
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recording. IEDs also provide metering measurements for currents, voltages, fre-
quency, active and reactive power, and harmonics.2 Because IEDs are also able 
to communicate bidirectionally, it is possible to incorporate the data directly 
into the analytics life cycle. 

IED data is especially crucial for root-cause and troubleshooting analysis 
because it provides extensive information every time there is a fault or an event. 
These recordings may include current and voltage waveform oscillography, the 
status of input and output contacts, the status of various system elements, and 
other settings. Overall, the data characteristics of IEDs create excellent observ-
ability and analysis potential due to their abundant and redundant measure-
ments, resulting in improved fault analytics and visualization of event data.

9.2.5 Distributed Energy Resources

The rising penetration of DERs—including renewables, microgrids, EV net-
works, and storage—on the grid increases the possibility of disturbance, from 
voltage-control issues to intermittency in the energy supply. The application 
of smart grid data analytics to the management of renewables is one of the 
most powerful use cases of advanced modeling to control and monitor DERs 
to ensure reliability. To successfully monitor the grid under the conditions cre-
ated by DERs, the utility must have real-time information, excellent situational 
intelligence, an understanding of prevailing weather conditions, and the ability 
to integrate that data to make informed and rapid decisions to manage fre-
quency control, power quality, and other operational parameters.

In fact, without analytics to manage DERs, the rapidly increasing inter-
connection of these resources into the macrogrid could lead to unexpected 
events of large magnitude and consequences. In the rush to green the grid and 
increase regulation over dirty baseload generation, if the utility cannot success-
fully cope with the effects of intermittent renewables in the generation mix and 
within the delivery network, no amount of hindsight can account for risks to 
provide a balanced grid. DER integration, especially for renewables, requires a 
deeper and more immediate context than postprocessing for fault or root-cause 
analysis. Successful renewables integration requires the utility to account for 
wind, cloud cover, and other environment variables on the generation sources 
themselves. These factors can change instantaneously, and in order to align 
demand with capacity, the utility must be able to have a high level of confi-
dence in its forecasts for projected mixes of energy sources. Forecasting is not 

2 Raheel Muzzammel (n.d.), Intelligent Electronic Devices. Academia.edu. Retrieved 
from http://www.academia.edu/1739791/Intelligent_Electronic_Devices.
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perfect, and even overcapacity conditions can lead to brownouts by pushing 
excess power upstream.

In addition to real-time weather data, analytic models for managing DERs 
include power-line-sensor data, currents on primary and secondary feeders, 
voltage, and currents on the primary and secondary sides of the transformer, 
as well as other transformer parameters that increase predictability for safe and 
reliable grid operation. Apart from assisting operators in making faster, better 
decisions, DER intelligence can help prospect appropriate sites for new genera-
tion, optimize the generation and transmission of assets, and increase the con-
fidence level in forecasting capabilities over time. 

9.2.6 Consumer Devices

As alluded to earlier in the chapter, the proliferation of devices across the grid 
has transgressed the traditional demarcation of the meter into the custom-
er’s structure, effectively expanding the breadth of the grid directly into the 
home, commercial building, campus, and industrial enterprise. This explosion 
of Internet Protocol (IP)-addressed devices that are being sewn into clothes, 
watches,  stereos, building controls, and smart appliances is called the Internet 
of Things (IoT), introduced in Chapter 3. From an analytics perspective, this 
equates to a massive volume of data that describes a building and the behavior 
of those within the building as they interact with energy-consuming devices. 
Some of these devices are designed specifically to provide opportunities to save 
money and energy by reducing energy consumption and shifting demand. 
However, any sensor that can meter consumption can be analyzed, modeled, 
and leveraged to provide a variety of benefits to the utility.

Collecting and modeling data off of demand-side devices with monitor-
ing capability is the leverage point for utilities that are seeking to build trust 
with consumers, as well as mitigate the risk to their core business model by 
offering new products and services. For example, energy models from interval 
consumption data over time can indicate when an appliance, like a refrigera-
tor, is in a state of disrepair and will be experiencing imminent failure. There 
is tremendous value in that kind of information, and those who live in broad-
band-enabled households are expressing an increasing level of interest in smart 
washers, dryers, and air conditioners.3 Connected devices bring control and 
convenience to the consumer; for the utility, the low-hanging fruit is the ability 
to signal smart appliances to shed load in real time and to verify that load.

3 Parks Associates (2012), Energy Management Devices: Engaging Consumers. Retrieved 
from http://www.parksassociates.com/services/energy-devices.
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It is not clear with the emergence of the connected home what role the util-
ity will directly play in the provision of added-value energy services; it’s also 
unclear whether those IoT devices will be under utility, consumer, or third-
party control. It is certain, however, that the market is being rushed by telecom 
and cable providers seeking to offer home controls, security, and even energy 
management. Up until now, the utility has focused primarily on demand-
response applications to reduce consumption or shave peak. The pilots have 
been extensive, but the rollouts have been few. Utilities are learning to collabo-
rate with connected-device experts who understand marketing and already have 
a presence in the consumer’s home.

Analytics based on source data from the demand side can help solve myriad 
utility business problems, including managing the interconnection of micro- 
and nanogrids, performance monitoring, highly refined appliance-level demand 
response, dynamic-pricing programs, and PEV management. The analytics 
derived from consumer data will help utilities expand their market potential 
and find new ways to drive revenue. Additionally, combining such information 
with the plethora of data sources available about consumers—including demo-
graphic data, behavioral web and social data, allocation data, and financial 
records—will provide the foundation for the next level of insights for predictive 
utility applications.

9.2.7 Historical Data

No one could reasonably argue that there is a growing need to retain data and 
improve access to it. However, many utility stakeholders are concerned that 
keeping all the data that flows into the enterprise is simply cost-prohibitive from 
both the physical storage and management aspect. And indeed, stashing it in 
offline archives limits the ability to extract any value from it, especially with 
analytic workflows. This problem also has two difficult relatives: compliance 
and privacy. Compliance is related to mandated reporting requirements, while 
privacy is related to policy and governance for how long personally identify-
ing information is stored, in what form it’s kept, and under what conditions. 
Aggregated data that has been scrubbed and anonymized is not subject to most 
privacy regulations. However, in the context of solving utility business chal-
lenges related to how and when customers use energy—particularly in sup-
port of improving energy efficiency and demand response—the information 
becomes unserviceable. In the quest to overcome privacy concerns, utilities are 
interpreting laws and rules, often resulting in reluctant and conservative posi-
tions toward data. 

The usefulness of historical data relates directly to how it’s collected, 
 organized, and stored. Because it tends to presuppose the way the data will 
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be queried, overly normalized data restricts how it can be used in analytical 
models, limiting future insights that might be gained by novel views and uses, 
especially predictive and prescriptive applications. In some jurisdictions, there 
is serious discussion of collaborative efforts that would create an “energy data 
center” that provides aggregated and anonymized data to the public. The US 
state of California has recently proposed such a project as a way to ease access to 
customer energy-usage information for consumers.4

This is a very interesting proposition for the utility as well, as it would likely 
lead to a spate of new and interesting energy applications for consumers. It 
would also lead to the creation of new market opportunities for energy-saving 
products and energy market research. Moreover, such an energy data center 
would relieve the utility from having to manage customer-consent processes to 
share data, and it would provide insight into an industry-standard methodol-
ogy for aggregating and securing consumer information. For the utility that is 
seriously considering future strategic moves into enhanced energy products and 
services, it can reposition itself as a barrier against sharing data, and it can find 
explicit ways to benefit from the research and wisdom that are unleashed when 
information is made public.

9.2.8 Third-Party Data

The discussion of historical data naturally leads to the issues and concerns 
related to the use of third-party data in utility analytics programs. Much of 
the discussion about third-party data concerns sharing customer information 
that has been collected by the utility, especially billing and smart meter con-
sumption data. But, in the sense of a data source—especially for predictive 
analytics—fusing third-party data such as weather, new-customer demographic 
information, premise data, social graph data, financial records, mobile data, 
and GIS data with internal sources of information can help treat several utility 
business issues, including:

• Customer microsegmentation. Segmenting customers based on patterns 
of data.

• Demand forecasting. Improving predictability for more-optimal planning.
• Fraud identification. Providing a more expansive view into revenue leaks.
• Program optimization. Determining which customers the utility should 

be targeting for better program uptake and outcomes.

4 Audrey Lee and Marzia Zafar (2012). Energy Data Center. California Public Utilities 
Commission. Retrieved from http://www.cpuc.ca.gov/NR/rdonlyres/8B005D2C-
9698-4F16-BB2B-D07E707DA676/0/EnergyDataCenterFinal.pdf.
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There are already analytics companies that are targeting utility problems for 
the application of predictive data science to meet these needs. They are liter-
ally aggregating thousands of data points from hundreds of sources. Because 
of the fragmented nature of the utility industry, where utilities do not share 
data for operational and business benefit, data aggregators will step in. These 
aggregators will coordinate the volumes of big data and use their proprietary 
models to provide insights from the data. As utilities assess vendors that may 
be able to help bring third-party data sources to bear, it is worth considering 
the value of sharing anonymous data from many utilities to improve analytic 
outcomes. This won’t always be useful, as utilities have uniqueness among their 
customers, geographies, and technologies. However, in many cases, sharing data 
could greatly accelerate understanding about how to incentivize customers to 
participate in dynamic-pricing and demand-response programs, as well as help 
utilities improve their own metrics by understanding how they are performing 
compared to their peers.

9.3 Working with a Variety of Data Sources

9.3.1 Data Fusion

Data fusion is a core capability for working with many data sets within the 
discipline of predictive data science. As simply described in Figure 9.1, data-
fusion technologies and approaches merge disparate data sets and manage con-
flict resolution among structured, unstructured, and streaming data sources 

Figure 9.1 The Role of Data Fusion Is Aggregating Complex Data Sources.
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so that analytic models and algorithms can be rationally applied for response 
and action. Despite its synthetic nature, data fusion can be more informative 
than data sets considered in isolation; done improperly, it can be distracting 
and misleading. The process of fusion may either be low, intermediate, or high, 
depending on the stage at which the work is done. For example, low-level data 
fusion might combine several sources of raw data to generate an entirely new 
raw data set that is used for analytic processing. High-level data fusion considers 
the data at the object level, and it will fuse information at the level of relation-
ship among those objects. Utilities are already familiar with high-level fusion; 
the power-plant control room is a functioning fusion center, since it manages 
relationships among sensor data, humans’ behavioral data, and physical objects 
on the network that may be impacting the grid in real time.

Thus, data fusion aggregates varied data types, including structured, 
semistructured, and unstructured data sources, into an aggregated form that 
can be modeled. Structured data is very common in the operational context 
because it may be either machine-generated messages produced without human 
 intervention or data created by a human through an interaction with a com-
puter application. In either case, the data is usually well understood contextu-
ally and at the record level. Structured data, such as information produced by 
sensors, financial systems, applications, and clickstream data, is often astro-
nomical in size but tends to consist of similar, consistent, and expected infor-
mation. Because of these characteristics, structured data is more easily stored 
and queried within the context of traditional relational databases. Unstructured 
data also can come from machines and humans, but it consists of unexpected 
information, such as satellite imagery, videos, social media data, and all the text 
within the utility enterprise that comprises documents, log files, and e-mails. 
The uses for and the ability to readily process unstructured data are rapidly 
improving. However, some of the most powerful use cases for unstructured data 
come from the ability to fuse it with structured sources of information to extract 
highly relevant insights at a granular level. Unlike unstructured data that is 
unpredictable, semistructured data sources are self-describing. And unlike 
structured data that has fixed records, semistructured data is schemaless and 
nonconforming. It sits somewhere in the middle, requiring a different approach 
to processing. Markup languages such as Extensible Markup Language (XML) 
and electronic data interchange (EDI) are examples of semistructured data.

High-level data-fusion computational models are often described in one of 
three ways: physics based, data based (knowledge lean), or knowledge based 
(knowledge rich). Physics-based systems rely on both linear and nonlinear equa-
tions to specify behavior in the model (such as Kalman filtering or Sequential 
Monte Carlo methods), data-based fusion that relies on input/output variables 
to extract system-behavior models (such as machine learning), and knowledge-
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based models are founded on an ontological understanding of system behavior 
(like fuzzy logic).5 As in the analytical systems that leverage the information 
processed with various fusion techniques, most fusion systems rely on a combi-
nation of the fusion-modeling systems to filter and associate data.

Data fusion is a key process in utility data-integration efforts. Although 
it is typically thought of as a way to combine disparate data, it can also be 
viewed as a way to reduce (or even replace) the volumes of data—while actually 
improving confidence. Data fusion is widely used in advanced data-integration 
projects, including GISs, business intelligence, wireless sensor networks, and 
performance management, and is a key component in preparing raw and his-
torical data sources for advanced analytic applications.

Next Steps for Utilities

• Develop use cases. Don’t invest in big data technologies until use cases are 
developed for how the data is going to be used. 

• Determine whether the internal data being collected is enough to solve the use 
cases. If it’s not, what data is necessary and how can it be obtained?

• Understand the required data completely, what data sources are required to 
address business problems, and which types of analytics are appropriate for the 
data sets.

• Don’t be tempted to underestimate the value and costs associated with sourcing 
data: It must be collected, understood, structured, and fused.

• Scope the project in business terms based on data availability, and plan from 
there.

5 Subrata Kumar Das (2008), High-Level Data Fusion (p. xvi). Artech House, 
Norwood, Massachusetts. Retrieved from http://books.google.com/books?
id=iTb3e9efuoMC&pgis=1.
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Chapter Ten

Big Data Integration, 
Frameworks, and Databases

1 Image retrieved from the public domain at http://d3.static.dvidshub.net/media/
thumbs/photos/1210/709412/288x360_q75.jpg.

Scientist examines the slosh tank apparatus in the NASA 10x10 wind tunnel shop. 
(Source: NASA1)

10.1 Chapter Goal

In traditional database integration and storage efforts, there has been a clear 
demarcation between data storage and data processing. With the advancements 
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in efficiency and performance technologies, this line is beginning to blur. In 
this chapter, we discuss the elements of big data infrastructure from the per-
spective of existing approaches, their difficulties in adapting to the needs of 
high-volume and varied data types, and the benefits of distributed approaches 
that are more cost-effective. The open-source big data technologies—Hadoop, 
the Hadoop Distributed File System, and MapReduce—are described, as well 
as other database technologies that are beneficial within the utility ecosystem. 
We’ll also address the fundamentals of different database concepts, their defin-
ing characteristics, and the best use of each.

10.2 This Is Going to Cost

Many utility stakeholders believe that big data requires a big check. Learning 
to optimize big data across the enterprise is one approach to controlling these 
costs. Fragmented department-level projects are never the most efficient, cost-
effective way to formulate an enterprisewide analytics strategy because they 
lead to unchecked technology iteration without a cohesive and comprehensive 
vision. However, having an understanding of the key pieces and parts of this 
vision will help streamline the development of an optimal strategy.

In a complex ecosystem like the utility—which is process driven and out-
fitted with large, expensive, and fast computers—terms like Hadoop and 
MapReduce can seem like flashy jargon that has no place in the real-world 
domain of power delivery. But if the organization is seriously interested in data 
analytics, this argot becomes very important. At the same time, these names 
aren’t really critical to understanding, at a detailed level, how these technologies 
function; what is important is understanding their benefits. And to understand 
the benefits of big data management systems, there are two important topics of 
interest: data storage and data processing, which we will discuss in the next two 
chapters. Unlike traditional data management, in the world of big data, these 
often happen in the same system.

It is certainly not a new phenomenon in the energy industry to interrogate 
a large database to gain business insight. But these exercises have been almost 
exclusively performed in a data warehouse or a high-performance computing 
(HPC) system on structured data with high latencies, in batches, overnight, 
or even sometimes over the course of several weeks. Big data deals with rapid 
access to many different forms of data, including unstructured and semistruc-
tured data, and the value proposition of big data analytics is found in the imme-
diate response times to time-sensitive analytical queries. 
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10.3 Storage Modalities

The core requirements for big data storage are capacity, scale, and high- 
performance input/output (I/O) operations per second, or IOPS (pronounced 
“eye-ops”). None of these requirements is straightforward. For example, IOPS 
performance is highly dependent on system configuration, operating system, 
and innumerable other factors. And when very fast response times are required 
with massive volumes of data, traditional scaling approaches are no longer 
enough. There are several approaches to meeting big data requirements.

