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Foreword

Analyzing large amounts of data is a necessity. Even popular science books, like “super
crunchers,” give compelling cases where large amounts of data yield discoveries and
intuitions that surprise even experts. Every enterprise benefits from collecting and ana-
lyzing its data: Hospitals can spot trends and anomalies in their patient records, search
engines can do better ranking and ad placement, and environmental and public health
agencies can spot patterns and abnormalities in their data. The list continues, with
cybersecurity and computer network intrusion detection; monitoring of the energy
consumption of household appliances; pattern analysis in bioinformatics and pharma-
ceutical data; financial and business intelligence data; spotting trends in blogs, Twitter,
and many more. Storage is inexpensive and getting even less so, as are data sensors. Thus,
collecting and storing data is easier than ever before.

The problem then becomes how to analyze the data. This is exactly the focus of this
Third Edition of the book. Jiawei, Micheline, and Jian give encyclopedic coverage of all
the related methods, from the classic topics of clustering and classification, to database
methods (e.g., association rules, data cubes) to more recent and advanced topics (e.g.,
SVD/PCA, wavelets, support vector machines).

The exposition is extremely accessible to beginners and advanced readers alike. The
book gives the fundamental material first and the more advanced material in follow-up
chapters. It also has numerous rhetorical questions, which I found extremely helpful for
maintaining focus.

We have used the first two editions as textbooks in data mining courses at Carnegie
Mellon and plan to continue to do so with this Third Edition. The new version has
significant additions: Notably, it has more than 100 citations to works from 2006
onward, focusing on more recent material such as graphs and social networks, sen-
sor networks, and outlier detection. This book has a new section for visualization, has
expanded outlier detection into a whole chapter, and has separate chapters for advanced

xix



xx Foreword

methods—for example, pattern mining with top-k patterns and more and clustering
methods with biclustering and graph clustering.

Overall, it is an excellent book on classic and modern data mining methods, and it is
ideal not only for teaching but also as a reference book.

Christos Faloutsos
Carnegie Mellon University



Foreword to Second Edition

We are deluged by data—scientific data, medical data, demographic data, financial data,
and marketing data. People have no time to look at this data. Human attention has
become the precious resource. So, we must find ways to automatically analyze the
data, to automatically classify it, to automatically summarize it, to automatically dis-
cover and characterize trends in it, and to automatically flag anomalies. This is one
of the most active and exciting areas of the database research community. Researchers
in areas including statistics, visualization, artificial intelligence, and machine learning
are contributing to this field. The breadth of the field makes it difficult to grasp the
extraordinary progress over the last few decades.

Six years ago, Jiawei Han’s and Micheline Kamber’s seminal textbook organized and
presented Data Mining. It heralded a golden age of innovation in the field. This revision
of their book reflects that progress; more than half of the references and historical notes
are to recent work. The field has matured with many new and improved algorithms, and
has broadened to include many more datatypes: streams, sequences, graphs, time-series,
geospatial, audio, images, and video. We are certainly not at the end of the golden age—
indeed research and commercial interest in data mining continues to grow—but we are
all fortunate to have this modern compendium.

The book gives quick introductions to database and data mining concepts with
particular emphasis on data analysis. It then covers in a chapter-by-chapter tour the
concepts and techniques that underlie classification, prediction, association, and clus-
tering. These topics are presented with examples, a tour of the best algorithms for each
problem class, and with pragmatic rules of thumb about when to apply each technique.
The Socratic presentation style is both very readable and very informative. I certainly
learned a lot from reading the first edition and got re-educated and updated in reading
the second edition.

Jiawei Han and Micheline Kamber have been leading contributors to data mining
research. This is the text they use with their students to bring them up to speed on

xxi



xxii Foreword to Second Edition

the field. The field is evolving very rapidly, but this book is a quick way to learn the
basic ideas, and to understand where the field is today. I found it very informative and
stimulating, and believe you will too.

Jim Gray
In his memory



Preface

The computerization of our society has substantially enhanced our capabilities for both
generating and collecting data from diverse sources. A tremendous amount of data has
flooded almost every aspect of our lives. This explosive growth in stored or transient
data has generated an urgent need for new techniques and automated tools that can
intelligently assist us in transforming the vast amounts of data into useful information
and knowledge. This has led to the generation of a promising and flourishing frontier
in computer science called data mining, and its various applications. Data mining, also
popularly referred to as knowledge discovery from data (KDD), is the automated or con-
venient extraction of patterns representing knowledge implicitly stored or captured in
large databases, data warehouses, the Web, other massive information repositories, or
data streams.

This book explores the concepts and techniques of knowledge discovery and data min-
ing. As a multidisciplinary field, data mining draws on work from areas including statistics,
machine learning, pattern recognition, database technology, information retrieval,
network science, knowledge-based systems, artificial intelligence, high-performance
computing, and data visualization. We focus on issues relating to the feasibility, use-
fulness, effectiveness, and scalability of techniques for the discovery of patterns hidden
in large data sets. As a result, this book is not intended as an introduction to statis-
tics, machine learning, database systems, or other such areas, although we do provide
some background knowledge to facilitate the reader’s comprehension of their respective
roles in data mining. Rather, the book is a comprehensive introduction to data mining.
It is useful for computing science students, application developers, and business
professionals, as well as researchers involved in any of the disciplines previously listed.

Data mining emerged during the late 1980s, made great strides during the 1990s, and
continues to flourish into the new millennium. This book presents an overall picture
of the field, introducing interesting data mining techniques and systems and discussing
applications and research directions. An important motivation for writing this book was
the need to build an organized framework for the study of data mining—a challenging
task, owing to the extensive multidisciplinary nature of this fast-developing field. We
hope that this book will encourage people with different backgrounds and experiences
to exchange their views regarding data mining so as to contribute toward the further
promotion and shaping of this exciting and dynamic field.

xxiii
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Organization of the Book

Since the publication of the first two editions of this book, great progress has been
made in the field of data mining. Many new data mining methodologies, systems, and
applications have been developed, especially for handling new kinds of data, includ-
ing information networks, graphs, complex structures, and data streams, as well as text,
Web, multimedia, time-series, and spatiotemporal data. Such fast development and rich,
new technical contents make it difficult to cover the full spectrum of the field in a single
book. Instead of continuously expanding the coverage of this book, we have decided to
cover the core material in sufficient scope and depth, and leave the handling of complex
data types to a separate forthcoming book.

The third edition substantially revises the first two editions of the book, with numer-
ous enhancements and a reorganization of the technical contents. The core technical
material, which handles mining on general data types, is expanded and substantially
enhanced. Several individual chapters for topics from the second edition (e.g., data pre-
processing, frequent pattern mining, classification, and clustering) are now augmented
and each split into two chapters for this new edition. For these topics, one chapter encap-
sulates the basic concepts and techniques while the other presents advanced concepts
and methods.

Chapters from the second edition on mining complex data types (e.g., stream data,
sequence data, graph-structured data, social network data, and multirelational data,
as well as text, Web, multimedia, and spatiotemporal data) are now reserved for a new
book that will be dedicated to advanced topics in data mining. Still, to support readers
in learning such advanced topics, we have placed an electronic version of the relevant
chapters from the second edition onto the book’s web site as companion material for
the third edition.

The chapters of the third edition are described briefly as follows, with emphasis on
the new material.

Chapter 1 provides an introduction to the multidisciplinary field of data mining. It
discusses the evolutionary path of information technology, which has led to the need
for data mining, and the importance of its applications. It examines the data types to be
mined, including relational, transactional, and data warehouse data, as well as complex
data types such as time-series, sequences, data streams, spatiotemporal data, multimedia
data, text data, graphs, social networks, and Web data. The chapter presents a general
classification of data mining tasks, based on the kinds of knowledge to be mined, the
kinds of technologies used, and the kinds of applications that are targeted. Finally, major
challenges in the field are discussed.

Chapter 2 introduces the general data features. It first discusses data objects and
attribute types and then introduces typical measures for basic statistical data descrip-
tions. It overviews data visualization techniques for various kinds of data. In addition
to methods of numeric data visualization, methods for visualizing text, tags, graphs,
and multidimensional data are introduced. Chapter 2 also introduces ways to measure
similarity and dissimilarity for various kinds of data.
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Chapter 3 introduces techniques for data preprocessing. It first introduces the con-
cept of data quality and then discusses methods for data cleaning, data integration, data
reduction, data transformation, and data discretization.

Chapters 4 and 5 provide a solid introduction to data warehouses, OLAP (online ana-
lytical processing), and data cube technology. Chapter 4 introduces the basic concepts,
modeling, design architectures, and general implementations of data warehouses and
OLAP, as well as the relationship between data warehousing and other data generali-
zation methods. Chapter 5 takes an in-depth look at data cube technology, presenting a
detailed study of methods of data cube computation, including Star-Cubing and high-
dimensional OLAP methods. Further explorations of data cube and OLAP technologies
are discussed, such as sampling cubes, ranking cubes, prediction cubes, multifeature
cubes for complex analysis queries, and discovery-driven cube exploration.

Chapters 6 and 7 present methods for mining frequent patterns, associations, and
correlations in large data sets. Chapter 6 introduces fundamental concepts, such as
market basket analysis, with many techniques for frequent itemset mining presented
in an organized way. These range from the basic Apriori algorithm and its vari-
ations to more advanced methods that improve efficiency, including the frequent
pattern growth approach, frequent pattern mining with vertical data format, and min-
ing closed and max frequent itemsets. The chapter also discusses pattern evaluation
methods and introduces measures for mining correlated patterns. Chapter 7 is on
advanced pattern mining methods. It discusses methods for pattern mining in multi-
level and multidimensional space, mining rare and negative patterns, mining colossal
patterns and high-dimensional data, constraint-based pattern mining, and mining com-
pressed or approximate patterns. It also introduces methods for pattern exploration and
application, including semantic annotation of frequent patterns.

Chapters 8 and 9 describe methods for data classification. Due to the importance
and diversity of classification methods, the contents are partitioned into two chapters.
Chapter 8 introduces basic concepts and methods for classification, including decision
tree induction, Bayes classification, and rule-based classification. It also discusses model
evaluation and selection methods and methods for improving classification accuracy,
including ensemble methods and how to handle imbalanced data. Chapter 9 discusses
advanced methods for classification, including Bayesian belief networks, the neural
network technique of backpropagation, support vector machines, classification using
frequent patterns, k-nearest-neighbor classifiers, case-based reasoning, genetic algo-
rithms, rough set theory, and fuzzy set approaches. Additional topics include multiclass
classification, semi-supervised classification, active learning, and transfer learning.

Cluster analysis forms the topic of Chapters 10 and 11. Chapter 10 introduces the
basic concepts and methods for data clustering, including an overview of basic cluster
analysis methods, partitioning methods, hierarchical methods, density-based methods,
and grid-based methods. It also introduces methods for the evaluation of clustering.
Chapter 11 discusses advanced methods for clustering, including probabilistic model-
based clustering, clustering high-dimensional data, clustering graph and network data,
and clustering with constraints.
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Chapter 12 is dedicated to outlier detection. It introduces the basic concepts of out-
liers and outlier analysis and discusses various outlier detection methods from the view
of degree of supervision (i.e., supervised, semi-supervised, and unsupervised meth-
ods), as well as from the view of approaches (i.e., statistical methods, proximity-based
methods, clustering-based methods, and classification-based methods). It also discusses
methods for mining contextual and collective outliers, and for outlier detection in
high-dimensional data.

Finally, in Chapter 13, we discuss trends, applications, and research frontiers in data
mining. We briefly cover mining complex data types, including mining sequence data
(e.g., time series, symbolic sequences, and biological sequences), mining graphs and
networks, and mining spatial, multimedia, text, and Web data. In-depth treatment of
data mining methods for such data is left to a book on advanced topics in data mining,
the writing of which is in progress. The chapter then moves ahead to cover other data
mining methodologies, including statistical data mining, foundations of data mining,
visual and audio data mining, as well as data mining applications. It discusses data
mining for financial data analysis, for industries like retail and telecommunication, for
use in science and engineering, and for intrusion detection and prevention. It also dis-
cusses the relationship between data mining and recommender systems. Because data
mining is present in many aspects of daily life, we discuss issues regarding data mining
and society, including ubiquitous and invisible data mining, as well as privacy, security,
and the social impacts of data mining. We conclude our study by looking at data mining
trends.

Throughout the text, italic font is used to emphasize terms that are defined, while
bold font is used to highlight or summarize main ideas. Sans serif font is used for
reserved words. Bold italic font is used to represent multidimensional quantities.

This book has several strong features that set it apart from other texts on data mining.
It presents a very broad yet in-depth coverage of the principles of data mining. The
chapters are written to be as self-contained as possible, so they may be read in order of
interest by the reader. Advanced chapters offer a larger-scale view and may be considered
optional for interested readers. All of the major methods of data mining are presented.
The book presents important topics in data mining regarding multidimensional OLAP
analysis, which is often overlooked or minimally treated in other data mining books.
The book also maintains web sites with a number of online resources to aid instructors,
students, and professionals in the field. These are described further in the following.

To the Instructor

This book is designed to give a broad, yet detailed overview of the data mining field. It
can be used to teach an introductory course on data mining at an advanced undergrad-
uate level or at the first-year graduate level. Sample course syllabi are provided on the
book’s web sites (www.cs.uiuc.edu/∼hanj/bk3 and www.booksite.mkp.com/datamining3e)
in addition to extensive teaching resources such as lecture slides, instructors’ manuals,
and reading lists (see p. xxix).
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Chapter 1.
Introduction

Chapter 2.
Getting to
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Chapter 3.
Data

Preprocessing

Chapter 6.
Mining

Frequent
Patterns, ....

Basic
Concepts ...

Chapter 8.
Classification:

Basic Concepts

Chapter 10.
Cluster

Analysis: Basic
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Methods

Figure P.1 A suggested sequence of chapters for a short introductory course.

Depending on the length of the instruction period, the background of students, and
your interests, you may select subsets of chapters to teach in various sequential order-
ings. For example, if you would like to give only a short introduction to students on data
mining, you may follow the suggested sequence in Figure P.1. Notice that depending on
the need, you can also omit some sections or subsections in a chapter if desired.

Depending on the length of the course and its technical scope, you may choose to
selectively add more chapters to this preliminary sequence. For example, instructors
who are more interested in advanced classification methods may first add “Chapter 9.
Classification: Advanced Methods”; those more interested in pattern mining may choose
to include “Chapter 7. Advanced Pattern Mining”; whereas those interested in OLAP
and data cube technology may like to add “Chapter 4. Data Warehousing and Online
Analytical Processing” and “Chapter 5. Data Cube Technology.”

Alternatively, you may choose to teach the whole book in a two-course sequence that
covers all of the chapters in the book, plus, when time permits, some advanced topics
such as graph and network mining. Material for such advanced topics may be selected
from the companion chapters available from the book’s web site, accompanied with a
set of selected research papers.

Individual chapters in this book can also be used for tutorials or for special topics in
related courses, such as machine learning, pattern recognition, data warehousing, and
intelligent data analysis.

Each chapter ends with a set of exercises, suitable as assigned homework. The exer-
cises are either short questions that test basic mastery of the material covered, longer
questions that require analytical thinking, or implementation projects. Some exercises
can also be used as research discussion topics. The bibliographic notes at the end of each
chapter can be used to find the research literature that contains the origin of the concepts
and methods presented, in-depth treatment of related topics, and possible extensions.

To the Student

We hope that this textbook will spark your interest in the young yet fast-evolving field of
data mining. We have attempted to present the material in a clear manner, with careful
explanation of the topics covered. Each chapter ends with a summary describing the
main points. We have included many figures and illustrations throughout the text to
make the book more enjoyable and reader-friendly. Although this book was designed as
a textbook, we have tried to organize it so that it will also be useful to you as a reference
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book or handbook, should you later decide to perform in-depth research in the related
fields or pursue a career in data mining.

What do you need to know to read this book?

You should have some knowledge of the concepts and terminology associated with
statistics, database systems, and machine learning. However, we do try to provide
enough background of the basics, so that if you are not so familiar with these fields
or your memory is a bit rusty, you will not have trouble following the discussions in
the book.

You should have some programming experience. In particular, you should be able to
read pseudocode and understand simple data structures such as multidimensional
arrays.

To the Professional

This book was designed to cover a wide range of topics in the data mining field. As a
result, it is an excellent handbook on the subject. Because each chapter is designed to be
as standalone as possible, you can focus on the topics that most interest you. The book
can be used by application programmers and information service managers who wish
to learn about the key ideas of data mining on their own. The book would also be useful
for technical data analysis staff in banking, insurance, medicine, and retailing industries
who are interested in applying data mining solutions to their businesses. Moreover, the
book may serve as a comprehensive survey of the data mining field, which may also
benefit researchers who would like to advance the state-of-the-art in data mining and
extend the scope of data mining applications.

The techniques and algorithms presented are of practical utility. Rather than selecting
algorithms that perform well on small “toy” data sets, the algorithms described in the
book are geared for the discovery of patterns and knowledge hidden in large, real data
sets. Algorithms presented in the book are illustrated in pseudocode. The pseudocode
is similar to the C programming language, yet is designed so that it should be easy to
follow by programmers unfamiliar with C or C++. If you wish to implement any of the
algorithms, you should find the translation of our pseudocode into the programming
language of your choice to be a fairly straightforward task.

Book Web Sites with Resources

The book has a web site at www.cs.uiuc.edu/∼hanj/bk3 and another with Morgan Kauf-
mann Publishers at www.booksite.mkp.com/datamining3e. These web sites contain many
supplemental materials for readers of this book or anyone else with an interest in data
mining. The resources include the following:

Slide presentations for each chapter. Lecture notes in Microsoft PowerPoint slides
are available for each chapter.
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Companion chapters on advanced data mining. Chapters 8 to 10 of the second
edition of the book, which cover mining complex data types, are available on the
book’s web sites for readers who are interested in learning more about such advanced
topics, beyond the themes covered in this book.

Instructors’ manual. This complete set of answers to the exercises in the book is
available only to instructors from the publisher’s web site.

Course syllabi and lecture plans. These are given for undergraduate and graduate
versions of introductory and advanced courses on data mining, which use the text
and slides.

Supplemental reading lists with hyperlinks. Seminal papers for supplemental read-
ing are organized per chapter.

Links to data mining data sets and software. We provide a set of links to
data mining data sets and sites that contain interesting data mining software
packages, such as IlliMine from the University of Illinois at Urbana-Champaign
(http://illimine.cs.uiuc.edu).

Sample assignments, exams, and course projects. A set of sample assignments,
exams, and course projects is available to instructors from the publisher’s web site.

Figures from the book. This may help you to make your own slides for your
classroom teaching.

Contents of the book in PDF format.

Errata on the different printings of the book. We encourage you to point out any
errors in this book. Once the error is confirmed, we will update the errata list and
include acknowledgment of your contribution.

Comments or suggestions can be sent to hanj@cs.uiuc.edu. We would be happy to hear
from you.
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1Introduction

This book is an introduction to the young and fast-growing field of data mining (also known
as knowledge discovery from data, or KDD for short). The book focuses on fundamental
data mining concepts and techniques for discovering interesting patterns from data in
various applications. In particular, we emphasize prominent techniques for developing
effective, efficient, and scalable data mining tools.

This chapter is organized as follows. In Section 1.1, you will learn why data mining is
in high demand and how it is part of the natural evolution of information technology.
Section 1.2 defines data mining with respect to the knowledge discovery process. Next,
you will learn about data mining from many aspects, such as the kinds of data that can
be mined (Section 1.3), the kinds of knowledge to be mined (Section 1.4), the kinds of
technologies to be used (Section 1.5), and targeted applications (Section 1.6). In this
way, you will gain a multidimensional view of data mining. Finally, Section 1.7 outlines
major data mining research and development issues.

1.1 Why Data Mining?

Necessity, who is the mother of invention. – Plato

We live in a world where vast amounts of data are collected daily. Analyzing such data
is an important need. Section 1.1.1 looks at how data mining can meet this need by
providing tools to discover knowledge from data. In Section 1.1.2, we observe how data
mining can be viewed as a result of the natural evolution of information technology.

1.1.1 Moving toward the Information Age

“We are living in the information age” is a popular saying; however, we are actually living
in the data age. Terabytes or petabytes1 of data pour into our computer networks, the
World Wide Web (WWW), and various data storage devices every day from business,

1A petabyte is a unit of information or computer storage equal to 1 quadrillion bytes, or a thousand
terabytes, or 1 million gigabytes.

c© 2012 Elsevier Inc. All rights reserved.
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society, science and engineering, medicine, and almost every other aspect of daily life.
This explosive growth of available data volume is a result of the computerization of
our society and the fast development of powerful data collection and storage tools.
Businesses worldwide generate gigantic data sets, including sales transactions, stock
trading records, product descriptions, sales promotions, company profiles and perfor-
mance, and customer feedback. For example, large stores, such as Wal-Mart, handle
hundreds of millions of transactions per week at thousands of branches around the
world. Scientific and engineering practices generate high orders of petabytes of data in
a continuous manner, from remote sensing, process measuring, scientific experiments,
system performance, engineering observations, and environment surveillance.

Global backbone telecommunication networks carry tens of petabytes of data traffic
every day. The medical and health industry generates tremendous amounts of data from
medical records, patient monitoring, and medical imaging. Billions of Web searches
supported by search engines process tens of petabytes of data daily. Communities and
social media have become increasingly important data sources, producing digital pic-
tures and videos, blogs, Web communities, and various kinds of social networks. The
list of sources that generate huge amounts of data is endless.

This explosively growing, widely available, and gigantic body of data makes our
time truly the data age. Powerful and versatile tools are badly needed to automatically
uncover valuable information from the tremendous amounts of data and to transform
such data into organized knowledge. This necessity has led to the birth of data mining.
The field is young, dynamic, and promising. Data mining has and will continue to make
great strides in our journey from the data age toward the coming information age.

Example 1.1 Data mining turns a large collection of data into knowledge. A search engine (e.g.,
Google) receives hundreds of millions of queries every day. Each query can be viewed
as a transaction where the user describes her or his information need. What novel and
useful knowledge can a search engine learn from such a huge collection of queries col-
lected from users over time? Interestingly, some patterns found in user search queries
can disclose invaluable knowledge that cannot be obtained by reading individual data
items alone. For example, Google’s Flu Trends uses specific search terms as indicators of
flu activity. It found a close relationship between the number of people who search for
flu-related information and the number of people who actually have flu symptoms. A
pattern emerges when all of the search queries related to flu are aggregated. Using aggre-
gated Google search data, Flu Trends can estimate flu activity up to two weeks faster
than traditional systems can.2 This example shows how data mining can turn a large
collection of data into knowledge that can help meet a current global challenge.

1.1.2 Data Mining as the Evolution of Information Technology

Data mining can be viewed as a result of the natural evolution of information tech-
nology. The database and data management industry evolved in the development of

2This is reported in [GMP+09].
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Data Collection and Database Creation
(1960s and earlier)

Primitive file processing

Database Management Systems
(1970s to early 1980s)

Hierarchical and network database systems
Relational database systems
Data modeling: entity-relationship models, etc.
Indexing and accessing methods
Query languages: SQL, etc.
User interfaces, forms, and reports
Query processing and optimization
Transactions, concurrency control, and recovery
Online transaction processing (OLTP)

Advanced Database Systems
(mid-1980s  to present)

Advanced data models: extended-relational,
object relational, deductive, etc.
Managing complex data: spatial, temporal,
multimedia, sequence and structured,
scientific, engineering, moving objects, etc.
Data streams and cyber-physical data systems
Web-based databases (XML, semantic web)
Managing uncertain data and data cleaning
Integration of heterogeneous sources
Text database systems and integration with
information retrieval
Extremely large data management
Database system tuning and adaptive systems
Advanced queries: ranking, skyline, etc.
Cloud computing and parallel data processing
Issues of data privacy and security

Advanced Data Analysis
(late- 1980s  to present)

Data warehouse and OLAP
Data mining and knowledge discovery:
classification, clustering, outlier analysis,
association and correlation, comparative
summary, discrimination analysis, pattern
discovery, trend and deviation analysis, etc.
Mining complex types of data: streams,
sequence, text, spatial, temporal, multimedia,
Web, networks, etc.
Data mining applications: business, society,
retail, banking, telecommunications, science
and engineering, blogs, daily life, etc.
Data mining and society: invisible data
mining, privacy-preserving data mining,
mining social and information networks,
recommender  systems, etc.

Future Generation of Information Systems
(Present to future)

Figure 1.1 The evolution of database system technology.

several critical functionalities (Figure 1.1): data collection and database creation, data
management (including data storage and retrieval and database transaction processing),
and advanced data analysis (involving data warehousing and data mining). The early
development of data collection and database creation mechanisms served as a prerequi-
site for the later development of effective mechanisms for data storage and retrieval,
as well as query and transaction processing. Nowadays numerous database systems
offer query and transaction processing as common practice. Advanced data analysis has
naturally become the next step.
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Since the 1960s, database and information technology has evolved systematically
from primitive file processing systems to sophisticated and powerful database systems.
The research and development in database systems since the 1970s progressed from
early hierarchical and network database systems to relational database systems (where
data are stored in relational table structures; see Section 1.3.1), data modeling tools,
and indexing and accessing methods. In addition, users gained convenient and flexible
data access through query languages, user interfaces, query optimization, and transac-
tion management. Efficient methods for online transaction processing (OLTP), where a
query is viewed as a read-only transaction, contributed substantially to the evolution and
wide acceptance of relational technology as a major tool for efficient storage, retrieval,
and management of large amounts of data.

After the establishment of database management systems, database technology
moved toward the development of advanced database systems, data warehousing, and
data mining for advanced data analysis and web-based databases. Advanced database
systems, for example, resulted from an upsurge of research from the mid-1980s onward.
These systems incorporate new and powerful data models such as extended-relational,
object-oriented, object-relational, and deductive models. Application-oriented database
systems have flourished, including spatial, temporal, multimedia, active, stream and
sensor, scientific and engineering databases, knowledge bases, and office information
bases. Issues related to the distribution, diversification, and sharing of data have been
studied extensively.

Advanced data analysis sprang up from the late 1980s onward. The steady and
dazzling progress of computer hardware technology in the past three decades led to
large supplies of powerful and affordable computers, data collection equipment, and
storage media. This technology provides a great boost to the database and information
industry, and it enables a huge number of databases and information repositories to be
available for transaction management, information retrieval, and data analysis. Data
can now be stored in many different kinds of databases and information repositories.

One emerging data repository architecture is the data warehouse (Section 1.3.2).
This is a repository of multiple heterogeneous data sources organized under a uni-
fied schema at a single site to facilitate management decision making. Data warehouse
technology includes data cleaning, data integration, and online analytical processing
(OLAP)—that is, analysis techniques with functionalities such as summarization, con-
solidation, and aggregation, as well as the ability to view information from different
angles. Although OLAP tools support multidimensional analysis and decision making,
additional data analysis tools are required for in-depth analysis—for example, data min-
ing tools that provide data classification, clustering, outlier/anomaly detection, and the
characterization of changes in data over time.

Huge volumes of data have been accumulated beyond databases and data ware-
houses. During the 1990s, the World Wide Web and web-based databases (e.g., XML
databases) began to appear. Internet-based global information bases, such as the WWW
and various kinds of interconnected, heterogeneous databases, have emerged and play
a vital role in the information industry. The effective and efficient analysis of data from
such different forms of data by integration of information retrieval, data mining, and
information network analysis technologies is a challenging task.
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How can I analyze these data?

Figure 1.2 The world is data rich but information poor.

In summary, the abundance of data, coupled with the need for powerful data analysis
tools, has been described as a data rich but information poor situation (Figure 1.2). The
fast-growing, tremendous amount of data, collected and stored in large and numerous
data repositories, has far exceeded our human ability for comprehension without power-
ful tools. As a result, data collected in large data repositories become “data tombs”—data
archives that are seldom visited. Consequently, important decisions are often made
based not on the information-rich data stored in data repositories but rather on a deci-
sion maker’s intuition, simply because the decision maker does not have the tools to
extract the valuable knowledge embedded in the vast amounts of data. Efforts have
been made to develop expert system and knowledge-based technologies, which typically
rely on users or domain experts to manually input knowledge into knowledge bases.
Unfortunately, however, the manual knowledge input procedure is prone to biases and
errors and is extremely costly and time consuming. The widening gap between data and
information calls for the systematic development of data mining tools that can turn data
tombs into “golden nuggets” of knowledge.

1.2 What Is Data Mining?

It is no surprise that data mining, as a truly interdisciplinary subject, can be defined
in many different ways. Even the term data mining does not really present all the major
components in the picture. To refer to the mining of gold from rocks or sand, we say gold
mining instead of rock or sand mining. Analogously, data mining should have been more
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Knowledge

Figure 1.3 Data mining—searching for knowledge (interesting patterns) in data.

appropriately named “knowledge mining from data,” which is unfortunately somewhat
long. However, the shorter term, knowledge mining may not reflect the emphasis on
mining from large amounts of data. Nevertheless, mining is a vivid term characterizing
the process that finds a small set of precious nuggets from a great deal of raw material
(Figure 1.3). Thus, such a misnomer carrying both “data” and “mining” became a pop-
ular choice. In addition, many other terms have a similar meaning to data mining—for
example, knowledge mining from data, knowledge extraction, data/pattern analysis, data
archaeology, and data dredging.

Many people treat data mining as a synonym for another popularly used term,
knowledge discovery from data, or KDD, while others view data mining as merely an
essential step in the process of knowledge discovery. The knowledge discovery process is
shown in Figure 1.4 as an iterative sequence of the following steps:

1. Data cleaning (to remove noise and inconsistent data)

2. Data integration (where multiple data sources may be combined)3

3A popular trend in the information industry is to perform data cleaning and data integration as a
preprocessing step, where the resulting data are stored in a data warehouse.
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Figure 1.4 Data mining as a step in the process of knowledge discovery.
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3. Data selection (where data relevant to the analysis task are retrieved from the
database)

4. Data transformation (where data are transformed and consolidated into forms
appropriate for mining by performing summary or aggregation operations)4

5. Data mining (an essential process where intelligent methods are applied to extract
data patterns)

6. Pattern evaluation (to identify the truly interesting patterns representing knowledge
based on interestingness measures—see Section 1.4.6)

7. Knowledge presentation (where visualization and knowledge representation tech-
niques are used to present mined knowledge to users)

Steps 1 through 4 are different forms of data preprocessing, where data are prepared
for mining. The data mining step may interact with the user or a knowledge base. The
interesting patterns are presented to the user and may be stored as new knowledge in the
knowledge base.

The preceding view shows data mining as one step in the knowledge discovery pro-
cess, albeit an essential one because it uncovers hidden patterns for evaluation. However,
in industry, in media, and in the research milieu, the term data mining is often used to
refer to the entire knowledge discovery process (perhaps because the term is shorter
than knowledge discovery from data). Therefore, we adopt a broad view of data min-
ing functionality: Data mining is the process of discovering interesting patterns and
knowledge from large amounts of data. The data sources can include databases, data
warehouses, the Web, other information repositories, or data that are streamed into the
system dynamically.

1.3 What Kinds of Data Can Be Mined?

As a general technology, data mining can be applied to any kind of data as long as the
data are meaningful for a target application. The most basic forms of data for mining
applications are database data (Section 1.3.1), data warehouse data (Section 1.3.2),
and transactional data (Section 1.3.3). The concepts and techniques presented in this
book focus on such data. Data mining can also be applied to other forms of data (e.g.,
data streams, ordered/sequence data, graph or networked data, spatial data, text data,
multimedia data, and the WWW). We present an overview of such data in Section 1.3.4.
Techniques for mining of these kinds of data are briefly introduced in Chapter 13. In-
depth treatment is considered an advanced topic. Data mining will certainly continue
to embrace new data types as they emerge.

4Sometimes data transformation and consolidation are performed before the data selection process,
particularly in the case of data warehousing. Data reduction may also be performed to obtain a smaller
representation of the original data without sacrificing its integrity.
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1.3.1 Database Data

A database system, also called a database management system (DBMS), consists of a
collection of interrelated data, known as a database, and a set of software programs to
manage and access the data. The software programs provide mechanisms for defining
database structures and data storage; for specifying and managing concurrent, shared,
or distributed data access; and for ensuring consistency and security of the information
stored despite system crashes or attempts at unauthorized access.

A relational database is a collection of tables, each of which is assigned a unique
name. Each table consists of a set of attributes (columns or fields) and usually stores
a large set of tuples (records or rows). Each tuple in a relational table represents an
object identified by a unique key and described by a set of attribute values. A semantic
data model, such as an entity-relationship (ER) data model, is often constructed for
relational databases. An ER data model represents the database as a set of entities and
their relationships.

Example 1.2 A relational database for AllElectronics. The fictitious AllElectronics store is used to
illustrate concepts throughout this book. The company is described by the following
relation tables: customer, item, employee, and branch. The headers of the tables described
here are shown in Figure 1.5. (A header is also called the schema of a relation.)

The relation customer consists of a set of attributes describing the customer infor-
mation, including a unique customer identity number (cust ID), customer name,
address, age, occupation, annual income, credit information, and category.

Similarly, each of the relations item, employee, and branch consists of a set of attri-
butes describing the properties of these entities.

Tables can also be used to represent the relationships between or among multiple
entities. In our example, these include purchases (customer purchases items, creating
a sales transaction handled by an employee), items sold (lists items sold in a given
transaction), and works at (employee works at a branch of AllElectronics).

customer (cust ID, name, address, age, occupation, annual income, credit information,
category, . . . )

item (item ID, brand, category, type, price, place made, supplier, cost, . . . )

employee (empl ID, name, category, group, salary, commission, . . . )

branch (branch ID, name, address, . . . )

purchases (trans ID, cust ID, empl ID, date, time, method paid, amount)

items sold (trans ID, item ID, qty)

works at (empl ID, branch ID)

Figure 1.5 Relational schema for a relational database, AllElectronics.
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Relational data can be accessed by database queries written in a relational query
language (e.g., SQL) or with the assistance of graphical user interfaces. A given query is
transformed into a set of relational operations, such as join, selection, and projection,
and is then optimized for efficient processing. A query allows retrieval of specified sub-
sets of the data. Suppose that your job is to analyze the AllElectronics data. Through the
use of relational queries, you can ask things like, “Show me a list of all items that were
sold in the last quarter.” Relational languages also use aggregate functions such as sum,
avg (average), count, max (maximum), and min (minimum). Using aggregates allows you
to ask: “Show me the total sales of the last month, grouped by branch,” or “How many sales
transactions occurred in the month of December?” or “Which salesperson had the highest
sales?”

When mining relational databases, we can go further by searching for trends or
data patterns. For example, data mining systems can analyze customer data to predict
the credit risk of new customers based on their income, age, and previous credit
information. Data mining systems may also detect deviations—that is, items with sales
that are far from those expected in comparison with the previous year. Such deviations
can then be further investigated. For example, data mining may discover that there has
been a change in packaging of an item or a significant increase in price.

Relational databases are one of the most commonly available and richest information
repositories, and thus they are a major data form in the study of data mining.

1.3.2 Data Warehouses

Suppose that AllElectronics is a successful international company with branches around
the world. Each branch has its own set of databases. The president of AllElectronics has
asked you to provide an analysis of the company’s sales per item type per branch for the
third quarter. This is a difficult task, particularly since the relevant data are spread out
over several databases physically located at numerous sites.

If AllElectronics had a data warehouse, this task would be easy. A data warehouse
is a repository of information collected from multiple sources, stored under a unified
schema, and usually residing at a single site. Data warehouses are constructed via a
process of data cleaning, data integration, data transformation, data loading, and peri-
odic data refreshing. This process is discussed in Chapters 3 and 4. Figure 1.6 shows the
typical framework for construction and use of a data warehouse for AllElectronics.

To facilitate decision making, the data in a data warehouse are organized around
major subjects (e.g., customer, item, supplier, and activity). The data are stored to pro-
vide information from a historical perspective, such as in the past 6 to 12 months, and are
typically summarized. For example, rather than storing the details of each sales transac-
tion, the data warehouse may store a summary of the transactions per item type for each
store or, summarized to a higher level, for each sales region.

A data warehouse is usually modeled by a multidimensional data structure, called a
data cube, in which each dimension corresponds to an attribute or a set of attributes
in the schema, and each cell stores the value of some aggregate measure such as count
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Figure 1.6 Typical framework of a data warehouse for AllElectronics.

or sum(sales amount). A data cube provides a multidimensional view of data and allows
the precomputation and fast access of summarized data.

Example 1.3 A data cube for AllElectronics. A data cube for summarized sales data of AllElectronics
is presented in Figure 1.7(a). The cube has three dimensions: address (with city values
Chicago, New York, Toronto, Vancouver), time (with quarter values Q1, Q2, Q3, Q4), and
item (with item type values home entertainment, computer, phone, security). The aggregate
value stored in each cell of the cube is sales amount (in thousands). For example, the total
sales for the first quarter, Q1, for the items related to security systems in Vancouver is
$400,000, as stored in cell 〈Vancouver, Q1, security〉. Additional cubes may be used to store
aggregatesumsovereachdimension,correspondingtotheaggregatevaluesobtainedusing
different SQL group-bys (e.g., the total sales amount per city and quarter, or per city and
item, or per quarter and item, or per each individual dimension).

By providing multidimensional data views and the precomputation of summarized
data, data warehouse systems can provide inherent support for OLAP. Online analyti-
cal processing operations make use of background knowledge regarding the domain of
the data being studied to allow the presentation of data at different levels of abstraction.
Such operations accommodate different user viewpoints. Examples of OLAP opera-
tions include drill-down and roll-up, which allow the user to view the data at differing
degrees of summarization, as illustrated in Figure 1.7(b). For instance, we can drill
down on sales data summarized by quarter to see data summarized by month. Sim-
ilarly, we can roll up on sales data summarized by city to view data summarized by
country.

Although data warehouse tools help support data analysis, additional tools for
data mining are often needed for in-depth analysis. Multidimensional data mining
(also called exploratory multidimensional data mining) performs data mining in
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Figure 1.7 A multidimensional data cube, commonly used for data warehousing, (a) showing summa-
rized data for AllElectronics and (b) showing summarized data resulting from drill-down and
roll-up operations on the cube in (a). For improved readability, only some of the cube cell
values are shown.
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multidimensional space in an OLAP style. That is, it allows the exploration of mul-
tiple combinations of dimensions at varying levels of granularity in data mining,
and thus has greater potential for discovering interesting patterns representing knowl-
edge. An overview of data warehouse and OLAP technology is provided in Chapter 4.
Advanced issues regarding data cube computation and multidimensional data mining
are discussed in Chapter 5.

1.3.3 Transactional Data

In general, each record in a transactional database captures a transaction, such as a
customer’s purchase, a flight booking, or a user’s clicks on a web page. A transaction typ-
ically includes a unique transaction identity number (trans ID) and a list of the items
making up the transaction, such as the items purchased in the transaction. A trans-
actional database may have additional tables, which contain other information related
to the transactions, such as item description, information about the salesperson or the
branch, and so on.

Example 1.4 A transactional database for AllElectronics. Transactions can be stored in a table, with
one record per transaction. A fragment of a transactional database for AllElectronics is
shown in Figure 1.8. From the relational database point of view, the sales table in the
figure is a nested relation because the attribute list of item IDs contains a set of items.
Because most relational database systems do not support nested relational structures,
the transactional database is usually either stored in a flat file in a format similar to
the table in Figure 1.8 or unfolded into a standard relation in a format similar to the
items sold table in Figure 1.5.

As an analyst of AllElectronics, you may ask,“Which items sold well together?” This
kind of market basket data analysis would enable you to bundle groups of items together
as a strategy for boosting sales. For example, given the knowledge that printers are
commonly purchased together with computers, you could offer certain printers at a
steep discount (or even for free) to customers buying selected computers, in the hopes
of selling more computers (which are often more expensive than printers). A tradi-
tional database system is not able to perform market basket data analysis. Fortunately,
data mining on transactional data can do so by mining frequent itemsets, that is, sets

trans ID list of item IDs

T100 I1, I3, I8, I16

T200 I2, I8

. . . . . .

Figure 1.8 Fragment of a transactional database for sales at AllElectronics.
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of items that are frequently sold together. The mining of such frequent patterns from
transactional data is discussed in Chapters 6 and 7.

1.3.4 Other Kinds of Data

Besides relational database data, data warehouse data, and transaction data, there are
many other kinds of data that have versatile forms and structures and rather different
semantic meanings. Such kinds of data can be seen in many applications: time-related
or sequence data (e.g., historical records, stock exchange data, and time-series and bio-
logical sequence data), data streams (e.g., video surveillance and sensor data, which are
continuously transmitted), spatial data (e.g., maps), engineering design data (e.g., the
design of buildings, system components, or integrated circuits), hypertext and multi-
media data (including text, image, video, and audio data), graph and networked data
(e.g., social and information networks), and the Web (a huge, widely distributed infor-
mation repository made available by the Internet). These applications bring about new
challenges, like how to handle data carrying special structures (e.g., sequences, trees,
graphs, and networks) and specific semantics (such as ordering, image, audio and video
contents, and connectivity), and how to mine patterns that carry rich structures and
semantics.

Various kinds of knowledge can be mined from these kinds of data. Here, we list
just a few. Regarding temporal data, for instance, we can mine banking data for chang-
ing trends, which may aid in the scheduling of bank tellers according to the volume of
customer traffic. Stock exchange data can be mined to uncover trends that could help
you plan investment strategies (e.g., the best time to purchase AllElectronics stock). We
could mine computer network data streams to detect intrusions based on the anomaly of
message flows, which may be discovered by clustering, dynamic construction of stream
models or by comparing the current frequent patterns with those at a previous time.
With spatial data, we may look for patterns that describe changes in metropolitan
poverty rates based on city distances from major highways. The relationships among
a set of spatial objects can be examined in order to discover which subsets of objects
are spatially autocorrelated or associated. By mining text data, such as literature on data
mining from the past ten years, we can identify the evolution of hot topics in the field. By
mining user comments on products (which are often submitted as short text messages),
we can assess customer sentiments and understand how well a product is embraced by
a market. From multimedia data, we can mine images to identify objects and classify
them by assigning semantic labels or tags. By mining video data of a hockey game, we
can detect video sequences corresponding to goals. Web mining can help us learn about
the distribution of information on the WWW in general, characterize and classify web
pages, and uncover web dynamics and the association and other relationships among
different web pages, users, communities, and web-based activities.

It is important to keep in mind that, in many applications, multiple types of data
are present. For example, in web mining, there often exist text data and multimedia
data (e.g., pictures and videos) on web pages, graph data like web graphs, and map
data on some web sites. In bioinformatics, genomic sequences, biological networks, and



1.4 What Kinds of Patterns Can Be Mined? 15

3-D spatial structures of genomes may coexist for certain biological objects. Mining
multiple data sources of complex data often leads to fruitful findings due to the mutual
enhancement and consolidation of such multiple sources. On the other hand, it is also
challenging because of the difficulties in data cleaning and data integration, as well as
the complex interactions among the multiple sources of such data.

While such data require sophisticated facilities for efficient storage, retrieval, and
updating, they also provide fertile ground and raise challenging research and imple-
mentation issues for data mining. Data mining on such data is an advanced topic. The
methods involved are extensions of the basic techniques presented in this book.

1.4 What Kinds of Patterns Can Be Mined?

We have observed various types of data and information repositories on which data
mining can be performed. Let us now examine the kinds of patterns that can be mined.

There are a number of data mining functionalities. These include characterization
and discrimination (Section 1.4.1); the mining of frequent patterns, associations, and
correlations (Section 1.4.2); classification and regression (Section 1.4.3); clustering anal-
ysis (Section 1.4.4); and outlier analysis (Section 1.4.5). Data mining functionalities are
used to specify the kinds of patterns to be found in data mining tasks. In general, such
tasks can be classified into two categories: descriptive and predictive. Descriptive min-
ing tasks characterize properties of the data in a target data set. Predictive mining tasks
perform induction on the current data in order to make predictions.

Data mining functionalities, and the kinds of patterns they can discover, are described
below. In addition, Section 1.4.6 looks at what makes a pattern interesting. Interesting
patterns represent knowledge.

1.4.1 Class/Concept Description: Characterization
and Discrimination

Data entries can be associated with classes or concepts. For example, in the AllElectronics
store, classes of items for sale include computers and printers, and concepts of customers
include bigSpenders and budgetSpenders. It can be useful to describe individual classes
and concepts in summarized, concise, and yet precise terms. Such descriptions of a class
or a concept are called class/concept descriptions. These descriptions can be derived
using (1) data characterization, by summarizing the data of the class under study (often
called the target class) in general terms, or (2) data discrimination, by comparison of
the target class with one or a set of comparative classes (often called the contrasting
classes), or (3) both data characterization and discrimination.

Data characterization is a summarization of the general characteristics or features
of a target class of data. The data corresponding to the user-specified class are typically
collected by a query. For example, to study the characteristics of software products with
sales that increased by 10% in the previous year, the data related to such products can
be collected by executing an SQL query on the sales database.
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There are several methods for effective data summarization and characterization.
Simple data summaries based on statistical measures and plots are described in
Chapter 2. The data cube-based OLAP roll-up operation (Section 1.3.2) can be used
to perform user-controlled data summarization along a specified dimension. This pro-
cess is further detailed in Chapters 4 and 5, which discuss data warehousing. An
attribute-oriented induction technique can be used to perform data generalization and
characterization without step-by-step user interaction. This technique is also described
in Chapter 4.

The output of data characterization can be presented in various forms. Examples
include pie charts, bar charts, curves, multidimensional data cubes, and multidimen-
sional tables, including crosstabs. The resulting descriptions can also be presented as
generalized relations or in rule form (called characteristic rules).

Example 1.5 Data characterization. A customer relationship manager at AllElectronics may order the
following data mining task: Summarize the characteristics of customers who spend more
than $5000 a year at AllElectronics. The result is a general profile of these customers,
such as that they are 40 to 50 years old, employed, and have excellent credit ratings. The
data mining system should allow the customer relationship manager to drill down on
any dimension, such as on occupation to view these customers according to their type of
employment.

Data discrimination is a comparison of the general features of the target class data
objects against the general features of objects from one or multiple contrasting classes.
The target and contrasting classes can be specified by a user, and the corresponding
data objects can be retrieved through database queries. For example, a user may want to
compare the general features of software products with sales that increased by 10% last
year against those with sales that decreased by at least 30% during the same period. The
methods used for data discrimination are similar to those used for data characterization.

“How are discrimination descriptions output?” The forms of output presentation
are similar to those for characteristic descriptions, although discrimination descrip-
tions should include comparative measures that help to distinguish between the target
and contrasting classes. Discrimination descriptions expressed in the form of rules are
referred to as discriminant rules.

Example 1.6 Data discrimination. A customer relationship manager at AllElectronics may want to
compare two groups of customers—those who shop for computer products regularly
(e.g., more than twice a month) and those who rarely shop for such products (e.g.,
less than three times a year). The resulting description provides a general comparative
profile of these customers, such as that 80% of the customers who frequently purchase
computer products are between 20 and 40 years old and have a university education,
whereas 60% of the customers who infrequently buy such products are either seniors or
youths, and have no university degree. Drilling down on a dimension like occupation,
or adding a new dimension like income level, may help to find even more discriminative
features between the two classes.
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Concept description, including characterization and discrimination, is described in
Chapter 4.

1.4.2 Mining Frequent Patterns, Associations, and Correlations

Frequent patterns, as the name suggests, are patterns that occur frequently in data.
There are many kinds of frequent patterns, including frequent itemsets, frequent sub-
sequences (also known as sequential patterns), and frequent substructures. A frequent
itemset typically refers to a set of items that often appear together in a transactional
data set—for example, milk and bread, which are frequently bought together in gro-
cery stores by many customers. A frequently occurring subsequence, such as the pattern
that customers, tend to purchase first a laptop, followed by a digital camera, and then
a memory card, is a (frequent) sequential pattern. A substructure can refer to different
structural forms (e.g., graphs, trees, or lattices) that may be combined with itemsets
or subsequences. If a substructure occurs frequently, it is called a (frequent) structured
pattern. Mining frequent patterns leads to the discovery of interesting associations and
correlations within data.

Example 1.7 Association analysis. Suppose that, as a marketing manager at AllElectronics, you want
to know which items are frequently purchased together (i.e., within the same transac-
tion). An example of such a rule, mined from the AllElectronics transactional database, is

buys(X , “computer”)⇒ buys(X , “software”) [support= 1%, confidence= 50%],

where X is a variable representing a customer. A confidence, or certainty, of 50%
means that if a customer buys a computer, there is a 50% chance that she will buy
software as well. A 1% support means that 1% of all the transactions under analysis
show that computer and software are purchased together. This association rule involves
a single attribute or predicate (i.e., buys) that repeats. Association rules that contain a
single predicate are referred to as single-dimensional association rules. Dropping the
predicate notation, the rule can be written simply as “computer ⇒ software [1%, 50%].”

Suppose, instead, that we are given the AllElectronics relational database related to
purchases. A data mining system may find association rules like

age(X , “20..29”)∧ income(X , “40K..49K”)⇒ buys(X , “laptop”)

[support= 2%, confidence= 60%].

The rule indicates that of the AllElectronics customers under study, 2% are 20 to 29 years
old with an income of $40,000 to $49,000 and have purchased a laptop (computer)
at AllElectronics. There is a 60% probability that a customer in this age and income
group will purchase a laptop. Note that this is an association involving more than one
attribute or predicate (i.e., age, income, and buys). Adopting the terminology used in
multidimensional databases, where each attribute is referred to as a dimension, the
above rule can be referred to as a multidimensional association rule.
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Typically, association rules are discarded as uninteresting if they do not satisfy both a
minimum support threshold and a minimum confidence threshold. Additional anal-
ysis can be performed to uncover interesting statistical correlations between associated
attribute–value pairs.

Frequent itemset mining is a fundamental form of frequent pattern mining. The min-
ing of frequent patterns, associations, and correlations is discussed in Chapters 6 and 7,
where particular emphasis is placed on efficient algorithms for frequent itemset min-
ing. Sequential pattern mining and structured pattern mining are considered advanced
topics.

1.4.3 Classification and Regression for Predictive Analysis

Classification is the process of finding a model (or function) that describes and distin-
guishes data classes or concepts. The model are derived based on the analysis of a set of
training data (i.e., data objects for which the class labels are known). The model is used
to predict the class label of objects for which the the class label is unknown.

“How is the derived model presented?” The derived model may be represented in var-
ious forms, such as classification rules (i.e., IF-THEN rules), decision trees, mathematical
formulae, or neural networks (Figure 1.9). A decision tree is a flowchart-like tree structure,
where each node denotes a test on an attribute value, each branch represents an outcome
of the test, and tree leaves represent classes or class distributions. Decision trees can easily
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age(X, “middle_aged”)
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Figure 1.9 A classification model can be represented in various forms: (a) IF-THEN rules, (b) a decision
tree, or (c) a neural network.
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be converted to classification rules. A neural network, when used for classification, is typ-
ically a collection of neuron-like processing units with weighted connections between the
units. There are many other methods for constructing classification models, such as naı̈ve
Bayesian classification, support vector machines, and k-nearest-neighbor classification.

Whereas classification predicts categorical (discrete, unordered) labels, regression
models continuous-valued functions. That is, regression is used to predict missing or
unavailable numerical data values rather than (discrete) class labels. The term prediction
refers to both numeric prediction and class label prediction. Regression analysis is a
statistical methodology that is most often used for numeric prediction, although other
methods exist as well. Regression also encompasses the identification of distribution
trends based on the available data.

Classification and regression may need to be preceded by relevance analysis, which
attempts to identify attributes that are significantly relevant to the classification and
regression process. Such attributes will be selected for the classification and regression
process. Other attributes, which are irrelevant, can then be excluded from consideration.

Example 1.8 Classification and regression. Suppose as a sales manager of AllElectronics you want to
classify a large set of items in the store, based on three kinds of responses to a sales cam-
paign: good response, mild response and no response. You want to derive a model for each
of these three classes based on the descriptive features of the items, such as price, brand,
place made, type, and category. The resulting classification should maximally distinguish
each class from the others, presenting an organized picture of the data set.

Suppose that the resulting classification is expressed as a decision tree. The decision
tree, for instance, may identify price as being the single factor that best distinguishes the
three classes. The tree may reveal that, in addition to price, other features that help to
further distinguish objects of each class from one another include brand and place made.
Such a decision tree may help you understand the impact of the given sales campaign
and design a more effective campaign in the future.

Suppose instead, that rather than predicting categorical response labels for each store
item, you would like to predict the amount of revenue that each item will generate
during an upcoming sale at AllElectronics, based on the previous sales data. This is an
example of regression analysis because the regression model constructed will predict a
continuous function (or ordered value.)

Chapters 8 and 9 discuss classification in further detail. Regression analysis is beyond
the scope of this book. Sources for further information are given in the bibliographic
notes.

1.4.4 Cluster Analysis

Unlike classification and regression, which analyze class-labeled (training) data sets,
clustering analyzes data objects without consulting class labels. In many cases, class-
labeled data may simply not exist at the beginning. Clustering can be used to generate
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Figure 1.10 A 2-D plot of customer data with respect to customer locations in a city, showing three data
clusters.

class labels for a group of data. The objects are clustered or grouped based on the princi-
ple of maximizing the intraclass similarity and minimizing the interclass similarity. That is,
clusters of objects are formed so that objects within a cluster have high similarity in com-
parison to one another, but are rather dissimilar to objects in other clusters. Each cluster
so formed can be viewed as a class of objects, from which rules can be derived. Clus-
tering can also facilitate taxonomy formation, that is, the organization of observations
into a hierarchy of classes that group similar events together.

Example 1.9 Cluster analysis. Cluster analysis can be performed on AllElectronics customer data to
identify homogeneous subpopulations of customers. These clusters may represent indi-
vidual target groups for marketing. Figure 1.10 shows a 2-D plot of customers with
respect to customer locations in a city. Three clusters of data points are evident.

Cluster analysis forms the topic of Chapters 10 and 11.

1.4.5 Outlier Analysis

A data set may contain objects that do not comply with the general behavior or model
of the data. These data objects are outliers. Many data mining methods discard outliers
as noise or exceptions. However, in some applications (e.g., fraud detection) the rare
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events can be more interesting than the more regularly occurring ones. The analysis of
outlier data is referred to as outlier analysis or anomaly mining.

Outliers may be detected using statistical tests that assume a distribution or proba-
bility model for the data, or using distance measures where objects that are remote from
any other cluster are considered outliers. Rather than using statistical or distance mea-
sures, density-based methods may identify outliers in a local region, although they look
normal from a global statistical distribution view.

Example 1.10 Outlier analysis. Outlier analysis may uncover fraudulent usage of credit cards by
detecting purchases of unusually large amounts for a given account number in compari-
son to regular charges incurred by the same account. Outlier values may also be detected
with respect to the locations and types of purchase, or the purchase frequency.

Outlier analysis is discussed in Chapter 12.

1.4.6 Are All Patterns Interesting?

A data mining system has the potential to generate thousands or even millions of
patterns, or rules.

You may ask, “Are all of the patterns interesting?” Typically, the answer is no—only
a small fraction of the patterns potentially generated would actually be of interest to a
given user.

This raises some serious questions for data mining. You may wonder, “What makes a
pattern interesting? Can a data mining system generate all of the interesting patterns? Or,
Can the system generate only the interesting ones?”

To answer the first question, a pattern is interesting if it is (1) easily understood by
humans, (2) valid on new or test data with some degree of certainty, (3) potentially
useful, and (4) novel. A pattern is also interesting if it validates a hypothesis that the user
sought to confirm. An interesting pattern represents knowledge.

Several objective measures of pattern interestingness exist. These are based on
the structure of discovered patterns and the statistics underlying them. An objective
measure for association rules of the form X ⇒ Y is rule support, representing the per-
centage of transactions from a transaction database that the given rule satisfies. This is
taken to be the probability P(X ∪Y ), where X ∪Y indicates that a transaction contains
both X and Y , that is, the union of itemsets X and Y . Another objective measure for
association rules is confidence, which assesses the degree of certainty of the detected
association. This is taken to be the conditional probability P(Y |X), that is, the prob-
ability that a transaction containing X also contains Y . More formally, support and
confidence are defined as

support(X ⇒ Y )= P(X ∪Y ),

confidence(X ⇒ Y )= P(Y |X).

In general, each interestingness measure is associated with a threshold, which may be
controlled by the user. For example, rules that do not satisfy a confidence threshold of,
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say, 50% can be considered uninteresting. Rules below the threshold likely reflect noise,
exceptions, or minority cases and are probably of less value.

Other objective interestingness measures include accuracy and coverage for classifica-
tion (IF-THEN) rules. In general terms, accuracy tells us the percentage of data that are
correctly classified by a rule. Coverage is similar to support, in that it tells us the per-
centage of data to which a rule applies. Regarding understandability, we may use simple
objective measures that assess the complexity or length in bits of the patterns mined.

Although objective measures help identify interesting patterns, they are often insuffi-
cient unless combined with subjective measures that reflect a particular user’s needs and
interests. For example, patterns describing the characteristics of customers who shop
frequently at AllElectronics should be interesting to the marketing manager, but may be
of little interest to other analysts studying the same database for patterns on employee
performance. Furthermore, many patterns that are interesting by objective standards
may represent common sense and, therefore, are actually uninteresting.

Subjective interestingness measures are based on user beliefs in the data. These
measures find patterns interesting if the patterns are unexpected (contradicting a user’s
belief) or offer strategic information on which the user can act. In the latter case, such
patterns are referred to as actionable. For example, patterns like “a large earthquake
often follows a cluster of small quakes” may be highly actionable if users can act on the
information to save lives. Patterns that are expected can be interesting if they confirm a
hypothesis that the user wishes to validate or they resemble a user’s hunch.

The second question—“Can a data mining system generate all of the interesting pat-
terns?”—refers to the completeness of a data mining algorithm. It is often unrealistic
and inefficient for data mining systems to generate all possible patterns. Instead, user-
provided constraints and interestingness measures should be used to focus the search.
For some mining tasks, such as association, this is often sufficient to ensure the com-
pleteness of the algorithm. Association rule mining is an example where the use of
constraints and interestingness measures can ensure the completeness of mining. The
methods involved are examined in detail in Chapter 6.

Finally, the third question—“Can a data mining system generate only interesting pat-
terns?”—is an optimization problem in data mining. It is highly desirable for data
mining systems to generate only interesting patterns. This would be efficient for users
and data mining systems because neither would have to search through the patterns gen-
erated to identify the truly interesting ones. Progress has been made in this direction;
however, such optimization remains a challenging issue in data mining.

Measures of pattern interestingness are essential for the efficient discovery of patterns
by target users. Such measures can be used after the data mining step to rank the dis-
covered patterns according to their interestingness, filtering out the uninteresting ones.
More important, such measures can be used to guide and constrain the discovery pro-
cess, improving the search efficiency by pruning away subsets of the pattern space that
do not satisfy prespecified interestingness constraints. Examples of such a constraint-
based mining process are described in Chapter 7 (with respect to pattern discovery) and
Chapter 11 (with respect to clustering).
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Methods to assess pattern interestingness, and their use to improve data mining effi-
ciency, are discussed throughout the book with respect to each kind of pattern that can
be mined.

1.5 Which Technologies Are Used?

As a highly application-driven domain, data mining has incorporated many techniques
from other domains such as statistics, machine learning, pattern recognition, database
and data warehouse systems, information retrieval, visualization, algorithms, high-
performance computing, and many application domains (Figure 1.11). The interdisci-
plinary nature of data mining research and development contributes significantly to the
success of data mining and its extensive applications. In this section, we give examples
of several disciplines that strongly influence the development of data mining methods.

1.5.1 Statistics

Statistics studies the collection, analysis, interpretation or explanation, and presentation
of data. Data mining has an inherent connection with statistics.

A statistical model is a set of mathematical functions that describe the behavior of
the objects in a target class in terms of random variables and their associated proba-
bility distributions. Statistical models are widely used to model data and data classes.
For example, in data mining tasks like data characterization and classification, statistical
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Algorithms
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ApplicationsInformation
retrieval
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Figure 1.11 Data mining adopts techniques from many domains.
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models of target classes can be built. In other words, such statistical models can be the
outcome of a data mining task. Alternatively, data mining tasks can be built on top of
statistical models. For example, we can use statistics to model noise and missing data
values. Then, when mining patterns in a large data set, the data mining process can use
the model to help identify and handle noisy or missing values in the data.

Statistics research develops tools for prediction and forecasting using data and sta-
tistical models. Statistical methods can be used to summarize or describe a collection
of data. Basic statistical descriptions of data are introduced in Chapter 2. Statistics is
useful for mining various patterns from data as well as for understanding the underlying
mechanisms generating and affecting the patterns. Inferential statistics (or predictive
statistics) models data in a way that accounts for randomness and uncertainty in the
observations and is used to draw inferences about the process or population under
investigation.

Statistical methods can also be used to verify data mining results. For example, after
a classification or prediction model is mined, the model should be verified by statisti-
cal hypothesis testing. A statistical hypothesis test (sometimes called confirmatory data
analysis) makes statistical decisions using experimental data. A result is called statistically
significant if it is unlikely to have occurred by chance. If the classification or prediction
model holds true, then the descriptive statistics of the model increases the soundness of
the model.

Applying statistical methods in data mining is far from trivial. Often, a serious chal-
lenge is how to scale up a statistical method over a large data set. Many statistical
methods have high complexity in computation. When such methods are applied on
large data sets that are also distributed on multiple logical or physical sites, algorithms
should be carefully designed and tuned to reduce the computational cost. This challenge
becomes even tougher for online applications, such as online query suggestions in
search engines, where data mining is required to continuously handle fast, real-time
data streams.

1.5.2 Machine Learning

Machine learning investigates how computers can learn (or improve their performance)
based on data. A main research area is for computer programs to automatically learn to
recognize complex patterns and make intelligent decisions based on data. For example, a
typical machine learning problem is to program a computer so that it can automatically
recognize handwritten postal codes on mail after learning from a set of examples.

Machine learning is a fast-growing discipline. Here, we illustrate classic problems in
machine learning that are highly related to data mining.

Supervised learning is basically a synonym for classification. The supervision in the
learning comes from the labeled examples in the training data set. For example, in
the postal code recognition problem, a set of handwritten postal code images and
their corresponding machine-readable translations are used as the training examples,
which supervise the learning of the classification model.
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Unsupervised learning is essentially a synonym for clustering. The learning process
is unsupervised since the input examples are not class labeled. Typically, we may use
clustering to discover classes within the data. For example, an unsupervised learning
method can take, as input, a set of images of handwritten digits. Suppose that it finds
10 clusters of data. These clusters may correspond to the 10 distinct digits of 0 to
9, respectively. However, since the training data are not labeled, the learned model
cannot tell us the semantic meaning of the clusters found.

Semi-supervised learning is a class of machine learning techniques that make use
of both labeled and unlabeled examples when learning a model. In one approach,
labeled examples are used to learn class models and unlabeled examples are used to
refine the boundaries between classes. For a two-class problem, we can think of the
set of examples belonging to one class as the positive examples and those belonging
to the other class as the negative examples. In Figure 1.12, if we do not consider the
unlabeled examples, the dashed line is the decision boundary that best partitions
the positive examples from the negative examples. Using the unlabeled examples,
we can refine the decision boundary to the solid line. Moreover, we can detect that
the two positive examples at the top right corner, though labeled, are likely noise or
outliers.

Active learning is a machine learning approach that lets users play an active role
in the learning process. An active learning approach can ask a user (e.g., a domain
expert) to label an example, which may be from a set of unlabeled examples or
synthesized by the learning program. The goal is to optimize the model quality by
actively acquiring knowledge from human users, given a constraint on how many
examples they can be asked to label.

Positive example

Negative example

Unlabeled example

Decision boundary without unlabeled examples

Decision boundary with unlabeled examples

Noise/outliers

Figure 1.12 Semi-supervised learning.
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You can see there are many similarities between data mining and machine learning.
For classification and clustering tasks, machine learning research often focuses on the
accuracy of the model. In addition to accuracy, data mining research places strong
emphasis on the efficiency and scalability of mining methods on large data sets, as well
as on ways to handle complex types of data and explore new, alternative methods.

1.5.3 Database Systems and Data Warehouses

Database systems research focuses on the creation, maintenance, and use of databases
for organizations and end-users. Particularly, database systems researchers have estab-
lished highly recognized principles in data models, query languages, query processing
and optimization methods, data storage, and indexing and accessing methods. Database
systems are often well known for their high scalability in processing very large, relatively
structured data sets.

Many data mining tasks need to handle large data sets or even real-time, fast stream-
ing data. Therefore, data mining can make good use of scalable database technologies to
achieve high efficiency and scalability on large data sets. Moreover, data mining tasks can
be used to extend the capability of existing database systems to satisfy advanced users’
sophisticated data analysis requirements.

Recent database systems have built systematic data analysis capabilities on database
data using data warehousing and data mining facilities. A data warehouse integrates
data originating from multiple sources and various timeframes. It consolidates data
in multidimensional space to form partially materialized data cubes. The data cube
model not only facilitates OLAP in multidimensional databases but also promotes
multidimensional data mining (see Section 1.3.2).

1.5.4 Information Retrieval

Information retrieval (IR) is the science of searching for documents or information
in documents. Documents can be text or multimedia, and may reside on the Web. The
differences between traditional information retrieval and database systems are twofold:
Information retrieval assumes that (1) the data under search are unstructured; and (2)
the queries are formed mainly by keywords, which do not have complex structures
(unlike SQL queries in database systems).

The typical approaches in information retrieval adopt probabilistic models. For
example, a text document can be regarded as a bag of words, that is, a multiset of words
appearing in the document. The document’s language model is the probability density
function that generates the bag of words in the document. The similarity between two
documents can be measured by the similarity between their corresponding language
models.

Furthermore, a topic in a set of text documents can be modeled as a probability dis-
tribution over the vocabulary, which is called a topic model. A text document, which
may involve one or multiple topics, can be regarded as a mixture of multiple topic mod-
els. By integrating information retrieval models and data mining techniques, we can find
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the major topics in a collection of documents and, for each document in the collection,
the major topics involved.

Increasingly large amounts of text and multimedia data have been accumulated and
made available online due to the fast growth of the Web and applications such as dig-
ital libraries, digital governments, and health care information systems. Their effective
search and analysis have raised many challenging issues in data mining. Therefore, text
mining and multimedia data mining, integrated with information retrieval methods,
have become increasingly important.

1.6 Which Kinds of Applications Are Targeted?

Where there are data, there are data mining applications

As a highly application-driven discipline, data mining has seen great successes in many
applications. It is impossible to enumerate all applications where data mining plays a
critical role. Presentations of data mining in knowledge-intensive application domains,
such as bioinformatics and software engineering, require more in-depth treatment and
are beyond the scope of this book. To demonstrate the importance of applications as
a major dimension in data mining research and development, we briefly discuss two
highly successful and popular application examples of data mining: business intelligence
and search engines.

1.6.1 Business Intelligence

It is critical for businesses to acquire a better understanding of the commercial context
of their organization, such as their customers, the market, supply and resources, and
competitors. Business intelligence (BI) technologies provide historical, current, and
predictive views of business operations. Examples include reporting, online analytical
processing, business performance management, competitive intelligence, benchmark-
ing, and predictive analytics.

“How important is business intelligence?” Without data mining, many businesses may
not be able to perform effective market analysis, compare customer feedback on simi-
lar products, discover the strengths and weaknesses of their competitors, retain highly
valuable customers, and make smart business decisions.

Clearly, data mining is the core of business intelligence. Online analytical process-
ing tools in business intelligence rely on data warehousing and multidimensional data
mining. Classification and prediction techniques are the core of predictive analytics
in business intelligence, for which there are many applications in analyzing markets,
supplies, and sales. Moreover, clustering plays a central role in customer relationship
management, which groups customers based on their similarities. Using characteriza-
tion mining techniques, we can better understand features of each customer group and
develop customized customer reward programs.
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1.6.2 Web Search Engines

A Web search engine is a specialized computer server that searches for information
on the Web. The search results of a user query are often returned as a list (sometimes
called hits). The hits may consist of web pages, images, and other types of files. Some
search engines also search and return data available in public databases or open directo-
ries. Search engines differ from web directories in that web directories are maintained
by human editors whereas search engines operate algorithmically or by a mixture of
algorithmic and human input.

Web search engines are essentially very large data mining applications. Various data
mining techniques are used in all aspects of search engines, ranging from crawling5

(e.g., deciding which pages should be crawled and the crawling frequencies), indexing
(e.g., selecting pages to be indexed and deciding to which extent the index should be
constructed), and searching (e.g., deciding how pages should be ranked, which adver-
tisements should be added, and how the search results can be personalized or made
“context aware”).

Search engines pose grand challenges to data mining. First, they have to handle a
huge and ever-growing amount of data. Typically, such data cannot be processed using
one or a few machines. Instead, search engines often need to use computer clouds, which
consist of thousands or even hundreds of thousands of computers that collaboratively
mine the huge amount of data. Scaling up data mining methods over computer clouds
and large distributed data sets is an area for further research.

Second, Web search engines often have to deal with online data. A search engine
may be able to afford constructing a model offline on huge data sets. To do this, it may
construct a query classifier that assigns a search query to predefined categories based on
the query topic (i.e., whether the search query “apple” is meant to retrieve information
about a fruit or a brand of computers). Whether a model is constructed offline, the
application of the model online must be fast enough to answer user queries in real time.

Another challenge is maintaining and incrementally updating a model on fast-
growing data streams. For example, a query classifier may need to be incrementally
maintained continuously since new queries keep emerging and predefined categories
and the data distribution may change. Most of the existing model training methods are
offline and static and thus cannot be used in such a scenario.

Third, Web search engines often have to deal with queries that are asked only a very
small number of times. Suppose a search engine wants to provide context-aware query
recommendations. That is, when a user poses a query, the search engine tries to infer
the context of the query using the user’s profile and his query history in order to return
more customized answers within a small fraction of a second. However, although the
total number of queries asked can be huge, most of the queries may be asked only once
or a few times. Such severely skewed data are challenging for many data mining and
machine learning methods.

5A Web crawler is a computer program that browses the Web in a methodical, automated manner.
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1.7 Major Issues in Data Mining

Life is short but art is long. – Hippocrates

Data mining is a dynamic and fast-expanding field with great strengths. In this section,
we briefly outline the major issues in data mining research, partitioning them into
five groups: mining methodology, user interaction, efficiency and scalability, diversity of
data types, and data mining and society. Many of these issues have been addressed in
recent data mining research and development to a certain extent and are now consid-
ered data mining requirements; others are still at the research stage. The issues continue
to stimulate further investigation and improvement in data mining.

1.7.1 Mining Methodology

Researchers have been vigorously developing new data mining methodologies. This
involves the investigation of new kinds of knowledge, mining in multidimensional
space, integrating methods from other disciplines, and the consideration of semantic ties
among data objects. In addition, mining methodologies should consider issues such as
data uncertainty, noise, and incompleteness. Some mining methods explore how user-
specified measures can be used to assess the interestingness of discovered patterns as
well as guide the discovery process. Let’s have a look at these various aspects of mining
methodology.

Mining various and new kinds of knowledge: Data mining covers a wide spectrum of
data analysis and knowledge discovery tasks, from data characterization and discrim-
ination to association and correlation analysis, classification, regression, clustering,
outlier analysis, sequence analysis, and trend and evolution analysis. These tasks may
use the same database in different ways and require the development of numerous
data mining techniques. Due to the diversity of applications, new mining tasks con-
tinue to emerge, making data mining a dynamic and fast-growing field. For example,
for effective knowledge discovery in information networks, integrated clustering and
ranking may lead to the discovery of high-quality clusters and object ranks in large
networks.

Mining knowledge in multidimensional space: When searching for knowledge in large
data sets, we can explore the data in multidimensional space. That is, we can search
for interesting patterns among combinations of dimensions (attributes) at varying
levels of abstraction. Such mining is known as (exploratory) multidimensional data
mining. In many cases, data can be aggregated or viewed as a multidimensional data
cube. Mining knowledge in cube space can substantially enhance the power and
flexibility of data mining.

Data mining—an interdisciplinary effort: The power of data mining can be substan-
tially enhanced by integrating new methods from multiple disciplines. For example,
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to mine data with natural language text, it makes sense to fuse data mining methods
with methods of information retrieval and natural language processing. As another
example, consider the mining of software bugs in large programs. This form of min-
ing, known as bug mining, benefits from the incorporation of software engineering
knowledge into the data mining process.

Boosting the power of discovery in a networked environment: Most data objects reside
in a linked or interconnected environment, whether it be the Web, database rela-
tions, files, or documents. Semantic links across multiple data objects can be used
to advantage in data mining. Knowledge derived in one set of objects can be used
to boost the discovery of knowledge in a “related” or semantically linked set of
objects.

Handling uncertainty, noise, or incompleteness of data: Data often contain noise,
errors, exceptions, or uncertainty, or are incomplete. Errors and noise may confuse
the data mining process, leading to the derivation of erroneous patterns. Data clean-
ing, data preprocessing, outlier detection and removal, and uncertainty reasoning are
examples of techniques that need to be integrated with the data mining process.

Pattern evaluation and pattern- or constraint-guided mining: Not all the patterns gen-
erated by data mining processes are interesting. What makes a pattern interesting
may vary from user to user. Therefore, techniques are needed to assess the inter-
estingness of discovered patterns based on subjective measures. These estimate the
value of patterns with respect to a given user class, based on user beliefs or expec-
tations. Moreover, by using interestingness measures or user-specified constraints to
guide the discovery process, we may generate more interesting patterns and reduce
the search space.

1.7.2 User Interaction

The user plays an important role in the data mining process. Interesting areas of research
include how to interact with a data mining system, how to incorporate a user’s back-
ground knowledge in mining, and how to visualize and comprehend data mining results.
We introduce each of these here.

Interactive mining: The data mining process should be highly interactive. Thus, it is
important to build flexible user interfaces and an exploratory mining environment,
facilitating the user’s interaction with the system. A user may like to first sample a
set of data, explore general characteristics of the data, and estimate potential min-
ing results. Interactive mining should allow users to dynamically change the focus
of a search, to refine mining requests based on returned results, and to drill, dice,
and pivot through the data and knowledge space interactively, dynamically exploring
“cube space” while mining.

Incorporation of background knowledge: Background knowledge, constraints, rules,
and other information regarding the domain under study should be incorporated
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into the knowledge discovery process. Such knowledge can be used for pattern
evaluation as well as to guide the search toward interesting patterns.

Ad hoc data mining and data mining query languages: Query languages (e.g., SQL)
have played an important role in flexible searching because they allow users to pose
ad hoc queries. Similarly, high-level data mining query languages or other high-level
flexible user interfaces will give users the freedom to define ad hoc data mining tasks.
This should facilitate specification of the relevant sets of data for analysis, the domain
knowledge, the kinds of knowledge to be mined, and the conditions and constraints
to be enforced on the discovered patterns. Optimization of the processing of such
flexible mining requests is another promising area of study.

Presentation and visualization of data mining results: How can a data mining system
present data mining results, vividly and flexibly, so that the discovered knowledge
can be easily understood and directly usable by humans? This is especially crucial
if the data mining process is interactive. It requires the system to adopt expressive
knowledge representations, user-friendly interfaces, and visualization techniques.

1.7.3 Efficiency and Scalability

Efficiency and scalability are always considered when comparing data mining algo-
rithms. As data amounts continue to multiply, these two factors are especially critical.

Efficiency and scalability of data mining algorithms: Data mining algorithms must be
efficient and scalable in order to effectively extract information from huge amounts
of data in many data repositories or in dynamic data streams. In other words, the
running time of a data mining algorithm must be predictable, short, and acceptable
by applications. Efficiency, scalability, performance, optimization, and the ability to
execute in real time are key criteria that drive the development of many new data
mining algorithms.

Parallel, distributed, and incremental mining algorithms: The humongous size of many
data sets, the wide distribution of data, and the computational complexity of some
data mining methods are factors that motivate the development of parallel and dis-
tributed data-intensive mining algorithms. Such algorithms first partition the data
into “pieces.” Each piece is processed, in parallel, by searching for patterns. The par-
allel processes may interact with one another. The patterns from each partition are
eventually merged.

Cloud computing and cluster computing, which use computers in a distributed
and collaborative way to tackle very large-scale computational tasks, are also active
research themes in parallel data mining. In addition, the high cost of some data min-
ing processes and the incremental nature of input promote incremental data mining,
which incorporates new data updates without having to mine the entire data “from
scratch.” Such methods perform knowledge modification incrementally to amend
and strengthen what was previously discovered.
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1.7.4 Diversity of Database Types

The wide diversity of database types brings about challenges to data mining. These
include

Handling complex types of data: Diverse applications generate a wide spectrum of
new data types, from structured data such as relational and data warehouse data to
semi-structured and unstructured data; from stable data repositories to dynamic data
streams; from simple data objects to temporal data, biological sequences, sensor data,
spatial data, hypertext data, multimedia data, software program code, Web data, and
social network data. It is unrealistic to expect one data mining system to mine all
kinds of data, given the diversity of data types and the different goals of data mining.
Domain- or application-dedicated data mining systems are being constructed for in-
depth mining of specific kinds of data. The construction of effective and efficient
data mining tools for diverse applications remains a challenging and active area of
research.

Mining dynamic, networked, and global data repositories: Multiple sources of data
are connected by the Internet and various kinds of networks, forming gigantic, dis-
tributed, and heterogeneous global information systems and networks. The discovery
of knowledge from different sources of structured, semi-structured, or unstructured
yet interconnected data with diverse data semantics poses great challenges to data
mining. Mining such gigantic, interconnected information networks may help dis-
close many more patterns and knowledge in heterogeneous data sets than can be dis-
covered from a small set of isolated data repositories. Web mining, multisource data
mining, and information network mining have become challenging and fast-evolving
data mining fields.

1.7.5 Data Mining and Society

How does data mining impact society? What steps can data mining take to preserve the
privacy of individuals? Do we use data mining in our daily lives without even knowing
that we do? These questions raise the following issues:

Social impacts of data mining: With data mining penetrating our everyday lives, it is
important to study the impact of data mining on society. How can we use data mining
technology to benefit society? How can we guard against its misuse? The improper
disclosure or use of data and the potential violation of individual privacy and data
protection rights are areas of concern that need to be addressed.

Privacy-preserving data mining: Data mining will help scientific discovery, business
management, economy recovery, and security protection (e.g., the real-time dis-
covery of intruders and cyberattacks). However, it poses the risk of disclosing an
individual’s personal information. Studies on privacy-preserving data publishing and
data mining are ongoing. The philosophy is to observe data sensitivity and preserve
people’s privacy while performing successful data mining.
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Invisible data mining: We cannot expect everyone in society to learn and master
data mining techniques. More and more systems should have data mining func-
tions built within so that people can perform data mining or use data mining results
simply by mouse clicking, without any knowledge of data mining algorithms. Intelli-
gent search engines and Internet-based stores perform such invisible data mining by
incorporating data mining into their components to improve their functionality and
performance. This is done often unbeknownst to the user. For example, when pur-
chasing items online, users may be unaware that the store is likely collecting data on
the buying patterns of its customers, which may be used to recommend other items
for purchase in the future.

These issues and many additional ones relating to the research, development, and
application of data mining are discussed throughout the book.

1.8 Summary

Necessity is the mother of invention. With the mounting growth of data in every appli-
cation, data mining meets the imminent need for effective, scalable, and flexible data
analysis in our society. Data mining can be considered as a natural evolution of infor-
mation technology and a confluence of several related disciplines and application
domains.

Data mining is the process of discovering interesting patterns from massive amounts
of data. As a knowledge discovery process, it typically involves data cleaning, data inte-
gration, data selection, data transformation, pattern discovery, pattern evaluation,
and knowledge presentation.

A pattern is interesting if it is valid on test data with some degree of certainty, novel,
potentially useful (e.g., can be acted on or validates a hunch about which the user was
curious), and easily understood by humans. Interesting patterns represent knowl-
edge. Measures of pattern interestingness, either objective or subjective, can be used
to guide the discovery process.

We present a multidimensional view of data mining. The major dimensions are
data, knowledge, technologies, and applications.

Data mining can be conducted on any kind of data as long as the data are meaningful
for a target application, such as database data, data warehouse data, transactional
data, and advanced data types. Advanced data types include time-related or sequence
data, data streams, spatial and spatiotemporal data, text and multimedia data, graph
and networked data, and Web data.

A data warehouse is a repository for long-term storage of data from multiple sources,
organized so as to facilitate management decision making. The data are stored
under a unified schema and are typically summarized. Data warehouse systems pro-
vide multidimensional data analysis capabilities, collectively referred to as online
analytical processing.
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Multidimensional data mining (also called exploratory multidimensional data
mining) integrates core data mining techniques with OLAP-based multidimen-
sional analysis. It searches for interesting patterns among multiple combinations
of dimensions (attributes) at varying levels of abstraction, thereby exploring multi-
dimensional data space.

Data mining functionalities are used to specify the kinds of patterns or knowledge
to be found in data mining tasks. The functionalities include characterization and
discrimination; the mining of frequent patterns, associations, and correlations; clas-
sification and regression; cluster analysis; and outlier detection. As new types of data,
new applications, and new analysis demands continue to emerge, there is no doubt
we will see more and more novel data mining tasks in the future.

Data mining, as a highly application-driven domain, has incorporated technologies
from many other domains. These include statistics, machine learning, database and
data warehouse systems, and information retrieval. The interdisciplinary nature of
data mining research and development contributes significantly to the success of
data mining and its extensive applications.

Data mining has many successful applications, such as business intelligence, Web
search, bioinformatics, health informatics, finance, digital libraries, and digital
governments.

There are many challenging issues in data mining research. Areas include mining
methodology, user interaction, efficiency and scalability, and dealing with diverse
data types. Data mining research has strongly impacted society and will continue to
do so in the future.

1.9 Exercises

1.1 What is data mining? In your answer, address the following:

(a) Is it another hype?

(b) Is it a simple transformation or application of technology developed from databases,
statistics, machine learning, and pattern recognition?

(c) We have presented a view that data mining is the result of the evolution of database
technology. Do you think that data mining is also the result of the evolution of
machine learning research? Can you present such views based on the historical
progress of this discipline? Address the same for the fields of statistics and pattern
recognition.

(d) Describe the steps involved in data mining when viewed as a process of knowledge
discovery.

1.2 How is a data warehouse different from a database? How are they similar?

1.3 Define each of the following data mining functionalities: characterization, discrimi-
nation, association and correlation analysis, classification, regression, clustering, and
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outlier analysis. Give examples of each data mining functionality, using a real-life
database that you are familiar with.

1.4 Present an example where data mining is crucial to the success of a business. What data
mining functionalities does this business need (e.g., think of the kinds of patterns that
could be mined)? Can such patterns be generated alternatively by data query processing
or simple statistical analysis?

1.5 Explain the difference and similarity between discrimination and classification, between
characterization and clustering, and between classification and regression.

1.6 Based on your observations, describe another possible kind of knowledge that needs to
be discovered by data mining methods but has not been listed in this chapter. Does it
require a mining methodology that is quite different from those outlined in this chapter?

1.7 Outliers are often discarded as noise. However, one person’s garbage could be another’s
treasure. For example, exceptions in credit card transactions can help us detect the
fraudulent use of credit cards. Using fraudulence detection as an example, propose two
methods that can be used to detect outliers and discuss which one is more reliable.

1.8 Describe three challenges to data mining regarding data mining methodology and user
interaction issues.

1.9 What are the major challenges of mining a huge amount of data (e.g., billions of tuples)
in comparison with mining a small amount of data (e.g., data set of a few hundred
tuple)?

1.10 Outline the major research challenges of data mining in one specific application domain,
such as stream/sensor data analysis, spatiotemporal data analysis, or bioinformatics.
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It’s tempting to jump straight into mining, but first, we need to get the data ready. This involves
having a closer look at attributes and data values. Real-world data are typically noisy,
enormous in volume (often several gigabytes or more), and may originate from a hodge-
podge of heterogenous sources. This chapter is about getting familiar with your data.
Knowledge about your data is useful for data preprocessing (see Chapter 3), the first
major task of the data mining process. You will want to know the following: What are
the types of attributes or fields that make up your data? What kind of values does each
attribute have? Which attributes are discrete, and which are continuous-valued? What
do the data look like? How are the values distributed? Are there ways we can visualize
the data to get a better sense of it all? Can we spot any outliers? Can we measure the
similarity of some data objects with respect to others? Gaining such insight into the data
will help with the subsequent analysis.

“So what can we learn about our data that’s helpful in data preprocessing?” We begin
in Section 2.1 by studying the various attribute types. These include nominal attributes,
binary attributes, ordinal attributes, and numeric attributes. Basic statistical descriptions
can be used to learn more about each attribute’s values, as described in Section 2.2.
Given a temperature attribute, for example, we can determine its mean (average value),
median (middle value), and mode (most common value). These are measures of
central tendency, which give us an idea of the “middle” or center of distribution.

Knowing such basic statistics regarding each attribute makes it easier to fill in missing
values, smooth noisy values, and spot outliers during data preprocessing. Knowledge of
the attributes and attribute values can also help in fixing inconsistencies incurred dur-
ing data integration. Plotting the measures of central tendency shows us if the data are
symmetric or skewed. Quantile plots, histograms, and scatter plots are other graphic dis-
plays of basic statistical descriptions. These can all be useful during data preprocessing
and can provide insight into areas for mining.

The field of data visualization provides many additional techniques for viewing data
through graphical means. These can help identify relations, trends, and biases “hidden”
in unstructured data sets. Techniques may be as simple as scatter-plot matrices (where
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two attributes are mapped onto a 2-D grid) to more sophisticated methods such as tree-
maps (where a hierarchical partitioning of the screen is displayed based on the attribute
values). Data visualization techniques are described in Section 2.3.

Finally, we may want to examine how similar (or dissimilar) data objects are. For
example, suppose we have a database where the data objects are patients, described by
their symptoms. We may want to find the similarity or dissimilarity between individ-
ual patients. Such information can allow us to find clusters of like patients within the
data set. The similarity/dissimilarity between objects may also be used to detect out-
liers in the data, or to perform nearest-neighbor classification. (Clustering is the topic
of Chapters 10 and 11, while nearest-neighbor classification is discussed in Chapter 9.)
There are many measures for assessing similarity and dissimilarity. In general, such mea-
sures are referred to as proximity measures. Think of the proximity of two objects as a
function of the distance between their attribute values, although proximity can also be
calculated based on probabilities rather than actual distance. Measures of data proximity
are described in Section 2.4.

In summary, by the end of this chapter, you will know the different attribute types
and basic statistical measures to describe the central tendency and dispersion (spread)
of attribute data. You will also know techniques to visualize attribute distributions and
how to compute the similarity or dissimilarity between objects.

2.1 Data Objects and Attribute Types

Data sets are made up of data objects. A data object represents an entity—in a sales
database, the objects may be customers, store items, and sales; in a medical database, the
objects may be patients; in a university database, the objects may be students, professors,
and courses. Data objects are typically described by attributes. Data objects can also be
referred to as samples, examples, instances, data points, or objects. If the data objects are
stored in a database, they are data tuples. That is, the rows of a database correspond to
the data objects, and the columns correspond to the attributes. In this section, we define
attributes and look at the various attribute types.

2.1.1 What Is an Attribute?

An attribute is a data field, representing a characteristic or feature of a data object. The
nouns attribute, dimension, feature, and variable are often used interchangeably in the
literature. The term dimension is commonly used in data warehousing. Machine learning
literature tends to use the term feature, while statisticians prefer the term variable. Data
mining and database professionals commonly use the term attribute, and we do here
as well. Attributes describing a customer object can include, for example, customer ID,
name, and address. Observed values for a given attribute are known as observations. A set
of attributes used to describe a given object is called an attribute vector (or feature vec-
tor). The distribution of data involving one attribute (or variable) is called univariate.
A bivariate distribution involves two attributes, and so on.
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The type of an attribute is determined by the set of possible values—nominal, binary,
ordinal, or numeric—the attribute can have. In the following subsections, we introduce
each type.

2.1.2 Nominal Attributes

Nominal means “relating to names.” The values of a nominal attribute are symbols or
names of things. Each value represents some kind of category, code, or state, and so nomi-
nal attributes are also referred to as categorical. The values do not have any meaningful
order. In computer science, the values are also known as enumerations.

Example 2.1 Nominal attributes. Suppose that hair color and marital status are two attributes
describing person objects. In our application, possible values for hair color are black,
brown, blond, red, auburn, gray, and white. The attribute marital status can take on
the values single, married, divorced, and widowed. Both hair color and marital status
are nominal attributes. Another example of a nominal attribute is occupation, with the
values teacher, dentist, programmer, farmer, and so on.

Although we said that the values of a nominal attribute are symbols or “names
of things,” it is possible to represent such symbols or “names” with numbers. With
hair color, for instance, we can assign a code of 0 for black, 1 for brown, and so on.
Another example is customor ID, with possible values that are all numeric. However,
in such cases, the numbers are not intended to be used quantitatively. That is, mathe-
matical operations on values of nominal attributes are not meaningful. It makes no
sense to subtract one customer ID number from another, unlike, say, subtracting an age
value from another (where age is a numeric attribute). Even though a nominal attribute
may have integers as values, it is not considered a numeric attribute because the inte-
gers are not meant to be used quantitatively. We will say more on numeric attributes in
Section 2.1.5.

Because nominal attribute values do not have any meaningful order about them and
are not quantitative, it makes no sense to find the mean (average) value or median
(middle) value for such an attribute, given a set of objects. One thing that is of inter-
est, however, is the attribute’s most commonly occurring value. This value, known as
the mode, is one of the measures of central tendency. You will learn about measures of
central tendency in Section 2.2.

2.1.3 Binary Attributes

A binary attribute is a nominal attribute with only two categories or states: 0 or 1, where
0 typically means that the attribute is absent, and 1 means that it is present. Binary
attributes are referred to as Boolean if the two states correspond to true and false.

Example 2.2 Binary attributes. Given the attribute smoker describing a patient object, 1 indicates
that the patient smokes, while 0 indicates that the patient does not. Similarly, suppose
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the patient undergoes a medical test that has two possible outcomes. The attribute
medical test is binary, where a value of 1 means the result of the test for the patient
is positive, while 0 means the result is negative.

A binary attribute is symmetric if both of its states are equally valuable and carry
the same weight; that is, there is no preference on which outcome should be coded
as 0 or 1. One such example could be the attribute gender having the states male and
female.

A binary attribute is asymmetric if the outcomes of the states are not equally impor-
tant, such as the positive and negative outcomes of a medical test for HIV. By convention,
we code the most important outcome, which is usually the rarest one, by 1 (e.g., HIV
positive) and the other by 0 (e.g., HIV negative).

2.1.4 Ordinal Attributes

An ordinal attribute is an attribute with possible values that have a meaningful order or
ranking among them, but the magnitude between successive values is not known.

Example 2.3 Ordinal attributes. Suppose that drink size corresponds to the size of drinks available at
a fast-food restaurant. This nominal attribute has three possible values: small, medium,
and large. The values have a meaningful sequence (which corresponds to increasing
drink size); however, we cannot tell from the values how much bigger, say, a medium
is than a large. Other examples of ordinal attributes include grade (e.g., A+, A, A−, B+,
and so on) and professional rank. Professional ranks can be enumerated in a sequential
order: for example, assistant, associate, and full for professors, and private, private first
class, specialist, corporal, and sergeant for army ranks.

Ordinal attributes are useful for registering subjective assessments of qualities that
cannot be measured objectively; thus ordinal attributes are often used in surveys for
ratings. In one survey, participants were asked to rate how satisfied they were as cus-
tomers. Customer satisfaction had the following ordinal categories: 0: very dissatisfied,
1: somewhat dissatisfied, 2: neutral, 3: satisfied, and 4: very satisfied.

Ordinal attributes may also be obtained from the discretization of numeric quantities
by splitting the value range into a finite number of ordered categories as described in
Chapter 3 on data reduction.

The central tendency of an ordinal attribute can be represented by its mode and its
median (the middle value in an ordered sequence), but the mean cannot be defined.

Note that nominal, binary, and ordinal attributes are qualitative. That is, they describe
a feature of an object without giving an actual size or quantity. The values of such
qualitative attributes are typically words representing categories. If integers are used,
they represent computer codes for the categories, as opposed to measurable quantities
(e.g., 0 for small drink size, 1 for medium, and 2 for large). In the following subsec-
tion we look at numeric attributes, which provide quantitative measurements of an
object.
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2.1.5 Numeric Attributes

A numeric attribute is quantitative; that is, it is a measurable quantity, represented in
integer or real values. Numeric attributes can be interval-scaled or ratio-scaled.

Interval-Scaled Attributes
Interval-scaled attributes are measured on a scale of equal-size units. The values of
interval-scaled attributes have order and can be positive, 0, or negative. Thus, in addition
to providing a ranking of values, such attributes allow us to compare and quantify the
difference between values.

Example 2.4 Interval-scaled attributes. A temperature attribute is interval-scaled. Suppose that we
have the outdoor temperature value for a number of different days, where each day is
an object. By ordering the values, we obtain a ranking of the objects with respect to
temperature. In addition, we can quantify the difference between values. For example, a
temperature of 20◦C is five degrees higher than a temperature of 15◦C. Calendar dates
are another example. For instance, the years 2002 and 2010 are eight years apart.

Temperatures in Celsius and Fahrenheit do not have a true zero-point, that is, neither
0◦C nor 0◦F indicates “no temperature.” (On the Celsius scale, for example, the unit of
measurement is 1/100 of the difference between the melting temperature and the boiling
temperature of water in atmospheric pressure.) Although we can compute the difference
between temperature values, we cannot talk of one temperature value as being a multiple
of another. Without a true zero, we cannot say, for instance, that 10◦C is twice as warm
as 5◦C. That is, we cannot speak of the values in terms of ratios. Similarly, there is no
true zero-point for calendar dates. (The year 0 does not correspond to the beginning of
time.) This brings us to ratio-scaled attributes, for which a true zero-point exits.

Because interval-scaled attributes are numeric, we can compute their mean value, in
addition to the median and mode measures of central tendency.

Ratio-Scaled Attributes
A ratio-scaled attribute is a numeric attribute with an inherent zero-point. That is, if
a measurement is ratio-scaled, we can speak of a value as being a multiple (or ratio)
of another value. In addition, the values are ordered, and we can also compute the
difference between values, as well as the mean, median, and mode.

Example 2.5 Ratio-scaled attributes. Unlike temperatures in Celsius and Fahrenheit, the Kelvin (K)
temperature scale has what is considered a true zero-point (0◦K = −273.15◦C): It is
the point at which the particles that comprise matter have zero kinetic energy. Other
examples of ratio-scaled attributes include count attributes such as years of experience
(e.g., the objects are employees) and number of words (e.g., the objects are documents).
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Additional examples include attributes to measure weight, height, and speed, and
monetary quantities (e.g., you are 100 times richer with $100 than with $1).

2.1.6 Discrete versus Continuous Attributes

In our presentation, we have organized attributes into nominal, binary, ordinal, and
numeric types. There are many ways to organize attribute types. The types are not
mutually exclusive.

Classification algorithms developed from the field of machine learning often talk of
attributes as being either discrete or continuous. Each type may be processed differently.
A discrete attribute has a finite or countably infinite set of values, which may or may not
be represented as integers. The attributes hair color, smoker, medical test, and drink size
each have a finite number of values, and so are discrete. Note that discrete attributes
may have numeric values, such as 0 and 1 for binary attributes or, the values 0 to 110 for
the attribute age. An attribute is countably infinite if the set of possible values is infinite
but the values can be put in a one-to-one correspondence with natural numbers. For
example, the attribute customer ID is countably infinite. The number of customers can
grow to infinity, but in reality, the actual set of values is countable (where the values can
be put in one-to-one correspondence with the set of integers). Zip codes are another
example.

If an attribute is not discrete, it is continuous. The terms numeric attribute and con-
tinuous attribute are often used interchangeably in the literature. (This can be confusing
because, in the classic sense, continuous values are real numbers, whereas numeric val-
ues can be either integers or real numbers.) In practice, real values are represented
using a finite number of digits. Continuous attributes are typically represented as
floating-point variables.

2.2 Basic Statistical Descriptions of Data

For data preprocessing to be successful, it is essential to have an overall picture of your
data. Basic statistical descriptions can be used to identify properties of the data and
highlight which data values should be treated as noise or outliers.

This section discusses three areas of basic statistical descriptions. We start with mea-
sures of central tendency (Section 2.2.1), which measure the location of the middle or
center of a data distribution. Intuitively speaking, given an attribute, where do most of
its values fall? In particular, we discuss the mean, median, mode, and midrange.

In addition to assessing the central tendency of our data set, we also would like to
have an idea of the dispersion of the data. That is, how are the data spread out? The most
common data dispersion measures are the range, quartiles, and interquartile range; the
five-number summary and boxplots; and the variance and standard deviation of the data.
These measures are useful for identifying outliers and are described in Section 2.2.2.

Finally, we can use many graphic displays of basic statistical descriptions to visually
inspect our data (Section 2.2.3). Most statistical or graphical data presentation software
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packages include bar charts, pie charts, and line graphs. Other popular displays of data
summaries and distributions include quantile plots, quantile–quantile plots, histograms,
and scatter plots.

2.2.1 Measuring the Central Tendency: Mean, Median, and Mode

In this section, we look at various ways to measure the central tendency of data. Suppose
that we have some attribute X , like salary, which has been recorded for a set of objects.
Let x1,x2, . . . ,xN be the set of N observed values or observations for X . Here, these val-
ues may also be referred to as the data set (for X). If we were to plot the observations
for salary, where would most of the values fall? This gives us an idea of the central ten-
dency of the data. Measures of central tendency include the mean, median, mode, and
midrange.

The most common and effective numeric measure of the “center” of a set of data is
the (arithmetic) mean. Let x1,x2, . . . ,xN be a set of N values or observations, such as for
some numeric attribute X , like salary. The mean of this set of values is

x̄ =

N∑
i=1

xi

N
= x1 + x2 + ·· · + xN

N
. (2.1)

This corresponds to the built-in aggregate function, average (avg() in SQL), provided in
relational database systems.

Example 2.6 Mean. Suppose we have the following values for salary (in thousands of dollars), shown
in increasing order: 30, 36, 47, 50, 52, 52, 56, 60, 63, 70, 70, 110. Using Eq. (2.1), we have

x̄ = 30 + 36 + 47 + 50 + 52 + 52 + 56 + 60 + 63 + 70 + 70 + 110

12

= 696

12
= 58.

Thus, the mean salary is $58,000.

Sometimes, each value xi in a set may be associated with a weight wi for i = 1, . . . ,N .
The weights reflect the significance, importance, or occurrence frequency attached to
their respective values. In this case, we can compute

x̄ =

N∑
i=1

wixi

N∑
i=1

wi

= w1x1 + w2x2 + ·· · + wN xN

w1 + w2 + ·· · + wN
. (2.2)

This is called the weighted arithmetic mean or the weighted average.
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Although the mean is the singlemost useful quantity for describing a data set, it is not
always the best way of measuring the center of the data. A major problem with the mean
is its sensitivity to extreme (e.g., outlier) values. Even a small number of extreme values
can corrupt the mean. For example, the mean salary at a company may be substantially
pushed up by that of a few highly paid managers. Similarly, the mean score of a class in
an exam could be pulled down quite a bit by a few very low scores. To offset the effect
caused by a small number of extreme values, we can instead use the trimmed mean,
which is the mean obtained after chopping off values at the high and low extremes. For
example, we can sort the values observed for salary and remove the top and bottom 2%
before computing the mean. We should avoid trimming too large a portion (such as
20%) at both ends, as this can result in the loss of valuable information.

For skewed (asymmetric) data, a better measure of the center of data is the median,
which is the middle value in a set of ordered data values. It is the value that separates the
higher half of a data set from the lower half.

In probability and statistics, the median generally applies to numeric data; however,
we may extend the concept to ordinal data. Suppose that a given data set of N values
for an attribute X is sorted in increasing order. If N is odd, then the median is the
middle value of the ordered set. If N is even, then the median is not unique; it is the two
middlemost values and any value in between. If X is a numeric attribute in this case, by
convention, the median is taken as the average of the two middlemost values.

Example 2.7 Median. Let’s find the median of the data from Example 2.6. The data are already sorted
in increasing order. There is an even number of observations (i.e., 12); therefore, the
median is not unique. It can be any value within the two middlemost values of 52 and
56 (that is, within the sixth and seventh values in the list). By convention, we assign the
average of the two middlemost values as the median; that is, 52+56

2 = 108
2 = 54. Thus,

the median is $54,000.
Suppose that we had only the first 11 values in the list. Given an odd number of

values, the median is the middlemost value. This is the sixth value in this list, which has
a value of $52,000.

The median is expensive to compute when we have a large number of observations.
For numeric attributes, however, we can easily approximate the value. Assume that data
are grouped in intervals according to their xi data values and that the frequency (i.e.,
number of data values) of each interval is known. For example, employees may be
grouped according to their annual salary in intervals such as $10–20,000, $20–30,000,
and so on. Let the interval that contains the median frequency be the median inter-
val. We can approximate the median of the entire data set (e.g., the median salary) by
interpolation using the formula

median = L1 +
(

N/2 − (∑
freq

)
l

freqmedian

)
width, (2.3)

where L1 is the lower boundary of the median interval, N is the number of values in
the entire data set,

(∑
freq

)
l is the sum of the frequencies of all of the intervals that are
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lower than the median interval, freqmedian is the frequency of the median interval, and
width is the width of the median interval.

The mode is another measure of central tendency. The mode for a set of data is the
value that occurs most frequently in the set. Therefore, it can be determined for qualita-
tive and quantitative attributes. It is possible for the greatest frequency to correspond to
several different values, which results in more than one mode. Data sets with one, two,
or three modes are respectively called unimodal, bimodal, and trimodal. In general, a
data set with two or more modes is multimodal. At the other extreme, if each data value
occurs only once, then there is no mode.

Example 2.8 Mode. The data from Example 2.6 are bimodal. The two modes are $52,000 and
$70,000.

For unimodal numeric data that are moderately skewed (asymmetrical), we have the
following empirical relation:

mean − mode ≈ 3 × (mean − median). (2.4)

This implies that the mode for unimodal frequency curves that are moderately skewed
can easily be approximated if the mean and median values are known.

The midrange can also be used to assess the central tendency of a numeric data set.
It is the average of the largest and smallest values in the set. This measure is easy to
compute using the SQL aggregate functions, max() and min().

Example 2.9 Midrange. The midrange of the data of Example 2.6 is 30,000+110,000
2 = $70,000.

In a unimodal frequency curve with perfect symmetric data distribution, the mean,
median, and mode are all at the same center value, as shown in Figure 2.1(a).

Data in most real applications are not symmetric. They may instead be either posi-
tively skewed, where the mode occurs at a value that is smaller than the median
(Figure 2.1b), or negatively skewed, where the mode occurs at a value greater than the
median (Figure 2.1c).

Mode

Median

Mean Mode

Median

MeanMean
Median
Mode

(a) Symmetric data (b) Positively skewed data (c) Negatively skewed data

Figure 2.1 Mean, median, and mode of symmetric versus positively and negatively skewed data.
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2.2.2 Measuring the Dispersion of Data: Range, Quartiles, Variance,
Standard Deviation, and Interquartile Range

We now look at measures to assess the dispersion or spread of numeric data. The mea-
sures include range, quantiles, quartiles, percentiles, and the interquartile range. The
five-number summary, which can be displayed as a boxplot, is useful in identifying
outliers. Variance and standard deviation also indicate the spread of a data distribution.

Range, Quartiles, and Interquartile Range
To start off, let’s study the range, quantiles, quartiles, percentiles, and the interquartile
range as measures of data dispersion.

Let x1,x2, . . . ,xN be a set of observations for some numeric attribute, X . The range
of the set is the difference between the largest (max()) and smallest (min()) values.

Suppose that the data for attribute X are sorted in increasing numeric order. Imagine
that we can pick certain data points so as to split the data distribution into equal-size
consecutive sets, as in Figure 2.2. These data points are called quantiles. Quantiles are
points taken at regular intervals of a data distribution, dividing it into essentially equal-
size consecutive sets. (We say “essentially” because there may not be data values of X that
divide the data into exactly equal-sized subsets. For readability, we will refer to them as
equal.) The kth q-quantile for a given data distribution is the value x such that at most
k/q of the data values are less than x and at most (q − k)/q of the data values are more
than x, where k is an integer such that 0 < k < q. There are q − 1 q-quantiles.

The 2-quantile is the data point dividing the lower and upper halves of the data dis-
tribution. It corresponds to the median. The 4-quantiles are the three data points that
split the data distribution into four equal parts; each part represents one-fourth of the
data distribution. They are more commonly referred to as quartiles. The 100-quantiles
are more commonly referred to as percentiles; they divide the data distribution into 100
equal-sized consecutive sets. The median, quartiles, and percentiles are the most widely
used forms of quantiles.

Q2 Q3Q1

25th
percentile

75th
percentile

Median

25%

Figure 2.2 A plot of the data distribution for some attribute X . The quantiles plotted are quartiles. The
three quartiles divide the distribution into four equal-size consecutive subsets. The second
quartile corresponds to the median.
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The quartiles give an indication of a distribution’s center, spread, and shape. The first
quartile, denoted by Q1, is the 25th percentile. It cuts off the lowest 25% of the data.
The third quartile, denoted by Q3, is the 75th percentile—it cuts off the lowest 75% (or
highest 25%) of the data. The second quartile is the 50th percentile. As the median, it
gives the center of the data distribution.

The distance between the first and third quartiles is a simple measure of spread
that gives the range covered by the middle half of the data. This distance is called the
interquartile range (IQR) and is defined as

IQR = Q3 − Q1. (2.5)

Example 2.10 Interquartile range. The quartiles are the three values that split the sorted data set into
four equal parts. The data of Example 2.6 contain 12 observations, already sorted in
increasing order. Thus, the quartiles for this data are the third, sixth, and ninth val-
ues, respectively, in the sorted list. Therefore, Q1 = $47,000 and Q3 is $63,000. Thus,
the interquartile range is IQR = 63 − 47 = $16,000. (Note that the sixth value is a
median, $52,000, although this data set has two medians since the number of data values
is even.)

Five-Number Summary, Boxplots, and Outliers
No single numeric measure of spread (e.g., IQR) is very useful for describing skewed
distributions. Have a look at the symmetric and skewed data distributions of Figure 2.1.
In the symmetric distribution, the median (and other measures of central tendency)
splits the data into equal-size halves. This does not occur for skewed distributions.
Therefore, it is more informative to also provide the two quartiles Q1 and Q3, along
with the median. A common rule of thumb for identifying suspected outliers is to
single out values falling at least 1.5 × IQR above the third quartile or below the first
quartile.

Because Q1, the median, and Q3 together contain no information about the end-
points (e.g., tails) of the data, a fuller summary of the shape of a distribution can be
obtained by providing the lowest and highest data values as well. This is known as
the five-number summary. The five-number summary of a distribution consists of the
median (Q2), the quartiles Q1 and Q3, and the smallest and largest individual obser-
vations, written in the order of Minimum, Q1, Median, Q3, Maximum.

Boxplots are a popular way of visualizing a distribution. A boxplot incorporates the
five-number summary as follows:

Typically, the ends of the box are at the quartiles so that the box length is the
interquartile range.

The median is marked by a line within the box.

Two lines (called whiskers) outside the box extend to the smallest (Minimum) and
largest (Maximum) observations.
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Figure 2.3 Boxplot for the unit price data for items sold at four branches of AllElectronics during a given
time period.

When dealing with a moderate number of observations, it is worthwhile to plot
potential outliers individually. To do this in a boxplot, the whiskers are extended to the
extreme low and high observations only if these values are less than 1.5 × IQR beyond
the quartiles. Otherwise, the whiskers terminate at the most extreme observations occur-
ring within 1.5 × IQR of the quartiles. The remaining cases are plotted individually.
Boxplots can be used in the comparisons of several sets of compatible data.

Example 2.11 Boxplot. Figure 2.3 shows boxplots for unit price data for items sold at four branches of
AllElectronics during a given time period. For branch 1, we see that the median price of
items sold is $80, Q1 is $60, and Q3 is $100. Notice that two outlying observations for
this branch were plotted individually, as their values of 175 and 202 are more than 1.5
times the IQR here of 40.

Boxplots can be computed in O(n logn) time. Approximate boxplots can be com-
puted in linear or sublinear time depending on the quality guarantee required.

Variance and Standard Deviation

Variance and standard deviation are measures of data dispersion. They indicate how
spread out a data distribution is. A low standard deviation means that the data observa-
tions tend to be very close to the mean, while a high standard deviation indicates that
the data are spread out over a large range of values.



2.2 Basic Statistical Descriptions of Data 51

The variance of N observations, x1,x2, . . . ,xN , for a numeric attribute X is

σ 2 = 1

N

N∑
i=1

(xi − x̄)2 =
(

1

N

N∑
i=1

x2
i

)
− x̄2, (2.6)

where x̄ is the mean value of the observations, as defined in Eq. (2.1). The standard
deviation, σ , of the observations is the square root of the variance, σ 2.

Example 2.12 Variance and standard deviation. In Example 2.6, we found x̄ = $58,000 using Eq. (2.1)
for the mean. To determine the variance and standard deviation of the data from that
example, we set N = 12 and use Eq. (2.6) to obtain

σ 2 = 1

12
(302 + 362 + 472 . . . + 1102) − 582

≈ 379.17

σ ≈ √
379.17 ≈ 19.47.

The basic properties of the standard deviation, σ , as a measure of spread are as
follows:

σ measures spread about the mean and should be considered only when the mean is
chosen as the measure of center.

σ = 0 only when there is no spread, that is, when all observations have the same
value. Otherwise, σ > 0.

Importantly, an observation is unlikely to be more than several standard deviations
away from the mean. Mathematically, using Chebyshev’s inequality, it can be shown that

at least
(

1 − 1
k2

)
× 100% of the observations are no more than k standard deviations

from the mean. Therefore, the standard deviation is a good indicator of the spread of a
data set.

The computation of the variance and standard deviation is scalable in large databases.

2.2.3 Graphic Displays of Basic Statistical Descriptions of Data

In this section, we study graphic displays of basic statistical descriptions. These include
quantile plots, quantile–quantile plots, histograms, and scatter plots. Such graphs are help-
ful for the visual inspection of data, which is useful for data preprocessing. The first
three of these show univariate distributions (i.e., data for one attribute), while scatter
plots show bivariate distributions (i.e., involving two attributes).

Quantile Plot
In this and the following subsections, we cover common graphic displays of data distri-
butions. A quantile plot is a simple and effective way to have a first look at a univariate
data distribution. First, it displays all of the data for the given attribute (allowing the user
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to assess both the overall behavior and unusual occurrences). Second, it plots quantile
information (see Section 2.2.2). Let xi , for i = 1 to N , be the data sorted in increasing
order so that x1 is the smallest observation and xN is the largest for some ordinal or
numeric attribute X . Each observation, xi , is paired with a percentage, fi , which indicates
that approximately fi × 100% of the data are below the value, xi . We say “approximately”
because there may not be a value with exactly a fraction, fi , of the data below xi . Note
that the 0.25 percentile corresponds to quartile Q1, the 0.50 percentile is the median,
and the 0.75 percentile is Q3.

Let

fi = i − 0.5

N
. (2.7)

These numbers increase in equal steps of 1/N , ranging from 1
2N (which is slightly

above 0) to 1 − 1
2N (which is slightly below 1). On a quantile plot, xi is graphed against

fi . This allows us to compare different distributions based on their quantiles. For exam-
ple, given the quantile plots of sales data for two different time periods, we can compare
their Q1, median, Q3, and other fi values at a glance.

Example 2.13 Quantile plot. Figure 2.4 shows a quantile plot for the unit price data of Table 2.1.

Quantile–Quantile Plot
A quantile–quantile plot, or q-q plot, graphs the quantiles of one univariate distribution
against the corresponding quantiles of another. It is a powerful visualization tool in that it
allows the user to view whether there is a shift in going from one distribution to another.

Suppose that we have two sets of observations for the attribute or variable unit price,
taken from two different branch locations. Let x1, . . . ,xN be the data from the first
branch, and y1, . . . ,yM be the data from the second, where each data set is sorted in
increasing order. If M = N (i.e., the number of points in each set is the same), then we
simply plot yi against xi , where yi and xi are both (i − 0.5)/N quantiles of their respec-
tive data sets. If M < N (i.e., the second branch has fewer observations than the first),
there can be only M points on the q-q plot. Here, yi is the (i − 0.5)/M quantile of the y
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Figure 2.4 A quantile plot for the unit price data of Table 2.1.
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Table 2.1 A Set of Unit Price Data for Items
Sold at a Branch of AllElectronics

Unit price Count of
($) items sold

40 275

43 300

47 250

− −
74 360

75 515

78 540

− −
115 320

117 270

120 350
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Figure 2.5 A q-q plot for unit price data from two AllElectronics branches.

data, which is plotted against the (i − 0.5)/M quantile of the x data. This computation
typically involves interpolation.

Example 2.14 Quantile–quantile plot. Figure 2.5 shows a quantile–quantile plot for unit price data of
items sold at two branches of AllElectronics during a given time period. Each point cor-
responds to the same quantile for each data set and shows the unit price of items sold at
branch 1 versus branch 2 for that quantile. (To aid in comparison, the straight line rep-
resents the case where, for each given quantile, the unit price at each branch is the same.
The darker points correspond to the data for Q1, the median, and Q3, respectively.)

We see, for example, that at Q1, the unit price of items sold at branch 1 was slightly
less than that at branch 2. In other words, 25% of items sold at branch 1 were less than or
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equal to $60, while 25% of items sold at branch 2 were less than or equal to $64. At the
50th percentile (marked by the median, which is also Q2), we see that 50% of items
sold at branch 1 were less than $78, while 50% of items at branch 2 were less than $85.
In general, we note that there is a shift in the distribution of branch 1 with respect to
branch 2 in that the unit prices of items sold at branch 1 tend to be lower than those at
branch 2.

Histograms
Histograms (or frequency histograms) are at least a century old and are widely used.
“Histos” means pole or mast, and “gram” means chart, so a histogram is a chart of
poles. Plotting histograms is a graphical method for summarizing the distribution of a
given attribute, X . If X is nominal, such as automobile model or item type, then a pole
or vertical bar is drawn for each known value of X . The height of the bar indicates the
frequency (i.e., count) of that X value. The resulting graph is more commonly known as
a bar chart.

If X is numeric, the term histogram is preferred. The range of values for X is parti-
tioned into disjoint consecutive subranges. The subranges, referred to as buckets or bins,
are disjoint subsets of the data distribution for X . The range of a bucket is known as
the width. Typically, the buckets are of equal width. For example, a price attribute with
a value range of $1 to $200 (rounded up to the nearest dollar) can be partitioned into
subranges 1 to 20, 21 to 40, 41 to 60, and so on. For each subrange, a bar is drawn with a
height that represents the total count of items observed within the subrange. Histograms
and partitioning rules are further discussed in Chapter 3 on data reduction.

Example 2.15 Histogram. Figure 2.6 shows a histogram for the data set of Table 2.1, where buckets (or
bins) are defined by equal-width ranges representing $20 increments and the frequency
is the count of items sold.

Although histograms are widely used, they may not be as effective as the quantile
plot, q-q plot, and boxplot methods in comparing groups of univariate observations.

Scatter Plots and Data Correlation
A scatter plot is one of the most effective graphical methods for determining if there
appears to be a relationship, pattern, or trend between two numeric attributes. To con-
struct a scatter plot, each pair of values is treated as a pair of coordinates in an algebraic
sense and plotted as points in the plane. Figure 2.7 shows a scatter plot for the set of data
in Table 2.1.

The scatter plot is a useful method for providing a first look at bivariate data to see
clusters of points and outliers, or to explore the possibility of correlation relationships.
Two attributes, X , and Y , are correlated if one attribute implies the other. Correlations
can be positive, negative, or null (uncorrelated). Figure 2.8 shows examples of positive
and negative correlations between two attributes. If the plotted points pattern slopes
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Figure 2.6 A histogram for the Table 2.1 data set.
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Figure 2.7 A scatter plot for the Table 2.1 data set.
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Figure 2.8 Scatter plots can be used to find (a) positive or (b) negative correlations between attributes.
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Figure 2.9 Three cases where there is no observed correlation between the two plotted attributes in each
of the data sets.

from lower left to upper right, this means that the values of X increase as the values
of Y increase, suggesting a positive correlation (Figure 2.8a). If the pattern of plotted
points slopes from upper left to lower right, the values of X increase as the values of Y
decrease, suggesting a negative correlation (Figure 2.8b). A line of best fit can be drawn
to study the correlation between the variables. Statistical tests for correlation are given
in Chapter 3 on data integration (Eq. (3.3)). Figure 2.9 shows three cases for which
there is no correlation relationship between the two attributes in each of the given data
sets. Section 2.3.2 shows how scatter plots can be extended to n attributes, resulting in a
scatter-plot matrix.

In conclusion, basic data descriptions (e.g., measures of central tendency and mea-
sures of dispersion) and graphic statistical displays (e.g., quantile plots, histograms, and
scatter plots) provide valuable insight into the overall behavior of your data. By helping
to identify noise and outliers, they are especially useful for data cleaning.

2.3 Data Visualization

How can we convey data to users effectively? Data visualization aims to communicate
data clearly and effectively through graphical representation. Data visualization has been
used extensively in many applications—for example, at work for reporting, managing
business operations, and tracking progress of tasks. More popularly, we can take advan-
tage of visualization techniques to discover data relationships that are otherwise not
easily observable by looking at the raw data. Nowadays, people also use data visualization
to create fun and interesting graphics.

In this section, we briefly introduce the basic concepts of data visualization. We start
with multidimensional data such as those stored in relational databases. We discuss
several representative approaches, including pixel-oriented techniques, geometric pro-
jection techniques, icon-based techniques, and hierarchical and graph-based techniques.
We then discuss the visualization of complex data and relations.
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2.3.1 Pixel-Oriented Visualization Techniques

A simple way to visualize the value of a dimension is to use a pixel where the color of
the pixel reflects the dimension’s value. For a data set of m dimensions, pixel-oriented
techniques create m windows on the screen, one for each dimension. The m dimension
values of a record are mapped to m pixels at the corresponding positions in the windows.
The colors of the pixels reflect the corresponding values.

Inside a window, the data values are arranged in some global order shared by all
windows. The global order may be obtained by sorting all data records in a way that’s
meaningful for the task at hand.

Example 2.16 Pixel-oriented visualization. AllElectronics maintains a customer information table,
which consists of four dimensions: income, credit limit, transaction volume, and age. Can
we analyze the correlation between income and the other attributes by visualization?

We can sort all customers in income-ascending order, and use this order to lay out
the customer data in the four visualization windows, as shown in Figure 2.10. The pixel
colors are chosen so that the smaller the value, the lighter the shading. Using pixel-
based visualization, we can easily observe the following: credit limit increases as income
increases; customers whose income is in the middle range are more likely to purchase
more from AllElectronics; there is no clear correlation between income and age.

In pixel-oriented techniques, data records can also be ordered in a query-dependent
way. For example, given a point query, we can sort all records in descending order of
similarity to the point query.

Filling a window by laying out the data records in a linear way may not work well for
a wide window. The first pixel in a row is far away from the last pixel in the previous row,
though they are next to each other in the global order. Moreover, a pixel is next to the
one above it in the window, even though the two are not next to each other in the global
order. To solve this problem, we can lay out the data records in a space-filling curve

(a) income (b) credit_limit (c) transaction_volume (d) age

Figure 2.10 Pixel-oriented visualization of four attributes by sorting all customers in income ascending
order.
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(a) Hilbert curve (b) Gray code (c) Z-curve

Figure 2.11 Some frequently used 2-D space-filling curves.

Dim 6

Dim 3

Dim 4 Dim 2

Dim 5 Dim 1

One data
record

(a)

Dim 1

Dim 2

Dim 3

Dim 4

Dim 5

Dim 6

(b)

Figure 2.12 The circle segment technique. (a) Representing a data record in circle segments. (b) Laying
out pixels in circle segments.

to fill the windows. A space-filling curve is a curve with a range that covers the entire
n-dimensional unit hypercube. Since the visualization windows are 2-D, we can use any
2-D space-filling curve. Figure 2.11 shows some frequently used 2-D space-filling curves.

Note that the windows do not have to be rectangular. For example, the circle segment
technique uses windows in the shape of segments of a circle, as illustrated in Figure 2.12.
This technique can ease the comparison of dimensions because the dimension windows
are located side by side and form a circle.

2.3.2 Geometric Projection Visualization Techniques

A drawback of pixel-oriented visualization techniques is that they cannot help us much
in understanding the distribution of data in a multidimensional space. For example, they
do not show whether there is a dense area in a multidimensional subspace. Geometric
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Figure 2.13 Visualization of a 2-D data set using a scatter plot. Source: www.cs.sfu.ca/jpei/publications/
rareevent-geoinformatica06.pdf .

projection techniques help users find interesting projections of multidimensional data
sets. The central challenge the geometric projection techniques try to address is how to
visualize a high-dimensional space on a 2-D display.

A scatter plot displays 2-D data points using Cartesian coordinates. A third dimen-
sion can be added using different colors or shapes to represent different data points.
Figure 2.13 shows an example, where X and Y are two spatial attributes and the third
dimension is represented by different shapes. Through this visualization, we can see that
points of types “+” and “×” tend to be colocated.

A 3-D scatter plot uses three axes in a Cartesian coordinate system. If it also uses
color, it can display up to 4-D data points (Figure 2.14).

For data sets with more than four dimensions, scatter plots are usually ineffective.
The scatter-plot matrix technique is a useful extension to the scatter plot. For an n-
dimensional data set, a scatter-plot matrix is an n × n grid of 2-D scatter plots that
provides a visualization of each dimension with every other dimension. Figure 2.15
shows an example, which visualizes the Iris data set. The data set consists of 450 sam-
ples from each of three species of Iris flowers. There are five dimensions in the data set:
length and width of sepal and petal, and species.

The scatter-plot matrix becomes less effective as the dimensionality increases.
Another popular technique, called parallel coordinates, can handle higher dimensional-
ity. To visualize n-dimensional data points, the parallel coordinates technique draws
n equally spaced axes, one for each dimension, parallel to one of the display axes.
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Figure 2.14 Visualization of a 3-D data set using a scatter plot. Source: http://upload.wikimedia.org/
wikipedia/commons/c/c4/Scatter plot.jpg.

A data record is represented by a polygonal line that intersects each axis at the point
corresponding to the associated dimension value (Figure 2.16).

A major limitation of the parallel coordinates technique is that it cannot effec-
tively show a data set of many records. Even for a data set of several thousand records,
visual clutter and overlap often reduce the readability of the visualization and make the
patterns hard to find.

2.3.3 Icon-Based Visualization Techniques

Icon-based visualization techniques use small icons to represent multidimensional
data values. We look at two popular icon-based techniques: Chernoff faces and stick
figures.

Chernoff faces were introduced in 1973 by statistician Herman Chernoff. They dis-
play multidimensional data of up to 18 variables (or dimensions) as a cartoon human
face (Figure 2.17). Chernoff faces help reveal trends in the data. Components of the
face, such as the eyes, ears, mouth, and nose, represent values of the dimensions by their
shape, size, placement, and orientation. For example, dimensions can be mapped to the
following facial characteristics: eye size, eye spacing, nose length, nose width, mouth
curvature, mouth width, mouth openness, pupil size, eyebrow slant, eye eccentricity,
and head eccentricity.

Chernoff faces make use of the ability of the human mind to recognize small dif-
ferences in facial characteristics and to assimilate many facial characteristics at once.



2.3 Data Visualization 61

10

Sepal length (mm)

Petal length (mm)

Sepal width (mm)

Petal width (mm)

30 50 70 0 10 20

80

70

60

50

40

45
40
35
30
25
20

40 50 60 70 80 20

Iris Species Setosa Versicolor Virginica

30 40

70

50

30

10

25
20
15
10
5
0

Figure 2.15 Visualization of the Iris data set using a scatter-plot matrix. Source: http://support.sas.com/
documentation/cdl/en/grstatproc/61948/HTML/default/images/gsgscmat.gif .

Viewing large tables of data can be tedious. By condensing the data, Chernoff faces
make the data easier for users to digest. In this way, they facilitate visualization of reg-
ularities and irregularities present in the data, although their power in relating multiple
relationships is limited. Another limitation is that specific data values are not shown.
Furthermore, facial features vary in perceived importance. This means that the similarity
of two faces (representing two multidimensional data points) can vary depending on the
order in which dimensions are assigned to facial characteristics. Therefore, this mapping
should be carefully chosen. Eye size and eyebrow slant have been found to be important.

Asymmetrical Chernoff faces were proposed as an extension to the original technique.
Since a face has vertical symmetry (along the y-axis), the left and right side of a face are
identical, which wastes space. Asymmetrical Chernoff faces double the number of facial
characteristics, thus allowing up to 36 dimensions to be displayed.

The stick figure visualization technique maps multidimensional data to five-piece
stick figures, where each figure has four limbs and a body. Two dimensions are mapped
to the display (x and y) axes and the remaining dimensions are mapped to the angle
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Figure 2.16 Here is a visualization that uses parallel coordinates. Source: www.stat.columbia.edu/∼cook/
movabletype/archives/2007/10/parallel coordi.thml.

Figure 2.17 Chernoff faces. Each face represents an n-dimensional data point (n ≤ 18).

and/or length of the limbs. Figure 2.18 shows census data, where age and income are
mapped to the display axes, and the remaining dimensions (gender, education, and so
on) are mapped to stick figures. If the data items are relatively dense with respect to
the two display dimensions, the resulting visualization shows texture patterns, reflecting
data trends.
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Figure 2.18 Census data represented using stick figures. Source: Professor G. Grinstein, Department of
Computer Science, University of Massachusetts at Lowell.

2.3.4 Hierarchical Visualization Techniques

The visualization techniques discussed so far focus on visualizing multiple dimensions
simultaneously. However, for a large data set of high dimensionality, it would be diffi-
cult to visualize all dimensions at the same time. Hierarchical visualization techniques
partition all dimensions into subsets (i.e., subspaces). The subspaces are visualized in a
hierarchical manner.

“Worlds-within-Worlds,” also known as n-Vision, is a representative hierarchical
visualization method. Suppose we want to visualize a 6-D data set, where the dimensions
are F ,X1, . . . ,X5. We want to observe how dimension F changes with respect to the other
dimensions. We can first fix the values of dimensions X3,X4,X5 to some selected values,
say, c3, c4, c5. We can then visualize F ,X1,X2 using a 3-D plot, called a world, as shown in
Figure 2.19. The position of the origin of the inner world is located at the point (c3, c4, c5)

in the outer world, which is another 3-D plot using dimensions X3,X4,X5. A user can
interactively change, in the outer world, the location of the origin of the inner world.
The user then views the resulting changes of the inner world. Moreover, a user can vary
the dimensions used in the inner world and the outer world. Given more dimensions,
more levels of worlds can be used, which is why the method is called “worlds-within-
worlds.”

As another example of hierarchical visualization methods, tree-maps display hier-
archical data as a set of nested rectangles. For example, Figure 2.20 shows a tree-map
visualizing Google news stories. All news stories are organized into seven categories, each
shown in a large rectangle of a unique color. Within each category (i.e., each rectangle
at the top level), the news stories are further partitioned into smaller subcategories.
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Figure 2.19 “Worlds-within-Worlds” (also known as n-Vision). Source: http://graphics.cs.columbia.edu/
projects/AutoVisual/images/1.dipstick.5.gif.

2.3.5 Visualizing Complex Data and Relations

In early days, visualization techniques were mainly for numeric data. Recently, more
and more non-numeric data, such as text and social networks, have become available.
Visualizing and analyzing such data attracts a lot of interest.

There are many new visualization techniques dedicated to these kinds of data. For
example, many people on the Web tag various objects such as pictures, blog entries, and
product reviews. A tag cloud is a visualization of statistics of user-generated tags. Often,
in a tag cloud, tags are listed alphabetically or in a user-preferred order. The importance
of a tag is indicated by font size or color. Figure 2.21 shows a tag cloud for visualizing
the popular tags used in a Web site.

Tag clouds are often used in two ways. First, in a tag cloud for a single item, we can
use the size of a tag to represent the number of times that the tag is applied to this item
by different users. Second, when visualizing the tag statistics on multiple items, we can
use the size of a tag to represent the number of items that the tag has been applied to,
that is, the popularity of the tag.

In addition to complex data, complex relations among data entries also raise chal-
lenges for visualization. For example, Figure 2.22 uses a disease influence graph to
visualize the correlations between diseases. The nodes in the graph are diseases, and
the size of each node is proportional to the prevalence of the corresponding disease.
Two nodes are linked by an edge if the corresponding diseases have a strong correlation.
The width of an edge is proportional to the strength of the correlation pattern of the two
corresponding diseases.
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Figure 2.20 Newsmap: Use of tree-maps to visualize Google news headline stories. Source: www.cs.umd.
edu/class/spring2005/cmsc838s/viz4all/ss/newsmap.png.

In summary, visualization provides effective tools to explore data. We have intro-
duced several popular methods and the essential ideas behind them. There are many
existing tools and methods. Moreover, visualization can be used in data mining in vari-
ous aspects. In addition to visualizing data, visualization can be used to represent the
data mining process, the patterns obtained from a mining method, and user interaction
with the data. Visual data mining is an important research and development direction.

2.4 Measuring Data Similarity and Dissimilarity

In data mining applications, such as clustering, outlier analysis, and nearest-neighbor
classification, we need ways to assess how alike or unalike objects are in comparison to
one another. For example, a store may want to search for clusters of customer objects,
resulting in groups of customers with similar characteristics (e.g., similar income, area
of residence, and age). Such information can then be used for marketing. A cluster is
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Figure 2.21 Using a tag cloud to visualize popular Web site tags. Source: A snapshot of www.flickr.com/
photos/tags/, January 23, 2010.
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Figure 2.22 Disease influence graph of people at least 20 years old in the NHANES data set.

a collection of data objects such that the objects within a cluster are similar to one
another and dissimilar to the objects in other clusters. Outlier analysis also employs
clustering-based techniques to identify potential outliers as objects that are highly dis-
similar to others. Knowledge of object similarities can also be used in nearest-neighbor
classification schemes where a given object (e.g., a patient) is assigned a class label
(relating to, say, a diagnosis) based on its similarity toward other objects in the model.
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This section presents similarity and dissimilarity measures, which are referred to as
measures of proximity. Similarity and dissimilarity are related. A similarity measure for
two objects, i and j, will typically return the value 0 if the objects are unalike. The higher
the similarity value, the greater the similarity between objects. (Typically, a value of 1
indicates complete similarity, that is, the objects are identical.) A dissimilarity measure
works the opposite way. It returns a value of 0 if the objects are the same (and therefore,
far from being dissimilar). The higher the dissimilarity value, the more dissimilar the
two objects are.

In Section 2.4.1 we present two data structures that are commonly used in the
above types of applications: the data matrix (used to store the data objects) and the
dissimilarity matrix (used to store dissimilarity values for pairs of objects). We also
switch to a different notation for data objects than previously used in this chapter
since now we are dealing with objects described by more than one attribute. We then
discuss how object dissimilarity can be computed for objects described by nominal
attributes (Section 2.4.2), by binary attributes (Section 2.4.3), by numeric attributes
(Section 2.4.4), by ordinal attributes (Section 2.4.5), or by combinations of these
attribute types (Section 2.4.6). Section 2.4.7 provides similarity measures for very long
and sparse data vectors, such as term-frequency vectors representing documents in
information retrieval. Knowing how to compute dissimilarity is useful in studying
attributes and will also be referenced in later topics on clustering (Chapters 10 and 11),
outlier analysis (Chapter 12), and nearest-neighbor classification (Chapter 9).

2.4.1 Data Matrix versus Dissimilarity Matrix

In Section 2.2, we looked at ways of studying the central tendency, dispersion, and spread
of observed values for some attribute X . Our objects there were one-dimensional, that
is, described by a single attribute. In this section, we talk about objects described by mul-
tiple attributes. Therefore, we need a change in notation. Suppose that we have n objects
(e.g., persons, items, or courses) described by p attributes (also called measurements or
features, such as age, height, weight, or gender). The objects are x1 = (x11,x12, . . . ,x1p),
x2 = (x21,x22, . . . ,x2p), and so on, where xij is the value for object xi of the jth attribute.
For brevity, we hereafter refer to object xi as object i. The objects may be tuples in a
relational database, and are also referred to as data samples or feature vectors.

Main memory-based clustering and nearest-neighbor algorithms typically operate
on either of the following two data structures:

Data matrix (or object-by-attribute structure): This structure stores the n data objects
in the form of a relational table, or n-by-p matrix (n objects ×p attributes):⎡

⎢⎢⎢⎢⎢⎣

x11 · · · x1f · · · x1p

· · · · · · · · · · · · · · ·
xi1 · · · xif · · · xip

· · · · · · · · · · · · · · ·
xn1 · · · xnf · · · xnp

⎤
⎥⎥⎥⎥⎥⎦ . (2.8)
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Each row corresponds to an object. As part of our notation, we may use f to index
through the p attributes.

Dissimilarity matrix (or object-by-object structure): This structure stores a collection
of proximities that are available for all pairs of n objects. It is often represented by an
n-by-n table: ⎡

⎢⎢⎢⎢⎢⎢⎣

0

d(2, 1) 0

d(3, 1) d(3, 2) 0
...

...
...

d(n, 1) d(n, 2) · · · · · · 0

⎤
⎥⎥⎥⎥⎥⎥⎦

, (2.9)

where d(i, j) is the measured dissimilarity or “difference” between objects i and j. In
general, d(i, j) is a non-negative number that is close to 0 when objects i and j are
highly similar or “near” each other, and becomes larger the more they differ. Note
that d(i, i) = 0; that is, the difference between an object and itself is 0. Furthermore,
d(i, j) = d( j, i). (For readability, we do not show the d( j, i) entries; the matrix is
symmetric.) Measures of dissimilarity are discussed throughout the remainder of this
chapter.

Measures of similarity can often be expressed as a function of measures of dissimilarity.
For example, for nominal data,

sim(i, j) = 1 − d(i, j), (2.10)

where sim(i, j) is the similarity between objects i and j. Throughout the rest of this
chapter, we will also comment on measures of similarity.

A data matrix is made up of two entities or “things,” namely rows (for objects)
and columns (for attributes). Therefore, the data matrix is often called a two-mode
matrix. The dissimilarity matrix contains one kind of entity (dissimilarities) and so is
called a one-mode matrix. Many clustering and nearest-neighbor algorithms operate
on a dissimilarity matrix. Data in the form of a data matrix can be transformed into a
dissimilarity matrix before applying such algorithms.

2.4.2 Proximity Measures for Nominal Attributes

A nominal attribute can take on two or more states (Section 2.1.2). For example,
map color is a nominal attribute that may have, say, five states: red, yellow, green, pink,
and blue.

Let the number of states of a nominal attribute be M . The states can be denoted by
letters, symbols, or a set of integers, such as 1, 2, . . . , M . Notice that such integers are
used just for data handling and do not represent any specific ordering.
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“How is dissimilarity computed between objects described by nominal attributes?”
The dissimilarity between two objects i and j can be computed based on the ratio of
mismatches:

d(i, j) = p − m

p
, (2.11)

where m is the number of matches (i.e., the number of attributes for which i and j are in
the same state), and p is the total number of attributes describing the objects. Weights
can be assigned to increase the effect of m or to assign greater weight to the matches in
attributes having a larger number of states.

Example 2.17 Dissimilarity between nominal attributes. Suppose that we have the sample data of
Table 2.2, except that only the object-identifier and the attribute test-1 are available,
where test-1 is nominal. (We will use test-2 and test-3 in later examples.) Let’s compute
the dissimilarity matrix (Eq. 2.9), that is,⎡

⎢⎢⎢⎣
0

d(2, 1) 0

d(3, 1) d(3, 2) 0

d(4, 1) d(4, 2) d(4, 3) 0

⎤
⎥⎥⎥⎦.

Since here we have one nominal attribute, test-1, we set p = 1 in Eq. (2.11) so that d(i, j)
evaluates to 0 if objects i and j match, and 1 if the objects differ. Thus, we get

⎡
⎢⎢⎢⎣

0

1 0

1 1 0

0 1 1 0

⎤
⎥⎥⎥⎦.

From this, we see that all objects are dissimilar except objects 1 and 4 (i.e., d(4,1) = 0).

Table 2.2 A Sample Data Table Containing Attributes
of Mixed Type

Object test-1 test-2 test-3
Identifier (nominal) (ordinal) (numeric)

1 code A excellent 45

2 code B fair 22

3 code C good 64

4 code A excellent 28
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Alternatively, similarity can be computed as

sim(i, j) = 1 − d(i, j) = m

p
. (2.12)

Proximity between objects described by nominal attributes can be computed using
an alternative encoding scheme. Nominal attributes can be encoded using asymmetric
binary attributes by creating a new binary attribute for each of the M states. For an
object with a given state value, the binary attribute representing that state is set to 1,
while the remaining binary attributes are set to 0. For example, to encode the nominal
attribute map color, a binary attribute can be created for each of the five colors previ-
ously listed. For an object having the color yellow, the yellow attribute is set to 1, while
the remaining four attributes are set to 0. Proximity measures for this form of encoding
can be calculated using the methods discussed in the next subsection.

2.4.3 Proximity Measures for Binary Attributes

Let’s look at dissimilarity and similarity measures for objects described by either
symmetric or asymmetric binary attributes.

Recall that a binary attribute has only one of two states: 0 and 1, where 0 means that
the attribute is absent, and 1 means that it is present (Section 2.1.3). Given the attribute
smoker describing a patient, for instance, 1 indicates that the patient smokes, while 0
indicates that the patient does not. Treating binary attributes as if they are numeric can
be misleading. Therefore, methods specific to binary data are necessary for computing
dissimilarity.

“So, how can we compute the dissimilarity between two binary attributes?” One
approach involves computing a dissimilarity matrix from the given binary data. If all
binary attributes are thought of as having the same weight, we have the 2 × 2 contin-
gency table of Table 2.3, where q is the number of attributes that equal 1 for both objects
i and j, r is the number of attributes that equal 1 for object i but equal 0 for object j, s is
the number of attributes that equal 0 for object i but equal 1 for object j, and t is the
number of attributes that equal 0 for both objects i and j. The total number of attributes
is p, where p = q + r + s + t .

Recall that for symmetric binary attributes, each state is equally valuable. Dis-
similarity that is based on symmetric binary attributes is called symmetric binary
dissimilarity. If objects i and j are described by symmetric binary attributes, then the

Table 2.3 Contingency Table for Binary Attributes

Object j

1 0 sum

1 q r q + r

Object i 0 s t s + t

sum q + s r + t p
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dissimilarity between i and j is

d(i, j) = r + s

q + r + s + t
. (2.13)

For asymmetric binary attributes, the two states are not equally important, such as
the positive (1) and negative (0) outcomes of a disease test. Given two asymmetric binary
attributes, the agreement of two 1s (a positive match) is then considered more signifi-
cant than that of two 0s (a negative match). Therefore, such binary attributes are often
considered “monary” (having one state). The dissimilarity based on these attributes is
called asymmetric binary dissimilarity, where the number of negative matches, t , is
considered unimportant and is thus ignored in the following computation:

d(i, j) = r + s

q + r + s
. (2.14)

Complementarily, we can measure the difference between two binary attributes based
on the notion of similarity instead of dissimilarity. For example, the asymmetric binary
similarity between the objects i and j can be computed as

sim(i, j) = q

q + r + s
= 1 − d(i, j). (2.15)

The coefficient sim(i, j) of Eq. (2.15) is called the Jaccard coefficient and is popularly
referenced in the literature.

When both symmetric and asymmetric binary attributes occur in the same data set,
the mixed attributes approach described in Section 2.4.6 can be applied.

Example 2.18 Dissimilarity between binary attributes. Suppose that a patient record table (Table 2.4)
contains the attributes name, gender, fever, cough, test-1, test-2, test-3, and test-4, where
name is an object identifier, gender is a symmetric attribute, and the remaining attributes
are asymmetric binary.

For asymmetric attribute values, let the values Y (yes) and P (positive) be set to 1,
and the value N (no or negative) be set to 0. Suppose that the distance between objects

Table 2.4 Relational Table Where Patients Are Described by Binary Attributes

name gender fever cough test-1 test-2 test-3 test-4

Jack M Y N P N N N

Jim M Y Y N N N N

Mary F Y N P N P N
...

...
...

...
...

...
...

...
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(patients) is computed based only on the asymmetric attributes. According to Eq. (2.14),
the distance between each pair of the three patients—Jack, Mary, and Jim—is

d(Jack, Jim) = 1 + 1

1 + 1 + 1
= 0.67,

d(Jack, Mary) = 0 + 1

2 + 0 + 1
= 0.33,

d(Jim, Mary) = 1 + 2

1 + 1 + 2
= 0.75.

These measurements suggest that Jim and Mary are unlikely to have a similar disease
because they have the highest dissimilarity value among the three pairs. Of the three
patients, Jack and Mary are the most likely to have a similar disease.

2.4.4 Dissimilarity of Numeric Data: Minkowski Distance

In this section, we describe distance measures that are commonly used for computing
the dissimilarity of objects described by numeric attributes. These measures include the
Euclidean, Manhattan, and Minkowski distances.

In some cases, the data are normalized before applying distance calculations. This
involves transforming the data to fall within a smaller or common range, such as [−1,1]
or [0.0, 1.0]. Consider a height attribute, for example, which could be measured in either
meters or inches. In general, expressing an attribute in smaller units will lead to a larger
range for that attribute, and thus tend to give such attributes greater effect or “weight.”
Normalizing the data attempts to give all attributes an equal weight. It may or may not be
useful in a particular application. Methods for normalizing data are discussed in detail
in Chapter 3 on data preprocessing.

The most popular distance measure is Euclidean distance (i.e., straight line or
“as the crow flies”). Let i = (xi1, xi2, . . . , xip) and j = (xj1, xj2, . . . , xjp) be two objects
described by p numeric attributes. The Euclidean distance between objects i and j is
defined as

d(i, j) =
√

(xi1 − xj1)2 + (xi2 − xj2)2 + ·· · + (xip − xjp)2. (2.16)

Another well-known measure is the Manhattan (or city block) distance, named so
because it is the distance in blocks between any two points in a city (such as 2 blocks
down and 3 blocks over for a total of 5 blocks). It is defined as

d(i, j) = |xi1 − xj1| + |xi2 − xj2| + · · · + |xip − xjp|. (2.17)

Both the Euclidean and the Manhattan distance satisfy the following mathematical
properties:

Non-negativity: d(i, j) ≥ 0: Distance is a non-negative number.

Identity of indiscernibles: d(i, i) = 0: The distance of an object to itself is 0.
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Symmetry: d(i, j) = d( j, i): Distance is a symmetric function.

Triangle inequality: d(i, j) ≤ d(i, k) + d(k, j): Going directly from object i to object j
in space is no more than making a detour over any other object k.

A measure that satisfies these conditions is known as metric. Please note that the
non-negativity property is implied by the other three properties.

Example 2.19 Euclidean distance and Manhattan distance. Let x1 = (1, 2) and x2 = (3, 5) repre-
sent two objects as shown in Figure 2.23. The Euclidean distance between the two is√

22 + 32 = 3.61. The Manhattan distance between the two is 2 + 3 = 5.

Minkowski distance is a generalization of the Euclidean and Manhattan distances.
It is defined as

d(i, j) = h
√

|xi1 − xj1|h + |xi2 − xj2|h + ·· · + |xip − xjp|h, (2.18)

where h is a real number such that h ≥ 1. (Such a distance is also called Lp norm in
some literature, where the symbol p refers to our notation of h. We have kept p as
the number of attributes to be consistent with the rest of this chapter.) It represents
the Manhattan distance when h = 1 (i.e., L1 norm) and Euclidean distance when h = 2
(i.e., L2 norm).

The supremum distance (also referred to as Lmax, L∞ norm and as the Chebyshev
distance) is a generalization of the Minkowski distance for h → ∞. To compute it, we
find the attribute f that gives the maximum difference in values between the two objects.
This difference is the supremum distance, defined more formally as:

d(i, j) = lim
h→∞

⎛
⎝ p∑

f =1

|xif − xjf |h
⎞
⎠

1
h

= p
max

f
|xif − xjf |. (2.19)

The L∞ norm is also known as the uniform norm.
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x2 = (3, 5)

x1 = (1, 2)

Euclidean distance
= (22 + 32)1/2 = 3.61

Manhattan distance
= 2 + 3 = 5

Supremum distance
= 5 – 2 = 3

Figure 2.23 Euclidean, Manhattan, and supremum distances between two objects.
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Example 2.20 Supremum distance. Let’s use the same two objects, x1 = (1, 2) and x2 = (3, 5), as in
Figure 2.23. The second attribute gives the greatest difference between values for the
objects, which is 5 − 2 = 3. This is the supremum distance between both objects.

If each attribute is assigned a weight according to its perceived importance, the
weighted Euclidean distance can be computed as

d(i, j) =
√

w1|xi1 − xj1|2 + w2|xi2 − xj2|2 + ·· · + wm|xip − xjp|2. (2.20)

Weighting can also be applied to other distance measures as well.

2.4.5 Proximity Measures for Ordinal Attributes

The values of an ordinal attribute have a meaningful order or ranking about them,
yet the magnitude between successive values is unknown (Section 2.1.4). An exam-
ple includes the sequence small, medium, large for a size attribute. Ordinal attributes
may also be obtained from the discretization of numeric attributes by splitting the value
range into a finite number of categories. These categories are organized into ranks. That
is, the range of a numeric attribute can be mapped to an ordinal attribute f having Mf

states. For example, the range of the interval-scaled attribute temperature (in Celsius)
can be organized into the following states: −30 to −10, −10 to 10, 10 to 30, repre-
senting the categories cold temperature, moderate temperature, and warm temperature,
respectively. Let M represent the number of possible states that an ordinal attribute can
have. These ordered states define the ranking 1, . . . , Mf .

“How are ordinal attributes handled?” The treatment of ordinal attributes is
quite similar to that of numeric attributes when computing dissimilarity between
objects. Suppose that f is an attribute from a set of ordinal attributes describing
n objects. The dissimilarity computation with respect to f involves the following
steps:

1. The value of f for the ith object is xif , and f has Mf ordered states, representing the
ranking 1, . . . , Mf . Replace each xif by its corresponding rank, rif ∈ {1, . . . , Mf }.

2. Since each ordinal attribute can have a different number of states, it is often
necessary to map the range of each attribute onto [0.0, 1.0] so that each attribute
has equal weight. We perform such data normalization by replacing the rank rif

of the ith object in the f th attribute by

zif = rif − 1

Mf − 1
. (2.21)

3. Dissimilarity can then be computed using any of the distance measures described
in Section 2.4.4 for numeric attributes, using zif to represent the f value for the ith
object.
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Example 2.21 Dissimilarity between ordinal attributes. Suppose that we have the sample data shown
earlier in Table 2.2, except that this time only the object-identifier and the continuous
ordinal attribute, test-2, are available. There are three states for test-2: fair, good, and
excellent, that is, Mf = 3. For step 1, if we replace each value for test-2 by its rank, the
four objects are assigned the ranks 3, 1, 2, and 3, respectively. Step 2 normalizes the
ranking by mapping rank 1 to 0.0, rank 2 to 0.5, and rank 3 to 1.0. For step 3, we can
use, say, the Euclidean distance (Eq. 2.16), which results in the following dissimilarity
matrix:

⎡
⎢⎢⎢⎣

0

1.0 0

0.5 0.5 0

0 1.0 0.5 0

⎤
⎥⎥⎥⎦ .

Therefore, objects 1 and 2 are the most dissimilar, as are objects 2 and 4 (i.e., d(2,1) =
1.0 and d(4,2) = 1.0). This makes intuitive sense since objects 1 and 4 are both excellent.
Object 2 is fair, which is at the opposite end of the range of values for test-2.

Similarity values for ordinal attributes can be interpreted from dissimilarity as
sim(i, j) = 1 − d(i, j).

2.4.6 Dissimilarity for Attributes of Mixed Types

Sections 2.4.2 through 2.4.5 discussed how to compute the dissimilarity between objects
described by attributes of the same type, where these types may be either nominal, sym-
metric binary, asymmetric binary, numeric, or ordinal. However, in many real databases,
objects are described by a mixture of attribute types. In general, a database can contain
all of these attribute types.

“So, how can we compute the dissimilarity between objects of mixed attribute types?”
One approach is to group each type of attribute together, performing separate data
mining (e.g., clustering) analysis for each type. This is feasible if these analyses derive
compatible results. However, in real applications, it is unlikely that a separate analysis
per attribute type will generate compatible results.

A more preferable approach is to process all attribute types together, performing a
single analysis. One such technique combines the different attributes into a single dis-
similarity matrix, bringing all of the meaningful attributes onto a common scale of the
interval [0.0, 1.0].

Suppose that the data set contains p attributes of mixed type. The dissimilarity d(i, j)
between objects i and j is defined as

d(i, j) =
∑p

f =1 δ
(f )
ij d

(f )
ij∑p

f =1 δ
(f )
ij

, (2.22)
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where the indicator δ
(f )
ij = 0 if either (1) xif or xjf is missing (i.e., there is no mea-

surement of attribute f for object i or object j), or (2) xif = xjf = 0 and attribute

f is asymmetric binary; otherwise, δ
(f )
ij = 1. The contribution of attribute f to the

dissimilarity between i and j (i.e., d
(f )
ij ) is computed dependent on its type:

If f is numeric: d
(f )
ij = |xif −xjf |

maxhxhf −minhxhf
, where h runs over all nonmissing objects for

attribute f .

If f is nominal or binary: d
(f )
ij = 0 if xif = xjf ; otherwise, d

(f )
ij = 1.

If f is ordinal: compute the ranks rif and zif = rif −1
Mf −1 , and treat zif as numeric.

These steps are identical to what we have already seen for each of the individual
attribute types. The only difference is for numeric attributes, where we normalize so
that the values map to the interval [0.0, 1.0]. Thus, the dissimilarity between objects
can be computed even when the attributes describing the objects are of different
types.

Example 2.22 Dissimilarity between attributes of mixed type. Let’s compute a dissimilarity matrix
for the objects in Table 2.2. Now we will consider all of the attributes, which are of
different types. In Examples 2.17 and 2.21, we worked out the dissimilarity matrices
for each of the individual attributes. The procedures we followed for test-1 (which is
nominal) and test-2 (which is ordinal) are the same as outlined earlier for processing
attributes of mixed types. Therefore, we can use the dissimilarity matrices obtained for
test-1 and test-2 later when we compute Eq. (2.22). First, however, we need to compute
the dissimilarity matrix for the third attribute, test-3 (which is numeric). That is, we

must compute d(3)
ij . Following the case for numeric attributes, we let maxhxh = 64 and

minhxh = 22. The difference between the two is used in Eq. (2.22) to normalize the
values of the dissimilarity matrix. The resulting dissimilarity matrix for test-3 is

⎡
⎢⎢⎢⎣

0

0.55 0

0.45 1.00 0

0.40 0.14 0.86 0

⎤
⎥⎥⎥⎦ .

We can now use the dissimilarity matrices for the three attributes in our computation of

Eq. (2.22). The indicator δ
(f )
ij = 1 for each of the three attributes, f . We get, for example,

d(3, 1) = 1(1)+1(0.50)+1(0.45)
3 = 0.65. The resulting dissimilarity matrix obtained for the
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data described by the three attributes of mixed types is:⎡
⎢⎢⎢⎣

0

0.85 0

0.65 0.83 0

0.13 0.71 0.79 0

⎤
⎥⎥⎥⎦ .

From Table 2.2, we can intuitively guess that objects 1 and 4 are the most similar, based
on their values for test-1 and test-2. This is confirmed by the dissimilarity matrix, where
d(4, 1) is the lowest value for any pair of different objects. Similarly, the matrix indicates
that objects 1 and 2 are the least similar.

2.4.7 Cosine Similarity

Cosine similarity measures the similarity between two vectors of an inner product space.
It is measured by the cosine of the angle between two vectors and determines whether
two vectors are pointing in roughly the same direction. It is often used to measure
document similarity in text analysis.

A document can be represented by thousands of attributes, each recording the fre-
quency of a particular word (such as a keyword) or phrase in the document. Thus,
each document is an object represented by what is called a term-frequency vector. For
example, in Table 2.5, we see that Document1 contains five instances of the word team,
while hockey occurs three times. The word coach is absent from the entire document, as
indicated by a count value of 0. Such data can be highly asymmetric.

Term-frequency vectors are typically very long and sparse (i.e., they have many 0 val-
ues). Applications using such structures include information retrieval, text document
clustering, biological taxonomy, and gene feature mapping. The traditional distance
measures that we have studied in this chapter do not work well for such sparse numeric
data. For example, two term-frequency vectors may have many 0 values in common,
meaning that the corresponding documents do not share many words, but this does not
make them similar. We need a measure that will focus on the words that the two docu-
ments do have in common, and the occurrence frequency of such words. In other words,
we need a measure for numeric data that ignores zero-matches.

Table 2.5 Document Vector or Term-Frequency Vector

Document team coach hockey baseball soccer penalty score win loss season

Document1 5 0 3 0 2 0 0 2 0 0

Document2 3 0 2 0 1 1 0 1 0 1

Document3 0 7 0 2 1 0 0 3 0 0

Document4 0 1 0 0 1 2 2 0 3 0
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Cosine similarity is a measure of similarity that can be used to compare docu-
ments or, say, give a ranking of documents with respect to a given vector of query
words. Let x and y be two vectors for comparison. Using the cosine measure as a
similarity function, we have

sim(x, y) = x · y
||x||||y|| , (2.23)

where ||x|| is the Euclidean norm of vector x = (x1, x2, . . . , xp), defined as√
x2

1 + x2
2 + ·· · + x2

p . Conceptually, it is the length of the vector. Similarly, ||y|| is the

Euclidean norm of vector y. The measure computes the cosine of the angle between vec-
tors x and y. A cosine value of 0 means that the two vectors are at 90 degrees to each
other (orthogonal) and have no match. The closer the cosine value to 1, the smaller the
angle and the greater the match between vectors. Note that because the cosine similarity
measure does not obey all of the properties of Section 2.4.4 defining metric measures, it
is referred to as a nonmetric measure.

Example 2.23 Cosine similarity between two term-frequency vectors. Suppose that x and y are the
first two term-frequency vectors in Table 2.5. That is, x = (5,0,3,0,2,0,0,2,0,0) and
y = (3,0,2,0,1,1,0,1,0,1). How similar are x and y? Using Eq. (2.23) to compute the
cosine similarity between the two vectors, we get:

xt · y = 5 × 3 + 0 × 0 + 3 × 2 + 0 × 0 + 2 × 1 + 0 × 1 + 0 × 0 + 2 × 1

+ 0 × 0 + 0 × 1 = 25

||x|| =
√

52 + 02 + 32 + 02 + 22 + 02 + 02 + 22 + 02 + 02 = 6.48

||y|| =
√

32 + 02 + 22 + 02 + 12 + 12 + 02 + 12 + 02 + 12 = 4.12

sim(x, y) = 0.94

Therefore, if we were using the cosine similarity measure to compare these documents,
they would be considered quite similar.

When attributes are binary-valued, the cosine similarity function can be interpreted
in terms of shared features or attributes. Suppose an object x possesses the ith attribute
if xi = 1. Then xt · y is the number of attributes possessed (i.e., shared) by both x and
y, and |x||y| is the geometric mean of the number of attributes possessed by x and the
number possessed by y. Thus, sim(x, y) is a measure of relative possession of common
attributes.

A simple variation of cosine similarity for the preceding scenario is

sim(x, y) = x · y
x · x + y · y − x · y

, (2.24)

which is the ratio of the number of attributes shared by x and y to the number of
attributes possessed by x or y. This function, known as the Tanimoto coefficient or
Tanimoto distance, is frequently used in information retrieval and biology taxonomy.
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2.5 Summary

Data sets are made up of data objects. A data object represents an entity. Data objects
are described by attributes. Attributes can be nominal, binary, ordinal, or numeric.

The values of a nominal (or categorical) attribute are symbols or names of things,
where each value represents some kind of category, code, or state.

Binary attributes are nominal attributes with only two possible states (such as 1 and
0 or true and false). If the two states are equally important, the attribute is symmetric;
otherwise it is asymmetric.

An ordinal attribute is an attribute with possible values that have a meaningful order
or ranking among them, but the magnitude between successive values is not known.

A numeric attribute is quantitative (i.e., it is a measurable quantity) represented
in integer or real values. Numeric attribute types can be interval-scaled or ratio-
scaled. The values of an interval-scaled attribute are measured in fixed and equal
units. Ratio-scaled attributes are numeric attributes with an inherent zero-point.
Measurements are ratio-scaled in that we can speak of values as being an order of
magnitude larger than the unit of measurement.

Basic statistical descriptions provide the analytical foundation for data preprocess-
ing. The basic statistical measures for data summarization include mean, weighted
mean, median, and mode for measuring the central tendency of data; and range, quan-
tiles, quartiles, interquartile range, variance, and standard deviation for measuring the
dispersion of data. Graphical representations (e.g., boxplots, quantile plots, quantile–
quantile plots, histograms, and scatter plots) facilitate visual inspection of the data and
are thus useful for data preprocessing and mining.

Data visualization techniques may be pixel-oriented, geometric-based, icon-based, or
hierarchical. These methods apply to multidimensional relational data. Additional
techniques have been proposed for the visualization of complex data, such as text
and social networks.

Measures of object similarity and dissimilarity are used in data mining applications
such as clustering, outlier analysis, and nearest-neighbor classification. Such mea-
sures of proximity can be computed for each attribute type studied in this chapter,
or for combinations of such attributes. Examples include the Jaccard coefficient for
asymmetric binary attributes and Euclidean, Manhattan, Minkowski, and supremum
distances for numeric attributes. For applications involving sparse numeric data vec-
tors, such as term-frequency vectors, the cosine measure and the Tanimoto coefficient
are often used in the assessment of similarity.

2.6 Exercises

2.1 Give three additional commonly used statistical measures that are not already illus-
trated in this chapter for the characterization of data dispersion. Discuss how they can
be computed efficiently in large databases.
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2.2 Suppose that the data for analysis includes the attribute age. The age values for the data
tuples are (in increasing order) 13, 15, 16, 16, 19, 20, 20, 21, 22, 22, 25, 25, 25, 25, 30,
33, 33, 35, 35, 35, 35, 36, 40, 45, 46, 52, 70.

(a) What is the mean of the data? What is the median?

(b) What is the mode of the data? Comment on the data’s modality (i.e., bimodal,
trimodal, etc.).

(c) What is the midrange of the data?

(d) Can you find (roughly) the first quartile (Q1) and the third quartile (Q3) of the data?

(e) Give the five-number summary of the data.

(f) Show a boxplot of the data.

(g) How is a quantile–quantile plot different from a quantile plot?

2.3 Suppose that the values for a given set of data are grouped into intervals. The intervals
and corresponding frequencies are as follows:

age frequency

1–5 200

6–15 450

16–20 300

21–50 1500

51–80 700

81–110 44

Compute an approximate median value for the data.

2.4 Suppose that a hospital tested the age and body fat data for 18 randomly selected adults
with the following results:

age 23 23 27 27 39 41 47 49 50

%fat 9.5 26.5 7.8 17.8 31.4 25.9 27.4 27.2 31.2

age 52 54 54 56 57 58 58 60 61

%fat 34.6 42.5 28.8 33.4 30.2 34.1 32.9 41.2 35.7

(a) Calculate the mean, median, and standard deviation of age and %fat.

(b) Draw the boxplots for age and %fat.

(c) Draw a scatter plot and a q-q plot based on these two variables.

2.5 Briefly outline how to compute the dissimilarity between objects described by the
following:

(a) Nominal attributes

(b) Asymmetric binary attributes



2.7 Bibliographic Notes 81

(c) Numeric attributes

(d) Term-frequency vectors

2.6 Given two objects represented by the tuples (22, 1, 42, 10) and (20, 0, 36, 8):

(a) Compute the Euclidean distance between the two objects.

(b) Compute the Manhattan distance between the two objects.

(c) Compute the Minkowski distance between the two objects, using q = 3.

(d) Compute the supremum distance between the two objects.

2.7 The median is one of the most important holistic measures in data analysis. Pro-
pose several methods for median approximation. Analyze their respective complexity
under different parameter settings and decide to what extent the real value can be
approximated. Moreover, suggest a heuristic strategy to balance between accuracy and
complexity and then apply it to all methods you have given.

2.8 It is important to define or select similarity measures in data analysis. However, there
is no commonly accepted subjective similarity measure. Results can vary depending on
the similarity measures used. Nonetheless, seemingly different similarity measures may
be equivalent after some transformation.

Suppose we have the following 2-D data set:

A1 A2

x1 1.5 1.7

x2 2 1.9

x3 1.6 1.8

x4 1.2 1.5

x5 1.5 1.0

(a) Consider the data as 2-D data points. Given a new data point, x = (1.4,1.6) as a
query, rank the database points based on similarity with the query using Euclidean
distance, Manhattan distance, supremum distance, and cosine similarity.

(b) Normalize the data set to make the norm of each data point equal to 1. Use Euclidean
distance on the transformed data to rank the data points.

2.7 Bibliographic Notes

Methods for descriptive data summarization have been studied in the statistics literature
long before the onset of computers. Good summaries of statistical descriptive data min-
ing methods include Freedman, Pisani, and Purves [FPP07] and Devore [Dev95]. For
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statistics-based visualization of data using boxplots, quantile plots, quantile–quantile
plots, scatter plots, and loess curves, see Cleveland [Cle93].

Pioneering work on data visualization techniques is described in The Visual Dis-
play of Quantitative Information [Tuf83], Envisioning Information [Tuf90], and Visual
Explanations: Images and Quantities, Evidence and Narrative [Tuf97], all by Tufte, in
addition to Graphics and Graphic Information Processing by Bertin [Ber81], Visualizing
Data by Cleveland [Cle93], and Information Visualization in Data Mining and Knowledge
Discovery edited by Fayyad, Grinstein, and Wierse [FGW01].

Major conferences and symposiums on visualization include ACM Human Factors
in Computing Systems (CHI), Visualization, and the International Symposium on Infor-
mation Visualization. Research on visualization is also published in Transactions on
Visualization and Computer Graphics, Journal of Computational and Graphical Statistics,
and IEEE Computer Graphics and Applications.

Many graphical user interfaces and visualization tools have been developed and can
be found in various data mining products. Several books on data mining (e.g., Data
Mining Solutions by Westphal and Blaxton [WB98]) present many good examples and
visual snapshots. For a survey of visualization techniques, see “Visual techniques for
exploring databases” by Keim [Kei97].

Similarity and distance measures among various variables have been introduced in
many textbooks that study cluster analysis, including Hartigan [Har75]; Jain and Dubes
[JD88]; Kaufman and Rousseeuw [KR90]; and Arabie, Hubert, and de Soete [AHS96].
Methods for combining attributes of different types into a single dissimilarity matrix
were introduced by Kaufman and Rousseeuw [KR90].
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Today’s real-world databases are highly susceptible to noisy, missing, and inconsistent data
due to their typically huge size (often several gigabytes or more) and their likely origin
from multiple, heterogenous sources. Low-quality data will lead to low-quality mining
results. “How can the data be preprocessed in order to help improve the quality of the data
and, consequently, of the mining results? How can the data be preprocessed so as to improve
the efficiency and ease of the mining process?”

There are several data preprocessing techniques. Data cleaning can be applied to
remove noise and correct inconsistencies in data. Data integration merges data from
multiple sources into a coherent data store such as a data warehouse. Data reduction
can reduce data size by, for instance, aggregating, eliminating redundant features, or
clustering. Data transformations (e.g., normalization) may be applied, where data are
scaled to fall within a smaller range like 0.0 to 1.0. This can improve the accuracy and
efficiency of mining algorithms involving distance measurements. These techniques are
not mutually exclusive; they may work together. For example, data cleaning can involve
transformations to correct wrong data, such as by transforming all entries for a date field
to a common format.

In Chapter 2, we learned about the different attribute types and how to use basic
statistical descriptions to study data characteristics. These can help identify erroneous
values and outliers, which will be useful in the data cleaning and integration steps.
Data processing techniques, when applied before mining, can substantially improve the
overall quality of the patterns mined and/or the time required for the actual mining.

In this chapter, we introduce the basic concepts of data preprocessing in Section 3.1.
The methods for data preprocessing are organized into the following categories: data
cleaning (Section 3.2), data integration (Section 3.3), data reduction (Section 3.4), and
data transformation (Section 3.5).

c© 2012 Elsevier Inc. All rights reserved.
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3.1 Data Preprocessing: An Overview

This section presents an overview of data preprocessing. Section 3.1.1 illustrates the
many elements defining data quality. This provides the incentive behind data prepro-
cessing. Section 3.1.2 outlines the major tasks in data preprocessing.

3.1.1 Data Quality: Why Preprocess the Data?

Data have quality if they satisfy the requirements of the intended use. There are many
factors comprising data quality, including accuracy, completeness, consistency, timeliness,
believability, and interpretability.

Imagine that you are a manager at AllElectronics and have been charged with ana-
lyzing the company’s data with respect to your branch’s sales. You immediately set out
to perform this task. You carefully inspect the company’s database and data warehouse,
identifying and selecting the attributes or dimensions (e.g., item, price, and units sold)
to be included in your analysis. Alas! You notice that several of the attributes for various
tuples have no recorded value. For your analysis, you would like to include informa-
tion as to whether each item purchased was advertised as on sale, yet you discover that
this information has not been recorded. Furthermore, users of your database system
have reported errors, unusual values, and inconsistencies in the data recorded for some
transactions. In other words, the data you wish to analyze by data mining techniques are
incomplete (lacking attribute values or certain attributes of interest, or containing only
aggregate data); inaccurate or noisy (containing errors, or values that deviate from the
expected); and inconsistent (e.g., containing discrepancies in the department codes used
to categorize items). Welcome to the real world!

This scenario illustrates three of the elements defining data quality: accuracy, com-
pleteness, and consistency. Inaccurate, incomplete, and inconsistent data are common-
place properties of large real-world databases and data warehouses. There are many
possible reasons for inaccurate data (i.e., having incorrect attribute values). The data col-
lection instruments used may be faulty. There may have been human or computer errors
occurring at data entry. Users may purposely submit incorrect data values for manda-
tory fields when they do not wish to submit personal information (e.g., by choosing
the default value “January 1” displayed for birthday). This is known as disguised missing
data. Errors in data transmission can also occur. There may be technology limitations
such as limited buffer size for coordinating synchronized data transfer and consump-
tion. Incorrect data may also result from inconsistencies in naming conventions or data
codes, or inconsistent formats for input fields (e.g., date). Duplicate tuples also require
data cleaning.

Incomplete data can occur for a number of reasons. Attributes of interest may not
always be available, such as customer information for sales transaction data. Other data
may not be included simply because they were not considered important at the time
of entry. Relevant data may not be recorded due to a misunderstanding or because of
equipment malfunctions. Data that were inconsistent with other recorded data may
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have been deleted. Furthermore, the recording of the data history or modifications may
have been overlooked. Missing data, particularly for tuples with missing values for some
attributes, may need to be inferred.

Recall that data quality depends on the intended use of the data. Two different users
may have very different assessments of the quality of a given database. For example, a
marketing analyst may need to access the database mentioned before for a list of cus-
tomer addresses. Some of the addresses are outdated or incorrect, yet overall, 80% of
the addresses are accurate. The marketing analyst considers this to be a large customer
database for target marketing purposes and is pleased with the database’s accuracy,
although, as sales manager, you found the data inaccurate.

Timeliness also affects data quality. Suppose that you are overseeing the distribu-
tion of monthly sales bonuses to the top sales representatives at AllElectronics. Several
sales representatives, however, fail to submit their sales records on time at the end of
the month. There are also a number of corrections and adjustments that flow in after
the month’s end. For a period of time following each month, the data stored in the
database are incomplete. However, once all of the data are received, it is correct. The fact
that the month-end data are not updated in a timely fashion has a negative impact on
the data quality.

Two other factors affecting data quality are believability and interpretability. Believ-
ability reflects how much the data are trusted by users, while interpretability reflects
how easy the data are understood. Suppose that a database, at one point, had several
errors, all of which have since been corrected. The past errors, however, had caused
many problems for sales department users, and so they no longer trust the data. The
data also use many accounting codes, which the sales department does not know how to
interpret. Even though the database is now accurate, complete, consistent, and timely,
sales department users may regard it as of low quality due to poor believability and
interpretability.

3.1.2 Major Tasks in Data Preprocessing

In this section, we look at the major steps involved in data preprocessing, namely, data
cleaning, data integration, data reduction, and data transformation.

Data cleaning routines work to “clean” the data by filling in missing values, smooth-
ing noisy data, identifying or removing outliers, and resolving inconsistencies. If users
believe the data are dirty, they are unlikely to trust the results of any data mining that has
been applied. Furthermore, dirty data can cause confusion for the mining procedure,
resulting in unreliable output. Although most mining routines have some procedures
for dealing with incomplete or noisy data, they are not always robust. Instead, they may
concentrate on avoiding overfitting the data to the function being modeled. Therefore,
a useful preprocessing step is to run your data through some data cleaning routines.
Section 3.2 discusses methods for data cleaning.

Getting back to your task at AllElectronics, suppose that you would like to include
data from multiple sources in your analysis. This would involve integrating multiple
databases, data cubes, or files (i.e., data integration). Yet some attributes representing a
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given concept may have different names in different databases, causing inconsistencies
and redundancies. For example, the attribute for customer identification may be referred
to as customer id in one data store and cust id in another. Naming inconsistencies may
also occur for attribute values. For example, the same first name could be registered as
“Bill” in one database, “William” in another, and “B.” in a third. Furthermore, you sus-
pect that some attributes may be inferred from others (e.g., annual revenue). Having
a large amount of redundant data may slow down or confuse the knowledge discov-
ery process. Clearly, in addition to data cleaning, steps must be taken to help avoid
redundancies during data integration. Typically, data cleaning and data integration are
performed as a preprocessing step when preparing data for a data warehouse. Addi-
tional data cleaning can be performed to detect and remove redundancies that may have
resulted from data integration.

“Hmmm,” you wonder, as you consider your data even further. “The data set I have
selected for analysis is HUGE, which is sure to slow down the mining process. Is there a
way I can reduce the size of my data set without jeopardizing the data mining results?”
Data reduction obtains a reduced representation of the data set that is much smaller in
volume, yet produces the same (or almost the same) analytical results. Data reduction
strategies include dimensionality reduction and numerosity reduction.

In dimensionality reduction, data encoding schemes are applied so as to obtain a
reduced or “compressed” representation of the original data. Examples include data
compression techniques (e.g., wavelet transforms and principal components analysis),
attribute subset selection (e.g., removing irrelevant attributes), and attribute construction
(e.g., where a small set of more useful attributes is derived from the original set).

In numerosity reduction, the data are replaced by alternative, smaller representa-
tions using parametric models (e.g., regression or log-linear models) or nonparametric
models (e.g., histograms, clusters, sampling, or data aggregation). Data reduction is the
topic of Section 3.4.

Getting back to your data, you have decided, say, that you would like to use a distance-
based mining algorithm for your analysis, such as neural networks, nearest-neighbor
classifiers, or clustering.1 Such methods provide better results if the data to be ana-
lyzed have been normalized, that is, scaled to a smaller range such as [0.0, 1.0]. Your
customer data, for example, contain the attributes age and annual salary. The annual
salary attribute usually takes much larger values than age. Therefore, if the attributes
are left unnormalized, the distance measurements taken on annual salary will generally
outweigh distance measurements taken on age. Discretization and concept hierarchy gen-
eration can also be useful, where raw data values for attributes are replaced by ranges or
higher conceptual levels. For example, raw values for age may be replaced by higher-level
concepts, such as youth, adult, or senior.

Discretization and concept hierarchy generation are powerful tools for data min-
ing in that they allow data mining at multiple abstraction levels. Normalization, data

1Neural networks and nearest-neighbor classifiers are described in Chapter 9, and clustering is discussed
in Chapters 10 and 11.
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discretization, and concept hierarchy generation are forms of data transformation.
You soon realize such data transformation operations are additional data preprocessing
procedures that would contribute toward the success of the mining process. Data
integration and data discretization are discussed in Sections 3.5.

Figure 3.1 summarizes the data preprocessing steps described here. Note that the pre-
vious categorization is not mutually exclusive. For example, the removal of redundant
data may be seen as a form of data cleaning, as well as data reduction.

In summary, real-world data tend to be dirty, incomplete, and inconsistent. Data pre-
processing techniques can improve data quality, thereby helping to improve the accuracy
and efficiency of the subsequent mining process. Data preprocessing is an important step
in the knowledge discovery process, because quality decisions must be based on qual-
ity data. Detecting data anomalies, rectifying them early, and reducing the data to be
analyzed can lead to huge payoffs for decision making.

Data cleaning

Data integration

Data reduction
Attributes Attributes

A1 A2 A3 ... A126
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T2000
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T1456

A1 A3 ... A115

Data transformation �2, 32, 100, 59, 48 �0.02, 0.32, 1.00, 0.59, 0.48

Figure 3.1 Forms of data preprocessing.
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3.2 Data Cleaning

Real-world data tend to be incomplete, noisy, and inconsistent. Data cleaning (or data
cleansing) routines attempt to fill in missing values, smooth out noise while identi-
fying outliers, and correct inconsistencies in the data. In this section, you will study
basic methods for data cleaning. Section 3.2.1 looks at ways of handling missing values.
Section 3.2.2 explains data smoothing techniques. Section 3.2.3 discusses approaches to
data cleaning as a process.

3.2.1 Missing Values

Imagine that you need to analyze AllElectronics sales and customer data. You note that
many tuples have no recorded value for several attributes such as customer income. How
can you go about filling in the missing values for this attribute? Let’s look at the following
methods.

1. Ignore the tuple: This is usually done when the class label is missing (assuming the
mining task involves classification). This method is not very effective, unless the tuple
contains several attributes with missing values. It is especially poor when the percent-
age of missing values per attribute varies considerably. By ignoring the tuple, we do
not make use of the remaining attributes’ values in the tuple. Such data could have
been useful to the task at hand.

2. Fill in the missing value manually: In general, this approach is time consuming and
may not be feasible given a large data set with many missing values.

3. Use a global constant to fill in the missing value: Replace all missing attribute values
by the same constant such as a label like “Unknown” or −∞. If missing values are
replaced by, say, “Unknown,” then the mining program may mistakenly think that
they form an interesting concept, since they all have a value in common—that of
“Unknown.” Hence, although this method is simple, it is not foolproof.

4. Use a measure of central tendency for the attribute (e.g., the mean or median) to
fill in the missing value: Chapter 2 discussed measures of central tendency, which
indicate the “middle” value of a data distribution. For normal (symmetric) data dis-
tributions, the mean can be used, while skewed data distribution should employ
the median (Section 2.2). For example, suppose that the data distribution regard-
ing the income of AllElectronics customers is symmetric and that the mean income is
$56,000. Use this value to replace the missing value for income.

5. Use the attribute mean or median for all samples belonging to the same class as
the given tuple: For example, if classifying customers according to credit risk, we
may replace the missing value with the mean income value for customers in the same
credit risk category as that of the given tuple. If the data distribution for a given class
is skewed, the median value is a better choice.

6. Use the most probable value to fill in the missing value: This may be determined
with regression, inference-based tools using a Bayesian formalism, or decision tree
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induction. For example, using the other customer attributes in your data set, you
may construct a decision tree to predict the missing values for income. Decision trees
and Bayesian inference are described in detail in Chapters 8 and 9, respectively, while
regression is introduced in Section 3.4.5.

Methods 3 through 6 bias the data—the filled-in value may not be correct. Method 6,
however, is a popular strategy. In comparison to the other methods, it uses the most
information from the present data to predict missing values. By considering the other
attributes’ values in its estimation of the missing value for income, there is a greater
chance that the relationships between income and the other attributes are preserved.

It is important to note that, in some cases, a missing value may not imply an error
in the data! For example, when applying for a credit card, candidates may be asked to
supply their driver’s license number. Candidates who do not have a driver’s license may
naturally leave this field blank. Forms should allow respondents to specify values such
as “not applicable.” Software routines may also be used to uncover other null values
(e.g., “don’t know,” “?” or “none”). Ideally, each attribute should have one or more rules
regarding the null condition. The rules may specify whether or not nulls are allowed
and/or how such values should be handled or transformed. Fields may also be inten-
tionally left blank if they are to be provided in a later step of the business process. Hence,
although we can try our best to clean the data after it is seized, good database and data
entry procedure design should help minimize the number of missing values or errors in
the first place.

3.2.2 Noisy Data

“What is noise?” Noise is a random error or variance in a measured variable. In
Chapter 2, we saw how some basic statistical description techniques (e.g., boxplots
and scatter plots), and methods of data visualization can be used to identify outliers,
which may represent noise. Given a numeric attribute such as, say, price, how can we
“smooth” out the data to remove the noise? Let’s look at the following data smoothing
techniques.

Binning: Binning methods smooth a sorted data value by consulting its “neighbor-
hood,” that is, the values around it. The sorted values are distributed into a number
of “buckets,” or bins. Because binning methods consult the neighborhood of values,
they perform local smoothing. Figure 3.2 illustrates some binning techniques. In this
example, the data for price are first sorted and then partitioned into equal-frequency
bins of size 3 (i.e., each bin contains three values). In smoothing by bin means, each
value in a bin is replaced by the mean value of the bin. For example, the mean of the
values 4, 8, and 15 in Bin 1 is 9. Therefore, each original value in this bin is replaced
by the value 9.

Similarly, smoothing by bin medians can be employed, in which each bin value
is replaced by the bin median. In smoothing by bin boundaries, the minimum and
maximum values in a given bin are identified as the bin boundaries. Each bin value
is then replaced by the closest boundary value. In general, the larger the width, the
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Sorted data for price (in dollars): 4, 8, 15, 21, 21, 24, 25, 28, 34

Partition into (equal-frequency) bins:

Bin 1: 4, 8, 15
Bin 2: 21, 21, 24
Bin 3: 25, 28, 34

Smoothing by bin means:

Bin 1: 9, 9, 9
Bin 2: 22, 22, 22
Bin 3: 29, 29, 29

Smoothing by bin boundaries:

Bin 1: 4, 4, 15
Bin 2: 21, 21, 24
Bin 3: 25, 25, 34

Figure 3.2 Binning methods for data smoothing.

greater the effect of the smoothing. Alternatively, bins may be equal width, where the
interval range of values in each bin is constant. Binning is also used as a discretization
technique and is further discussed in Section 3.5.

Regression: Data smoothing can also be done by regression, a technique that con-
forms data values to a function. Linear regression involves finding the “best” line to
fit two attributes (or variables) so that one attribute can be used to predict the other.
Multiple linear regression is an extension of linear regression, where more than two
attributes are involved and the data are fit to a multidimensional surface. Regression
is further described in Section 3.4.5.

Outlier analysis: Outliers may be detected by clustering, for example, where similar
values are organized into groups, or “clusters.” Intuitively, values that fall outside of
the set of clusters may be considered outliers (Figure 3.3). Chapter 12 is dedicated to
the topic of outlier analysis.

Many data smoothing methods are also used for data discretization (a form of data
transformation) and data reduction. For example, the binning techniques described
before reduce the number of distinct values per attribute. This acts as a form of data
reduction for logic-based data mining methods, such as decision tree induction, which
repeatedly makes value comparisons on sorted data. Concept hierarchies are a form of
data discretization that can also be used for data smoothing. A concept hierarchy for
price, for example, may map real price values into inexpensive, moderately priced, and
expensive, thereby reducing the number of data values to be handled by the mining
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Figure 3.3 A 2-D customer data plot with respect to customer locations in a city, showing three data
clusters. Outliers may be detected as values that fall outside of the cluster sets.

process. Data discretization is discussed in Section 3.5. Some methods of classification
(e.g., neural networks) have built-in data smoothing mechanisms. Classification is the
topic of Chapters 8 and 9.

3.2.3 Data Cleaning as a Process

Missing values, noise, and inconsistencies contribute to inaccurate data. So far, we have
looked at techniques for handling missing data and for smoothing data. “But data clean-
ing is a big job. What about data cleaning as a process? How exactly does one proceed in
tackling this task? Are there any tools out there to help?”

The first step in data cleaning as a process is discrepancy detection. Discrepancies can
be caused by several factors, including poorly designed data entry forms that have many
optional fields, human error in data entry, deliberate errors (e.g., respondents not want-
ing to divulge information about themselves), and data decay (e.g., outdated addresses).
Discrepancies may also arise from inconsistent data representations and inconsistent use
of codes. Other sources of discrepancies include errors in instrumentation devices that
record data and system errors. Errors can also occur when the data are (inadequately)
used for purposes other than originally intended. There may also be inconsistencies due
to data integration (e.g., where a given attribute can have different names in different
databases).2

2Data integration and the removal of redundant data that can result from such integration are further
described in Section 3.3.
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“So, how can we proceed with discrepancy detection?” As a starting point, use any
knowledge you may already have regarding properties of the data. Such knowledge or
“data about data” is referred to as metadata. This is where we can make use of the know-
ledge we gained about our data in Chapter 2. For example, what are the data type and
domain of each attribute? What are the acceptable values for each attribute? The basic
statistical data descriptions discussed in Section 2.2 are useful here to grasp data trends
and identify anomalies. For example, find the mean, median, and mode values. Are the
data symmetric or skewed? What is the range of values? Do all values fall within the
expected range? What is the standard deviation of each attribute? Values that are more
than two standard deviations away from the mean for a given attribute may be flagged
as potential outliers. Are there any known dependencies between attributes? In this step,
you may write your own scripts and/or use some of the tools that we discuss further later.
From this, you may find noise, outliers, and unusual values that need investigation.

As a data analyst, you should be on the lookout for the inconsistent use of codes and
any inconsistent data representations (e.g., “2010/12/25” and “25/12/2010” for date).
Field overloading is another error source that typically results when developers squeeze
new attribute definitions into unused (bit) portions of already defined attributes (e.g.,
an unused bit of an attribute that has a value range that uses only, say, 31 out of
32 bits).

The data should also be examined regarding unique rules, consecutive rules, and null
rules. A unique rule says that each value of the given attribute must be different from
all other values for that attribute. A consecutive rule says that there can be no miss-
ing values between the lowest and highest values for the attribute, and that all values
must also be unique (e.g., as in check numbers). A null rule specifies the use of blanks,
question marks, special characters, or other strings that may indicate the null condition
(e.g., where a value for a given attribute is not available), and how such values should
be handled. As mentioned in Section 3.2.1, reasons for missing values may include
(1) the person originally asked to provide a value for the attribute refuses and/or finds
that the information requested is not applicable (e.g., a license number attribute left
blank by nondrivers); (2) the data entry person does not know the correct value; or (3)
the value is to be provided by a later step of the process. The null rule should specify how
to record the null condition, for example, such as to store zero for numeric attributes, a
blank for character attributes, or any other conventions that may be in use (e.g., entries
like “don’t know” or “?” should be transformed to blank).

There are a number of different commercial tools that can aid in the discrepancy
detection step. Data scrubbing tools use simple domain knowledge (e.g., knowledge
of postal addresses and spell-checking) to detect errors and make corrections in the
data. These tools rely on parsing and fuzzy matching techniques when cleaning data
from multiple sources. Data auditing tools find discrepancies by analyzing the data to
discover rules and relationships, and detecting data that violate such conditions. They
are variants of data mining tools. For example, they may employ statistical analysis to
find correlations, or clustering to identify outliers. They may also use the basic statistical
data descriptions presented in Section 2.2.

Some data inconsistencies may be corrected manually using external references.
For example, errors made at data entry may be corrected by performing a paper
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trace. Most errors, however, will require data transformations. That is, once we find
discrepancies, we typically need to define and apply (a series of) transformations to
correct them.

Commercial tools can assist in the data transformation step. Data migration tools
allow simple transformations to be specified such as to replace the string “gender” by
“sex.” ETL (extraction/transformation/loading) tools allow users to specify transforms
through a graphical user interface (GUI). These tools typically support only a restricted
set of transforms so that, often, we may also choose to write custom scripts for this step
of the data cleaning process.

The two-step process of discrepancy detection and data transformation (to correct
discrepancies) iterates. This process, however, is error-prone and time consuming. Some
transformations may introduce more discrepancies. Some nested discrepancies may only
be detected after others have been fixed. For example, a typo such as “20010” in a year
field may only surface once all date values have been converted to a uniform format.
Transformations are often done as a batch process while the user waits without feedback.
Only after the transformation is complete can the user go back and check that no new
anomalies have been mistakenly created. Typically, numerous iterations are required
before the user is satisfied. Any tuples that cannot be automatically handled by a given
transformation are typically written to a file without any explanation regarding the rea-
soning behind their failure. As a result, the entire data cleaning process also suffers from
a lack of interactivity.

New approaches to data cleaning emphasize increased interactivity. Potter’s Wheel,
for example, is a publicly available data cleaning tool that integrates discrepancy detec-
tion and transformation. Users gradually build a series of transformations by composing
and debugging individual transformations, one step at a time, on a spreadsheet-like
interface. The transformations can be specified graphically or by providing examples.
Results are shown immediately on the records that are visible on the screen. The user
can choose to undo the transformations, so that transformations that introduced addi-
tional errors can be “erased.” The tool automatically performs discrepancy checking in
the background on the latest transformed view of the data. Users can gradually develop
and refine transformations as discrepancies are found, leading to more effective and
efficient data cleaning.

Another approach to increased interactivity in data cleaning is the development of
declarative languages for the specification of data transformation operators. Such work
focuses on defining powerful extensions to SQL and algorithms that enable users to
express data cleaning specifications efficiently.

As we discover more about the data, it is important to keep updating the metadata
to reflect this knowledge. This will help speed up data cleaning on future versions of the
same data store.

3.3 Data Integration

Data mining often requires data integration—the merging of data from multiple data
stores. Careful integration can help reduce and avoid redundancies and inconsistencies
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in the resulting data set. This can help improve the accuracy and speed of the subsequent
data mining process.

The semantic heterogeneity and structure of data pose great challenges in data inte-
gration. How can we match schema and objects from different sources? This is the
essence of the entity identification problem, described in Section 3.3.1. Are any attributes
correlated? Section 3.3.2 presents correlation tests for numeric and nominal data. Tuple
duplication is described in Section 3.3.3. Finally, Section 3.3.4 touches on the detection
and resolution of data value conflicts.

3.3.1 Entity Identification Problem

It is likely that your data analysis task will involve data integration, which combines data
from multiple sources into a coherent data store, as in data warehousing. These sources
may include multiple databases, data cubes, or flat files.

There are a number of issues to consider during data integration. Schema integration
and object matching can be tricky. How can equivalent real-world entities from multiple
data sources be matched up? This is referred to as the entity identification problem.
For example, how can the data analyst or the computer be sure that customer id in one
database and cust number in another refer to the same attribute? Examples of metadata
for each attribute include the name, meaning, data type, and range of values permitted
for the attribute, and null rules for handling blank, zero, or null values (Section 3.2).
Such metadata can be used to help avoid errors in schema integration. The metadata
may also be used to help transform the data (e.g., where data codes for pay type in one
database may be “H” and “S” but 1 and 2 in another). Hence, this step also relates to
data cleaning, as described earlier.

When matching attributes from one database to another during integration, special
attention must be paid to the structure of the data. This is to ensure that any attribute
functional dependencies and referential constraints in the source system match those in
the target system. For example, in one system, a discount may be applied to the order,
whereas in another system it is applied to each individual line item within the order.
If this is not caught before integration, items in the target system may be improperly
discounted.

3.3.2 Redundancy and Correlation Analysis

Redundancy is another important issue in data integration. An attribute (such as annual
revenue, for instance) may be redundant if it can be “derived” from another attribute
or set of attributes. Inconsistencies in attribute or dimension naming can also cause
redundancies in the resulting data set.

Some redundancies can be detected by correlation analysis. Given two attributes,
such analysis can measure how strongly one attribute implies the other, based on the
available data. For nominal data, we use the χ2 (chi-square) test. For numeric attributes,
we can use the correlation coefficient and covariance, both of which access how one
attribute’s values vary from those of another.
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χ2 Correlation Test for Nominal Data
For nominal data, a correlation relationship between two attributes, A and B, can be
discovered by a χ2 (chi-square) test. Suppose A has c distinct values, namely a1,a2, . . .ac .
B has r distinct values, namely b1,b2, . . .br . The data tuples described by A and B can be
shown as a contingency table, with the c values of A making up the columns and the r
values of B making up the rows. Let (Ai ,Bj) denote the joint event that attribute A takes
on value ai and attribute B takes on value bj , that is, where (A= ai ,B = bj). Each and
every possible (Ai ,Bj) joint event has its own cell (or slot) in the table. The χ2 value
(also known as the Pearson χ2 statistic) is computed as

χ2 =
c∑

i=1

r∑
j=1

(oij − eij)
2

eij
, (3.1)

where oij is the observed frequency (i.e., actual count) of the joint event (Ai ,Bj) and eij is
the expected frequency of (Ai ,Bj), which can be computed as

eij =
count(A= ai)× count(B = bj)

n
, (3.2)

where n is the number of data tuples, count(A= ai) is the number of tuples having value
ai for A, and count(B = bj) is the number of tuples having value bj for B. The sum in
Eq. (3.1) is computed over all of the r× c cells. Note that the cells that contribute the
most to the χ2 value are those for which the actual count is very different from that
expected.

The χ2 statistic tests the hypothesis that A and B are independent, that is, there is no
correlation between them. The test is based on a significance level, with (r− 1)× (c− 1)

degrees of freedom. We illustrate the use of this statistic in Example 3.1. If the hypothesis
can be rejected, then we say that A and B are statistically correlated.

Example 3.1 Correlation analysis of nominal attributes using χ2. Suppose that a group of 1500
people was surveyed. The gender of each person was noted. Each person was polled as
to whether his or her preferred type of reading material was fiction or nonfiction. Thus,
we have two attributes, gender and preferred reading. The observed frequency (or count)
of each possible joint event is summarized in the contingency table shown in Table 3.1,
where the numbers in parentheses are the expected frequencies. The expected frequen-
cies are calculated based on the data distribution for both attributes using Eq. (3.2).

Using Eq. (3.2), we can verify the expected frequencies for each cell. For example,
the expected frequency for the cell (male, fiction) is

e11 = count(male)× count(fiction)

n
= 300× 450

1500
= 90,

and so on. Notice that in any row, the sum of the expected frequencies must equal the
total observed frequency for that row, and the sum of the expected frequencies in any
column must also equal the total observed frequency for that column.
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Table 3.1 Example 2.1’s 2× 2 Contingency Table Data

male female Total

fiction 250 (90) 200 (360) 450

non fiction 50 (210) 1000 (840) 1050

Total 300 1200 1500

Note: Are gender and preferred reading correlated?

Using Eq. (3.1) for χ2 computation, we get

χ2 = (250− 90)2

90
+ (50− 210)2

210
+ (200− 360)2

360
+ (1000− 840)2

840

= 284.44+ 121.90+ 71.11+ 30.48= 507.93.

For this 2× 2 table, the degrees of freedom are (2− 1)(2− 1)= 1. For 1 degree of free-
dom, the χ2 value needed to reject the hypothesis at the 0.001 significance level is 10.828
(taken from the table of upper percentage points of the χ2 distribution, typically avail-
able from any textbook on statistics). Since our computed value is above this, we can
reject the hypothesis that gender and preferred reading are independent and conclude
that the two attributes are (strongly) correlated for the given group of people.

Correlation Coefficient for Numeric Data
For numeric attributes, we can evaluate the correlation between two attributes, A and B,
by computing the correlation coefficient (also known as Pearson’s product moment
coefficient, named after its inventer, Karl Pearson). This is

rA,B =

n∑
i=1

(ai − Ā)(bi − B̄)

nσAσB
=

n∑
i=1

(aibi)− nĀB̄

nσAσB
, (3.3)

where n is the number of tuples, ai and bi are the respective values of A and B in tuple i,
Ā and B̄ are the respective mean values of A and B, σA and σB are the respective standard
deviations of A and B (as defined in Section 2.2.2), and �(aibi) is the sum of the AB
cross-product (i.e., for each tuple, the value for A is multiplied by the value for B in that
tuple). Note that −1≤ rA,B ≤+1. If rA,B is greater than 0, then A and B are positively
correlated, meaning that the values of A increase as the values of B increase. The higher
the value, the stronger the correlation (i.e., the more each attribute implies the other).
Hence, a higher value may indicate that A (or B) may be removed as a redundancy.

If the resulting value is equal to 0, then A and B are independent and there is no
correlation between them. If the resulting value is less than 0, then A and B are negatively
correlated, where the values of one attribute increase as the values of the other attribute
decrease. This means that each attribute discourages the other. Scatter plots can also be
used to view correlations between attributes (Section 2.2.3). For example, Figure 2.8’s
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scatter plots respectively show positively correlated data and negatively correlated data,
while Figure 2.9 displays uncorrelated data.

Note that correlation does not imply causality. That is, if A and B are correlated, this
does not necessarily imply that A causes B or that B causes A. For example, in analyzing a
demographic database, we may find that attributes representing the number of hospitals
and the number of car thefts in a region are correlated. This does not mean that one
causes the other. Both are actually causally linked to a third attribute, namely, population.

Covariance of Numeric Data
In probability theory and statistics, correlation and covariance are two similar measures
for assessing how much two attributes change together. Consider two numeric attributes
A and B, and a set of n observations {(a1,b1), . . . ,(an,bn)}. The mean values of A and B,
respectively, are also known as the expected values on A and B, that is,

E(A)= Ā=
∑n

i=1 ai

n

and

E(B)= B̄ =
∑n

i=1 bi

n
.

The covariance between A and B is defined as

Cov(A,B)= E((A− Ā)(B− B̄))=
∑n

i=1(ai − Ā)(bi − B̄)

n
. (3.4)

If we compare Eq. (3.3) for rA,B (correlation coefficient) with Eq. (3.4) for covariance,
we see that

rA,B = Cov(A,B)

σAσB
, (3.5)

where σA and σB are the standard deviations of A and B, respectively. It can also be
shown that

Cov(A,B)= E(A ·B)− ĀB̄. (3.6)

This equation may simplify calculations.
For two attributes A and B that tend to change together, if A is larger than Ā (the

expected value of A), then B is likely to be larger than B̄ (the expected value of B).
Therefore, the covariance between A and B is positive. On the other hand, if one of
the attributes tends to be above its expected value when the other attribute is below its
expected value, then the covariance of A and B is negative.

If A and B are independent (i.e., they do not have correlation), then E(A ·B)= E(A) ·
E(B). Therefore, the covariance is Cov(A,B)= E(A ·B)− ĀB̄ = E(A) · E(B)− ĀB̄ = 0.
However, the converse is not true. Some pairs of random variables (attributes) may have
a covariance of 0 but are not independent. Only under some additional assumptions
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Table 3.2 Stock Prices for AllElectronics and HighTech

Time point AllElectronics HighTech

t1 6 20

t2 5 10

t3 4 14

t4 3 5

t5 2 5

(e.g., the data follow multivariate normal distributions) does a covariance of 0 imply
independence.

Example 3.2 Covariance analysis of numeric attributes. Consider Table 3.2, which presents a sim-
plified example of stock prices observed at five time points for AllElectronics and
HighTech, a high-tech company. If the stocks are affected by the same industry trends,
will their prices rise or fall together?

E(AllElectronics)= 6+ 5+ 4+ 3+ 2

5
= 20

5
= $4

and

E(HighTech)= 20+ 10+ 14+ 5+ 5

5
= 54

5
= $10.80.

Thus, using Eq. (3.4), we compute

Cov(AllElectroncis,HighTech)= 6× 20+ 5× 10+ 4× 14+ 3× 5+ 2× 5

5
− 4× 10.80

= 50.2− 43.2= 7.

Therefore, given the positive covariance we can say that stock prices for both companies
rise together.

Variance is a special case of covariance, where the two attributes are identical (i.e., the
covariance of an attribute with itself). Variance was discussed in Chapter 2.

3.3.3 Tuple Duplication

In addition to detecting redundancies between attributes, duplication should also be
detected at the tuple level (e.g., where there are two or more identical tuples for a given
unique data entry case). The use of denormalized tables (often done to improve per-
formance by avoiding joins) is another source of data redundancy. Inconsistencies often
arise between various duplicates, due to inaccurate data entry or updating some but not
all data occurrences. For example, if a purchase order database contains attributes for
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the purchaser’s name and address instead of a key to this information in a purchaser
database, discrepancies can occur, such as the same purchaser’s name appearing with
different addresses within the purchase order database.

3.3.4 Data Value Conflict Detection and Resolution

Data integration also involves the detection and resolution of data value conflicts. For
example, for the same real-world entity, attribute values from different sources may dif-
fer. This may be due to differences in representation, scaling, or encoding. For instance,
a weight attribute may be stored in metric units in one system and British imperial
units in another. For a hotel chain, the price of rooms in different cities may involve
not only different currencies but also different services (e.g., free breakfast) and taxes.
When exchanging information between schools, for example, each school may have its
own curriculum and grading scheme. One university may adopt a quarter system, offer
three courses on database systems, and assign grades from A+ to F, whereas another
may adopt a semester system, offer two courses on databases, and assign grades from 1
to 10. It is difficult to work out precise course-to-grade transformation rules between
the two universities, making information exchange difficult.

Attributes may also differ on the abstraction level, where an attribute in one sys-
tem is recorded at, say, a lower abstraction level than the “same” attribute in another.
For example, the total sales in one database may refer to one branch of All Electronics,
while an attribute of the same name in another database may refer to the total sales
for All Electronics stores in a given region. The topic of discrepancy detection is further
described in Section 3.2.3 on data cleaning as a process.

3.4 Data Reduction

Imagine that you have selected data from the AllElectronics data warehouse for analysis.
The data set will likely be huge! Complex data analysis and mining on huge amounts of
data can take a long time, making such analysis impractical or infeasible.

Data reduction techniques can be applied to obtain a reduced representation of the
data set that is much smaller in volume, yet closely maintains the integrity of the original
data. That is, mining on the reduced data set should be more efficient yet produce the
same (or almost the same) analytical results. In this section, we first present an overview
of data reduction strategies, followed by a closer look at individual techniques.

3.4.1 Overview of Data Reduction Strategies

Data reduction strategies include dimensionality reduction, numerosity reduction, and
data compression.

Dimensionality reduction is the process of reducing the number of random variables
or attributes under consideration. Dimensionality reduction methods include wavelet
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transforms (Section 3.4.2) and principal components analysis (Section 3.4.3), which
transform or project the original data onto a smaller space. Attribute subset selection is a
method of dimensionality reduction in which irrelevant, weakly relevant, or redundant
attributes or dimensions are detected and removed (Section 3.4.4).

Numerosity reduction techniques replace the original data volume by alternative,
smaller forms of data representation. These techniques may be parametric or non-
parametric. For parametric methods, a model is used to estimate the data, so that
typically only the data parameters need to be stored, instead of the actual data. (Out-
liers may also be stored.) Regression and log-linear models (Section 3.4.5) are examples.
Nonparametric methods for storing reduced representations of the data include his-
tograms (Section 3.4.6), clustering (Section 3.4.7), sampling (Section 3.4.8), and data
cube aggregation (Section 3.4.9).

In data compression, transformations are applied so as to obtain a reduced or “com-
pressed” representation of the original data. If the original data can be reconstructed
from the compressed data without any information loss, the data reduction is called
lossless. If, instead, we can reconstruct only an approximation of the original data, then
the data reduction is called lossy. There are several lossless algorithms for string com-
pression; however, they typically allow only limited data manipulation. Dimensionality
reduction and numerosity reduction techniques can also be considered forms of data
compression.

There are many other ways of organizing methods of data reduction. The computa-
tional time spent on data reduction should not outweigh or “erase” the time saved by
mining on a reduced data set size.

3.4.2 Wavelet Transforms

The discrete wavelet transform (DWT) is a linear signal processing technique that,
when applied to a data vector X, transforms it to a numerically different vector, X′, of
wavelet coefficients. The two vectors are of the same length. When applying this tech-
nique to data reduction, we consider each tuple as an n-dimensional data vector, that
is, X = (x1,x2, . . . ,xn), depicting n measurements made on the tuple from n database
attributes.3

“How can this technique be useful for data reduction if the wavelet transformed data are
of the same length as the original data?” The usefulness lies in the fact that the wavelet
transformed data can be truncated. A compressed approximation of the data can be
retained by storing only a small fraction of the strongest of the wavelet coefficients.
For example, all wavelet coefficients larger than some user-specified threshold can be
retained. All other coefficients are set to 0. The resulting data representation is therefore
very sparse, so that operations that can take advantage of data sparsity are computa-
tionally very fast if performed in wavelet space. The technique also works to remove
noise without smoothing out the main features of the data, making it effective for data

3In our notation, any variable representing a vector is shown in bold italic font; measurements depicting
the vector are shown in italic font.
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cleaning as well. Given a set of coefficients, an approximation of the original data can be
constructed by applying the inverse of the DWT used.

The DWT is closely related to the discrete Fourier transform (DFT), a signal process-
ing technique involving sines and cosines. In general, however, the DWT achieves better
lossy compression. That is, if the same number of coefficients is retained for a DWT and
a DFT of a given data vector, the DWT version will provide a more accurate approxima-
tion of the original data. Hence, for an equivalent approximation, the DWT requires less
space than the DFT. Unlike the DFT, wavelets are quite localized in space, contributing
to the conservation of local detail.

There is only one DFT, yet there are several families of DWTs. Figure 3.4 shows
some wavelet families. Popular wavelet transforms include the Haar-2, Daubechies-4,
and Daubechies-6. The general procedure for applying a discrete wavelet transform uses
a hierarchical pyramid algorithm that halves the data at each iteration, resulting in fast
computational speed. The method is as follows:

1. The length, L, of the input data vector must be an integer power of 2. This condition
can be met by padding the data vector with zeros as necessary (L ≥ n).

2. Each transform involves applying two functions. The first applies some data smooth-
ing, such as a sum or weighted average. The second performs a weighted difference,
which acts to bring out the detailed features of the data.

3. The two functions are applied to pairs of data points in X, that is, to all pairs of
measurements (x2i,x2i+1). This results in two data sets of length L/2. In general,
these represent a smoothed or low-frequency version of the input data and the high-
frequency content of it, respectively.

4. The two functions are recursively applied to the data sets obtained in the previous
loop, until the resulting data sets obtained are of length 2.

5. Selected values from the data sets obtained in the previous iterations are designated
the wavelet coefficients of the transformed data.
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Figure 3.4 Examples of wavelet families. The number next to a wavelet name is the number of vanishing
moments of the wavelet. This is a set of mathematical relationships that the coefficients must
satisfy and is related to the number of coefficients.
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Equivalently, a matrix multiplication can be applied to the input data in order to
obtain the wavelet coefficients, where the matrix used depends on the given DWT. The
matrix must be orthonormal, meaning that the columns are unit vectors and are mutu-
ally orthogonal, so that the matrix inverse is just its transpose. Although we do not have
room to discuss it here, this property allows the reconstruction of the data from the
smooth and smooth-difference data sets. By factoring the matrix used into a product of
a few sparse matrices, the resulting “fast DWT” algorithm has a complexity of O(n) for
an input vector of length n.

Wavelet transforms can be applied to multidimensional data such as a data cube. This
is done by first applying the transform to the first dimension, then to the second, and so
on. The computational complexity involved is linear with respect to the number of cells
in the cube. Wavelet transforms give good results on sparse or skewed data and on data
with ordered attributes. Lossy compression by wavelets is reportedly better than JPEG
compression, the current commercial standard. Wavelet transforms have many real-
world applications, including the compression of fingerprint images, computer vision,
analysis of time-series data, and data cleaning.

3.4.3 Principal Components Analysis

In this subsection we provide an intuitive introduction to principal components analy-
sis as a method of dimesionality reduction. A detailed theoretical explanation is beyond
the scope of this book. For additional references, please see the bibliographic notes
(Section 3.8) at the end of this chapter.

Suppose that the data to be reduced consist of tuples or data vectors described
by n attributes or dimensions. Principal components analysis (PCA; also called the
Karhunen-Loeve, or K-L, method) searches for k n-dimensional orthogonal vectors that
can best be used to represent the data, where k ≤ n. The original data are thus projected
onto a much smaller space, resulting in dimensionality reduction. Unlike attribute sub-
set selection (Section 3.4.4), which reduces the attribute set size by retaining a subset of
the initial set of attributes, PCA “combines” the essence of attributes by creating an alter-
native, smaller set of variables. The initial data can then be projected onto this smaller
set. PCA often reveals relationships that were not previously suspected and thereby
allows interpretations that would not ordinarily result.

The basic procedure is as follows:

1. The input data are normalized, so that each attribute falls within the same range. This
step helps ensure that attributes with large domains will not dominate attributes with
smaller domains.

2. PCA computes k orthonormal vectors that provide a basis for the normalized input
data. These are unit vectors that each point in a direction perpendicular to the others.
These vectors are referred to as the principal components. The input data are a linear
combination of the principal components.

3. The principal components are sorted in order of decreasing “significance” or
strength. The principal components essentially serve as a new set of axes for the data,
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Figure 3.5 Principal components analysis. Y1 and Y2 are the first two principal components for the
given data.

providing important information about variance. That is, the sorted axes are such
that the first axis shows the most variance among the data, the second axis shows the
next highest variance, and so on. For example, Figure 3.5 shows the first two princi-
pal components, Y1 and Y2, for the given set of data originally mapped to the axes X1

and X2. This information helps identify groups or patterns within the data.

4. Because the components are sorted in decreasing order of “significance,” the data size
can be reduced by eliminating the weaker components, that is, those with low vari-
ance. Using the strongest principal components, it should be possible to reconstruct
a good approximation of the original data.

PCA can be applied to ordered and unordered attributes, and can handle sparse data
and skewed data. Multidimensional data of more than two dimensions can be han-
dled by reducing the problem to two dimensions. Principal components may be used
as inputs to multiple regression and cluster analysis. In comparison with wavelet trans-
forms, PCA tends to be better at handling sparse data, whereas wavelet transforms are
more suitable for data of high dimensionality.

3.4.4 Attribute Subset Selection

Data sets for analysis may contain hundreds of attributes, many of which may be irrel-
evant to the mining task or redundant. For example, if the task is to classify customers
based on whether or not they are likely to purchase a popular new CD at AllElectronics
when notified of a sale, attributes such as the customer’s telephone number are likely to
be irrelevant, unlike attributes such as age or music taste. Although it may be possible for
a domain expert to pick out some of the useful attributes, this can be a difficult and time-
consuming task, especially when the data’s behavior is not well known. (Hence, a reason
behind its analysis!) Leaving out relevant attributes or keeping irrelevant attributes may
be detrimental, causing confusion for the mining algorithm employed. This can result
in discovered patterns of poor quality. In addition, the added volume of irrelevant or
redundant attributes can slow down the mining process.
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Attribute subset selection4 reduces the data set size by removing irrelevant or
redundant attributes (or dimensions). The goal of attribute subset selection is to find
a minimum set of attributes such that the resulting probability distribution of the data
classes is as close as possible to the original distribution obtained using all attributes.
Mining on a reduced set of attributes has an additional benefit: It reduces the number
of attributes appearing in the discovered patterns, helping to make the patterns easier to
understand.

“How can we find a ‘good’ subset of the original attributes?” For n attributes, there are
2n possible subsets. An exhaustive search for the optimal subset of attributes can be pro-
hibitively expensive, especially as n and the number of data classes increase. Therefore,
heuristic methods that explore a reduced search space are commonly used for attribute
subset selection. These methods are typically greedy in that, while searching through
attribute space, they always make what looks to be the best choice at the time. Their
strategy is to make a locally optimal choice in the hope that this will lead to a globally
optimal solution. Such greedy methods are effective in practice and may come close to
estimating an optimal solution.

The “best” (and “worst”) attributes are typically determined using tests of statistical
significance, which assume that the attributes are independent of one another. Many
other attribute evaluation measures can be used such as the information gain measure
used in building decision trees for classification.5

Basic heuristic methods of attribute subset selection include the techniques that
follow, some of which are illustrated in Figure 3.6.

Forward selection

Initial attribute set:
{A1, A2, A3, A4, A5, A6}

Initial reduced set:
{}
=> {A1}
=> {A1, A4}
=> Reduced attribute set:
     {A1, A4, A6}

Initial attribute set:
{A1, A2, A3, A4, A5, A6}

=> {A1, A3, A4, A5, A6}
=> {A1, A4, A5, A6}
=> Reduced attribute set:
     {A1, A4, A6}

Initial attribute set:
{A1, A2, A3, A4, A5, A6}

=> Reduced attribute set:
     {A1, A4, A6}

Backward elimination Decision tree induction

A4?

A1? A6?

Class 1 Class 2 Class 1 Class 2

Y N

Y N Y N

Figure 3.6 Greedy (heuristic) methods for attribute subset selection.

4In machine learning, attribute subset selection is known as feature subset selection.
5The information gain measure is described in detail in Chapter 8.
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1. Stepwise forward selection: The procedure starts with an empty set of attributes as
the reduced set. The best of the original attributes is determined and added to the
reduced set. At each subsequent iteration or step, the best of the remaining original
attributes is added to the set.

2. Stepwise backward elimination: The procedure starts with the full set of attributes.
At each step, it removes the worst attribute remaining in the set.

3. Combination of forward selection and backward elimination: The stepwise for-
ward selection and backward elimination methods can be combined so that, at each
step, the procedure selects the best attribute and removes the worst from among the
remaining attributes.

4. Decision tree induction: Decision tree algorithms (e.g., ID3, C4.5, and CART) were
originally intended for classification. Decision tree induction constructs a flowchart-
like structure where each internal (nonleaf) node denotes a test on an attribute, each
branch corresponds to an outcome of the test, and each external (leaf) node denotes a
class prediction. At each node, the algorithm chooses the “best” attribute to partition
the data into individual classes.

When decision tree induction is used for attribute subset selection, a tree is con-
structed from the given data. All attributes that do not appear in the tree are assumed
to be irrelevant. The set of attributes appearing in the tree form the reduced subset
of attributes.

The stopping criteria for the methods may vary. The procedure may employ a threshold
on the measure used to determine when to stop the attribute selection process.

In some cases, we may want to create new attributes based on others. Such attribute
construction6 can help improve accuracy and understanding of structure in high-
dimensional data. For example, we may wish to add the attribute area based on the
attributes height and width. By combining attributes, attribute construction can dis-
cover missing information about the relationships between data attributes that can be
useful for knowledge discovery.

3.4.5 Regression and Log-Linear Models: Parametric
Data Reduction

Regression and log-linear models can be used to approximate the given data. In (simple)
linear regression, the data are modeled to fit a straight line. For example, a random
variable, y (called a response variable), can be modeled as a linear function of another
random variable, x (called a predictor variable), with the equation

y = wx+ b, (3.7)

where the variance of y is assumed to be constant. In the context of data mining, x and y
are numeric database attributes. The coefficients, w and b (called regression coefficients),

6In the machine learning literature, attribute construction is known as feature construction.
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specify the slope of the line and the y-intercept, respectively. These coefficients can
be solved for by the method of least squares, which minimizes the error between the
actual line separating the data and the estimate of the line. Multiple linear regression
is an extension of (simple) linear regression, which allows a response variable, y, to be
modeled as a linear function of two or more predictor variables.

Log-linear models approximate discrete multidimensional probability distributions.
Given a set of tuples in n dimensions (e.g., described by n attributes), we can con-
sider each tuple as a point in an n-dimensional space. Log-linear models can be used
to estimate the probability of each point in a multidimensional space for a set of dis-
cretized attributes, based on a smaller subset of dimensional combinations. This allows
a higher-dimensional data space to be constructed from lower-dimensional spaces.
Log-linear models are therefore also useful for dimensionality reduction (since the
lower-dimensional points together typically occupy less space than the original data
points) and data smoothing (since aggregate estimates in the lower-dimensional space
are less subject to sampling variations than the estimates in the higher-dimensional
space).

Regression and log-linear models can both be used on sparse data, although their
application may be limited. While both methods can handle skewed data, regression
does exceptionally well. Regression can be computationally intensive when applied to
high-dimensional data, whereas log-linear models show good scalability for up to 10 or
so dimensions.

Several software packages exist to solve regression problems. Examples include SAS
(www.sas.com), SPSS (www.spss.com), and S-Plus (www.insightful.com). Another useful
resource is the book Numerical Recipes in C, by Press, Teukolsky, Vetterling, and Flannery
[PTVF07], and its associated source code.

3.4.6 Histograms

Histograms use binning to approximate data distributions and are a popular form
of data reduction. Histograms were introduced in Section 2.2.3. A histogram for an
attribute, A, partitions the data distribution of A into disjoint subsets, referred to as
buckets or bins. If each bucket represents only a single attribute–value/frequency pair, the
buckets are called singleton buckets. Often, buckets instead represent continuous ranges
for the given attribute.

Example 3.3 Histograms. The following data are a list of AllElectronics prices for commonly sold
items (rounded to the nearest dollar). The numbers have been sorted: 1, 1, 5, 5, 5,
5, 5, 8, 8, 10, 10, 10, 10, 12, 14, 14, 14, 15, 15, 15, 15, 15, 15, 18, 18, 18, 18, 18,
18, 18, 18, 20, 20, 20, 20, 20, 20, 20, 21, 21, 21, 21, 25, 25, 25, 25, 25, 28, 28, 30,
30, 30.

Figure 3.7 shows a histogram for the data using singleton buckets. To further reduce
the data, it is common to have each bucket denote a continuous value range for
the given attribute. In Figure 3.8, each bucket represents a different $10 range for
price.
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Figure 3.7 A histogram for price using singleton buckets—each bucket represents one price–value/
frequency pair.
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Figure 3.8 An equal-width histogram for price, where values are aggregated so that each bucket has a
uniform width of $10.

“How are the buckets determined and the attribute values partitioned?” There are
several partitioning rules, including the following:

Equal-width: In an equal-width histogram, the width of each bucket range is
uniform (e.g., the width of $10 for the buckets in Figure 3.8).

Equal-frequency (or equal-depth): In an equal-frequency histogram, the buckets are
created so that, roughly, the frequency of each bucket is constant (i.e., each bucket
contains roughly the same number of contiguous data samples).
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Histograms are highly effective at approximating both sparse and dense data, as
well as highly skewed and uniform data. The histograms described before for single
attributes can be extended for multiple attributes. Multidimensional histograms can cap-
ture dependencies between attributes. These histograms have been found effective in
approximating data with up to five attributes. More studies are needed regarding the
effectiveness of multidimensional histograms for high dimensionalities.

Singleton buckets are useful for storing high-frequency outliers.

3.4.7 Clustering

Clustering techniques consider data tuples as objects. They partition the objects into
groups, or clusters, so that objects within a cluster are “similar” to one another and “dis-
similar” to objects in other clusters. Similarity is commonly defined in terms of how
“close” the objects are in space, based on a distance function. The “quality” of a cluster
may be represented by its diameter, the maximum distance between any two objects in
the cluster. Centroid distance is an alternative measure of cluster quality and is defined
as the average distance of each cluster object from the cluster centroid (denoting the
“average object,” or average point in space for the cluster). Figure 3.3 showed a 2-D plot
of customer data with respect to customer locations in a city. Three data clusters are
visible.

In data reduction, the cluster representations of the data are used to replace the actual
data. The effectiveness of this technique depends on the data’s nature. It is much more
effective for data that can be organized into distinct clusters than for smeared data.

There are many measures for defining clusters and cluster quality. Clustering meth-
ods are further described in Chapters 10 and 11.

3.4.8 Sampling

Sampling can be used as a data reduction technique because it allows a large data set to
be represented by a much smaller random data sample (or subset). Suppose that a large
data set, D, contains N tuples. Let’s look at the most common ways that we could sample
D for data reduction, as illustrated in Figure 3.9.

Simple random sample without replacement (SRSWOR) of size s: This is created
by drawing s of the N tuples from D (s < N), where the probability of drawing any
tuple in D is 1/N , that is, all tuples are equally likely to be sampled.

Simple random sample with replacement (SRSWR) of size s: This is similar to
SRSWOR, except that each time a tuple is drawn from D, it is recorded and then
replaced. That is, after a tuple is drawn, it is placed back in D so that it may be drawn
again.

Cluster sample: If the tuples in D are grouped into M mutually disjoint “clusters,”
then an SRS of s clusters can be obtained, where s < M . For example, tuples in a
database are usually retrieved a page at a time, so that each page can be considered



3.4 Data Reduction 109

Cluster sample

Startified sample

Figure 3.9 Sampling can be used for data reduction.

a cluster. A reduced data representation can be obtained by applying, say, SRSWOR
to the pages, resulting in a cluster sample of the tuples. Other clustering criteria con-
veying rich semantics can also be explored. For example, in a spatial database, we
may choose to define clusters geographically based on how closely different areas are
located.

Stratified sample: If D is divided into mutually disjoint parts called strata, a stratified
sample of D is generated by obtaining an SRS at each stratum. This helps ensure a
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representative sample, especially when the data are skewed. For example, a stratified
sample may be obtained from customer data, where a stratum is created for each cus-
tomer age group. In this way, the age group having the smallest number of customers
will be sure to be represented.

An advantage of sampling for data reduction is that the cost of obtaining a sample
is proportional to the size of the sample, s, as opposed to N , the data set size. Hence,
sampling complexity is potentially sublinear to the size of the data. Other data reduc-
tion techniques can require at least one complete pass through D. For a fixed sample
size, sampling complexity increases only linearly as the number of data dimensions,
n, increases, whereas techniques using histograms, for example, increase exponentially
in n.

When applied to data reduction, sampling is most commonly used to estimate the
answer to an aggregate query. It is possible (using the central limit theorem) to deter-
mine a sufficient sample size for estimating a given function within a specified degree
of error. This sample size, s, may be extremely small in comparison to N . Sampling is
a natural choice for the progressive refinement of a reduced data set. Such a set can be
further refined by simply increasing the sample size.

3.4.9 Data Cube Aggregation

Imagine that you have collected the data for your analysis. These data consist of the
AllElectronics sales per quarter, for the years 2008 to 2010. You are, however, interested
in the annual sales (total per year), rather than the total per quarter. Thus, the data can
be aggregated so that the resulting data summarize the total sales per year instead of per
quarter. This aggregation is illustrated in Figure 3.10. The resulting data set is smaller in
volume, without loss of information necessary for the analysis task.

Data cubes are discussed in detail in Chapter 4 on data warehousing and Chapter 5
on data cube technology. We briefly introduce some concepts here. Data cubes store

Quarter

Year 2010

Sales

Q1
Q2
Q3
Q4

$224,000
$408,000
$350,000
$586,000

Quarter

Year 2009

Sales

Q1
Q2
Q3
Q4

$224,000
$408,000
$350,000
$586,000

Quarter

Year 2008

Sales

Q1
Q2
Q3
Q4

$224,000
$408,000
$350,000
$586,000

Year Sales

2008
2009
2010

$1,568,000
$2,356,000
$3,594,000

Figure 3.10 Sales data for a given branch of AllElectronics for the years 2008 through 2010. On the left,
the sales are shown per quarter. On the right, the data are aggregated to provide the annual
sales.
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Figure 3.11 A data cube for sales at AllElectronics.

multidimensional aggregated information. For example, Figure 3.11 shows a data cube
for multidimensional analysis of sales data with respect to annual sales per item type
for each AllElectronics branch. Each cell holds an aggregate data value, corresponding
to the data point in multidimensional space. (For readability, only some cell values are
shown.) Concept hierarchies may exist for each attribute, allowing the analysis of data
at multiple abstraction levels. For example, a hierarchy for branch could allow branches
to be grouped into regions, based on their address. Data cubes provide fast access to
precomputed, summarized data, thereby benefiting online analytical processing as well
as data mining.

The cube created at the lowest abstraction level is referred to as the base cuboid. The
base cuboid should correspond to an individual entity of interest such as sales or cus-
tomer. In other words, the lowest level should be usable, or useful for the analysis. A cube
at the highest level of abstraction is the apex cuboid. For the sales data in Figure 3.11,
the apex cuboid would give one total—the total sales for all three years, for all item
types, and for all branches. Data cubes created for varying levels of abstraction are often
referred to as cuboids, so that a data cube may instead refer to a lattice of cuboids. Each
higher abstraction level further reduces the resulting data size. When replying to data
mining requests, the smallest available cuboid relevant to the given task should be used.
This issue is also addressed in Chapter 4.

3.5 Data Transformation and Data Discretization

This section presents methods of data transformation. In this preprocessing step, the
data are transformed or consolidated so that the resulting mining process may be more
efficient, and the patterns found may be easier to understand. Data discretization, a form
of data transformation, is also discussed.
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3.5.1 Data Transformation Strategies Overview

In data transformation, the data are transformed or consolidated into forms appropriate
for mining. Strategies for data transformation include the following:

1. Smoothing, which works to remove noise from the data. Techniques include binning,
regression, and clustering.

2. Attribute construction (or feature construction), where new attributes are con-
structed and added from the given set of attributes to help the mining process.

3. Aggregation, where summary or aggregation operations are applied to the data. For
example, the daily sales data may be aggregated so as to compute monthly and annual
total amounts. This step is typically used in constructing a data cube for data analysis
at multiple abstraction levels.

4. Normalization, where the attribute data are scaled so as to fall within a smaller range,
such as−1.0 to 1.0, or 0.0 to 1.0.

5. Discretization, where the raw values of a numeric attribute (e.g., age) are replaced by
interval labels (e.g., 0–10, 11–20, etc.) or conceptual labels (e.g., youth, adult, senior).
The labels, in turn, can be recursively organized into higher-level concepts, resulting
in a concept hierarchy for the numeric attribute. Figure 3.12 shows a concept hierarchy
for the attribute price. More than one concept hierarchy can be defined for the same
attribute to accommodate the needs of various users.

6. Concept hierarchy generation for nominal data, where attributes such as street can
be generalized to higher-level concepts, like city or country. Many hierarchies for
nominal attributes are implicit within the database schema and can be automatically
defined at the schema definition level.

Recall that there is much overlap between the major data preprocessing tasks. The first
three of these strategies were discussed earlier in this chapter. Smoothing is a form of
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Figure 3.12 A concept hierarchy for the attribute price, where an interval ($X . . .$Y ] denotes the range
from $X (exclusive) to $Y (inclusive).
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data cleaning and was addressed in Section 3.2.2. Section 3.2.3 on the data cleaning
process also discussed ETL tools, where users specify transformations to correct data
inconsistencies. Attribute construction and aggregation were discussed in Section 3.4
on data reduction. In this section, we therefore concentrate on the latter three strategies.

Discretization techniques can be categorized based on how the discretization is per-
formed, such as whether it uses class information or which direction it proceeds (i.e.,
top-down vs. bottom-up). If the discretization process uses class information, then we
say it is supervised discretization. Otherwise, it is unsupervised. If the process starts by first
finding one or a few points (called split points or cut points) to split the entire attribute
range, and then repeats this recursively on the resulting intervals, it is called top-down
discretization or splitting. This contrasts with bottom-up discretization or merging, which
starts by considering all of the continuous values as potential split-points, removes some
by merging neighborhood values to form intervals, and then recursively applies this
process to the resulting intervals.

Data discretization and concept hierarchy generation are also forms of data reduc-
tion. The raw data are replaced by a smaller number of interval or concept labels. This
simplifies the original data and makes the mining more efficient. The resulting patterns
mined are typically easier to understand. Concept hierarchies are also useful for mining
at multiple abstraction levels.

The rest of this section is organized as follows. First, normalization techniques are
presented in Section 3.5.2. We then describe several techniques for data discretization,
each of which can be used to generate concept hierarchies for numeric attributes. The
techniques include binning (Section 3.5.3) and histogram analysis (Section 3.5.4), as
well as cluster analysis, decision tree analysis, and correlation analysis (Section 3.5.5).
Finally, Section 3.5.6 describes the automatic generation of concept hierarchies for
nominal data.

3.5.2 Data Transformation by Normalization

The measurement unit used can affect the data analysis. For example, changing mea-
surement units from meters to inches for height, or from kilograms to pounds for weight,
may lead to very different results. In general, expressing an attribute in smaller units will
lead to a larger range for that attribute, and thus tend to give such an attribute greater
effect or “weight.” To help avoid dependence on the choice of measurement units, the
data should be normalized or standardized. This involves transforming the data to fall
within a smaller or common range such as [−1,1] or [0.0, 1.0]. (The terms standardize
and normalize are used interchangeably in data preprocessing, although in statistics, the
latter term also has other connotations.)

Normalizing the data attempts to give all attributes an equal weight. Normaliza-
tion is particularly useful for classification algorithms involving neural networks or
distance measurements such as nearest-neighbor classification and clustering. If using
the neural network backpropagation algorithm for classification mining (Chapter 9),
normalizing the input values for each attribute measured in the training tuples will help
speed up the learning phase. For distance-based methods, normalization helps prevent
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attributes with initially large ranges (e.g., income) from outweighing attributes with
initially smaller ranges (e.g., binary attributes). It is also useful when given no prior
knowledge of the data.

There are many methods for data normalization. We study min-max normalization,
z-score normalization, and normalization by decimal scaling. For our discussion, let A be
a numeric attribute with n observed values, v1,v2, . . . ,vn.

Min-max normalization performs a linear transformation on the original data. Sup-
pose that minA and maxA are the minimum and maximum values of an attribute, A.
Min-max normalization maps a value, vi , of A to v′i in the range [new minA,new maxA]
by computing

v′i =
vi −minA

maxA −minA
(new maxA − new minA)+ new minA. (3.8)

Min-max normalization preserves the relationships among the original data values. It
will encounter an “out-of-bounds” error if a future input case for normalization falls
outside of the original data range for A.

Example 3.4 Min-max normalization. Suppose that the minimum and maximum values for the
attribute income are $12,000 and $98,000, respectively. We would like to map income
to the range [0.0,1.0]. By min-max normalization, a value of $73,600 for income is
transformed to 73,600−12,000

98,000−12,000 (1.0− 0)+ 0= 0.716.

In z-score normalization (or zero-mean normalization), the values for an attribute,
A, are normalized based on the mean (i.e., average) and standard deviation of A. A value,
vi , of A is normalized to v′i by computing

v′i =
vi − Ā

σA
, (3.9)

where Ā and σA are the mean and standard deviation, respectively, of attribute A. The
mean and standard deviation were discussed in Section 2.2, where Ā= 1

n (v1+ v2+ ·· ·+
vn) and σA is computed as the square root of the variance of A (see Eq. (2.6)). This
method of normalization is useful when the actual minimum and maximum of attribute
A are unknown, or when there are outliers that dominate the min-max normalization.

Example 3.5 z-score normalization. Suppose that the mean and standard deviation of the values for
the attribute income are $54,000 and $16,000, respectively. With z-score normalization,
a value of $73,600 for income is transformed to 73,600−54,000

16,000 = 1.225.

A variation of this z-score normalization replaces the standard deviation of Eq. (3.9)
by the mean absolute deviation of A. The mean absolute deviation of A, denoted sA, is

sA = 1

n
(|v1− Ā| + |v2− Ā| + · · · + |vn − Ā|). (3.10)
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Thus, z-score normalization using the mean absolute deviation is

v′i =
vi − Ā

sA
. (3.11)

The mean absolute deviation, sA, is more robust to outliers than the standard deviation,
σA. When computing the mean absolute deviation, the deviations from the mean (i.e.,
|xi − x̄|) are not squared; hence, the effect of outliers is somewhat reduced.

Normalization by decimal scaling normalizes by moving the decimal point of values
of attribute A. The number of decimal points moved depends on the maximum absolute
value of A. A value, vi , of A is normalized to v′i by computing

v′i =
vi

10j
, (3.12)

where j is the smallest integer such that max(|v′i |) < 1.

Example 3.6 Decimal scaling. Suppose that the recorded values of A range from −986 to 917. The
maximum absolute value of A is 986. To normalize by decimal scaling, we therefore
divide each value by 1000 (i.e., j = 3) so that −986 normalizes to −0.986 and 917
normalizes to 0.917.

Note that normalization can change the original data quite a bit, especially when
using z-score normalization or decimal scaling. It is also necessary to save the normaliza-
tion parameters (e.g., the mean and standard deviation if using z-score normalization)
so that future data can be normalized in a uniform manner.

3.5.3 Discretization by Binning

Binning is a top-down splitting technique based on a specified number of bins.
Section 3.2.2 discussed binning methods for data smoothing. These methods are also
used as discretization methods for data reduction and concept hierarchy generation. For
example, attribute values can be discretized by applying equal-width or equal-frequency
binning, and then replacing each bin value by the bin mean or median, as in smoothing
by bin means or smoothing by bin medians, respectively. These techniques can be applied
recursively to the resulting partitions to generate concept hierarchies.

Binning does not use class information and is therefore an unsupervised discretiza-
tion technique. It is sensitive to the user-specified number of bins, as well as the presence
of outliers.

3.5.4 Discretization by Histogram Analysis

Like binning, histogram analysis is an unsupervised discretization technique because it
does not use class information. Histograms were introduced in Section 2.2.3. A his-
togram partitions the values of an attribute, A, into disjoint ranges called buckets
or bins.
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Various partitioning rules can be used to define histograms (Section 3.4.6). In an
equal-width histogram, for example, the values are partitioned into equal-size partitions
or ranges (e.g., earlier in Figure 3.8 for price, where each bucket has a width of $10).
With an equal-frequency histogram, the values are partitioned so that, ideally, each par-
tition contains the same number of data tuples. The histogram analysis algorithm can be
applied recursively to each partition in order to automatically generate a multilevel con-
cept hierarchy, with the procedure terminating once a prespecified number of concept
levels has been reached. A minimum interval size can also be used per level to control the
recursive procedure. This specifies the minimum width of a partition, or the minimum
number of values for each partition at each level. Histograms can also be partitioned
based on cluster analysis of the data distribution, as described next.

3.5.5 Discretization by Cluster, Decision Tree,
and Correlation Analyses

Clustering, decision tree analysis, and correlation analysis can be used for data dis-
cretization. We briefly study each of these approaches.

Cluster analysis is a popular data discretization method. A clustering algorithm can
be applied to discretize a numeric attribute, A, by partitioning the values of A into clus-
ters or groups. Clustering takes the distribution of A into consideration, as well as the
closeness of data points, and therefore is able to produce high-quality discretization
results.

Clustering can be used to generate a concept hierarchy for A by following either a
top-down splitting strategy or a bottom-up merging strategy, where each cluster forms
a node of the concept hierarchy. In the former, each initial cluster or partition may
be further decomposed into several subclusters, forming a lower level of the hiera-
rchy. In the latter, clusters are formed by repeatedly grouping neighboring clusters in
order to form higher-level concepts. Clustering methods for data mining are studied in
Chapters 10 and 11.

Techniques to generate decision trees for classification (Chapter 8) can be applied to
discretization. Such techniques employ a top-down splitting approach. Unlike the other
methods mentioned so far, decision tree approaches to discretization are supervised,
that is, they make use of class label information. For example, we may have a data set of
patient symptoms (the attributes) where each patient has an associated diagnosis class
label. Class distribution information is used in the calculation and determination of
split-points (data values for partitioning an attribute range). Intuitively, the main idea
is to select split-points so that a given resulting partition contains as many tuples of the
same class as possible. Entropy is the most commonly used measure for this purpose. To
discretize a numeric attribute, A, the method selects the value of A that has the minimum
entropy as a split-point, and recursively partitions the resulting intervals to arrive at a
hierarchical discretization. Such discretization forms a concept hierarchy for A.

Because decision tree–based discretization uses class information, it is more likely
that the interval boundaries (split-points) are defined to occur in places that may help
improve classification accuracy. Decision trees and the entropy measure are described in
greater detail in Section 8.2.2.
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Measures of correlation can be used for discretization. ChiMerge is a χ2-based
discretization method. The discretization methods that we have studied up to this
point have all employed a top-down, splitting strategy. This contrasts with ChiMerge,
which employs a bottom-up approach by finding the best neighboring intervals and
then merging them to form larger intervals, recursively. As with decision tree analysis,
ChiMerge is supervised in that it uses class information. The basic notion is that for
accurate discretization, the relative class frequencies should be fairly consistent within
an interval. Therefore, if two adjacent intervals have a very similar distribution of classes,
then the intervals can be merged. Otherwise, they should remain separate.

ChiMerge proceeds as follows. Initially, each distinct value of a numeric attribute A is
considered to be one interval. χ2 tests are performed for every pair of adjacent intervals.
Adjacent intervals with the least χ2 values are merged together, because low χ2 values
for a pair indicate similar class distributions. This merging process proceeds recursively
until a predefined stopping criterion is met.

3.5.6 Concept Hierarchy Generation for Nominal Data

We now look at data transformation for nominal data. In particular, we study concept
hierarchy generation for nominal attributes. Nominal attributes have a finite (but pos-
sibly large) number of distinct values, with no ordering among the values. Examples
include geographic location, job category, and item type.

Manual definition of concept hierarchies can be a tedious and time-consuming task
for a user or a domain expert. Fortunately, many hierarchies are implicit within the
database schema and can be automatically defined at the schema definition level. The
concept hierarchies can be used to transform the data into multiple levels of granular-
ity. For example, data mining patterns regarding sales may be found relating to specific
regions or countries, in addition to individual branch locations.

We study four methods for the generation of concept hierarchies for nominal data,
as follows.

1. Specification of a partial ordering of attributes explicitly at the schema level by
users or experts: Concept hierarchies for nominal attributes or dimensions typically
involve a group of attributes. A user or expert can easily define a concept hierarchy by
specifying a partial or total ordering of the attributes at the schema level. For exam-
ple, suppose that a relational database contains the following group of attributes:
street, city, province or state, and country. Similarly, a data warehouse location dimen-
sion may contain the same attributes. A hierarchy can be defined by specifying the
total ordering among these attributes at the schema level such as street < city <

province or state < country.

2. Specification of a portion of a hierarchy by explicit data grouping: This is essen-
tially the manual definition of a portion of a concept hierarchy. In a large database,
it is unrealistic to define an entire concept hierarchy by explicit value enumera-
tion. On the contrary, we can easily specify explicit groupings for a small portion
of intermediate-level data. For example, after specifying that province and country
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form a hierarchy at the schema level, a user could define some intermediate levels
manually, such as “{Alberta, Saskatchewan, Manitoba} ⊂ prairies Canada” and
“{British Columbia, prairies Canada} ⊂Western Canada.”

3. Specification of a set of attributes, but not of their partial ordering: A user may
specify a set of attributes forming a concept hierarchy, but omit to explicitly state
their partial ordering. The system can then try to automatically generate the attribute
ordering so as to construct a meaningful concept hierarchy.

“Without knowledge of data semantics, how can a hierarchical ordering for an
arbitrary set of nominal attributes be found?” Consider the observation that since
higher-level concepts generally cover several subordinate lower-level concepts, an
attribute defining a high concept level (e.g., country) will usually contain a smaller
number of distinct values than an attribute defining a lower concept level (e.g.,
street). Based on this observation, a concept hierarchy can be automatically gener-
ated based on the number of distinct values per attribute in the given attribute set.
The attribute with the most distinct values is placed at the lowest hierarchy level. The
lower the number of distinct values an attribute has, the higher it is in the gener-
ated concept hierarchy. This heuristic rule works well in many cases. Some local-level
swapping or adjustments may be applied by users or experts, when necessary, after
examination of the generated hierarchy.

Let’s examine an example of this third method.

Example 3.7 Concept hierarchy generation based on the number of distinct values per attribute.
Suppose a user selects a set of location-oriented attributes—street, country, province
or state, and city—from the AllElectronics database, but does not specify the hierarchical
ordering among the attributes.

A concept hierarchy for location can be generated automatically, as illustrated in
Figure 3.13. First, sort the attributes in ascending order based on the number of dis-
tinct values in each attribute. This results in the following (where the number of distinct
values per attribute is shown in parentheses): country (15), province or state (365), city
(3567), and street (674,339). Second, generate the hierarchy from the top down accord-
ing to the sorted order, with the first attribute at the top level and the last attribute at the
bottom level. Finally, the user can examine the generated hierarchy, and when necessary,
modify it to reflect desired semantic relationships among the attributes. In this example,
it is obvious that there is no need to modify the generated hierarchy.

Note that this heuristic rule is not foolproof. For example, a time dimension in a
database may contain 20 distinct years, 12 distinct months, and 7 distinct days of the
week. However, this does not suggest that the time hierarchy should be “year < month <

days of the week,” with days of the week at the top of the hierarchy.

4. Specification of only a partial set of attributes: Sometimes a user can be careless
when defining a hierarchy, or have only a vague idea about what should be included
in a hierarchy. Consequently, the user may have included only a small subset of the



3.5 Data Transformation and Data Discretization 119

country 15 distinct values

province_or_state

city

street

365 distinct values

3567 distinct values

674,339 distinct values

Figure 3.13 Automatic generation of a schema concept hierarchy based on the number of distinct
attribute values.

relevant attributes in the hierarchy specification. For example, instead of including
all of the hierarchically relevant attributes for location, the user may have specified
only street and city. To handle such partially specified hierarchies, it is important to
embed data semantics in the database schema so that attributes with tight semantic
connections can be pinned together. In this way, the specification of one attribute
may trigger a whole group of semantically tightly linked attributes to be “dragged in”
to form a complete hierarchy. Users, however, should have the option to override this
feature, as necessary.

Example 3.8 Concept hierarchy generation using prespecified semantic connections. Suppose that
a data mining expert (serving as an administrator) has pinned together the five attri-
butes number, street, city, province or state, and country, because they are closely linked
semantically regarding the notion of location. If a user were to specify only the attribute
city for a hierarchy defining location, the system can automatically drag in all five seman-
tically related attributes to form a hierarchy. The user may choose to drop any of
these attributes (e.g., number and street) from the hierarchy, keeping city as the lowest
conceptual level.

In summary, information at the schema level and on attribute–value counts can be
used to generate concept hierarchies for nominal data. Transforming nominal data with
the use of concept hierarchies allows higher-level knowledge patterns to be found. It
allows mining at multiple levels of abstraction, which is a common requirement for data
mining applications.
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3.6 Summary

Data quality is defined in terms of accuracy, completeness, consistency, timeliness,
believability, and interpretabilty. These qualities are assessed based on the intended
use of the data.

Data cleaning routines attempt to fill in missing values, smooth out noise while
identifying outliers, and correct inconsistencies in the data. Data cleaning is usually
performed as an iterative two-step process consisting of discrepancy detection and
data transformation.

Data integration combines data from multiple sources to form a coherent data
store. The resolution of semantic heterogeneity, metadata, correlation analysis,
tuple duplication detection, and data conflict detection contribute to smooth data
integration.

Data reduction techniques obtain a reduced representation of the data while mini-
mizing the loss of information content. These include methods of dimensionality
reduction, numerosity reduction, and data compression. Dimensionality reduction
reduces the number of random variables or attributes under consideration. Methods
include wavelet transforms, principal components analysis, attribute subset selection,
and attribute creation. Numerosity reduction methods use parametric or nonparat-
metric models to obtain smaller representations of the original data. Parametric
models store only the model parameters instead of the actual data. Examples
include regression and log-linear models. Nonparamteric methods include his-
tograms, clustering, sampling, and data cube aggregation. Data compression meth-
ods apply transformations to obtain a reduced or “compressed” representation of
the original data. The data reduction is lossless if the original data can be recon-
structed from the compressed data without any loss of information; otherwise, it is
lossy.

Data transformation routines convert the data into appropriate forms for min-
ing. For example, in normalization, attribute data are scaled so as to fall within a
small range such as 0.0 to 1.0. Other examples are data discretization and concept
hierarchy generation.

Data discretization transforms numeric data by mapping values to interval or con-
cept labels. Such methods can be used to automatically generate concept hierarchies
for the data, which allows for mining at multiple levels of granularity. Discretiza-
tion techniques include binning, histogram analysis, cluster analysis, decision tree
analysis, and correlation analysis. For nominal data, concept hierarchies may be
generated based on schema definitions as well as the number of distinct values per
attribute.

Although numerous methods of data preprocessing have been developed, data pre-
processing remains an active area of research, due to the huge amount of inconsistent
or dirty data and the complexity of the problem.
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3.7 Exercises

3.1 Data quality can be assessed in terms of several issues, including accuracy, completeness,
and consistency. For each of the above three issues, discuss how data quality assess-
ment can depend on the intended use of the data, giving examples. Propose two other
dimensions of data quality.

3.2 In real-world data, tuples with missing values for some attributes are a common
occurrence. Describe various methods for handling this problem.

3.3 Exercise 2.2 gave the following data (in increasing order) for the attribute age: 13, 15,
16, 16, 19, 20, 20, 21, 22, 22, 25, 25, 25, 25, 30, 33, 33, 35, 35, 35, 35, 36, 40, 45, 46,
52, 70.

(a) Use smoothing by bin means to smooth these data, using a bin depth of 3. Illustrate
your steps. Comment on the effect of this technique for the given data.

(b) How might you determine outliers in the data?

(c) What other methods are there for data smoothing?

3.4 Discuss issues to consider during data integration.

3.5 What are the value ranges of the following normalization methods?

(a) min-max normalization

(b) z-score normalization

(c) z-score normalization using the mean absolute deviation instead of standard devia-
tion

(d) normalization by decimal scaling

3.6 Use these methods to normalize the following group of data:

200,300,400,600,1000

(a) min-max normalization by setting min= 0 and max = 1

(b) z-score normalization

(c) z-score normalization using the mean absolute deviation instead of standard devia-
tion

(d) normalization by decimal scaling

3.7 Using the data for age given in Exercise 3.3, answer the following:

(a) Use min-max normalization to transform the value 35 for age onto the range
[0.0,1.0].

(b) Use z-score normalization to transform the value 35 for age, where the standard
deviation of age is 12.94 years.

(c) Use normalization by decimal scaling to transform the value 35 for age.

(d) Comment on which method you would prefer to use for the given data, giving
reasons as to why.
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3.8 Using the data for age and body fat given in Exercise 2.4, answer the following:

(a) Normalize the two attributes based on z-score normalization.

(b) Calculate the correlation coefficient (Pearson’s product moment coefficient). Are
these two attributes positively or negatively correlated? Compute their covariance.

3.9 Suppose a group of 12 sales price records has been sorted as follows:

5,10,11,13,15,35,50,55,72,92,204,215.

Partition them into three bins by each of the following methods:

(a) equal-frequency (equal-depth) partitioning

(b) equal-width partitioning

(c) clustering

3.10 Use a flowchart to summarize the following procedures for attribute subset selection:

(a) stepwise forward selection

(b) stepwise backward elimination

(c) a combination of forward selection and backward elimination

3.11 Using the data for age given in Exercise 3.3,

(a) Plot an equal-width histogram of width 10.

(b) Sketch examples of each of the following sampling techniques: SRSWOR, SRSWR,
cluster sampling, and stratified sampling. Use samples of size 5 and the strata
“youth,” “middle-aged,” and “senior.”

3.12 ChiMerge [Ker92] is a supervised, bottom-up (i.e., merge-based) data discretization
method. It relies on χ2 analysis: Adjacent intervals with the least χ2 values are merged
together until the chosen stopping criterion satisfies.

(a) Briefly describe how ChiMerge works.

(b) Take the IRIS data set, obtained from the University of California–Irvine Machine
Learning Data Repository (www.ics.uci.edu/∼mlearn/MLRepository.html), as a data
set to be discretized. Perform data discretization for each of the four numeric
attributes using the ChiMerge method. (Let the stopping criteria be: max-interval
= 6). You need to write a small program to do this to avoid clumsy numerical
computation. Submit your simple analysis and your test results: split-points, final
intervals, and the documented source program.

3.13 Propose an algorithm, in pseudocode or in your favorite programming language, for the
following:

(a) The automatic generation of a concept hierarchy for nominal data based on the
number of distinct values of attributes in the given schema.

(b) The automatic generation of a concept hierarchy for numeric data based on the
equal-width partitioning rule.
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(c) The automatic generation of a concept hierarchy for numeric data based on the
equal-frequency partitioning rule.

3.14 Robust data loading poses a challenge in database systems because the input data are
often dirty. In many cases, an input record may miss multiple values; some records
could be contaminated, with some data values out of range or of a different data type
than expected. Work out an automated data cleaning and loading algorithm so that the
erroneous data will be marked and contaminated data will not be mistakenly inserted
into the database during data loading.
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linear models (known as multiplicative models in the computer science literature), see
Pearl [Pea88]. For a general introduction to histograms, see Barbará et al. [BDF+97]
and Devore and Peck [DP97]. For extensions of single-attribute histograms to multiple
attributes, see Muralikrishna and DeWitt [MD88] and Poosala and Ioannidis [PI97].
Several references to clustering algorithms are given in Chapters 10 and 11 of this book,
which are devoted to the topic.

A survey of multidimensional indexing structures is given in Gaede and Günther
[GG98]. The use of multidimensional index trees for data aggregation is discussed in
Aoki [Aok98]. Index trees include R-trees (Guttman [Gut84]), quad-trees (Finkel and
Bentley [FB74]), and their variations. For discussion on sampling and data mining, see
Kivinen and Mannila [KM94] and John and Langley [JL96].

There are many methods for assessing attribute relevance. Each has its own bias. The
information gain measure is biased toward attributes with many values. Many alterna-
tives have been proposed, such as gain ratio (Quinlan [Qui93]), which considers the
probability of each attribute value. Other relevance measures include the Gini index
(Breiman, Friedman, Olshen, and Stone [BFOS84]), the χ2 contingency table statis-
tic, and the uncertainty coefficient (Johnson and Wichern [JW92]). For a comparison
of attribute selection measures for decision tree induction, see Buntine and Niblett
[BN92]. For additional methods, see Liu and Motoda [LM98a], Dash and Liu [DL97],
and Almuallim and Dietterich [AD91].

Liu et al. [LHTD02] performed a comprehensive survey of data discretization
methods. Entropy-based discretization with the C4.5 algorithm is described in Quin-
lan [Qui93]. In Catlett [Cat91], the D-2 system binarizes a numeric feature recursively.
ChiMerge by Kerber [Ker92] and Chi2 by Liu and Setiono [LS95] are methods for the
automatic discretization of numeric attributes that both employ the χ2 statistic. Fayyad
and Irani [FI93] apply the minimum description length principle to determine the num-
ber of intervals for numeric discretization. Concept hierarchies and their automatic
generation from categorical data are described in Han and Fu [HF94].



4Data Warehousing and Online
Analytical Processing

Data warehouses generalize and consolidate data in multidimensional space. The construction
of data warehouses involves data cleaning, data integration, and data transformation,
and can be viewed as an important preprocessing step for data mining. Moreover, data
warehouses provide online analytical processing (OLAP) tools for the interactive analysis
of multidimensional data of varied granularities, which facilitates effective data gene-
ralization and data mining. Many other data mining functions, such as association,
classification, prediction, and clustering, can be integrated with OLAP operations to
enhance interactive mining of knowledge at multiple levels of abstraction. Hence, the
data warehouse has become an increasingly important platform for data analysis and
OLAP and will provide an effective platform for data mining. Therefore, data warehous-
ing and OLAP form an essential step in the knowledge discovery process. This chapter
presents an overview of data warehouse and OLAP technology. This overview is essential
for understanding the overall data mining and knowledge discovery process.

In this chapter, we study a well-accepted definition of the data warehouse and see
why more and more organizations are building data warehouses for the analysis of
their data (Section 4.1). In particular, we study the data cube, a multidimensional data
model for data warehouses and OLAP, as well as OLAP operations such as roll-up, drill-
down, slicing, and dicing (Section 4.2). We also look at data warehouse design and
usage (Section 4.3). In addition, we discuss multidimensional data mining, a power-
ful paradigm that integrates data warehouse and OLAP technology with that of data
mining. An overview of data warehouse implementation examines general strategies
for efficient data cube computation, OLAP data indexing, and OLAP query process-
ing (Section 4.4). Finally, we study data generalization by attribute-oriented induction
(Section 4.5). This method uses concept hierarchies to generalize data to multiple levels
of abstraction.

4.1 Data Warehouse: Basic Concepts

This section gives an introduction to data warehouses. We begin with a definition of the
data warehouse (Section 4.1.1). We outline the differences between operational database
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systems and data warehouses (Section 4.1.2), then explain the need for using data ware-
houses for data analysis, rather than performing the analysis directly on traditional
databases (Section 4.1.3). This is followed by a presentation of data warehouse architec-
ture (Section 4.1.4). Next, we study three data warehouse models—an enterprise model,
a data mart, and a virtual warehouse (Section 4.1.5). Section 4.1.6 describes back-end
utilities for data warehousing, such as extraction, transformation, and loading. Finally,
Section 4.1.7 presents the metadata repository, which stores data about data.

4.1.1 What Is a Data Warehouse?

Data warehousing provides architectures and tools for business executives to system-
atically organize, understand, and use their data to make strategic decisions. Data
warehouse systems are valuable tools in today’s competitive, fast-evolving world. In the
last several years, many firms have spent millions of dollars in building enterprise-wide
data warehouses. Many people feel that with competition mounting in every industry,
data warehousing is the latest must-have marketing weapon—a way to retain customers
by learning more about their needs.

“Then, what exactly is a data warehouse?” Data warehouses have been defined in many
ways, making it difficult to formulate a rigorous definition. Loosely speaking, a data
warehouse refers to a data repository that is maintained separately from an organiza-
tion’s operational databases. Data warehouse systems allow for integration of a variety of
application systems. They support information processing by providing a solid platform
of consolidated historic data for analysis.

According to William H. Inmon, a leading architect in the construction of data
warehouse systems, “A data warehouse is a subject-oriented, integrated, time-variant,
and nonvolatile collection of data in support of management’s decision making pro-
cess” [Inm96]. This short but comprehensive definition presents the major features of
a data warehouse. The four keywords—subject-oriented, integrated, time-variant, and
nonvolatile—distinguish data warehouses from other data repository systems, such as
relational database systems, transaction processing systems, and file systems.

Let’s take a closer look at each of these key features.

Subject-oriented: A data warehouse is organized around major subjects such as cus-
tomer, supplier, product, and sales. Rather than concentrating on the day-to-day
operations and transaction processing of an organization, a data warehouse focuses
on the modeling and analysis of data for decision makers. Hence, data warehouses
typically provide a simple and concise view of particular subject issues by excluding
data that are not useful in the decision support process.

Integrated: A data warehouse is usually constructed by integrating multiple hetero-
geneous sources, such as relational databases, flat files, and online transaction
records. Data cleaning and data integration techniques are applied to ensure con-
sistency in naming conventions, encoding structures, attribute measures, and so on.
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Time-variant: Data are stored to provide information from an historic perspective
(e.g., the past 5–10 years). Every key structure in the data warehouse contains, either
implicitly or explicitly, a time element.

Nonvolatile: A data warehouse is always a physically separate store of data trans-
formed from the application data found in the operational environment. Due to
this separation, a data warehouse does not require transaction processing, recovery,
and concurrency control mechanisms. It usually requires only two operations in data
accessing: initial loading of data and access of data.

In sum, a data warehouse is a semantically consistent data store that serves as a
physical implementation of a decision support data model. It stores the information
an enterprise needs to make strategic decisions. A data warehouse is also often viewed
as an architecture, constructed by integrating data from multiple heterogeneous sources
to support structured and/or ad hoc queries, analytical reporting, and decision making.

Based on this information, we view data warehousing as the process of construct-
ing and using data warehouses. The construction of a data warehouse requires data
cleaning, data integration, and data consolidation. The utilization of a data warehouse
often necessitates a collection of decision support technologies. This allows “knowledge
workers” (e.g., managers, analysts, and executives) to use the warehouse to quickly and
conveniently obtain an overview of the data, and to make sound decisions based on
information in the warehouse. Some authors use the term data warehousing to refer
only to the process of data warehouse construction, while the term warehouse DBMS is
used to refer to the management and utilization of data warehouses. We will not make
this distinction here.

“How are organizations using the information from data warehouses?” Many orga-
nizations use this information to support business decision-making activities, includ-
ing (1) increasing customer focus, which includes the analysis of customer buying
patterns (such as buying preference, buying time, budget cycles, and appetites for
spending); (2) repositioning products and managing product portfolios by compar-
ing the performance of sales by quarter, by year, and by geographic regions in order
to fine-tune production strategies; (3) analyzing operations and looking for sources of
profit; and (4) managing customer relationships, making environmental corrections,
and managing the cost of corporate assets.

Data warehousing is also very useful from the point of view of heterogeneous database
integration. Organizations typically collect diverse kinds of data and maintain large
databases from multiple, heterogeneous, autonomous, and distributed information
sources. It is highly desirable, yet challenging, to integrate such data and provide easy
and efficient access to it. Much effort has been spent in the database industry and
research community toward achieving this goal.

The traditional database approach to heterogeneous database integration is to build
wrappers and integrators (or mediators) on top of multiple, heterogeneous databases.
When a query is posed to a client site, a metadata dictionary is used to translate the
query into queries appropriate for the individual heterogeneous sites involved. These
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queries are then mapped and sent to local query processors. The results returned from
the different sites are integrated into a global answer set. This query-driven approach
requires complex information filtering and integration processes, and competes with
local sites for processing resources. It is inefficient and potentially expensive for frequent
queries, especially queries requiring aggregations.

Data warehousing provides an interesting alternative to this traditional approach.
Rather than using a query-driven approach, data warehousing employs an update-
driven approach in which information from multiple, heterogeneous sources is inte-
grated in advance and stored in a warehouse for direct querying and analysis. Unlike
online transaction processing databases, data warehouses do not contain the most cur-
rent information. However, a data warehouse brings high performance to the integrated
heterogeneous database system because data are copied, preprocessed, integrated, anno-
tated, summarized, and restructured into one semantic data store. Furthermore, query
processing in data warehouses does not interfere with the processing at local sources.
Moreover, data warehouses can store and integrate historic information and support
complex multidimensional queries. As a result, data warehousing has become popular
in industry.

4.1.2 Differences between Operational Database Systems
and Data Warehouses

Because most people are familiar with commercial relational database systems, it is easy
to understand what a data warehouse is by comparing these two kinds of systems.

The major task of online operational database systems is to perform online trans-
action and query processing. These systems are called online transaction processing
(OLTP) systems. They cover most of the day-to-day operations of an organization such
as purchasing, inventory, manufacturing, banking, payroll, registration, and account-
ing. Data warehouse systems, on the other hand, serve users or knowledge workers in
the role of data analysis and decision making. Such systems can organize and present
data in various formats in order to accommodate the diverse needs of different users.
These systems are known as online analytical processing (OLAP) systems.

The major distinguishing features of OLTP and OLAP are summarized as follows:

Users and system orientation: An OLTP system is customer-oriented and is used
for transaction and query processing by clerks, clients, and information technology
professionals. An OLAP system is market-oriented and is used for data analysis by
knowledge workers, including managers, executives, and analysts.

Data contents: An OLTP system manages current data that, typically, are too detailed
to be easily used for decision making. An OLAP system manages large amounts of
historic data, provides facilities for summarization and aggregation, and stores and
manages information at different levels of granularity. These features make the data
easier to use for informed decision making.
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Database design: An OLTP system usually adopts an entity-relationship (ER) data
model and an application-oriented database design. An OLAP system typically
adopts either a star or a snowflake model (see Section 4.2.2) and a subject-oriented
database design.

View: An OLTP system focuses mainly on the current data within an enterprise or
department, without referring to historic data or data in different organizations. In
contrast, an OLAP system often spans multiple versions of a database schema, due to
the evolutionary process of an organization. OLAP systems also deal with informa-
tion that originates from different organizations, integrating information from many
data stores. Because of their huge volume, OLAP data are stored on multiple storage
media.

Access patterns: The access patterns of an OLTP system consist mainly of short,
atomic transactions. Such a system requires concurrency control and recovery mech-
anisms. However, accesses to OLAP systems are mostly read-only operations (because
most data warehouses store historic rather than up-to-date information), although
many could be complex queries.

Other features that distinguish between OLTP and OLAP systems include database
size, frequency of operations, and performance metrics. These are summarized in
Table 4.1.

4.1.3 But, Why Have a Separate Data Warehouse?

Because operational databases store huge amounts of data, you may wonder, “Why not
perform online analytical processing directly on such databases instead of spending addi-
tional time and resources to construct a separate data warehouse?” A major reason for such
a separation is to help promote the high performance of both systems. An operational
database is designed and tuned from known tasks and workloads like indexing and
hashing using primary keys, searching for particular records, and optimizing “canned”
queries. On the other hand, data warehouse queries are often complex. They involve the
computation of large data groups at summarized levels, and may require the use of spe-
cial data organization, access, and implementation methods based on multidimensional
views. Processing OLAP queries in operational databases would substantially degrade
the performance of operational tasks.

Moreover, an operational database supports the concurrent processing of multiple
transactions. Concurrency control and recovery mechanisms (e.g., locking and logging)
are required to ensure the consistency and robustness of transactions. An OLAP query
often needs read-only access of data records for summarization and aggregation. Con-
currency control and recovery mechanisms, if applied for such OLAP operations, may
jeopardize the execution of concurrent transactions and thus substantially reduce the
throughput of an OLTP system.

Finally, the separation of operational databases from data warehouses is based on
the different structures, contents, and uses of the data in these two systems. Decision
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Table 4.1 Comparison of OLTP and OLAP Systems

Feature OLTP OLAP

Characteristic operational processing informational processing

Orientation transaction analysis

User clerk, DBA, database professional knowledge worker (e.g., manager,
executive, analyst)

Function day-to-day operations long-term informational
requirements decision support

DB design ER-based, application-oriented star/snowflake, subject-oriented

Data current, guaranteed up-to-date historic, accuracy maintained
over time

Summarization primitive, highly detailed summarized, consolidated

View detailed, flat relational summarized, multidimensional

Unit of work short, simple transaction complex query

Access read/write mostly read

Focus data in information out

Operations index/hash on primary key lots of scans

Number of records
accessed tens millions

Number of users thousands hundreds

DB size GB to high-order GB ≥ TB

Priority high performance, high availability high flexibility, end-user autonomy

Metric transaction throughput query throughput, response time

Note: Table is partially based on Chaudhuri and Dayal [CD97].

support requires historic data, whereas operational databases do not typically maintain
historic data. In this context, the data in operational databases, though abundant, are
usually far from complete for decision making. Decision support requires consolidation
(e.g., aggregation and summarization) of data from heterogeneous sources, resulting
in high-quality, clean, integrated data. In contrast, operational databases contain only
detailed raw data, such as transactions, which need to be consolidated before analy-
sis. Because the two systems provide quite different functionalities and require different
kinds of data, it is presently necessary to maintain separate databases. However, many
vendors of operational relational database management systems are beginning to opti-
mize such systems to support OLAP queries. As this trend continues, the separation
between OLTP and OLAP systems is expected to decrease.

4.1.4 Data Warehousing: A Multitiered Architecture

Data warehouses often adopt a three-tier architecture, as presented in Figure 4.1.
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Figure 4.1 A three-tier data warehousing architecture.

1. The bottom tier is a warehouse database server that is almost always a relational
database system. Back-end tools and utilities are used to feed data into the bot-
tom tier from operational databases or other external sources (e.g., customer profile
information provided by external consultants). These tools and utilities perform data
extraction, cleaning, and transformation (e.g., to merge similar data from different
sources into a unified format), as well as load and refresh functions to update the
data warehouse (see Section 4.1.6). The data are extracted using application pro-
gram interfaces known as gateways. A gateway is supported by the underlying DBMS
and allows client programs to generate SQL code to be executed at a server. Exam-
ples of gateways include ODBC (Open Database Connection) and OLEDB (Object
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Linking and Embedding Database) by Microsoft and JDBC (Java Database Connec-
tion). This tier also contains a metadata repository, which stores information about
the data warehouse and its contents. The metadata repository is further described in
Section 4.1.7.

2. The middle tier is an OLAP server that is typically implemented using either (1) a
relational OLAP (ROLAP) model (i.e., an extended relational DBMS that maps oper-
ations on multidimensional data to standard relational operations); or (2) a multi-
dimensional OLAP (MOLAP) model (i.e., a special-purpose server that directly
implements multidimensional data and operations). OLAP servers are discussed in
Section 4.4.4.

3. The top tier is a front-end client layer, which contains query and reporting tools,
analysis tools, and/or data mining tools (e.g., trend analysis, prediction, and so on).

4.1.5 Data Warehouse Models: Enterprise Warehouse,
Data Mart, and Virtual Warehouse

From the architecture point of view, there are three data warehouse models: the
enterprise warehouse, the data mart, and the virtual warehouse.

Enterprise warehouse: An enterprise warehouse collects all of the information about
subjects spanning the entire organization. It provides corporate-wide data inte-
gration, usually from one or more operational systems or external information
providers, and is cross-functional in scope. It typically contains detailed data as
well as summarized data, and can range in size from a few gigabytes to hundreds
of gigabytes, terabytes, or beyond. An enterprise data warehouse may be imple-
mented on traditional mainframes, computer superservers, or parallel architecture
platforms. It requires extensive business modeling and may take years to design
and build.

Data mart: A data mart contains a subset of corporate-wide data that is of value to a
specific group of users. The scope is confined to specific selected subjects. For exam-
ple, a marketing data mart may confine its subjects to customer, item, and sales. The
data contained in data marts tend to be summarized.

Data marts are usually implemented on low-cost departmental servers that are
Unix/Linux or Windows based. The implementation cycle of a data mart is more
likely to be measured in weeks rather than months or years. However, it may
involve complex integration in the long run if its design and planning were not
enterprise-wide.

Depending on the source of data, data marts can be categorized as independent
or dependent. Independent data marts are sourced from data captured from one or
more operational systems or external information providers, or from data generated
locally within a particular department or geographic area. Dependent data marts are
sourced directly from enterprise data warehouses.
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Virtual warehouse: A virtual warehouse is a set of views over operational databases.
For efficient query processing, only some of the possible summary views may be
materialized. A virtual warehouse is easy to build but requires excess capacity on
operational database servers.

“What are the pros and cons of the top-down and bottom-up approaches to data ware-
house development?” The top-down development of an enterprise warehouse serves as a
systematic solution and minimizes integration problems. However, it is expensive, takes
a long time to develop, and lacks flexibility due to the difficulty in achieving consistency
and consensus for a common data model for the entire organization. The bottom-
up approach to the design, development, and deployment of independent data marts
provides flexibility, low cost, and rapid return of investment. It, however, can lead to
problems when integrating various disparate data marts into a consistent enterprise data
warehouse.

A recommended method for the development of data warehouse systems is to imple-
ment the warehouse in an incremental and evolutionary manner, as shown in Figure 4.2.
First, a high-level corporate data model is defined within a reasonably short period
(such as one or two months) that provides a corporate-wide, consistent, integrated
view of data among different subjects and potential usages. This high-level model,
although it will need to be refined in the further development of enterprise data ware-
houses and departmental data marts, will greatly reduce future integration problems.
Second, independent data marts can be implemented in parallel with the enterprise

Enterprise
data

warehouse

Multitier
data

warehouse

Distributed
data marts

Data 
mart

Define a high-level corporate data model

Data 
mart

Model refinement Model refinement

Figure 4.2 A recommended approach for data warehouse development.
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warehouse based on the same corporate data model set noted before. Third, distributed
data marts can be constructed to integrate different data marts via hub servers. Finally,
a multitier data warehouse is constructed where the enterprise warehouse is the sole
custodian of all warehouse data, which is then distributed to the various dependent
data marts.

4.1.6 Extraction, Transformation, and Loading

Data warehouse systems use back-end tools and utilities to populate and refresh their
data (Figure 4.1). These tools and utilities include the following functions:

Data extraction, which typically gathers data from multiple, heterogeneous, and
external sources.

Data cleaning, which detects errors in the data and rectifies them when possible.

Data transformation, which converts data from legacy or host format to warehouse
format.

Load, which sorts, summarizes, consolidates, computes views, checks integrity, and
builds indices and partitions.

Refresh, which propagates the updates from the data sources to the warehouse.

Besides cleaning, loading, refreshing, and metadata definition tools, data warehouse
systems usually provide a good set of data warehouse management tools.

Data cleaning and data transformation are important steps in improving the data
quality and, subsequently, the data mining results (see Chapter 3). Because we are mostly
interested in the aspects of data warehousing technology related to data mining, we will
not get into the details of the remaining tools, and recommend interested readers to
consult books dedicated to data warehousing technology.

4.1.7 Metadata Repository

Metadata are data about data. When used in a data warehouse, metadata are the data
that define warehouse objects. Figure 4.1 showed a metadata repository within the bot-
tom tier of the data warehousing architecture. Metadata are created for the data names
and definitions of the given warehouse. Additional metadata are created and captured
for timestamping any extracted data, the source of the extracted data, and missing fields
that have been added by data cleaning or integration processes.

A metadata repository should contain the following:

A description of the data warehouse structure, which includes the warehouse schema,
view, dimensions, hierarchies, and derived data definitions, as well as data mart
locations and contents.
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Operational metadata, which include data lineage (history of migrated data and the
sequence of transformations applied to it), currency of data (active, archived, or
purged), and monitoring information (warehouse usage statistics, error reports, and
audit trails).

The algorithms used for summarization, which include measure and dimension
definition algorithms, data on granularity, partitions, subject areas, aggregation,
summarization, and predefined queries and reports.

Mapping from the operational environment to the data warehouse, which includes
source databases and their contents, gateway descriptions, data partitions, data
extraction, cleaning, transformation rules and defaults, data refresh and purging
rules, and security (user authorization and access control).

Data related to system performance, which include indices and profiles that improve
data access and retrieval performance, in addition to rules for the timing and
scheduling of refresh, update, and replication cycles.

Business metadata, which include business terms and definitions, data ownership
information, and charging policies.

A data warehouse contains different levels of summarization, of which metadata is one.
Other types include current detailed data (which are almost always on disk), older
detailed data (which are usually on tertiary storage), lightly summarized data, and highly
summarized data (which may or may not be physically housed).

Metadata play a very different role than other data warehouse data and are important
for many reasons. For example, metadata are used as a directory to help the decision
support system analyst locate the contents of the data warehouse, and as a guide to
the data mapping when data are transformed from the operational environment to the
data warehouse environment. Metadata also serve as a guide to the algorithms used for
summarization between the current detailed data and the lightly summarized data, and
between the lightly summarized data and the highly summarized data. Metadata should
be stored and managed persistently (i.e., on disk).

4.2 Data Warehouse Modeling: Data Cube
and OLAP

Data warehouses and OLAP tools are based on a multidimensional data model. This
model views data in the form of a data cube. In this section, you will learn how data cubes
model n-dimensional data (Section 4.2.1). In Section 4.2.2, various multidimensional
models are shown: star schema, snowflake schema, and fact constellation. You will also
learn about concept hierarchies (Section 4.2.3) and measures (Section 4.2.4) and how
they can be used in basic OLAP operations to allow interactive mining at multiple levels
of abstraction. Typical OLAP operations such as drill-down and roll-up are illustrated
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(Section 4.2.5). Finally, the starnet model for querying multidimensional databases is
presented (Section 4.2.6).

4.2.1 Data Cube: A Multidimensional Data Model

“What is a data cube?” A data cube allows data to be modeled and viewed in multiple
dimensions. It is defined by dimensions and facts.

In general terms, dimensions are the perspectives or entities with respect to which
an organization wants to keep records. For example, AllElectronics may create a sales
data warehouse in order to keep records of the store’s sales with respect to the dimen-
sions time, item, branch, and location. These dimensions allow the store to keep track
of things like monthly sales of items and the branches and locations at which the
items were sold. Each dimension may have a table associated with it, called a dimen-
sion table, which further describes the dimension. For example, a dimension table for
item may contain the attributes item name, brand, and type. Dimension tables can be
specified by users or experts, or automatically generated and adjusted based on data
distributions.

A multidimensional data model is typically organized around a central theme, such
as sales. This theme is represented by a fact table. Facts are numeric measures. Think of
them as the quantities by which we want to analyze relationships between dimensions.
Examples of facts for a sales data warehouse include dollars sold (sales amount in dol-
lars), units sold (number of units sold), and amount budgeted. The fact table contains
the names of the facts, or measures, as well as keys to each of the related dimension tables.
You will soon get a clearer picture of how this works when we look at multidimensional
schemas.

Although we usually think of cubes as 3-D geometric structures, in data warehous-
ing the data cube is n-dimensional. To gain a better understanding of data cubes and
the multidimensional data model, let’s start by looking at a simple 2-D data cube that
is, in fact, a table or spreadsheet for sales data from AllElectronics. In particular, we
will look at the AllElectronics sales data for items sold per quarter in the city of Van-
couver. These data are shown in Table 4.2. In this 2-D representation, the sales for
Vancouver are shown with respect to the time dimension (organized in quarters) and
the item dimension (organized according to the types of items sold). The fact or measure
displayed is dollars sold (in thousands).

Now, suppose that we would like to view the sales data with a third dimension. For
instance, suppose we would like to view the data according to time and item, as well as
location, for the cities Chicago, New York, Toronto, and Vancouver. These 3-D data are
shown in Table 4.3. The 3-D data in the table are represented as a series of 2-D tables.
Conceptually, we may also represent the same data in the form of a 3-D data cube, as in
Figure 4.3.

Suppose that we would now like to view our sales data with an additional fourth
dimension such as supplier. Viewing things in 4-D becomes tricky. However, we can
think of a 4-D cube as being a series of 3-D cubes, as shown in Figure 4.4. If we continue
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Table 4.2 2-D View of Sales Data for AllElectronics According to time and item

location = “Vancouver”

item (type)

home
time (quarter) entertainment computer phone security

Q1 605 825 14 400

Q2 680 952 31 512

Q3 812 1023 30 501

Q4 927 1038 38 580

Note: The sales are from branches located in the city of Vancouver. The measure displayed is dollars sold
(in thousands).

Table 4.3 3-D View of Sales Data for AllElectronics According to time, item, and location

location = “Chicago” location = “New York” location = “Toronto” location = “Vancouver”

item item item item

home home home home
time ent. comp. phone sec. ent. comp. phone sec. ent. comp. phone sec. ent. comp. phone sec.

Q1 854 882 89 623 1087 968 38 872 818 746 43 591 605 825 14 400

Q2 943 890 64 698 1130 1024 41 925 894 769 52 682 680 952 31 512

Q3 1032 924 59 789 1034 1048 45 1002 940 795 58 728 812 1023 30 501

Q4 1129 992 63 870 1142 1091 54 984 978 864 59 784 927 1038 38 580

Note: The measure displayed is dollars sold (in thousands).

in this way, we may display any n-dimensional data as a series of (n− 1)-dimensional
“cubes.” The data cube is a metaphor for multidimensional data storage. The actual
physical storage of such data may differ from its logical representation. The important
thing to remember is that data cubes are n-dimensional and do not confine data to 3-D.

Tables 4.2 and 4.3 show the data at different degrees of summarization. In the data
warehousing research literature, a data cube like those shown in Figures 4.3 and 4.4 is
often referred to as a cuboid. Given a set of dimensions, we can generate a cuboid for
each of the possible subsets of the given dimensions. The result would form a lattice of
cuboids, each showing the data at a different level of summarization, or group-by. The
lattice of cuboids is then referred to as a data cube. Figure 4.5 shows a lattice of cuboids
forming a data cube for the dimensions time, item, location, and supplier.

The cuboid that holds the lowest level of summarization is called the base cuboid.
For example, the 4-D cuboid in Figure 4.4 is the base cuboid for the given time, item,
location, and supplier dimensions. Figure 4.3 is a 3-D (nonbase) cuboid for time, item,
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Figure 4.3 A 3-D data cube representation of the data in Table 4.3, according to time, item, and location.
The measure displayed is dollars sold (in thousands).
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and location, summarized for all suppliers. The 0-D cuboid, which holds the highest level
of summarization, is called the apex cuboid. In our example, this is the total sales, or
dollars sold, summarized over all four dimensions. The apex cuboid is typically denoted
by all.
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cuboid represents a different degree of summarization.

4.2.2 Stars, Snowflakes, and Fact Constellations: Schemas for
Multidimensional Data Models

The entity-relationship data model is commonly used in the design of relational
databases, where a database schema consists of a set of entities and the relationships
between them. Such a data model is appropriate for online transaction processing.
A data warehouse, however, requires a concise, subject-oriented schema that facilitates
online data analysis.

The most popular data model for a data warehouse is a multidimensional model,
which can exist in the form of a star schema, a snowflake schema, or a fact constellation
schema. Let’s look at each of these.

Star schema: The most common modeling paradigm is the star schema, in which the
data warehouse contains (1) a large central table (fact table) containing the bulk of
the data, with no redundancy, and (2) a set of smaller attendant tables (dimension
tables), one for each dimension. The schema graph resembles a starburst, with the
dimension tables displayed in a radial pattern around the central fact table.

Example 4.1 Star schema. A star schema for AllElectronics sales is shown in Figure 4.6. Sales are con-
sidered along four dimensions: time, item, branch, and location. The schema contains
a central fact table for sales that contains keys to each of the four dimensions, along
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Figure 4.6 Star schema of sales data warehouse.

with two measures: dollars sold and units sold. To minimize the size of the fact table,
dimension identifiers (e.g., time key and item key) are system-generated identifiers.

Notice that in the star schema, each dimension is represented by only one table, and
each table contains a set of attributes. For example, the location dimension table contains
the attribute set {location key, street, city, province or state, country}. This constraint may
introduce some redundancy. For example, “Urbana” and “Chicago” are both cities in the
state of Illinois, USA. Entries for such cities in the location dimension table will create
redundancy among the attributes province or state and country; that is, (..., Urbana, IL,
USA) and (..., Chicago, IL, USA). Moreover, the attributes within a dimension table may
form either a hierarchy (total order) or a lattice (partial order).

Snowflake schema: The snowflake schema is a variant of the star schema model,
where some dimension tables are normalized, thereby further splitting the data into
additional tables. The resulting schema graph forms a shape similar to a snowflake.

The major difference between the snowflake and star schema models is that the
dimension tables of the snowflake model may be kept in normalized form to reduce
redundancies. Such a table is easy to maintain and saves storage space. However, this
space savings is negligible in comparison to the typical magnitude of the fact table. Fur-
thermore, the snowflake structure can reduce the effectiveness of browsing, since more
joins will be needed to execute a query. Consequently, the system performance may be
adversely impacted. Hence, although the snowflake schema reduces redundancy, it is not
as popular as the star schema in data warehouse design.
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Figure 4.7 Snowflake schema of a sales data warehouse.

Example 4.2 Snowflake schema. A snowflake schema for AllElectronics sales is given in Figure 4.7.
Here, the sales fact table is identical to that of the star schema in Figure 4.6. The
main difference between the two schemas is in the definition of dimension tables.
The single dimension table for item in the star schema is normalized in the snowflake
schema, resulting in new item and supplier tables. For example, the item dimension
table now contains the attributes item key, item name, brand, type, and supplier key,
where supplier key is linked to the supplier dimension table, containing supplier key and
supplier type information. Similarly, the single dimension table for location in the star
schema can be normalized into two new tables: location and city. The city key in the
new location table links to the city dimension. Notice that, when desirable, further nor-
malization can be performed on province or state and country in the snowflake schema
shown in Figure 4.7.

Fact constellation: Sophisticated applications may require multiple fact tables to share
dimension tables. This kind of schema can be viewed as a collection of stars, and
hence is called a galaxy schema or a fact constellation.

Example 4.3 Fact constellation. A fact constellation schema is shown in Figure 4.8. This schema
specifies two fact tables, sales and shipping. The sales table definition is identical to that of
the star schema (Figure 4.6). The shipping table has five dimensions, or keys—item key,
time key, shipper key, from location, and to location—and two measures—dollars cost
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Figure 4.8 Fact constellation schema of a sales and shipping data warehouse.

and units shipped. A fact constellation schema allows dimension tables to be shared
between fact tables. For example, the dimensions tables for time, item, and location are
shared between the sales and shipping fact tables.

In data warehousing, there is a distinction between a data warehouse and a data mart.
A data warehouse collects information about subjects that span the entire organization,
such as customers, items, sales, assets, and personnel, and thus its scope is enterprise-wide.
For data warehouses, the fact constellation schema is commonly used, since it can model
multiple, interrelated subjects. A data mart, on the other hand, is a department subset of
the data warehouse that focuses on selected subjects, and thus its scope is department-
wide. For data marts, the star or snowflake schema is commonly used, since both are
geared toward modeling single subjects, although the star schema is more popular and
efficient.

4.2.3 Dimensions: The Role of Concept Hierarchies

A concept hierarchy defines a sequence of mappings from a set of low-level concepts
to higher-level, more general concepts. Consider a concept hierarchy for the dimension
location. City values for location include Vancouver, Toronto, New York, and Chicago.
Each city, however, can be mapped to the province or state to which it belongs. For
example, Vancouver can be mapped to British Columbia, and Chicago to Illinois.
The provinces and states can in turn be mapped to the country (e.g., Canada or the
United States) to which they belong. These mappings form a concept hierarchy for the
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dimension location, mapping a set of low-level concepts (i.e., cities) to higher-level, more
general concepts (i.e., countries). This concept hierarchy is illustrated in Figure 4.9.

Many concept hierarchies are implicit within the database schema. For example,
suppose that the dimension location is described by the attributes number, street, city,
province or state, zip code, and country. These attributes are related by a total order,
forming a concept hierarchy such as “street < city < province or state < country.” This
hierarchy is shown in Figure 4.10(a). Alternatively, the attributes of a dimension may
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all

British Columbia Ontario

Vancouver Victoria OttawaToronto Chicago UrbanaBuffalo

New York

New York

Illinois

USA

location

country

city

province_
or_state

all

Figure 4.9 A concept hierarchy for location. Due to space limitations, not all of the hierarchy nodes are
shown, indicated by ellipses between nodes.
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Figure 4.10 Hierarchical and lattice structures of attributes in warehouse dimensions: (a) a hierarchy for
location and (b) a lattice for time.
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Figure 4.11 A concept hierarchy for price.

be organized in a partial order, forming a lattice. An example of a partial order for the
time dimension based on the attributes day, week, month, quarter, and year is “day <

{month < quarter; week} < year.”1 This lattice structure is shown in Figure 4.10(b).
A concept hierarchy that is a total or partial order among attributes in a database schema
is called a schema hierarchy. Concept hierarchies that are common to many applica-
tions (e.g., for time) may be predefined in the data mining system. Data mining systems
should provide users with the flexibility to tailor predefined hierarchies according to
their particular needs. For example, users may want to define a fiscal year starting on
April 1 or an academic year starting on September 1.

Concept hierarchies may also be defined by discretizing or grouping values for a
given dimension or attribute, resulting in a set-grouping hierarchy. A total or partial
order can be defined among groups of values. An example of a set-grouping hierarchy is
shown in Figure 4.11 for the dimension price, where an interval ($X . . .$Y ] denotes the
range from $X (exclusive) to $Y (inclusive).

There may be more than one concept hierarchy for a given attribute or dimension,
based on different user viewpoints. For instance, a user may prefer to organize price by
defining ranges for inexpensive, moderately priced, and expensive.

Concept hierarchies may be provided manually by system users, domain experts, or
knowledge engineers, or may be automatically generated based on statistical analysis of
the data distribution. The automatic generation of concept hierarchies is discussed in
Chapter 3 as a preprocessing step in preparation for data mining.

Concept hierarchies allow data to be handled at varying levels of abstraction, as we
will see in Section 4.2.4.

4.2.4 Measures: Their Categorization and Computation
“How are measures computed?” To answer this question, we first study how measures can
be categorized. Note that a multidimensional point in the data cube space can be defined

1Since a week often crosses the boundary of two consecutive months, it is usually not treated as a lower
abstraction of month. Instead, it is often treated as a lower abstraction of year, since a year contains
approximately 52 weeks.
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by a set of dimension–value pairs; for example, 〈time = “Q1”, location = “Vancouver”,
item = “computer”〉. A data cube measure is a numeric function that can be evaluated
at each point in the data cube space. A measure value is computed for a given point by
aggregating the data corresponding to the respective dimension–value pairs defining the
given point. We will look at concrete examples of this shortly.

Measures can be organized into three categories—distributive, algebraic, and holi-
stic—based on the kind of aggregate functions used.

Distributive: An aggregate function is distributive if it can be computed in a distributed
manner as follows. Suppose the data are partitioned into n sets. We apply the func-
tion to each partition, resulting in n aggregate values. If the result derived by applying
the function to the n aggregate values is the same as that derived by applying the func-
tion to the entire data set (without partitioning), the function can be computed in a
distributed manner. For example, sum() can be computed for a data cube by first par-
titioning the cube into a set of subcubes, computing sum() for each subcube, and then
summing up the counts obtained for each subcube. Hence, sum() is a distributive
aggregate function.

For the same reason, count(), min(), and max() are distributive aggregate functions.
By treating the count value of each nonempty base cell as 1 by default, count() of any
cell in a cube can be viewed as the sum of the count values of all of its corresponding
child cells in its subcube. Thus, count() is distributive. A measure is distributive if it is
obtained by applying a distributive aggregate function. Distributive measures can be
computed efficiently because of the way the computation can be partitioned.

Algebraic: An aggregate function is algebraic if it can be computed by an algebraic func-
tion with M arguments (where M is a bounded positive integer), each of which
is obtained by applying a distributive aggregate function. For example, avg() (aver-
age) can be computed by sum()/count(), where both sum() and count() are distributive
aggregate functions. Similarly, it can be shown that min N() and max N() (which
find the N minimum and N maximum values, respectively, in a given set) and
standard deviation() are algebraic aggregate functions. A measure is algebraic if it is
obtained by applying an algebraic aggregate function.

Holistic: An aggregate function is holistic if there is no constant bound on the stor-
age size needed to describe a subaggregate. That is, there does not exist an algebraic
function with M arguments (where M is a constant) that characterizes the compu-
tation. Common examples of holistic functions include median(), mode(), and rank().
A measure is holistic if it is obtained by applying a holistic aggregate function.

Most large data cube applications require efficient computation of distributive and
algebraic measures. Many efficient techniques for this exist. In contrast, it is difficult to
compute holistic measures efficiently. Efficient techniques to approximate the computa-
tion of some holistic measures, however, do exist. For example, rather than computing
the exact median(), Equation (2.3) of Chapter 2 can be used to estimate the approxi-
mate median value for a large data set. In many cases, such techniques are sufficient to
overcome the difficulties of efficient computation of holistic measures.
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Various methods for computing different measures in data cube construction are
discussed in depth in Chapter 5. Notice that most of the current data cube techno-
logy confines the measures of multidimensional databases to numeric data. However,
measures can also be applied to other kinds of data, such as spatial, multimedia, or
text data.

4.2.5 Typical OLAP Operations

“How are concept hierarchies useful in OLAP?” In the multidimensional model, data are
organized into multiple dimensions, and each dimension contains multiple levels of
abstraction defined by concept hierarchies. This organization provides users with the
flexibility to view data from different perspectives. A number of OLAP data cube opera-
tions exist to materialize these different views, allowing interactive querying and analysis
of the data at hand. Hence, OLAP provides a user-friendly environment for interactive
data analysis.

Example 4.4 OLAP operations. Let’s look at some typical OLAP operations for multidimensional
data. Each of the following operations described is illustrated in Figure 4.12. At the cen-
ter of the figure is a data cube for AllElectronics sales. The cube contains the dimensions
location, time, and item, where location is aggregated with respect to city values, time is
aggregated with respect to quarters, and item is aggregated with respect to item types.
To aid in our explanation, we refer to this cube as the central cube. The measure dis-
played is dollars sold (in thousands). (For improved readability, only some of the cubes’
cell values are shown.) The data examined are for the cities Chicago, New York, Toronto,
and Vancouver.

Roll-up: The roll-up operation (also called the drill-up operation by some vendors)
performs aggregation on a data cube, either by climbing up a concept hierarchy for
a dimension or by dimension reduction. Figure 4.12 shows the result of a roll-up
operation performed on the central cube by climbing up the concept hierarchy for
location given in Figure 4.9. This hierarchy was defined as the total order “street <

city < province or state < country.” The roll-up operation shown aggregates the data
by ascending the location hierarchy from the level of city to the level of country. In
other words, rather than grouping the data by city, the resulting cube groups the data
by country.

When roll-up is performed by dimension reduction, one or more dimensions are
removed from the given cube. For example, consider a sales data cube containing
only the location and time dimensions. Roll-up may be performed by removing, say,
the time dimension, resulting in an aggregation of the total sales by location, rather
than by location and by time.

Drill-down: Drill-down is the reverse of roll-up. It navigates from less detailed data
to more detailed data. Drill-down can be realized by either stepping down a concept
hierarchy for a dimension or introducing additional dimensions. Figure 4.12 shows the
result of a drill-down operation performed on the central cube by stepping down a
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Figure 4.12 Examples of typical OLAP operations on multidimensional data.
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concept hierarchy for time defined as “day < month < quarter < year.” Drill-down
occurs by descending the time hierarchy from the level of quarter to the more detailed
level of month. The resulting data cube details the total sales per month rather than
summarizing them by quarter.

Because a drill-down adds more detail to the given data, it can also be per-
formed by adding new dimensions to a cube. For example, a drill-down on the
central cube of Figure 4.12 can occur by introducing an additional dimension, such
as customer group.

Slice and dice: The slice operation performs a selection on one dimension of the given
cube, resulting in a subcube. Figure 4.12 shows a slice operation where the sales
data are selected from the central cube for the dimension time using the criterion
time= “Q1.” The dice operation defines a subcube by performing a selection on two
or more dimensions. Figure 4.12 shows a dice operation on the central cube based on
the following selection criteria that involve three dimensions: (location= “Toronto”
or “Vancouver”) and (time = “Q1” or “Q2”) and (item = “home entertainment” or
“computer”).

Pivot (rotate): Pivot (also called rotate) is a visualization operation that rotates the data
axes in view to provide an alternative data presentation. Figure 4.12 shows a pivot
operation where the item and location axes in a 2-D slice are rotated. Other examples
include rotating the axes in a 3-D cube, or transforming a 3-D cube into a series of
2-D planes.

Other OLAP operations: Some OLAP systems offer additional drilling operations. For
example, drill-across executes queries involving (i.e., across) more than one fact
table. The drill-through operation uses relational SQL facilities to drill through the
bottom level of a data cube down to its back-end relational tables.

Other OLAP operations may include ranking the top N or bottom N items in
lists, as well as computing moving averages, growth rates, interests, internal return
rates, depreciation, currency conversions, and statistical functions.

OLAP offers analytical modeling capabilities, including a calculation engine for
deriving ratios, variance, and so on, and for computing measures across multiple dimen-
sions. It can generate summarizations, aggregations, and hierarchies at each granularity
level and at every dimension intersection. OLAP also supports functional models for
forecasting, trend analysis, and statistical analysis. In this context, an OLAP engine is a
powerful data analysis tool.

OLAP Systems versus Statistical Databases
Many OLAP systems’ characteristics (e.g., the use of a multidimensional data model
and concept hierarchies, the association of measures with dimensions, and the notions
of roll-up and drill-down) also exist in earlier work on statistical databases (SDBs).
A statistical database is a database system that is designed to support statistical applica-
tions. Similarities between the two types of systems are rarely discussed, mainly due to
differences in terminology and application domains.
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OLAP and SDB systems, however, have distinguishing differences. While SDBs tend
to focus on socioeconomic applications, OLAP has been targeted for business appli-
cations. Privacy issues regarding concept hierarchies are a major concern for SDBs. For
example, given summarized socioeconomic data, it is controversial to allow users to view
the corresponding low-level data. Finally, unlike SDBs, OLAP systems are designed for
efficiently handling huge amounts of data.

4.2.6 A Starnet Query Model for Querying
Multidimensional Databases

The querying of multidimensional databases can be based on a starnet model, which
consists of radial lines emanating from a central point, where each line represents a
concept hierarchy for a dimension. Each abstraction level in the hierarchy is called a
footprint. These represent the granularities available for use by OLAP operations such
as drill-down and roll-up.

Example 4.5 Starnet. A starnet query model for the AllElectronics data warehouse is shown in
Figure 4.13. This starnet consists of four radial lines, representing concept hierarchies
for the dimensions location, customer, item, and time, respectively. Each line consists
of footprints representing abstraction levels of the dimension. For example, the time
line has four footprints: “day,” “month,” “quarter,” and “year.” A concept hierarchy may
involve a single attribute (e.g., date for the time hierarchy) or several attributes (e.g., the
concept hierarchy for location involves the attributes street, city, province or state, and
country). In order to examine the item sales at AllElectronics, users can roll up along the
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Figure 4.13 A starnet model of business queries.
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time dimension from month to quarter, or, say, drill down along the location dimension
from country to city.

Concept hierarchies can be used to generalize data by replacing low-level values
(such as “day” for the time dimension) by higher-level abstractions (such as “year”),
or to specialize data by replacing higher-level abstractions with lower-level values.

4.3 Data Warehouse Design and Usage

“What goes into a data warehouse design? How are data warehouses used? How do data
warehousing and OLAP relate to data mining?” This section tackles these questions. We
study the design and usage of data warehousing for information processing, analyti-
cal processing, and data mining. We begin by presenting a business analysis framework
for data warehouse design (Section 4.3.1). Section 4.3.2 looks at the design process,
while Section 4.3.3 studies data warehouse usage. Finally, Section 4.3.4 describes multi-
dimensional data mining, a powerful paradigm that integrates OLAP with data mining
technology.

4.3.1 A Business Analysis Framework for Data
Warehouse Design

“What can business analysts gain from having a data warehouse?” First, having a data
warehouse may provide a competitive advantage by presenting relevant information
from which to measure performance and make critical adjustments to help win over
competitors. Second, a data warehouse can enhance business productivity because it is
able to quickly and efficiently gather information that accurately describes the organi-
zation. Third, a data warehouse facilitates customer relationship management because it
provides a consistent view of customers and items across all lines of business, all depart-
ments, and all markets. Finally, a data warehouse may bring about cost reduction by
tracking trends, patterns, and exceptions over long periods in a consistent and reliable
manner.

To design an effective data warehouse we need to understand and analyze busi-
ness needs and construct a business analysis framework. The construction of a large
and complex information system can be viewed as the construction of a large and
complex building, for which the owner, architect, and builder have different views.
These views are combined to form a complex framework that represents the top-down,
business-driven, or owner’s perspective, as well as the bottom-up, builder-driven, or
implementor’s view of the information system.

Four different views regarding a data warehouse design must be considered: the top-
down view, the data source view, the data warehouse view, and the business query view.
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The top-down view allows the selection of the relevant information necessary for the
data warehouse. This information matches current and future business needs.

The data source view exposes the information being captured, stored, and man-
aged by operational systems. This information may be documented at various levels
of detail and accuracy, from individual data source tables to integrated data source
tables. Data sources are often modeled by traditional data modeling techniques, such
as the entity-relationship model or CASE (computer-aided software engineering)
tools.

The data warehouse view includes fact tables and dimension tables. It represents the
information that is stored inside the data warehouse, including precalculated totals
and counts, as well as information regarding the source, date, and time of origin,
added to provide historical context.

Finally, the business query view is the data perspective in the data warehouse from
the end-user’s viewpoint.

Building and using a data warehouse is a complex task because it requires business
skills, technology skills, and program management skills. Regarding business skills, building
a data warehouse involves understanding how systems store and manage their data, how
to build extractors that transfer data from the operational system to the data warehouse,
and how to build warehouse refresh software that keeps the data warehouse reasonably
up-to-date with the operational system’s data. Using a data warehouse involves under-
standing the significance of the data it contains, as well as understanding and translating
the business requirements into queries that can be satisfied by the data warehouse.

Regarding technology skills, data analysts are required to understand how to make
assessments from quantitative information and derive facts based on conclusions from
historic information in the data warehouse. These skills include the ability to discover
patterns and trends, to extrapolate trends based on history and look for anomalies or
paradigm shifts, and to present coherent managerial recommendations based on such
analysis. Finally, program management skills involve the need to interface with many
technologies, vendors, and end-users in order to deliver results in a timely and cost-
effective manner.

4.3.2 Data Warehouse Design Process

Let’s look at various approaches to the data warehouse design process and the steps
involved.

A data warehouse can be built using a top-down approach, a bottom-up approach,
or a combination of both. The top-down approach starts with overall design and plan-
ning. It is useful in cases where the technology is mature and well known, and where
the business problems that must be solved are clear and well understood. The bottom-
up approach starts with experiments and prototypes. This is useful in the early stage
of business modeling and technology development. It allows an organization to move
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forward at considerably less expense and to evaluate the technological benefits before
making significant commitments. In the combined approach, an organization can
exploit the planned and strategic nature of the top-down approach while retaining the
rapid implementation and opportunistic application of the bottom-up approach.

From the software engineering point of view, the design and construction of a data
warehouse may consist of the following steps: planning, requirements study, problem
analysis, warehouse design, data integration and testing, and finally deployment of the
data warehouse. Large software systems can be developed using one of two methodo-
logies: the waterfall method or the spiral method. The waterfall method performs a
structured and systematic analysis at each step before proceeding to the next, which
is like a waterfall, falling from one step to the next. The spiral method involves the rapid
generation of increasingly functional systems, with short intervals between successive
releases. This is considered a good choice for data warehouse development, especially
for data marts, because the turnaround time is short, modifications can be done quickly,
and new designs and technologies can be adapted in a timely manner.

In general, the warehouse design process consists of the following steps:

1. Choose a business process to model (e.g., orders, invoices, shipments, inventory,
account administration, sales, or the general ledger). If the business process is orga-
nizational and involves multiple complex object collections, a data warehouse model
should be followed. However, if the process is departmental and focuses on the
analysis of one kind of business process, a data mart model should be chosen.

2. Choose the business process grain, which is the fundamental, atomic level of data
to be represented in the fact table for this process (e.g., individual transactions,
individual daily snapshots, and so on).

3. Choose the dimensions that will apply to each fact table record. Typical dimensions
are time, item, customer, supplier, warehouse, transaction type, and status.

4. Choose the measures that will populate each fact table record. Typical measures are
numeric additive quantities like dollars sold and units sold.

Because data warehouse construction is a difficult and long-term task, its imple-
mentation scope should be clearly defined. The goals of an initial data warehouse
implementation should be specific, achievable, and measurable. This involves determin-
ing the time and budget allocations, the subset of the organization that is to be modeled,
the number of data sources selected, and the number and types of departments to be
served.

Once a data warehouse is designed and constructed, the initial deployment of
the warehouse includes initial installation, roll-out planning, training, and orienta-
tion. Platform upgrades and maintenance must also be considered. Data warehouse
administration includes data refreshment, data source synchronization, planning for
disaster recovery, managing access control and security, managing data growth, man-
aging database performance, and data warehouse enhancement and extension. Scope
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management includes controlling the number and range of queries, dimensions, and
reports; limiting the data warehouse’s size; or limiting the schedule, budget, or resources.

Various kinds of data warehouse design tools are available. Data warehouse
development tools provide functions to define and edit metadata repository contents
(e.g., schemas, scripts, or rules), answer queries, output reports, and ship metadata to
and from relational database system catalogs. Planning and analysis tools study the
impact of schema changes and of refresh performance when changing refresh rates or
time windows.

4.3.3 Data Warehouse Usage for Information Processing

Data warehouses and data marts are used in a wide range of applications. Business
executives use the data in data warehouses and data marts to perform data analysis
and make strategic decisions. In many firms, data warehouses are used as an integral
part of a plan-execute-assess “closed-loop” feedback system for enterprise management.
Data warehouses are used extensively in banking and financial services, consumer goods
and retail distribution sectors, and controlled manufacturing such as demand-based
production.

Typically, the longer a data warehouse has been in use, the more it will have evolved.
This evolution takes place throughout a number of phases. Initially, the data warehouse
is mainly used for generating reports and answering predefined queries. Progressively, it
is used to analyze summarized and detailed data, where the results are presented in the
form of reports and charts. Later, the data warehouse is used for strategic purposes, per-
forming multidimensional analysis and sophisticated slice-and-dice operations. Finally,
the data warehouse may be employed for knowledge discovery and strategic decision
making using data mining tools. In this context, the tools for data warehousing can be
categorized into access and retrieval tools, database reporting tools, data analysis tools, and
data mining tools.

Business users need to have the means to know what exists in the data warehouse
(through metadata), how to access the contents of the data warehouse, how to examine
the contents using analysis tools, and how to present the results of such analysis.

There are three kinds of data warehouse applications: information processing, analyti-
cal processing, and data mining.

Information processing supports querying, basic statistical analysis, and reporting
using crosstabs, tables, charts, or graphs. A current trend in data warehouse infor-
mation processing is to construct low-cost web-based accessing tools that are then
integrated with web browsers.

Analytical processing supports basic OLAP operations, including slice-and-dice,
drill-down, roll-up, and pivoting. It generally operates on historic data in both sum-
marized and detailed forms. The major strength of online analytical processing over
information processing is the multidimensional data analysis of data warehouse data.
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Data mining supports knowledge discovery by finding hidden patterns and associa-
tions, constructing analytical models, performing classification and prediction, and
presenting the mining results using visualization tools.

“How does data mining relate to information processing and online analytical process-
ing?” Information processing, based on queries, can find useful information. However,
answers to such queries reflect the information directly stored in databases or com-
putable by aggregate functions. They do not reflect sophisticated patterns or regularities
buried in the database. Therefore, information processing is not data mining.

Online analytical processing comes a step closer to data mining because it can derive
information summarized at multiple granularities from user-specified subsets of a data
warehouse. Such descriptions are equivalent to the class/concept descriptions discussed
in Chapter 1. Because data mining systems can also mine generalized class/concept
descriptions, this raises some interesting questions: “Do OLAP systems perform data
mining? Are OLAP systems actually data mining systems?”

The functionalities of OLAP and data mining can be viewed as disjoint: OLAP is a
data summarization/aggregation tool that helps simplify data analysis, while data mining
allows the automated discovery of implicit patterns and interesting knowledge hidden
in large amounts of data. OLAP tools are targeted toward simplifying and supporting
interactive data analysis, whereas the goal of data mining tools is to automate as much
of the process as possible, while still allowing users to guide the process. In this sense,
data mining goes one step beyond traditional online analytical processing.

An alternative and broader view of data mining may be adopted in which data mining
covers both data description and data modeling. Because OLAP systems can present
general descriptions of data from data warehouses, OLAP functions are essentially for
user-directed data summarization and comparison (by drilling, pivoting, slicing, dic-
ing, and other operations). These are, though limited, data mining functionalities. Yet
according to this view, data mining covers a much broader spectrum than simple OLAP
operations, because it performs not only data summarization and comparison but also
association, classification, prediction, clustering, time-series analysis, and other data
analysis tasks.

Data mining is not confined to the analysis of data stored in data warehouses. It may
analyze data existing at more detailed granularities than the summarized data provided
in a data warehouse. It may also analyze transactional, spatial, textual, and multimedia
data that are difficult to model with current multidimensional database technology. In
this context, data mining covers a broader spectrum than OLAP with respect to data
mining functionality and the complexity of the data handled.

Because data mining involves more automated and deeper analysis than OLAP, it
is expected to have broader applications. Data mining can help business managers find
and reach more suitable customers, as well as gain critical business insights that may help
drive market share and raise profits. In addition, data mining can help managers under-
stand customer group characteristics and develop optimal pricing strategies accordingly.
It can correct item bundling based not on intuition but on actual item groups derived
from customer purchase patterns, reduce promotional spending, and at the same time
increase the overall net effectiveness of promotions.
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4.3.4 From Online Analytical Processing
to Multidimensional Data Mining

The data mining field has conducted substantial research regarding mining on vari-
ous data types, including relational data, data from data warehouses, transaction data,
time-series data, spatial data, text data, and flat files. Multidimensional data mining
(also known as exploratory multidimensional data mining, online analytical mining,
or OLAM) integrates OLAP with data mining to uncover knowledge in multidimen-
sional databases. Among the many different paradigms and architectures of data mining
systems, multidimensional data mining is particularly important for the following
reasons:

High quality of data in data warehouses: Most data mining tools need to work on
integrated, consistent, and cleaned data, which requires costly data cleaning, data
integration, and data transformation as preprocessing steps. A data warehouse con-
structed by such preprocessing serves as a valuable source of high-quality data for
OLAP as well as for data mining. Notice that data mining may serve as a valuable
tool for data cleaning and data integration as well.

Available information processing infrastructure surrounding data warehouses:
Comprehensive information processing and data analysis infrastructures have been
or will be systematically constructed surrounding data warehouses, which include
accessing, integration, consolidation, and transformation of multiple heterogeneous
databases, ODBC/OLEDB connections, Web accessing and service facilities, and
reporting and OLAP analysis tools. It is prudent to make the best use of the available
infrastructures rather than constructing everything from scratch.

OLAP-based exploration of multidimensional data: Effective data mining needs
exploratory data analysis. A user will often want to traverse through a database, select
portions of relevant data, analyze them at different granularities, and present knowl-
edge/results in different forms. Multidimensional data mining provides facilities for
mining on different subsets of data and at varying levels of abstraction—by drilling,
pivoting, filtering, dicing, and slicing on a data cube and/or intermediate data min-
ing results. This, together with data/knowledge visualization tools, greatly enhances
the power and flexibility of data mining.

Online selection of data mining functions: Users may not always know the specific
kinds of knowledge they want to mine. By integrating OLAP with various data min-
ing functions, multidimensional data mining provides users with the flexibility to
select desired data mining functions and swap data mining tasks dynamically.

Chapter 5 describes data warehouses on a finer level by exploring implementation
issues such as data cube computation, OLAP query answering strategies, and multi-
dimensional data mining. The chapters following it are devoted to the study of data
mining techniques. As we have seen, the introduction to data warehousing and OLAP
technology presented in this chapter is essential to our study of data mining. This
is because data warehousing provides users with large amounts of clean, organized,
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and summarized data, which greatly facilitates data mining. For example, rather than
storing the details of each sales transaction, a data warehouse may store a summary
of the transactions per item type for each branch or, summarized to a higher level,
for each country. The capability of OLAP to provide multiple and dynamic views
of summarized data in a data warehouse sets a solid foundation for successful data
mining.

Moreover, we also believe that data mining should be a human-centered process.
Rather than asking a data mining system to generate patterns and knowledge automati-
cally, a user will often need to interact with the system to perform exploratory data
analysis. OLAP sets a good example for interactive data analysis and provides the nec-
essary preparations for exploratory data mining. Consider the discovery of association
patterns, for example. Instead of mining associations at a primitive (i.e., low) data level
among transactions, users should be allowed to specify roll-up operations along any
dimension.

For example, a user may want to roll up on the item dimension to go from viewing the
data for particular TV sets that were purchased to viewing the brands of these TVs (e.g.,
SONY or Toshiba). Users may also navigate from the transaction level to the customer or
customer-type level in the search for interesting associations. Such an OLAP data mining
style is characteristic of multidimensional data mining. In our study of the principles
of data mining in this book, we place particular emphasis on multidimensional data
mining, that is, on the integration of data mining and OLAP technology.

4.4 Data Warehouse Implementation

Data warehouses contain huge volumes of data. OLAP servers demand that decision
support queries be answered in the order of seconds. Therefore, it is crucial for data
warehouse systems to support highly efficient cube computation techniques, access
methods, and query processing techniques. In this section, we present an overview
of methods for the efficient implementation of data warehouse systems. Section 4.4.1
explores how to compute data cubes efficiently. Section 4.4.2 shows how OLAP data
can be indexed, using either bitmap or join indices. Next, we study how OLAP queries
are processed (Section 4.4.3). Finally, Section 4.4.4 presents various types of warehouse
servers for OLAP processing.

4.4.1 Efficient Data Cube Computation: An Overview

At the core of multidimensional data analysis is the efficient computation of aggrega-
tions across many sets of dimensions. In SQL terms, these aggregations are referred to
as group-by’s. Each group-by can be represented by a cuboid, where the set of group-by’s
forms a lattice of cuboids defining a data cube. In this subsection, we explore issues
relating to the efficient computation of data cubes.
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The compute cube Operator and the Curse
of Dimensionality
One approach to cube computation extends SQL so as to include a compute cube oper-
ator. The compute cube operator computes aggregates over all subsets of the dimensions
specified in the operation. This can require excessive storage space, especially for large
numbers of dimensions. We start with an intuitive look at what is involved in the
efficient computation of data cubes.

Example 4.6 A data cube is a lattice of cuboids. Suppose that you want to create a data cube for
AllElectronics sales that contains the following: city, item, year, and sales in dollars. You
want to be able to analyze the data, with queries such as the following:

“Compute the sum of sales, grouping by city and item.”

“Compute the sum of sales, grouping by city.”

“Compute the sum of sales, grouping by item.”

What is the total number of cuboids, or group-by’s, that can be computed for this
data cube? Taking the three attributes, city, item, and year, as the dimensions for the
data cube, and sales in dollars as the measure, the total number of cuboids, or group-
by’s, that can be computed for this data cube is 23 = 8. The possible group-by’s are
the following: {(city, item, year), (city, item), (city, year), (item, year), (city), (item),
(year), ()}, where () means that the group-by is empty (i.e., the dimensions are not
grouped). These group-by’s form a lattice of cuboids for the data cube, as shown in
Figure 4.14.

(item) (year)(city)

()

(item, year)

(city, item, year)

(city, item) (city, year)

O-D (apex) cuboid

1-D cuboids

2-D cuboids

3-D (base) cuboid

Figure 4.14 Lattice of cuboids, making up a 3-D data cube. Each cuboid represents a different group-by.
The base cuboid contains city, item, and year dimensions.
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The base cuboid contains all three dimensions, city, item, and year. It can return
the total sales for any combination of the three dimensions. The apex cuboid, or 0-D
cuboid, refers to the case where the group-by is empty. It contains the total sum of all
sales. The base cuboid is the least generalized (most specific) of the cuboids. The apex
cuboid is the most generalized (least specific) of the cuboids, and is often denoted as all.
If we start at the apex cuboid and explore downward in the lattice, this is equivalent to
drilling down within the data cube. If we start at the base cuboid and explore upward,
this is akin to rolling up.