10.3.1 Hyperscale

One of the answers to big data applications is hyperscale. These environments 
are built using inexpensive servers and storage that are connected in a single 
system. Storage units in the environment are directly linked to the servers in 
an approach known as direct-attached storage (DAS). Because DAS does not 
have to traverse the network in order to read and write data, it’s used in high- 
performance environments. Redundancy is provided at the storage level, so if 
any device fails, immediate failover to a mirror unit occurs. For even faster 
response times, flash storage may be implemented in addition to fast disks. 
A hyperscale environment isn’t always necessary to mine customer metrics or 
perform simple business functions; however, grid operations or high-intensity 
computational finance functions easily benefit from such a specialized environ-
ment, particularly as the volumes of data grow.2

10.3.2 Network-Attached Storage

Technical operations that shy away from hyperscale may opt for shared storage 
access with network-attached storage (NAS) or a clustered NAS system. This 
approach can adequately meet the big data storage demands of capacity and 
low latency, depending on the speed of growth of the data and access demands. 
Clusters of NAS boxes can be configured in a gridlike collection of nodes that 
aggregate processing power in a parallel configuration. At its simplest, NAS is 
a file-level computer data storage solution running a stripped-down operating 

2 Antony Adshead (2013), “Big Data Storage: Defining Big Data and the Type of 
Storage It Needs,” Computerweekly.com. Retrieved from http://www.computerweekly.
com/podcast/Big-data-storage-Defining-big-data-and-the-type-of-storage-it-needs.
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system that’s connected to the network for data access. NAS devices are highly 
specialized and manufactured specifically as a computer appliance that’s opti-
mized for storing and serving files. Yet, traditional NAS configurations will 
not scale to massive levels, and they have independent file systems that cannot 
be searched as a single unit. In a cluster configuration, NAS systems can have 
petabyte-level file system capability that does not degrade because the system 
can easily grow as processing nodes are added. Traditional NAS solutions are 
still quite popular, and prices have been plummeting. They are also easy for IT 
staff to manage and configure with a NAS management tool.

10.3.3 Object Storage

The other form of storage that is used in big data environments is object stor-
age. Instead of files, objects contain data, but they are organized in a sort of 
hierarchy. Managed by a system of metadata that describes each of them, the 
objects maintain unique identifiers, which simplify data storage and access. 
Think about the last time you checked your coat in a restaurant. The coat-
check clerk took your coat and handed you a ticket. You didn’t know (or likely 
care) where your coat was placed or if it was moved several times over the course 
of the evening. What mattered was when you went back to retrieve your coat 
and you handed the clerk your ticket, he expeditiously and efficiently returned 
your item. That’s object storage. Simply, the system gets around the issues of 
becoming unmanageable under the reality of growing data by relying on an 
index of metadata to handle a large number of files. Object storage technology 
is younger than NAS technology, and it can be scaled to massive volumes in a 
reliable manner. However, it has drawbacks, mostly related to slower through-
put and the time to establish data consistency. Object stores may be an excellent 
fit for the money, particularly for data that isn’t rapidly changing, such as media 
files and archives.

10.4 Data Integration

Very few disciplines are still developing after 30 years, yet the practice and 
theory of data integration just doesn’t stand still; it is still evolving because 
database implementations change. First there were flat files; then there were 
hierarchies, relational databases, object-oriented databases, Extensible Markup 
Language (XML); and again, flat files (but this time with different manage-
ment strategies). In fact, in the world of big data, the term “database” is not even 
entirely accurate anymore because the data is now stored under the auspices of 
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a “framework” that includes both a way to organize data in a file system (like a 
database) and processing capabilities. 

This shift in focus is driven by two factors: the requirement that collection 
happen faster and on more data sets and the need that it be optimized for rapid 
analysis. But, despite the fact that data integration is the choke point in unified 
systems, many big data projects will falter at the level of data integration simply 
because of a lack of functional requirements—there is just no clear sense of the 
desired behavior of the system when it is being built. By definition, data inte-
gration is the process of combining various data sources and types to provide 
a unified view of the data within the storage system. In the scope of big data, 
integration is a problem that becomes more difficult as the variety and volume 
of data explode. In fact, it is data integration that ensures that the technology 
solution for the big data problem actually supports the business requirements. 
The process must be well thought out and trusted.

After the utility has established which data store is appropriate for the 
data analytics project in question, it is time to begin assessing data integration 
approaches and processes. Strangely, the hype around big data integration is 
almost as large as big data itself, and just as difficult to pick through. The best 
data integration process for an enterprise is that which meaningfully combines 
technical and business drivers into a cohesive process. Several key characteristics 
define a successful big data integration solution, including a method for data 
discovery, cleansing, transformation, and movement of the data from its source 
to the data store.

It should be clear now why many companies have been distressed to learn 
that building your own big data storage and integration environment can be an 
expensive mess. If big data is going to be cost-effective and sustainable, a repeat-
able, coherent approach is needed.

10.5 The Costs of Low-Risk Approaches

Lead me not into temptation; I can find the way myself.
– Rita Mae Brown

While data integration has been a changing process for decades, it has always had 
a consistent goal of extracting data from multiple sources, transforming it, and 
consolidating it to create a unified and consistent version of truth. Workflows 
were developed and graphical and easy-to-use tools helped design integration 
routines on constrained amounts of data that didn’t require custom, nonstan-
dard, and expensive-to-maintain software. With big data, the problem with 
this approach is that there is a constantly growing amount of data from a wider 
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variety of sources. Therefore, data integration is no longer a problem of finding 
and deploying function-rich tools; it’s a problem of efficiency and performance 
at an unprecedented scale. Many of the data integration best practices, while 
applicable in many ways, simply do not meet the big data requirements. 

In moving quickly to establish big data analytics-integration processes, many 
utilities will be tempted to scale in ways that are costly and do not deliver the 
necessary benefits. For example, some organizations have attempted to deploy 
a staging area, or landing zone, that is designed to improve the efficiency of 
existing extract, transform, load (ETL) processes. Staging areas may consist of a 
relational database; collections of XML files; or some type of file system organi-
zation where precalculations, data cleansing, and other forms of consolidation 
may take place. Depending on the implementation, this approach can be quite 
expensive just in database infrastructure and maintenance costs alone, and it 
can unnecessarily increase the complexity of the data integration system overall.

The temptation to control the budget with a rush to recognize short-term results 
leads to suboptimal approaches that are not sustainable and inevitably cost more. 
This is a losing battle. Consider the fact that even if your incremental effort to 
drive performance of an existing system results in a 50 percent gain, if it used to 
take a week to run a process, the utility may still be running into two- or three-
day cycles to work through a job. In the world of ever-flowing data, by the time 
the process is complete, the data may very well be obsolete.

Utilities that have begun serious big data efforts are beginning to reckon 
with spiraling costs. Why? The authors at TDWI (www.tdwi.org) describe the 
phenomenon of the tail-chasing cycle that happens as organizations attempt to 
buy their way out of their efficiency and performance problems by adding more 
hardware, software licenses, power and cooling infrastructure, and staff:

 After a while, people realize they cannot hardware their way out of this 
problem . . . At this point, it’s like taking a huge step back in time—
data lineage is lost, the database is overloaded, and costs and complexity 
rise to the roof.3

10.6 Let the Data Flow

In the scope of acquiring and coalescing the preponderance of data that makes 
up the world of big data in the utility, new approaches to data integration are 

3 J. Lopez (2012), “Big Data Integration,” TDWI,Syncsort E-Book. Retrieved from 
http://tdwi.org/research/2013/12/best-practices-report-predictive-analytics-for-
business-advantage/asset.aspx?tc=assetpg.
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needed. One way to think about it is to focus on the flow of data rather than the 
old-school integration of data, where data unification and loading are primary 
squeeze points in the process. This moves the organization away from a mind-
set centered on data integration as a staged process and toward frameworks 
and environments that consolidate the principles of ETL into a single solution. 
In this way, data mapping, data loading, and accessing enterprisewide data 
across mixed application environments are truly efficient. However, as men-
tioned previously, the best way to integrate the wide variety and high volume 
of information that the utility requires for a comprehensive big data analytics 
program depends on the framework that’s in use. Many utilities are looking 
for these capabilities within a single solution that can provide unified, high-
quality, trusted information. And as the need to keep data flowing increases, 
the process of integration is merging into the big data environment much more 
than data warehouses, master data management systems, and custom applica-
tions ever could.

The utility stakeholder embarking on a program of big data is exposed to a 
new and expansive patois of bizarre and unfamiliar terms and all their strange 
friends. Many of these terms represent powerful technologies, but like the jar-
gon before it (for example, “mashups,” “brain dump,” and “crowdsourcing”), 
sooner or later we adapt and never think about these strange descriptors again. 
While this list barely scratches the surface of the extensive glossary of big data 
terminology (some have called it a bestiary), following are some of the key 
terms and concepts that need to be understood to further the discussion on big 
data frameworks.

10.6.1 Hadoop

The big data revolution has been brought to you compliments of Apache 
Hadoop (hadoop.apache.org). An open-source framework for storing, pro-
cessing, and subsequently analyzing data at a low cost and on a massive scale, 
Hadoop enables the storage of an enormous quantity of data across a distributed 
cluster of servers, and allows users to run analysis applications on those clusters. 

Hadoop emerged in 2006 from a Yahoo!-funded project created by Doug 
Cutting, who named this fault-tolerant, scalable, distributed computing sys-
tem after his son’s stuffed yellow elephant (meaning, it stands for nothing). 
Hadoop can scale across literally thousands of commodity services to provide 
resilient storage and processing of large data sets in a distributed environment. 
The technology transformed the world of big data by changing the economics 
and dynamics of large-scale computing. How? Imagine how much it would 
cost your organization to buy a 1,000-central-processing-unit (CPU) machine 
versus 1,000 single-CPU machines tied together in a cluster. Now, just for a 
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nauseating moment, assume that your awesome and expensive machine with 
1,000 CPUs just failed. Enough said.

Conceptually, Hadoop is quite straightforward. As described in Figure 10.1, 
when data is loaded in, it is distributed to all the nodes of the cluster by split-
ting large data files into smaller chunks, which are managed by different nodes. 
Additionally, each chunk is replicated across several machines, so that if a single 
machine fails, the data is still available. With Hadoop, the data is record ori-
ented. This means that as individual input files are broken up and stored, when 
the records are processed, they are running on a subset of the data. Thus, appli-
cation computations can be scheduled according to the data that is closest to the 
processing node, driving down latency by moving data around the network and 
keeping computation close to the data, as opposed to shipping data to a specific 
device for computation. 

It is through this notion of data locality that Hadoop achieves its perfor-
mance and scalability. As you may have guessed, based on our previous dis-
cussion about storage modalities, DAS is an assumption in the Hadoop 
environment. Why introduce the extraneous processing required by NAS and 
negate the benefits of data locality? Don’t yet count out the role of NAS for 
secondary storage or even for primary storage implementation. Either way, the 
principle of replicated blocks of data across multiple machines drives each indi-
vidual compute process to be isolated from one another. The way this disparate 
data is processed is through the use of a model called MapReduce.

10.6.2 MapReduce

MapReduce is a model for processing large data sets using a parallel, distributed 
algorithm on a cluster of computing devices. Most people think of MapReduce 

Figure 10.1 Data Loading Using the Hadoop Approach.
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as the way in which data is processed in a distributed environment. This is true; 
however, MapReduce can also be successfully used to manage hetero geneous 
data sources, especially when complex computations are required on large 
amounts of data that need to be integrated. There are many implementations 
of MapReduce, and Hadoop is one of them. Basically, the “Map” part of the 
model is responsible for splitting up the problem, and the “Reduce” part puts 
everything back together to compile a single answer. It works like this: “Map” 
splits the problem into smaller parts using a series of key-value pairs (so it can 
find them later), sends those parts to different machines within the cluster, and 
then runs all the pieces in parallel. “Reduce” steps in again and finds all the 
values that have the same key, and then combines them into a single value. 

Here’s an example: A nonprofit research company wants to count the number 
of Fortune 500 companies that have women as corporate officers. Ultimately, 
it needs to know who all the women are in the organizations who hold these 
top-earning positions and then aggregate that information. There’s an obvious 
methodology for gathering this research: The team has many researchers who 
each are given a list of companies and instructed to collect the required data and 
return it at the end of the day. These researchers are performing what Hadoop 
has named “mapper tasks,” where each company they are researching (we would 
call this a key) may have several women in these roles (we would call these val-
ues). Then, imagine that when all the researchers send in their collected data to 
the project manager (Hadoop would call the manager the reducer), he creates a 
spreadsheet of all the information. Of course, analysts will use this information 
to draw all kinds of conclusions, but the point is that the project manager and 
the team of researchers executed a classic MapReduce algorithm.

Figure 10.2 demonstrates this process. To be sure, MapReduce isn’t exactly 
rocket science, but when faced with millions (sometimes billions) of rows of 
data that might not be so neatly structured, the value of performing these opera-
tions in a massively scaled environment is profound.

Figure 10.2 The MapReduce Algorithm.
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10.6.3 Hadoop Distributed File System

While MapReduce is the programming model used within Hadoop, the Hadoop 
Distributed File System (HDFS) is, as its name implies, its own file system. 
However, in the spirit of open source, several file systems are supported out of 
the box by Hadoop, including Amazon S3, CloudStore, File Transfer Protocol 
(FTP), read-only Hypertext Transfer Protocol (HTTP) file systems, and HTTP 
Secure (HTTPS) file systems. In fact, Hadoop can work with any distributed 
file system that can be mounted using the file://URL (uniform resource loca-
tor), but not without a performance cost, as it is the Hadoop-specific file system 
bridges that maintain the advantage of data locality. Remember, Hadoop per-
formance relies on knowing which servers are closest to the data.

It is actually a function of the HDFS to split data into chunks to be man-
aged by different nodes within the cluster. And, although it’s not required, 
the data is redundant; each chunk is replicated into smaller pieces across the 
multiple data sources to better benefit from data locality Specifically, HDFS is 
designed to reliably store very large amounts of data and provide fast access for 
reading and computation, at scale.4 HDFS is best suited for streaming read per-
formance, unlike a database that allows files to be updated, modifications are 
not supported (although appends are), and random seek times are not optimal, 
unless extensions such as HBase (a purpose-built indexer that resides on top of 
HDFS), which provides fast record lookups, are employed.

10.6.4 How Does This Help Utilities?

Electric utilities that embrace open-source projects are among those that have 
had early success with Hadoop. As recently as 2009, the US’s largest pub-
lic provider, Tennessee Valley Authority (TVA), serving more than 9 million 
customers in seven states, has been using Hadoop to collect data from phasor 
measurement units (PMUs). Data is collected from the field from nearly 1,000 
PMUs at intervals of 30 times per second. The information is captured as 
time-series data and sent to Hadoop for processing, where it is run en masse. 
TVA selected Hadoop not just because of its ability to reliably process large 
volumes of data and store it, but more importantly, because of its ability to 
scale out cost-effectively.5 Other utility organizations may find that although 

4 Hadoop Tutorial (n.d.), Yahoo! Developer Network. Retrieved from http://developer.
yahoo.com/hadoop/tutorial/module1.html.

5 Dave Rosenberg (2009), “Open-Source Hadoop Powers Tennessee Smart Grid,” CNET 
News. Retrieved from http://news.cnet.com/8301-13846_3-10393259-62.html.
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Hadoop isn’t perfectly suited to their overall ecosystem, it is certainly appropri-
ate to accommodate complex data-integration problems by splitting up tasks 
before the data is ultimately pushed into a data warehouse. This approach 
would likely encompass a complete integration redesign to compress process-
ing times, as opposed to extending the ETL runway to buy time as traditional 
staging areas often do.

There is an important caveat here: Do not use Hadoop just because your 
data is too big to load in an Excel spreadsheet or because it’s free. Despite the 
tool’s big-data-darling status, distributed processing is not always the right 
answer. Hadoop is evolving quickly with new functionality and facilities, so it 
pays to remember that even though the cost per unit of data may be lower with 
Hadoop than a relational database, clusters of servers and specialized employees 
who have advanced programming and data management skills may not really 
be that cheap for every situation. Traditional tools, specialized capabilities such 
as in-memory databases, or even relational databases may even be better suited 
to the needs of the business. And time-series database servers, spatial databases, 
or geographic information system (GIS) databases may be more appropriate 
solutions for the problem at hand.

Understanding the business problems first, before assessing the benefits of 
various solutions, increases the likelihood of a successful implementation when 
it comes to choosing the right technologies for the job. Besides, make sure you 
are committed to Hadoop before investing in engineers to develop a solid under-
standing of the mysterious Hadoop enablers: Pig, Hive, Sqoop, and Oozie.

10.7 Other Big Data Databases

Discussions about the shortcomings of relational databases for big data are com-
monplace when the topic of big data storage comes up. It’s fairly straightforward 
as to why this is—these systems are designed to manage structured data. In 
fact, structured data is often called relational data and is well suited to an orga-
nization that needs specific parcels of information to be organized in rows and 
columns. Relational database management systems (RDBMSs) typically incur 
expensive overhead requirements during processing cycles because the data is 
searched by the actual content that is stored within any particular field in the 
database, such as a customer’s ZIP code or other discrete information. However, 
big data analytics leverage both unstructured and structured data, including 
free text, images, objects, and other types of raw information. Thus, if scale 
and flexibility are required, then relying solely on RDBMS technology will be 
a less-than-ideal solution. There are many other options, even if the use of an 
RDBMS is part of the overall approach.
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The following is a catalogue of some of the most prominent big data data-
bases used by utilities outside of the popular Hadoop technology. While cer-
tainly not a comprehensive directory of all useful technologies in the realm of 
big data analytics, the major approaches that can be valuable within the utility 
ecosystem are outlined. Each technology is described for its approach, defining 
characteristics, and the best use of each.

10.7.1 NoSQL

As alluded to, it’s not possible to write off relational technology because it’s still 
important to the enterprise, and it’s simply a fundamental business requirement 
to be able to create relationships among data. This does not mean that nonrela-
tional database technologies are all hype. They have actual benefits within the 
big data analytics environment. We’ve already discussed Hadoop and described 
it as a distributed computing ecosystem; Not Only SQL (NoSQL [Structured 
Query Language]) is a broad class of database management systems that may 
actually be deployed within the Hadoop milieu. Unlike relational systems, 
NoSQL databases do not use a fixed schema for data organization, and they 
run well in replicated situations and distributed situations, lending themselves 
to the scale required by big data applications. There a several variants of NoSQL 
databases usually categorized by the appropriate data model. These include:

• Key-value stores that support very fast simple retrieval and appending 
operations 

• Document databases, where the value in the key-value pair is a complex 
data type, known as a document

• Graph stores that contain network data such as social data connections
• Wide-column stores that support queries against large data sets that are 

stored in columnar format (as opposed to the RDBMS rows)

Unlike relational databases, most NoSQL implementations do not guaran-
tee that transactions process reliably. Instead, a paradigm called eventual consis-
tency is employed. As implied in the name “NoSQL,” these systems do not use 
SQL for interrogation; rather, they may use lower-level languages or application 
programming interfaces (APIs). For big data implementations, the benefits of 
NoSQL databases include the ability to scale out—meaning that commodity 
servers (or clouds) are used to add capacity—and the ability to dynamically 
manipulate a schema, including adding new information types to records on 
the fly.
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10.7.2 In-Memory or Main Memory Databases

Another strategy being used for faster processing of large data volumes is the 
in-memory database (IMDB) or main memory database (MMDB). The IMDB 
relies on the main memory of the computer as opposed to disk storage for data 
storage. These databases are especially useful for vertical applications, deliver-
ing benefits that are derived from simple, internally optimized algorithms that 
execute fewer CPU instructions. IMDBs leverage volatile memory and are use-
ful where response time is critical, but they lose all information in the event of 
a power loss. However, with the advent of Non-Volatile Dual In-line Memory 
Modules (NVDIMMs), this data loss is increasingly less of an issue, since these 
modules allow IMDBs to achieve the consistency and durability of a traditional 
RDBMS. Because these systems increase processing speeds and data handling 
by eliminating the mechanical activities of disk I/O, these databases are espe-
cially appropriate to meet the performance needs of the devices found within 
the smart grid and connected homes.

IMDBs come in many variants, including SQL relational, NoSQL, and 
distributed. Utilities may already be familiar with the IMDB database, as the 
Polyhedra IMDB is a common storage solution for supervisory control and data 
acquisition (SCADA) and embedded systems. Among the benefits of IMDBs 
is the elimination of seek time during queries, which has been measured to 
be between 10 and 100 times faster than conventional databases.6 For high-
availability implementations, IMDBs tend to be used in conjunction with other 
mechanisms to provide failover and data replication. The databases support 
the use of both structured and unstructured data and are thus advantageous 
to in-memory analytics, where scenarios or complex calculations can be run 
extremely quickly. This response time is especially useful for analytic visualiza-
tions that support real-time modeling and data exploration that have previously 
been constrained by slower computation times. IMDBs are best considered for 
targeted solutions to solve specific business problems that involve a high volume 
of data with a wide variety of data types.

10.7.3 Object-Oriented Database Management Systems

Object-oriented database management systems (OODBMSs) manage informa-
tion as objects in order to augment the use of object-oriented programming 

6 Chris Preimesberger (2013), “In-Memory Databases Driving Big Data Efficiency: 10 
Reasons Why,” eWeek. Retrieved from http://www.eweek.com/database/slideshows/
in-memory-databases-driving-big-data-efficiency-10-reasons-why. 
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paradigms with corresponding database technology. An OODBMS will typi-
cally allow object-oriented applications to store data as objects, and to replicate 
or modify existing objects directly in the database. Not normally considered 
when conceiving of big data management technologies, OODBMSs can sup-
port graph-structured data types and are well matched to the management of 
complex data types. They are useful in the utility context because they support 
engineering functions, including spatial applications. Object data is accessed 
directly, without the mapping required by RDBMS, and in applications where 
the stored objects have many-to-many relationships with other objects in the 
system. In-memory and NoSQL implementations of object-oriented databases 
also have been developed, but the role of OODBMSs in big data and analytics 
is not yet well defined.

10.7.4 Time Series Database Servers

Time series database servers (TSDSs) are systems specifically designed to handle 
time-series data, which are successive data points that are measured at points 
in time, typically spaced at uniform time intervals. Because time-series data is 
used in signal processing, moment-to-moment weather forecasting, and control 
and communications engineering, it’s especially relevant to grid operations. For 
example, load profiles are a time series of energy-consumption values. Time-
series data is not naturally relational, nor is it always well suited to flat files if 
the data volumes exceed the capabilities of the underlying system. A TSDS is 
purpose-built to optimize the handling of the streaming characteristics of time-
series data. These systems can be built on top of existing technologies, such 
as Apache HBase, and are tuned to meet analytical requirements of statisti-
cal operations. TSDSs are the appropriate underpinnings for high-performance 
historical analysis and have already demonstrated their usefulness in the utility 
sphere, where they have been used to process the data from millions of smart 
meters and smart grid devices to calculate load in minutes rather than hours. 
Meter data management is a prime use case for the appropriateness of TSDSs 
because the systems reduce storage and system costs while providing optimal 
processing with linear scalability.

10.7.5 Spatial and GIS Databases

Spatial and GIS databases are optimized to specifically store and process data 
that describes objects that exist in geometric space. These are represented as 
points, polygons, and lines. Some spatial databases are even capable of  handling 
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three-dimensional (3D) data, including surfaces and topological coverage. 
Spatial and GIS databases may be implemented as overlays on existing database 
systems and have been useful to the utility for many years. GIS data, in one form 
or another, has been leveraged for decades to manage the outside plant. Within 
the context of the smart grid, this type of database has become even more sig-
nificant. Within the context of analytics, databases that can account for grid 
assets are an absolute necessity in driving better decision-making opportunities.

Using optimized spatial indexes that support functions related to measure-
ments, intersecting features, and the construction of new geometries, spatial 
databases are usually expected to be OpenGIS compliant, though not all are. 
This means they reflect the standards set by the international Open Geospatial 
Consortium (OGC). These standards have been implemented on NoSQL, rela-
tional databases, graph databases, and purpose-built systems.

10.8 The Curse of Abundance

Certainly, there is an abundance of big data integration and database tech-
nology. And it’s difficult to make the issues less overwhelming to those not 
immersed in the field. However, in this case, the bad news is also the good news 
for utility strategists. If nothing else, it is patently clear that there is not one 
single solution for all the data analysis projects in the utility, but it’s important 
to exercise informed choice.

Planning Questions

1.  What are the most important features that will improve productivity for the 
IT team, application developers, data scientists, and analysts?

2.  What are the major constraints in the desired system in terms of latency 
and access to the data insofar as it affects the objectives of the project?

3.  What existing enterprise data sources must be integrated into the big data 
platform, such as relational databases and various enterprise applications?

4.  What are the requirements related to data consistency, durability, and 
availability?

5.  What needs to be processed, where does it come from, and who needs to 
use it? 
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 Chapter Eleven

Extracting Value

1 Image retrieved from the public domain at http://d3.static.dvidshub.net/media/
thumbs/photos/1302/860344/360x450_q75.jpg.

Tetraethyl lead extraction apparatus used by NASA scientist. (Source: NASA1)

11.1 Chapter Goal

Successfully extracting value from utility data is dependent on effective pro-
cessing techniques and the ability to find the correct algorithms for the right 
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answers in an ever-shrinking window of time. The requirements of time-series 
data and the need for near-real-time response to detectable patterns are becom-
ing greater, especially with the growing number of sensors being deployed 
within the smart grid. Unfortunately, developing a coherent business strategy 
for analyzing big data is lagging behind widespread experimentation projects as 
stakeholders try to “get a handle” on what Hadoop and other solutions can do, 
resulting in poor results that get pushed into production. This chapter addresses 
the important and salient issues of big data processing, what kinds of tools are 
available to help, and how to choose the right rigging to address business needs. 

11.2 We Need Some Answers Here

When it comes to extracting value from big data, the landscape of choices is 
confusing. Most utility stakeholders come to the table hoping that big data will 
naturally provide better, faster, more-accurate answers to their questions. It does 
seem straightforward—when big databases are implemented that contain all of 
the utility’s most important information, someone just needs to send a com-
mand to the database, and the system will just provide a useful answer. IBM’s 
Watson may be able answer Jeopardy! questions, but it can’t navigate most util-
ity systems. At least not yet. The truth is, with big data analytics, the key is not 
to query with the presumption of a correct answer, but instead to explore the 
system in the hopes that something interesting will emerge. When that interest-
ing thing surfaces, further investigation can be done. 

At first, it’s difficult to understand how this approach is at all useful 
when utilities really need measurable return on investment (ROI) with rapid 
understanding of the operation, especially when the utility is rife with shift-
ing  dynamics and demands high-value decision-making. How does this vague 
searching help anything?

Here’s a story that might help: In 1854, James Perrott placed a bottle for 
 hikers to insert notes into when they found themselves on a remote northern 
moor in Devon, England. The idea caught on, and trekkers began dropping 
postcards (sometimes addressed to themselves) in letterboxes and picking up 
fellow travelers’ postcards, which they would post to their final destinations. 
Thus, letterboxing came into being. Eventually, the pastime became an art and 
letterboxes were so well hidden on this remote moor and throughout the world 
that they required clues to be located. These days, instead of postcards, search-
ers gather stamps from the treasure boxes. Some letterboxes even contain clues 
to the next letterbox. Much like the game of letterboxing, big data exploration 
requires navigational skill to find the answers. For some, it’s a professional hobby; 
for others, it’s a puzzle; and for others still, it’s an art. Here is a letterboxing clue:
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From the ring of fire, the box awaits
Take a few steps, magnetic north
Do not be shy, step up and walk forth!
From within a crack, home to a tree,
Look under a rock, and the box will come free.

– Excerpt from Temple of Terror letterbox clue2

Data scientists are doing the exact same thing: Big data letterboxing requires 
adaptive procedures (hiking around), assistive algorithms (clues in the box), and 
queries (“Where do I go next?”) to lead to the desired result—one clue at a time. 
Stratos Idreos describes this process of big data exploration as “adaptive”:

The system and the whole query-processing procedure [is] adaptive in 
the sense that it adapts to the user requests; it proceeds with actions that 
speed up the search toward eventually getting the full answer the user is 
looking for.3

Various vendors implement this methodology in different ways, but a true 
data analytics package is adaptive in some manner. This exploratory approach 
is only possible with newly evolving, highly capable, and fast query-processing 
systems. Even so, regardless of the technology used to provide these fast query 
times against some type of big data storage paradigm, the core challenge is the 
same: When big data is constantly being sucked in from a variety of sources, 
and when fast response is necessary based on that data, pat answers are not 
possible. And, in fact, unlike with traditional approaches to data where factual 
answers are expected from factual questions, with big data, it is impossible to 
comprehend all the relevant information that might be stored in the system 
(because it keeps coming and piling up in the system). Thus, big data processing 
must make a major departure in processing that is driven more from how the 
data will be explored, and not with the intention of fulfilling a request based on 
a preponderance of all known information.

11.2.1 How Long Does This Take?

With an optimized system, big data insights can occur faster than the time 
it takes to get a cup of coffee. By shifting from the notion of obtaining 

2 Green Tortuga (2009), “Temple of Terror Letterbox.” atlasquest.com. Retrieved 
January 24, 2014, from http://www.atlasquest.com/boxes/clue/index.html?gBoxId=6.

3 Stratos Idreos (2013), “Big Data Exploration.” In Big Data Computing, edited by 
Rajendra Akerkan. Chapman and Hall/CRC Press, 273–294.
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 “information” to gaining “real-time insights,” where real time equates to opti-
mal efficiency, the utility will achieve economic value. Anyone who has ever 
worked with a lot of data has implemented the “submit and pray” model while 
waiting for the system to parse and decipher the necessary data. We work with 
what we have. Until now, really reliable and fast systems have been reserved by 
high-value use cases, but the data explosion and the declining costs related to 
advanced systems have changed that. Today, “fast data” is widely available, and 
the most common use cases include social network monitoring, sensor data 
networks, and high-frequency financial trading systems.

“Fast data” is another term that is best defined relatively. It’s a way of 
deliver ing the right data at the right time from big data. Tony Baer of Ovum, 
who first used the term, describes it in practice as, “[comprising] a spectrum of 
technologies leveraging high-performance, multi-core processing, often in con-
junction with silicon-based storage.”4 If you’re a traditional business intelligence 
user who has tried to answer a critical business question in a timely manner, 
the need for this spectrum of fast technologies makes complete sense. Consider 
the scenario: A dangerous ice storm is coming, it’s colder than it has been in 
decades, and a problematic situation is emerging in terms of excessive demand 
and the prospect of both planned and unplanned outages. The CEO has ques-
tions about handling the emergent issues. She needs to drive public commu-
nication and ensure that customer outages are contained and that a plan is in 
place for rapid restoration. Unfortunately, by the time the answer arrives from 
the analysis team, the ice storm has arrived and the crisis is in full swing. The 
process of obtaining answers that are detailed enough to drive specific action 
is too cumbersome. Once again, the utility is left with the prospect of trying 
to make good decisions for its customers in broad strokes with imprecise data, 
relying on experience and luck. 

With poor situational intelligence on the grid, outages and disruptions last 
longer than they need to, and the impacts are sometimes unexpected. In January 
2014, when the southeastern United States was hit with an extreme cold shock, 
an interruptible contract was invoked to decrease demand from a Kentucky 
university. This contract could be invoked with as little as a five-minute win-
dow of time to counter to grid stress. The storm was originally not expected to 
be so severe, nor drive such high levels of demand. Instead, it was one of the 
worst in the public power company’s history. At the university, when the power 
was cut to the campus, the backup genset malfunctioned, and as students were 
being moved to warmer shelter, 40 percent of the campus’s major buildings were 

4 Tony Baer (2012), “What Is Fast Data?” Ovum. Retrieved January 25, 2014, from 
http://ovum.com/research/what-is-fast-data.
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suffering significant damage from frozen pipes and equipment.5 The effort to 
 balance supply and demand had severe unintended consequences.

How could this situation have been improved with the use of big data ana-
lytics? There are several possible approaches, but an obvious application comes 
to mind: A fast data-based analytical system that integrates weather data into 
the larger business decision model would have been a great advantage. By pro-
cessing the best forecast models with historical utility data to generate a suite of 
probable scenarios, the utility would have had much more-precise information 
on the possible impacts to the grid. With those scenarios in hand, the util-
ity could have better allocated and deployed assets to minimize the impact on 
the electrical grid’s customers in a proactive and efficient manner, rather than 
reactively and in an incredibly short period of time for the customer (five min-
utes). This would have increased preparedness time (to enable spinning up the 
generators to see if they worked) and, in the case of malfunctioning equipment, 
helped to assure human and property safety in adverse conditions. With better, 
more-precise communication from the power company, the university could 
have avoided significant duress by bringing up the generators sooner, possibly 
avoiding or responding to the malfunction or making alternative arrangements 
with the utility to protect the students on the campus and preventing wide-
spread damage to the facilities.

Even if the utility has access to lots and lots of the right data, the prob-
lem with utilizing large data sets is really not a storage capacity problem; it’s 
slow indexing, tuning, and data access speeds. With traditional data-processing 
technologies, there are inefficient choke points between storage, processing, and 
querying. As discussed, the manner in which big data must be approached is 
very different than traditional data problems, which makes it is difficult to 
compare the “old” process to the “new” process (and the subsequent outcomes). 
In fact, it is necessary to completely break free from customary perspectives of 
how data is managed and accessed. This is the first step in working to imple-
ment future-proof big data analytics architectures, and it is an approach largely 
held back for psychological reasons (“But this is how we’ve always done it.”).

This is not to say that there isn’t tremendous value in the traditional 
 enterprise-oriented data warehouse (that single source of truth). In fact, it’s 
likely that these implementations will continue to be valuable for quite some 
time. They just have to be utilized for the right kinds of business problems. 