An SQL query containing no group-by (e.g., “compute the sum of total sales”) is a zero-
dimensional operation. An SQL query containing one group-by (e.g., “compute the sum
of sales, group-by city”) is a one-dimensional operation. A cube operator on n dimensions
is equivalent to a collection of group-by statements, one for each subset of the n dimen-
sions. Therefore, the cube operator is the n-dimensional generalization of the group-by
operator.

Similar to the SQL syntax, the data cube in Example 4.1 could be defined as

define cube sales cube [city, item, year]: sum(sales in dollars)

For a cube with n dimensions, there are a total of 2n cuboids, including the base cuboid.
A statement such as

compute cube sales cube

would explicitly instruct the system to compute the sales aggregate cuboids for all eight
subsets of the set {city, item, year}, including the empty subset. A cube computation
operator was first proposed and studied by Gray et al. [GCB+97].

Online analytical processing may need to access different cuboids for different
queries. Therefore, it may seem like a good idea to compute in advance all or at least
some of the cuboids in a data cube. Precomputation leads to fast response time and
avoids some redundant computation. Most, if not all, OLAP products resort to some
degree of precomputation of multidimensional aggregates.

A major challenge related to this precomputation, however, is that the required stor-
age space may explode if all the cuboids in a data cube are precomputed, especially when
the cube has many dimensions. The storage requirements are even more excessive when
many of the dimensions have associated concept hierarchies, each with multiple levels.
This problem is referred to as the curse of dimensionality. The extent of the curse of
dimensionality is illustrated here.

“How many cuboids are there in an n-dimensional data cube?” If there were no
hierarchies associated with each dimension, then the total number of cuboids for an
n-dimensional data cube, as we have seen, is 2n. However, in practice, many dimensions
do have hierarchies. For example, time is usually explored not at only one conceptual
level (e.g., year), but rather at multiple conceptual levels such as in the hierarchy “day <

month < quarter < year.” For an n-dimensional data cube, the total number of cuboids
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that can be generated (including the cuboids generated by climbing up the hierarchies
along each dimension) is

Total number of cuboids =
n∏

i=1

(Li + 1), (4.1)

where Li is the number of levels associated with dimension i. One is added to Li in
Eq. (4.1) to include the virtual top level, all. (Note that generalizing to all is equivalent to
the removal of the dimension.)

This formula is based on the fact that, at most, one abstraction level in each dimen-
sion will appear in a cuboid. For example, the time dimension as specified before has
four conceptual levels, or five if we include the virtual level all. If the cube has 10 dimen-
sions and each dimension has five levels (including all), the total number of cuboids
that can be generated is 510 ≈ 9.8× 106. The size of each cuboid also depends on the
cardinality (i.e., number of distinct values) of each dimension. For example, if the All-
Electronics branch in each city sold every item, there would be |city| × |item| tuples in the
city−item group-by alone. As the number of dimensions, number of conceptual hierar-
chies, or cardinality increases, the storage space required for many of the group-by’s will
grossly exceed the (fixed) size of the input relation.

By now, you probably realize that it is unrealistic to precompute and materialize all
of the cuboids that can possibly be generated for a data cube (i.e., from a base cuboid).
If there are many cuboids, and these cuboids are large in size, a more reasonable option
is partial materialization; that is, to materialize only some of the possible cuboids that
can be generated.

Partial Materialization: Selected Computation
of Cuboids
There are three choices for data cube materialization given a base cuboid:

1. No materialization: Do not precompute any of the “nonbase” cuboids. This leads
to computing expensive multidimensional aggregates on-the-fly, which can be extre-
mely slow.

2. Full materialization: Precompute all of the cuboids. The resulting lattice of com-
puted cuboids is referred to as the full cube. This choice typically requires huge
amounts of memory space in order to store all of the precomputed cuboids.

3. Partial materialization: Selectively compute a proper subset of the whole set of pos-
sible cuboids. Alternatively, we may compute a subset of the cube, which contains
only those cells that satisfy some user-specified criterion, such as where the tuple
count of each cell is above some threshold. We will use the term subcube to refer to
the latter case, where only some of the cells may be precomputed for various cuboids.
Partial materialization represents an interesting trade-off between storage space and
response time.
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The partial materialization of cuboids or subcubes should consider three factors: (1)
identify the subset of cuboids or subcubes to materialize; (2) exploit the materialized
cuboids or subcubes during query processing; and (3) efficiently update the materialized
cuboids or subcubes during load and refresh.

The selection of the subset of cuboids or subcubes to materialize should take into
account the queries in the workload, their frequencies, and their accessing costs. In addi-
tion, it should consider workload characteristics, the cost for incremental updates, and
the total storage requirements. The selection must also consider the broad context of
physical database design such as the generation and selection of indices. Several OLAP
products have adopted heuristic approaches for cuboid and subcube selection. A pop-
ular approach is to materialize the cuboids set on which other frequently referenced
cuboids are based. Alternatively, we can compute an iceberg cube, which is a data cube
that stores only those cube cells with an aggregate value (e.g., count) that is above some
minimum support threshold.

Another common strategy is to materialize a shell cube. This involves precomput-
ing the cuboids for only a small number of dimensions (e.g., three to five) of a data
cube. Queries on additional combinations of the dimensions can be computed on-the-
fly. Because our aim in this chapter is to provide a solid introduction and overview of
data warehousing for data mining, we defer our detailed discussion of cuboid selection
and computation to Chapter 5, which studies various data cube computation methods
in greater depth.

Once the selected cuboids have been materialized, it is important to take advantage of
them during query processing. This involves several issues, such as how to determine the
relevant cuboid(s) from among the candidate materialized cuboids, how to use available
index structures on the materialized cuboids, and how to transform the OLAP opera-
tions onto the selected cuboid(s). These issues are discussed in Section 4.4.3 as well as in
Chapter 5.

Finally, during load and refresh, the materialized cuboids should be updated effi-
ciently. Parallelism and incremental update techniques for this operation should be
explored.

4.4.2 Indexing OLAP Data: Bitmap Index and Join Index

To facilitate efficient data accessing, most data warehouse systems support index struc-
tures and materialized views (using cuboids). General methods to select cuboids for
materialization were discussed in Section 4.4.1. In this subsection, we examine how to
index OLAP data by bitmap indexing and join indexing.

The bitmap indexing method is popular in OLAP products because it allows quick
searching in data cubes. The bitmap index is an alternative representation of the
record ID (RID) list. In the bitmap index for a given attribute, there is a distinct bit
vector, Bv, for each value v in the attribute’s domain. If a given attribute’s domain con-
sists of n values, then n bits are needed for each entry in the bitmap index (i.e., there are
n bit vectors). If the attribute has the value v for a given row in the data table, then the
bit representing that value is set to 1 in the corresponding row of the bitmap index. All
other bits for that row are set to 0.
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Example 4.7 Bitmap indexing. In the AllElectronics data warehouse, suppose the dimension item at
the top level has four values (representing item types): “home entertainment,” “com-
puter,” “phone,” and “security.” Each value (e.g., “computer”) is represented by a bit vector
in the item bitmap index table. Suppose that the cube is stored as a relation table with
100,000 rows. Because the domain of item consists of four values, the bitmap index table
requires four bit vectors (or lists), each with 100,000 bits. Figure 4.15 shows a base (data)
table containing the dimensions item and city, and its mapping to bitmap index tables
for each of the dimensions.

RID item city

R1
R2
R3
R4
R5
R6
R7
R8

H
C
P
S
H
C
P
S

V
V
V
V
T
T
T
T

Base table

Note: H for “home entertainment,” C for “computer,” P for “phone,” S for “security,”
V for “Vancouver,” T for “Toronto.”

RID H C P S

R1
R2
R3
R4
R5
R6
R7
R8

1
0
0
0
1
0
0
0

0
1
0
0
0
1
0
0

0
0
1
0
0
0
1
0

0
0
0
1
0
0
0
1

item bitmap index table

RID V T

R1
R2
R3
R4
R5
R6
R7
R8

1
1
1
1
0
0
0
0

0
0
0
0
1
1
1
1

city bitmap index table

Figure 4.15 Indexing OLAP data using bitmap indices.

Bitmap indexing is advantageous compared to hash and tree indices. It is especially
useful for low-cardinality domains because comparison, join, and aggregation opera-
tions are then reduced to bit arithmetic, which substantially reduces the processing time.
Bitmap indexing leads to significant reductions in space and input/output (I/O) since a
string of characters can be represented by a single bit. For higher-cardinality domains,
the method can be adapted using compression techniques.

The join indexing method gained popularity from its use in relational database query
processing. Traditional indexing maps the value in a given column to a list of rows having
that value. In contrast, join indexing registers the joinable rows of two relations from a
relational database. For example, if two relations R(RID, A) and S(B, SID) join on the
attributes A and B, then the join index record contains the pair (RID, SID), where RID
and SID are record identifiers from the R and S relations, respectively. Hence, the join
index records can identify joinable tuples without performing costly join operations.
Join indexing is especially useful for maintaining the relationship between a foreign key2

and its matching primary keys, from the joinable relation.
The star schema model of data warehouses makes join indexing attractive for cross-

table search, because the linkage between a fact table and its corresponding dimension
tables comprises the fact table’s foreign key and the dimension table’s primary key. Join

2A set of attributes in a relation schema that forms a primary key for another relation schema is called
a foreign key.
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indexing maintains relationships between attribute values of a dimension (e.g., within
a dimension table) and the corresponding rows in the fact table. Join indices may span
multiple dimensions to form composite join indices. We can use join indices to identify
subcubes that are of interest.

Example 4.8 Join indexing. In Example 3.4, we defined a star schema for AllElectronics of the form
“sales star [time, item, branch, location]: dollars sold = sum (sales in dollars).” An exam-
ple of a join index relationship between the sales fact table and the location and item
dimension tables is shown in Figure 4.16. For example, the “Main Street” value in the
location dimension table joins with tuples T57, T238, and T884 of the sales fact table.
Similarly, the “Sony-TV” value in the item dimension table joins with tuples T57 and
T459 of the sales fact table. The corresponding join index tables are shown in Figure 4.17.

location

sales

item

Sony-TV

T57

T238

T459

Main Street

T884

Figure 4.16 Linkages between a sales fact table and location and item dimension tables.

Join index table for
location/sales

Join index table linking
location and item to sales

Join index table for
item/sales

Main Street T57
Main Street T238
Main Street

Main Street Sony-TV T57

T884

location sales_key

location item sales_key

Sony-TV T57
Sony-TV T459

item sales_key

Figure 4.17 Join index tables based on the linkages between the sales fact table and the location and item
dimension tables shown in Figure 4.16.
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Suppose that there are 360 time values, 100 items, 50 branches, 30 locations, and 10
million sales tuples in the sales star data cube. If the sales fact table has recorded sales
for only 30 items, the remaining 70 items will obviously not participate in joins. If join
indices are not used, additional I/Os have to be performed to bring the joining portions
of the fact table and the dimension tables together.

To further speed up query processing, the join indexing and the bitmap indexing
methods can be integrated to form bitmapped join indices.

4.4.3 Efficient Processing of OLAP Queries

The purpose of materializing cuboids and constructing OLAP index structures is to
speed up query processing in data cubes. Given materialized views, query processing
should proceed as follows:

1. Determine which operations should be performed on the available cuboids: This
involves transforming any selection, projection, roll-up (group-by), and drill-down
operations specified in the query into corresponding SQL and/or OLAP operations.
For example, slicing and dicing a data cube may correspond to selection and/or
projection operations on a materialized cuboid.

2. Determine to which materialized cuboid(s) the relevant operations should be
applied: This involves identifying all of the materialized cuboids that may poten-
tially be used to answer the query, pruning the set using knowledge of “domi-
nance” relationships among the cuboids, estimating the costs of using the remaining
materialized cuboids, and selecting the cuboid with the least cost.

Example 4.9 OLAP query processing. Suppose that we define a data cube for AllElectronics of the
form “sales cube [time, item, location]: sum(sales in dollars).” The dimension hierarchies
used are “day < month < quarter < year” for time; “item name < brand < type” for
item; and “street < city < province or state < country” for location.

Suppose that the query to be processed is on {brand, province or state}, with the
selection constant “year = 2010.” Also, suppose that there are four materialized cuboids
available, as follows:

cuboid 1: {year, item name, city}
cuboid 2: {year, brand, country}
cuboid 3: {year, brand, province or state}
cuboid 4: {item name, province or state}, where year = 2010

“Which of these four cuboids should be selected to process the query?” Finer-granularity
data cannot be generated from coarser-granularity data. Therefore, cuboid 2 cannot be
used because country is a more general concept than province or state. Cuboids 1, 3, and
4 can be used to process the query because (1) they have the same set or a superset of the
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dimensions in the query, (2) the selection clause in the query can imply the selection in
the cuboid, and (3) the abstraction levels for the item and location dimensions in these
cuboids are at a finer level than brand and province or state, respectively.

“How would the costs of each cuboid compare if used to process the query?” It is likely
that using cuboid 1 would cost the most because both item name and city are at a lower
level than the brand and province or state concepts specified in the query. If there are
not many year values associated with items in the cube, but there are several item names
for each brand, then cuboid 3 will be smaller than cuboid 4, and thus cuboid 3 should
be chosen to process the query. However, if efficient indices are available for cuboid 4,
then cuboid 4 may be a better choice. Therefore, some cost-based estimation is required
to decide which set of cuboids should be selected for query processing.

4.4.4 OLAP Server Architectures: ROLAP versus MOLAP
versus HOLAP

Logically, OLAP servers present business users with multidimensional data from data
warehouses or data marts, without concerns regarding how or where the data are stored.
However, the physical architecture and implementation of OLAP servers must consider
data storage issues. Implementations of a warehouse server for OLAP processing include
the following:

Relational OLAP (ROLAP) servers: These are the intermediate servers that stand in
between a relational back-end server and client front-end tools. They use a rela-
tional or extended-relational DBMS to store and manage warehouse data, and OLAP
middleware to support missing pieces. ROLAP servers include optimization for
each DBMS back end, implementation of aggregation navigation logic, and addi-
tional tools and services. ROLAP technology tends to have greater scalability than
MOLAP technology. The DSS server of Microstrategy, for example, adopts the
ROLAP approach.

Multidimensional OLAP (MOLAP) servers: These servers support multidimensional
data views through array-based multidimensional storage engines. They map multi-
dimensional views directly to data cube array structures. The advantage of using a
data cube is that it allows fast indexing to precomputed summarized data. Notice
that with multidimensional data stores, the storage utilization may be low if the data
set is sparse. In such cases, sparse matrix compression techniques should be explored
(Chapter 5).

Many MOLAP servers adopt a two-level storage representation to handle dense
and sparse data sets: Denser subcubes are identified and stored as array struc-
tures, whereas sparse subcubes employ compression technology for efficient storage
utilization.

Hybrid OLAP (HOLAP) servers: The hybrid OLAP approach combines ROLAP and
MOLAP technology, benefiting from the greater scalability of ROLAP and the faster
computation of MOLAP. For example, a HOLAP server may allow large volumes
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of detailed data to be stored in a relational database, while aggregations are kept in
a separate MOLAP store. The Microsoft SQL Server 2000 supports a hybrid OLAP
server.

Specialized SQL servers: To meet the growing demand of OLAP processing in rela-
tional databases, some database system vendors implement specialized SQL servers
that provide advanced query language and query processing support for SQL queries
over star and snowflake schemas in a read-only environment.

“How are data actually stored in ROLAP and MOLAP architectures?” Let’s first look
at ROLAP. As its name implies, ROLAP uses relational tables to store data for online
analytical processing. Recall that the fact table associated with a base cuboid is referred
to as a base fact table. The base fact table stores data at the abstraction level indicated
by the join keys in the schema for the given data cube. Aggregated data can also be
stored in fact tables, referred to as summary fact tables. Some summary fact tables store
both base fact table data and aggregated data (see Example 3.10). Alternatively, separate
summary fact tables can be used for each abstraction level to store only aggregated data.

Example 4.10 A ROLAP data store. Table 4.4 shows a summary fact table that contains both base fact
data and aggregated data. The schema is “〈record identifier (RID), item, . . . , day, month,
quarter, year, dollars sold〉,” where day, month, quarter, and year define the sales date,
and dollars sold is the sales amount. Consider the tuples with an RID of 1001 and 1002,
respectively. The data of these tuples are at the base fact level, where the sales dates are
October 15, 2010, and October 23, 2010, respectively. Consider the tuple with an RID
of 5001. This tuple is at a more general level of abstraction than the tuples 1001 and
1002. The day value has been generalized to all, so that the corresponding time value is
October 2010. That is, the dollars sold amount shown is an aggregation representing the
entire month of October 2010, rather than just October 15 or 23, 2010. The special value
all is used to represent subtotals in summarized data.

MOLAP uses multidimensional array structures to store data for online analytical
processing. This structure is discussed in greater detail in Chapter 5.

Most data warehouse systems adopt a client-server architecture. A relational data
store always resides at the data warehouse/data mart server site. A multidimensional
data store can reside at either the database server site or the client site.

Table 4.4 Single Table for Base and Summary Facts

RID item . . . day month quarter year dollars sold

1001 TV . . . 15 10 Q4 2010 250.60

1002 TV . . . 23 10 Q4 2010 175.00

. . . . . . . . . . . . . . . . . . . . . . . .

5001 TV . . . all 10 Q4 2010 45,786.08

. . . . . . . . . . . . . . . . . . . . . . . .
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4.5 Data Generalization by Attribute-Oriented
Induction

Conceptually, the data cube can be viewed as a kind of multidimensional data generali-
zation. In general, data generalization summarizes data by replacing relatively low-level
values (e.g., numeric values for an attribute age) with higher-level concepts (e.g., young,
middle-aged, and senior), or by reducing the number of dimensions to summarize data
in concept space involving fewer dimensions (e.g., removing birth date and telephone
number when summarizing the behavior of a group of students). Given the large amount
of data stored in databases, it is useful to be able to describe concepts in concise and suc-
cinct terms at generalized (rather than low) levels of abstraction. Allowing data sets to
be generalized at multiple levels of abstraction facilitates users in examining the gen-
eral behavior of the data. Given the AllElectronics database, for example, instead of
examining individual customer transactions, sales managers may prefer to view the
data generalized to higher levels, such as summarized by customer groups according
to geographic regions, frequency of purchases per group, and customer income.

This leads us to the notion of concept description, which is a form of data gene-
ralization. A concept typically refers to a data collection such as frequent buyers, grad-
uate students, and so on. As a data mining task, concept description is not a simple
enumeration of the data. Instead, concept description generates descriptions for data
characterization and comparison. It is sometimes called class description when the con-
cept to be described refers to a class of objects. Characterization provides a concise and
succinct summarization of the given data collection, while concept or class compari-
son (also known as discrimination) provides descriptions comparing two or more data
collections.

Up to this point, we have studied data cube (or OLAP) approaches to concept
description using multidimensional, multilevel data generalization in data warehouses.
“Is data cube technology sufficient to accomplish all kinds of concept description tasks for
large data sets?” Consider the following cases.

Complex data types and aggregation: Data warehouses and OLAP tools are based
on a multidimensional data model that views data in the form of a data cube, con-
sisting of dimensions (or attributes) and measures (aggregate functions). However,
many current OLAP systems confine dimensions to non-numeric data and measures
to numeric data. In reality, the database can include attributes of various data types,
including numeric, non-numeric, spatial, text, or image, which ideally should be
included in the concept description.

Furthermore, the aggregation of attributes in a database may include sophisticated
data types such as the collection of non-numeric data, the merging of spatial regions,
the composition of images, the integration of texts, and the grouping of object point-
ers. Therefore, OLAP, with its restrictions on the possible dimension and measure
types, represents a simplified model for data analysis. Concept description should
handle complex data types of the attributes and their aggregations, as necessary.
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User control versus automation: Online analytical processing in data warehouses
is a user-controlled process. The selection of dimensions and the application of
OLAP operations (e.g., drill-down, roll-up, slicing, and dicing) are primarily directed
and controlled by users. Although the control in most OLAP systems is quite user-
friendly, users do require a good understanding of the role of each dimension.
Furthermore, in order to find a satisfactory description of the data, users may need to
specify a long sequence of OLAP operations. It is often desirable to have a more auto-
mated process that helps users determine which dimensions (or attributes) should
be included in the analysis, and the degree to which the given data set should be
generalized in order to produce an interesting summarization of the data.

This section presents an alternative method for concept description, called attribute-
oriented induction, which works for complex data types and relies on a data-driven
generalization process.

4.5.1 Attribute-Oriented Induction for Data Characterization

The attribute-oriented induction (AOI) approach to concept description was first pro-
posed in 1989, a few years before the introduction of the data cube approach. The data
cube approach is essentially based on materialized views of the data, which typically
have been precomputed in a data warehouse. In general, it performs offline aggre-
gation before an OLAP or data mining query is submitted for processing. On the
other hand, the attribute-oriented induction approach is basically a query-oriented,
generalization-based, online data analysis technique. Note that there is no inherent
barrier distinguishing the two approaches based on online aggregation versus offline
precomputation. Some aggregations in the data cube can be computed online, while
offline precomputation of multidimensional space can speed up attribute-oriented
induction as well.

The general idea of attribute-oriented induction is to first collect the task-relevant
data using a database query and then perform generalization based on the examination
of the number of each attribute’s distinct values in the relevant data set. The generali-
zation is performed by either attribute removal or attribute generalization. Aggregation
is performed by merging identical generalized tuples and accumulating their respec-
tive counts. This reduces the size of the generalized data set. The resulting generalized
relation can be mapped into different forms (e.g., charts or rules) for presentation to
the user.

The following illustrates the process of attribute-oriented induction. We first discuss
its use for characterization. The method is extended for the mining of class comparisons
in Section 4.5.3.

Example 4.11 A data mining query for characterization. Suppose that a user wants to describe
the general characteristics of graduate students in the Big University database, given
the attributes name, gender, major, birth place, birth date, residence, phone# (telephone
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number), and gpa (grade point average). A data mining query for this characterization
can be expressed in the data mining query language, DMQL, as follows:

use Big University DB
mine characteristics as “Science Students”
in relevance to name, gender, major, birth place, birth date, residence,

phone#, gpa
from student
where status in “graduate”

We will see how this example of a typical data mining query can apply attribute-oriented
induction to the mining of characteristic descriptions.

First, data focusing should be performed before attribute-oriented induction. This
step corresponds to the specification of the task-relevant data (i.e., data for analysis). The
data are collected based on the information provided in the data mining query. Because
a data mining query is usually relevant to only a portion of the database, selecting the
relevant data set not only makes mining more efficient, but also derives more meaningful
results than mining the entire database.

Specifying the set of relevant attributes (i.e., attributes for mining, as indicated in
DMQL with the in relevance to clause) may be difficult for the user. A user may select
only a few attributes that he or she feels are important, while missing others that could
also play a role in the description. For example, suppose that the dimension birth place
is defined by the attributes city, province or state, and country. Of these attributes, let’s
say that the user has only thought to specify city. In order to allow generalization on
the birth place dimension, the other attributes defining this dimension should also be
included. In other words, having the system automatically include province or state and
country as relevant attributes allows city to be generalized to these higher conceptual
levels during the induction process.

At the other extreme, suppose that the user may have introduced too many attributes
by specifying all of the possible attributes with the clause in relevance to ∗. In this case,
all of the attributes in the relation specified by the from clause would be included in the
analysis. Many of these attributes are unlikely to contribute to an interesting description.
A correlation-based analysis method (Section 3.3.2) can be used to perform attribute
relevance analysis and filter out statistically irrelevant or weakly relevant attributes from
the descriptive mining process. Other approaches such as attribute subset selection, are
also described in Chapter 3.

Table 4.5 Initial Working Relation: A Collection of Task-Relevant Data

name gender major birth place birth date residence phone# gpa

Jim Woodman M CS Vancouver, BC, Canada 12-8-76 3511 Main St., Richmond 687-4598 3.67

Scott Lachance M CS Montreal, Que, Canada 7-28-75 345 1st Ave., Richmond 253-9106 3.70

Laura Lee F Physics Seattle, WA, USA 8-25-70 125 Austin Ave., Burnaby 420-5232 3.83

· · · · · · · · · · · · · · · · · · · · · · · ·
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“What does the ‘where status in “graduate”’ clause mean?” The where clause implies
that a concept hierarchy exists for the attribute status. Such a concept hierarchy organizes
primitive-level data values for status (e.g., “M.Sc.,” “M.A.,” “M.B.A.,” “Ph.D.,” “B.Sc.,”
and “B.A.”) into higher conceptual levels (e.g., “graduate” and “undergraduate”). This
use of concept hierarchies does not appear in traditional relational query languages, yet
is likely to become a common feature in data mining query languages.

The data mining query presented in Example 4.11 is transformed into the following
relational query for the collection of the task-relevant data set:

use Big University DB
select name, gender, major, birth place, birth date, residence, phone#, gpa
from student
where status in {“M.Sc.,” “M.A.,” “M.B.A.,” “Ph.D.”}

The transformed query is executed against the relational database, Big University DB,
and returns the data shown earlier in Table 4.5. This table is called the (task-relevant)
initial working relation. It is the data on which induction will be performed. Note that
each tuple is, in fact, a conjunction of attribute–value pairs. Hence, we can think of a
tuple within a relation as a rule of conjuncts, and of induction on the relation as the
generalization of these rules.

“Now that the data are ready for attribute-oriented induction, how is attribute-oriented
induction performed?” The essential operation of attribute-oriented induction is data
generalization, which can be performed in either of two ways on the initial working
relation: attribute removal and attribute generalization.

Attribute removal is based on the following rule: If there is a large set of distinct values
for an attribute of the initial working relation, but either (case 1) there is no generalization
operator on the attribute (e.g., there is no concept hierarchy defined for the attribute), or
(case 2) its higher-level concepts are expressed in terms of other attributes, then the attribute
should be removed from the working relation.

Let’s examine the reasoning behind this rule. An attribute–value pair represents a
conjunct in a generalized tuple, or rule. The removal of a conjunct eliminates a con-
straint and thus generalizes the rule. If, as in case 1, there is a large set of distinct values
for an attribute but there is no generalization operator for it, the attribute should be
removed because it cannot be generalized. Preserving it would imply keeping a large
number of disjuncts, which contradicts the goal of generating concise rules. On the
other hand, consider case 2, where the attribute’s higher-level concepts are expressed
in terms of other attributes. For example, suppose that the attribute in question is street,
with higher-level concepts that are represented by the attributes 〈city, province or state,
country〉. The removal of street is equivalent to the application of a generalization oper-
ator. This rule corresponds to the generalization rule known as dropping condition in the
machine learning literature on learning from examples.

Attribute generalization is based on the following rule: If there is a large set of distinct
values for an attribute in the initial working relation, and there exists a set of generalization
operators on the attribute, then a generalization operator should be selected and applied
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to the attribute. This rule is based on the following reasoning. Use of a generalization
operator to generalize an attribute value within a tuple, or rule, in the working relation
will make the rule cover more of the original data tuples, thus generalizing the concept it
represents. This corresponds to the generalization rule known as climbing generalization
trees in learning from examples, or concept tree ascension.

Both rules–attribute removal and attribute generalization–claim that if there is a large
set of distinct values for an attribute, further generalization should be applied. This
raises the question: How large is “a large set of distinct values for an attribute” considered
to be?

Depending on the attributes or application involved, a user may prefer some
attributes to remain at a rather low abstraction level while others are generalized to
higher levels. The control of how high an attribute should be generalized is typically
quite subjective. The control of this process is called attribute generalization control.
If the attribute is generalized “too high,” it may lead to overgeneralization, and the
resulting rules may not be very informative.

On the other hand, if the attribute is not generalized to a “sufficiently high level,”
then undergeneralization may result, where the rules obtained may not be informative
either. Thus, a balance should be attained in attribute-oriented generalization. There are
many possible ways to control a generalization process. We will describe two common
approaches and illustrate how they work.

The first technique, called attribute generalization threshold control, either sets one
generalization threshold for all of the attributes, or sets one threshold for each attribute.
If the number of distinct values in an attribute is greater than the attribute threshold,
further attribute removal or attribute generalization should be performed. Data mining
systems typically have a default attribute threshold value generally ranging from 2 to 8
and should allow experts and users to modify the threshold values as well. If a user feels
that the generalization reaches too high a level for a particular attribute, the threshold
can be increased. This corresponds to drilling down along the attribute. Also, to further
generalize a relation, the user can reduce an attribute’s threshold, which corresponds to
rolling up along the attribute.

The second technique, called generalized relation threshold control, sets a threshold
for the generalized relation. If the number of (distinct) tuples in the generalized relation
is greater than the threshold, further generalization should be performed. Otherwise,
no further generalization should be performed. Such a threshold may also be preset in
the data mining system (usually within a range of 10 to 30), or set by an expert or user,
and should be adjustable. For example, if a user feels that the generalized relation is too
small, he or she can increase the threshold, which implies drilling down. Otherwise, to
further generalize a relation, the threshold can be reduced, which implies rolling up.

These two techniques can be applied in sequence: First apply the attribute threshold
control technique to generalize each attribute, and then apply relation threshold control
to further reduce the size of the generalized relation. No matter which generalization
control technique is applied, the user should be allowed to adjust the generalization
thresholds in order to obtain interesting concept descriptions.

In many database-oriented induction processes, users are interested in obtaining
quantitative or statistical information about the data at different abstraction levels.
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Thus, it is important to accumulate count and other aggregate values in the induction
process. Conceptually, this is performed as follows. The aggregate function, count(), is
associated with each database tuple. Its value for each tuple in the initial working relation
is initialized to 1. Through attribute removal and attribute generalization, tuples within
the initial working relation may be generalized, resulting in groups of identical tuples. In
this case, all of the identical tuples forming a group should be merged into one tuple.

The count of this new, generalized tuple is set to the total number of tuples from the
initial working relation that are represented by (i.e., merged into) the new generalized
tuple. For example, suppose that by attribute-oriented induction, 52 data tuples from
the initial working relation are all generalized to the same tuple, T . That is, the generali-
zation of these 52 tuples resulted in 52 identical instances of tuple T . These 52 identical
tuples are merged to form one instance of T , with a count that is set to 52. Other popular
aggregate functions that could also be associated with each tuple include sum() and avg().
For a given generalized tuple, sum() contains the sum of the values of a given numeric
attribute for the initial working relation tuples making up the generalized tuple. Suppose
that tuple T contained sum(units sold) as an aggregate function. The sum value for tuple
T would then be set to the total number of units sold for each of the 52 tuples. The
aggregate avg() (average) is computed according to the formula avg()= sum()/count().

Example 4.12 Attribute-oriented induction. Here we show how attribute-oriented induction is per-
formed on the initial working relation of Table 4.5. For each attribute of the relation,
the generalization proceeds as follows:

1. name: Since there are a large number of distinct values for name and there is no
generalization operation defined on it, this attribute is removed.

2. gender: Since there are only two distinct values for gender, this attribute is retained
and no generalization is performed on it.

3. major: Suppose that a concept hierarchy has been defined that allows the attribute
major to be generalized to the values {arts&sciences, engineering, business}. Suppose
also that the attribute generalization threshold is set to 5, and that there are more than
20 distinct values for major in the initial working relation. By attribute generalization
and attribute generalization control, major is therefore generalized by climbing the
given concept hierarchy.

4. birth place: This attribute has a large number of distinct values; therefore, we would
like to generalize it. Suppose that a concept hierarchy exists for birth place, defined as
“city < province or state < country.” If the number of distinct values for country in
the initial working relation is greater than the attribute generalization threshold, then
birth place should be removed, because even though a generalization operator exists
for it, the generalization threshold would not be satisfied. If, instead, the number
of distinct values for country is less than the attribute generalization threshold, then
birth place should be generalized to birth country.

5. birth date: Suppose that a hierarchy exists that can generalize birth date to age and
age to age range, and that the number of age ranges (or intervals) is small with
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Table 4.6 Generalized Relation Obtained by Attribute-Oriented Induction on Table 4.5’s Data

gender major birth country age range residence city gpa count

M Science Canada 20 – 25 Richmond very good 16

F Science Foreign 25 – 30 Burnaby excellent 22

· · · · · · · · · · · · · · · · · · · · ·

respect to the attribute generalization threshold. Generalization of birth date should
therefore take place.

6. residence: Suppose that residence is defined by the attributes number, street, resi-
dence city, residence province or state, and residence country. The number of distinct
values for number and street will likely be very high, since these concepts are quite low
level. The attributes number and street should therefore be removed so that residence
is then generalized to residence city, which contains fewer distinct values.

7. phone#: As with the name attribute, phone# contains too many distinct values and
should therefore be removed in generalization.

8. gpa: Suppose that a concept hierarchy exists for gpa that groups values for grade
point average into numeric intervals like {3.75–4.0, 3.5–3.75, . . . }, which in turn are
grouped into descriptive values such as {“excellent”, “very good”, . . . }. The attribute
can therefore be generalized.

The generalization process will result in groups of identical tuples. For example, the
first two tuples of Table 4.5 both generalize to the same identical tuple (namely, the first
tuple shown in Table 4.6). Such identical tuples are then merged into one, with their
counts accumulated. This process leads to the generalized relation shown in Table 4.6.

Based on the vocabulary used in OLAP, we may view count( ) as a measure, and the
remaining attributes as dimensions. Note that aggregate functions, such as sum( ), may be
applied to numeric attributes (e.g., salary and sales). These attributes are referred to as
measure attributes.

4.5.2 Efficient Implementation of Attribute-Oriented Induction

“How is attribute-oriented induction actually implemented?” Section 4.5.1 provided an
introduction to attribute-oriented induction. The general procedure is summarized in
Figure 4.18. The efficiency of this algorithm is analyzed as follows:

Step 1 of the algorithm is essentially a relational query to collect the task-relevant data
into the working relation, W . Its processing efficiency depends on the query pro-
cessing methods used. Given the successful implementation and commercialization
of database systems, this step is expected to have good performance.

Step 2 collects statistics on the working relation. This requires scanning the relation
at most once. The cost for computing the minimum desired level and determining
the mapping pairs, (v, v′), for each attribute is dependent on the number of distinct
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Algorithm: Attribute-oriented induction. Mining generalized characteristics in a relational
database given a user’s data mining request.

Input:

DB, a relational database;

DMQuery, a data mining query;

a list, a list of attributes (containing attributes, ai);

Gen(ai), a set of concept hierarchies or generalization operators on attributes, ai ;

a gen thresh(ai), attribute generalization thresholds for each ai .

Output: P, a Prime generalized relation.

Method:

1. W ← get task relevant data (DMQuery, DB); // Let W , the working relation, hold the
task-relevant data.

2. prepare for generalization (W ); // This is implemented as follows.

(a) Scan W and collect the distinct values for each attribute, ai . (Note: If W is very large,
this may be done by examining a sample of W .)

(b) For each attribute ai , determine whether ai should be removed. If not, compute its
minimum desired level Li based on its given or default attribute threshold, and
determine the mapping pairs (v, v′), where v is a distinct value of ai in W , and v′ is its
corresponding generalized value at level Li .

3. P ← generalization (W ),

The Prime generalized relation, P, is derived by replacing each value v in W by its
corresponding v′ in the mapping while accumulating count and computing any other
aggregate values.

This step can be implemented efficiently using either of the two following variations:

(a) For each generalized tuple, insert the tuple into a sorted prime relation P by a binary
search: if the tuple is already in P, simply increase its count and other aggregate
values accordingly; otherwise, insert it into P.

(b) Since in most cases the number of distinct values at the prime relation level is small,
the prime relation can be coded as an m-dimensional array, where m is the number of
attributes in P, and each dimension contains the corresponding generalized attribute
values. Each array element holds the corresponding count and other aggregation
values, if any. The insertion of a generalized tuple is performed by measure
aggregation in the corresponding array element.

Figure 4.18 Basic algorithm for attribute-oriented induction.
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values for each attribute and is smaller than |W |, the number of tuples in the work-
ing relation. Notice that it may not be necessary to scan the working relation once,
since if the working relation is large, a sample of such a relation will be sufficient to
get statistics and determine which attributes should be generalized to a certain high
level and which attributes should be removed. Moreover, such statistics may also be
obtained in the process of extracting and generating a working relation in Step 1.

Step 3 derives the prime relation, P. This is performed by scanning each tuple in
the working relation and inserting generalized tuples into P. There are a total of |W |
tuples in W and p tuples in P. For each tuple, t, in W , we substitute its attribute values
based on the derived mapping pairs. This results in a generalized tuple, t′. If variation
(a) in Figure 4.18 is adopted, each t′ takes O(logp) to find the location for the count
increment or tuple insertion. Thus, the total time complexity is O(|W | × logp) for
all of the generalized tuples. If variation (b) is adopted, each t′ takes O(1) to find the
tuple for the count increment. Thus, the overall time complexity is O(N) for all of
the generalized tuples.

Many data analysis tasks need to examine a good number of dimensions or attributes.
This may involve dynamically introducing and testing additional attributes rather than
just those specified in the mining query. Moreover, a user with little knowledge of the
truly relevant data set may simply specify “in relevance to ∗” in the mining query, which
includes all of the attributes in the analysis. Therefore, an advanced–concept description
mining process needs to perform attribute relevance analysis on large sets of attributes
to select the most relevant ones. This analysis may employ correlation measures or tests
of statistical significance, as described in Chapter 3 on data preprocessing.

Example 4.13 Presentation of generalization results. Suppose that attribute-oriented induction was
performed on a sales relation of the AllElectronics database, resulting in the generalized
description of Table 4.7 for sales last year. The description is shown in the form of a
generalized relation. Table 4.6 is another generalized relation example.

Such generalized relations can also be presented in the form of cross-tabulation
forms, various kinds of graphic presentation (e.g., pie charts and bar charts), and
quantitative characteristics rules (i.e., showing how different value combinations are
distributed in the generalized relation).

Table 4.7 Generalized Relation for Last Year’s Sales

location item sales (in million dollars) count (in thousands)

Asia TV 15 300

Europe TV 12 250

North America TV 28 450

Asia computer 120 1000

Europe computer 150 1200

North America computer 200 1800
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4.5.3 Attribute-Oriented Induction for Class Comparisons

In many applications, users may not be interested in having a single class (or con-
cept) described or characterized, but prefer to mine a description that compares or
distinguishes one class (or concept) from other comparable classes (or concepts).
Class discrimination or comparison (hereafter referred to as class comparison) mines
descriptions that distinguish a target class from its contrasting classes. Notice that the
target and contrasting classes must be comparable in the sense that they share similar
dimensions and attributes. For example, the three classes person, address, and item are
not comparable. However, sales in the last three years are comparable classes, and so are,
for example, computer science students versus physics students.

Our discussions on class characterization in the previous sections handle multilevel
data summarization and characterization in a single class. The techniques developed can
be extended to handle class comparison across several comparable classes. For example,
the attribute generalization process described for class characterization can be modified
so that the generalization is performed synchronously among all the classes compared.
This allows the attributes in all of the classes to be generalized to the same abstraction
levels.

Suppose, for instance, that we are given the AllElectronics data for sales in 2009 and
in 2010 and want to compare these two classes. Consider the dimension location with
abstractions at the city, province or state, and country levels. Data in each class should be
generalized to the same location level. That is, they are all synchronously generalized to
either the city level, the province or state level, or the country level. Ideally, this is more
useful than comparing, say, the sales in Vancouver in 2009 with the sales in the United
States in 2010 (i.e., where each set of sales data is generalized to a different level). The
users, however, should have the option to overwrite such an automated, synchronous
comparison with their own choices, when preferred.

“How is class comparison performed?” In general, the procedure is as follows:

1. Data collection: The set of relevant data in the database is collected by query process-
ing and is partitioned respectively into a target class and one or a set of contrasting
classes.

2. Dimension relevance analysis: If there are many dimensions, then dimension rele-
vance analysis should be performed on these classes to select only the highly relevant
dimensions for further analysis. Correlation or entropy-based measures can be used
for this step (Chapter 3).

3. Synchronous generalization: Generalization is performed on the target class to the
level controlled by a user- or expert-specified dimension threshold, which results in
a prime target class relation. The concepts in the contrasting class(es) are generali-
zed to the same level as those in the prime target class relation, forming the prime
contrasting class(es) relation.

4. Presentation of the derived comparison: The resulting class comparison description
can be visualized in the form of tables, graphs, and rules. This presentation usually
includes a “contrasting” measure such as count% (percentage count) that reflects the
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comparison between the target and contrasting classes. The user can adjust the com-
parison description by applying drill-down, roll-up, and other OLAP operations to
the target and contrasting classes, as desired.

The preceding discussion outlines a general algorithm for mining comparisons
in databases. In comparison with characterization, the previous algorithm involves
synchronous generalization of the target class with the contrasting classes, so that classes
are simultaneously compared at the same abstraction levels.

Example 4.14 mines a class comparison describing the graduate and undergraduate
students at Big University.

Example 4.14 Mining a class comparison. Suppose that you would like to compare the general pro-
perties of the graduate and undergraduate students at Big University, given the attributes
name, gender, major, birth place, birth date, residence, phone#, and gpa.

This data mining task can be expressed in DMQL as follows:

use Big University DB
mine comparison as “grad vs undergrad students”
in relevance to name, gender, major, birth place, birth date, residence,

phone#, gpa
for “graduate students”
where status in “graduate”
versus “undergraduate students”
where status in “undergraduate”
analyze count%
from student

Let’s see how this typical example of a data mining query for mining comparison
descriptions can be processed.

First, the query is transformed into two relational queries that collect two sets of task-
relevant data: one for the initial target-class working relation and the other for the initial
contrasting-class working relation, as shown in Tables 4.8 and 4.9. This can also be viewed
as the construction of a data cube, where the status {graduate, undergraduate} serves as
one dimension, and the other attributes form the remaining dimensions.

Second, dimension relevance analysis can be performed, when necessary, on the two
classes of data. After this analysis, irrelevant or weakly relevant dimensions (e.g., name,
gender, birth place, residence, and phone#) are removed from the resulting classes. Only
the highly relevant attributes are included in the subsequent analysis.

Third, synchronous generalization is performed on the target class to the levels con-
trolled by user- or expert-specified dimension thresholds, forming the prime target class
relation. The contrasting class is generalized to the same levels as those in the prime
target class relation, forming the prime contrasting class(es) relation, as presented in
Tables 4.10 and 4.11. In comparison with undergraduate students, graduate students
tend to be older and have a higher GPA in general.
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Table 4.8 Initial Working Relations: The Target Class (Graduate Students)

name gender major birth place birth date residence phone# gpa

Jim Woodman M CS Vancouver, BC, Canada 12-8-76 3511 Main St., Richmond 687-4598 3.67

Scott Lachance M CS Montreal, Que, Canada 7-28-75 345 1st Ave., Vancouver 253-9106 3.70

Laura Lee F Physics Seattle, WA, USA 8-25-70 125 Austin Ave., Burnaby 420-5232 3.83

· · · · · · · · · · · · · · · · · · · · · · · ·

Table 4.9 Initial Working Relations: The Contrasting Class (Undergraduate Students)

name gender major birth place birth date residence phone# gpa

Bob Schumann M Chemistry Calgary, Alt, Canada 1-10-78 2642 Halifax St., Burnaby 294-4291 2.96

Amy Eau F Biology Golden, BC, Canada 3-30-76 463 Sunset Cres., Vancouver 681-5417 3.52

· · · · · · · · · · · · · · · · · · · · · · · ·

Table 4.10 Prime Generalized Relation for the Target Class (Graduate Students)

major age range gpa count%

Science 21...25 good 5.53

Science 26...30 good 5.02

Science over 30 very good 5.86

· · · · · · · · · · · ·
Business over 30 excellent 4.68

Table 4.11 Prime Generalized Relation for the Contrasting Class (Undergraduate Students)

major age range gpa count%

Science 16...20 fair 5.53

Science 16...20 good 4.53

· · · · · · · · · · · ·
Science 26...30 good 2.32

· · · · · · · · · · · ·
Business over 30 excellent 0.68

Finally, the resulting class comparison is presented in the form of tables, graphs,
and/or rules. This visualization includes a contrasting measure (e.g., count%) that com-
pares the target class and the contrasting class. For example, 5.02% of the graduate
students majoring in science are between 26 and 30 years old and have a “good” GPA,
while only 2.32% of undergraduates have these same characteristics. Drilling and other
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OLAP operations may be performed on the target and contrasting classes as deemed
necessary by the user in order to adjust the abstraction levels of the final description.

In summary, attribute-oriented induction for data characterization and generaliza-
tion provides an alternative data generalization method in comparison to the data cube
approach. It is not confined to relational data because such an induction can be per-
formed on spatial, multimedia, sequence, and other kinds of data sets. In addition, there
is no need to precompute a data cube because generalization can be performed online
upon receiving a user’s query.

Moreover, automated analysis can be added to such an induction process to auto-
matically filter out irrelevant or unimportant attributes. However, because attribute-
oriented induction automatically generalizes data to a higher level, it cannot efficiently
support the process of drilling down to levels deeper than those provided in the general-
ized relation. The integration of data cube technology with attribute-oriented induction
may provide a balance between precomputation and online computation. This would
also support fast online computation when it is necessary to drill down to a level deeper
than that provided in the generalized relation.

4.6 Summary

A data warehouse is a subject-oriented, integrated, time-variant, and nonvolatile data
collection organized in support of management decision making. Several factors
distinguish data warehouses from operational databases. Because the two systems
provide quite different functionalities and require different kinds of data, it is
necessary to maintain data warehouses separately from operational databases.

Data warehouses often adopt a three-tier architecture. The bottom tier is a ware-
house database server, which is typically a relational database system. The middle tier
is an OLAP server, and the top tier is a client that contains query and reporting tools.

A data warehouse contains back-end tools and utilities for populating and refresh-
ing the warehouse. These cover data extraction, data cleaning, data transformation,
loading, refreshing, and warehouse management.

Data warehouse metadata are data defining the warehouse objects. A metadata
repository provides details regarding the warehouse structure, data history, the algo-
rithms used for summarization, mappings from the source data to the warehouse
form, system performance, and business terms and issues.

A multidimensional data model is typically used for the design of corporate data
warehouses and departmental data marts. Such a model can adopt a star schema,
snowflake schema, or fact constellation schema. The core of the multidimensional
model is the data cube, which consists of a large set of facts (or measures) and a
number of dimensions. Dimensions are the entities or perspectives with respect to
which an organization wants to keep records and are hierarchical in nature.
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A data cube consists of a lattice of cuboids, each corresponding to a different degree
of summarization of the given multidimensional data.

Concept hierarchies organize the values of attributes or dimensions into gradual
abstraction levels. They are useful in mining at multiple abstraction levels.

Online analytical processing can be performed in data warehouses/marts using
the multidimensional data model. Typical OLAP operations include roll-up, and
drill-(down, across, through), slice-and-dice, and pivot (rotate), as well as statistical
operations such as ranking and computing moving averages and growth rates. OLAP
operations can be implemented efficiently using the data cube structure.

Data warehouses are used for information processing (querying and reporting),
analytical processing (which allows users to navigate through summarized and
detailed data by OLAP operations), and data mining (which supports knowledge
discovery). OLAP-based data mining is referred to as multidimensional data min-
ing (also known as exploratory multidimensional data mining, online analytical
mining, or OLAM). It emphasizes the interactive and exploratory nature of data
mining.

OLAP servers may adopt a relational OLAP (ROLAP), a multidimensional OLAP
(MOLAP), or a hybrid OLAP (HOLAP) implementation. A ROLAP server uses an
extended relational DBMS that maps OLAP operations on multidimensional data to
standard relational operations. A MOLAP server maps multidimensional data views
directly to array structures. A HOLAP server combines ROLAP and MOLAP. For
example, it may use ROLAP for historic data while maintaining frequently accessed
data in a separate MOLAP store.

Full materialization refers to the computation of all of the cuboids in the lattice
defining a data cube. It typically requires an excessive amount of storage space,
particularly as the number of dimensions and size of associated concept hierarchies
grow. This problem is known as the curse of dimensionality. Alternatively, partial
materialization is the selective computation of a subset of the cuboids or subcubes
in the lattice. For example, an iceberg cube is a data cube that stores only those
cube cells that have an aggregate value (e.g., count) above some minimum support
threshold.

OLAP query processing can be made more efficient with the use of indexing tech-
niques. In bitmap indexing, each attribute has its own bitmap index table. Bitmap
indexing reduces join, aggregation, and comparison operations to bit arithmetic.
Join indexing registers the joinable rows of two or more relations from a relational
database, reducing the overall cost of OLAP join operations. Bitmapped join index-
ing, which combines the bitmap and join index methods, can be used to further
speed up OLAP query processing.

Data generalization is a process that abstracts a large set of task-relevant data
in a database from a relatively low conceptual level to higher conceptual lev-
els. Data generalization approaches include data cube-based data aggregation and
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attribute-oriented induction. Concept description is the most basic form of descrip-
tive data mining. It describes a given set of task-relevant data in a concise and
summarative manner, presenting interesting general properties of the data. Concept
(or class) description consists of characterization and comparison (or discrimi-
nation). The former summarizes and describes a data collection, called the target
class, whereas the latter summarizes and distinguishes one data collection, called
the target class, from other data collection(s), collectively called the contrasting
class(es).

Concept characterization can be implemented using data cube (OLAP-based)
approaches and the attribute-oriented induction approach. These are attribute-
or dimension-based generalization approaches. The attribute-oriented induction
approach consists of the following techniques: data focusing, data generalization by
attribute removal or attribute generalization, count and aggregate value accumulation,
attribute generalization control, and generalization data visualization.

Concept comparison can be performed using the attribute-oriented induction or
data cube approaches in a manner similar to concept characterization. Generalized
tuples from the target and contrasting classes can be quantitatively compared and
contrasted.

4.7 Exercises

4.1 State why, for the integration of multiple heterogeneous information sources, many
companies in industry prefer the update-driven approach (which constructs and uses
data warehouses), rather than the query-driven approach (which applies wrappers and
integrators). Describe situations where the query-driven approach is preferable to the
update-driven approach.

4.2 Briefly compare the following concepts. You may use an example to explain your
point(s).

(a) Snowflake schema, fact constellation, starnet query model

(b) Data cleaning, data transformation, refresh

(c) Discovery-driven cube, multifeature cube, virtual warehouse

4.3 Suppose that a data warehouse consists of the three dimensions time, doctor, and patient,
and the two measures count and charge, where charge is the fee that a doctor charges a
patient for a visit.

(a) Enumerate three classes of schemas that are popularly used for modeling data
warehouses.

(b) Draw a schema diagram for the above data warehouse using one of the schema
classes listed in (a).
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(c) Starting with the base cuboid [day,doctor,patient], what specific OLAP operations
should be performed in order to list the total fee collected by each doctor in 2010?

(d) To obtain the same list, write an SQL query assuming the data are stored in a rela-
tional database with the schema fee (day, month, year, doctor, hospital, patient, count,
charge).

4.4 Suppose that a data warehouse for Big University consists of the four dimensions stu-
dent, course, semester, and instructor, and two measures count and avg grade. At the
lowest conceptual level (e.g., for a given student, course, semester, and instructor com-
bination), the avg grade measure stores the actual course grade of the student. At higher
conceptual levels, avg grade stores the average grade for the given combination.

(a) Draw a snowflake schema diagram for the data warehouse.

(b) Starting with the base cuboid [student , course, semester, instructor], what specific
OLAP operations (e.g., roll-up from semester to year) should you perform in order
to list the average grade of CS courses for each Big University student.

(c) If each dimension has five levels (including all), such as “student < major < status <

university < all”, how many cuboids will this cube contain (including the base and
apex cuboids)?

4.5 Suppose that a data warehouse consists of the four dimensions date, spectator, location,
and game, and the two measures count and charge, where charge is the fare that a spec-
tator pays when watching a game on a given date. Spectators may be students, adults, or
seniors, with each category having its own charge rate.

(a) Draw a star schema diagram for the data warehouse.

(b) Starting with the base cuboid [date, spectator, location,game], what specific OLAP
operations should you perform in order to list the total charge paid by student
spectators at GM Place in 2010?

(c) Bitmap indexing is useful in data warehousing. Taking this cube as an example,
briefly discuss advantages and problems of using a bitmap index structure.

4.6 A data warehouse can be modeled by either a star schema or a snowflake schema. Briefly
describe the similarities and the differences of the two models, and then analyze their
advantages and disadvantages with regard to one another. Give your opinion of which
might be more empirically useful and state the reasons behind your answer.

4.7 Design a data warehouse for a regional weather bureau. The weather bureau has about
1000 probes, which are scattered throughout various land and ocean locations in the
region to collect basic weather data, including air pressure, temperature, and precipi-
tation at each hour. All data are sent to the central station, which has collected such
data for more than 10 years. Your design should facilitate efficient querying and online
analytical processing, and derive general weather patterns in multidimensional space.

4.8 A popular data warehouse implementation is to construct a multidimensional database,
known as a data cube. Unfortunately, this may often generate a huge, yet very sparse,
multidimensional matrix.
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(a) Present an example illustrating such a huge and sparse data cube.

(b) Design an implementation method that can elegantly overcome this sparse matrix
problem. Note that you need to explain your data structures in detail and discuss
the space needed, as well as how to retrieve data from your structures.

(c) Modify your design in (b) to handle incremental data updates. Give the reasoning
behind your new design.

4.9 Regarding the computation of measures in a data cube:

(a) Enumerate three categories of measures, based on the kind of aggregate functions
used in computing a data cube.

(b) For a data cube with the three dimensions time, location, and item, which category
does the function variance belong to? Describe how to compute it if the cube is
partitioned into many chunks.
Hint: The formula for computing variance is 1

N

∑N
i=1(xi − x̄i)

2, where x̄i is the
average of xis.

(c) Suppose the function is “top 10 sales.” Discuss how to efficiently compute this
measure in a data cube.

4.10 Suppose a company wants to design a data warehouse to facilitate the analysis of moving
vehicles in an online analytical processing manner. The company registers huge amounts
of auto movement data in the format of (Auto ID, location, speed, time). Each Auto ID
represents a vehicle associated with information (e.g., vehicle category, driver category),
and each location may be associated with a street in a city. Assume that a street map is
available for the city.

(a) Design such a data warehouse to facilitate effective online analytical processing in
multidimensional space.

(b) The movement data may contain noise. Discuss how you would develop a method
to automatically discover data records that were likely erroneously registered in the
data repository.

(c) The movement data may be sparse. Discuss how you would develop a method that
constructs a reliable data warehouse despite the sparsity of data.

(d) If you want to drive from A to B starting at a particular time, discuss how a system
may use the data in this warehouse to work out a fast route.

4.11 Radio-frequency identification is commonly used to trace object movement and per-
form inventory control. An RFID reader can successfully read an RFID tag from
a limited distance at any scheduled time. Suppose a company wants to design a data
warehouse to facilitate the analysis of objects with RFID tags in an online analytical pro-
cessing manner. The company registers huge amounts of RFID data in the format of
(RFID, at location, time), and also has some information about the objects carrying the
RFID tag, for example, (RFID, product name, product category, producer, date produced,
price).

(a) Design a data warehouse to facilitate effective registration and online analytical
processing of such data.
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(b) The RFID data may contain lots of redundant information. Discuss a method
that maximally reduces redundancy during data registration in the RFID data
warehouse.

(c) The RFID data may contain lots of noise such as missing registration and misread
IDs. Discuss a method that effectively cleans up the noisy data in the RFID data
warehouse.

(d) You may want to perform online analytical processing to determine how many TV
sets were shipped from the LA seaport to BestBuy in Champaign, IL, by month,
brand, and price range. Outline how this could be done efficiently if you were to
store such RFID data in the warehouse.

(e) If a customer returns a jug of milk and complains that is has spoiled before its expi-
ration date, discuss how you can investigate such a case in the warehouse to find out
what the problem is, either in shipping or in storage.

4.12 In many applications, new data sets are incrementally added to the existing large
data sets. Thus, an important consideration is whether a measure can be computed
efficiently in an incremental manner. Use count, standard deviation, and median as
examples to show that a distributive or algebraic measure facilitates efficient incremental
computation, whereas a holistic measure does not.

4.13 Suppose that we need to record three measures in a data cube: min(), average(), and
median(). Design an efficient computation and storage method for each measure given
that the cube allows data to be deleted incrementally (i.e., in small portions at a time)
from the cube.

4.14 In data warehouse technology, a multiple dimensional view can be implemented by
a relational database technique (ROLAP), by a multidimensional database technique
(MOLAP), or by a hybrid database technique (HOLAP).

(a) Briefly describe each implementation technique.

(b) For each technique, explain how each of the following functions may be
implemented:

i. The generation of a data warehouse (including aggregation)

ii. Roll-up

iii. Drill-down

iv. Incremental updating

(c) Which implementation techniques do you prefer, and why?

4.15 Suppose that a data warehouse contains 20 dimensions, each with about five levels of
granularity.

(a) Users are mainly interested in four particular dimensions, each having three fre-
quently accessed levels for rolling up and drilling down. How would you design a
data cube structure to support this preference efficiently?

(b) At times, a user may want to drill through the cube to the raw data for one or two
particular dimensions. How would you support this feature?
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4.16 A data cube, C, has n dimensions, and each dimension has exactly p distinct values
in the base cuboid. Assume that there are no concept hierarchies associated with the
dimensions.

(a) What is the maximum number of cells possible in the base cuboid?

(b) What is the minimum number of cells possible in the base cuboid?

(c) What is the maximum number of cells possible (including both base cells and
aggregate cells) in the C data cube?

(d) What is the minimum number of cells possible in C?

4.17 What are the differences between the three main types of data warehouse usage: infor-
mation processing, analytical processing, and data mining? Discuss the motivation behind
OLAP mining (OLAM).
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5Data Cube Technology

Data warehouse systems provide online analytical processing (OLAP) tools for interactive
analysis of multidimensional data at varied granularity levels. OLAP tools typically use
the data cube and a multidimensional data model to provide flexible access to summa-
rized data. For example, a data cube can store precomputed measures (like count() and
total sales()) for multiple combinations of data dimensions (like item, region, and customer).
Users can pose OLAP queries on the data. They can also interactively explore the data
in a multidimensional way through OLAP operations like drill-down (to see more spe-
cialized data such as total sales per city) or roll-up (to see the data at a more generalized
level such as total sales per country).

Although the data cube concept was originally intended for OLAP, it is also use-
ful for data mining. Multidimensional data mining is an approach to data mining
that integrates OLAP-based data analysis with knowledge discovery techniques. It is
also known as exploratory multidimensional data mining and online analytical mining
(OLAM). It searches for interesting patterns by exploring the data in multidimensional
space. This gives users the freedom to dynamically focus on any subset of interesting
dimensions. Users can interactively drill down or roll up to varying abstraction levels to
find classification models, clusters, predictive rules, and outliers.

This chapter focuses on data cube technology. In particular, we study methods for
data cube computation and methods for multidimensional data analysis. Precomput-
ing a data cube (or parts of a data cube) allows for fast accessing of summarized data.
Given the high dimensionality of most data, multidimensional analysis can run into
performance bottlenecks. Therefore, it is important to study data cube computation
techniques. Luckily, data cube technology provides many effective and scalable meth-
ods for cube computation. Studying these methods will also help in our understanding
and further development of scalable methods for other data mining tasks such as the
discovery of frequent patterns (Chapters 6 and 7).

We begin in Section 5.1 with preliminary concepts for cube computation. These sum-
marize the data cube notion as a lattice of cuboids, and describe basic forms of cube
materialization. General strategies for cube computation are given. Section 5.2 follows
with an in-depth look at specific methods for data cube computation. We study both
full materialization (i.e., where all the cuboids representing a data cube are precomputed
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and thereby ready for use) and partial cuboid materialization (where, say, only the more
“useful” parts of the data cube are precomputed). The multiway array aggregation
method is detailed for full cube computation. Methods for partial cube computation,
including BUC, Star-Cubing, and the use of cube shell fragments, are discussed.

In Section 5.3, we study cube-based query processing. The techniques described build
on the standard methods of cube computation presented in Section 5.2. You will learn
about sampling cubes for OLAP query answering on sampling data (e.g., survey data,
which represent a sample or subset of a target data population of interest). In addi-
tion, you will learn how to compute ranking cubes for efficient top-k (ranking) query
processing in large relational data sets.

In Section 5.4, we describe various ways to perform multidimensional data analysis
using data cubes. Prediction cubes are introduced, which facilitate predictive modeling in
multidimensional space. We discuss multifeature cubes, which compute complex queries
involving multiple dependent aggregates at multiple granularities. You will also learn
about the exception-based discovery-driven exploration of cube space, where visual cues
are displayed to indicate discovered data exceptions at all aggregation levels, thereby
guiding the user in the data analysis process.

5.1 Data Cube Computation: Preliminary Concepts

Data cubes facilitate the online analytical processing of multidimensional data. “But how
can we compute data cubes in advance, so that they are handy and readily available for
query processing?” This section contrasts full cube materialization (i.e., precomputation)
versus various strategies for partial cube materialization. For completeness, we begin
with a review of the basic terminology involving data cubes. We also introduce a cube
cell notation that is useful for describing data cube computation methods.

5.1.1 Cube Materialization: Full Cube, Iceberg Cube,
Closed Cube, and Cube Shell

Figure 5.1 shows a 3-D data cube for the dimensions A, B, and C, and an aggregate mea-
sure, M . Commonly used measures include count(), sum(), min(), max(), and total sales().
A data cube is a lattice of cuboids. Each cuboid represents a group-by. ABC is the base
cuboid, containing all three of the dimensions. Here, the aggregate measure, M , is com-
puted for each possible combination of the three dimensions. The base cuboid is the
least generalized of all the cuboids in the data cube. The most generalized cuboid is the
apex cuboid, commonly represented as all. It contains one value—it aggregates measure
M for all the tuples stored in the base cuboid. To drill down in the data cube, we move
from the apex cuboid downward in the lattice. To roll up, we move from the base cuboid
upward. For the purposes of our discussion in this chapter, we will always use the term
data cube to refer to a lattice of cuboids rather than an individual cuboid.
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A

AB AC BC

ABC (base cuboid)

all (apex cuboid)

B C

Figure 5.1 Lattice of cuboids making up a 3-D data cube with the dimensions A, B, and C for some
aggregate measure, M .

A cell in the base cuboid is a base cell. A cell from a nonbase cuboid is an aggregate
cell. An aggregate cell aggregates over one or more dimensions, where each aggregated
dimension is indicated by a ∗ in the cell notation. Suppose we have an n-dimensional
data cube. Let a = (a1, a2, . . . , an, measures) be a cell from one of the cuboids making
up the data cube. We say that a is an m-dimensional cell (i.e., from an m-dimensional
cuboid) if exactly m (m ≤ n) values among {a1, a2, . . . , an} are not ∗. If m = n, then a is
a base cell; otherwise, it is an aggregate cell (i.e., where m < n).

Example 5.1 Base and aggregate cells. Consider a data cube with the dimensions month, city, and
customer group, and the measure sales. (Jan, ∗ , ∗ , 2800) and (∗, Chicago, ∗ , 1200) are
1-D cells; (Jan, ∗ , Business, 150) is a 2-D cell; and (Jan, Chicago, Business, 45) is a 3-D
cell. Here, all base cells are 3-D, whereas 1-D and 2-D cells are aggregate cells.

An ancestor–descendant relationship may exist between cells. In an n-dimensional
data cube, an i-D cell a = (a1, a2, . . . , an, measuresa) is an ancestor of a j-D cell b =
(b1, b2, . . . , bn, measuresb), and b is a descendant of a, if and only if (1) i < j, and (2) for
1 ≤ k ≤ n, ak = bk whenever ak �= ∗. In particular, cell a is called a parent of cell b, and
b is a child of a, if and only if j = i + 1.

Example 5.2 Ancestor and descendant cells. Referring to Example 5.1, 1-D cell a = (Jan, ∗ , ∗ ,
2800) and 2-D cell b = (Jan, ∗ , Business, 150) are ancestors of 3-D cell c = (Jan,
Chicago, Business, 45); c is a descendant of both a and b; b is a parent of c; and c is a
child of b.

To ensure fast OLAP, it is sometimes desirable to precompute the full cube (i.e., all
the cells of all the cuboids for a given data cube). A method of full cube computation
is given in Section 5.2.1. Full cube computation, however, is exponential to the number
of dimensions. That is, a data cube of n dimensions contains 2n cuboids. There are even
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more cuboids if we consider concept hierarchies for each dimension.1 In addition, the
size of each cuboid depends on the cardinality of its dimensions. Thus, precomputation
of the full cube can require huge and often excessive amounts of memory.

Nonetheless, full cube computation algorithms are important. Individual cuboids
may be stored on secondary storage and accessed when necessary. Alternatively, we can
use such algorithms to compute smaller cubes, consisting of a subset of the given set
of dimensions, or a smaller range of possible values for some of the dimensions. In
these cases, the smaller cube is a full cube for the given subset of dimensions and/or
dimension values. A thorough understanding of full cube computation methods will
help us develop efficient methods for computing partial cubes. Hence, it is important to
explore scalable methods for computing all the cuboids making up a data cube, that is,
for full materialization. These methods must take into consideration the limited amount
of main memory available for cuboid computation, the total size of the computed data
cube, as well as the time required for such computation.

Partial materialization of data cubes offers an interesting trade-off between storage
space and response time for OLAP. Instead of computing the full cube, we can compute
only a subset of the data cube’s cuboids, or subcubes consisting of subsets of cells from
the various cuboids.

Many cells in a cuboid may actually be of little or no interest to the data analyst. Recall
that each cell in a full cube records an aggregate value such as count or sum. For many
cells in a cuboid, the measure value will be zero. When the product of the cardinalities
for the dimensions in a cuboid is large relative to the number of nonzero-valued tuples
that are stored in the cuboid, then we say that the cuboid is sparse. If a cube contains
many sparse cuboids, we say that the cube is sparse.

In many cases, a substantial amount of the cube’s space could be taken up by a large
number of cells with very low measure values. This is because the cube cells are often
quite sparsely distributed within a multidimensional space. For example, a customer
may only buy a few items in a store at a time. Such an event will generate only a few
nonempty cells, leaving most other cube cells empty. In such situations, it is useful to
materialize only those cells in a cuboid (group-by) with a measure value above some
minimum threshold. In a data cube for sales, say, we may wish to materialize only
those cells for which count ≥ 10 (i.e., where at least 10 tuples exist for the cell’s given
combination of dimensions), or only those cells representing sales ≥ $100. This not
only saves processing time and disk space, but also leads to a more focused analysis.
The cells that cannot pass the threshold are likely to be too trivial to warrant further
analysis.

Such partially materialized cubes are known as iceberg cubes. The minimum thresh-
old is called the minimum support threshold, or minimum support (min sup), for short.
By materializing only a fraction of the cells in a data cube, the result is seen as the “tip of
the iceberg,” where the “iceberg” is the potential full cube including all cells. An iceberg
cube can be specified with an SQL query, as shown in Example 5.3.

1Eq. (4.1) of Section 4.4.1 gives the total number of cuboids in a data cube where each dimension has
an associated concept hierarchy.
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Example 5.3 Iceberg cube.

compute cube sales iceberg as
select month, city, customer group, count(*)
from salesInfo
cube by month, city, customer group
having count(*) >= min sup

The compute cube statement specifies the precomputation of the iceberg cube,
sales iceberg, with the dimensions month, city, and customer group, and the aggregate
measure count(). The input tuples are in the salesInfo relation. The cube by clause
specifies that aggregates (group-by’s) are to be formed for each of the possible subsets of
the given dimensions. If we were computing the full cube, each group-by would corre-
spond to a cuboid in the data cube lattice. The constraint specified in the having clause
is known as the iceberg condition. Here, the iceberg measure is count(). Note that the
iceberg cube computed here could be used to answer group-by queries on any combina-
tion of the specified dimensions of the form having count(*) >= v, where v ≥ min sup.
Instead of count(), the iceberg condition could specify more complex measures such as
average().

If we were to omit the having clause, we would end up with the full cube. Let’s call this
cube sales cube. The iceberg cube, sales iceberg, excludes all the cells of sales cube with a
count that is less than min sup. Obviously, if we were to set the minimum support to 1
in sales iceberg, the resulting cube would be the full cube, sales cube.

A naïve approach to computing an iceberg cube would be to first compute the full
cube and then prune the cells that do not satisfy the iceberg condition. However, this is
still prohibitively expensive. An efficient approach is to compute only the iceberg cube
directly without computing the full cube. Sections 5.2.2 and 5.2.3 discuss methods for
efficient iceberg cube computation.

Introducing iceberg cubes will lessen the burden of computing trivial aggregate cells
in a data cube. However, we could still end up with a large number of uninteresting cells
to compute. For example, suppose that there are 2 base cells for a database of 100 dimen-
sions, denoted as {(a1, a2, a3, . . . , a100) : 10, (a1, a2, b3, . . . , b100) : 10}, where each has a
cell count of 10. If the minimum support is set to 10, there will still be an impermis-
sible number of cells to compute and store, although most of them are not interesting.
For example, there are 2101 − 6 distinct aggregate cells,2 like {(a1, a2, a3, a4, . . . , a99, ∗) :
10, . . . , (a1, a2, ∗ , a4, . . . , a99, a100) : 10, . . . , (a1, a2, a3, ∗ , . . . , ∗ , ∗) : 10}, but most of
them do not contain much new information. If we ignore all the aggregate cells that can
be obtained by replacing some constants by ∗’s while keeping the same measure value,
there are only three distinct cells left: {(a1, a2, a3, . . . , a100) : 10, (a1, a2, b3, . . . , b100) :
10, (a1, a2, ∗ , . . . , ∗) : 20}. That is, out of 2101 − 4 distinct base and aggregate cells, only
three really offer valuable information.

2The proof is left as an exercise for the reader.
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(a1, a2, a3, . . . ,  a100 ) : 10

(a1, a2, *, . . . ,  *) : 20

(a1, a2, b3, . . . ,  b100 ) : 10

Figure 5.2 Three closed cells forming the lattice of a closed cube.

To systematically compress a data cube, we need to introduce the concept of closed
coverage. A cell, c, is a closed cell if there exists no cell, d, such that d is a special-
ization (descendant) of cell c (i.e., where d is obtained by replacing ∗ in c with a
non-∗ value), and d has the same measure value as c. A closed cube is a data cube
consisting of only closed cells. For example, the three cells derived in the preced-
ing paragraph are the three closed cells of the data cube for the data set {(a1, a2,
a3, . . . , a100) : 10, (a1, a2, b3, . . . , b100) : 10}. They form the lattice of a closed cube as
shown in Figure 5.2. Other nonclosed cells can be derived from their corresponding
closed cells in this lattice. For example, “(a1, ∗ , ∗ , . . . , ∗) : 20” can be derived from
“(a1, a2, ∗ , . . . , ∗) : 20” because the former is a generalized nonclosed cell of the latter.
Similarly, we have “(a1, a2, b3, ∗ , . . . , ∗) : 10.”

Another strategy for partial materialization is to precompute only the cuboids involv-
ing a small number of dimensions such as three to five. These cuboids form a cube shell
for the corresponding data cube. Queries on additional combinations of the dimensions
will have to be computed on-the-fly. For example, we could compute all cuboids with
three dimensions or less in an n-dimensional data cube, resulting in a cube shell of size 3.
This, however, can still result in a large number of cuboids to compute, particularly when
n is large. Alternatively, we can choose to precompute only portions or fragments of the
cube shell based on cuboids of interest. Section 5.2.4 discusses a method for computing
shell fragments and explores how they can be used for efficient OLAP query processing.

5.1.2 General Strategies for Data Cube Computation

There are several methods for efficient data cube computation, based on the vari-
ous kinds of cubes described in Section 5.1.1. In general, there are two basic data
structures used for storing cuboids. The implementation of relational OLAP (ROLAP)
uses relational tables, whereas multidimensional arrays are used in multidimensional
OLAP (MOLAP). Although ROLAP and MOLAP may each explore different cube
computation techniques, some optimization “tricks” can be shared among the different
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data representations. The following are general optimization techniques for efficient
computation of data cubes.

Optimization Technique 1: Sorting, hashing, and grouping. Sorting, hashing, and
grouping operations should be applied to the dimension attributes to reorder and
cluster related tuples.

In cube computation, aggregation is performed on the tuples (or cells) that share
the same set of dimension values. Thus, it is important to explore sorting, hashing,
and grouping operations to access and group such data together to facilitate compu-
tation of such aggregates.

To compute total sales by branch, day, and item, for example, it can be more
efficient to sort tuples or cells by branch, and then by day, and then group them
according to the item name. Efficient implementations of such operations in large
data sets have been extensively studied in the database research community. Such
implementations can be extended to data cube computation.

This technique can also be further extended to perform shared-sorts (i.e., sharing
sorting costs across multiple cuboids when sort-based methods are used), or to per-
form shared-partitions (i.e., sharing the partitioning cost across multiple cuboids
when hash-based algorithms are used).

Optimization Technique 2: Simultaneous aggregation and caching of intermediate
results. In cube computation, it is efficient to compute higher-level aggregates from
previously computed lower-level aggregates, rather than from the base fact table.
Moreover, simultaneous aggregation from cached intermediate computation results
may lead to the reduction of expensive disk input/output (I/O) operations.

To compute sales by branch, for example, we can use the intermediate results
derived from the computation of a lower-level cuboid such as sales by branch and day.
This technique can be further extended to perform amortized scans (i.e., computing
as many cuboids as possible at the same time to amortize disk reads).

Optimization Technique 3: Aggregation from the smallest child when there exist mul-
tiple child cuboids. When there exist multiple child cuboids, it is usually more
efficient to compute the desired parent (i.e., more generalized) cuboid from the
smallest, previously computed child cuboid.

To compute a sales cuboid, Cbranch, when there exist two previously computed
cuboids, C{branch,year} and C{branch,item}, for example, it is obviously more efficient to
compute Cbranch from the former than from the latter if there are many more distinct
items than distinct years.

Many other optimization techniques may further improve computational efficiency. For
example, string dimension attributes can be mapped to integers with values ranging
from zero to the cardinality of the attribute.

In iceberg cube computation the following optimization technique plays a particu-
larly important role.



194 Chapter 5 Data Cube Technology

Optimization Technique 4: The Apriori pruning method can be explored to
compute iceberg cubes efficiently. The Apriori property,3 in the context of data
cubes, states as follows: If a given cell does not satisfy minimum support, then no descen-
dant of the cell (i.e., more specialized cell) will satisfy minimum support either. This
property can be used to substantially reduce the computation of iceberg cubes.

Recall that the specification of iceberg cubes contains an iceberg condition, which
is a constraint on the cells to be materialized. A common iceberg condition is that the
cells must satisfy a minimum support threshold such as a minimum count or sum. In
this situation, the Apriori property can be used to prune away the exploration of the
cell’s descendants. For example, if the count of a cell, c, in a cuboid is less than a
minimum support threshold, v, then the count of any of c’s descendant cells in the
lower-level cuboids can never be greater than or equal to v, and thus can be pruned.

In other words, if a condition (e.g., the iceberg condition specified in the having
clause) is violated for some cell c, then every descendant of c will also violate that con-
dition. Measures that obey this property are known as antimonotonic.4 This form
of pruning was made popular in frequent pattern mining, yet also aids in data cube
computation by cutting processing time and disk space requirements. It can lead to a
more focused analysis because cells that cannot pass the threshold are unlikely to be
of interest.

In the following sections, we introduce several popular methods for efficient cube
computation that explore these optimization strategies.

5.2 Data Cube Computation Methods

Data cube computation is an essential task in data warehouse implementation. The pre-
computation of all or part of a data cube can greatly reduce the response time and
enhance the performance of online analytical processing. However, such computation
is challenging because it may require substantial computational time and storage
space. This section explores efficient methods for data cube computation. Section 5.2.1
describes the multiway array aggregation (MultiWay) method for computing full cubes.
Section 5.2.2 describes a method known as BUC, which computes iceberg cubes from
the apex cuboid downward. Section 5.2.3 describes the Star-Cubing method, which
integrates top-down and bottom-up computation.

Finally, Section 5.2.4 describes a shell-fragment cubing approach that computes shell
fragments for efficient high-dimensional OLAP. To simplify our discussion, we exclude

3The Apriori property was proposed in the Apriori algorithm for association rule mining by Agrawal
and Srikant [AS94b]. Many algorithms in association rule mining have adopted this property (see
Chapter 6).
4Antimonotone is based on condition violation. This differs from monotone, which is based on
condition satisfaction.
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the cuboids that would be generated by climbing up any existing hierarchies for the
dimensions. Those cube types can be computed by extension of the discussed methods.
Methods for the efficient computation of closed cubes are left as an exercise for interested
readers.

5.2.1 Multiway Array Aggregation for Full
Cube Computation

The multiway array aggregation (or simply MultiWay) method computes a full data
cube by using a multidimensional array as its basic data structure. It is a typical MOLAP
approach that uses direct array addressing, where dimension values are accessed via the
position or index of their corresponding array locations. Hence, MultiWay cannot per-
form any value-based reordering as an optimization technique. A different approach is
developed for the array-based cube construction, as follows:

1. Partition the array into chunks. A chunk is a subcube that is small enough to fit into
the memory available for cube computation. Chunking is a method for dividing an
n-dimensional array into small n-dimensional chunks, where each chunk is stored as
an object on disk. The chunks are compressed so as to remove wasted space resulting
from empty array cells. A cell is empty if it does not contain any valid data (i.e., its
cell count is 0). For instance, “chunkID + offset” can be used as a cell-addressing
mechanism to compress a sparse array structure and when searching for cells within
a chunk. Such a compression technique is powerful at handling sparse cubes, both on
disk and in memory.

2. Compute aggregates by visiting (i.e., accessing the values at) cube cells. The order in
which cells are visited can be optimized so as to minimize the number of times that
each cell must be revisited, thereby reducing memory access and storage costs. The
trick is to exploit this ordering so that portions of the aggregate cells in multiple
cuboids can be computed simultaneously, and any unnecessary revisiting of cells is
avoided.

This chunking technique involves “overlapping” some of the aggregation computations;
therefore, it is referred to as multiway array aggregation. It performs simultaneous
aggregation, that is, it computes aggregations simultaneously on multiple dimensions.

We explain this approach to array-based cube construction by looking at a concrete
example.

Example 5.4 Multiway array cube computation. Consider a 3-D data array containing the three
dimensions A, B, and C. The 3-D array is partitioned into small, memory-based chunks.
In this example, the array is partitioned into 64 chunks as shown in Figure 5.3. Dimen-
sion A is organized into four equal-sized partitions: a0, a1, a2, and a3. Dimensions B
and C are similarly organized into four partitions each. Chunks 1, 2, . . . , 64 correspond
to the subcubes a0b0c0, a1b0c0, . . . , a3b3c3, respectively. Suppose that the cardinality of
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Figure 5.3 A 3-D array for the dimensions A, B, and C, organized into 64 chunks. Each chunk is small
enough to fit into the memory available for cube computation. The ∗’s indicate the chunks
from 1 to 13 that have been aggregated so far in the process.

the dimensions A, B, and C is 40, 400, and 4000, respectively. Thus, the size of the array
for each dimension, A, B, and C, is also 40, 400, and 4000, respectively. The size of each
partition in A, B, and C is therefore 10, 100, and 1000, respectively. Full materialization
of the corresponding data cube involves the computation of all the cuboids defining this
cube. The resulting full cube consists of the following cuboids:
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The base cuboid, denoted by ABC (from which all the other cuboids are directly or
indirectly computed). This cube is already computed and corresponds to the given
3-D array.

The 2-D cuboids, AB, AC, and BC, which respectively correspond to the group-by’s
AB, AC, and BC. These cuboids must be computed.

The 1-D cuboids, A, B, and C, which respectively correspond to the group-by’s A, B,
and C. These cuboids must be computed.

The 0-D (apex) cuboid, denoted by all, which corresponds to the group-by (); that
is, there is no group-by here. This cuboid must be computed. It consists of only one
value. If, say, the data cube measure is count, then the value to be computed is simply
the total count of all the tuples in ABC.

Let’s look at how the multiway array aggregation technique is used in this computa-
tion. There are many possible orderings with which chunks can be read into memory
for use in cube computation. Consider the ordering labeled from 1 to 64, shown in
Figure 5.3. Suppose we want to compute the b0c0 chunk of the BC cuboid. We allocate
space for this chunk in chunk memory. By scanning ABC chunks 1 through 4, the b0c0

chunk is computed. That is, the cells for b0c0 are aggregated over a0 to a3. The chunk
memory can then be assigned to the next chunk, b1c0, which completes its aggregation
after the scanning of the next four ABC chunks: 5 through 8. Continuing in this way,
the entire BC cuboid can be computed. Therefore, only one BC chunk needs to be in
memory at a time, for the computation of all the BC chunks.

In computing the BC cuboid, we will have scanned each of the 64 chunks. “Is there a
way to avoid having to rescan all of these chunks for the computation of other cuboids such
as AC and AB?” The answer is, most definitely, yes. This is where the “multiway com-
putation” or “simultaneous aggregation” idea comes in. For example, when chunk 1
(i.e., a0b0c0) is being scanned (say, for the computation of the 2-D chunk b0c0 of BC, as
described previously), all of the other 2-D chunks relating to a0b0c0 can be simultane-
ously computed. That is, when a0b0c0 is being scanned, each of the three chunks (b0c0,
a0c0, and a0b0) on the three 2-D aggregation planes (BC, AC, and AB) should be com-
puted then as well. In other words, multiway computation simultaneously aggregates to
each of the 2-D planes while a 3-D chunk is in memory.

Now let’s look at how different orderings of chunk scanning and of cuboid compu-
tation can affect the overall data cube computation efficiency. Recall that the size of the
dimensions A, B, and C is 40, 400, and 4000, respectively. Therefore, the largest 2-D
plane is BC (of size 400 × 4000 = 1,600,000). The second largest 2-D plane is AC (of
size 40 × 4000 = 160,000). AB is the smallest 2-D plane (of size 40 × 400 = 16,000).

Suppose that the chunks are scanned in the order shown, from chunks 1 to 64. As
previously mentioned, b0c0 is fully aggregated after scanning the row containing chunks
1 through 4; b1c0 is fully aggregated after scanning chunks 5 through 8, and so on. Thus,
we need to scan four chunks of the 3-D array to fully compute one chunk of the BC
cuboid (where BC is the largest of the 2-D planes). In other words, by scanning in this
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order, one BC chunk is fully computed for each row scanned. In comparison, the com-
plete computation of one chunk of the second largest 2-D plane, AC, requires scanning
13 chunks, given the ordering from 1 to 64. That is, a0c0 is fully aggregated only after
the scanning of chunks 1, 5, 9, and 13.

Finally, the complete computation of one chunk of the smallest 2-D plane, AB,
requires scanning 49 chunks. For example, a0b0 is fully aggregated after scanning chunks
1, 17, 33, and 49. Hence, AB requires the longest scan of chunks to complete its com-
putation. To avoid bringing a 3-D chunk into memory more than once, the minimum
memory requirement for holding all relevant 2-D planes in chunk memory, according
to the chunk ordering of 1 to 64, is as follows: 40 × 400 (for the whole AB plane) +
40 × 1000 (for one column of the AC plane) + 100 × 1000 (for one BC plane chunk) =
16,000 + 40,000 + 100,000 = 156,000 memory units.

Suppose, instead, that the chunks are scanned in the order 1, 17, 33, 49, 5, 21, 37, 53,
and so on. That is, suppose the scan is in the order of first aggregating toward the AB
plane, and then toward the AC plane, and lastly toward the BC plane. The minimum
memory requirement for holding 2-D planes in chunk memory would be as follows:
400 × 4000 (for the whole BC plane) + 10 × 4000 (for one AC plane row) + 10 × 100
(for one AB plane chunk) = 1,600,000 + 40,000 + 1000 = 1,641,000 memory units.
Notice that this is more than 10 times the memory requirement of the scan ordering of
1 to 64.

Similarly, we can work out the minimum memory requirements for the multiway
computation of the 1-D and 0-D cuboids. Figure 5.4 shows the most efficient way to
compute 1-D cuboids. Chunks for 1-D cuboids A and B are computed during the com-
putation of the smallest 2-D cuboid, AB. The smallest 1-D cuboid, A, will have all of
its chunks allocated in memory, whereas the larger 1-D cuboid, B, will have only one
chunk allocated in memory at a time. Similarly, chunk C is computed during the com-
putation of the second smallest 2-D cuboid, AC, requiring only one chunk in memory
at a time. Based on this analysis, we see that the most efficient ordering in this array
cube computation is the chunk ordering of 1 to 64, with the stated memory allocation
strategy.

Example 5.4 assumes that there is enough memory space for one-pass cube compu-
tation (i.e., to compute all of the cuboids from one scan of all the chunks). If there is
insufficient memory space, the computation will require more than one pass through
the 3-D array. In such cases, however, the basic principle of ordered chunk computation
remains the same. MultiWay is most effective when the product of the cardinalities of
dimensions is moderate and the data are not too sparse. When the dimensionality is high
or the data are very sparse, the in-memory arrays become too large to fit in memory, and
this method becomes infeasible.

With the use of appropriate sparse array compression techniques and careful order-
ing of the computation of cuboids, it has been shown by experiments that MultiWay
array cube computation is significantly faster than traditional ROLAP (relational record-
based) computation. Unlike ROLAP, the array structure of MultiWay does not require
saving space to store search keys. Furthermore, MultiWay uses direct array addressing,
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Figure 5.4 Memory allocation and computation order for computing Example 5.4’s 1-D cuboids.
(a) The 1-D cuboids, A and B, are aggregated during the computation of the smallest 2-D
cuboid, AB. (b) The 1-D cuboid, C, is aggregated during the computation of the second
smallest 2-D cuboid, AC. The ∗’s represent chunks that, so far, have been aggregated to.

which is faster than ROLAP’s key-based addressing search strategy. For ROLAP cube
computation, instead of cubing a table directly, it can be faster to convert the table
to an array, cube the array, and then convert the result back to a table. However,
this observation works only for cubes with a relatively small number of dimensions,
because the number of cuboids to be computed is exponential to the number of
dimensions.

“What would happen if we tried to use MultiWay to compute iceberg cubes?” Remember
that the Apriori property states that if a given cell does not satisfy minimum support,
then neither will any of its descendants. Unfortunately, MultiWay’s computation starts
from the base cuboid and progresses upward toward more generalized, ancestor cuboids.
It cannot take advantage of Apriori pruning, which requires a parent node to be com-
puted before its child (i.e., more specific) nodes. For example, if the count of a cell c in,
say, AB, does not satisfy the minimum support specified in the iceberg condition, we
cannot prune away cell c, because the count of c’s ancestors in the A or B cuboids may
be greater than the minimum support, and their computation will need aggregation
involving the count of c.
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5.2.2 BUC: Computing Iceberg Cubes from the Apex
Cuboid Downward

BUC is an algorithm for the computation of sparse and iceberg cubes. Unlike MultiWay,
BUC constructs the cube from the apex cuboid toward the base cuboid. This allows BUC
to share data partitioning costs. This processing order also allows BUC to prune during
construction, using the Apriori property.

Figure 5.5 shows a lattice of cuboids, making up a 3-D data cube with the dimensions
A, B, and C. The apex (0-D) cuboid, representing the concept all (i.e., (∗, ∗ , ∗)), is at
the top of the lattice. This is the most aggregated or generalized level. The 3-D base
cuboid, ABC, is at the bottom of the lattice. It is the least aggregated (most detailed or
specialized) level. This representation of a lattice of cuboids, with the apex at the top
and the base at the bottom, is commonly accepted in data warehousing. It consolidates
the notions of drill-down (where we can move from a highly aggregated cell to lower,
more detailed cells) and roll-up (where we can move from detailed, low-level cells to
higher-level, more aggregated cells).

BUC stands for “Bottom-Up Construction.” However, according to the lattice con-
vention described before and used throughout this book, the BUC processing order
is actually top-down! The BUC authors view a lattice of cuboids in the reverse order,

ABC

AB AC BC

B

all

A C

Figure 5.5 BUC’s exploration for a 3-D data cube computation. Note that the computation starts from
the apex cuboid.
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with the apex cuboid at the bottom and the base cuboid at the top. In that view, BUC
does bottom-up construction. However, because we adopt the application worldview
where drill-down refers to drilling from the apex cuboid down toward the base cuboid,
the exploration process of BUC is regarded as top-down. BUC’s exploration for the
computation of a 3-D data cube is shown in Figure 5.5.

The BUC algorithm is shown on the next page in Figure 5.6. We first give an expla-
nation of the algorithm and then follow up with an example. Initially, the algorithm is
called with the input relation (set of tuples). BUC aggregates the entire input (line 1)
and writes the resulting total (line 3). (Line 2 is an optimization feature that is discussed
later in our example.) For each dimension d (line 4), the input is partitioned on d (line
6). On return from Partition(), dataCount contains the total number of tuples for each
distinct value of dimension d. Each distinct value of d forms its own partition. Line 8
iterates through each partition. Line 10 tests the partition for minimum support. That
is, if the number of tuples in the partition satisfies (i.e., is ≥) the minimum support,
then the partition becomes the input relation for a recursive call made to BUC, which
computes the iceberg cube on the partitions for dimensions d + 1 to numDims (line 12).

Note that for a full cube (i.e., where minimum support in the having clause is 1), the
minimum support condition is always satisfied. Thus, the recursive call descends one
level deeper into the lattice. On return from the recursive call, we continue with the next
partition for d. After all the partitions have been processed, the entire process is repeated
for each of the remaining dimensions.

Example 5.5 BUC construction of an iceberg cube. Consider the iceberg cube expressed in SQL as
follows:

compute cube iceberg cube as
select A, B, C, D, count(*)
from R
cube by A, B, C, D
having count(*) >= 3

Let’s see how BUC constructs the iceberg cube for the dimensions A, B, C, and D, where
3 is the minimum support count. Suppose that dimension A has four distinct values,
a1, a2, a3, a4; B has four distinct values, b1, b2, b3, b4; C has two distinct values, c1, c2;
and D has two distinct values, d1, d2. If we consider each group-by to be a partition,
then we must compute every combination of the grouping attributes that satisfy the
minimum support (i.e., that have three tuples).

Figure 5.7 illustrates how the input is partitioned first according to the different attri-
bute values of dimension A, and then B, C, and D. To do so, BUC scans the input,
aggregating the tuples to obtain a count for all, corresponding to the cell (∗, ∗ , ∗ , ∗).
Dimension A is used to split the input into four partitions, one for each distinct value of
A. The number of tuples (counts) for each distinct value of A is recorded in dataCount.

BUC uses the Apriori property to save time while searching for tuples that satisfy
the iceberg condition. Starting with A dimension value, a1, the a1 partition is aggre-
gated, creating one tuple for the A group-by, corresponding to the cell (a1, ∗ , ∗ , ∗).
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Algorithm: BUC. Algorithm for the computation of sparse and iceberg cubes.

Input:

input : the relation to aggregate;

dim: the starting dimension for this iteration.

Globals:

constant numDims: the total number of dimensions;

constant cardinality[numDims]: the cardinality of each dimension;

constant min sup: the minimum number of tuples in a partition for it to be output;

outputRec: the current output record;

dataCount[numDims]: stores the size of each partition. dataCount[i] is a list of integers
of size cardinality[i].

Output: Recursively output the iceberg cube cells satisfying the minimum support.

Method:

(1) Aggregate(input); // Scan input to compute measure, e.g., count. Place result in outputRec.
(2) if input.count() == 1 then // Optimization

WriteDescendants(input[0], dim); return;
endif

(3) write outputRec;
(4) for (d = dim; d < numDims; d + +) do //Partition each dimension
(5) C = cardinality[d];
(6) Partition(input, d, C, dataCount[d]); //create C partitions of data for dimension d
(7) k = 0;
(8) for (i = 0; i < C; i + +) do // for each partition (each value of dimension d)
(9) c = dataCount[d][i];
(10) if c >= min sup then // test the iceberg condition
(11) outputRec.dim[d] = input[k].dim[d];
(12) BUC(input[k..k + c − 1], d + 1); // aggregate on next dimension
(13) endif
(14) k +=c;
(15) endfor
(16) outputRec.dim[d] = all;
(17) endfor

Figure 5.6 BUC algorithm for sparse or iceberg cube computation. Source: Beyer and Ramakrishnan
[BR99].

Suppose (a1, ∗ , ∗ , ∗) satisfies the minimum support, in which case a recursive call is
made on the partition for a1. BUC partitions a1 on the dimension B. It checks the count
of (a1, b1, ∗ , ∗) to see if it satisfies the minimum support. If it does, it outputs the aggre-
gated tuple to the AB group-by and recurses on (a1, b1, ∗ , ∗) to partition on C, starting
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c2

c1

d1 d2

b1a1

a2

a3

a4

b2

b3

b4

Figure 5.7 BUC partitioning snapshot given an example 4-D data set.

with c1. Suppose the cell count for (a1, b1, c1, ∗) is 2, which does not satisfy the mini-
mum support. According to the Apriori property, if a cell does not satisfy the minimum
support, then neither can any of its descendants. Therefore, BUC prunes any further
exploration of (a1, b1, c1, ∗). That is, it avoids partitioning this cell on dimension D. It
backtracks to the a1, b1 partition and recurses on (a1, b1, c2, ∗), and so on. By checking
the iceberg condition each time before performing a recursive call, BUC saves a great
deal of processing time whenever a cell’s count does not satisfy the minimum support.

The partition process is facilitated by a linear sorting method, CountingSort. Count-
ingSort is fast because it does not perform any key comparisons to find partition
boundaries. In addition, the counts computed during the sort can be reused to com-
pute the group-by’s in BUC. Line 2 is an optimization for partitions having a count of 1
such as (a1, b2, ∗ , ∗) in our example. To save on partitioning costs, the count is written
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to each of the tuple’s descendant group-by’s. This is particularly useful since, in practice,
many partitions have a single tuple.

The BUC performance is sensitive to the order of the dimensions and to skew in the
data. Ideally, the most discriminating dimensions should be processed first. Dimensions
should be processed in the order of decreasing cardinality. The higher the cardinality,
the smaller the partitions, and thus the more partitions there will be, thereby providing
BUC with a greater opportunity for pruning. Similarly, the more uniform a dimension
(i.e., having less skew), the better it is for pruning.

BUC’s major contribution is the idea of sharing partitioning costs. However, unlike
MultiWay, it does not share the computation of aggregates between parent and child
group-by’s. For example, the computation of cuboid AB does not help that of ABC. The
latter needs to be computed essentially from scratch.

5.2.3 Star-Cubing: Computing Iceberg Cubes Using
a Dynamic Star-Tree Structure

In this section, we describe the Star-Cubing algorithm for computing iceberg cubes.
Star-Cubing combines the strengths of the other methods we have studied up to this
point. It integrates top-down and bottom-up cube computation and explores both
multidimensional aggregation (similar to MultiWay) and Apriori-like pruning (simi-
lar to BUC). It operates from a data structure called a star-tree, which performs lossless
data compression, thereby reducing the computation time and memory requirements.

The Star-Cubing algorithm explores both the bottom-up and top-down computa-
tion models as follows: On the global computation order, it uses the bottom-up model.
However, it has a sublayer underneath based on the top-down model, which explores the
notion of shared dimensions, as we shall see in the following. This integration allows the
algorithm to aggregate on multiple dimensions while still partitioning parent group-by’s
and pruning child group-by’s that do not satisfy the iceberg condition.

Star-Cubing’s approach is illustrated in Figure 5.8 for a 4-D data cube computation.
If we were to follow only the bottom-up model (similar to MultiWay), then the cuboids
marked as pruned by Star-Cubing would still be explored. Star-Cubing is able to prune
the indicated cuboids because it considers shared dimensions. ACD/A means cuboid
ACD has shared dimension A, ABD/AB means cuboid ABD has shared dimension AB,
ABC/ABC means cuboid ABC has shared dimension ABC, and so on. This comes from
the generalization that all the cuboids in the subtree rooted at ACD include dimension
A, all those rooted at ABD include dimensions AB, and all those rooted at ABC include
dimensions ABC (even though there is only one such cuboid). We call these common
dimensions the shared dimensions of those particular subtrees.

The introduction of shared dimensions facilitates shared computation. Because the
shared dimensions are identified early on in the tree expansion, we can avoid recom-
puting them later. For example, cuboid AB extending from ABD in Figure 5.8 would
actually be pruned because AB was already computed in ABD/AB. Similarly, cuboid
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all

Figure 5.8 Star-Cubing: bottom-up computation with top-down expansion of shared dimensions.

A extending from AD would also be pruned because it was already computed in
ACD/A.

Shared dimensions allow us to do Apriori-like pruning if the measure of an iceberg
cube, such as count, is antimonotonic. That is, if the aggregate value on a shared dimen-
sion does not satisfy the iceberg condition, then all the cells descending from this shared
dimension cannot satisfy the iceberg condition either. These cells and their descendants
can be pruned because these descendant cells are, by definition, more specialized (i.e.,
contain more dimensions) than those in the shared dimension(s). The number of tuples
covered by the descendant cells will be less than or equal to the number of tuples covered
by the shared dimensions. Therefore, if the aggregate value on a shared dimension fails
the iceberg condition, the descendant cells cannot satisfy it either.

Example 5.6 Pruning shared dimensions. If the value in the shared dimension A is a1 and it fails
to satisfy the iceberg condition, then the whole subtree rooted at a1CD/a1 (including
a1C/a1C, a1D/a1, a1/a1) can be pruned because they are all more specialized versions
of a1.

To explain how the Star-Cubing algorithm works, we need to explain a few more
concepts, namely, cuboid trees, star-nodes, and star-trees.

We use trees to represent individual cuboids. Figure 5.9 shows a fragment of the
cuboid tree of the base cuboid, ABCD. Each level in the tree represents a dimension, and
each node represents an attribute value. Each node has four fields: the attribute value,
aggregate value, pointer to possible first child, and pointer to possible first sibling. Tuples
in the cuboid are inserted one by one into the tree. A path from the root to a leaf node
represents a tuple. For example, node c2 in the tree has an aggregate (count) value of 5,
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a1:30 a2:20 a3:20 a4:20

b1:10 b2:10 b3:10

c1:5 c2:5

d2:3d1:2

Figure 5.9 Base cuboid tree fragment.

which indicated that there are five tuples of value (a1, b1, c2, ∗). This representation col-
lapses the common prefixes to save memory usage and allows us to aggregate the values
at internal nodes. With aggregate values at internal nodes, we can prune based on shared
dimensions. For example, the AB cuboid tree can be used to prune possible cells in ABD.

If the single-dimensional aggregate on an attribute value p does not satisfy the iceberg
condition, it is useless to distinguish such nodes in the iceberg cube computation. Thus,
the node p can be replaced by ∗ so that the cuboid tree can be further compressed. We
say that the node p in an attribute A is a star-node if the single-dimensional aggregate
on p does not satisfy the iceberg condition; otherwise, p is a non-star-node. A cuboid tree
that is compressed using star-nodes is called a star-tree.

Example 5.7 Star-tree construction. A base cuboid table is shown in Table 5.1. There are five tuples
and four dimensions. The cardinalities for dimensions A, B, C, D are 2, 4, 4, 4, respec-
tively. The one-dimensional aggregates for all attributes are shown in Table 5.2. Suppose
min sup = 2 in the iceberg condition. Clearly, only attribute values a1, a2, b1, c3, d4 satisfy
the condition. All other values are below the threshold and thus become star-nodes. By
collapsing star-nodes, the reduced base table is Table 5.3. Notice that the table contains
two fewer rows and also fewer distinct values than Table 5.1.

Table 5.1 Base (Cuboid) Table: Before Star
Reduction

A B C D count

a1 b1 c1 d1 1

a1 b1 c4 d3 1

a1 b2 c2 d2 1

a2 b3 c3 d4 1

a2 b4 c3 d4 1
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Table 5.2 One-Dimensional Aggregates

Dimension count = 1 count ≥ 2

A — a1(3), a2(2)

B b2, b3, b4 b1(2)

C c1, c2, c4 c3(2)

D d1, d2, d3 d4(2)

Table 5.3 Compressed Base Table: After Star Reduction

A B C D count

a1 b1 ∗ ∗ 2

a1 ∗ ∗ ∗ 1

a2 ∗ c3 d4 2

root:5

b*:1 b1:2 b*:2

a1:3 a2:2

c*:1 c*:2 c3:2

d*:1 d*:2 d4:2

Figure 5.10 Compressed base table star-tree.

We use the reduced base table to construct the cuboid tree because it is smaller. The
resultant star-tree is shown in Figure 5.10.

Now, let’s see how the Star-Cubing algorithm uses star-trees to compute an iceberg
cube. The algorithm is given later in Figure 5.13.

Example 5.8 Star-Cubing. Using the star-tree generated in Example 5.7 (Figure 5.10), we start the
aggregation process by traversing in a bottom-up fashion. Traversal is depth-first. The
first stage (i.e., the processing of the first branch of the tree) is shown in Figure 5.11.
The leftmost tree in the figure is the base star-tree. Each attribute value is shown with its
corresponding aggregate value. In addition, subscripts by the nodes in the tree show the
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traversal order. The remaining four trees are BCD, ACD/A, ABD/AB, and ABC/ABC.
They are the child trees of the base star-tree, and correspond to the level of 3-D cuboids
above the base cuboid in Figure 5.8. The subscripts in them correspond to the same
subscripts in the base tree—they denote the step or order in which they are created
during the tree traversal. For example, when the algorithm is at step 1, the BCD child
tree root is created. At step 2, the ACD/A child tree root is created. At step 3, the ABD/AB
tree root and the b∗ node in BCD are created.

When the algorithm has reached step 5, the trees in memory are exactly as shown
in Figure 5.11. Because depth-first traversal has reached a leaf at this point, it starts
backtracking. Before traversing back, the algorithm notices that all possible nodes in the
base dimension (ABC) have been visited. This means the ABC/ABC tree is complete, so
the count is output and the tree is destroyed. Similarly, upon moving back from d∗ to
c∗ and seeing that c∗ has no siblings, the count in ABD/AB is also output and the tree
is destroyed.

When the algorithm is at b∗ during the backtraversal, it notices that there exists a
sibling in b1. Therefore, it will keep ACD/A in memory and perform a depth-first search

b*:13

b*:13

c*:14

c*:14

c*:14

d*:2

c*:2

b*:2

d4:2

c3:2

b1:2

a1:32 a2:2

root:51

d*:15

d*:15

BCD–Tree

BCD:51 a1CD/a1:32 a1b*D/a1b*:13 a1b*c*/a1b*c*:14

Base Tree ACD/A–Tree ABD/AB–Tree ABC/ABC–Tree

d*:15

d*:15

Figure 5.11 Aggregation stage one: processing the leftmost branch of the base tree.

x b*:2

d4:2

c3:2

a1:32

b1:26

c*:27

d*:28

a2:2

root:51 a1b1c*/a1b1c*:27

Base Tree

c*:37

d*:38

a1CD/a1:32

ACD/A–Tree

d*:28

a1b1D/a1b1:26

ABD/AB–Tree ABC/ABC–Tree

b*:13

c*:14 c*:27

b1:26

d*:15

BCD–Tree

BCD:51

d*:28

Figure 5.12 Aggregation stage two: processing the second branch of the base tree.
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Algorithm: Star-Cubing. Compute iceberg cubes by Star-Cubing.

Input:

R: a relational table

min support : minimum support threshold for the iceberg condition (taking count
as the measure).

Output: The computed iceberg cube.

Method: Each star-tree corresponds to one cuboid tree node, and vice versa.

BEGIN
scan R twice, create star-table S and star-tree T ;

output count of T.root ;

call starcubing(T, T.root);

END

procedure starcubing(T, cnode)// cnode: current node

{
(1) for each non-null child C of T ’s cuboid tree

(2) insert or aggregate cnode to the corresponding

position or node in C’s star-tree;

(3) if (cnode.count ≥ min support) then {
(4) if (cnode �= root) then
(5) output cnode.count;

(6) if (cnode is a leaf) then
(7) output cnode.count;

(8) else { // initiate a new cuboid tree

(9) create CC as a child of T ’s cuboid tree;

(10) let TC be CC ’s star-tree;

(11) TC .root ’s count = cnode.count ;

(12) }
(13) }
(14) if (cnode is not a leaf) then
(15) starcubing(T, cnode.first child);

(16) if (CC is not null) then {
(17) starcubing(TC ,TC .root);

(18) remove CC from T ’s cuboid tree; }
(19) if (cnode has sibling) then
(20) starcubing(T, cnode.sibling);

(21) remove T ;

}

Figure 5.13 Star-Cubing algorithm.
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on b1 just as it did on b∗. This traversal and the resultant trees are shown in Figure 5.12.
The child trees ABD/AB and ABC/ABC are created again but now with the new values
from the b1 subtree. For example, notice that the aggregate count of c∗ in the ACD/A
tree has increased from 1 to 3. The trees that remained intact during the last traversal
are reused and the new aggregate values are added on. For instance, another branch is
added to the BCD tree.

Just like before, the algorithm will reach a leaf node at d∗ and traverse back. This
time, it will reach a1 and notice that there exists a sibling in a2. In this case, all child
trees except BCD in Figure 5.12 are destroyed. Afterward, the algorithm will perform
the same traversal on a2. BCD continues to grow while the other subtrees start fresh
with a2 instead of a1.

A node must satisfy two conditions in order to generate child trees: (1) the measure
of the node must satisfy the iceberg condition; and (2) the tree to be generated must
include at least one non-star-node (i.e., nontrivial). This is because if all the nodes were
star-nodes, then none of them would satisfy min sup. Therefore, it would be a complete
waste to compute them. This pruning is observed in Figures 5.11 and 5.12. For example,
the left subtree extending from node a1 in the base tree in Figure 5.11 does not include
any nonstar-nodes. Therefore, the a1CD/a1 subtree should not have been generated. It
is shown, however, for illustration of the child tree generation process.

Star-Cubing is sensitive to the ordering of dimensions, as with other iceberg cube
construction algorithms. For best performance, the dimensions are processed in order
of decreasing cardinality. This leads to a better chance of early pruning, because the
higher the cardinality, the smaller the partitions, and therefore the higher possibility
that the partition will be pruned.

Star-Cubing can also be used for full cube computation. When computing the full
cube for a dense data set, Star-Cubing’s performance is comparable with MultiWay and
is much faster than BUC. If the data set is sparse, Star-Cubing is significantly faster
than MultiWay and faster than BUC, in most cases. For iceberg cube computation, Star-
Cubing is faster than BUC, where the data are skewed and the speed-up factor increases
as min sup decreases.

5.2.4 Precomputing Shell Fragments for Fast
High-Dimensional OLAP

Recall the reason that we are interested in precomputing data cubes: Data cubes facil-
itate fast OLAP in a multidimensional data space. However, a full data cube of high
dimensionality needs massive storage space and unrealistic computation time. Iceberg
cubes provide a more feasible alternative, as we have seen, wherein the iceberg con-
dition is used to specify the computation of only a subset of the full cube’s cells.
However, although an iceberg cube is smaller and requires less computation time than
its corresponding full cube, it is not an ultimate solution.

For one, the computation and storage of the iceberg cube can still be costly. For exam-
ple, if the base cuboid cell, (a1, a2, . . . , a60), passes minimum support (or the iceberg
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threshold), it will generate 260 iceberg cube cells. Second, it is difficult to determine an
appropriate iceberg threshold. Setting the threshold too low will result in a huge cube,
whereas setting the threshold too high may invalidate many useful applications. Third,
an iceberg cube cannot be incrementally updated. Once an aggregate cell falls below
the iceberg threshold and is pruned, its measure value is lost. Any incremental update
would require recomputing the cells from scratch. This is extremely undesirable for large
real-life applications where incremental appending of new data is the norm.

One possible solution, which has been implemented in some commercial data ware-
house systems, is to compute a thin cube shell. For example, we could compute all
cuboids with three dimensions or less in a 60-dimensional data cube, resulting in a cube
shell of size 3. The resulting cuboids set would require much less computation and stor-
age than the full 60-dimensional data cube. However, there are two disadvantages to
this approach. First, we would still need to compute

(60
3

) + (60
2

) + 60 = 36,050 cuboids,
each with many cells. Second, such a cube shell does not support high-dimensional
OLAP because (1) it does not support OLAP on four or more dimensions, and (2) it
cannot even support drilling along three dimensions, such as, say, (A4, A5, A6), on a sub-
set of data selected based on the constants provided in three other dimensions, such as
(A1, A2, A3), because this essentially requires the computation of the corresponding 6-D
cuboid. (Notice that there is no cell in cuboid (A4, A5, A6) computed for any particular
constant set, such as (a1, a2, a3), associated with dimensions (A1, A2, A3).)

Instead of computing a cube shell, we can compute only portions or fragments of it.
This section discusses the shell fragment approach for OLAP query processing. It is based
on the following key observation about OLAP in high-dimensional space. Although a
data cube may contain many dimensions, most OLAP operations are performed on only a
small number of dimensions at a time. In other words, an OLAP query is likely to ignore
many dimensions (i.e., treating them as irrelevant), fix some dimensions (e.g., using
query constants as instantiations), and leave only a few to be manipulated (for drilling,
pivoting, etc.). This is because it is neither realistic nor fruitful for anyone to compre-
hend the changes of thousands of cells involving tens of dimensions simultaneously in a
high-dimensional space at the same time.

Instead, it is more natural to first locate some cuboids of interest and then drill
along one or two dimensions to examine the changes of a few related dimensions.
Most analysts will only need to examine, at any one moment, the combinations of a
small number of dimensions. This implies that if multidimensional aggregates can be
computed quickly on a small number of dimensions inside a high-dimensional space, we
may still achieve fast OLAP without materializing the original high-dimensional data
cube. Computing the full cube (or, often, even an iceberg cube or cube shell) can be
excessive. Instead, a semi-online computation model with certain preprocessing may offer
a more feasible solution. Given a base cuboid, some quick preparation computation can
be done first (i.e., offline). After that, a query can then be computed online using the
preprocessed data.

The shell fragment approach follows such a semi-online computation strategy. It
involves two algorithms: one for computing cube shell fragments and the other for query
processing with the cube fragments. The shell fragment approach can handle databases



212 Chapter 5 Data Cube Technology

Table 5.4 Original Database

TID A B C D E

1 a1 b1 c1 d1 e1

2 a1 b2 c1 d2 e1

3 a1 b2 c1 d1 e2

4 a2 b1 c1 d1 e2

5 a2 b1 c1 d1 e3

of high dimensionality and can quickly compute small local cubes online. It explores the
inverted index data structure, which is popular in information retrieval and Web-based
information systems.

The basic idea is as follows. Given a high-dimensional data set, we partition the
dimensions into a set of disjoint dimension fragments, convert each fragment into its
corresponding inverted index representation, and then construct cube shell fragments
while keeping the inverted indices associated with the cube cells. Using the precom-
puted cubes’ shell fragments, we can dynamically assemble and compute cuboid cells of
the required data cube online. This is made efficient by set intersection operations on
the inverted indices.

To illustrate the shell fragment approach, we use the tiny database of Table 5.4 as a
running example. Let the cube measure be count(). Other measures will be discussed
later. We first look at how to construct the inverted index for the given database.

Example 5.9 Construct the inverted index. For each attribute value in each dimension, list the tuple
identifiers (TIDs) of all the tuples that have that value. For example, attribute value a2

appears in tuples 4 and 5. The TID list for a2 then contains exactly two items, namely 4
and 5. The resulting inverted index table is shown in Table 5.5. It retains all the original
database’s information. If each table entry takes one unit of memory, Tables 5.4 and 5.5
each takes 25 units, that is, the inverted index table uses the same amount of memory as
the original database.

“How do we compute shell fragments of a data cube?” The shell fragment com-
putation algorithm, Frag-Shells, is summarized in Figure 5.14. We first partition all
the dimensions of the given data set into independent groups of dimensions, called
fragments (line 1). We scan the base cuboid and construct an inverted index for
each attribute (lines 2 to 6). Line 3 is for when the measure is other than the tuple
count(), which will be described later. For each fragment, we compute the full local
(i.e., fragment-based) data cube while retaining the inverted indices (lines 7 to 8).
Consider a database of 60 dimensions, namely, A1, A2, . . . , A60. We can first parti-
tion the 60 dimensions into 20 fragments of size 3: (A1, A2, A3), (A4, A5, A6), . . .,
(A58, A59, A60). For each fragment, we compute its full data cube while record-
ing the inverted indices. For example, in fragment (A1, A2, A3), we would compute
seven cuboids: A1, A2, A3, A1A2, A2A3, A1A3, A1A2A3. Furthermore, an inverted index
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Table 5.5 Inverted Index

Attribute Value TID List List Size

a1 {1, 2, 3} 3

a2 {4, 5} 2

b1 {1, 4, 5} 3

b2 {2, 3} 2

c1 {1, 2, 3, 4, 5} 5

d1 {1, 3, 4, 5} 4

d2 {2} 1

e1 {1, 2} 2

e2 {3, 4} 2

e3 {5} 1

Algorithm: Frag-Shells. Compute shell fragments on a given high-dimensional base table
(i.e., base cuboid).

Input: A base cuboid, B, of n dimensions, namely, (A1, . . . ,An).

Output:

a set of fragment partitions, {P1, . . . ,Pk}, and their corresponding (local) fragment
cubes, {S1, . . . , Sk}, where Pi represents some set of dimension(s) and P1 ∪ . . . ∪ Pk

make up all the n dimensions

an ID measure array if the measure is not the tuple count, count()

Method:

(1) partition the set of dimensions (A1, . . . , An) into
a set of k fragments P1, . . . , Pk (based on data & query distribution)

(2) scan base cuboid, B, once and do the following {
(3) insert each 〈TID, measure〉 into ID measure array
(4) for each attribute value aj of each dimension Ai

(5) build an inverted index entry: 〈aj , TIDlist〉
(6) }
(7) for each fragment partition Pi

(8) build a local fragment cube, Si , by intersecting their
corresponding TIDlists and computing their measures

Figure 5.14 Shell fragment computation algorithm.

is retained for each cell in the cuboids. That is, for each cell, its associated TID list is
recorded.

The benefit of computing local cubes of each shell fragment instead of comput-
ing the complete cube shell can be seen by a simple calculation. For a base cuboid of
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60 dimensions, there are only 7 × 20 = 140 cuboids to be computed according to the
preceding shell fragment partitioning. This is in contrast to the 36,050 cuboids com-
puted for the cube shell of size 3 described earlier! Notice that the above fragment
partitioning is based simply on the grouping of consecutive dimensions. A more desir-
able approach would be to partition based on popular dimension groupings. This
information can be obtained from domain experts or the past history of OLAP queries.

Let’s return to our running example to see how shell fragments are computed.

Example 5.10 Compute shell fragments. Suppose we are to compute the shell fragments of size 3.
We first divide the five dimensions into two fragments, namely (A, B, C) and (D, E).
For each fragment, we compute the full local data cube by intersecting the TID lists in
Table 5.5 in a top-down depth-first order in the cuboid lattice. For example, to compute
the cell (a1, b2,∗), we intersect the TID lists of a1 and b2 to obtain a new list of {2, 3}.
Cuboid AB is shown in Table 5.6.

After computing cuboid AB, we can then compute cuboid ABC by intersecting all
pairwise combinations between Table 5.6 and the row c1 in Table 5.5. Notice that because
cell (a2, b2) is empty, it can be effectively discarded in subsequent computations, based
on the Apriori property. The same process can be applied to compute fragment (D, E),
which is completely independent from computing (A, B, C). Cuboid DE is shown in
Table 5.7.

If the measure in the iceberg condition is count() (as in tuple counting), there is
no need to reference the original database for this because the length of the TID list is
equivalent to the tuple count. “Do we need to reference the original database if computing
other measures such as average()?” Actually, we can build and reference an ID measure

Table 5.6 Cuboid AB

Cell Intersection TID List List Size

(a1, b1) {1, 2, 3} ∩ {1, 4, 5} {1} 1

(a1, b2) {1, 2, 3} ∩ {2, 3} {2, 3} 2

(a2, b1) {4, 5} ∩ {1, 4, 5} {4, 5} 2

(a2, b2) {4, 5} ∩ {2, 3} {} 0

Table 5.7 Cuboid DE

Cell Intersection TID List List Size

(d1, e1) {1, 3, 4, 5} ∩ {1, 2} {1} 1

(d1, e2) {1, 3, 4, 5} ∩ {3, 4} {3, 4} 2

(d1, e3) {1, 3, 4, 5} ∩ {5} {5} 1

(d2, e1) {2} ∩ {1, 2} {2} 1
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array instead, which stores what we need to compute other measures. For example,
to compute average(), we let the ID measure array hold three elements, namely, (TID,
item count, sum), for each cell (line 3 of the shell fragment computation algorithm in
Figure 5.14). The average() measure for each aggregate cell can then be computed by
accessing only this ID measure array, using sum()/item count(). Considering a database
with 106 tuples, each taking 4 bytes each for TID, item count, and sum, the ID measure
array requires 12 MB, whereas the corresponding database of 60 dimensions will require
(60 + 3) × 4 × 106 = 252 MB (assuming each attribute value takes 4 bytes). Obviously,
ID measure array is a more compact data structure and is more likely to fit in memory
than the corresponding high-dimensional database.

To illustrate the design of the ID measure array, let’s look at Example 5.11.

Example 5.11 Computing cubes with the average() measure. Table 5.8 shows an example sales
database where each tuple has two associated values, such as item count and sum, where
item count is the count of items sold.

To compute a data cube for this database with the measure average(), we need to have
a TID list for each cell: {TID1, . . . ,TIDn}. Because each TID is uniquely associated with a
particular set of measure values, all future computation just needs to fetch the measure
values associated with the tuples in the list. In other words, by keeping an ID measure
array in memory for online processing, we can handle complex algebraic measures, such
as average, variance, and standard deviation. Table 5.9 shows what exactly should be kept
for our example, which is substantially smaller than the database itself.

Table 5.8 Database with Two Measure Values

TID A B C D E item count sum

1 a1 b1 c1 d1 e1 5 70

2 a1 b2 c1 d2 e1 3 10

3 a1 b2 c1 d1 e2 8 20

4 a2 b1 c1 d1 e2 5 40

5 a2 b1 c1 d1 e3 2 30

Table 5.9 Table 5.8 ID measure Array

TID item count sum

1 5 70

2 3 10

3 8 20

4 5 40

5 2 30
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The shell fragments are negligible in both storage space and computation time in
comparison with the full data cube. Note that we can also use the Frag-Shells algorithm
to compute the full data cube by including all the dimensions as a single fragment.
Because the order of computation with respect to the cuboid lattice is top-down and
depth-first (similar to that of BUC), the algorithm can perform Apriori pruning if
applied to the construction of iceberg cubes.

“Once we have computed the shell fragments, how can they be used to answer OLAP
queries?” Given the precomputed shell fragments, we can view the cube space as a virtual
cube and perform OLAP queries related to the cube online. In general, two types of
queries are possible: (1) point query and (2) subcube query.

In a point query, all of the relevant dimensions in the cube have been instantiated
(i.e., there are no inquired dimensions in the relevant dimensions set). For example,
in an n-dimensional data cube, A1A2 . . .An, a point query could be in the form of
〈A1, A5, A9 : M?〉, where A1 = {a11, a18}, A5 = {a52, a55, a59}, A9 = a94, and M is the
inquired measure for each corresponding cube cell. For a cube with a small number
of dimensions, we can use ∗ to represent a “don’t care” position where the correspond-
ing dimension is irrelevant, that is, neither inquired nor instantiated. For example, in the
query 〈a2, b1, c1, d1, ∗ :count()?〉 for the database in Table 5.4, the first four dimension
values are instantiated to a2, b1, c1, and d1, respectively, while the last dimension is
irrelevant, and count() (which is the tuple count by context) is the inquired measure.

In a subcube query, at least one of the relevant dimensions in the cube is inquired.
For example, in an n-dimensional data cube A1A2 . . .An, a subcube query could be in the
form 〈A1, A5?, A9, A21? : M?〉, where A1 = {a11, a18} and A9 = a94, A5 and A21 are the
inquired dimensions, and M is the inquired measure. For a cube with a small number
of dimensions, we can use ∗ for an irrelevant dimension and ? for an inquired one. For
example, in the query 〈a2, ?, c1, ∗ , ? : count() ?〉 we see that the first and third dimension
values are instantiated to a2 and c1, respectively, while the fourth is irrelevant, and the
second and the fifth are inquired. A subcube query computes all possible value combina-
tions of the inquired dimensions. It essentially returns a local data cube consisting of the
inquired dimensions.

“How can we use shell fragments to answer a point query?” Because a point query
explicitly provides the instantiated variables set on the relevant dimensions set, we can
make maximal use of the precomputed shell fragments by finding the best fitting (i.e.,
dimension-wise completely matching) fragments to fetch and intersect the associated
TID lists.

Let the point query be of the form 〈αi , αj , αk , αp : M?〉, where αi represents a set of
instantiated values of dimension Ai , and so on for αj , αk , and αp. First, we check the
shell fragment schema to determine which dimensions among Ai , Aj , Ak , and Ap are in
the same fragment(s). Suppose Ai and Aj are in the same fragment, while Ak and Ap are
in two other fragments. We fetch the corresponding TID lists on the precomputed 2-D
fragment for dimensions Ai and Aj using the instantiations αi and αj , and fetch the TID
lists on the 1-D fragments for dimensions Ak and Ap using the instantiations αk and αp,
respectively. The obtained TID lists are intersected to derive the TID list table. This table
is then used to derive the specified measure (e.g., by taking the length of the TID lists
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for tuple count(), or by fetching item count() and sum() from the ID measure array to
compute average()) for the final set of cells.

Example 5.12 Point query. Suppose a user wants to compute the point query 〈a2, b1, c1, d1, ∗: count()?〉
for our database in Table 5.4 and that the shell fragments for the partitions (A, B, C)
and (D, E) are precomputed as described in Example 5.10. The query is broken down
into two subqueries based on the precomputed fragments: 〈a2, b1, c1, ∗ , ∗〉 and 〈∗, ∗ ,
∗ , d1, ∗〉. The best-fit precomputed shell fragments for the two subqueries are ABC and
D. The fetch of the TID lists for the two subqueries returns two lists: {4, 5} and {1, 3,
4, 5}. Their intersection is the list {4, 5}, which is of size 2. Thus, the final answer is
count() = 2.

“How can we use shell fragments to answer a subcube query?” A subcube query returns
a local data cube based on the instantiated and inquired dimensions. Such a data cube
needs to be aggregated in a multidimensional way so that online analytical processing
(drilling, dicing, pivoting, etc.) can be made available to users for flexible manipulation
and analysis. Because instantiated dimensions usually provide highly selective constants
that dramatically reduce the size of the valid TID lists, we should make maximal use of
the precomputed shell fragments by finding the fragments that best fit the set of instan-
tiated dimensions, and fetching and intersecting the associated TID lists to derive the
reduced TID list. This list can then be used to intersect the best-fitting shell fragments
consisting of the inquired dimensions. This will generate the relevant and inquired base
cuboid, which can then be used to compute the relevant subcube on-the-fly using an
efficient online cubing algorithm.

Let the subcube query be of the form 〈αi , αj , Ak?, αp, Aq? : M?〉, where αi , αj , and
αp represent a set of instantiated values of dimension Ai , Aj , and Ap, respectively, and Ak

and Aq represent two inquired dimensions. First, we check the shell fragment schema
to determine which dimensions among (1) Ai , Aj , and Ap, and (2) Ak and Aq are in
the same fragment partition. Suppose Ai and Aj belong to the same fragment, as do Ak

and Aq, but that Ap is in a different fragment. We fetch the corresponding TID lists in
the precomputed 2-D fragment for Ai and Aj using the instantiations αi and αj , then
fetch the TID list on the precomputed 1-D fragment for Ap using instantiation αp, and
then fetch the TID lists on the precomputed 2-D fragments for Ak and Aq, respectively,
using no instantiations (i.e., all possible values). The obtained TID lists are intersected
to derive the final TID lists, which are used to fetch the corresponding measures from
the ID measure array to derive the “base cuboid” of a 2-D subcube for two dimensions
(Ak , Aq). A fast cube computation algorithm can be applied to compute this 2-D cube
based on the derived base cuboid. The computed 2-D cube is then ready for OLAP
operations.

Example 5.13 Subcube query. Suppose that a user wants to compute the subcube query, 〈a2, b1, ?, ∗
, ? : count()?〉, for our database shown earlier in Table 5.4, and that the shell fragments
have been precomputed as described in Example 5.10. The query can be broken into
three best-fit fragments according to the instantiated and inquired dimensions: AB, C,
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and E, where AB has the instantiation (a2, b1). The fetch of the TID lists for these parti-
tions returns (a2, b1) : {4, 5}, (c1) : {1, 2, 3, 4, 5} and {(e1 : {1, 2}), (e2 : {3, 4}), (e3 : {5})},
respectively. The intersection of these corresponding TID lists contains a cuboid with
two tuples: {(c1, e2) : {4},5 (c1, e3) : {5}}. This base cuboid can be used to compute the
2-D data cube, which is trivial.

For large data sets, a fragment size of 2 or 3 typically results in reasonable storage
requirements for the shell fragments and for fast query response time. Querying with
shell fragments is substantially faster than answering queries using precomputed data
cubes that are stored on disk. In comparison to full cube computation, Frag-Shells is
recommended if there are less than four inquired dimensions. Otherwise, more efficient
algorithms, such as Star-Cubing, can be used for fast online cube computation. Frag-
Shells can be easily extended to allow incremental updates, the details of which are left
as an exercise.

5.3 Processing Advanced Kinds of Queries
by Exploring Cube Technology

Data cubes are not confined to the simple multidimensional structure illustrated in the
last section for typical business data warehouse applications. The methods described in
this section further develop data cube technology for effective processing of advanced
kinds of queries. Section 5.3.1 explores sampling cubes. This extension of data cube
technology can be used to answer queries on sample data, such as survey data, which rep-
resent a sample or subset of a target data population of interest. Section 5.3.2 explains
how ranking cubes can be computed to answer top-k queries, such as “find the top 5
cars,” according to some user-specified criteria.

The basic data cube structure has been further extended for various sophisticated
data types and new applications. Here we list some examples, such as spatial data cubes
for the design and implementation of geospatial data warehouses, and multimedia data
cubes for the multidimensional analysis of multimedia data (those containing images
and videos). RFID data cubes handle the compression and multidimensional analy-
sis of RFID (i.e., radio-frequency identification) data. Text cubes and topic cubes were
developed for the application of vector-space models and generative language models,
respectively, in the analysis of multidimensional text databases (which contain both
structure attributes and narrative text attributes).

5.3.1 Sampling Cubes: OLAP-Based Mining
on Sampling Data

When collecting data, we often collect only a subset of the data we would ideally like
to gather. In statistics, this is known as collecting a sample of the data population.

5That is, the intersection of the TID lists for (a2, b1), (c1), and (e2) is {4}.
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The resulting data are called sample data. Data are often sampled to save on costs,
manpower, time, and materials. In many applications, the collection of the entire data
population of interest is unrealistic. In the study of TV ratings or pre-election polls, for
example, it is impossible to gather the opinion of everyone in the population. Most pub-
lished ratings or polls rely on a data sample for analysis. The results are extrapolated for
the entire population, and associated with certain statistical measures such as a confi-
dence interval. The confidence interval tells us how reliable a result is. Statistical surveys
based on sampling are a common tool in many fields like politics, healthcare, market
research, and social and natural sciences.

“How effective is OLAP on sample data?” OLAP traditionally has the full data pop-
ulation on hand, yet with sample data, we have only a small subset. If we try to apply
traditional OLAP tools to sample data, we encounter three challenges. First, sample data
are often sparse in the multidimensional sense. When a user drills down on the data, it
is easy to reach a point with very few or no samples even when the overall sample size
is large. Traditional OLAP simply uses whatever data are available to compute a query
answer. To extrapolate such an answer for a population based on a small sample could
be misleading: A single outlier or a slight bias in the sampling can distort the answer sig-
nificantly. Second, with sample data, statistical methods are used to provide a measure
of reliability (e.g., a confidence interval) to indicate the quality of the query answer as it
pertains to the population. Traditional OLAP is not equipped with such tools.

A sampling cube framework was introduced to tackle each of the preceding
challenges.

Sampling Cube Framework
The sampling cube is a data cube structure that stores the sample data and their multi-
dimensional aggregates. It supports OLAP on sample data. It calculates confidence inter-
vals as a quality measure for any multidimensional query. Given a sample data relation
(i.e., base cuboid) R, the sampling cube CR typically computes the sample mean, sample
standard deviation, and other task-specific measures.

In statistics, a confidence interval is used to indicate the reliability of an estimate.
Suppose we want to estimate the mean age of all viewers of a given TV show. We have
sample data (a subset) of this data population. Let’s say our sample mean is 35 years. This
becomes our estimate for the entire population of viewers as well, but how confident can
we be that 35 is also the mean of the true population? It is unlikely that the sample mean
will be exactly equal to the true population mean because of sampling error. Therefore,
we need to qualify our estimate in some way to indicate the general magnitude of this
error. This is typically done by computing a confidence interval, which is an estimated
value range with a given high probability of covering the true population value. A con-
fidence interval for our example could be “the actual mean will not vary by +/− two
standard deviations 95% of the time.” (Recall that the standard deviation is just a num-
ber, which can be computed as shown in Section 2.2.2.) A confidence interval is always
qualified by a particular confidence level. In our example, it is 95%.

The confidence interval is calculated as follows. Let x be a set of samples. The mean of
the samples is denoted by x̄, and the number of samples in x is denoted by l. Assuming
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that the standard deviation of the population is unknown, the sample standard deviation
of x is denoted by s. Given a desired confidence level, the confidence interval for x̄ is

x̄ ± tc σ̂x̄ , (5.1)

where tc is the critical t-value associated with the confidence level and σ̂x̄ = s√
l

is the

estimated standard error of the mean. To find the appropriate tc , specify the desired
confidence level (e.g., 95%) and also the degree of freedom, which is just l − 1.

The important thing to note is that the computation involved in computing a confi-
dence interval is algebraic. Let’s look at the three terms involved in Eq. (5.1). The first is
the mean of the sample set, x̄, which is algebraic; the second is the critical t-value, which
is calculated by a lookup, and with respect to x, it depends on l, a distributive measure;
and the third is σ̂x̄ = s√

l
, which also turns out to be algebraic if one records the linear

sum (
∑l

i=1 xi) and squared sum (
∑l

i=1 x2
i ). Because the terms involved are either alge-

braic or distributive, the confidence interval computation is algebraic. Actually, since
both the mean and confidence interval are algebraic, at every cell, exactly three values
are sufficient to calculate them—all of which are either distributive or algebraic:

1. l

2. sum = ∑l
i=1 xi

3. squared sum = ∑l
i=1 x2

i

There are many efficient techniques for computing algebraic and distributive mea-
sures (Section 4.2.4). Therefore, any of the previously developed cubing algorithms can
be used to efficiently construct a sampling cube.

Now that we have established that sampling cubes can be computed efficiently, our
next step is to find a way of boosting the confidence of results obtained for queries on
sample data.

Query Processing: Boosting Confidences
for Small Samples
A query posed against a data cube can be either a point query or a range query. With-
out loss of generality, consider the case of a point query. Here, it corresponds to a cell
in sampling cube CR. The goal is to provide an accurate point estimate for the samples
in that cell. Because the cube also reports the confidence interval associated with the
sample mean, there is some measure of “reliability” to the returned answer. If the con-
fidence interval is small, the reliability is deemed good; however, if the interval is large,
the reliability is questionable.

“What can we do to boost the reliability of query answers?” Consider what affects the
confidence interval size. There are two main factors: the variance of the sample data and
the sample size. First, a rather large variance in the cell may indicate that the chosen cube
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cell is poor for prediction. A better solution is probably to drill down on the query cell
to a more specific one (i.e., asking more specific queries). Second, a small sample size
can cause a large confidence interval. When there are very few samples, the correspond-
ing tc is large because of the small degree of freedom. This in turn could cause a large
confidence interval. Intuitively, this makes sense. Suppose one is trying to figure out the
average income of people in the United States. Just asking two or three people does not
give much confidence to the returned response.

The best way to solve this small sample size problem is to get more data. Fortunately,
there is usually an abundance of additional data available in the cube. The data do not
match the query cell exactly; however, we can consider data from cells that are “close
by.” There are two ways to incorporate such data to enhance the reliability of the query
answer: (1) intracuboid query expansion, where we consider nearby cells within the same
cuboid, and (2) intercuboid query expansion, where we consider more general versions
(from parent cuboids) of the query cell. Let’s see how this works, starting with intra-
cuboid query expansion.

Method 1. Intracuboid query expansion. Here, we expand the sample size by including
nearby cells in the same cuboid as the queried cell, as shown in Figure 5.15(a). We just
have to be careful that the new samples serve to increase the confidence in the answer
without changing the query’s semantics.

So, the first question is “Which dimensions should be expanded?” The best candidates
should be the dimensions that are uncorrelated or weakly correlated with the measure

age-occupation cuboid

(a) 

age cuboid

age-occupation cuboid

(b) 

occupation cuboid

Figure 5.15 Query expansion within sampling cube: Given small data samples, both methods use strate-
gies to boost the reliability of query answers by considering additional data cell values.
(a) Intracuboid expansion considers nearby cells in the same cuboid as the queried cell.
(b) Intercuboid expansion considers more general cells from parent cuboids.
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value (i.e., the value to be predicted). Expanding within these dimensions will likely
increase the sample size and not shift the query’s answer. Consider an example of a 2-D
query specifying education = “college” and birth month = “July.” Let the cube measure
be average income. Intuitively, education has a high correlation to income while birth
month does not. It would be harmful to expand the education dimension to include val-
ues such as “graduate” or “high school.” They are likely to alter the final result. However,
expansion in the birth month dimension to include other month values could be helpful,
because it is unlikely to change the result but will increase sampling size.

To mathematically measure the correlation of a dimension to the cube value, the
correlation between the dimension’s values and their aggregated cube measures is com-
puted. Pearson’s correlation coefficient for numeric data and the χ2 correlation test for
nominal data are popularly used correlation measures, although many other measures,
such as covariance, can be used. (These measures were presented in Section 3.3.2.) A
dimension that is strongly correlated with the value to be predicted should not be a
candidate for expansion. Notice that since the correlation of a dimension with the cube
measure is independent of a particular query, it should be precomputed and stored with
the cube measure to facilitate efficient online analysis.

After selecting dimensions for expansion, the next question is “Which values within
these dimensions should the expansion use?” This relies on the semantic knowledge of
the dimensions in question. The goal should be to select semantically similar values to
minimize the risk of altering the final result. Consider the age dimension—similarity
of values in this dimension is clear. There is a definite (numeric) order to the val-
ues. Dimensions with numeric or ordinal (ranked) data (like education) have a definite
ordering among data values. Therefore, we can select values that are close to the instan-
tiated query value. For nominal data of a dimension that is organized in a multilevel
hierarchy in a data cube (e.g., location), we should select those values located in the
same branch of the tree (e.g., the same district or city).

By considering additional data during query expansion, we are aiming for a more
accurate and reliable answer. As mentioned before, strongly correlated dimensions are
precluded from expansion for this purpose. An additional strategy is to ensure that
new samples share the “same” cube measure value (e.g., mean income) as the exist-
ing samples in the query cell. The two-sample t-test is a relatively simple statistical
method that can be used to determine whether two samples have the same mean (or
any other point estimate), where “same” means that they do not differ significantly. (It
is described in greater detail in Section 8.5.5 on model selection using statistical tests of
significance.)

The test determines whether two samples have the same mean (the null hypothesis)
with the only assumption being that they are both normally distributed. The test fails
if there is evidence that the two samples do not share the same mean. Furthermore, the
test can be performed with a confidence level as an input. This allows the user to control
how strict or loose the query expansion will be.

Example 5.14 shows how the intracuboid expansion strategies just described can be
used to answer a query on sample data.
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Table 5.10 Sample Customer Survey Data

gender age education occupation income

female 23 college teacher $85,000

female 40 college programmer $50,000

female 31 college programmer $52,000

female 50 graduate teacher $90,000

female 62 graduate CEO $500,000

male 25 high school programmer $50,000

male 28 high school CEO $250,000

male 40 college teacher $80,000

male 50 college programmer $45,000

male 57 graduate programmer $80,000

Example 5.14 Intracuboid query expansion to answer a query on sample data. Consider a book
retailer trying to learn more about its customers’ annual income levels. In Table 5.10,
a sample of the survey data collected is shown.6 In the survey, customers are segmented
by four attributes, namely gender, age, education, and occupation.

Let a query on customer income be “age = 25,” where the user specifies a 95%
confidence level. Suppose this returns an income value of $50,000 with a rather large
confidence interval.7 Suppose also, that this confidence interval is larger than a preset
threshold and that the age dimension was found to have little correlation with income
in this data set. Therefore, intracuboid expansion starts within the age dimension. The
nearest cell is “age = 23,” which returns an income of $85,000. The two-sample t-test at
the 95% confidence level passes so the query expands; it is now “age = {23,25}” with a
smaller confidence interval than initially. However, it is still larger than the threshold,
so expansion continues to the next nearest cell: “age = 28,” which returns an income of
$250,000. The two sample t-test between this cell and the original query cell fails; as a
result, it is ignored. Next, “age = 31” is checked and it passes the test.

The confidence interval of the three cells combined is now below the threshold and
the expansion finishes at “age = {23,25,31}.” The mean of the income values at these
three cells is 85,000+50,000+52,000

3 = $62,333, which is returned as the query answer. It has
a smaller confidence interval, and thus is more reliable than the response of $50,000,
which would have been returned if intracuboid expansion had not been considered.

Method 2. Intercuboid query expansion. In this case, the expansion occurs by looking
to a more general cell, as shown in Figure 5.15(b). For example, the cell in the 2-D cuboid

6For the sake of illustration, ignore the fact that the sample size is too small to be statistically significant.
7For the sake of the example, suppose this is true even though there is only one sample. In practice,
more points are needed to calculate a legitimate value.
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age-occupation can use its parent in either of the 1-D cuboids, age or occupation. Think
of intercuboid expansion as just an extreme case of intracuboid expansion, where all the
cells within a dimension are used in the expansion. This essentially sets the dimension
to ∗ and thus generalizes to a higher-level cuboid.

A k-dimensional cell has k direct parents in the cuboid lattice, where each parent is
(k − 1)-dimensional. There are many more ancestor cells in the data cube (e.g., if mul-
tiple dimensions are rolled up simultaneously). However, we choose only one parent
here to make the search space tractable and to limit the change in the query’s semantics.
As with intracuboid query expansion, correlated dimensions are not allowed in inter-
cuboid expansions. Within the uncorrelated dimensions, the two-sample t-test can be
performed to confirm that the parent and the query cell share the same sample mean. If
multiple parent cells pass the test, the test’s confidence level can be adjusted progressively
higher until only one passes. Alternatively, multiple parent cells can be used to boost the
confidence simultaneously. The choice is application dependent.

Example 5.15 Intercuboid expansion to answer a query on sample data. Given the input relation in
Table 5.10, let the query on income be “occupation = teacher ∧ gender = male.” There is
only one sample in Table 5.10 that matches the query, and it has an income of $80,000.
Suppose the corresponding confidence interval is larger than a preset threshold. We use
intercuboid expansion to find a more reliable answer. There are two parent cells in the
data cube: “gender = male” and “occupation = teacher.” By moving up to “gender =
male” (and thus setting occupation to ∗), the mean income is $101,000. A two sample
t-test reveals that this parent’s sample mean differs significantly from that of the original
query cell, so it is ignored. Next, “occupation = teacher” is considered. It has a mean
income of $85,000 and passes the two-sample t-test. As a result, the query is expanded
to “occupation = teacher” and an income value of $85,000 is returned with acceptable
reliability.

“How can we determine which method to choose—intracuboid expansion or intercuboid
expansion?” This is difficult to answer without knowing the data and the application. A
strategy for choosing between the two is to consider what the tolerance is for change
in the query’s semantics. This depends on the specific dimensions chosen in the query.
For instance, the user might tolerate a bigger change in semantics for the age dimension
than education. The difference in tolerance could be so large that the user is willing to set
age to ∗ (i.e., intercuboid expansion) rather than letting education change at all. Domain
knowledge is helpful here.

So far, our discussion has only focused on full materialization of the sampling cube.
In many real-world problems, this is often impossible, especially for high-dimensional
cases. Real-world survey data, for example, can easily contain over 50 variables (i.e.,
dimensions). The sampling cube size would grow exponentially with the number of
dimensions. To handle high-dimensional data, a sampling cube method called Sampling
Cube Shell was developed. It integrates the Frag-Shell method of Section 5.2.4 with the
query expansion approach. The shell computes only a subset of the full sampling cube.
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The subset should consist of relatively low-dimensional cuboids (that are commonly
queried) and cuboids that offer the most benefit to the user. The details are left to inter-
ested readers as an exercise. The method was tested on both real and synthetic data and
found to be efficient and effective in answering queries.

5.3.2 Ranking Cubes: Efficient Computation of Top-k Queries

The data cube helps not only online analytical processing of multidimensional queries
but also search and data mining. In this section, we introduce a new cube structure
called Ranking Cube and examine how it contributes to the efficient processing of top-k
queries. Instead of returning a large set of indiscriminative answers to a query, a top-k
query (or ranking query) returns only the best k results according to a user-specified
preference.

The results are returned in ranked order so that the best is at the top. The user-
specified preference generally consists of two components: a selection condition and
a ranking function. Top-k queries are common in many applications like searching
web databases, k-nearest-neighbor searches with approximate matches, and similarity
queries in multimedia databases.

Example 5.16 A top-k query. Consider an online used-car database, R, that maintains the following
information for each car: producer (e.g., Ford, Honda), model (e.g., Taurus, Accord),
type (e.g., sedan, convertible), color (e.g., red, silver), transmission (e.g., auto, manual),
price, mileage, and so on. A typical top-k query over this database is

Q1: select top 5 * from R

where producer = “Ford” and type = “sedan”

order by (price − 10K)2 + (mileage − 30K)2 asc

Within the dimensions (or attributes) for R, producer and type are used here as selection
dimensions. The ranking function is given in the order-by clause. It specifies the rank-
ing dimensions, price and mileage. Q1 searches for the top-5 sedans made by Ford. The
entries found are ranked or sorted in ascending (asc) order, according to the ranking
function. The ranking function is formulated so that entries that have price and mileage
closest to the user’s specified values of $10K and 30K, respectively, appear toward the
top of the list.

The database may have many dimensions that could be used for selection, describ-
ing, for example, whether a car has power windows, air conditioning, or a sunroof. Users
may pick any subset of dimensions and issue a top-k query using their preferred rank-
ing function. There are many other similar application scenarios. For example, when
searching for hotels, ranking functions are often constructed based on price and distance
to an area of interest. Selection conditions can be imposed on, say, the hotel location
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district, the star rating, and whether the hotel offers complimentary treats or Internet
access. The ranking functions may be linear, quadratic, or any other form.

As shown in the preceding examples, individual users may not only propose ad hoc
ranking functions, but also have different data subsets of interest. Users often want to
thoroughly study the data via multidimensional analysis of the top-k query results. For
example, if unsatisfied by the top-5 results returned by Q1, the user may roll up on
the producer dimension to check the top-5 results on all sedans. The dynamic nature
of the problem imposes a great challenge to researchers. OLAP requires offline pre-
computation so that multidimensional analysis can be performed on-the-fly, yet the ad
hoc ranking functions prohibit full materialization. A natural compromise is to adopt a
semi-offline materialization and semi-online computation model.

Suppose a relation R has selection dimensions (A1,A2, . . . ,AS) and ranking dimen-
sions (N1,N2, . . . ,NR). Values in each ranking dimension can be partitioned into multi-
ple intervals according to the data and expected query distributions. Regarding the price
of used cars, for example, we may have, say, these four partitions (or value ranges): ≤ 5K ,
[5 − 10K), [10 − 15K), and ≥ 15K . A ranking cube can be constructed by performing
multidimensional aggregations on selection dimensions. We can store the count for each
partition of each ranking dimension, thereby making the cube “rank-aware.” The top-k
queries can be answered by first accessing the cells in the more preferred value ranges
before consulting the cells in the less preferred value ranges.

Example 5.17 Using a ranking cube to answer a top-k query. Suppose Table 5.11 shows CMT , a mate-
rialized (i.e., precomputed) cuboid of a ranking cube for used-car sales. The cuboid,
CMT , is for the selection dimensions producer and type. It shows the count and corre-
sponding tuple IDs (TIDs) for various partitions of the ranking dimensions, price and
mileage.

Query Q1 can be answered by using a selection condition to select the appropriate
selection dimension values (i.e., producer = “Ford” and type = “sedan”) in cuboid CMT .
In addition, the ranking function “(price − 10K)2 + (mileage − 30K)2” is used to find
the tuples that most closely match the user’s criteria. If there are not enough matching
tuples found in the closest matching cells, the next closest matching cells will need to be
accessed. We may even drill down to the corresponding lower-level cells to see the count
distributions of cells that match the ranking function and additional criteria regarding,
say, model, maintenance situation, or other loaded features. Only users who really want
to see more detailed information, such as interior photos, will need to access the physical
records stored in the database.

Table 5.11 Cuboid of a Ranking Cube for Used-Car Sales

producer type price mileage count TIDs
Ford sedan <5K 30–40K 7 t6, . . . , t68

Ford sedan 5–10K 30–40K 50 t15, . . . , t152

Honda sedan 10–15K 30–40K 20 t8, . . . , t32

. . . . . . . . . . . . . . . . . .
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Most real-life top-k queries are likely to involve only a small subset of selection
attributes. To support high-dimensional ranking cubes, we can carefully select the
cuboids that need to be materialized. For example, we could choose to materialize only
the 1-D cuboids that contain single-selection dimensions. This will achieve low space
overhead and still have high performance when the number of selection dimensions
is large. In some cases, there may exist many ranking dimensions to support multiple
users with rather different preferences. For example, buyers may search for houses by
considering various factors like price, distance to school or shopping, number of years
old, floor space, and tax. In this case, a possible solution is to create multiple data parti-
tions, each of which consists of a subset of the ranking dimensions. The query processing
may need to search over a joint space involving multiple data partitions.

In summary, the general philosophy of ranking cubes is to materialize such cubes
on the set of selection dimensions. Use of the interval-based partitioning in ranking
dimensions makes the ranking cube efficient and flexible at supporting ad hoc user
queries. Various implementation techniques and query optimization methods have been
developed for efficient computation and query processing based on this framework.

5.4 Multidimensional Data Analysis in Cube Space

Data cubes create a flexible and powerful means to group and aggregate data subsets.
They allow data to be explored in multiple dimensional combinations and at vary-
ing aggregate granularities. This capability greatly increases the analysis bandwidth and
helps effective discovery of interesting patterns and knowledge from data. The use of
cube space makes the data space both meaningful and tractable.

This section presents methods of multidimensional data analysis that make use of
data cubes to organize data into intuitive regions of interest at varying granularities.
Section 5.4.1 presents prediction cubes, a technique for multidimensional data mining
that facilitates predictive modeling in multidimensional space. Section 5.4.2 describes
how to construct multifeature cubes. These support complex analytical queries involving
multiple dependent aggregates at multiple granularities. Finally, Section 5.4.3 describes
an interactive method for users to systematically explore cube space. In such exception-
based, discovery-driven exploration, interesting exceptions or anomalies in the data are
automatically detected and marked for users with visual cues.

5.4.1 Prediction Cubes: Prediction Mining in Cube Space

Recently, researchers have turned their attention toward multidimensional data min-
ing to uncover knowledge at varying dimensional combinations and granularities. Such
mining is also known as exploratory multidimensional data mining and online analytical
data mining (OLAM). Multidimensional data space is huge. In preparing the data, how
can we identify the interesting subspaces for exploration? To what granularities should
we aggregate the data? Multidimensional data mining in cube space organizes data of
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interest into intuitive regions at various granularities. It analyzes and mines the data by
applying various data mining techniques systematically over these regions.

There are at least four ways in which OLAP-style analysis can be fused with data
mining techniques:

1. Use cube space to define the data space for mining. Each region in cube space repre-
sents a subset of data over which we wish to find interesting patterns. Cube space
is defined by a set of expert-designed, informative dimension hierarchies, not just
arbitrary subsets of data. Therefore, the use of cube space makes the data space both
meaningful and tractable.

2. Use OLAP queries to generate features and targets for mining. The features and even
the targets (that we wish to learn to predict) can sometimes be naturally defined as
OLAP aggregate queries over regions in cube space.

3. Use data mining models as building blocks in a multistep mining process. Multidimen-
sional data mining in cube space may consist of multiple steps, where data mining
models can be viewed as building blocks that are used to describe the behavior of
interesting data sets, rather than the end results.

4. Use data cube computation techniques to speed up repeated model construction. Multi-
dimensional data mining in cube space may require building a model for each
candidate data space, which is usually too expensive to be feasible. However, by care-
fully sharing computation across model construction for different candidates based
on data cube computation techniques, efficient mining is achievable.

In this subsection we study prediction cubes, an example of multidimensional data
mining where the cube space is explored for prediction tasks. A prediction cube is a cube
structure that stores prediction models in multidimensional data space and supports
prediction in an OLAP manner. Recall that in a data cube, each cell value is an aggregate
number (e.g., count) computed over the data subset in that cell. However, each cell value
in a prediction cube is computed by evaluating a predictive model built on the data
subset in that cell, thereby representing that subset’s predictive behavior.

Instead of seeing prediction models as the end result, prediction cubes use prediction
models as building blocks to define the interestingness of data subsets, that is, they iden-
tify data subsets that indicate more accurate prediction. This is best explained with an
example.

Example 5.18 Prediction cube for identification of interesting cube subspaces. Suppose a company
has a customer table with the attributes time (with two granularity levels: month and
year), location (with two granularity levels: state and country), gender, salary, and one
class-label attribute: valued customer. A manager wants to analyze the decision process
of whether a customer is highly valued with respect to time and location. In particular,
he is interested in the question “Are there times at and locations in which the value of a
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customer depended greatly on the customer’s gender?” Notice that he believes time and
location play a role in predicting valued customers, but at what granularity levels do
they depend on gender for this task? For example, is performing analysis using {month,
country} better than {year, state}?

Consider a data table D (e.g., the customer table). Let X be the attributes set for
which no concept hierarchy has been defined (e.g., gender, salary). Let Y be the class-
label attribute (e.g., valued customer), and Z be the set of multilevel attributes, that is,
attributes for which concept hierarchies have been defined (e.g., time, location). Let V
be the set of attributes for which we would like to define their predictiveness. In our
example, this set is {gender}. The predictiveness of V on a data subset can be quantified
by the difference in accuracy between the model built on that subset using X to predict Y
and the model built on that subset using X − V (e.g., {salary}) to predict Y. The intuition
is that, if the difference is large, V must play an important role in the prediction of class
label Y.

Given a set of attributes, V, and a learning algorithm, the prediction cube at granular-
ity 〈l1, . . . , ld〉 (e.g., 〈year, state〉) is a d-dimensional array, in which the value in each cell
(e.g., [2010, Illinois]) is the predictiveness of V evaluated on the subset defined by the
cell (e.g., the records in the customer table with time in 2010 and location in Illinois).

Supporting OLAP roll-up and drill-down operations on a prediction cube is a
computational challenge requiring the materialization of cell values at many different
granularities. For simplicity, we can consider only full materialization. A naïve way to
fully materialize a prediction cube is to exhaustively build models and evaluate them for
each cell and granularity. This method is very expensive if the base data set is large.
An ensemble method called Probability-Based Ensemble (PBE) was developed as a
more feasible alternative. It requires model construction for only the finest-grained
cells. OLAP-style bottom-up aggregation is then used to generate the values of the
coarser-grained cells.

The prediction of a predictive model can be seen as finding a class label that maxi-
mizes a scoring function. The PBE method was developed to approximately make the
scoring function of any predictive model distributively decomposable. In our discus-
sion of data cube measures in Section 4.2.4, we showed that distributive and algebraic
measures can be computed efficiently. Therefore, if the scoring function used is dis-
tributively or algebraically decomposable, prediction cubes can also be computed with
efficiency. In this way, the PBE method reduces prediction cube computation to data
cube computation.

For example, previous studies have shown that the naı̈ve Bayes classifier has an alge-
braically decomposable scoring function, and the kernel density–based classifier has a
distributively decomposable scoring function.8 Therefore, either of these could be used

8Naı̈ve Bayes classifiers are detailed in Chapter 8. Kernel density–based classifiers, such as support vector
machines, are described in Chapter 9.
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to implement prediction cubes efficiently. The PBE method presents a novel approach
to multidimensional data mining in cube space.

5.4.2 Multifeature Cubes: Complex Aggregation
at Multiple Granularities

Data cubes facilitate the answering of analytical or mining-oriented queries as they allow
the computation of aggregate data at multiple granularity levels. Traditional data cubes
are typically constructed on commonly used dimensions (e.g., time, location, and prod-
uct) using simple measures (e.g., count( ), average( ), and sum()). In this section, you will
learn a newer way to define data cubes called multifeature cubes. Multifeature cubes
enable more in-depth analysis. They can compute more complex queries of which the
measures depend on groupings of multiple aggregates at varying granularity levels. The
queries posed can be much more elaborate and task-specific than traditional queries,
as we shall illustrate in the next examples. Many complex data mining queries can be
answered by multifeature cubes without significant increase in computational cost, in
comparison to cube computation for simple queries with traditional data cubes.