5 Rob Canning, Chad Lampe, and John Null (2014), “Damage to At 
Least 40% of MSU’s Main Buildings Due to Power Outage and Freezing 
Temps,” WKMS. Retrieved January 25, 2014, from http://wkms.org/post/
damage-least-40-msus-main-buildings-due-power-outage-and-freezing-temps.
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However, it must be acknowledged that big data analytics are challenged by 
 different forces—in sourcing, storage, and usage. It is often an endless and 
unpredictable stream. The customary approaches do not comprehend an influx 
of continuous data inputs that are needed for many forms of real-time analysis. 
For example, in the utility, these “infinite” sources of data include grid sensor 
data, monitoring information (including video), energy-related commodities- 
trading functions, inputs required for unplanned outage recovery, and some 
asset health applications.

11.3 Mining Data for Information and Knowledge

As early as the 1960s, statisticians began disparagingly using the terms “data 
dredging” and “data fishing” to refer to those who fiddled around with data 
without any sort of a priori hypothesis about their results. By 1990, the term 
was repurposed by many in the data community as “data mining” to refer to 
the sort of archeology we now depend on in extracting value from big data sets. 
However, this mining process itself has been in use for centuries. For example, 
regression analysis, which is a statistical process for estimating the value of one 
variable from the values of others, was employed as early as 1794 by German 
mathematician Carl Friedrich Gauss in the application of the “method of least 
squares” (who actually invented the method is debatable, though its roots likely 
are found in the poetic ideals of the ancient Greeks). 

Putting the actual strategy of least squares aside, the method evolved from a 
problem that is quite salient to big data analytics: when sailors can no longer rely 
on the horizon for navigation, they dredge the skies. Thus, an accurate model 
is required to define the position of celestial bodies for navigation (which is just 
not easy, given the inconvenient curvature of the Earth, the shapes and sizes of 
celestial bodies, and their trajectories). Thus, using the model, Gauss showed 
that there is an arithmetic approach to consistently locating these  bodies by 
minimizing the errors found in estimation. And, similarly, data mining is a way 
to programmatically extract patterns from data sets that creates new informa-
tion for further use. 

A very common example in the utility industry is found within the many 
programs that attempt to advise property owners on how their homes or build-
ings compare to similar structures in their neighborhood or region, and how 
they can improve their own structure’s performance. By analyzing consump-
tion data and information obtained on the structure, such as building-envelope 
data, the utility does not have to go into each building to identify leaks or inef-
ficient heating and cooling equipment. It is able to use a statistically derived 
benchmark to measure expected savings from improvements performed on the 
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structure, and thus provide a service to the customer where it recommends and 
prioritizes applicable improvements that can have a measurable impact to save 
energy, money, and help the utility drive down overall demand.

This type of machine-learning is also a very powerful tool for predictive 
analytics that allow applications to predict asset failures and outages, detect 
revenue leakage and theft, and identify optimization opportunities on the grid. 
The increasing penetration of distributed renewables on the grid drives addi-
tional valuable use cases, where data mining can ease the integration of inter-
mittent generation by creating opportunities for data-driven decision-making, 
managing unpredictable generation, and lessening the negative impacts related 
to voltage disturbances created when microgrids island and reconnect.

Data mining is the key to understanding a vast collection of facts by dis-
covering the right associations and relationships among those facts to move the 
utility toward the knowledge that not only describes the past and predicts the 
future, but allows the organization to take appropriate action. That sounds a 
lot like data analytics. However, there is a distinction between data mining and 
data analytics; largely, that data mining is focused on discovering hidden rela-
tionships, and data analytics is focused on deriving some conclusion based on 
known information. Many argue that this is a false distinction. It is well within 
the scope of descriptive analytics to discover patterns. It is also well within the 
scope of predictive analytics to discover a pattern that describes customers who 
are at risk of defaulting on their bill, and finding customers who may also fail 
to pay in the future. It is fair to say that data analytics is just a new name for 
data mining; although, it may be more accurate to conclude that data analytics 
is an extension of the practice of data mining. For example, while a data-mining 
exercise might expose that most of the customers who eat lunch at Whole Foods 
just came from yoga class, it is data analytics that will help Whole Foods decide 
what to do with that information, such as offering smoothie coupons pinned to 
a point-of-sale yoga mat, or even expanding its marketing efforts to target those 
who cannot touch their toes. Or, to be true to our first example of regression, 
data mining might describe the celestial bodies, but it is analytics that deter-
mines which customers will be most interested in either the admiral’s sextant 
or a lifeboat.

11.4 The Process of Data Extraction

If we agree that big data analytics have expanded the existing approaches to data 
mining to more extensively work with the data beyond simple pattern recogni-
tion with statistics, it is important to understand what techniques are most use-
ful, prevalent, and evolving. Firstly, it is critical to achieving measurable ROI to 



Fi
g

u
re

 1
1.

1
 

H
ig

h-
Le

ve
l A

p
p

ro
ac

h 
to

 B
us

in
es

s-
D

ri
ve

n 
D

at
a 

M
in

in
g

 a
nd

 A
na

ly
ti

cs
.



Extracting Value 179

drive the analytics program directly from an honest and thorough assessment of 
business problems and objectives. 

Like most complex processes, this approach is often iterative as the utility 
begins to identify the different data that needs to be extracted and that can be 
extracted. This starts with identifying facts that will help treat targeted issues, 
and then looking at the source data to best associate and cluster with other data 
to produce the desired outcomes. Figure 11.1 describes a high-level approach to 
creating a business-driven data structure that can be mined and analyzed for 
deeper insights. Depending on a variety of factors, and regardless of the tech-
niques ultimately used for data analysis, how the data is sourced and its format 
affect how the data is stored, processed, and described through the data model. 
As you will recall, the data model must faithfully represent something that can 
be structured (sometimes called “real-world” objects). Thus, the correct rules 
and concepts used to define those models are those that will most precisely 
define the object in question (for example, a network of sensors or a customer). 

In building models for processing and extraction, there are some key tech-
niques that are used by a number of different tools. Unfortunately, many data 
solutions vendors do not share terminology and sometimes a buzzword will 
nudge its way in, increasing confusion and perceived complexity. There are 
some very basic techniques that form the foundation of more-advanced analysis. 
Although the enumerated techniques are not in any way exhaustive, these terms 
are provided as a foundational primer on some of the workhorse algorithms 
used in analytics processing.

Association (or relation). This is what most people will immediately think of 
when they consider pattern identification modalities. This technique simply 
allows the data scientist to explore correlations between two things to identify 
patterns. These are the kinds of information that support a variety of busi-
ness functions, such as marketing, inventory management, and customer rela-
tionship management. An example application that uses the associative model 
relates to selling retail products to customers whose appliances might show 
certain load patterns, such as an air conditioner that is exhibiting detectable 
signs of imminent compressor failure, like hard starting or motor overloading. 
The utility can associate the behavior of the unit with the need for a repair or a 
new unit, offering services or discounts to customers that will encourage them 
to repair or replace their appliance before it nosedives, simultaneously driving 
the opportunity for a more-efficient replacement. Essentially, the use of asso-
ciation helps find rules that can be used for cross-sell, root-cause analysis, and 
defect analysis.

Classification. Also a very familiar technique, classification is the method used 
to generate an idea of a particular customer, item, or other object by  describing 
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its attributes for the purposes of classification. Describing cars (how many 
wheels, number of seats, and so on) is the classic example, but perhaps a more 
useful example is of children playing with Lego blocks. They have a certain 
structure they want to build, but they need to know what kind of pieces they 
have. So they sort them based on various characteristics—usually brick size and 
color—to assess their available resources. This example shows how classification 
results can be driven into other techniques, especially clustering. In general, 
classification is often used to help predict outcomes very quickly and simply, 
using algorithms based on conditional probabilities and scoring.

Clustering. Used to identify natural groupings, clustering creates assemblages, 
where, not surprisingly, the members of a particular cluster are more like each 
other than the members of a different cluster. Clustering is also used in more-
complex analyses based on nearest neighbor data. The nearest neighbor is a form 
of establishing identity based on the notion that if a certain structure shares 
attributes with other structures in the same cluster, they’re likely to share other 
attributes. Any classifiable case benefits from clustering analysis not only to 
recognize patterns of data without requiring an exact match to any other known 
pattern, but to identify new, previously undetected cluster relationships. 

Decision trees. A decision tree is a graph that models the preponderance of 
tests and consequences, which may include chance, costs, and usefulness. 
These graphs are easy to understand but can quickly become quite complex 
when values are uncertain or when many of the outcomes are linked together. 
Decision-tree analysis is a fundamental underpinning of asset management 
where the basic questions are of repair, refurbishment, replacement, or even 
augmentation. Without analytics, asset decisions are based on an end-of-life 
prescription or a rule-of-thumb analysis, meaning some assets are replaced too 
early in their effective life, or are run to failure. This is hardly optimal. A deci-
sion tree can be used that takes into account risk-weighted economic costs, 
condition, performance, business risk, and the interaction of all these factors. 
Although the most rudimentary models may be substantively qualitative, asset 
management applications in utilities benefit from sophisticated modeling 
approaches that tie intervention to objectives, as opposed to the avoidance of 
events or negative scenarios.

Feature selection. By combining existing attributes, feature selection produces 
new attributes. One important approach to feature selection is principal com-
ponents analysis (PCA), which helps find patterns in data of high dimension. 
PCA is a statistical analysis that exposes the internal structure of a certain data 
set that helps explain variance in the data.
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Sequential pattern. Sequential pattern analysis refers to the use of algorithms 
applied to longer-term data sets to identify trends or repeated events of a similar 
sort. The ability to cull out sequential patterns can be quite valuable for  strategic 
decision-making applications because of the ability to detect events, identify 
anomalies, and make predictions. This kind of analysis is closely related to 
time-series data analysis, as both approaches examine discrete values that are 
delivered in a sequence. Failure prediction is another interesting application 
of sequence mining that can play a crucial role in detecting system failures by 
identifying the frequency of events or set of related events that can be utilized 
by a prediction system to be context-  and time-aware.

11.4.1 When More Isn’t Always Better

Big data proponents will almost always argue that more data trumps better 
algorithms by allowing the data to speak for itself. And it’s true that more data 
will almost certainly provide the opportunity for greater prediction accuracy, 
but the viewpoint is overly simplistic. The bottleneck in big data technolo-
gies is not communications latency, slow processors, or thrashing hard disks. 
Hardware and storage paradigms have improved sufficiently that the real prob-
lem that data analysts are facing is finding the right software that will make 
sense of the data—specifically, which of all the data should be analyzed and 
how should it be analyzed to make any sense of it. The strength of the algorithm 
must complement the manner in which the data is extracted and processed in 
order to realize the benefits of running more data.

A classic example is the Google PageRank algorithm. Early search engines 
processed the text of web pages to produce search results. In 1998, Google 
tweaked the traditional algorithm to consider additional data in the form of 
hyperlinks, and it weighted the text within the hyperlinks almost as heavily as 
the page title. This is not algorithmic genius, but it’s a very important concept: 
Adding more data from varied sources is usually better than designing a new 
algorithm. However, there is also a tipping point, where too much data is over-
whelmed by noise. Simply think about how your brain works in a conversation. 
Most of us are taking in many inputs, including words spoken to us, smells, 
body language, and facial expression. If we try to memorize every word because 
we believe that’s the only important data, we are algorithmically filtering out 
other important information that will help us negotiate the facts and even the 
relationship itself. Just processing the words from the conversant will not make 
it easier to understand the overall context of the interaction (that would be a 
bona fide data deluge). However, being able to connect the words with emotions 
and other aspects of the exchange builds meaningful understanding. Similarly, 
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with big data value extraction, the algorithm is designed to enhance the under-
standing of the data by drawing connections between many data points; it isn’t 
just the raw preponderance of bits.

11.4.2 Running for Performance

While there are plenty of vendors who will argue with this point, it seems quite 
clear by now that many facets of big data cripple legacy processes and tools. Big 
data analytics increase computational significance, Structured Query Language 
(SQL)-based algorithms are often inflexible, and it is antithetical to analytics 
to lock into a specific platform, inhibiting quick evolution and the integration 
of new data and tools. In searching for the right solution, based on the business 
problems and data at hand, stakeholders must look for raw speed, the ability to 
scale out (not up), functionality, compatibility with other applications and sys-
tems, easily managed platforms, and—most importantly—simplicity. There is 
an important caveat, though: No technology solution—especially open-source 
software like Hadoop—stands still. Change is inevitable.

11.4.3 Hadoop: A Single-Purpose Batch-Data Platform?

Well, maybe. In the previous chapter, we introduced Hadoop and MapReduce 
for storing and aggregating big data. But not surprisingly, given the wild pace 
of innovation and technology evangelists, the young Hadoop may be insuffi-
cient and constrained from treating many forms of data. This fact may change 
quickly, but the rate of innovation may be causing a state of paralysis in the util-
ity industry that’s trying to make complicated choices about how to proceed in 
bringing up a data analytics project. 

Yes, there are limitations for processing with MapReduce—currently, it is 
batch, and many customers require stream processing. Until the general avail-
ability and stabilization of Hadoop 2.0, with its new architecture that marks 
an expansion of the singular focus on MapReduce toward other processing 
patterns, MapReduce is a poor first choice for low-latency processing of fast-
stream data algorithms. These algorithms are especially beneficial to power-
sensor data analytics, which are the heart of the smart grid. In fact, in 2010, 
Bill McColl PhD (founder of Oxford Parallel) said, “[B]atch processing tools 
like MapReduce and Hadoop are just not powerful enough in any one of the 
dimensions of the big data space. … Hadoop is great for simple batch processing 
tasks that are ‘embarrassingly parallel,’ but most of the difficult big data tasks 
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confronting companies today are much more complex.”6 At the time, McColl 
obviously didn’t anticipate stream-process capabilities in Hadoop. Sensor and 
machine data processing are now a broad reality, and it appears that the project 
is adapting.

But until it is proven that Hadoop can handle stream data, the primary 
Hadoop programming framework of MapReduce is its primary style, a style 
that repre sents a form of dealing with data that simply cannot solve every con-
ceivable problem. Even if it is economically advantageous (read: tempting) to 
store smaller data sets in Hadoop Distributed File System (HDFS), it has been 
shown to actually be slower in dealing with smaller data sets than other applica-
tions. Hadoop is best at processing massive volumes of data using MapReduce. 
At the moment, the use of MapReduce only makes sense when the files being 
operated on are large and rarely updated or appended. For example, it is not a 
good choice to use MapReduce within the customer service operation where 
lots of changes are being made to fairly constrained sets of data. On the other 
hand, it’s very well suited to serving up analytic queries on a command designed 
to discover every user whose consumption patterns are most similar. Similarly, 
Hadoop has limited value in online environments that depend on rapidly pro-
cessing small amounts of data.

The appropriate use cases for Hadoop are important to understand within 
the context of the utility. In the world of big-grid data, much of the informa-
tion is delivered asynchronously and in a variety of formats, and a batch process 
that prefers static files, such as Hadoop (no matter how fast you can make it), 
may not be the right paradigm for streaming data for quite a while. Hadoop is 
power ful, but perhaps the hype is even more powerful. It is up to the appropri-
ate utility stakeholders to determine where Hadoop best fits within the organi-
zation to understand which analytical functions it can support, which it cannot, 
and how it is continuing to evolve as a technology.

11.5 Stream Processing

Stream processing is a programming paradigm that is key to the overall big data 
value extraction process, as it supports the ability to analyze data in motion—
that means accessing the data to derive value and find relationships among the 

6 Bill McColl (2010), “Beyond Hadoop: Next-Generation Big Data Architectures,” 
New York Times. Retrieved from http://www.nytimes.com/external/
gigaom/2010/10/23/23gigaom-beyond-hadoop-next-generation-big-data-
architectu-81730.html.
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data points before the information even hits a disk. This form of data processing 
is well matched to computationally intense applications and goes far in meeting 
the demands of data that is being continuously fed from data source to data 
consumer. If an organization has a business requirement to quickly analyze 
measurement and event data in both structured and unstructured forms as it 
arrives, stream processing is the best way to obtain these real-time insights.

Unlike with conventional database management systems (DBMSs) where 
the database analyst might execute some query against the database, with data 
stream management systems (DSMSs), the same query is continuously executed 
against a volatile data stream. Specifically, a DBMS assumes the data is in an 
exact and accurate form, while a DSMS is designed assuming that the available 
data may be outdated and even inaccurate, and adapts to those deficiencies. 
The DSMS is data driven, which means as long as new data arrives within the 
system, the query will produce new results.

11.5.1 Complex Event Processing

One example of stream processing that’s well known to the utility is complex 
event processing (CEP). CEP is a form of event processing that combines mul-
tiple data sources to detect events or patterns of circumstances. 

Imagine standing on a street on a chilly Thursday night in downtown 
Boulder, Colorado. You hear the familiar strains of “Happy Birthday” coming 
through the steamy restaurant glass across the way. At the end of the out-of-key 
singing, you hear clapping, cheering, and the squawking of noisemakers. Aha! 
You cleverly determine that someone just became a year older! To determine 
this, you analyzed various inputs and correlated the events to perform a per-
sonal act of event pattern detection; similar to one of the important things that 
CEP (sometimes simply called event stream processing) does for the utility. 

CEP analyzes streams of data from a variety of distributed systems on the 
smart grid with the goal of combining the data to infer patterns that can suggest 
the nature of an occurring event. The best use of CEP is to analyze historical 
time-series or streaming data that is on a time continuum Many systems are also 
designed to automatically trigger a response to the conclusions drawn by the 
CEP when the need to act upon live market conditions is required.

There are three fundamental use cases for CEP in the context of the electric 
power business:

 1. Identifying critical situations through known event patterns
 2. Detecting signals that may lead to new opportunities
 3. Detecting and identifying important changing conditions
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The monitoring and detection of system state on supervisory control and 
data acquisition (SCADA) networks is a key application of CEP for grid 
manage ment. But there are other, more surprising utility-related applications, 
including demand response (DR), that benefit from CEP. One example use case 
is the sensing of data from commercial buildings, where CEP applications can 
detect disconnected devices and meters, transgressions of program thresholds 
during events, and nonconforming curtailments after a DR event and during 
the measurement and validation (M&V) step of the DR workflow.

Event-driven systems are not new to the utility. However, the advancement 
of analytics and affordable processing is driving the ability to meet a plethora of 
undertreated business problems and opportunities. The ability to quickly apply 
rules to atomic events on a stream afforded by CEP technology is resulting in 
a continuing growth trajectory for the technology that is well positioned to 
meet any sort of surveillance system, from grid pattern processing to financial-
trading applications.

11.5.2 Process Historians

When it comes to data, one walk around almost any utility and you’re sure to 
trip over a process historian. Sometimes referred to as operational or data his-
torians, process historians are end-to-end solutions that manage real-time data 
collection, archival, and distribution of time-based process data within a cen-
tralized system for both real-time and historical views to users across the utility 
enterprise. Thus, on a single platform, the ability to historize, search, analyze, 
and access is self-contained. The process historian is purpose-designed to cap-
ture and manage plant information that includes status, performance, track-
ing, compression, security, and presentation. Early in their evolution, these 
devices were largely focused on plant operations, but with a growing interest in 
operations and implementing efficiencies in the entire process, these systems 
are now the incumbent solutions delivering their data to information tech-
nology applications within the enterprise from a variety of data sources and 
control networks. 

Clearly, the process historian has many benefits if it can be depended on 
for optimal performance and the appropriate and desired tools for data analyt-
ics are available; however, there are drawbacks from the analytical perspective. 
The predominant systems in the utility are focused on key performance indica-
tors (KPIs), and thus are more concerned with metrics and compliance than 
true data science applications. But solution providers are adapting and partner-
ing to help drive the kinds of analytics that the industry demands, supporting 
operational management and advancement. The continuing success of these 
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 solutions will be their ability to expand their partner ecosystem to help encour-
age the collaborative use of operational data for the entire enterprise, above and 
beyond a limited focus on operational systems.

11.6 Avoid Irrational Exuberance

Big data interest and exuberance are growing as utilities work to determine how 
to best harness the relatively untapped resource of the surging volumes of data. 
Unfortunately, implementation and deployments of Hadoop and other data 
frameworks are gaining investment, while big data strategy is not. Add to that 
the growing real-time delivery of analytics and the prediction that by 2015 fruit-
ful data analysis will depend on the successful ability to operate on real-time 
data.7 While IT staffs are implementing Hadoop on relatively small data sets for 
testing and validation, they may be using exactly the wrong tool for the problem. 

Utilities are under pressure to adopt big data tools; however, the landscape 
can be so confusing that some will be very slow to adopt or spend a significant 
amount of time in an evaluation phase. Most utility managers are not IT savvy 
and therefore will not be completely comfortable understanding the big data 
analytics needs of the organization. Support is required, including in choosing 
applications and tools that meet the scope of user demands.

Next Steps

• Determine the high-value areas of interest within the utility 

• Seek out peers and case studies that illustrate how adjacent industries and 
other utilities are tackling these big data problems

• Ask vendors to present their strengths and challenges; summarize those 
fi ndings

• Ensure that your approach considers multiple options and vendors that are 
best suited to meet the characteristics of the sourced data and the 
demands of the users

• Plan for future needs

7 Intel IT Center. (2012), Peer Research: Big Data Analytics. Intel IT Center | Peer 
Research. Retrieved February 01, 2014, from http://www.intel.com/content/dam/
www/public/us/en/documents/reports/data-insights-peer-research-report.pdf
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Chapter Twelve

Envisioning the Utility

1 Image retrieved from the public domain at http://www.dvidshub.net/image/837746/
mitchell-studies-map#.UvlxBr_COxN.

Astronaut Edgar D. Mitchell, Apollo 14 lunar module pilot, reads a map as he 
moves across the lunar surface during extravehicular activity. (Source: NASA1)

12.1 Chapter Goal

The business value of an analytics program is severely devalued if the utility is 
inhibited from making better decisions in an increasingly dynamic  environment 
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because the information presented doesn’t make sense. This chapter introduces 
the basic concepts of data visualization and describes how, due to the way 
humans process information, data visualization may be one of the important 
answers to the question “What are we going to do with all that data?” We 
discuss the foundation necessary to develop a sense of visual literacy and an 
understanding of when to incorporate visualization strategies and how they can 
be beneficial in all aspects of the utility business.

12.2 Big Data Comprehension

It’s safe to say that the future of energy delivery is about innovation and dis-
covery. As a process of exploration and data interaction that drives high-value 
action, big data analytics are the foundation of this innovation. Visualization-
based tools are advancing quickly to support this process and allow both opera-
tional and business users to pull together disparate data sources (in what is often 
called a “mashup”) to create custom views that support highly customizable and 
relevant analytics. Additionally, mobile devices such as tablets, netbooks, and 
even smartphones now carry enough onboard graphics power to make intuitive, 
visualization-based data discovery tools available to multiple users across the 
enterprise. While data scientists have an important role in designing powerful 
and accurate models for the utility, the ability to explore data and draw action-
able conclusions is becoming democratized. Indeed, if properly governed and 
secured, this democratization has the potential to drive down operating costs 
and drive up innovation.

However, visualizations are not inherently helpful—in fact, they can be 
confusing and misleading. The utility needs to incorporate visualization tech-
nologies that do more than just describe current state; they must help the utility 
predict emerging conditions on the grid, reveal hidden relationships that intro-
duce new efficiencies, and provide stronger decision-making capabilities. 

Data visualization strategies are quite varied, and though they may be tuned 
to support the underlying data classes, the best visualization tools are the ones 
that will help their users readily home in on the subject of their analysis. There 
are several general characteristics that describe a comprehensive data visualiza-
tion tool, including:

• The ability to work with a real-time data stream
• Support for multiuser collaboration
• Fast processing time
• The ability to export analysis for reporting
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Other features that may be important are the ability to access some subset 
of the information on a mobile device, touch optimization (especially for work-
force applications or operators), and—importantly for the utility—governance 
features that provide a chain of custody for data lineage and user operations on 
the data.

Big data analytics in the utility will serve the entire enterprise and touch-
points across the meter demarcation—from business and operations to cus-
tomer service, field operations, and the energy consumer.

12.3 Why Humans Need Visualization

But how exactly is the big data industry delivering big data and realizing the 
unprecedented promises of discovery, collaboration, and exploration? Those are 
grand promises, to be sure. So how do we get there, get those insights, and hope 
to comprehend all the information we need in order to make better decisions? 

Often in this book, we have attempted to provide real definition to impor-
tant terms. And visualization is all about conjuring the universe in a new way. 
That surely doesn’t sound precise, but once again, we need only consider the 
wisdom of the ancient Greeks to realize the simplicity of this statement. It is 
something, as human beings, we do in every moment of our waking life. We use 
shapes, sizes, and positions to classify information. This conjuring was docu-
mented by Aristotle on the topic of logic found in the text Categories from his 
collection Organon, where he says:

Of things said without combination, each signifies either: (i) a substance 
. . . ; (ii) a quantity; (iii) a quality; (iv) a relative; (v) where; (vi) when; 
(vii) being in a position; (viii) having; (ix) acting upon; or (x) a being 
affected. (Cat. 1b25–27)2

Categories is indeed the foundation of many philosophical approaches, 
especially in the area of science where we pursue the ability to understand our 
complex universe with some sort of comprehensible categorization. Consider 
the ripened tree, with its roots, trunk, branches, leaves, and fruits. A tree has 
an internal order to it and is the basic structure of many of our most use-
ful ways of representing information, including hierarchical depictions and 
graphical storytelling. And it remains one of the most explicable approaches 

2 Christopher Shields (2008), “Aristotle,” Stanford Encyclopedia of Philosophy. Retrieved 
from http://plato.stanford.edu/entries/aristotle.
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for  understanding complex systems, as we build from the roots to the branches 
and extend to the fruits. 

But unfortunately, our worlds are not as compulsively well ordered as a tree 
structure would lead us to believe, and anyone who has ever examined the swarms 
of wires, sensors, and devices at a utility knows this well. Instead, as we pile on 
more intelligence and integrate new forms of generation, we find a structure that 
is not nearly so neatly centralized, organized, and classifiable. Despite our best 
intentions (and hopes), the grid doesn’t work that way anymore, and this reality 
is a quagmire for the utility stakeholder attempting to do something as seemingly 
straightforward as balance the load. It’s indeed a fact that as the hierarchical 
order of the grid diminishes, the days of tree-structure logic are slipping away.

12.3.1 Walking Toward the Edge

Moving from our well-understood tree structure to accepting the need and value 
of visualization brings us to what’s known as the “problem of seven bridges.” As 
the story goes, there was a puzzle the townsfolk of Königsberg,  Prussia (now 
part of Russia), entertained, which was the question of whether it was possible 
to walk through town and visit each part of the village, but cross each bridge 
only once. As you can see in the map shown in Figure 12.1, Königsberg spanned 
both sides of the Pregel River (the town was decimated by bombs in World War 
II) and included two large islands, and seven bridges crisscrossed the city. At 
the time, a Swiss mathematician named Leonhard Euler (1707–1783) was work-
ing at the Berlin Academy in Germany, where he was presented with this very 
problem in 1736. The rules were that each bridge would be crossed only once 
completely (no retracing and no halfway crossings), but it was not necessary to 
start and end the walk at the same spot. 

Euler realized that attempting to list all the possible pathways would be 
way too exhausting and maybe impossible, so he abstracted the problem to 
consider only the landmasses and the bridges. Today, we would call the land-
masses “nodes” (or vertices) and the bridges “edges,” and the result is the basic 
vocabulary of graph theory. The problem could be solved on this new topologi-
cal structure by taking a Eulerian walk—a map of nodes and edges where the 
connection information is the only relevant aspect to the problem. Thus, with 
the help of the graph, for every node entered on an edge, it would have to be 
left by another edge. So, to solve the Königsberg issue, the number of times one 
enters a nonterminal landmass must equal the number of times one leaves it to 
cross a different bridge. If every bridge has been crossed exactly once, then each 
one of those landmasses must have an even number of bridges (for coming and 
going). They didn’t. So the disappointing answer to the bridge problem? No. 
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Why are Euler and the origins of graph theory so important to our current 
topic? They help us understand that no matter how complex the combina torial 
problem at hand may be, it can be abstracted so that extremely hard data prob-
lems can be solved based on how nodes are connected to one another—the 
very foundation of network science. By observing nodal relationships spatially, 
in a manner that is unaffected by the shapes or sizes of the nodes themselves, 
we filter out irrelevant information that gives human cognition a boost. Based 
on a question of modest beginnings, Euler’s approach to solving the problem 
now allows us to develop very powerful models that enable the facility to pre-
dict and optimize all varieties of networked systems, including the Internet, 
telecommuni cations networks, the electricity grid, and psychosocial systems. 

12.4 The Role of Human Perception

The notion of distilling the important pieces of information required to solve 
the problem, as Euler identified in answering the question of the Seven Bridges 
of Königsberg with the invention of the graph, is a very important concept 
in constructing useful interfaces that support human perception. While not 
an application of discrete mathematics directly—like the graph—a successful 
visual tool will use approaches that meet the needs of the human visual system 
by focusing attention on the area of critical need. This can be accomplished pre-
cisely in the approach that Euler took: by ignoring the shapes of the landmasses 
or the lengths of the bridges in developing his methodology.

The reason that visual constructs are so useful is that they maximize the 
efficiencies of the brain. Very simply, we see things quickly, but when we have 
to think about them (cognition), it takes more time. Thus, the visualization of 
big data provides an opportunity to rapidly and comprehensively understand 
the underlying data. And sometimes, it can even simplify the data without 
undermining the key value within the message. How to produce useful visual 
artifacts and tools is a discipline with devotees of various stripe, although the 
approach is almost always the same. To get from data to understanding, we 
must be clear on the characteristics of the underlying data, as well as the right 
way to visualize that data for maximum effectiveness and identify the rules that 
map the data to the visual representation.4

4 Jessie Kennedy (2012), Principles of Information Visualization Tutorial—Part 1: 
Design Principles, Institute for Informatics & Digital Innovation, Edinburgh Napier 
University. Retrieved February 15, 2014, from http://mkweb.bcgsc.ca/vizbi/2012/
principles.pdf.
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Graphic visualization is really nothing more than a system to convey 
information, a system that attempts to normalize the inputs from industrial 
designers, computer scientists, political scientists, cognitive psychologists, 
ethnographers, statisticians, and artists. Luckily, there are design principles 
that form the foundation of how to drive an accurate perception by bringing 
together the pieces of data to create a useful whole that avoids ambiguity. Many 
of these principles are drawn from what we now know about how the brain 
processes visual information. 

12.4.1 Preattentive Processing

Preattentive processing has been investigated for many years by researchers 
seeking to understand how human beings analyze images. With the rise of big 
data visualization, this field has once again emerged as an area of topical inter-
est. There are certain visual properties that can be detected very quickly and 
accurately by the visual processing system. These preattentive tasks are com-
pleted so fast—in less than 250 milliseconds—that they might be considered 
“intuitive.” Just for context, an eye movement alone can take 200 milliseconds 
to initiate, yet even in such a compressed time frame, it’s possible to focus a 
person’s attention with ease.5

Consider Figure 12.2 for a moment. Without any special effort, it’s very 
likely that it was an instantaneous act to identify the presence of a bigger circle 

5 Christopher G. Healey (2009), Perception in Visualization, Department of 
Computer Science, North Carolina State University. Retrieved February 13, 2014, 
from http://www.csc.ncsu.edu/faculty/healey/PP.

 

Figure 12.2 Illustration of the Property of Size on Preattentive Processing 
Capability.
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in the group of other circles (called distractor elements). The unique property 
of the circumference of the larger shape allowed it to “pop out” of the other 
elements in the picture. If there were two circles that shared that larger cir-
cumference size, they would immediately become nonunique and would not 
be detected preattentively as a shared target, although you might have noticed 
right away that there were two unique objects. Clearly, if the graphical proper-
ties used during data visualization can draw the user’s attention appropriately 
to the critical areas of interest in the display, there will be less interference, less 
chance for confusion, and increased speed and efficiency in understanding the 
impact of what is being presented.

Glanceability

It is critical to understand the forces of preattention when assessing and select-
ing visual analytic tools for a big data analytics program. This is perhaps espe-
cially important in the operational context, where discrimination between 
graphical features can confound and confuse the user—or worse, become com-
pletely meaningless—leaving operators more deficient than when they relied 
on streams of textual data and simple alarms. Some user interface designers call 
preattentive information “glanceable,” or that which can be seen and under-
stood in a single glimpse.

Preattentive features or graphic devices include:

• Color
• Orientation
• Lighting direction
• Size
• Closure
• Curvature
• Length

Features can be applied in a variety of ways and contexts that tap into these 
different processing tasks, which encode graphical elements by employing the 
following techniques:

• Position
• Length
• Angle
• Connection
• Slope
• Area
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• Shape
• Containment
• Density
• Saturation
• Hue
• Velocity of motion
• Direction of motion
• Texture6

There are certain processing tasks that the brain performs during that 
glimpse, wholly dependent on the arrangement of the visual features, including:

• Target detection. A unique visual element among a field of distractor 
elements can be rapidly detected for either its presence or absence.

• Boundary detection. By creating collections or groups of common ele-
ments, where each group has a mutual visual property, natural boundaries 
are created between groups.

• Region tracking. When one or more visual elements are unique in 
nature, they can be rapidly tracked as they move through time and space. 

• Counting and estimation. This task combines any number of elements 
that are unique in their visual features, which can be counted or estimated 
by the user.7

If the visualization is successful, the right information will be focused upon. 
If preattentive processing has not been controlled for, it is very likely that the 
important information will be missed, creating the potential for error and driv-
ing down user trust for the usefulness of the system.