To illustrate the idea of multifeature cubes, let’s first look at an example of a query on
a simple data cube.

Example 5.19 A simple data cube query. Let the query be “Find the total sales in 2010, broken down
by item, region, and month, with subtotals for each dimension.” To answer this query, a
traditional data cube is constructed that aggregates the total sales at the following eight
different granularity levels: {(item, region, month), (item, region), (item, month), (month,
region), (item), (month), (region), ()}, where () represents all. This data cube is simple in
that it does not involve any dependent aggregates.

To illustrate what is meant by “dependent aggregates,” let’s examine a more complex
query, which can be computed with a multifeature cube.

Example 5.20 A complex query involving dependent aggregates. Suppose the query is “Grouping by
all subsets of {item, region, month}, find the maximum price in 2010 for each group and the
total sales among all maximum price tuples.”

The specification of such a query using standard SQL can be long, repetitive, and
difficult to optimize and maintain. Alternatively, it can be specified concisely using an
extended SQL syntax as follows:

select item, region, month, max(price), sum(R.sales)
from Purchases
where year = 2010
cube by item, region, month: R
such that R.price = max(price)

The tuples representing purchases in 2010 are first selected. The cube by clause com-
putes aggregates (or group-by’s) for all possible combinations of the attributes item,
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region, and month. It is an n-dimensional generalization of the group-by clause. The
attributes specified in the cube by clause are the grouping attributes. Tuples with the
same value on all grouping attributes form one group. Let the groups be g1, . . . , gr . For
each group of tuples gi , the maximum price maxgi among the tuples forming the group
is computed. The variable R is a grouping variable, ranging over all tuples in group gi

that have a price equal to maxgi (as specified in the such that clause). The sum of sales
of the tuples in gi that R ranges over is computed and returned with the values of the
grouping attributes of gi .

The resulting cube is a multifeature cube in that it supports complex data mining
queries for which multiple dependent aggregates are computed at a variety of gran-
ularities. For example, the sum of sales returned in this query is dependent on the
set of maximum price tuples for each group. In general, multifeature cubes give users
the flexibility to define sophisticated, task-specific cubes on which multidimensional
aggregation and OLAP-based mining can be performed.

“How can multifeature cubes be computed efficiently?” The computation of a multifea-
ture cube depends on the types of aggregate functions used in the cube. In Chapter 4,
we saw that aggregate functions can be categorized as either distributive, algebraic, or
holistic. Multifeature cubes can be organized into the same categories and computed
efficiently by minor extension of the cube computation methods in Section 5.2.

5.4.3 Exception-Based, Discovery-Driven Cube Space Exploration

As studied in previous sections, a data cube may have a large number of cuboids, and
each cuboid may contain a large number of (aggregate) cells. With such an overwhelm-
ingly large space, it becomes a burden for users to even just browse a cube, let alone think
of exploring it thoroughly. Tools need to be developed to assist users in intelligently
exploring the huge aggregated space of a data cube.

In this section, we describe a discovery-driven approach to exploring cube space.
Precomputed measures indicating data exceptions are used to guide the user in the data
analysis process, at all aggregation levels. We hereafter refer to these measures as excep-
tion indicators. Intuitively, an exception is a data cube cell value that is significantly
different from the value anticipated, based on a statistical model. The model considers
variations and patterns in the measure value across all the dimensions to which a cell
belongs. For example, if the analysis of item-sales data reveals an increase in sales in
December in comparison to all other months, this may seem like an exception in the
time dimension. However, it is not an exception if the item dimension is considered,
since there is a similar increase in sales for other items during December.

The model considers exceptions hidden at all aggregated group-by’s of a data cube.
Visual cues, such as background color, are used to reflect each cell’s degree of exception,
based on the precomputed exception indicators. Efficient algorithms have been pro-
posed for cube construction, as discussed in Section 5.2. The computation of exception
indicators can be overlapped with cube construction, so that the overall construction of
data cubes for discovery-driven exploration is efficient.
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Three measures are used as exception indicators to help identify data anomalies.
These measures indicate the degree of surprise that the quantity in a cell holds, with
respect to its expected value. The measures are computed and associated with every cell,
for all aggregation levels. They are as follows:

SelfExp: This indicates the degree of surprise of the cell value, relative to other cells
at the same aggregation level.

InExp: This indicates the degree of surprise somewhere beneath the cell, if we were
to drill down from it.

PathExp: This indicates the degree of surprise for each drill-down path from the cell.

The use of these measures for discovery-driven exploration of data cubes is illustrated
in Example 5.21.

Example 5.21 Discovery-driven exploration of a data cube. Suppose that you want to analyze the
monthly sales at AllElectronics as a percentage difference from the previous month.
The dimensions involved are item, time, and region. You begin by studying the data
aggregated over all items and sales regions for each month, as shown in Figure 5.16.

To view the exception indicators, you click on a button marked highlight exceptions
on the screen. This translates the SelfExp and InExp values into visual cues, displayed
with each cell. Each cell’s background color is based on its SelfExp value. In addition,
a box is drawn around each cell, where the thickness and color of the box are func-
tions of its InExp value. Thick boxes indicate high InExp values. In both cases, the
darker the color, the greater the degree of exception. For example, the dark, thick boxes
for sales during July, August, and September signal the user to explore the lower-level
aggregations of these cells by drilling down.

Drill-downs can be executed along the aggregated item or region dimensions. “Which
path has more exceptions?” you wonder. To find this out, you select a cell of interest and
trigger a path exception module that colors each dimension based on the PathExp value
of the cell. This value reflects that path’s degree of surprise. Suppose that the path along
item contains more exceptions.

A drill-down along item results in the cube slice of Figure 5.17, showing the sales
over time for each item. At this point, you are presented with many different sales
values to analyze. By clicking on the highlight exceptions button, the visual cues are dis-
played, bringing focus to the exceptions. Consider the sales difference of 41% for “Sony

Sum of sales Month

Total

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

1% −1% 0% 1% 3% −1% −9% −1% 2% −4% 3%

Figure 5.16 Change in sales over time.
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Figure 5.17 Change in sales for each item-time combination.
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Figure 5.18 Change in sales for the item IBM desktop computer per region.

b/w printers” in September. This cell has a dark background, indicating a high SelfExp
value, meaning that the cell is an exception. Consider now the sales difference of −15%
for “Sony b/w printers” in November and of −11% in December. The −11% value for
December is marked as an exception, while the −15% value is not, even though −15% is
a bigger deviation than −11%. This is because the exception indicators consider all the
dimensions that a cell is in. Notice that the December sales of most of the other items
have a large positive value, while the November sales do not. Therefore, by considering
the cell’s position in the cube, the sales difference for “Sony b/w printers” in December is
exceptional, while the November sales difference of this item is not.

The InExp values can be used to indicate exceptions at lower levels that are not vis-
ible at the current level. Consider the cells for “IBM desktop computers” in July and
September. These both have a dark, thick box around them, indicating high InExp val-
ues. You may decide to further explore the sales of “IBM desktop computers” by drilling
down along region. The resulting sales difference by region is shown in Figure 5.18, where
the highlight exceptions option has been invoked. The visual cues displayed make it easy
to instantly notice an exception for the sales of “IBM desktop computers” in the southern
region, where such sales have decreased by −39% and −34% in July and September,
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respectively. These detailed exceptions were far from obvious when we were viewing the
data as an item-time group-by, aggregated over region in Figure 5.17. Thus, the InExp
value is useful for searching for exceptions at lower-level cells of the cube.

“How are the exception values computed?” The SelfExp, InExp, and PathExp measures
are based on a statistical method for table analysis. They take into account all of the
group-by’s (aggregations) in which a given cell value participates. A cell value is con-
sidered an exception based on how much it differs from its expected value, where its
expected value is determined with a statistical model. The difference between a given
cell value and its expected value is called a residual. Intuitively, the larger the residual,
the more the given cell value is an exception. The comparison of residual values requires
us to scale the values based on the expected standard deviation associated with the resid-
uals. A cell value is therefore considered an exception if its scaled residual value exceeds
a prespecified threshold. The SelfExp, InExp, and PathExp measures are based on this
scaled residual.

The expected value of a given cell is a function of the higher-level group-by’s of the
given cell. For example, given a cube with the three dimensions A, B, and C, the expected
value for a cell at the ith position in A, the jth position in B, and the kth position in C is a
function of γ , γ A

i , γ B
j , γ C

k , γ AB
ij , γ AC

ik , and γ BC
jk , which are coefficients of the statistical

model used. The coefficients reflect how different the values at more detailed levels are,
based on generalized impressions formed by looking at higher-level aggregations. In this
way, the exception quality of a cell value is based on the exceptions of the values below it.
Thus, when seeing an exception, it is natural for the user to further explore the exception
by drilling down.

“How can the data cube be efficiently constructed for discovery-driven exploration?”
This computation consists of three phases. The first step involves the computation of the
aggregate values defining the cube, such as sum or count, over which exceptions will be
found. The second phase consists of model fitting, in which the coefficients mentioned
before are determined and used to compute the standardized residuals. This phase can
be overlapped with the first phase because the computations involved are similar. The
third phase computes the SelfExp, InExp, and PathExp values, based on the standardized
residuals. This phase is computationally similar to phase 1. Therefore, the computation
of data cubes for discovery-driven exploration can be done efficiently.

5.5 Summary

Data cube computation and exploration play an essential role in data warehousing
and are important for flexible data mining in multidimensional space.

A data cube consists of a lattice of cuboids. Each cuboid corresponds to a different
degree of summarization of the given multidimensional data. Full materialization
refers to the computation of all the cuboids in a data cube lattice. Partial materi-
alization refers to the selective computation of a subset of the cuboid cells in the
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lattice. Iceberg cubes and shell fragments are examples of partial materialization. An
iceberg cube is a data cube that stores only those cube cells that have an aggregate
value (e.g., count) above some minimum support threshold. For shell fragments of
a data cube, only some cuboids involving a small number of dimensions are com-
puted, and queries on additional combinations of the dimensions can be computed
on-the-fly.

There are several efficient data cube computation methods. In this chapter, we dis-
cussed four cube computation methods in detail: (1) MultiWay array aggregation for
materializing full data cubes in sparse-array-based, bottom-up, shared computation;
(2) BUC for computing iceberg cubes by exploring ordering and sorting for efficient
top-down computation; (3) Star-Cubing for computing iceberg cubes by integrating
top-down and bottom-up computation using a star-tree structure; and (4) shell-
fragment cubing, which supports high-dimensional OLAP by precomputing only
the partitioned cube shell fragments.

Multidimensional data mining in cube space is the integration of knowledge discov-
ery with multidimensional data cubes. It facilitates systematic and focused knowledge
discovery in large structured and semi-structured data sets. It will continue to endow
analysts with tremendous flexibility and power at multidimensional and multigran-
ularity exploratory analysis. This is a vast open area for researchers to build powerful
and sophisticated data mining mechanisms.

Techniques for processing advanced queries have been proposed that take advantage
of cube technology. These include sampling cubes for multidimensional analysis on
sampling data, and ranking cubes for efficient top-k (ranking) query processing in
large relational data sets.

This chapter highlighted three approaches to multidimensional data analysis with
data cubes. Prediction cubes compute prediction models in multidimensional
cube space. They help users identify interesting data subsets at varying degrees of
granularity for effective prediction. Multifeature cubes compute complex queries
involving multiple dependent aggregates at multiple granularities. Exception-based,
discovery-driven exploration of cube space displays visual cues to indicate discov-
ered data exceptions at all aggregation levels, thereby guiding the user in the data
analysis process.

5.6 Exercises

5.1 Assume that a 10-D base cuboid contains only three base cells: (1) (a1, d2, d3, d4, . . . ,
d9, d10), (2) (d1,b2, d3, d4, . . . , d9, d10), and (3) (d1, d2, c3, d4, . . . , d9, d10), where a1 �=
d1, b2 �= d2, and c3 �= d3. The measure of the cube is count( ).

(a) How many nonempty cuboids will a full data cube contain?

(b) How many nonempty aggregate (i.e., nonbase) cells will a full cube contain?
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(c) How many nonempty aggregate cells will an iceberg cube contain if the condition of
the iceberg cube is “count ≥ 2”?

(d) A cell, c, is a closed cell if there exists no cell, d, such that d is a specialization of
cell c (i.e., d is obtained by replacing a ∗ in c by a non-∗ value) and d has the same
measure value as c. A closed cube is a data cube consisting of only closed cells. How
many closed cells are in the full cube?

5.2 There are several typical cube computation methods, such as MultiWay [ZDN97], BUC
[BR99], and Star-Cubing [XHLW03]. Briefly describe these three methods (i.e., use one
or two lines to outline the key points), and compare their feasibility and performance
under the following conditions:

(a) Computing a dense full cube of low dimensionality (e.g., less than eight
dimensions).

(b) Computing an iceberg cube of around 10 dimensions with a highly skewed data
distribution.

(c) Computing a sparse iceberg cube of high dimensionality (e.g., over 100 dimensions).

5.3 Suppose a data cube, C, has D dimensions, and the base cuboid contains k distinct
tuples.

(a) Present a formula to calculate the minimum number of cells that the cube, C, may
contain.

(b) Present a formula to calculate the maximum number of cells that C may contain.

(c) Answer parts (a) and (b) as if the count in each cube cell must be no less than a
threshold, v.

(d) Answer parts (a) and (b) as if only closed cells are considered (with the minimum
count threshold, v).

5.4 Suppose that a base cuboid has three dimensions, A, B, C, with the following number
of cells: |A| = 1,000,000, |B| = 100, and |C| = 1000. Suppose that each dimension is
evenly partitioned into 10 portions for chunking.

(a) Assuming each dimension has only one level, draw the complete lattice of the cube.

(b) If each cube cell stores one measure with four bytes, what is the total size of the
computed cube if the cube is dense?

(c) State the order for computing the chunks in the cube that requires the least amount
of space, and compute the total amount of main memory space required for
computing the 2-D planes.

5.5 Often, the aggregate count value of many cells in a large data cuboid is zero, resulting in
a huge, yet sparse, multidimensional matrix.

(a) Design an implementation method that can elegantly overcome this sparse matrix
problem. Note that you need to explain your data structures in detail and discuss the
space needed, as well as how to retrieve data from your structures.
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(b) Modify your design in (a) to handle incremental data updates. Give the reasoning
behind your new design.

5.6 When computing a cube of high dimensionality, we encounter the inherent curse of
dimensionality problem: There exists a huge number of subsets of combinations of
dimensions.

(a) Suppose that there are only two base cells, {(a1, a2, a3, . . . , a100) and (a1, a2,
b3, . . . , b100)}, in a 100-D base cuboid. Compute the number of nonempty aggregate
cells. Comment on the storage space and time required to compute these cells.

(b) Suppose we are to compute an iceberg cube from (a). If the minimum support count
in the iceberg condition is 2, how many aggregate cells will there be in the iceberg
cube? Show the cells.

(c) Introducing iceberg cubes will lessen the burden of computing trivial aggregate cells
in a data cube. However, even with iceberg cubes, we could still end up having to
compute a large number of trivial uninteresting cells (i.e., with small counts). Sup-
pose that a database has 20 tuples that map to (or cover) the two following base
cells in a 100-D base cuboid, each with a cell count of 10: {(a1, a2, a3, . . . , a100) : 10,
(a1, a2, b3, . . . , b100) : 10}.
i. Let the minimum support be 10. How many distinct aggregate cells will

there be like the following: {(a1, a2, a3, a4, . . . , a99, ∗) : 10, . . . ,(a1, a2, ∗ , a4, . . . ,
a99, a100) : 10, . . . , (a1, a2, a3, ∗ , . . . , ∗ , ∗) : 10}?

ii. If we ignore all the aggregate cells that can be obtained by replacing some con-
stants with ∗’s while keeping the same measure value, how many distinct cells
remain? What are the cells?

5.7 Propose an algorithm that computes closed iceberg cubes efficiently.

5.8 Suppose that we want to compute an iceberg cube for the dimensions, A, B, C, D, where
we wish to materialize all cells that satisfy a minimum support count of at least v, and
where cardinality(A) < cardinality(B) < cardinality(C) < cardinality(D). Show the BUC
processing tree (which shows the order in which the BUC algorithm explores a data
cube’s lattice, starting from all) for the construction of this iceberg cube.

5.9 Discuss how you might extend the Star-Cubing algorithm to compute iceberg cubes
where the iceberg condition tests for an avg that is no bigger than some value, v.

5.10 A flight data warehouse for a travel agent consists of six dimensions: traveler, departure
(city), departure time, arrival, arrival time, and flight; and two measures: count( ) and
avg fare( ), where avg fare( ) stores the concrete fare at the lowest level but the average fare
at other levels.

(a) Suppose the cube is fully materialized. Starting with the base cuboid [traveler, depar-
ture, departure time, arrival, arrival time, flight], what specific OLAP operations
(e.g., roll-up flight to airline) should one perform to list the average fare per month
for each business traveler who flies American Airlines (AA) from Los Angeles in 2009?
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(b) Suppose we want to compute a data cube where the condition is that the minimum
number of records is 10 and the average fare is over $500. Outline an efficient cube
computation method (based on common sense about flight data distribution).

5.11 (Implementation project) There are four typical data cube computation methods: Mul-
tiWay [ZDN97], BUC [BR99], H-Cubing [HPDW01], and Star-Cubing [XHLW03].

(a) Implement any one of these cube computation algorithms and describe your
implementation, experimentation, and performance. Find another student who has
implemented a different algorithm on the same platform (e.g., C++ on Linux) and
compare your algorithm performance with his or hers.

Input:
i. An n-dimensional base cuboid table (for n < 20), which is essentially a relational

table with n attributes.
ii. An iceberg condition: count (C) ≥ k, where k is a positive integer as a parameter.
Output:
i. The set of computed cuboids that satisfy the iceberg condition, in the order of

your output generation.
ii. Summary of the set of cuboids in the form of “cuboid ID: the number of

nonempty cells,” sorted in alphabetical order of cuboids (e.g., A: 155, AB: 120,
ABC: 22, ABCD: 4, ABCE: 6, ABD: 36), where the number after : represents the
number of nonempty cells. (This is used to quickly check the correctness of your
results.)

(b) Based on your implementation, discuss the following:
i. What challenging computation problems are encountered as the number of

dimensions grows large?
ii. How can iceberg cubing solve the problems of part (a) for some data sets (and

characterize such data sets)?
iii. Give one simple example to show that sometimes iceberg cubes cannot provide

a good solution.

(c) Instead of computing a high-dimensionality data cube, we may choose to materi-
alize the cuboids that have only a small number of dimension combinations. For
example, for a 30-D data cube, we may only compute the 5-D cuboids for every
possible 5-D combination. The resulting cuboids form a shell cube. Discuss how
easy or hard it is to modify your cube computation algorithm to facilitate such
computation.

5.12 The sampling cube was proposed for multidimensional analysis of sampling data (e.g.,
survey data). In many real applications, sampling data can be of high dimensionality
(e.g., it is not unusual to have more than 50 dimensions in a survey data set).

(a) How can we construct an efficient and scalable high-dimensional sampling cube in
large sampling data sets?

(b) Design an efficient incremental update algorithm for such a high-dimensional
sampling cube.
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(c) Discuss how to support quality drill-down given that some low-level cells may be
empty or contain too few data for reliable analysis.

5.13 The ranking cube was proposed for efficient computation of top-k (ranking) queries in
relational databases. Recently, researchers have proposed another kind of query, called a
skyline query. A skyline query returns all the objects pi such that pi is not dominated by any
other object pj , where dominance is defined as follows. Let the value of pi on dimension
d be v(pi ,d). We say pi is dominated by pj if and only if for each preference dimension
d, v(pj ,d) ≤ v(pi ,d), and there is at least one d where the equality does not hold.

(a) Design a ranking cube so that skyline queries can be processed efficiently.

(b) Skyline queries are sometimes too strict to be desirable to some users. One may
generalize the concept of skyline into generalized skyline as follows: Given a d-
dimensional database and a query q, the generalized skyline is the set of the following
objects: (1) the skyline objects and (2) the nonskyline objects that are ε-neighbors of a
skyline object, where r is an ε-neighbor of an object p if the distance between p and
r is no more than ε. Design a ranking cube to process generalized skyline queries
efficiently.

5.14 The ranking cube was designed to support top-k (ranking) queries in relational database
systems. However, ranking queries are also posed to data warehouses, where ranking is
on multidimensional aggregates instead of on measures of base facts. For example, con-
sider a product manager who is analyzing a sales database that stores the nationwide
sales history, organized by location and time. To make investment decisions, the man-
ager may pose the following query: “What are the top-10 (state, year) cells having the
largest total product sales?” He may further drill down and ask, “What are the top-10 (city,
month) cells?” Suppose the system can perform such partial materialization to derive two
types of materialized cuboids: a guiding cuboid and a supporting cuboid, where the for-
mer contains a number of guiding cells that provide concise, high-level data statistics
to guide the ranking query processing, whereas the latter provides inverted indices for
efficient online aggregation.

(a) Derive an efficient method for computing such aggregate ranking cubes.

(b) Extend your framework to handle more advanced measures. One such example
could be as follows. Consider an organization donation database, where donors
are grouped by “age,” “income,” and other attributes. Interesting questions include:
“Which age and income groups have made the top-k average amount of donation (per
donor)?” and “Which income group of donors has the largest standard deviation in the
donation amount?”

5.15 The prediction cube is a good example of multidimensional data mining in cube
space.

(a) Propose an efficient algorithm that computes prediction cubes in a given multidi-
mensional database.

(b) For what kind of classification models can your algorithm be applied? Explain.
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5.16 Multifeature cubes allow us to construct interesting data cubes based on rather sophisti-
cated query conditions. Can you construct the following multifeature cube by trans-
lating the following user requests into queries using the form introduced in this
textbook?

(a) Construct a smart shopper cube where a shopper is smart if at least 10% of the goods
she buys in each shopping trip are on sale.

(b) Construct a data cube for best-deal products where best-deal products are those
products for which the price is the lowest for this product in the given month.

5.17 Discovery-driven cube exploration is a desirable way to mark interesting points among
a large number of cells in a data cube. Individual users may have different views on
whether a point should be considered interesting enough to be marked. Suppose one
would like to mark those objects of which the absolute value of z score is over 2 in every
row and column in a d-dimensional plane.

(a) Derive an efficient computation method to identify such points during the data cube
computation.

(b) Suppose a partially materialized cube has (d − 1)-dimensional and (d + 1)-
dimensional cuboids materialized but not the d-dimensional one. Derive an efficient
method to mark those (d − 1)-dimensional cells with d-dimensional children that
contain such marked points.

5.7 Bibliographic Notes

Efficient computation of multidimensional aggregates in data cubes has been studied
by many researchers. Gray, Chaudhuri, Bosworth, et al. [GCB+97] proposed cube-by as
a relational aggregation operator generalizing group-by, crosstabs, and subtotals, and
categorized data cube measures into three categories: distributive, algebraic, and holis-
tic. Harinarayan, Rajaraman, and Ullman [HRU96] proposed a greedy algorithm for
the partial materialization of cuboids in the computation of a data cube. Sarawagi and
Stonebraker [SS94] developed a chunk-based computation technique for the efficient
organization of large multidimensional arrays. Agarwal, Agrawal, Deshpande, et al.
[AAD+96] proposed several guidelines for efficient computation of multidimensional
aggregates for ROLAP servers.

The chunk-based MultiWay array aggregation method for data cube computation in
MOLAP was proposed in Zhao, Deshpande, and Naughton [ZDN97]. Ross and Srivas-
tava [RS97] developed a method for computing sparse data cubes. Iceberg queries are
first described in Fang, Shivakumar, Garcia-Molina, et al. [FSGM+98]. BUC, a scalable
method that computes iceberg cubes from the apex cuboid downwards, was introduced
by Beyer and Ramakrishnan [BR99]. Han, Pei, Dong, and Wang [HPDW01] introduced
an H-Cubing method for computing iceberg cubes with complex measures using an
H-tree structure.

The Star-Cubing method for computing iceberg cubes with a dynamic star-tree struc-
ture was introduced by Xin, Han, Li, and Wah [XHLW03]. MM-Cubing, an efficient



5.7 Bibliographic Notes 241

iceberg cube computation method that factorizes the lattice space was developed by
Shao, Han, and Xin [SHX04]. The shell-fragment-based cubing approach for efficient
high-dimensional OLAP was proposed by Li, Han, and Gonzalez [LHG04].

Aside from computing iceberg cubes, another way to reduce data cube computa-
tion is to materialize condensed, dwarf, or quotient cubes, which are variants of closed
cubes. Wang, Feng, Lu, and Yu proposed computing a reduced data cube, called a con-
densed cube [WLFY02]. Sismanis, Deligiannakis, Roussopoulos, and Kotids proposed
computing a compressed data cube, called a dwarf cube [SDRK02]. Lakeshmanan,
Pei, and Han proposed a quotient cube structure to summarize a data cube’s seman-
tics [LPH02], which has been further extended to a qc-tree structure by Lakshmanan,
Pei, and Zhao [LPZ03]. An aggregation-based approach, called C-Cubing (i.e., Closed-
Cubing), has been developed by Xin, Han, Shao, and Liu [XHSL06], which performs
efficient closed-cube computation by taking advantage of a new algebraic measure
closedness.

There are also various studies on the computation of compressed data cubes by
approximation, such as quasi-cubes by Barbara and Sullivan [BS97]; wavelet cubes by
Vitter, Wang, and Iyer [VWI98]; compressed cubes for query approximation on continu-
ous dimensions by Shanmugasundaram, Fayyad, and Bradley [SFB99]; using log-linear
models to compress data cubes by Barbara and Wu [BW00]; and OLAP over uncertain
and imprecise data by Burdick, Deshpande, Jayram, et al. [BDJ+05].

For works regarding the selection of materialized cuboids for efficient OLAP query
processing, see Chaudhuri and Dayal [CD97]; Harinarayan, Rajaraman, and Ullman
[HRU96]; Srivastava, Dar, Jagadish, and Levy [SDJL96]; Gupta [Gup97], Baralis,
Paraboschi, and Teniente [BPT97]; and Shukla, Deshpande, and Naughton [SDN98].
Methods for cube size estimation can be found in Deshpande, Naughton, Ramasamy,
et al. [DNR+97], Ross and Srivastava [RS97], and Beyer and Ramakrishnan [BR99].
Agrawal, Gupta, and Sarawagi [AGS97] proposed operations for modeling multidimen-
sional databases.

Data cube modeling and computation have been extended well beyond relational
data. Computation of stream cubes for multidimensional stream data analysis has been
studied by Chen, Dong, Han, et al. [CDH+02]. Efficient computation of spatial data
cubes was examined by Stefanovic, Han, and Koperski [SHK00], efficient OLAP in spa-
tial data warehouses was studied by Papadias, Kalnis, Zhang, and Tao [PKZT01], and a
map cube for visualizing spatial data warehouses was proposed by Shekhar, Lu, Tan, et al.
[SLT+01]. A multimedia data cube was constructed in MultiMediaMiner by Zaiane,
Han, Li, et al. [ZHL+98]. For analysis of multidimensional text databases, TextCube,
based on the vector space model, was proposed by Lin, Ding, Han, et al. [LDH+08],
and TopicCube, based on a topic modeling approach, was proposed by Zhang, Zhai, and
Han [ZZH09]. RFID Cube and FlowCube for analyzing RFID data were proposed by
Gonzalez, Han, Li, et al. [GHLK06, GHL06].

The sampling cube was introduced for analyzing sampling data by Li, Han, Yin, et al.
[LHY+08]. The ranking cube was proposed by Xin, Han, Cheng, and Li [XHCL06]
for efficient processing of ranking (top-k) queries in databases. This methodology has
been extended by Wu, Xin, and Han [WXH08] to ARCube, which supports the ranking
of aggregate queries in partially materialized data cubes. It has also been extended by



242 Chapter 5 Data Cube Technology

Wu, Xin, Mei, and Han [WXMH09] to PromoCube, which supports promotion query
analysis in multidimensional space.

The discovery-driven exploration of OLAP data cubes was proposed by Sarawagi,
Agrawal, and Megiddo [SAM98]. Further studies on integration of OLAP with data min-
ing capabilities for intelligent exploration of multidimensional OLAP data were done by
Sarawagi and Sathe [SS01]. The construction of multifeature data cubes is described by
Ross, Srivastava, and Chatziantoniou [RSC98]. Methods for answering queries quickly
by online aggregation are described by Hellerstein, Haas, and Wang [HHW97] and
Hellerstein, Avnur, Chou, et al. [HAC+99]. A cube-gradient analysis problem, called
cubegrade, was first proposed by Imielinski, Khachiyan, and Abdulghani [IKA02]. An
efficient method for multidimensional constrained gradient analysis in data cubes was
studied by Dong, Han, Lam, et al. [DHL+01].

Mining cube space, or integration of knowledge discovery and OLAP cubes, has
been studied by many researchers. The concept of online analytical mining (OLAM),
or OLAP mining, was introduced by Han [Han98]. Chen, Dong, Han, et al. devel-
oped a regression cube for regression-based multidimensional analysis of time-series data
[CDH+02, CDH+06]. Fagin, Guha, Kumar, et al. [FGK+05] studied data mining in
multistructured databases. B.-C. Chen, L. Chen, Lin, and Ramakrishnan [CCLR05] pro-
posed prediction cubes, which integrate prediction models with data cubes to discover
interesting data subspaces for facilitated prediction. Chen, Ramakrishnan, Shavlik, and
Tamma [CRST06] studied the use of data mining models as building blocks in a multi-
step mining process, and the use of cube space to intuitively define the space of interest
for predicting global aggregates from local regions. Ramakrishnan and Chen [RC07]
presented an organized picture of exploratory mining in cube space.



6Mining Frequent Patterns,
Associations, and Correlations:

Basic Concepts and Methods

Imagine that you are a sales manager at AllElectronics, and you are talking to a customer who
recently bought a PC and a digital camera from the store. What should you recommend
to her next? Information about which products are frequently purchased by your cus-
tomers following their purchases of a PC and a digital camera in sequence would be
very helpful in making your recommendation. Frequent patterns and association rules
are the knowledge that you want to mine in such a scenario.

Frequent patterns are patterns (e.g., itemsets, subsequences, or substructures) that
appear frequently in a data set. For example, a set of items, such as milk and bread, that
appear frequently together in a transaction data set is a frequent itemset. A subsequence,
such as buying first a PC, then a digital camera, and then a memory card, if it occurs fre-
quently in a shopping history database, is a (frequent) sequential pattern. A substructure
can refer to different structural forms, such as subgraphs, subtrees, or sublattices, which
may be combined with itemsets or subsequences. If a substructure occurs frequently, it is
called a (frequent) structured pattern. Finding frequent patterns plays an essential role in
mining associations, correlations, and many other interesting relationships among data.
Moreover, it helps in data classification, clustering, and other data mining tasks. Thus,
frequent pattern mining has become an important data mining task and a focused theme
in data mining research.

In this chapter, we introduce the basic concepts of frequent patterns, associations, and
correlations (Section 6.1) and study how they can be mined efficiently (Section 6.2). We
also discuss how to judge whether the patterns found are interesting (Section 6.3). In
Chapter 7, we extend our discussion to advanced methods of frequent pattern mining,
which mine more complex forms of frequent patterns and consider user preferences or
constraints to speed up the mining process.

6.1 Basic Concepts

Frequent pattern mining searches for recurring relationships in a given data set. This
section introduces the basic concepts of frequent pattern mining for the discovery of

c© 2012 Elsevier Inc. All rights reserved.
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interesting associations and correlations between itemsets in transactional and relational
databases. We begin in Section 6.1.1 by presenting an example of market basket analysis,
the earliest form of frequent pattern mining for association rules. The basic concepts of
mining frequent patterns and associations are given in Section 6.1.2.

6.1.1 Market Basket Analysis: A Motivating Example

Frequent itemset mining leads to the discovery of associations and correlations among
items in large transactional or relational data sets. With massive amounts of data contin-
uously being collected and stored, many industries are becoming interested in mining
such patterns from their databases. The discovery of interesting correlation relation-
ships among huge amounts of business transaction records can help in many busi-
ness decision-making processes such as catalog design, cross-marketing, and customer
shopping behavior analysis.

A typical example of frequent itemset mining is market basket analysis. This process
analyzes customer buying habits by finding associations between the different items that
customers place in their “shopping baskets” (Figure 6.1). The discovery of these associa-
tions can help retailers develop marketing strategies by gaining insight into which items
are frequently purchased together by customers. For instance, if customers are buying
milk, how likely are they to also buy bread (and what kind of bread) on the same trip

Which items are frequently
purchased together by customers?

milk
cereal

bread milk bread

butter

milk bread
sugar eggs

Customer 1

Market Analyst

Customer 2

sugar
eggs

Customer n

Customer 3

Shopping Baskets

Figure 6.1 Market basket analysis.
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to the supermarket? This information can lead to increased sales by helping retailers do
selective marketing and plan their shelf space.

Let’s look at an example of how market basket analysis can be useful.

Example 6.1 Market basket analysis. Suppose, as manager of an AllElectronics branch, you would
like to learn more about the buying habits of your customers. Specifically, you wonder,
“Which groups or sets of items are customers likely to purchase on a given trip to the store?”
To answer your question, market basket analysis may be performed on the retail data of
customer transactions at your store. You can then use the results to plan marketing or
advertising strategies, or in the design of a new catalog. For instance, market basket anal-
ysis may help you design different store layouts. In one strategy, items that are frequently
purchased together can be placed in proximity to further encourage the combined sale
of such items. If customers who purchase computers also tend to buy antivirus software
at the same time, then placing the hardware display close to the software display may
help increase the sales of both items.

In an alternative strategy, placing hardware and software at opposite ends of the store
may entice customers who purchase such items to pick up other items along the way. For
instance, after deciding on an expensive computer, a customer may observe security sys-
tems for sale while heading toward the software display to purchase antivirus software,
and may decide to purchase a home security system as well. Market basket analysis can
also help retailers plan which items to put on sale at reduced prices. If customers tend to
purchase computers and printers together, then having a sale on printers may encourage
the sale of printers as well as computers.

If we think of the universe as the set of items available at the store, then each item has a
Boolean variable representing the presence or absence of that item. Each basket can then
be represented by a Boolean vector of values assigned to these variables. The Boolean
vectors can be analyzed for buying patterns that reflect items that are frequently associ-
ated or purchased together. These patterns can be represented in the form of association
rules. For example, the information that customers who purchase computers also tend
to buy antivirus software at the same time is represented in the following association
rule:

computer⇒ antivirus software [support= 2%, confidence= 60%]. (6.1)

Rule support and confidence are two measures of rule interestingness. They respec-
tively reflect the usefulness and certainty of discovered rules. A support of 2% for
Rule (6.1) means that 2% of all the transactions under analysis show that computer
and antivirus software are purchased together. A confidence of 60% means that 60% of
the customers who purchased a computer also bought the software. Typically, associa-
tion rules are considered interesting if they satisfy both a minimum support threshold
and a minimum confidence threshold. These thresholds can be a set by users or
domain experts. Additional analysis can be performed to discover interesting statistical
correlations between associated items.



246 Chapter 6 Mining Frequent Patterns, Associations, and Correlations

6.1.2 Frequent Itemsets, Closed Itemsets,
and Association Rules

Let I = {I1, I2, . . . , Im} be an itemset. Let D, the task-relevant data, be a set of database
transactions where each transaction T is a nonempty itemset such that T ⊆ I . Each
transaction is associated with an identifier, called a TID. Let A be a set of items. A trans-
action T is said to contain A if A⊆ T . An association rule is an implication of the form
A⇒ B, where A⊂ I , B ⊂ I , A �= ∅, B �= ∅, and A∩B = φ. The rule A⇒ B holds in the
transaction set D with support s, where s is the percentage of transactions in D that
contain A∪B (i.e., the union of sets A and B say, or, both A and B). This is taken to be
the probability, P(A∪B).1 The rule A⇒ B has confidence c in the transaction set D,
where c is the percentage of transactions in D containing A that also contain B. This is
taken to be the conditional probability, P(B|A). That is,

support (A⇒B)=P(A∪B) (6.2)

confidence (A⇒B)=P(B|A). (6.3)

Rules that satisfy both a minimum support threshold (min sup) and a minimum con-
fidence threshold (min conf ) are called strong. By convention, we write support and
confidence values so as to occur between 0% and 100%, rather than 0 to 1.0.

A set of items is referred to as an itemset.2 An itemset that contains k items is a
k-itemset. The set {computer, antivirus software} is a 2-itemset. The occurrence fre-
quency of an itemset is the number of transactions that contain the itemset. This is
also known, simply, as the frequency, support count, or count of the itemset. Note
that the itemset support defined in Eq. (6.2) is sometimes referred to as relative support,
whereas the occurrence frequency is called the absolute support. If the relative support
of an itemset I satisfies a prespecified minimum support threshold (i.e., the absolute
support of I satisfies the corresponding minimum support count threshold), then I is
a frequent itemset.3 The set of frequent k-itemsets is commonly denoted by Lk .4

From Eq. (6.3), we have

confidence (A⇒B)= P(B|A)= support (A∪B)

support (A)
= support count(A∪B)

support count(A)
. (6.4)

1Notice that the notation P(A∪B) indicates the probability that a transaction contains the union of sets
A and B (i.e., it contains every item in A and B). This should not be confused with P(A or B), which
indicates the probability that a transaction contains either A or B.
2In the data mining research literature, “itemset” is more commonly used than “item set.”
3In early work, itemsets satisfying minimum support were referred to as large. This term, however,
is somewhat confusing as it has connotations of the number of items in an itemset rather than the
frequency of occurrence of the set. Hence, we use the more recent term frequent.
4Although the term frequent is preferred over large, for historic reasons frequent k-itemsets are still
denoted as Lk .
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Equation (6.4) shows that the confidence of rule A ⇒ B can be easily derived from the
support counts of A and A∪B. That is, once the support counts of A, B, and A∪B are
found, it is straightforward to derive the corresponding association rules A ⇒ B and
B ⇒ A and check whether they are strong. Thus, the problem of mining association
rules can be reduced to that of mining frequent itemsets.

In general, association rule mining can be viewed as a two-step process:

1. Find all frequent itemsets: By definition, each of these itemsets will occur at least as
frequently as a predetermined minimum support count, min sup.

2. Generate strong association rules from the frequent itemsets: By definition, these
rules must satisfy minimum support and minimum confidence.

Additional interestingness measures can be applied for the discovery of correlation
relationships between associated items, as will be discussed in Section 6.3. Because
the second step is much less costly than the first, the overall performance of mining
association rules is determined by the first step.

A major challenge in mining frequent itemsets from a large data set is the fact that
such mining often generates a huge number of itemsets satisfying the minimum support
(min sup) threshold, especially when min sup is set low. This is because if an itemset is
frequent, each of its subsets is frequent as well. A long itemset will contain a combinato-
rial number of shorter, frequent sub-itemsets. For example, a frequent itemset of length
100, such as {a1, a2, . . . , a100}, contains

(100
1

)= 100 frequent 1-itemsets: {a1}, {a2}, . . . ,

{a100};
(100

2

)
frequent 2-itemsets: {a1, a2}, {a1, a3}, . . . , {a99, a100}; and so on. The total

number of frequent itemsets that it contains is thus

(
100

1

)
+
(

100

2

)
+ ·· ·+

(
100

100

)
= 2100− 1≈ 1.27× 1030. (6.5)

This is too huge a number of itemsets for any computer to compute or store. To over-
come this difficulty, we introduce the concepts of closed frequent itemset and maximal
frequent itemset.

An itemset X is closed in a data set D if there exists no proper super-itemset Y 5 such
that Y has the same support count as X in D. An itemset X is a closed frequent itemset in
set D if X is both closed and frequent in D. An itemset X is a maximal frequent itemset
(or max-itemset) in a data set D if X is frequent, and there exists no super-itemset Y
such that X ⊂ Y and Y is frequent in D.

Let C be the set of closed frequent itemsets for a data set D satisfying a minimum sup-
port threshold, min sup. Let M be the set of maximal frequent itemsets for D satisfying
min sup. Suppose that we have the support count of each itemset in C and M. Notice
that C and its count information can be used to derive the whole set of frequent itemsets.

5Y is a proper super-itemset of X if X is a proper sub-itemset of Y , that is, if X ⊂ Y . In other words,
every item of X is contained in Y but there is at least one item of Y that is not in X .
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Thus, we say that C contains complete information regarding its corresponding frequent
itemsets. On the other hand, M registers only the support of the maximal itemsets. It
usually does not contain the complete support information regarding its corresponding
frequent itemsets. We illustrate these concepts with Example 6.2.

Example 6.2 Closed and maximal frequent itemsets. Suppose that a transaction database has only
two transactions: {〈a1, a2, . . . , a100〉; 〈a1, a2, . . . , a50〉}. Let the minimum support count
threshold be min sup= 1. We find two closed frequent itemsets and their support
counts, that is, C = {{a1, a2, . . . , a100} : 1; {a1, a2, . . . , a50} : 2}. There is only one max-
imal frequent itemset: M= {{a1, a2, . . . , a100} : 1}. Notice that we cannot include
{a1, a2, . . . , a50} as a maximal frequent itemset because it has a frequent superset,
{a1, a2, . . . , a100}. Compare this to the preceding where we determined that there are
2100− 1 frequent itemsets, which are too many to be enumerated!

The set of closed frequent itemsets contains complete information regarding the fre-
quent itemsets. For example, from C, we can derive, say, (1) {a2, a45 : 2} since {a2, a45} is
a sub-itemset of the itemset {a1, a2, . . . , a50 : 2}; and (2) {a8, a55 : 1} since {a8, a55} is not
a sub-itemset of the previous itemset but of the itemset {a1, a2, . . . , a100 : 1}. However,
from the maximal frequent itemset, we can only assert that both itemsets ({a2, a45} and
{a8, a55}) are frequent, but we cannot assert their actual support counts.

6.2 Frequent Itemset Mining Methods

In this section, you will learn methods for mining the simplest form of frequent pat-
terns such as those discussed for market basket analysis in Section 6.1.1. We begin by
presenting Apriori, the basic algorithm for finding frequent itemsets (Section 6.2.1). In
Section 6.2.2, we look at how to generate strong association rules from frequent item-
sets. Section 6.2.3 describes several variations to the Apriori algorithm for improved
efficiency and scalability. Section 6.2.4 presents pattern-growth methods for mining
frequent itemsets that confine the subsequent search space to only the data sets contain-
ing the current frequent itemsets. Section 6.2.5 presents methods for mining frequent
itemsets that take advantage of the vertical data format.

6.2.1 Apriori Algorithm: Finding Frequent Itemsets
by Confined Candidate Generation

Apriori is a seminal algorithm proposed by R. Agrawal and R. Srikant in 1994 for min-
ing frequent itemsets for Boolean association rules [AS94b]. The name of the algorithm
is based on the fact that the algorithm uses prior knowledge of frequent itemset prop-
erties, as we shall see later. Apriori employs an iterative approach known as a level-wise
search, where k-itemsets are used to explore (k+ 1)-itemsets. First, the set of frequent
1-itemsets is found by scanning the database to accumulate the count for each item, and
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collecting those items that satisfy minimum support. The resulting set is denoted by L1.
Next, L1 is used to find L2, the set of frequent 2-itemsets, which is used to find L3, and
so on, until no more frequent k-itemsets can be found. The finding of each Lk requires
one full scan of the database.

To improve the efficiency of the level-wise generation of frequent itemsets, an
important property called the Apriori property is used to reduce the search space.

Apriori property: All nonempty subsets of a frequent itemset must also be frequent.
The Apriori property is based on the following observation. By definition, if an item-

set I does not satisfy the minimum support threshold, min sup, then I is not frequent,
that is, P(I) < min sup. If an item A is added to the itemset I , then the resulting itemset
(i.e., I ∪A) cannot occur more frequently than I . Therefore, I ∪A is not frequent either,
that is, P(I ∪A) < min sup.

This property belongs to a special category of properties called antimonotonicity in
the sense that if a set cannot pass a test, all of its supersets will fail the same test as well. It
is called antimonotonicity because the property is monotonic in the context of failing a
test.6

“How is the Apriori property used in the algorithm?” To understand this, let us look at
how Lk−1 is used to find Lk for k ≥ 2. A two-step process is followed, consisting of join
and prune actions.

1. The join step: To find Lk , a set of candidate k-itemsets is generated by joining
Lk−1 with itself. This set of candidates is denoted Ck . Let l1 and l2 be itemsets
in Lk−1. The notation li[j] refers to the jth item in li (e.g., l1[k− 2] refers to
the second to the last item in l1). For efficient implementation, Apriori assumes
that items within a transaction or itemset are sorted in lexicographic order. For
the (k− 1)-itemset, li , this means that the items are sorted such that li[1] < li[2]
< · · ·< li[k− 1]. The join, Lk−1 � Lk−1, is performed, where members of Lk−1 are
joinable if their first (k− 2) items are in common. That is, members l1 and l2
of Lk−1 are joined if (l1[1]= l2[1])∧ (l1[2]= l2[2])∧ ·· · ∧ (l1[k− 2]= l2[k− 2])
∧(l1[k− 1] < l2[k− 1]). The condition l1[k− 1] < l2[k− 1] simply ensures that
no duplicates are generated. The resulting itemset formed by joining l1 and l2 is
{l1[1], l1[2], . . . , l1[k− 2], l1[k− 1], l2[k− 1]}.

2. The prune step: Ck is a superset of Lk , that is, its members may or may not be
frequent, but all of the frequent k-itemsets are included in Ck . A database scan to
determine the count of each candidate in Ck would result in the determination of
Lk (i.e., all candidates having a count no less than the minimum support count are
frequent by definition, and therefore belong to Lk). Ck , however, can be huge, and so
this could involve heavy computation. To reduce the size of Ck , the Apriori property

6The Apriori property has many applications. For example, it can also be used to prune search during
data cube computation (Chapter 5).
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is used as follows. Any (k− 1)-itemset that is not frequent cannot be a subset of a
frequent k-itemset. Hence, if any (k− 1)-subset of a candidate k-itemset is not in
Lk−1, then the candidate cannot be frequent either and so can be removed from Ck .
This subset testing can be done quickly by maintaining a hash tree of all frequent
itemsets.

Example 6.3 Apriori. Let’s look at a concrete example, based on the AllElectronics transaction
database, D, of Table 6.1. There are nine transactions in this database, that is, |D| = 9.
We use Figure 6.2 to illustrate the Apriori algorithm for finding frequent itemsets in D.

1. In the first iteration of the algorithm, each item is a member of the set of candidate
1-itemsets, C1. The algorithm simply scans all of the transactions to count the
number of occurrences of each item.

2. Suppose that the minimum support count required is 2, that is, min sup= 2. (Here,
we are referring to absolute support because we are using a support count. The corre-
sponding relative support is 2/9= 22%.) The set of frequent 1-itemsets, L1, can then
be determined. It consists of the candidate 1-itemsets satisfying minimum support.
In our example, all of the candidates in C1 satisfy minimum support.

3. To discover the set of frequent 2-itemsets, L2, the algorithm uses the join L1 � L1 to
generate a candidate set of 2-itemsets, C2.7 C2 consists of

(|L1|
2

)
2-itemsets. Note that

no candidates are removed from C2 during the prune step because each subset of the
candidates is also frequent.

Table 6.1 Transactional Data for an AllElectronics
Branch

TID List of item IDs

T100 I1, I2, I5

T200 I2, I4

T300 I2, I3

T400 I1, I2, I4

T500 I1, I3

T600 I2, I3

T700 I1, I3

T800 I1, I2, I3, I5

T900 I1, I2, I3

7L1 � L1 is equivalent to L1 × L1, since the definition of Lk � Lk requires the two joining itemsets to
share k− 1= 0 items.
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Figure 6.2 Generation of the candidate itemsets and frequent itemsets, where the minimum support
count is 2.

4. Next, the transactions in D are scanned and the support count of each candidate
itemset in C2 is accumulated, as shown in the middle table of the second row in
Figure 6.2.

5. The set of frequent 2-itemsets, L2, is then determined, consisting of those candidate
2-itemsets in C2 having minimum support.

6. The generation of the set of the candidate 3-itemsets, C3, is detailed in Figure 6.3.
From the join step, we first get C3 = L2 � L2 = {{I1, I2, I3}, {I1, I2, I5}, {I1, I3, I5},
{I2, I3, I4}, {I2, I3, I5}, {I2, I4, I5}}. Based on the Apriori property that all subsets
of a frequent itemset must also be frequent, we can determine that the four latter
candidates cannot possibly be frequent. We therefore remove them from C3, thereby
saving the effort of unnecessarily obtaining their counts during the subsequent scan
of D to determine L3. Note that when given a candidate k-itemset, we only need to
check if its (k− 1)-subsets are frequent since the Apriori algorithm uses a level-wise
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(a) Join: C3 = L2 � L2 = {{I1, I2}, {I1, I3}, {I1, I5}, {I2, I3}, {I2, I4}, {I2, I5}}
�{{I1, I2}, {I1, I3}, {I1, I5}, {I2, I3}, {I2, I4}, {I2, I5}}

= {{I1, I2, I3}, {I1, I2, I5}, {I1, I3, I5}, {I2, I3, I4}, {I2, I3, I5}, {I2, I4, I5}}.
(b) Prune using the Apriori property: All nonempty subsets of a frequent itemset must also be

frequent. Do any of the candidates have a subset that is not frequent?

The 2-item subsets of {I1, I2, I3} are {I1, I2}, {I1, I3}, and {I2, I3}. All 2-item subsets
of {I1, I2, I3} are members of L2. Therefore, keep {I1, I2, I3} in C3.

The 2-item subsets of {I1, I2, I5} are {I1, I2}, {I1, I5}, and {I2, I5}. All 2-item subsets of
{I1, I2, I5} are members of L2. Therefore, keep {I1, I2, I5} in C3.

The 2-item subsets of {I1, I3, I5} are {I1, I3}, {I1, I5}, and {I3, I5}. {I3, I5} is not
a member of L2, and so it is not frequent. Therefore, remove {I1, I3, I5} from C3.

The 2-item subsets of {I2, I3, I4} are {I2, I3}, {I2, I4}, and {I3, I4}. {I3, I4} is not a
member of L2, and so it is not frequent. Therefore, remove {I2, I3, I4} from C3.

The 2-item subsets of {I2, I3, I5} are {I2, I3}, {I2, I5}, and {I3, I5}. {I3, I5} is not
a member of L2, and so it is not frequent. Therefore, remove {I2, I3, I5} from C3.

The 2-item subsets of {I2, I4, I5} are {I2, I4}, {I2, I5}, and {I4, I5}. {I4, I5} is not a
member of L2, and so it is not frequent. Therefore, remove {I2, I4, I5} from C3.

(c) Therefore, C3 = {{I1, I2, I3}, {I1, I2, I5}} after pruning.

Figure 6.3 Generation and pruning of candidate 3-itemsets, C3, from L2 using the Apriori property.

search strategy. The resulting pruned version of C3 is shown in the first table of the
bottom row of Figure 6.2.

7. The transactions in D are scanned to determine L3, consisting of those candidate
3-itemsets in C3 having minimum support (Figure 6.2).

8. The algorithm uses L3 � L3 to generate a candidate set of 4-itemsets, C4. Although
the join results in {{I1, I2, I3, I5}}, itemset {I1, I2, I3, I5} is pruned because its subset
{I2, I3, I5} is not frequent. Thus, C4 = φ, and the algorithm terminates, having found
all of the frequent itemsets.

Figure 6.4 shows pseudocode for the Apriori algorithm and its related procedures.
Step 1 of Apriori finds the frequent 1-itemsets, L1. In steps 2 through 10, Lk−1 is used
to generate candidates Ck to find Lk for k ≥ 2. The apriori gen procedure generates the
candidates and then uses the Apriori property to eliminate those having a subset that is
not frequent (step 3). This procedure is described later. Once all of the candidates have
been generated, the database is scanned (step 4). For each transaction, a subset function
is used to find all subsets of the transaction that are candidates (step 5), and the count
for each of these candidates is accumulated (steps 6 and 7). Finally, all the candidates
satisfying the minimum support (step 9) form the set of frequent itemsets, L (step 11).
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Algorithm: Apriori. Find frequent itemsets using an iterative level-wise approach based
on candidate generation.

Input:

D, a database of transactions;

min sup, the minimum support count threshold.

Output: L, frequent itemsets in D.

Method:

(1) L1 = find frequent 1-itemsets(D);
(2) for (k = 2;Lk−1 �= φ;k++) {
(3) Ck = apriori gen(Lk−1);
(4) for each transaction t ∈ D { // scan D for counts
(5) Ct = subset(Ck , t); // get the subsets of t that are candidates
(6) for each candidate c ∈ Ct
(7) c.count++;
(8) }
(9) Lk = {c ∈ Ck|c.count ≥min sup}
(10) }
(11) return L = ∪kLk ;

procedure apriori gen(Lk−1:frequent (k− 1)-itemsets)
(1) for each itemset l1 ∈ Lk−1
(2) for each itemset l2 ∈ Lk−1
(3) if (l1[1]= l2[1])∧ (l1[2]= l2[2])

∧...∧ (l1[k− 2]= l2[k− 2])∧ (l1[k− 1] < l2[k− 1]) then {
(4) c = l1 � l2; // join step: generate candidates
(5) if has infrequent subset(c, Lk−1) then
(6) delete c; // prune step: remove unfruitful candidate
(7) else add c to Ck ;
(8) }
(9) return Ck ;

procedure has infrequent subset(c: candidate k-itemset;
Lk−1: frequent (k− 1)-itemsets); // use prior knowledge

(1) for each (k− 1)-subset s of c
(2) if s �∈ Lk−1 then
(3) return TRUE;
(4) return FALSE;

Figure 6.4 Apriori algorithm for discovering frequent itemsets for mining Boolean association rules.

A procedure can then be called to generate association rules from the frequent itemsets.
Such a procedure is described in Section 6.2.2.

The apriori gen procedure performs two kinds of actions, namely, join and prune, as
described before. In the join component, Lk−1 is joined with Lk−1 to generate potential
candidates (steps 1–4). The prune component (steps 5–7) employs the Apriori property
to remove candidates that have a subset that is not frequent. The test for infrequent
subsets is shown in procedure has infrequent subset.
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6.2.2 Generating Association Rules from Frequent Itemsets

Once the frequent itemsets from transactions in a database D have been found, it is
straightforward to generate strong association rules from them (where strong associa-
tion rules satisfy both minimum support and minimum confidence). This can be done
using Eq. (6.4) for confidence, which we show again here for completeness:

confidence (A⇒ B)= P(B|A)= support count(A∪B)

support count(A)
.

The conditional probability is expressed in terms of itemset support count, where
support count(A∪B) is the number of transactions containing the itemsets A∪B, and
support count(A) is the number of transactions containing the itemset A. Based on this
equation, association rules can be generated as follows:

For each frequent itemset l, generate all nonempty subsets of l.

For every nonempty subset s of l, output the rule “s ⇒ (l− s)” if support count(l)
support count(s) ≥

min conf, where min conf is the minimum confidence threshold.

Because the rules are generated from frequent itemsets, each one automatically satis-
fies the minimum support. Frequent itemsets can be stored ahead of time in hash tables
along with their counts so that they can be accessed quickly.

Example 6.4 Generating association rules. Let’s try an example based on the transactional data for
AllElectronics shown before in Table 6.1. The data contain frequent itemset X = {I1, I2,
I5}. What are the association rules that can be generated from X? The nonempty subsets
of X are {I1, I2}, {I1, I5}, {I2, I5}, {I1}, {I2}, and {I5}. The resulting association rules are
as shown below, each listed with its confidence:

{I1, I2} ⇒ I5, confidence= 2/4= 50%
{I1, I5} ⇒ I2, confidence= 2/2= 100%
{I2, I5} ⇒ I1, confidence= 2/2= 100%
I1⇒ {I2, I5}, confidence= 2/6= 33%
I2⇒ {I1, I5}, confidence= 2/7= 29%
I5⇒ {I1, I2}, confidence= 2/2= 100%

If the minimum confidence threshold is, say, 70%, then only the second, third, and
last rules are output, because these are the only ones generated that are strong. Note
that, unlike conventional classification rules, association rules can contain more than
one conjunct in the right side of the rule.

6.2.3 Improving the Efficiency of Apriori

“How can we further improve the efficiency of Apriori-based mining?” Many variations of
the Apriori algorithm have been proposed that focus on improving the efficiency of the
original algorithm. Several of these variations are summarized as follows:
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Figure 6.5 Hash table, H2, for candidate 2-itemsets. This hash table was generated by scanning
Table 6.1’s transactions while determining L1. If the minimum support count is, say, 3, then
the itemsets in buckets 0, 1, 3, and 4 cannot be frequent and so they should not be included
in C2.

Hash-based technique (hashing itemsets into corresponding buckets): A hash-based
technique can be used to reduce the size of the candidate k-itemsets, Ck , for k > 1.
For example, when scanning each transaction in the database to generate the frequent
1-itemsets, L1, we can generate all the 2-itemsets for each transaction, hash (i.e., map)
them into the different buckets of a hash table structure, and increase the correspond-
ing bucket counts (Figure 6.5). A 2-itemset with a corresponding bucket count in the
hash table that is below the support threshold cannot be frequent and thus should
be removed from the candidate set. Such a hash-based technique may substantially
reduce the number of candidate k-itemsets examined (especially when k = 2).

Transaction reduction (reducing the number of transactions scanned in future itera-
tions): A transaction that does not contain any frequent k-itemsets cannot contain any
frequent (k+ 1)-itemsets. Therefore, such a transaction can be marked or removed
from further consideration because subsequent database scans for j-itemsets, where
j > k, will not need to consider such a transaction.

Partitioning (partitioning the data to find candidate itemsets): A partitioning tech-
nique can be used that requires just two database scans to mine the frequent itemsets
(Figure 6.6). It consists of two phases. In phase I, the algorithm divides the trans-
actions of D into n nonoverlapping partitions. If the minimum relative support
threshold for transactions in D is min sup, then the minimum support count for a
partition is min sup × the number of transactions in that partition. For each partition,
all the local frequent itemsets (i.e., the itemsets frequent within the partition) are found.

A local frequent itemset may or may not be frequent with respect to the entire
database, D. However, any itemset that is potentially frequent with respect to D must
occur as a frequent itemset in at least one of the partitions.8 Therefore, all local frequent
itemsets are candidate itemsets with respect to D. The collection of frequent itemsets
from all partitions forms the global candidate itemsets with respect to D. In phase II,

8The proof of this property is left as an exercise (see Exercise 6.3d).
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Figure 6.6 Mining by partitioning the data.

a second scan of D is conducted in which the actual support of each candidate is
assessed to determine the global frequent itemsets. Partition size and the number of
partitions are set so that each partition can fit into main memory and therefore be
read only once in each phase.

Sampling (mining on a subset of the given data): The basic idea of the sampling
approach is to pick a random sample S of the given data D, and then search for
frequent itemsets in S instead of D. In this way, we trade off some degree of accuracy
against efficiency. The S sample size is such that the search for frequent itemsets in S
can be done in main memory, and so only one scan of the transactions in S is required
overall. Because we are searching for frequent itemsets in S rather than in D, it is
possible that we will miss some of the global frequent itemsets.

To reduce this possibility, we use a lower support threshold than minimum support
to find the frequent itemsets local to S (denoted LS). The rest of the database is
then used to compute the actual frequencies of each itemset in LS. A mechanism is
used to determine whether all the global frequent itemsets are included in LS. If LS

actually contains all the frequent itemsets in D, then only one scan of D is required.
Otherwise, a second pass can be done to find the frequent itemsets that were missed
in the first pass. The sampling approach is especially beneficial when efficiency is of
utmost importance such as in computationally intensive applications that must be
run frequently.

Dynamic itemset counting (adding candidate itemsets at different points during a
scan): A dynamic itemset counting technique was proposed in which the database
is partitioned into blocks marked by start points. In this variation, new candidate
itemsets can be added at any start point, unlike in Apriori, which determines new
candidate itemsets only immediately before each complete database scan. The tech-
nique uses the count-so-far as the lower bound of the actual count. If the count-so-far
passes the minimum support, the itemset is added into the frequent itemset collection
and can be used to generate longer candidates. This leads to fewer database scans than
with Apriori for finding all the frequent itemsets.

Other variations are discussed in the next chapter.
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6.2.4 A Pattern-Growth Approach for Mining
Frequent Itemsets

As we have seen, in many cases the Apriori candidate generate-and-test method signifi-
cantly reduces the size of candidate sets, leading to good performance gain. However, it
can suffer from two nontrivial costs:

It may still need to generate a huge number of candidate sets. For example, if there are
104 frequent 1-itemsets, the Apriori algorithm will need to generate more than 107

candidate 2-itemsets.

It may need to repeatedly scan the whole database and check a large set of candidates by
pattern matching. It is costly to go over each transaction in the database to determine
the support of the candidate itemsets.

“Can we design a method that mines the complete set of frequent itemsets without such
a costly candidate generation process?” An interesting method in this attempt is called
frequent pattern growth, or simply FP-growth, which adopts a divide-and-conquer
strategy as follows. First, it compresses the database representing frequent items into a
frequent pattern tree, or FP-tree, which retains the itemset association information. It
then divides the compressed database into a set of conditional databases (a special kind of
projected database), each associated with one frequent item or “pattern fragment,” and
mines each database separately. For each “pattern fragment,” only its associated data sets
need to be examined. Therefore, this approach may substantially reduce the size of the
data sets to be searched, along with the “growth” of patterns being examined. You will
see how it works in Example 6.5.

Example 6.5 FP-growth (finding frequent itemsets without candidate generation). We reexamine
the mining of transaction database, D, of Table 6.1 in Example 6.3 using the frequent
pattern growth approach.

The first scan of the database is the same as Apriori, which derives the set of frequent
items (1-itemsets) and their support counts (frequencies). Let the minimum support
count be 2. The set of frequent items is sorted in the order of descending support count.
This resulting set or list is denoted by L. Thus, we have L ={{I2: 7}, {I1: 6}, {I3: 6},
{I4: 2}, {I5: 2}}.

An FP-tree is then constructed as follows. First, create the root of the tree, labeled
with “null.” Scan database D a second time. The items in each transaction are processed
in L order (i.e., sorted according to descending support count), and a branch is created
for each transaction. For example, the scan of the first transaction, “T100: I1, I2, I5,”
which contains three items (I2, I1, I5 in L order), leads to the construction of the first
branch of the tree with three nodes, 〈I2: 1〉, 〈I1: 1〉, and 〈I5: 1〉, where I2 is linked as a
child to the root, I1 is linked to I2, and I5 is linked to I1. The second transaction, T200,
contains the items I2 and I4 in L order, which would result in a branch where I2 is linked
to the root and I4 is linked to I2. However, this branch would share a common prefix,
I2, with the existing path for T100. Therefore, we instead increment the count of the I2
node by 1, and create a new node, 〈I4: 1〉, which is linked as a child to 〈I2: 2〉. In general,
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Figure 6.7 An FP-tree registers compressed, frequent pattern information.

when considering the branch to be added for a transaction, the count of each node along
a common prefix is incremented by 1, and nodes for the items following the prefix are
created and linked accordingly.

To facilitate tree traversal, an item header table is built so that each item points to its
occurrences in the tree via a chain of node-links. The tree obtained after scanning all
the transactions is shown in Figure 6.7 with the associated node-links. In this way, the
problem of mining frequent patterns in databases is transformed into that of mining the
FP-tree.

The FP-tree is mined as follows. Start from each frequent length-1 pattern (as an
initial suffix pattern), construct its conditional pattern base (a “sub-database,” which
consists of the set of prefix paths in the FP-tree co-occurring with the suffix pattern),
then construct its (conditional) FP-tree, and perform mining recursively on the tree. The
pattern growth is achieved by the concatenation of the suffix pattern with the frequent
patterns generated from a conditional FP-tree.

Mining of the FP-tree is summarized in Table 6.2 and detailed as follows. We first
consider I5, which is the last item in L, rather than the first. The reason for starting at
the end of the list will become apparent as we explain the FP-tree mining process. I5
occurs in two FP-tree branches of Figure 6.7. (The occurrences of I5 can easily be found
by following its chain of node-links.) The paths formed by these branches are 〈I2, I1,
I5: 1〉 and 〈I2, I1, I3, I5: 1〉. Therefore, considering I5 as a suffix, its corresponding two
prefix paths are 〈I2, I1: 1〉 and 〈I2, I1, I3: 1〉, which form its conditional pattern base.
Using this conditional pattern base as a transaction database, we build an I5-conditional
FP-tree, which contains only a single path, 〈I2: 2, I1: 2〉; I3 is not included because its
support count of 1 is less than the minimum support count. The single path generates
all the combinations of frequent patterns: {I2, I5: 2}, {I1, I5: 2}, {I2, I1, I5: 2}.

For I4, its two prefix paths form the conditional pattern base, {{I2 I1: 1}, {I2: 1}},
which generates a single-node conditional FP-tree, 〈I2: 2〉, and derives one frequent
pattern, {I2, I4: 2}.
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Table 6.2 Mining the FP-Tree by Creating Conditional (Sub-)Pattern Bases

Item Conditional Pattern Base Conditional FP-tree Frequent Patterns Generated
I5 {{I2, I1: 1}, {I2, I1, I3: 1}} 〈I2: 2, I1: 2〉 {I2, I5: 2}, {I1, I5: 2}, {I2, I1, I5: 2}
I4 {{I2, I1: 1}, {I2: 1}} 〈I2: 2〉 {I2, I4: 2}
I3 {{I2, I1: 2}, {I2: 2}, {I1: 2}} 〈I2: 4, I1: 2〉, 〈I1: 2〉 {I2, I3: 4}, {I1, I3: 4}, {I2, I1, I3: 2}
I1 {{I2: 4}} 〈I2: 4〉 {I2, I1: 4}

I2 4 I2:4

I1:2

I1:2

Node-linkItem ID

Support
count null{}

I1 4

Figure 6.8 The conditional FP-tree associated with the conditional node I3.

Similar to the preceding analysis, I3’s conditional pattern base is {{I2, I1: 2}, {I2: 2},
{I1: 2}}. Its conditional FP-tree has two branches, 〈I2: 4, I1: 2〉 and 〈I1: 2〉, as shown
in Figure 6.8, which generates the set of patterns {{I2, I3: 4}, {I1, I3: 4}, {I2, I1, I3: 2}}.
Finally, I1’s conditional pattern base is {{I2: 4}}, with an FP-tree that contains only one
node, 〈I2: 4〉, which generates one frequent pattern, {I2, I1: 4}. This mining process is
summarized in Figure 6.9.

The FP-growth method transforms the problem of finding long frequent patterns
into searching for shorter ones in much smaller conditional databases recursively and
then concatenating the suffix. It uses the least frequent items as a suffix, offering good
selectivity. The method substantially reduces the search costs.

When the database is large, it is sometimes unrealistic to construct a main memory-
based FP-tree. An interesting alternative is to first partition the database into a set
of projected databases, and then construct an FP-tree and mine it in each projected
database. This process can be recursively applied to any projected database if its FP-tree
still cannot fit in main memory.

A study of the FP-growth method performance shows that it is efficient and scalable
for mining both long and short frequent patterns, and is about an order of magnitude
faster than the Apriori algorithm.

6.2.5 Mining Frequent Itemsets Using the Vertical Data Format

Both the Apriori and FP-growth methods mine frequent patterns from a set of trans-
actions in TID-itemset format (i.e., {TID : itemset}), where TID is a transaction ID
and itemset is the set of items bought in transaction TID. This is known as the
horizontal data format. Alternatively, data can be presented in item-TID set format
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Algorithm: FP growth. Mine frequent itemsets using an FP-tree by pattern fragment growth.

Input:

D, a transaction database;

min sup, the minimum support count threshold.

Output: The complete set of frequent patterns.

Method:

1. The FP-tree is constructed in the following steps:

(a) Scan the transaction database D once. Collect F , the set of frequent items, and their
support counts. Sort F in support count descending order as L, the list of frequent items.

(b) Create the root of an FP-tree, and label it as “null.” For each transaction Trans in D do the
following.
Select and sort the frequent items in Trans according to the order of L. Let the sorted
frequent item list in Trans be [p|P], where p is the first element and P is the remaining
list. Call insert tree([p|P], T), which is performed as follows. If T has a child N such that
N.item-name= p.item-name, then increment N ’s count by 1; else create a new node N ,
and let its count be 1, its parent link be linked to T , and its node-link to the nodes with
the same item-name via the node-link structure. If P is nonempty, call insert tree(P, N)

recursively.

2. The FP-tree is mined by calling FP growth(FP tree, null), which is implemented as follows.

procedure FP growth(Tree, α)
(1) if Tree contains a single path P then
(2) for each combination (denoted as β) of the nodes in the path P
(3) generate pattern β ∪α with support count = minimum support count of nodes in β;
(4) else for each ai in the header of Tree {
(5) generate pattern β = ai ∪α with support count = ai .support count ;
(6) construct β’s conditional pattern base and then β’s conditional FP tree Treeβ ;
(7) if Treeβ �= ∅ then
(8) call FP growth(Treeβ , β); }

Figure 6.9 FP-growth algorithm for discovering frequent itemsets without candidate generation.

(i.e., {item : TID set}), where item is an item name, and TID set is the set of transaction
identifiers containing the item. This is known as the vertical data format.

In this subsection, we look at how frequent itemsets can also be mined effi-
ciently using vertical data format, which is the essence of the Eclat (Equivalence Class
Transformation) algorithm.

Example 6.6 Mining frequent itemsets using the vertical data format. Consider the horizontal
data format of the transaction database, D, of Table 6.1 in Example 6.3. This can be
transformed into the vertical data format shown in Table 6.3 by scanning the data
set once.

Mining can be performed on this data set by intersecting the TID sets of every pair
of frequent single items. The minimum support count is 2. Because every single item is
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Table 6.3 The Vertical Data Format of the Transaction Data
Set D of Table 6.1

itemset TID set
I1 {T100, T400, T500, T700, T800, T900}
I2 {T100, T200, T300, T400, T600, T800, T900}
I3 {T300, T500, T600, T700, T800, T900}
I4 {T200, T400}
I5 {T100, T800}

Table 6.4 2-Itemsets in Vertical Data Format

itemset TID set
{I1, I2} {T100, T400, T800, T900}
{I1, I3} {T500, T700, T800, T900}
{I1, I4} {T400}
{I1, I5} {T100, T800}
{I2, I3} {T300, T600, T800, T900}
{I2, I4} {T200, T400}
{I2, I5} {T100, T800}
{I3, I5} {T800}

Table 6.5 3-Itemsets in Vertical Data Format

itemset TID set
{I1, I2, I3} {T800, T900}
{I1, I2, I5} {T100, T800}

frequent in Table 6.3, there are 10 intersections performed in total, which lead to eight
nonempty 2-itemsets, as shown in Table 6.4. Notice that because the itemsets {I1, I4}
and {I3, I5} each contain only one transaction, they do not belong to the set of frequent
2-itemsets.

Based on the Apriori property, a given 3-itemset is a candidate 3-itemset only if every
one of its 2-itemset subsets is frequent. The candidate generation process here will gen-
erate only two 3-itemsets: {I1, I2, I3} and {I1, I2, I5}. By intersecting the TID sets of any
two corresponding 2-itemsets of these candidate 3-itemsets, it derives Table 6.5, where
there are only two frequent 3-itemsets: {I1, I2, I3: 2} and {I1, I2, I5: 2}.

Example 6.6 illustrates the process of mining frequent itemsets by exploring the
vertical data format. First, we transform the horizontally formatted data into the
vertical format by scanning the data set once. The support count of an itemset is simply
the length of the TID set of the itemset. Starting with k = 1, the frequent k-itemsets
can be used to construct the candidate (k+ 1)-itemsets based on the Apriori property.
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The computation is done by intersection of the TID sets of the frequent k-itemsets to
compute the TID sets of the corresponding (k+ 1)-itemsets. This process repeats, with
k incremented by 1 each time, until no frequent itemsets or candidate itemsets can be
found.

Besides taking advantage of the Apriori property in the generation of candidate
(k+ 1)-itemset from frequent k-itemsets, another merit of this method is that there
is no need to scan the database to find the support of (k+ 1)-itemsets (for k ≥ 1).
This is because the TID set of each k-itemset carries the complete information required
for counting such support. However, the TID sets can be quite long, taking substantial
memory space as well as computation time for intersecting the long sets.

To further reduce the cost of registering long TID sets, as well as the subsequent
costs of intersections, we can use a technique called diffset, which keeps track of only
the differences of the TID sets of a (k+ 1)-itemset and a corresponding k-itemset. For
instance, in Example 6.6 we have {I1} = {T100, T400, T500, T700, T800, T900} and {I1,
I2} = {T100, T400, T800, T900}. The diffset between the two is diffset({I1, I2}, {I1}) =
{T500, T700}. Thus, rather than recording the four TIDs that make up the intersection of
{I1} and {I2}, we can instead use diffset to record just two TIDs, indicating the difference
between {I1} and {I1, I2}. Experiments show that in certain situations, such as when the
data set contains many dense and long patterns, this technique can substantially reduce
the total cost of vertical format mining of frequent itemsets.

6.2.6 Mining Closed and Max Patterns

In Section 6.1.2 we saw how frequent itemset mining may generate a huge number of
frequent itemsets, especially when the min sup threshold is set low or when there exist
long patterns in the data set. Example 6.2 showed that closed frequent itemsets9 can
substantially reduce the number of patterns generated in frequent itemset mining while
preserving the complete information regarding the set of frequent itemsets. That is, from
the set of closed frequent itemsets, we can easily derive the set of frequent itemsets and
their support. Thus, in practice, it is more desirable to mine the set of closed frequent
itemsets rather than the set of all frequent itemsets in most cases.

“How can we mine closed frequent itemsets?” A naïve approach would be to first mine
the complete set of frequent itemsets and then remove every frequent itemset that is a
proper subset of, and carries the same support as, an existing frequent itemset. However,
this is quite costly. As shown in Example 6.2, this method would have to first derive
2100− 1 frequent itemsets to obtain a length-100 frequent itemset, all before it could
begin to eliminate redundant itemsets. This is prohibitively expensive. In fact, there exist
only a very small number of closed frequent itemsets in Example 6.2’s data set.

A recommended methodology is to search for closed frequent itemsets directly dur-
ing the mining process. This requires us to prune the search space as soon as we

9Remember that X is a closed frequent itemset in a data set S if there exists no proper super-itemset Y
such that Y has the same support count as X in S, and X satisfies minimum support.
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can identify the case of closed itemsets during mining. Pruning strategies include the
following:

Item merging: If every transaction containing a frequent itemset X also contains an itemset
Y but not any proper superset of Y , then X ∪Y forms a frequent closed itemset and there
is no need to search for any itemset containing X but no Y .

For example, in Table 6.2 of Example 6.5, the projected conditional database for
prefix itemset {I5:2} is {{I2, I1}, {I2, I1, I3}}, from which we can see that each of its
transactions contains itemset {I2, I1} but no proper superset of {I2, I1}. Itemset {I2,
I1} can be merged with {I5} to form the closed itemset, {I5, I2, I1: 2}, and we do not
need to mine for closed itemsets that contain I5 but not {I2, I1}.

Sub-itemset pruning: If a frequent itemset X is a proper subset of an already found fre-
quent closed itemset Y and support count(X)=support count(Y), then X and all of X’s
descendants in the set enumeration tree cannot be frequent closed itemsets and thus can
be pruned.

Similar to Example 6.2, suppose a transaction database has only two trans-
actions: {〈a1, a2, . . . , a100〉, 〈a1, a2, . . . , a50〉}, and the minimum support count is
min sup = 2. The projection on the first item, a1, derives the frequent itemset, {a1,
a2, . . . , a50 : 2}, based on the itemset merging optimization. Because support({a2}) =
support({a1, a2, . . . , a50}) = 2, and {a2} is a proper subset of {a1, a2, . . . , a50}, there
is no need to examine a2 and its projected database. Similar pruning can be done
for a3, . . . , a50 as well. Thus, the mining of closed frequent itemsets in this data set
terminates after mining a1’s projected database.

Item skipping: In the depth-first mining of closed itemsets, at each level, there will be
a prefix itemset X associated with a header table and a projected database. If a local
frequent item p has the same support in several header tables at different levels, we can
safely prune p from the header tables at higher levels.

Consider, for example, the previous transaction database having only two trans-
actions: {〈a1, a2, . . . , a100〉, 〈a1, a2, . . . , a50〉}, where min sup= 2. Because a2 in a1’s
projected database has the same support as a2 in the global header table, a2 can be
pruned from the global header table. Similar pruning can be done for a3, . . . , a50.
There is no need to mine anything more after mining a1’s projected database.

Besides pruning the search space in the closed itemset mining process, another
important optimization is to perform efficient checking of each newly derived frequent
itemset to see whether it is closed. This is because the mining process cannot ensure that
every generated frequent itemset is closed.

When a new frequent itemset is derived, it is necessary to perform two kinds of
closure checking: (1) superset checking, which checks if this new frequent itemset is a
superset of some already found closed itemsets with the same support, and (2) subset
checking, which checks whether the newly found itemset is a subset of an already found
closed itemset with the same support.

If we adopt the item merging pruning method under a divide-and-conquer frame-
work, then the superset checking is actually built-in and there is no need to explicitly
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perform superset checking. This is because if a frequent itemset X ∪Y is found later
than itemset X , and carries the same support as X , it must be in X ’s projected database
and must have been generated during itemset merging.

To assist in subset checking, a compressed pattern-tree can be constructed to main-
tain the set of closed itemsets mined so far. The pattern-tree is similar in structure to the
FP-tree except that all the closed itemsets found are stored explicitly in the correspond-
ing tree branches. For efficient subset checking, we can use the following property: If the
current itemset Sc can be subsumed by another already found closed itemset Sa, then (1) Sc

and Sa have the same support, (2) the length of Sc is smaller than that of Sa, and (3) all of
the items in Sc are contained in Sa.

Based on this property, a two-level hash index structure can be built for fast access-
ing of the pattern-tree: The first level uses the identifier of the last item in Sc as a hash key
(since this identifier must be within the branch of Sc), and the second level uses the sup-
port of Sc as a hash key (since Sc and Sa have the same support). This will substantially
speed up the subset checking process.

This discussion illustrates methods for efficient mining of closed frequent itemsets.
“Can we extend these methods for efficient mining of maximal frequent itemsets?” Because
maximal frequent itemsets share many similarities with closed frequent itemsets, many
of the optimization techniques developed here can be extended to mining maximal
frequent itemsets. However, we leave this method as an exercise for interested readers.

6.3 Which Patterns Are Interesting?—Pattern
Evaluation Methods

Most association rule mining algorithms employ a support–confidence framework.
Although minimum support and confidence thresholds help weed out or exclude the
exploration of a good number of uninteresting rules, many of the rules generated are
still not interesting to the users. Unfortunately, this is especially true when mining at
low support thresholds or mining for long patterns. This has been a major bottleneck for
successful application of association rule mining.

In this section, we first look at how even strong association rules can be uninteresting
and misleading (Section 6.3.1). We then discuss how the support–confidence frame-
work can be supplemented with additional interestingness measures based on correlation
analysis (Section 6.3.2). Section 6.3.3 presents additional pattern evaluation measures.
It then provides an overall comparison of all the measures discussed here. By the end,
you will learn which pattern evaluation measures are most effective for the discovery of
only interesting rules.

6.3.1 Strong Rules Are Not Necessarily Interesting

Whether or not a rule is interesting can be assessed either subjectively or objectively.
Ultimately, only the user can judge if a given rule is interesting, and this judgment, being
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subjective, may differ from one user to another. However, objective interestingness mea-
sures, based on the statistics “behind” the data, can be used as one step toward the goal
of weeding out uninteresting rules that would otherwise be presented to the user.

“How can we tell which strong association rules are really interesting?” Let’s examine
the following example.

Example 6.7 A misleading “strong” association rule. Suppose we are interested in analyzing trans-
actions at AllElectronics with respect to the purchase of computer games and videos.
Let game refer to the transactions containing computer games, and video refer to those
containing videos. Of the 10,000 transactions analyzed, the data show that 6000 of the
customer transactions included computer games, while 7500 included videos, and 4000
included both computer games and videos. Suppose that a data mining program for
discovering association rules is run on the data, using a minimum support of, say, 30%
and a minimum confidence of 60%. The following association rule is discovered:

buys(X , “computer games”)⇒ buys(X , “videos”)

[support = 40%, confidence = 66%]. (6.6)

Rule (6.6) is a strong association rule and would therefore be reported, since its support
value of 4000

10,000 = 40% and confidence value of 4000
6000 = 66% satisfy the minimum support

and minimum confidence thresholds, respectively. However, Rule (6.6) is misleading
because the probability of purchasing videos is 75%, which is even larger than 66%. In
fact, computer games and videos are negatively associated because the purchase of one
of these items actually decreases the likelihood of purchasing the other. Without fully
understanding this phenomenon, we could easily make unwise business decisions based
on Rule (6.6).

Example 6.7 also illustrates that the confidence of a rule A⇒ B can be deceiving. It
does not measure the real strength (or lack of strength) of the correlation and implica-
tion between A and B. Hence, alternatives to the support–confidence framework can be
useful in mining interesting data relationships.

6.3.2 From Association Analysis to Correlation Analysis

As we have seen so far, the support and confidence measures are insufficient at filtering
out uninteresting association rules. To tackle this weakness, a correlation measure can
be used to augment the support–confidence framework for association rules. This leads
to correlation rules of the form

A⇒ B [support, confidence, correlation]. (6.7)

That is, a correlation rule is measured not only by its support and confidence but also
by the correlation between itemsets A and B. There are many different correlation mea-
sures from which to choose. In this subsection, we study several correlation measures to
determine which would be good for mining large data sets.
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Lift is a simple correlation measure that is given as follows. The occurrence of itemset
A is independent of the occurrence of itemset B if P(A∪B)= P(A)P(B); otherwise,
itemsets A and B are dependent and correlated as events. This definition can easily be
extended to more than two itemsets. The lift between the occurrence of A and B can be
measured by computing

lift(A, B)= P(A∪B)

P(A)P(B)
. (6.8)

If the resulting value of Eq. (6.8) is less than 1, then the occurrence of A is negatively
correlated with the occurrence of B, meaning that the occurrence of one likely leads to
the absence of the other one. If the resulting value is greater than 1, then A and B are
positively correlated, meaning that the occurrence of one implies the occurrence of the
other. If the resulting value is equal to 1, then A and B are independent and there is no
correlation between them.

Equation (6.8) is equivalent to P(B|A)/P(B), or conf(A⇒ B)/sup(B), which is also
referred to as the lift of the association (or correlation) rule A⇒ B. In other words, it
assesses the degree to which the occurrence of one “lifts” the occurrence of the other. For
example, if A corresponds to the sale of computer games and B corresponds to the sale
of videos, then given the current market conditions, the sale of games is said to increase
or “lift” the likelihood of the sale of videos by a factor of the value returned by Eq. (6.8).

Let’s go back to the computer game and video data of Example 6.7.

Example 6.8 Correlation analysis using lift. To help filter out misleading “strong” associations of
the form A⇒ B from the data of Example 6.7, we need to study how the two item-
sets, A and B, are correlated. Let game refer to the transactions of Example 6.7 that do
not contain computer games, and video refer to those that do not contain videos. The
transactions can be summarized in a contingency table, as shown in Table 6.6.

From the table, we can see that the probability of purchasing a computer game
is P({game})= 0.60, the probability of purchasing a video is P({video})= 0.75, and
the probability of purchasing both is P({game,video})= 0.40. By Eq. (6.8), the lift of
Rule (6.6) is P({game, video})/(P({game})× P({video}))= 0.40/(0.60× 0.75)= 0.89.
Because this value is less than 1, there is a negative correlation between the occur-
rence of {game} and {video}. The numerator is the likelihood of a customer purchasing
both, while the denominator is what the likelihood would have been if the two pur-
chases were completely independent. Such a negative correlation cannot be identified
by a support–confidence framework.

The second correlation measure that we study is the χ2 measure, which was intro-
duced in Chapter 3 (Eq. 3.1). To compute the χ2 value, we take the squared difference
between the observed and expected value for a slot (A and B pair) in the contin-
gency table, divided by the expected value. This amount is summed for all slots of the
contingency table. Let’s perform a χ2 analysis of Example 6.8.
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Table 6.6 2× 2 Contingency Table Summarizing the
Transactions with Respect to Game and
Video Purchases

game game �row

video 4000 3500 7500

video 2000 500 2500

�col 6000 4000 10,000

Table 6.7 Table 6.6 Contingency Table, Now with
the Expected Values

game game �row

video 4000 (4500) 3500 (3000) 7500

video 2000 (1500) 500 (1000) 2500

�col 6000 4000 10,000

Example 6.9 Correlation analysis using χ2. To compute the correlation using χ2 analysis for nom-
inal data, we need the observed value and expected value (displayed in parenthesis) for
each slot of the contingency table, as shown in Table 6.7. From the table, we can compute
the χ2 value as follows:

χ2 =�
(observed− expected)2

expected
= (4000− 4500)2

4500
+ (3500− 3000)2

3000

+ (2000− 1500)2

1500
+ (500− 1000)2

1000
= 555.6.

Because the χ2 value is greater than 1, and the observed value of the slot (game, video)=
4000, which is less than the expected value of 4500, buying game and buying video are
negatively correlated. This is consistent with the conclusion derived from the analysis of
the lift measure in Example 6.8.

6.3.3 A Comparison of Pattern Evaluation Measures

The above discussion shows that instead of using the simple support–confidence frame-
work to evaluate frequent patterns, other measures, such as lift and χ2, often disclose
more intrinsic pattern relationships. How effective are these measures? Should we also
consider other alternatives?

Researchers have studied many pattern evaluation measures even before the start of
in-depth research on scalable methods for mining frequent patterns. Recently, several
other pattern evaluation measures have attracted interest. In this subsection, we present
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four such measures: all confidence, max confidence, Kulczynski, and cosine. We’ll then
compare their effectiveness with respect to one another and with respect to the lift and
χ2 measures.

Given two itemsets, A and B, the all confidence measure of A and B is defined as

all conf(A,B)= sup(A∪B)

max{sup(A), sup(B)} =min{P(A|B),P(B|A)}, (6.9)

where max{sup(A), sup(B)} is the maximum support of the itemsets A and B. Thus,
all conf(A,B) is also the minimum confidence of the two association rules related to
A and B, namely, “A ⇒ B” and “B ⇒ A.”

Given two itemsets, A and B, the max confidence measure of A and B is defined as

max conf(A, B)=max{P(A |B),P(B |A)}. (6.10)

The max conf measure is the maximum confidence of the two association rules,
“A ⇒ B” and “B ⇒ A.”

Given two itemsets, A and B, the Kulczynski measure of A and B (abbreviated as
Kulc) is defined as

Kulc(A, B)= 1

2
(P(A|B)+ P(B|A)). (6.11)

It was proposed in 1927 by Polish mathematician S. Kulczynski. It can be viewed as an
average of two confidence measures. That is, it is the average of two conditional prob-
abilities: the probability of itemset B given itemset A, and the probability of itemset A
given itemset B.

Finally, given two itemsets, A and B, the cosine measure of A and B is defined as

cosine(A, B)= P(A∪B)√
P(A)× P(B)

= sup(A∪B)√
sup(A)× sup(B)

=
√

P(A|B)× P(B|A). (6.12)

The cosine measure can be viewed as a harmonized lift measure: The two formulae are
similar except that for cosine, the square root is taken on the product of the probabilities
of A and B. This is an important difference, however, because by taking the square root,
the cosine value is only influenced by the supports of A, B, and A∪B, and not by the
total number of transactions.

Each of these four measures defined has the following property: Its value is only
influenced by the supports of A, B, and A∪B, or more exactly, by the conditional prob-
abilities of P(A|B) and P(B|A), but not by the total number of transactions. Another
common property is that each measure ranges from 0 to 1, and the higher the value, the
closer the relationship between A and B.

Now, together with lift and χ2, we have introduced in total six pattern evaluation
measures. You may wonder, “Which is the best in assessing the discovered pattern rela-
tionships?” To answer this question, we examine their performance on some typical
data sets.
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Table 6.8 2× 2 Contingency Table for Two Items

milk milk �row

coffee mc mc c

coffee mc mc c

�col m m �

Table 6.9 Comparison of Six Pattern Evaluation Measures Using Contingency Tables
for a Variety of Data Sets

Data
Set mc mc mc mc χ2 lift all conf. max conf. Kulc. cosine
D1 10,000 1000 1000 100,000 90557 9.26 0.91 0.91 0.91 0.91

D2 10,000 1000 1000 100 0 1 0.91 0.91 0.91 0.91

D3 100 1000 1000 100,000 670 8.44 0.09 0.09 0.09 0.09

D4 1000 1000 1000 100,000 24740 25.75 0.5 0.5 0.5 0.5

D5 1000 100 10,000 100,000 8173 9.18 0.09 0.91 0.5 0.29

D6 1000 10 100,000 100,000 965 1.97 0.01 0.99 0.5 0.10

Example 6.10 Comparison of six pattern evaluation measures on typical data sets. The relationships
between the purchases of two items, milk and coffee, can be examined by summarizing
their purchase history in Table 6.8, a 2× 2 contingency table, where an entry such as mc
represents the number of transactions containing both milk and coffee.

Table 6.9 shows a set of transactional data sets with their corresponding contin-
gency tables and the associated values for each of the six evaluation measures. Let’s
first examine the first four data sets, D1 through D4. From the table, we see that m
and c are positively associated in D1 and D2, negatively associated in D3, and neu-
tral in D4. For D1 and D2, m and c are positively associated because mc (10,000)
is considerably greater than mc (1000) and mc (1000). Intuitively, for people who
bought milk (m= 10,000 + 1000= 11,000), it is very likely that they also bought coffee
(mc/m= 10/11= 91%), and vice versa.

The results of the four newly introduced measures show that m and c are strongly
positively associated in both data sets by producing a measure value of 0.91. However,
lift and χ2 generate dramatically different measure values for D1 and D2 due to their
sensitivity to mc. In fact, in many real-world scenarios, mc is usually huge and unstable.
For example, in a market basket database, the total number of transactions could fluctu-
ate on a daily basis and overwhelmingly exceed the number of transactions containing
any particular itemset. Therefore, a good interestingness measure should not be affected
by transactions that do not contain the itemsets of interest; otherwise, it would generate
unstable results, as illustrated in D1 and D2.



270 Chapter 6 Mining Frequent Patterns, Associations, and Correlations

Similarly, in D3, the four new measures correctly show that m and c are strongly
negatively associated because the m to c ratio equals the mc to m ratio, that is,
100/1100= 9.1%. However, lift and χ2 both contradict this in an incorrect way: Their
values for D2 are between those for D1 and D3.

For data set D4, both lift and χ2 indicate a highly positive association between
m and c, whereas the others indicate a “neutral” association because the ratio of mc to
mc equals the ratio of mc to mc, which is 1. This means that if a customer buys
coffee (or milk), the probability that he or she will also purchase milk (or coffee) is
exactly 50%.

“Why are lift and χ2 so poor at distinguishing pattern association relationships in
the previous transactional data sets?” To answer this, we have to consider the null-
transactions. A null-transaction is a transaction that does not contain any of the item-
sets being examined. In our example, mc represents the number of null-transactions.
Lift and χ2 have difficulty distinguishing interesting pattern association relationships
because they are both strongly influenced by mc. Typically, the number of null-
transactions can outweigh the number of individual purchases because, for example,
many people may buy neither milk nor coffee. On the other hand, the other four
measures are good indicators of interesting pattern associations because their defi-
nitions remove the influence of mc (i.e., they are not influenced by the number of
null-transactions).

This discussion shows that it is highly desirable to have a measure that has a value
that is independent of the number of null-transactions. A measure is null-invariant if
its value is free from the influence of null-transactions. Null-invariance is an impor-
tant property for measuring association patterns in large transaction databases. Among
the six discussed measures in this subsection, only lift and χ2 are not null-invariant
measures.

“Among the all confidence, max confidence, Kulczynski, and cosine measures, which
is best at indicating interesting pattern relationships?”

To answer this question, we introduce the imbalance ratio (IR), which assesses the
imbalance of two itemsets, A and B, in rule implications. It is defined as

IR(A,B)= |sup(A)− sup(B)|
sup(A)+ sup(B)− sup(A∪B)

, (6.13)

where the numerator is the absolute value of the difference between the support of the
itemsets A and B, and the denominator is the number of transactions containing A or
B. If the two directional implications between A and B are the same, then IR(A,B) will
be zero. Otherwise, the larger the difference between the two, the larger the imbalance
ratio. This ratio is independent of the number of null-transactions and independent of
the total number of transactions.

Let’s continue examining the remaining data sets in Example 6.10.

Example 6.11 Comparing null-invariant measures in pattern evaluation. Although the four mea-
sures introduced in this section are null-invariant, they may present dramatically
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different values on some subtly different data sets. Let’s examine data sets D5 and D6,
shown earlier in Table 6.9, where the two events m and c have unbalanced conditional
probabilities. That is, the ratio of mc to c is greater than 0.9. This means that knowing
that c occurs should strongly suggest that m occurs also. The ratio of mc to m is less than
0.1, indicating that m implies that c is quite unlikely to occur. The all confidence and
cosine measures view both cases as negatively associated and the Kulc measure views
both as neutral. The max confidence measure claims strong positive associations for
these cases. The measures give very diverse results!

“Which measure intuitively reflects the true relationship between the purchase of milk
and coffee?” Due to the “balanced” skewness of the data, it is difficult to argue whether
the two data sets have positive or negative association. From one point of view, only
mc/(mc+mc)= 1000/(1000+ 10,000)= 9.09% of milk-related transactions contain
coffee in D5 and this percentage is 1000/(1000+ 100,000)= 0.99% in D6, both indi-
cating a negative association. On the other hand, 90.9% of transactions in D5 (i.e.,
mc/(mc+mc)= 1000/(1000+ 100)) and 9% in D6 (i.e., 1000/(1000+ 10)) contain-
ing coffee contain milk as well, which indicates a positive association between milk and
coffee. These draw very different conclusions.

For such “balanced” skewness, it could be fair to treat it as neutral, as Kulc does,
and in the meantime indicate its skewness using the imbalance ratio (IR). According to
Eq. (6.13), for D4 we have IR(m, c)= 0, a perfectly balanced case; for D5, IR(m, c)=
0.89, a rather imbalanced case; whereas for D6, IR(m, c)= 0.99, a very skewed case.
Therefore, the two measures, Kulc and IR, work together, presenting a clear picture for
all three data sets, D4 through D6.

In summary, the use of only support and confidence measures to mine associa-
tions may generate a large number of rules, many of which can be uninteresting to
users. Instead, we can augment the support–confidence framework with a pattern inter-
estingness measure, which helps focus the mining toward rules with strong pattern
relationships. The added measure substantially reduces the number of rules gener-
ated and leads to the discovery of more meaningful rules. Besides those introduced in
this section, many other interestingness measures have been studied in the literature.
Unfortunately, most of them do not have the null-invariance property. Because large
data sets typically have many null-transactions, it is important to consider the null-
invariance property when selecting appropriate interestingness measures for pattern
evaluation. Among the four null-invariant measures studied here, namely all confidence,
max confidence, Kulc, and cosine, we recommend using Kulc in conjunction with the
imbalance ratio.

6.4 Summary

The discovery of frequent patterns, associations, and correlation relationships among
huge amounts of data is useful in selective marketing, decision analysis, and business
management. A popular area of application is market basket analysis, which studies
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customers’ buying habits by searching for itemsets that are frequently purchased
together (or in sequence).

Association rule mining consists of first finding frequent itemsets (sets of items,
such as A and B, satisfying a minimum support threshold, or percentage of the task-
relevant tuples), from which strong association rules in the form of A⇒ B are
generated. These rules also satisfy a minimum confidence threshold (a prespecified
probability of satisfying B under the condition that A is satisfied). Associations can be
further analyzed to uncover correlation rules, which convey statistical correlations
between itemsets A and B.

Many efficient and scalable algorithms have been developed for frequent itemset
mining, from which association and correlation rules can be derived. These algo-
rithms can be classified into three categories: (1) Apriori-like algorithms, (2) frequent
pattern growth–based algorithms such as FP-growth, and (3) algorithms that use the
vertical data format.

The Apriori algorithm is a seminal algorithm for mining frequent itemsets for
Boolean association rules. It explores the level-wise mining Apriori property that all
nonempty subsets of a frequent itemset must also be frequent. At the kth iteration (for
k ≥ 2), it forms frequent k-itemset candidates based on the frequent (k− 1)-itemsets,
and scans the database once to find the complete set of frequent k-itemsets, Lk .

Variations involving hashing and transaction reduction can be used to make the
procedure more efficient. Other variations include partitioning the data (mining on
each partition and then combining the results) and sampling the data (mining on
a data subset). These variations can reduce the number of data scans required to as
little as two or even one.

Frequent pattern growth is a method of mining frequent itemsets without candidate
generation. It constructs a highly compact data structure (an FP-tree) to compress the
original transaction database. Rather than employing the generate-and-test strategy of
Apriori-like methods, it focuses on frequent pattern (fragment) growth, which avoids
costly candidate generation, resulting in greater efficiency.

Mining frequent itemsets using the vertical data format (Eclat) is a method that
transforms a given data set of transactions in the horizontal data format of TID-
itemset into the vertical data format of item-TID set. It mines the transformed
data set by TID set intersections based on the Apriori property and additional
optimization techniques such as diffset.

Not all strong association rules are interesting. Therefore, the support–confidence
framework should be augmented with a pattern evaluation measure, which promotes
the mining of interesting rules. A measure is null-invariant if its value is free from
the influence of null-transactions (i.e., the transactions that do not contain any of
the itemsets being examined). Among many pattern evaluation measures, we exam-
ined lift, χ2, all confidence, max confidence, Kulczynski, and cosine, and showed
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that only the latter four are null-invariant. We suggest using the Kulczynski measure,
together with the imbalance ratio, to present pattern relationships among itemsets.

6.5 Exercises

6.1 Suppose you have the set C of all frequent closed itemsets on a data set D, as well
as the support count for each frequent closed itemset. Describe an algorithm to
determine whether a given itemset X is frequent or not, and the support of X if it
is frequent.

6.2 An itemset X is called a generator on a data set D if there does not exist a proper
sub-itemset Y ⊂ X such that support(X)= support(Y ). A generator X is a frequent
generator if support(X) passes the minimum support threshold. Let G be the set of
all frequent generators on a data set D.

(a) Can you determine whether an itemset A is frequent and the support of A, if it
is frequent, using only G and the support counts of all frequent generators? If
yes, present your algorithm. Otherwise, what other information is needed? Can
you give an algorithm assuming the information needed is available?

(b) What is the relationship between closed itemsets and generators?

6.3 The Apriori algorithm makes use of prior knowledge of subset support properties.

(a) Prove that all nonempty subsets of a frequent itemset must also be frequent.

(b) Prove that the support of any nonempty subset s′ of itemset s must be at least
as great as the support of s.

(c) Given frequent itemset l and subset s of l, prove that the confidence of the rule
“s′ ⇒ (l− s′)” cannot be more than the confidence of “s ⇒ (l− s),” where s′ is
a subset of s.

(d) A partitioning variation of Apriori subdivides the transactions of a database D
into n nonoverlapping partitions. Prove that any itemset that is frequent in D
must be frequent in at least one partition of D.

6.4 Let c be a candidate itemset in Ck generated by the Apriori algorithm. How many
length-(k− 1) subsets do we need to check in the prune step? Per your previ-
ous answer, can you give an improved version of procedure has infrequent subset
in Figure 6.4?

6.5 Section 6.2.2 describes a method for generating association rules from frequent
itemsets. Propose a more efficient method. Explain why it is more efficient than
the one proposed there. (Hint: Consider incorporating the properties of Exercises
6.3(b), (c) into your design.)

6.6 A database has five transactions. Let min sup= 60% and min conf = 80%.
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TID items bought

T100 {M, O, N, K, E, Y}
T200 {D, O, N, K, E, Y }
T300 {M, A, K, E}
T400 {M, U, C, K, Y}
T500 {C, O, O, K, I, E}

(a) Find all frequent itemsets using Apriori and FP-growth, respectively. Compare
the efficiency of the two mining processes.

(b) List all the strong association rules (with support s and confidence c) matching
the following metarule, where X is a variable representing customers, and itemi

denotes variables representing items (e.g., “A,” “B,”):

∀x ∈ transaction, buys(X , item1)∧ buys(X , item2)⇒ buys(X , item3) [s, c]

6.7 (Implementation project) Using a programming language that you are familiar
with, such as C++ or Java, implement three frequent itemset mining algorithms
introduced in this chapter: (1) Apriori [AS94b], (2) FP-growth [HPY00], and
(3) Eclat [Zak00] (mining using the vertical data format). Compare the perfor-
mance of each algorithm with various kinds of large data sets. Write a report to
analyze the situations (e.g., data size, data distribution, minimal support thresh-
old setting, and pattern density) where one algorithm may perform better than the
others, and state why.

6.8 A database has four transactions. Let min sup= 60% and min conf = 80%.

cust ID TID items bought (in the form of brand-item category)

01 T100 {King’s-Crab, Sunset-Milk, Dairyland-Cheese, Best-Bread}
02 T200 {Best-Cheese, Dairyland-Milk, Goldenfarm-Apple, Tasty-Pie, Wonder-Bread}
01 T300 {Westcoast-Apple, Dairyland-Milk, Wonder-Bread, Tasty-Pie}
03 T400 {Wonder-Bread, Sunset-Milk, Dairyland-Cheese}

(a) At the granularity of item category (e.g., itemi could be “Milk”), for the rule
template,

∀X ∈ transaction, buys(X , item1)∧ buys(X , item2)⇒ buys(X , item3) [s, c],

list the frequent k-itemset for the largest k, and all the strong association rules
(with their support s and confidence c) containing the frequent k-itemset for the
largest k.

(b) At the granularity of brand-item category (e.g., itemi could be “Sunset-Milk”),
for the rule template,

∀X ∈ customer, buys(X , item1)∧ buys(X , item2)⇒ buys(X , item3),

list the frequent k-itemset for the largest k (but do not print any rules).
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6.9 Suppose that a large store has a transactional database that is distributed among
four locations. Transactions in each component database have the same for-
mat, namely Tj : {i1, . . . , im}, where Tj is a transaction identifier, and ik (1≤
k ≤m) is the identifier of an item purchased in the transaction. Propose an
efficient algorithm to mine global association rules. You may present your algo-
rithm in the form of an outline. Your algorithm should not require shipping
all the data to one site and should not cause excessive network communication
overhead.

6.10 Suppose that frequent itemsets are saved for a large transactional database, DB.
Discuss how to efficiently mine the (global) association rules under the same
minimum support threshold, if a set of new transactions, denoted as �DB, is
(incrementally) added in?

6.11 Most frequent pattern mining algorithms consider only distinct items in a transac-
tion. However, multiple occurrences of an item in the same shopping basket, such
as four cakes and three jugs of milk, can be important in transactional data analysis.
How can one mine frequent itemsets efficiently considering multiple occurrences
of items? Propose modifications to the well-known algorithms, such as Apriori and
FP-growth, to adapt to such a situation.

6.12 (Implementation project) Many techniques have been proposed to further
improve the performance of frequent itemset mining algorithms. Taking FP-tree–
based frequent pattern growth algorithms (e.g., FP-growth) as an example, imple-
ment one of the following optimization techniques. Compare the performance of
your new implementation with the unoptimized version.

(a) The frequent pattern mining method of Section 6.2.4 uses an FP-tree to gen-
erate conditional pattern bases using a bottom-up projection technique (i.e.,
project onto the prefix path of an item p). However, one can develop a top-
down projection technique, that is, project onto the suffix path of an item p in
the generation of a conditional pattern base. Design and implement such a top-
down FP-tree mining method. Compare its performance with the bottom-up
projection method.

(b) Nodes and pointers are used uniformly in an FP-tree in the FP-growth algo-
rithm design. However, such a structure may consume a lot of space when
the data are sparse. One possible alternative design is to explore array- and
pointer-based hybrid implementation, where a node may store multiple items
when it contains no splitting point to multiple sub-branches. Develop such an
implementation and compare it with the original one.

(c) It is time and space consuming to generate numerous conditional pattern bases
during pattern-growth mining. An interesting alternative is to push right the
branches that have been mined for a particular item p, that is, to push them to
the remaining branch(es) of the FP-tree. This is done so that fewer conditional
pattern bases have to be generated and additional sharing can be explored when
mining the remaining FP-tree branches. Design and implement such a method
and conduct a performance study on it.
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6.13 Give a short example to show that items in a strong association rule actually may
be negatively correlated.

6.14 The following contingency table summarizes supermarket transaction data, where
hot dogs refers to the transactions containing hot dogs, hot dogs refers to the
transactions that do not contain hot dogs, hamburgers refers to the transactions
containing hamburgers, and hamburgers refers to the transactions that do not
contain hamburgers.

hot dogs hot dogs �row

hamburgers 2000 500 2500

hamburgers 1000 1500 2500

�col 3000 2000 5000

(a) Suppose that the association rule “hot dogs ⇒ hamburgers” is mined. Given a
minimum support threshold of 25% and a minimum confidence threshold of
50%, is this association rule strong?

(b) Based on the given data, is the purchase of hot dogs independent of the purchase
of hamburgers? If not, what kind of correlation relationship exists between the
two?

(c) Compare the use of the all confidence, max confidence, Kulczynski, and cosine
measures with lift and correlation on the given data.

6.15 (Implementation project) The DBLP data set (www.informatik.uni-trier
.de/∼ley/db/) consists of over one million entries of research papers pub-
lished in computer science conferences and journals. Among these entries, there
are a good number of authors that have coauthor relationships.

(a) Propose a method to efficiently mine a set of coauthor relationships that are
closely correlated (e.g., often coauthoring papers together).

(b) Based on the mining results and the pattern evaluation measures discussed in
this chapter, discuss which measure may convincingly uncover close collabora-
tion patterns better than others.

(c) Based on the study in (a), develop a method that can roughly predict advi-
sor and advisee relationships and the approximate period for such advisory
supervision.
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Frequent pattern mining has reached far beyond the basics due to substantial research, numer-
ous extensions of the problem scope, and broad application studies. In this chapter, you
will learn methods for advanced pattern mining. We begin by laying out a general road
map for pattern mining. We introduce methods for mining various kinds of patterns,
and discuss extended applications of pattern mining. We include in-depth coverage of
methods for mining many kinds of patterns: multilevel patterns, multidimensional pat-
terns, patterns in continuous data, rare patterns, negative patterns, constrained frequent
patterns, frequent patterns in high-dimensional data, colossal patterns, and compressed
and approximate patterns. Other pattern mining themes, including mining sequential
and structured patterns and mining patterns from spatiotemporal, multimedia, and
stream data, are considered more advanced topics and are not covered in this book.
Notice that pattern mining is a more general term than frequent pattern mining since the
former covers rare and negative patterns as well. However, when there is no ambiguity,
the two terms are used interchangeably.

7.1 Pattern Mining: A Road Map

Chapter 6 introduced the basic concepts, techniques, and applications of frequent pat-
tern mining using market basket analysis as an example. Many other kinds of data,
user requests, and applications have led to the development of numerous, diverse
methods for mining patterns, associations, and correlation relationships. Given the
rich literature in this area, it is important to lay out a clear road map to help us get
an organized picture of the field and to select the best methods for pattern mining
applications.

Figure 7.1 outlines a general road map on pattern mining research. Most stud-
ies mainly address three pattern mining aspects: the kinds of patterns mined, mining
methodologies, and applications. Some studies, however, integrate multiple aspects; for
example, different applications may need to mine different patterns, which naturally
leads to the development of new mining methodologies.

c© 2012 Elsevier Inc. All rights reserved.
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Figure 7.1 A general road map on pattern mining research.

Based on pattern diversity, pattern mining can be classified using the following
criteria:

Basic patterns: As discussed in Chapter 6, a frequent pattern may have several alter-
native forms, including a simple frequent pattern, a closed pattern, or a max-pattern.
To review, a frequent pattern is a pattern (or itemset) that satisfies a minimum sup-
port threshold. A pattern p is a closed pattern if there is no superpattern p′ with the
same support as p. Pattern p is a max-pattern if there exists no frequent superpattern
of p. Frequent patterns can also be mapped into association rules, or other kinds
of rules based on interestingness measures. Sometimes we may also be interested in
infrequent or rare patterns (i.e., patterns that occur rarely but are of critical impor-
tance, or negative patterns (i.e., patterns that reveal a negative correlation between
items).
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Based on the abstraction levels involved in a pattern: Patterns or association rules
may have items or concepts residing at high, low, or multiple abstraction levels. For
example, suppose that a set of association rules mined includes the following rules
where X is a variable representing a customer:

buys(X , “computer”) ⇒ buys(X , “printer”) (7.1)

buys(X , “laptop computer”) ⇒ buys(X , “color laser printer”) (7.2)

In Rules (7.1) and (7.2), the items bought are referenced at different abstraction levels
(e.g., “computer” is a higher-level abstraction of “laptop computer,” and “color laser
printer” is a lower-level abstraction of “printer”). We refer to the rule set mined as
consisting of multilevel association rules. If, instead, the rules within a given set do
not reference items or attributes at different abstraction levels, then the set contains
single-level association rules.

Based on the number of dimensions involved in the rule or pattern: If the items
or attributes in an association rule or pattern reference only one dimension, it is a
single-dimensional association rule/pattern. For example, Rules (7.1) and (7.2) are
single-dimensional association rules because they each refer to only one dimension,
buys.1

If a rule/pattern references two or more dimensions, such as age, income, and buys,
then it is a multidimensional association rule/pattern. The following is an example
of a multidimensional rule:

age(X , “20 . . .29”)∧ income(X , “52K . . .58K”)⇒buys(X , “iPad ”). (7.3)

Based on the types of values handled in the rule or pattern: If a rule involves associ-
ations between the presence or absence of items, it is a Boolean association rule. For
example, Rules (7.1) and (7.2) are Boolean association rules obtained from market
basket analysis.

If a rule describes associations between quantitative items or attributes, then it
is a quantitative association rule. In these rules, quantitative values for items or
attributes are partitioned into intervals. Rule (7.3) can also be considered a quan-
titative association rule where the quantitative attributes age and income have been
discretized.

Based on the constraints or criteria used to mine selective patterns: The patterns
or rules to be discovered can be constraint-based (i.e., satisfying a set of user-
defined constraints), approximate, compressed, near-match (i.e., those that tally
the support count of the near or almost matching itemsets), top-k (i.e., the k most
frequent itemsets for a user-specified value, k), redundancy-aware top-k (i.e., the
top-k patterns with similar or redundant patterns excluded), and so on.

1Following the terminology used in multidimensional databases, we refer to each distinct predicate in a
rule as a dimension.
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Alternatively, pattern mining can be classified with respect to the kinds of data and
applications involved, using the following criteria:

Based on kinds of data and features to be mined: Given relational and data ware-
house data, most people are interested in itemsets. Thus, frequent pattern mining
in this context is essentially frequent itemset mining, that is, to mine frequent sets
of items. However, in many other applications, patterns may involve sequences and
structures. For example, by studying the order in which items are frequently pur-
chased, we may find that customers tend to first buy a PC, followed by a digital
camera, and then a memory card. This leads to sequential patterns, that is, fre-
quent subsequences (which are often separated by some other events) in a sequence
of ordered events.

We may also mine structural patterns, that is, frequent substructures, in a struc-
tured data set. Note that structure is a general concept that covers many different
kinds of structural forms such as directed graphs, undirected graphs, lattices, trees,
sequences, sets, single items, or combinations of such structures. Single items are the
simplest form of structure. Each element of a general pattern may contain a subse-
quence, a subtree, a subgraph, and so on, and such containment relationships can
be defined recursively. Therefore, structural pattern mining can be considered as the
most general form of frequent pattern mining.

Based on application domain-specific semantics: Both data and applications can be
very diverse, and therefore the patterns to be mined can differ largely based on their
domain-specific semantics. Various kinds of application data include spatial data,
temporal data, spatiotemporal data, multimedia data (e.g., image, audio, and video
data), text data, time-series data, DNA and biological sequences, software programs,
chemical compound structures, web structures, sensor networks, social and informa-
tion networks, biological networks, data streams, and so on. This diversity can lead
to dramatically different pattern mining methodologies.

Based on data analysis usages: Frequent pattern mining often serves as an interme-
diate step for improved data understanding and more powerful data analysis. For
example, it can be used as a feature extraction step for classification, which is often
referred to as pattern-based classification. Similarly, pattern-based clustering has
shown its strength at clustering high-dimensional data. For improved data under-
standing, patterns can be used for semantic annotation or contextual analysis. Pattern
analysis can also be used in recommender systems, which recommend information
items (e.g., books, movies, web pages) that are likely to be of interest to the user
based on similar users’ patterns. Different analysis tasks may require mining rather
different kinds of patterns as well.

The next several sections present advanced methods and extensions of pattern min-
ing, as well as their application. Section 7.2 discusses methods for mining multilevel
patterns, multidimensional patterns, patterns and rules with continuous attributes,
rare patterns, and negative patterns. Constraint-based pattern mining is studied in
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Section 7.3. Section 7.4 explains how to mine high-dimensional and colossal patterns.
The mining of compressed and approximate patterns is detailed in Section 7.5.
Section 7.6 discusses the exploration and applications of pattern mining. More advanced
topics regarding mining sequential and structural patterns, and pattern mining in
complex and diverse kinds of data are briefly introduced in Chapter 13.

7.2 Pattern Mining in Multilevel, Multidimensional Space

This section focuses on methods for mining in multilevel, multidimensional space.
In particular, you will learn about mining multilevel associations (Section 7.2.1), multi-
dimensional associations (Section 7.2.2), quantitative association rules (Section 7.2.3),
and rare patterns and negative patterns (Section 7.2.4). Multilevel associations involve
concepts at different abstraction levels. Multidimensional associations involve more than
one dimension or predicate (e.g., rules that relate what a customer buys to his or her age).
Quantitative association rules involve numeric attributes that have an implicit ordering
among values (e.g., age). Rare patterns are patterns that suggest interesting although rare
item combinations. Negative patterns show negative correlations between items.

7.2.1 Mining Multilevel Associations

For many applications, strong associations discovered at high abstraction levels, though
with high support, could be commonsense knowledge. We may want to drill down to
find novel patterns at more detailed levels. On the other hand, there could be too many
scattered patterns at low or primitive abstraction levels, some of which are just trivial
specializations of patterns at higher levels. Therefore, it is interesting to examine how
to develop effective methods for mining patterns at multiple abstraction levels, with
sufficient flexibility for easy traversal among different abstraction spaces.

Example 7.1 Mining multilevel association rules. Suppose we are given the task-relevant set of trans-
actional data in Table 7.1 for sales in an AllElectronics store, showing the items purchased
for each transaction. The concept hierarchy for the items is shown in Figure 7.2. A con-
cept hierarchy defines a sequence of mappings from a set of low-level concepts to a
higher-level, more general concept set. Data can be generalized by replacing low-level
concepts within the data by their corresponding higher-level concepts, or ancestors, from
a concept hierarchy.

Figure 7.2’s concept hierarchy has five levels, respectively referred to as levels 0
through 4, starting with level 0 at the root node for all (the most general abstraction
level). Here, level 1 includes computer, software, printer and camera, and computer acces-
sory; level 2 includes laptop computer, desktop computer, office software, antivirus software,
etc.; and level 3 includes Dell desktop computer, . . . , Microsoft office software, etc. Level 4
is the most specific abstraction level of this hierarchy. It consists of the raw data values.
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Table 7.1 Task-Relevant Data, D

TID Items Purchased

T100 Apple 17′′ MacBook Pro Notebook, HP Photosmart Pro b9180

T200 Microsoft Office Professional 2010, Microsoft Wireless Optical Mouse 5000

T300 Logitech VX Nano Cordless Laser Mouse, Fellowes GEL Wrist Rest

T400 Dell Studio XPS 16 Notebook, Canon PowerShot SD1400

T500 Lenovo ThinkPad X200 Tablet PC, Symantec Norton Antivirus 2010
. . . . . .

all

Laptop

Computer Software Printer and Camera Computer Accessory

IBM Dell Microsoft HP Canon Fellowes LogiTech

Desktop Office Antivirus Printer Digital
Camera

Wrist Pad Mouse

Figure 7.2 Concept hierarchy for AllElectronics computer items.

Concept hierarchies for nominal attributes are often implicit within the database
schema, in which case they may be automatically generated using methods such as those
described in Chapter 3. For our example, the concept hierarchy of Figure 7.2 was gene-
rated from data on product specifications. Concept hierarchies for numeric attributes
can be generated using discretization techniques, many of which were introduced in
Chapter 3. Alternatively, concept hierarchies may be specified by users familiar with the
data such as store managers in the case of our example.

The items in Table 7.1 are at the lowest level of Figure 7.2’s concept hierarchy. It is
difficult to find interesting purchase patterns in such raw or primitive-level data. For
instance, if “Dell Studio XPS 16 Notebook” or “Logitech VX Nano Cordless Laser Mouse”
occurs in a very small fraction of the transactions, then it can be difficult to find strong
associations involving these specific items. Few people may buy these items together,
making it unlikely that the itemset will satisfy minimum support. However, we would
expect that it is easier to find strong associations between generalized abstractions of
these items, such as between “Dell Notebook” and “Cordless Mouse.”

Association rules generated from mining data at multiple abstraction levels are
called multiple-level or multilevel association rules. Multilevel association rules can be
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mined efficiently using concept hierarchies under a support-confidence framework. In
general, a top-down strategy is employed, where counts are accumulated for the calcu-
lation of frequent itemsets at each concept level, starting at concept level 1 and working
downward in the hierarchy toward the more specific concept levels, until no more fre-
quent itemsets can be found. For each level, any algorithm for discovering frequent
itemsets may be used, such as Apriori or its variations.

A number of variations to this approach are described next, where each variation
involves “playing” with the support threshold in a slightly different way. The variations
are illustrated in Figures 7.3 and 7.4, where nodes indicate an item or itemset that has
been examined, and nodes with thick borders indicate that an examined item or itemset
is frequent.

Using uniform minimum support for all levels (referred to as uniform support):
The same minimum support threshold is used when mining at each abstraction level.
For example, in Figure 7.3, a minimum support threshold of 5% is used throughout
(e.g., for mining from “computer” downward to “laptop computer”). Both “computer”
and “laptop computer” are found to be frequent, whereas “desktop computer” is not.

When a uniform minimum support threshold is used, the search procedure is
simplified. The method is also simple in that users are required to specify only

computer [support = 10%]

laptop computer [support = 6%]

Level 1
min_sup = 5%

Level 2
min_sup = 5%

desktop computer [support = 4%]

Figure 7.3 Multilevel mining with uniform support.

computer [support = 10%]

laptop computer [support = 6%]

Level 1
min_sup = 5%

Level 2
min_sup = 3%

desktop computer [support = 4%]

Figure 7.4 Multilevel mining with reduced support.
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one minimum support threshold. An Apriori-like optimization technique can be
adopted, based on the knowledge that an ancestor is a superset of its descendants:
The search avoids examining itemsets containing any item of which the ancestors do
not have minimum support.

The uniform support approach, however, has some drawbacks. It is unlikely that
items at lower abstraction levels will occur as frequently as those at higher abstraction
levels. If the minimum support threshold is set too high, it could miss some mean-
ingful associations occurring at low abstraction levels. If the threshold is set too low,
it may generate many uninteresting associations occurring at high abstraction levels.
This provides the motivation for the next approach.

Using reduced minimum support at lower levels (referred to as reduced support):
Each abstraction level has its own minimum support threshold. The deeper the
abstraction level, the smaller the corresponding threshold. For example, in Figure 7.4,
the minimum support thresholds for levels 1 and 2 are 5% and 3%, respectively. In
this way, “computer,” “laptop computer,” and “desktop computer” are all considered
frequent.

Using item or group-based minimum support (referred to as group-based sup-
port): Because users or experts often have insight as to which groups are more
important than others, it is sometimes more desirable to set up user-specific, item, or
group-based minimal support thresholds when mining multilevel rules. For example,
a user could set up the minimum support thresholds based on product price or on
items of interest, such as by setting particularly low support thresholds for “camera
with price over $1000” or “Tablet PC,” to pay particular attention to the association
patterns containing items in these categories.

For mining patterns with mixed items from groups with different support thresh-
olds, usually the lowest support threshold among all the participating groups is
taken as the support threshold in mining. This will avoid filtering out valuable
patterns containing items from the group with the lowest support threshold. In
the meantime, the minimal support threshold for each individual group should be
kept to avoid generating uninteresting itemsets from each group. Other interest-
ingness measures can be used after the itemset mining to extract truly interesting
rules.

Notice that the Apriori property may not always hold uniformly across all of the
items when mining under reduced support and group-based support. However, efficient
methods can be developed based on the extension of the property. The details are left as
an exercise for interested readers.

A serious side effect of mining multilevel association rules is its generation of many
redundant rules across multiple abstraction levels due to the “ancestor” relationships
among items. For example, consider the following rules where “laptop computer” is an
ancestor of “Dell laptop computer” based on the concept hierarchy of Figure 7.2, and
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where X is a variable representing customers who purchased items in AllElectronics
transactions.

buys(X , “laptop computer”) ⇒ buys(X , “HP printer”)

[support = 8%, confidence = 70%] (7.4)

buys(X , “Dell laptop computer”) ⇒ buys(X , “HP printer”)

[support = 2%, confidence = 72%] (7.5)

“If Rules (7.4) and (7.5) are both mined, then how useful is Rule (7.5)? Does it really
provide any novel information?” If the latter, less general rule does not provide new infor-
mation, then it should be removed. Let’s look at how this may be determined. A rule R1
is an ancestor of a rule R2, if R1 can be obtained by replacing the items in R2 by their
ancestors in a concept hierarchy. For example, Rule (7.4) is an ancestor of Rule (7.5)
because “laptop computer” is an ancestor of “Dell laptop computer.” Based on this defini-
tion, a rule can be considered redundant if its support and confidence are close to their
“expected” values, based on an ancestor of the rule.

Example 7.2 Checking redundancy among multilevel association rules. Suppose that Rule (7.4) has
a 70% confidence and 8% support, and that about one-quarter of all “laptop computer”
sales are for “Dell laptop computers.” We may expect Rule (7.5) to have a confidence of
around 70% (since all data samples of “Dell laptop computer” are also samples of “laptop
computer”) and a support of around 2% (i.e., 8% × 1

4 ). If this is indeed the case, then
Rule (7.5) is not interesting because it does not offer any additional information and is
less general than Rule (7.4).

7.2.2 Mining Multidimensional Associations

So far, we have studied association rules that imply a single predicate, that is, the pred-
icate buys. For instance, in mining our AllElectronics database, we may discover the
Boolean association rule

buys(X , “digital camera”) ⇒ buys(X , “HP printer”). (7.6)

Following the terminology used in multidimensional databases, we refer to each distinct
predicate in a rule as a dimension. Hence, we can refer to Rule (7.6) as a single-
dimensional or intradimensional association rule because it contains a single distinct
predicate (e.g., buys) with multiple occurrences (i.e., the predicate occurs more than
once within the rule). Such rules are commonly mined from transactional data.

Instead of considering transactional data only, sales and related information are often
linked with relational data or integrated into a data warehouse. Such data stores are
multidimensional in nature. For instance, in addition to keeping track of the items pur-
chased in sales transactions, a relational database may record other attributes associated



288 Chapter 7 Advanced Pattern Mining

with the items and/or transactions such as the item description or the branch location
of the sale. Additional relational information regarding the customers who purchased
the items (e.g., customer age, occupation, credit rating, income, and address) may also
be stored. Considering each database attribute or warehouse dimension as a predicate,
we can therefore mine association rules containing multiple predicates such as

age(X , “20 . . .29”) ∧ occupation(X , “student”)⇒buys(X , “laptop”). (7.7)

Association rules that involve two or more dimensions or predicates can be referred
to as multidimensional association rules. Rule (7.7) contains three predicates (age,
occupation, and buys), each of which occurs only once in the rule. Hence, we say that it
has no repeated predicates. Multidimensional association rules with no repeated predi-
cates are called interdimensional association rules. We can also mine multidimensional
association rules with repeated predicates, which contain multiple occurrences of some
predicates. These rules are called hybrid-dimensional association rules. An example of
such a rule is the following, where the predicate buys is repeated:

age(X , “20 . . .29”) ∧ buys(X , “laptop”)⇒buys(X , “HP printer”). (7.8)

Database attributes can be nominal or quantitative. The values of nominal (or cate-
gorical) attributes are “names of things.” Nominal attributes have a finite number of
possible values, with no ordering among the values (e.g., occupation, brand, color).
Quantitative attributes are numeric and have an implicit ordering among values (e.g.,
age, income, price). Techniques for mining multidimensional association rules can be
categorized into two basic approaches regarding the treatment of quantitative attributes.

In the first approach, quantitative attributes are discretized using predefined concept
hierarchies. This discretization occurs before mining. For instance, a concept hierarchy
for income may be used to replace the original numeric values of this attribute by inter-
val labels such as “0..20K,” “21K..30K,” “31K..40K,” and so on. Here, discretization is
static and predetermined. Chapter 3 on data preprocessing gave several techniques for
discretizing numeric attributes. The discretized numeric attributes, with their interval
labels, can then be treated as nominal attributes (where each interval is considered a
category). We refer to this as mining multidimensional association rules using static
discretization of quantitative attributes.

In the second approach, quantitative attributes are discretized or clustered into “bins”
based on the data distribution. These bins may be further combined during the mining
process. The discretization process is dynamic and established so as to satisfy some min-
ing criteria such as maximizing the confidence of the rules mined. Because this strategy
treats the numeric attribute values as quantities rather than as predefined ranges or cat-
egories, association rules mined from this approach are also referred to as (dynamic)
quantitative association rules.

Let’s study each of these approaches for mining multidimensional association rules.
For simplicity, we confine our discussion to interdimensional association rules. Note
that rather than searching for frequent itemsets (as is done for single-dimensional
association rule mining), in multidimensional association rule mining we search for
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frequent predicate sets. A k-predicate set is a set containing k conjunctive predicates. For
instance, the set of predicates {age, occupation, buys} from Rule (7.7) is a 3-predicate set.
Similar to the notation used for itemsets in Chapter 6, we use the notation Lk to refer to
the set of frequent k-predicate sets.

7.2.3 Mining Quantitative Association Rules

As discussed earlier, relational and data warehouse data often involve quantitative
attributes or measures. We can discretize quantitative attributes into multiple inter-
vals and then treat them as nominal data in association mining. However, such simple
discretization may lead to the generation of an enormous number of rules, many of
which may not be useful. Here we introduce three methods that can help overcome
this difficulty to discover novel association relationships: (1) a data cube method, (2)
a clustering-based method, and (3) a statistical analysis method to uncover exceptional
behaviors.

Data Cube–Based Mining of Quantitative Associations
In many cases quantitative attributes can be discretized before mining using predefined
concept hierarchies or data discretization techniques, where numeric values are replaced
by interval labels. Nominal attributes may also be generalized to higher conceptual levels
if desired. If the resulting task-relevant data are stored in a relational table, then any
of the frequent itemset mining algorithms we have discussed can easily be modified
so as to find all frequent predicate sets. In particular, instead of searching on only one
attribute like buys, we need to search through all of the relevant attributes, treating each
attribute–value pair as an itemset.

Alternatively, the transformed multidimensional data may be used to construct a
data cube. Data cubes are well suited for the mining of multidimensional association
rules: They store aggregates (e.g., counts) in multidimensional space, which is essen-
tial for computing the support and confidence of multidimensional association rules.
An overview of data cube technology was presented in Chapter 4. Detailed algorithms
for data cube computation were given in Chapter 5. Figure 7.5 shows the lattice of
cuboids defining a data cube for the dimensions age, income, and buys. The cells of an
n-dimensional cuboid can be used to store the support counts of the corresponding
n-predicate sets. The base cuboid aggregates the task-relevant data by age, income, and
buys; the 2-D cuboid, (age, income), aggregates by age and income, and so on; the 0-D
(apex) cuboid contains the total number of transactions in the task-relevant data.

Due to the ever-increasing use of data warehouse and OLAP technology, it is pos-
sible that a data cube containing the dimensions that are of interest to the user may
already exist, fully or partially materialized. If this is the case, we can simply fetch the
corresponding aggregate values or compute them using lower-level materialized aggre-
gates, and return the rules needed using a rule generation algorithm. Notice that even
in this case, the Apriori property can still be used to prune the search space. If a given
k-predicate set has support sup, which does not satisfy minimum support, then further
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(income) (buys)(age)

()

(income, buys)

(age, income, buys)

(age, income) (age, buys)

0-D (apex) cuboid

1-D cuboids

2-D cuboids

3-D (base) cuboid

Figure 7.5 Lattice of cuboids, making up a 3-D data cube. Each cuboid represents a different group-by.
The base cuboid contains the three predicates age, income, and buys.

exploration of this set should be terminated. This is because any more-specialized ver-
sion of the k-itemset will have support no greater than sup and, therefore, will not satisfy
minimum support either. In cases where no relevant data cube exists for the mining task,
we must create one on-the-fly. This becomes an iceberg cube computation problem,
where the minimum support threshold is taken as the iceberg condition (Chapter 5).

Mining Clustering-Based Quantitative Associations
Besides using discretization-based or data cube–based data sets to generate quantita-
tive association rules, we can also generate quantitative association rules by clustering
data in the quantitative dimensions. (Recall that objects within a cluster are similar
to one another and dissimilar to those in other clusters.) The general assumption is
that interesting frequent patterns or association rules are in general found at relatively
dense clusters of quantitative attributes. Here, we describe a top-down approach and a
bottom-up approach to clustering that finds quantitative associations.

A typical top-down approach for finding clustering-based quantitative frequent pat-
terns is as follows. For each quantitative dimension, a standard clustering algorithm
(e.g., k-means or a density-based clustering algorithm, as described in Chapter 10) can
be applied to find clusters in this dimension that satisfy the minimum support thresh-
old. For each cluster, we then examine the 2-D spaces generated by combining the cluster
with a cluster or nominal value of another dimension to see if such a combination passes
the minimum support threshold. If it does, we continue to search for clusters in this
2-D region and progress to even higher-dimensional combinations. The Apriori prun-
ing still applies in this process: If, at any point, the support of a combination does not
have minimum support, its further partitioning or combination with other dimensions
cannot have minimum support either.
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A bottom-up approach for finding clustering-based frequent patterns works by first
clustering in high-dimensional space to form clusters with support that satisfies the
minimum support threshold, and then projecting and merging those clusters in the
space containing fewer dimensional combinations. However, for high-dimensional data
sets, finding high-dimensional clustering itself is a tough problem. Thus, this approach
is less realistic.

Using Statistical Theory to Disclose Exceptional
Behavior
It is possible to discover quantitative association rules that disclose exceptional behavior,
where “exceptional” is defined based on a statistical theory. For example, the following
association rule may indicate exceptional behavior:

sex = female ⇒ meanwage = $7.90/hr (overall mean wage = $9.02/hr). (7.9)

This rule states that the average wage for females is only $7.90/hr. This rule is (subjec-
tively) interesting because it reveals a group of people earning a significantly lower wage
than the average wage of $9.02/hr. (If the average wage was close to $7.90/hr, then the
fact that females also earn $7.90/hr would be “uninteresting.”)

An integral aspect of our definition involves applying statistical tests to confirm the
validity of our rules. That is, Rule (7.9) is only accepted if a statistical test (in this case,
a Z-test) confirms that with high confidence it can be inferred that the mean wage of
the female population is indeed lower than the mean wage of the rest of the population.
(The above rule was mined from a real database based on a 1985 U.S. census.)

An association rule under the new definition is a rule of the form:

population subset ⇒ mean of values for the subset , (7.10)

where the mean of the subset is significantly different from the mean of its complement
in the database (and this is validated by an appropriate statistical test).

7.2.4 Mining Rare Patterns and Negative Patterns

All the methods presented so far in this chapter have been for mining frequent patterns.
Sometimes, however, it is interesting to find patterns that are rare instead of frequent, or
patterns that reflect a negative correlation between items. These patterns are respectively
referred to as rare patterns and negative patterns. In this subsection, we consider various
ways of defining rare patterns and negative patterns, which are also useful to mine.

Example 7.3 Rare patterns and negative patterns. In jewelry sales data, sales of diamond watches
are rare; however, patterns involving the selling of diamond watches could be interest-
ing. In supermarket data, if we find that customers frequently buy Coca-Cola Classic or
Diet Coke but not both, then buying Coca-Cola Classic and buying Diet Coke together
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is considered a negative (correlated) pattern. In car sales data, a dealer sells a few fuel-
thirsty vehicles (e.g., SUVs) to a given customer, and then later sells hybrid mini-cars to
the same customer. Even though buying SUVs and buying hybrid mini-cars may be neg-
atively correlated events, it can be interesting to discover and examine such exceptional
cases.

An infrequent (or rare) pattern is a pattern with a frequency support that is below
(or far below) a user-specified minimum support threshold. However, since the occur-
rence frequencies of the majority of itemsets are usually below or even far below the
minimum support threshold, it is desirable in practice for users to specify other con-
ditions for rare patterns. For example, if we want to find patterns containing at least
one item with a value that is over $500, we should specify such a constraint explic-
itly. Efficient mining of such itemsets is discussed under mining multidimensional
associations (Section 7.2.1), where the strategy is to adopt multiple (e.g., item- or
group-based) minimum support thresholds. Other applicable methods are discussed
under constraint-based pattern mining (Section 7.3), where user-specified constraints
are pushed deep into the iterative mining process.

There are various ways we could define a negative pattern. We will consider three
such definitions.

Definition 7.1: If itemsets X and Y are both frequent but rarely occur together (i.e.,
sup(X ∪ Y ) < sup(X) × sup(Y )), then itemsets X and Y are negatively correlated, and
the pattern X ∪ Y is a negatively correlated pattern. If sup(X ∪ Y ) � sup(X) × sup(Y ),
then X and Y are strongly negatively correlated, and the pattern X ∪ Y is a strongly
negatively correlated pattern. �

This definition can easily be extended for patterns containing k-itemsets for k > 2.
A problem with the definition, however, is that it is not null-invariant. That is, its

value can be misleadingly influenced by null transactions, where a null-transaction is a
transaction that does not contain any of the itemsets being examined (Section 6.3.3).
This is illustrated in Example 7.4.

Example 7.4 Null-transaction problem with Definition 7.1. If there are a lot of null-transactions in
the data set, then the number of null-transactions rather than the patterns observed may
strongly influence a measure’s assessment as to whether a pattern is negatively correlated.
For example, suppose a sewing store sells needle packages A and B. The store sold 100
packages each of A and B, but only one transaction contains both A and B. Intuitively,
A is negatively correlated with B since the purchase of one does not seem to encourage
the purchase of the other.

Let’s see how the above Definition 7.1 handles this scenario. If there are 200
transactions, we have sup(A ∪ B) = 1/200 = 0.005 and sup(A) × sup(B) = 100/200 ×
100/200 = 0.25. Thus, sup(A ∪ B) � sup(A) × sup(B), and so Definition 7.1 indi-
cates that A and B are strongly negatively correlated. What if, instead of only
200 transactions in the database, there are 106? In this case, there are many null-
transactions, that is, many contain neither A nor B. How does the definition hold up?
It computes sup(A ∪ B) = 1/106 and sup(X) × sup(Y ) = 100/106 × 100/106 = 1/108.
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Thus, sup(A ∪ B) � sup(X) × sup(Y ), which contradicts the earlier finding even though
the number of occurrences of A and B has not changed. The measure in Definition 7.1 is
not null-invariant, where null-invariance is essential for quality interestingness measures
as discussed in Section 6.3.3.

Definition 7.2: If X and Y are strongly negatively correlated, then

sup(X ∪ Y ) × sup(X ∪ Y ) � sup(X ∪ Y ) × sup(X ∪ Y ).

Is this measure null-invariant? �

Example 7.5 Null-transaction problem with Definition 7.2. Given our needle package example,
when there are in total 200 transactions in the database, we have

sup(A ∪ B) × sup(A ∪ B) = 99/200 × 99/200 = 0.245

� sup(A ∪ B) × sup(A ∪ B) = 199/200 × 1/200 ≈ 0.005,

which, according to Definition 7.2, indicates that A and B are strongly negatively
correlated. What if there are 106 transactions in the database? The measure would
compute

sup(A ∪ B) × sup(A ∪ B) = 99/106 × 99/106 = 9.8 × 10−9

� sup(A ∪ B) × sup(A ∪ B) = 199/106 × (106 − 199)/106 ≈ 1.99 × 10−4.

This time, the measure indicates that A and B are positively correlated, hence, a
contradiction. The measure is not null-invariant.

As a third alternative, consider Definition 7.3, which is based on the Kulczynski mea-
sure (i.e., the average of conditional probabilities). It follows the spirit of interestingness
measures introduced in Section 6.3.3.

Definition 7.3: Suppose that itemsets X and Y are both frequent, that is, sup(X) ≥
min sup and sup(Y ) ≥ min sup, where min sup is the minimum support threshold. If
(P(X|Y ) + P(Y |X))/2 < ε, where ε is a negative pattern threshold, then pattern X ∪ Y
is a negatively correlated pattern. �

Example 7.6 Negatively correlated patterns using Definition 7.3, based on the Kulczynski measure.
Let’s reexamine our needle package example. Let min sup be 0.01% and ε = 0.02. When
there are 200 transactions in the database, we have sup(A) = sup(B) = 100/200 = 0.5 >

0.01% and (P(B|A) + P(A|B))/2 = (0.01 + 0.01)/2 < 0.02; thus A and B are negatively
correlated. Does this still hold true if we have many more transactions? When there are
106 transactions in the database, the measure computes sup(A) = sup(B) = 100/106 =
0.01% ≥ 0.01% and (P(B|A) + P(A|B))/2 = (0.01 + 0.01)/2 < 0.02, again indicating
that A and B are negatively correlated. This matches our intuition. The measure does
not have the null-invariance problem of the first two definitions considered.

Let’s examine another case: Suppose that among 100,000 transactions, the store sold
1000 needle packages of A but only 10 packages of B; however, every time package B is
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sold, package A is also sold (i.e., they appear in the same transaction). In this case, the
measure computes (P(B|A) + P(A|B))/2 = (0.01 + 1)/2 = 0.505 � 0.02, which indi-
cates that A and B are positively correlated instead of negatively correlated. This also
matches our intuition.

With this new definition of negative correlation, efficient methods can easily be
derived for mining negative patterns in large databases. This is left as an exercise for
interested readers.

7.3 Constraint-Based Frequent Pattern Mining

A data mining process may uncover thousands of rules from a given data set, most of
which end up being unrelated or uninteresting to users. Often, users have a good sense of
which “direction” of mining may lead to interesting patterns and the “form” of the pat-
terns or rules they want to find. They may also have a sense of “conditions” for the rules,
which would eliminate the discovery of certain rules that they know would not be of
interest. Thus, a good heuristic is to have the users specify such intuition or expectations
as constraints to confine the search space. This strategy is known as constraint-based
mining. The constraints can include the following:

Knowledge type constraints: These specify the type of knowledge to be mined, such
as association, correlation, classification, or clustering.

Data constraints: These specify the set of task-relevant data.

Dimension/level constraints: These specify the desired dimensions (or attributes)
of the data, the abstraction levels, or the level of the concept hierarchies to be used in
mining.

Interestingness constraints: These specify thresholds on statistical measures of rule
interestingness such as support, confidence, and correlation.

Rule constraints: These specify the form of, or conditions on, the rules to be mined.
Such constraints may be expressed as metarules (rule templates), as the maximum or
minimum number of predicates that can occur in the rule antecedent or consequent,
or as relationships among attributes, attribute values, and/or aggregates.

These constraints can be specified using a high-level declarative data mining query
language and user interface.

The first four constraint types have already been addressed in earlier sections of this
book and this chapter. In this section, we discuss the use of rule constraints to focus the
mining task. This form of constraint-based mining allows users to describe the rules that
they would like to uncover, thereby making the data mining process more effective. In
addition, a sophisticated mining query optimizer can be used to exploit the constraints
specified by the user, thereby making the mining process more efficient.
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Constraint-based mining encourages interactive exploratory mining and analysis. In
Section 7.3.1, you will study metarule-guided mining, where syntactic rule constraints
are specified in the form of rule templates. Section 7.3.2 discusses the use of pattern space
pruning (which prunes patterns being mined) and data space pruning (which prunes
pieces of the data space for which further exploration cannot contribute to the discovery
of patterns satisfying the constraints).

For pattern space pruning, we introduce three classes of properties that facilitate
constraint-based search space pruning: antimonotonicity, monotonicity, and succinct-
ness. We also discuss a special class of constraints, called convertible constraints, where
by proper data ordering, the constraints can be pushed deep into the iterative mining
process and have the same pruning power as monotonic or antimonotonic constraints.
For data space pruning, we introduce two classes of properties—data succinctness and
data antimonotonicty—and study how they can be integrated within a data mining
process.

For ease of discussion, we assume that the user is searching for association rules. The
procedures presented can be easily extended to the mining of correlation rules by adding
a correlation measure of interestingness to the support-confidence framework.

7.3.1 Metarule-Guided Mining of Association Rules

“How are metarules useful?” Metarules allow users to specify the syntactic form of rules
that they are interested in mining. The rule forms can be used as constraints to help
improve the efficiency of the mining process. Metarules may be based on the ana-
lyst’s experience, expectations, or intuition regarding the data or may be automatically
generated based on the database schema.

Example 7.7 Metarule-guided mining. Suppose that as a market analyst for AllElectronics you have
access to the data describing customers (e.g., customer age, address, and credit rating)
as well as the list of customer transactions. You are interested in finding associations
between customer traits and the items that customers buy. However, rather than finding
all of the association rules reflecting these relationships, you are interested only in deter-
mining which pairs of customer traits promote the sale of office software. A metarule
can be used to specify this information describing the form of rules you are interested in
finding. An example of such a metarule is

P1(X , Y ) ∧ P2(X , W ) ⇒ buys(X , “office software”), (7.11)

where P1 and P2 are predicate variables that are instantiated to attributes from the given
database during the mining process, X is a variable representing a customer, and Y
and W take on values of the attributes assigned to P1 and P2, respectively. Typically,
a user will specify a list of attributes to be considered for instantiation with P1 and P2.
Otherwise, a default set may be used.

In general, a metarule forms a hypothesis regarding the relationships that the user
is interested in probing or confirming. The data mining system can then search for
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rules that match the given metarule. For instance, Rule (7.12) matches or complies with
Metarule (7.11):

age(X , “30..39”) ∧ income(X , “41K ..60K”)⇒buys(X , “office software”). (7.12)

“How can metarules be used to guide the mining process?” Let’s examine this prob-
lem closely. Suppose that we wish to mine interdimensional association rules such as in
Example 7.7. A metarule is a rule template of the form

P1 ∧ P2 ∧ ·· · ∧ Pl ⇒ Q1 ∧ Q2 ∧ ·· · ∧ Qr , (7.13)

where Pi (i = 1, . . . , l) and Qj (j = 1, . . . , r) are either instantiated predicates or predi-
cate variables. Let the number of predicates in the metarule be p = l + r. To find
interdimensional association rules satisfying the template,

We need to find all frequent p-predicate sets, Lp.

We must also have the support or count of the l-predicate subsets of Lp to compute
the confidence of rules derived from Lp.

This is a typical case of mining multidimensional association rules. By extending such
methods using the constraint-pushing techniques described in the following section, we
can derive efficient methods for metarule-guided mining.

7.3.2 Constraint-Based Pattern Generation: Pruning
Pattern Space and Pruning Data Space

Rule constraints specify expected set/subset relationships of the variables in the mined
rules, constant initiation of variables, and constraints on aggregate functions and other
forms of constraints. Users typically employ their knowledge of the application or
data to specify rule constraints for the mining task. These rule constraints may be
used together with, or as an alternative to, metarule-guided mining. In this section,
we examine rule constraints as to how they can be used to make the mining pro-
cess more efficient. Let’s study an example where rule constraints are used to mine
hybrid-dimensional association rules.

Example 7.8 Constraints for mining association rules. Suppose that AllElectronics has a sales
multidimensional database with the following interrelated relations:

item(item ID, item name, description, category, price)

sales(transaction ID, day, month, year, store ID, city)

trans item(item ID, transaction ID)
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Here, the item table contains attributes item ID, item name, description, category, and
price; the sales table contains attributes transaction ID day, month, year, store ID,
and city; and the two tables are linked via the foreign key attributes, item ID and
transaction ID, in the table trans item.

Suppose our association mining query is “Find the patterns or rules about the sales of
which cheap items (where the sum of the prices is less than $10) may promote (i.e., appear
in the same transaction) the sales of which expensive items (where the minimum price is
$50), shown in the sales in Chicago in 2010.”

This query contains the following four constraints: (1) sum(I .price) < $10, where I
represents the item ID of a cheap item; (2) min(J .price) ≥ $50), where J represents the
item ID of an expensive item; (3) T .city = Chicago; and (4) T .year = 2010, where T
represents a transaction ID. For conciseness, we do not show the mining query explicitly
here; however, the constraints’ context is clear from the mining query semantics.

Dimension/level constraints and interestingness constraints can be applied after
mining to filter out discovered rules, although it is generally more efficient and less
expensive to use them during mining to help prune the search space. Dimension/level
constraints were discussed in Section 7.2, and interestingness constraints, such as sup-
port, confidence, and correlation measures, were discussed in Chapter 6. Let’s focus now
on rule constraints.

“How can we use rule constraints to prune the search space? More specifically, what
kind of rule constraints can be ‘pushed’ deep into the mining process and still ensure the
completeness of the answer returned for a mining query?”

In general, an efficient frequent pattern mining processor can prune its search space
during mining in two major ways: pruning pattern search space and pruning data search
space. The former checks candidate patterns and decides whether a pattern can be
pruned. Applying the Apriori property, it prunes a pattern if no superpattern of it can be
generated in the remaining mining process. The latter checks the data set to determine
whether the particular data piece will be able to contribute to the subsequent generation
of satisfiable patterns (for a particular pattern) in the remaining mining process. If not,
the data piece is pruned from further exploration. A constraint that may facilitate pat-
tern space pruning is called a pattern pruning constraint, whereas one that can be used
for data space pruning is called a data pruning constraint.

Pruning Pattern Space with Pattern Pruning
Constraints
Based on how a constraint may interact with the pattern mining process, there are five
categories of pattern mining constraints: (1) antimonotonic, (2) monotonic, (3) succinct,
(4) convertible, and (5) inconvertible. For each category, we use an example to show its
characteristics and explain how such kinds of constraints can be used in the mining
process.
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The first category of constraints is antimonotonic. Consider the rule constraint
“sum(I .price) ≤ $100” of Example 7.8. Suppose we are using the Apriori framework,
which explores itemsets of size k at the kth iteration. If the price summation of the
items in a candidate itemset is no less than $100, this itemset can be pruned from the
search space, since adding more items into the set (assuming price is no less than zero)
will only make it more expensive and thus will never satisfy the constraint. In other
words, if an itemset does not satisfy this rule constraint, none of its supersets can satisfy
the constraint. If a rule constraint obeys this property, it is antimonotonic. Pruning
by antimonotonic constraints can be applied at each iteration of Apriori-style algo-
rithms to help improve the efficiency of the overall mining process while guaranteeing
completeness of the data mining task.

The Apriori property, which states that all nonempty subsets of a frequent itemset
must also be frequent, is antimonotonic. If a given itemset does not satisfy minimum
support, none of its supersets can. This property is used at each iteration of the Apriori
algorithm to reduce the number of candidate itemsets examined, thereby reducing the
search space for association rules.

Other examples of antimonotonic constraints include “min(J .price) ≥ $50,”
“count(I) ≤ 10,” and so on. Any itemset that violates either of these constraints can be
discarded since adding more items to such itemsets can never satisfy the constraints.
Note that a constraint such as “avg(I .price) ≤ $10” is not antimonotonic. For a given
itemset that does not satisfy this constraint, a superset created by adding some (cheap)
items may result in satisfying the constraint. Hence, pushing this constraint inside the
mining process will not guarantee completeness of the data mining task. A list of SQL
primitives–based constraints is given in the first column of Table 7.2. The antimono-
tonicity of the constraints is indicated in the second column. To simplify our discussion,
only existence operators (e.g., = , ∈, but not = , /∈) and comparison (or containment)
operators with equality (e.g., ≤ , ⊆) are given.

The second category of constraints is monotonic. If the rule constraint in
Example 7.8 were “sum(I .price) ≥ $100,” the constraint-based processing method
would be quite different. If an itemset I satisfies the constraint, that is, the sum of the
prices in the set is no less than $100, further addition of more items to I will increase
cost and will always satisfy the constraint. Therefore, further testing of this constraint
on itemset I becomes redundant. In other words, if an itemset satisfies this rule con-
straint, so do all of its supersets. If a rule constraint obeys this property, it is monotonic.
Similar rule monotonic constraints include “min(I .price) ≤ $10,” “count(I) ≥ 10,” and
so on. The monotonicity of the list of SQL primitives–based constraints is indicated in
the third column of Table 7.2.

The third category is succinct constraints. For this constraints category, we can
enumerate all and only those sets that are guaranteed to satisfy the constraint. That is,
if a rule constraint is succinct, we can directly generate precisely the sets that satisfy
it, even before support counting begins. This avoids the substantial overhead of the
generate-and-test paradigm. In other words, such constraints are precounting prunable.
For example, the constraint “min(J.price) ≥ $50” in Example 7.8 is succinct because we
can explicitly and precisely generate all the itemsets that satisfy the constraint.
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Table 7.2 Characterization of Commonly Used SQL-Based
Pattern Pruning Constraints

Constraint Antimonotonic Monotonic Succinct

v ∈ S no yes yes

S ⊇ V no yes yes

S ⊆ V yes no yes

min(S) ≤ v no yes yes

min(S) ≥ v yes no yes

max(S) ≤ v yes no yes

max(S) ≥ v no yes yes

count(S) ≤ v yes no weakly

count(S) ≥ v no yes weakly

sum(S) ≤ v (∀a ∈ S, a ≥ 0) yes no no

sum(S) ≥ v (∀a ∈ S, a ≥ 0) no yes no

range(S) ≤ v yes no no

range(S) ≥ v no yes no

avg(S) θ v, θ ∈ {≤ , ≥} convertible convertible no

support(S) ≥ ξ yes no no

support(S) ≤ ξ no yes no

all confidence(S) ≥ ξ yes no no

all confidence(S) ≤ ξ no yes no

Specifically, such a set must consist of a nonempty set of items that have a price no less
than $50. It is of the form S, where S = ∅ is a subset of the set of all items with prices no
less than $50. Because there is a precise “formula” for generating all the sets satisfying
a succinct constraint, there is no need to iteratively check the rule constraint during
the mining process. The succinctness of the list of SQL primitives–based constraints is
indicated in the fourth column of Table 7.2.2

The fourth category is convertible constraints. Some constraints belong to none of
the previous three categories. However, if the items in the itemset are arranged in a par-
ticular order, the constraint may become monotonic or antimonotonic with regard to
the frequent itemset mining process. For example, the constraint “avg(I .price) ≤ $10”
is neither antimonotonic nor monotonic. However, if items in a transaction are added
to an itemset in price-ascending order, the constraint becomes antimonotonic, because
if an itemset I violates the constraint (i.e., with an average price greater than $10),
then further addition of more expensive items into the itemset will never make it

2For constraint count(S) ≤ v (and similarly for count(S) ≥ v), we can have a member generation func-
tion based on a cardinality constraint (i.e., {X | X ⊆ Itemset ∧ |X| ≤ v}). Member generation in this
manner is of a different flavor and thus is called weakly succinct.
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satisfy the constraint. Similarly, if items in a transaction are added to an itemset in
price-descending order, it becomes monotonic, because if the itemset satisfies the con-
straint (i.e., with an average price no greater than $10), then adding cheaper items into
the current itemset will still make the average price no greater than $10. Aside from
“avg(S) ≤ v” and “avg(S) ≥ v,” given in Table 7.2, there are many other convertible
constraints such as “variance(S) ≥ v” “standard deviation(S) ≥ v,” and so on.

Note that the previous discussion does not imply that every constraint is convertible.
For example, “sum(S)θv,” where θ ∈ {≤ , ≥} and each element in S could be of any
real value, is not convertible. Therefore, there is yet a fifth category of constraints, called
inconvertible constraints. The good news is that although there still exist some tough
constraints that are not convertible, most simple SQL expressions with built-in SQL
aggregates belong to one of the first four categories to which efficient constraint mining
methods can be applied.