As an example of the impact of various graphical devices, Figure 12.3 shows 
two different depictions of exactly the same data. On the left is a very simple 
example of grouping that creates boundary detection to show the 2010 national 
average (approximately 1 in 5) for the segment of people who are age 55 and 
over and are employed in the utility workforce.8 Compare this image with the 
pie chart on the right, which uses a statistical graph instead of an infographic. 
At a glance, it is clear that the infographic image, while perhaps more visually 
appealing, does not show proportion well and does not demonstrate the impact 

6 Kennedy [4].
7 Healey [5].
8 Joshua Wright (2010), “Data Spotlight: More Than 1 in 5 Utility Workers Are 

Retirement-Aged,” Economic Modeling Specialists International. Retrieved 
February 15, 2014, from http://www.economicmodeling.com/2010/06/29/data-
spotlight-more-than-1-in-5-utility-workers-are-retirement-aged.
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of 20 percent of the workforce being at risk. The point is not to denigrate the 
infographic depiction, but simply to show how quickly we may size up a situ-
ation based on what our visual brain tells us—and how much power is in the 
hands of the visual designer.

The use of preattention features is just one of the ways in which visual 
designers tap into the functioning of the human brain for optimal information 
transmission.

12.5 The Utility Visualized

There are two reasons for using visualization as a tool for data analytics: to 
explore or to explain. Exploratory visualizations are of the utmost value in the 
realm of data analytics, and they help analysts discover new patterns, identify 
emergent trends, or find microproblems that call for further exploration. This 
type of tool is particularly useful for analysis on data sets where there may not 
be a deep understanding of the meaning of the content. In an operational con-
text, exploratory analytics must be highly effective and promote efficiency; they 
are also extremely useful in exploring operational data streams to treat issues 
such as asset problems. Primarily used for communication and not really for 
analytics, explanatory visualizations may be combined with exploratory tech-
niques to transmit key pieces of information or even a particular perspective on 
the data. And they’re most valuable when a story about the data needs to be told, 
quickly and accurately. 

Some big data vendors are tempted to include visualization with their 
products, although they sometimes seem to be doing their best to avoid well-
founded and thoroughly researched design principles. It’s not uncommon to 
see bizarre color combinations, distracting animations, and gratuitous graphics 
that actually increase the time and effort required to make sense of what’s being 
presented. In fact, the problem has gotten so far reaching, that there is an entire 
website dedicated to bad visualizations (wtfviz.net) to cast humor on the issue, 
and many books have been written on the topic of how to lie with maps and 
infographics. However, in operational settings that can account for life or death, 
or when making costly decisions that will substantively impact the viability of 
the business, poor data translation can have severe consequences. 

Surprisingly, the most egregious infraction within such data visualization 
applications is the display of information for what we already know. It’s redun-
dant and adds no value. An example is a dashboard where the metrics change 
slightly every day, but usually well after the point when anything can be done 
responsively. In fact, if anything dramatic had happened, such as a storm caus-
ing major outage issues, we’d know about it long before we sat down to view our 
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daily executive dashboard. Instead, the true value from analytics rests in find-
ing a view into new discovery—finding those things we didn’t know about but 
really ought to be aware of if we have any chance of uncovering a new course of 
action. This is the purview of visualization.

When it comes to massive volumes of complex, variant data, the ability 
to analyze data that is in motion, or hasn’t been preprocessed or rationalized, 
requires the users of this data to rapidly identify anomalies and outliers that are 
potential harbingers of trouble or other negative system and business impacts. A 
string of values where one might be colored red and another might be screaming 
#REF! from a data table is not going to achieve this, but visual metaphors that 
direct the user to important information and potential impacts will.

Many vendors are beginning to incorporate powerful visualization into their 
product offerings, and others are focusing solely on visualization tools. Space-
Time Insight is best known for successfully deploying its geospatial and visual 
analytics applications in the California independent system operator (CAISO). 
The company focuses on delivering situational intelligence and provides an 
excellent example of conveying critical information using preattentive cues in 
an operational context. 

As shown in Figure 12.4, multiple sources of data are correlated, analyzed, 
and presented to users in a single interface. In this case, the operator is view-
ing crisis management information and seeing transformers (represented by tri-
angles) that are in the path of a storm, depicted by the line at the bottom of the 
map. The circles are the correlated outages. The chart at the bottom left shows 
the number assets affected, the estimated time to restore power, and even the 
cost associated with that restoration. The dials included on the screen show 
various factors correlated with performance and utilization for critical assets in 
play on the map. Each one of these risk measurements has been derived from a 
number of variables from disparate sources. Despite its simplistic look, the data 
represented on a single screen in a glanceable format is extensive.

Visualization techniques can be used in conjunction on a single display. 
Each has a role in helping the underlying data communicate a meaningful 
and understandable message, even when the number of underlying data points 
may be in the millions and several data sources may be mashed up to provide 
completely different classes of data. Edward Tufte, one of the most important 
 writers on the topic of visual representation, identified many ways that graphical 
elements can go wrong, especially referring to a very common issue he called 
the “Lie Factor.” Specifically, this factor is a value that describes a relationship 
between the size of a particular graphic and the size of the effect that actually 
exists in the data. That means that the graphic is way out of whack and either 
under- or overrepresents the truth of the matter. At the risk of severely misguid-
ing an operator, optimal visualization tools will avoid unintentional lying and 
excessive junky elements.
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12.5.1 Advancing Business Intelligence

When thinking about business intelligence (BI), most will immediately think of 
the well-known BI dashboard. These dashboards are usually reporting portals, 
though there are dashboard-like tools emerging that do allow iterative explora-
tion and the ability to mash up real-time data with historical data. These capa-
bilities help expand the story that the dashboard information is trying to tell by 
allowing the testing of various scenarios to drive new conclusions about future 
business planning. Often, these analytical tools rely on statistical analysis and 
incorporate all the various analytical categories, including descriptive, diagnos-
tic, predictive, and prescriptive analysis. 

Of the many advantages to these immersive dashboards, utility stakeholders 
can quickly take stock of important smart grid systems, including the ability 
to measure system performance over time; make decisions that maximize asset 
utilization; forecast capacity; detect nontechnical losses; and track the effective-
ness of demand-side management (DSM) programming, compliance factors, 
and other metrics. And in spite of the strong interest in analytics-driven BI, 
the movement toward widespread use of these tools has been incremental at 
best. Emerging dashboards and portals are being integrated with standard busi-
ness applications, working to enhance traditional capabilities with visualization 
tools, modeling applications, and advanced rules and business-logic configura-
tion features.

As costs begin to fall for collecting, processing, and storing big data, and 
the silos within the utility break down, energy providers will begin to see major 
advances in the domain of analytics-driven BI. In the utility especially, BI data-
discovery techniques will by necessity begin to incorporate real-time-streaming 
event data. The biggest shift is that the users of these systems will essentially 
be the authors of the intelligence findings, no longer being served precooked 
versions of events. However, this evolution is completely dependent on the abil-
ity of the organization to pull in disparate forms of data, manage them, and 
iron out any confusion in the utility about how to deliver this data to users. It 
will take several years to fully transform, but BI is beginning to shift from a 
reporting-centric IT focus to an analytics-centric user focus.

12.5.2 High-Impact Operations

Grid analytics are comprised of many data classes, including state, event, sig-
nal, consumption, and engineering data. As a result, in analyzing network data 
for smarter operations, many grid components—such as smart meters, distri-
bution assets, sensors, control devices, intelligent electronic devices (IEDs), 



Envisioning the Utility 201

 communications, and application data—must be presented in a way that allows 
control center operators to understand the source data, the associated analytics, 
and the comprehended next action. The best way to do this in the operational 
domain is through the use of metaphorical objects placed within a geographic 
information system (GIS) and in a topological context, especially when real-
time response and high-impact forecasting is required. 

The demand for rapid forecasting in the utility is being driven in large part 
by the explosive growth of cities that are putting huge demands on the existing 
infrastructure. Thus, there have been significant strides made in efforts to make 
optimal use of as much of the available data as possible to improve operational 
outcomes. The utility, like the smart city, must combine existing databases with 
sensor information to get a reliable view of the current situation at any moment. 
But, it is the visualization system that elevates utility operations to meet inter-
national, regional, and local standards for operation. Shouldered with extensive 
responsibilities, grid operators must not only be able to understand the current 
environment; they must accurately anticipate emerging problems to enable an 
appropriate response.

Consider that for every major blackout in North America over the past 50 
years, one phrase is held in common: “We were unaware.” And as stochastic 
generation technologies are enabled by the smart grid and demanded by citi-
zens and regulators,  forecast uncertainty and the lack of comprehensive data to 
anticipate problems will increase the difficulty of making appropriate control 
decisions. Tools, such as data analytics and discovery-based analytics, will help 
operators understand not only existing conditions but also potential conditions. 

To accomplish this, operations are moving toward the use of state-of-the-art 
analytics in their ecosystem, augmenting existing reports but primarily inte-
grating powerful visualization capabilities. Through the use of highly intuitive 
user interfaces, these operations have seen direct benefits for the rapid detection 
of faults and grid anomalies. As organizational borders begin to dissolve across 
the utility, grid data will be stored for further historical analyses in traditional 
data stores for use in data-trending exercises, asset utilization studies, and post-
processing of grid-related events for further exploration.

12.5.3 Improving Customer Value

As discussed in previous chapters, the world of customer analytics is begin-
ning to conflate within the utility. Customer analytics applications serve both 
customers and customer service representatives, and customers certainly expect 
the utility to have access to the same information they have, even with the 
same representation. More and more, utilities are turning to the self-service 
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model that Internet-enabled, smartphone-carrying customers demand. When 
the power goes out, customers want to report outage information, see maps of 
affected areas, discern the impact of weather on their area, and obtain a reason-
able restoration estimation—all from their phone, which often still has a battery 
charge and available cellular service. Further, utilities rely on advanced analytics 
and a mashup of various data sources to cull the causes of their nontechnical 
losses, identify load patterns, and implement demand-response programs for 
residential and commercial and industrial (C&I) customers alike.

As the barriers begin to fall between the customer and the utility, the util-
ity has an opportunity to interact with consumers on a regular basis, outside of 
the once-a-month bill touchpoint. For example, the utility can collaborate with 
municipalities, institutions, and individual consumers to foster energy conser-
vation, communicate about energy use and how it may impact the monthly bill, 
offer custom-tailored programs and services, and reduce peak demand. While 
the smart grid enables the technical foundation for the bidirectional flow of 
power, its digital infrastructure also brings new information paths to both the 
utility and, more and more, the customer.

It is precisely this use of information, supported by an analytical backbone, 
that affords the utility the ability to transform itself into a service entity, if 
it desires. Right now, the utility handles customers only in the context of an 
account to which a financial transaction is hinged. Accessible information is the 
lynchpin in the effort to move toward high levels of service and satisfaction that 
will prevent the utility from eroding and even building trust. 

As energy consumers become more sensitive to their need to exert control 
over their energy use, there will be increasing demand for tools and informa-
tion that allow them to perform their own analysis. Utilities can tune these 
systems to help meet their regulatory and business goals as well, by presenting 
information and interactive interfaces that will help inspire action. Normative 
feedback is also proving to be a very important energy-efficiency and con-
servation tool, as there is a measurable response when consumers learn how 
they compare to their peers, or how they are contributing to greenhouse gas 
emissions. Utilities are trying many modalities now—in-home displays, paper 
reports, web portals, smartphone applications, and smart thermostats. At the 
heart of this market splintering is an unclear path forward for engaging con-
sumers and driving them to action. This will likely shake out further as major 
industry players are beginning to move into cleantech, acquiring technology, 
and consolidating efforts.

Customer analytics is also a growing factor in successful customer service 
operations, including DSM programming. It can be argued that one of the 
most important assets a utility possesses is its customer data, since an analytics 
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program that aggregates and combines customer data with other sources not 
only can identify, confirm, and correct customer issues quickly but also can 
inform all aspects of utility planning. Smart meter analytics, combined with 
the benefit of increased data measurement and frequency of collection, make 
it possible to pinpoint service issues, offer targeted products and services, and 
reduce theft.

Even with smart meters, revenue losses are continuing to plague utilities. 
Advanced sensor technologies are beginning to emerge that help utilities work 
their way up the tree to identify nontechnical losses, and they’re making the 
monitoring and managing of this data quite cost-effective when measured 
against the magnitude of the growing losses. This same data can also support 
business processes to assist credit-challenged customers, manage orders, pursue 
collections, provide customer care, and even minimize regulatory risk. All of 
these features support a consistent revenue stream and improve margin per-
formance through a smart grid. In every case, the data must be analyzed and 
presented to analysts, operators, and business users to define appropriate action 
and response.

Advanced analytics with exploratory and immersive tools enable utilities to 
organize customer data and turn it into actionable intelligence that improves 
service, controls costs, and enhances responsiveness when presented with events 
and visual alerts. Over time, the democratization of data will bring with it the 
power to analyze, and both the customer service representative and the field 
worker will be empowered to explore data to identify theft, improve service, and 
decrease restoration time. Plus, as the utility pushes forward to remake itself in 
the context of the digital grid, overall customer relations will certainly improve.

12.6 Making Sense of It All

Data visualization can help the utility make sense of big data as well as com-
municate information once it has been analyzed. There is incredible value to be 
found with big data, and analytics are the way to extract it. But if the patterns 
cannot be found or understood, they will never carry any significance—that 
is the key value proposition of visualization: to make it easier to understand. 
Despite the fact that the grid itself is made up of physical things, much of the 
information about utility operations are nonphysical, and even the statistical 
data is abstract in a big data universe. Comprehending how the human trans-
lates this abstract information based on the characteristics of vision requires a 
close adherence to well-researched and well-defined design principles to ensure 
that the picture really is, as they say, worth a thousand words.
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Things to Keep in Mind When Choosing Visualization Tools

Technology is evolving rapidly. Is the tool backed by a mature company?

Has the tool been used in conditions similar to the proposed use in your utility? 

What are the complaints and concerns of the current users of the system? 

How easy have the existing integrations been in terms of friction and facility of 
rollout to the users?

Does it run on the platform you have chosen for your analytics project? 
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Chapter Thirteen

A Partnership for Change

1 Image retrieved from the public domain at http://www.dvidshub.net/image/700941/
lunar-orbiter-moon-earth.

Called the picture of the century, this is the fi rst view of the earth taken from the 
moon by the Lunar Orbiter I on the 23rd of August in 1966. (Source: NASA1)

13.1 Chapter Goal

In the final chapter, we discuss how important it is that the utility becomes a 
trusted steward of not only big data but of how it is analyzed and used. This 
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stewardship is one of the vital factors in building a relationship with the very 
customers that the utility hopes to work in partnership with for a more reliable, 
optimized, and distributed power delivery system. The utility of the future will 
rotate upon this axis of mutuality, enabling the cooperation that is required to 
manage the inexorable change in the energy delivery sector.  

13.2 With Big Data Comes Big Responsibility

It was not Spiderman’s Uncle Ben who was the first to note that “with great 
power comes great responsibility,”2 but Voltaire. Nonetheless, when it comes 
to the implications of big data collection and analytics, this rumination is 
chillingly relevant. There are a few things a utility doesn’t want to face: public 
embarrassment, suspicious consumers, and legal burdens. These are not casual 
concerns. It is highly likely that many organizations that use personally iden-
tifiable information (PII) for their business operations will have to contend 
with reputational damage as a result of their use or handling of big data.3 
As the utility moves forward with its big data plans, dangerous dilemmas are 
emerging. Now is the time for utility leaders to explore the implications of 
using big data for decision-making, especially as the industry lurches from a 
highly regulated model of universal access to one of optimization, powered by 
advanced analytics.

The ability of big data to influence is profound, and it amplifies the need 
to assert a system of values, especially in the areas where the use of big data 
analytics is designed specifically to drive particular business goals. In the util-
ity, responsive-pricing and energy-efficiency technologies, as well as other 
load management strategies, are clear examples of the use of information to 
exert certain effects. There is no way around it: As big data analytics progress, 
utilities will know more and more about individual behaviors that were once 
deemed private. As efforts continue to evolve, the utility will bring in third-
party data, drawing together millions of data points in an effort to innovate. 
Yet, while big data is ethically neutral, what the utility does with it in carrying 
out its business is not.

2 Adrien Jean, Quentin Beuchot, and Pierre Auguste Miger (1832), Œuvres de Voltaire, 
Volume 48, Lefèvre.

3 Frank Buytendijk and Jay Heiser (2013), “Confronting the Privacy and Ethical 
Risks of Big Data,” Financial Times. Retrieved February 17, 2014, from http://www.
ft.com/cms/s/0/105e30a4-2549-11e3-b349-00144feab7de.html#axzz2tbFLLaUe.
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13.2.1 Abandon All Hope, Ye Who Enter Here?

How do we resolve the need to collect data to analyze and understand customer 
behaviors that will improve efficiency and conservation outcomes while pro-
tecting the fundamental right of privacy? In 2012, the White House revealed 
a blueprint for online protection called The Consumer Privacy Bill of Rights 
that underscored the problem, asserting the following statement from President 
Obama: “[I]nnovation is enabled by novel uses of personal information. So, it is 
incumbent on us to do what we have done throughout history: apply our time-
less privacy values to the new technologies and circumstances of our times.”4 
Opinions about what “timeless privacy values” are and how they should be 
codified, implemented, and governed by the utility vary greatly. Yet, with much 
work to be done, there have been strides forward that help inform a meaningful 
dialogue about the requirements for consumer protection. 

Unfortunately for the utility, it has taken severe smart-meter backlash, 
including charges of domestic espionage, for many utilities to begin to take 
a serious look at privacy. It’s one thing for a social media site to know enough 
about its target customer to present an advertisement for purple cowboy boots; 
it’s entirely another to be collecting information that can reveal a home’s daily 
routines, shifts in those routines, and the types of appliances in the home—
down to the moment when the jets in the hot tub go on. This information 
can help utilities become more efficient and enable them to better market to 
customers; it can also help an insurance company adjust homeowner’s insur-
ance rates based on actuarial profiles, assist a court in subpoenaing witnesses to 
support a legal position, and help a criminal plan a burglary. 

On the topic of smart meters, the European Union (EU) stated that smart 
metering systems, “enable massive collection of personal data which can track 
what members of a household do within the privacy of their own homes 
[EU emphasis], whether they are away on holiday or at work, if someone uses 
a specific medical device or a baby-monitor, [or] how they like to spend their 
free time.”5 And as early as 2010, the US-based National Institute of Standards 

4 Danny Weitzner (2012), “We Can’t Wait: Obama Administration Calls for 
a Consumer Privacy Bill of Rights for the Digital Age,” blog, the White House. 
Retrieved February 21, 2014, from http://www.whitehouse.gov/blog/2012/02/23/
we-can-t-wait-obama-administration-calls-consumer-privacy-bill-rights-digital-age.

5 European Data Protection Supervisor (2012), “Smart Meters: Consumer Profiling 
Will Track Much More Than Energy Consumption If Not Properly Safeguarded, Says 
the EDPS,” press release, European Data Protection Supervisor. Retrieved February 
22, 2014, from http://europa.eu/rapid/press-release_EDPS-12-10_en.htm?locale=en.
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and Technology (NIST) wrote, “as Smart Grid implementations collect more 
granular, detailed, and potentially personal information, this information may 
reveal business activities, manufacturing procedures, and personal activities in 
a given location. It will therefore be important for utilities to consider estab-
lishing privacy practices to protect this information.”6 Positive actions are far 
more important than good intentions when it comes to privacy—if the data is 
available, unethical, nefarious, and criminal schemes will be hatched for its use.

It’s not just the collection and maintenance of consumption data from smart 
meters that provide unprecedented channels to contract information about per-
sonal behavior. For example, electric vehicle (EV) owners will have information 
logged about their batteries’ characteristics, and the data, time, and location of 
their last charge. Smart meters also often serve as a gateway to the consumer’s 
home. Through this gateway, the utility is capable of monitoring devices in 
the household, including washing machines; hot water heaters; lights; heating, 
ventilation, and air conditioning (HVAC) systems; pool pumps; and the per-
vasive (and somewhat vague) Internet of Things. The utility, thus, can feasi-
bly selectively signal any enabled devices to alter those appliances’ operation. 
Kevin Ashton described this technological monitoring in 2009 when he coined 
the “Internet of Things” (IoT) term, unfolding a new vision of computers that 
knew everything there was to know about our world by quietly collecting data. 
He said, “We would be able to track and count everything, and greatly reduce 
waste, loss and cost. We would know when things needed replacing, repairing 
or recalling, and whether they were fresh or past their best.”7 It is indeed this 
vision that forward-thinkers in the industry have in mind as the utility’s shift 
from infrastructure to services is pondered and planned.

13.3 Privacy, Not Promises

Privacy and security issues are complex, but for the consumer, there are three key 
components to privacy protection: consent, data management, and governance. 
In response to concerns about all three of these factors, many states and coun-
tries are working to develop new approaches to meet privacy considerations.

6 National Institute of Standards and Technology (2010), “Guidelines for Smart Grid 
Cyber Security: Vol. 2, Privacy and the Smart Grid,” The Smart Grid Interoperability 
Panel—Cyber Security Working Group, NIST. Retrieved February 22, 2014, from 
http://csrc.nist.gov/publications/nistir/ir7628/nistir-7628_vol2.pdf.

7 Kevin Ashton (2009), “That ‘Internet of Things’ Thing,” RFID Journal. Retrieved 
February 22, 2014, from http://www.rfidjournal.com/articles/view?4986.
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13.3.1 Consent

Consumer consent is related to collecting, managing, and disseminating PII and 
consumption information. Depending on the data, how it’s managed and shared 
drive the need to garner customer consent. And while every jurisdiction and its 
related regulatory structure have a stake, any position may be overwhelmed by 
higher governing entities, including national and supranational bodies.

The use of aggregated customer data is one way to control risk by obscuring 
the customer’s identity yet still allow for useful analytical investigation. But, 
given the powerful capabilities of analytic tools, reverse engineering is far too 
easy a task. Recall AOL Internet user No. 4417749, who searched for “dog that 
urinates on everything” and “60 single men.” Her data was released in 2006—
along with 657,000 other Americans’ information—by AOL,  supposedly in 
anonymized form. However, by following the clickstream data, The New York 
Times quite easily located 62-year-old Thelma Arnold in Lilburn, Georgia.8 
This was a rude surprise.

Some regulators have enacted rules that require aggregated data and 
prohibit the release of aggregated data (without consent) unless there are at 
least 15  consumers in the group. Ms. Arnold would likely express that this is 
entirely insufficient. 

The EU mandates that consent consist of affirmative acts (a specific opt-in) 
that are unambiguous and specific, with a particular focus on what can be done 
with user data without the benefit of consent. Along these lines of thinking, the 
EU recommends that the legal basis for choice include everything that is not 
the following:

[F]reely given, specific, informed and explicit consent would be required 
for all processing that goes beyond . . . (i) the provision of energy, (ii) 
the billing thereof, (iii) detection of fraud consisting of unpaid use of 
the energy provided, and (iv) preparation of aggregated data necessary 
for energy-efficient maintenance of the grid.9

A further implication of consent in the EU’s recommendation is that cus-
tomers know not only how their data is to be used but also the logic of any 

8 Michael Barbaro (2006), “A Face Is Exposed for AOL Searcher No. 4417749,” 
The New York Times. Retrieved February 23, 2014, from http://www.nytimes.
com/2006/08/09/technology/09aol.html?pagewanted=all&_r=.

9 Article 29 Data Protection Working Party (2013), “Opinion 04/2013 on the DPIA 
Template Prepared by Expert Group 2 of the Commission’s Smart Grid Task Force.” 
Retrieved February 23, 2014, from http://ec.europa.eu/justice/data-protection/
article-29/documentation/opinion-recommendation/files/2013/wp205_en.pdf
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algorithms used in the data analytics performed on their individual household 
profile, as well as what events might cause them to be subject to disconnection 
or further scrutiny. 

In the United States, privacy principles are part of the Bill of Rights, stated 
explicitly in the Fourth Amendment, which prevents unreasonable search and sei-
zure. Smart meter data specifically is covered by statutory protections such as the 
Electronic Communications Privacy Act (ECPA), the Stored Communications 
Act (SCA), the Federal Trade Commission Act (FTC Act), and the Privacy Act, 
as well as state-level rules and regulations. In Canada, the Ontario Office of the 
Information and Privacy Commissioner (IPC), Dr. Ann Cavoukian, has taken 
a lead with her framework Privacy by Design (PbD), which calls for embedded 
privacy and data protection throughout the entire life cycle of technology.

Utilities, by virtue of smart meter consumption data collection, now have 
access to detailed information on household activities. This near-real-time 
metering can and has been interpreted as a human-rights issue. Article 17 from 
the Universal Declaration of Human Rights, collectively signed and ratified by 
most nations, says,

 1. No one shall be subjected to arbitrary or unlawful interference with his 
privacy, family, home or correspondence, nor to unlawful attacks on his 
honour and reputation.

 2. Everyone has the right to the protection of the law against such interfer-
ence or attacks.10

The European Convention on Human Rights (1950), Article 8: Right to 
Respect for Private and Family Life, more explicitly states:

 1. Everyone has the right to respect for his private and family life, his home 
and his correspondence.

 2. There shall be no interference by a public authority with the exercise of 
this right except such as is in accordance with the law and is necessary in 
a democratic society in the interests of national security, public safety or 
the economic well-being of the country, for the prevention of disorder or 
crime, for the protection of health or morals, or for the protection of the 
rights and freedoms of others.11

10 General Assembly of the United Nations (1966), “International Covenant on Civil 
and Political Rights.” Retrieved February 23, 2014, from http://www.ohchr.org/en/
professionalinterest/pages/ccpr.aspx.

11 European Convention on Human Rights and Its Five Protocols (1950). Retrieved 
February 23, 2014, from http://www.hri.org/docs/ECHR50.html.
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Even to the layperson, it is clear that these articles present us with a test, 
of sorts. Does our big data analytics project interfere with customer privacy? 
If so, is the infringement activity in accordance with the law? And further, for 
European nation states, does the infringement serve any of the specific inter-
ests of society mentioned in Article 8 of the European Convention on Human 
Rights? And is the infringement a necessary component in the maintenance of 
a democratic society? 

While we pragmatically speak about fair information practices, decades ago, 
it was agreed that privacy is a human right, and data privacy can be no excep-
tion. In fact, the Dutch Parliament rejected a mandatory rollout of smart meters, 
in part because it might have violated Article 8 of the European Convention on 
Human Rights. Since then, the development of data privacy policies, protection 
policies, and governance codes has been taken much more seriously. Clearly, con-
sent is a key function in protecting our universal human rights, and if so much 
confusion has been wrought over smart meter data itself, the problem will only 
compound as utilities seek to mash up many data points from various utility and 
third-party systems. Building in the appropriate protections from the beginning 
will not only ensure data protection but also provide a framework to support the 
continuing innovation of data-collecting technology and systems that the utility 
will want to analyze for further value and return on investment (ROI).

13.3.2 Data Management

Public policy cannot adequately address problems and concerns about privary 
and security; instead, solutions must be embedded in the technical design. This 
is called Privacy by Design (www.privacybydesign.ca), which Dr. Cavoukian 
developed in the 1990s to address the burgeoning systemic effects of infor-
mation and communications technology (ICT) and large-scale networked sys-
tems. Her prescient work was translated to the domain of the smart grid and 
encompasses not only business practices but also the critical role of information 
systems and the physical design of the computing and network infrastructure 
itself, and it continues to inform the general practice of big data analytics.

Along the continuum of data management from collection to secure transfer 
and ultimately to storage, the most significant risk to the continued assurance 
of data privacy is indefinite storage. If they even exist, retention policies very 
rarely line up with the original purpose of the data collected. They should, 
though, as indefinite storage simply increases the risk of data breach. In the 
software engineering environment, there is a classic acknowledgment that the 
bigger the body of source code grows—and the more engineers who touch the 
code for maintenance and enhancement—the more brittle, defect-ridden, and 
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more easily exploitable the applications of that code base become. The same 
principle holds true within the domain of data management: As the volumes of 
data grow—and the information technology environment becomes more com-
plex—the difficulties of securing that data mount.

Utilities must determine early in the process of building a smart grid data 
analytics platform what will be the sensitivity of the various types of data that are 
flowing into the utility, especially as new products and services are  developed. 
This is a very difficult task. Without a lot of clarity about how the utility of the 
future will evolve, the single greatest cost is perceived to be storage, as volumes 
of data are put away for a rainy day. This, however, will make  governance and 
compliance nearly impossible. Big data management must include the ability to 
audit data for its adherence to existing and emerging policies, and part of that 
auditing scheme will include ensuring compliance with data retention require-
ments as well as data destruction requirements. In some localities, this will be 
complex indeed, as data management strategies will be required to adhere to 
the same expectations for privacy as those that the consumer has specifically 
agreed to.

13.3.3 Governance

Data governance is a discipline, not a discrete practice. It is the role of data 
stewards or custodians to ensure that data is handled correctly through a system 
of processes and methods. However, it’s a bit of a dirty little secret in the big 
data industry (especially heavily regulated industries) that, although analyzing 
big data holds incredible advantages for almost any organization, the struggle to 
provide effective governance and embrace privacy regulations is crushing. 

It seems unfair that regulated entities must work to enforce required 
 governance while faster-moving players in the data world—including Google, 
which acquired  Nest Labs in 2014 for USD $3.2 billion—rush into the energy 
sphere.12 Though many utilities and their regulators were hand-wringing over 
how to ensure proper data-handling practices to put customers at ease, Nest Labs 
charged forward by offering a successful service model for home coordination, 
starting with a smart thermostat. The controllable thermostat has long been the 
purview of utilities, but it is probable that the advantage the utility had with the 
smart meter as a gateway to the home has now been severely diminished. There 
are a multitude of factors at play, but it is surely a hint of how the expectations 

12 Rolfe Winkler and Daisuke Wakabayashi (2014), “Google to Buy Nest Labs for $3.2 
Billion,” The Wall Street Journal. Retrieved February 23, 2014, from http://online.
wsj.com/news/articles/SB10001424052702303595404579318952802236612.
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of data governance issues in the publicly accountable utility industry will stall 
electricity providers’ ability to compete. If regulatory bodies endeavor toward 
privacy enforcement and protection (and they will), it will be continue to be a 
formidable challenge for any utility to compete with private-industry players to 
provide data-enabled services to energy consumers.

Surely, it is completely reasonable for people to have confidence that their 
personal data will be private and protected until destruction; although the 
issue of whether data can ever be eradicated makes this even more of a quag-
mire. The burden of data governance is the question, and it’s sure to cause 
dustups for years to come, especially as regulated utilities work to remake their 
business model. It’s not as if the Googles of the world don’t have data gover-
nance, as they surely do. The ability to properly handle data is the foundation 
of their very business. They are just, thus far, not expected to be transparent 
about how they implement their governance initiatives, simply as a matter of 
competitive advantage. 

Data governance will always be an important concern for energy provid-
ers in their big data efforts, and as such, they will be required to trace data, 
remediate failures, and audit and report on their activities. In fact, in the early 
years of implementing big data analytics programs, it will be much too easy 
to mishandle data either inside the utility or with partners because of the silos 
within the utility organization. Establishing a data steward early in the process 
is an important aspect of rolling out an enterprisewide data analytics platform, 
especially as regulatory requirements quickly change and emerge.

13.4 Privacy Enhancement

Bruce Schneier, an internationally renowned security technologist, discusses 
“enabling the trust society needs to thrive” in provoking a move toward tack-
ling the complex issues of cooperation in a world where digital mediation rules. 
He treats this issue in his book Liars and Outliers, where he characterizes the 
dilemma by saying, “In the absence of personal relationships, we have no choice 
but to substitute security for trust, compliance for trustworthiness. This pro-
gression has enabled society to scale to unprecedented complexity, but has also 
permitted massive global failures.”13 If the utility is to be a useful entity to 
society in the future, issues of trust and security are critical to develop with 
communities and customers.

13 Bruce Schneier (2012), Liars and Outliers: Enabling the Trust That Society Needs to 
Thrive, John Wiley & Sons Inc. Retrieved February 23, 2014, from https://www.
schneier.com/book-lo.html.
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The ways that lawmakers, regulators, companies, technologists, and citizens 
have thought about security and privacy are changing. In particular, the man-
ners in which we enable consent and manage and use data are changing from 
traditional approaches.

13.4.1 Enabling Consent

We’re all familiar with the long and onerous Terms and Conditions statements 
that few people actually read as we rush through the checkboxes (often using 
our browser’s autofill functionality) to get to the desired application or service 
as soon as possible. But that doesn’t mean consumers don’t care about privacy: 
When Facebook or Google asks whether we would trade our expectations of 
privacy for free services, many of us agree. There is a very immediate value-add, 
and it’s a clear choice on the part of the consumer to give a little to get a little. 
In the realm of power delivery, there is no clear benefit, and many become very 
irritated by the idea of having their behavior tracked, especially by a commodity 
product provider. This is a sensitive point, particularly when it becomes clear 
to consumers that utilities are now in the position to mine sensitive data—and 
that they can do so for any reason, even if it is not absolutely necessary to keep-
ing the wires up and the electrons flowing. It’s a dangerous position for the 
utility to take: that customer data is simply a corporate asset. 