Pruning Data Space with Data Pruning Constraints
The second way of search space pruning in constraint-based frequent pattern mining
is pruning data space. This strategy prunes pieces of data if they will not contribute to
the subsequent generation of satisfiable patterns in the mining process. We consider two
properties: data succinctness and data antimonotonicity.

Constraints are data-succinct if they can be used at the beginning of a pattern mining
process to prune the data subsets that cannot satisfy the constraints. For example, if a
mining query requires that the mined pattern must contain digital camera, then any
transaction that does not contain digital camera can be pruned at the beginning of the
mining process, which effectively reduces the data set to be examined.

Interestingly, many constraints are data-antimonotonic in the sense that during the
mining process, if a data entry cannot satisfy a data-antimonotonic constraint based on
the current pattern, then it can be pruned. We prune it because it will not be able to
contribute to the generation of any superpattern of the current pattern in the remaining
mining process.

Example 7.9 Data antimonotonicity. A mining query requires that C1 : sum(I .price) ≥ $100, that is,
the sum of the prices of the items in the mined pattern must be no less than $100. Sup-
pose that the current frequent itemset, S, does not satisfy constraint C1 (say, because the
sum of the prices of the items in S is $50). If the remaining frequent items in a transac-
tion Ti are such that, say, {i2.price = $5, i5.price = $10, i8.price = $20}, then Ti will not
be able to make S satisfy the constraint. Thus, Ti cannot contribute to the patterns to be
mined from S, and thus can be pruned.

Note that such pruning cannot be done at the beginning of the mining because at
that time, we do not know yet if the total sum of the prices of all the items in Ti will
be over $100 (e.g., we may have i3.price = $80). However, during the iterative mining
process, we may find some items (e.g., i3) that are not frequent with S in the transaction
data set, and thus they would be pruned. Therefore, such checking and pruning should
be enforced at each iteration to reduce the data search space.
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Notice that constraint C1 is a monotonic constraint with respect to pattern space
pruning. As we have seen, this constraint has very limited power for reducing the
search space in pattern pruning. However, the same constraint can be used for effective
reduction of the data search space.

For an antimonotonic constraint, such as C2 : sum(I .price) ≤ $100, we can prune
both pattern and data search spaces at the same time. Based on our study of pattern
pruning, we already know that the current itemset can be pruned if the sum of the prices
in it is over $100 (since its further expansion can never satisfy C2). At the same time, we
can also prune any remaining items in a transaction Ti that cannot make the constraint
C2 valid. For example, if the sum of the prices of items in the current itemset S is $90,
any patterns over $10 in the remaining frequent items in Ti can be pruned. If none of
the remaining items in Ti can make the constraint valid, the entire transaction Ti should
be pruned.

Consider pattern constraints that are neither antimonotonic nor monotonic such
as “C3 : avg(I .price) ≤ 10.” These can be data-antimonotonic because if the remaining
items in a transaction Ti cannot make the constraint valid, then Ti can be pruned as well.
Therefore, data-antimonotonic constraints can be quite useful for constraint-based data
space pruning.

Notice that search space pruning by data antimonotonicity is confined only to a pat-
tern growth–based mining algorithm because the pruning of a data entry is determined
based on whether it can contribute to a specific pattern. Data antimonotonicity cannot
be used for pruning the data space if the Apriori algorithm is used because the data
are associated with all of the currently active patterns. At any iteration, there are usu-
ally many active patterns. A data entry that cannot contribute to the formation of the
superpatterns of a given pattern may still be able to contribute to the superpattern of
other active patterns. Thus, the power of data space pruning can be very limited for
nonpattern growth–based algorithms.

7.4 Mining High-Dimensional Data and Colossal Patterns

The frequent pattern mining methods presented so far handle large data sets having
a small number of dimensions. However, some applications may need to mine high-
dimensional data (i.e., data with hundreds or thousands of dimensions). Can we use
the methods studied so far to mine high-dimensional data? The answer is unfortunately
negative because the search spaces of such typical methods grow exponentially with the
number of dimensions.

Researchers have overcome this difficulty in two directions. One direction extends a
pattern growth approach by further exploring the vertical data format to handle data
sets with a large number of dimensions (also called features or items, e.g., genes) but
a small number of rows (also called transactions or tuples, e.g., samples). This is use-
ful in applications like the analysis of gene expressions in bioinformatics, for example,
where we often need to analyze microarray data that contain a large number of genes
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(e.g., 10,000 to 100,000) but only a small number of samples (e.g., 100 to 1000). The
other direction develops a new mining methodology, called Pattern-Fusion, which mines
colossal patterns, that is, patterns of very long length.

Let’s first briefly examine the first direction, in particular, a pattern growth–based row
enumeration approach. Its general philosophy is to explore the vertical data format, as
described in Section 6.2.5, which is also known as row enumeration. Row enumeration
differs from traditional column (i.e., item) enumeration (also known as the horizon-
tal data format). In traditional column enumeration, the data set, D, is viewed as a
set of rows, where each row consists of an itemset. In row enumeration, the data set
is instead viewed as an itemset, each consisting of a set of row IDs indicating where the
item appears in the traditional view of D. The original data set, D, can easily be trans-
formed into a transposed data set, T . A data set with a small number of rows but a large
number of dimensions is then transformed into a transposed data set with a large num-
ber of rows but a small number of dimensions. Efficient pattern growth methods can
then be developed on such relatively low-dimensional data sets. The details of such an
approach are left as an exercise for interested readers.

The remainder of this section focuses on the second direction. We introduce Pattern-
Fusion, a new mining methodology that mines colossal patterns (i.e., patterns of very
long length). This method takes leaps in the pattern search space, leading to a good
approximation of the complete set of colossal frequent patterns.

7.4.1 Mining Colossal Patterns by Pattern-Fusion

Although we have studied methods for mining frequent patterns in various situations,
many applications have hidden patterns that are tough to mine, due mainly to their
immense length or size. Consider bioinformatics, for example, where a common activ-
ity is DNA or microarray data analysis. This involves mapping and analyzing very long
DNA and protein sequences. Researchers are more interested in finding large patterns
(e.g., long sequences) than finding small ones since larger patterns usually carry more
significant meaning. We call these large patterns colossal patterns, as distinguished from
patterns with large support sets. Finding colossal patterns is challenging because incre-
mental mining tends to get “trapped” by an explosive number of midsize patterns before
it can even reach candidate patterns of large size. This is illustrated in Example 7.10.

Example 7.10 The challenge of mining colossal patterns. Consider a 40 × 40 square table where each
row contains the integers 1 through 40 in increasing order. Remove the integers on the
diagonal, and this gives a 40 × 39 table. Add 20 identical rows to the bottom of the
table, where each row contains the integers 41 through 79 in increasing order, result-
ing in a 60 × 39 table (Figure 7.6). We consider each row as a transaction and set the
minimum support threshold at 20. The table has an exponential number (i.e.,

(40
20

)
)

of midsize closed/maximal frequent patterns of size 20, but only one that is colossal:
α = (41,42, . . . , 79) of size 39. None of the frequent pattern mining algorithms that
we have introduced so far can complete execution in a reasonable amount of time.
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row/col 1 2 3 4 . . . 38 39

1 2 3 4 5 . . . 39 40

2 1 3 4 5 . . . 39 40

3 1 2 4 5 . . . 39 40

4 1 2 3 5 . . . 39 40

5 1 2 3 4 . . . 39 40

. . . . . . . . . . . . . . . . . . . . . . . .

39 1 2 3 4 . . . 38 40

40 1 2 3 4 . . . 38 39

41 41 42 43 44 . . . 78 79

42 41 42 43 44 . . . 78 79

. . . . . . . . . . . . . . . . . . . . . . . .

60 41 42 43 44 . . . 78 79

Figure 7.6 A simple colossal patterns example: The data set contains an exponential number of midsize
patterns of size 20 but only one that is colossal, namely (41,42, . . . , 79).
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Figure 7.7 Synthetic data that contain some colossal patterns but exponentially many midsize patterns.

The pattern search space is similar to that in Figure 7.7, where midsize patterns largely
outnumber colossal patterns.

All of the pattern mining strategies we have studied so far, such as Apriori and
FP-growth, use an incremental growth strategy by nature, that is, they increase the
length of candidate patterns by one at a time. Breadth-first search methods like Apri-
ori cannot bypass the generation of an explosive number of midsize patterns generated,
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making it impossible to reach colossal patterns. Even depth-first search methods like
FP-growth can be easily trapped in a huge amount of subtrees before reaching colossal
patterns. Clearly, a completely new mining methodology is needed to overcome such a
hurdle.

A new mining strategy called Pattern-Fusion was developed, which fuses a small
number of shorter frequent patterns into colossal pattern candidates. It thereby takes
leaps in the pattern search space and avoids the pitfalls of both breadth-first and depth-
first searches. This method finds a good approximation to the complete set of colossal
frequent patterns.

The Pattern-Fusion method has the following major characteristics. First, it traverses
the tree in a bounded-breadth way. Only a fixed number of patterns in a bounded-size
candidate pool are used as starting nodes to search downward in the pattern tree. As
such, it avoids the problem of exponential search space.

Second, Pattern-Fusion has the capability to identify “shortcuts” whenever possible.
Each pattern’s growth is not performed with one-item addition, but with an agglomera-
tion of multiple patterns in the pool. These shortcuts direct Pattern-Fusion much more
rapidly down the search tree toward the colossal patterns. Figure 7.8 conceptualizes this
mining model.

As Pattern-Fusion is designed to give an approximation to the colossal patterns, a
quality evaluation model is introduced to assess the patterns returned by the algorithm.
An empirical study verifies that Pattern-Fusion is able to efficiently return high-quality
results.

Let’s examine the Pattern-Fusion method in more detail. First, we introduce the con-
cept of core pattern. For a pattern α, an itemset β ⊆ α is said to be a τ -core pattern of
α if |Dα |

|Dβ | ≥ τ , 0 < τ ≤ 1, where |Dα| is the number of patterns containing α in database
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Colossal patterns
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Figure 7.8 Pattern tree traversal: Candidates are taken from a pool of patterns, which results in shortcuts
through pattern space to the colossal patterns.
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D. τ is called the core ratio. A pattern α is (d,τ)-robust if d is the maximum number of
items that can be removed from α for the resulting pattern to remain a τ -core pattern
of α, that is,

d = max
β

{|α| − |β||β ⊆ α, and β is a τ -core pattern of α}.

Example 7.11 Core patterns. Figure 7.9 shows a simple transaction database of four distinct transac-
tions, each with 100 duplicates: {α1 = (abe), α2 = (bcf ), α3 = (acf ), α4 = (abcfe)}. If
we set τ = 0.5, then (ab) is a core pattern of α1 because (ab) is contained only by α1 and

α4. Therefore,
|Dα1 |
|D(ab)| = 100

200 ≥ τ . α1 is (2,0.5)-robust while α4 is (4,0.5)-robust. The table

also shows that larger patterns (e.g., (abcfe)) have far more core patterns than smaller
ones (e.g., (bcf )).

From Example 7.11, we can deduce that large or colossal patterns have far more
core patterns than smaller patterns do. Thus, a colossal pattern is more robust in the
sense that if a small number of items are removed from the pattern, the resulting pat-
tern would have a similar support set. The larger the pattern size, the more prominent
this robustness. Such a robustness relationship between a colossal pattern and its corre-
sponding core patterns can be extended to multiple levels. The lower-level core patterns
of a colossal pattern are called core descendants.

Given a small c, a colossal pattern usually has far more core descendants of size c
than a smaller pattern. This means that if we were to draw randomly from the com-
plete set of patterns of size c, we would be more likely to pick a core descendant of a
colossal pattern than that of a smaller pattern. In Figure 7.9, consider the complete set
of patterns of size c = 2, which contains

(5
2

) = 10 patterns in total. For illustrative pur-
poses, let’s assume that the larger pattern, abcef , is colossal. The probability of being
able to randomly draw a core descendant of abcef is 0.9. Contrast this to the probabi-
lity of randomly drawing a core descendent of smaller (noncolossal) patterns, which is
at most 0.3. Therefore, a colossal pattern can be generated by merging a proper set of

Transactions
(# of Transactions) Core Patterns (τ = 0.5)

(abe) (100) (abe), (ab), (be), (ae), (e)

(bcf ) (100) (bcf ), (bc), (bf )

(acf ) (100) (acf ), (ac), (af )

(abcef ) (100) (ab), (ac), (af ), (ae), (bc), (bf ), (be), (ce), (fe), (e), (abc),

(abf ), (abe), (ace), (acf ), (afe), (bcf ), (bce), (bfe), (cfe),

(abcf ), (abce), (bcfe), (acfe), (abfe), (abcef )

Figure 7.9 A transaction database, which contains duplicates, and core patterns for each distinct
transaction.
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its core patterns. For instance, abcef can be generated by merging just two of its core
patterns, ab and cef , instead of having to merge all of its 26 core patterns.

Now, let’s see how these observations can help us leap through pattern space more
directly toward colossal patterns. Consider the following scheme. First, generate a com-
plete set of frequent patterns up to a user-specified small size, and then randomly pick
a pattern, β. β will have a high probability of being a core-descendant of some colossal
pattern, α. Identify all of α’s core-descendants in this complete set, and merge them.
This generates a much larger core-descendant of α, giving us the ability to leap along
a path toward α in the core-pattern tree, Tα . In the same fashion we select K pat-
terns. The set of larger core-descendants generated is the candidate pool for the next
iteration.

A question arises: Given β, a core-descendant of a colossal pattern α, how can we
find the other core-descendants of α? Given two patterns, α and β, the pattern dis-

tance between them is defined as Dist(α,β) = 1 − |Dα∩Dβ |
|Dα∪Dβ | . Pattern distance satisfies the

triangle inequality.
For a pattern, α, let Cα be the set of all its core patterns. It can be shown that Cα

is bounded in metric space by a “ball” of diameter r(τ ), where r(τ ) = 1 − 1
2/τ−1 . This

means that given a core pattern β ∈ Cα , we can identify all of α’s core patterns in the
current pool by posing a range query. Note that in the mining algorithm, each ran-
domly drawn pattern could be a core-descendant of more than one colossal pattern,
and as such, when merging the patterns found by the “ball,” more than one larger
core-descendant could be generated.

From this discussion, the Pattern-Fusion method is outlined in the following two
phases:

1. Initial Pool: Pattern-Fusion assumes an initial pool of small frequent patterns is
available. This is the complete set of frequent patterns up to a small size (e.g., 3).
This initial pool can be mined with any existing efficient mining algorithm.

2. Iterative Pattern-Fusion: Pattern-Fusion takes as input a user-specified parameter,
K , which is the maximum number of patterns to be mined. The mining process is
iterative. At each iteration, K seed patterns are randomly picked from the current
pool. For each of these K seeds, we find all the patterns within a ball of a size spec-
ified by τ . All the patterns in each “ball” are then fused together to generate a set of
superpatterns. These superpatterns form a new pool. If the pool contains more than
K patterns, the next iteration begins with this pool for the new round of random
drawing. As the support set of every superpattern shrinks with each new iteration,
the iteration process terminates.

Note that Pattern-Fusion merges small subpatterns of a large pattern instead of
incrementally-expanding patterns with single items. This gives the method an advantage
to circumvent midsize patterns and progress on a path leading to a potential colossal
pattern. The idea is illustrated in Figure 7.10. Each point shown in the metric space
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Colossal Pattern Small Pattern

Figure 7.10 Pattern metric space: Each point represents a core pattern. The core patterns of a colossal
pattern are denser than those of a small pattern, as shown within the dotted lines.

represents a core pattern. In comparison to a smaller pattern, a larger pattern has far
more core patterns that are close to one another, all of which are bounded by a ball, as
shown by the dotted lines. When drawing randomly from the initial pattern pool, we
have a much higher probability of getting a core pattern of a large pattern, because the
ball of a larger pattern is much denser.

It has been theoretically shown that Pattern-Fusion leads to a good approximation
of colossal patterns. The method was tested on synthetic and real data sets constructed
from program tracing data and microarray data. Experiments show that the method can
find most of the colossal patterns with high efficiency.

7.5 Mining Compressed or Approximate Patterns

A major challenge in frequent pattern mining is the huge number of discovered patterns.
Using a minimum support threshold to control the number of patterns found has lim-
ited effect. Too low a value can lead to the generation of an explosive number of output
patterns, while too high a value can lead to the discovery of only commonsense patterns.

To reduce the huge set of frequent patterns generated in mining while maintaining
high-quality patterns, we can instead mine a compressed or approximate set of frequent
patterns. Top-k most frequent closed patterns were proposed to make the mining process
concentrate on only the set of k most frequent patterns. Although interesting, they usu-
ally do not epitomize the k most representative patterns because of the uneven frequency
distribution among itemsets. Constraint-based mining of frequent patterns (Section 7.3)
incorporates user-specified constraints to filter out uninteresting patterns. Measures of
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pattern/rule interestingness and correlation (Section 6.3) can also be used to help confine
the search to patterns/rules of interest.

In this section, we look at two forms of “compression” of frequent patterns that
build on the concepts of closed patterns and max-patterns. Recall from Section 6.2.6
that a closed pattern is a lossless compression of the set of frequent patterns, whereas a
max-pattern is a lossy compression. In particular, Section 7.5.1 explores clustering-based
compression of frequent patterns, which groups patterns together based on their similar-
ity and frequency support. Section 7.5.2 takes a “summarization” approach, where the
aim is to derive redundancy-aware top-k representative patterns that cover the whole set
of (closed) frequent itemsets. The approach considers not only the representativeness of
patterns but also their mutual independence to avoid redundancy in the set of gener-
ated patterns. The k representatives provide compact compression over the collection of
frequent patterns, making them easier to interpret and use.

7.5.1 Mining Compressed Patterns by Pattern Clustering

Pattern compression can be achieved by pattern clustering. Clustering techniques are
described in detail in Chapters 10 and 11. In this section, it is not necessary to know
the fine details of clustering. Rather, you will learn how the concept of clustering can be
applied to compress frequent patterns. Clustering is the automatic process of grouping
like objects together, so that objects within a cluster are similar to one another and dis-
similar to objects in other clusters. In this case, the objects are frequent patterns. The
frequent patterns are clustered using a tightness measure called δ-cluster. A representa-
tive pattern is selected for each cluster, thereby offering a compressed version of the set
of frequent patterns.

Before we begin, let’s review some definitions. An itemset X is a closed frequent
itemset in a data set D if X is frequent and there exists no proper super-itemset Y of X
such that Y has the same support count as X in D. An itemset X is a maximal frequent
itemset in data set D if X is frequent and there exists no super-itemset Y such that
X ⊂ Y and Y is frequent in D. Using these concepts alone is not enough to obtain a
good representative compression of a data set, as we see in Example 7.12.

Example 7.12 Shortcomings of closed itemsets and maximal itemsets for compression. Table 7.3
shows a subset of frequent itemsets on a large data set, where a, b, c, d, e, f represent indi-
vidual items. There are no closed itemsets here; therefore, we cannot use closed frequent
itemsets to compress the data. The only maximal frequent itemset is P3. However, we
observe that itemsets P2, P3, and P4 are significantly different with respect to their sup-
port counts. If we were to use P3 to represent a compressed version of the data, we would
lose this support count information entirely. From visual inspection, consider the two
pairs (P1, P2) and (P4, P5). The patterns within each pair are very similar with respect to
their support and expression. Therefore, intuitively, P2, P3, and P4, collectively, should
serve as a better compressed version of the data.
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Table 7.3 Subset of Frequent Itemsets

ID Itemsets Support

P1 {b, c,d,e} 205,227

P2 {b, c,d,e, f } 205,211

P3 {a,b, c,d,e, f } 101,758

P4 {a, c,d,e, f } 161,563

P5 {a, c,d,e} 161,576

So, let’s see if we can find a way of clustering frequent patterns as a means of obtain-
ing a compressed representation of them. We will need to define a good similarity
measure, cluster patterns according to this measure, and then select and output only
a representative pattern for each cluster. Since the set of closed frequent patterns is a
lossless compression over the original frequent patterns set, it is a good idea to discover
representative patterns over the collection of closed patterns.

We can use the following distance measure between closed patterns. Let P1 and P2 be
two closed patterns. Their supporting transaction sets are T(P1) and T(P2), respectively.
The pattern distance of P1 and P2, Pat Dist(P1,P2), is defined as

Pat Dist(P1,P2) = 1 − |T(P1) ∩ T(P2)|
|T(P1) ∪ T(P2)| . (7.14)

Pattern distance is a valid distance metric defined on the set of transactions. Note that it
incorporates the support information of patterns, as desired previously.

Example 7.13 Pattern distance. Suppose P1 and P2 are two patterns such that T(P1) = {t1, t2, t3, t4, t5}
and T(P2) = {t1, t2, t3, t4, t6}, where ti is a transaction in the database. The distance
between P1 and P2 is Pat Dist(P1,P2) = 1 − 4

6 = 1
3 .

Now, let’s consider the expression of patterns. Given two patterns A and B, we say
B can be expressed by A if O(B) ⊂ O(A), where O(A) is the corresponding itemset of
pattern A. Following this definition, assume patterns P1,P2, . . . ,Pk are in the same clus-
ter. The representative pattern Pr of the cluster should be able to express all the other
patterns in the cluster. Clearly, we have ∪k

i=1O(Pi) ⊆ O(Pr).
Using the distance measure, we can simply apply a clustering method, such as

k-means (Section 10.2), on the collection of frequent patterns. However, this introduces
two problems. First, the quality of the clusters cannot be guaranteed; second, it may
not be able to find a representative pattern for each cluster (i.e., the pattern Pr may not
belong to the same cluster). To overcome these problems, this is where the concept of
δ-cluster comes in, where δ (0 ≤ δ ≤ 1) measures the tightness of a cluster.

A pattern P is δ-covered by another pattern P′ if O(P) ⊆ O(P′) and Pat
Dist(P,P′) ≤ δ. A set of patterns form a δ-cluster if there exists a representative pattern
Pr such that for each pattern P in the set, P is δ-covered by Pr .
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Note that according to the concept of δ-cluster, a pattern can belong to multiple clus-
ters. Also, using δ-cluster, we only need to compute the distance between each pattern
and the representative pattern of the cluster. Because a pattern P is δ-covered by a rep-
resentative pattern Pr only if O(P) ⊆ O(Pr), we can simplify the distance calculation by
considering only the supports of the patterns:

Pat Dist(P,Pr) = 1 − |T(P) ∩ T(Pr)|
|T(P) ∪ T(Pr)| = 1 − |T(Pr)|

|T(P)| . (7.15)

If we restrict the representative pattern to be frequent, then the number of represen-
tative patterns (i.e., clusters) is no less than the number of maximal frequent patterns.
This is because a maximal frequent pattern can only be covered by itself. To achieve
more succinct compression, we relax the constraints on representative patterns, that is,
we allow the support of representative patterns to be somewhat less than min sup.

For any representative pattern Pr , assume its support is k. Since it has to cover at least
one frequent pattern (i.e., P) with support that is at least min sup, we have

δ ≥ Pat Dist(P,Pr) = 1 − |T(Pr)|
|T(P)| ≥ 1 − k

min sup
. (7.16)

That is, k ≥ (1 − δ) × min sup. This is the minimum support for a representative pat-
tern, denoted as min supr .

Based on the preceding discussion, the pattern compression problem can be defined
as follows: Given a transaction database, a minimum support min sup, and the cluster
quality measure δ, the pattern compression problem is to find a set of representative patterns
R such that for each frequent pattern P (with respect to min sup), there is a representa-
tive pattern Pr ∈ R (with respect to min supr), which covers P, and the value of |R| is
minimized.

Finding a minimum set of representative patterns is an NP-Hard problem. How-
ever, efficient methods have been developed that reduce the number of closed frequent
patterns generated by orders of magnitude with respect to the original collection of
closed patterns. The methods succeed in finding a high-quality compression of the
pattern set.

7.5.2 Extracting Redundancy-Aware Top-k Patterns

Mining the top-k most frequent patterns is a strategy for reducing the number of
patterns returned during mining. However, in many cases, frequent patterns are not
mutually independent but often clustered in small regions. This is somewhat like find-
ing 20 population centers in the world, which may result in cities clustered in a small
number of countries rather than evenly distributed across the globe. Instead, most
users would prefer to derive the k most interesting patterns, which are not only sig-
nificant, but also mutually independent and containing little redundancy. A small set of
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k representative patterns that have not only high significance but also low redundancy
are called redundancy-aware top-k patterns.

Example 7.14 Redundancy-aware top-k strategy versus other top-k strategies. Figure 7.11 illus-
trates the intuition behind redundancy-aware top-k patterns versus traditional top-k
patterns and k-summarized patterns. Suppose we have the frequent patterns set shown in
Figure 7.11(a), where each circle represents a pattern of which the significance is colored
in grayscale. The distance between two circles reflects the redundancy of the two corre-
sponding patterns: The closer the circles are, the more redundant the respective patterns
are to one another. Let’s say we want to find three patterns that will best represent the
given set, that is, k = 3. Which three should we choose?

Arrows are used to show the patterns chosen if using redundancy-aware top-k
patterns (Figure 7.11b), traditional top-k patterns (Figure 7.11c), or k-summarized pat-
terns (Figure 7.11d). In Figure 7.11(c), the traditional top-k strategy relies solely on
significance: It selects the three most significant patterns to represent the set.

In Figure 7.11(d), the k-summarized pattern strategy selects patterns based solely on
nonredundancy. It detects three clusters, and finds the most representative patterns to
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Figure 7.11 Conceptual view comparing top-k methodologies (where gray levels represent pattern sig-
nificance, and the closer that two patterns are displayed, the more redundant they are to one
another): (a) original patterns, (b) redundancy-aware top-k patterns, (c) traditional top-k
patterns, and (d) k-summarized patterns.
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be the “centermost’” pattern from each cluster. These patterns are chosen to represent
the data. The selected patterns are considered “summarized patterns” in the sense that
they represent or “provide a summary” of the clusters they stand for.

By contrast, in Figure 7.11(b) the redundancy-aware top-k patterns make a trade-off
between significance and redundancy. The three patterns chosen here have high signif-
icance and low redundancy. Observe, for example, the two highly significant patterns
that, based on their redundancy, are displayed next to each other. The redundancy-aware
top-k strategy selects only one of them, taking into consideration that two would be
redundant. To formalize the definition of redundancy-aware top-k patterns, we’ll need
to define the concepts of significance and redundancy.

A significance measure S is a function mapping a pattern p ∈ P to a real value such
that S(p) is the degree of interestingness (or usefulness) of the pattern p. In general,
significance measures can be either objective or subjective. Objective measures depend
only on the structure of the given pattern and the underlying data used in the discovery
process. Commonly used objective measures include support, confidence, correlation,
and tf-idf (or term frequency versus inverse document frequency), where the latter is often
used in information retrieval. Subjective measures are based on user beliefs in the data.
They therefore depend on the users who examine the patterns. A subjective measure
is usually a relative score based on user prior knowledge or a background model. It
often measures the unexpectedness of a pattern by computing its divergence from the
background model. Let S(p,q) be the combined significance of patterns p and q, and
S(p|q) = S(p,q) − S(q) be the relative significance of p given q. Note that the combined
significance, S(p,q), means the collective significance of two individual patterns p and q,
not the significance of a single super pattern p ∪ q.

Given the significance measure S, the redundancy R between two patterns p and
q is defined as R(p,q) = S(p) + S(q) − S(p,q). Subsequently, we have S(p|q) = S(p) −
R(p,q).

We assume that the combined significance of two patterns is no less than the sig-
nificance of any individual pattern (since it is a collective significance of two patterns)
and does not exceed the sum of two individual significance patterns (since there exists
redundancy). That is, the redundancy between two patterns should satisfy

0 ≤ R(p,q) ≤ min(S(p),S(q)). (7.17)

The ideal redundancy measure R(p,q) is usually hard to obtain. However, we can
approximate redundancy using distance between patterns such as with the distance
measure defined in Section 7.5.1.

The problem of finding redundancy-aware top-k patterns can thus be transformed
into finding a k-pattern set that maximizes the marginal significance, which is a well-
studied problem in information retrieval. In this field, a document has high marginal
relevance if it is both relevant to the query and contains minimal marginal similarity to
previously selected documents, where the marginal similarity is computed by choosing
the most relevant selected document. Experimental studies have shown this method to
be efficient and able to find high-significance and low-redundancy top-k patterns.
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7.6 Pattern Exploration and Application

For discovered frequent patterns, is there any way the mining process can return addi-
tional information that will help us to better understand the patterns? What kinds of
applications exist for frequent pattern mining? These topics are discussed in this section.
Section 7.6.1 looks at the automated generation of semantic annotations for frequent
patterns. These are dictionary-like annotations. They provide semantic information
relating to patterns, based on the context and usage of the patterns, which aids in their
understanding. Semantically similar patterns also form part of the annotation, provid-
ing a more direct connection between discovered patterns and any other patterns already
known to the users.

Section 7.6.2 presents an overview of applications of frequent pattern mining. While
the applications discussed in Chapter 6 and this chapter mainly involve market basket
analysis and correlation analysis, there are many other areas in which frequent pattern
mining is useful. These range from data preprocessing and classification to clustering
and the analysis of complex data.

7.6.1 Semantic Annotation of Frequent Patterns

Pattern mining typically generates a huge set of frequent patterns without providing
enough information to interpret the meaning of the patterns. In the previous section,
we introduced pattern processing techniques to shrink the size of the output set of fre-
quent patterns such as by extracting redundancy-aware top-k patterns or compressing
the pattern set. These, however, do not provide any semantic interpretation of the pat-
terns. It would be helpful if we could also generate semantic annotations for the frequent
patterns found, which would help us to better understand the patterns.

“What is an appropriate semantic annotation for a frequent pattern?” Think about
what we find when we look up the meaning of terms in a dictionary. Suppose we are
looking up the term pattern. A dictionary typically contains the following components
to explain the term:

1. A set of definitions, such as “a decorative design, as for wallpaper, china, or textile
fabrics, etc.; a natural or chance configuration”

2. Example sentences, such as “patterns of frost on the window; the behavior patterns of
teenagers, . . . ”

3. Synonyms from a thesaurus, such as “model, archetype, design, exemplar, motif, . . . .”

Analogically, what if we could extract similar types of semantic information and pro-
vide such structured annotations for frequent patterns? This would greatly help users
in interpreting the meaning of patterns and in deciding on how or whether to further
explore them. Unfortunately, it is infeasible to provide such precise semantic defini-
tions for patterns without expertise in the domain. Nevertheless, we can explore how to
approximate such a process for frequent pattern mining.
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Pattern: “{frequent, pattern}”
context indicators:

“mining,” “constraint,” “Apriori,” “FP-growth,”
“rakesh agrawal,” “jiawei han,” . . .

representative transactions:
1) mining frequent patterns without candidate . . .
2) . . . mining closed frequent graph patterns

semantically similar patterns:
“{frequent, sequential, pattern},” “{graph, pattern}”
“{maximal, pattern},” “{frequent, closed, pattern},” . . .

Figure 7.12 Semantic annotation of the pattern “{frequent, pattern}.”

In general, the hidden meaning of a pattern can be inferred from patterns with sim-
ilar meanings, data objects co-occurring with it, and transactions in which the pattern
appears. Annotations with such information are analogous to dictionary entries, which
can be regarded as annotating each term with structured semantic information. Let’s
examine an example.

Example 7.15 Semantic annotation of a frequent pattern. Figure 7.12 shows an example of a semantic
annotation for the pattern “{frequent, pattern}.” This dictionary-like annotation pro-
vides semantic information related to “{frequent, pattern},” consisting of its strongest
context indicators, the most representative data transactions, and the most semantically
similar patterns. This kind of semantic annotation is similar to natural language pro-
cessing. The semantics of a word can be inferred from its context, and words sharing
similar contexts tend to be semantically similar. The context indicators and the repre-
sentative transactions provide a view of the context of the pattern from different angles
to help users understand the pattern. The semantically similar patterns provide a more
direct connection between the pattern and any other patterns already known to the
users.

“How can we perform automated semantic annotation for a frequent pattern?” The
key to high-quality semantic annotation of a frequent pattern is the successful context
modeling of the pattern. For context modeling of a pattern, p, consider the following.

A context unit is a basic object in a database, D, that carries semantic information
and co-occurs with at least one frequent pattern, p, in at least one transaction in D.
A context unit can be an item, a pattern, or even a transaction, depending on the
specific task and data.

The context of a pattern, p, is a selected set of weighted context units (referred
to as context indicators) in the database. It carries semantic information, and
co-occurs with a frequent pattern, p. The context of p can be modeled using a
vector space model, that is, the context of p can be represented as C(p) = 〈w(u1),
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w(u2), . . . ,w(un)〉, where w(ui) is a weight function of term ui . A transaction t is
represented as a vector 〈v1,v2, . . . ,vm〉, where vi = 1 if and only if vi ∈ t , otherwise
vi = 0.

Based on these concepts, we can define the basic task of semantic pattern annotation
as follows:

1. Select context units and design a strength weight for each unit to model the contexts
of frequent patterns.

2. Design similarity measures for the contexts of two patterns, and for a transaction and
a pattern context.

3. For a given frequent pattern, extract the most significant context indicators, repre-
sentative transactions, and semantically similar patterns to construct a structured
annotation.

“Which context units should we select as context indicators?” Although a context unit can
be an item, a transaction, or a pattern, typically, frequent patterns provide the most
semantic information of the three. There are usually a large number of frequent pat-
terns associated with a pattern, p. Therefore, we need a systematic way to select only the
important and nonredundant frequent patterns from a large pattern set.

Considering that the closed patterns set is a lossless compression of frequent pat-
tern sets, we can first derive the closed patterns set by applying efficient closed pattern
mining methods. However, as discussed in Section 7.5, a closed pattern set is not com-
pact enough, and pattern compression needs to be performed. We could use the pattern
compression methods introduced in Section 7.5.1 or explore alternative compression
methods such as microclustering using the Jaccard coefficient (Chapter 2) and then
selecting the most representative patterns from each cluster.

“How, then, can we assign weights for each context indicator?” A good weighting func-
tion should obey the following properties: (1) the best semantic indicator of a pattern,
p, is itself, (2) assign the same score to two patterns if they are equally strong, and
(3) if two patterns are independent, neither can indicate the meaning of the other.
The meaning of a pattern, p, can be inferred from either the appearance or absence of
indicators.

Mutual information is one of several possible weighting functions. It is widely used
in information theory to measure the mutual independency of two random variables.
Intuitively, it measures how much information a random variable tells about the other.
Given two frequent patterns, pα and pβ , let X = {0,1} and Y = {0,1} be two random
variables representing the appearance of pα and pβ , respectively. Mutual information
I(X ;Y ) is computed as

I(X ;Y ) =
∑
x∈X

∑
y∈Y

P(x,y)log
P(x,y)

P(x)P(y)
, (7.18)
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where P(x = 1,y = 1) = |Dα∩Dβ |
|D| , P(x = 0,y = 1) = |Dβ |−|Dα∩Dβ |

|D| , P(x = 1,y = 0) =
|Dα |−|Dα∩Dβ |

|D| , and P(x = 0,y = 0) = |D|−|Dα∪Dβ |
|D| . Standard Laplace smoothing can be

used to avoid zero probability.
Mutual information favors strongly correlated units and thus can be used to model

the indicative strength of the context units selected. With context modeling, pattern
annotation can be accomplished as follows:

1. To extract the most significant context indicators, we can use cosine similarity
(Chapter 2) to measure the semantic similarity between pairs of context vectors, rank
the context indicators by the weight strength, and extract the strongest ones.

2. To extract representative transactions, represent each transaction as a context vector.
Rank the transactions with semantic similarity to the pattern p.

3. To extract semantically similar patterns, rank each frequent pattern, p, by the seman-
tic similarity between their context models and the context of p.

Based on these principles, experiments have been conducted on large data sets to
generate semantic annotations. Example 7.16 illustrates one such experiment.

Example 7.16 Semantic annotations generated for frequent patterns from the DBLP Computer Sci-
ence Bibliography. Table 7.4 shows annotations generated for frequent patterns from a
portion of the DBLP data set.3 The DBLP data set contains papers from the proceed-
ings of 12 major conferences in the fields of database systems, information retrieval,
and data mining. Each transaction consists of two parts: the authors and the title of the
corresponding paper.

Consider two types of patterns: (1) frequent author or coauthorship, each of which
is a frequent itemset of authors, and (2) frequent title terms, each of which is a fre-
quent sequential pattern of the title words. The method can automatically generate
dictionary-like annotations for different kinds of frequent patterns. For frequent item-
sets like coauthorship or single authors, the strongest context indicators are usually the
other coauthors and discriminative title terms that appear in their work. The semanti-
cally similar patterns extracted also reflect the authors and terms related to their work.
However, these similar patterns may not even co-occur with the given pattern in a paper.
For example, the patterns “timos k selli,” “ramakrishnan srikant,” and so on, do not co-
occur with the pattern “christos faloutsos,” but are extracted because their contexts are
similar since they all are database and/or data mining researchers; thus the annotation
is meaningful.

For the title term “information retrieval,” which is a sequential pattern, its strongest
context indicators are usually the authors who tend to use the term in the titles of their
papers, or the terms that tend to coappear with it. Its semantically similar patterns usu-
ally provide interesting concepts or descriptive terms, which are close in meaning (e.g.,
“information retrieval → information filter).”

3 www.informatik.uni-trier.de/∼ley/db/ .
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Table 7.4 Annotations Generated for Frequent Patterns in the DBLP Data Set

Pattern Type Annotations

Context indicator spiros papadimitriou; fast; use fractal;
graph; use correlate

christos faloutsos Representative
transactions

multi-attribute hash use gray code

Representative
transactions

recovery latent time-series observe sum
network tomography particle filter

Representative
transactions

index multimedia database tutorial

Semantic similar
patterns

spiros papadimitriou&christos faloutsos;
spiros papadimitriou; flip korn;
timos k selli;

ramakrishnan srikant;
ramakrishnan srikant&rakesh agrawal

Context indicator w bruce croft; web information;
monika rauch henzinger;

james p callan; full-text

Representative
transactions

web information retrieval

information
retrieval

Representative
transactions

language model information retrieval

Semantic similar
patterns

information use; web information;
probabilistic information; information
filter;

text information

In both scenarios, the representative transactions extracted give us the titles of papers
that effectively capture the meaning of the given patterns. The experiment demonstrates
the effectiveness of semantic pattern annotation to generate a dictionary-like annota-
tion for frequent patterns, which can help a user understand the meaning of annotated
patterns.

The context modeling and semantic analysis method presented here is general and
can deal with any type of frequent patterns with context information. Such semantic
annotations can have many other applications such as ranking patterns, categorizing
and clustering patterns with semantics, and summarizing databases. Applications of
the pattern context model and semantical analysis method are also not limited to pat-
tern annotation; other example applications include pattern compression, transaction
clustering, pattern relations discovery, and pattern synonym discovery.

7.6.2 Applications of Pattern Mining

We have studied many aspects of frequent pattern mining, with topics ranging from effi-
cient mining algorithms and the diversity of patterns to pattern interestingness, pattern
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compression/approximation, and semantic pattern annotation. Let’s take a moment
to consider why this field has generated so much attention. What are some of the
application areas in which frequent pattern mining is useful? This section presents an
overview of applications for frequent pattern mining. We have touched on several appli-
cation areas already, such as market basket analysis and correlation analysis, yet frequent
pattern mining can be applied to many other areas as well. These range from data
preprocessing and classification to clustering and the analysis of complex data.

To summarize, frequent pattern mining is a data mining task that discovers patterns
that occur frequently together and/or have some distinctive properties that distinguish
them from others, often disclosing something inherent and valuable. The patterns may
be itemsets, subsequences, substructures, or values. The task also includes the discov-
ery of rare patterns, revealing items that occur very rarely together yet are of interest.
Uncovering frequent patterns and rare patterns leads to many broad and interesting
applications, described as follows.

Pattern mining is widely used for noise filtering and data cleaning as preprocess-
ing in many data-intensive applications. We can use it to analyze microarray data, for
instance, which typically consists of tens of thousands of dimensions (e.g., representing
genes). Such data can be rather noisy. Frequent pattern data mining can help us dis-
tinguish between what is noise and what isn’t. We may assume that items that occur
frequently together are less likely to be random noise and should not be filtered out.
On the other hand, those that occur very frequently (similar to stopwords in text docu-
ments) are likely indistinctive and may be filtered out. Frequent pattern mining can help
in background information identification and noise reduction.

Pattern mining often helps in the discovery of inherent structures and clusters
hidden in the data. Given the DBLP data set, for instance, frequent pattern min-
ing can easily find interesting clusters like coauthor clusters (by examining authors
who frequently collaborate) and conference clusters (by examining the sharing of
many common authors and terms). Such structure or cluster discovery can be used as
preprocessing for more sophisticated data mining.

Although there are numerous classification methods (Chapters 8 and 9), research has
found that frequent patterns can be used as building blocks in the construction of high-
quality classification models, hence called pattern-based classification. The approach
is successful because (1) the appearance of very infrequent item(s) or itemset(s) can be
caused by random noise and may not be reliable for model construction, yet a relatively
frequent pattern often carries more information gain for constructing more reliable
models; (2) patterns in general (i.e., itemsets consisting of multiple attributes) usu-
ally carry more information gain than a single attribute (feature); and (3) the patterns
so generated are often intuitively understandable and easy to explain. Recent research
has reported several methods that mine interesting, frequent, and discriminative pat-
terns and use them for effective classification. Pattern-based classification methods are
introduced in Chapter 9.

Frequent patterns can also be used effectively for subspace clustering in high-
dimensional space. Clustering is challenging in high-dimensional space, where the
distance between two objects is often difficult to measure. This is because such a dis-
tance is dominated by the different sets of dimensions in which the objects are residing.
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Thus, instead of clustering objects in their full high-dimensional spaces, it can be more
meaningful to find clusters in certain subspaces. Recently, researchers have developed
subspace-based pattern growth methods that cluster objects based on their common
frequent patterns. They have shown that such methods are effective for clustering
microarray-based gene expression data. Subspace clustering methods are discussed in
Chapter 11.

Pattern analysis is useful in the analysis of spatiotemporal data, time-series data,
image data, video data, and multimedia data. An area of spatiotemporal data analysis is
the discovery of colocation patterns. These, for example, can help determine if a certain
disease is geographically colocated with certain objects like a well, a hospital, or a river.
In time-series data analysis, researchers have discretized time-series values into multiple
intervals (or levels) so that tiny fluctuations and value differences can be ignored. The
data can then be summarized into sequential patterns, which can be indexed to facili-
tate similarity search or comparative analysis. In image analysis and pattern recognition,
researchers have also identified frequently occurring visual fragments as “visual words,”
which can be used for effective clustering, classification, and comparative analysis.

Pattern mining has also been used for the analysis of sequence or structural data
such as trees, graphs, subsequences, and networks. In software engineering, researchers
have identified consecutive or gapped subsequences in program execution as sequential
patterns that help identify software bugs. Copy-and-paste bugs in large software pro-
grams can be identified by extended sequential pattern analysis of source programs.
Plagiarized software programs can be identified based on their essentially identical
program flow/loop structures. Authors’ commonly used sentence substructures can be
identified and used to distinguish articles written by different authors.

Frequent and discriminative patterns can be used as primitive indexing structures
(known as graph indices) to help search large, complex, structured data sets and net-
works. These support a similarity search in graph-structured data such as chemical
compound databases or XML-structured databases. Such patterns can also be used for
data compression and summarization.

Furthermore, frequent patterns have been used in recommender systems, where
people can find correlations, clusters of customer behaviors, and classification models
based on commonly occurring or discriminative patterns (Chapter 13).

Finally, studies on efficient computation methods in pattern mining mutually
enhance many other studies on scalable computation. For example, the computa-
tion and materialization of iceberg cubes using the BUC and Star-Cubing algorithms
(Chapter 5) respectively share many similarities to computing frequent patterns by the
Apriori and FP-growth algorithms (Chapter 6).

7.7 Summary

The scope of frequent pattern mining research reaches far beyond the basic concepts
and methods introduced in Chapter 6 for mining frequent itemsets and associa-
tions. This chapter presented a road map of the field, where topics are organized
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with respect to the kinds of patterns and rules that can be mined, mining methods,
and applications.

In addition to mining for basic frequent itemsets and associations, advanced forms
of patterns can be mined such as multilevel associations and multidimensional asso-
ciations, quantitative association rules, rare patterns, and negative patterns. We can
also mine high-dimensional patterns and compressed or approximate patterns.

Multilevel associations involve data at more than one abstraction level (e.g., “buys
computer” and “buys laptop”). These may be mined using multiple minimum
support thresholds. Multidimensional associations contain more than one dimen-
sion. Techniques for mining such associations differ in how they handle repetitive
predicates. Quantitative association rules involve quantitative attributes. Discretiza-
tion, clustering, and statistical analysis that discloses exceptional behavior can be
integrated with the pattern mining process.

Rare patterns occur rarely but are of special interest. Negative patterns are pat-
terns with components that exhibit negatively correlated behavior. Care should be
taken in the definition of negative patterns, with consideration of the null-invariance
property. Rare and negative patterns may highlight exceptional behavior in the data,
which is likely of interest.

Constraint-based mining strategies can be used to help direct the mining process
toward patterns that match users’ intuition or satisfy certain constraints. Many user-
specified constraints can be pushed deep into the mining process. Constraints can
be categorized into pattern-pruning and data-pruning constraints. Properties of
such constraints include monotonicity, antimonotonicity, data-antimonotonicity, and
succinctness. Constraints with such properties can be properly incorporated into
efficient pattern mining processes.

Methods have been developed for mining patterns in high-dimensional space. This
includes a pattern growth approach based on row enumeration for mining data sets
where the number of dimensions is large and the number of data tuples is small (e.g.,
for microarray data), as well as mining colossal patterns (i.e., patterns of very long
length) by a Pattern-Fusion method.

To reduce the number of patterns returned in mining, we can instead mine com-
pressed patterns or approximate patterns. Compressed patterns can be mined with
representative patterns defined based on the concept of clustering, and approximate
patterns can be mined by extracting redundancy-aware top-k patterns (i.e., a small
set of k-representative patterns that have not only high significance but also low
redundancy with respect to one another).

Semantic annotations can be generated to help users understand the meaning of the
frequent patterns found, such as for textual terms like “{frequent, pattern}.” These
are dictionary-like annotations, providing semantic information relating to the term.
This information consists of context indicators (e.g., terms indicating the context of
that pattern), the most representative data transactions (e.g., fragments or sentences
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containing the term), and the most semantically similar patterns (e.g., “{maximal,
pattern}” is semantically similar to “{frequent, pattern}”). The annotations provide a
view of the pattern’s context from different angles, which aids in their understanding.

Frequent pattern mining has many diverse applications, ranging from pattern-based
data cleaning to pattern-based classification, clustering, and outlier or exception
analysis. These methods are discussed in the subsequent chapters in this book.

7.8 Exercises

7.1 Propose and outline a level-shared mining approach to mining multilevel association
rules in which each item is encoded by its level position. Design it so that an initial
scan of the database collects the count for each item at each concept level, identifying
frequent and subfrequent items. Comment on the processing cost of mining multilevel
associations with this method in comparison to mining single-level associations.

7.2 Suppose, as manager of a chain of stores, you would like to use sales transactional data
to analyze the effectiveness of your store’s advertisements. In particular, you would
like to study how specific factors influence the effectiveness of advertisements that
announce a particular category of items on sale. The factors to study are the region in
which customers live and the day-of-the-week and time-of-the-day of the ads. Discuss
how to design an efficient method to mine the transaction data sets and explain how
multidimensional and multilevel mining methods can help you derive a good solution.

7.3 Quantitative association rules may disclose exceptional behaviors within a data
set, where “exceptional” can be defined based on statistical theory. For example,
Section 7.2.3 shows the association rule

sex = female ⇒ mean wage = $7.90/hr (overall mean wage = $9.02/hr),

which suggests an exceptional pattern. The rule states that the average wage for females
is only $7.90 per hour, which is a significantly lower wage than the overall average of
$9.02 per hour. Discuss how such quantitative rules can be discovered systematically
and efficiently in large data sets with quantitative attributes.

7.4 In multidimensional data analysis, it is interesting to extract pairs of similar cell char-
acteristics associated with substantial changes in measure in a data cube, where cells
are considered similar if they are related by roll-up (i.e, ancestors), drill-down (i.e,
descendants), or 1-D mutation (i.e, siblings) operations. Such an analysis is called cube
gradient analysis.

Suppose the measure of the cube is average. A user poses a set of probe cells and
would like to find their corresponding sets of gradient cells, each of which satisfies a
certain gradient threshold. For example, find the set of corresponding gradient cells that
have an average sale price greater than 20% of that of the given probe cells. Develop an
algorithm than mines the set of constrained gradient cells efficiently in a large data cube.
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7.5 Section 7.2.4 presented various ways of defining negatively correlated patterns. Consider
Definition 7.3: “Suppose that itemsets X and Y are both frequent, that is, sup(X) ≥
min sup and sup(Y ) ≥ min sup, where min sup is the minimum support threshold. If
(P(X|Y ) + P(Y |X))/2 < ε, where ε is a negative pattern threshold, then pattern X ∪ Y
is a negatively correlated pattern.” Design an efficient pattern growth algorithm for
mining the set of negatively correlated patterns.

7.6 Prove that each entry in the following table correctly characterizes its corresponding
rule constraint for frequent itemset mining.

Rule Constraint Antimonotonic Monotonic Succinct
(a) v ∈ S no yes yes

(b) S ⊆ V yes no yes

(c) min(S) ≤ v no yes yes

(d) range(S) ≤ v yes no no

(e) variance(S) ≤ v convertible convertible no

7.7 The price of each item in a store is non-negative. The store manager is only interested in
rules of certain forms, using the constraints given in (a)–(b). For each of the following
cases, identify the kinds of constraints they represent and briefly discuss how to mine
such association rules using constraint-based pattern mining.

(a) Containing at least one Blu-ray DVD movie.

(b) Containing items with a sum of the prices that is less than $150.

(c) Containing one free item and other items with a sum of the prices that is at least
$200.

(d) Where the average price of all the items is between $100 and $500.

7.8 Section 7.4.1 introduced a core Pattern-Fusion method for mining high-dimensional
data. Explain why a long pattern, if one exists in the data set, is likely to be discovered
by this method.

7.9 Section 7.5.1 defined a pattern distance measure between closed patterns P1 and P2 as

Pat Dist(P1,P2) = 1 − |T(P1) ∩ T(P2)|
|T(P1) ∪ T(P2)| ,

where T(P1) and T(P2) are the supporting transaction sets of P1 and P2, respectively. Is
this a valid distance metric? Show the derivation to support your answer.

7.10 Association rule mining often generates a large number of rules, many of which may
be similar, thus not containing much novel information. Design an efficient algorithm
that compresses a large set of patterns into a small compact set. Discuss whether your
mining method is robust under different pattern similarity definitions.
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7.11 Frequent pattern mining may generate many superfluous patterns. Therefore, it is
important to develop methods that mine compressed patterns. Suppose a user would
like to obtain only k patterns (where k is a small integer). Outline an efficient method
that generates the k most representative patterns, where more distinct patterns are pre-
ferred over very similar patterns. Illustrate the effectiveness of your method using a small
data set.

7.12 It is interesting to generate semantic annotations for mined patterns. Section 7.6.1
presented a pattern annotation method. Alternative methods are possible, such as by
utilizing type information. In the DBLP data set, for example, authors, conferences,
terms, and papers form multi-typed data. Develop a method for automated semantic
pattern annotation that makes good use of typed information.
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mining (presented in Chapter 6) have been extended. One line of extension is mining
multilevel and multidimensional association rules. Multilevel association mining was
studied in Srikant and Agrawal [SA95] and Han and Fu [HF95]. In Srikant and Agrawal
[SA95], such mining was studied in the context of generalized association rules, and an R-
interest measure was proposed for removing redundant rules. Mining multidimensional
association rules using static discretization of quantitative attributes and data cubes was
studied by Kamber, Han, and Chiang [KHC97].

Another line of extension is to mine patterns on numeric attributes. Srikant and
Agrawal [SA96] proposed a nongrid-based technique for mining quantitative associa-
tion rules, which uses a measure of partial completeness. Mining quantitative association
rules based on rule clustering was proposed by Lent, Swami, and Widom [LSW97].
Techniques for mining quantitative rules based on x-monotone and rectilinear regions
were presented by Fukuda, Morimoto, Morishita, and Tokuyama [FMMT96] and Yoda,
Fukuda, Morimoto, et al. [YFM+97]. Mining (distance-based) association rules over
interval data was proposed by Miller and Yang [MY97]. Aumann and Lindell [AL99]
studied the mining of quantitative association rules based on a statistical theory to
present only those rules that deviate substantially from normal data.

Mining rare patterns by pushing group-based constraints was proposed by Wang,
He, and Han [WHH00]. Mining negative association rules was discussed by Savasere,
Omiecinski, and Navathe [SON98] and by Tan, Steinbach, and Kumar [TSK05].

Constraint-based mining directs the mining process toward patterns that are likely
of interest to the user. The use of metarules as syntactic or semantic filters defining the
form of interesting single-dimensional association rules was proposed in Klemettinen,
Mannila, Ronkainen, et al. [KMR+94]. Metarule-guided mining, where the metarule
consequent specifies an action (e.g., Bayesian clustering or plotting) to be applied to
the data satisfying the metarule antecedent, was proposed in Shen, Ong, Mitbander,



324 Chapter 7 Advanced Pattern Mining

and Zaniolo [SOMZ96]. A relation-based approach to metarule-guided mining of
association rules was studied in Fu and Han [FH95].

Methods for constraint-based mining using pattern pruning constraints were stud-
ied by Ng, Lakshmanan, Han, and Pang [NLHP98]; Lakshmanan, Ng, Han, and Pang
[LNHP99]; and Pei, Han, and Lakshmanan [PHL01]. Constraint-based pattern min-
ing by data reduction using data pruning constraints was studied by Bonchi, Giannotti,
Mazzanti, and Pedreschi [BGMP03] and Zhu, Yan, Han, and Yu [ZYHY07]. An efficient
method for mining constrained correlated sets was given in Grahne, Lakshmanan, and
Wang [GLW00]. A dual mining approach was proposed by Bucila, Gehrke, Kifer, and
White [BGKW03]. Other ideas involving the use of templates or predicate constraints
in mining have been discussed in Anand and Kahn [AK93]; Dhar and Tuzhilin [DT93];
Hoschka and Klösgen [HK91]; Liu, Hsu, and Chen [LHC97]; Silberschatz and Tuzhilin
[ST96]; and Srikant, Vu, and Agrawal [SVA97].

Traditional pattern mining methods encounter challenges when mining high-
dimensional patterns, with applications like bioinformatics. Pan, Cong, Tung, et al.
[PCT+03] proposed CARPENTER, a method for finding closed patterns in high-
dimensional biological data sets, which integrates the advantages of vertical data formats
and pattern growth methods. Pan, Tung, Cong, and Xu [PTCX04] proposed COBBLER,
which finds frequent closed itemsets by integrating row enumeration with column enu-
meration. Liu, Han, Xin, and Shao [LHXS06] proposed TDClose to mine frequent
closed patterns in high-dimensional data by starting from the maximal rowset, inte-
grated with a row-enumeration tree. It uses the pruning power of the minimum support
threshold to reduce the search space. For mining rather long patterns, called colossal
patterns, Zhu, Yan, Han, et al. [ZYH+07] developed a core Pattern-Fusion method that
leaps over an exponential number of intermediate patterns to reach colossal patterns.

To generate a reduced set of patterns, recent studies have focused on mining com-
pressed sets of frequent patterns. Closed patterns can be viewed as a lossless compression
of frequent patterns, whereas maximal patterns can be viewed as a simple lossy com-
pression of frequent patterns. Top-k patterns, such as by Wang, Han, Lu, and Tsvetkov
[WHLT05], and error-tolerant patterns, such as by Yang, Fayyad, and Bradley [YFB01],
are alternative forms of interesting patterns. Afrati, Gionis, and Mannila [AGM04] pro-
posed to use k-itemsets to cover a collection of frequent itemsets. For frequent itemset
compression, Yan, Cheng, Han, and Xin [YCHX05] proposed a profile-based approach,
and Xin, Han, Yan, and Cheng [XHYC05] proposed a clustering-based approach. By
taking into consideration both pattern significance and pattern redundancy, Xin, Cheng,
Yan, and Han [XCYH06] proposed a method for extracting redundancy-aware top-k
patterns.

Automated semantic annotation of frequent patterns is useful for explaining the
meaning of patterns. Mei, Xin, Cheng, et al. [MXC+07] studied methods for semantic
annotation of frequent patterns.

An important extension to frequent itemset mining is mining sequence and struc-
tural data. This includes mining sequential patterns (Agrawal and Srikant [AS95];
Pei, Han, Mortazavi-Asl, et al. [PHM-A+01, PHM-A+04]; and Zaki [Zak01]); min-
ing frequent espisodes (Mannila, Toivonen, and Verkamo [MTV97]); mining structural



7.9 Bibliographic Notes 325

patterns (Inokuchi, Washio, and Motoda [IWM98]; Kuramochi and Karypis [KK01];
and Yan and Han [YH02]); mining cyclic association rules (Özden, Ramaswamy, and
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8Classification: Basic Concepts

Classification is a form of data analysis that extracts models describing important data classes.
Such models, called classifiers, predict categorical (discrete, unordered) class labels. For
example, we can build a classification model to categorize bank loan applications as either
safe or risky. Such analysis can help provide us with a better understanding of the data at
large. Many classification methods have been proposed by researchers in machine learn-
ing, pattern recognition, and statistics. Most algorithms are memory resident, typically
assuming a small data size. Recent data mining research has built on such work, develop-
ing scalable classification and prediction techniques capable of handling large amounts of
disk-resident data. Classification has numerous applications, including fraud detection,
target marketing, performance prediction, manufacturing, and medical diagnosis.

We start off by introducing the main ideas of classification in Section 8.1. In the
rest of this chapter, you will learn the basic techniques for data classification such as
how to build decision tree classifiers (Section 8.2), Bayesian classifiers (Section 8.3), and
rule-based classifiers (Section 8.4). Section 8.5 discusses how to evaluate and compare
different classifiers. Various measures of accuracy are given as well as techniques for
obtaining reliable accuracy estimates. Methods for increasing classifier accuracy are pre-
sented in Section 8.6, including cases for when the data set is class imbalanced (i.e.,
where the main class of interest is rare).

8.1 Basic Concepts

We introduce the concept of classification in Section 8.1.1. Section 8.1.2 describes the
general approach to classification as a two-step process. In the first step, we build a clas-
sification model based on previous data. In the second step, we determine if the model’s
accuracy is acceptable, and if so, we use the model to classify new data.

8.1.1 What Is Classification?

A bank loans officer needs analysis of her data to learn which loan applicants are “safe”
and which are “risky” for the bank. A marketing manager at AllElectronics needs data

c© 2012 Elsevier Inc. All rights reserved.
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analysis to help guess whether a customer with a given profile will buy a new computer.
A medical researcher wants to analyze breast cancer data to predict which one of three
specific treatments a patient should receive. In each of these examples, the data analysis
task is classification, where a model or classifier is constructed to predict class (categor-
ical) labels, such as “safe” or “risky” for the loan application data; “yes” or “no” for the
marketing data; or “treatment A,” “treatment B,” or “treatment C” for the medical data.
These categories can be represented by discrete values, where the ordering among values
has no meaning. For example, the values 1, 2, and 3 may be used to represent treatments
A, B, and C, where there is no ordering implied among this group of treatment regimes.

Suppose that the marketing manager wants to predict how much a given customer
will spend during a sale at AllElectronics. This data analysis task is an example of numeric
prediction, where the model constructed predicts a continuous-valued function, or
ordered value, as opposed to a class label. This model is a predictor. Regression analysis
is a statistical methodology that is most often used for numeric prediction; hence the
two terms tend to be used synonymously, although other methods for numeric predic-
tion exist. Classification and numeric prediction are the two major types of prediction
problems. This chapter focuses on classification.

8.1.2 General Approach to Classification

“How does classification work?” Data classification is a two-step process, consisting of a
learning step (where a classification model is constructed) and a classification step (where
the model is used to predict class labels for given data). The process is shown for the
loan application data of Figure 8.1. (The data are simplified for illustrative purposes.
In reality, we may expect many more attributes to be considered.

In the first step, a classifier is built describing a predetermined set of data classes or
concepts. This is the learning step (or training phase), where a classification algorithm
builds the classifier by analyzing or “learning from” a training set made up of database
tuples and their associated class labels. A tuple, X, is represented by an n-dimensional
attribute vector, X = (x1, x2, . . . , xn), depicting n measurements made on the tuple
from n database attributes, respectively, A1, A2, . . . , An.1 Each tuple, X, is assumed to
belong to a predefined class as determined by another database attribute called the class
label attribute. The class label attribute is discrete-valued and unordered. It is categor-
ical (or nominal) in that each value serves as a category or class. The individual tuples
making up the training set are referred to as training tuples and are randomly sam-
pled from the database under analysis. In the context of classification, data tuples can be
referred to as samples, examples, instances, data points, or objects.2

1Each attribute represents a “feature” of X. Hence, the pattern recognition literature uses the term fea-
ture vector rather than attribute vector. In our discussion, we use the term attribute vector, and in our
notation, any variable representing a vector is shown in bold italic font; measurements depicting the
vector are shown in italic font (e.g., X = (x1, x2, x3)).
2In the machine learning literature, training tuples are commonly referred to as training samples.
Throughout this text, we prefer to use the term tuples instead of samples.
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(a)

(b)

name loan_decisionage income

Training data

Classification algorithm

Classification rules

...

IF age � youth THEN loan_decision � risky
IF income � high THEN loan_decision � safe

IF age � middle_aged AND income � low
 THEN loan_decision � risky

Sandy Jones
Bill Lee
Caroline Fox
Rick Field
Susan Lake
Claire Phips
Joe Smith
...

youth
youth
middle_aged
middle_aged
senior
senior
middle_aged
...

low
low
high
low
low
medium
high
...

risky
risky
safe
risky
safe
safe
safe
...

Classification rules

(John Henry, middle_aged, low)
Loan decision?

risky

Test data New data

Juan Bello
Sylvia Crest
Anne Yee
...

senior
middle_aged
middle_aged
...

low
low
high
...

name age income loan_decision

safe
risky
safe
...

Figure 8.1 The data classification process: (a) Learning : Training data are analyzed by a classification
algorithm. Here, the class label attribute is loan decision, and the learned model or classifier is
represented in the form of classification rules. (b) Classification: Test data are used to estimate
the accuracy of the classification rules. If the accuracy is considered acceptable, the rules can
be applied to the classification of new data tuples.
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Because the class label of each training tuple is provided, this step is also known as
supervised learning (i.e., the learning of the classifier is “supervised” in that it is told
to which class each training tuple belongs). It contrasts with unsupervised learning (or
clustering), in which the class label of each training tuple is not known, and the number
or set of classes to be learned may not be known in advance. For example, if we did not
have the loan decision data available for the training set, we could use clustering to try to
determine “groups of like tuples,” which may correspond to risk groups within the loan
application data. Clustering is the topic of Chapters 10 and 11.

This first step of the classification process can also be viewed as the learning of a map-
ping or function, y = f (X), that can predict the associated class label y of a given tuple X.
In this view, we wish to learn a mapping or function that separates the data classes. Typ-
ically, this mapping is represented in the form of classification rules, decision trees, or
mathematical formulae. In our example, the mapping is represented as classification
rules that identify loan applications as being either safe or risky (Figure 8.1a). The rules
can be used to categorize future data tuples, as well as provide deeper insight into the
data contents. They also provide a compressed data representation.

“What about classification accuracy?” In the second step (Figure 8.1b), the model is
used for classification. First, the predictive accuracy of the classifier is estimated. If we
were to use the training set to measure the classifier’s accuracy, this estimate would likely
be optimistic, because the classifier tends to overfit the data (i.e., during learning it may
incorporate some particular anomalies of the training data that are not present in the
general data set overall). Therefore, a test set is used, made up of test tuples and their
associated class labels. They are independent of the training tuples, meaning that they
were not used to construct the classifier.

The accuracy of a classifier on a given test set is the percentage of test set tuples that
are correctly classified by the classifier. The associated class label of each test tuple is com-
pared with the learned classifier’s class prediction for that tuple. Section 8.5 describes
several methods for estimating classifier accuracy. If the accuracy of the classifier is con-
sidered acceptable, the classifier can be used to classify future data tuples for which the
class label is not known. (Such data are also referred to in the machine learning liter-
ature as “unknown” or “previously unseen” data.) For example, the classification rules
learned in Figure 8.1(a) from the analysis of data from previous loan applications can
be used to approve or reject new or future loan applicants.

8.2 Decision Tree Induction

Decision tree induction is the learning of decision trees from class-labeled training
tuples. A decision tree is a flowchart-like tree structure, where each internal node (non-
leaf node) denotes a test on an attribute, each branch represents an outcome of the
test, and each leaf node (or terminal node) holds a class label. The topmost node in
a tree is the root node. A typical decision tree is shown in Figure 8.2. It represents
the concept buys computer, that is, it predicts whether a customer at AllElectronics is
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age?

youth senior

student? yes

yes

credit_rating?

no excellent fair

middle_aged

yesno yesno

Figure 8.2 A decision tree for the concept buys computer, indicating whether an AllElectronics cus-
tomer is likely to purchase a computer. Each internal (nonleaf) node represents a test on
an attribute. Each leaf node represents a class (either buys computer = yes or buys computer
= no).

likely to purchase a computer. Internal nodes are denoted by rectangles, and leaf nodes
are denoted by ovals. Some decision tree algorithms produce only binary trees (where
each internal node branches to exactly two other nodes), whereas others can produce
nonbinary trees.

“How are decision trees used for classification?” Given a tuple, X, for which the asso-
ciated class label is unknown, the attribute values of the tuple are tested against the
decision tree. A path is traced from the root to a leaf node, which holds the class
prediction for that tuple. Decision trees can easily be converted to classification rules.

“Why are decision tree classifiers so popular?” The construction of decision tree clas-
sifiers does not require any domain knowledge or parameter setting, and therefore is
appropriate for exploratory knowledge discovery. Decision trees can handle multidi-
mensional data. Their representation of acquired knowledge in tree form is intuitive and
generally easy to assimilate by humans. The learning and classification steps of decision
tree induction are simple and fast. In general, decision tree classifiers have good accu-
racy. However, successful use may depend on the data at hand. Decision tree induction
algorithms have been used for classification in many application areas such as medicine,
manufacturing and production, financial analysis, astronomy, and molecular biology.
Decision trees are the basis of several commercial rule induction systems.

In Section 8.2.1, we describe a basic algorithm for learning decision trees. During
tree construction, attribute selection measures are used to select the attribute that best
partitions the tuples into distinct classes. Popular measures of attribute selection are
given in Section 8.2.2. When decision trees are built, many of the branches may reflect
noise or outliers in the training data. Tree pruning attempts to identify and remove such
branches, with the goal of improving classification accuracy on unseen data. Tree prun-
ing is described in Section 8.2.3. Scalability issues for the induction of decision trees
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from large databases are discussed in Section 8.2.4. Section 8.2.5 presents a visual mining
approach to decision tree induction.

8.2.1 Decision Tree Induction

During the late 1970s and early 1980s, J. Ross Quinlan, a researcher in machine learning,
developed a decision tree algorithm known as ID3 (Iterative Dichotomiser). This work
expanded on earlier work on concept learning systems, described by E. B. Hunt, J. Marin,
and P. T. Stone. Quinlan later presented C4.5 (a successor of ID3), which became a
benchmark to which newer supervised learning algorithms are often compared. In 1984,
a group of statisticians (L. Breiman, J. Friedman, R. Olshen, and C. Stone) published
the book Classification and Regression Trees (CART), which described the generation of
binary decision trees. ID3 and CART were invented independently of one another at
around the same time, yet follow a similar approach for learning decision trees from
training tuples. These two cornerstone algorithms spawned a flurry of work on decision
tree induction.

ID3, C4.5, and CART adopt a greedy (i.e., nonbacktracking) approach in which deci-
sion trees are constructed in a top-down recursive divide-and-conquer manner. Most
algorithms for decision tree induction also follow a top-down approach, which starts
with a training set of tuples and their associated class labels. The training set is recur-
sively partitioned into smaller subsets as the tree is being built. A basic decision tree
algorithm is summarized in Figure 8.3. At first glance, the algorithm may appear long,
but fear not! It is quite straightforward. The strategy is as follows.

The algorithm is called with three parameters: D, attribute list, and Attribute
selection method. We refer to D as a data partition. Initially, it is the complete set
of training tuples and their associated class labels. The parameter attribute list is a
list of attributes describing the tuples. Attribute selection method specifies a heuris-
tic procedure for selecting the attribute that “best” discriminates the given tuples
according to class. This procedure employs an attribute selection measure such as
information gain or the Gini index. Whether the tree is strictly binary is generally
driven by the attribute selection measure. Some attribute selection measures, such as
the Gini index, enforce the resulting tree to be binary. Others, like information gain,
do not, therein allowing multiway splits (i.e., two or more branches to be grown from
a node).

The tree starts as a single node, N , representing the training tuples in D (step 1).3

3The partition of class-labeled training tuples at node N is the set of tuples that follow a path from
the root of the tree to node N when being processed by the tree. This set is sometimes referred to in
the literature as the family of tuples at node N . We have referred to this set as the “tuples represented
at node N ,” “the tuples that reach node N ,” or simply “the tuples at node N .” Rather than storing the
actual tuples at a node, most implementations store pointers to these tuples.
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Algorithm: Generate decision tree. Generate a decision tree from the training tuples of
data partition, D.

Input:

Data partition, D, which is a set of training tuples and their associated class labels;

attribute list, the set of candidate attributes;

Attribute selection method, a procedure to determine the splitting criterion that “best”
partitions the data tuples into individual classes. This criterion consists of a
splitting attribute and, possibly, either a split-point or splitting subset.

Output: A decision tree.

Method:

(1) create a node N ;
(2) if tuples in D are all of the same class, C, then
(3) return N as a leaf node labeled with the class C;
(4) if attribute list is empty then
(5) return N as a leaf node labeled with the majority class in D; // majority voting
(6) apply Attribute selection method(D, attribute list) to find the “best” splitting criterion;
(7) label node N with splitting criterion;
(8) if splitting attribute is discrete-valued and

multiway splits allowed then // not restricted to binary trees
(9) attribute list ← attribute list − splitting attribute; // remove splitting attribute
(10) for each outcome j of splitting criterion

// partition the tuples and grow subtrees for each partition
(11) let Dj be the set of data tuples in D satisfying outcome j; // a partition
(12) if Dj is empty then
(13) attach a leaf labeled with the majority class in D to node N ;
(14) else attach the node returned by Generate decision tree(Dj , attribute list) to node N ;

endfor
(15) return N ;

Figure 8.3 Basic algorithm for inducing a decision tree from training tuples.

If the tuples in D are all of the same class, then node N becomes a leaf and is labeled
with that class (steps 2 and 3). Note that steps 4 and 5 are terminating conditions. All
terminating conditions are explained at the end of the algorithm.

Otherwise, the algorithm calls Attribute selection method to determine the splitting
criterion. The splitting criterion tells us which attribute to test at node N by deter-
mining the “best” way to separate or partition the tuples in D into individual classes
(step 6). The splitting criterion also tells us which branches to grow from node N
with respect to the outcomes of the chosen test. More specifically, the splitting cri-
terion indicates the splitting attribute and may also indicate either a split-point or
a splitting subset. The splitting criterion is determined so that, ideally, the resulting
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partitions at each branch are as “pure” as possible. A partition is pure if all the tuples
in it belong to the same class. In other words, if we split up the tuples in D according
to the mutually exclusive outcomes of the splitting criterion, we hope for the resulting
partitions to be as pure as possible.

The node N is labeled with the splitting criterion, which serves as a test at the node
(step 7). A branch is grown from node N for each of the outcomes of the splitting
criterion. The tuples in D are partitioned accordingly (steps 10 to 11). There are three
possible scenarios, as illustrated in Figure 8.4. Let A be the splitting attribute. A has v
distinct values, {a1, a2, . . . , av}, based on the training data.

1. A is discrete-valued: In this case, the outcomes of the test at node N correspond
directly to the known values of A. A branch is created for each known value,
aj , of A and labeled with that value (Figure 8.4a). Partition Dj is the subset
of class-labeled tuples in D having value aj of A. Because all the tuples in a

Partitioning scenarios Examples

color? income?

income?

re
d

gr
ee

n

orange

purple

highlo
wblue

m
edium

A?

A?

yes no yes

(a)

(b)

(c)

no

A � SA? color � {red, green}?

a1 av
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Figure 8.4 This figure shows three possibilities for partitioning tuples based on the splitting criterion,
each with examples. Let A be the splitting attribute. (a) If A is discrete-valued, then one
branch is grown for each known value of A. (b) If A is continuous-valued, then two branches
are grown, corresponding to A ≤ split point and A > split point. (c) If A is discrete-valued
and a binary tree must be produced, then the test is of the form A ∈ SA, where SA is the
splitting subset for A.
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given partition have the same value for A, A need not be considered in any future
partitioning of the tuples. Therefore, it is removed from attribute list (steps 8
and 9).

2. A is continuous-valued: In this case, the test at node N has two possible outcomes,
corresponding to the conditions A ≤ split point and A > split point, respectively,
where split point is the split-point returned by Attribute selection method as part
of the splitting criterion. (In practice, the split-point, a, is often taken as the
midpoint of two known adjacent values of A and therefore may not actually be
a preexisting value of A from the training data.) Two branches are grown from
N and labeled according to the previous outcomes (Figure 8.4b). The tuples are
partitioned such that D1 holds the subset of class-labeled tuples in D for which
A ≤ split point, while D2 holds the rest.

3. A is discrete-valued and a binary tree must be produced (as dictated by the attribute
selection measure or algorithm being used): The test at node N is of the form “A ∈
SA?,” where SA is the splitting subset for A, returned by Attribute selection method
as part of the splitting criterion. It is a subset of the known values of A. If a given
tuple has value aj of A and if aj ∈ SA, then the test at node N is satisfied. Two
branches are grown from N (Figure 8.4c). By convention, the left branch out of N
is labeled yes so that D1 corresponds to the subset of class-labeled tuples in D that
satisfy the test. The right branch out of N is labeled no so that D2 corresponds to
the subset of class-labeled tuples from D that do not satisfy the test.

The algorithm uses the same process recursively to form a decision tree for the tuples
at each resulting partition, Dj , of D (step 14).

The recursive partitioning stops only when any one of the following terminating
conditions is true:

1. All the tuples in partition D (represented at node N) belong to the same class
(steps 2 and 3).

2. There are no remaining attributes on which the tuples may be further partitioned
(step 4). In this case, majority voting is employed (step 5). This involves con-
verting node N into a leaf and labeling it with the most common class in D.
Alternatively, the class distribution of the node tuples may be stored.

3. There are no tuples for a given branch, that is, a partition Dj is empty (step 12).
In this case, a leaf is created with the majority class in D (step 13).

The resulting decision tree is returned (step 15).

The computational complexity of the algorithm given training set D is O(n × |D| ×
log(|D|)), where n is the number of attributes describing the tuples in D and |D| is the
number of training tuples in D. This means that the computational cost of growing a
tree grows at most n × |D| × log(|D|) with |D| tuples. The proof is left as an exercise for
the reader.
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Incremental versions of decision tree induction have also been proposed. When
given new training data, these restructure the decision tree acquired from learning on
previous training data, rather than relearning a new tree from scratch.

Differences in decision tree algorithms include how the attributes are selected in
creating the tree (Section 8.2.2) and the mechanisms used for pruning (Section 8.2.3).
The basic algorithm described earlier requires one pass over the training tuples in D for
each level of the tree. This can lead to long training times and lack of available memory
when dealing with large databases. Improvements regarding the scalability of decision
tree induction are discussed in Section 8.2.4. Section 8.2.5 presents a visual interactive
approach to decision tree construction. A discussion of strategies for extracting rules
from decision trees is given in Section 8.4.2 regarding rule-based classification.

8.2.2 Attribute Selection Measures

An attribute selection measure is a heuristic for selecting the splitting criterion that
“best” separates a given data partition, D, of class-labeled training tuples into individual
classes. If we were to split D into smaller partitions according to the outcomes of the
splitting criterion, ideally each partition would be pure (i.e., all the tuples that fall into a
given partition would belong to the same class). Conceptually, the “best” splitting crite-
rion is the one that most closely results in such a scenario. Attribute selection measures
are also known as splitting rules because they determine how the tuples at a given node
are to be split.

The attribute selection measure provides a ranking for each attribute describing the
given training tuples. The attribute having the best score for the measure4 is chosen as
the splitting attribute for the given tuples. If the splitting attribute is continuous-valued
or if we are restricted to binary trees, then, respectively, either a split point or a splitting
subset must also be determined as part of the splitting criterion. The tree node created
for partition D is labeled with the splitting criterion, branches are grown for each out-
come of the criterion, and the tuples are partitioned accordingly. This section describes
three popular attribute selection measures—information gain, gain ratio, and Gini index.

The notation used herein is as follows. Let D, the data partition, be a training set of
class-labeled tuples. Suppose the class label attribute has m distinct values defining m
distinct classes, Ci (for i = 1, . . . , m). Let Ci,D be the set of tuples of class Ci in D. Let |D|
and |Ci,D| denote the number of tuples in D and Ci,D, respectively.

Information Gain
ID3 uses information gain as its attribute selection measure. This measure is based on
pioneering work by Claude Shannon on information theory, which studied the value or
“information content” of messages. Let node N represent or hold the tuples of partition
D. The attribute with the highest information gain is chosen as the splitting attribute for
node N . This attribute minimizes the information needed to classify the tuples in the

4Depending on the measure, either the highest or lowest score is chosen as the best (i.e., some measures
strive to maximize while others strive to minimize).
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resulting partitions and reflects the least randomness or “impurity” in these parti-
tions. Such an approach minimizes the expected number of tests needed to classify
a given tuple and guarantees that a simple (but not necessarily the simplest) tree is
found.

The expected information needed to classify a tuple in D is given by

Info(D) = −
m∑

i=1

pi log2(pi), (8.1)

where pi is the nonzero probability that an arbitrary tuple in D belongs to class Ci and
is estimated by |Ci,D|/|D|. A log function to the base 2 is used, because the information
is encoded in bits. Info(D) is just the average amount of information needed to identify
the class label of a tuple in D. Note that, at this point, the information we have is based
solely on the proportions of tuples of each class. Info(D) is also known as the entropy
of D.

Now, suppose we were to partition the tuples in D on some attribute A having v dis-
tinct values, {a1, a2, . . . , av}, as observed from the training data. If A is discrete-valued,
these values correspond directly to the v outcomes of a test on A. Attribute A can be used
to split D into v partitions or subsets, {D1, D2, . . . , Dv}, where Dj contains those tuples in
D that have outcome aj of A. These partitions would correspond to the branches grown
from node N . Ideally, we would like this partitioning to produce an exact classification
of the tuples. That is, we would like for each partition to be pure. However, it is quite
likely that the partitions will be impure (e.g., where a partition may contain a collection
of tuples from different classes rather than from a single class).

How much more information would we still need (after the partitioning) to arrive at
an exact classification? This amount is measured by

InfoA(D) =
v∑

j=1

|Dj|
|D| × Info(Dj). (8.2)

The term
|Dj |
|D| acts as the weight of the jth partition. InfoA(D) is the expected informa-

tion required to classify a tuple from D based on the partitioning by A. The smaller the
expected information (still) required, the greater the purity of the partitions.

Information gain is defined as the difference between the original information
requirement (i.e., based on just the proportion of classes) and the new requirement (i.e.,
obtained after partitioning on A). That is,

Gain(A) = Info(D) − InfoA(D). (8.3)

In other words, Gain(A) tells us how much would be gained by branching on A. It is
the expected reduction in the information requirement caused by knowing the value of
A. The attribute A with the highest information gain, Gain(A), is chosen as the splitting
attribute at node N . This is equivalent to saying that we want to partition on the attribute
A that would do the “best classification,” so that the amount of information still required
to finish classifying the tuples is minimal (i.e., minimum InfoA(D)).
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Table 8.1 Class-Labeled Training Tuples from the AllElectronics Customer Database

RID age income student credit rating Class: buys computer
1 youth high no fair no

2 youth high no excellent no

3 middle aged high no fair yes

4 senior medium no fair yes

5 senior low yes fair yes

6 senior low yes excellent no

7 middle aged low yes excellent yes

8 youth medium no fair no

9 youth low yes fair yes

10 senior medium yes fair yes

11 youth medium yes excellent yes

12 middle aged medium no excellent yes

13 middle aged high yes fair yes

14 senior medium no excellent no

Example 8.1 Induction of a decision tree using information gain. Table 8.1 presents a training set,
D, of class-labeled tuples randomly selected from the AllElectronics customer database.
(The data are adapted from Quinlan [Qui86]. In this example, each attribute is discrete-
valued. Continuous-valued attributes have been generalized.) The class label attribute,
buys computer, has two distinct values (namely, {yes, no}); therefore, there are two dis-
tinct classes (i.e., m = 2). Let class C1 correspond to yes and class C2 correspond to no.
There are nine tuples of class yes and five tuples of class no. A (root) node N is created
for the tuples in D. To find the splitting criterion for these tuples, we must compute
the information gain of each attribute. We first use Eq. (8.1) to compute the expected
information needed to classify a tuple in D:

Info(D) = − 9

14
log2

(
9

14

)
− 5

14
log2

(
5

14

)
= 0.940 bits.

Next, we need to compute the expected information requirement for each attribute.
Let’s start with the attribute age. We need to look at the distribution of yes and no tuples
for each category of age. For the age category “youth,” there are two yes tuples and three
no tuples. For the category “middle aged,” there are four yes tuples and zero no tuples.
For the category “senior,” there are three yes tuples and two no tuples. Using Eq. (8.2),
the expected information needed to classify a tuple in D if the tuples are partitioned
according to age is

Infoage(D) = 5

14
×

(
−2

5
log2

2

5
− 3

5
log2

3

5

)
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+ 4

14
×

(
−4

4
log2

4

4

)

+ 5

14
×

(
−3

5
log2

3

5
− 2

5
log2

2

5

)

= 0.694 bits.

Hence, the gain in information from such a partitioning would be

Gain(age) = Info(D) − Infoage(D) = 0.940 − 0.694 = 0.246 bits.

Similarly, we can compute Gain(income) = 0.029 bits, Gain(student) = 0.151 bits,
and Gain(credit rating) = 0.048 bits. Because age has the highest information gain
among the attributes, it is selected as the splitting attribute. Node N is labeled with age,
and branches are grown for each of the attribute’s values. The tuples are then partitioned
accordingly, as shown in Figure 8.5. Notice that the tuples falling into the partition for
age = middle aged all belong to the same class. Because they all belong to class “yes,”
a leaf should therefore be created at the end of this branch and labeled “yes.” The final
decision tree returned by the algorithm was shown earlier in Figure 8.2.

Figure 8.5 The attribute age has the highest information gain and therefore becomes the splitting
attribute at the root node of the decision tree. Branches are grown for each outcome of age.
The tuples are shown partitioned accordingly.
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“But how can we compute the information gain of an attribute that is continuous-
valued, unlike in the example?” Suppose, instead, that we have an attribute A that is
continuous-valued, rather than discrete-valued. (For example, suppose that instead
of the discretized version of age from the example, we have the raw values for this
attribute.) For such a scenario, we must determine the “best” split-point for A, where
the split-point is a threshold on A.

We first sort the values of A in increasing order. Typically, the midpoint between each
pair of adjacent values is considered as a possible split-point. Therefore, given v values
of A, then v − 1 possible splits are evaluated. For example, the midpoint between the
values ai and ai+1 of A is

ai + ai+1

2
. (8.4)

If the values of A are sorted in advance, then determining the best split for A requires
only one pass through the values. For each possible split-point for A, we evaluate
InfoA(D), where the number of partitions is two, that is, v = 2 (or j = 1,2) in Eq. (8.2).
The point with the minimum expected information requirement for A is selected as the
split point for A. D1 is the set of tuples in D satisfying A ≤ split point, and D2 is the set
of tuples in D satisfying A > split point.

Gain Ratio
The information gain measure is biased toward tests with many outcomes. That is, it
prefers to select attributes having a large number of values. For example, consider an
attribute that acts as a unique identifier such as product ID. A split on product ID would
result in a large number of partitions (as many as there are values), each one containing
just one tuple. Because each partition is pure, the information required to classify data
set D based on this partitioning would be Infoproduct ID(D) = 0. Therefore, the informa-
tion gained by partitioning on this attribute is maximal. Clearly, such a partitioning is
useless for classification.

C4.5, a successor of ID3, uses an extension to information gain known as gain ratio,
which attempts to overcome this bias. It applies a kind of normalization to information
gain using a “split information” value defined analogously with Info(D) as

SplitInfoA(D) = −
v∑

j=1

|Dj|
|D| × log2

( |Dj|
|D|

)
. (8.5)

This value represents the potential information generated by splitting the training
data set, D, into v partitions, corresponding to the v outcomes of a test on attribute A.
Note that, for each outcome, it considers the number of tuples having that outcome
with respect to the total number of tuples in D. It differs from information gain, which
measures the information with respect to classification that is acquired based on the
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same partitioning. The gain ratio is defined as

GainRatio(A) = Gain(A)

SplitInfoA(D)
. (8.6)

The attribute with the maximum gain ratio is selected as the splitting attribute. Note,
however, that as the split information approaches 0, the ratio becomes unstable. A con-
straint is added to avoid this, whereby the information gain of the test selected must be
large—at least as great as the average gain over all tests examined.

Example 8.2 Computation of gain ratio for the attribute income. A test on income splits the data of
Table 8.1 into three partitions, namely low, medium, and high, containing four, six, and
four tuples, respectively. To compute the gain ratio of income, we first use Eq. (8.5) to
obtain

SplitInfoincome(D) = − 4

14
× log2

(
4

14

)
− 6

14
× log2

(
6

14

)
− 4

14
× log2

(
4

14

)

= 1.557.

From Example 8.1, we have Gain(income) = 0.029. Therefore, GainRatio(income) =
0.029/1.557 = 0.019.

Gini Index

The Gini index is used in CART. Using the notation previously described, the Gini index
measures the impurity of D, a data partition or set of training tuples, as

Gini(D) = 1 −
m∑

i=1

p2
i , (8.7)

where pi is the probability that a tuple in D belongs to class Ci and is estimated by
|Ci,D|/|D|. The sum is computed over m classes.

The Gini index considers a binary split for each attribute. Let’s first consider the case
where A is a discrete-valued attribute having v distinct values, {a1, a2, . . . , av}, occur-
ring in D. To determine the best binary split on A, we examine all the possible subsets
that can be formed using known values of A. Each subset, SA, can be considered as a
binary test for attribute A of the form “A ∈ SA?” Given a tuple, this test is satisfied if
the value of A for the tuple is among the values listed in SA. If A has v possible val-
ues, then there are 2v possible subsets. For example, if income has three possible values,
namely {low, medium, high}, then the possible subsets are {low, medium, high}, {low,
medium}, {low, high}, {medium, high}, {low}, {medium}, {high}, and {}. We exclude the
power set, {low, medium, high}, and the empty set from consideration since, conceptu-
ally, they do not represent a split. Therefore, there are (2v − 2)/2 possible ways to form
two partitions of the data, D, based on a binary split on A.



342 Chapter 8 Classification: Basic Concepts

When considering a binary split, we compute a weighted sum of the impurity of each
resulting partition. For example, if a binary split on A partitions D into D1 and D2, the
Gini index of D given that partitioning is

GiniA(D) = |D1|
|D| Gini(D1) + |D2|

|D| Gini(D2). (8.8)

For each attribute, each of the possible binary splits is considered. For a discrete-valued
attribute, the subset that gives the minimum Gini index for that attribute is selected as
its splitting subset.

For continuous-valued attributes, each possible split-point must be considered. The
strategy is similar to that described earlier for information gain, where the midpoint
between each pair of (sorted) adjacent values is taken as a possible split-point. The point
giving the minimum Gini index for a given (continuous-valued) attribute is taken as
the split-point of that attribute. Recall that for a possible split-point of A, D1 is the
set of tuples in D satisfying A ≤ split point, and D2 is the set of tuples in D satisfying
A > split point.

The reduction in impurity that would be incurred by a binary split on a discrete- or
continuous-valued attribute A is

�Gini(A) = Gini(D) − GiniA(D). (8.9)

The attribute that maximizes the reduction in impurity (or, equivalently, has the
minimum Gini index) is selected as the splitting attribute. This attribute and either
its splitting subset (for a discrete-valued splitting attribute) or split-point (for a
continuous-valued splitting attribute) together form the splitting criterion.

Example 8.3 Induction of a decision tree using the Gini index. Let D be the training data shown
earlier in Table 8.1, where there are nine tuples belonging to the class buys computer =
yes and the remaining five tuples belong to the class buys computer = no. A (root) node
N is created for the tuples in D. We first use Eq. (8.7) for the Gini index to compute the
impurity of D:

Gini(D) = 1 −
(

9

14

)2

−
(

5

14

)2

= 0.459.

To find the splitting criterion for the tuples in D, we need to compute the Gini index
for each attribute. Let’s start with the attribute income and consider each of the possible
splitting subsets. Consider the subset {low, medium}. This would result in 10 tuples in
partition D1 satisfying the condition “income ∈ {low, medium}.” The remaining four
tuples of D would be assigned to partition D2. The Gini index value computed based on
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this partitioning is

Giniincome ∈ {low,medium}(D)

= 10

14
Gini(D1) + 4

14
Gini(D2)

= 10

14

(
1 −

(
7

10

)2

−
(

3

10

)2
)

+ 4

14

(
1 −

(
2

4

)2

−
(

2

4

)2
)

= 0.443

= Giniincome ∈ {high}(D).

Similarly, the Gini index values for splits on the remaining subsets are 0.458 (for the sub-
sets {low, high} and {medium}) and 0.450 (for the subsets {medium, high} and {low}).
Therefore, the best binary split for attribute income is on {low, medium} (or {high})
because it minimizes the Gini index. Evaluating age, we obtain {youth, senior} (or
{middle aged}) as the best split for age with a Gini index of 0.375; the attributes student
and credit rating are both binary, with Gini index values of 0.367 and 0.429, respectively.

The attribute age and splitting subset {youth, senior} therefore give the minimum
Gini index overall, with a reduction in impurity of 0.459 − 0.357 = 0.102. The binary
split “age ∈ {youth, senior?}” results in the maximum reduction in impurity of the tuples
in D and is returned as the splitting criterion. Node N is labeled with the criterion, two
branches are grown from it, and the tuples are partitioned accordingly.

Other Attribute Selection Measures
This section on attribute selection measures was not intended to be exhaustive. We
have shown three measures that are commonly used for building decision trees. These
measures are not without their biases. Information gain, as we saw, is biased toward
multivalued attributes. Although the gain ratio adjusts for this bias, it tends to prefer
unbalanced splits in which one partition is much smaller than the others. The Gini index
is biased toward multivalued attributes and has difficulty when the number of classes is
large. It also tends to favor tests that result in equal-size partitions and purity in both
partitions. Although biased, these measures give reasonably good results in practice.

Many other attribute selection measures have been proposed. CHAID, a decision tree
algorithm that is popular in marketing, uses an attribute selection measure that is based
on the statistical χ2 test for independence. Other measures include C-SEP (which per-
forms better than information gain and the Gini index in certain cases) and G-statistic
(an information theoretic measure that is a close approximation to χ2 distribution).

Attribute selection measures based on the Minimum Description Length (MDL)
principle have the least bias toward multivalued attributes. MDL-based measures use
encoding techniques to define the “best” decision tree as the one that requires the fewest
number of bits to both (1) encode the tree and (2) encode the exceptions to the tree
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(i.e., cases that are not correctly classified by the tree). Its main idea is that the simplest
of solutions is preferred.

Other attribute selection measures consider multivariate splits (i.e., where the par-
titioning of tuples is based on a combination of attributes, rather than on a single
attribute). The CART system, for example, can find multivariate splits based on a lin-
ear combination of attributes. Multivariate splits are a form of attribute (or feature)
construction, where new attributes are created based on the existing ones. (Attribute
construction was also discussed in Chapter 3, as a form of data transformation.) These
other measures mentioned here are beyond the scope of this book. Additional references
are given in the bibliographic notes at the end of this chapter (Section 8.9).

“Which attribute selection measure is the best?” All measures have some bias. It has
been shown that the time complexity of decision tree induction generally increases
exponentially with tree height. Hence, measures that tend to produce shallower trees
(e.g., with multiway rather than binary splits, and that favor more balanced splits) may
be preferred. However, some studies have found that shallow trees tend to have a large
number of leaves and higher error rates. Despite several comparative studies, no one
attribute selection measure has been found to be significantly superior to others. Most
measures give quite good results.

8.2.3 Tree Pruning

When a decision tree is built, many of the branches will reflect anomalies in the training
data due to noise or outliers. Tree pruning methods address this problem of overfitting
the data. Such methods typically use statistical measures to remove the least-reliable
branches. An unpruned tree and a pruned version of it are shown in Figure 8.6. Pruned
trees tend to be smaller and less complex and, thus, easier to comprehend. They are
usually faster and better at correctly classifying independent test data (i.e., of previously
unseen tuples) than unpruned trees.

“How does tree pruning work?” There are two common approaches to tree pruning:
prepruning and postpruning.

In the prepruning approach, a tree is “pruned” by halting its construction early (e.g.,
by deciding not to further split or partition the subset of training tuples at a given node).
Upon halting, the node becomes a leaf. The leaf may hold the most frequent class among
the subset tuples or the probability distribution of those tuples.

When constructing a tree, measures such as statistical significance, information gain,
Gini index, and so on, can be used to assess the goodness of a split. If partitioning the
tuples at a node would result in a split that falls below a prespecified threshold, then fur-
ther partitioning of the given subset is halted. There are difficulties, however, in choosing
an appropriate threshold. High thresholds could result in oversimplified trees, whereas
low thresholds could result in very little simplification.

The second and more common approach is postpruning, which removes subtrees
from a “fully grown” tree. A subtree at a given node is pruned by removing its branches
and replacing it with a leaf. The leaf is labeled with the most frequent class among the
subtree being replaced. For example, notice the subtree at node “A3?” in the unpruned
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Figure 8.6 An unpruned decision tree and a pruned version of it.

tree of Figure 8.6. Suppose that the most common class within this subtree is “class B.”
In the pruned version of the tree, the subtree in question is pruned by replacing it with
the leaf “class B.”

The cost complexity pruning algorithm used in CART is an example of the postprun-
ing approach. This approach considers the cost complexity of a tree to be a function of
the number of leaves in the tree and the error rate of the tree (where the error rate is the
percentage of tuples misclassified by the tree). It starts from the bottom of the tree. For
each internal node, N , it computes the cost complexity of the subtree at N , and the cost
complexity of the subtree at N if it were to be pruned (i.e., replaced by a leaf node). The
two values are compared. If pruning the subtree at node N would result in a smaller cost
complexity, then the subtree is pruned. Otherwise, it is kept.

A pruning set of class-labeled tuples is used to estimate cost complexity. This set is
independent of the training set used to build the unpruned tree and of any test set used
for accuracy estimation. The algorithm generates a set of progressively pruned trees. In
general, the smallest decision tree that minimizes the cost complexity is preferred.

C4.5 uses a method called pessimistic pruning, which is similar to the cost complex-
ity method in that it also uses error rate estimates to make decisions regarding subtree
pruning. Pessimistic pruning, however, does not require the use of a prune set. Instead,
it uses the training set to estimate error rates. Recall that an estimate of accuracy or
error based on the training set is overly optimistic and, therefore, strongly biased. The
pessimistic pruning method therefore adjusts the error rates obtained from the training
set by adding a penalty, so as to counter the bias incurred.

Rather than pruning trees based on estimated error rates, we can prune trees based
on the number of bits required to encode them. The “best” pruned tree is the one that
minimizes the number of encoding bits. This method adopts the MDL principle, which
was briefly introduced in Section 8.2.2. The basic idea is that the simplest solution is pre-
ferred. Unlike cost complexity pruning, it does not require an independent set of tuples.
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Alternatively, prepruning and postpruning may be interleaved for a combined
approach. Postpruning requires more computation than prepruning, yet generally leads
to a more reliable tree. No single pruning method has been found to be superior over
all others. Although some pruning methods do depend on the availability of additional
data for pruning, this is usually not a concern when dealing with large databases.

Although pruned trees tend to be more compact than their unpruned counterparts,
they may still be rather large and complex. Decision trees can suffer from repetition
and replication (Figure 8.7), making them overwhelming to interpret. Repetition occurs
when an attribute is repeatedly tested along a given branch of the tree (e.g., “age < 60?,”

student?

yes no

yes no

excellent fair

low med high

credit_rating?

income?

class B

class B

class A

class A

class C

excellent fair

low med high
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yes no
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…

…

class Bclass A

(b)

(a)

Figure 8.7 An example of: (a) subtree repetition, where an attribute is repeatedly tested along a given
branch of the tree (e.g., age) and (b) subtree replication, where duplicate subtrees exist
within a tree (e.g., the subtree headed by the node “credit rating?”).
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followed by “age < 45?,” and so on). In replication, duplicate subtrees exist within the
tree. These situations can impede the accuracy and comprehensibility of a decision tree.
The use of multivariate splits (splits based on a combination of attributes) can prevent
these problems. Another approach is to use a different form of knowledge representa-
tion, such as rules, instead of decision trees. This is described in Section 8.4.2, which
shows how a rule-based classifier can be constructed by extracting IF-THEN rules from
a decision tree.

8.2.4 Scalability and Decision Tree Induction

“What if D, the disk-resident training set of class-labeled tuples, does not fit in memory? In
other words, how scalable is decision tree induction?” The efficiency of existing decision
tree algorithms, such as ID3, C4.5, and CART, has been well established for relatively
small data sets. Efficiency becomes an issue of concern when these algorithms are applied
to the mining of very large real-world databases. The pioneering decision tree algorithms
that we have discussed so far have the restriction that the training tuples should reside
in memory.

In data mining applications, very large training sets of millions of tuples are com-
mon. Most often, the training data will not fit in memory! Therefore, decision tree
construction becomes inefficient due to swapping of the training tuples in and out
of main and cache memories. More scalable approaches, capable of handling train-
ing data that are too large to fit in memory, are required. Earlier strategies to “save
space” included discretizing continuous-valued attributes and sampling data at each
node. These techniques, however, still assume that the training set can fit in memory.

Several scalable decision tree induction methods have been introduced in recent stud-
ies. RainForest, for example, adapts to the amount of main memory available and applies
to any decision tree induction algorithm. The method maintains an AVC-set (where
“AVC” stands for “Attribute-Value, Classlabel”) for each attribute, at each tree node,
describing the training tuples at the node. The AVC-set of an attribute A at node N
gives the class label counts for each value of A for the tuples at N . Figure 8.8 shows AVC-
sets for the tuple data of Table 8.1. The set of all AVC-sets at a node N is the AVC-group
of N . The size of an AVC-set for attribute A at node N depends only on the number of
distinct values of A and the number of classes in the set of tuples at N . Typically, this size
should fit in memory, even for real-world data. RainForest also has techniques, how-
ever, for handling the case where the AVC-group does not fit in memory. Therefore, the
method has high scalability for decision tree induction in very large data sets.

BOAT (Bootstrapped Optimistic Algorithm for Tree construction) is a decision tree
algorithm that takes a completely different approach to scalability—it is not based on
the use of any special data structures. Instead, it uses a statistical technique known as
“bootstrapping” (Section 8.5.4) to create several smaller samples (or subsets) of the
given training data, each of which fits in memory. Each subset is used to construct a
tree, resulting in several trees. The trees are examined and used to construct a new tree,
T ′, that turns out to be “very close” to the tree that would have been generated if all the
original training data had fit in memory.
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Figure 8.8 The use of data structures to hold aggregate information regarding the training data (e.g.,
these AVC-sets describing Table 8.1’s data) are one approach to improving the scalability of
decision tree induction.

BOAT can use any attribute selection measure that selects binary splits and that is
based on the notion of purity of partitions such as the Gini index. BOAT uses a lower
bound on the attribute selection measure to detect if this “very good” tree, T ′, is different
from the “real” tree, T , that would have been generated using all of the data. It refines
T ′ to arrive at T .

BOAT usually requires only two scans of D. This is quite an improvement, even
in comparison to traditional decision tree algorithms (e.g., the basic algorithm in
Figure 8.3), which require one scan per tree level! BOAT was found to be two to three
times faster than RainForest, while constructing exactly the same tree. An additional
advantage of BOAT is that it can be used for incremental updates. That is, BOAT can
take new insertions and deletions for the training data and update the decision tree to
reflect these changes, without having to reconstruct the tree from scratch.

8.2.5 Visual Mining for Decision Tree Induction

“Are there any interactive approaches to decision tree induction that allow us to visual-
ize the data and the tree as it is being constructed? Can we use any knowledge of our
data to help in building the tree?” In this section, you will learn about an approach to
decision tree induction that supports these options. Perception-based classification
(PBC) is an interactive approach based on multidimensional visualization techniques
and allows the user to incorporate background knowledge about the data when building
a decision tree. By visually interacting with the data, the user is also likely to develop a
deeper understanding of the data. The resulting trees tend to be smaller than those built
using traditional decision tree induction methods and so are easier to interpret, while
achieving about the same accuracy.

“How can the data be visualized to support interactive decision tree construction?”
PBC uses a pixel-oriented approach to view multidimensional data with its class label
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information. The circle segments approach is adapted, which maps d-dimensional data
objects to a circle that is partitioned into d segments, each representing one attribute
(Section 2.3.1). Here, an attribute value of a data object is mapped to one colored pixel,
reflecting the object’s class label. This mapping is done for each attribute–value pair of
each data object. Sorting is done for each attribute to determine the arrangement order
within a segment. For example, attribute values within a given segment may be orga-
nized so as to display homogeneous (with respect to class label) regions within the same
attribute value. The amount of training data that can be visualized at one time is approx-
imately determined by the product of the number of attributes and the number of data
objects.

The PBC system displays a split screen, consisting of a Data Interaction window and
a Knowledge Interaction window (Figure 8.9). The Data Interaction window displays
the circle segments of the data under examination, while the Knowledge Interaction
window displays the decision tree constructed so far. Initially, the complete training set
is visualized in the Data Interaction window, while the Knowledge Interaction window
displays an empty decision tree.

Traditional decision tree algorithms allow only binary splits for numeric attributes.
PBC, however, allows the user to specify multiple split-points, resulting in multiple
branches to be grown from a single tree node.

Figure 8.9 A screenshot of PBC, a system for interactive decision tree construction. Multidimensional
training data are viewed as circle segments in the Data Interaction window (left). The Know-
ledge Interaction window (right) displays the current decision tree. Source: From Ankerst,
Elsen, Ester, and Kriegel [AEEK99].
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A tree is interactively constructed as follows. The user visualizes the multidimen-
sional data in the Data Interaction window and selects a splitting attribute and one or
more split-points. The current decision tree in the Knowledge Interaction window is
expanded. The user selects a node of the decision tree. The user may either assign a class
label to the node (which makes the node a leaf) or request the visualization of the train-
ing data corresponding to the node. This leads to a new visualization of every attribute
except the ones used for splitting criteria on the same path from the root. The interactive
process continues until a class has been assigned to each leaf of the decision tree.

The trees constructed with PBC were compared with trees generated by the CART,
C4.5, and SPRINT algorithms from various data sets. The trees created with PBC were
of comparable accuracy with the tree from the algorithmic approaches, yet were signifi-
cantly smaller and, thus, easier to understand. Users can use their domain knowledge in
building a decision tree, but also gain a deeper understanding of their data during the
construction process.

8.3 Bayes Classification Methods

“What are Bayesian classifiers?” Bayesian classifiers are statistical classifiers. They can
predict class membership probabilities such as the probability that a given tuple belongs
to a particular class.

Bayesian classification is based on Bayes’ theorem, described next. Studies compar-
ing classification algorithms have found a simple Bayesian classifier known as the naı̈ve
Bayesian classifier to be comparable in performance with decision tree and selected neu-
ral network classifiers. Bayesian classifiers have also exhibited high accuracy and speed
when applied to large databases.

Naı̈ve Bayesian classifiers assume that the effect of an attribute value on a given class
is independent of the values of the other attributes. This assumption is called class-
conditional independence. It is made to simplify the computations involved and, in this
sense, is considered “naı̈ve.”

Section 8.3.1 reviews basic probability notation and Bayes’ theorem. In Section 8.3.2
you will learn how to do naı̈ve Bayesian classification.

8.3.1 Bayes’ Theorem

Bayes’ theorem is named after Thomas Bayes, a nonconformist English clergyman who
did early work in probability and decision theory during the 18th century. Let X be a
data tuple. In Bayesian terms, X is considered “evidence.” As usual, it is described by
measurements made on a set of n attributes. Let H be some hypothesis such as that
the data tuple X belongs to a specified class C. For classification problems, we want to
determine P(H |X), the probability that the hypothesis H holds given the “evidence” or
observed data tuple X. In other words, we are looking for the probability that tuple X
belongs to class C, given that we know the attribute description of X.
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P(H |X) is the posterior probability, or a posteriori probability, of H conditioned
on X. For example, suppose our world of data tuples is confined to customers described
by the attributes age and income, respectively, and that X is a 35-year-old customer with
an income of $40,000. Suppose that H is the hypothesis that our customer will buy a
computer. Then P(H |X) reflects the probability that customer X will buy a computer
given that we know the customer’s age and income.

In contrast, P(H) is the prior probability, or a priori probability, of H . For our exam-
ple, this is the probability that any given customer will buy a computer, regardless of age,
income, or any other information, for that matter. The posterior probability, P(H |X),
is based on more information (e.g., customer information) than the prior probability,
P(H), which is independent of X.

Similarly, P(X|H) is the posterior probability of X conditioned on H . That is, it is the
probability that a customer, X, is 35 years old and earns $40,000, given that we know the
customer will buy a computer.

P(X) is the prior probability of X. Using our example, it is the probability that a
person from our set of customers is 35 years old and earns $40,000.

“How are these probabilities estimated?” P(H), P(X|H), and P(X) may be estimated
from the given data, as we shall see next. Bayes’ theorem is useful in that it provides
a way of calculating the posterior probability, P(H |X), from P(H), P(X|H), and P(X).
Bayes’ theorem is

P(H |X) = P(X|H)P(H)

P(X)
. (8.10)

Now that we have that out of the way, in the next section, we will look at how Bayes’
theorem is used in the naı̈ve Bayesian classifier.

8.3.2 Naı̈ve Bayesian Classification

The naı̈ve Bayesian classifier, or simple Bayesian classifier, works as follows:

1. Let D be a training set of tuples and their associated class labels. As usual, each tuple
is represented by an n-dimensional attribute vector, X = (x1, x2, . . . , xn), depicting n
measurements made on the tuple from n attributes, respectively, A1, A2, . . . , An.

2. Suppose that there are m classes, C1, C2, . . . , Cm. Given a tuple, X, the classifier will
predict that X belongs to the class having the highest posterior probability, condi-
tioned on X. That is, the naı̈ve Bayesian classifier predicts that tuple X belongs to the
class Ci if and only if

P(Ci|X) > P(Cj|X) for 1 ≤ j ≤ m, j �= i.

Thus, we maximize P(Ci|X). The class Ci for which P(Ci|X) is maximized is called
the maximum posteriori hypothesis. By Bayes’ theorem (Eq. 8.10),

P(Ci|X) = P(X|Ci)P(Ci)

P(X)
. (8.11)
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3. As P(X) is constant for all classes, only P(X|Ci)P(Ci) needs to be maximized. If the
class prior probabilities are not known, then it is commonly assumed that the classes
are equally likely, that is, P(C1) = P(C2) = ·· · = P(Cm), and we would therefore
maximize P(X|Ci). Otherwise, we maximize P(X|Ci)P(Ci). Note that the class prior
probabilities may be estimated by P(Ci) = |Ci,D|/|D|, where |Ci,D| is the number of
training tuples of class Ci in D.

4. Given data sets with many attributes, it would be extremely computationally
expensive to compute P(X|Ci). To reduce computation in evaluating P(X|Ci), the
naı̈ve assumption of class-conditional independence is made. This presumes that
the attributes’ values are conditionally independent of one another, given the class
label of the tuple (i.e., that there are no dependence relationships among the
attributes). Thus,

P(X|Ci) =
n∏

k=1

P(xk|Ci) (8.12)

= P(x1|Ci) × P(x2|Ci) × ·· · × P(xn|Ci).

We can easily estimate the probabilities P(x1|Ci), P(x2|Ci), . . . , P(xn|Ci) from the
training tuples. Recall that here xk refers to the value of attribute Ak for tuple X. For
each attribute, we look at whether the attribute is categorical or continuous-valued.
For instance, to compute P(X|Ci), we consider the following:

(a) If Ak is categorical, then P(xk|Ci) is the number of tuples of class Ci in D having
the value xk for Ak , divided by |Ci,D|, the number of tuples of class Ci in D.

(b) If Ak is continuous-valued, then we need to do a bit more work, but the cal-
culation is pretty straightforward. A continuous-valued attribute is typically
assumed to have a Gaussian distribution with a mean μ and standard deviation
σ , defined by

g(x, μ, σ) = 1√
2πσ

e
− (x−μ)2

2σ2 , (8.13)

so that

P(xk|Ci) = g(xk , μCi , σCi ). (8.14)

These equations may appear daunting, but hold on! We need to compute μCi

and σCi , which are the mean (i.e., average) and standard deviation, respectively,
of the values of attribute Ak for training tuples of class Ci . We then plug these two
quantities into Eq. (8.13), together with xk , to estimate P(xk|Ci).

For example, let X = (35,$40,000), where A1 and A2 are the attributes age and
income, respectively. Let the class label attribute be buys computer. The associated
class label for X is yes (i.e., buys computer = yes). Let’s suppose that age has not
been discretized and therefore exists as a continuous-valued attribute. Suppose
that from the training set, we find that customers in D who buy a computer are
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38 ± 12 years of age. In other words, for attribute age and this class, we have
μ = 38 years and σ = 12. We can plug these quantities, along with x1 = 35 for
our tuple X, into Eq. (8.13) to estimate P(age = 35|buys computer = yes). For a
quick review of mean and standard deviation calculations, please see Section 2.2.

5. To predict the class label of X, P(X|Ci)P(Ci) is evaluated for each class Ci . The
classifier predicts that the class label of tuple X is the class Ci if and only if

P(X|Ci)P(Ci) > P(X|Cj)P(Cj) for 1 ≤ j ≤ m, j �= i. (8.15)

In other words, the predicted class label is the class Ci for which P(X|Ci)P(Ci) is the
maximum.

“How effective are Bayesian classifiers?” Various empirical studies of this classifier in
comparison to decision tree and neural network classifiers have found it to be com-
parable in some domains. In theory, Bayesian classifiers have the minimum error rate
in comparison to all other classifiers. However, in practice this is not always the case,
owing to inaccuracies in the assumptions made for its use, such as class-conditional
independence, and the lack of available probability data.

Bayesian classifiers are also useful in that they provide a theoretical justification for
other classifiers that do not explicitly use Bayes’ theorem. For example, under certain
assumptions, it can be shown that many neural network and curve-fitting algorithms
output the maximum posteriori hypothesis, as does the naı̈ve Bayesian classifier.

Example 8.4 Predicting a class label using naı̈ve Bayesian classification. We wish to predict the
class label of a tuple using naı̈ve Bayesian classification, given the same training data
as in Example 8.3 for decision tree induction. The training data were shown earlier
in Table 8.1. The data tuples are described by the attributes age, income, student, and
credit rating. The class label attribute, buys computer, has two distinct values (namely,
{yes, no}). Let C1 correspond to the class buys computer = yes and C2 correspond to
buys computer = no. The tuple we wish to classify is

X = (age = youth, income = medium, student = yes, credit rating = fair)

We need to maximize P(X|Ci)P(Ci), for i = 1, 2. P(Ci), the prior probability of each
class, can be computed based on the training tuples:

P(buys computer = yes) = 9/14 = 0.643

P(buys computer = no) = 5/14 = 0.357

To compute P(X|Ci), for i = 1, 2, we compute the following conditional probabilities:

P(age = youth | buys computer = yes) = 2/9 = 0.222

P(age = youth | buys computer = no) = 3/5 = 0.600

P(income = medium | buys computer = yes) = 4/9 = 0.444

P(income = medium | buys computer = no) = 2/5 = 0.400

P(student = yes | buys computer = yes) = 6/9 = 0.667
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P(student = yes | buys computer = no) = 1/5 = 0.200

P(credit rating = fair | buys computer = yes) = 6/9 = 0.667

P(credit rating = fair | buys computer = no) = 2/5 = 0.400

Using these probabilities, we obtain

P(X|buys computer = yes) = P(age = youth | buys computer = yes)

× P(income = medium | buys computer = yes)

× P(student = yes | buys computer = yes)

× P(credit rating = fair | buys computer = yes)

= 0.222 × 0.444 × 0.667 × 0.667 = 0.044.

Similarly,

P(X|buys computer = no) = 0.600 × 0.400 × 0.200 × 0.400 = 0.019.

To find the class, Ci , that maximizes P(X|Ci)P(Ci), we compute

P(X|buys computer = yes)P(buys computer = yes) = 0.044 × 0.643 = 0.028

P(X|buys computer = no)P(buys computer = no) = 0.019 × 0.357 = 0.007

Therefore, the naı̈ve Bayesian classifier predicts buys computer = yes for tuple X.

“What if I encounter probability values of zero?” Recall that in Eq. (8.12), we esti-
mate P(X|Ci) as the product of the probabilities P(x1|Ci), P(x2|Ci), . . . , P(xn|Ci), based
on the assumption of class-conditional independence. These probabilities can be esti-
mated from the training tuples (step 4). We need to compute P(X|Ci) for each class (i =
1,2, . . . ,m) to find the class Ci for which P(X|Ci)P(Ci) is the maximum (step 5). Let’s
consider this calculation. For each attribute–value pair (i.e., Ak = xk , for k = 1,2, . . . ,n)
in tuple X, we need to count the number of tuples having that attribute–value pair, per
class (i.e., per Ci , for i = 1, . . . , m). In Example 8.4, we have two classes (m = 2), namely
buys computer = yes and buys computer = no. Therefore, for the attribute–value pair
student = yes of X, say, we need two counts—the number of customers who are students
and for which buys computer = yes (which contributes to P(X|buys computer = yes))
and the number of customers who are students and for which buys computer = no
(which contributes to P(X|buys computer = no)).

But what if, say, there are no training tuples representing students for the class
buys computer = no, resulting in P(student = yes|buys computer = no) = 0? In other
words, what happens if we should end up with a probability value of zero for some
P(xk|Ci)? Plugging this zero value into Eq. (8.12) would return a zero probability for
P(X|Ci), even though, without the zero probability, we may have ended up with a high
probability, suggesting that X belonged to class Ci! A zero probability cancels the effects
of all the other (posteriori) probabilities (on Ci) involved in the product.

There is a simple trick to avoid this problem. We can assume that our training data-
base, D, is so large that adding one to each count that we need would only make a
negligible difference in the estimated probability value, yet would conveniently avoid the
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case of probability values of zero. This technique for probability estimation is known as
the Laplacian correction or Laplace estimator, named after Pierre Laplace, a French
mathematician who lived from 1749 to 1827. If we have, say, q counts to which we each
add one, then we must remember to add q to the corresponding denominator used in
the probability calculation. We illustrate this technique in Example 8.5.

Example 8.5 Using the Laplacian correction to avoid computing probability values of zero. Sup-
pose that for the class buys computer = yes in some training database, D, containing
1000 tuples, we have 0 tuples with income = low, 990 tuples with income = medium, and
10 tuples with income = high. The probabilities of these events, without the Laplacian
correction, are 0, 0.990 (from 990/1000), and 0.010 (from 10/1000), respectively. Using
the Laplacian correction for the three quantities, we pretend that we have 1 more tuple
for each income-value pair. In this way, we instead obtain the following probabilities
(rounded up to three decimal places):

1

1003
= 0.001,

991

1003
= 0.988, and

11

1003
= 0.011,

respectively. The “corrected” probability estimates are close to their “uncorrected”
counterparts, yet the zero probability value is avoided.

8.4 Rule-Based Classification

In this section, we look at rule-based classifiers, where the learned model is represented
as a set of IF-THEN rules. We first examine how such rules are used for classification
(Section 8.4.1). We then study ways in which they can be generated, either from a deci-
sion tree (Section 8.4.2) or directly from the training data using a sequential covering
algorithm (Section 8.4.3).

8.4.1 Using IF-THEN Rules for Classification

Rules are a good way of representing information or bits of knowledge. A rule-based
classifier uses a set of IF-THEN rules for classification. An IF-THEN rule is an expres-
sion of the form

IF condition THEN conclusion.

An example is rule R1,

R1: IF age = youth AND student = yes THEN buys computer = yes.

The “IF” part (or left side) of a rule is known as the rule antecedent or precondition.
The “THEN” part (or right side) is the rule consequent. In the rule antecedent, the
condition consists of one or more attribute tests (e.g., age = youth and student = yes)
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that are logically ANDed. The rule’s consequent contains a class prediction (in this case,
we are predicting whether a customer will buy a computer). R1 can also be written as

R1: (age = youth) ∧ (student = yes) ⇒ (buys computer = yes).

If the condition (i.e., all the attribute tests) in a rule antecedent holds true for a given
tuple, we say that the rule antecedent is satisfied (or simply, that the rule is satisfied)
and that the rule covers the tuple.

A rule R can be assessed by its coverage and accuracy. Given a tuple, X, from a class-
labeled data set, D, let ncovers be the number of tuples covered by R; ncorrect be the number
of tuples correctly classified by R; and |D| be the number of tuples in D. We can define
the coverage and accuracy of R as

coverage(R) = ncovers

|D| (8.16)

accuracy(R) = ncorrect

ncovers
. (8.17)

That is, a rule’s coverage is the percentage of tuples that are covered by the rule (i.e., their
attribute values hold true for the rule’s antecedent). For a rule’s accuracy, we look at the
tuples that it covers and see what percentage of them the rule can correctly classify.

Example 8.6 Rule accuracy and coverage. Let’s go back to our data in Table 8.1. These are class-
labeled tuples from the AllElectronics customer database. Our task is to predict whether
a customer will buy a computer. Consider rule R1, which covers 2 of the 14 tuples.
It can correctly classify both tuples. Therefore, coverage(R1) = 2/14 = 14.28% and
accuracy(R1) = 2/2 = 100%.

Let’s see how we can use rule-based classification to predict the class label of a given
tuple, X. If a rule is satisfied by X, the rule is said to be triggered. For example, suppose
we have

X= (age = youth, income = medium, student = yes, credit rating = fair).

We would like to classify X according to buys computer. X satisfies R1, which triggers
the rule.

If R1 is the only rule satisfied, then the rule fires by returning the class prediction
for X. Note that triggering does not always mean firing because there may be more than
one rule that is satisfied! If more than one rule is triggered, we have a potential problem.
What if they each specify a different class? Or what if no rule is satisfied by X?

We tackle the first question. If more than one rule is triggered, we need a conflict
resolution strategy to figure out which rule gets to fire and assign its class prediction
to X. There are many possible strategies. We look at two, namely size ordering and rule
ordering.
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The size ordering scheme assigns the highest priority to the triggering rule that has
the “toughest” requirements, where toughness is measured by the rule antecedent size.
That is, the triggering rule with the most attribute tests is fired.

The rule ordering scheme prioritizes the rules beforehand. The ordering may be
class-based or rule-based. With class-based ordering, the classes are sorted in order of
decreasing “importance” such as by decreasing order of prevalence. That is, all the rules
for the most prevalent (or most frequent) class come first, the rules for the next prevalent
class come next, and so on. Alternatively, they may be sorted based on the misclassifica-
tion cost per class. Within each class, the rules are not ordered—they don’t have to be
because they all predict the same class (and so there can be no class conflict!).

With rule-based ordering, the rules are organized into one long priority list, accord-
ing to some measure of rule quality, such as accuracy, coverage, or size (number of
attribute tests in the rule antecedent), or based on advice from domain experts. When
rule ordering is used, the rule set is known as a decision list. With rule ordering, the trig-
gering rule that appears earliest in the list has the highest priority, and so it gets to fire its
class prediction. Any other rule that satisfies X is ignored. Most rule-based classification
systems use a class-based rule-ordering strategy.

Note that in the first strategy, overall the rules are unordered. They can be applied in
any order when classifying a tuple. That is, a disjunction (logical OR) is implied between
each of the rules. Each rule represents a standalone nugget or piece of knowledge. This
is in contrast to the rule ordering (decision list) scheme for which rules must be applied
in the prescribed order so as to avoid conflicts. Each rule in a decision list implies the
negation of the rules that come before it in the list. Hence, rules in a decision list are
more difficult to interpret.

Now that we have seen how we can handle conflicts, let’s go back to the scenario
where there is no rule satisfied by X. How, then, can we determine the class label of X?
In this case, a fallback or default rule can be set up to specify a default class, based on
a training set. This may be the class in majority or the majority class of the tuples that
were not covered by any rule. The default rule is evaluated at the end, if and only if no
other rule covers X. The condition in the default rule is empty. In this way, the rule fires
when no other rule is satisfied.

In the following sections, we examine how to build a rule-based classifier.

8.4.2 Rule Extraction from a Decision Tree

In Section 8.2, we learned how to build a decision tree classifier from a set of training
data. Decision tree classifiers are a popular method of classification—it is easy to under-
stand how decision trees work and they are known for their accuracy. Decision trees can
become large and difficult to interpret. In this subsection, we look at how to build a rule-
based classifier by extracting IF-THEN rules from a decision tree. In comparison with a
decision tree, the IF-THEN rules may be easier for humans to understand, particularly
if the decision tree is very large.

To extract rules from a decision tree, one rule is created for each path from the root
to a leaf node. Each splitting criterion along a given path is logically ANDed to form the
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rule antecedent (“IF” part). The leaf node holds the class prediction, forming the rule
consequent (“THEN” part).

Example 8.7 Extracting classification rules from a decision tree. The decision tree of Figure 8.2 can
be converted to classification IF-THEN rules by tracing the path from the root node to
each leaf node in the tree. The rules extracted from Figure 8.2 are as follows:

R1: IF age = youth AND student = no THEN buys computer = no

R2: IF age = youth AND student = yes THEN buys computer = yes

R3: IF age = middle aged THEN buys computer = yes

R4: IF age = senior AND credit rating = excellent THEN buys computer = yes

R5: IF age = senior AND credit rating = fair THEN buys computer = no

A disjunction (logical OR) is implied between each of the extracted rules. Because the
rules are extracted directly from the tree, they are mutually exclusive and exhaustive.
Mutually exclusive means that we cannot have rule conflicts here because no two rules
will be triggered for the same tuple. (We have one rule per leaf, and any tuple can map
to only one leaf.) Exhaustive means there is one rule for each possible attribute–value
combination, so that this set of rules does not require a default rule. Therefore, the order
of the rules does not matter—they are unordered.

Since we end up with one rule per leaf, the set of extracted rules is not much simpler
than the corresponding decision tree! The extracted rules may be even more difficult
to interpret than the original trees in some cases. As an example, Figure 8.7 showed
decision trees that suffer from subtree repetition and replication. The resulting set of
rules extracted can be large and difficult to follow, because some of the attribute tests
may be irrelevant or redundant. So, the plot thickens. Although it is easy to extract rules
from a decision tree, we may need to do some more work by pruning the resulting
rule set.

“How can we prune the rule set?” For a given rule antecedent, any condition that does
not improve the estimated accuracy of the rule can be pruned (i.e., removed), thereby
generalizing the rule. C4.5 extracts rules from an unpruned tree, and then prunes the
rules using a pessimistic approach similar to its tree pruning method. The training tuples
and their associated class labels are used to estimate rule accuracy. However, because this
would result in an optimistic estimate, alternatively, the estimate is adjusted to compen-
sate for the bias, resulting in a pessimistic estimate. In addition, any rule that does not
contribute to the overall accuracy of the entire rule set can also be pruned.

Other problems arise during rule pruning, however, as the rules will no longer be
mutually exclusive and exhaustive. For conflict resolution, C4.5 adopts a class-based
ordering scheme. It groups together all rules for a single class, and then determines a
ranking of these class rule sets. Within a rule set, the rules are not ordered. C4.5 orders
the class rule sets so as to minimize the number of false-positive errors (i.e., where a
rule predicts a class, C, but the actual class is not C). The class rule set with the least
number of false positives is examined first. Once pruning is complete, a final check is
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done to remove any duplicates. When choosing a default class, C4.5 does not choose
the majority class, because this class will likely have many rules for its tuples. Instead, it
selects the class that contains the most training tuples that were not covered by any rule.

8.4.3 Rule Induction Using a Sequential Covering Algorithm

IF-THEN rules can be extracted directly from the training data (i.e., without having to
generate a decision tree first) using a sequential covering algorithm. The name comes
from the notion that the rules are learned sequentially (one at a time), where each rule
for a given class will ideally cover many of the class’s tuples (and hopefully none of
the tuples of other classes). Sequential covering algorithms are the most widely used
approach to mining disjunctive sets of classification rules, and form the topic of this
subsection.

There are many sequential covering algorithms. Popular variations include AQ, CN2,
and the more recent RIPPER. The general strategy is as follows. Rules are learned one at
a time. Each time a rule is learned, the tuples covered by the rule are removed, and the
process repeats on the remaining tuples. This sequential learning of rules is in contrast
to decision tree induction. Because the path to each leaf in a decision tree corresponds to
a rule, we can consider decision tree induction as learning a set of rules simultaneously.

A basic sequential covering algorithm is shown in Figure 8.10. Here, rules are learned
for one class at a time. Ideally, when learning a rule for a class, C, we would like the rule
to cover all (or many) of the training tuples of class C and none (or few) of the tuples

Algorithm: Sequential covering. Learn a set of IF-THEN rules for classification.

Input:

D, a data set of class-labeled tuples;

Att vals, the set of all attributes and their possible values.

Output: A set of IF-THEN rules.

Method:

(1) Rule set = {}; // initial set of rules learned is empty
(2) for each class c do
(3) repeat
(4) Rule = Learn One Rule(D, Att vals, c);
(5) remove tuples covered by Rule from D;
(6) Rule set = Rule set + Rule; // add new rule to rule set
(7) until terminating condition;
(8) endfor
(9) return Rule Set ;

Figure 8.10 Basic sequential covering algorithm.
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from other classes. In this way, the rules learned should be of high accuracy. The rules
need not necessarily be of high coverage. This is because we can have more than one rule
for a class, so that different rules may cover different tuples within the same class. The
process continues until the terminating condition is met, such as when there are no more
training tuples or the quality of a rule returned is below a user-specified threshold. The
Learn One Rule procedure finds the “best” rule for the current class, given the current
set of training tuples.

“How are rules learned?” Typically, rules are grown in a general-to-specific manner
(Figure 8.11). We can think of this as a beam search, where we start off with an empty
rule and then gradually keep appending attribute tests to it. We append by adding the
attribute test as a logical conjunct to the existing condition of the rule antecedent. Sup-
pose our training set, D, consists of loan application data. Attributes regarding each
applicant include their age, income, education level, residence, credit rating, and the
term of the loan. The classifying attribute is loan decision, which indicates whether a
loan is accepted (considered safe) or rejected (considered risky). To learn a rule for the
class “accept,” we start off with the most general rule possible, that is, the condition of
the rule antecedent is empty. The rule is

IF THEN loan decision = accept.

We then consider each possible attribute test that may be added to the rule. These
can be derived from the parameter Att vals, which contains a list of attributes with their
associated values. For example, for an attribute–value pair (att , val), we can consider
attribute tests such as att = val, att ≤ val, att > val, and so on. Typically, the training
data will contain many attributes, each of which may have several possible values. Find-
ing an optimal rule set becomes computationally explosive. Instead, Learn One Rule

IF
THEN loan_decision � accept

IF loan_term � short
THEN loan_decision
� accept

IF loan_term � long
THEN loan_decision
� accept

IF income � high
THEN loan_decision � accept

IF income � high AND
age � youth
THEN loan_decision
� accept

IF income � high AND
age � middle_age
THEN loan_decision
� accept

IF income � high AND
credit_rating � excellent
THEN loan_decision � accept

IF income � high AND
credit_rating � fair
THEN loan_decision
� accept

IF income �medium
THEN loan_decision
� accept

······

···

Figure 8.11 A general-to-specific search through rule space.
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adopts a greedy depth-first strategy. Each time it is faced with adding a new attribute
test (conjunct) to the current rule, it picks the one that most improves the rule qual-
ity, based on the training samples. We will say more about rule quality measures in a
minute. For the moment, let’s say we use rule accuracy as our quality measure. Getting
back to our example with Figure 8.11, suppose Learn One Rule finds that the attribute
test income = high best improves the accuracy of our current (empty) rule. We append
it to the condition, so that the current rule becomes

IF income = high THEN loan decision = accept.

Each time we add an attribute test to a rule, the resulting rule should cover relatively
more of the “accept” tuples. During the next iteration, we again consider the possible
attribute tests and end up selecting credit rating = excellent. Our current rule grows to
become

IF income = high AND credit rating = excellent THEN loan decision = accept.

The process repeats, where at each step we continue to greedily grow rules until the
resulting rule meets an acceptable quality level.

Greedy search does not allow for backtracking. At each step, we heuristically add what
appears to be the best choice at the moment. What if we unknowingly made a poor
choice along the way? To lessen the chance of this happening, instead of selecting the best
attribute test to append to the current rule, we can select the best k attribute tests. In this
way, we perform a beam search of width k, wherein we maintain the k best candidates
overall at each step, rather than a single best candidate.

Rule Quality Measures
Learn One Rule needs a measure of rule quality. Every time it considers an attribute test,
it must check to see if appending such a test to the current rule’s condition will result
in an improved rule. Accuracy may seem like an obvious choice at first, but consider
Example 8.8.

Example 8.8 Choosing between two rules based on accuracy. Consider the two rules as illustrated
in Figure 8.12. Both are for the class loan decision = accept. We use “a” to represent the
tuples of class “accept” and “r” for the tuples of class “reject.” Rule R1 correctly classifies
38 of the 40 tuples it covers. Rule R2 covers only two tuples, which it correctly classifies.
Their respective accuracies are 95% and 100%. Thus, R2 has greater accuracy than R1,
but it is not the better rule because of its small coverage.

From this example, we see that accuracy on its own is not a reliable estimate of rule
quality. Coverage on its own is not useful either—for a given class we could have a rule
that covers many tuples, most of which belong to other classes! Thus, we seek other mea-
sures for evaluating rule quality, which may integrate aspects of accuracy and coverage.
Here we will look at a few, namely entropy, another based on information gain, and a
statistical test that considers coverage. For our discussion, suppose we are learning rules
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Figure 8.12 Rules for the class loan decision = accept, showing accept (a) and reject (r) tuples.

for the class c. Our current rule is R: IF condition THEN class = c. We want to see if
logically ANDing a given attribute test to condition would result in a better rule. We call
the new condition, condition′, where R′: IF condition′ THEN class = c is our potential
new rule. In other words, we want to see if R′ is any better than R.

We have already seen entropy in our discussion of the information gain measure used
for attribute selection in decision tree induction (Section 8.2.2, Eq. 8.1). It is also known
as the expected information needed to classify a tuple in data set, D. Here, D is the set
of tuples covered by condition′ and pi is the probability of class Ci in D. The lower the
entropy, the better condition′ is. Entropy prefers conditions that cover a large number of
tuples of a single class and few tuples of other classes.

Another measure is based on information gain and was proposed in FOIL (First
Order Inductive Learner), a sequential covering algorithm that learns first-order logic
rules. Learning first-order rules is more complex because such rules contain variables,
whereas the rules we are concerned with in this section are propositional (i.e., variable-
free).5 In machine learning, the tuples of the class for which we are learning rules are
called positive tuples, while the remaining tuples are negative. Let pos (neg) be the num-
ber of positive (negative) tuples covered by R. Let pos′ (neg ′) be the number of positive
(negative) tuples covered by R′. FOIL assesses the information gained by extending
condition′ as

FOIL Gain = pos′ ×
(

log2
pos′

pos′ + neg′ − log2
pos

pos + neg

)
. (8.18)

It favors rules that have high accuracy and cover many positive tuples.
We can also use a statistical test of significance to determine if the apparent effect of

a rule is not attributed to chance but instead indicates a genuine correlation between

5Incidentally, FOIL was also proposed by Quinlan, the father of ID3.
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attribute values and classes. The test compares the observed distribution among classes
of tuples covered by a rule with the expected distribution that would result if the
rule made predictions at random. We want to assess whether any observed differences
between these two distributions may be attributed to chance. We can use the likelihood
ratio statistic,

Likelihood Ratio = 2
m∑

i=1

fi log

(
fi
ei

)
, (8.19)

where m is the number of classes.
For tuples satisfying the rule, fi is the observed frequency of each class i among the

tuples. ei is what we would expect the frequency of each class i to be if the rule made
random predictions. The statistic has a χ2 distribution with m − 1 degrees of freedom.
The higher the likelihood ratio, the more likely that there is a significant difference in the
number of correct predictions made by our rule in comparison with a “random guessor.”
That is, the performance of our rule is not due to chance. The ratio helps identify rules
with insignificant coverage.

CN2 uses entropy together with the likelihood ratio test, while FOIL’s information
gain is used by RIPPER.

Rule Pruning
Learn One Rule does not employ a test set when evaluating rules. Assessments of rule
quality as described previously are made with tuples from the original training data.
These assessments are optimistic because the rules will likely overfit the data. That is,
the rules may perform well on the training data, but less well on subsequent data. To
compensate for this, we can prune the rules. A rule is pruned by removing a conjunct
(attribute test). We choose to prune a rule, R, if the pruned version of R has greater
quality, as assessed on an independent set of tuples. As in decision tree pruning, we refer
to this set as a pruning set. Various pruning strategies can be used such as the pessimistic
pruning approach described in the previous section.

FOIL uses a simple yet effective method. Given a rule, R,

FOIL Prune(R) = pos − neg

pos + neg
, (8.20)

where pos and neg are the number of positive and negative tuples covered by R, respec-
tively. This value will increase with the accuracy of R on a pruning set. Therefore, if the
FOIL Prune value is higher for the pruned version of R, then we prune R.

By convention, RIPPER starts with the most recently added conjunct when con-
sidering pruning. Conjuncts are pruned one at a time as long as this results in an
improvement.
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8.5 Model Evaluation and Selection

Now that you may have built a classification model, there may be many questions going
through your mind. For example, suppose you used data from previous sales to build
a classifier to predict customer purchasing behavior. You would like an estimate of how
accurately the classifier can predict the purchasing behavior of future customers, that
is, future customer data on which the classifier has not been trained. You may even
have tried different methods to build more than one classifier and now wish to compare
their accuracy. But what is accuracy? How can we estimate it? Are some measures of a
classifier’s accuracy more appropriate than others? How can we obtain a reliable accuracy
estimate? These questions are addressed in this section.

Section 8.5.1 describes various evaluation metrics for the predictive accuracy
of a classifier. Holdout and random subsampling (Section 8.5.2), cross-validation
(Section 8.5.3), and bootstrap methods (Section 8.5.4) are common techniques for
assessing accuracy, based on randomly sampled partitions of the given data. What if
we have more than one classifier and want to choose the “best” one? This is referred
to as model selection (i.e., choosing one classifier over another). The last two sections
address this issue. Section 8.5.5 discusses how to use tests of statistical significance
to assess whether the difference in accuracy between two classifiers is due to chance.
Section 8.5.6 presents how to compare classifiers based on cost–benefit and receiver
operating characteristic (ROC) curves.

8.5.1 Metrics for Evaluating Classifier Performance

This section presents measures for assessing how good or how “accurate” your classifier
is at predicting the class label of tuples. We will consider the case of where the class tuples
are more or less evenly distributed, as well as the case where classes are unbalanced (e.g.,
where an important class of interest is rare such as in medical tests). The classifier eval-
uation measures presented in this section are summarized in Figure 8.13. They include
accuracy (also known as recognition rate), sensitivity (or recall), specificity, precision,
F1, and Fβ . Note that although accuracy is a specific measure, the word “accuracy” is
also used as a general term to refer to a classifier’s predictive abilities.

Using training data to derive a classifier and then estimate the accuracy of the
resulting learned model can result in misleading overoptimistic estimates due to over-
specialization of the learning algorithm to the data. (We will say more on this in a
moment!) Instead, it is better to measure the classifier’s accuracy on a test set consisting
of class-labeled tuples that were not used to train the model.

Before we discuss the various measures, we need to become comfortable with
some terminology. Recall that we can talk in terms of positive tuples (tuples of the
main class of interest) and negative tuples (all other tuples).6 Given two classes, for
example, the positive tuples may be buys computer = yes while the negative tuples are

6In the machine learning and pattern recognition literature, these are referred to as positive samples and
negative samples, respectively.
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Measure Formula

accuracy, recognition rate TP +TN
P +N

error rate, misclassification rate FP +FN
P +N

sensitivity, true positive rate, TP
Precall

specificity, true negative rate TN
N

precision TP
TP +FP

F , F1, F-score, 2×precision× recall
precision+ recallharmonic mean of precision and recall

Fβ , where β is a non-negative real number (1+β2)×precision× recall
β2 ×precision+ recall

Figure 8.13 Evaluation measures. Note that some measures are known by more than one name.
TP,TN ,FP,P, N refer to the number of true positive, true negative, false positive, positive,
and negative samples, respectively (see text).

buys computer = no. Suppose we use our classifier on a test set of labeled tuples. P is the
number of positive tuples and N is the number of negative tuples. For each tuple, we
compare the classifier’s class label prediction with the tuple’s known class label.

There are four additional terms we need to know that are the “building blocks” used
in computing many evaluation measures. Understanding them will make it easy to grasp
the meaning of the various measures.

True positives (TP): These refer to the positive tuples that were correctly labeled by
the classifier. Let TP be the number of true positives.

True negatives (TN): These are the negative tuples that were correctly labeled by the
classifier. Let TN be the number of true negatives.

False positives (FP): These are the negative tuples that were incorrectly labeled as
positive (e.g., tuples of class buys computer = no for which the classifier predicted
buys computer = yes). Let FP be the number of false positives.

False negatives (FN): These are the positive tuples that were mislabeled as neg-
ative (e.g., tuples of class buys computer = yes for which the classifier predicted
buys computer = no). Let FN be the number of false negatives.

These terms are summarized in the confusion matrix of Figure 8.14.
The confusion matrix is a useful tool for analyzing how well your classifier can

recognize tuples of different classes. TP and TN tell us when the classifier is getting
things right, while FP and FN tell us when the classifier is getting things wrong (i.e.,
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Predicted class

yes no Total

Actual class yes TP FN P

no FP TN N

Total P′ N ′ P + N

Figure 8.14 Confusion matrix, shown with totals for positive and negative tuples.

Classes buys computer = yes buys computer = no Total Recognition (%)

buys computer = yes 6954 46 7000 99.34

buys computer = no 412 2588 3000 86.27

Total 7366 2634 10,000 95.42

Figure 8.15 Confusion matrix for the classes buys computer = yes and buys computer = no, where an
entry in row i and column j shows the number of tuples of class i that were labeled by the
classifier as class j. Ideally, the nondiagonal entries should be zero or close to zero.

mislabeling). Given m classes (where m ≥ 2), a confusion matrix is a table of at least
size m by m. An entry, CMi,j in the first m rows and m columns indicates the number
of tuples of class i that were labeled by the classifier as class j. For a classifier to have
good accuracy, ideally most of the tuples would be represented along the diagonal of the
confusion matrix, from entry CM1,1 to entry CMm,m, with the rest of the entries being
zero or close to zero. That is, ideally, FP and FN are around zero.

The table may have additional rows or columns to provide totals. For example, in
the confusion matrix of Figure 8.14, P and N are shown. In addition, P′ is the number
of tuples that were labeled as positive (TP + FP) and N ′ is the number of tuples that
were labeled as negative (TN + FN). The total number of tuples is TP + TN + FP + TN ,
or P + N , or P′ + N ′. Note that although the confusion matrix shown is for a binary
classification problem, confusion matrices can be easily drawn for multiple classes in a
similar manner.

Now let’s look at the evaluation measures, starting with accuracy. The accuracy of a
classifier on a given test set is the percentage of test set tuples that are correctly classified
by the classifier. That is,

accuracy = TP + TN

P + N
. (8.21)

In the pattern recognition literature, this is also referred to as the overall recognition
rate of the classifier, that is, it reflects how well the classifier recognizes tuples of the var-
ious classes. An example of a confusion matrix for the two classes buys computer = yes
(positive) and buys computer = no (negative) is given in Figure 8.15. Totals are shown,
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as well as the recognition rates per class and overall. By glancing at a confusion matrix,
it is easy to see if the corresponding classifier is confusing two classes.

For example, we see that it mislabeled 412 “no” tuples as “yes.” Accuracy is most
effective when the class distribution is relatively balanced.

We can also speak of the error rate or misclassification rate of a classifier, M , which
is simply 1 − accuracy(M), where accuracy(M) is the accuracy of M . This also can be
computed as

error rate = FP + FN

P + N
. (8.22)

If we were to use the training set (instead of a test set) to estimate the error rate of
a model, this quantity is known as the resubstitution error. This error estimate is
optimistic of the true error rate (and similarly, the corresponding accuracy estimate is
optimistic) because the model is not tested on any samples that it has not already seen.

We now consider the class imbalance problem, where the main class of interest is
rare. That is, the data set distribution reflects a significant majority of the negative class
and a minority positive class. For example, in fraud detection applications, the class of
interest (or positive class) is “fraud,” which occurs much less frequently than the negative
“nonfraudulant” class. In medical data, there may be a rare class, such as “cancer.” Sup-
pose that you have trained a classifier to classify medical data tuples, where the class
label attribute is “cancer” and the possible class values are “yes” and “no.” An accu-
racy rate of, say, 97% may make the classifier seem quite accurate, but what if only,
say, 3% of the training tuples are actually cancer? Clearly, an accuracy rate of 97% may
not be acceptable—the classifier could be correctly labeling only the noncancer tuples,
for instance, and misclassifying all the cancer tuples. Instead, we need other measures,
which assess how well the classifier can recognize the positive tuples (cancer = yes) and
how well it can recognize the negative tuples (cancer = no).

The sensitivity and specificity measures can be used, respectively, for this purpose.
Sensitivity is also referred to as the true positive (recognition) rate (i.e., the proportion
of positive tuples that are correctly identified), while specificity is the true negative rate
(i.e., the proportion of negative tuples that are correctly identified). These measures are
defined as

sensitivity = TP

P
(8.23)

specificity = TN

N
. (8.24)

It can be shown that accuracy is a function of sensitivity and specificity:

accuracy = sensitivity
P

(P + N)
+ specificity

N

(P + N)
. (8.25)

Example 8.9 Sensitivity and specificity. Figure 8.16 shows a confusion matrix for medical data
where the class values are yes and no for a class label attribute, cancer. The sensitivity
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Classes yes no Total Recognition (%)

yes 90 210 300 30.00

no 140 9560 9700 98.56

Total 230 9770 10,000 96.40

Figure 8.16 Confusion matrix for the classes cancer = yes and cancer = no.

of the classifier is 90
300 = 30.00%. The specificity is 9560

9700 = 98.56%. The classifier’s over-

all accuracy is 9650
10,000 = 96.50%. Thus, we note that although the classifier has a high

accuracy, it’s ability to correctly label the positive (rare) class is poor given its low sen-
sitivity. It has high specificity, meaning that it can accurately recognize negative tuples.
Techniques for handling class-imbalanced data are given in Section 8.6.5.

The precision and recall measures are also widely used in classification. Precision
can be thought of as a measure of exactness (i.e., what percentage of tuples labeled as
positive are actually such), whereas recall is a measure of completeness (what percentage
of positive tuples are labeled as such). If recall seems familiar, that’s because it is the same
as sensitivity (or the true positive rate). These measures can be computed as

precision = TP

TP + FP
(8.26)

recall = TP

TP + FN
= TP

P
. (8.27)

Example 8.10 Precision and recall. The precision of the classifier in Figure 8.16 for the yes class is
90

230 = 39.13%. The recall is 90
300 = 30.00%, which is the same calculation for sensitivity

in Example 8.9.

A perfect precision score of 1.0 for a class C means that every tuple that the classifier
labeled as belonging to class C does indeed belong to class C. However, it does not tell
us anything about the number of class C tuples that the classifier mislabeled. A perfect
recall score of 1.0 for C means that every item from class C was labeled as such, but it
does not tell us how many other tuples were incorrectly labeled as belonging to class C.
There tends to be an inverse relationship between precision and recall, where it is possi-
ble to increase one at the cost of reducing the other. For example, our medical classifier
may achieve high precision by labeling all cancer tuples that present a certain way as
cancer, but may have low recall if it mislabels many other instances of cancer tuples. Pre-
cision and recall scores are typically used together, where precision values are compared
for a fixed value of recall, or vice versa. For example, we may compare precision values
at a recall value of, say, 0.75.

An alternative way to use precision and recall is to combine them into a single mea-
sure. This is the approach of the F measure (also known as the F1 score or F-score) and
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the Fβ measure. They are defined as

F = 2 × precision × recall

precision + recall
(8.28)

Fβ = (1 + β2) × precision × recall

β2 × precision + recall
, (8.29)

where β is a non-negative real number. The F measure is the harmonic mean of precision
and recall (the proof of which is left as an exercise). It gives equal weight to precision and
recall. The Fβ measure is a weighted measure of precision and recall. It assigns β times
as much weight to recall as to precision. Commonly used Fβ measures are F2 (which
weights recall twice as much as precision) and F0.5 (which weights precision twice as
much as recall).

“Are there other cases where accuracy may not be appropriate?” In classification prob-
lems, it is commonly assumed that all tuples are uniquely classifiable, that is, that each
training tuple can belong to only one class. Yet, owing to the wide diversity of data in
large databases, it is not always reasonable to assume that all tuples are uniquely classi-
fiable. Rather, it is more probable to assume that each tuple may belong to more than
one class. How then can the accuracy of classifiers on large databases be measured? The
accuracy measure is not appropriate, because it does not take into account the possibility
of tuples belonging to more than one class.

Rather than returning a class label, it is useful to return a probability class distri-
bution. Accuracy measures may then use a second guess heuristic, whereby a class
prediction is judged as correct if it agrees with the first or second most probable class.
Although this does take into consideration, to some degree, the nonunique classification
of tuples, it is not a complete solution.

In addition to accuracy-based measures, classifiers can also be compared with respect
to the following additional aspects:

Speed: This refers to the computational costs involved in generating and using the
given classifier.

Robustness: This is the ability of the classifier to make correct predictions given noisy
data or data with missing values. Robustness is typically assessed with a series of
synthetic data sets representing increasing degrees of noise and missing values.

Scalability: This refers to the ability to construct the classifier efficiently given large
amounts of data. Scalability is typically assessed with a series of data sets of increasing
size.

Interpretability: This refers to the level of understanding and insight that is provided
by the classifier or predictor. Interpretability is subjective and therefore more difficult
to assess. Decision trees and classification rules can be easy to interpret, yet their
interpretability may diminish the more they become complex. We discuss some work
in this area, such as the extraction of classification rules from a “black box” neural
network classifier called backpropagation, in Chapter 9.
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Test set

Training
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Derive
model

Data

Estimate
accuracy

Figure 8.17 Estimating accuracy with the holdout method.

In summary, we have presented several evaluation measures. The accuracy measure
works best when the data classes are fairly evenly distributed. Other measures, such as
sensitivity (or recall), specificity, precision, F , and Fβ , are better suited to the class imbal-
ance problem, where the main class of interest is rare. The remaining subsections focus
on obtaining reliable classifier accuracy estimates.

8.5.2 Holdout Method and Random Subsampling

The holdout method is what we have alluded to so far in our discussions about accuracy.
In this method, the given data are randomly partitioned into two independent sets, a
training set and a test set. Typically, two-thirds of the data are allocated to the training
set, and the remaining one-third is allocated to the test set. The training set is used to
derive the model. The model’s accuracy is then estimated with the test set (Figure 8.17).
The estimate is pessimistic because only a portion of the initial data is used to derive
the model.

Random subsampling is a variation of the holdout method in which the holdout
method is repeated k times. The overall accuracy estimate is taken as the average of the
accuracies obtained from each iteration.

8.5.3 Cross-Validation

In k-fold cross-validation, the initial data are randomly partitioned into k mutually
exclusive subsets or “folds,” D1, D2, . . . , Dk , each of approximately equal size. Training
and testing is performed k times. In iteration i, partition Di is reserved as the test set,
and the remaining partitions are collectively used to train the model. That is, in the
first iteration, subsets D2, . . . , Dk collectively serve as the training set to obtain a first
model, which is tested on D1; the second iteration is trained on subsets D1, D3, . . . , Dk

and tested on D2; and so on. Unlike the holdout and random subsampling methods,
here each sample is used the same number of times for training and once for testing. For
classification, the accuracy estimate is the overall number of correct classifications from
the k iterations, divided by the total number of tuples in the initial data.
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Leave-one-out is a special case of k-fold cross-validation where k is set to the number
of initial tuples. That is, only one sample is “left out” at a time for the test set. In strat-
ified cross-validation, the folds are stratified so that the class distribution of the tuples
in each fold is approximately the same as that in the initial data.

In general, stratified 10-fold cross-validation is recommended for estimating accu-
racy (even if computation power allows using more folds) due to its relatively low bias
and variance.

8.5.4 Bootstrap

Unlike the accuracy estimation methods just mentioned, the bootstrap method sam-
ples the given training tuples uniformly with replacement. That is, each time a tuple is
selected, it is equally likely to be selected again and re-added to the training set. For
instance, imagine a machine that randomly selects tuples for our training set. In sam-
pling with replacement, the machine is allowed to select the same tuple more than once.

There are several bootstrap methods. A commonly used one is the .632 bootstrap,
which works as follows. Suppose we are given a data set of d tuples. The data set is
sampled d times, with replacement, resulting in a bootstrap sample or training set of d
samples. It is very likely that some of the original data tuples will occur more than once
in this sample. The data tuples that did not make it into the training set end up forming
the test set. Suppose we were to try this out several times. As it turns out, on average,
63.2% of the original data tuples will end up in the bootstrap sample, and the remaining
36.8% will form the test set (hence, the name, .632 bootstrap).

“Where does the figure, 63.2%, come from?” Each tuple has a probability of 1/d of
being selected, so the probability of not being chosen is (1 − 1/d). We have to select
d times, so the probability that a tuple will not be chosen during this whole time is
(1 − 1/d)d . If d is large, the probability approaches e−1 = 0.368.7 Thus, 36.8% of tuples
will not be selected for training and thereby end up in the test set, and the remaining
63.2% will form the training set.

We can repeat the sampling procedure k times, where in each iteration, we use the
current test set to obtain an accuracy estimate of the model obtained from the current
bootstrap sample. The overall accuracy of the model, M , is then estimated as

Acc(M) = 1

k

k∑
i=1

(0.632 × Acc(Mi)test set + 0.368 × Acc(Mi)train set ), (8.30)

where Acc(Mi)test set is the accuracy of the model obtained with bootstrap sample i when
it is applied to test set i. Acc(Mi)train set is the accuracy of the model obtained with boot-
strap sample i when it is applied to the original set of data tuples. Bootstrapping tends
to be overly optimistic. It works best with small data sets.

7e is the base of natural logarithms, that is, e = 2.718.
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8.5.5 Model Selection Using Statistical Tests of Significance

Suppose that we have generated two classification models, M1 and M2, from our data.
We have performed 10-fold cross-validation to obtain a mean error rate8 for each. How
can we determine which model is best? It may seem intuitive to select the model with
the lowest error rate; however, the mean error rates are just estimates of error on the true
population of future data cases. There can be considerable variance between error rates
within any given 10-fold cross-validation experiment. Although the mean error rates
obtained for M1 and M2 may appear different, that difference may not be statistically
significant. What if any difference between the two may just be attributed to chance?
This section addresses these questions.

To determine if there is any “real” difference in the mean error rates of two models,
we need to employ a test of statistical significance. In addition, we want to obtain some
confidence limits for our mean error rates so that we can make statements like, “Any
observed mean will not vary by ± two standard errors 95% of the time for future samples”
or “One model is better than the other by a margin of error of ± 4%.”

What do we need to perform the statistical test? Suppose that for each model, we
did 10-fold cross-validation, say, 10 times, each time using a different 10-fold data par-
titioning. Each partitioning is independently drawn. We can average the 10 error rates
obtained each for M1 and M2, respectively, to obtain the mean error rate for each model.
For a given model, the individual error rates calculated in the cross-validations may be
considered as different, independent samples from a probability distribution. In gen-
eral, they follow a t-distribution with k − 1 degrees of freedom where, here, k = 10. (This
distribution looks very similar to a normal, or Gaussian, distribution even though the
functions defining the two are quite different. Both are unimodal, symmetric, and bell-
shaped.) This allows us to do hypothesis testing where the significance test used is the
t-test, or Student’s t-test. Our hypothesis is that the two models are the same, or in other
words, that the difference in mean error rate between the two is zero. If we can reject this
hypothesis (referred to as the null hypothesis), then we can conclude that the difference
between the two models is statistically significant, in which case we can select the model
with the lower error rate.

In data mining practice, we may often employ a single test set, that is, the same
test set can be used for both M1 and M2. In such cases, we do a pairwise compari-
son of the two models for each 10-fold cross-validation round. That is, for the ith round
of 10-fold cross-validation, the same cross-validation partitioning is used to obtain an
error rate for M1 and for M2. Let err(M1)i (or err(M2)i) be the error rate of model M1

(or M2) on round i. The error rates for M1 are averaged to obtain a mean error rate for
M1, denoted err(M1). Similarly, we can obtain err(M2). The variance of the difference
between the two models is denoted var(M1 − M2). The t-test computes the t-statistic
with k − 1 degrees of freedom for k samples. In our example we have k = 10 since, here,
the k samples are our error rates obtained from ten 10-fold cross-validations for each

8Recall that the error rate of a model, M , is 1 − accuracy(M).
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model. The t-statistic for pairwise comparison is computed as follows:

t = err(M1) − err(M2)√
var(M1 − M2)/k

, (8.31)

where

var(M1 − M2) = 1

k

k∑
i=1

[err(M1)i − err(M2)i − (err(M1) − err(M2))]
2 . (8.32)

To determine whether M1 and M2 are significantly different, we compute t and select
a significance level, sig. In practice, a significance level of 5% or 1% is typically used. We
then consult a table for the t-distribution, available in standard textbooks on statistics.
This table is usually shown arranged by degrees of freedom as rows and significance
levels as columns. Suppose we want to ascertain whether the difference between M1 and
M2 is significantly different for 95% of the population, that is, sig = 5% or 0.05. We
need to find the t-distribution value corresponding to k − 1 degrees of freedom (or 9
degrees of freedom for our example) from the table. However, because the t-distribution
is symmetric, typically only the upper percentage points of the distribution are shown.
Therefore, we look up the table value for z = sig/2, which in this case is 0.025, where
z is also referred to as a confidence limit. If t > z or t < −z, then our value of t lies
in the rejection region, within the distribution’s tails. This means that we can reject the
null hypothesis that the means of M1 and M2 are the same and conclude that there is
a statistically significant difference between the two models. Otherwise, if we cannot
reject the null hypothesis, we conclude that any difference between M1 and M2 can be
attributed to chance.

If two test sets are available instead of a single test set, then a nonpaired version of the
t-test is used, where the variance between the means of the two models is estimated as

var(M1 − M2) =
√

var(M1)

k1
+ var(M2)

k2
, (8.33)

and k1 and k2 are the number of cross-validation samples (in our case, 10-fold cross-
validation rounds) used for M1 and M2, respectively. This is also known as the two
sample t-test.9 When consulting the table of t-distribution, the number of degrees of
freedom used is taken as the minimum number of degrees of the two models.

8.5.6 Comparing Classifiers Based on Cost–Benefit
and ROC Curves

The true positives, true negatives, false positives, and false negatives are also useful in
assessing the costs and benefits (or risks and gains) associated with a classification

9This test was used in sampling cubes for OLAP-based mining in Chapter 5.
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model. The cost associated with a false negative (such as incorrectly predicting that a
cancerous patient is not cancerous) is far greater than those of a false positive
(incorrectly yet conservatively labeling a noncancerous patient as cancerous). In such
cases, we can outweigh one type of error over another by assigning a different cost to
each. These costs may consider the danger to the patient, financial costs of resulting
therapies, and other hospital costs. Similarly, the benefits associated with a true positive
decision may be different than those of a true negative. Up to now, to compute classifier
accuracy, we have assumed equal costs and essentially divided the sum of true positives
and true negatives by the total number of test tuples.

Alternatively, we can incorporate costs and benefits by instead computing the average
cost (or benefit) per decision. Other applications involving cost–benefit analysis include
loan application decisions and target marketing mailouts. For example, the cost of loan-
ing to a defaulter greatly exceeds that of the lost business incurred by denying a loan to a
nondefaulter. Similarly, in an application that tries to identify households that are likely
to respond to mailouts of certain promotional material, the cost of mailouts to numer-
ous households that do not respond may outweigh the cost of lost business from not
mailing to households that would have responded. Other costs to consider in the overall
analysis include the costs to collect the data and to develop the classification tool.

Receiver operating characteristic curves are a useful visual tool for comparing two
classification models. ROC curves come from signal detection theory that was deve-
loped during World War II for the analysis of radar images. An ROC curve for a given
model shows the trade-off between the true positive rate (TPR) and the false positive rate
(FPR).10 Given a test set and a model, TPR is the proportion of positive (or “yes”) tuples
that are correctly labeled by the model; FPR is the proportion of negative (or “no”)
tuples that are mislabeled as positive. Given that TP, FP, P, and N are the number of
true positive, false positive, positive, and negative tuples, respectively, from Section 8.5.1
we know that TPR = TP

P , which is sensitivity. Furthermore, FPR = FP
N , which is

1 − specificity.
For a two-class problem, an ROC curve allows us to visualize the trade-off between

the rate at which the model can accurately recognize positive cases versus the rate at
which it mistakenly identifies negative cases as positive for different portions of the test
set. Any increase in TPR occurs at the cost of an increase in FPR. The area under the
ROC curve is a measure of the accuracy of the model.

To plot an ROC curve for a given classification model, M , the model must be able to
return a probability of the predicted class for each test tuple. With this information, we
rank and sort the tuples so that the tuple that is most likely to belong to the positive or
“yes” class appears at the top of the list, and the tuple that is least likely to belong to the
positive class lands at the bottom of the list. Naı̈ve Bayesian (Section 8.3) and backpropa-
gation (Section 9.2) classifiers return a class probability distribution for each prediction
and, therefore, are appropriate, although other classifiers, such as decision tree classifiers
(Section 8.2), can easily be modified to return class probability predictions. Let the value

10TPR and FPR are the two operating characteristics being compared.
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that a probabilistic classifier returns for a given tuple X be f (X) → [0,1]. For a binary
problem, a threshold t is typically selected so that tuples where f (X) ≥ t are considered
positive and all the other tuples are considered negative. Note that the number of true
positives and the number of false positives are both functions of t , so that we could write
TP(t) and FP(t). Both are monotonic descending functions.

We first describe the general idea behind plotting an ROC curve, and then follow up
with an example. The vertical axis of an ROC curve represents TPR. The horizontal axis
represents FPR. To plot an ROC curve for M , we begin as follows. Starting at the bottom
left corner (where TPR = FPR = 0), we check the tuple’s actual class label at the top of
the list. If we have a true positive (i.e., a positive tuple that was correctly classified), then
TP and thus TPR increase. On the graph, we move up and plot a point. If, instead, the
model classifies a negative tuple as positive, we have a false positive, and so both FP and
FPR increase. On the graph, we move right and plot a point. This process is repeated
for each of the test tuples in ranked order, each time moving up on the graph for a true
positive or toward the right for a false positive.

Example 8.11 Plotting an ROC curve. Figure 8.18 shows the probability value (column 3) returned
by a probabilistic classifier for each of the 10 tuples in a test set, sorted by decreasing
probability order. Column 1 is merely a tuple identification number, which aids in our
explanation. Column 2 is the actual class label of the tuple. There are five positive tuples
and five negative tuples, thus P = 5 and N = 5. As we examine the known class label
of each tuple, we can determine the values of the remaining columns, TP, FP, TN , FN ,
TPR, and FPR. We start with tuple 1, which has the highest probability score, and take
that score as our threshold, that is, t = 0.9. Thus, the classifier considers tuple 1 to be
positive, and all the other tuples are considered negative. Since the actual class label
of tuple 1 is positive, we have a true positive, hence TP = 1 and FP = 0. Among the

Tuple # Class Prob. TP FP TN FN TPR FPR

1 P 0.90 1 0 5 4 0.2 0

2 P 0.80 2 0 5 3 0.4 0

3 N 0.70 2 1 4 3 0.4 0.2

4 P 0.60 3 1 4 2 0.6 0.2

5 P 0.55 4 1 4 1 0.8 0.2

6 N 0.54 4 2 3 1 0.8 0.4

7 N 0.53 4 3 2 1 0.8 0.6

8 N 0.51 4 4 1 1 0.8 0.8

9 P 0.50 5 4 1 0 1.0 0.8

10 N 0.40 5 5 0 0 1.0 1.0

Figure 8.18 Tuples sorted by decreasing score, where the score is the value returned by a probabilistic
classifier.
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Figure 8.19 ROC curve for the data in Figure 8.18.

remaining nine tuples, which are all classified as negative, five actually are negative (thus,
TN = 5). The remaining four are all actually positive, thus, FN = 4. We can therefore
compute TPR = TP

P = 1
5 = 0.2, while FPR = 0. Thus, we have the point (0.2,0) for the

ROC curve.
Next, threshold t is set to 0.8, the probability value for tuple 2, so this tuple is now

also considered positive, while tuples 3 through 10 are considered negative. The actual
class label of tuple 2 is positive, thus now TP = 2. The rest of the row can easily be
computed, resulting in the point (0.4,0). Next, we examine the class label of tuple 3 and
let t be 0.7, the probability value returned by the classifier for that tuple. Thus, tuple 3 is
considered positive, yet its actual label is negative, and so it is a false positive. Thus, TP
stays the same and FP increments so that FP = 1. The rest of the values in the row can
also be easily computed, yielding the point (0.4,0.2). The resulting ROC graph, from
examining each tuple, is the jagged line shown in Figure 8.19.

There are many methods to obtain a curve out of these points, the most common
of which is to use a convex hull. The plot also shows a diagonal line where for every
true positive of such a model, we are just as likely to encounter a false positive. For
comparison, this line represents random guessing.

Figure 8.20 shows the ROC curves of two classification models. The diagonal line
representing random guessing is also shown. Thus, the closer the ROC curve of a model
is to the diagonal line, the less accurate the model. If the model is really good, initially
we are more likely to encounter true positives as we move down the ranked list. Thus,
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Figure 8.20 ROC curves of two classification models, M1 and M2. The diagonal shows where, for every
true positive, we are equally likely to encounter a false positive. The closer an ROC curve is
to the diagonal line, the less accurate the model is. Thus, M1 is more accurate here.

the curve moves steeply up from zero. Later, as we start to encounter fewer and fewer
true positives, and more and more false positives, the curve eases off and becomes more
horizontal.

To assess the accuracy of a model, we can measure the area under the curve. Several
software packages are able to perform such calculation. The closer the area is to 0.5, the
less accurate the corresponding model is. A model with perfect accuracy will have an
area of 1.0.

8.6 Techniques to Improve Classification Accuracy

In this section, you will learn some tricks for increasing classification accuracy. We focus
on ensemble methods. An ensemble for classification is a composite model, made up of
a combination of classifiers. The individual classifiers vote, and a class label prediction
is returned by the ensemble based on the collection of votes. Ensembles tend to be more
accurate than their component classifiers. We start off in Section 8.6.1 by introducing
ensemble methods in general. Bagging (Section 8.6.2), boosting (Section 8.6.3), and
random forests (Section 8.6.4) are popular ensemble methods.

Traditional learning models assume that the data classes are well distributed. In
many real-world data domains, however, the data are class-imbalanced, where the
main class of interest is represented by only a few tuples. This is known as the class
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imbalance problem. We also study techniques for improving the classification accuracy
of class-imbalanced data. These are presented in Section 8.6.5.

8.6.1 Introducing Ensemble Methods

Bagging, boosting , and random forests are examples of ensemble methods (Figure 8.21).
An ensemble combines a series of k learned models (or base classifiers), M1, M2, . . . , Mk ,
with the aim of creating an improved composite classification model, M∗. A given data
set, D, is used to create k training sets, D1, D2, . . . , Dk , where Di (1 ≤ i ≤ k − 1) is used
to generate classifier Mi . Given a new data tuple to classify, the base classifiers each vote
by returning a class prediction. The ensemble returns a class prediction based on the
votes of the base classifiers.

An ensemble tends to be more accurate than its base classifiers. For example, con-
sider an ensemble that performs majority voting. That is, given a tuple X to classify, it
collects the class label predictions returned from the base classifiers and outputs the class
in majority. The base classifiers may make mistakes, but the ensemble will misclassify X
only if over half of the base classifiers are in error. Ensembles yield better results when
there is significant diversity among the models. That is, ideally, there is little correla-
tion among classifiers. The classifiers should also perform better than random guessing.
Each base classifier can be allocated to a different CPU and so ensemble methods are
parallelizable.

To help illustrate the power of an ensemble, consider a simple two-class problem
described by two attributes, x1 and x2. The problem has a linear decision boundary.
Figure 8.22(a) shows the decision boundary of a decision tree classifier on the problem.
Figure 8.22(b) shows the decision boundary of an ensemble of decision tree classifiers
on the same problem. Although the ensemble’s decision boundary is still piecewise
constant, it has a finer resolution and is better than that of a single tree.

M1

Data, D

M2

•

•

Mk

Combine
votes

New data
tuple

Prediction

D1

D2

Dk

Figure 8.21 Increasing classifier accuracy: Ensemble methods generate a set of classification models,
M1, M2, . . . , Mk . Given a new data tuple to classify, each classifier “votes” for the class label
of that tuple. The ensemble combines the votes to return a class prediction.
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Figure 8.22 Decision boundary by (a) a single decision tree and (b) an ensemble of decision trees for a
linearly separable problem (i.e., where the actual decision boundary is a straight line). The
decision tree struggles with approximating a linear boundary. The decision boundary of the
ensemble is closer to the true boundary. Source: From Seni and Elder [SE10]. c© 2010 Morgan
& Claypool Publishers; used with permission.

8.6.2 Bagging

We now take an intuitive look at how bagging works as a method of increasing accuracy.
Suppose that you are a patient and would like to have a diagnosis made based on your
symptoms. Instead of asking one doctor, you may choose to ask several. If a certain
diagnosis occurs more than any other, you may choose this as the final or best diagnosis.
That is, the final diagnosis is made based on a majority vote, where each doctor gets an
equal vote. Now replace each doctor by a classifier, and you have the basic idea behind
bagging. Intuitively, a majority vote made by a large group of doctors may be more
reliable than a majority vote made by a small group.

Given a set, D, of d tuples, bagging works as follows. For iteration i (i = 1, 2, . . . , k),
a training set, Di , of d tuples is sampled with replacement from the original set of
tuples, D. Note that the term bagging stands for bootstrap aggregation. Each training
set is a bootstrap sample, as described in Section 8.5.4. Because sampling with replace-
ment is used, some of the original tuples of D may not be included in Di , whereas others
may occur more than once. A classifier model, Mi , is learned for each training set, Di .
To classify an unknown tuple, X, each classifier, Mi , returns its class prediction, which
counts as one vote. The bagged classifier, M∗, counts the votes and assigns the class
with the most votes to X. Bagging can be applied to the prediction of continuous values
by taking the average value of each prediction for a given test tuple. The algorithm is
summarized in Figure 8.23.

The bagged classifier often has significantly greater accuracy than a single classifier
derived from D, the original training data. It will not be considerably worse and is more
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Algorithm: Bagging. The bagging algorithm—create an ensemble of classification models
for a learning scheme where each model gives an equally weighted prediction.

Input:

D, a set of d training tuples;

k, the number of models in the ensemble;

a classification learning scheme (decision tree algorithm, naı̈ve Bayesian, etc.).

Output: The ensemble—a composite model, M∗.

Method:

(1) for i = 1 to k do // create k models:
(2) create bootstrap sample, Di , by sampling D with replacement;
(3) use Di and the learning scheme to derive a model, Mi ;
(4) endfor

To use the ensemble to classify a tuple, X:

let each of the k models classify X and return the majority vote;

Figure 8.23 Bagging.

robust to the effects of noisy data and overfitting. The increased accuracy occurs because
the composite model reduces the variance of the individual classifiers.

8.6.3 Boosting and AdaBoost

We now look at the ensemble method of boosting. As in the previous section, suppose
that as a patient, you have certain symptoms. Instead of consulting one doctor, you
choose to consult several. Suppose you assign weights to the value or worth of each doc-
tor’s diagnosis, based on the accuracies of previous diagnoses they have made. The final
diagnosis is then a combination of the weighted diagnoses. This is the essence behind
boosting.

In boosting, weights are also assigned to each training tuple. A series of k classifiers is
iteratively learned. After a classifier, Mi , is learned, the weights are updated to allow the
subsequent classifier, Mi+1, to “pay more attention” to the training tuples that were mis-
classified by Mi . The final boosted classifier, M∗, combines the votes of each individual
classifier, where the weight of each classifier’s vote is a function of its accuracy.

AdaBoost (short for Adaptive Boosting) is a popular boosting algorithm. Suppose
we want to boost the accuracy of a learning method. We are given D, a data set of
d class-labeled tuples, (X1,y1),(X2,y2), . . . ,(Xd,yd), where yi is the class label of tuple
Xi. Initially, AdaBoost assigns each training tuple an equal weight of 1/d. Genera-
ting k classifiers for the ensemble requires k rounds through the rest of the algorithm.
We can sample to form any sized training set, not necessarily of size d. Sampling
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with replacement is used—the same tuple may be selected more than once. Each tuple’s
chance of being selected is based on its weight. A classifier model, Mi , is derived from
the training tuples of Di . Its error is then calculated using Di as a test set. The weights of
the training tuples are then adjusted according to how they were classified.

If a tuple was incorrectly classified, its weight is increased. If a tuple was correctly
classified, its weight is decreased. A tuple’s weight reflects how difficult it is to classify—
the higher the weight, the more often it has been misclassified. These weights will be
used to generate the training samples for the classifier of the next round. The basic idea
is that when we build a classifier, we want it to focus more on the misclassified tuples of
the previous round. Some classifiers may be better at classifying some “difficult” tuples
than others. In this way, we build a series of classifiers that complement each other. The
algorithm is summarized in Figure 8.24.

Now, let’s look at some of the math that’s involved in the algorithm. To compute
the error rate of model Mi , we sum the weights of each of the tuples in Di that Mi

misclassified. That is,

error(Mi) =
d∑

j=1

wj × err(Xj), (8.34)

where err(Xj) is the misclassification error of tuple Xj: If the tuple was misclassified, then
err(Xj) is 1; otherwise, it is 0. If the performance of classifier Mi is so poor that its error
exceeds 0.5, then we abandon it. Instead, we try again by generating a new Di training
set, from which we derive a new Mi .

The error rate of Mi affects how the weights of the training tuples are updated.
If a tuple in round i was correctly classified, its weight is multiplied by error(Mi)/

(1 − error(Mi)). Once the weights of all the correctly classified tuples are updated, the
weights for all tuples (including the misclassified ones) are normalized so that their sum
remains the same as it was before. To normalize a weight, we multiply it by the sum of
the old weights, divided by the sum of the new weights. As a result, the weights of mis-
classified tuples are increased and the weights of correctly classified tuples are decreased,
as described before.

“Once boosting is complete, how is the ensemble of classifiers used to predict the class label
of a tuple, X?” Unlike bagging, where each classifier was assigned an equal vote, boosting
assigns a weight to each classifier’s vote, based on how well the classifier performed. The
lower a classifier’s error rate, the more accurate it is, and therefore, the higher its weight
for voting should be. The weight of classifier Mi’s vote is

log
1 − error(Mi)

error(Mi)
. (8.35)

For each class, c, we sum the weights of each classifier that assigned class c to X. The class
with the highest sum is the “winner” and is returned as the class prediction for tuple X.

“How does boosting compare with bagging?” Because of the way boosting focuses on
the misclassified tuples, it risks overfitting the resulting composite model to such data.
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Algorithm: AdaBoost. A boosting algorithm—create an ensemble of classifiers. Each one
gives a weighted vote.

Input:

D, a set of d class-labeled training tuples;

k, the number of rounds (one classifier is generated per round);

a classification learning scheme.

Output: A composite model.

Method:

(1) initialize the weight of each tuple in D to 1/d;

(2) for i = 1 to k do // for each round:

(3) sample D with replacement according to the tuple weights to obtain Di ;

(4) use training set Di to derive a model, Mi ;

(5) compute error(Mi), the error rate of Mi (Eq. 8.34)

(6) if error(Mi) > 0.5 then
(7) go back to step 3 and try again;

(8) endif
(9) for each tuple in Di that was correctly classified do
(10) multiply the weight of the tuple by error(Mi)/(1 − error(Mi)); // update weights

(11) normalize the weight of each tuple;

(12) endfor

To use the ensemble to classify tuple, X:

(1) initialize weight of each class to 0;

(2) for i = 1 to k do // for each classifier:

(3) wi = log 1−error(Mi)
error(Mi)

; // weight of the classifier’s vote

(4) c = Mi(X); // get class prediction for X from Mi

(5) add wi to weight for class c

(6) endfor
(7) return the class with the largest weight;

Figure 8.24 AdaBoost, a boosting algorithm.

Therefore, sometimes the resulting “boosted” model may be less accurate than a single
model derived from the same data. Bagging is less susceptible to model overfitting. While
both can significantly improve accuracy in comparison to a single model, boosting tends
to achieve greater accuracy.

8.6.4 Random Forests

We now present another ensemble method called random forests. Imagine that each of
the classifiers in the ensemble is a decision tree classifier so that the collection of classifiers
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is a “forest.” The individual decision trees are generated using a random selection of
attributes at each node to determine the split. More formally, each tree depends on the
values of a random vector sampled independently and with the same distribution for
all trees in the forest. During classification, each tree votes and the most popular class is
returned.

Random forests can be built using bagging (Section 8.6.2) in tandem with random
attribute selection. A training set, D, of d tuples is given. The general procedure to gen-
erate k decision trees for the ensemble is as follows. For each iteration, i (i = 1, 2, . . . , k),
a training set, Di , of d tuples is sampled with replacement from D. That is, each Di is a
bootstrap sample of D (Section 8.5.4), so that some tuples may occur more than once
in Di , while others may be excluded. Let F be the number of attributes to be used to
determine the split at each node, where F is much smaller than the number of avail-
able attributes. To construct a decision tree classifier, Mi , randomly select, at each node,
F attributes as candidates for the split at the node. The CART methodology is used to
grow the trees. The trees are grown to maximum size and are not pruned. Random
forests formed this way, with random input selection, are called Forest-RI.

Another form of random forest, called Forest-RC, uses random linear combinations
of the input attributes. Instead of randomly selecting a subset of the attributes, it cre-
ates new attributes (or features) that are a linear combination of the existing attributes.
That is, an attribute is generated by specifying L, the number of original attributes to be
combined. At a given node, L attributes are randomly selected and added together with
coefficients that are uniform random numbers on [−1,1]. F linear combinations are
generated, and a search is made over these for the best split. This form of random forest
is useful when there are only a few attributes available, so as to reduce the correlation
between individual classifiers.

Random forests are comparable in accuracy to AdaBoost, yet are more robust to
errors and outliers. The generalization error for a forest converges as long as the num-
ber of trees in the forest is large. Thus, overfitting is not a problem. The accuracy of a
random forest depends on the strength of the individual classifiers and a measure of the
dependence between them. The ideal is to maintain the strength of individual classifiers
without increasing their correlation. Random forests are insensitive to the number of
attributes selected for consideration at each split. Typically, up to log2d + 1 are chosen.
(An interesting empirical observation was that using a single random input attribute
may result in good accuracy that is often higher than when using several attributes.)
Because random forests consider many fewer attributes for each split, they are efficient
on very large databases. They can be faster than either bagging or boosting. Random
forests give internal estimates of variable importance.

8.6.5 Improving Classification Accuracy of Class-Imbalanced Data

In this section, we revisit the class imbalance problem. In particular, we study approaches
to improving the classification accuracy of class-imbalanced data.

Given two-class data, the data are class-imbalanced if the main class of interest (the
positive class) is represented by only a few tuples, while the majority of tuples represent
the negative class. For multiclass-imbalanced data, the data distribution of each class
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differs substantially where, again, the main class or classes of interest are rare. The
class imbalance problem is closely related to cost-sensitive learning, wherein the costs of
errors, per class, are not equal. In medical diagnosis, for example, it is much more costly
to falsely diagnose a cancerous patient as healthy (a false negative) than to misdiagnose
a healthy patient as having cancer (a false positive). A false negative error could lead to
the loss of life and therefore is much more expensive than a false positive error. Other
applications involving class-imbalanced data include fraud detection, the detection of
oil spills from satellite radar images, and fault monitoring.

Traditional classification algorithms aim to minimize the number of errors made dur-
ing classification. They assume that the costs of false positive and false negative errors
are equal. By assuming a balanced distribution of classes and equal error costs, they
are therefore not suitable for class-imbalanced data. Earlier parts of this chapter pre-
sented ways of addressing the class imbalance problem. Although the accuracy measure
assumes that the cost of classes are equal, alternative evaluation metrics can be used that
consider the different types of classifications. Section 8.5.1, for example, presented sensi-
tivity or recall (the true positive rate) and specificity (the true negative rate), which help
to assess how well a classifier can predict the class label of imbalanced data. Additional
relevant measures discussed include F1 and Fβ . Section 8.5.6 showed how ROC curves
plot sensitivity versus 1 − specificity (i.e., the false positive rate). Such curves can provide
insight when studying the performance of classifiers on class-imbalanced data.

In this section, we look at general approaches for improving the classification accu-
racy of class-imbalanced data. These approaches include (1) oversampling, (2) under-
sampling, (3) threshold moving, and (4) ensemble techniques. The first three do not
involve any changes to the construction of the classification model. That is, oversam-
pling and undersampling change the distribution of tuples in the training set; threshold
moving affects how the model makes decisions when classifying new data. Ensemble
methods follow the techniques described in Sections 8.6.2 through 8.6.4. For ease of
explanation, we describe these general approaches with respect to the two-class imbal-
ance data problem, where the higher-cost classes are rarer than the lower-cost classes.

Both oversampling and undersampling change the training data distribution so that
the rare (positive) class is well represented. Oversampling works by resampling the pos-
itive tuples so that the resulting training set contains an equal number of positive and
negative tuples. Undersampling works by decreasing the number of negative tuples. It
randomly eliminates tuples from the majority (negative) class until there are an equal
number of positive and negative tuples.

Example 8.12 Oversampling and undersampling. Suppose the original training set contains 100 pos-
itive and 1000 negative tuples. In oversampling, we replicate tuples of the rarer class
to form a new training set containing 1000 positive tuples and 1000 negative tuples.
In undersampling, we randomly eliminate negative tuples so that the new training set
contains 100 positive tuples and 100 negative tuples.

Several variations to oversampling and undersampling exist. They may vary, for
instance, in how tuples are added or eliminated. For example, the SMOTE algorithm
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uses oversampling where synthetic tuples are added, which are “close to” the given
positive tuples in tuple space.

The threshold-moving approach to the class imbalance problem does not involve
any sampling. It applies to classifiers that, given an input tuple, return a continuous
output value (just like in Section 8.5.6, where we discussed how to construct ROC
curves). That is, for an input tuple, X, such a classifier returns as output a mapping,
f (X) → [0,1]. Rather than manipulating the training tuples, this method returns a clas-
sification decision based on the output values. In the simplest approach, tuples for which
f (X) ≥ t , for some threshold, t , are considered positive, while all other tuples are con-
sidered negative. Other approaches may involve manipulating the outputs by weighting.
In general, threshold moving moves the threshold, t , so that the rare class tuples are eas-
ier to classify (and hence, there is less chance of costly false negative errors). Examples of
such classifiers include naı̈ve Bayesian classifiers (Section 8.3) and neural network clas-
sifiers like backpropagation (Section 9.2). The threshold-moving method, although not
as popular as over- and undersampling, is simple and has shown some success for the
two-class-imbalanced data.

Ensemble methods (Sections 8.6.2 through 8.6.4) have also been applied to the class
imbalance problem. The individual classifiers making up the ensemble may include
versions of the approaches described here such as oversampling and threshold moving.

These methods work relatively well for the class imbalance problem on two-class
tasks. Threshold-moving and ensemble methods were empirically observed to outper-
form oversampling and undersampling. Threshold moving works well even on data
sets that are extremely imbalanced. The class imbalance problem on multiclass tasks
is much more difficult, where oversampling and threshold moving are less effective.
Although threshold-moving and ensemble methods show promise, finding a solution
for the multiclass imbalance problem remains an area of future work.

8.7 Summary

Classification is a form of data analysis that extracts models describing data classes.
A classifier, or classification model, predicts categorical labels (classes). Numeric pre-
diction models continuous-valued functions. Classification and numeric prediction
are the two major types of prediction problems.

Decision tree induction is a top-down recursive tree induction algorithm, which
uses an attribute selection measure to select the attribute tested for each nonleaf node
in the tree. ID3, C4.5, and CART are examples of such algorithms using different
attribute selection measures. Tree pruning algorithms attempt to improve accuracy
by removing tree branches reflecting noise in the data. Early decision tree algorithms
typically assume that the data are memory resident. Several scalable algorithms, such
as RainForest, have been proposed for scalable tree induction.

Naı̈ve Bayesian classification is based on Bayes’ theorem of posterior probability. It
assumes class-conditional independence—that the effect of an attribute value on a
given class is independent of the values of the other attributes.
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A rule-based classifier uses a set of IF-THEN rules for classification. Rules can be
extracted from a decision tree. Rules may also be generated directly from training
data using sequential covering algorithms.

A confusion matrix can be used to evaluate a classifier’s quality. For a two-class
problem, it shows the true positives, true negatives, false positives, and false negatives.
Measures that assess a classifier’s predictive ability include accuracy, sensitivity (also
known as recall), specificity, precision, F , and Fβ . Reliance on the accuracy measure
can be deceiving when the main class of interest is in the minority.

Construction and evaluation of a classifier require partitioning labeled data into
a training set and a test set. Holdout, random sampling, cross-validation, and
bootstrapping are typical methods used for such partitioning.

Significance tests and ROC curves are useful tools for model selection. Significance
tests can be used to assess whether the difference in accuracy between two classifiers
is due to chance. ROC curves plot the true positive rate (or sensitivity) versus the
false positive rate (or 1 − specificity) of one or more classifiers.

Ensemble methods can be used to increase overall accuracy by learning and combin-
ing a series of individual (base) classifier models. Bagging, boosting, and random
forests are popular ensemble methods.

The class imbalance problem occurs when the main class of interest is represented
by only a few tuples. Strategies to address this problem include oversampling,
undersampling, threshold moving, and ensemble techniques.

8.8 Exercises

8.1 Briefly outline the major steps of decision tree classification.

8.2 Why is tree pruning useful in decision tree induction? What is a drawback of using a
separate set of tuples to evaluate pruning?

8.3 Given a decision tree, you have the option of (a) converting the decision tree to rules and
then pruning the resulting rules, or (b) pruning the decision tree and then converting
the pruned tree to rules. What advantage does (a) have over (b)?

8.4 It is important to calculate the worst-case computational complexity of the decision tree
algorithm. Given data set, D, the number of attributes, n, and the number of training
tuples, |D|, show that the computational cost of growing a tree is at most n × |D| ×
log(|D|).

8.5 Given a 5-GB data set with 50 attributes (each containing 100 distinct values) and 512
MB of main memory in your laptop, outline an efficient method that constructs deci-
sion trees in such large data sets. Justify your answer by rough calculation of your main
memory usage.



8.8 Exercises 387

8.6 Why is naı̈ve Bayesian classification called “naı̈ve”? Briefly outline the major ideas of
naı̈ve Bayesian classification.

8.7 The following table consists of training data from an employee database. The data have
been generalized. For example, “31 . . . 35” for age represents the age range of 31 to 35.
For a given row entry, count represents the number of data tuples having the values for
department, status, age, and salary given in that row.

department status age salary count

sales senior 31 . . .35 46K . . .50K 30

sales junior 26 . . .30 26K . . .30K 40

sales junior 31 . . .35 31K . . .35K 40

systems junior 21 . . .25 46K . . .50K 20

systems senior 31 . . .35 66K . . .70K 5

systems junior 26 . . .30 46K . . .50K 3

systems senior 41 . . .45 66K . . .70K 3

marketing senior 36 . . .40 46K . . .50K 10

marketing junior 31 . . .35 41K . . .45K 4

secretary senior 46 . . .50 36K . . .40K 4

secretary junior 26 . . .30 26K . . .30K 6

Let status be the class label attribute.

(a) How would you modify the basic decision tree algorithm to take into consideration
the count of each generalized data tuple (i.e., of each row entry)?

(b) Use your algorithm to construct a decision tree from the given data.

(c) Given a data tuple having the values “systems,” “26 . . . 30,” and “46–50K” for the
attributes department, age, and salary, respectively, what would a naı̈ve Bayesian
classification of the status for the tuple be?

8.8 RainForest is a scalable algorithm for decision tree induction. Develop a scalable naı̈ve
Bayesian classification algorithm that requires just a single scan of the entire data set
for most databases. Discuss whether such an algorithm can be refined to incorporate
boosting to further enhance its classification accuracy.

8.9 Design an efficient method that performs effective naı̈ve Bayesian classification over
an infinite data stream (i.e., you can scan the data stream only once). If we wanted
to discover the evolution of such classification schemes (e.g., comparing the classifica-
tion scheme at this moment with earlier schemes such as one from a week ago), what
modified design would you suggest?

8.10 Show that accuracy is a function of sensitivity and specificity, that is, prove Eq. (8.25).

8.11 The harmonic mean is one of several kinds of averages. Chapter 2 discussed how to
compute the arithmetic mean, which is what most people typically think of when they
compute an average. The harmonic mean, H , of the positive real numbers, x1,x2, . . . ,xn,
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is defined as

H = n
1
x1

+ 1
x2

+ ·· · + 1
xn

= n∑n
i=1

1
xi

.

The F measure is the harmonic mean of precision and recall. Use this fact to derive
Eq. (8.28) for F . In addition, write Fβ as a function of true positives, false negatives, and
false positives.

8.12 The data tuples of Figure 8.25 are sorted by decreasing probability value, as returned by
a classifier. For each tuple, compute the values for the number of true positives (TP),
false positives (FP), true negatives (TN), and false negatives (FN). Compute the true
positive rate (TPR) and false positive rate (FPR). Plot the ROC curve for the data.

8.13 It is difficult to assess classification accuracy when individual data objects may belong to
more than one class at a time. In such cases, comment on what criteria you would use
to compare different classifiers modeled after the same data.

8.14 Suppose that we want to select between two prediction models, M1 and M2. We have
performed 10 rounds of 10-fold cross-validation on each model, where the same data
partitioning in round i is used for both M1 and M2. The error rates obtained for M1 are
30.5, 32.2, 20.7, 20.6, 31.0, 41.0, 27.7, 26.0, 21.5, 26.0. The error rates for M2 are 22.4,
14.5, 22.4, 19.6, 20.7, 20.4, 22.1, 19.4, 16.2, 35.0. Comment on whether one model is
significantly better than the other considering a significance level of 1%.

8.15 What is boosting? State why it may improve the accuracy of decision tree induction.

Tuple # Class Probability

1 P 0.95

2 N 0.85

3 P 0.78

4 P 0.66

5 N 0.60

6 P 0.55

7 N 0.53

8 N 0.52

9 N 0.51

10 P 0.40

Figure 8.25 Tuples sorted by decreasing score, where the score is the value returned by a
probabilistic classifier.
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8.16 Outline methods for addressing the class imbalance problem. Suppose a bank wants to
develop a classifier that guards against fraudulent credit card transactions. Illustrate how
you can induce a quality classifier based on a large set of nonfraudulent examples and a
very small set of fraudulent cases.
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9Classification: Advanced
Methods

In this chapter, you will learn advanced techniques for data classification. We start with
Bayesian belief networks (Section 9.1), which unlike naı̈ve Bayesian classifiers, do not
assume class conditional independence. Backpropagation, a neural network algorithm,
is discussed in Section 9.2. In general terms, a neural network is a set of connected
input/output units in which each connection has a weight associated with it. The weights
are adjusted during the learning phase to help the network predict the correct class label
of the input tuples. A more recent approach to classification known as support vector
machines is presented in Section 9.3. A support vector machine transforms training
data into a higher dimension, where it finds a hyperplane that separates the data by
class using essential training tuples called support vectors. Section 9.4 describes classi-
fication using frequent patterns, exploring relationships between attribute–value pairs
that occur frequently in data. This methodology builds on research on frequent pattern
mining (Chapters 6 and 7).

Section 9.5 presents lazy learners or instance-based methods of classification, such
as nearest-neighbor classifiers and case-based reasoning classifiers, which store all of the
training tuples in pattern space and wait until presented with a test tuple before perform-
ing generalization. Other approaches to classification, such as genetic algorithms, rough
sets, and fuzzy logic techniques, are introduced in Section 9.6. Section 9.7 introduces
additional topics in classification, including multiclass classification, semi-supervised
classification, active learning, and transfer learning.

9.1 Bayesian Belief Networks

Chapter 8 introduced Bayes’ theorem and naı̈ve Bayesian classification. In this chap-
ter, we describe Bayesian belief networks—probabilistic graphical models, which unlike
naïve Bayesian classifiers allow the representation of dependencies among subsets of
attributes. Bayesian belief networks can be used for classification. Section 9.1.1 intro-
duces the basic concepts of Bayesian belief networks. In Section 9.1.2, you will learn
how to train such models.

c© 2012 Elsevier Inc. All rights reserved.
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9.1.1 Concepts and Mechanisms

The naı̈ve Bayesian classifier makes the assumption of class conditional independence,
that is, given the class label of a tuple, the values of the attributes are assumed to
be conditionally independent of one another. This simplifies computation. When the
assumption holds true, then the naïve Bayesian classifier is the most accurate in com-
parison with all other classifiers. In practice, however, dependencies can exist between
variables. Bayesian belief networks specify joint conditional probability distributions.
They allow class conditional independencies to be defined between subsets of variables.
They provide a graphical model of causal relationships, on which learning can be per-
formed. Trained Bayesian belief networks can be used for classification. Bayesian belief
networks are also known as belief networks, Bayesian networks, and probabilistic
networks. For brevity, we will refer to them as belief networks.

A belief network is defined by two components—a directed acyclic graph and a set of
conditional probability tables (Figure 9.1). Each node in the directed acyclic graph rep-
resents a random variable. The variables may be discrete- or continuous-valued. They
may correspond to actual attributes given in the data or to “hidden variables” believed
to form a relationship (e.g., in the case of medical data, a hidden variable may indicate
a syndrome, representing a number of symptoms that, together, characterize a specific
disease). Each arc represents a probabilistic dependence. If an arc is drawn from a node
Y to a node Z , then Y is a parent or immediate predecessor of Z , and Z is a descendant

FamilyHistory

LungCancer

PositiveXRay

Smoker

Emphysema

Dyspnea

(a) (b)

FH, S

0.8

0.2

LC

~LC

FH, ~S

0.5

0.5

~FH, S

0.7

0.3

~FH, ~S

0.1
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Figure 9.1 Simple Bayesian belief network. (a) A proposed causal model, represented by a directed
acyclic graph. (b) The conditional probability table for the values of the variable LungCancer
(LC) showing each possible combination of the values of its parent nodes, FamilyHis-
tory (FH) and Smoker (S). Source: Adapted from Russell, Binder, Koller, and Kanazawa
[RBKK95].
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of Y . Each variable is conditionally independent of its nondescendants in the graph, given
its parents.

Figure 9.1 is a simple belief network, adapted from Russell, Binder, Koller, and
Kanazawa [RBKK95] for six Boolean variables. The arcs in Figure 9.1(a) allow a rep-
resentation of causal knowledge. For example, having lung cancer is influenced by a
person’s family history of lung cancer, as well as whether or not the person is a smoker.
Note that the variable PositiveXRay is independent of whether the patient has a family
history of lung cancer or is a smoker, given that we know the patient has lung cancer. In
other words, once we know the outcome of the variable LungCancer, then the variables
FamilyHistory and Smoker do not provide any additional information regarding Posi-
tiveXRay. The arcs also show that the variable LungCancer is conditionally independent
of Emphysema, given its parents, FamilyHistory and Smoker.

A belief network has one conditional probability table (CPT) for each variable.
The CPT for a variable Y specifies the conditional distribution P(Y |Parents(Y )), where
Parents(Y ) are the parents of Y . Figure 9.1(b) shows a CPT for the variable LungCancer.
The conditional probability for each known value of LungCancer is given for each pos-
sible combination of the values of its parents. For instance, from the upper leftmost and
bottom rightmost entries, respectively, we see that

P(LungCancer = yes |FamilyHistory = yes, Smoker = yes) = 0.8

P(LungCancer = no |FamilyHistory = no, Smoker = no) = 0.9.

Let X = (x1, . . . , xn) be a data tuple described by the variables or attributes Y1, . . . , Yn,
respectively. Recall that each variable is conditionally independent of its nondescen-
dants in the network graph, given its parents. This allows the network to provide a
complete representation of the existing joint probability distribution with the following
equation:

P(x1, . . . , xn) =
n∏

i=1

P(xi|Parents(Yi)), (9.1)

where P(x1, . . . , xn) is the probability of a particular combination of values of X, and the
values for P(xi|Parents(Yi)) correspond to the entries in the CPT for Yi .

A node within the network can be selected as an “output” node, representing a class
label attribute. There may be more than one output node. Various algorithms for infer-
ence and learning can be applied to the network. Rather than returning a single class
label, the classification process can return a probability distribution that gives the prob-
ability of each class. Belief networks can be used to answer probability of evidence
queries (e.g., what is the probability that an individual will have LungCancer, given that
they have both PositiveXRay and Dyspnea) and most probable explanation queries (e.g.,
which group of the population is most likely to have both PositiveXRay and Dyspnea).

Belief networks have been used to model a number of well-known problems. One
example is genetic linkage analysis (e.g., the mapping of genes onto a chromosome). By
casting the gene linkage problem in terms of inference on Bayesian networks, and using
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state-of-the art algorithms, the scalability of such analysis has advanced considerably.
Other applications that have benefited from the use of belief networks include computer
vision (e.g., image restoration and stereo vision), document and text analysis, decision-
support systems, and sensitivity analysis. The ease with which many applications can
be reduced to Bayesian network inference is advantageous in that it curbs the need to
invent specialized algorithms for each such application.

9.1.2 Training Bayesian Belief Networks

“How does a Bayesian belief network learn?” In the learning or training of a belief net-
work, a number of scenarios are possible. The network topology (or “layout” of nodes
and arcs) may be constructed by human experts or inferred from the data. The network
variables may be observable or hidden in all or some of the training tuples. The hidden
data case is also referred to as missing values or incomplete data.

Several algorithms exist for learning the network topology from the training data
given observable variables. The problem is one of discrete optimization. For solutions,
please see the bibliographic notes at the end of this chapter (Section 9.10). Human
experts usually have a good grasp of the direct conditional dependencies that hold in the
domain under analysis, which helps in network design. Experts must specify conditional
probabilities for the nodes that participate in direct dependencies. These probabilities
can then be used to compute the remaining probability values.

If the network topology is known and the variables are observable, then training the
network is straightforward. It consists of computing the CPT entries, as is similarly done
when computing the probabilities involved in naı̈ve Bayesian classification.

When the network topology is given and some of the variables are hidden, there
are various methods to choose from for training the belief network. We will describe
a promising method of gradient descent. For those without an advanced math back-
ground, the description may look rather intimidating with its calculus-packed formulae.
However, packaged software exists to solve these equations, and the general idea is easy
to follow.

Let D be a training set of data tuples, X1,X2, . . . , X|D|. Training the belief network
means that we must learn the values of the CPT entries. Let wijk be a CPT entry for
the variable Yi = yij having the parents Ui = uik , where wijk ≡ P(Yi = yij|Ui = uik). For
example, if wijk is the upper leftmost CPT entry of Figure 9.1(b), then Yi is LungCancer;
yij is its value, “yes”; Ui lists the parent nodes of Yi , namely, {FamilyHistory, Smoker};
and uik lists the values of the parent nodes, namely, {“yes”, “yes”}. The wijk are viewed
as weights, analogous to the weights in hidden units of neural networks (Section 9.2).
The set of weights is collectively referred to as W. The weights are initialized to ran-
dom probability values. A gradient descent strategy performs greedy hill-climbing. At
each iteration, the weights are updated and will eventually converge to a local optimum
solution.

A gradient descent strategy is used to search for the wijk values that best model the
data, based on the assumption that each possible setting of wijk is equally likely. Such
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a strategy is iterative. It searches for a solution along the negative of the gradient (i.e.,
steepest descent) of a criterion function. We want to find the set of weights, W, that
maximize this function. To start with, the weights are initialized to random probabil-
ity values. The gradient descent method performs greedy hill-climbing in that, at each
iteration or step along the way, the algorithm moves toward what appears to be the
best solution at the moment, without backtracking. The weights are updated at each
iteration. Eventually, they converge to a local optimum solution.

For our problem, we maximize Pw(D) = ∏|D|
d=1 Pw(Xd). This can be done by fol-

lowing the gradient of lnPw(S), which makes the problem simpler. Given the network
topology and initialized wijk , the algorithm proceeds as follows:

1. Compute the gradients: For each i, j, k, compute

∂lnPw(D)

∂wijk
=

|D|∑
d=1

P(Yi = yij , Ui = uik|Xd)

wijk
. (9.2)

The probability on the right side of Eq. (9.2) is to be calculated for each training tuple,
Xd , in D. For brevity, let’s refer to this probability simply as p. When the variables
represented by Yi and Ui are hidden for some Xd , then the corresponding proba-
bility p can be computed from the observed variables of the tuple using standard
algorithms for Bayesian network inference such as those available in the commercial
software package HUGIN (www.hugin.dk).

2. Take a small step in the direction of the gradient: The weights are updated by

wijk ← wijk + (l)
∂lnPw(D)

∂wijk
, (9.3)

where l is the learning rate representing the step size and ∂lnPw(D)
∂wijk

is computed from

Eq. (9.2). The learning rate is set to a small constant and helps with convergence.

3. Renormalize the weights: Because the weights wijk are probability values, they must
be between 0.0 and 1.0, and

∑
j wijk must equal 1 for all i, k. These criteria are

achieved by renormalizing the weights after they have been updated by Eq. (9.3).

Algorithms that follow this learning form are called adaptive probabilistic networks.
Other methods for training belief networks are referenced in the bibliographic notes
at the end of this chapter (Section 9.10). Belief networks are computationally inten-
sive. Because belief networks provide explicit representations of causal structure, a
human expert can provide prior knowledge to the training process in the form of net-
work topology and/or conditional probability values. This can significantly improve the
learning rate.



398 Chapter 9 Classification: Advanced Methods

9.2 Classification by Backpropagation

“What is backpropagation?” Backpropagation is a neural network learning algorithm.
The neural networks field was originally kindled by psychologists and neurobiologists
who sought to develop and test computational analogs of neurons. Roughly speaking, a
neural network is a set of connected input/output units in which each connection has
a weight associated with it. During the learning phase, the network learns by adjusting
the weights so as to be able to predict the correct class label of the input tuples. Neural
network learning is also referred to as connectionist learning due to the connections
between units.

Neural networks involve long training times and are therefore more suitable for appli-
cations where this is feasible. They require a number of parameters that are typically
best determined empirically such as the network topology or “structure.” Neural net-
works have been criticized for their poor interpretability. For example, it is difficult for
humans to interpret the symbolic meaning behind the learned weights and of “hidden
units” in the network. These features initially made neural networks less desirable for
data mining.

Advantages of neural networks, however, include their high tolerance of noisy data
as well as their ability to classify patterns on which they have not been trained. They
can be used when you may have little knowledge of the relationships between attributes
and classes. They are well suited for continuous-valued inputs and outputs, unlike most
decision tree algorithms. They have been successful on a wide array of real-world data,
including handwritten character recognition, pathology and laboratory medicine, and
training a computer to pronounce English text. Neural network algorithms are inher-
ently parallel; parallelization techniques can be used to speed up the computation
process. In addition, several techniques have been recently developed for rule extrac-
tion from trained neural networks. These factors contribute to the usefulness of neural
networks for classification and numeric prediction in data mining.

There are many different kinds of neural networks and neural network algorithms.
The most popular neural network algorithm is backpropagation, which gained repute
in the 1980s. In Section 9.2.1 you will learn about multilayer feed-forward net-
works, the type of neural network on which the backpropagation algorithm performs.
Section 9.2.2 discusses defining a network topology. The backpropagation algorithm is
described in Section 9.2.3. Rule extraction from trained neural networks is discussed in
Section 9.2.4.

9.2.1 A Multilayer Feed-Forward Neural Network

The backpropagation algorithm performs learning on a multilayer feed-forward neural
network. It iteratively learns a set of weights for prediction of the class label of tuples.
A multilayer feed-forward neural network consists of an input layer, one or more hidden
layers, and an output layer. An example of a multilayer feed-forward network is shown
in Figure 9.2.
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1

1j

2j
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Figure 9.2 Multilayer feed-forward neural network.

Each layer is made up of units. The inputs to the network correspond to the attributes
measured for each training tuple. The inputs are fed simultaneously into the units
making up the input layer. These inputs pass through the input layer and are then
weighted and fed simultaneously to a second layer of “neuronlike” units, known as a
hidden layer. The outputs of the hidden layer units can be input to another hidden
layer, and so on. The number of hidden layers is arbitrary, although in practice, usually
only one is used. The weighted outputs of the last hidden layer are input to units making
up the output layer, which emits the network’s prediction for given tuples.

The units in the input layer are called input units. The units in the hidden layers and
output layer are sometimes referred to as neurodes, due to their symbolic biological
basis, or as output units. The multilayer neural network shown in Figure 9.2 has two
layers of output units. Therefore, we say that it is a two-layer neural network. (The
input layer is not counted because it serves only to pass the input values to the next
layer.) Similarly, a network containing two hidden layers is called a three-layer neural
network, and so on. It is a feed-forward network since none of the weights cycles back
to an input unit or to a previous layer’s output unit. It is fully connected in that each
unit provides input to each unit in the next forward layer.

Each output unit takes, as input, a weighted sum of the outputs from units in the
previous layer (see Figure 9.4 later). It applies a nonlinear (activation) function to the
weighted input. Multilayer feed-forward neural networks are able to model the class pre-
diction as a nonlinear combination of the inputs. From a statistical point of view, they
perform nonlinear regression. Multilayer feed-forward networks, given enough hidden
units and enough training samples, can closely approximate any function.
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9.2.2 Defining a Network Topology

“How can I design the neural network’s topology?” Before training can begin, the user
must decide on the network topology by specifying the number of units in the input
layer, the number of hidden layers (if more than one), the number of units in each
hidden layer, and the number of units in the output layer.

Normalizing the input values for each attribute measured in the training tuples will
help speed up the learning phase. Typically, input values are normalized so as to fall
between 0.0 and 1.0. Discrete-valued attributes may be encoded such that there is one
input unit per domain value. For example, if an attribute A has three possible or known
values, namely {a0, a1, a2}, then we may assign three input units to represent A. That
is, we may have, say, I0, I1, I2 as input units. Each unit is initialized to 0. If A = a0, then
I0 is set to 1 and the rest are 0. If A = a1, then I1 is set to 1 and the rest are 0, and
so on.

Neural networks can be used for both classification (to predict the class label of a
given tuple) and numeric prediction (to predict a continuous-valued output). For clas-
sification, one output unit may be used to represent two classes (where the value 1
represents one class, and the value 0 represents the other). If there are more than two
classes, then one output unit per class is used. (See Section 9.7.1 for more strategies on
multiclass classification.)

There are no clear rules as to the “best” number of hidden layer units. Network design
is a trial-and-error process and may affect the accuracy of the resulting trained net-
work. The initial values of the weights may also affect the resulting accuracy. Once a
network has been trained and its accuracy is not considered acceptable, it is common to
repeat the training process with a different network topology or a different set of initial
weights. Cross-validation techniques for accuracy estimation (described in Chapter 8)
can be used to help decide when an acceptable network has been found. A number of
automated techniques have been proposed that search for a “good” network structure.
These typically use a hill-climbing approach that starts with an initial structure that is
selectively modified.

9.2.3 Backpropagation

“How does backpropagation work?” Backpropagation learns by iteratively processing a
data set of training tuples, comparing the network’s prediction for each tuple with the
actual known target value. The target value may be the known class label of the training
tuple (for classification problems) or a continuous value (for numeric prediction). For
each training tuple, the weights are modified so as to minimize the mean-squared error
between the network’s prediction and the actual target value. These modifications are
made in the “backwards” direction (i.e., from the output layer) through each hidden
layer down to the first hidden layer (hence the name backpropagation). Although it is
not guaranteed, in general the weights will eventually converge, and the learning process
stops. The algorithm is summarized in Figure 9.3. The steps involved are expressed in
terms of inputs, outputs, and errors, and may seem awkward if this is your first look at
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Algorithm: Backpropagation. Neural network learning for classification or numeric
prediction, using the backpropagation algorithm.

Input:

D, a data set consisting of the training tuples and their associated target values;

l, the learning rate;

network, a multilayer feed-forward network.

Output: A trained neural network.
Method:

(1) Initialize all weights and biases in network;
(2) while terminating condition is not satisfied {
(3) for each training tuple X in D {
(4) // Propagate the inputs forward:
(5) for each input layer unit j {
(6) Oj = Ij ; // output of an input unit is its actual input value
(7) for each hidden or output layer unit j {
(8) Ij = ∑

i wijOi + θj ; //compute the net input of unit j with respect to
the previous layer, i

(9) Oj = 1

1+e
−Ij

; } // compute the output of each unit j

(10) // Backpropagate the errors:
(11) for each unit j in the output layer
(12) Errj = Oj(1 − Oj)(Tj − Oj); // compute the error
(13) for each unit j in the hidden layers, from the last to the first hidden layer
(14) Errj = Oj(1 − Oj)

∑
k Errkwjk ; // compute the error with respect to

the next higher layer, k
(15) for each weight wij in network {
(16) �wij = (l)ErrjOi ; // weight increment
(17) wij = wij + �wij ; } // weight update
(18) for each bias θj in network {
(19) �θj = (l)Errj ; // bias increment
(20) θj = θj + �θj ; } // bias update
(21) } }

Figure 9.3 Backpropagation algorithm.

neural network learning. However, once you become familiar with the process, you will
see that each step is inherently simple. The steps are described next.

Initialize the weights: The weights in the network are initialized to small random num-
bers (e.g., ranging from −1.0 to 1.0, or −0.5 to 0.5). Each unit has a bias associated with
it, as explained later. The biases are similarly initialized to small random numbers.

Each training tuple, X, is processed by the following steps.

Propagate the inputs forward: First, the training tuple is fed to the network’s input
layer. The inputs pass through the input units, unchanged. That is, for an input unit, j,
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Figure 9.4 Hidden or output layer unit j: The inputs to unit j are outputs from the previous layer. These
are multiplied by their corresponding weights to form a weighted sum, which is added to the
bias associated with unit j. A nonlinear activation function is applied to the net input. (For
ease of explanation, the inputs to unit j are labeled y1, y2, . . . , yn. If unit j were in the first
hidden layer, then these inputs would correspond to the input tuple (x1, x2, . . . , xn).)

its output, Oj , is equal to its input value, Ij . Next, the net input and output of each unit
in the hidden and output layers are computed. The net input to a unit in the hidden or
output layers is computed as a linear combination of its inputs. To help illustrate this
point, a hidden layer or output layer unit is shown in Figure 9.4. Each such unit has
a number of inputs to it that are, in fact, the outputs of the units connected to it in
the previous layer. Each connection has a weight. To compute the net input to the unit,
each input connected to the unit is multiplied by its corresponding weight, and this is
summed. Given a unit, j in a hidden or output layer, the net input, Ij , to unit j is

Ij =
∑

i

wijOi + θj , (9.4)

where wij is the weight of the connection from unit i in the previous layer to unit j; Oi is
the output of unit i from the previous layer; and θj is the bias of the unit. The bias acts
as a threshold in that it serves to vary the activity of the unit.

Each unit in the hidden and output layers takes its net input and then applies an acti-
vation function to it, as illustrated in Figure 9.4. The function symbolizes the activation
of the neuron represented by the unit. The logistic, or sigmoid, function is used. Given
the net input Ij to unit j, then Oj , the output of unit j, is computed as

Oj = 1

1 + e−Ij
. (9.5)
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This function is also referred to as a squashing function, because it maps a large input
domain onto the smaller range of 0 to 1. The logistic function is nonlinear and
differentiable, allowing the backpropagation algorithm to model classification problems
that are linearly inseparable.

We compute the output values, Oj , for each hidden layer, up to and including the
output layer, which gives the network’s prediction. In practice, it is a good idea to
cache (i.e., save) the intermediate output values at each unit as they are required again
later when backpropagating the error. This trick can substantially reduce the amount of
computation required.

Backpropagate the error: The error is propagated backward by updating the weights
and biases to reflect the error of the network’s prediction. For a unit j in the output
layer, the error Errj is computed by

Errj = Oj(1 − Oj)(Tj − Oj), (9.6)

where Oj is the actual output of unit j, and Tj is the known target value of the given
training tuple. Note that Oj(1 − Oj) is the derivative of the logistic function.

To compute the error of a hidden layer unit j, the weighted sum of the errors of the
units connected to unit j in the next layer are considered. The error of a hidden layer
unit j is

Errj = Oj(1 − Oj)
∑

k

Errkwjk , (9.7)

where wjk is the weight of the connection from unit j to a unit k in the next higher layer,
and Errk is the error of unit k.

The weights and biases are updated to reflect the propagated errors. Weights are
updated by the following equations, where �wij is the change in weight wij :

�wij = (l )ErrjOi . (9.8)

wij = wij + �wij . (9.9)

“What is l in Eq. (9.8)?” The variable l is the learning rate, a constant typically having
a value between 0.0 and 1.0. Backpropagation learns using a gradient descent method
to search for a set of weights that fits the training data so as to minimize the mean-
squared distance between the network’s class prediction and the known target value of
the tuples.1 The learning rate helps avoid getting stuck at a local minimum in decision
space (i.e., where the weights appear to converge, but are not the optimum solution) and
encourages finding the global minimum. If the learning rate is too small, then learning
will occur at a very slow pace. If the learning rate is too large, then oscillation between

1A method of gradient descent was also used for training Bayesian belief networks, as described in
Section 9.1.2.
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inadequate solutions may occur. A rule of thumb is to set the learning rate to 1/t , where
t is the number of iterations through the training set so far.

Biases are updated by the following equations, where �θj is the change in bias θj :

�θj = (l)Errj . (9.10)

θj = θj + �θj . (9.11)

Note that here we are updating the weights and biases after the presentation of each
tuple. This is referred to as case updating. Alternatively, the weight and bias incre-
ments could be accumulated in variables, so that the weights and biases are updated
after all the tuples in the training set have been presented. This latter strategy is called
epoch updating, where one iteration through the training set is an epoch. In the-
ory, the mathematical derivation of backpropagation employs epoch updating, yet
in practice, case updating is more common because it tends to yield more accurate
results.

Terminating condition: Training stops when

All �wij in the previous epoch are so small as to be below some specified
threshold, or

The percentage of tuples misclassified in the previous epoch is below some thresh-
old, or

A prespecified number of epochs has expired.

In practice, several hundreds of thousands of epochs may be required before the weights
will converge.

“How efficient is backpropagation?” The computational efficiency depends on the
time spent training the network. Given |D| tuples and w weights, each epoch requires
O(|D| × w) time. However, in the worst-case scenario, the number of epochs can be
exponential in n, the number of inputs. In practice, the time required for the networks
to converge is highly variable. A number of techniques exist that help speed up the train-
ing time. For example, a technique known as simulated annealing can be used, which
also ensures convergence to a global optimum.

Example 9.1 Sample calculations for learning by the backpropagation algorithm. Figure 9.5 shows
a multilayer feed-forward neural network. Let the learning rate be 0.9. The initial weight
and bias values of the network are given in Table 9.1, along with the first training tuple,
X = (1, 0, 1), with a class label of 1.

This example shows the calculations for backpropagation, given the first training
tuple, X. The tuple is fed into the network, and the net input and output of each unit
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are computed. These values are shown in Table 9.2. The error of each unit is computed
and propagated backward. The error values are shown in Table 9.3. The weight and bias
updates are shown in Table 9.4.

5
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w46

w56

w35

w34

w25

w24

w15

w14
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x3
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3

Figure 9.5 Example of a multilayer feed-forward neural network.

Table 9.1 Initial Input, Weight, and Bias Values

x1 x2 x3 w14 w15 w24 w25 w34 w35 w46 w56 θ4 θ5 θ6

1 0 1 0.2 −0.3 0.4 0.1 −0.5 0.2 −0.3 −0.2 −0.4 0.2 0.1

Table 9.2 Net Input and Output Calculations

Unit, j Net Input, Ij Output, Oj

4 0.2 + 0 − 0.5 − 0.4 = −0.7 1/(1 + e0.7) = 0.332

5 −0.3 + 0 + 0.2 + 0.2 = 0.1 1/(1 + e−0.1) = 0.525

6 (−0.3)(0.332) − (0.2)(0.525) + 0.1 = −0.105 1/(1 + e0.105) = 0.474

Table 9.3 Calculation of the Error at Each Node

Unit, j Errj

6 (0.474)(1 − 0.474)(1 − 0.474) = 0.1311

5 (0.525)(1 − 0.525)(0.1311)(−0.2) = −0.0065

4 (0.332)(1 − 0.332)(0.1311)(−0.3) = −0.0087
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Table 9.4 Calculations for Weight and Bias Updating

Weight
or Bias New Value

w46 −0.3 + (0.9)(0.1311)(0.332) = −0.261

w56 −0.2 + (0.9)(0.1311)(0.525) = −0.138

w14 0.2 + (0.9)(−0.0087)(1) = 0.192

w15 −0.3 + (0.9)(−0.0065)(1) = −0.306

w24 0.4 + (0.9)(−0.0087)(0) = 0.4

w25 0.1 + (0.9)(−0.0065)(0) = 0.1

w34 −0.5 + (0.9)(−0.0087)(1) = −0.508

w35 0.2 + (0.9)(−0.0065)(1) = 0.194

θ6 0.1 + (0.9)(0.1311) = 0.218

θ5 0.2 + (0.9)(−0.0065) = 0.194

θ4 −0.4 + (0.9)(−0.0087) = −0.408

“How can we classify an unknown tuple using a trained network?” To classify an
unknown tuple, X, the tuple is input to the trained network, and the net input and
output of each unit are computed. (There is no need for computation and/or backpro-
pagation of the error.) If there is one output node per class, then the output node with
the highest value determines the predicted class label for X. If there is only one output
node, then output values greater than or equal to 0.5 may be considered as belonging to
the positive class, while values less than 0.5 may be considered negative.

Several variations and alternatives to the backpropagation algorithm have been pro-
posed for classification in neural networks. These may involve the dynamic adjustment
of the network topology and of the learning rate or other parameters, or the use of
different error functions.

9.2.4 Inside the Black Box: Backpropagation and Interpretability

“Neural networks are like a black box. How can I ‘understand’ what the backpropagation
network has learned?” A major disadvantage of neural networks lies in their knowledge
representation. Acquired knowledge in the form of a network of units connected by
weighted links is difficult for humans to interpret. This factor has motivated research in
extracting the knowledge embedded in trained neural networks and in representing that
knowledge symbolically. Methods include extracting rules from networks and sensitivity
analysis.

Various algorithms for rule extraction have been proposed. The methods typically
impose restrictions regarding procedures used in training the given neural network, the
network topology, and the discretization of input values.

Fully connected networks are difficult to articulate. Hence, often the first step in
extracting rules from neural networks is network pruning. This consists of simplifying
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the network structure by removing weighted links that have the least effect on the trained
network. For example, a weighted link may be deleted if such removal does not result in
a decrease in the classification accuracy of the network.

Once the trained network has been pruned, some approaches will then perform link,
unit, or activation value clustering. In one method, for example, clustering is used to
find the set of common activation values for each hidden unit in a given trained two-
layer neural network (Figure 9.6). The combinations of these activation values for each
hidden unit are analyzed. Rules are derived relating combinations of activation values

H1 H2 H3

O1 O2

I1 I2 I3 I4 I5 I6 I7

Identify sets of common activation values for
each hidden node, Hi:

Derive rules relating common activation values
with output nodes, Oj:

Derive rules relating input nodes, Ij, to
output nodes, Oj:

Obtain rules relating inputs and output classes:

for H1: (–1,0,1)
for H2: (0,1)
for H3: (–1,0.24,1)

IF (H2 = 0 AND H3 = –1) OR
     (H1 = –1 AND H2 = 1 AND H3 = –1) OR
     (H1 = –1 AND H2 = 0 AND H3 = 0.24)
THEN O1 = 1, O2 = 0
ELSE O1 = 0, O2 = 1

IF (I2 = 0 AND I7 = 0) THEN H2 = 0
IF (I4 = 1 AND I6 = 1) THEN H3 = –1
IF (I5 = 0) THEN H3 = –1

IF (I2 = 0 AND I7 = 0 AND I4 = 1 AND
I6 = 1) THEN class = 1
IF (I2 = 0 AND I7 = 0 AND I5 = 0) THEN
class = 1

Figure 9.6 Rules can be extracted from training neural networks. Source: Adapted from Lu, Setiono, and
Liu [LSL95].
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with corresponding output unit values. Similarly, the sets of input values and activation
values are studied to derive rules describing the relationship between the input layer
and the hidden “layer units”? Finally, the two sets of rules may be combined to form
IF-THEN rules. Other algorithms may derive rules of other forms, including M-of-N
rules (where M out of a given N conditions in the rule antecedent must be true for the
rule consequent to be applied), decision trees with M-of-N tests, fuzzy rules, and finite
automata.

Sensitivity analysis is used to assess the impact that a given input variable has on a
network output. The input to the variable is varied while the remaining input variables
are fixed at some value. Meanwhile, changes in the network output are monitored. The
knowledge gained from this analysis form can be represented in rules such as “IF X
decreases 5% THEN Y increases 8%.”

9.3 Support Vector Machines

In this section, we study support vector machines (SVMs), a method for the classifi-
cation of both linear and nonlinear data. In a nutshell, an SVM is an algorithm that
works as follows. It uses a nonlinear mapping to transform the original training data
into a higher dimension. Within this new dimension, it searches for the linear opti-
mal separating hyperplane (i.e., a “decision boundary” separating the tuples of one class
from another). With an appropriate nonlinear mapping to a sufficiently high dimen-
sion, data from two classes can always be separated by a hyperplane. The SVM finds this
hyperplane using support vectors (“essential” training tuples) and margins (defined by
the support vectors). We will delve more into these new concepts later.

“I’ve heard that SVMs have attracted a great deal of attention lately. Why?” The first
paper on support vector machines was presented in 1992 by Vladimir Vapnik and col-
leagues Bernhard Boser and Isabelle Guyon, although the groundwork for SVMs has
been around since the 1960s (including early work by Vapnik and Alexei Chervonenkis
on statistical learning theory). Although the training time of even the fastest SVMs
can be extremely slow, they are highly accurate, owing to their ability to model com-
plex nonlinear decision boundaries. They are much less prone to overfitting than other
methods. The support vectors found also provide a compact description of the learned
model. SVMs can be used for numeric prediction as well as classification. They have
been applied to a number of areas, including handwritten digit recognition, object
recognition, and speaker identification, as well as benchmark time-series prediction
tests.

9.3.1 The Case When the Data Are Linearly Separable

To explain the mystery of SVMs, let’s first look at the simplest case—a two-class prob-
lem where the classes are linearly separable. Let the data set D be given as (X1, y1),
(X2, y2), . . . , (X|D|, y|D|), where Xi is the set of training tuples with associated class
labels, yi . Each yi can take one of two values, either +1 or −1 (i.e., yi ∈ {+1, − 1}),
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Class 1, y = +1 (buys_computer = yes)

Class 2, y = −1 (buys_computer = no)

Figure 9.7 The 2-D training data are linearly separable. There are an infinite number of possible
separating hyperplanes or “decision boundaries,” some of which are shown here as dashed
lines. Which one is best?

corresponding to the classes buys computer = yes and buys computer = no, respectively.
To aid in visualization, let’s consider an example based on two input attributes, A1 and
A2, as shown in Figure 9.7. From the graph, we see that the 2-D data are linearly separa-
ble (or “linear,” for short), because a straight line can be drawn to separate all the tuples
of class +1 from all the tuples of class −1.

There are an infinite number of separating lines that could be drawn. We want to find
the “best” one, that is, one that (we hope) will have the minimum classification error on
previously unseen tuples. How can we find this best line? Note that if our data were 3-D
(i.e., with three attributes), we would want to find the best separating plane. Generalizing
to n dimensions, we want to find the best hyperplane. We will use “hyperplane” to refer to
the decision boundary that we are seeking, regardless of the number of input attributes.
So, in other words, how can we find the best hyperplane?

An SVM approaches this problem by searching for the maximum marginal hyper-
plane. Consider Figure 9.8, which shows two possible separating hyperplanes and their
associated margins. Before we get into the definition of margins, let’s take an intuitive
look at this figure. Both hyperplanes can correctly classify all the given data tuples. Intu-
itively, however, we expect the hyperplane with the larger margin to be more accurate
at classifying future data tuples than the hyperplane with the smaller margin. This is
why (during the learning or training phase) the SVM searches for the hyperplane with
the largest margin, that is, the maximum marginal hyperplane (MMH). The associated
margin gives the largest separation between classes.
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Figure 9.8 Here we see just two possible separating hyperplanes and their associated margins. Which
one is better? The one with the larger margin (b) should have greater generalization accuracy.

Getting to an informal definition of margin, we can say that the shortest distance
from a hyperplane to one side of its margin is equal to the shortest distance from the
hyperplane to the other side of its margin, where the “sides” of the margin are parallel
to the hyperplane. When dealing with the MMH, this distance is, in fact, the shortest
distance from the MMH to the closest training tuple of either class.

A separating hyperplane can be written as

W · X + b = 0, (9.12)

where W is a weight vector, namely, W = {w1, w2, . . . , wn}; n is the number of attributes;
and b is a scalar, often referred to as a bias. To aid in visualization, let’s consider two input
attributes, A1 and A2, as in Figure 9.8(b). Training tuples are 2-D (e.g., X = (x1, x2)),
where x1 and x2 are the values of attributes A1 and A2, respectively, for X. If we think of
b as an additional weight, w0, we can rewrite Eq. (9.12) as

w0 + w1x1 + w2x2 = 0. (9.13)

Thus, any point that lies above the separating hyperplane satisfies

w0 + w1x1 + w2x2 > 0. (9.14)

Similarly, any point that lies below the separating hyperplane satisfies

w0 + w1x1 + w2x2 < 0. (9.15)
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The weights can be adjusted so that the hyperplanes defining the “sides” of the margin
can be written as

H1 : w0 + w1x1 + w2x2 ≥ 1 for yi = +1, (9.16)

H2 : w0 + w1x1 + w2x2 ≤ −1 for yi = −1. (9.17)

That is, any tuple that falls on or above H1 belongs to class +1, and any tuple that falls
on or below H2 belongs to class −1. Combining the two inequalities of Eqs. (9.16) and
(9.17), we get

yi(w0 + w1x1 + w2x2) ≥ 1, ∀i. (9.18)

Any training tuples that fall on hyperplanes H1 or H2 (i.e., the “sides” defining the
margin) satisfy Eq. (9.18) and are called support vectors. That is, they are equally close
to the (separating) MMH. In Figure 9.9, the support vectors are shown encircled with
a thicker border. Essentially, the support vectors are the most difficult tuples to classify
and give the most information regarding classification.

From this, we can obtain a formula for the size of the maximal margin. The distance
from the separating hyperplane to any point on H1 is 1

||W|| , where ||W|| is the Euclidean

norm of W , that is,
√

W · W .2 By definition, this is equal to the distance from any point
on H2 to the separating hyperplane. Therefore, the maximal margin is 2

||W|| .
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Figure 9.9 Support vectors. The SVM finds the maximum separating hyperplane, that is, the one with
maximum distance between the nearest training tuples. The support vectors are shown with
a thicker border.

2If W = {w1, w2, . . . , wn}, then
√

W · W =
√

w2
1 + w2

2 + ·· · + w2
n .
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“So, how does an SVM find the MMH and the support vectors?” Using some “fancy
math tricks,” we can rewrite Eq. (9.18) so that it becomes what is known as a constrained
(convex) quadratic optimization problem. Such fancy math tricks are beyond the scope
of this book. Advanced readers may be interested to note that the tricks involve rewrit-
ing Eq. (9.18) using a Lagrangian formulation and then solving for the solution using
Karush-Kuhn-Tucker (KKT) conditions. Details can be found in the bibliographic notes
at the end of this chapter (Section 9.10).

If the data are small (say, less than 2000 training tuples), any optimization software
package for solving constrained convex quadratic problems can then be used to find
the support vectors and MMH. For larger data, special and more efficient algorithms
for training SVMs can be used instead, the details of which exceed the scope of this
book. Once we’ve found the support vectors and MMH (note that the support vectors
define the MMH!), we have a trained support vector machine. The MMH is a linear class
boundary, and so the corresponding SVM can be used to classify linearly separable data.
We refer to such a trained SVM as a linear SVM.

“Once I’ve got a trained support vector machine, how do I use it to classify test (i.e.,
new) tuples?” Based on the Lagrangian formulation mentioned before, the MMH can be
rewritten as the decision boundary

d(XT ) =
l∑

i=1

yiαiXiXT + b0, (9.19)

where yi is the class label of support vector Xi ; XT is a test tuple; αi and b0 are numeric
parameters that were determined automatically by the optimization or SVM algorithm
noted before; and l is the number of support vectors.

Interested readers may note that the αi are Lagrangian multipliers. For linearly sepa-
rable data, the support vectors are a subset of the actual training tuples (although there
will be a slight twist regarding this when dealing with nonlinearly separable data, as we
shall see in the following).

Given a test tuple, XT , we plug it into Eq. (9.19), and then check to see the sign of the
result. This tells us on which side of the hyperplane the test tuple falls. If the sign is posi-
tive, then XT falls on or above the MMH, and so the SVM predicts that XT belongs
to class +1 (representing buys computer = yes, in our case). If the sign is negative,
then XT falls on or below the MMH and the class prediction is −1 (representing
buys computer = no).

Notice that the Lagrangian formulation of our problem (Eq. 9.19) contains a dot
product between support vector Xi and test tuple XT . This will prove very useful for
finding the MMH and support vectors for the case when the given data are nonlinearly
separable, as described further in the next section.

Before we move on to the nonlinear case, there are two more important things to
note. The complexity of the learned classifier is characterized by the number of support
vectors rather than the dimensionality of the data. Hence, SVMs tend to be less prone
to overfitting than some other methods. The support vectors are the essential or critical
training tuples—they lie closest to the decision boundary (MMH). If all other training
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tuples were removed and training were repeated, the same separating hyperplane would
be found. Furthermore, the number of support vectors found can be used to compute
an (upper) bound on the expected error rate of the SVM classifier, which is independent
of the data dimensionality. An SVM with a small number of support vectors can have
good generalization, even when the dimensionality of the data is high.

9.3.2 The Case When the Data Are Linearly Inseparable

In Section 9.3.1 we learned about linear SVMs for classifying linearly separable data, but
what if the data are not linearly separable, as in Figure 9.10? In such cases, no straight
line can be found that would separate the classes. The linear SVMs we studied would
not be able to find a feasible solution here. Now what?

The good news is that the approach described for linear SVMs can be extended to
create nonlinear SVMs for the classification of linearly inseparable data (also called non-
linearly separable data, or nonlinear data for short). Such SVMs are capable of finding
nonlinear decision boundaries (i.e., nonlinear hypersurfaces) in input space.

“So,” you may ask, “how can we extend the linear approach?” We obtain a nonlinear
SVM by extending the approach for linear SVMs as follows. There are two main steps.
In the first step, we transform the original input data into a higher dimensional space
using a nonlinear mapping. Several common nonlinear mappings can be used in this
step, as we will further describe next. Once the data have been transformed into the
new higher space, the second step searches for a linear separating hyperplane in the new
space. We again end up with a quadratic optimization problem that can be solved using
the linear SVM formulation. The maximal marginal hyperplane found in the new space
corresponds to a nonlinear separating hypersurface in the original space.

A1

A2

Class 1, y = +1 (buys_computer = yes)

Class 2, y = −1 (buys_computer = no)

Figure 9.10 A simple 2-D case showing linearly inseparable data. Unlike the linear separable data of
Figure 9.7, here it is not possible to draw a straight line to separate the classes. Instead, the
decision boundary is nonlinear.
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Example 9.2 Nonlinear transformation of original input data into a higher dimensional space.
Consider the following example. A 3-D input vector X = (x1, x2, x3) is mapped into
a 6-D space, Z, using the mappings φ1(X) = x1, φ2(X) = x2, φ3(X) = x3, φ4(X) =
(x1)

2, φ5(X) = x1x2, and φ6(X) = x1x3. A decision hyperplane in the new space is
d(Z) = WZ + b, where W and Z are vectors. This is linear. We solve for W and
b and then substitute back so that the linear decision hyperplane in the new (Z)
space corresponds to a nonlinear second-order polynomial in the original 3-D input
space:

d(Z) = w1x1 + w2x2 + w3x3 + w4(x1)
2 + w5x1x2 + w6x1x3 + b

= w1z1 + w2z2 + w3z3 + w4z4 + w5z5 + w6z6 + b.

But there are some problems. First, how do we choose the nonlinear mapping to
a higher dimensional space? Second, the computation involved will be costly. Refer to
Eq. (9.19) for the classification of a test tuple, XT . Given the test tuple, we have to com-
pute its dot product with every one of the support vectors.3 In training, we have to
compute a similar dot product several times in order to find the MMH. This is espe-
cially expensive. Hence, the dot product computation required is very heavy and costly.
We need another trick!

Luckily, we can use another math trick. It so happens that in solving the quadratic
optimization problem of the linear SVM (i.e., when searching for a linear SVM in the
new higher dimensional space), the training tuples appear only in the form of dot prod-
ucts, φ(Xi) · φ(Xj), where φ(X) is simply the nonlinear mapping function applied to
transform the training tuples. Instead of computing the dot product on the transformed
data tuples, it turns out that it is mathematically equivalent to instead apply a kernel
function, K(Xi , Xj), to the original input data. That is,

K(Xi , Xj) = φ(Xi) · φ(Xj). (9.20)

In other words, everywhere that φ(Xi) · φ(Xj) appears in the training algorithm, we can
replace it with K(Xi ,Xj). In this way, all calculations are made in the original input space,
which is of potentially much lower dimensionality! We can safely avoid the mapping—it
turns out that we don’t even have to know what the mapping is! We will talk more later
about what kinds of functions can be used as kernel functions for this problem.

After applying this trick, we can then proceed to find a maximal separating hyper-
plane. The procedure is similar to that described in Section 9.3.1, although it involves
placing a user-specified upper bound, C, on the Lagrange multipliers, αi . This upper
bound is best determined experimentally.

“What are some of the kernel functions that could be used?” Properties of the kinds of
kernel functions that could be used to replace the dot product scenario just described

3The dot product of two vectors, XT = (xT
1 , xT

2 , . . . , xT
n ) and Xi = (xi1, xi2, . . . , xin) is xT

1 xi1 + xT
2 xi2

+ ·· · + xT
n xin. Note that this involves one multiplication and one addition for each of the n dimensions.
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have been studied. Three admissible kernel functions are

Polynomial kernel of degree h: K(Xi , Xj) = (Xi · Xj + 1)h

Gaussian radial basis function kernel: K(Xi , Xj) = e−‖Xi−Xj‖2/2σ 2

Sigmoid kernel: K(Xi , Xj) = tanh(κXi · Xj − δ)

Each of these results in a different nonlinear classifier in (the original) input space.
Neural network aficionados will be interested to note that the resulting decision hyper-
planes found for nonlinear SVMs are the same type as those found by other well-known
neural network classifiers. For instance, an SVM with a Gaussian radial basis func-
tion (RBF) gives the same decision hyperplane as a type of neural network known as
a radial basis function network. An SVM with a sigmoid kernel is equivalent to a simple
two-layer neural network known as a multilayer perceptron (with no hidden layers).

There are no golden rules for determining which admissible kernel will result in the
most accurate SVM. In practice, the kernel chosen does not generally make a large
difference in resulting accuracy. SVM training always finds a global solution, unlike
neural networks, such as backpropagation, where many local minima usually exist
(Section 9.2.3).

So far, we have described linear and nonlinear SVMs for binary (i.e., two-class) clas-
sification. SVM classifiers can be combined for the multiclass case. See Section 9.7.1 for
some strategies, such as training one classifier per class and the use of error-correcting
codes.

A major research goal regarding SVMs is to improve the speed in training and testing
so that SVMs may become a more feasible option for very large data sets (e.g., millions
of support vectors). Other issues include determining the best kernel for a given data set
and finding more efficient methods for the multiclass case.

9.4 Classification Using Frequent Patterns

Frequent patterns show interesting relationships between attribute–value pairs that
occur frequently in a given data set. For example, we may find that the attribute–value
pairs age = youth and credit = OK occur in 20% of data tuples describing AllElectronics
customers who buy a computer. We can think of each attribute–value pair as an item,
so the search for these frequent patterns is known as frequent pattern mining or frequent
itemset mining. In Chapters 6 and 7, we saw how association rules are derived from
frequent patterns, where the associations are commonly used to analyze the purchas-
ing patterns of customers in a store. Such analysis is useful in many decision-making
processes such as product placement, catalog design, and cross-marketing.

In this section, we examine how frequent patterns can be used for classification.
Section 9.4.1 explores associative classification, where association rules are generated
from frequent patterns and used for classification. The general idea is that we can search
for strong associations between frequent patterns (conjunctions of attribute–value
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pairs) and class labels. Section 9.4.2 explores discriminative frequent pattern–based
classification, where frequent patterns serve as combined features, which are considered
in addition to single features when building a classification model. Because frequent
patterns explore highly confident associations among multiple attributes, frequent
pattern–based classification may overcome some constraints introduced by decision tree
induction, which considers only one attribute at a time. Studies have shown many fre-
quent pattern–based classification methods to have greater accuracy and scalability than
some traditional classification methods such as C4.5.

9.4.1 Associative Classification

In this section, you will learn about associative classification. The methods discussed are
CBA, CMAR, and CPAR.

Before we begin, however, let’s look at association rule mining in general. Association
rules are mined in a two-step process consisting of frequent itemset mining followed by
rule generation. The first step searches for patterns of attribute–value pairs that occur
repeatedly in a data set, where each attribute–value pair is considered an item. The
resulting attribute–value pairs form frequent itemsets (also referred to as frequent pat-
terns). The second step analyzes the frequent itemsets to generate association rules. All
association rules must satisfy certain criteria regarding their “accuracy” (or confidence)
and the proportion of the data set that they actually represent (referred to as support).
For example, the following is an association rule mined from a data set, D, shown with
its confidence and support:

age = youth ∧ credit = OK ⇒ buys computer

= yes [support = 20%, confidence = 93%], (9.21)

where ∧ represents a logical “AND.” We will say more about confidence and support
later.

More formally, let D be a data set of tuples. Each tuple in D is described by n
attributes, A1, A2, . . . , An, and a class label attribute, Aclass . All continuous attributes are
discretized and treated as categorical (or nominal) attributes. An item, p, is an attribute–
value pair of the form (Ai , v), where Ai is an attribute taking a value, v. A data tuple
X = (x1, x2, . . . , xn) satisfies an item, p = (Ai , v), if and only if xi = v, where xi is the
value of the ith attribute of X. Association rules can have any number of items in the
rule antecedent (left side) and any number of items in the rule consequent (right side).
However, when mining association rules for use in classification, we are only interested
in association rules of the form p1 ∧ p2 ∧ . . .pl ⇒ Aclass = C, where the rule antecedent
is a conjunction of items, p1, p2, . . . , pl (l ≤ n), associated with a class label, C. For a
given rule, R, the percentage of tuples in D satisfying the rule antecedent that also have
the class label C is called the confidence of R.

From a classification point of view, this is akin to rule accuracy. For example, a con-
fidence of 93% for Rule (9.21) means that 93% of the customers in D who are young
and have an OK credit rating belong to the class buys computer = yes. The percentage of
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tuples in D satisfying the rule antecedent and having class label C is called the support
of R. A support of 20% for Rule (9.21) means that 20% of the customers in D are young,
have an OK credit rating, and belong to the class buys computer = yes.

In general, associative classification consists of the following steps:

1. Mine the data for frequent itemsets, that is, find commonly occurring attribute–value
pairs in the data.

2. Analyze the frequent itemsets to generate association rules per class, which satisfy
confidence and support criteria.

3. Organize the rules to form a rule-based classifier.

Methods of associative classification differ primarily in the approach used for frequent
itemset mining and in how the derived rules are analyzed and used for classification. We
now look at some of the various methods for associative classification.

One of the earliest and simplest algorithms for associative classification is CBA (Clas-
sification Based on Associations). CBA uses an iterative approach to frequent itemset
mining, similar to that described for Apriori in Section 6.2.1, where multiple passes are
made over the data and the derived frequent itemsets are used to generate and test longer
itemsets. In general, the number of passes made is equal to the length of the longest rule
found. The complete set of rules satisfying minimum confidence and minimum sup-
port thresholds are found and then analyzed for inclusion in the classifier. CBA uses
a heuristic method to construct the classifier, where the rules are ordered according to
decreasing precedence based on their confidence and support. If a set of rules has the
same antecedent, then the rule with the highest confidence is selected to represent the
set. When classifying a new tuple, the first rule satisfying the tuple is used to classify it.
The classifier also contains a default rule, having lowest precedence, which specifies a
default class for any new tuple that is not satisfied by any other rule in the classifier. In
this way, the set of rules making up the classifier form a decision list. In general, CBA was
empirically found to be more accurate than C4.5 on a good number of data sets.

CMAR (Classification based on Multiple Association Rules) differs from CBA in its
strategy for frequent itemset mining and its construction of the classifier. It also employs
several rule pruning strategies with the help of a tree structure for efficient storage
and retrieval of rules. CMAR adopts a variant of the FP-growth algorithm to find the
complete set of rules satisfying the minimum confidence and minimum support thresh-
olds. FP-growth was described in Section 6.2.4. FP-growth uses a tree structure, called
an FP-tree, to register all the frequent itemset information contained in the given data
set, D. This requires only two scans of D. The frequent itemsets are then mined from the
FP-tree. CMAR uses an enhanced FP-tree that maintains the distribution of class labels
among tuples satisfying each frequent itemset. In this way, it is able to combine rule
generation together with frequent itemset mining in a single step.

CMAR employs another tree structure to store and retrieve rules efficiently and
to prune rules based on confidence, correlation, and database coverage. Rule pruning
strategies are triggered whenever a rule is inserted into the tree. For example, given
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two rules, R1 and R2, if the antecedent of R1 is more general than that of R2 and
conf(R1) ≥ conf(R2), then R2 is pruned. The rationale is that highly specialized rules
with low confidence can be pruned if a more generalized version with higher confidence
exists. CMAR also prunes rules for which the rule antecedent and class are not positively
correlated, based on an χ2 test of statistical significance.

“If more than one rule applies, which one do we use?” As a classifier, CMAR operates
differently than CBA. Suppose that we are given a tuple X to classify and that only one
rule satisfies or matches X.4 This case is trivial—we simply assign the rule’s class label.
Suppose, instead, that more than one rule satisfies X. These rules form a set, S. Which
rule would we use to determine the class label of X? CBA would assign the class label
of the most confident rule among the rule set, S. CMAR instead considers multiple
rules when making its class prediction. It divides the rules into groups according to
class labels. All rules within a group share the same class label and each group has a
distinct class label.

CMAR uses a weighted χ2 measure to find the “strongest” group of rules, based on
the statistical correlation of rules within a group. It then assigns X the class label of
the strongest group. In this way it considers multiple rules, rather than a single rule
with highest confidence, when predicting the class label of a new tuple. In experiments,
CMAR had slightly higher average accuracy in comparison with CBA. Its runtime,
scalability, and use of memory were found to be more efficient.

“Is there a way to cut down on the number of rules generated?” CBA and CMAR
adopt methods of frequent itemset mining to generate candidate association rules, which
include all conjunctions of attribute–value pairs (items) satisfying minimum support.
These rules are then examined, and a subset is chosen to represent the classifier. How-
ever, such methods generate quite a large number of rules. CPAR (Classification based
on Predictive Association Rules) takes a different approach to rule generation, based on a
rule generation algorithm for classification known as FOIL (Section 8.4.3). FOIL builds
rules to distinguish positive tuples (e.g., buys computer = yes) from negative tuples (e.g.,
buys computer = no). For multiclass problems, FOIL is applied to each class. That is, for
a class, C, all tuples of class C are considered positive tuples, while the rest are consid-
ered negative tuples. Rules are generated to distinguish C tuples from all others. Each
time a rule is generated, the positive samples it satisfies (or covers) are removed until
all the positive tuples in the data set are covered. In this way, fewer rules are generated.
CPAR relaxes this step by allowing the covered tuples to remain under consideration,
but reducing their weight. The process is repeated for each class. The resulting rules are
merged to form the classifier rule set.

During classification, CPAR employs a somewhat different multiple rule strategy
than CMAR. If more than one rule satisfies a new tuple, X, the rules are divided into
groups according to class, similar to CMAR. However, CPAR uses the best k rules of
each group to predict the class label of X, based on expected accuracy. By considering
the best k rules rather than all of a group’s rules, it avoids the influence of lower-ranked

4If a rule’s antecedent satisfies or matches X, then we say that the rule satisfies X.
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rules. CPAR’s accuracy on numerous data sets was shown to be close to that of CMAR.
However, since CPAR generates far fewer rules than CMAR, it shows much better
efficiency with large sets of training data.

In summary, associative classification offers an alternative classification scheme by
building rules based on conjunctions of attribute–value pairs that occur frequently
in data.

9.4.2 Discriminative Frequent Pattern–Based Classification

From work on associative classification, we see that frequent patterns reflect strong asso-
ciations between attribute–value pairs (or items) in data and are useful for classification.

“But just how discriminative are frequent patterns for classification?” Frequent patterns
represent feature combinations. Let’s compare the discriminative power of frequent pat-
terns and single features. Figure 9.11 plots the information gain of frequent patterns and
single features (i.e., of pattern length 1) for three UCI data sets.5 The discrimination
power of some frequent patterns is higher than that of single features. Frequent patterns
map data to a higher dimensional space. They capture more underlying semantics of the
data, and thus can hold greater expressive power than single features.

“Why not consider frequent patterns as combined features, in addition to single features
when building a classification model?” This notion is the basis of frequent pattern–
based classification—the learning of a classification model in the feature space of single
attributes as well as frequent patterns. In this way, we transfer the original feature space
to a larger space. This will likely increase the chance of including important features.

Let’s get back to our earlier question: How discriminative are frequent patterns?
Many of the frequent patterns generated in frequent itemset mining are indiscrimina-
tive because they are based solely on support, without considering predictive power.
That is, by definition, a pattern must satisfy a user-specified minimum support thresh-
old, min sup, to be considered frequent. For example, if min sup, is, say, 5%, a pattern
is frequent if it occurs in 5% of the data tuples. Consider Figure 9.12, which plots infor-
mation gain versus pattern frequency (support) for three UCI data sets. A theoretical
upper bound on information gain, which was derived analytically, is also plotted. The
figure shows that the discriminative power (assessed here as information gain) of low-
frequency patterns is bounded by a small value. This is due to the patterns’ limited
coverage of the data set. Similarly, the discriminative power of very high-frequency pat-
terns is also bounded by a small value, which is due to their commonness in the data. The
upper bound of information gain is a function of pattern frequency. The information
gain upper bound increases monotonically with pattern frequency. These observations
can be confirmed analytically. Patterns with medium-large supports (e.g., support = 300
in Figure 9.12a) may be discriminative or not. Thus, not every frequent pattern is useful.

5The University of California at Irvine (UCI) archives several large data sets at http://kdd.ics.uci.edu/.
These are commonly used by researchers for the testing and comparison of machine learning and data
mining algorithms.
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Figure 9.11 Single feature versus frequent pattern: Information gain is plotted for single features (pat-
terns of length 1, indicated by arrows) and frequent patterns (combined features) for three
UCI data sets. Source: Adapted from Cheng, Yan, Han, and Hsu [CYHH07].

If we were to add all the frequent patterns to the feature space, the resulting feature
space would be huge. This slows down the model learning process and may also lead
to decreased accuracy due to a form of overfitting in which there are too many features.
Many of the patterns may be redundant. Therefore, it’s a good idea to apply feature selec-
tion to eliminate the less discriminative and redundant frequent patterns as features. The
general framework for discriminative frequent pattern–based classification is as follows.

1. Feature generation: The data, D, are partitioned according to class label. Use fre-
quent itemset mining to discover frequent patterns in each partition, satisfying
minimum support. The collection of frequent patterns, F , makes up the feature
candidates.

2. Feature selection: Apply feature selection to F , resulting in FS , the set of selected
(more discriminating) frequent patterns. Information gain, Fisher score, or other
evaluation measures can be used for this step. Relevancy checking can also be
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Figure 9.12 Information gain versus pattern frequency (support) for three UCI data sets. A theoretical
upper bound on information gain (IGUpperBound) is also shown. Source: Adapted from Cheng,
Yan, Han, and Hsu [CYHH07].

incorporated into this step to weed out redundant patterns. The data set D is trans-
formed to D′, where the feature space now includes the single features as well as the
selected frequent patterns, FS .

3. Learning of classification model: A classifier is built on the data set D′. Any learning
algorithm can be used as the classification model.

The general framework is summarized in Figure 9.13(a), where the discriminative
patterns are represented by dark circles. Although the approach is straightforward,
we can encounter a computational bottleneck by having to first find all the frequent
patterns, and then analyze each one for selection. The amount of frequent patterns found
can be huge due to the explosive number of pattern combinations between items.
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Figure 9.13 A framework for frequent pattern–based classification: (a) a two-step general approach
versus (b) the direct approach of DDPMine.

To improve the efficiency of the general framework, consider condensing steps 1 and
2 into just one step. That is, rather than generating the complete set of frequent patterns,
it’s possible to mine only the highly discriminative ones. This more direct approach
is referred to as direct discriminative pattern mining. The DDPMine algorithm follows
this approach, as illustrated in Figure 9.13(b). It first transforms the training data into
a compact tree structure known as a frequent pattern tree, or FP-tree (Section 6.2.4),
which holds all of the attribute–value (itemset) association information. It then searches
for discriminative patterns on the tree. The approach is direct in that it avoids generat-
ing a large number of indiscriminative patterns. It incrementally reduces the problem
by eliminating training tuples, thereby progressively shrinking the FP-tree. This further
speeds up the mining process.

By choosing to transform the original data to an FP-tree, DDPMine avoids gener-
ating redundant patterns because an FP-tree stores only the closed frequent patterns.
By definition, any subpattern, β, of a closed pattern, α, is redundant with respect to
α (Section 6.1.2). DDPMine directly mines the discriminative patterns and integrates
feature selection into the mining framework. The theoretical upper bound on infor-
mation gain is used to facilitate a branch-and-bound search, which prunes the search
space significantly. Experimental results show that DDPMine achieves orders of mag-
nitude speedup over the two-step approach without decline in classification accuracy.
DDPMine also outperforms state-of-the-art associative classification methods in terms
of both accuracy and efficiency.

9.5 Lazy Learners (or Learning from Your Neighbors)

The classification methods discussed so far in this book—decision tree induction,
Bayesian classification, rule-based classification, classification by backpropagation,
support vector machines, and classification based on association rule mining—are all
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examples of eager learners. Eager learners, when given a set of training tuples, will
construct a generalization (i.e., classification) model before receiving new (e.g., test)
tuples to classify. We can think of the learned model as being ready and eager to classify
previously unseen tuples.

Imagine a contrasting lazy approach, in which the learner instead waits until the last
minute before doing any model construction to classify a given test tuple. That is, when
given a training tuple, a lazy learner simply stores it (or does only a little minor pro-
cessing) and waits until it is given a test tuple. Only when it sees the test tuple does it
perform generalization to classify the tuple based on its similarity to the stored train-
ing tuples. Unlike eager learning methods, lazy learners do less work when a training
tuple is presented and more work when making a classification or numeric prediction.
Because lazy learners store the training tuples or “instances,” they are also referred to as
instance-based learners, even though all learning is essentially based on instances.

When making a classification or numeric prediction, lazy learners can be compu-
tationally expensive. They require efficient storage techniques and are well suited to
implementation on parallel hardware. They offer little explanation or insight into the
data’s structure. Lazy learners, however, naturally support incremental learning. They
are able to model complex decision spaces having hyperpolygonal shapes that may
not be as easily describable by other learning algorithms (such as hyperrectangular
shapes modeled by decision trees). In this section, we look at two examples of lazy
learners: k-nearest-neighbor classifiers (Section 9.5.1) and case-based reasoning classifiers
(Section 9.5.2).

9.5.1 k-Nearest-Neighbor Classifiers

The k-nearest-neighbor method was first described in the early 1950s. The method is
labor intensive when given large training sets, and did not gain popularity until the
1960s when increased computing power became available. It has since been widely used
in the area of pattern recognition.

Nearest-neighbor classifiers are based on learning by analogy, that is, by compar-
ing a given test tuple with training tuples that are similar to it. The training tuples are
described by n attributes. Each tuple represents a point in an n-dimensional space. In
this way, all the training tuples are stored in an n-dimensional pattern space. When given
an unknown tuple, a k-nearest-neighbor classifier searches the pattern space for the k
training tuples that are closest to the unknown tuple. These k training tuples are the k
“nearest neighbors” of the unknown tuple.

“Closeness” is defined in terms of a distance metric, such as Euclidean distance. The
Euclidean distance between two points or tuples, say, X1 = (x11, x12, . . . , x1n) and X2 =
(x21, x22, . . . , x2n), is

dist(X1, X2) =
√√√√ n∑

i=1

(x1i − x2i)2. (9.22)
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In other words, for each numeric attribute, we take the difference between the corre-
sponding values of that attribute in tuple X1 and in tuple X2, square this difference,
and accumulate it. The square root is taken of the total accumulated distance count.
Typically, we normalize the values of each attribute before using Eq. (9.22). This helps
prevent attributes with initially large ranges (e.g., income) from outweighing attributes
with initially smaller ranges (e.g., binary attributes). Min-max normalization, for exam-
ple, can be used to transform a value v of a numeric attribute A to v ′ in the range [0, 1]
by computing

v ′ = v − minA

maxA − minA
, (9.23)

where minA and maxA are the minimum and maximum values of attribute A. Chapter 3
describes other methods for data normalization as a form of data transformation.

For k-nearest-neighbor classification, the unknown tuple is assigned the most com-
mon class among its k-nearest neighbors. When k = 1, the unknown tuple is assigned
the class of the training tuple that is closest to it in pattern space. Nearest-neighbor clas-
sifiers can also be used for numeric prediction, that is, to return a real-valued prediction
for a given unknown tuple. In this case, the classifier returns the average value of the
real-valued labels associated with the k-nearest neighbors of the unknown tuple.

“But how can distance be computed for attributes that are not numeric, but nominal
(or categorical) such as color?” The previous discussion assumes that the attributes used
to describe the tuples are all numeric. For nominal attributes, a simple method is to
compare the corresponding value of the attribute in tuple X1 with that in tuple X2. If
the two are identical (e.g., tuples X1 and X2 both have the color blue), then the difference
between the two is taken as 0. If the two are different (e.g., tuple X1 is blue but tuple X2

is red), then the difference is considered to be 1. Other methods may incorporate more
sophisticated schemes for differential grading (e.g., where a larger difference score is
assigned, say, for blue and white than for blue and black).

“What about missing values?” In general, if the value of a given attribute A is missing
in tuple X1 and/or in tuple X2, we assume the maximum possible difference. Suppose
that each of the attributes has been mapped to the range [0, 1]. For nominal attributes,
we take the difference value to be 1 if either one or both of the corresponding values of A
are missing. If A is numeric and missing from both tuples X1 and X2, then the difference
is also taken to be 1. If only one value is missing and the other (which we will call v ′) is
present and normalized, then we can take the difference to be either |1 − v ′| or |0 − v ′|
(i.e., 1 − v ′ or v ′), whichever is greater.

“How can I determine a good value for k, the number of neighbors?” This can be deter-
mined experimentally. Starting with k = 1, we use a test set to estimate the error rate
of the classifier. This process can be repeated each time by incrementing k to allow for
one more neighbor. The k value that gives the minimum error rate may be selected. In
general, the larger the number of training tuples, the larger the value of k will be (so
that classification and numeric prediction decisions can be based on a larger portion of
the stored tuples). As the number of training tuples approaches infinity and k = 1, the
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error rate can be no worse than twice the Bayes error rate (the latter being the theoretical
minimum). If k also approaches infinity, the error rate approaches the Bayes error rate.

Nearest-neighbor classifiers use distance-based comparisons that intrinsically assign
equal weight to each attribute. They therefore can suffer from poor accuracy when given
noisy or irrelevant attributes. The method, however, has been modified to incorporate
attribute weighting and the pruning of noisy data tuples. The choice of a distance metric
can be critical. The Manhattan (city block) distance (Section 2.4.4), or other distance
measurements, may also be used.

Nearest-neighbor classifiers can be extremely slow when classifying test tuples. If D
is a training database of |D| tuples and k = 1, then O(|D|) comparisons are required to
classify a given test tuple. By presorting and arranging the stored tuples into search trees,
the number of comparisons can be reduced to O(log(|D|). Parallel implementation can
reduce the running time to a constant, that is, O(1), which is independent of |D|.

Other techniques to speed up classification time include the use of partial distance
calculations and editing the stored tuples. In the partial distance method, we compute
the distance based on a subset of the n attributes. If this distance exceeds a threshold,
then further computation for the given stored tuple is halted, and the process moves on
to the next stored tuple. The editing method removes training tuples that prove useless.
This method is also referred to as pruning or condensing because it reduces the total
number of tuples stored.

9.5.2 Case-Based Reasoning

Case-based reasoning (CBR) classifiers use a database of problem solutions to solve
new problems. Unlike nearest-neighbor classifiers, which store training tuples as points
in Euclidean space, CBR stores the tuples or “cases” for problem solving as complex
symbolic descriptions. Business applications of CBR include problem resolution for
customer service help desks, where cases describe product-related diagnostic problems.
CBR has also been applied to areas such as engineering and law, where cases are either
technical designs or legal rulings, respectively. Medical education is another area for
CBR, where patient case histories and treatments are used to help diagnose and treat
new patients.

When given a new case to classify, a case-based reasoner will first check if an iden-
tical training case exists. If one is found, then the accompanying solution to that case
is returned. If no identical case is found, then the case-based reasoner will search for
training cases having components that are similar to those of the new case. Concep-
tually, these training cases may be considered as neighbors of the new case. If cases
are represented as graphs, this involves searching for subgraphs that are similar to sub-
graphs within the new case. The case-based reasoner tries to combine the solutions of
the neighboring training cases to propose a solution for the new case. If incompatibili-
ties arise with the individual solutions, then backtracking to search for other solutions
may be necessary. The case-based reasoner may employ background knowledge and
problem-solving strategies to propose a feasible combined solution.
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Challenges in case-based reasoning include finding a good similarity metric (e.g., for
matching subgraphs) and suitable methods for combining solutions. Other challenges
include the selection of salient features for indexing training cases and the development
of efficient indexing techniques. A trade-off between accuracy and efficiency evolves as
the number of stored cases becomes very large. As this number increases, the case-based
reasoner becomes more intelligent. After a certain point, however, the system’s efficiency
will suffer as the time required to search for and process relevant cases increases. As with
nearest-neighbor classifiers, one solution is to edit the training database. Cases that are
redundant or that have not proved useful may be discarded for the sake of improved
performance. These decisions, however, are not clear-cut and their automation remains
an active area of research.

9.6 Other Classification Methods

In this section, we give a brief description of several other classification methods, includ-
ing genetic algorithms (Section 9.6.1), rough set approach (Section 9.6.2), and fuzzy set
approaches (Section 9.6.3). In general, these methods are less commonly used for clas-
sification in commercial data mining systems than the methods described earlier in this
book. However, these methods show their strength in certain applications, and hence it
is worthwhile to include them here.

9.6.1 Genetic Algorithms

Genetic algorithms attempt to incorporate ideas of natural evolution. In general,
genetic learning starts as follows. An initial population is created consisting of randomly
generated rules. Each rule can be represented by a string of bits. As a simple example,
suppose that samples in a given training set are described by two Boolean attributes,
A1 and A2, and that there are two classes, C1 and C2. The rule “IF A1 AND NOT A2

THEN C2” can be encoded as the bit string “100,” where the two leftmost bits represent
attributes A1 and A2, respectively, and the rightmost bit represents the class. Similarly,
the rule “IF NOT A1 AND NOT A2 THEN C1” can be encoded as “001.” If an attribute
has k values, where k > 2, then k bits may be used to encode the attribute’s values.
Classes can be encoded in a similar fashion.

Based on the notion of survival of the fittest, a new population is formed to consist
of the fittest rules in the current population, as well as offspring of these rules. Typically,
the fitness of a rule is assessed by its classification accuracy on a set of training samples.

Offspring are created by applying genetic operators such as crossover and mutation.
In crossover, substrings from pairs of rules are swapped to form new pairs of rules. In
mutation, randomly selected bits in a rule’s string are inverted.

The process of generating new populations based on prior populations of rules con-
tinues until a population, P, evolves where each rule in P satisfies a prespecified fitness
threshold.
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Genetic algorithms are easily parallelizable and have been used for classification as
well as other optimization problems. In data mining, they may be used to evaluate the
fitness of other algorithms.

9.6.2 Rough Set Approach

Rough set theory can be used for classification to discover structural relationships within
imprecise or noisy data. It applies to discrete-valued attributes. Continuous-valued
attributes must therefore be discretized before its use.

Rough set theory is based on the establishment of equivalence classes within the
given training data. All the data tuples forming an equivalence class are indiscernible,
that is, the samples are identical with respect to the attributes describing the data. Given
real-world data, it is common that some classes cannot be distinguished in terms of the
available attributes. Rough sets can be used to approximately or “roughly” define such
classes. A rough set definition for a given class, C, is approximated by two sets—a lower
approximation of C and an upper approximation of C. The lower approximation of C
consists of all the data tuples that, based on the knowledge of the attributes, are certain to
belong to C without ambiguity. The upper approximation of C consists of all the tuples
that, based on the knowledge of the attributes, cannot be described as not belonging to
C. The lower and upper approximations for a class C are shown in Figure 9.14, where
each rectangular region represents an equivalence class. Decision rules can be generated
for each class. Typically, a decision table is used to represent the rules.

Rough sets can also be used for attribute subset selection (or feature reduction, where
attributes that do not contribute to the classification of the given training data can be
identified and removed) and relevance analysis (where the contribution or significance
of each attribute is assessed with respect to the classification task). The problem of find-
ing the minimal subsets (reducts) of attributes that can describe all the concepts in
the given data set is NP-hard. However, algorithms to reduce the computation intensity
have been proposed. In one method, for example, a discernibility matrix is used that
stores the differences between attribute values for each pair of data tuples. Rather than

C

Upper approximation of C
Lower approximation of C

Figure 9.14 A rough set approximation of class C’s set of tuples using lower and upper approximation
sets of C. The rectangular regions represent equivalence classes.
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searching on the entire training set, the matrix is instead searched to detect redundant
attributes.

9.6.3 Fuzzy Set Approaches

Rule-based systems for classification have the disadvantage that they involve sharp cut-
offs for continuous attributes. For example, consider the following rule for customer
credit application approval. The rule essentially says that applications for customers
who have had a job for two or more years and who have a high income (i.e., of at least
$50,000) are approved:

IF (years employed ≥ 2) AND (income ≥ 50,000) THEN credit = approved. (9.24)

By Rule (9.24), a customer who has had a job for at least two years will receive credit
if her income is, say, $50,000, but not if it is $49,000. Such harsh thresholding may seem
unfair.

Instead, we can discretize income into categories (e.g., {low income, medium income,
high income}) and then apply fuzzy logic to allow “fuzzy” thresholds or boundaries to
be defined for each category (Figure 9.15). Rather than having a precise cutoff between
categories, fuzzy logic uses truth values between 0.0 and 1.0 to represent the degree of
membership that a certain value has in a given category. Each category then represents a
fuzzy set. Hence, with fuzzy logic, we can capture the notion that an income of $49,000
is, more or less, high, although not as high as an income of $50,000. Fuzzy logic systems
typically provide graphical tools to assist users in converting attribute values to fuzzy
truth values.

Fuzzy set theory is also known as possibility theory. It was proposed by Lotfi Zadeh
in 1965 as an alternative to traditional two-value logic and probability theory. It lets
us work at a high abstraction level and offers a means for dealing with imprecise data
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Figure 9.15 Fuzzy truth values for income, representing the degree of membership of income values with
respect to the categories {low, medium, high}. Each category represents a fuzzy set. Note that
a given income value, x, can have membership in more than one fuzzy set. The membership
values of x in each fuzzy set do not have to total to 1.
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measurement. Most important, fuzzy set theory allows us to deal with vague or inexact
facts. For example, being a member of a set of high incomes is inexact (e.g., if $50,000
is high, then what about $49,000? or $48,000?) Unlike the notion of traditional “crisp”
sets where an element belongs to either a set S or its complement, in fuzzy set theory,
elements can belong to more than one fuzzy set. For example, the income value $49,000
belongs to both the medium and high fuzzy sets, but to differing degrees. Using fuzzy set
notation and following Figure 9.15, this can be shown as

mmedium income($49,000) = 0.15 and mhigh income($49,000) = 0.96,

where m denotes the membership function, that is operating on the fuzzy sets of
medium income and high income, respectively. In fuzzy set theory, membership val-
ues for a given element, x (e.g., for $49,000), do not have to sum to 1. This is unlike
traditional probability theory, which is constrained by a summation axiom.

Fuzzy set theory is useful for data mining systems performing rule-based classi-
fication. It provides operations for combining fuzzy measurements. Suppose that in
addition to the fuzzy sets for income, we defined the fuzzy sets junior employee and
senior employee for the attribute years employed. Suppose also that we have a rule that,
say, tests high income and senior employee in the rule antecedent (IF part) for a given
employee, x. If these two fuzzy measures are ANDed together, the minimum of their
measure is taken as the measure of the rule. In other words,

m(high income AND senior employee)(x) = min(mhigh income(x), msenior employee(x)).

This is akin to saying that a chain is as strong as its weakest link. If the two measures
are ORed, the maximum of their measure is taken as the measure of the rule. In other
words,

m(high income OR senior employee)(x) = max(mhigh income(x), msenior employee(x)).

Intuitively, this is like saying that a rope is as strong as its strongest strand.
Given a tuple to classify, more than one fuzzy rule may apply. Each applicable rule

contributes a vote for membership in the categories. Typically, the truth values for each
predicted category are summed, and these sums are combined. Several procedures exist
for translating the resulting fuzzy output into a defuzzified or crisp value that is returned
by the system.

Fuzzy logic systems have been used in numerous areas for classification, including
market research, finance, health care, and environmental engineering.

9.7 Additional Topics Regarding Classification

Most of the classification algorithms we have studied handle multiple classes, but some,
such as support vector machines, assume only two classes exist in the data. What adap-
tations can be made to allow for when there are more than two classes? This question is
addressed in Section 9.7.1 on multiclass classification.
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What can we do if we want to build a classifier for data where only some of the data
are class-labeled, but most are not? Document classification, speech recognition, and
information extraction are just a few examples of applications in which unlabeled data
are abundant. Consider document classification, for example. Suppose we want to build
a model to automatically classify text documents like articles or web pages. In particular,
we want the model to distinguish between hockey and football documents. We have a
vast amount of documents available, yet the documents are not class-labeled. Recall that
supervised learning requires a training set, that is, a set of classlabeled data. To have a
human examine and assign a class label to individual documents (to form a training set)
is time consuming and expensive.

Speech recognition requires the accurate labeling of speech utterances by trained lin-
guists. It was reported that 1 minute of speech takes 10 minutes to label, and annotating
phonemes (basic units of sound) can take 400 times as long. Information extraction sys-
tems are trained using labeled documents with detailed annotations. These are obtained
by having human experts highlight items or relations of interest in text such as the names
of companies or individuals. High-level expertise may be required for certain knowl-
edge domains such as gene and disease mentions in biomedical information extraction.
Clearly, the manual assignment of class labels to prepare a training set can be extremely
costly, time consuming, and tedious.

We study three approaches to classification that are suitable for situations where there
is an abundance of unlabeled data. Section 9.7.2 introduces semisupervised classifi-
cation, which builds a classifier using both labeled and unlabeled data. Section 9.7.3
presents active learning, where the learning algorithm carefully selects a few of the un-
labeled data tuples and asks a human to label only those tuples. Section 9.7.4 presents
transfer learning, which aims to extract the knowledge from one or more source tasks
(e.g., classifying camera reviews) and apply the knowledge to a target task (e.g., TV
reviews). Each of these strategies can reduce the need to annotate large amounts of data,
resulting in cost and time savings.

9.7.1 Multiclass Classification

Some classification algorithms, such as support vector machines, are designed for binary
classification. How can we extend these algorithms to allow for multiclass classification
(i.e., classification involving more than two classes)?

A simple approach is one-versus-all (OVA). Given m classes, we train m binary clas-
sifiers, one for each class. Classifier j is trained using tuples of class j as the positive class,
and the remaining tuples as the negative class. It learns to return a positive value for class
j and a negative value for the rest. To classify an unknown tuple, X, the set of classifiers
vote as an ensemble. For example, if classifier j predicts the positive class for X, then
class j gets one vote. If it predicts the negative class for X, then each of the classes except
j gets one vote. The class with the most votes is assigned to X.

All-versus-all (AVA) is an alternative approach that learns a classifier for each pair
of classes. Given m classes, we construct m(m−1)

2 binary classifiers. A classifier is trained
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using tuples of the two classes it should discriminate. To classify an unknown tuple,
each classifier votes. The tuple is assigned the class with the maximum number of votes.
All-versus-all tends to be superior to one-versus-all.

A problem with the previous schemes is that binary classifiers are sensitive to errors.
If any classifier makes an error, it can affect the vote count.

Error-correcting codes can be used to improve the accuracy of multiclass classifica-
tion, not just in the previous situations, but for classification in general. Error-correcting
codes were originally designed to correct errors during data transmission for commu-
nication tasks. For such tasks, the codes are used to add redundancy to the data being
transmitted so that, even if some errors occur due to noise in the channel, the data can
be correctly received at the other end. For multiclass classification, even if some of the
individual binary classifiers make a prediction error for a given unknown tuple, we may
still be able to correctly label the tuple.

An error-correcting code is assigned to each class, where each code is a bit vector.
Figure 9.16 show an example of 7-bit codewords assigned to classes C1,C2,C3, and C4.
We train one classifier for each bit position. Therefore, in our example we train seven
classifiers. If a classifier makes an error, there is a better chance that we may still be
able to predict the right class for a given unknown tuple because of the redundancy
gained by having additional bits. The technique uses a distance measurement called the
Hamming distance to guess the “closest” class in case of errors, and is illustrated in
Example 9.3.

Example 9.3 Multiclass classification with error-correcting codes. Consider the 7-bit codewords
associated with classes C1 to C4 in Figure 9.16. Suppose that, given an unknown tuple
to label, the seven trained binary classifiers collectively output the codeword 0001010,
which does not match a codeword for any of the four classes. A classification error has
obviously occurred, but can we figure out what the classification most likely should
be? We can try by using the Hamming distance, which is the number of different
bits between two codewords. The Hamming distance between the output codeword
and the codeword for C1 is 5 because five bits—namely, the first, second, third, fifth,
and seventh—differ. Similarly, the Hamming distance between the output code and the
codewords for C2 through C4 are 3, 3, and 1, respectively. Note that the output code-
word is closest to the codeword for C4. That is, the smallest Hamming distance between
the output and a class codeword is for class C4. Therefore, we assign C4 as the class label
of the given tuple.

Class Error-correcting codeword

C1 1 1 1 1 1 1 1

C2 0 0 0 0 1 1 1

C3 0 0 1 1 0 0 1

C4 0 1 0 1 0 1 0

Figure 9.16 Error-correcting codes for a multiclass classification problem involving four classes.
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Error-correcting codes can correct up to h−1
2 1-bit errors, where h is the minimum

Hamming distance between any two codewords. If we use one bit per class, such as for
4-bit codewords for classes C1 through C4, then this is equivalent to the one-versus-all
approach, and the codes are not sufficient to self-correct. (Try it as an exercise.) When
selecting error-correcting codes for multiclass classification, there must be good row-
wise and column-wise separation between the codewords. The greater the distance, the
more likely that errors will be corrected.

9.7.2 Semi-Supervised Classification

Semi-supervised classification uses labeled data and unlabeled data to build a classifier.
Let Xl = {(x1,y1), . . . ,xl ,yl)} be the set of labeled data and Xu = {xl+1, . . . ,xn} be the set
of unlabeled data. Here we describe a few examples of this approach for learning.

Self-training is the simplest form of semi-supervised classification. It first builds a
classifier using the labeled data. The classifier then tries to label the unlabeled data. The
tuple with the most confident label prediction is added to the set of labeled data, and the
process repeats (Figure 9.17). Although the method is easy to understand, a disadvantage
is that it may reinforce errors.

Cotraining is another form of semi-supervised classification, where two or more
classifiers teach each other. Each learner uses a different and ideally independent set
of features for each tuple. Consider web page data, for example, where attributes relat-
ing to the images on the page may be used as one set of features, while attributes relating
to the corresponding text constitute another set of features for the same data. Each set

Self-training
1. Select a learning method such as, say, Bayesian classification. Build the classifier using the labeled

data, Xl .

2. Use the classifier to label the unlabeled data, Xu.

3. Select the tuple x ∈ Xu having the highest confidence (most confident prediction). Add it and its
predicted label to Xl .

4. Repeat (i.e., retrain the classifier using the augmented set of labeled data).

Cotraining
1. Define two separate nonoverlapping feature sets for the labeled data, Xl .

2. Train two classifiers, f1 and f2, on the labeled data, where f1 is trained using one of the feature sets and
f2 is trained using the other.

3. Classify Xu with f1 and f2 separately.

4. Add the most confident (x, f1(x)) to the set of labeled data used by f2, where x ∈ Xu. Similarly, add the
most confident (x, f2(x)) to the set of labeled data used by f1.

5. Repeat.

Figure 9.17 Self-training and cotraining methods of semi-supervised classification.
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of features should be sufficient to train a good classifier. Suppose we split the feature
set into two sets and train two classifiers, f1 and f2, where each classifier is trained on a
different set. Then, f1 and f2 are used to predict the class labels for the unlabeled data,
Xu. Each classifier then teaches the other in that the tuple having the most confident
prediction from f1 is added to the set of labeled data for f2 (along with its label).

Similarly, the tuple having the most confident prediction from f2 is added to the set of
labeled data for f1. The method is summarized in Figure 9.17. Cotraining is less sensitive
to errors than self-training. A difficulty is that the assumptions for its usage may not
hold true, that is, it may not be possible to split the features into mutually exclusive and
class-conditionally independent sets.

Alternate approaches to semi-supervised learning exist. For example, we can model
the joint probability distribution of the features and the labels. For the unlabeled data,
the labels can then be treated as missing data. The EM algorithm (Chapter 11) can be
used to maximize the likelihood of the model. Methods using support vector machines
have also been proposed.

9.7.3 Active Learning

Active learning is an iterative type of supervised learning that is suitable for situations
where data are abundant, yet the class labels are scarce or expensive to obtain. The learn-
ing algorithm is active in that it can purposefully query a user (e.g., a human oracle) for
labels. The number of tuples used to learn a concept this way is often much smaller than
the number required in typical supervised learning.

“How does active learning work to overcome the labeling bottleneck?” To keep costs
down, the active learner aims to achieve high accuracy using as few labeled instances
as possible. Let D be all of data under consideration. Various strategies exist for active
learning on D. Figure 9.18 illustrates a pool-based approach to active learning. Suppose
that a small subset of D is class-labeled. This set is denoted L. U is the set of unlabeled
data in D. It is also referred to as a pool of unlabeled data. An active learner begins with
L as the initial training set. It then uses a querying function to carefully select one or
more data samples from U and requests labels for them from an oracle (e.g., a human
annotator). The newly labeled samples are added to L, which the learner then uses in
a standard supervised way. The process repeats. The active learning goal is to achieve
high accuracy using as few labeled tuples as possible. Active learning algorithms are
typically evaluated with the use of learning curves, which plot accuracy as a function of
the number of instances queried.

Most of the active learning research focuses on how to choose the data tuples to
be queried. Several frameworks have been proposed. Uncertainty sampling is the most
common, where the active learner chooses to query the tuples which it is the least cer-
tain how to label. Other strategies work to reduce the version space, that is, the subset
of all hypotheses that are consistent with the observed training tuples. Alternatively,
we may follow a decision-theoretic approach that estimates expected error reduction.
This selects tuples that would result in the greatest reduction in the total number of
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Figure 9.18 The pool-based active learning cycle. Source: From Settles [Set10], Burr Settles Computer
Sciences Technical Report 1648, University of Wisconsin–Madison; used with permission.

incorrect predictions such as by reducing the expected entropy over U . This latter
approach tends to be more computationally expensive.

9.7.4 Transfer Learning

Suppose that AllElectronics has collected a number of customer reviews on a product
such as a brand of camera. The classification task is to automatically label the reviews
as either positive or negative. This task is known as sentiment classification. We could
examine each review and annotate it by adding a positive or negative class label. The
labeled reviews can then be used to train and test a classifier to label future reviews of
the product as either positive or negative. The manual effort involved in annotating the
review data can be expensive and time consuming.

Suppose that AllElectronics has customer reviews for other products as well such as
TVs. The distribution of review data for different types of products can vary greatly. We
cannot assume that the TV-review data will have the same distribution as the camera-
review data; thus we must build a separate classification model for the TV-review data.
Examining and labeling the TV-review data to form a training set will require a lot of
effort. In fact, we would need to label a large amount of the data to train the review-
classification models for each product. It would be nice if we could adapt an existing
classification model (e.g., the one we built for cameras) to help learn a classification
model for TVs. Such knowledge transfer would reduce the need to annotate a large
amount of data, resulting in cost and time savings. This is the essence behind transfer
learning.
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Figure 9.19 Transfer learning versus traditional learning. (a) Traditional learning methods build a new
classifier from scratch for each classification task. (b) Transfer learning applies knowledge
from a source classifier to simplify the construction of a classifier for a new, target task.
Source: From Pan and Yang [PY10]; used with permission.

Transfer learning aims to extract the knowledge from one or more source tasks and
apply the knowledge to a target task. In our example, the source task is the classification
of camera reviews, and the target task is the classification of TV reviews. Figure 9.19
illustrates a comparison between traditional learning methods and transfer learning.
Traditional learning methods build a new classifier for each new classification task, based
on available class-labeled training and test data. Transfer learning algorithms apply
knowledge about source tasks when building a classifier for a new (target) task. Con-
struction of the resulting classifier requires fewer training data and less training time.
Traditional learning algorithms assume that the training data and test data are drawn
from the same distribution and the same feature space. Thus, if the distribution changes,
such methods need to rebuild the models from scratch.

Transfer learning allows the distributions, tasks, and even the data domains used in
training and testing to be different. Transfer learning is analogous to the way humans
may apply their knowledge of a task to facilitate the learning of another task. For exam-
ple, if we know how to play the recorder, we may apply our knowledge of note reading
and music to simplify the task of learning to play the piano. Similarly, knowing Spanish
may make it easier to learn Italian.

Transfer learning is useful for common applications where the data become outdated
or the distribution changes. Here we give two more examples. Consider web-document
classification, where we may have trained a classifier to label, say, articles from vari-
ous newsgroups according to predefined categories. The web data that were used to
train the classifier can easily become outdated because the topics on the Web change
frequently. Another application area for transfer learning is email spam filtering. We
could train a classifier to label email as either “spam” or “not spam,” using email from a
group of users. If new users come along, the distribution of their email can be different
from the original group, hence the need to adapt the learned model to incorporate the
new data.
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There are various approaches to transfer learning, the most common of which is
the instance-based transfer learning approach. This approach reweights some of the
data from the source task and uses it to learn the target task. The TrAdaBoost (Trans-
fer AdaBoost) algorithm exemplifies this approach. Consider our previous example of
web-document classification, where the distribution of the old data on which the clas-
sifier was trained (the source data) is different from the newer data (the target data).
TrAdaBoost assumes that the source and target domain data are each described by the
same set of attributes (i.e., they have the same “feature space”) and the same set of
class labels, but that the distribution of the data in the two domains is very different. It
extends the AdaBoost ensemble method described in Section 8.6.3. TrAdaBoost requires
the labeling of only a small amount of the target data. Rather than throwing out all the
old source data, TrAdaBoost assumes that a large amount of it can be useful in training
the new classification model. The idea is to filter out the influence of any old data that
are very different from the new data by automatically adjusting weights assigned to the
training tuples.

Recall that in boosting, an ensemble is created by learning a series of classifiers. To
begin, each tuple is assigned a weight. After a classifier Mi is learned, the weights are
updated to allow the subsequent classifier, Mi+1, to “pay more attention” to the training
tuples that were misclassified by Mi . TrAdaBoost follows this strategy for the target data.
However, if a source data tuple is misclassified, TrAdaBoost reasons that the tuple is
probably very different from the target data. It therefore reduces the weight of such tuples
so that they will have less effect on the subsequent classifier. As a result, TrAdaBoost can
learn an accurate classification model using only a small amount of new data and a large
amount of old data, even when the new data alone are insufficient to train the model.
Hence, in this way TrAdaBoost allows knowledge to be transferred from the old classifier
to the new one.

A challenge with transfer learning is negative transfer, which occurs when the new
classifier performs worse than if there had been no transfer at all. Work on how to
avoid negative transfer is an area of future research. Heterogeneous transfer learning,
which involves transferring knowledge from different feature spaces and multiple source
domains, is another venue for further work. Much of the research on transfer learning to
date has been on small-scale applications. The use of transfer learning on larger appli-
cations, such as social network analysis and video classification, is an area for further
investigation.

9.8 Summary

Unlike naïve Bayesian classification (which assumes class conditional independence),
Bayesian belief networks allow class conditional independencies to be defined
between subsets of variables. They provide a graphical model of causal relationships,
on which learning can be performed. Trained Bayesian belief networks can be used
for classification.
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Backpropagation is a neural network algorithm for classification that employs a
method of gradient descent. It searches for a set of weights that can model the data
so as to minimize the mean-squared distance between the network’s class prediction
and the actual class label of data tuples. Rules may be extracted from trained neural
networks to help improve the interpretability of the learned network.

A support vector machine is an algorithm for the classification of both linear and
nonlinear data. It transforms the original data into a higher dimension, from where
it can find a hyperplane for data separation using essential training tuples called
support vectors.

Frequent patterns reflect strong associations between attribute–value pairs (or items)
in data and are used in classification based on frequent patterns. Approaches to this
methodology include associative classification and discriminant frequent pattern–
based classification. In associative classification, a classifier is built from association
rules generated from frequent patterns. In discriminative frequent pattern–based
classification, frequent patterns serve as combined features, which are considered in
addition to single features when building a classification model.

Decision tree classifiers, Bayesian classifiers, classification by backpropagation, sup-
port vector machines, and classification based on frequent patterns are all examples
of eager learners in that they use training tuples to construct a generalization model
and in this way are ready for classifying new tuples. This contrasts with lazy learners
or instance-based methods of classification, such as nearest-neighbor classifiers and
case-based reasoning classifiers, which store all of the training tuples in pattern space
and wait until presented with a test tuple before performing generalization. Hence,
lazy learners require efficient indexing techniques.

In genetic algorithms, populations of rules “evolve” via operations of crossover and
mutation until all rules within a population satisfy a specified threshold. Rough set
theory can be used to approximately define classes that are not distinguishable based
on the available attributes. Fuzzy set approaches replace “brittle” threshold cutoffs
for continuous-valued attributes with membership degree functions.

Binary classification schemes, such as support vector machines, can be adapted to
handle multiclass classification. This involves constructing an ensemble of binary
classifiers. Error-correcting codes can be used to increase the accuracy of the
ensemble.

Semi-supervised classification is useful when large amounts of unlabeled data
exist. It builds a classifier using both labeled and unlabeled data. Examples of
semi-supervised classification include self-training and cotraining.

Active learning is a form of supervised learning that is also suitable for situations
where data are abundant, yet the class labels are scarce or expensive to obtain. The
learning algorithm can actively query a user (e.g., a human oracle) for labels. To keep
costs down, the active learner aims to achieve high accuracy using as few labeled
instances as possible.
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Transfer learning aims to extract the knowledge from one or more source tasks and
apply the knowledge to a target task. TrAdaBoost is an example of the instance-based
approach to transfer learning, which reweights some of the data from the source task
and uses it to learn the target task, thereby requiring fewer labeled target-task tuples.

9.9 Exercises

9.1 The following table consists of training data from an employee database. The data have
been generalized. For example, “31 . . . 35” for age represents the age range of 31 to 35.
For a given row entry, count represents the number of data tuples having the values for
department, status, age, and salary given in that row.

department status age salary count

sales senior 31 . . . 35 46K . . . 50K 30

sales junior 26 . . . 30 26K . . . 30K 40

sales junior 31 . . . 35 31K . . . 35K 40

systems junior 21 . . . 25 46K . . . 50K 20

systems senior 31 . . . 35 66K . . . 70K 5

systems junior 26 . . . 30 46K . . . 50K 3

systems senior 41 . . . 45 66K . . . 70K 3

marketing senior 36 . . . 40 46K . . . 50K 10

marketing junior 31 . . . 35 41K . . . 45K 4

secretary senior 46 . . . 50 36K . . . 40K 4

secretary junior 26 . . . 30 26K . . . 30K 6

Let status be the class-label attribute.

(a) Design a multilayer feed-forward neural network for the given data. Label the nodes
in the input and output layers.

(b) Using the multilayer feed-forward neural network obtained in (a), show the weight
values after one iteration of the backpropagation algorithm, given the training
instance “(sales, senior, 31 . . . 35, 46K . . . 50K)”. Indicate your initial weight values and
biases and the learning rate used.

9.2 The support vector machine is a highly accurate classification method. However, SVM
classifiers suffer from slow processing when training with a large set of data tuples. Dis-
cuss how to overcome this difficulty and develop a scalable SVM algorithm for efficient
SVM classification in large data sets.

9.3 Compare and contrast associative classification and discriminative frequent pattern–based
classification. Why is classification based on frequent patterns able to achieve higher
classification accuracy in many cases than a classic decision tree method?
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9.4 Compare the advantages and disadvantages of eager classification (e.g., decision tree,
Bayesian, neural network) versus lazy classification (e.g., k-nearest neighbor, case-based
reasoning).

9.5 Write an algorithm for k-nearest-neighbor classification given k, the nearest number of
neighbors, and n, the number of attributes describing each tuple.

9.6 Briefly describe the classification processes using (a) genetic algorithms, (b) rough sets,
and (c) fuzzy sets.

9.7 Example 9.3 showed a use of error-correcting codes for a multiclass classification
problem having four classes.

(a) Suppose that, given an unknown tuple to label, the seven trained binary classifiers
collectively output the codeword 0101110, which does not match a codeword for
any of the four classes. Using error correction, what class label should be assigned to
the tuple?

(b) Explain why using a 4-bit vector for the codewords is insufficient for error
correction.

9.8 Semi-supervised classification, active learning, and transfer learning are useful for situa-
tions in which unlabeled data are abundant.

(a) Describe semi-supervised classification, active learning, and transfer learning. Elab-
orate on applications for which they are useful, as well as the challenges of these
approaches to classification.

(b) Research and describe an approach to semi-supervised classification other than self-
training and cotraining.

(c) Research and describe an approach to active learning other than pool-based
learning.

(d) Research and describe an alternative approach to instance-based transfer learning.
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10Cluster Analysis: Basic
Concepts and Methods

Imagine that you are the Director of Customer Relationships at AllElectronics, and you have five
managers working for you. You would like to organize all the company’s customers into
five groups so that each group can be assigned to a different manager. Strategically, you
would like that the customers in each group are as similar as possible. Moreover, two
given customers having very different business patterns should not be placed in the same
group. Your intention behind this business strategy is to develop customer relationship
campaigns that specifically target each group, based on common features shared by the
customers per group. What kind of data mining techniques can help you to accomplish
this task?

Unlike in classification, the class label (or group ID) of each customer is unknown.
You need to discover these groupings. Given a large number of customers and many
attributes describing customer profiles, it can be very costly or even infeasible to have a
human study the data and manually come up with a way to partition the customers into
strategic groups. You need a clustering tool to help.

Clustering is the process of grouping a set of data objects into multiple groups or clus-
ters so that objects within a cluster have high similarity, but are very dissimilar to objects
in other clusters. Dissimilarities and similarities are assessed based on the attribute val-
ues describing the objects and often involve distance measures.1 Clustering as a data
mining tool has its roots in many application areas such as biology, security, business
intelligence, and Web search.

This chapter presents the basic concepts and methods of cluster analysis. In
Section 10.1, we introduce the topic and study the requirements of clustering meth-
ods for massive amounts of data and various applications. You will learn several basic
clustering techniques, organized into the following categories: partitioning methods
(Section 10.2), hierarchical methods (Section 10.3), density-based methods (Section 10.4),
and grid-based methods (Section 10.5). In Section 10.6, we briefly discuss how to evaluate

1Data similarity and dissimilarity are discussed in detail in Section 2.4. You may want to refer to that
section for a quick review.

c© 2012 Elsevier Inc. All rights reserved.
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clustering methods. A discussion of advanced methods of clustering is reserved for
Chapter 11.

10.1 Cluster Analysis

This section sets up the groundwork for studying cluster analysis. Section 10.1.1 defines
cluster analysis and presents examples of where it is useful. In Section 10.1.2, you will
learn aspects for comparing clustering methods, as well as requirements for clustering.
An overview of basic clustering techniques is presented in Section 10.1.3.

10.1.1 What Is Cluster Analysis?

Cluster analysis or simply clustering is the process of partitioning a set of data objects
(or observations) into subsets. Each subset is a cluster, such that objects in a cluster
are similar to one another, yet dissimilar to objects in other clusters. The set of clusters
resulting from a cluster analysis can be referred to as a clustering. In this context, dif-
ferent clustering methods may generate different clusterings on the same data set. The
partitioning is not performed by humans, but by the clustering algorithm. Hence, clus-
tering is useful in that it can lead to the discovery of previously unknown groups within
the data.

Cluster analysis has been widely used in many applications such as business intel-
ligence, image pattern recognition, Web search, biology, and security. In business
intelligence, clustering can be used to organize a large number of customers into groups,
where customers within a group share strong similar characteristics. This facilitates the
development of business strategies for enhanced customer relationship management.
Moreover, consider a consultant company with a large number of projects. To improve
project management, clustering can be applied to partition projects into categories based
on similarity so that project auditing and diagnosis (to improve project delivery and
outcomes) can be conducted effectively.

In image recognition, clustering can be used to discover clusters or “subclasses” in
handwritten character recognition systems. Suppose we have a data set of handwritten
digits, where each digit is labeled as either 1, 2, 3, and so on. Note that there can be a
large variance in the way in which people write the same digit. Take the number 2, for
example. Some people may write it with a small circle at the left bottom part, while some
others may not. We can use clustering to determine subclasses for “2,” each of which
represents a variation on the way in which 2 can be written. Using multiple models
based on the subclasses can improve overall recognition accuracy.

Clustering has also found many applications in Web search. For example, a keyword
search may often return a very large number of hits (i.e., pages relevant to the search)
due to the extremely large number of web pages. Clustering can be used to organize the
search results into groups and present the results in a concise and easily accessible way.
Moreover, clustering techniques have been developed to cluster documents into topics,
which are commonly used in information retrieval practice.
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As a data mining function, cluster analysis can be used as a standalone tool to gain
insight into the distribution of data, to observe the characteristics of each cluster, and
to focus on a particular set of clusters for further analysis. Alternatively, it may serve
as a preprocessing step for other algorithms, such as characterization, attribute subset
selection, and classification, which would then operate on the detected clusters and the
selected attributes or features.

Because a cluster is a collection of data objects that are similar to one another within
the cluster and dissimilar to objects in other clusters, a cluster of data objects can be
treated as an implicit class. In this sense, clustering is sometimes called automatic clas-
sification. Again, a critical difference here is that clustering can automatically find the
groupings. This is a distinct advantage of cluster analysis.

Clustering is also called data segmentation in some applications because cluster-
ing partitions large data sets into groups according to their similarity. Clustering can
also be used for outlier detection, where outliers (values that are “far away” from any
cluster) may be more interesting than common cases. Applications of outlier detection
include the detection of credit card fraud and the monitoring of criminal activities in
electronic commerce. For example, exceptional cases in credit card transactions, such
as very expensive and infrequent purchases, may be of interest as possible fraudulent
activities. Outlier detection is the subject of Chapter 12.

Data clustering is under vigorous development. Contributing areas of research
include data mining, statistics, machine learning, spatial database technology, informa-
tion retrieval, Web search, biology, marketing, and many other application areas. Owing
to the huge amounts of data collected in databases, cluster analysis has recently become
a highly active topic in data mining research.

As a branch of statistics, cluster analysis has been extensively studied, with the
main focus on distance-based cluster analysis. Cluster analysis tools based on k-means,
k-medoids, and several other methods also have been built into many statistical analysis
software packages or systems, such as S-Plus, SPSS, and SAS. In machine learning, recall
that classification is known as supervised learning because the class label information is
given, that is, the learning algorithm is supervised in that it is told the class member-
ship of each training tuple. Clustering is known as unsupervised learning because the
class label information is not present. For this reason, clustering is a form of learning
by observation, rather than learning by examples. In data mining, efforts have focused
on finding methods for efficient and effective cluster analysis in large databases. Active
themes of research focus on the scalability of clustering methods, the effectiveness of
methods for clustering complex shapes (e.g., nonconvex) and types of data (e.g., text,
graphs, and images), high-dimensional clustering techniques (e.g., clustering objects
with thousands of features), and methods for clustering mixed numerical and nominal
data in large databases.

10.1.2 Requirements for Cluster Analysis

Clustering is a challenging research field. In this section, you will learn about the require-
ments for clustering as a data mining tool, as well as aspects that can be used for
comparing clustering methods.
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The following are typical requirements of clustering in data mining.

Scalability: Many clustering algorithms work well on small data sets containing fewer
than several hundred data objects; however, a large database may contain millions or
even billions of objects, particularly in Web search scenarios. Clustering on only a
sample of a given large data set may lead to biased results. Therefore, highly scalable
clustering algorithms are needed.

Ability to deal with different types of attributes: Many algorithms are designed to
cluster numeric (interval-based) data. However, applications may require clustering
other data types, such as binary, nominal (categorical), and ordinal data, or mixtures
of these data types. Recently, more and more applications need clustering techniques
for complex data types such as graphs, sequences, images, and documents.

Discovery of clusters with arbitrary shape: Many clustering algorithms determine
clusters based on Euclidean or Manhattan distance measures (Chapter 2). Algorithms
based on such distance measures tend to find spherical clusters with similar size and
density. However, a cluster could be of any shape. Consider sensors, for example,
which are often deployed for environment surveillance. Cluster analysis on sensor
readings can detect interesting phenomena. We may want to use clustering to find
the frontier of a running forest fire, which is often not spherical. It is important to
develop algorithms that can detect clusters of arbitrary shape.

Requirements for domain knowledge to determine input parameters: Many clus-
tering algorithms require users to provide domain knowledge in the form of input
parameters such as the desired number of clusters. Consequently, the clustering
results may be sensitive to such parameters. Parameters are often hard to determine,
especially for high-dimensionality data sets and where users have yet to grasp a deep
understanding of their data. Requiring the specification of domain knowledge not
only burdens users, but also makes the quality of clustering difficult to control.

Ability to deal with noisy data: Most real-world data sets contain outliers and/or
missing, unknown, or erroneous data. Sensor readings, for example, are often
noisy—some readings may be inaccurate due to the sensing mechanisms, and some
readings may be erroneous due to interferences from surrounding transient objects.
Clustering algorithms can be sensitive to such noise and may produce poor-quality
clusters. Therefore, we need clustering methods that are robust to noise.

Incremental clustering and insensitivity to input order: In many applications,
incremental updates (representing newer data) may arrive at any time. Some clus-
tering algorithms cannot incorporate incremental updates into existing clustering
structures and, instead, have to recompute a new clustering from scratch. Cluster-
ing algorithms may also be sensitive to the input data order. That is, given a set
of data objects, clustering algorithms may return dramatically different clusterings
depending on the order in which the objects are presented. Incremental clustering
algorithms and algorithms that are insensitive to the input order are needed.
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Capability of clustering high-dimensionality data: A data set can contain numerous
dimensions or attributes. When clustering documents, for example, each keyword
can be regarded as a dimension, and there are often thousands of keywords. Most
clustering algorithms are good at handling low-dimensional data such as data sets
involving only two or three dimensions. Finding clusters of data objects in a high-
dimensional space is challenging, especially considering that such data can be very
sparse and highly skewed.

Constraint-based clustering: Real-world applications may need to perform clus-
tering under various kinds of constraints. Suppose that your job is to choose the
locations for a given number of new automatic teller machines (ATMs) in a city. To
decide upon this, you may cluster households while considering constraints such as
the city’s rivers and highway networks and the types and number of customers per
cluster. A challenging task is to find data groups with good clustering behavior that
satisfy specified constraints.

Interpretability and usability: Users want clustering results to be interpretable,
comprehensible, and usable. That is, clustering may need to be tied in with spe-
cific semantic interpretations and applications. It is important to study how an
application goal may influence the selection of clustering features and clustering
methods.

The following are orthogonal aspects with which clustering methods can be
compared:

The partitioning criteria: In some methods, all the objects are partitioned so that
no hierarchy exists among the clusters. That is, all the clusters are at the same level
conceptually. Such a method is useful, for example, for partitioning customers into
groups so that each group has its own manager. Alternatively, other methods parti-
tion data objects hierarchically, where clusters can be formed at different semantic
levels. For example, in text mining, we may want to organize a corpus of documents
into multiple general topics, such as “politics” and “sports,” each of which may have
subtopics, For instance, “football,” “basketball,” “baseball,” and “hockey” can exist as
subtopics of “sports.” The latter four subtopics are at a lower level in the hierarchy
than “sports.”

Separation of clusters: Some methods partition data objects into mutually exclusive
clusters. When clustering customers into groups so that each group is taken care of by
one manager, each customer may belong to only one group. In some other situations,
the clusters may not be exclusive, that is, a data object may belong to more than one
cluster. For example, when clustering documents into topics, a document may be
related to multiple topics. Thus, the topics as clusters may not be exclusive.

Similarity measure: Some methods determine the similarity between two objects
by the distance between them. Such a distance can be defined on Euclidean space,
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a road network, a vector space, or any other space. In other methods, the similarity
may be defined by connectivity based on density or contiguity, and may not rely on
the absolute distance between two objects. Similarity measures play a fundamental
role in the design of clustering methods. While distance-based methods can often
take advantage of optimization techniques, density- and continuity-based methods
can often find clusters of arbitrary shape.

Clustering space: Many clustering methods search for clusters within the entire given
data space. These methods are useful for low-dimensionality data sets. With high-
dimensional data, however, there can be many irrelevant attributes, which can make
similarity measurements unreliable. Consequently, clusters found in the full space
are often meaningless. It’s often better to instead search for clusters within different
subspaces of the same data set. Subspace clustering discovers clusters and subspaces
(often of low dimensionality) that manifest object similarity.

To conclude, clustering algorithms have several requirements. These factors include
scalability and the ability to deal with different types of attributes, noisy data, incremen-
tal updates, clusters of arbitrary shape, and constraints. Interpretability and usability are
also important. In addition, clustering methods can differ with respect to the partition-
ing level, whether or not clusters are mutually exclusive, the similarity measures used,
and whether or not subspace clustering is performed.

10.1.3 Overview of Basic Clustering Methods

There are many clustering algorithms in the literature. It is difficult to provide a crisp
categorization of clustering methods because these categories may overlap so that a
method may have features from several categories. Nevertheless, it is useful to present
a relatively organized picture of clustering methods. In general, the major fundamental
clustering methods can be classified into the following categories, which are discussed
in the rest of this chapter.

Partitioning methods: Given a set of n objects, a partitioning method constructs k
partitions of the data, where each partition represents a cluster and k ≤ n. That is, it
divides the data into k groups such that each group must contain at least one object.
In other words, partitioning methods conduct one-level partitioning on data sets.
The basic partitioning methods typically adopt exclusive cluster separation. That is,
each object must belong to exactly one group. This requirement may be relaxed, for
example, in fuzzy partitioning techniques. References to such techniques are given in
the bibliographic notes (Section 10.9).

Most partitioning methods are distance-based. Given k, the number of partitions
to construct, a partitioning method creates an initial partitioning. It then uses an
iterative relocation technique that attempts to improve the partitioning by moving
objects from one group to another. The general criterion of a good partitioning is
that objects in the same cluster are “close” or related to each other, whereas objects
in different clusters are “far apart” or very different. There are various kinds of other
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criteria for judging the quality of partitions. Traditional partitioning methods can
be extended for subspace clustering, rather than searching the full data space. This is
useful when there are many attributes and the data are sparse.

Achieving global optimality in partitioning-based clustering is often computation-
ally prohibitive, potentially requiring an exhaustive enumeration of all the possible
partitions. Instead, most applications adopt popular heuristic methods, such as
greedy approaches like the k-means and the k-medoids algorithms, which progres-
sively improve the clustering quality and approach a local optimum. These heuristic
clustering methods work well for finding spherical-shaped clusters in small- to
medium-size databases. To find clusters with complex shapes and for very large data
sets, partitioning-based methods need to be extended. Partitioning-based clustering
methods are studied in depth in Section 10.2.

Hierarchical methods: A hierarchical method creates a hierarchical decomposition of
the given set of data objects. A hierarchical method can be classified as being either
agglomerative or divisive, based on how the hierarchical decomposition is formed.
The agglomerative approach, also called the bottom-up approach, starts with each
object forming a separate group. It successively merges the objects or groups close
to one another, until all the groups are merged into one (the topmost level of the
hierarchy), or a termination condition holds. The divisive approach, also called the
top-down approach, starts with all the objects in the same cluster. In each successive
iteration, a cluster is split into smaller clusters, until eventually each object is in one
cluster, or a termination condition holds.

Hierarchical clustering methods can be distance-based or density- and continuity-
based. Various extensions of hierarchical methods consider clustering in subspaces
as well.

Hierarchical methods suffer from the fact that once a step (merge or split) is done,
it can never be undone. This rigidity is useful in that it leads to smaller computa-
tion costs by not having to worry about a combinatorial number of different choices.
Such techniques cannot correct erroneous decisions; however, methods for improv-
ing the quality of hierarchical clustering have been proposed. Hierarchical clustering
methods are studied in Section 10.3.

Density-based methods: Most partitioning methods cluster objects based on the dis-
tance between objects. Such methods can find only spherical-shaped clusters and
encounter difficulty in discovering clusters of arbitrary shapes. Other clustering
methods have been developed based on the notion of density. Their general idea
is to continue growing a given cluster as long as the density (number of objects or
data points) in the “neighborhood” exceeds some threshold. For example, for each
data point within a given cluster, the neighborhood of a given radius has to contain
at least a minimum number of points. Such a method can be used to filter out noise
or outliers and discover clusters of arbitrary shape.

Density-based methods can divide a set of objects into multiple exclusive clus-
ters, or a hierarchy of clusters. Typically, density-based methods consider exclusive
clusters only, and do not consider fuzzy clusters. Moreover, density-based methods
can be extended from full space to subspace clustering. Density-based clustering
methods are studied in Section 10.4.
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Grid-based methods: Grid-based methods quantize the object space into a finite
number of cells that form a grid structure. All the clustering operations are per-
formed on the grid structure (i.e., on the quantized space). The main advantage of
this approach is its fast processing time, which is typically independent of the num-
ber of data objects and dependent only on the number of cells in each dimension in
the quantized space.

Using grids is often an efficient approach to many spatial data mining problems,
including clustering. Therefore, grid-based methods can be integrated with other
clustering methods such as density-based methods and hierarchical methods. Grid-
based clustering is studied in Section 10.5.

These methods are briefly summarized in Figure 10.1. Some clustering algorithms
integrate the ideas of several clustering methods, so that it is sometimes difficult to clas-
sify a given algorithm as uniquely belonging to only one clustering method category.
Furthermore, some applications may have clustering criteria that require the integration
of several clustering techniques.

In the following sections, we examine each clustering method in detail. Advanced
clustering methods and related issues are discussed in Chapter 11. In general, the
notation used is as follows. Let D be a data set of n objects to be clustered. An object is
described by d variables, where each variable is also called an attribute or a dimension,

Method General Characteristics

Partitioning
methods

– Find mutually exclusive clusters of spherical shape
– Distance-based
– May use mean or medoid (etc.) to represent cluster center
– Effective for small- to medium-size data sets

Hierarchical
methods

– Clustering is a hierarchical decomposition (i.e., multiple levels)
– Cannot correct erroneous merges or splits
– May incorporate other techniques like microclustering or

consider object “linkages”

Density-based
methods

– Can find arbitrarily shaped clusters
– Clusters are dense regions of objects in space that are

separated by low-density regions
– Cluster density: Each point must have a minimum number of

points within its “neighborhood”
– May filter out outliers

Grid-based
methods

– Use a multiresolution grid data structure
– Fast processing time (typically independent of the number of

data objects, yet dependent on grid size)

Figure 10.1 Overview of clustering methods discussed in this chapter. Note that some algorithms may
combine various methods.
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and therefore may also be referred to as a point in a d-dimensional object space. Objects
are represented in bold italic font (e.g., p).

10.2 Partitioning Methods

The simplest and most fundamental version of cluster analysis is partitioning, which
organizes the objects of a set into several exclusive groups or clusters. To keep the
problem specification concise, we can assume that the number of clusters is given as
background knowledge. This parameter is the starting point for partitioning methods.

Formally, given a data set, D, of n objects, and k, the number of clusters to form, a
partitioning algorithm organizes the objects into k partitions (k ≤ n), where each par-
tition represents a cluster. The clusters are formed to optimize an objective partitioning
criterion, such as a dissimilarity function based on distance, so that the objects within a
cluster are “similar” to one another and “dissimilar” to objects in other clusters in terms
of the data set attributes.

In this section you will learn the most well-known and commonly used partitioning
methods—k-means (Section 10.2.1) and k-medoids (Section 10.2.2). You will also learn
several variations of these classic partitioning methods and how they can be scaled up
to handle large data sets.

10.2.1 k-Means: A Centroid-Based Technique
Suppose a data set, D, contains n objects in Euclidean space. Partitioning methods dis-
tribute the objects in D into k clusters, C1, . . . ,Ck , that is, Ci ⊂ D and Ci ∩ Cj = ∅ for
(1 ≤ i, j ≤ k). An objective function is used to assess the partitioning quality so that
objects within a cluster are similar to one another but dissimilar to objects in other
clusters. This is, the objective function aims for high intracluster similarity and low
intercluster similarity.

A centroid-based partitioning technique uses the centroid of a cluster, Ci , to represent
that cluster. Conceptually, the centroid of a cluster is its center point. The centroid can
be defined in various ways such as by the mean or medoid of the objects (or points)
assigned to the cluster. The difference between an object p ∈ Ci and ci, the representa-
tive of the cluster, is measured by dist(p,ci), where dist(x,y) is the Euclidean distance
between two points x and y. The quality of cluster Ci can be measured by the within-
cluster variation, which is the sum of squared error between all objects in Ci and the
centroid ci, defined as

E =
k∑

i=1

∑
p∈Ci

dist(p,ci)
2, (10.1)

where E is the sum of the squared error for all objects in the data set; p is the point in
space representing a given object; and ci is the centroid of cluster Ci (both p and ci are
multidimensional). In other words, for each object in each cluster, the distance from
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the object to its cluster center is squared, and the distances are summed. This objective
function tries to make the resulting k clusters as compact and as separate as possible.

Optimizing the within-cluster variation is computationally challenging. In the worst
case, we would have to enumerate a number of possible partitionings that are exponen-
tial to the number of clusters, and check the within-cluster variation values. It has been
shown that the problem is NP-hard in general Euclidean space even for two clusters (i.e.,
k = 2). Moreover, the problem is NP-hard for a general number of clusters k even in the
2-D Euclidean space. If the number of clusters k and the dimensionality of the space d
are fixed, the problem can be solved in time O(ndk+1 logn), where n is the number of
objects. To overcome the prohibitive computational cost for the exact solution, greedy
approaches are often used in practice. A prime example is the k-means algorithm, which
is simple and commonly used.