In the utility business, opt-in and opt-out as functional mechanisms for con-
sent are complicated. Driven largely by customer backlash to smart meters—
for reasons including fear of “utility spy programs”—an increasing number 
of jurisdictions offer opt-out programs, through the choice to keep an analog 
meter, sometimes with an accompanying fee (referred to by some consumer 
advocates as “extortion”). And, in regions where mandatory smart meters have 
been rejected as a matter of policy, voluntary participation by explicit opt-in is 
now the rule. While many would argue that these cases are clear demonstra-
tions of the abysmal level of trust for the utility, it is worth considering that 
utilities simply severely miscalculated the nature of the customer relationship 
in a world where the utility delivers a commodity product and where there is 
no real qualitative differentiation among providers (in competitive markets). 
Instead, cost is the key sensitivity to consumers who, until very recently with 
the emergence of climate-change concerns, didn’t care if their electricity was 
delivered by a peasant woman carrying their electrons in a woven basket. If a 
proactive effort is not made from the outset to put customer concerns first, the 
customer backlash to the utility implementation of smart meters is just a fore-
shadowing of the public’s unwillingness to accept an acknowledged big data 
analytics program.
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Notice and consent have always been the cornerstone of personal privacy, 
but in the world of big data, this is not sustainable, both in terms of applying 
such a position to the vast volumes or data and in terms of the incredible burden 
this places on the individual. Plus, in many cases, the horse is already out of the 
barn: There’s no going back to provide consent for all the data that has already 
been collected, used, and resides in the dark corners of the enterprise. Going 
forward, ensuring privacy protection is squarely upon the organizations that 
use the data. In this light, the industry must recognize the importance of fitting 
data collection programs and remain accountable to how the data is processed 
and used. The concepts of explicit consent will likely morph and shift in the 
next decade of big data and be subsumed by a model that instead focuses on 
regulating the acceptable use of data, rather than the data itself. 

13.4.2 Data Minimization

Like consent, the role of data minimization is changing with the pervasiveness 
of big data in collection, processing, and new storage approaches. For many 
years, at least in the US states and EU nations, minimization has especially tar-
geted the source of the data, with regulations for the “reasonable” collection of 
data. Big data analytics is creating a shift in the application of this fundamental 
right because lots of data is required to extract meaningful value. Thus, there is 
a transference of efforts for data minimization at the point of collection to the 
point of use because traditional data minimization approaches break big data.

New frameworks to drive privacy and data protection principles acknowl-
edge the difficulty in data minimization. The emerging argument asserts that 
the expectation for privacy must be measured against societal value, thereby 
sublimating the need for minimization (and potentially even some forms of 
consent). Privacy advocates Omer Tene and Jules Polonetsky suggest the use of 
a risk matrix, stating the following in the discussion “The Privacy Paradox” in 
a Stanford Law Review issue: “A coherent framework [takes] into account the 
value of different uses of data against the potential risks to individual autonomy 
and privacy. Where the benefits of prospective data use clearly outweigh privacy 
risks, the legitimacy of processing should be assumed even if individuals decline 
to consent.”14

14 Jules Polonetsky and Omer Tene (2012), “Privacy in the Age of Big Data: A Time for 
Big Decisions,” Stanford Law Review, online, vol. 64, no. 63. Retrieved from http://
www.stanfordlawreview.org/online/privacy-paradox/big-data.
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13.4.3 The Role of Metadata

A critical concern related to big data privacy is that of data quality and accu-
racy, especially when that data includes PII, because inaccurate data can lead 
to a negative effect through flawed results. This can be especially troublesome 
if these flaws concern a particular consumer or class of consumers who may be 
targeted by a certain analysis. The various ways in which data quality can break 
down leads to an important guiding principle for data privacy: The data that’s 
collected should be directly relevant to its intended purpose of use. 

To assure data is as accurate as possible, a two-pronged approach is required: 
data quality requirements and assessment. However, with the absolute volume 
and pace of information flowing into the utility, it is not feasible to examine 
every byte of data. Instead, creating a comprehensive system of descriptive meta-
data proves fruitful. With such a system in place, the challenge shifts to creating 
a description of the underlying data that can be used as a frontline defense. 

The importance of metadata has long been known for its essentialness to 
data management, and its value is even greater in the era of big data.  In fact, 
the importance of metadata is emerging in surprising ways, as it is even pos-
sible to find relationships within the metadata itself to surface system issues or 
information that analysts are especially looking for and then digging deeper 
into the actual data.

Metadata is crucial to the process of finding inaccurate data in scores of 
information, but it can even guide analytic functions by helping to understand 
data properties. Additionally, metadata provides the foundation of ongoing 
data-quality monitoring.

13.5 The Utility of the Future Is a Good Partner

The utility is transforming from a one-way network to one of distributed energy 
resources (DERs), and this shift begs the question of whether the business 
 models for the industry must change. While advanced analytics may be the key 
enabling technology, it is really the customers themselves who will play the most 
significant role in producing and managing energy that enables an entirely new 
economic system. In the utility of the future, the customers are not ratepayers; 
they are partners. And successful partnerships are not made by exploitation, nor 
just by being a “good guy,” but by building a form of social equity that is based 
in mutually increased value.

Utilities have gone far in their implementations of smart meters and are 
working to outfit their grids with further advanced technologies, especially sen-
sors and control devices. This advancement is key to enabling a grid that will 
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remain stable and resilient in an ecosystem that includes a growing amount of 
intermittent generation sources. There is no question that performing big data 
analytics on the influx of varied data will be the key to discovering and imple-
menting grid optimizations and introducing efficiencies that can fundamen-
tally move the utility business model forward. In the course of its evolution, the 
electricity industry is likely to find itself deep within an interconnected web of a 
variety of participatory business models, where customers of all types interface 
directly with the distribution grid. And there are many technical challenges that 
stand between today’s technology infrastructure and the utility of the future.

The Rocky Mountain Institute describes how services and control inter-
faces are now shared among electricity distribution systems that are owned and 
operated by utilities and customers, utilities, and third parties: “The services 
provided by distributed resources can include energy and capacity, as well as 
ancillary services such as the provision of reserves, black-start capability, reac-
tive power, and voltage control.”15 It is not only the continuing demand for 
increased resiliency and reliability that is driving this shift in the context of 
extreme conditions that necessitates this change, but the increase in affordable 
solar photovoltaic (PV) solutions and the growing cultural shift toward the inte-
gration of small, local power generation.

It is no surprise to industry observers that the industry is ripe for bypass, 
largely because of priorities for cleaner generation resources and rate structures 
that repeatedly fail to meet the value of services to customers. Utilities can fight 
this trend and spend future years turning to regulators over and over to raise 
rates on their remaining customers, or they can see the situation as an opportu-
nity to adapt to a new way of doing business. Because, even as these utilities lose 
their customers to cheaper sources, they will still be required to offer an inter-
connected grid that is flexible and predictable, alongside a growing penetration 
of intermittent supplies. Why squander this time of dramatic change to not just 
survive, but thrive?

Thriving requires investment in core competencies. Certainly, the utility 
will be asked to make major investments in smarter technologies that help meet 
the needs of this rapidly changing energy ecosystem. There are several oppor-
tunities, and each move will require a step function in information technology 
improvement and the ability to quickly utilize a variety of big data sources to 
support these models. In fact, without a fully realized analytics program, the 
utility will be poorly positioned to innovate at all toward capturing new profit-
making opportunities. A not-so-distant fortuitous opportunity includes sup-
porting automatic price signals that help manage supplies across the  distribution 

15 Rocky Mountain Institute (2013), “New Business Models for the Distribution Edge,” 
Retrieved from http://www.rmi.org/PDF_eLab_New_Business_Models_Report.
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system and fostering an economic system that fairly compensates customers for 
their services but charges them appropriately for power and other amenities they 
may receive from across the grid. 

New business models are enabled by smart grid data analytics. Utilities that 
wishes to increase their future potential will explore, integrate, and implement 
new services that create value for electricity customers and the utility alike. Big 
data analytics is not just a passing phenomenon—it is the lynchpin to funda-
mentally changing the way utilities operate and interact with their customers. 
Don’t be distracted by the buzzword parade marching across the parking lot: 
“big data,” “big energy,” “big value.” Instead, focus on the need to rethink and 
recharge fundamental business models and recognize that even a century of 
reliable power delivery guarantees nothing for the future. The optimized util-
ity can only be built on the power of data analytics and subsequent  high-value 
action that changes the way that business gets done. 



219

Chapter 1

3V volume, velocity, and variety
ARRA American Recovery and Reinvestment Act of 2009
DER distributed energy resource
DMS distribution management system
EIA US Energy Information Administration
EPRI Electric Power Research Institute 
ETL extract, transform, and load
IT information technology
MDMS meter data management system
OMS outage management system
OT operations technology
ROI return on investment
SCADA supervisory control and data acquisition

Chapter 2

AaaS Analytics as a Service
API application programming interface
COTS commercial off-the-shelf
DAMA Data Management International
HTTP Hypertext Transfer Protocol
IaaS Infrastructure as a Service
IT information technology
MDM master data management
PUBSUB publish–subscribe messaging pattern
ROI return on investment

Glossary



220 Big Data Analytics Strategies for the Smart Grid

SOA service-oriented architecture
SSOD single source of data
SSOT single source of the truth

Chapter 3

C&I commercial and industrial
FIFO first-in, first-out
IEEE Institute of Electrical and Electronics Engineers
IoT Internet of Things
NIST National Institute of Standards and Technology
ROI return on investment
SOA service-oriented architecture
T&D transmission and distribution
TAFIM Technical Architecture Framework for Information
 Management
TOGAF The Open Group Architecture Framework

Chapter 4

GIS geographic information system

Chapter 5

BI business intelligence
C&I commercial and industrial
DROMS Demand Response Optimization and Management System
FERC Federal Energy Regulatory Commission
FLISR fault location, isolation, and service restoration
kWh kilowatt-hour
NILM nonintrusive load monitoring
MW megawatt
ROI return on investment
VAR volt-ampere reactive

Chapter 6

AMI advanced metering infrastructure
API application programming interface
CAISO California ISO



Glossary 221

CIM Common Information Model
CRN Cooperative Research Network
DA distribution automation
DER distributed energy resource
DMS distribution management system
FLISR fault location, isolation, and service restoration
IEC International Electrotechnical Commission
IEEE Institute of Electrical and Electronics Engineers
ISO independent system operator
KPI key performance indicator
NIST National Institute of Standards
NRECA National Rural Electric Cooperative Association
OMS outage management system
PEV plug-in electric vehicle
ROI return on investment
SCADA Supervisory Control and Data Acquisition

Chapter 7

ATM automated teller machine
BG&E Baltimore Gas and Electric
CRM customer relationship management
GIS geographic information system
HAN home area network
HEM home energy management
HER home energy report
HVAC heating, ventilation, and air conditioning
IHD in-home display
IPO initial public offering
KPI key performance indicator
KTLO keeping the lights on
MTKD mean time to kitchen drawer
PLC power-line carrier
ROI return on investment
SMUD Sacramento Municipal Utility District

Chapter 8

APT advanced persistent threat
BPL broadband over power line
CERTS Consortium for Electric Reliability Solutions



222 Big Data Analytics Strategies for the Smart Grid

CIP critical infrastructure protection
CTO chief technology officer
EEI Edison Electric Institute
FAA Federal Aviation Administration
FBI Federal Bureau of Investigation
GAO Government Accounting Office
ICS-CERT Industrial Control Systems Cyber Emergency Response Team
ICT information and communications technology
IP Internet Protocol
NASA National Aeronautics and Space Administration
NCCIP National Cybersecurity and Critical Infrastructure Protection 
NERC North American Electric Reliability Corporation
PMU phasor measurement units
NCCoE National Cybersecurity Center of Excellence
SANS System Administration, Networking, and Security Institute
SCADA supervisory control and data acquisition
SPAWAR Space and Naval Warfare Systems Command (US Navy)
SQL Structured Query Language
UN United Nations
USD US dollars

Chapter 9

CPU central processing unit
DRMS demand-response management system
DSM demand-side management
DMS distribution management system 
DER distributed energy resource
EDI electronic data interchange
XML Extensible Markup Language
ETL extract, transform, load
FIFO first-in, first-out
GIS geographic information system
IED intelligent electronic device
IP Internet Protocol
IoT Internet of Things
MDMS meter data management system
OMS outage management system
PMU phasor measurement unit 
PEV plug-in electric vehicle



Glossary 223

ROI return on investment
volt/VAR voltage/volt-ampere-reactive

Chapter 10

API application programming interface
CPU central processing unit
DAS direct-attached storage
XML Extensible Markup Language
ETL extract, transform, load
FTP File Transfer Protocol
GIS geographic information system
HDFS Hadoop Distributed File System
HPC high-performance computing
HTTP Hypertext Transfer Protocol
IMDB in-memory database
I/O input/output
IOPS input/output operations per second
MMDB main memory database
NAS network-attached storage
NoSQL Not Only SQL
NVDIMM Non-Volatile Dual In-line Memory Module
OODBMS object-oriented database management system
RDBMS relational database management system
PMU phasor measurement unit
SCADA supervisory control and data acquisition
HTTPS Secure Hypertext Transfer Protocol
SQL Structured Query Language
TVA Tennessee Valley Authority
URL uniform resource locator

Chapter 11

CEP complex event processing
DBMS database management system
DR demand response
DSMS data stream management system
HDFS Hadoop Distributed File System
KPI key performance indicator
M&V measurement and validation



224 Big Data Analytics Strategies for the Smart Grid

PCA principal components analysis
ROI return on investment
SCADA supervisory control and data acquisition
SQL Structured Query Language

Chapter 12

BI business intelligence
C&I commercial and industrial
CAISO California independent system operator
DSM demand-side management
GIS geographic information systems
IED intelligent electronic device

Chapter 13

AOL America Online
EPCA Electronic Communications Privacy Act 
EU European Union
EV Electric Vehicle
FTC Federal Trade Commission
HVAC heating, ventilation, and air conditioning
ICT information and communications technology
IoT Internet of Things
IPC Information and Privacy Commissioner
NASA National Aeronautics and Space Administration
NIST National Institute of Standards
PbD Privacy by Design
PII personally identifiable information
PV photovoltaic
ROI return on investment
SCA Stored Communications Act
USD US dollars



Power Engineering / Data Mining and Knowledge Discovery

This book provides an in-depth analysis that will help utility executives, as well as regu-
lators, investors, large power users, and entrepreneurs, understand some of the tectonic 
changes coming to an industry that from the outside can seem impervious to change. 

Making sense of a chaotic future, Carol charts a path where everyone can benefit.
—Amit Narayan, PhD, CEO, AutoGrid

After more than a century providing a mission-critical resource to consumers around 
the world, traditional energy providers are realizing the power of big data and predic-
tive analytics ... In her exceptional book, Carol examines these trends and breaks down 
very complex topics into prose that is easy to understand. I highly recommend this book 

to anyone in the energy industry looking to grow and evolve their business.
—Adrian Tuck, CEO, Tendril

Carol Stimmel defines utility data analytics as the application of techniques within the 
digital energy ecosystem that are designed to reveal insights that help explain, predict, 
and expose hidden opportunities to improve operational and business efficiency and 
to deliver real-world situational awareness. ... Volume, velocity, variety, and value—
the characteristics ascribed to ‘big data’—will aptly characterize the reader’s and 

practitioner’s view of Ms. Stimmel’s book.
—Ivo Steklac, GM Residential & Commercial Energy Solutions, 

SunPower Corporation

The author has done an excellent job of leveraging her experience in the industry and 
her strong technical background to create a book that is a very easy-to-read, useful tool 
for anyone trying to get started in applying big data analytics to the utility industry. She 
not only provides the reader with a solid base knowledge and background but provides 
solid examples of how data analytics can be applied within a utility environment and the 

advantages that can be gained by doing so.
—Ron Gerrans, CEO, Genus Zero and former CEO, E Source

Carol Stimmel is also the author of the forthcoming book from CRC Press: 
Building Smart Cities: Analytics, ICT, and Design Thinking

Big Data
Analytics Strategies
for the Smart Grid

www.auerbach-publications.com

ISBN: 978-1-4822-1828-2

9 781482 218282

90000

K22140
6000 Broken Sound Parkway, NW 
Suite 300, Boca Raton, FL 33487
711 Third Avenue 
New York, NY 10017
2 Park Square, Milton Park 
Abingdon, Oxon OX14 4RN, UK

an informa business

www.crcpress.com

Carol L. Stimmel

Big D
ata A

nalytics Strategies for the Sm
art G

rid
Stim

m
el

K22140 cvr mech.indd   1 6/5/14   12:34 PM


	Front Cover
	Dedication
	Contents
	Foreword
	Preface
	About the Author
	Acknowledgments
	Section One The Transformative Power of Data Analytics 
	Chapter One Putting the Smarts in the Smart Grid
	Chapter Two Building the Foundation for Data Analytics
	Chapter Three Transforming Big Data for High- Value Action

	Section Two The Benefi ts of Smart Grid Data Analytics 
	Chapter Four Applying Analytical Models in the Utility
	Chapter Five Enterprise Analytics
	Chapter Six Operational Analytics
	Chapter Seven Customer Operations and Engagement Analytics
	Chapter Eight Analytics for Cybersecurity

	Section Three Implementing Data Analytics Programs for Sustained Change 
	Chapter Nine Sourcing Data
	Chapter Ten Big Data Integration, Frameworks, and Databases
	Chapter Eleven Extracting Value
	Chapter Twelve Envisioning the Utility
	Chapter Thirteen A Partnership for Change

	Glossary
	Back Cover