“How does the k-means algorithm work?” The k-means algorithm defines the centroid
of a cluster as the mean value of the points within the cluster. It proceeds as follows. First,
it randomly selects k of the objects in D, each of which initially represents a cluster mean
or center. For each of the remaining objects, an object is assigned to the cluster to which
it is the most similar, based on the Euclidean distance between the object and the cluster
mean. The k-means algorithm then iteratively improves the within-cluster variation.
For each cluster, it computes the new mean using the objects assigned to the cluster in
the previous iteration. All the objects are then reassigned using the updated means as
the new cluster centers. The iterations continue until the assignment is stable, that is,
the clusters formed in the current round are the same as those formed in the previous
round. The k-means procedure is summarized in Figure 10.2.

Algorithm: k-means. The k-means algorithm for partitioning, where each cluster’s center
is represented by the mean value of the objects in the cluster.

Input:

k: the number of clusters,

D: a data set containing n objects.

Output: A set of k clusters.

Method:

(1) arbitrarily choose k objects from D as the initial cluster centers;
(2) repeat
(3) (re)assign each object to the cluster to which the object is the most similar,

based on the mean value of the objects in the cluster;
(4) update the cluster means, that is, calculate the mean value of the objects for

each cluster;
(5) until no change;

Figure 10.2 The k-means partitioning algorithm.
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(a) Initial clustering (b) Iterate (c) Final clustering
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Figure 10.3 Clustering of a set of objects using the k-means method; for (b) update cluster centers and
reassign objects accordingly (the mean of each cluster is marked by a +).

Example 10.1 Clustering by k-means partitioning. Consider a set of objects located in 2-D space,
as depicted in Figure 10.3(a). Let k = 3, that is, the user would like the objects to be
partitioned into three clusters.

According to the algorithm in Figure 10.2, we arbitrarily choose three objects as
the three initial cluster centers, where cluster centers are marked by a +. Each object
is assigned to a cluster based on the cluster center to which it is the nearest. Such a
distribution forms silhouettes encircled by dotted curves, as shown in Figure 10.3(a).

Next, the cluster centers are updated. That is, the mean value of each cluster is recal-
culated based on the current objects in the cluster. Using the new cluster centers, the
objects are redistributed to the clusters based on which cluster center is the nearest.
Such a redistribution forms new silhouettes encircled by dashed curves, as shown in
Figure 10.3(b).

This process iterates, leading to Figure 10.3(c). The process of iteratively reassigning
objects to clusters to improve the partitioning is referred to as iterative relocation. Even-
tually, no reassignment of the objects in any cluster occurs and so the process terminates.
The resulting clusters are returned by the clustering process.

The k-means method is not guaranteed to converge to the global optimum and often
terminates at a local optimum. The results may depend on the initial random selection
of cluster centers. (You will be asked to give an example to show this as an exercise.)
To obtain good results in practice, it is common to run the k-means algorithm multiple
times with different initial cluster centers.

The time complexity of the k-means algorithm is O(nkt), where n is the total number
of objects, k is the number of clusters, and t is the number of iterations. Normally, k � n
and t � n. Therefore, the method is relatively scalable and efficient in processing large
data sets.

There are several variants of the k-means method. These can differ in the selection
of the initial k-means, the calculation of dissimilarity, and the strategies for calculating
cluster means.
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The k-means method can be applied only when the mean of a set of objects is defined.
This may not be the case in some applications such as when data with nominal attributes
are involved. The k-modes method is a variant of k-means, which extends the k-means
paradigm to cluster nominal data by replacing the means of clusters with modes. It uses
new dissimilarity measures to deal with nominal objects and a frequency-based method
to update modes of clusters. The k-means and the k-modes methods can be integrated
to cluster data with mixed numeric and nominal values.

The necessity for users to specify k, the number of clusters, in advance can be seen as a
disadvantage. There have been studies on how to overcome this difficulty, however, such
as by providing an approximate range of k values, and then using an analytical technique
to determine the best k by comparing the clustering results obtained for the different k
values. The k-means method is not suitable for discovering clusters with nonconvex
shapes or clusters of very different size. Moreover, it is sensitive to noise and outlier data
points because a small number of such data can substantially influence the mean value.

“How can we make the k-means algorithm more scalable?” One approach to mak-
ing the k-means method more efficient on large data sets is to use a good-sized set of
samples in clustering. Another is to employ a filtering approach that uses a spatial hier-
archical data index to save costs when computing means. A third approach explores the
microclustering idea, which first groups nearby objects into “microclusters” and then
performs k-means clustering on the microclusters. Microclustering is further discussed
in Section 10.3.

10.2.2 k-Medoids: A Representative Object-Based Technique

The k-means algorithm is sensitive to outliers because such objects are far away from the
majority of the data, and thus, when assigned to a cluster, they can dramatically distort
the mean value of the cluster. This inadvertently affects the assignment of other objects
to clusters. This effect is particularly exacerbated due to the use of the squared-error
function of Eq. (10.1), as observed in Example 10.2.

Example 10.2 A drawback of k-means. Consider six points in 1-D space having the values
1,2,3,8,9,10, and 25, respectively. Intuitively, by visual inspection we may imagine the
points partitioned into the clusters {1,2,3} and {8,9,10}, where point 25 is excluded
because it appears to be an outlier. How would k-means partition the values? If we
apply k-means using k = 2 and Eq. (10.1), the partitioning {{1,2,3}, {8,9,10,25}} has
the within-cluster variation

(1 − 2)2 + (2 − 2)2 + (3 − 2)2 + (8 − 13)2 + (9 − 13)2 + (10 − 13)2 + (25 − 13)2 =196,

given that the mean of cluster {1,2,3} is 2 and the mean of {8,9,10,25} is 13. Compare
this to the partitioning {{1,2,3,8}, {9,10,25}}, for which k-means computes the within-
cluster variation as

(1 − 3.5)2 + (2 − 3.5)2 + (3 − 3.5)2 + (8 − 3.5)2 + (9 − 14.67)2

+ (10 − 14.67)2 + (25 − 14.67)2 = 189.67,
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given that 3.5 is the mean of cluster {1,2,3,8} and 14.67 is the mean of cluster {9,10,25}.
The latter partitioning has the lowest within-cluster variation; therefore, the k-means
method assigns the value 8 to a cluster different from that containing 9 and 10 due to
the outlier point 25. Moreover, the center of the second cluster, 14.67, is substantially far
from all the members in the cluster.

“How can we modify the k-means algorithm to diminish such sensitivity to outliers?”
Instead of taking the mean value of the objects in a cluster as a reference point, we can
pick actual objects to represent the clusters, using one representative object per cluster.
Each remaining object is assigned to the cluster of which the representative object is
the most similar. The partitioning method is then performed based on the principle of
minimizing the sum of the dissimilarities between each object p and its corresponding
representative object. That is, an absolute-error criterion is used, defined as

E =
k∑

i=1

∑
p∈Ci

dist(p,oi), (10.2)

where E is the sum of the absolute error for all objects p in the data set, and oi is the
representative object of Ci . This is the basis for the k-medoids method, which groups n
objects into k clusters by minimizing the absolute error (Eq. 10.2).

When k = 1, we can find the exact median in O(n2) time. However, when k is a
general positive number, the k-medoid problem is NP-hard.

The Partitioning Around Medoids (PAM) algorithm (see Figure 10.5 later) is a pop-
ular realization of k-medoids clustering. It tackles the problem in an iterative, greedy
way. Like the k-means algorithm, the initial representative objects (called seeds) are
chosen arbitrarily. We consider whether replacing a representative object by a nonrep-
resentative object would improve the clustering quality. All the possible replacements
are tried out. The iterative process of replacing representative objects by other objects
continues until the quality of the resulting clustering cannot be improved by any replace-
ment. This quality is measured by a cost function of the average dissimilarity between
an object and the representative object of its cluster.

Specifically, let o1, . . . ,ok be the current set of representative objects (i.e., medoids).
To determine whether a nonrepresentative object, denoted by orandom, is a good replace-
ment for a current medoid oj (1 ≤ j ≤ k), we calculate the distance from every
object p to the closest object in the set {o1, . . . ,oj−1,orandom,oj+1, . . . ,ok}, and
use the distance to update the cost function. The reassignments of objects to
{o1, . . . ,oj−1,orandom,oj+1, . . . ,ok} are simple. Suppose object p is currently assigned to
a cluster represented by medoid oj (Figure 10.4a or b). Do we need to reassign p to a
different cluster if oj is being replaced by orandom? Object p needs to be reassigned to
either orandom or some other cluster represented by oi (i 	= j), whichever is the closest.
For example, in Figure 10.4(a), p is closest to oi and therefore is reassigned to oi. In
Figure 10.4(b), however, p is closest to orandom and so is reassigned to orandom. What if,
instead, p is currently assigned to a cluster represented by some other object oi, i 	= j?
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Figure 10.4 Four cases of the cost function for k-medoids clustering.

Object o remains assigned to the cluster represented by oi as long as o is still closer to oi

than to orandom (Figure 10.4c). Otherwise, o is reassigned to orandom (Figure 10.4d).
Each time a reassignment occurs, a difference in absolute error, E, is contributed to

the cost function. Therefore, the cost function calculates the difference in absolute-error
value if a current representative object is replaced by a nonrepresentative object. The
total cost of swapping is the sum of costs incurred by all nonrepresentative objects. If
the total cost is negative, then oj is replaced or swapped with orandom because the actual
absolute-error E is reduced. If the total cost is positive, the current representative object,
oj, is considered acceptable, and nothing is changed in the iteration.

“Which method is more robust—k-means or k-medoids?” The k-medoids method is
more robust than k-means in the presence of noise and outliers because a medoid is less
influenced by outliers or other extreme values than a mean. However, the complexity
of each iteration in the k-medoids algorithm is O(k(n − k)). For large values of n
and k, such computation becomes very costly, and much more costly than the k-means
method. Both methods require the user to specify k, the number of clusters.

“How can we scale up the k-medoids method?” A typical k-medoids partitioning algo-
rithm like PAM (Figure 10.5) works effectively for small data sets, but does not scale well
for large data sets. To deal with larger data sets, a sampling-based method called CLARA
(Clustering LARge Applications) can be used. Instead of taking the whole data set into
consideration, CLARA uses a random sample of the data set. The PAM algorithm is then
applied to compute the best medoids from the sample. Ideally, the sample should closely
represent the original data set. In many cases, a large sample works well if it is created so
that each object has equal probability of being selected into the sample. The representa-
tive objects (medoids) chosen will likely be similar to those that would have been chosen
from the whole data set. CLARA builds clusterings from multiple random samples and
returns the best clustering as the output. The complexity of computing the medoids on
a random sample is O(ks2 C k(n − k)), where s is the size of the sample, k is the number
of clusters, and n is the total number of objects. CLARA can deal with larger data sets
than PAM.

The effectiveness of CLARA depends on the sample size. Notice that PAM searches
for the best k-medoids among a given data set, whereas CLARA searches for the best
k-medoids among the selected sample of the data set. CLARA cannot find a good
clustering if any of the best sampled medoids is far from the best k-medoids. If an object
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Algorithm: k-medoids. PAM, a k-medoids algorithm for partitioning based on medoid
or central objects.

Input:

k: the number of clusters,

D: a data set containing n objects.

Output: A set of k clusters.

Method:

(1) arbitrarily choose k objects in D as the initial representative objects or seeds;
(2) repeat
(3) assign each remaining object to the cluster with the nearest representative object;
(4) randomly select a nonrepresentative object, orandom;
(5) compute the total cost, S, of swapping representative object, oj, with orandom;
(6) if S < 0 then swap oj with orandom to form the new set of k representative objects;
(7) until no change;

Figure 10.5 PAM, a k-medoids partitioning algorithm.

is one of the best k-medoids but is not selected during sampling, CLARA will never find
the best clustering. (You will be asked to provide an example demonstrating this as an
exercise.)

“How might we improve the quality and scalability of CLARA?” Recall that when
searching for better medoids, PAM examines every object in the data set against every
current medoid, whereas CLARA confines the candidate medoids to only a random
sample of the data set. A randomized algorithm called CLARANS (Clustering Large
Applications based upon RANdomized Search) presents a trade-off between the cost
and the effectiveness of using samples to obtain clustering.

First, it randomly selects k objects in the data set as the current medoids. It then
randomly selects a current medoid x and an object y that is not one of the current
medoids. Can replacing x by y improve the absolute-error criterion? If yes, the replace-
ment is made. CLARANS conducts such a randomized search l times. The set of the
current medoids after the l steps is considered a local optimum. CLARANS repeats this
randomized process m times and returns the best local optimal as the final result.

10.3 Hierarchical Methods

While partitioning methods meet the basic clustering requirement of organizing a set of
objects into a number of exclusive groups, in some situations we may want to partition
our data into groups at different levels such as in a hierarchy. A hierarchical clustering
method works by grouping data objects into a hierarchy or “tree” of clusters.

Representing data objects in the form of a hierarchy is useful for data summarization
and visualization. For example, as the manager of human resources at AllElectronics,
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you may organize your employees into major groups such as executives, managers, and
staff. You can further partition these groups into smaller subgroups. For instance, the
general group of staff can be further divided into subgroups of senior officers, officers,
and trainees. All these groups form a hierarchy. We can easily summarize or characterize
the data that are organized into a hierarchy, which can be used to find, say, the average
salary of managers and of officers.

Consider handwritten character recognition as another example. A set of handwrit-
ing samples may be first partitioned into general groups where each group corresponds
to a unique character. Some groups can be further partitioned into subgroups since
a character may be written in multiple substantially different ways. If necessary, the
hierarchical partitioning can be continued recursively until a desired granularity is
reached.

In the previous examples, although we partitioned the data hierarchically, we did not
assume that the data have a hierarchical structure (e.g., managers are at the same level
in our AllElectronics hierarchy as staff). Our use of a hierarchy here is just to summarize
and represent the underlying data in a compressed way. Such a hierarchy is particularly
useful for data visualization.

Alternatively, in some applications we may believe that the data bear an underly-
ing hierarchical structure that we want to discover. For example, hierarchical clustering
may uncover a hierarchy for AllElectronics employees structured on, say, salary. In the
study of evolution, hierarchical clustering may group animals according to their bio-
logical features to uncover evolutionary paths, which are a hierarchy of species. As
another example, grouping configurations of a strategic game (e.g., chess or checkers) in
a hierarchical way may help to develop game strategies that can be used to train players.

In this section, you will study hierarchical clustering methods. Section 10.3.1 begins
with a discussion of agglomerative versus divisive hierarchical clustering, which organize
objects into a hierarchy using a bottom-up or top-down strategy, respectively. Agglo-
merative methods start with individual objects as clusters, which are iteratively merged
to form larger clusters. Conversely, divisive methods initially let all the given objects
form one cluster, which they iteratively split into smaller clusters.

Hierarchical clustering methods can encounter difficulties regarding the selection
of merge or split points. Such a decision is critical, because once a group of objects is
merged or split, the process at the next step will operate on the newly generated clusters.
It will neither undo what was done previously, nor perform object swapping between
clusters. Thus, merge or split decisions, if not well chosen, may lead to low-quality
clusters. Moreover, the methods do not scale well because each decision of merge or
split needs to examine and evaluate many objects or clusters.

A promising direction for improving the clustering quality of hierarchical meth-
ods is to integrate hierarchical clustering with other clustering techniques, resulting in
multiple-phase (or multiphase) clustering. We introduce two such methods, namely
BIRCH and Chameleon. BIRCH (Section 10.3.3) begins by partitioning objects hierar-
chically using tree structures, where the leaf or low-level nonleaf nodes can be
viewed as “microclusters” depending on the resolution scale. It then applies other
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clustering algorithms to perform macroclustering on the microclusters. Chameleon
(Section 10.3.4) explores dynamic modeling in hierarchical clustering.

There are several orthogonal ways to categorize hierarchical clustering methods. For
instance, they may be categorized into algorithmic methods, probabilistic methods, and
Bayesian methods. Agglomerative, divisive, and multiphase methods are algorithmic,
meaning they consider data objects as deterministic and compute clusters according
to the deterministic distances between objects. Probabilistic methods use probabilistic
models to capture clusters and measure the quality of clusters by the fitness of mod-
els. We discuss probabilistic hierarchical clustering in Section 10.3.5. Bayesian methods
compute a distribution of possible clusterings. That is, instead of outputting a single
deterministic clustering over a data set, they return a group of clustering structures and
their probabilities, conditional on the given data. Bayesian methods are considered an
advanced topic and are not discussed in this book.

10.3.1 Agglomerative versus Divisive Hierarchical Clustering

A hierarchical clustering method can be either agglomerative or divisive, depending on
whether the hierarchical decomposition is formed in a bottom-up (merging) or top-
down (splitting) fashion. Let’s have a closer look at these strategies.

An agglomerative hierarchical clustering method uses a bottom-up strategy. It typ-
ically starts by letting each object form its own cluster and iteratively merges clusters
into larger and larger clusters, until all the objects are in a single cluster or certain termi-
nation conditions are satisfied. The single cluster becomes the hierarchy’s root. For the
merging step, it finds the two clusters that are closest to each other (according to some
similarity measure), and combines the two to form one cluster. Because two clusters are
merged per iteration, where each cluster contains at least one object, an agglomerative
method requires at most n iterations.

A divisive hierarchical clustering method employs a top-down strategy. It starts by
placing all objects in one cluster, which is the hierarchy’s root. It then divides the root
cluster into several smaller subclusters, and recursively partitions those clusters into
smaller ones. The partitioning process continues until each cluster at the lowest level
is coherent enough—either containing only one object, or the objects within a cluster
are sufficiently similar to each other.

In either agglomerative or divisive hierarchical clustering, a user can specify the
desired number of clusters as a termination condition.

Example 10.3 Agglomerative versus divisive hierarchical clustering. Figure 10.6 shows the appli-
cation of AGNES (AGglomerative NESting), an agglomerative hierarchical clustering
method, and DIANA (DIvisive ANAlysis), a divisive hierarchical clustering method, on
a data set of five objects, {a,b,c,d,e}. Initially, AGNES, the agglomerative method, places
each object into a cluster of its own. The clusters are then merged step-by-step according
to some criterion. For example, clusters C1 and C2 may be merged if an object in C1 and
an object in C2 form the minimum Euclidean distance between any two objects from
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Figure 10.6 Agglomerative and divisive hierarchical clustering on data objects {a,b,c,d,e}.
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Figure 10.7 Dendrogram representation for hierarchical clustering of data objects {a,b,c,d,e}.

different clusters. This is a single-linkage approach in that each cluster is represented
by all the objects in the cluster, and the similarity between two clusters is measured
by the similarity of the closest pair of data points belonging to different clusters. The
cluster-merging process repeats until all the objects are eventually merged to form one
cluster.

DIANA, the divisive method, proceeds in the contrasting way. All the objects are used
to form one initial cluster. The cluster is split according to some principle such as the
maximum Euclidean distance between the closest neighboring objects in the cluster. The
cluster-splitting process repeats until, eventually, each new cluster contains only a single
object.

A tree structure called a dendrogram is commonly used to represent the process of
hierarchical clustering. It shows how objects are grouped together (in an agglomerative
method) or partitioned (in a divisive method) step-by-step. Figure 10.7 shows a den-
drogram for the five objects presented in Figure 10.6, where l = 0 shows the five objects
as singleton clusters at level 0. At l = 1, objects a and b are grouped together to form the
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first cluster, and they stay together at all subsequent levels. We can also use a vertical axis
to show the similarity scale between clusters. For example, when the similarity of two
groups of objects, {a,b} and {c,d,e}, is roughly 0.16, they are merged together to form a
single cluster.

A challenge with divisive methods is how to partition a large cluster into several
smaller ones. For example, there are 2n−1 − 1 possible ways to partition a set of n objects
into two exclusive subsets, where n is the number of objects. When n is large, it is com-
putationally prohibitive to examine all possibilities. Consequently, a divisive method
typically uses heuristics in partitioning, which can lead to inaccurate results. For the
sake of efficiency, divisive methods typically do not backtrack on partitioning decisions
that have been made. Once a cluster is partitioned, any alternative partitioning of this
cluster will not be considered again. Due to the challenges in divisive methods, there are
many more agglomerative methods than divisive methods.

10.3.2 Distance Measures in Algorithmic Methods

Whether using an agglomerative method or a divisive method, a core need is to measure
the distance between two clusters, where each cluster is generally a set of objects.

Four widely used measures for distance between clusters are as follows, where |p − p′|
is the distance between two objects or points, p and p′; mi is the mean for cluster, Ci ;
and ni is the number of objects in Ci . They are also known as linkage measures.

Minimum distance: distmin(Ci ,Cj) = min
p∈Ci ,p

′∈Cj

{|p − p′|} (10.3)

Maximum distance: distmax(Ci ,Cj) = max
p∈Ci ,p

′∈Cj

{|p − p′|} (10.4)

Mean distance: distmean(Ci ,Cj) = |mi − mj| (10.5)

Average distance: distavg (Ci ,Cj) = 1

ninj

∑
p∈Ci ,p

′∈Cj

|p − p′| (10.6)

When an algorithm uses the minimum distance, dmin(Ci ,Cj), to measure the distance
between clusters, it is sometimes called a nearest-neighbor clustering algorithm. More-
over, if the clustering process is terminated when the distance between nearest clusters
exceeds a user-defined threshold, it is called a single-linkage algorithm. If we view the
data points as nodes of a graph, with edges forming a path between the nodes in a cluster,
then the merging of two clusters, Ci and Cj , corresponds to adding an edge between the
nearest pair of nodes in Ci and Cj . Because edges linking clusters always go between dis-
tinct clusters, the resulting graph will generate a tree. Thus, an agglomerative hierar-
chical clustering algorithm that uses the minimum distance measure is also called a
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minimal spanning tree algorithm, where a spanning tree of a graph is a tree that
connects all vertices, and a minimal spanning tree is the one with the least sum of edge
weights.

When an algorithm uses the maximum distance, dmax(Ci ,Cj), to measure the distance
between clusters, it is sometimes called a farthest-neighbor clustering algorithm. If the
clustering process is terminated when the maximum distance between nearest clusters
exceeds a user-defined threshold, it is called a complete-linkage algorithm. By viewing
data points as nodes of a graph, with edges linking nodes, we can think of each cluster as
a complete subgraph, that is, with edges connecting all the nodes in the clusters. The dis-
tance between two clusters is determined by the most distant nodes in the two clusters.
Farthest-neighbor algorithms tend to minimize the increase in diameter of the clusters
at each iteration. If the true clusters are rather compact and approximately equal size,
the method will produce high-quality clusters. Otherwise, the clusters produced can be
meaningless.

The previous minimum and maximum measures represent two extremes in mea-
suring the distance between clusters. They tend to be overly sensitive to outliers or
noisy data. The use of mean or average distance is a compromise between the mini-
mum and maximum distances and overcomes the outlier sensitivity problem. Whereas
the mean distance is the simplest to compute, the average distance is advantageous in that
it can handle categoric as well as numeric data. The computation of the mean vector for
categoric data can be difficult or impossible to define.

Example 10.4 Single versus complete linkages. Let us apply hierarchical clustering to the data set of
Figure 10.8(a). Figure 10.8(b) shows the dendrogram using single linkage. Figure 10.8(c)
shows the case using complete linkage, where the edges between clusters {A,B, J ,H} and
{C,D,G,F ,E} are omitted for ease of presentation. This example shows that by using
single linkages we can find hierarchical clusters defined by local proximity, whereas
complete linkage tends to find clusters opting for global closeness.

There are variations of the four essential linkage measures just discussed. For exam-
ple, we can measure the distance between two clusters by the distance between the
centroids (i.e., the central objects) of the clusters.

10.3.3 BIRCH: Multiphase Hierarchical Clustering
Using Clustering Feature Trees

Balanced Iterative Reducing and Clustering using Hierarchies (BIRCH) is designed for
clustering a large amount of numeric data by integrating hierarchical clustering (at the
initial microclustering stage) and other clustering methods such as iterative partitioning
(at the later macroclustering stage). It overcomes the two difficulties in agglomerative
clustering methods: (1) scalability and (2) the inability to undo what was done in the
previous step.

BIRCH uses the notions of clustering feature to summarize a cluster, and clus-
tering feature tree (CF-tree) to represent a cluster hierarchy. These structures help
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Figure 10.8 Hierarchical clustering using single and complete linkages.

the clustering method achieve good speed and scalability in large or even streaming
databases, and also make it effective for incremental and dynamic clustering of incoming
objects.

Consider a cluster of n d-dimensional data objects or points. The clustering feature
(CF) of the cluster is a 3-D vector summarizing information about clusters of objects. It
is defined as

CF = 〈n,LS,SS〉, (10.7)

where LS is the linear sum of the n points (i.e.,
∑n

i=1 xi), and SS is the square sum of the
data points (i.e.,

∑n
i=1 xi

2).
A clustering feature is essentially a summary of the statistics for the given cluster.

Using a clustering feature, we can easily derive many useful statistics of a cluster. For
example, the cluster’s centroid, x0, radius, R, and diameter, D, are

x0 =

n∑
i=1

xi

n
= LS

n
, (10.8)
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R =

√√√√√√
n∑

i=1

(xi − x0)
2

n
=

√
nSS − 2LS2 + nLS

n2
, (10.9)

D =

√√√√√√
n∑

i=1

n∑
j=1

(xi − xj)
2

n(n − 1)
=

√
2nSS − 2LS2

n(n − 1)
. (10.10)

Here, R is the average distance from member objects to the centroid, and D is the aver-
age pairwise distance within a cluster. Both R and D reflect the tightness of the cluster
around the centroid.

Summarizing a cluster using the clustering feature can avoid storing the detailed
information about individual objects or points. Instead, we only need a constant size
of space to store the clustering feature. This is the key to BIRCH efficiency in space.
Moreover, clustering features are additive. That is, for two disjoint clusters, C1 and C2,
with the clustering features CF1 = 〈n1,LS1,SS1〉 and CF2 = 〈n2,LS2,SS2〉, respectively,
the clustering feature for the cluster that formed by merging C1 and C2 is simply

CF1 + CF2 = 〈n1 + n2,LS1 + LS2,SS1 + SS2〉. (10.11)

Example 10.5 Clustering feature. Suppose there are three points, (2,5),(3,2), and (4,3), in a cluster,
C1. The clustering feature of C1 is

CF1 = 〈3,(2 + 3 + 4,5 + 2 + 3),(22 + 32 + 42,52 + 22 + 32)〉 = 〈3,(9,10),(29,38)〉.

Suppose that C1 is disjoint to a second cluster, C2, where CF2 = 〈3,(35,36),(417,440)〉.
The clustering feature of a new cluster, C3, that is formed by merging C1 and C2, is
derived by adding CF1 and CF2. That is,

CF3 = 〈3 + 3,(9 + 35,10 + 36),(29 + 417,38 + 440)〉 = 〈6,(44,46),(446,478)〉.

A CF-tree is a height-balanced tree that stores the clustering features for a hierar-
chical clustering. An example is shown in Figure 10.9. By definition, a nonleaf node in
a tree has descendants or “children.” The nonleaf nodes store sums of the CFs of their
children, and thus summarize clustering information about their children. A CF-tree
has two parameters: branching factor, B, and threshold, T . The branching factor specifies
the maximum number of children per nonleaf node. The threshold parameter specifies
the maximum diameter of subclusters stored at the leaf nodes of the tree. These two
parameters implicitly control the resulting tree’s size.

Given a limited amount of main memory, an important consideration in BIRCH
is to minimize the time required for input/output (I/O). BIRCH applies a multiphase
clustering technique: A single scan of the data set yields a basic, good clustering, and
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Figure 10.9 CF-tree structure.

one or more additional scans can optionally be used to further improve the quality. The
primary phases are

Phase 1: BIRCH scans the database to build an initial in-memory CF-tree, which
can be viewed as a multilevel compression of the data that tries to preserve the data’s
inherent clustering structure.

Phase 2: BIRCH applies a (selected) clustering algorithm to cluster the leaf nodes of
the CF-tree, which removes sparse clusters as outliers and groups dense clusters into
larger ones.

For Phase 1, the CF-tree is built dynamically as objects are inserted. Thus, the method
is incremental. An object is inserted into the closest leaf entry (subcluster). If the dia-
meter of the subcluster stored in the leaf node after insertion is larger than the threshold
value, then the leaf node and possibly other nodes are split. After the insertion of the
new object, information about the object is passed toward the root of the tree. The size
of the CF-tree can be changed by modifying the threshold. If the size of the memory
that is needed for storing the CF-tree is larger than the size of the main memory, then a
larger threshold value can be specified and the CF-tree is rebuilt.

The rebuild process is performed by building a new tree from the leaf nodes of the old
tree. Thus, the process of rebuilding the tree is done without the necessity of rereading
all the objects or points. This is similar to the insertion and node split in the construc-
tion of B+-trees. Therefore, for building the tree, data has to be read just once. Some
heuristics and methods have been introduced to deal with outliers and improve the qual-
ity of CF-trees by additional scans of the data. Once the CF-tree is built, any clustering
algorithm, such as a typical partitioning algorithm, can be used with the CF-tree in
Phase 2.

“How effective is BIRCH?” The time complexity of the algorithm is O(n), where n
is the number of objects to be clustered. Experiments have shown the linear scalability
of the algorithm with respect to the number of objects, and good quality of clustering
of the data. However, since each node in a CF-tree can hold only a limited number of
entries due to its size, a CF-tree node does not always correspond to what a user may
consider a natural cluster. Moreover, if the clusters are not spherical in shape, BIRCH
does not perform well because it uses the notion of radius or diameter to control the
boundary of a cluster.
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The ideas of clustering features and CF-trees have been applied beyond BIRCH. The
ideas have been borrowed by many others to tackle problems of clustering streaming
and dynamic data.

10.3.4 Chameleon: Multiphase Hierarchical Clustering
Using Dynamic Modeling

Chameleon is a hierarchical clustering algorithm that uses dynamic modeling to deter-
mine the similarity between pairs of clusters. In Chameleon, cluster similarity is assessed
based on (1) how well connected objects are within a cluster and (2) the proximity of
clusters. That is, two clusters are merged if their interconnectivity is high and they are
close together. Thus, Chameleon does not depend on a static, user-supplied model and
can automatically adapt to the internal characteristics of the clusters being merged. The
merge process facilitates the discovery of natural and homogeneous clusters and applies
to all data types as long as a similarity function can be specified.

Figure 10.10 illustrates how Chameleon works. Chameleon uses a k-nearest-neighbor
graph approach to construct a sparse graph, where each vertex of the graph represents
a data object, and there exists an edge between two vertices (objects) if one object is
among the k-most similar objects to the other. The edges are weighted to reflect the
similarity between objects. Chameleon uses a graph partitioning algorithm to partition
the k-nearest-neighbor graph into a large number of relatively small subclusters such
that it minimizes the edge cut. That is, a cluster C is partitioned into subclusters Ci and
Cj so as to minimize the weight of the edges that would be cut should C be bisected into
Ci and Cj . It assesses the absolute interconnectivity between clusters Ci and Cj .

Chameleon then uses an agglomerative hierarchical clustering algorithm that itera-
tively merges subclusters based on their similarity. To determine the pairs of most similar
subclusters, it takes into account both the interconnectivity and the closeness of the clus-
ters. Specifically, Chameleon determines the similarity between each pair of clusters Ci

and Cj according to their relative interconnectivity, RI(Ci ,Cj), and their relative closeness,
RC(Ci ,Cj).

The relative interconnectivity, RI(Ci ,Cj), between two clusters, Ci and Cj , is defined
as the absolute interconnectivity between Ci and Cj , normalized with respect to the

Data set Construct
a sparse
graph

Partition
the graph

Merge
partitions

k-nearest-neighbor graph Final clusters

Figure 10.10 Chameleon: hierarchical clustering based on k-nearest neighbors and dynamic modeling.
Source: Based on Karypis, Han, and Kumar [KHK99].
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internal interconnectivity of the two clusters, Ci and Cj . That is,

RI(Ci ,Cj) = |EC{Ci ,Cj}|
1
2 (|ECCi | + |ECCj |)

, (10.12)

where EC{Ci ,Cj} is the edge cut as previously defined for a cluster containing both Ci

and Cj . Similarly, ECCi (or ECCj ) is the minimum sum of the cut edges that partition
Ci (or Cj) into two roughly equal parts.

The relative closeness, RC(Ci ,Cj), between a pair of clusters, Ci and Cj , is the abso-
lute closeness between Ci and Cj , normalized with respect to the internal closeness of
the two clusters, Ci and Cj . It is defined as

RC(Ci ,Cj) =
SEC{Ci ,Cj }

|Ci |
|Ci |+|Cj |SECCi

+ |Cj |
|Ci |+|Cj |SECCj

, (10.13)

where SEC{Ci ,Cj } is the average weight of the edges that connect vertices in Ci to vertices

in Cj , and SECCi
(or SECCj

) is the average weight of the edges that belong to the min-

cut bisector of cluster Ci (or Cj).

Chameleon has been shown to have greater power at discovering arbitrarily shaped
clusters of high quality than several well-known algorithms such as BIRCH and density-
based DBSCAN (Section 10.4.1). However, the processing cost for high-dimensional
data may require O(n2) time for n objects in the worst case.

10.3.5 Probabilistic Hierarchical Clustering

Algorithmic hierarchical clustering methods using linkage measures tend to be easy to
understand and are often efficient in clustering. They are commonly used in many clus-
tering analysis applications. However, algorithmic hierarchical clustering methods can
suffer from several drawbacks. First, choosing a good distance measure for hierarchical
clustering is often far from trivial. Second, to apply an algorithmic method, the data
objects cannot have any missing attribute values. In the case of data that are partially
observed (i.e., some attribute values of some objects are missing), it is not easy to apply
an algorithmic hierarchical clustering method because the distance computation cannot
be conducted. Third, most of the algorithmic hierarchical clustering methods are heuris-
tic, and at each step locally search for a good merging/splitting decision. Consequently,
the optimization goal of the resulting cluster hierarchy can be unclear.

Probabilistic hierarchical clustering aims to overcome some of these disadvantages
by using probabilistic models to measure distances between clusters.

One way to look at the clustering problem is to regard the set of data objects to be
clustered as a sample of the underlying data generation mechanism to be analyzed or,
formally, the generative model. For example, when we conduct clustering analysis on
a set of marketing surveys, we assume that the surveys collected are a sample of the
opinions of all possible customers. Here, the data generation mechanism is a probability
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distribution of opinions with respect to different customers, which cannot be obtained
directly and completely. The task of clustering is to estimate the generative model as
accurately as possible using the observed data objects to be clustered.

In practice, we can assume that the data generative models adopt common distri-
bution functions, such as Gaussian distribution or Bernoulli distribution, which are
governed by parameters. The task of learning a generative model is then reduced to
finding the parameter values for which the model best fits the observed data set.

Example 10.6 Generative model. Suppose we are given a set of 1-D points X = {x1, . . . ,xn} for
clustering analysis. Let us assume that the data points are generated by a Gaussian
distribution,

N (μ,σ 2) = 1√
2πσ 2

e
− (x−μ)2

2σ2 , (10.14)

where the parameters are μ (the mean) and σ 2 (the variance).
The probability that a point xi ∈ X is then generated by the model is

P(xi|μ,σ 2) = 1√
2πσ 2

e
− (xi−μ)2

2σ2 . (10.15)

Consequently, the likelihood that X is generated by the model is

L(N (μ,σ 2) : X) = P(X|μ,σ 2) =
n∏

i=1

1√
2πσ 2

e
− (xi−μ)2

2σ2 . (10.16)

The task of learning the generative model is to find the parameters μ and σ 2 such
that the likelihood L(N (μ,σ 2) : X) is maximized, that is, finding

N (μ0,σ 2
0 ) = argmax{L(N (μ,σ 2) : X)}, (10.17)

where max{L(N (μ,σ 2) : X)} is called the maximum likelihood.

Given a set of objects, the quality of a cluster formed by all the objects can be
measured by the maximum likelihood. For a set of objects partitioned into m clusters
C1, . . . ,Cm, the quality can be measured by

Q({C1, . . . ,Cm}) =
m∏

i=1

P(Ci), (10.18)
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where P() is the maximum likelihood. If we merge two clusters, Cj1 and Cj2 , into a
cluster, Cj1 ∪ Cj2 , then, the change in quality of the overall clustering is

Q(({C1, . . . ,Cm}− {Cj1 ,Cj2}) ∪ {Cj1 ∪ Cj2}) − Q({C1, . . . ,Cm})

=
∏m

i=1 P(Ci) · P(Cj1 ∪ Cj2)

P(Cj1)P(Cj2)
−

m∏
i=1

P(Ci)

=
m∏

i=1

P(Ci)

(
P(Cj1 ∪ Cj2)

P(Cj1)P(Cj2)
− 1

)
. (10.19)

When choosing to merge two clusters in hierarchical clustering,
∏m

i=1 P(Ci) is constant
for any pair of clusters. Therefore, given clusters C1 and C2, the distance between them
can be measured by

dist(Ci ,Cj) = − log
P(C1 ∪ C2)

P(C1)P(C2)
. (10.20)

A probabilistic hierarchical clustering method can adopt the agglomerative clustering
framework, but use probabilistic models (Eq. 10.20) to measure the distance between
clusters.

Upon close observation of Eq. (10.19), we see that merging two clusters may not

always lead to an improvement in clustering quality, that is,
P(Cj1 ∪Cj2 )

P(Cj1 )P(Cj2 )
may be less

than 1. For example, assume that Gaussian distribution functions are used in the model
of Figure 10.11. Although merging clusters C1 and C2 results in a cluster that better fits a
Gaussian distribution, merging clusters C3 and C4 lowers the clustering quality because
no Gaussian functions can fit the merged cluster well.

Based on this observation, a probabilistic hierarchical clustering scheme can start
with one cluster per object, and merge two clusters, Ci and Cj , if the distance between
them is negative. In each iteration, we try to find Ci and Cj so as to maximize

log
P(Ci∪Cj)

P(Ci)P(Cj)
. The iteration continues as long as log

P(Ci∪Cj)

P(Ci)P(Cj)
> 0, that is, as long as

there is an improvement in clustering quality. The pseudocode is given in Figure 10.12.
Probabilistic hierarchical clustering methods are easy to understand, and generally

have the same efficiency as algorithmic agglomerative hierarchical clustering methods;
in fact, they share the same framework. Probabilistic models are more interpretable, but
sometimes less flexible than distance metrics. Probabilistic models can handle partially
observed data. For example, given a multidimensional data set where some objects have
missing values on some dimensions, we can learn a Gaussian model on each dimen-
sion independently using the observed values on the dimension. The resulting cluster
hierarchy accomplishes the optimization goal of fitting data to the selected probabilistic
models.

A drawback of using probabilistic hierarchical clustering is that it outputs only one
hierarchy with respect to a chosen probabilistic model. It cannot handle the uncer-
tainty of cluster hierarchies. Given a data set, there may exist multiple hierarchies that
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C1
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Figure 10.11 Merging clusters in probabilistic hierarchical clustering: (a) Merging clusters C1 and C2 leads
to an increase in overall cluster quality, but merging clusters (b) C3 and (c) C4 does not.

Algorithm: A probabilistic hierarchical clustering algorithm.

Input:

D = {o1, . . . ,on}: a data set containing n objects;

Output: A hierarchy of clusters.

Method:

(1) create a cluster for each object Ci = {oi}, 1 ≤ i ≤ n;
(2) for i = 1 to n

(3) find pair of clusters Ci and Cj such that Ci ,Cj = argmaxi 	=j log
P(Ci∪Cj)

P(Ci)P(Cj)
;

(4) if log
P(Ci∪Cj)

P(Ci)P(Cj)
> 0 then merge Ci and Cj ;

(5) else stop;

Figure 10.12 A probabilistic hierarchical clustering algorithm.

fit the observed data. Neither algorithmic approaches nor probabilistic approaches can
find the distribution of such hierarchies. Recently, Bayesian tree-structured models have
been developed to handle such problems. Bayesian and other sophisticated probabilistic
clustering methods are considered advanced topics and are not covered in this book.



10.4 Density-Based Methods 471

10.4 Density-Based Methods

Partitioning and hierarchical methods are designed to find spherical-shaped clusters.
They have difficulty finding clusters of arbitrary shape such as the “S” shape and oval
clusters in Figure 10.13. Given such data, they would likely inaccurately identify convex
regions, where noise or outliers are included in the clusters.

To find clusters of arbitrary shape, alternatively, we can model clusters as dense
regions in the data space, separated by sparse regions. This is the main strategy behind
density-based clustering methods, which can discover clusters of nonspherical shape.
In this section, you will learn the basic techniques of density-based clustering by
studying three representative methods, namely, DBSCAN (Section 10.4.1), OPTICS
(Section 10.4.2), and DENCLUE (Section 10.4.3).

10.4.1 DBSCAN: Density-Based Clustering Based on Connected
Regions with High Density

“How can we find dense regions in density-based clustering?” The density of an object o
can be measured by the number of objects close to o. DBSCAN (Density-Based Spatial
Clustering of Applications with Noise) finds core objects, that is, objects that have dense
neighborhoods. It connects core objects and their neighborhoods to form dense regions
as clusters.

“How does DBSCAN quantify the neighborhood of an object?” A user-specified para-
meter ε > 0 is used to specify the radius of a neighborhood we consider for every object.
The ε-neighborhood of an object o is the space within a radius ε centered at o.

Due to the fixed neighborhood size parameterized by ε, the density of a neighbor-
hood can be measured simply by the number of objects in the neighborhood. To deter-
mine whether a neighborhood is dense or not, DBSCAN uses another user-specified

Figure 10.13 Clusters of arbitrary shape.



472 Chapter 10 Cluster Analysis: Basic Concepts and Methods

parameter, MinPts, which specifies the density threshold of dense regions. An object is
a core object if the ε-neighborhood of the object contains at least MinPts objects. Core
objects are the pillars of dense regions.

Given a set, D, of objects, we can identify all core objects with respect to the given
parameters, ε and MinPts. The clustering task is therein reduced to using core objects
and their neighborhoods to form dense regions, where the dense regions are clusters.
For a core object q and an object p, we say that p is directly density-reachable from q
(with respect to ε and MinPts) if p is within the ε-neighborhood of q. Clearly, an object
p is directly density-reachable from another object q if and only if q is a core object and
p is in the ε-neighborhood of q. Using the directly density-reachable relation, a core
object can “bring” all objects from its ε-neighborhood into a dense region.

“How can we assemble a large dense region using small dense regions centered by core
objects?” In DBSCAN, p is density-reachable from q (with respect to ε and MinPts in
D) if there is a chain of objects p1, . . . ,pn, such that p1 = q, pn = p, and pi+1 is directly
density-reachable from pi with respect to ε and MinPts, for 1 ≤ i ≤ n, pi ∈ D. Note that
density-reachability is not an equivalence relation because it is not symmetric. If both o1

and o2 are core objects and o1 is density-reachable from o2, then o2 is density-reachable
from o1. However, if o2 is a core object but o1 is not, then o1 may be density-reachable
from o2, but not vice versa.

To connect core objects as well as their neighbors in a dense region, DBSCAN uses
the notion of density-connectedness. Two objects p1,p2 ∈ D are density-connected with
respect to ε and MinPts if there is an object q ∈ D such that both p1 and p2 are density-
reachable from q with respect to ε and MinPts. Unlike density-reachability, density-
connectedness is an equivalence relation. It is easy to show that, for objects o1, o2, and
o3, if o1 and o2 are density-connected, and o2 and o3 are density-connected, then so are
o1 and o3.

Example 10.7 Density-reachability and density-connectivity. Consider Figure 10.14 for a given ε

represented by the radius of the circles, and, say, let MinPts = 3.
Of the labeled points, m,p,o,r are core objects because each is in an ε-neighborhood

containing at least three points. Object q is directly density-reachable from m. Object m
is directly density-reachable from p and vice versa.

Object q is (indirectly) density-reachable from p because q is directly density-
reachable from m and m is directly density-reachable from p. However, p is not density-
reachable from q because q is not a core object. Similarly, r and s are density-reachable
from o and o is density-reachable from r. Thus, o, r, and s are all density-connected.

We can use the closure of density-connectedness to find connected dense regions as
clusters. Each closed set is a density-based cluster. A subset C ⊆ D is a cluster if (1)
for any two objects o1,o2 ∈ C, o1 and o2 are density-connected; and (2) there does not
exist an object o ∈ C and another object o′ ∈ (D − C) such that o and o′ are density-
connected.
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Figure 10.14 Density-reachability and density-connectivity in density-based clustering. Source: Based on
Ester, Kriegel, Sander, and Xu [EKSX96].

“How does DBSCAN find clusters?” Initially, all objects in a given data set D are
marked as “unvisited.” DBSCAN randomly selects an unvisited object p, marks p as
“visited,” and checks whether the ε-neighborhood of p contains at least MinPts objects.
If not, p is marked as a noise point. Otherwise, a new cluster C is created for p, and all
the objects in the ε-neighborhood of p are added to a candidate set, N . DBSCAN iter-
atively adds to C those objects in N that do not belong to any cluster. In this process,
for an object p′ in N that carries the label “unvisited,” DBSCAN marks it as “visited” and
checks its ε-neighborhood. If the ε-neighborhood of p′ has at least MinPts objects, those
objects in the ε-neighborhood of p′ are added to N . DBSCAN continues adding objects
to C until C can no longer be expanded, that is, N is empty. At this time, cluster C is
completed, and thus is output.

To find the next cluster, DBSCAN randomly selects an unvisited object from the
remaining ones. The clustering process continues until all objects are visited. The
pseudocode of the DBSCAN algorithm is given in Figure 10.15.

If a spatial index is used, the computational complexity of DBSCAN is O(n logn),
where n is the number of database objects. Otherwise, the complexity is O(n2). With
appropriate settings of the user-defined parameters, ε and MinPts, the algorithm is
effective in finding arbitrary-shaped clusters.

10.4.2 OPTICS: Ordering Points to Identify
the Clustering Structure

Although DBSCAN can cluster objects given input parameters such as ε (the maxi-
mum radius of a neighborhood) and MinPts (the minimum number of points required
in the neighborhood of a core object), it encumbers users with the responsibility of
selecting parameter values that will lead to the discovery of acceptable clusters. This is
a problem associated with many other clustering algorithms. Such parameter settings
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Algorithm: DBSCAN: a density-based clustering algorithm.

Input:

D: a data set containing n objects,

ε: the radius parameter, and

MinPts: the neighborhood density threshold.

Output: A set of density-based clusters.

Method:

(1) mark all objects as unvisited;
(2) do
(3) randomly select an unvisited object p;
(4) mark p as visited;
(5) if the ε-neighborhood of p has at least MinPts objects
(6) create a new cluster C, and add p to C;
(7) let N be the set of objects in the ε-neighborhood of p;
(8) for each point p′ in N
(9) if p′ is unvisited
(10) mark p′ as visited;
(11) if the ε-neighborhood of p′ has at least MinPts points,

add those points to N ;
(12) if p′ is not yet a member of any cluster, add p′ to C;
(13) end for
(14) output C;
(15) else mark p as noise;
(16) until no object is unvisited;

Figure 10.15 DBSCAN algorithm.

are usually empirically set and difficult to determine, especially for real-world, high-
dimensional data sets. Most algorithms are sensitive to these parameter values: Slightly
different settings may lead to very different clusterings of the data. Moreover, real-world,
high-dimensional data sets often have very skewed distributions such that their intrin-
sic clustering structure may not be well characterized by a single set of global density
parameters.

Note that density-based clusters are monotonic with respect to the neighborhood
threshold. That is, in DBSCAN, for a fixed MinPts value and two neighborhood thresh-
olds, ε1 < ε2, a cluster C with respect to ε1 and MinPts must be a subset of a cluster
C′ with respect to ε2 and MinPts. This means that if two objects are in a density-based
cluster, they must also be in a cluster with a lower density requirement.

To overcome the difficulty in using one set of global parameters in clustering analy-
sis, a cluster analysis method called OPTICS was proposed. OPTICS does not explicitly
produce a data set clustering. Instead, it outputs a cluster ordering. This is a linear list
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of all objects under analysis and represents the density-based clustering structure of the
data. Objects in a denser cluster are listed closer to each other in the cluster ordering.
This ordering is equivalent to density-based clustering obtained from a wide range of
parameter settings. Thus, OPTICS does not require the user to provide a specific density
threshold. The cluster ordering can be used to extract basic clustering information (e.g.,
cluster centers, or arbitrary-shaped clusters), derive the intrinsic clustering structure, as
well as provide a visualization of the clustering.

To construct the different clusterings simultaneously, the objects are processed in a
specific order. This order selects an object that is density-reachable with respect to the
lowest ε value so that clusters with higher density (lower ε) will be finished first. Based
on this idea, OPTICS needs two important pieces of information per object:

The core-distance of an object p is the smallest value ε′ such that the
ε′-neighborhood of p has at least MinPts objects. That is, ε′ is the minimum dis-
tance threshold that makes p a core object. If p is not a core object with respect to ε

and MinPts, the core-distance of p is undefined.

The reachability-distance to object p from q is the minimum radius value that makes
p density-reachable from q. According to the definition of density-reachability, q
has to be a core object and p must be in the neighborhood of q. Therefore, the
reachability-distance from q to p is max{core-distance(q), dist(p, q)}. If q is not a
core object with respect to ε and MinPts, the reachability-distance to p from q is
undefined.

An object p may be directly reachable from multiple core objects. Therefore, p
may have multiple reachability-distances with respect to different core objects. The
smallest reachability-distance of p is of particular interest because it gives the shortest
path for which p is connected to a dense cluster.

Example 10.8 Core-distance and reachability-distance. Figure 10.16 illustrates the concepts of core-
distance and reachability-distance. Suppose that ε = 6 mm and MinPts = 5. The core-
distance of p is the distance, ε′, between p and the fourth closest data object from p.
The reachability-distance of q1 from p is the core-distance of p (i.e., ε′ = 3mm) because
this is greater than the Euclidean distance from p to q1. The reachability-distance of q2

with respect to p is the Euclidean distance from p to q2 because this is greater than the
core-distance of p.

OPTICS computes an ordering of all objects in a given database and, for each object
in the database, stores the core-distance and a suitable reachability-distance. OPTICS
maintains a list called OrderSeeds to generate the output ordering. Objects in Order-
Seeds are sorted by the reachability-distance from their respective closest core objects,
that is, by the smallest reachability-distance of each object.

OPTICS begins with an arbitrary object from the input database as the current
object, p. It retrieves the ε-neighborhood of p, determines the core-distance, and sets
the reachability-distance to undefined. The current object, p, is then written to output.
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Figure 10.16 OPTICS terminology. Source: Based on Ankerst, Breunig, Kriegel, and Sander [ABKS99].

If p is not a core object, OPTICS simply moves on to the next object in the OrderSeeds
list (or the input database if OrderSeeds is empty). If p is a core object, then for each
object, q, in the ε-neighborhood of p, OPTICS updates its reachability-distance from p
and inserts q into OrderSeeds if q has not yet been processed. The iteration continues
until the input is fully consumed and OrderSeeds is empty.

A data set’s cluster ordering can be represented graphically, which helps to visual-
ize and understand the clustering structure in a data set. For example, Figure 10.17 is
the reachability plot for a simple 2-D data set, which presents a general overview of
how the data are structured and clustered. The data objects are plotted in the cluster-
ing order (horizontal axis) together with their respective reachability-distances (vertical
axis). The three Gaussian “bumps” in the plot reflect three clusters in the data set. Meth-
ods have also been developed for viewing clustering structures of high-dimensional data
at various levels of detail.

The structure of the OPTICS algorithm is very similar to that of DBSCAN. Conse-
quently, the two algorithms have the same time complexity. The complexity is O(n logn)

if a spatial index is used, and O(n2) otherwise, where n is the number of objects.

10.4.3 DENCLUE: Clustering Based on Density
Distribution Functions

Density estimation is a core issue in density-based clustering methods. DENCLUE
(DENsity-based CLUstEring) is a clustering method based on a set of density distribu-
tion functions. We first give some background on density estimation, and then describe
the DENCLUE algorithm.

In probability and statistics, density estimation is the estimation of an unobservable
underlying probability density function based on a set of observed data. In the context
of density-based clustering, the unobservable underlying probability density function
is the true distribution of the population of all possible objects to be analyzed. The
observed data set is regarded as a random sample from that population.
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Figure 10.17 Cluster ordering in OPTICS. Source: Adapted from Ankerst, Breunig, Kriegel, and Sander
[ABKS99].
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Figure 10.18 The subtlety in density estimation in DBSCAN and OPTICS: Increasing the neighborhood
radius slightly from ε1 to ε2 results in a much higher density.

In DBSCAN and OPTICS, density is calculated by counting the number of objects in
a neighborhood defined by a radius parameter, ε. Such density estimates can be highly
sensitive to the radius value used. For example, in Figure 10.18, the density changes
significantly as the radius increases by a small amount.

To overcome this problem, kernel density estimation can be used, which is a
nonparametric density estimation approach from statistics. The general idea behind
kernel density estimation is simple. We treat an observed object as an indicator of
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high-probability density in the surrounding region. The probability density at a point
depends on the distances from this point to the observed objects.

Formally, let x1, . . . ,xn be an independent and identically distributed sample of a
random variable f . The kernel density approximation of the probability density function is

f̂h(x) = 1

nh

n∑
i=1

K

(
x − xi

h

)
, (10.21)

where K() is a kernel and h is the bandwidth serving as a smoothing parameter. A ker-
nel can be regarded as a function modeling the influence of a sample point within its
neighborhood. Technically, a kernel K() is a non-negative real-valued integrable func-
tion that should satisfy two requirements:

∫ +∞
−∞ K(u)du = 1 and K(−u) = K(u) for all

values of u. A frequently used kernel is a standard Gaussian function with a mean of 0
and a variance of 1:

K

(
x − xi

h

)
= 1√

2π
e
− (x − xi)2

2h2 . (10.22)

DENCLUE uses a Gaussian kernel to estimate density based on the given set of objects
to be clustered. A point x∗ is called a density attractor if it is a local maximum of the
estimated density function. To avoid trivial local maximum points, DENCLUE uses a

noise threshold, ξ , and only considers those density attractors x∗ such that f̂ (x∗) ≥ ξ .
These nontrivial density attractors are the centers of clusters.

Objects under analysis are assigned to clusters through density attractors using a step-
wise hill-climbing procedure. For an object, x, the hill-climbing procedure starts from
x and is guided by the gradient of the estimated density function. That is, the density
attractor for x is computed as

x0 = x

xj+1 = xj + δ
∇ f̂ (xj)

|∇ f̂ (xj)|
, (10.23)

where δ is a parameter to control the speed of convergence, and

∇ f̂ (x) = 1

hd+2n
∑n

i=1 K
(

x − xi
h

)
(xi − x)

. (10.24)

The hill-climbing procedure stops at step k > 0 if f̂ (xk+1) < f̂ (xk), and assigns x to the
density attractor x∗ = xk. An object x is an outlier or noise if it converges in the hill-

climbing procedure to a local maximum x∗ with f̂ (x∗) < ξ .
A cluster in DENCLUE is a set of density attractors X and a set of input objects C

such that each object in C is assigned to a density attractor in X , and there exists a path
between every pair of density attractors where the density is above ξ . By using multiple
density attractors connected by paths, DENCLUE can find clusters of arbitrary shape.
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DENCLUE has several advantages. It can be regarded as a generalization of several
well-known clustering methods such as single-linkage approaches and DBSCAN. More-
over, DENCLUE is invariant against noise. The kernel density estimation can effectively
reduce the influence of noise by uniformly distributing noise into the input data.

10.5 Grid-Based Methods

The clustering methods discussed so far are data-driven—they partition the set of
objects and adapt to the distribution of the objects in the embedding space. Alterna-
tively, a grid-based clustering method takes a space-driven approach by partitioning
the embedding space into cells independent of the distribution of the input objects.

The grid-based clustering approach uses a multiresolution grid data structure. It
quantizes the object space into a finite number of cells that form a grid structure on
which all of the operations for clustering are performed. The main advantage of the
approach is its fast processing time, which is typically independent of the number of data
objects, yet dependent on only the number of cells in each dimension in the quantized
space.

In this section, we illustrate grid-based clustering using two typical examples. STING
(Section 10.5.1) explores statistical information stored in the grid cells. CLIQUE
(Section 10.5.2) represents a grid- and density-based approach for subspace clustering
in a high-dimensional data space.

10.5.1 STING: STatistical INformation Grid

STING is a grid-based multiresolution clustering technique in which the embedding
spatial area of the input objects is divided into rectangular cells. The space can be divided
in a hierarchical and recursive way. Several levels of such rectangular cells correspond to
different levels of resolution and form a hierarchical structure: Each cell at a high level
is partitioned to form a number of cells at the next lower level. Statistical information
regarding the attributes in each grid cell, such as the mean, maximum, and minimum
values, is precomputed and stored as statistical parameters. These statistical parameters
are useful for query processing and for other data analysis tasks.

Figure 10.19 shows a hierarchical structure for STING clustering. The statistical
parameters of higher-level cells can easily be computed from the parameters of the
lower-level cells. These parameters include the following: the attribute-independent
parameter, count ; and the attribute-dependent parameters, mean, stdev (standard devia-
tion), min (minimum), max (maximum), and the type of distribution that the attribute
value in the cell follows such as normal, uniform, exponential, or none (if the distribu-
tion is unknown). Here, the attribute is a selected measure for analysis such as price for
house objects. When the data are loaded into the database, the parameters count, mean,
stdev, min, and max of the bottom-level cells are calculated directly from the data. The
value of distribution may either be assigned by the user if the distribution type is known
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Figure 10.19 Hierarchical structure for STING clustering.

beforehand or obtained by hypothesis tests such as the χ2 test. The type of distribution
of a higher-level cell can be computed based on the majority of distribution types of its
corresponding lower-level cells in conjunction with a threshold filtering process. If the
distributions of the lower-level cells disagree with each other and fail the threshold test,
the distribution type of the high-level cell is set to none.

“How is this statistical information useful for query answering?” The statistical para-
meters can be used in a top-down, grid-based manner as follows. First, a layer within the
hierarchical structure is determined from which the query-answering process is to start.
This layer typically contains a small number of cells. For each cell in the current layer,
we compute the confidence interval (or estimated probability range) reflecting the cell’s
relevancy to the given query. The irrelevant cells are removed from further considera-
tion. Processing of the next lower level examines only the remaining relevant cells. This
process is repeated until the bottom layer is reached. At this time, if the query specifica-
tion is met, the regions of relevant cells that satisfy the query are returned. Otherwise,
the data that fall into the relevant cells are retrieved and further processed until they
meet the query’s requirements.

An interesting property of STING is that it approaches the clustering result of
DBSCAN if the granularity approaches 0 (i.e., toward very low-level data). In other
words, using the count and cell size information, dense clusters can be identified
approximately using STING. Therefore, STING can also be regarded as a density-based
clustering method.

“What advantages does STING offer over other clustering methods?” STING offers
several advantages: (1) the grid-based computation is query-independent because the
statistical information stored in each cell represents the summary information of the
data in the grid cell, independent of the query; (2) the grid structure facilitates parallel
processing and incremental updating; and (3) the method’s efficiency is a major advan-
tage: STING goes through the database once to compute the statistical parameters of the
cells, and hence the time complexity of generating clusters is O(n), where n is the total
number of objects. After generating the hierarchical structure, the query processing time
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is O(g), where g is the total number of grid cells at the lowest level, which is usually much
smaller than n.

Because STING uses a multiresolution approach to cluster analysis, the quality of
STING clustering depends on the granularity of the lowest level of the grid structure. If
the granularity is very fine, the cost of processing will increase substantially; however, if
the bottom level of the grid structure is too coarse, it may reduce the quality of cluster
analysis. Moreover, STING does not consider the spatial relationship between the child-
ren and their neighboring cells for construction of a parent cell. As a result, the shapes
of the resulting clusters are isothetic, that is, all the cluster boundaries are either hori-
zontal or vertical, and no diagonal boundary is detected. This may lower the quality and
accuracy of the clusters despite the fast processing time of the technique.

10.5.2 CLIQUE: An Apriori-like Subspace Clustering Method

A data object often has tens of attributes, many of which may be irrelevant. The val-
ues of attributes may vary considerably. These factors can make it difficult to locate
clusters that span the entire data space. It may be more meaningful to instead search
for clusters within different subspaces of the data. For example, consider a health-
informatics application where patient records contain extensive attributes describing
personal information, numerous symptoms, conditions, and family history.

Finding a nontrivial group of patients for which all or even most of the attributes
strongly agree is unlikely. In bird flu patients, for instance, the age, gender, and job
attributes may vary dramatically within a wide range of values. Thus, it can be difficult
to find such a cluster within the entire data space. Instead, by searching in subspaces, we
may find a cluster of similar patients in a lower-dimensional space (e.g., patients who
are similar to one other with respect to symptoms like high fever, cough but no runny
nose, and aged between 3 and 16).

CLIQUE (CLustering In QUEst) is a simple grid-based method for finding density-
based clusters in subspaces. CLIQUE partitions each dimension into nonoverlapping
intervals, thereby partitioning the entire embedding space of the data objects into cells.
It uses a density threshold to identify dense cells and sparse ones. A cell is dense if the
number of objects mapped to it exceeds the density threshold.

The main strategy behind CLIQUE for identifying a candidate search space uses the
monotonicity of dense cells with respect to dimensionality. This is based on the Apriori
property used in frequent pattern and association rule mining (Chapter 6). In the con-
text of clusters in subspaces, the monotonicity says the following. A k-dimensional cell c
(k > 1) can have at least l points only if every (k − 1)-dimensional projection of c, which
is a cell in a (k − 1)-dimensional subspace, has at least l points. Consider Figure 10.20,
where the embedding data space contains three dimensions: age, salary, and vacation.
A 2-D cell, say in the subspace formed by age and salary, contains l points only if the
projection of this cell in every dimension, that is, age and salary, respectively, contains
at least l points.

CLIQUE performs clustering in two steps. In the first step, CLIQUE partitions
the d-dimensional data space into nonoverlapping rectangular units, identifying the
dense units among these. CLIQUE finds dense cells in all of the subspaces. To do so,
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Figure 10.20 Dense units found with respect to age for the dimensions salary and vacation are intersected
to provide a candidate search space for dense units of higher dimensionality.
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CLIQUE partitions every dimension into intervals, and identifies intervals containing
at least l points, where l is the density threshold. CLIQUE then iteratively joins two
k-dimensional dense cells, c1 and c2, in subspaces (Di1 , . . . ,Dik ) and (Dj1 , . . . ,Djk ),
respectively, if Di1 = Dj1 , . . . , Dik−1 = Djk−1 , and c1 and c2 share the same intervals in
those dimensions. The join operation generates a new (k + 1)-dimensional candidate
cell c in space (Di1 , . . . ,Dik−1 ,Dik ,Djk ). CLIQUE checks whether the number of points
in c passes the density threshold. The iteration terminates when no candidates can be
generated or no candidate cells are dense.

In the second step, CLIQUE uses the dense cells in each subspace to assemble clusters,
which can be of arbitrary shape. The idea is to apply the Minimum Description Length
(MDL) principle (Chapter 8) to use the maximal regions to cover connected dense cells,
where a maximal region is a hyperrectangle where every cell falling into this region is
dense, and the region cannot be extended further in any dimension in the subspace.
Finding the best description of a cluster in general is NP-Hard. Thus, CLIQUE adopts
a simple greedy approach. It starts with an arbitrary dense cell, finds a maximal region
covering the cell, and then works on the remaining dense cells that have not yet been
covered. The greedy method terminates when all dense cells are covered.

“How effective is CLIQUE?” CLIQUE automatically finds subspaces of the highest
dimensionality such that high-density clusters exist in those subspaces. It is insensitive
to the order of input objects and does not presume any canonical data distribution. It
scales linearly with the size of the input and has good scalability as the number of dimen-
sions in the data is increased. However, obtaining a meaningful clustering is dependent
on proper tuning of the grid size (which is a stable structure here) and the density
threshold. This can be difficult in practice because the grid size and density threshold
are used across all combinations of dimensions in the data set. Thus, the accuracy of the
clustering results may be degraded at the expense of the method’s simplicity. Moreover,
for a given dense region, all projections of the region onto lower-dimensionality sub-
spaces will also be dense. This can result in a large overlap among the reported dense
regions. Furthermore, it is difficult to find clusters of rather different densities within
different dimensional subspaces.

Several extensions to this approach follow a similar philosophy. For example, we can
think of a grid as a set of fixed bins. Instead of using fixed bins for each of the dimensions,
we can use an adaptive, data-driven strategy to dynamically determine the bins for each
dimension based on data distribution statistics. Alternatively, instead of using a den-
sity threshold, we may use entropy (Chapter 8) as a measure of the quality of subspace
clusters.

10.6 Evaluation of Clustering

By now you have learned what clustering is and know several popular clustering meth-
ods. You may ask, “When I try out a clustering method on a data set, how can I
evaluate whether the clustering results are good?” In general, cluster evaluation assesses
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the feasibility of clustering analysis on a data set and the quality of the results generated
by a clustering method. The major tasks of clustering evaluation include the following:

Assessing clustering tendency. In this task, for a given data set, we assess whether a
nonrandom structure exists in the data. Blindly applying a clustering method on a
data set will return clusters; however, the clusters mined may be misleading. Cluster-
ing analysis on a data set is meaningful only when there is a nonrandom structure in
the data.

Determining the number of clusters in a data set. A few algorithms, such as k-means,
require the number of clusters in a data set as the parameter. Moreover, the number
of clusters can be regarded as an interesting and important summary statistic of a
data set. Therefore, it is desirable to estimate this number even before a clustering
algorithm is used to derive detailed clusters.

Measuring clustering quality. After applying a clustering method on a data set, we
want to assess how good the resulting clusters are. A number of measures can be used.
Some methods measure how well the clusters fit the data set, while others measure
how well the clusters match the ground truth, if such truth is available. There are also
measures that score clusterings and thus can compare two sets of clustering results
on the same data set.

In the rest of this section, we discuss each of these three topics.

10.6.1 Assessing Clustering Tendency

Clustering tendency assessment determines whether a given data set has a non-random
structure, which may lead to meaningful clusters. Consider a data set that does not have
any non-random structure, such as a set of uniformly distributed points in a data space.
Even though a clustering algorithm may return clusters for the data, those clusters are
random and are not meaningful.

Example 10.9 Clustering requires nonuniform distribution of data. Figure 10.21 shows a data set
that is uniformly distributed in 2-D data space. Although a clustering algorithm may
still artificially partition the points into groups, the groups will unlikely mean anything
significant to the application due to the uniform distribution of the data.

“How can we assess the clustering tendency of a data set?” Intuitively, we can try to
measure the probability that the data set is generated by a uniform data distribution.
This can be achieved using statistical tests for spatial randomness. To illustrate this idea,
let’s look at a simple yet effective statistic called the Hopkins Statistic.

The Hopkins Statistic is a spatial statistic that tests the spatial randomness of a vari-
able as distributed in a space. Given a data set, D, which is regarded as a sample of
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Figure 10.21 A data set that is uniformly distributed in the data space.

a random variable, o, we want to determine how far away o is from being uniformly
distributed in the data space. We calculate the Hopkins Statistic as follows:

1. Sample n points, p1, . . . , pn, uniformly from D. That is, each point in D has the same
probability of being included in this sample. For each point, pi, we find the nearest
neighbor of pi (1 ≤ i ≤ n) in D, and let xi be the distance between pi and its nearest
neighbor in D. That is,

xi = min
v∈D

{dist(pi,v)}. (10.25)

2. Sample n points, q1, . . . , qn, uniformly from D. For each qi (1 ≤ i ≤ n), we find the
nearest neighbor of qi in D − {qi}, and let yi be the distance between qi and its nearest
neighbor in D−{qi}. That is,

yi = min
v∈D,v 	=qi

{dist(qi,v)}. (10.26)

3. Calculate the Hopkins Statistic, H , as

H =
∑n

i=1 yi∑n
i=1 xi +

∑n
i=1 yi

. (10.27)

“What does the Hopkins Statistic tell us about how likely data set D follows a uni-
form distribution in the data space?” If D were uniformly distributed, then

∑n
i=1 yi and∑n

i=1 xi would be close to each other, and thus H would be about 0.5. However, if D were
highly skewed, then

∑n
i=1 yi would be substantially smaller than

∑n
i=1 xi in expectation,

and thus H would be close to 0.
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Our null hypothesis is the homogeneous hypothesis—that D is uniformly distributed
and thus contains no meaningful clusters. The nonhomogeneous hypothesis (i.e., that D
is not uniformly distributed and thus contains clusters) is the alternative hypothesis.
We can conduct the Hopkins Statistic test iteratively, using 0.5 as the threshold to reject
the alternative hypothesis. That is, if H > 0.5, then it is unlikely that D has statistically
significant clusters.

10.6.2 Determining the Number of Clusters

Determining the “right” number of clusters in a data set is important, not only because
some clustering algorithms like k-means require such a parameter, but also because the
appropriate number of clusters controls the proper granularity of cluster analysis. It can
be regarded as finding a good balance between compressibility and accuracy in cluster
analysis. Consider two extreme cases. What if you were to treat the entire data set as a
cluster? This would maximize the compression of the data, but such a cluster analysis
has no value. On the other hand, treating each object in a data set as a cluster gives
the finest clustering resolution (i.e., most accurate due to the zero distance between an
object and the corresponding cluster center). In some methods like k-means, this even
achieves the best cost. However, having one object per cluster does not enable any data
summarization.

Determining the number of clusters is far from easy, often because the “right” num-
ber is ambiguous. Figuring out what the right number of clusters should be often
depends on the distribution’s shape and scale in the data set, as well as the cluster-
ing resolution required by the user. There are many possible ways to estimate the
number of clusters. Here, we briefly introduce a few simple yet popular and effective
methods.

A simple method is to set the number of clusters to about
√

n
2 for a data set of n

points. In expectation, each cluster has
√

2n points.
The elbow method is based on the observation that increasing the number of clusters

can help to reduce the sum of within-cluster variance of each cluster. This is because
having more clusters allows one to capture finer groups of data objects that are more
similar to each other. However, the marginal effect of reducing the sum of within-cluster
variances may drop if too many clusters are formed, because splitting a cohesive cluster
into two gives only a small reduction. Consequently, a heuristic for selecting the right
number of clusters is to use the turning point in the curve of the sum of within-cluster
variances with respect to the number of clusters.

Technically, given a number, k > 0, we can form k clusters on the data set in ques-
tion using a clustering algorithm like k-means, and calculate the sum of within-cluster
variances, var(k). We can then plot the curve of var with respect to k. The first (or most
significant) turning point of the curve suggests the “right” number.

More advanced methods can determine the number of clusters using information
criteria or information theoretic approaches. Please refer to the bibliographic notes for
further information (Section 10.9).
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The “right” number of clusters in a data set can also be determined by cross-
validation, a technique often used in classification (Chapter 8). First, divide the given
data set, D, into m parts. Next, use m − 1 parts to build a clustering model, and use
the remaining part to test the quality of the clustering. For example, for each point in
the test set, we can find the closest centroid. Consequently, we can use the sum of the
squared distances between all points in the test set and the closest centroids to measure
how well the clustering model fits the test set. For any integer k > 0, we repeat this pro-
cess m times to derive clusterings of k clusters by using each part in turn as the test set.
The average of the quality measure is taken as the overall quality measure. We can then
compare the overall quality measure with respect to different values of k, and find the
number of clusters that best fits the data.

10.6.3 Measuring Clustering Quality

Suppose you have assessed the clustering tendency of a given data set. You may have
also tried to predetermine the number of clusters in the set. You can now apply one
or multiple clustering methods to obtain clusterings of the data set. “How good is the
clustering generated by a method, and how can we compare the clusterings generated by
different methods?”

We have a few methods to choose from for measuring the quality of a clustering.
In general, these methods can be categorized into two groups according to whether
ground truth is available. Here, ground truth is the ideal clustering that is often built
using human experts.

If ground truth is available, it can be used by extrinsic methods, which compare the
clustering against the group truth and measure. If the ground truth is unavailable, we
can use intrinsic methods, which evaluate the goodness of a clustering by considering
how well the clusters are separated. Ground truth can be considered as supervision in the
form of “cluster labels.” Hence, extrinsic methods are also known as supervised methods,
while intrinsic methods are unsupervised methods.

Let’s have a look at simple methods from each category.

Extrinsic Methods
When the ground truth is available, we can compare it with a clustering to assess the
clustering. Thus, the core task in extrinsic methods is to assign a score, Q(C,Cg ), to
a clustering, C, given the ground truth, Cg . Whether an extrinsic method is effective
largely depends on the measure, Q, it uses.

In general, a measure Q on clustering quality is effective if it satisfies the following
four essential criteria:

Cluster homogeneity. This requires that the more pure the clusters in a clustering
are, the better the clustering. Suppose that ground truth says that the objects in
a data set, D, can belong to categories L1, . . . ,Ln. Consider clustering, C1, wherein
a cluster C ∈ C1 contains objects from two categories Li ,Lj (1 ≤ i < j ≤ n). Also
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consider clustering C2, which is identical to C1 except that C2 is split into two clusters
containing the objects in Li and Lj , respectively. A clustering quality measure, Q,
respecting cluster homogeneity should give a higher score to C2 than C1, that is,
Q(C2,Cg ) > Q(C1,Cg ).

Cluster completeness. This is the counterpart of cluster homogeneity. Cluster com-
pleteness requires that for a clustering, if any two objects belong to the same category
according to ground truth, then they should be assigned to the same cluster. Cluster
completeness requires that a clustering should assign objects belonging to the same
category (according to ground truth) to the same cluster. Consider clustering C1,
which contains clusters C1 and C2, of which the members belong to the same category
according to ground truth. Let clustering C2 be identical to C1 except that C1 and C2

are merged into one cluster in C2. Then, a clustering quality measure, Q, respecting
cluster completeness should give a higher score to C2, that is, Q(C2,Cg ) > Q(C1,Cg ).

Rag bag. In many practical scenarios, there is often a “rag bag” category contain-
ing objects that cannot be merged with other objects. Such a category is often called
“miscellaneous,” “other,” and so on. The rag bag criterion states that putting a het-
erogeneous object into a pure cluster should be penalized more than putting it into
a rag bag. Consider a clustering C1 and a cluster C ∈ C1 such that all objects in C
except for one, denoted by o, belong to the same category according to ground truth.
Consider a clustering C2 identical to C1 except that o is assigned to a cluster C′ 	= C in
C2 such that C′ contains objects from various categories according to ground truth,
and thus is noisy. In other words, C′ in C2 is a rag bag. Then, a clustering quality
measure Q respecting the rag bag criterion should give a higher score to C2, that is,
Q(C2,Cg ) > Q(C1,Cg ).

Small cluster preservation. If a small category is split into small pieces in a cluster-
ing, those small pieces may likely become noise and thus the small category cannot
be discovered from the clustering. The small cluster preservation criterion states that
splitting a small category into pieces is more harmful than splitting a large category
into pieces. Consider an extreme case. Let D be a data set of n + 2 objects such that,
according to ground truth, n objects, denoted by o1, . . . , on, belong to one cate-
gory and the other two objects, denoted by on+1,on+2, belong to another cate-
gory. Suppose clustering C1 has three clusters, C1 = {o1, . . . , on}, C2 = {on+1}, and
C3 = {on+2}. Let clustering C2 have three clusters, too, namely C1 = {o1, . . . , on−1},
C2 = {on}, and C3 = {on+1,on+2}. In other words, C1 splits the small category and
C2 splits the big category. A clustering quality measure Q preserving small clusters
should give a higher score to C2, that is, Q(C2,Cg ) > Q(C1,Cg ).

Many clustering quality measures satisfy some of these four criteria. Here, we introduce
the BCubed precision and recall metrics, which satisfy all four criteria.

BCubed evaluates the precision and recall for every object in a clustering on a given
data set according to ground truth. The precision of an object indicates how many
other objects in the same cluster belong to the same category as the object. The recall
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of an object reflects how many objects of the same category are assigned to the same
cluster.

Formally, let D={o1, . . . , on} be a set of objects, and C be a clustering on D. Let L(oi)
(1 ≤ i ≤ n) be the category of oi given by ground truth, and C(oi) be the cluster ID of oi

in C. Then, for two objects, oi and oj, (1 ≤ i, j,≤ n, i 	= j), the correctness of the relation
between oi and oj in clustering C is given by

Correctness(oi,oj) =
{

1 if L(oi) = L(oj) ⇔ C(oi) = C(oj)

0 otherwise.
(10.28)

BCubed precision is defined as

Precision BCubed =

n∑
i=1

∑
oj :i 	=j,C(oi)=C(oj)

Correctness(oi,oj)

‖{oj|i 	= j,C(oi) = C(oj)}‖
n

. (10.29)

BCubed recall is defined as

Recall BCubed =

n∑
i=1

∑
oj :i 	=j,L(oi)=L(oj)

Correctness(oi,oj)

‖{oj|i 	= j,L(oi) = L(oj)}‖
n

. (10.30)

Intrinsic Methods
When the ground truth of a data set is not available, we have to use an intrinsic method
to assess the clustering quality. In general, intrinsic methods evaluate a clustering by
examining how well the clusters are separated and how compact the clusters are. Many
intrinsic methods have the advantage of a similarity metric between objects in the
data set.

The silhouette coefficient is such a measure. For a data set, D, of n objects, suppose
D is partitioned into k clusters, C1, . . . ,Ck . For each object o ∈ D, we calculate a(o) as
the average distance between o and all other objects in the cluster to which o belongs.
Similarly, b(o) is the minimum average distance from o to all clusters to which o does
not belong. Formally, suppose o ∈ Ci (1 ≤ i ≤ k); then

a(o) =
∑

o′∈Ci ,o 	=o′ dist(o,o′)
|Ci| − 1

(10.31)
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and

b(o) = min
Cj :1≤j≤k,j 	=i

{∑
o′∈Cj

dist(o,o′)

|Cj|

}
. (10.32)

The silhouette coefficient of o is then defined as

s(o) = b(o) − a(o)

max{a(o),b(o)} . (10.33)

The value of the silhouette coefficient is between −1 and 1. The value of a(o) reflects
the compactness of the cluster to which o belongs. The smaller the value, the more com-
pact the cluster. The value of b(o) captures the degree to which o is separated from other
clusters. The larger b(o) is, the more separated o is from other clusters. Therefore, when
the silhouette coefficient value of o approaches 1, the cluster containing o is compact
and o is far away from other clusters, which is the preferable case. However, when the
silhouette coefficient value is negative (i.e., b(o) < a(o)), this means that, in expectation,
o is closer to the objects in another cluster than to the objects in the same cluster as o.
In many cases, this is a bad situation and should be avoided.

To measure a cluster’s fitness within a clustering, we can compute the average silhou-
ette coefficient value of all objects in the cluster. To measure the quality of a clustering,
we can use the average silhouette coefficient value of all objects in the data set. The sil-
houette coefficient and other intrinsic measures can also be used in the elbow method
to heuristically derive the number of clusters in a data set by replacing the sum of
within-cluster variances.

10.7 Summary

A cluster is a collection of data objects that are similar to one another within the same
cluster and are dissimilar to the objects in other clusters. The process of grouping a
set of physical or abstract objects into classes of similar objects is called clustering.

Cluster analysis has extensive applications, including business intelligence, image
pattern recognition, Web search, biology, and security. Cluster analysis can be used
as a standalone data mining tool to gain insight into the data distribution, or as
a preprocessing step for other data mining algorithms operating on the detected
clusters.

Clustering is a dynamic field of research in data mining. It is related to unsupervised
learning in machine learning.

Clustering is a challenging field. Typical requirements of it include scalability, the
ability to deal with different types of data and attributes, the discovery of clus-
ters in arbitrary shape, minimal requirements for domain knowledge to determine
input parameters, the ability to deal with noisy data, incremental clustering and
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insensitivity to input order, the capability of clustering high-dimensionality data,
constraint-based clustering, as well as interpretability and usability.

Many clustering algorithms have been developed. These can be categorized from
several orthogonal aspects such as those regarding partitioning criteria, separation
of clusters, similarity measures used, and clustering space. This chapter discusses
major fundamental clustering methods of the following categories: partitioning
methods, hierarchical methods, density-based methods, and grid-based methods. Some
algorithms may belong to more than one category.

A partitioning method first creates an initial set of k partitions, where parame-
ter k is the number of partitions to construct. It then uses an iterative relocation
technique that attempts to improve the partitioning by moving objects from one
group to another. Typical partitioning methods include k-means, k-medoids, and
CLARANS.

A hierarchical method creates a hierarchical decomposition of the given set of data
objects. The method can be classified as being either agglomerative (bottom-up) or
divisive (top-down), based on how the hierarchical decomposition is formed. To
compensate for the rigidity of merge or split, the quality of hierarchical agglome-
ration can be improved by analyzing object linkages at each hierarchical partitioning
(e.g., in Chameleon), or by first performing microclustering (that is, grouping objects
into “microclusters”) and then operating on the microclusters with other clustering
techniques such as iterative relocation (as in BIRCH).

A density-based method clusters objects based on the notion of density. It grows
clusters either according to the density of neighborhood objects (e.g., in DBSCAN)
or according to a density function (e.g., in DENCLUE). OPTICS is a density-based
method that generates an augmented ordering of the data’s clustering structure.

A grid-based method first quantizes the object space into a finite number of cells that
form a grid structure, and then performs clustering on the grid structure. STING is
a typical example of a grid-based method based on statistical information stored in
grid cells. CLIQUE is a grid-based and subspace clustering algorithm.

Clustering evaluation assesses the feasibility of clustering analysis on a data set and
the quality of the results generated by a clustering method. The tasks include assessing
clustering tendency, determining the number of clusters, and measuring clustering
quality.

10.8 Exercises

10.1 Briefly describe and give examples of each of the following approaches to cluster-
ing: partitioning methods, hierarchical methods, density-based methods, and grid-based
methods.
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10.2 Suppose that the data mining task is to cluster points (with (x,y) representing location)
into three clusters, where the points are

A1(2,10),A2(2,5),A3(8,4),B1(5,8),B2(7,5),B3(6,4),C1(1,2),C2(4,9).

The distance function is Euclidean distance. Suppose initially we assign A1, B1, and C1

as the center of each cluster, respectively. Use the k-means algorithm to show only

(a) The three cluster centers after the first round of execution.

(b) The final three clusters.

10.3 Use an example to show why the k-means algorithm may not find the global optimum,
that is, optimizing the within-cluster variation.

10.4 For the k-means algorithm, it is interesting to note that by choosing the initial cluster
centers carefully, we may be able to not only speed up the algorithm’s convergence, but
also guarantee the quality of the final clustering. The k-means++ algorithm is a vari-
ant of k-means, which chooses the initial centers as follows. First, it selects one center
uniformly at random from the objects in the data set. Iteratively, for each object p other
than the chosen center, it chooses an object as the new center. This object is chosen at
random with probability proportional to dist(p)2, where dist(p) is the distance from p
to the closest center that has already been chosen. The iteration continues until k centers
are selected.

Explain why this method will not only speed up the convergence of the k-means
algorithm, but also guarantee the quality of the final clustering results.

10.5 Provide the pseudocode of the object reassignment step of the PAM algorithm.

10.6 Both k-means and k-medoids algorithms can perform effective clustering.

(a) Illustrate the strength and weakness of k-means in comparison with k-medoids.

(b) Illustrate the strength and weakness of these schemes in comparison with a hierar-
chical clustering scheme (e.g., AGNES).

10.7 Prove that in DBSCAN, the density-connectedness is an equivalence relation.

10.8 Prove that in DBSCAN, for a fixed MinPts value and two neighborhood thresholds,
ε1 < ε2, a cluster C with respect to ε1 and MinPts must be a subset of a cluster C ′ with
respect to ε2 and MinPts.

10.9 Provide the pseudocode of the OPTICS algorithm.

10.10 Why is it that BIRCH encounters difficulties in finding clusters of arbitrary shape but
OPTICS does not? Propose modifications to BIRCH to help it find clusters of arbitrary
shape.

10.11 Provide the pseudocode of the step in CLIQUE that finds dense cells in all subspaces.
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10.12 Present conditions under which density-based clustering is more suitable than
partitioning-based clustering and hierarchical clustering. Give application examples to
support your argument.

10.13 Give an example of how specific clustering methods can be integrated, for example,
where one clustering algorithm is used as a preprocessing step for another. In addi-
tion, provide reasoning as to why the integration of two methods may sometimes lead
to improved clustering quality and efficiency.

10.14 Clustering is recognized as an important data mining task with broad applications. Give
one application example for each of the following cases:

(a) An application that uses clustering as a major data mining function.

(b) An application that uses clustering as a preprocessing tool for data preparation for
other data mining tasks.

10.15 Data cubes and multidimensional databases contain nominal, ordinal, and numeric data
in hierarchical or aggregate forms. Based on what you have learned about the clustering
methods, design a clustering method that finds clusters in large data cubes effectively
and efficiently.

10.16 Describe each of the following clustering algorithms in terms of the following crite-
ria: (1) shapes of clusters that can be determined; (2) input parameters that must be
specified; and (3) limitations.

(a) k-means

(b) k-medoids

(c) CLARA

(d) BIRCH

(e) CHAMELEON

(f) DBSCAN

10.17 Human eyes are fast and effective at judging the quality of clustering methods for
2-D data. Can you design a data visualization method that may help humans visua-
lize data clusters and judge the clustering quality for 3-D data? What about for even
higher-dimensional data?

10.18 Suppose that you are to allocate a number of automatic teller machines (ATMs) in a
given region so as to satisfy a number of constraints. Households or workplaces may
be clustered so that typically one ATM is assigned per cluster. The clustering, however,
may be constrained by two factors: (1) obstacle objects (i.e., there are bridges, rivers, and
highways that can affect ATM accessibility), and (2) additional user-specified constraints
such as that each ATM should serve at least 10,000 households. How can a clustering
algorithm such as k-means be modified for quality clustering under both constraints?

10.19 For constraint-based clustering, aside from having the minimum number of customers
in each cluster (for ATM allocation) as a constraint, there can be many other kinds of
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constraints. For example, a constraint could be in the form of the maximum number
of customers per cluster, average income of customers per cluster, maximum distance
between every two clusters, and so on. Categorize the kinds of constraints that can
be imposed on the clusters produced and discuss how to perform clustering efficiently
under such kinds of constraints.

10.20 Design a privacy-preserving clustering method so that a data owner would be able to ask a
third party to mine the data for quality clustering without worrying about the potential
inappropriate disclosure of certain private or sensitive information stored in the data.

10.21 Show that BCubed metrics satisfy the four essential requirements for extrinsic clustering
evaluation methods.
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11Advanced Cluster Analysis

You learned the fundamentals of cluster analysis in Chapter 10. In this chapter, we discuss
advanced topics of cluster analysis. Specifically, we investigate four major perspectives:

Probabilistic model-based clustering: Section 11.1 introduces a general framework
and a method for deriving clusters where each object is assigned a probability of
belonging to a cluster. Probabilistic model-based clustering is widely used in many
data mining applications such as text mining.

Clustering high-dimensional data: When the dimensionality is high, conventional
distance measures can be dominated by noise. Section 11.2 introduces fundamental
methods for cluster analysis on high-dimensional data.

Clustering graph and network data: Graph and network data are increasingly pop-
ular in applications such as online social networks, the World Wide Web, and digital
libraries. In Section 11.3, you will study the key issues in clustering graph and
network data, including similarity measurement and clustering methods.

Clustering with constraints: In our discussion so far, we do not assume any con-
straints in clustering. In some applications, however, various constraints may exist.
These constraints may rise from background knowledge or spatial distribution of
the objects. You will learn how to conduct cluster analysis with different kinds of
constraints in Section 11.4.

By the end of this chapter, you will have a good grasp of the issues and techniques
regarding advanced cluster analysis.

11.1 Probabilistic Model-Based Clustering

In all the cluster analysis methods we have discussed so far, each data object can be
assigned to only one of a number of clusters. This cluster assignment rule is required
in some applications such as assigning customers to marketing managers. However,

c© 2012 Elsevier Inc. All rights reserved.
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in other applications, this rigid requirement may not be desirable. In this section, we
demonstrate the need for fuzzy or flexible cluster assignment in some applications, and
introduce a general method to compute probabilistic clusters and assignments.

“In what situations may a data object belong to more than one cluster?” Consider
Example 11.1.

Example 11.1 Clustering product reviews. AllElectronics has an online store, where customers not
only purchase online, but also create reviews of products. Not every product receives
reviews; instead, some products may have many reviews, while many others have none
or only a few. Moreover, a review may involve multiple products. Thus, as the review
editor of AllElectronics, your task is to cluster the reviews.

Ideally, a cluster is about a topic, for example, a group of products, services, or issues
that are highly related. Assigning a review to one cluster exclusively would not work well
for your task. Suppose there is a cluster for “cameras and camcorders” and another for
“computers.” What if a review talks about the compatibility between a camcorder and a
computer? The review relates to both clusters; however, it does not exclusively belong to
either cluster.

You would like to use a clustering method that allows a review to belong to more than
one cluster if the review indeed involves more than one topic. To reflect the strength that
a review belongs to a cluster, you want the assignment of a review to a cluster to carry a
weight representing the partial membership.

The scenario where an object may belong to multiple clusters occurs often in many
applications. This is illustrated in Example 11.2.

Example 11.2 Clustering to study user search intent. The AllElectronics online store records all cus-
tomer browsing and purchasing behavior in a log. An important data mining task is
to use the log data to categorize and understand user search intent. For example, con-
sider a user session (a short period in which a user interacts with the online store). Is
the user searching for a product, making comparisons among different products, or
looking for customer support information? Clustering analysis helps here because it is
difficult to predefine user behavior patterns thoroughly. A cluster that contains similar
user browsing trajectories may represent similar user behavior.

However, not every session belongs to only one cluster. For example, suppose user
sessions involving the purchase of digital cameras form one cluster, and user sessions
that compare laptop computers form another cluster. What if a user in one session makes
an order for a digital camera, and at the same time compares several laptop computers?
Such a session should belong to both clusters to some extent.

In this section, we systematically study the theme of clustering that allows an object
to belong to more than one cluster. We start with the notion of fuzzy clusters in
Section 11.1.1. We then generalize the concept to probabilistic model-based clusters in
Section 11.1.2. In Section 11.1.3, we introduce the expectation-maximization algorithm,
a general framework for mining such clusters.
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11.1.1 Fuzzy Clusters

Given a set of objects, X = {x1, . . . ,xn}, a fuzzy set S is a subset of X that allows each
object in X to have a membership degree between 0 and 1. Formally, a fuzzy set, S, can
be modeled as a function, FS:X → [0,1].

Example 11.3 Fuzzy set. The more digital camera units that are sold, the more popular the camera is.
In AllElectronics, we can use the following formula to compute the degree of popularity
of a digital camera, o, given the sales of o:

pop(o) =
{

1 if 1000 or more units of o are sold
i

1000 if i (i < 1000) units of o are sold.
(11.1)

Function pop() defines a fuzzy set of popular digital cameras. For example, suppose
the sales of digital cameras at AllElectronics are as shown in Table 11.1. The fuzzy
set of popular digital cameras is {A(0.05),B(1),C(0.86),D(0.27)}, where the degrees of
membership are written in parentheses.

We can apply the fuzzy set idea on clusters. That is, given a set of objects, a cluster is
a fuzzy set of objects. Such a cluster is called a fuzzy cluster. Consequently, a clustering
contains multiple fuzzy clusters.

Formally, given a set of objects, o1, . . . ,on, a fuzzy clustering of k fuzzy clusters,
C1, . . . ,Ck , can be represented using a partition matrix, M = [wij] (1 ≤ i ≤ n, 1 ≤
j ≤ k), where wij is the membership degree of oi in fuzzy cluster Cj . The partition matrix
should satisfy the following three requirements:

For each object, oi , and cluster, Cj , 0 ≤ wij ≤ 1. This requirement enforces that a fuzzy
cluster is a fuzzy set.

For each object, oi ,
k∑

j=1

wij = 1. This requirement ensures that every object partici-

pates in the clustering equivalently.

Table 11.1 Set of Digital Cameras and Their
Sales at AllElectronics

Camera Sales (units)

A 50

B 1320

C 860

D 270
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For each cluster, Cj , 0 <

n∑
i=1

wij < n. This requirement ensures that for every cluster,

there is at least one object for which the membership value is nonzero.

Example 11.4 Fuzzy clusters. Suppose the AllElectronics online store has six reviews. The keywords
contained in these reviews are listed in Table 11.2.

We can group the reviews into two fuzzy clusters, C1 and C2. C1 is for “digital camera”
and “lens,” and C2 is for “computer.” The partition matrix is

M =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 0

1 0

1 0
2
3

1
3

0 1

0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.

Here, we use the keywords “digital camera” and “lens” as the features of cluster C1, and
“computer” as the feature of cluster C2. For review, Ri , and cluster, Cj (1 ≤ i ≤ 6,1 ≤
j ≤ 2), wij is defined as

wij = |Ri ∩ Cj|
|Ri ∩ (C1 ∪ C2)| = |Ri ∩ Cj|

|Ri ∩ {digital camera, lens, computer}| .

In this fuzzy clustering, review R4 belongs to clusters C1 and C2 with membership
degrees 2

3 and 1
3 , respectively.

“How can we evaluate how well a fuzzy clustering describes a data set?” Consider a set
of objects, o1, . . . ,on, and a fuzzy clustering C of k clusters, C1, . . . ,Ck . Let M = [wij] (1 ≤
i ≤ n, 1 ≤ j ≤ k) be the partition matrix. Let c1, . . . , ck be the centers of clusters C1, . . . ,Ck ,
respectively. Here, a center can be defined either as the mean or the medoid, or in other
ways specific to the application.

As discussed in Chapter 10, the distance or similarity between an object and the cen-
ter of the cluster to which the object is assigned can be used to measure how well the

Table 11.2 Set of Reviews and the Keywords Used

Review ID Keywords

R1 digital camera, lens

R2 digital camera

R3 lens

R4 digital camera, lens, computer

R5 computer, CPU

R6 computer, computer game
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object belongs to the cluster. This idea can be extended to fuzzy clustering. For any
object, oi , and cluster, Cj , if wij > 0, then dist(oi , cj) measures how well oi is represented
by cj , and thus belongs to cluster Cj . Because an object can participate in more than one
cluster, the sum of distances to the corresponding cluster centers weighted by the degrees
of membership captures how well the object fits the clustering.

Formally, for an object oi , the sum of the squared error (SSE) is given by

SSE(oi) =
k∑

j=1

w
p
ij dist(oi , cj)

2, (11.2)

where the parameter p(p ≥ 1) controls the influence of the degrees of membership.
The larger the value of p, the larger the influence of the degrees of membership.
Orthogonally, the SSE for a cluster, Cj , is

SSE(Cj) =
n∑

i=1

w
p
ij dist(oi , cj)

2. (11.3)

Finally, the SSE of the clustering is defined as

SSE(C) =
n∑

i=1

k∑
j=1

w
p
ij dist(oi , cj)

2. (11.4)

The SSE can be used to measure how well a fuzzy clustering fits a data set.
Fuzzy clustering is also called soft clustering because it allows an object to belong to

more than one cluster. It is easy to see that traditional (rigid) clustering, which enforces
each object to belong to only one cluster exclusively, is a special case of fuzzy clustering.
We defer the discussion of how to compute fuzzy clustering to Section 11.1.3.

11.1.2 Probabilistic Model-Based Clusters

“Fuzzy clusters (Section 11.1.1) provide the flexibility of allowing an object to participate
in multiple clusters. Is there a general framework to specify clusterings where objects may
participate in multiple clusters in a probabilistic way?” In this section, we introduce the
general notion of probabilistic model-based clusters to answer this question.

As discussed in Chapter 10, we conduct cluster analysis on a data set because we
assume that the objects in the data set in fact belong to different inherent categories.
Recall that clustering tendency analysis (Section 10.6.1) can be used to examine whether
a data set contains objects that may lead to meaningful clusters. Here, the inherent cat-
egories hidden in the data are latent, which means they cannot be directly observed.
Instead, we have to infer them using the data observed. For example, the topics hidden
in a set of reviews in the AllElectronics online store are latent because one cannot read
the topics directly. However, the topics can be inferred from the reviews because each
review is about one or multiple topics.
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Therefore, the goal of cluster analysis is to find hidden categories. A data set that
is the subject of cluster analysis can be regarded as a sample of the possible instances
of the hidden categories, but without any category labels. The clusters derived from
cluster analysis are inferred using the data set, and are designed to approach the hidden
categories.

Statistically, we can assume that a hidden category is a distribution over the data
space, which can be mathematically represented using a probability density function
(or distribution function). We call such a hidden category a probabilistic cluster. For a
probabilistic cluster, C, its probability density function, f , and a point, o, in the data
space, f (o) is the relative likelihood that an instance of C appears at o.

Example 11.5 Probabilistic clusters. Suppose the digital cameras sold by AllElectronics can be divided
into two categories: C1, a consumer line (e.g., point-and-shoot cameras), and C2, a
professional line (e.g., single-lens reflex cameras). Their respective probability density
functions, f1 and f2, are shown in Figure 11.1 with respect to the attribute price.

For a price value of, say, $1000, f1(1000) is the relative likelihood that the price of
a consumer-line camera is $1000. Similarly, f2(1000) is the relative likelihood that the
price of a professional-line camera is $1000.

The probability density functions, f1 and f2, cannot be observed directly. Instead,
AllElectronics can only infer these distributions by analyzing the prices of the digital
cameras it sells. Moreover, a camera often does not come with a well-determined cate-
gory (e.g., “consumer line” or “professional line”). Instead, such categories are typically
based on user background knowledge and can vary. For example, a camera in the pro-
sumer segment may be regarded at the high end of the consumer line by some customers,
and the low end of the professional line by others.

As an analyst at AllElectronics, you can consider each category as a probabilistic clus-
ter, and conduct cluster analysis on the price of cameras to approach these categories.

1000
price

Probability

Consumer line Professional line

Figure 11.1 The probability density functions of two probabilistic clusters.
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Suppose we want to find k probabilistic clusters, C1, . . . ,Ck , through cluster analysis.
For a data set, D, of n objects, we can regard D as a finite sample of the possible instances
of the clusters. Conceptually, we can assume that D is formed as follows. Each cluster,
Cj (1 ≤ j ≤ k), is associated with a probability, ωj , that some instance is sampled from
the cluster. It is often assumed that ω1, . . . ,ωk are given as part of the problem setting,

and that
∑k

j=1 ωj = 1, which ensures that all objects are generated by the k clusters.
Here, parameter ωj captures background knowledge about the relative population of
cluster Cj .

We then run the following two steps to generate an object in D. The steps are executed
n times in total to generate n objects, o1, . . . ,on, in D.

1. Choose a cluster, Cj , according to probabilities ω1, . . . ,ωk .

2. Choose an instance of Cj according to its probability density function, fj .

The data generation process here is the basic assumption in mixture models. Formally,
a mixture model assumes that a set of observed objects is a mixture of instances from
multiple probabilistic clusters. Conceptually, each observed object is generated indepen-
dently by two steps: first choosing a probabilistic cluster according to the probabilities of
the clusters, and then choosing a sample according to the probability density function
of the chosen cluster.

Given data set, D, and k, the number of clusters required, the task of probabilistic
model-based cluster analysis is to infer a set of k probabilistic clusters that is most likely to
generate D using this data generation process. An important question remaining is how
we can measure the likelihood that a set of k probabilistic clusters and their probabilities
will generate an observed data set.

Consider a set, C, of k probabilistic clusters, C1, . . . ,Ck , with probability density
functions f1, . . . , fk , respectively, and their probabilities, ω1, . . . ,ωk . For an object, o, the
probability that o is generated by cluster Cj (1 ≤ j ≤ k) is given by P(o|Cj) = ωj fj(o).
Therefore, the probability that o is generated by the set C of clusters is

P(o|C) =
k∑

j=1

ωj fj(o). (11.5)

Since the objects are assumed to have been generated independently, for a data set, D =
{o1, . . . ,on}, of n objects, we have

P(D|C) =
n∏

i=1

P(oi|C) =
n∏

i=1

k∑
j=1

ωj fj(oi). (11.6)

Now, it is clear that the task of probabilistic model-based cluster analysis on a data
set, D, is to find a set C of k probabilistic clusters such that P(D|C) is maximized. Maxi-
mizing P(D|C) is often intractable because, in general, the probability density function
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of a cluster can take an arbitrarily complicated form. To make probabilistic model-based
clusters computationally feasible, we often compromise by assuming that the probability
density functions are parameterized distributions.

Formally, let o1, . . . ,on be the n observed objects, and �1, . . . ,�k be the parameters
of the k distributions, denoted by O = {o1, . . . ,on} and � = {�1, . . . ,�k}, respectively.
Then, for any object, oi ∈ O (1 ≤ i ≤ n), Eq. (11.5) can be rewritten as

P(oi|�) =
k∑

j=1

ωjPj(oi|�j), (11.7)

where Pj(oi|�j) is the probability that oi is generated from the jth distribution using
parameter �j . Consequently, Eq. (11.6) can be rewritten as

P(O|�) =
n∏

i=1

k∑
j=1

ωjPj(oi|�j). (11.8)

Using the parameterized probability distribution models, the task of probabilistic
model-based cluster analysis is to infer a set of parameters, �, that maximizes Eq. (11.8).

Example 11.6 Univariate Gaussian mixture model. Let’s use univariate Gaussian distributions as an
example. That is, we assume that the probability density function of each cluster follows
a 1-D Gaussian distribution. Suppose there are k clusters. The two parameters for the
probability density function of each cluster are center, μj , and standard deviation, σj

(1 ≤ j ≤ k). We denote the parameters as �j = (μj ,σj) and � = {�1, . . . ,�k}. Let the
data set be O = {o1, . . . ,on}, where oi (1 ≤ i ≤ n) is a real number. For any point, oi ∈ O,
we have

P(oi|�j) = 1√
2πσj

e
− (oi−μj )

2

2σ2 . (11.9)

Assuming that each cluster has the same probability, that is ω1 = ω2 = ·· · = ωk = 1
k ,

and plugging Eq. (11.9) into Eq. (11.7), we have

P(oi|�) = 1

k

k∑
j=1

1√
2πσj

e
− (oi−μj )

2

2σ2 . (11.10)

Applying Eq. (11.8), we have

P(O|�) = 1

k

n∏
i=1

k∑
j=1

1√
2πσj

e
− (oi−μj )

2

2σ2 . (11.11)

The task of probabilistic model-based cluster analysis using a univariate Gaussian
mixture model is to infer � such that Eq. (11.11) is maximized.
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11.1.3 Expectation-Maximization Algorithm

“How can we compute fuzzy clusterings and probabilistic model-based clusterings?” In this
section, we introduce a principled approach. Let’s start with a review of the k-means
clustering problem and the k-means algorithm studied in Chapter 10.

It can easily be shown that k-means clustering is a special case of fuzzy clustering
(Exercise 11.1). The k-means algorithm iterates until the clustering cannot be improved.
Each iteration consists of two steps:

The expectation step (E-step): Given the current cluster centers, each object is assigned
to the cluster with a center that is closest to the object. Here, an object is expected to
belong to the closest cluster.

The maximization step (M-step): Given the cluster assignment, for each cluster, the
algorithm adjusts the center so that the sum of the distances from the objects
assigned to this cluster and the new center is minimized. That is, the similarity of
objects assigned to a cluster is maximized.

We can generalize this two-step method to tackle fuzzy clustering and probabilistic
model-based clustering. In general, an expectation-maximization (EM) algorithm is
a framework that approaches maximum likelihood or maximum a posteriori estimates
of parameters in statistical models. In the context of fuzzy or probabilistic model-based
clustering, an EM algorithm starts with an initial set of parameters and iterates until
the clustering cannot be improved, that is, until the clustering converges or the change
is sufficiently small (less than a preset threshold). Each iteration also consists of two
steps:

The expectation step assigns objects to clusters according to the current fuzzy
clustering or parameters of probabilistic clusters.

The maximization step finds the new clustering or parameters than minimize the
SSE in fuzzy clustering (Eq. 11.4) or the expected likelihood in probabilistic model-
based clustering.

Example 11.7 Fuzzy clustering using the EM algorithm. Consider the six points in Figure 11.2, where
the coordinates of the points are also shown. Let’s compute two fuzzy clusters using the
EM algorithm.

We randomly select two points, say c1 = a and c2 = b, as the initial centers of the two
clusters. The first iteration conducts the expectation step and the maximization step as
follows.

In the E-step, for each point we calculate its membership degree in each cluster. For
any point, o, we assign o to c1 and c2 with membership weights

1

dist(o, c1)2

1

dist(o, c1)2
+ 1

dist(o, c2)2

= dist(o, c2)
2

dist(o, c1)2 + dist(o, c2)2
and

dist(o, c1)
2

dist(o, c1)2 + dist(o, c2)2
,
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Y

a (3, 3)

c (9, 6)

b (4, 10)

d (14, 8)

e (18, 11)

f (21, 7)

Xo

Figure 11.2 Data set for fuzzy clustering.

Table 11.3 Intermediate Results from the First Three Iterations of Example 11.7’s EM Algorithm

Iteration E-Step M-Step

1 MT =
[

1 0 0.48 0.42 0.41 0.47

0 1 0.52 0.58 0.59 0.53

]
c1 = (8.47, 5.12)

c2 = (10.42, 8.99)

2 MT =
[

0.73 0.49 0.91 0.26 0.33 0.42

0.27 0.51 0.09 0.74 0.67 0.58

]
c1 = (8.51, 6.11)

c2 = (14.42, 8.69)

3 MT =
[

0.80 0.76 0.99 0.02 0.14 0.23

0.20 0.24 0.01 0.98 0.86 0.77

]
c1 = (6.40, 6.24)

c2 = (16.55, 8.64)

respectively, where dist(,) is the Euclidean distance. The rationale is that, if o is close to
c1 and dist(o, c1) is small, the membership degree of o with respect to c1 should be high.
We also normalize the membership degrees so that the sum of degrees for an object is
equal to 1.

For point a, we have wa,c1 = 1 and wa,c2 = 0. That is, a exclusively belongs to c1. For
point b, we have wb,c1 = 0 and wb,c2 = 1. For point c, we have wc,c1 = 41

45+41 = 0.48 and

wc,c2 = 45
45+41 = 0.52. The degrees of membership of the other points are shown in the

partition matrix in Table 11.3.

In the M-step, we recalculate the centroids according to the partition matrix,
minimizing the SSE given in Eq. (11.4). The new centroid should be adjusted to

cj =

∑
each point o

w2
o,cj

o

∑
each point o

w2
o,cj

, (11.12)

where j = 1,2.
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In this example,

c1 =
(

12 × 3 + 02 × 4 + 0.482 × 9 + 0.422 × 14 + 0.412 × 18 + 0.472 × 21

12 + 02 + 0.482 + 0.422 + 0.412 + 0.472
,

12 × 3 + 02 × 10 + 0.482 × 6 + 0.422 × 8 + 0.412 × 11 + 0.472 × 7

12 + 02 + 0.482 + 0.422 + 0.412 + 0.472

)

= (8.47,5.12)

and

c2 =
(

02 × 3 + 12 × 4 + 0.522 × 9 + 0.582 × 14 + 0.592 × 18 + 0.532 × 21

02 + 12 + 0.522 + 0.582 + 0.592 + 0.532
,

02 × 3 + 12 × 10 + 0.522 × 6 + 0.582 × 8 + 0.592 × 11 + 0.532 × 7

02 + 12 + 0.522 + 0.582 + 0.592 + 0.532

)

=(10.42,8.99).

We repeat the iterations, where each iteration contains an E-step and an M-step.
Table 11.3 shows the results from the first three iterations. The algorithm stops when
the cluster centers converge or the change is small enough.

“How can we apply the EM algorithm to compute probabilistic model-based clustering?”
Let’s use a univariate Gaussian mixture model (Example 11.6) to illustrate.

Example 11.8 Using the EM algorithm for mixture models. Given a set of objects, O = {o1, . . . ,on},
we want to mine a set of parameters, � = {�1, . . . ,�k}, such that P(O|�) in Eq. (11.11)
is maximized, where �j = (μj ,σj) are the mean and standard deviation, respectively, of
the jth univariate Gaussian distribution, (1 ≤ j ≤ k).

We can apply the EM algorithm. We assign random values to parameters � as the
initial values. We then iteratively conduct the E-step and the M-step as follows until the
parameters converge or the change is sufficiently small.

In the E-step, for each object, oi ∈ O (1 ≤ i ≤ n), we calculate the probability that oi

belongs to each distribution, that is,

P(�j|oi ,�) = P(oi|�j)∑k
l=1 P(oi|�l)

. (11.13)

In the M-step, we adjust the parameters � so that the expected likelihood P(O|�) in
Eq. (11.11) is maximized. This can be achieved by setting

μj = 1

k

n∑
i=1

oi
P(�j|oi ,�)∑n
l=1 P(�j|ol ,�)

= 1

k

∑n
i=1 oiP(�j|oi ,�)∑n

i=1 P(�j|oi ,�)
(11.14)
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and

σj =
√∑n

i=1 P(�j|oi ,�)(oi − uj)2∑n
i=1 P(�j|oi ,�)

. (11.15)

In many applications, probabilistic model-based clustering has been shown to be
effective because it is more general than partitioning methods and fuzzy clustering
methods. A distinct advantage is that appropriate statistical models can be used to
capture latent clusters. The EM algorithm is commonly used to handle many learning
problems in data mining and statistics due to its simplicity. Note that, in general, the EM
algorithm may not converge to the optimal solution. It may instead converge to a local
maximum. Many heuristics have been explored to avoid this. For example, we could run
the EM process multiple times using different random initial values. Furthermore, the
EM algorithm can be very costly if the number of distributions is large or the data set
contains very few observed data points.

11.2 Clustering High-Dimensional Data

The clustering methods we have studied so far work well when the dimensionality is not
high, that is, having less than 10 attributes. There are, however, important applications
of high dimensionality. “How can we conduct cluster analysis on high-dimensional data?”

In this section,westudyapproaches toclusteringhigh-dimensionaldata.Section11.2.1
starts with an overview of the major challenges and the approaches used. Methods for
high-dimensional data clustering can be divided into two categories: subspace clus-
tering methods (Sections 11.2.2 and 11.2.3) and dimensionality reduction methods
(Section 11.2.4).

11.2.1 Clustering High-Dimensional Data: Problems,
Challenges, and Major Methodologies

Before we present any specific methods for clustering high-dimensional data, let’s first
demonstrate the needs of cluster analysis on high-dimensional data using examples. We
examine the challenges that call for new methods. We then categorize the major meth-
ods according to whether they search for clusters in subspaces of the original space, or
whether they create a new lower-dimensionality space and search for clusters there.

In some applications, a data object may be described by 10 or more attributes. Such
objects are referred to as a high-dimensional data space.

Example 11.9 High-dimensional data and clustering. AllElectronics keeps track of the products pur-
chased by every customer. As a customer-relationship manager, you want to cluster
customers into groups according to what they purchased from AllElectronics.
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Table 11.4 Customer Purchase Data

Customer P1 P2 P3 P4 P5 P6 P7 P8 P9 P10

Ada 1 0 0 0 0 0 0 0 0 0

Bob 0 0 0 0 0 0 0 0 0 1

Cathy 1 0 0 0 1 0 0 0 0 1

The customer purchase data are of very high dimensionality. AllElectronics carries
tens of thousands of products. Therefore, a customer’s purchase profile, which is a vector
of the products carried by the company, has tens of thousands of dimensions.

“Are the traditional distance measures, which are frequently used in low-dimensional
cluster analysis, also effective on high-dimensional data?” Consider the customers in
Table 11.4, where 10 products, P1, . . . , P10, are used in demonstration. If a customer
purchases a product, a 1 is set at the corresponding bit; otherwise, a 0 appears. Let’s
calculate the Euclidean distances (Eq. 2.16) among Ada, Bob, and Cathy. It is easy to
see that

dist(Ada,Bob) = dist(Bob,Cathy) = dist(Ada,Cathy) =
√

2.

According to Euclidean distance, the three customers are equivalently similar (or dis-
similar) to each other. However, a close look tells us that Ada should be more similar to
Cathy than to Bob because Ada and Cathy share one common purchased item, P1.

As shown in Example 11.9, the traditional distance measures can be ineffective on
high-dimensional data. Such distance measures may be dominated by the noise in many
dimensions. Therefore, clusters in the full, high-dimensional space can be unreliable,
and finding such clusters may not be meaningful.

“Then what kinds of clusters are meaningful on high-dimensional data?” For cluster
analysis of high-dimensional data, we still want to group similar objects together. How-
ever, the data space is often too big and too messy. An additional challenge is that we
need to find not only clusters, but, for each cluster, a set of attributes that manifest the
cluster. In other words, a cluster on high-dimensional data often is defined using a small
set of attributes instead of the full data space. Essentially, clustering high-dimensional
data should return groups of objects as clusters (as conventional cluster analysis does),
in addition to, for each cluster, the set of attributes that characterize the cluster. For
example, in Table 11.4, to characterize the similarity between Ada and Cathy, P1 may be
returned as the attribute because Ada and Cathy both purchased P1.

Clustering high-dimensional data is the search for clusters and the space in which
they exist. Thus, there are two major kinds of methods:

Subspace clustering approaches search for clusters existing in subspaces of the given
high-dimensional data space, where a subspace is defined using a subset of attributes
in the full space. Subspace clustering approaches are discussed in Section 11.2.2.
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Dimensionality reduction approaches try to construct a much lower-dimensional
space and search for clusters in such a space. Often, a method may construct new
dimensions by combining some dimensions from the original data. Dimensionality
reduction methods are the topic of Section 11.2.4.

In general, clustering high-dimensional data raises several new challenges in addition
to those of conventional clustering:

A major issue is how to create appropriate models for clusters in high-dimensional
data. Unlike conventional clusters in low-dimensional spaces, clusters hidden in
high-dimensional data are often significantly smaller. For example, when clustering
customer-purchase data, we would not expect many users to have similar purchase
patterns. Searching for such small but meaningful clusters is like finding needles in
a haystack. As shown before, the conventional distance measures can be ineffective.
Instead, we often have to consider various more sophisticated techniques that can
model correlations and consistency among objects in subspaces.

There are typically an exponential number of possible subspaces or dimensionality
reduction options, and thus the optimal solutions are often computationally pro-
hibitive. For example, if the original data space has 1000 dimensions, and we want

to find clusters of dimensionality 10, then there are

(
1000

10

)
= 2.63 × 1023 possible

subspaces.

11.2.2 Subspace Clustering Methods

“How can we find subspace clusters from high-dimensional data?” Many methods have
been proposed. They generally can be categorized into three major groups: subspace
search methods, correlation-based clustering methods, and biclustering methods.

Subspace Search Methods
A subspace search method searches various subspaces for clusters. Here, a cluster is a
subset of objects that are similar to each other in a subspace. The similarity is often cap-
tured by conventional measures such as distance or density. For example, the CLIQUE
algorithm introduced in Section 10.5.2 is a subspace clustering method. It enumerates
subspaces and the clusters in those subspaces in a dimensionality-increasing order, and
applies antimonotonicity to prune subspaces in which no cluster may exist.

A major challenge that subspace search methods face is how to search a series of
subspaces effectively and efficiently. Generally there are two kinds of strategies:

Bottom-up approaches start from low-dimensional subspaces and search higher-
dimensional subspaces only when there may be clusters in those higher-dimensional
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subspaces. Various pruning techniques are explored to reduce the number of higher-
dimensional subspaces that need to be searched. CLIQUE is an example of a
bottom-up approach.

Top-down approaches start from the full space and search smaller and smaller sub-
spaces recursively. Top-down approaches are effective only if the locality assumption
holds, which require that the subspace of a cluster can be determined by the local
neighborhood.

Example 11.10 PROCLUS, a top-down subspace approach. PROCLUS is a k-medoid-like method
that first generates k potential cluster centers for a high-dimensional data set using a
sample of the data set. It then refines the subspace clusters iteratively. In each itera-
tion, for each of the current k-medoids, PROCLUS considers the local neighborhood
of the medoid in the whole data set, and identifies a subspace for the cluster by mini-
mizing the standard deviation of the distances of the points in the neighborhood to
the medoid on each dimension. Once all the subspaces for the medoids are deter-
mined, each point in the data set is assigned to the closest medoid according to the
corresponding subspace. Clusters and possible outliers are identified. In the next iter-
ation, new medoids replace existing ones if doing so improves the clustering quality.

Correlation-Based Clustering Methods
While subspace search methods search for clusters with a similarity that is measured
using conventional metrics like distance or density, correlation-based approaches can
further discover clusters that are defined by advanced correlation models.

Example 11.11 A correlation-based approach using PCA. As an example, a PCA-based approach first
applies PCA (Principal Components Analysis; see Chapter 3) to derive a set of new,
uncorrelated dimensions, and then mine clusters in the new space or its subspaces. In
addition to PCA, other space transformations may be used, such as the Hough transform
or fractal dimensions.

For additional details on subspace search methods and correlation-based clustering
methods, please refer to the bibliographic notes (Section 11.7).

Biclustering Methods
In some applications, we want to cluster both objects and attributes simultaneously.
The resulting clusters are known as biclusters and meet four requirements: (1) only a
small set of objects participate in a cluster; (2) a cluster only involves a small number of
attributes; (3) an object may participate in multiple clusters, or does not participate in
any cluster; and (4) an attribute may be involved in multiple clusters, or is not involved
in any cluster. Section 11.2.3 discusses biclustering in detail.
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11.2.3 Biclustering

In the cluster analysis discussed so far, we cluster objects according to their attribute
values. Objects and attributes are not treated in the same way. However, in some applica-
tions, objects and attributes are defined in a symmetric way, where data analysis involves
searching data matrices for submatrices that show unique patterns as clusters. This kind
of clustering technique belongs to the category of biclustering.

This section first introduces two motivating application examples of biclustering—
gene expression and recommender systems. You will then learn about the different types
of biclusters. Last, we present biclustering methods.

Application Examples
Biclustering techniques were first proposed to address the needs for analyzing gene
expression data. A gene is a unit of the passing-on of traits from a living organism to
its offspring. Typically, a gene resides on a segment of DNA. Genes are critical for all
living things because they specify all proteins and functional RNA chains. They hold the
information to build and maintain a living organism’s cells and pass genetic traits to
offspring. Synthesis of a functional gene product, either RNA or protein, relies on the
process of gene expression. A genotype is the genetic makeup of a cell, an organism, or
an individual. Phenotypes are observable characteristics of an organism. Gene expression
is the most fundamental level in genetics in that genotypes cause phenotypes.

Using DNA chips (also known as DNA microarrays) and other biological engineer-
ing techniques, we can measure the expression level of a large number (possibly all) of
an organism’s genes, in a number of different experimental conditions. Such conditions
may correspond to different time points in an experiment or samples from different
organs. Roughly speaking, the gene expression data or DNA microarray data are concep-
tually a gene-sample/condition matrix, where each row corresponds to one gene, and
each column corresponds to one sample or condition. Each element in the matrix is
a real number and records the expression level of a gene under a specific condition.
Figure 11.3 shows an illustration.

From the clustering viewpoint, an interesting issue is that a gene expression data
matrix can be analyzed in two dimensions—the gene dimension and the sample/
condition dimension.

When analyzing in the gene dimension, we treat each gene as an object and treat the
samples/conditions as attributes. By mining in the gene dimension, we may find pat-
terns shared by multiple genes, or cluster genes into groups. For example, we may
find a group of genes that express themselves similarly, which is highly interesting in
bioinformatics, such as in finding pathways.

When analyzing in the sample/condition dimension, we treat each sample/condition
as an object and treat the genes as attributes. In this way, we may find patterns of
samples/conditions, or cluster samples/conditions into groups. For example, we may
find the differences in gene expression by comparing a group of tumor samples and
nontumor samples.
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Gene

Sample/condition

w11

w31

wn1 wn2 wnm

w12

w32

w21 w22

w1m

w2m

w3m

Figure 11.3 Microarrary data matrix.

Example 11.12 Gene expression. Gene expression matrices are popular in bioinformatics research and
development. For example, an important task is to classify a new gene using the expres-
sion data of the gene and that of other genes in known classes. Symmetrically, we may
classify a new sample (e.g., a new patient) using the expression data of the sample and
that of samples in known classes (e.g., tumor and nontumor). Such tasks are invaluable
in understanding the mechanisms of diseases and in clinical treatment.

As can be seen, many gene expression data mining problems are highly related to
cluster analysis. However, a challenge here is that, instead of clustering in one dimension
(e.g., gene or sample/condition), in many cases we need to cluster in two dimensions
simultaneously (e.g., both gene and sample/condition). Moreover, unlike the clustering
models we have discussed so far, a cluster in a gene expression data matrix is a submatrix
and usually has the following characteristics:

Only a small set of genes participate in the cluster.

The cluster involves only a small subset of samples/conditions.

A gene may participate in multiple clusters, or may not participate in any cluster.

A sample/condition may be involved in multiple clusters, or may not be involved in
any cluster.

To find clusters in gene-sample/condition matrices, we need new clustering tech-
niques that meet the following requirements for biclustering :

A cluster of genes is defined using only a subset of samples/conditions.

A cluster of samples/conditions is defined using only a subset of genes.
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The clusters are neither exclusive (e.g., where one gene can participate in multiple
clusters) nor exhaustive (e.g., where a gene may not participate in any cluster).

Biclustering is useful not only in bioinformatics, but also in other applications as well.
Consider recommender systems as an example.

Example 11.13 Using biclustering for a recommender system. AllElectronics collects data from cus-
tomers’ evaluations of products and uses the data to recommend products to customers.
The data can be modeled as a customer-product matrix, where each row represents a
customer, and each column represents a product. Each element in the matrix represents
a customer’s evaluation of a product, which may be a score (e.g., like, like somewhat,
not like) or purchase behavior (e.g., buy or not). Figure 11.4 illustrates the structure.

The customer-product matrix can be analyzed in two dimensions: the customer
dimension and the product dimension. Treating each customer as an object and products
as attributes, AllElectronics can find customer groups that have similar preferences or
purchase patterns. Using products as objects and customers as attributes, AllElectronics
can mine product groups that are similar in customer interest.

Moreover, AllElectronics can mine clusters in both customers and products simulta-
neously. Such a cluster contains a subset of customers and involves a subset of products.
For example, AllElectronics is highly interested in finding a group of customers who all
like the same group of products. Such a cluster is a submatrix in the customer-product
matrix, where all elements have a high value. Using such a cluster, AllElectronics can
make recommendations in two directions. First, the company can recommend products
to new customers who are similar to the customers in the cluster. Second, the company
can recommend to customers new products that are similar to those involved in the
cluster.

As with biclusters in a gene expression data matrix, the biclusters in a customer-
product matrix usually have the following characteristics:

Only a small set of customers participate in a cluster.

A cluster involves only a small subset of products.

A customer can participate in multiple clusters, or may not participate in any
cluster.

Products

w11 w12 · · · w1m

Customers w21 w22 · · · w2m

· · · · · · · · · · · ·
wn1 wn2 · · · wnm

Figure 11.4 Customer–product matrix.
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A product may be involved in multiple clusters, or may not be involved in any
cluster.

Biclustering can be applied to customer-product matrices to mine clusters satisfying
these requirements.

Types of Biclusters
“How can we model biclusters and mine them?” Let’s start with some basic notation. For
the sake of simplicity, we will use “genes” and “conditions” to refer to the two dimen-
sions in our discussion. Our discussion can easily be extended to other applications. For
example, we can simply replace “genes” and “conditions” by “customers” and “products”
to tackle the customer-product biclustering problem.

Let A = {a1, . . . ,an} be a set of genes and B = {b1, . . . ,bm} be a set of conditions. Let
E = [eij] be a gene expression data matrix, that is, a gene-condition matrix, where 1 ≤
i ≤ n and 1 ≤ j ≤ m. A submatrix I × J is defined by a subset I ⊆ A of genes and a subset
J ⊆ B of conditions. For example, in the matrix shown in Figure 11.5, {a1,a33,a86} ×
{b6,b12,b36,b99} is a submatrix.

A bicluster is a submatrix where genes and conditions follow consistent patterns. We
can define different types of biclusters based on such patterns.

As the simplest case, a submatrix I × J (I ⊆ A, J ⊆ B) is a bicluster with constant val-
ues if for any i ∈ I and j ∈ J , eij = c, where c is a constant. For example, the submatrix
{a1,a33,a86}× {b6,b12,b36,b99} in Figure 11.5 is a bicluster with constant values.

A bicluster is interesting if each row has a constant value, though different rows may
have different values. A bicluster with constant values on rows is a submatrix I × J
such that for any i ∈ I and j ∈ J , eij = c + αi , where αi is the adjustment for row i. For
example, Figure 11.6 shows a bicluster with constant values on rows.

Symmetrically, a bicluster with constant values on columns is a submatrix
I × J such that for any i ∈ I and j ∈ J , eij = c + βj , where βj is the adjustment for
column j.

· · · b6 · · · b12 · · · b36 · · · b99 · · ·
a1 · · · 60 · · · 60 · · · 60 · · · 60 · · ·
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
a33 · · · 60 · · · 60 · · · 60 · · · 60 · · ·
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
a86 · · · 60 · · · 60 · · · 60 · · · 60 · · ·
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

Figure 11.5 Gene-condition matrix, a submatrix, and a bicluster.



516 Chapter 11 Advanced Cluster Analysis

More generally, a bicluster is interesting if the rows change in a synchronized way with
respect to the columns and vice versa. Mathematically, a bicluster with coherent
values (also known as a pattern-based cluster) is a submatrix I × J such that for
any i ∈ I and j ∈ J , eij = c + αi + βj , where αi and βj are the adjustment for row i
and column j, respectively. For example, Figure 11.7 shows a bicluster with coherent
values.

It can be shown that I × J is a bicluster with coherent values if and only if for
any i1, i2 ∈ I and j1, j2 ∈ J , then ei1j1 − ei2j1 = ei1j2 − ei2j2 . Moreover, instead of using
addition, we can define a bicluster with coherent values using multiplication, that
is, eij = c · (αi · βj

)
. Clearly, biclusters with constant values on rows or columns are

special cases of biclusters with coherent values.

In some applications, we may only be interested in the up- or down-regulated
changes across genes or conditions without constraining the exact values. A biclus-
ter with coherent evolutions on rows is a submatrix I × J such that for any i1, i2 ∈ I
and j1, j2 ∈ J , (ei1j1 − ei1j2)(ei2j1 − ei2j2) ≥ 0. For example, Figure 11.8 shows a biclus-
ter with coherent evolutions on rows. Symmetrically, we can define biclusters with
coherent evolutions on columns.

Next, we study how to mine biclusters.

10 10 10 10 10

20 20 20 20 20

50 50 50 50 50

0 0 0 0 0

Figure 11.6 Bicluster with constant values on rows.

10 50 30 70 20

20 60 40 80 30

50 90 70 110 60

0 40 20 60 10

Figure 11.7 Bicluster with coherent values.

10 50 30 70 20

20 100 50 1000 30

50 100 90 120 80

0 80 20 100 10

Figure 11.8 Bicluster with coherent evolutions on rows.
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Biclustering Methods
The previous specification of the types of biclusters only considers ideal cases. In real
data sets, such perfect biclusters rarely exist. When they do exist, they are usually very
small. Instead, random noise can affect the readings of eij and thus prevent a bicluster in
nature from appearing in a perfect shape.

There are two major types of methods for discovering biclusters in data that may
come with noise. Optimization-based methods conduct an iterative search. At each
iteration, the submatrix with the highest significance score is identified as a bicluster.
The process terminates when a user-specified condition is met. Due to cost concerns
in computation, greedy search is often employed to find local optimal biclusters. Enu-
meration methods use a tolerance threshold to specify the degree of noise allowed in
the biclusters to be mined, and then tries to enumerate all submatrices of biclusters that
satisfy the requirements. We use the δ-Cluster and MaPle algorithms as examples to
illustrate these ideas.

Optimization Using the δ-Cluster Algorithm
For a submatrix, I × J , the mean of the ith row is

eiJ = 1

|J |
∑
j∈J

eij . (11.16)

Symmetrically, the mean of the jth column is

eIj = 1

|I |
∑
i∈I

eij . (11.17)

The mean of all elements in the submatrix is

eIJ = 1

|I ||J |
∑

i∈I ,j∈J

eij = 1

|I |
∑
i∈I

eiJ = 1

|J |
∑
j∈J

eIj . (11.18)

The quality of the submatrix as a bicluster can be measured by the mean-squared residue
value as

H(I × J) = 1

|I ||J |
∑

i∈I ,j∈J

(eij − eiJ − eIj + eIJ )
2. (11.19)

Submatrix I × J is a δ-bicluster if H(I × J) ≤ δ, where δ ≥ 0 is a threshold. When
δ = 0, I × J is a perfect bicluster with coherent values. By setting δ > 0, a user can
specify the tolerance of average noise per element against a perfect bicluster, because
in Eq. (11.19) the residue on each element is

residue(eij) = eij − eiJ − eIj + eIJ . (11.20)

A maximal δ-bicluster is a δ-bicluster I × J such that there does not exist another
δ-bicluster I ′ × J ′, and I ⊆ I ′, J ⊆ J ′, and at least one inequality holds. Finding the
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maximal δ-bicluster of the largest size is computationally costly. Therefore, we can use
a heuristic greedy search method to obtain a local optimal cluster. The algorithm works
in two phases.

In the deletion phase, we start from the whole matrix. While the mean-squared
residue of the matrix is over δ, we iteratively remove rows and columns. At each
iteration, for each row i, we compute the mean-squared residue as

d(i ) = 1

|J |
∑
j∈J

(eij − eiJ − eIj + eIJ )
2. (11.21)

Moreover, for each column j, we compute the mean-squared residue as

d( j) = 1

|I |
∑
i∈I

(eij − eiJ − eIj + eIJ )
2. (11.22)

We remove the row or column of the largest mean-squared residue. At the end of this
phase, we obtain a submatrix I × J that is a δ-bicluster. However, the submatrix may
not be maximal.

In the addition phase, we iteratively expand the δ-bicluster I × J obtained in the dele-
tion phase as long as the δ-bicluster requirement is maintained. At each iteration, we
consider rows and columns that are not involved in the current bicluster I × J by cal-
culating their mean-squared residues. A row or column of the smallest mean-squared
residue is added into the current δ-bicluster.

This greedy algorithm can find one δ-bicluster only. To find multiple biclusters that
do not have heavy overlaps, we can run the algorithm multiple times. After each execu-
tion where a δ-bicluster is output, we can replace the elements in the output bicluster
by random numbers. Although the greedy algorithm may find neither the optimal
biclusters nor all biclusters, it is very fast even on large matrices.

Enumerating All Biclusters Using MaPle
As mentioned, a submatrix I × J is a bicluster with coherent values if and only if for any
i1, i2 ∈ I and j1, j2 ∈ J , ei1j1 − ei2j1 = ei1j2 − ei2j2 . For any 2 × 2 submatrix of I × J , we can
define a p-score as

p-score

(
ei1j1 ei1j2

ei2j1 ei2j2

)
= |(ei1j1 − ei2j1) − (ei1j2 − ei2j2)|. (11.23)

A submatrix I × J is a δ-pCluster (for pattern-based cluster) if the p-score of every
2 × 2 submatrix of I × J is at most δ, where δ ≥ 0 is a threshold specifying a user’s
tolerance of noise against a perfect bicluster. Here, the p-score controls the noise on
every element in a bicluster, while the mean-squared residue captures the average noise.

An interesting property of δ-pCluster is that if I × J is a δ-pCluster, then every
x × y (x,y ≥ 2) submatrix of I × J is also a δ-pCluster. This monotonicity enables
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us to obtain a succinct representation of nonredundant δ-pClusters. A δ-pCluster is
maximal if no more rows or columns can be added into the cluster while maintaining the
δ-pCluster property. To avoid redundancy, instead of finding all δ-pClusters, we only
need to compute all maximal δ-pClusters.

MaPle is an algorithm that enumerates all maximal δ-pClusters. It systematically
enumerates every combination of conditions using a set enumeration tree and a depth-
first search. This enumeration framework is the same as the pattern-growth methods
for frequent pattern mining (Chapter 6). Consider gene expression data. For each con-
dition combination, J , MaPle finds the maximal subsets of genes, I , such that I × J is
a δ-pCluster. If I × J is not a submatrix of another δ-pCluster, then I × J is a maximal
δ-pCluster.

There may be a huge number of condition combinations. MaPle prunes many
unfruitful combinations using the monotonicity of δ-pClusters. For a condition com-
bination, J , if there does not exist a set of genes, I , such that I × J is a δ-pCluster, then
we do not need to consider any superset of J . Moreover, we should consider I × J as a
candidate of a δ-pCluster only if for every (|J | − 1)-subset J ′ of J , I × J ′ is a δ-pCluster.
MaPle also employs several pruning techniques to speed up the search while retaining
the completeness of returning all maximal δ-pClusters. For example, when examining a
current δ-pCluster, I × J , MaPle collects all the genes and conditions that may be added
to expand the cluster. If these candidate genes and conditions together with I and J form
a submatrix of a δ-pCluster that has already been found, then the search of I × J and any
superset of J can be pruned. Interested readers may refer to the bibliographic notes for
additional information on the MaPle algorithm (Section 11.7).

An interesting observation here is that the search for maximal δ-pClusters in MaPle is
somewhat similar to mining frequent closed itemsets. Consequently, MaPle borrows the
depth-first search framework and ideas from the pruning techniques of pattern-growth
methods for frequent pattern mining. This is an example where frequent pattern mining
and cluster analysis may share similar techniques and ideas.

An advantage of MaPle and the other algorithms that enumerate all biclusters is that
they guarantee the completeness of the results and do not miss any overlapping biclus-
ters. However, a challenge for such enumeration algorithms is that they may become very
time consuming if a matrix becomes very large, such as a customer-purchase matrix of
hundreds of thousands of customers and millions of products.

11.2.4 Dimensionality Reduction Methods and Spectral
Clustering

Subspace clustering methods try to find clusters in subspaces of the original data
space. In some situations, it is more effective to construct a new space instead of using
subspaces of the original data. This is the motivation behind dimensionality reduction
methods for clustering high-dimensional data.

Example 11.14 Clustering in a derived space. Consider the three clusters of points in Figure 11.9. It is
not possible to cluster these points in any subspace of the original space, X × Y , because
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− 0.707x + 0.707y

X
O

Y

Figure 11.9 Clustering in a derived space may be more effective.

all three clusters would end up being projected onto overlapping areas in the x and y

axes. What if, instead, we construct a new dimension, −
√

2
2 x +

√
2

2 y (shown as a dashed
line in the figure)? By projecting the points onto this new dimension, the three clusters
become apparent.

Although Example 11.14 involves only two dimensions, the idea of constructing a
new space (so that any clustering structure that is hidden in the data becomes well man-
ifested) can be extended to high-dimensional data. Preferably, the newly constructed
space should have low dimensionality.

There are many dimensionality reduction methods. A straightforward approach is to
apply feature selection and extraction methods to the data set such as those discussed
in Chapter 3. However, such methods may not be able to detect the clustering structure.
Therefore, methods that combine feature extraction and clustering are preferred. In this
section, we introduce spectral clustering, a group of methods that are effective in high-
dimensional data applications.

Figure 11.10 shows the general framework for spectral clustering approaches. The
Ng-Jordan-Weiss algorithm is a spectral clustering method. Let’s have a look at each
step of the framework. In doing so, we also note special conditions that apply to the
Ng-Jordan-Weiss algorithm as an example.

Given a set of objects, o1, . . . ,on, the distance between each pair of objects, dist(oi ,oj)

(1 ≤ i, j ≤ n), and the desired number k of clusters, a spectral clustering approach works
as follows.

1. Using the distance measure, calculate an affinity matrix, W , such that

Wij = e
− dist(oi ,oj )

σ2 ,

where σ is a scaling parameter that controls how fast the affinity Wij decreases as
dist(oi ,oj) increases. In the Ng-Jordan-Weiss algorithm, Wii is set to 0.
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[wij]

Affinity matrixData

A = f (w)

Av = λv

Clustering in
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Compute leading
k eigenvectors

of A

Project back
to cluster the
original data

Figure 11.10 The framework of spectral clustering approaches. Source: Adapted from Slide 8 at http://
videolectures.net/micued08 azran mcl/ .

2. Using the affinity matrix W , derive a matrix A = f (W ). The way in which this is done
can vary. The Ng-Jordan-Weiss algorithm defines a matrix, D, as a diagonal matrix
such that Dii is the sum of the ith row of W , that is,

Dii =
n∑

j=1

Wij . (11.24)

A is then set to

A = D− 1
2 WD− 1

2 . (11.25)

3. Find the k leading eigenvectors of A. Recall that the eigenvectors of a square matrix
are the nonzero vectors that remain proportional to the original vector after being
multiplied by the matrix. Mathematically, a vector v is an eigenvector of matrix A
if Av = λv, where λ is called the corresponding eigenvalue. This step derives k new
dimensions from A, which are based on the affinity matrix W . Typically, k should be
much smaller than the dimensionality of the original data.

The Ng-Jordan-Weiss algorithm computes the k eigenvectors with the largest
eigenvalues x1, . . . ,xk of A.

4. Using the k leading eigenvectors, project the original data into the new space defined
by the k leading eigenvectors, and run a clustering algorithm such as k-means to find
k clusters.

The Ng-Jordan-Weiss algorithm stacks the k largest eigenvectors in columns
to form a matrix X = [x1x2 · · ·xk] ∈ R

n×k . The algorithm forms a matrix Y by
renormalizing each row in X to have unit length, that is,

Yij = Xij√∑k
j=1 X2

ij

. (11.26)

The algorithm then treats each row in Y as a point in the k-dimensional space R
k , and

runs k-means (or any other algorithm serving the partitioning purpose) to cluster the
points into k clusters.
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Figure 11.11 The new dimensions and the clustering results of the Ng-Jordan-Weiss algorithm. Source:
Adapted from Slide 9 at http://videolectures.net/micued08 azran mcl/ .

5. Assign the original data points to clusters according to how the transformed points
are assigned in the clusters obtained in step 4.

In the Ng-Jordan-Weiss algorithm, the original object oi is assigned to the jth
cluster if and only if matrix Y ’s row i is assigned to the jth cluster as a result of step 4.

In spectral clustering methods, the dimensionality of the new space is set to the
desired number of clusters. This setting expects that each new dimension should be able
to manifest a cluster.

Example 11.15 The Ng-Jordan-Weiss algorithm. Consider the set of points in Figure 11.11. The
data set, the affinity matrix, the three largest eigenvectors, and the normalized vec-
tors are shown. Note that with the three new dimensions (formed by the three largest
eigenvectors), the clusters are easily detected.

Spectral clustering is effective in high-dimensional applications such as image pro-
cessing. Theoretically, it works well when certain conditions apply. Scalability, however,
is a challenge. Computing eigenvectors on a large matrix is costly. Spectral clustering can
be combined with other clustering methods, such as biclustering. Additional informa-
tion on other dimensionality reduction clustering methods, such as kernel PCA, can be
found in the bibliographic notes (Section 11.7).

11.3 Clustering Graph and Network Data

Cluster analysis on graph and network data extracts valuable knowledge and informa-
tion. Such data are increasingly popular in many applications. We discuss applications
and challenges of clustering graph and network data in Section 11.3.1. Similarity mea-
sures for this form of clustering are given in Section 11.3.2. You will learn about graph
clustering methods in Section 11.3.3.

In general, the terms graph and network can be used interchangeably. In the rest of
this section, we mainly use the term graph.
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11.3.1 Applications and Challenges

As a customer relationship manager at AllElectronics, you notice that a lot of data relating
to customers and their purchase behavior can be preferably modeled using graphs.

Example 11.16 Bipartite graph. The customer purchase behavior at AllElectronics can be represented in
a bipartite graph. In a bipartite graph, vertices can be divided into two disjoint sets so that
each edge connects a vertex in one set to a vertex in the other set. For the AllElectronics
customer purchase data, one set of vertices represents customers, with one customer per
vertex. The other set represents products, with one product per vertex. An edge connects
a customer to a product, representing the purchase of the product by the customer.
Figure 11.12 shows an illustration.

“What kind of knowledge can we obtain by a cluster analysis of the customer-product
bipartite graph?” By clustering the customers such that those customers buying similar
sets of products are placed into one group, a customer relationship manager can make
product recommendations. For example, suppose Ada belongs to a customer cluster in
which most of the customers purchased a digital camera in the last 12 months, but Ada
has yet to purchase one. As manager, you decide to recommend a digital camera to her.

Alternatively, we can cluster products such that those products purchased by similar
sets of customers are grouped together. This clustering information can also be used
for product recommendations. For example, if a digital camera and a high-speed flash
memory card belong to the same product cluster, then when a customer purchases a
digital camera, we can recommend the high-speed flash memory card.

Bipartite graphs are widely used in many applications. Consider another example.

Example 11.17 Web search engines. In web search engines, search logs are archived to record user
queries and the corresponding click-through information. (The click-through informa-
tion tells us on which pages, given as a result of a search, the user clicked.) The query and
click-through information can be represented using a bipartite graph, where the two sets

Customers Products

Figure 11.12 Bipartite graph representing customer-purchase data.
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of vertices correspond to queries and web pages, respectively. An edge links a query to a
web page if a user clicks the web page when asking the query. Valuable information can
be obtained by cluster analyses on the query–web page bipartite graph. For instance, we
may identify queries posed in different languages, but that mean the same thing, if the
click-through information for each query is similar.

As another example, all the web pages on the Web form a directed graph, also known
as the web graph, where each web page is a vertex, and each hyperlink is an edge pointing
from a source page to a destination page. Cluster analysis on the web graph can disclose
communities, find hubs and authoritative web pages, and detect web spams.

In addition to bipartite graphs, cluster analysis can also be applied to other types of
graphs, including general graphs, as elaborated Example 11.18.

Example 11.18 Social network. A social network is a social structure. It can be represented as a graph,
where the vertices are individuals or organizations, and the links are interdependencies
between the vertices, representing friendship, common interests, or collaborative activi-
ties. AllElectronics’ customers form a social network, where each customer is a vertex,
and an edge links two customers if they know each other.

As customer relationship manager, you are interested in finding useful information
that can be derived from AllElectronics’ social network through cluster analysis. You
obtain clusters from the network, where customers in a cluster know each other or
have friends in common. Customers within a cluster may influence one another regard-
ing purchase decision making. Moreover, communication channels can be designed to
inform the “heads” of clusters (i.e., the “best” connected people in the clusters), so
that promotional information can be spread out quickly. Thus, you may use customer
clustering to promote sales at AllElectronics.

As another example, the authors of scientific publications form a social network,
where the authors are vertices and two authors are connected by an edge if they co-
authored a publication. The network is, in general, a weighted graph because an edge
between two authors can carry a weight representing the strength of the collaboration
such as how many publications the two authors (as the end vertices) coauthored. Clus-
tering the coauthor network provides insight as to communities of authors and patterns
of collaboration.

“Are there any challenges specific to cluster analysis on graph and network data?” In
most of the clustering methods discussed so far, objects are represented using a set of
attributes. A unique feature of graph and network data is that only objects (as vertices)
and relationships between them (as edges) are given. No dimensions or attributes are
explicitly defined. To conduct cluster analysis on graph and network data, there are two
major new challenges.

“How can we measure the similarity between two objects on a graph accordingly?”
Typically, we cannot use conventional distance measures, such as Euclidean dis-
tance. Instead, we need to develop new measures to quantify the similarity. Such
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measures often are not metric, and thus raise new challenges regarding the develop-
ment of efficient clustering methods. Similarity measures for graphs are discussed in
Section 11.3.2.

“How can we design clustering models and methods that are effective on graph and
network data?” Graph and network data are often complicated, carrying topological
structures that are more sophisticated than traditional cluster analysis applications.
Many graph data sets are large, such as the web graph containing at least tens of
billions of web pages in the publicly indexable Web. Graphs can also be sparse where,
on average, a vertex is connected to only a small number of other vertices in the
graph. To discover accurate and useful knowledge hidden deep in the data, a good
clustering method has to accommodate these factors. Clustering methods for graph
and network data are introduced in Section 11.3.3.

11.3.2 Similarity Measures

“How can we measure the similarity or distance between two vertices in a graph?” In our
discussion, we examine two types of measures: geodesic distance and distance based on
random walk.

Geodesic Distance
A simple measure of the distance between two vertices in a graph is the shortest path
between the vertices. Formally, the geodesic distance between two vertices is the length
in terms of the number of edges of the shortest path between the vertices. For two
vertices that are not connected in a graph, the geodesic distance is defined as infinite.

Using geodesic distance, we can define several other useful measurements for graph
analysis and clustering. Given a graph G = (V ,E), where V is the set of vertices and E is
the set of edges, we define the following:

For a vertext v ∈ V , the eccentricity of v, denoted eccen(v), is the largest geodesic
distance between v and any other vertex u ∈ V − {v}. The eccentricity of v captures
how far away v is from its remotest vertex in the graph.

The radius of graph G is the minimum eccentricity of all vertices. That is,

r = min
v∈V

eccen(v). (11.27)

The radius captures the distance between the “most central point” and the “farthest
border” of the graph.

The diameter of graph G is the maximum eccentricity of all vertices. That is,

d = max
v∈V

eccen(v). (11.28)

The diameter represents the largest distance between any pair of vertices.

A peripheral vertex is a vertex that achieves the diameter.
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a

b

c

ed

Figure 11.13 A graph, G, where vertices c, d, and e are peripheral.

Example 11.19 Measurements based on geodesic distance. Consider graph G in Figure 11.13. The
eccentricity of a is 2, that is, eccen(a) = 2, eccen(b) = 2, and eccen(c) = eccen(d) =
eccen(e) = 3. Thus, the radius of G is 2, and the diameter is 3. Note that it is not necessary
that d = 2 × r. Vertices c, d, and e are peripheral vertices.

SimRank: Similarity Based on Random Walk
and Structural Context
For some applications, geodesic distance may be inappropriate in measuring the simi-
larity between vertices in a graph. Here we introduce SimRank, a similarity measure
based on random walk and on the structural context of the graph. In mathematics, a
random walk is a trajectory that consists of taking successive random steps.

Example 11.20 Similarity between people in a social network. Let’s consider measuring the similarity
between two vertices in the AllElectronics customer social network of Example 11.18.
Here, similarity can be explained as the closeness between two participants in the net-
work, that is, how close two people are in terms of the relationship represented by the
social network.

“How well can the geodesic distance measure similarity and closeness in such a network?”
Suppose Ada and Bob are two customers in the network, and the network is undirected.
The geodesic distance (i.e., the length of the shortest path between Ada and Bob) is the
shortest path that a message can be passed from Ada to Bob and vice versa. However, this
information is not useful for AllElectronics’ customer relationship management because
the company typically does not want to send a specific message from one customer to
another. Therefore, geodesic distance does not suit the application.

“What does similarity mean in a social network?” We consider two ways to define
similarity:

Two customers are considered similar to one another if they have similar neighbors
in the social network. This heuristic is intuitive because, in practice, two people
receiving recommendations from a good number of common friends often make
similar decisions. This kind of similarity is based on the local structure (i.e., the
neighborhoods) of the vertices, and thus is called structural context–based similarity.
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Suppose AllElectronics sends promotional information to both Ada and Bob in the
social network. Ada and Bob may randomly forward such information to their
friends (or neighbors) in the network. The closeness between Ada and Bob can then
be measured by the likelihood that other customers simultaneously receive the pro-
motional information that was originally sent to Ada and Bob. This kind of similarity
is based on the random walk reachability over the network, and thus is referred to as
similarity based on random walk.

Let’s have a closer look at what is meant by similarity based on structural context, and
similarity based on random walk.

The intuition behind similarity based on structural context is that two vertices in a
graph are similar if they are connected to similar vertices. To measure such similarity, we
need to define the notion of individual neighborhood. In a directed graph G = (V ,E),
where V is the set of vertices and E ⊆ V × V is the set of edges, for a vertex v ∈ V , the
individual in-neighborhood of v is defined as

I(v) = {u|(u,v) ∈ E}. (11.29)

Symmetrically, we define the individual out-neighborhood of v as

O(v) = {w|(v,w) ∈ E}. (11.30)

Following the intuition illustrated in Example 11.20, we define SimRank, a
structural-context similarity, with a value that is between 0 and 1 for any pair of ver-
tices. For any vertex, v ∈ V , the similarity between the vertex and itself is s(v,v) = 1
because the neighborhoods are identical. For vertices u,v ∈ V such that u �= v, we can
define

s(u,v) = C

|I(u)||I(v)|
∑

x∈I(u)

∑
y∈I(v)

s(x,y), (11.31)

where C is a constant between 0 and 1. A vertex may not have any in-neighbors. Thus,
we define Eq. (11.31) to be 0 when either I(u) or I(v) is ∅. Parameter C specifies the rate
of decay as similarity is propagated across edges.

“How can we compute SimRank?” A straightforward method iteratively evaluates
Eq. (11.31) until a fixed point is reached. Let si(u,v) be the SimRank score calculated
at the ith round. To begin, we set

s0(u,v) =
{

0 if u �= v

1 if u = v.
(11.32)

We use Eq. (11.31) to compute si+1 from si as

si+1(u,v) = C

|I(u)||I(v)|
∑

x∈I(u)

∑
y∈I(v)

si(x,y). (11.33)
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It can be shown that lim
i→∞

si(u,v) = s(u,v). Additional methods for approximating

SimRank are given in the bibliographic notes (Section 11.7).
Now, let’s consider similarity based on random walk. A directed graph is strongly

connected if, for any two nodes u and v, there is a path from u to v and another path
from v to u. In a strongly connected graph, G = (V ,E), for any two vertices, u,v ∈ V ,
we can define the expected distance from u to v as

d(u,v) =
∑

t :u�v

P[t]l(t), (11.34)

where u � v is a path starting from u and ending at v that may contain cycles but does
not reach v until the end. For a traveling tour, t = w1 → w2 → ··· → wk , its length is
l(t) = k − 1. The probability of the tour is defined as

P[t] =
{∏k−1

i=1
1

|O(wi)| if l(t) > 0

0 if l(t) = 0.
(11.35)

To measure the probability that a vertex w receives a message that originated simulta-
neously from u and v, we extend the expected distance to the notion of expected meeting
distance, that is,

m(u,v) =
∑

t :(u,v)�(x,x)

P[t]l(t), (11.36)

where (u,v) � (x,x) is a pair of tours u � x and v � x of the same length. Using a
constant C between 0 and 1, we define the expected meeting probability as

p(u,v) =
∑

t :(u,v)�(x,x)

P[t]Cl(t), (11.37)

which is a similarity measure based on random walk. Here, the parameter C specifies
the probability of continuing the walk at each step of the trajectory.

It has been shown that s(u,v) = p(u,v) for any two vertices, u and v. That is, SimRank
is based on both structural context and random walk.

11.3.3 Graph Clustering Methods

Let’s consider how to conduct clustering on a graph. We first describe the intuition
behind graph clustering. We then discuss two general categories of graph clustering
methods.

To find clusters in a graph, imagine cutting the graph into pieces, each piece being
a cluster, such that the vertices within a cluster are well connected and the vertices in
different clusters are connected in a much weaker way. Formally, for a graph, G = (V ,E),
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a cut, C = (S,T), is a partitioning of the set of vertices V in G, that is, V = S ∪ T and
S ∩ T = ∅. The cut set of a cut is the set of edges, {(u,v) ∈ E|u ∈ S,v ∈ T}. The size of
the cut is the number of edges in the cut set. For weighted graphs, the size of a cut is the
sum of the weights of the edges in the cut set.

“What kinds of cuts are good for deriving clusters in graphs?” In graph theory and some
network applications, a minimum cut is of importance. A cut is minimum if the cut’s size
is not greater than any other cut’s size. There are polynomial time algorithms to compute
minimum cuts of graphs. Can we use these algorithms in graph clustering?

Example 11.21 Cuts and clusters. Consider graph G in Figure 11.14. The graph has two clusters:
{a,b, c,d,e, f } and {g ,h, i, j,k}, and one outlier vertex, l.

Consider cut C1 = ({a,b, c,d,e, f ,g ,h, i, j,k},{l}). Only one edge, namely, (e, l), crosses
the two partitions created by C1. Therefore, the cut set of C1 is {(e, l)} and the size of C1

is 1. (Note that the size of any cut in a connected graph cannot be smaller than 1.) As a
minimum cut, C1 does not lead to a good clustering because it only separates the outlier
vertex, l, from the rest of the graph.

Cut C2 = ({a,b, c,d,e, f , l},{g ,h, i, j,k}) leads to a much better clustering than C1. The
edges in the cut set of C2 are those connecting the two “natural clusters” in the graph.
Specifically, for edges (d,h) and (e,k) that are in the cut set, most of the edges connecting
d, h, e, and k belong to one cluster.

Example 11.21 indicates that using a minimum cut is unlikely to lead to a good clus-
tering. We are better off choosing a cut where, for each vertex u that is involved in an
edge in the cut set, most of the edges connecting to u belong to one cluster. Formally, let
deg(u) be the degree of u, that is, the number of edges connecting to u. The sparsity of a
cut C = (S,T) is defined as


 = cut size

min{|S|, |T |} . (11.38)

Sparsest cut C2

Minimum cut C1

a

b

d

e
f

g

h i

j
k

l

c

Figure 11.14 A graph G and two cuts.



530 Chapter 11 Advanced Cluster Analysis

A cut is sparsest if its sparsity is not greater than the sparsity of any other cut. There may
be more than one sparsest cut.

In Example 11.21 and Figure 11.14, C2 is a sparsest cut. Using sparsity as the objective
function, a sparsest cut tries to minimize the number of edges crossing the partitions and
balance the partitions in size.

Consider a clustering on a graph G = (V ,E) that partitions the graph into k clusters.
The modularity of a clustering assesses the quality of the clustering and is defined as

Q =
k∑

i=1

(
li
|E| −

(
di

2|E|
)2

)
, (11.39)

where li is the number of edges between vertices in the ith cluster, and di is the sum of
the degrees of the vertices in the ith cluster. The modularity of a clustering of a graph is
the difference between the fraction of all edges that fall into individual clusters and the
fraction that would do so if the graph vertices were randomly connected. The optimal
clustering of graphs maximizes the modularity.

Theoretically, many graph clustering problems can be regarded as finding good cuts,
such as the sparsest cuts, on the graph. In practice, however, a number of challenges
exist:

High computational cost: Many graph cut problems are computationally expen-
sive. The sparsest cut problem, for example, is NP-hard. Therefore, finding the
optimal solutions on large graphs is often impossible. A good trade-off between
efficiency/scalability and quality has to be achieved.

Sophisticated graphs: Graphs can be more sophisticated than the ones described
here, involving weights and/or cycles.

High dimensionality: A graph can have many vertices. In a similarity matrix, a vertex
is represented as a vector (a row in the matrix) with a dimensionality that is the
number of vertices in the graph. Therefore, graph clustering methods must handle
high dimensionality.

Sparsity: A large graph is often sparse, meaning each vertex on average connects to
only a small number of other vertices. A similarity matrix from a large sparse graph
can also be sparse.

There are two kinds of methods for clustering graph data, which address these
challenges. One uses clustering methods for high-dimensional data, while the other is
designed specifically for clustering graphs.

The first group of methods is based on generic clustering methods for high-
dimensional data. They extract a similarity matrix from a graph using a similarity
measure such as those discussed in Section 11.3.2. A generic clustering method can
then be applied on the similarity matrix to discover clusters. Clustering methods for
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high-dimensional data are typically employed. For example, in many scenarios, once
a similarity matrix is obtained, spectral clustering methods (Section 11.2.4) can be
applied. Spectral clustering can approximate optimal graph cut solutions. For additional
information, please refer to the bibliographic notes (Section 11.7).

The second group of methods is specific to graphs. They search the graph to find
well-connected components as clusters. Let’s look at a method called SCAN (Structural
Clustering Algorithm for Networks) as an example.

Given an undirected graph, G = (V ,E), for a vertex, u ∈ V , the neighborhood of
u is �(u) = {v|(u,v) ∈ E} ∪ {u}. Using the idea of structural-context similarity, SCAN
measures the similarity between two vertices, u,v ∈ V , by the normalized common
neighborhood size, that is,

σ (u,v) = |�(u) ∩ �(v)|√|�(u)||�(v)| . (11.40)

The larger the value computed, the more similar the two vertices. SCAN uses a similarity
threshold ε to define the cluster membership. For a vertex, u ∈ V , the ε-neighborhood
of u is defined as Nε(u) = {v ∈ �(u)|σ(u,v) ≥ ε}. The ε-neighborhood of u contains all
neighbors of u with a structural-context similarity to u that is at least ε.

In SCAN, a core vertex is a vertex inside of a cluster. That is, u ∈ V is a core ver-
tex if |Nε(u)| ≥ μ, where μ is a popularity threshold. SCAN grows clusters from core
vertices. If a vertex v is in the ε-neighborhood of a core u, then v is assigned to the
same cluster as u. This process of growing clusters continues until no cluster can be
further grown. The process is similar to the density-based clustering method, DBSCAN
(Chapter 10).

Formally, a vertex v can be directly reached from a core u if v ∈ Nε(u). Transitively, a
vertex v can be reached from a core u if there exist vertices w1, . . . ,wn such that w1 can
be reached from u, wi can be reached from wi−1 for 1 < i ≤ n, and v can be reached
from wn. Moreover, two vertices, u,v ∈ V , which may or may not be cores, are said to
be connected if there exists a core w such that both u and v can be reached from w. All
vertices in a cluster are connected. A cluster is a maximum set of vertices such that every
pair in the set is connected.

Some vertices may not belong to any cluster. Such a vertex u is a hub if the neighbor-
hood �(u) of u contains vertices from more than one cluster. If a vertex does not belong
to any cluster, and is not a hub, it is an outlier.

The SCAN algorithm is shown in Figure 11.15. The search framework closely resem-
bles the cluster-finding process in DBSCAN. SCAN finds a cut of the graph, where
each cluster is a set of vertices that are connected based on the transitive similarity in
a structural context.

An advantage of SCAN is that its time complexity is linear with respect to the number
of edges. In very large and sparse graphs, the number of edges is in the same scale of the
number of vertices. Therefore, SCAN is expected to have good scalability on clustering
large graphs.
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Algorithm: SCAN for clusters on graph data.
Input: a graph G = (V ,E), a similarity threshold ε, and a

population threshold μ

Output: a set of clusters
Method: set all vertices in V unlabeled

for all unlabeled vertex u do
if u is a core then

generate a new cluster-id c
insert all v ∈ Nε(u) into a queue Q
while Q �= do

w ← the first vertex in Q
R ← the set of vertices that can be directly reached from w
for all s ∈ R do

if s is not unlabeled or labeled as nonmember then
assign the current cluster-id c to s

endif
if s is unlabeled then

insert s into queue Q
endif

endfor
remove w from Q

end while
else

label u as nonmember
endif

endfor
for all vertex u labeled nonmember do

if ∃x,y ∈ �(u) : x and y have different cluster-ids then
label u as hub

else
label u as outlier

endif
endfor

Figure 11.15 SCAN algorithm for cluster analysis on graph data.

11.4 Clustering with Constraints

Users often have background knowledge that they want to integrate into cluster analysis.
There may also be application-specific requirements. Such information can be mod-
eled as clustering constraints. We approach the topic of clustering with constraints in
two steps. Section 11.4.1 categorizes the types of constraints for clustering graph data.
Methods for clustering with constraints are introduced in Section 11.4.2.
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11.4.1 Categorization of Constraints

This section studies how to categorize the constraints used in cluster analysis. Specifi-
cally, we can categorize constraints according to the subjects on which they are set, or
on how strongly the constraints are to be enforced.

As discussed in Chapter 10, cluster analysis involves three essential aspects: objects
as instances of clusters, clusters as groups of objects, and the similarity among objects.
Therefore, the first method we discuss categorizes constraints according to what they are
applied to. We thus have three types: constraints on instances, constraints on clusters, and
constraints on similarity measurement.

Constraints on instances: A constraint on instances specifies how a pair or a set of
instances should be grouped in the cluster analysis. Two common types of con-
straints from this category include:

Must-link constraints. If a must-link constraint is specified on two objects x and
y, then x and y should be grouped into one cluster in the output of the cluster
analysis. These must-link constraints are transitive. That is, if must-link(x,y) and
must-link(y,z), then must-link(x,z).

Cannot-link constraints. Cannot-link constraints are the opposite of must-link
constraints. If a cannot-link constraint is specified on two objects, x and y,
then in the output of the cluster analysis, x and y should belong to different
clusters. Cannot-link constraints can be entailed. That is, if cannot-link(x,y),
must-link(x,x′), and must-link(y,y′), then cannot-link(x′,y′).

A constraint on instances can be defined using specific instances. Alternatively, it
can also be defined using instance variables or attributes of instances. For example, a
constraint,

Constraint(x,y) : must-link(x,y) if dist(x,y) ≤ ε,

uses the distance between objects to specify a must-link constraint.

Constraints on clusters: A constraint on clusters specifies a requirement on the clusters,
possibly using attributes of the clusters. For example, a constraint may specify the
minimum number of objects in a cluster, the maximum diameter of a cluster, or the
shape of a cluster (e.g., a convex). The number of clusters specified for partitioning
clustering methods can be regarded as a constraint on clusters.

Constraints on similarity measurement: Often, a similarity measure, such as Eucli-
dean distance, is used to measure the similarity between objects in a cluster anal-
ysis. In some applications, exceptions apply. A constraint on similarity measurement
specifies a requirement that the similarity calculation must respect. For example, to
cluster people as moving objects in a plaza, while Euclidean distance is used to give
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the walking distance between two points, a constraint on similarity measurement is
that the trajectory implementing the shortest distance cannot cross a wall.

There can be more than one way to express a constraint, depending on the category.
For example, we can specify a constraint on clusters as

Constraint1: the diameter of a cluster cannot be larger than d.

The requirement can also be expressed using a constraint on instances as

Constraint ′
1: cannot-link(x,y) if dist(x,y) > d. (11.41)

Example 11.22 Constraints on instances, clusters, and similarity measurement. AllElectronics clusters
its customers so that each group of customers can be assigned to a customer relationship
manager. Suppose we want to specify that all customers at the same address are to be
placed in the same group, which would allow more comprehensive service to families.
This can be expressed using a must-link constraint on instances:

Constraintfamily(x,y) : must-link(x,y) if x.address = y.address.

AllElectronics has eight customer relationship managers. To ensure that they each
have a similar workload, we place a constraint on clusters such that there should be
eight clusters, and each cluster should have at least 10% of the customers and no more
than 15% of the customers. We can calculate the spatial distance between two customers
using the driving distance between the two. However, if two customers live in different
countries, we have to use the flight distance instead. This is a constraint on similarity
measurement.

Another way to categorize clustering constraints considers how firmly the constraints
have to be respected. A constraint is hard if a clustering that violates the constraint
is unacceptable. A constraint is soft if a clustering that violates the constraint is not
preferable but acceptable when no better solution can be found. Soft constraints are also
called preferences.

Example 11.23 Hard and soft constraints. For AllElectronics, Constraintfamily in Example 11.22 is a hard
constraint because splitting a family into different clusters could prevent the company
from providing comprehensive services to the family, leading to poor customer satisfac-
tion. The constraint on the number of clusters (which corresponds to the number of
customer relationship managers in the company) is also hard. Example 11.22 also has
a constraint to balance the size of clusters. While satisfying this constraint is strongly
preferred, the company is flexible in that it is willing to assign a senior and more capa-
ble customer relationship manager to oversee a larger cluster. Therefore, the constraint
is soft.

Ideally, for a specific data set and a set of constraints, all clusterings satisfy the con-
straints. However, it is possible that there may be no clustering of the data set that
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satisfies all the constraints. Trivially, if two constraints in the set conflict, then no
clustering can satisfy them at the same time.

Example 11.24 Conflicting constraints. Consider these constraints:

must-link(x,y) if dist(x,y) < 5

cannot-link(x,y) if dist(x,y) > 3.

If a data set has two objects, x,y, such that dist(x,y) = 4, then no clustering can satisfy
both constraints simultaneously.

Consider these two constraints:

must-link(x,y) if dist(x,y) < 5

must-link(x,y) if dist(x,y) < 3.

The second constraint is redundant given the first. Moreover, for a data set where the
distance between any two objects is at least 5, every possible clustering of the objects
satisfies the constraints.

“How can we measure the quality and the usefulness of a set of constraints?” In gene-
ral, we consider either their informativeness, or their coherence. The informativeness
is the amount of information carried by the constraints that is beyond the clustering
model. Given a data set, D, a clustering method, A, and a set of constraints, C, the
informativeness of C with respect to A on D can be measured by the fraction of con-
straints in C that are unsatisfied by the clustering computed by A on D. The higher the
informativeness, the more specific the requirements and background knowledge that
the constraints carry. The coherence of a set of constraints is the degree of agreement
among the constraints themselves, which can be measured by the redundancy among
the constraints.

11.4.2 Methods for Clustering with Constraints

Although we can categorize clustering constraints, applications may have very different
constraints of specific forms. Consequently, various techniques are needed to handle
specific constraints. In this section, we discuss the general principles of handling hard
and soft constraints.

Handling Hard Constraints
A general strategy for handling hard constraints is to strictly respect the constraints in
the cluster assignment process. To illustrate this idea, we will use partitioning clustering
as an example.
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Given a data set and a set of constraints on instances (i.e., must-link or cannot-link
constraints), how can we extend the k-means method to satisfy such constraints? The
COP-k-means algorithm works as follows:

1. Generate superinstances for must-link constraints. Compute the transitive clo-
sure of the must-link constraints. Here, all must-link constraints are treated as an
equivalence relation. The closure gives one or multiple subsets of objects where all
objects in a subset must be assigned to one cluster. To represent such a subset, we
replace all those objects in the subset by the mean. The superinstance also carries a
weight, which is the number of objects it represents.

After this step, the must-link constraints are always satisfied.

2. Conduct modified k-means clustering. Recall that, in k-means, an object is assigned
to the closest center. What if a nearest-center assignment violates a cannot-link con-
straint? To respect cannot-link constraints, we modify the center assignment process
in k-means to a nearest feasible center assignment. That is, when the objects are
assigned to centers in sequence, at each step we make sure the assignments so far
do not violate any cannot-link constraints. An object is assigned to the nearest center
so that the assignment respects all cannot-link constraints.

Because COP-k-means ensures that no constraints are violated at every step, it does
not require any backtracking. It is a greedy algorithm for generating a clustering that
satisfies all constraints, provided that no conflicts exist among the constraints.

Handling Soft Constraints
Clustering with soft constraints is an optimization problem. When a clustering violates a
soft constraint, a penalty is imposed on the clustering. Therefore, the optimization goal
of the clustering contains two parts: optimizing the clustering quality and minimizing
the constraint violation penalty. The overall objective function is a combination of the
clustering quality score and the penalty score.

To illustrate, we again use partitioning clustering as an example. Given a data set
and a set of soft constraints on instances, the CVQE (Constrained Vector Quanti-
zation Error) algorithm conducts k-means clustering while enforcing constraint vio-
lation penalties. The objective function used in CVQE is the sum of the distance used
in k-means, adjusted by the constraint violation penalties, which are calculated as
follows.

Penalty of a must-link violation. If there is a must-link constraint on objects x and
y, but they are assigned to two different centers, c1 and c2, respectively, then the con-
straint is violated. As a result, dist(c1, c2), the distance between c1 and c2, is added to
the objective function as the penalty.

Penalty of a cannot-link violation. If there is a cannot-link constraint on objects x
and y, but they are assigned to a common center, c, then the constraint is violated.
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The distance, dist(c, c′), between c and c′ is added to the objective function as the
penalty.

Speeding up Constrained Clustering
Constraints, such as on similarity measurements, can lead to heavy costs in cluster-
ing. Consider the following clustering with obstacles problem: To cluster people as
moving objects in a plaza, Euclidean distance is used to measure the walking distance
between two points. However, a constraint on similarity measurement is that the tra-
jectory implementing the shortest distance cannot cross a wall (Section 11.4.1). Because
obstacles may occur between objects, the distance between two objects may have to be
derived by geometric computations (e.g., involving triangulation). The computational
cost is high if a large number of objects and obstacles are involved.

The clustering with obstacles problem can be represented using a graphical notation.
First, a point, p, is visible from another point, q, in the region R if the straight line
joining p and q does not intersect any obstacles. A visibility graph is the graph, VG =
(V ,E), such that each vertex of the obstacles has a corresponding node in V and two
nodes, v1 and v2, in V are joined by an edge in E if and only if the corresponding vertices
they represent are visible to each other. Let VG′ = (V ′,E′) be a visibility graph created
from VG by adding two additional points, p and q, in V ′. E′ contains an edge joining
two points in V ′ if the two points are mutually visible. The shortest path between two
points, p and q, will be a subpath of VG′, as shown in Figure 11.16(a). We see that it
begins with an edge from p to either v1, v2, or v3, goes through a path in VG, and then
ends with an edge from either v4 or v5 to q.

To reduce the cost of distance computation between any two pairs of objects or
points, several preprocessing and optimization techniques can be used. One method
groups points that are close together into microclusters. This can be done by first tri-
angulating the region R into triangles, and then grouping nearby points in the same
triangle into microclusters, using a method similar to BIRCH or DBSCAN, as shown
in Figure 11.16(b). By processing microclusters rather than individual points, the over-
all computation is reduced. After that, precomputation can be performed to build two
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Figure 11.16 Clustering with obstacle objects (o1 and o2): (a) a visibility graph and (b) triangulation of
regions with microclusters. Source: Adapted from Tung, Hou, and Han [THH01].
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kinds of join indices based on the computation of the shortest paths: (1) VV indices,
for any pair of obstacle vertices, and (2) MV indices, for any pair of microcluster and
obstacle vertex. Use of the indices helps further optimize the overall performance.

Using such precomputation and optimization strategies, the distance between any
two points (at the granularity level of a microcluster) can be computed efficiently.
Thus, the clustering process can be performed in a manner similar to a typical efficient
k-medoids algorithm, such as CLARANS, and achieve good clustering quality for large
data sets.

11.5 Summary

In conventional cluster analysis, an object is assigned to one cluster exclusively. How-
ever, in some applications, there is a need to assign an object to one or more clusters
in a fuzzy or probabilistic way. Fuzzy clustering and probabilistic model-based clus-
tering allow an object to belong to one or more clusters. A partition matrix records
the membership degree of objects belonging to clusters.

Probabilistic model-based clustering assumes that a cluster is a parameterized dis-
tribution. Using the data to be clustered as the observed samples, we can estimate the
parameters of the clusters.

A mixture model assumes that a set of observed objects is a mixture of instances from
multiple probabilistic clusters. Conceptually, each observed object is generated inde-
pendently by first choosing a probabilistic cluster according to the probabilities of the
clusters, and then choosing a sample according to the probability density function of
the chosen cluster.

An expectation-maximization algorithm is a framework for approaching maximum
likelihood or maximum a posteriori estimates of parameters in statistical models.
Expectation-maximization algorithms can be used to compute fuzzy clustering and
probabilistic model-based clustering.

High-dimensional data pose several challenges for cluster analysis, including how to
model high-dimensional clusters and how to search for such clusters.

There are two major categories of clustering methods for high-dimensional data:
subspace clustering methods and dimensionality reduction methods. Subspace
clustering methods search for clusters in subspaces of the original space. Exam-
ples include subspace search methods, correlation-based clustering methods, and
biclustering methods. Dimensionality reduction methods create a new space of
lower dimensionality and search for clusters there.

Biclustering methods cluster objects and attributes simultaneously. Types of biclus-
ters include biclusters with constant values, constant values on rows/columns,
coherent values, and coherent evolutions on rows/columns. Two major types of
biclustering methods are optimization-based methods and enumeration methods.
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Spectral clustering is a dimensionality reduction method. The general idea is to
construct new dimensions using an affinity matrix.

Clustering graph and network data has many applications such as social network
analysis. Challenges include how to measure the similarity between objects in a
graph, and how to design clustering models and methods for graph and network
data.

Geodesic distance is the number of edges between two vertices on a graph. It can be
used to measure similarity. Alternatively, similarity in graphs, such as social networks,
can be measured using structural context and random walk. SimRank is a similarity
measure that is based on both structural context and random walk.

Graph clustering can be modeled as computing graph cuts. A sparsest cut may lead
to a good clustering, while modularity can be used to measure the clustering quality.

SCAN is a graph clustering algorithm that searches graphs to identify well-connected
components as clusters.

Constraints can be used to express application-specific requirements or background
knowledge for cluster analysis. Constraints for clustering can be categorized as con-
straints on instances, on clusters, or on similarity measurement. Constraints on
instances include must-link and cannot-link constraints. A constraint can be hard
or soft.

Hard constraints for clustering can be enforced by strictly respecting the constraints
in the cluster assignment process. Clustering with soft constraints can be considered
an optimization problem. Heuristics can be used to speed up constrained clustering.

11.6 Exercises

11.1 Traditional clustering methods are rigid in that they require each object to belong exclu-
sively to only one cluster. Explain why this is a special case of fuzzy clustering. You may
use k-means as an example.

11.2 AllElectronics carries 1000 products, P1, . . . , P1000. Consider customers Ada, Bob, and
Cathy such that Ada and Bob purchase three products in common, P1,P2, and P3. For
the other 997 products, Ada and Bob independently purchase seven of them randomly.
Cathy purchases 10 products, randomly selected from the 1000 products. In Euclidean
distance, what is the probability that dist(Ada,Bob) > dist(Ada,Cathy)? What if Jaccard
similarity (Chapter 2) is used? What can you learn from this example?

11.3 Show that I × J is a bicluster with coherent values if and only if, for any i1, i2 ∈ I and
j1, j2 ∈ J , ei1j1 − ei2j1 = ei1j2 − ei2j2 .

11.4 Compare the MaPle algorithm (Section 11.2.3) with the frequent closed itemset mining
algorithm, CLOSET (Pei, Han, and Mao [PHM00]). What are the major similarities and
differences?
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11.5 SimRank is a similarity measure for clustering graph and network data.

(a) Prove lim
i→∞

si(u,v) = s(u,v) for SimRank computation.

(b) Show s(u,v) = p(u,v) for SimRank.

11.6 In a large sparse graph where on average each node has a low degree, is the similarity
matrix using SimRank still sparse? If so, in what sense? If not, why? Deliberate on your
answer.

11.7 Compare the SCAN algorithm (Section 11.3.3) with DBSCAN (Section 10.4.1). What
are their similarities and differences?

11.8 Consider partitioning clustering and the following constraint on clusters: The number
of objects in each cluster must be between n

k (1 − δ) and n
k (1 + δ), where n is the total

number of objects in the data set, k is the number of clusters desired, and δ in [0,1)

is a parameter. Can you extend the k-means method to handle this constraint? Discuss
situations where the constraint is hard and soft.
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12Outlier Detection

Imagine that you are a transaction auditor in a credit card company. To protect your customers
from credit card fraud, you pay special attention to card usages that are rather different
from typical cases. For example, if a purchase amount is much bigger than usual for
a card owner, and if the purchase occurs far from the owner’s resident city, then the
purchase is suspicious. You want to detect such transactions as soon as they occur and
contact the card owner for verification. This is common practice in many credit card
companies. What data mining techniques can help detect suspicious transactions?

Most credit card transactions are normal. However, if a credit card is stolen, its
transaction pattern usually changes dramatically—the locations of purchases and the
items purchased are often very different from those of the authentic card owner and
other customers. An essential idea behind credit card fraud detection is to identify those
transactions that are very different from the norm.

Outlier detection (also known as anomaly detection) is the process of finding data
objects with behaviors that are very different from expectation. Such objects are called
outliers or anomalies. Outlier detection is important in many applications in addition
to fraud detection such as medical care, public safety and security, industry damage
detection, image processing, sensor/video network surveillance, and intrusion detection.

Outlier detection and clustering analysis are two highly related tasks. Clustering finds
the majority patterns in a data set and organizes the data accordingly, whereas out-
lier detection tries to capture those exceptional cases that deviate substantially from the
majority patterns. Outlier detection and clustering analysis serve different purposes.

In this chapter, we study outlier detection techniques. Section 12.1 defines the differ-
ent types of outliers. Section 12.2 presents an overview of outlier detection methods. In
the rest of the chapter, you will learn about outlier detection methods in detail. These
approaches, organized here by category, are statistical (Section 12.3), proximity-based
(Section 12.4), clustering-based (Section 12.5), and classification-based (Section 12.6).
In addition, you will learn about mining contextual and collective outliers (Section 12.7)
and outlier detection in high-dimensional data (Section 12.8).

c© 2012 Elsevier Inc. All rights reserved.
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12.1 Outliers and Outlier Analysis

Let us first define what outliers are, categorize the different types of outliers, and then
discuss the challenges in outlier detection at a general level.

12.1.1 What Are Outliers?

Assume that a given statistical process is used to generate a set of data objects. An outlier
is a data object that deviates significantly from the rest of the objects, as if it were gen-
erated by a different mechanism. For ease of presentation within this chapter, we may
refer to data objects that are not outliers as “normal” or expected data. Similarly, we may
refer to outliers as “abnormal” data.

Example 12.1 Outliers. In Figure 12.1, most objects follow a roughly Gaussian distribution. However,
the objects in region R are significantly different. It is unlikely that they follow the same
distribution as the other objects in the data set. Thus, the objects in R are outliers in the
data set.

Outliers are different from noisy data. As mentioned in Chapter 3, noise is a ran-
dom error or variance in a measured variable. In general, noise is not interesting in
data analysis, including outlier detection. For example, in credit card fraud detection,
a customer’s purchase behavior can be modeled as a random variable. A customer may
generate some “noise transactions” that may seem like “random errors” or “variance,”
such as by buying a bigger lunch one day, or having one more cup of coffee than usual.
Such transactions should not be treated as outliers; otherwise, the credit card company
would incur heavy costs from verifying that many transactions. The company may also
lose customers by bothering them with multiple false alarms. As in many other data
analysis and data mining tasks, noise should be removed before outlier detection.

Outliers are interesting because they are suspected of not being generated by the same
mechanisms as the rest of the data. Therefore, in outlier detection, it is important to

R

Figure 12.1 The objects in region R are outliers.
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justify why the outliers detected are generated by some other mechanisms. This is often
achieved by making various assumptions on the rest of the data and showing that the
outliers detected violate those assumptions significantly.

Outlier detection is also related to novelty detection in evolving data sets. For example,
by monitoring a social media web site where new content is incoming, novelty detection
may identify new topics and trends in a timely manner. Novel topics may initially appear
as outliers. To this extent, outlier detection and novelty detection share some similarity
in modeling and detection methods. However, a critical difference between the two is
that in novelty detection, once new topics are confirmed, they are usually incorporated
into the model of normal behavior so that follow-up instances are not treated as outliers
anymore.

12.1.2 Types of Outliers

In general, outliers can be classified into three categories, namely global outliers, con-
textual (or conditional) outliers, and collective outliers. Let’s examine each of these
categories.

Global Outliers
In a given data set, a data object is a global outlier if it deviates significantly from the rest
of the data set. Global outliers are sometimes called point anomalies, and are the simplest
type of outliers. Most outlier detection methods are aimed at finding global outliers.

Example 12.2 Global outliers. Consider the points in Figure 12.1 again. The points in region R signifi-
cantly deviate from the rest of the data set, and hence are examples of global outliers.

To detect global outliers, a critical issue is to find an appropriate measurement of
deviation with respect to the application in question. Various measurements are pro-
posed, and, based on these, outlier detection methods are partitioned into different
categories. We will come to this issue in detail later.

Global outlier detection is important in many applications. Consider intrusion detec-
tion in computer networks, for example. If the communication behavior of a computer
is very different from the normal patterns (e.g., a large number of packages is broad-
cast in a short time), this behavior may be considered as a global outlier and the
corresponding computer is a suspected victim of hacking. As another example, in trad-
ing transaction auditing systems, transactions that do not follow the regulations are
considered as global outliers and should be held for further examination.

Contextual Outliers
“The temperature today is 28◦C. Is it exceptional (i.e., an outlier)?” It depends, for exam-
ple, on the time and location! If it is in winter in Toronto, yes, it is an outlier. If it is a
summer day in Toronto, then it is normal. Unlike global outlier detection, in this case,
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whether or not today’s temperature value is an outlier depends on the context—the date,
the location, and possibly some other factors.

In a given data set, a data object is a contextual outlier if it deviates significantly
with respect to a specific context of the object. Contextual outliers are also known as
conditional outliers because they are conditional on the selected context. Therefore, in
contextual outlier detection, the context has to be specified as part of the problem defi-
nition. Generally, in contextual outlier detection, the attributes of the data objects in
question are divided into two groups:

Contextual attributes: The contextual attributes of a data object define the object’s
context. In the temperature example, the contextual attributes may be date and
location.

Behavioral attributes: These define the object’s characteristics, and are used to eval-
uate whether the object is an outlier in the context to which it belongs. In the
temperature example, the behavioral attributes may be the temperature, humidity,
and pressure.

Unlike global outlier detection, in contextual outlier detection, whether a data object
is an outlier depends on not only the behavioral attributes but also the contextual
attributes. A configuration of behavioral attribute values may be considered an outlier in
one context (e.g., 28◦C is an outlier for a Toronto winter), but not an outlier in another
context (e.g., 28◦C is not an outlier for a Toronto summer).

Contextual outliers are a generalization of local outliers, a notion introduced in
density-based outlier analysis approaches. An object in a data set is a local outlier if
its density significantly deviates from the local area in which it occurs. We will discuss
local outlier analysis in greater detail in Section 12.4.3.

Global outlier detection can be regarded as a special case of contextual outlier detec-
tion where the set of contextual attributes is empty. In other words, global outlier
detection uses the whole data set as the context. Contextual outlier analysis provides
flexibility to users in that one can examine outliers in different contexts, which can be
highly desirable in many applications.

Example 12.3 Contextual outliers. In credit card fraud detection, in addition to global outliers, an
analyst may consider outliers in different contexts. Consider customers who use more
than 90% of their credit limit. If one such customer is viewed as belonging to a group of
customers with low credit limits, then such behavior may not be considered an outlier.
However, similar behavior of customers from a high-income group may be considered
outliers if their balance often exceeds their credit limit. Such outliers may lead to busi-
ness opportunities—raising credit limits for such customers can bring in new revenue.
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The quality of contextual outlier detection in an application depends on the
meaningfulness of the contextual attributes, in addition to the measurement of the devi-
ation of an object to the majority in the space of behavioral attributes. More often
than not, the contextual attributes should be determined by domain experts, which
can be regarded as part of the input background knowledge. In many applications, nei-
ther obtaining sufficient information to determine contextual attributes nor collecting
high-quality contextual attribute data is easy.

“How can we formulate meaningful contexts in contextual outlier detection?” A
straightforward method simply uses group-bys of the contextual attributes as contexts.
This may not be effective, however, because many group-bys may have insufficient data
and/or noise. A more general method uses the proximity of data objects in the space of
contextual attributes. We discuss this approach in detail in Section 12.4.

Collective Outliers
Suppose you are a supply-chain manager of AllElectronics. You handle thousands of
orders and shipments every day. If the shipment of an order is delayed, it may not be
considered an outlier because, statistically, delays occur from time to time. However,
you have to pay attention if 100 orders are delayed on a single day. Those 100 orders
as a whole form an outlier, although each of them may not be regarded as an outlier if
considered individually. You may have to take a close look at those orders collectively to
understand the shipment problem.

Given a data set, a subset of data objects forms a collective outlier if the objects as
a whole deviate significantly from the entire data set. Importantly, the individual data
objects may not be outliers.

Example 12.4 Collective outliers. In Figure 12.2, the black objects as a whole form a collective outlier
because the density of those objects is much higher than the rest in the data set. However,
every black object individually is not an outlier with respect to the whole data set.

Figure 12.2 The black objects form a collective outlier.
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Collective outlier detection has many important applications. For example, in
intrusion detection, a denial-of-service package from one computer to another is con-
sidered normal, and not an outlier at all. However, if several computers keep sending
denial-of-service packages to each other, they as a whole should be considered as a col-
lective outlier. The computers involved may be suspected of being compromised by an
attack. As another example, a stock transaction between two parties is considered nor-
mal. However, a large set of transactions of the same stock among a small party in a short
period are collective outliers because they may be evidence of some people manipulating
the market.

Unlike global or contextual outlier detection, in collective outlier detection we have
to consider not only the behavior of individual objects, but also that of groups of
objects. Therefore, to detect collective outliers, we need background knowledge of the
relationship among data objects such as distance or similarity measurements between
objects.

In summary, a data set can have multiple types of outliers. Moreover, an object may
belong to more than one type of outlier. In business, different outliers may be used in
various applications or for different purposes. Global outlier detection is the simplest.
Context outlier detection requires background information to determine contextual
attributes and contexts. Collective outlier detection requires background information
to model the relationship among objects to find groups of outliers.

12.1.3 Challenges of Outlier Detection

Outlier detection is useful in many applications yet faces many challenges such as the
following:

Modeling normal objects and outliers effectively. Outlier detection quality highly
depends on the modeling of normal (nonoutlier) objects and outliers. Often, build-
ing a comprehensive model for data normality is very challenging, if not impossible.
This is partly because it is hard to enumerate all possible normal behaviors in an
application.

The border between data normality and abnormality (outliers) is often not clear
cut. Instead, there can be a wide range of gray area. Consequently, while some out-
lier detection methods assign to each object in the input data set a label of either
“normal” or “outlier,” other methods assign to each object a score measuring the
“outlier-ness” of the object.

Application-specific outlier detection. Technically, choosing the similarity/distance
measure and the relationship model to describe data objects is critical in outlier
detection. Unfortunately, such choices are often application-dependent. Different
applications may have very different requirements. For example, in clinic data anal-
ysis, a small deviation may be important enough to justify an outlier. In contrast, in
marketing analysis, objects are often subject to larger fluctuations, and consequently
a substantially larger deviation is needed to justify an outlier. Outlier detection’s high
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dependency on the application type makes it impossible to develop a universally
applicable outlier detection method. Instead, individual outlier detection methods
that are dedicated to specific applications must be developed.

Handling noise in outlier detection. As mentioned earlier, outliers are different from
noise. It is also well known that the quality of real data sets tends to be poor. Noise
often unavoidably exists in data collected in many applications. Noise may be present
as deviations in attribute values or even as missing values. Low data quality and
the presence of noise bring a huge challenge to outlier detection. They can distort
the data, blurring the distinction between normal objects and outliers. Moreover,
noise and missing data may “hide” outliers and reduce the effectiveness of out-
lier detection—an outlier may appear “disguised” as a noise point, and an outlier
detection method may mistakenly identify a noise point as an outlier.

Understandability. In some application scenarios, a user may want to not only
detect outliers, but also understand why the detected objects are outliers. To meet
the understandability requirement, an outlier detection method has to provide some
justification of the detection. For example, a statistical method can be used to jus-
tify the degree to which an object may be an outlier based on the likelihood that the
object was generated by the same mechanism that generated the majority of the data.
The smaller the likelihood, the more unlikely the object was generated by the same
mechanism, and the more likely the object is an outlier.

The rest of this chapter discusses approaches to outlier detection.

12.2 Outlier Detection Methods

There are many outlier detection methods in the literature and in practice. Here, we
present two orthogonal ways to categorize outlier detection methods. First, we catego-
rize outlier detection methods according to whether the sample of data for analysis is
given with domain expert–provided labels that can be used to build an outlier detection
model. Second, we divide methods into groups according to their assumptions regarding
normal objects versus outliers.

12.2.1 Supervised, Semi-Supervised, and Unsupervised Methods

If expert-labeled examples of normal and/or outlier objects can be obtained, they can be
used to build outlier detection models. The methods used can be divided into supervised
methods, semi-supervised methods, and unsupervised methods.

Supervised Methods
Supervised methods model data normality and abnormality. Domain experts examine
and label a sample of the underlying data. Outlier detection can then be modeled as
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a classification problem (Chapters 8 and 9). The task is to learn a classifier that can
recognize outliers. The sample is used for training and testing. In some applications, the
experts may label just the normal objects, and any other objects not matching the model
of normal objects are reported as outliers. Other methods model the outliers and treat
objects not matching the model of outliers as normal.

Although many classification methods can be applied, challenges to supervised
outlier detection include the following:

The two classes (i.e., normal objects versus outliers) are imbalanced. That is, the pop-
ulation of outliers is typically much smaller than that of normal objects. Therefore,
methods for handling imbalanced classes (Section 8.6.5) may be used, such as over-
sampling (i.e., replicating) outliers to increase their distribution in the training set
used to construct the classifier. Due to the small population of outliers in data, the
sample data examined by domain experts and used in training may not even suffi-
ciently represent the outlier distribution. The lack of outlier samples can limit the
capability of classifiers built as such. To tackle these problems, some methods “make
up” artificial outliers.

In many outlier detection applications, catching as many outliers as possible (i.e., the
sensitivity or recall of outlier detection) is far more important than not mislabeling
normal objects as outliers. Consequently, when a classification method is used for
supervised outlier detection, it has to be interpreted appropriately so as to consider
the application interest on recall.

In summary, supervised methods of outlier detection must be careful in how they
train and how they interpret classification rates due to the fact that outliers are rare in
comparison to the other data samples.

Unsupervised Methods
In some application scenarios, objects labeled as “normal” or “outlier” are not available.
Thus, an unsupervised learning method has to be used.

Unsupervised outlier detection methods make an implicit assumption: The normal
objects are somewhat “clustered.” In other words, an unsupervised outlier detection
method expects that normal objects follow a pattern far more frequently than outliers.
Normal objects do not have to fall into one group sharing high similarity. Instead, they
can form multiple groups, where each group has distinct features. However, an outlier is
expected to occur far away in feature space from any of those groups of normal objects.

This assumption may not be true all the time. For example, in Figure 12.2, the normal
objects do not share any strong patterns. Instead, they are uniformly distributed. The
collective outliers, however, share high similarity in a small area. Unsupervised methods
cannot detect such outliers effectively. In some applications, normal objects are diversely
distributed, and many such objects do not follow strong patterns. For instance, in some
intrusion detection and computer virus detection problems, normal activities are very
diverse and many do not fall into high-quality clusters. In such scenarios, unsupervised
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methods may have a high false positive rate—they may mislabel many normal objects
as outliers (intrusions or viruses in these applications), and let many actual outliers go
undetected. Due to the high similarity between intrusions and viruses (i.e., they have to
attack key resources in the target systems), modeling outliers using supervised methods
may be far more effective.

Many clustering methods can be adapted to act as unsupervised outlier detection
methods. The central idea is to find clusters first, and then the data objects not belong-
ing to any cluster are detected as outliers. However, such methods suffer from two issues.
First, a data object not belonging to any cluster may be noise instead of an outlier. Sec-
ond, it is often costly to find clusters first and then find outliers. It is usually assumed
that there are far fewer outliers than normal objects. Having to process a large popu-
lation of nontarget data entries (i.e., the normal objects) before one can touch the real
meat (i.e., the outliers) can be unappealing. The latest unsupervised outlier detection
methods develop various smart ideas to tackle outliers directly without explicitly and
completely finding clusters. You will learn more about these techniques in Sections 12.4
and 12.5 on proximity-based and clustering-based methods, respectively.

Semi-Supervised Methods
In many applications, although obtaining some labeled examples is feasible, the number
of such labeled examples is often small. We may encounter cases where only a small set
of the normal and/or outlier objects are labeled, but most of the data are unlabeled.
Semi-supervised outlier detection methods were developed to tackle such scenarios.

Semi-supervised outlier detection methods can be regarded as applications of semi-
supervised learning methods (Section 9.7.2). For example, when some labeled normal
objects are available, we can use them, together with unlabeled objects that are close by,
to train a model for normal objects. The model of normal objects then can be used to
detect outliers—those objects not fitting the model of normal objects are classified as
outliers.

If only some labeled outliers are available, semi-supervised outlier detection is trick-
ier. A small number of labeled outliers are unlikely to represent all the possible outliers.
Therefore, building a model for outliers based on only a few labeled outliers is unlikely
to be effective. To improve the quality of outlier detection, we can get help from models
for normal objects learned from unsupervised methods.

For additional information on semi-supervised methods, interested readers are
referred to the bibliographic notes at the end of this chapter (Section 12.11).

12.2.2 Statistical Methods, Proximity-Based Methods,
and Clustering-Based Methods

As discussed in Section 12.1, outlier detection methods make assumptions about outliers
versus the rest of the data. According to the assumptions made, we can categorize outlier
detection methods into three types: statistical methods, proximity-based methods, and
clustering-based methods.
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Statistical Methods
Statistical methods (also known as model-based methods) make assumptions of
data normality. They assume that normal data objects are generated by a statistical
(stochastic) model, and that data not following the model are outliers.

Example 12.5 Detecting outliers using a statistical (Gaussian) model. In Figure 12.1, the data points
except for those in region R fit a Gaussian distribution gD, where for a location x in the
data space, gD(x) gives the probability density at x. Thus, the Gaussian distribution gD

can be used to model the normal data, that is, most of the data points in the data set. For
each object y in region, R, we can estimate gD( y), the probability that this point fits the
Gaussian distribution. Because gD( y) is very low, y is unlikely generated by the Gaussian
model, and thus is an outlier.

The effectiveness of statistical methods highly depends on whether the assumptions
made for the statistical model hold true for the given data. There are many kinds of
statistical models. For example, the statistic models used in the methods may be para-
metric or nonparametric. Statistical methods for outlier detection are discussed in detail
in Section 12.3.

Proximity-Based Methods
Proximity-based methods assume that an object is an outlier if the nearest neighbors
of the object are far away in feature space, that is, the proximity of the object to its
neighbors significantly deviates from the proximity of most of the other objects to their
neighbors in the same data set.

Example 12.6 Detecting outliers using proximity. Consider the objects in Figure 12.1 again. If we
model the proximity of an object using its three nearest neighbors, then the objects
in region R are substantially different from other objects in the data set. For the two
objects in R, their second and third nearest neighbors are dramatically more remote
than those of any other objects. Therefore, we can label the objects in R as outliers based
on proximity.

The effectiveness of proximity-based methods relies heavily on the proximity (or dis-
tance) measure used. In some applications, such measures cannot be easily obtained.
Moreover, proximity-based methods often have difficulty in detecting a group of outliers
if the outliers are close to one another.

There are two major types of proximity-based outlier detection, namely distance-
based and density-based outlier detection. Proximity-based outlier detection is discussed
in Section 12.4.

Clustering-Based Methods
Clustering-based methods assume that the normal data objects belong to large and
dense clusters, whereas outliers belong to small or sparse clusters, or do not belong to
any clusters.
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Example 12.7 Detecting outliers using clustering. In Figure 12.1, there are two clusters. Cluster C1

contains all the points in the data set except for those in region R. Cluster C2 is tiny,
containing just two points in R. Cluster C1 is large in comparison to C2. Therefore, a
clustering-based method asserts that the two objects in R are outliers.

There are many clustering methods, as discussed in Chapters 10 and 11. There-
fore, there are many clustering-based outlier detection methods as well. Clustering is an
expensive data mining operation. A straightforward adaptation of a clustering method
for outlier detection can be very costly, and thus does not scale up well for large data
sets. Clustering-based outlier detection methods are discussed in detail in Section 12.5.

12.3 Statistical Approaches

As with statistical methods for clustering, statistical methods for outlier detection make
assumptions about data normality. They assume that the normal objects in a data set are
generated by a stochastic process (a generative model). Consequently, normal objects
occur in regions of high probability for the stochastic model, and objects in the regions
of low probability are outliers.

The general idea behind statistical methods for outlier detection is to learn a gener-
ative model fitting the given data set, and then identify those objects in low-probability
regions of the model as outliers. However, there are many different ways to learn genera-
tive models. In general, statistical methods for outlier detection can be divided into two
major categories: parametric methods and nonparametric methods, according to how the
models are specified and learned.

A parametric method assumes that the normal data objects are generated by a para-
metric distribution with parameter �. The probability density function of the parametric
distribution f (x,�) gives the probability that object x is generated by the distribution.
The smaller this value, the more likely x is an outlier.

A nonparametric method does not assume an a priori statistical model. Instead, a
nonparametric method tries to determine the model from the input data. Note that
most nonparametric methods do not assume that the model is completely parameter-
free. (Such an assumption would make learning the model from data almost mission
impossible.) Instead, nonparametric methods often take the position that the num-
ber and nature of the parameters are flexible and not fixed in advance. Examples of
nonparametric methods include histogram and kernel density estimation.

12.3.1 Parametric Methods

In this subsection, we introduce several simple yet practical parametric methods for
outlier detection. We first discuss methods for univariate data based on normal dis-
tribution. We then discuss how to handle multivariate data using multiple parametric
distributions.
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Detection of Univariate Outliers Based
on Normal Distribution
Data involving only one attribute or variable are called univariate data. For simplicity,
we often choose to assume that data are generated from a normal distribution. We can
then learn the parameters of the normal distribution from the input data, and identify
the points with low probability as outliers.

Let’s start with univariate data. We will try to detect outliers by assuming the data
follow a normal distribution.

Example 12.8 Univariate outlier detection using maximum likelihood. Suppose a city’s average tem-
perature values in July in the last 10 years are, in value-ascending order, 24.0◦C, 28.9◦C,
28.9◦C, 29.0◦C, 29.1◦C, 29.1◦C, 29.2◦C, 29.2◦C, 29.3◦C, and 29.4◦C. Let’s assume that
the average temperature follows a normal distribution, which is determined by two
parameters: the mean, μ, and the standard deviation, σ .

We can use the maximum likelihood method to estimate the parameters μ and σ . That
is, we maximize the log-likelihood function

lnL(μ,σ 2)=
n∑

i=1

ln f (xi|(μ,σ 2))=− n

2
ln(2π)− n

2
lnσ 2− 1

2σ 2

n∑
i=1

(xi −μ)2, (12.1)

where n is the total number of samples, which is 10 in this example.
Taking derivatives with respect to μ and σ 2 and solving the resulting system of first-

order conditions leads to the following maximum likelihood estimates:

μ̂= x = 1

n

n∑
i=1

xi (12.2)

σ̂ 2 = 1

n

n∑
i=1

(xi − x)2. (12.3)

In this example, we have

μ̂= 24.0+ 28.9+ 28.9+ 29.0+ 29.1+ 29.1+ 29.2+ 29.2+ 29.3+ 29.4

10
= 28.61

σ̂ 2 = ((24.1− 28.61)2+ (28.9− 28.61)2+ (28.9− 28.61)2+ (29.0− 28.61)2

+ (29.1− 28.61)2+ (29.1− 28.61)2+ (29.2− 28.61)2+ (29.2− 28.61)2

+ (29.3− 28.61)2+ (29.4− 28.61)2)/10 � 2.29.

Accordingly, we have σ̂ =√2.29= 1.51.
The most deviating value, 24.0◦C, is 4.61◦C away from the estimated mean. We

know that the μ± 3σ region contains 99.7% data under the assumption of normal
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Figure 12.3 Using a boxplot to visualize outliers.

distribution. Because 4.61
1.51 = 3.04 > 3, the probability that the value 24.0◦C is generated

by the normal distribution is less than 0.15%, and thus can be identified as an outlier.

Example 12.8 elaborates a simple yet practical outlier detection method. It simply
labels any object as an outlier if it is more than 3σ away from the mean of the estimated
distribution, where σ is the standard deviation.

Such straightforward methods for statistical outlier detection can also be used in
visualization. For example, the boxplot method (described in Chapter 2) plots the uni-
variate input data using a five-number summary (Figure 12.3): the smallest nonoutlier
value (Min), the lower quartile (Q1), the median (Q2), the upper quartile (Q3), and
the largest nonoutlier value (Max). The interquantile range (IQR) is defined as Q3−Q1.
Any object that is more than 1.5× IQR smaller than Q1 or 1.5× IQR larger than Q3 is
treated as an outlier because the region between Q1− 1.5× IQR and Q3+ 1.5× IQR
contains 99.3% of the objects. The rationale is similar to using 3σ as the threshold for
normal distribution.

Another simple statistical method for univariate outlier detection using normal dis-
tribution is the Grubb’s test (also known as the maximum normed residual test). For each
object x in a data set, we define a z-score as

z = |x− x̄|
s

, (12.4)

where x̄ is the mean, and s is the standard deviation of the input data. An object x is an
outlier if

z ≥ N − 1√
N

√√√√ t2
α/(2N),N−2

N − 2+ t2
α/(2N),N−2

, (12.5)

where t2
α/(2N),N−2 is the value taken by a t-distribution at a significance level of α/(2N),

and N is the number of objects in the data set.
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Detection of Multivariate Outliers
Data involving two or more attributes or variables are multivariate data. Many univariate
outlier detection methods can be extended to handle multivariate data. The central idea
is to transform the multivariate outlier detection task into a univariate outlier detection
problem. Here, we use two examples to illustrate this idea.

Example 12.9 Multivariate outlier detection using the Mahalanobis distance. For a multivariate
data set, let ō be the mean vector. For an object, o, in the data set, the Mahalanobis
distance from o to ō is

MDist(o, ō)= (o− ō)T S−1(o− ō), (12.6)

where S is the covariance matrix.
MDist(o, ō) is a univariate variable, and thus Grubb’s test can be applied to this

measure. Therefore, we can transform the multivariate outlier detection tasks as
follows:

1. Calculate the mean vector from the multivariate data set.

2. For each object o, calculate MDist(o, ō), the Mahalanobis distance from o to ō.

3. Detect outliers in the transformed univariate data set, {MDist(o, ō)|o ∈ D}.
4. If MDist(o, ō) is determined to be an outlier, then o is regarded as an outlier as well.

Our second example uses the χ2-statistic to measure the distance between an object
to the mean of the input data set.

Example 12.10 Multivariate outlier detection using the χ2-statistic. The χ2-statistic can also be used
to capture multivariate outliers under the assumption of normal distribution. For an
object, o, the χ2-statistic is

χ2 =
n∑

i=1

(oi − Ei)
2

Ei
, (12.7)

where oi is the value of o on the ith dimension, Ei is the mean of the i-dimension
among all objects, and n is the dimensionality. If the χ2-statistic is large, the object
is an outlier.

Using a Mixture of Parametric Distributions
If we assume that the data were generated by a normal distribution, this works well in
many situations. However, this assumption may be overly simplified when the actual
data distribution is complex. In such cases, we instead assume that the data were
generated by a mixture of parametric distributions.
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Figure 12.4 A complex data set.

Example 12.11 Multivariate outlier detection using multiple parametric distributions. Consider the
data set in Figure 12.4. There are two big clusters, C1 and C2. To assume that the data
are generated by a normal distribution would not work well here. The estimated mean
is located between the two clusters and not inside any cluster. The objects between the
two clusters cannot be detected as outliers since they are close to the mean.

To overcome this problem, we can instead assume that the normal data objects are
generated by multiple normal distributions, two in this case. That is, we assume two
normal distributions, �1(μ1,σ1) and �2(μ2,σ2). For any object, o, in the data set, the
probability that o is generated by the mixture of the two distributions is given by

Pr(o|�1,�2)= f�1(o)+ f�2(o),

where f�1 and f�2 are the probability density functions of �1 and �2, respectively. We
can use the expectation-maximization (EM) algorithm (Chapter 11) to learn the param-
eters μ1,σ1,μ2,σ2 from the data, as we do in mixture models for clustering. Each cluster
is represented by a learned normal distribution. An object, o, is detected as an outlier if
it does not belong to any cluster, that is, the probability is very low that it was generated
by the combination of the two distributions.

Example 12.12 Multivariate outlier detection using multiple clusters. Most of the data objects shown
in Figure 12.4 are in either C1 or C2. Other objects, representing noise, are uniformly
distributed in the data space. A small cluster, C3, is highly suspicious because it is not
close to either of the two major clusters, C1 and C2. The objects in C3 should therefore
be detected as outliers.

Note that identifying the objects in C3 as outliers is difficult, whether or not we
assume that the given data follow a normal distribution or a mixture of multiple dis-
tributions. This is because the probability of the objects in C3 will be higher than some
of the noise objects, like o in Figure 12.4, due to a higher local density in C3.
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To tackle the problem demonstrated in Example 12.12, we can assume that the nor-
mal data objects are generated by a normal distribution, or a mixture of normal distri-
butions, whereas the outliers are generated by another distribution. Heuristically, we can
add constraints on the distribution that is generating outliers. For example, it is reason-
able to assume that this distribution has a larger variance if the outliers are distributed in
a larger area. Technically, we can assign σoutlier = kσ , where k is a user-specified param-
eter and σ is the standard deviation of the normal distribution generating the normal
data. Again, the EM algorithm can be used to learn the parameters.

12.3.2 Nonparametric Methods

In nonparametric methods for outlier detection, the model of “normal data” is learned
from the input data, rather than assuming one a priori. Nonparametric methods often
make fewer assumptions about the data, and thus can be applicable in more scenarios.

Example 12.13 Outlier detection using a histogram. AllElectronics records the purchase amount
for every customer transaction. Figure 12.5 uses a histogram (refer to Chapters 2 and
3) to graph these amounts as percentages, given all transactions. For example, 60% of
the transaction amounts are between $0.00 and $1000.

We can use the histogram as a nonparametric statistical model to capture outliers. For
example, a transaction in the amount of $7500 can be regarded as an outlier because
only 1− (60%+ 20%+ 10%+ 6.7%+ 3.1%)= 0.2% of transactions have an amount
higher than $5000. On the other hand, a transaction amount of $385 can be treated as
normal because it falls into the bin (or bucket) holding 60% of the transactions.

20%

0
0−1 1−2 2−3 3−4 4−5

Amount per transaction

× $1000

10%
6.7%

3.1%

60%

Figure 12.5 Histogram of purchase amounts in transactions.
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As illustrated in the previous example, the histogram is a frequently used nonpara-
metric statistical model that can be used to detect outliers. The procedure involves the
following two steps.

Step 1: Histogram construction. In this step, we construct a histogram using the input
data (training data). The histogram may be univariate as in Example 12.13, or
multivariate if the input data are multidimensional.

Note that although nonparametric methods do not assume any a priori statis-
tical model, they often do require user-specified parameters to learn models from
data. For example, to construct a good histogram, a user has to specify the type of
histogram (e.g., equal width or equal depth) and other parameters (e.g., the number
of bins in the histogram or the size of each bin). Unlike parametric methods, these
parameters do not specify types of data distribution (e.g., Gaussian).

Step 2: Outlier detection. To determine whether an object, o, is an outlier, we can check
it against the histogram. In the simplest approach, if the object falls in one of the
histogram’s bins, the object is regarded as normal. Otherwise, it is considered an
outlier.

For a more sophisticated approach, we can use the histogram to assign an out-
lier score to the object. In Example 12.13, we can let an object’s outlier score be the
inverse of the volume of the bin in which the object falls. For example, the outlier
score for a transaction amount of $7500 is 1

0.2% = 500, and that for a transaction

amount of $385 is 1
60% = 1.67. The scores indicate that the transaction amount of

$7500 is much more likely to be an outlier than that of $385.

A drawback to using histograms as a nonparametric model for outlier detection is
that it is hard to choose an appropriate bin size. On the one hand, if the bin size is set too
small, many normal objects may end up in empty or rare bins, and thus be misidentified
as outliers. This leads to a high false positive rate and low precision. On the other hand,
if the bin size is set too high, outlier objects may infiltrate into some frequent bins and
thus be “disguised” as normal. This leads to a high false negative rate and low recall.

To overcome this problem, we can adopt kernel density estimation to estimate the
probability density distribution of the data. We treat an observed object as an indica-
tor of high probability density in the surrounding region. The probability density at a
point depends on the distances from this point to the observed objects. We use a kernel
function to model the influence of a sample point within its neighborhood. A kernel
K() is a non-negative real-valued integrable function that satisfies the following two
conditions:

∫ +∞
−∞ K(u)du = 1.

K(−u)= K(u) for all values of u.

A frequently used kernel is a standard Gaussian function with mean 0 and variance 1:

K

(
x− xi

h

)
= 1√

2π
e
− (x−xi )

2

2h2 . (12.8)
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Let x1, . . . ,xn be an independent and identically distributed sample of a random
variable f . The kernel density approximation of the probability density function is

f̂h(x)= 1

nh

n∑
i=1

K

(
x− xi

h

)
, (12.9)

where K() is a kernel and h is the bandwidth serving as a smoothing parameter.
Once the probability density function of a data set is approximated through kernel

density estimation, we can use the estimated density function f̂ to detect outliers. For an

object, o, f̂ (o) gives the estimated probability that the object is generated by the stochas-

tic process. If f̂ (o) is high, then the object is likely normal. Otherwise, o is likely an
outlier. This step is often similar to the corresponding step in parametric methods.

In summary, statistical methods for outlier detection learn models from data to dis-
tinguish normal data objects from outliers. An advantage of using statistical methods is
that the outlier detection may be statistically justifiable. Of course, this is true only if the
statistical assumption made about the underlying data meets the constraints in reality.

The data distribution of high-dimensional data is often complicated and hard
to fully understand. Consequently, statistical methods for outlier detection on high-
dimensional data remain a big challenge. Outlier detection for high-dimensional data
is further addressed in Section 12.8.

The computational cost of statistical methods depends on the models. When simple
parametric models are used (e.g., a Gaussian), fitting the parameters typically takes lin-
ear time. When more sophisticated models are used (e.g., mixture models, where the
EM algorithm is used in learning), approximating the best parameter values often takes
several iterations. Each iteration, however, is typically linear with respect to the data set’s
size. For kernel density estimation, the model learning cost can be up to quadratic. Once
the model is learned, the outlier detection cost is often very small per object.

12.4 Proximity-Based Approaches

Given a set of objects in feature space, a distance measure can be used to quantify the
similarity between objects. Intuitively, objects that are far from others can be regarded
as outliers. Proximity-based approaches assume that the proximity of an outlier object
to its nearest neighbors significantly deviates from the proximity of the object to most
of the other objects in the data set.

There are two types of proximity-based outlier detection methods: distance-based
and density-based methods. A distance-based outlier detection method consults the
neighborhood of an object, which is defined by a given radius. An object is then consid-
ered an outlier if its neighborhood does not have enough other points. A density-based
outlier detection method investigates the density of an object and that of its neighbors.
Here, an object is identified as an outlier if its density is relatively much lower than that
of its neighbors.

Let’s start with distance-based outliers.
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12.4.1 Distance-Based Outlier Detection and a Nested
Loop Method

A representative method of proximity-based outlier detection uses the concept of
distance-based outliers. For a set, D, of data objects to be analyzed, a user can spec-
ify a distance threshold, r, to define a reasonable neighborhood of an object. For each
object, o, we can examine the number of other objects in the r-neighborhood of o. If
most of the objects in D are far from o, that is, not in the r-neighborhood of o, then o
can be regarded as an outlier.

Formally, let r (r ≥ 0) be a distance threshold and π (0 < π ≤ 1) be a fraction
threshold. An object, o, is a DB(r,π)-outlier if

‖{o′|dist(o,o′)≤ r}‖
‖D‖ ≤ π , (12.10)

where dist(·, ·) is a distance measure.
Equivalently, we can determine whether an object, o, is a DB(r,π)-outlier by checking

the distance between o and its k-nearest neighbor, ok , where k = #π‖D‖$. Object o is an
outlier if dist(o,ok) > r, because in such a case, there are fewer than k objects except for
o that are in the r-neighborhood of o.

“How can we compute DB(r,π)-outliers?” A straightforward approach is to use nested
loops to check the r-neighborhood for every object, as shown in Figure 12.6. For any
object, oi (1≤ i ≤ n), we calculate the distance between oi and the other object, and
count the number of other objects in the r-neighborhood of oi . Once we find π · n other

Algorithm: Distance-based outlier detection.

Input:

a set of objects D = {o1, . . . ,on}, threshold r (r > 0) and π (0 < π ≤ 1);

Output: DB(r,π) outliers in D.

Method:

for i = 1 to n do
count ← 0
for j = 1 to n do

if i �= j and dist(oi ,oj)≤ r then
count ← count + 1
if count ≥ π · n then

exit {oi cannot be a DB(r,π) outlier}
endif

endif
endfor
print oi {oi is a DB(r,π) outlier according to (Eq. 12.10)}

endfor;

Figure 12.6 Nested loop algorithm for DB(r,π)-outlier detection.
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objects within a distance r from oi , the inner loop can be terminated because oi already
violates (Eq. 12.10), and thus is not a DB(r,π)-outlier. On the other hand, if the inner
loop completes for oi , this means that oi has less than π · n neighbors in a radius of r,
and thus is a DB(r,π)-outlier.

The straightforward nested loop approach takes O(n2) time. Surprisingly, the actual
CPU runtime is often linear with respect to the data set size. For most nonoutlier objects,
the inner loop terminates early when the number of outliers in the data set is small,
which should be the case most of the time. Correspondingly, only a small fraction of the
data set is examined.

When mining large data sets where the complete set of objects cannot be held in
main memory, the nested loop approach is still costly. Suppose the main memory has
m pages for the mining. Instead of conducting the inner loop object by object, in such
a case, the outer loop uses m− 1 pages to hold as many objects as possible and uses the
remaining one page to run the inner loop. The inner loop cannot stop until all objects
in the m− 1 pages are identified as not being outliers, which is very unlikely to happen.
Correspondingly, it is likely that the algorithm has to incur O((n

b )2) input/output (I/O)
cost, where b is the number of objects that can be held in one page.

The major cost in the nested loop method comes from two aspects. First, to check
whether an object is an outlier, the nested loop method tests the object against the
whole data set. To improve, we need to explore how to determine the outlierness of an
object from the neighbors that are close to the object. Second, the nested loop method
checks objects one by one. To improve, we should try to group objects according to
their proximity, and check the outlierness of objects group by group most of the time.
Section 12.4.2 introduces how to implement the preceding ideas.

12.4.2 A Grid-Based Method

CELL is a grid-based method for distance-based outlier detection. In this method, the
data space is partitioned into a multidimensional grid, where each cell is a hypercube
that has a diagonal of length r

2 , where r is a distance threshold parameter. In other words,
if there are l dimensions, the length of each edge of a cell is r

2
√

l
.

Consider a 2-D data set, for example. Figure 12.7 shows part of the grid. The length
of each edge of a cell is r

2
√

2
.

Consider the cell C in Figure 12.7. The neighboring cells of C can be divided into
two groups. The cells immediately next to C constitute the level-1 cells (labeled “1”
in the figure), and the cells one or two cells away from C in any direction constitute
the level-2 cells (labeled “2” in the figure). The two levels of cells have the following
properties:

Level-1 cell property: Given any possible point, x of C, and any possible point, y, in
a level-1 cell, then dist(x,y)≤ r.

Level-2 cell property: Given any possible point, x of C, and any point, y, such that
dist(x,y)≥ r, then y is in a level-2 cell.
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Figure 12.7 Grids in the CELL method.

Let a be the number of objects in cell C, b1 be the total number of objects in the
level-1 cells, and b2 be the total number of objects in the level-2 cells. We can apply the
following rules.

Level-1 cell pruning rule: Based on the level-1 cell property, if a+ b1 > #πn$, then
every object o in C is not a DB(r,π)-outlier because all those objects in C and
the level-1 cells are in the r-neighborhood of o, and there are at least #πn$ such
neighbors.

Level-2 cell pruning rule: Based on the level-2 cell property, if a+ b1+ b2 <

#πn$+1, then all objects in C are DB(r,π)-outliers because each of their r-
neighborhoods has less than #πn$ other objects.

Using the preceding two rules, the CELL method organizes objects into groups using
a grid—all objects in a cell form a group. For groups satisfying one of the two rules, we
can determine that either all objects in a cell are outliers or nonoutliers, and thus do not
need to check those objects one by one. Moreover, to apply the two rules, we need only
check a limited number of cells close to a target cell instead of the whole data set.

Using the previous two rules, many objects can be determined as being either
nonoutliers or outliers. We only need to check the objects that cannot be pruned using
the two rules. Even for such an object, o, we need only compute the distance between
o and the objects in the level-2 cells with respect to o. This is because all objects in the
level-1 cells have a distance of at most r to o, and all objects not in a level-1 or level-2
cell must have a distance of more than r from o, and thus cannot be in the r-neighbor-
hood of o.

When the data set is very large so that most of the data are stored on disk, the CELL
method may incur many random accesses to disk, which is costly. An alternative method
was proposed, which uses a very small amount of main memory (around 1% of the data
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set) to mine all outliers by scanning the data set three times. First, a sample, S, is created
of the given data set, D, using sampling by replacement. Each object in S is considered
the centroid of a partition. The objects in D are assigned to the partitions based on
distance. The preceding steps are completed in one scan of D. Candidate outliers are
identified in a second scan of D. After a third scan, all DB(r,π)-outliers have been found.

12.4.3 Density-Based Outlier Detection

Distance-based outliers, such as DB(r,π)-outliers, are just one type of outlier. Specifi-
cally, distance-based outlier detection takes a global view of the data set. Such outliers
can be regarded as “global outliers” for two reasons:

A DB(r,π)-outlier, for example, is far (as quantified by parameter r) from at least
(1−π)× 100% of the objects in the data set. In other words, an outlier as such is
remote from the majority of the data.

To detect distance-based outliers, we need two global parameters, r and π , which are
applied to every outlier object.

Many real-world data sets demonstrate a more complex structure, where objects
may be considered outliers with respect to their local neighborhoods, rather than with
respect to the global data distribution. Let’s look at an example.

Example 12.14 Local proximity-based outliers. Consider the data points in Figure 12.8. There are two
clusters: C1 is dense, and C2 is sparse. Object o3 can be detected as a distance-based
outlier because it is far from the majority of the data set.

Now, let’s consider objects o1 and o2. Are they outliers? On the one hand, the distance
from o1 and o2 to the objects in the dense cluster, C1, is smaller than the average dis-
tance between an object in cluster C2 and its nearest neighbor. Thus, o1 and o2 are not
distance-based outliers. In fact, if we were to categorize o1 and o2 as DB(r,π)-outliers,
we would have to classify all the objects in clusters C2 as DB(r,π)-outliers.

On the other hand, o1 and o2 can be identified as outliers when they are considered
locally with respect to cluster C1 because o1 and o2 deviate significantly from the objects
in C1. Moreover, o1 and o2 are also far from the objects in C2.

o1o4

C2

C1

o2

o3

Figure 12.8 Global outliers and local outliers.
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To summarize, distance-based outlier detection methods cannot capture local out-
liers like o1 and o2. Note that the distance between object o4 and its nearest neighbors is
much greater than the distance between o1 and its nearest neighbors. However, because
o4 is local to cluster C2 (which is sparse), o4 is not considered a local outlier.

“How can we formulate the local outliers as illustrated in Example 12.14?” The critical
idea here is that we need to compare the density around an object with the density
around its local neighbors. The basic assumption of density-based outlier detection
methods is that the density around a nonoutlier object is similar to the density around
its neighbors, while the density around an outlier object is significantly different from
the density around its neighbors.

Based on the preceding, density-based outlier detection methods use the relative den-
sity of an object against its neighbors to indicate the degree to which an object is an
outlier.

Now, let’s consider how to measure the relative density of an object, o, given a set of
objects, D. The k-distance of o, denoted by distk(o), is the distance, dist(o, p), between o
and another object, p ∈ D, such that

There are at least k objects o′ ∈ D−{o} such that dist(o, o′) ≤ dist(o, p).

There are at most k− 1 objects o′′ ∈ D−{o} such that dist(o, o′′)< dist(o, p).

In other words, distk(o) is the distance between o and its k-nearest neighbor. Conse-
quently, the k-distance neighborhood of o contains all objects of which the distance to o
is not greater than distk(o), the k-distance of o, denoted by

Nk(o)= {o′|o′ ∈ D,dist(o,o′)≤ distk(o)}. (12.11)

Note that Nk(o) may contain more than k objects because multiple objects may each be
the same distance away from o.

We can use the average distance from the objects in Nk(o) to o as the measure of the
local density of o. However, such a straightforward measure has a problem: If o has very
close neighbors o′ such that dist(o, o′) is very small, the statistical fluctuations of the
distance measure can be undesirably high. To overcome this problem, we can switch to
the following reachability distance measure by adding a smoothing effect.

For two objects, o and o′, the reachability distance from o′ to o is dist(o ← o′) if dist
(o, o′) > distk(o), and distk(o) otherwise. That is,

reachdistk(o← o′)=max{distk(o),dist(o,o′)}. (12.12)

Here, k is a user-specified parameter that controls the smoothing effect. Essentially, k
specifies the minimum neighborhood to be examined to determine the local density
of an object. Importantly, reachability distance is not symmetric, that is, in general,
reachdistk(o← o′) �= reachdistk(o′ ← o).
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Now, we can define the local reachability density of an object, o, as

lrdk(o)= ‖Nk(o)‖∑
o′∈Nk(o)

reachdistk(o′ ← o)
. (12.13)

There is a critical difference between the density measure here for outlier detection
and that in density-based clustering (Section 12.5). In density-based clustering, to deter-
mine whether an object can be considered a core object in a density-based cluster, we use
two parameters: a radius parameter, r, to specify the range of the neighborhood, and the
minimum number of points in the r-neighborhood. Both parameters are global and are
applied to every object. In contrast, as motivated by the observation that relative density
is the key to finding local outliers, we use the parameter k to quantify the neighborhood
and do not need to specify the minimum number of objects in the neighborhood as a
requirement of density. We instead calculate the local reachability density for an object
and compare it with that of its neighbors to quantify the degree to which the object is
considered an outlier.

Specifically, we define the local outlier factor of an object o as

LOFk(o)=
∑

o′∈Nk(o)

lrdk(o′
)

lrdk(o)

‖Nk(o)‖ =
∑

o′∈Nk(o)

lrdk(o′) ·
∑

o′∈Nk(o)

reachdistk(o′ ← o). (12.14)

In other words, the local outlier factor is the average of the ratio of the local reachability
density of o and those of o’s k-nearest neighbors. The lower the local reachability density
of o (i.e., the smaller the item

∑
o′∈Nk(o)

reachdistk(o′ ← o)) and the higher the local

reachability densities of the k-nearest neighbors of o, the higher the LOF value is. This
exactly captures a local outlier of which the local density is relatively low compared to
the local densities of its k-nearest neighbors.

The local outlier factor has some nice properties. First, for an object deep within a
consistent cluster, such as the points in the center of cluster C2 in Figure 12.8, the local
outlier factor is close to 1. This property ensures that objects inside clusters, no matter
whether the cluster is dense or sparse, will not be mislabeled as outliers.

Second, for an object o, the meaning of LOF(o) is easy to understand. Consider the
objects in Figure 12.9, for example. For object o, let

directmin(o)=min{reachdistk(o′ ← o)|o′ ∈ Nk(o)} (12.15)

be the minimum reachability distance from o to its k-nearest neighbors. Similarly, we
can define

directmax(o)=max{reachdistk(o′ ← o)|o′ ∈ Nk(o)}. (12.16)

We also consider the neighbors of o’s k-nearest neighbors. Let

indirectmin(o)=min{reachdistk(o′′ ← o′)|o′ ∈ Nk(o) and o′′ ∈ Nk(o′)} (12.17)
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k=3
indirectmax

directmin

directmax

indirectmin

C

o

Figure 12.9 A property of LOF(o).

and

indirectmax(o)=max{reachdistk(o′′ ← o′)|o′ ∈ Nk(o) and o′′ ∈ Nk(o′)}. (12.18)

Then, it can be shown that LOF(o) is bounded as

directmin(o)

indirectmax(o)
≤ LOF(o)≤ directmax(o)

indirectmin(o)
. (12.19)

This result clearly shows that LOF captures the relative density of an object.

12.5 Clustering-Based Approaches

The notion of outliers is highly related to that of clusters. Clustering-based approaches
detect outliers by examining the relationship between objects and clusters. Intuitively,
an outlier is an object that belongs to a small and remote cluster, or does not belong to
any cluster.

This leads to three general approaches to clustering-based outlier detection. Consider
an object.

Does the object belong to any cluster? If not, then it is identified as an outlier.

Is there a large distance between the object and the cluster to which it is closest? If
yes, it is an outlier.

Is the object part of a small or sparse cluster? If yes, then all the objects in that cluster
are outliers.
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Let’s look at examples of each of these approaches.

Example 12.15 Detecting outliers as objects that do not belong to any cluster. Gregarious animals
(e.g., goats and deer) live and move in flocks. Using outlier detection, we can iden-
tify outliers as animals that are not part of a flock. Such animals may be either lost or
wounded.

In Figure 12.10, each point represents an animal living in a group. Using a density-
based clustering method, such as DBSCAN, we note that the black points belong to
clusters. The white point, a, does not belong to any cluster, and thus is declared an
outlier.

The second approach to clustering-based outlier detection considers the distance
between an object and the cluster to which it is closest. If the distance is large, then
the object is likely an outlier with respect to the cluster. Thus, this approach detects
individual outliers with respect to clusters.

Example 12.16 Clustering-based outlier detection using distance to the closest cluster. Using the
k-means clustering method, we can partition the data points shown in Figure 12.11 into
three clusters, as shown using different symbols. The center of each cluster is marked
with a+.

For each object, o, we can assign an outlier score to the object according to the dis-
tance between the object and the center that is closest to the object. Suppose the closest
center to o is co; then the distance between o and co is dist(o, co), and the average

a

Figure 12.10 Object a is an outlier because it does not belong to any cluster.

� Cluster centers

a

b c

Figure 12.11 Outliers (a,b,c) are far from the clusters to which they are closest (with respect to the cluster
centers).
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distance between co and the objects assigned to o is lco . The ratio dist(o,co)
lco

measures how

dist(o, co) stands out from the average. The larger the ratio, the farther away o is relative
from the center, and the more likely o is an outlier. In Figure 12.11, points a, b, and c
are relatively far away from their corresponding centers, and thus are suspected of being
outliers.

This approach can also be used for intrusion detection, as described in Example 12.17.

Example 12.17 Intrusion detection by clustering-based outlier detection. A bootstrap method was
developed to detect intrusions in TCP connection data by considering the similarity
between data points and the clusters in a training data set. The method consists of three
steps.

1. A training data set is used to find patterns of normal data. Specifically, the TCP con-
nection data are segmented according to, say, dates. Frequent itemsets are found
in each segment. The frequent itemsets that are in a majority of the segments are
considered patterns of normal data and are referred to as “base connections.”

2. Connections in the training data that contain base connections are treated as attack-
free. Such connections are clustered into groups.

3. The data points in the original data set are compared with the clusters mined in
step 2. Any point that is deemed an outlier with respect to the clusters is declared as
a possible attack.

Note that each of the approaches we have seen so far detects only individual objects
as outliers because they compare objects one at a time against clusters in the data set.
However, in a large data set, some outliers may be similar and form a small cluster. In
intrusion detection, for example, hackers who use similar tactics to attack a system may
form a cluster. The approaches discussed so far may be deceived by such outliers.

To overcome this problem, a third approach to cluster-based outlier detection identi-
fies small or sparse clusters and declares the objects in those clusters to be outliers as well.
An example of this approach is the FindCBLOF algorithm, which works as follows.

1. Find clusters in a data set, and sort them according to decreasing size. The algo-
rithm assumes that most of the data points are not outliers. It uses a parameter
α (0≤ α ≤ 1) to distinguish large from small clusters. Any cluster that contains at
least a percentage α (e.g., α = 90%) of the data set is considered a “large cluster.” The
remaining clusters are referred to as “small clusters.”

2. To each data point, assign a cluster-based local outlier factor (CBLOF). For a point
belonging to a large cluster, its CBLOF is the product of the cluster’s size and the
similarity between the point and the cluster. For a point belonging to a small cluster,
its CBLOF is calculated as the product of the size of the small cluster and the similarity
between the point and the closest large cluster.
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CBLOF defines the similarity between a point and a cluster in a statistical way that
represents the probability that the point belongs to the cluster. The larger the value, the
more similar the point and the cluster are. The CBLOF score can detect outlier points
that are far from any clusters. In addition, small clusters that are far from any large
cluster are considered to consist of outliers. The points with the lowest CBLOF scores
are suspected outliers.

Example 12.18 Detecting outliers in small clusters. The data points in Figure 12.12 form three clusters:
large clusters, C1 and C2, and a small cluster, C3. Object o does not belong to any cluster.

Using CBLOF, FindCBLOF can identify o as well as the points in cluster C3 as outliers.
For o, the closest large cluster is C1. The CBLOF is simply the similarity between o and
C1, which is small. For the points in C3, the closest large cluster is C2. Although there
are three points in cluster C3, the similarity between those points and cluster C2 is low,
and |C3| = 3 is small; thus, the CBLOF scores of points in C3 are small.

Clustering-based approaches may incur high computational costs if they have to find
clusters before detecting outliers. Several techniques have been developed for improved
efficiency. For example, fixed-width clustering is a linear-time technique that is used in
some outlier detection methods. The idea is simple yet efficient. A point is assigned to
a cluster if the center of the cluster is within a predefined distance threshold from the
point. If a point cannot be assigned to any existing cluster, a new cluster is created. The
distance threshold may be learned from the training data under certain conditions.

Clustering-based outlier detection methods have the following advantages. First, they
can detect outliers without requiring any labeled data, that is, in an unsupervised way.
They work for many data types. Clusters can be regarded as summaries of the data.
Once the clusters are obtained, clustering-based methods need only compare any object
against the clusters to determine whether the object is an outlier. This process is typically
fast because the number of clusters is usually small compared to the total number of
objects.

o

C1

C2

C3

Figure 12.12 Outliers in small clusters.
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A weakness of clustering-based outlier detection is its effectiveness, which depends
highly on the clustering method used. Such methods may not be optimized for outlier
detection. Clustering methods are often costly for large data sets, which can serve as a
bottleneck.

12.6 Classification-Based Approaches

Outlier detection can be treated as a classification problem if a training data set with class
labels is available. The general idea of classification-based outlier detection methods is
to train a classification model that can distinguish normal data from outliers.

Consider a training set that contains samples labeled as “normal” and others labeled
as “outlier.” A classifier can then be constructed based on the training set. Any classi-
fication method can be used (Chapters 8 and 9). This kind of brute-force approach,
however, does not work well for outlier detection because the training set is typically
heavily biased. That is, the number of normal samples likely far exceeds the number of
outlier samples. This imbalance, where the number of outlier samples may be insuffi-
cient, can prevent us from building an accurate classifier. Consider intrusion detection
in a system, for example. Because most system accesses are normal, it is easy to obtain
a good representation of the normal events. However, it is infeasible to enumerate all
potential intrusions, as new and unexpected attempts occur from time to time. Hence,
we are left with an insufficient representation of the outlier (or intrusion) samples.

To overcome this challenge, classification-based outlier detection methods often use a
one-class model. That is, a classifier is built to describe only the normal class. Any samples
that do not belong to the normal class are regarded as outliers.

Example 12.19 Outlier detection using a one-class model. Consider the training set shown in
Figure 12.13, where white points are samples labeled as “normal” and black points
are samples labeled as “outlier.” To build a model for outlier detection, we can learn
the decision boundary of the normal class using classification methods such as SVM
(Chapter 9), as illustrated. Given a new object, if the object is within the decision bound-
ary of the normal class, it is treated as a normal case. If the object is outside the decision
boundary, it is declared an outlier.

An advantage of using only the model of the normal class to detect outliers is that
the model can detect new outliers that may not appear close to any outlier objects in the
training set. This occurs as long as such new outliers fall outside the decision boundary
of the normal class.

The idea of using the decision boundary of the normal class can be extended to
handle situations where the normal objects may belong to multiple classes such as in
fuzzy clustering (Chapter 11). For example, AllElectronics accepts returned items. Cus-
tomers can return items for a number of reasons (corresponding to class categories)
such as “product design defects” and “product damaged during shipment.” Each such
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Figure 12.13 Learning a model for the normal class.

Objects without labelObjects with label “normal” Objects with label “outlier”

C

C1

a

Figure 12.14 Detecting outliers by semi-supervised learning.

class is regarded as normal. To detect outlier cases, AllElectronics can learn a model for
each normal class. To determine whether a case is an outlier, we can run each model on
the case. If the case does not fit any of the models, then it is declared an outlier.

Classification-based methods and clustering-based methods can be combined to
detect outliers in a semi-supervised learning way.

Example 12.20 Outlier detection by semi-supervised learning. Consider Figure 12.14, where objects
are labeled as either “normal” or “outlier,” or have no label at all. Using a clustering-
based approach, we find a large cluster, C, and a small cluster, C1. Because some objects
in C carry the label “normal,” we can treat all objects in this cluster (including those
without labels) as normal objects. We use the one-class model of this cluster to identify
normal objects in outlier detection. Similarly, because some objects in cluster C1 carry
the label “outlier,” we declare all objects in C1 as outliers. Any object that does not fall
into the model for C (e.g., a) is considered an outlier as well.



12.7 Mining Contextual and Collective Outliers 573

Classification-based methods can incorporate human domain knowledge into the
detection process by learning from the labeled samples. Once the classification model is
constructed, the outlier detection process is fast. It only needs to compare the objects
to be examined against the model learned from the training data. The quality of
classification-based methods heavily depends on the availability and quality of the train-
ing set. In many applications, it is difficult to obtain representative and high-quality
training data, which limits the applicability of classification-based methods.

12.7 Mining Contextual and Collective Outliers

An object in a given data set is a contextual outlier (or conditional outlier) if it devi-
ates significantly with respect to a specific context of the object (Section 12.1). The
context is defined using contextual attributes. These depend heavily on the applica-
tion, and are often provided by users as part of the contextual outlier detection task.
Contextual attributes can include spatial attributes, time, network locations, and sophis-
ticated structured attributes. In addition, behavioral attributes define characteristics of
the object, and are used to evaluate whether the object is an outlier in the context to
which it belongs.

Example 12.21 Contextual outliers. To determine whether the temperature of a location is exceptional
(i.e., an outlier), the attributes specifying information about the location can serve as
contextual attributes. These attributes may be spatial attributes (e.g., longitude and lati-
tude) or location attributes in a graph or network. The attribute time can also be used.
In customer-relationship management, whether a customer is an outlier may depend
on other customers with similar profiles. Here, the attributes defining customer profiles
provide the context for outlier detection.

In comparison to outlier detection in general, identifying contextual outliers requires
analyzing the corresponding contextual information. Contextual outlier detection
methods can be divided into two categories according to whether the contexts can be
clearly identified.

12.7.1 Transforming Contextual Outlier Detection
to Conventional Outlier Detection

This category of methods is for situations where the contexts can be clearly identified.
The idea is to transform the contextual outlier detection problem into a typical outlier
detection problem. Specifically, for a given data object, we can evaluate whether the
object is an outlier in two steps. In the first step, we identify the context of the object
using the contextual attributes. In the second step, we calculate the outlier score for the
object in the context using a conventional outlier detection method.
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Example 12.22 Contextual outlier detection when the context can be clearly identified. In customer-
relationship management, we can detect outlier customers in the context of customer
groups. Suppose AllElectronics maintains customer information on four attributes,
namely age group (i.e., under 25, 25-45, 45-65, and over 65), postal code, number of
transactions per year, and annual total transaction amount. The attributes age group
and postal code serve as contextual attributes, and the attributes number of
transactions per year and annual total transaction amount are behavioral attributes.

To detect contextual outliers in this setting, for a customer, c, we can first locate the
context of c using the attributes age group and postal code. We can then compare c with
the other customers in the same group, and use a conventional outlier detection method,
such as some of the ones discussed earlier, to determine whether c is an outlier.

Contexts may be specified at different levels of granularity. Suppose AllElectronics
maintains customer information at a more detailed level for the attributes age,
postal code, number of transactions per year, and annual total transaction amount. We
can still group customers on age and postal code, and then mine outliers in each group.
What if the number of customers falling into a group is very small or even zero? For a
customer, c, if the corresponding context contains very few or even no other customers,
the evaluation of whether c is an outlier using the exact context is unreliable or even
impossible.

To overcome this challenge, we can assume that customers of similar age and who
live within the same area should have similar normal behavior. This assumption can
help to generalize contexts and makes for more effective outlier detection. For example,
using a set of training data, we may learn a mixture model, U , of the data on the con-
textual attributes, and another mixture model, V , of the data on the behavior attributes.
A mapping p(Vi|Uj) is also learned to capture the probability that a data object o belong-
ing to cluster Uj on the contextual attributes is generated by cluster Vi on the behavior
attributes. The outlier score can then be calculated as

S(o)=
∑
Uj

p(o ∈ Uj)
∑
Vi

p(o ∈ Vi)p(Vi|Uj). (12.20)

Thus, the contextual outlier problem is transformed into outlier detection using mix-
ture models.

12.7.2 Modeling Normal Behavior with Respect to Contexts

In some applications, it is inconvenient or infeasible to clearly partition the data into
contexts. For example, consider the situation where the online store of AllElectronics
records customer browsing behavior in a search log. For each customer, the data log con-
tains the sequence of products searched for and browsed by the customer. AllElectronics
is interested in contextual outlier behavior, such as if a customer suddenly purchased a
product that is unrelated to those she recently browsed. However, in this application,
contexts cannot be easily specified because it is unclear how many products browsed
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earlier should be considered as the context, and this number will likely differ for each
product.

This second category of contextual outlier detection methods models the normal
behavior with respect to contexts. Using a training data set, such a method trains a
model that predicts the expected behavior attribute values with respect to the contextual
attribute values. To determine whether a data object is a contextual outlier, we can then
apply the model to the contextual attributes of the object. If the behavior attribute val-
ues of the object significantly deviate from the values predicted by the model, then the
object can be declared a contextual outlier.

By using a prediction model that links the contexts and behavior, these methods
avoid the explicit identification of specific contexts. A number of classification and
prediction techniques can be used to build such models such as regression, Markov
models, and finite state automaton. Interested readers are referred to Chapters 8 and
9 on classification and the bibliographic notes for further details (Section 12.11).

In summary, contextual outlier detection enhances conventional outlier detection
by considering contexts, which are important in many applications. We may be able
to detect outliers that cannot be detected otherwise. Consider a credit card user
whose income level is low but whose expenditure patterns are similar to those of
millionaires. This user can be detected as a contextual outlier if the income level
is used to define context. Such a user may not be detected as an outlier without
contextual information because she does share expenditure patterns with many mil-
lionaires. Considering contexts in outlier detection can also help to avoid false alarms.
Without considering the context, a millionaire’s purchase transaction may be falsely
detected as an outlier if the majority of customers in the training set are not mil-
lionaires. This can be corrected by incorporating contextual information in outlier
detection.

12.7.3 Mining Collective Outliers

A group of data objects forms a collective outlier if the objects as a whole deviate sig-
nificantly from the entire data set, even though each individual object in the group may
not be an outlier (Section 12.1). To detect collective outliers, we have to examine the
structure of the data set, that is, the relationships between multiple data objects. This
makes the problem more difficult than conventional and contextual outlier detection.

“How can we explore the data set structure?” This typically depends on the nature
of the data. For outlier detection in temporal data (e.g., time series and sequences), we
explore the structures formed by time, which occur in segments of the time series or sub-
sequences. To detect collective outliers in spatial data, we explore local areas. Similarly,
in graph and network data, we explore subgraphs. Each of these structures is inherent to
its respective data type.

Contextual outlier detection and collective outlier detection are similar in that they
both explore structures. In contextual outlier detection, the structures are the contexts,
as specified by the contextual attributes explicitly. The critical difference in collective
outlier detection is that the structures are often not explicitly defined, and have to be
discovered as part of the outlier detection process.
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As with contextual outlier detection, collective outlier detection methods can also be
divided into two categories. The first category consists of methods that reduce the prob-
lem to conventional outlier detection. Its strategy is to identify structure units, treat each
structure unit (e.g., a subsequence, a time-series segment, a local area, or a subgraph)
as a data object, and extract features. The problem of collective outlier detection is thus
transformed into outlier detection on the set of “structured objects” constructed as such
using the extracted features. A structure unit, which represents a group of objects in the
original data set, is a collective outlier if the structure unit deviates significantly from the
expected trend in the space of the extracted features.

Example 12.23 Collective outlier detection on graph data. Let’s see how we can detect collective out-
liers in AllElectronics’ online social network of customers. Suppose we treat the social
network as an unlabeled graph. We then treat each possible subgraph of the network as
a structure unit. For each subgraph, S, let |S| be the number of vertices in S, and freq(S)

be the frequency of S in the network. That is, freq(S) is the number of different subgraphs
in the network that are isomorphic to S. We can use these two features to detect outlier
subgraphs. An outlier subgraph is a collective outlier that contains multiple vertices.

In general, a small subgraph (e.g., a single vertex or a pair of vertices connected by
an edge) is expected to be frequent, and a large subgraph is expected to be infrequent.
Using the preceding simple method, we can detect small subgraphs that are of very low
frequency or large subgraphs that are surprisingly frequent. These are outlier structures
in the social network.

Predefining the structure units for collective outlier detection can be difficult or
impossible. Consequently, the second category of methods models the expected behav-
ior of structure units directly. For example, to detect collective outliers in temporal
sequences, one method is to learn a Markov model from the sequences. A subsequence
can then be declared as a collective outlier if it significantly deviates from the model.

In summary, collective outlier detection is subtle due to the challenge of explor-
ing the structures in data. The exploration typically uses heuristics, and thus may be
application-dependent. The computational cost is often high due to the sophisticated
mining process. While highly useful in practice, collective outlier detection remains a
challenging direction that calls for further research and development.

12.8 Outlier Detection in High-Dimensional Data

In some applications, we may need to detect outliers in high-dimensional data. The
dimensionality curse poses huge challenges for effective outlier detection. As the dimen-
sionality increases, the distance between objects may be heavily dominated by noise.
That is, the distance and similarity between two points in a high-dimensional space
may not reflect the real relationship between the points. Consequently, conventional
outlier detection methods, which mainly use proximity or density to identify outliers,
deteriorate as dimensionality increases.
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Ideally, outlier detection methods for high-dimensional data should meet the chal-
lenges that follow.

Interpretation of outliers: They should be able to not only detect outliers, but also
provide an interpretation of the outliers. Because many features (or dimensions) are
involved in a high-dimensional data set, detecting outliers without providing any
interpretation as to why they are outliers is not very useful. The interpretation of
outliers may come from, for example, specific subspaces that manifest the outliers
or an assessment regarding the “outlier-ness” of the objects. Such interpretation can
help users to understand the possible meaning and significance of the outliers.

Data sparsity: The methods should be capable of handling sparsity in high-
dimensional spaces. The distance between objects becomes heavily dominated by
noise as the dimensionality increases. Therefore, data in high-dimensional spaces are
often sparse.

Data subspaces: They should model outliers appropriately, for example, adaptive
to the subspaces signifying the outliers and capturing the local behavior of data.
Using a fixed-distance threshold against all subspaces to detect outliers is not a
good idea because the distance between two objects monotonically increases as the
dimensionality increases.

Scalability with respect to dimensionality: As the dimensionality increases, the
number of subspaces increases exponentially. An exhaustive combinatorial explo-
ration of the search space, which contains all possible subspaces, is not a scalable
choice.

Outlier detection methods for high-dimensional data can be divided into three main
approaches. These include extending conventional outlier detection (Section 12.8.1),
finding outliers in subspaces (Section 12.8.2), and modeling high-dimensional outliers
(Section 12.8.3).

12.8.1 Extending Conventional Outlier Detection

One approach for outlier detection in high-dimensional data extends conventional out-
lier detection methods. It uses the conventional proximity-based models of outliers.
However, to overcome the deterioration of proximity measures in high-dimensional
spaces, it uses alternative measures or constructs subspaces and detects outliers there.

The HilOut algorithm is an example of this approach. HilOut finds distance-based
outliers, but uses the ranks of distance instead of the absolute distance in outlier detec-
tion. Specifically, for each object, o, HilOut finds the k-nearest neighbors of o, denoted
by nn1(o), . . . ,nnk(o), where k is an application-dependent parameter. The weight of
object o is defined as

w(o)=
k∑

i=1

dist(o,nni(o)). (12.21)
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All objects are ranked in weight-descending order. The top-l objects in weight are output
as outliers, where l is another user-specified parameter.

Computing the k-nearest neighbors for every object is costly and does not scale up
when the dimensionality is high and the database is large. To address the scalability issue,
HilOut employs space-filling curves to achieve an approximation algorithm, which is
scalable in both running time and space with respect to database size and dimensionality.

While some methods like HilOut detect outliers in the full space despite the high
dimensionality, other methods reduce the high-dimensional outlier detection prob-
lem to a lower-dimensional one by dimensionality reduction (Chapter 3). The idea
is to reduce the high-dimensional space to a lower-dimensional space where normal
instances can still be distinguished from outliers. If such a lower-dimensional space can
be found, then conventional outlier detection methods can be applied.

To reduce dimensionality, general feature selection and extraction methods may be
used or extended for outlier detection. For example, principal components analysis
(PCA) can be used to extract a lower-dimensional space. Heuristically, the principal
components with low variance are preferred because, on such dimensions, normal
objects are likely close to each other and outliers often deviate from the majority.

By extending conventional outlier detection methods, we can reuse much of the expe-
rience gained from research in the field. These new methods, however, are limited. First,
they cannot detect outliers with respect to subspaces and thus have limited interpretabil-
ity. Second, dimensionality reduction is feasible only if there exists a lower-dimensional
space where normal objects and outliers are well separated. This assumption may not
hold true.

12.8.2 Finding Outliers in Subspaces

Another approach for outlier detection in high-dimensional data is to search for outliers
in various subspaces. A unique advantage is that, if an object is found to be an outlier
in a subspace of much lower dimensionality, the subspace provides critical information
for interpreting why and to what extent the object is an outlier. This insight is highly
valuable in applications with high-dimensional data due to the overwhelming number
of dimensions.

Example 12.24 Outliers in subspaces. As a customer-relationship manager at AllElectronics, you are
interested in finding outlier customers. AllElectronics maintains an extensive customer
information database, which contains many attributes and the transaction history of
customers. The database is high dimensional.

Suppose you find that a customer, Alice, is an outlier in a lower-dimensional sub-
space that contains the dimensions average transaction amount and purchase frequency,
such that her average transaction amount is substantially larger than the majority of
the customers, and her purchase frequency is dramatically lower. The subspace itself
speaks for why and to what extent Alice is an outlier. Using this information, you strate-
gically decide to approach Alice by suggesting options that could improve her purchase
frequency at AllElectronics.
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“How can we detect outliers in subspaces?” We use a grid-based subspace outlier
detection method to illustrate. The major ideas are as follows. We consider projections of
the data onto various subspaces. If, in a subspace, we find an area that has a density that
is much lower than average, then the area may contain outliers. To find such projections,
we first discretize the data into a grid in an equal-depth way. That is, each dimension is
partitioned into φ equal-depth ranges, where each range contains a fraction, f , of the

objects
(

f = 1
φ

)
. Equal-depth partitioning is used because data along different dimen-

sions may have different localities. An equal-width partitioning of the space may not be
able to reflect such differences in locality.

Next, we search for regions defined by ranges in subspaces that are signifi-
cantly sparse. To quantify what we mean by “significantly sparse,” let’s consider a
k-dimensional cube formed by k ranges on k dimensions. Suppose the data set con-
tains n objects. If the objects are independently distributed, the expected number of

objects falling into a k-dimensional region is
(

1
φ

)k
n= f kn. The standard deviation of

the number of points in a k-dimensional region is
√

f k(1− f k)n. Suppose a specific
k-dimensional cube C has n(C) objects. We can define the sparsity coefficient of C as

S(C)= n(C)− f kn√
f k(1− f k)n

. (12.22)

If S(C) < 0, then C contains fewer objects than expected. The smaller the value of S(C)

(i.e., the more negative), the sparser C is and the more likely the objects in C are outliers
in the subspace.

By assuming S(C) follows a normal distribution, we can use normal distribution
tables to determine the probabilistic significance level for an object that deviates dra-
matically from the average for an a priori assumption of the data following a uniform
distribution. In general, the assumption of uniform distribution does not hold. How-
ever, the sparsity coefficient still provides an intuitive measure of the “outlier-ness” of a
region.

To find cubes of significantly small sparsity coefficient values, a brute-force approach
is to search every cube in every possible subspace. The cost of this, however, is
immediately exponential. An evolutionary search can be conducted, which improves effi-
ciency at the expense of accuracy. For details, please refer to the bibliographic notes
(Section 12.11). The objects contained by cubes of very small sparsity coefficient values
are output as outliers.

In summary, searching for outliers in subspaces is advantageous in that the outliers
found tend to be better understood, owing to the context provided by the subspaces.
Challenges include making the search efficient and scalable.

12.8.3 Modeling High-Dimensional Outliers

An alternative approach for outlier detection methods in high-dimensional data tries to
develop new models for high-dimensional outliers directly. Such models typically avoid
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proximity measures and instead adopt new heuristics to detect outliers, which do not
deteriorate in high-dimensional data.

Let’s examine angle-based outlier detection (ABOD) as an example.

Example 12.25 Angle-based outliers. Figure 12.15 contains a set of points forming a cluster, with the
exception of c, which is an outlier. For each point o, we examine the angle ∠xoy for every
pair of points x, y such that x �= o, y �= o. The figure shows angle ∠dae as an example.

Note that for a point in the center of a cluster (e.g., a), the angles formed as such
differ widely. For a point that is at the border of a cluster (e.g., b), the angle variation is
smaller. For a point that is an outlier (e.g., c), the angle variable is substantially smaller.
This observation suggests that we can use the variance of angles for a point to determine
whether a point is an outlier.

We can combine angles and distance to model outliers. Mathematically, for each
point o, we use the distance-weighted angle variance as the outlier score. That is, given a
set of points, D, for a point, o ∈ D, we define the angle-based outlier factor (ABOF) as

ABOF(o)= VARx,y∈D,x �=o,y �=o
〈−→ox ,−→oy〉

dist(o,x)2dist(o,y)2
, (12.23)

where 〈, 〉 is the scalar product operator, and dist(,) is a norm distance.
Clearly, the farther away a point is from clusters and the smaller the variance of the

angles of a point, the smaller the ABOF. The ABOD computes the ABOF for each point,
and outputs a list of the points in the data set in ABOF-ascending order.

Computing the exact ABOF for every point in a database is costly, requiring a time
complexity of O(n3), where n is the number of points in the database. Obviously, this
exact algorithm does not scale up for large data sets. Approximation methods have been
developed to speed up the computation. The angle-based outlier detection idea has been
generalized to handle arbitrary data types. For additional details, see the bibliographic
notes (Section 12.11).

Developing native models for high-dimensional outliers can lead to effective meth-
ods. However, finding good heuristics for detecting high-dimensional outliers is dif-
ficult. Efficiency and scalability on large and high-dimensional data sets are major
challenges.

d

a

c

b e

Figure 12.15 Angle-based outliers.
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12.9 Summary

Assume that a given statistical process is used to generate a set of data objects. An
outlier is a data object that deviates significantly from the rest of the objects, as if it
were generated by a different mechanism.

Types of outliers include global outliers, contextual outliers, and collective outliers.
An object may be more than one type of outlier.

Global outliers are the simplest form of outlier and the easiest to detect. A contextual
outlier deviates significantly with respect to a specific context of the object (e.g., a
Toronto temperature value of 28◦C is an outlier if it occurs in the context of winter).
A subset of data objects forms a collective outlier if the objects as a whole deviate
significantly from the entire data set, even though the individual data objects may not
be outliers. Collective outlier detection requires background information to model
the relationships among objects to find outlier groups.

Challenges in outlier detection include finding appropriate data models, the depen-
dence of outlier detection systems on the application involved, finding ways to
distinguish outliers from noise, and providing justification for identifying outliers
as such.

Outlier detection methods can be categorized according to whether the sample
of data for analysis is given with expert-provided labels that can be used to build
an outlier detection model. In this case, the detection methods are supervised,
semi-supervised, or unsupervised. Alternatively, outlier detection methods may be
organized according to their assumptions regarding normal objects versus out-
liers. This categorization includes statistical methods, proximity-based methods, and
clustering-based methods.

Statistical outlier detection methods (or model-based methods) assume that the
normal data objects follow a statistical model, where data not following the model
are considered outliers. Such methods may be parametric (they assume that the data
are generated by a parametric distribution) or nonparametric (they learn a model for
the data, rather than assuming one a priori). Parametric methods for multivariate
data may employ the Mahalanobis distance, the χ2-statistic, or a mixture of mul-
tiple parametric models. Histograms and kernel density estimation are examples of
nonparametric methods.

Proximity-based outlier detection methods assume that an object is an outlier
if the proximity of the object to its nearest neighbors significantly deviates from
the proximity of most of the other objects to their neighbors in the same data
set. Distance-based outlier detection methods consult the neighborhood of an object,
defined by a given radius. An object is an outlier if its neighborhood does not have
enough other points. In density-based outlier detection methods, an object is an outlier
if its density is relatively much lower than that of its neighbors.
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Clustering-based outlier detection methods assume that the normal data objects
belong to large and dense clusters, whereas outliers belong to small or sparse clusters,
or do not belong to any clusters.

Classification-based outlier detection methods often use a one-class model. That is,
a classifier is built to describe only the normal class. Any samples that do not belong
to the normal class are regarded as outliers.

Contextual outlier detection and collective outlier detection explore structures in
the data. In contextual outlier detection, the structures are defined as contexts using
contextual attributes. In collective outlier detection, the structures are implicit and
are explored as part of the mining process. To detect such outliers, one approach
transforms the problem into one of conventional outlier detection. Another
approach models the structures directly.

Outlier detection methods for high-dimensional data can be divided into three
main approaches. These include extending conventional outlier detection, finding
outliers in subspaces, and modeling high-dimensional outliers.

12.10 Exercises

12.1 Give an application example where global outliers, contextual outliers, and collective
outliers are all interesting. What are the attributes, and what are the contextual and
behavioral attributes? How is the relationship among objects modeled in collective
outlier detection?

12.2 Give an application example of where the border between normal objects and outliers is
often unclear, so that the degree to which an object is an outlier has to be well estimated.

12.3 Adapt a simple semi-supervised method for outlier detection. Discuss the scenario
where you have (a) only some labeled examples of normal objects, and (b) only some
labeled examples of outliers.

12.4 Using an equal-depth histogram, design a way to assign an object an outlier score.

12.5 Consider the nested loop approach to mining distance-based outliers (Figure 12.6). Sup-
pose the objects in a data set are arranged randomly, that is, each object has the same
probability to appear in a position. Show that when the number of outlier objects is
small with respect to the total number of objects in the whole data set, the expected
number of distance calculations is linear to the number of objects.

12.6 In the density-based outlier detection method of Section 12.4.3, the definition of local
reachability density has a potential problem: lrdk(o)=∞ may occur. Explain why this
may occur and propose a fix to the issue.

12.7 Because clusters may form a hierarchy, outliers may belong to different granularity
levels. Propose a clustering-based outlier detection method that can find outliers at
different levels.
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12.8 In outlier detection by semi-supervised learning, what is the advantage of using objects
without labels in the training data set?

12.9 To understand why angle-based outlier detection is a heuristic method, give an example
where it does not work well. Can you come up with a method to overcome this issue?
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13Data Mining Trends
and Research Frontiers

As a young research field, data mining has made significant progress and covered a broad spec-
trum of applications since the 1980s. Today, data mining is used in a vast array of
areas. Numerous commercial data mining systems and services are available. Many chal-
lenges, however, still remain. In this final chapter, we introduce the mining of complex
data types as a prelude to further in-depth study readers may choose to do. In addi-
tion, we focus on trends and research frontiers in data mining. Section 13.1 presents an
overview of methodologies for mining complex data types, which extend the concepts
and tasks introduced in this book. Such mining includes mining time-series, sequential
patterns, and biological sequences; graphs and networks; spatiotemporal data, including
geospatial data, moving-object data, and cyber-physical system data; multimedia data;
text data; web data; and data streams. Section 13.2 briefly introduces other approaches
to data mining, including statistical methods, theoretical foundations, and visual and
audio data mining.

In Section 13.3, you will learn more about data mining applications in business and
in science, including the financial retail, and telecommunication industries, science and
engineering, and recommender systems. The social impacts of data mining are discussed
in Section 13.4, including ubiquitous and invisible data mining, and privacy-preserving
data mining. Finally, in Section 13.5 we speculate on current and expected data mining
trends that arise in response to new challenges in the field.

13.1 Mining Complex Data Types

In this section, we outline the major developments and research efforts in mining com-
plex data types. Complex data types are summarized in Figure 13.1. Section 13.1.1
covers mining sequence data such as time-series, symbolic sequences, and biological
sequences. Section 13.1.2 discusses mining graphs and social and information networks.
Section 13.1.3 addresses mining other kinds of data, including spatial data, spatiotem-
poral data, moving-object data, cyber-physical system data, multimedia data, text data,

c© 2012 Elsevier Inc. All rights reserved.
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Figure 13.1 Complex data types for mining.

web data, and data streams. Due to the broad scope of these themes, this section presents
only a high-level overview; these topics are not discussed in-depth in this book.

13.1.1 Mining Sequence Data: Time-Series, Symbolic
Sequences, and Biological Sequences

A sequence is an ordered list of events. Sequences may be categorized into three groups,
based on the characteristics of the events they describe: (1) time-series data, (2) symbolic
sequence data, and (3) biological sequences. Let’s consider each type.

In time-series data, sequence data consist of long sequences of numeric data,
recorded at equal time intervals (e.g., per minute, per hour, or per day). Time-series
data can be generated by many natural and economic processes such as stock markets,
and scientific, medical, or natural observations.

Symbolic sequence data consist of long sequences of event or nominal data, which
typically are not observed at equal time intervals. For many such sequences, gaps (i.e.,
lapses between recorded events) do not matter much. Examples include customer shop-
ping sequences and web click streams, as well as sequences of events in science and
engineering and in natural and social developments.

Biological sequences include DNA and protein sequences. Such sequences are typi-
cally very long, and carry important, complicated, but hidden semantic meaning. Here,
gaps are usually important.

Let’s look into data mining for each of these sequence data types.
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Similarity Search in Time-Series Data
A time-series data set consists of sequences of numeric values obtained over repeated
measurements of time. The values are typically measured at equal time intervals (e.g.,
every minute, hour, or day). Time-series databases are popular in many applications
such as stock market analysis, economic and sales forecasting, budgetary analysis, util-
ity studies, inventory studies, yield projections, workload projections, and process and
quality control. They are also useful for studying natural phenomena (e.g., atmosphere,
temperature, wind, earthquake), scientific and engineering experiments, and medical
treatments.

Unlike normal database queries, which find data that match a given query exactly,
a similarity search finds data sequences that differ only slightly from the given query
sequence. Many time-series similarity queries require subsequence matching, that is,
finding a set of sequences that contain subsequences that are similar to a given query
sequence.

For similarity search, it is often necessary to first perform data or dimensionality
reduction and transformation of time-series data. Typical dimensionality reduction tech-
niques include (1) the discrete Fourier transform (DFT), (2) discrete wavelet transforms
(DWT), and (3) singular value decomposition (SVD) based on principle components anal-
ysis (PCA). Because we touched on these concepts in Chapter 3, and because a thorough
explanation is beyond the scope of this book, we will not go into great detail here. With
such techniques, the data or signal is mapped to a signal in a transformed space. A small
subset of the “strongest” transformed coefficients are saved as features.

These features form a feature space, which is a projection of the transformed space.
Indices can be constructed on the original or transformed time-series data to speed
up a search. For a query-based similarity search, techniques include normalization
transformation, atomic matching (i.e., finding pairs of gap-free windows of a small
length that are similar), window stitching (i.e., stitching similar windows to form pairs
of large similar subsequences, allowing gaps between atomic matches), and subse-
quence ordering (i.e., linearly ordering the subsequence matches to determine whether
enough similar pieces exist). Numerous software packages exist for a similarity search in
time-series data.

Recently, researchers have proposed transforming time-series data into piecewise
aggregate approximations so that the data can be viewed as a sequence of symbolic rep-
resentations. The problem of similarity search is then transformed into one of matching
subsequences in symbolic sequence data. We can identify motifs (i.e., frequently occur-
ring sequential patterns) and build index or hashing mechanisms for an efficient search
based on such motifs. Experiments show this approach is fast and simple, and has
comparable search quality to that of DFT, DWT, and other dimensionality reduction
methods.

Regression and Trend Analysis in Time-Series Data
Regression analysis of time-series data has been studied substantially in the fields of
statistics and signal analysis. However, one may often need to go beyond pure regression
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Figure 13.2 Time-series data for the stock price of AllElectronics over time. The trend is shown with a
dashed curve, calculated by a moving average.

analysis and perform trend analysis for many practical applications. Trend analysis
builds an integrated model using the following four major components or movements
to characterize time-series data:

1. Trend or long-term movements: These indicate the general direction in which a
time-series graph is moving over time, for example, using weighted moving average
and the least squares methods to find trend curves such as the dashed curve indicated
in Figure 13.2.

2. Cyclic movements: These are the long-term oscillations about a trend line or curve.

3. Seasonal variations: These are nearly identical patterns that a time series appears
to follow during corresponding seasons of successive years such as holiday shopping
seasons. For effective trend analysis, the data often need to be “deseasonalized” based
on a seasonal index computed by autocorrelation.

4. Random movements: These characterize sporadic changes due to chance events such
as labor disputes or announced personnel changes within companies.

Trend analysis can also be used for time-series forecasting, that is, finding a math-
ematical function that will approximately generate the historic patterns in a time
series, and using it to make long-term or short-term predictions of future values.
ARIMA (auto-regressive integrated moving average), long-memory time-series modeling,
and autoregression are popular methods for such analysis.

Sequential Pattern Mining in Symbolic Sequences
A symbolic sequence consists of an ordered set of elements or events, recorded with
or without a concrete notion of time. There are many applications involving data of
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symbolic sequences such as customer shopping sequences, web click streams, program
execution sequences, biological sequences, and sequences of events in science and
engineering and in natural and social developments. Because biological sequences carry
very complicated semantic meaning and pose many challenging research issues, most
investigations are conducted in the field of bioinformatics.

Sequential pattern mining has focused extensively on mining symbolic sequences.
A sequential pattern is a frequent subsequence existing in a single sequence or a
set of sequences. A sequence α = 〈a1a2 · · ·an〉 is a subsequence of another sequence
β = 〈b1b2 · · ·bm〉 if there exist integers 1≤ j1 < j2 < · · ·< jn ≤m such that a1 ⊆ bj1 ,
a2 ⊆ bj2 , . . . ,an ⊆ bjn . For example, if α = 〈{ab},d〉 and β = 〈{abc},{be},{de},a〉, where
a,b, c,d, and e are items, then α is a subsequence of β. Mining of sequential patterns
consists of mining the set of subsequences that are frequent in one sequence or a set of
sequences. Many scalable algorithms have been developed as a result of extensive stud-
ies in this area. Alternatively, we can mine only the set of closed sequential patterns,
where a sequential pattern s is closed if there exists no sequential pattern s′, where s
is a proper subsequence of s′, and s′ has the same (frequency) support as s. Similar to
its frequent pattern mining counterpart, there are also studies on efficient mining of
multidimensional, multilevel sequential patterns.

As with constraint-based frequent pattern mining, user-specified constraints can be
used to reduce the search space in sequential pattern mining and derive only the patterns
that are of interest to the user. This is referred to as constraint-based sequential pattern
mining. Moreover, we may relax constraints or enforce additional constraints on the
problem of sequential pattern mining to derive different kinds of patterns from sequence
data. For example, we can enforce gap constraints so that the patterns derived con-
tain only consecutive subsequences or subsequences with very small gaps. Alternatively,
we may derive periodic sequential patterns by folding events into proper-size windows
and finding recurring subsequences in these windows. Another approach derives partial
order patterns by relaxing the requirement of strict sequential ordering in the mining of
subsequence patterns. Besides mining partial order patterns, sequential pattern mining
methodology can also be extended to mining trees, lattices, episodes, and some other
ordered patterns.

Sequence Classification
Most classification methods perform model construction based on feature vectors.
However, sequences do not have explicit features. Even with sophisticated feature selec-
tion techniques, the dimensionality of potential features can still be very high and the
sequential nature of features is difficult to capture. This makes sequence classification a
challenging task.

Sequence classification methods can be organized into three categories: (1) feature-
based classification, which transforms a sequence into a feature vector and then applies
conventional classification methods; (2) sequence distance–based classification, where
the distance function that measures the similarity between sequences determines the
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quality of the classification significantly; and (3) model-based classification such as using
hidden Markov model (HMM) or other statistical models to classify sequences.

For time-series or other numeric-valued data, the feature selection techniques for
symbolic sequences cannot be easily applied to time-series data without discretization.
However, discretization can cause information loss. A recently proposed time-series
shapelets method uses the time-series subsequences that can maximally represent a class
as the features. It achieves quality classification results.

Alignment of Biological Sequences
Biological sequences generally refer to sequences of nucleotides or amino acids. Biolog-
ical sequence analysis compares, aligns, indexes, and analyzes biological sequences and
thus plays a crucial role in bioinformatics and modern biology.

Sequence alignment is based on the fact that all living organisms are related by evo-
lution. This implies that the nucleotide (DNA, RNA) and protein sequences of species
that are closer to each other in evolution should exhibit more similarities. An alignment
is the process of lining up sequences to achieve a maximal identity level, which also
expresses the degree of similarity between sequences. Two sequences are homologous
if they share a common ancestor. The degree of similarity obtained by sequence align-
ment can be useful in determining the possibility of homology between two sequences.
Such an alignment also helps determine the relative positions of multiple species in an
evolution tree, which is called a phylogenetic tree.

The problem of alignment of biological sequences can be described as follows: Given
two or more input biological sequences, identify similar sequences with long conserved sub-
sequences. If the number of sequences to be aligned is exactly two, the problem is known
as pairwise sequence alignment; otherwise, it is multiple sequence alignment. The
sequences to be compared and aligned can be either nucleotides (DNA/RNA) or amino
acids (proteins). For nucleotides, two symbols align if they are identical. However, for
amino acids, two symbols align if they are identical, or if one can be derived from the
other by substitutions that are likely to occur in nature. There are two kinds of align-
ments: local alignments and global alignments. The former means that only portions of
the sequences are aligned, whereas the latter requires alignment over the entire length of
the sequences.

For either nucleotides or amino acids, insertions, deletions, and substitutions occur
in nature with different probabilities. Substitution matrices are used to represent the
probabilities of substitutions of nucleotides or amino acids and probabilities of inser-
tions and deletions. Usually, we use the gap character, −, to indicate positions where
it is preferable not to align two symbols. To evaluate the quality of alignments, a scor-
ing mechanism is typically defined, which usually counts identical or similar symbols as
positive scores and gaps as negative ones. The algebraic sum of the scores is taken as the
alignment measure. The goal of alignment is to achieve the maximal score among all the
possible alignments. However, it is very expensive (more exactly, an NP-hard problem)
to find optimal alignment. Therefore, various heuristic methods have been developed to
find suboptimal alignments.
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The dynamic programming approach is commonly used for sequence alignments.
Among many available analysis packages, BLAST (Basic Local Alignment Search Tool)
is one of the most popular tools in biosequence analysis.

Hidden Markov Model for Biological Sequence Analysis
Given a biological sequence, biologists would like to analyze what that sequence repre-
sents. To represent the structure or statistical regularities of sequence classes, biologists
construct various probabilistic models such as Markov chains and hidden Markov
models. In both models, the probability of a state depends only on that of the previous
state; therefore, they are particularly useful for the analysis of biological sequence data.
The most common methods for constructing hidden Markov models are the forward
algorithm, the Viterbi algorithm, and the Baum-Welch algorithm. Given a sequence of
symbols, x, the forward algorithm finds the probability of obtaining x in the model; the
Viterbi algorithm finds the most probable path (corresponding to x) through the model,
whereas the Baum-Welch algorithm learns or adjusts the model parameters so as to best
explain a set of training sequences.

13.1.2 Mining Graphs and Networks

Graphs represents a more general class of structures than sets, sequences, lattices, and
trees. There is a broad range of graph applications on the Web and in social networks,
information networks, biological networks, bioinformatics, chemical informatics, com-
puter vision, and multimedia and text retrieval. Hence, graph and network mining
have become increasingly important and heavily researched. We overview the follow-
ing major themes: (1) graph pattern mining; (2) statistical modeling of networks;
(3) data cleaning, integration, and validation by network analysis; (4) clustering and
classification of graphs and homogeneous networks; (5) clustering, ranking, and classifi-
cation of heterogeneous networks; (6) role discovery and link prediction in information
networks; (7) similarity search and OLAP in information networks; and (8) evolution
of information networks.

Graph Pattern Mining
Graph pattern mining is the mining of frequent subgraphs (also called (sub)graph pat-
terns) in one or a set of graphs. Methods for mining graph patterns can be categorized
into Apriori-based and pattern growth–based approaches. Alternatively, we can mine
the set of closed graphs where a graph g is closed if there exists no proper supergraph
g ′ that carries the same support count as g . Moreover, there are many variant graph
patterns, including approximate frequent graphs, coherent graphs, and dense graphs.
User-specified constraints can be pushed deep into the graph pattern mining process to
improve mining efficiency.

Graph pattern mining has many interesting applications. For example, it can be
used to generate compact and effective graph index structures based on the concept of
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frequent and discriminative graph patterns. Approximate structure similarity search can
be achieved by exploring graph index structures and multiple graph features. More-
over, classification of graphs can also be performed effectively using frequent and
discriminative subgraphs as features.

Statistical Modeling of Networks
A network consists of a set of nodes, each corresponding to an object associated with a set
of properties, and a set of edges (or links) connecting those nodes, representing relation-
ships between objects. A network is homogeneous if all the nodes and links are of the
same type, such as a friend network, a coauthor network, or a web page network. A net-
work is heterogeneous if the nodes and links are of different types, such as publication
networks (linking together authors, conferences, papers, and contents), and health-care
networks (linking together doctors, nurses, patients, diseases, and treatments).

Researchers have proposed multiple statistical models for modeling homogeneous
networks. The most well-known generative models are the random graph model (i.e.,
the Erdös-Rényi model), the Watts-Strogatz model, and the scale-free model. The scale-
free model assumes that the network follows the power law distribution (also known
as the Pareto distribution or the heavy-tailed distribution). In most large-scale social
networks, a small-world phenomenon is observed, that is, the network can be char-
acterized as having a high degree of local clustering for a small fraction of the nodes
(i.e., these nodes are interconnected with one another), while being no more than a few
degrees of separation from the remaining nodes.

Social networks exhibit certain evolutionary characteristics. They tend to follow the
densification power law, which states that networks become increasingly dense over
time. Shrinking diameter is another characteristic, where the effective diameter often
decreases as the network grows. Node out-degrees and in-degrees typically follow a heavy-
tailed distribution.

Data Cleaning, Integration, and Validation
by Information Network Analysis
Real-world data are often incomplete, noisy, uncertain, and unreliable. Information
redundancy may exist among the multiple pieces of data that are interconnected in a
large network. Information redundancy can be explored in such networks to perform
quality data cleaning, data integration, information validation, and trustability analy-
sis by network analysis. For example, we can distinguish authors who share the same
names by examining the networked connections with other heterogeneous objects such
as coauthors, publication venues, and terms. In addition, we can identify inaccurate
author information presented by booksellers by exploring a network built based on
author information provided by multiple booksellers.

Sophisticated information network analysis methods have been developed in this
direction, and in many cases, portions of the data serve as the “training set.” That
is, relatively clean and reliable data or a consensus of data from multiple information
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providers can be used to help consolidate the remaining, unreliable portions of the data.
This reduces the costly efforts of labeling the data by hand and of training on massive,
dynamic, real-world data sets.

Clustering and Classification of Graphs
and Homogeneous Networks
Large graphs and networks have cohesive structures, which are often hidden among
their massive, interconnected nodes and links. Cluster analysis methods have been devel-
oped on large networks to uncover network structures, discover hidden communities,
hubs, and outliers based on network topological structures and their associated prop-
erties. Various kinds of network clustering methods have been developed and can be
categorized as either partitioning, hierarchical, or density-based algorithms. Moreover,
given human-labeled training data, the discovery of network structures can be guided
by human-specified heuristic constraints. Supervised classification and semi-supervised
classification of networks are recent hot topics in the data mining research community.

Clustering, Ranking, and Classification
of Heterogeneous Networks
A heterogeneous network contains interconnected nodes and links of different types.
Such interconnected structures contain rich information, which can be used to mutu-
ally enhance nodes and links, and propagate knowledge from one type to another.
Clustering and ranking of such heterogeneous networks can be performed hand-in-
hand in the context that highly ranked nodes/links in a cluster may contribute more
than their lower-ranked counterparts in the evaluation of the cohesiveness of a cluster.
Clustering may help consolidate the high ranking of objects/links dedicated to the clus-
ter. Such mutual enhancement of ranking and clustering prompted the development
of an algorithm called RankClus. Moreover, users may specify different ranking rules
or present labeled nodes/links for certain data types. Knowledge of one type can be
propagated to other types. Such propagation reaches the nodes/links of the same type
via heterogeneous-type connections. Algorithms have been developed for supervised
learning and semi-supervised learning in heterogeneous networks.

Role Discovery and Link Prediction
in Information Networks
There exist many hidden roles or relationships among different nodes/links in a hetero-
geneous network. Examples include advisor–advisee and leader–follower relationships
in a research publication network. To discover such hidden roles or relationships, experts
can specify constraints based on their background knowledge. Enforcing such con-
straints may help cross-checking and validation in large interconnected networks.
Information redundancy in a network can often be used to help weed out objects/links
that do not follow such constraints.
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Similarly, link prediction can be performed based on the assessment of the rank-
ing of the expected relationships among the candidate nodes/links. For example, we
may predict which papers an author may write, read, or cite, based on the author’s
recent publication history and the trend of research on similar topics. Such studies often
require analyzing the proximity of network nodes/links and the trends and connections
of their similar neighbors. Roughly speaking, people refer to link prediction as link
mining; however, link mining covers additional tasks including link-based object classifi-
cation, object type prediction, link type prediction, link existence prediction, link cardinality
estimation, and object reconciliation (which predicts whether two objects are, in fact, the
same). It also includes group detection (which clusters objects), as well as subgraph iden-
tification (which finds characteristic subgraphs within networks) and metadata mining
(which uncovers schema-type information regarding unstructured data).

Similarity Search and OLAP in Information Networks
Similarity search is a primitive operation in database and web search engines. A hetero-
geneous information network consists of multityped, interconnected objects. Examples
include bibliographic networks and social media networks, where two objects are con-
sidered similar if they are linked in a similar way with multityped objects. In general,
object similarity within a network can be determined based on network structures
and object properties, and with similarity measures. Moreover, network clusters and
hierarchical network structures help organize objects in a network and identify subcom-
munities, as well as facilitate similarity search. Furthermore, similarity can be defined
differently per user. By considering different linkage paths, we can derive various
similarity semantics in a network, which is known as path-based similarity.

By organizing networks based on the notion of similarity and clusters, we can gen-
erate multiple hierarchies within a network. Online analytical processing (OLAP) can
then be performed. For example, we can drill down or dice information networks based
on different levels of abstraction and different angles of views. OLAP operations may
generate multiple, interrelated networks. The relationships among such networks may
disclose interesting hidden semantics.

Evolution of Social and Information Networks
Networks are dynamic and constantly evolving. Detecting evolving communities and
evolving regularities or anomalies in homogeneous or heterogeneous networks can help
people better understand the structural evolution of networks and predict trends and
irregularities in evolving networks. For homogeneous networks, the evolving commu-
nities discovered are subnetworks consisting of objects of the same type such as a set of
friends or coauthors. However, for heterogeneous networks, the communities discov-
ered are subnetworks consisting of objects of different types, such as a connected set
of papers, authors, venues, and terms, from which we can also derive a set of evolving
objects for each type, like evolving authors and themes.
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13.1.3 Mining Other Kinds of Data

In addition to sequences and graphs, there are many other kinds of semi-structured
or unstructured data, such as spatiotemporal, multimedia, and hypertext data, which
have interesting applications. Such data carry various kinds of semantics, are either
stored in or dynamically streamed through a system, and call for specialized data mining
methodologies. Thus, mining multiple kinds of data, including spatial data, spatiotem-
poral data, cyber-physical system data, multimedia data, text data, web data, and data
streams, are increasingly important tasks in data mining. In this subsection, we overview
the methodologies for mining these kinds of data.

Mining Spatial Data
Spatial data mining discovers patterns and knowledge from spatial data. Spatial data,
in many cases, refer to geospace-related data stored in geospatial data repositories. The
data can be in “vector” or “raster” formats, or in the form of imagery and geo-referenced
multimedia. Recently, large geographic data warehouses have been constructed by inte-
grating thematic and geographically referenced data from multiple sources. From these,
we can construct spatial data cubes that contain spatial dimensions and measures, and
support spatial OLAP for multidimensional spatial data analysis. Spatial data mining can
be performed on spatial data warehouses, spatial databases, and other geospatial data
repositories. Popular topics on geographic knowledge discovery and spatial data min-
ing include mining spatial associations and co-location patterns, spatial clustering, spatial
classification, spatial modeling, and spatial trend and outlier analysis.

Mining Spatiotemporal Data and Moving Objects
Spatiotemporal data are data that relate to both space and time. Spatiotemporal data
mining refers to the process of discovering patterns and knowledge from spatiotemporal
data. Typical examples of spatiotemporal data mining include discovering the evolution-
ary history of cities and lands, uncovering weather patterns, predicting earthquakes and
hurricanes, and determining global warming trends. Spatiotemporal data mining has
become increasingly important and has far-reaching implications, given the popular-
ity of mobile phones, GPS devices, Internet-based map services, weather services, and
digital Earth, as well as satellite, RFID, sensor, wireless, and video technologies.

Among many kinds of spatiotemporal data, moving-object data (i.e., data about mov-
ing objects) are especially important. For example, animal scientists attach telemetry
equipment on wildlife to analyze ecological behavior, mobility managers embed GPS
in cars to better monitor and guide vehicles, and meteorologists use weather satel-
lites and radars to observe hurricanes. Massive-scale moving-object data are becoming
rich, complex, and ubiquitous. Examples of moving-object data mining include mining
movement patterns of multiple moving objects (i.e., the discovery of relationships among
multiple moving objects such as moving clusters, leaders and followers, merge, convoy,
swarm, and pincer, as well as other collective movement patterns). Other examples of
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moving-object data mining include mining periodic patterns for one or a set of moving
objects, and mining trajectory patterns, clusters, models, and outliers.

Mining Cyber-Physical System Data
A cyber-physical system (CPS) typically consists of a large number of interacting
physical and information components. CPS systems may be interconnected so as to
form large heterogeneous cyber-physical networks. Examples of cyber-physical networks
include a patient care system that links a patient monitoring system with a network
of patient/medical information and an emergency handling system; a transportation
system that links a transportation monitoring network, consisting of many sensors and
video cameras, with a traffic information and control system; and a battlefield comman-
der system that links a sensor/reconnaissance network with a battlefield information
analysis system. Clearly, cyber-physical systems and networks will be ubiquitous and
form a critical component of modern information infrastructure.

Data generated in cyber-physical systems are dynamic, volatile, noisy, inconsistent,
and interdependent, containing rich spatiotemporal information, and they are critically
important for real-time decision making. In comparison with typical spatiotemporal
data mining, mining cyber-physical data requires linking the current situation with
a large information base, performing real-time calculations, and returning prompt
responses. Research in the area includes rare-event detection and anomaly analysis in
cyber-physical data streams, reliability and trustworthiness in cyber-physical data analy-
sis, effective spatiotemporal data analysis in cyber-physical networks, and the integration
of stream data mining with real-time automated control processes.

Mining Multimedia Data
Multimedia data mining is the discovery of interesting patterns from multimedia
databases that store and manage large collections of multimedia objects, including image
data, video data, audio data, as well as sequence data and hypertext data containing
text, text markups, and linkages. Multimedia data mining is an interdisciplinary field
that integrates image processing and understanding, computer vision, data mining, and
pattern recognition. Issues in multimedia data mining include content-based retrieval
and similarity search, and generalization and multidimensional analysis. Multimedia
data cubes contain additional dimensions and measures for multimedia information.
Other topics in multimedia mining include classification and prediction analysis, mining
associations, and video and audio data mining (Section 13.2.3).

Mining Text Data
Text mining is an interdisciplinary field that draws on information retrieval, data min-
ing, machine learning, statistics, and computational linguistics. A substantial portion
of information is stored as text such as news articles, technical papers, books, digital
libraries, email messages, blogs, and web pages. Hence, research in text mining has been
very active. An important goal is to derive high-quality information from text. This is
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typically done through the discovery of patterns and trends by means such as statistical
pattern learning, topic modeling, and statistical language modeling. Text mining usu-
ally requires structuring the input text (e.g., parsing, along with the addition of some
derived linguistic features and the removal of others, and subsequent insertion into a
database). This is followed by deriving patterns within the structured data, and evalua-
tion and interpretation of the output. “High quality” in text mining usually refers to a
combination of relevance, novelty, and interestingness.

Typical text mining tasks include text categorization, text clustering, concept/entity
extraction, production of granular taxonomies, sentiment analysis, document summa-
rization, and entity-relation modeling (i.e., learning relations between named entities).
Other examples include multilingual data mining, multidimensional text analysis, con-
textual text mining, and trust and evolution analysis in text data, as well as text mining
applications in security, biomedical literature analysis, online media analysis, and ana-
lytical customer relationship management. Various kinds of text mining and analysis
software and tools are available in academic institutions, open-source forums, and
industry. Text mining often also uses WordNet, Sematic Web, Wikipedia, and other
information sources to enhance the understanding and mining of text data.

Mining Web Data
The World Wide Web serves as a huge, widely distributed, global information center for
news, advertisements, consumer information, financial management, education, gov-
ernment, and e-commerce. It contains a rich and dynamic collection of information
about web page contents with hypertext structures and multimedia, hyperlink informa-
tion, and access and usage information, providing fertile sources for data mining. Web
mining is the application of data mining techniques to discover patterns, structures, and
knowledge from the Web. According to analysis targets, web mining can be organized
into three main areas: web content mining, web structure mining, and web usage mining.

Web content mining analyzes web content such as text, multimedia data, and struc-
tured data (within web pages or linked across web pages). This is done to understand the
content of web pages, provide scalable and informative keyword-based page indexing,
entity/concept resolution, web page relevance and ranking, web page content sum-
maries, and other valuable information related to web search and analysis. Web pages
can reside either on the surface web or on the deep Web. The surface web is that por-
tion of the Web that is indexed by typical search engines. The deep Web (or hidden Web)
refers to web content that is not part of the surface web. Its contents are provided by
underlying database engines.

Web content mining has been studied extensively by researchers, search engines, and
other web service companies. Web content mining can build links across multiple web
pages for individuals; therefore, it has the potential to inappropriately disclose personal
information. Studies on privacy-preserving data mining address this concern through
the development of techniques to protect personal privacy on the Web.

Web structure mining is the process of using graph and network mining theory
and methods to analyze the nodes and connection structures on the Web. It extracts
patterns from hyperlinks, where a hyperlink is a structural component that connects a
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web page to another location. It can also mine the document structure within a page
(e.g., analyze the treelike structure of page structures to describe HTML or XML tag
usage). Both kinds of web structure mining help us understand web contents and may
also help transform web contents into relatively structured data sets.

Web usage mining is the process of extracting useful information (e.g., user click
streams) from server logs. It finds patterns related to general or particular groups of
users; understands users’ search patterns, trends, and associations; and predicts what
users are looking for on the Internet. It helps improve search efficiency and effectiveness,
as well as promotes products or related information to different groups of users at the
right time. Web search companies routinely conduct web usage mining to improve their
quality of service.

Mining Data Streams
Stream data refer to data that flow into a system in vast volumes, change dynamically,
are possibly infinite, and contain multidimensional features. Such data cannot be stored
in traditional database systems. Moreover, most systems may only be able to read the
stream once in sequential order. This poses great challenges for the effective mining
of stream data. Substantial research has led to progress in the development of effi-
cient methods for mining data streams, in the areas of mining frequent and sequential
patterns, multidimensional analysis (e.g., the construction of stream cubes), classifica-
tion, clustering, outlier analysis, and the online detection of rare events in data streams.
The general philosophy is to develop single-scan or a-few-scan algorithms using limited
computing and storage capabilities.

This includes collecting information about stream data in sliding windows or tilted
time windows (where the most recent data are registered at the finest granularity and
the more distant data are registered at a coarser granularity), and exploring techniques
like microclustering, limited aggregation, and approximation. Many applications of
stream data mining can be explored—for example, real-time detection of anomalies in
computer network traffic, botnets, text streams, video streams, power-grid flows, web
searches, sensor networks, and cyber-physical systems.

13.2 Other Methodologies of Data Mining

Due to the broad scope of data mining and the large variety of data mining method-
ologies, not all methodologies of data mining can be thoroughly covered in this book.
In this section, we briefly discuss several interesting methodologies that were not fully
addressed in the previous chapters. These methodologies are listed in Figure 13.3.

13.2.1 Statistical Data Mining

The data mining techniques described in this book are primarily drawn from computer
science disciplines, including data mining, machine learning, data warehousing, and
algorithms. They are designed for the efficient handling of huge amounts of data that are



13.2 Other Methodologies of Data Mining 599

O
t
h
e
r    

D
a
t
a    

M
i
n
i
n
g     

M
e
t
h
o
d
o
l
o
g
i
e
s

Statistical
Data Mining

Visual and Audio
Data Mining

Foundations
of Data Mining

Data reduction
Data compression
Probability and statistical theory
Microeconomic view
Pattern discovery and inductive database

Data visualization
Data mining result visualization
Data mining process visualization
Interactive visual data mining
Audio data mining

Regression
Generalized linear models
Analysis of variance
Mixed-effect models
Factor analysis
Discriminant analysis
Survival analysis

Figure 13.3 Other data mining methodologies.

typically multidimensional and possibly of various complex types. There are, however,
many well-established statistical techniques for data analysis, particularly for numeric
data. These techniques have been applied extensively to scientific data (e.g., data from
experiments in physics, engineering, manufacturing, psychology, and medicine), as well
as to data from economics and the social sciences. Some of these techniques, such as
principal components analysis (Chapter 3) and clustering (Chapters 10 and 11), have
already been addressed in this book. A thorough discussion of major statistical methods
for data analysis is beyond the scope of this book; however, several methods are men-
tioned here for the sake of completeness. Pointers to these techniques are provided in
the bibliographic notes (Section 13.8).

Regression: In general, these methods are used to predict the value of a response
(dependent) variable from one or more predictor (independent) variables, where the
variables are numeric. There are various forms of regression, such as linear, multi-
ple, weighted, polynomial, nonparametric, and robust (robust methods are useful
when errors fail to satisfy normalcy conditions or when the data contain significant
outliers).

Generalized linear models: These models, and their generalization (generalized addi-
tive models), allow a categorical (nominal) response variable (or some transformation
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of it) to be related to a set of predictor variables in a manner similar to the model-
ing of a numeric response variable using linear regression. Generalized linear models
include logistic regression and Poisson regression.

Analysis of variance: These techniques analyze experimental data for two or more
populations described by a numeric response variable and one or more categorical
variables (factors). In general, an ANOVA (single-factor analysis of variance) problem
involves a comparison of k population or treatment means to determine if at least two
of the means are different. More complex ANOVA problems also exist.

Mixed-effect models: These models are for analyzing grouped data—data that can
be classified according to one or more grouping variables. They typically describe
relationships between a response variable and some covariates in data grouped
according to one or more factors. Common areas of application include multilevel
data, repeated measures data, block designs, and longitudinal data.

Factor analysis: This method is used to determine which variables are combined to
generate a given factor. For example, for many psychiatric data, it is not possible to
measure a certain factor of interest directly (e.g., intelligence); however, it is often
possible to measure other quantities (e.g., student test scores) that reflect the factor
of interest. Here, none of the variables is designated as dependent.

Discriminant analysis: This technique is used to predict a categorical response vari-
able. Unlike generalized linear models, it assumes that the independent variables
follow a multivariate normal distribution. The procedure attempts to determine
several discriminant functions (linear combinations of the independent variables)
that discriminate among the groups defined by the response variable. Discriminant
analysis is commonly used in social sciences.

Survival analysis: Several well-established statistical techniques exist for survival
analysis. These techniques originally were designed to predict the probability that
a patient undergoing a medical treatment would survive at least to time t . Methods
for survival analysis, however, are also commonly applied to manufacturing settings
to estimate the life span of industrial equipment. Popular methods include Kaplan-
Meier estimates of survival, Cox proportional hazards regression models, and their
extensions.

Quality control: Various statistics can be used to prepare charts for quality control,
such as Shewhart charts and CUSUM charts (both of which display group sum-
mary statistics). These statistics include the mean, standard deviation, range, count,
moving average, moving standard deviation, and moving range.

13.2.2 Views on Data Mining Foundations

Research on the theoretical foundations of data mining has yet to mature. A solid and
systematic theoretical foundation is important because it can help provide a coherent
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framework for the development, evaluation, and practice of data mining technology.
Several theories for the basis of data mining include the following:

Data reduction: In this theory, the basis of data mining is to reduce the data rep-
resentation. Data reduction trades accuracy for speed in response to the need to
obtain quick approximate answers to queries on very large databases. Data reduc-
tion techniques include singular value decomposition (the driving element behind
principal components analysis), wavelets, regression, log-linear models, histograms,
clustering, sampling, and the construction of index trees.

Data compression: According to this theory, the basis of data mining is to compress
the given data by encoding in terms of bits, association rules, decision trees, clusters,
and so on. Encoding based on the minimum description length principle states that
the “best” theory to infer from a data set is the one that minimizes the length of the
theory and of the data when encoded, using the theory as a predictor for the data.
This encoding is typically in bits.

Probability and statistical theory: According to this theory, the basis of data min-
ing is to discover joint probability distributions of random variables, for example,
Bayesian belief networks or hierarchical Bayesian models.

Microeconomic view: The microeconomic view considers data mining as the task
of finding patterns that are interesting only to the extent that they can be used in
the decision-making process of some enterprise (e.g., regarding marketing strategies
and production plans). This view is one of utility, in which patterns are considered
interesting if they can be acted on. Enterprises are regarded as facing optimization
problems, where the object is to maximize the utility or value of a decision. In this
theory, data mining becomes a nonlinear optimization problem.

Pattern discovery and inductive databases: In this theory, the basis of data mining
is to discover patterns occurring in the data such as associations, classification mod-
els, sequential patterns, and so on. Areas such as machine learning, neural network,
association mining, sequential pattern mining, clustering, and several other subfields
contribute to this theory. A knowledge base can be viewed as a database consisting
of data and patterns. A user interacts with the system by querying the data and the
theory (i.e., patterns) in the knowledge base. Here, the knowledge base is actually an
inductive database.

These theories are not mutually exclusive. For example, pattern discovery can also
be seen as a form of data reduction or data compression. Ideally, a theoretical frame-
work should be able to model typical data mining tasks (e.g., association, classification,
and clustering), have a probabilistic nature, be able to handle different forms of data,
and consider the iterative and interactive essence of data mining. Further efforts are
required to establish a well-defined framework for data mining that satisfies these
requirements.



602 Chapter 13 Data Mining Trends and Research Frontiers

13.2.3 Visual and Audio Data Mining

Visual data mining discovers implicit and useful knowledge from large data sets using
data and/or knowledge visualization techniques. The human visual system is controlled
by the eyes and brain, the latter of which can be thought of as a powerful, highly parallel
processing and reasoning engine containing a large knowledge base. Visual data mining
essentially combines the power of these components, making it a highly attractive and
effective tool for the comprehension of data distributions, patterns, clusters, and outliers
in data.

Visual data mining can be viewed as an integration of two disciplines: data visualiza-
tion and data mining. It is also closely related to computer graphics, multimedia systems,
human–computer interaction, pattern recognition, and high-performance computing.
In general, data visualization and data mining can be integrated in the following ways:

Data visualization: Data in a database or data warehouse can be viewed at differ-
ent granularity or abstraction levels, or as different combinations of attributes or
dimensions. Data can be presented in various visual forms, such as boxplots, 3-D
cubes, data distribution charts, curves, surfaces, and link graphs, as shown in the
data visualization section of Chapter 2. Figures 13.4 and 13.5 from StatSoft show

Figure 13.4 Boxplots showing multiple variable combinations in StatSoft. Source: www.statsoft.com.
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Figure 13.5 Multidimensional data distribution analysis in StatSoft. Source: www.statsoft.com.

data distributions in multidimensional space. Visual display can help give users a
clear impression and overview of the data characteristics in a large data set.

Data mining result visualization: Visualization of data mining results is the presen-
tation of the results or knowledge obtained from data mining in visual forms. Such
forms may include scatter plots and boxplots (Chapter 2), as well as decision trees,
association rules, clusters, outliers, and generalized rules. For example, scatter plots
are shown in Figure 13.6 from SAS Enterprise Miner. Figure 13.7, from MineSet,
uses a plane associated with a set of pillars to describe a set of association rules mined
from a database. Figure 13.8, also from MineSet, presents a decision tree. Figure 13.9,
from IBM Intelligent Miner, presents a set of clusters and the properties associated
with them.

Data mining process visualization: This type of visualization presents the various
processes of data mining in visual forms so that users can see how the data are
extracted and from which database or data warehouse they are extracted, as well as
how the selected data are cleaned, integrated, preprocessed, and mined. Moreover, it
may also show which method is selected for data mining, where the results are stored,
and how they may be viewed. Figure 13.10 shows a visual presentation of data mining
processes by the Clementine data mining system.
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Figure 13.6 Visualization of data mining results in SAS Enterprise Miner.

Interactive visual data mining: In (interactive) visual data mining, visualization
tools can be used in the data mining process to help users make smart data mining
decisions. For example, the data distribution in a set of attributes can be displayed
using colored sectors (where the whole space is represented by a circle). This dis-
play helps users determine which sector should first be selected for classification
and where a good split point for this sector may be. An example of this is shown in
Figure 13.11, which is the output of a perception-based classification (PBC) system
developed at the University of Munich.

Audio data mining uses audio signals to indicate the patterns of data or the features
of data mining results. Although visual data mining may disclose interesting patterns
using graphical displays, it requires users to concentrate on watching patterns and iden-
tifying interesting or novel features within them. This can sometimes be quite tiresome.
If patterns can be transformed into sound and music, then instead of watching pic-
tures, we can listen to pitchs, rhythm, tune, and melody to identify anything interesting
or unusual. This may relieve some of the burden of visual concentration and be more
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Figure 13.7 Visualization of association rules in MineSet.

Figure 13.8 Visualization of a decision tree in MineSet.
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Figure 13.9 Visualization of cluster groupings in IBM Intelligent Miner.

Figure 13.10 Visualization of data mining processes by Clementine.
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Figure 13.11 Perception-based classification, an interactive visual mining approach.

relaxing than visual mining. Therefore, audio data mining is an interesting complement
to visual mining.

13.3 Data Mining Applications

In this book, we have studied principles and methods for mining relational data, data
warehouses, and complex data types. Because data mining is a relatively young discipline
with wide and diverse applications, there is still a nontrivial gap between general princi-
ples of data mining and application-specific, effective data mining tools. In this section,
we examine several application domains, as listed in Figure 13.12. We discuss how
customized data mining methods and tools should be developed for such applications.

13.3.1 Data Mining for Financial Data Analysis

Most banks and financial institutions offer a wide variety of banking, investment, and
credit services (the latter include business, mortgage, and automobile loans and credit
cards). Some also offer insurance and stock investment services.
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Figure 13.12 Common data mining application domains.

Financial data collected in the banking and financial industry are often relatively
complete, reliable, and of high quality, which facilitates systematic data analysis and data
mining. Here we present a few typical cases.

Design and construction of data warehouses for multidimensional data analysis
and data mining: Like many other applications, data warehouses need to be con-
structed for banking and financial data. Multidimensional data analysis methods
should be used to analyze the general properties of such data. For example, a com-
pany’s financial officer may want to view the debt and revenue changes by month,
region, and sector, and other factors, along with maximum, minimum, total, aver-
age, trend, deviation, and other statistical information. Data warehouses, data cubes
(including advanced data cube concepts such as multifeature, discovery-driven,
regression, and prediction data cubes), characterization and class comparisons, clus-
tering, and outlier analysis will all play important roles in financial data analysis and
mining.

Loan payment prediction and customer credit policy analysis: Loan payment pre-
diction and customer credit analysis are critical to the business of a bank. Many
factors can strongly or weakly influence loan payment performance and customer
credit rating. Data mining methods, such as attribute selection and attribute rele-
vance ranking, may help identify important factors and eliminate irrelevant ones.
For example, factors related to the risk of loan payments include loan-to-value ratio,
term of the loan, debt ratio (total amount of monthly debt versus total monthly
income), payment-to-income ratio, customer income level, education level, resi-
dence region, and credit history. Analysis of the customer payment history may find
that, say, payment-to-income ratio is a dominant factor, while education level and
debt ratio are not. The bank may then decide to adjust its loan-granting policy so
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as to grant loans to those customers whose applications were previously denied but
whose profiles show relatively low risks according to the critical factor analysis.

Classification and clustering of customers for targeted marketing: Classification
and clustering methods can be used for customer group identification and targeted
marketing. For example, we can use classification to identify the most crucial factors
that may influence a customer’s decision regarding banking. Customers with similar
behaviors regarding loan payments may be identified by multidimensional clustering
techniques. These can help identify customer groups, associate a new customer with
an appropriate customer group, and facilitate targeted marketing.

Detection of money laundering and other financial crimes: To detect money laun-
dering and other financial crimes, it is important to integrate information from
multiple, heterogeneous databases (e.g., bank transaction databases and federal or
state crime history databases), as long as they are potentially related to the study.
Multiple data analysis tools can then be used to detect unusual patterns, such as large
amounts of cash flow at certain periods, by certain groups of customers. Useful tools
include data visualization tools (to display transaction activities using graphs by time
and by groups of customers), linkage and information network analysis tools (to
identify links among different customers and activities), classification tools (to fil-
ter unrelated attributes and rank the highly related ones), clustering tools (to group
different cases), outlier analysis tools (to detect unusual amounts of fund transfers
or other activities), and sequential pattern analysis tools (to characterize unusual
access sequences). These tools may identify important relationships and patterns
of activities and help investigators focus on suspicious cases for further detailed
examination.

13.3.2 Data Mining for Retail and Telecommunication Industries

The retail industry is a well-fit application area for data mining, since it collects huge
amounts of data on sales, customer shopping history, goods transportation, consump-
tion, and service. The quantity of data collected continues to expand rapidly, especially
due to the increasing availability, ease, and popularity of business conducted on the Web,
or e-commerce. Today, most major chain stores also have web sites where customers
can make purchases online. Some businesses, such as Amazon.com (www.amazon.com),
exist solely online, without any brick-and-mortar (i.e., physical) store locations. Retail
data provide a rich source for data mining.

Retail data mining can help identify customer buying behaviors, discover customer
shopping patterns and trends, improve the quality of customer service, achieve better
customer retention and satisfaction, enhance goods consumption ratios, design more
effective goods transportation and distribution policies, and reduce the cost of business.

A few examples of data mining in the retail industry are outlined as follows:

Design and construction of data warehouses: Because retail data cover a wide spec-
trum (including sales, customers, employees, goods transportation, consumption,
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and services), there can be many ways to design a data warehouse for this industry.
The levels of detail to include can vary substantially. The outcome of preliminary
data mining exercises can be used to help guide the design and development of data
warehouse structures. This involves deciding which dimensions and levels to include
and what preprocessing to perform to facilitate effective data mining.

Multidimensional analysis of sales, customers, products, time, and region: The
retail industry requires timely information regarding customer needs, product sales,
trends, and fashions, as well as the quality, cost, profit, and service of commodities.
It is therefore important to provide powerful multidimensional analysis and visual-
ization tools, including the construction of sophisticated data cubes according to the
needs of data analysis. The advanced data cube structures introduced in Chapter 5
are useful in retail data analysis because they facilitate analysis on multidimensional
aggregates with complex conditions.

Analysis of the effectiveness of sales campaigns: The retail industry conducts sales
campaigns using advertisements, coupons, and various kinds of discounts and
bonuses to promote products and attract customers. Careful analysis of the effec-
tiveness of sales campaigns can help improve company profits. Multidimensional
analysis can be used for this purpose by comparing the amount of sales and the num-
ber of transactions containing the sales items during the sales period versus those
containing the same items before or after the sales campaign. Moreover, association
analysis may disclose which items are likely to be purchased together with the items
on sale, especially in comparison with the sales before or after the campaign.

Customer retention—analysis of customer loyalty: We can use customer loyalty
card information to register sequences of purchases of particular customers. Cus-
tomer loyalty and purchase trends can be analyzed systematically. Goods purchased
at different periods by the same customers can be grouped into sequences. Sequential
pattern mining can then be used to investigate changes in customer consumption or
loyalty and suggest adjustments on the pricing and variety of goods to help retain
customers and attract new ones.

Product recommendation and cross-referencing of items: By mining associations
from sales records, we may discover that a customer who buys a digital camera is
likely to buy another set of items. Such information can be used to form product
recommendations. Collaborative recommender systems (Section 13.3.5) use data min-
ing techniques to make personalized product recommendations during live customer
transactions, based on the opinions of other customers. Product recommendations
can also be advertised on sales receipts, in weekly flyers, or on the Web to help
improve customer service, aid customers in selecting items, and increase sales. Simi-
larly, information, such as “hot items this week” or attractive deals, can be displayed
together with the associative information to promote sales.

Fraudulent analysis and the identification of unusual patterns: Fraudulent activity
costs the retail industry millions of dollars per year. It is important to (1) identify
potentially fraudulent users and their atypical usage patterns; (2) detect attempts
to gain fraudulent entry or unauthorized access to individual and organizational
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accounts; and (3) discover unusual patterns that may need special attention. Many of
these patterns can be discovered by multidimensional analysis, cluster analysis, and
outlier analysis.

As another industry that handles huge amounts of data, the telecommunication
industry has quickly evolved from offering local and long-distance telephone services
to providing many other comprehensive communication services. These include cellu-
lar phone, smart phone, Internet access, email, text messages, images, computer and web
data transmissions, and other data traffic. The integration of telecommunication, com-
puter network, Internet, and numerous other means of communication and computing
has been under way, changing the face of telecommunications and computing. This has
created a great demand for data mining to help understand business dynamics, identify
telecommunication patterns, catch fraudulent activities, make better use of resources,
and improve service quality.

Data mining tasks in telecommunications share many similarities with those in
the retail industry. Common tasks include constructing large-scale data warehouses,
performing multidimensional visualization, OLAP, and in-depth analysis of trends,
customer patterns, and sequential patterns. Such tasks contribute to business improve-
ments, cost reduction, customer retention, fraud analysis, and sharpening the edges
of competition. There are many data mining tasks for which customized data mining
tools for telecommunication have been flourishing and are expected to play increasingly
important roles in business.

Data mining has been popularly used in many other industries, such as insurance,
manufacturing, and health care, as well as for the analysis of governmental and insti-
tutional administration data. Although each industry has its own characteristic data
sets and application demands, they share many common principles and methodolo-
gies. Therefore, through effective mining in one industry, we may gain experience and
methodologies that can be transferred to other industrial applications.

13.3.3 Data Mining in Science and Engineering

In the past, many scientific data analysis tasks tended to handle relatively small and
homogeneous data sets. Such data were typically analyzed using a “formulate hypothesis,
build model, and evaluate results” paradigm. In these cases, statistical techniques were
typically employed for their analysis (see Section 13.2.1). Massive data collection and
storage technologies have recently changed the landscape of scientific data analy-
sis. Today, scientific data can be amassed at much higher speeds and lower costs.
This has resulted in the accumulation of huge volumes of high-dimensional data,
stream data, and heterogenous data, containing rich spatial and temporal informa-
tion. Consequently, scientific applications are shifting from the “hypothesize-and-test”
paradigm toward a “collect and store data, mine for new hypotheses, confirm with data or
experimentation” process. This shift brings about new challenges for data mining.

Vast amounts of data have been collected from scientific domains (including geo-
sciences, astronomy, meteorology, geology, and biological sciences) using sophisticated
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telescopes, multispectral high-resolution remote satellite sensors, global positioning sys-
tems, and new generations of biological data collection and analysis technologies. Large
data sets are also being generated due to fast numeric simulations in various fields such
as climate and ecosystem modeling, chemical engineering, fluid dynamics, and struc-
tural mechanics. Here we look at some of the challenges brought about by emerging
scientific applications of data mining.

Data warehouses and data preprocessing: Data preprocessing and data warehouses
are critical for information exchange and data mining. Creating a warehouse often
requires finding means for resolving inconsistent or incompatible data collected
in multiple environments and at different time periods. This requires reconcil-
ing semantics, referencing systems, geometry, measurements, accuracy, and preci-
sion. Methods are needed for integrating data from heterogeneous sources and for
identifying events.

For instance, consider climate and ecosystem data, which are spatial and tempo-
ral and require cross-referencing geospatial data. A major problem in analyzing such
data is that there are too many events in the spatial domain but too few in the tem-
poral domain. For example, El Nino events occur only every four to seven years, and
previous data on them might not have been collected as systematically as they are
today. Methods are also needed for the efficient computation of sophisticated spatial
aggregates and the handling of spatial-related data streams.

Mining complex data types: Scientific data sets are heterogeneous in nature. They
typically involve semi-structured and unstructured data, such as multimedia data
and georeferenced stream data, as well as data with sophisticated, deeply hidden
semantics (e.g., genomic and proteomic data). Robust and dedicated analysis meth-
ods are needed for handling spatiotemporal data, biological data, related concept
hierarchies, and complex semantic relationships. For example, in bioinformatics,
a research problem is to identify regulatory influences on genes. Gene regulation
refers to how genes in a cell are switched on (or off) to determine the cell’s func-
tions. Different biological processes involve different sets of genes acting together
in precisely regulated patterns. Thus, to understand a biological process we need to
identify the participating genes and their regulators. This requires the development
of sophisticated data mining methods to analyze large biological data sets for clues
about regulatory influences on specific genes, by finding DNA segments (“regulatory
sequences”) mediating such influence.

Graph-based and network-based mining: It is often difficult or impossible to
model several physical phenomena and processes due to limitations of existing
modeling approaches. Alternatively, labeled graphs and networks may be used to
capture many of the spatial, topological, geometric, biological, and other relational
characteristics present in scientific data sets. In graph or network modeling, each
object to be mined is represented by a vertex in a graph, and edges between ver-
tices represent relationships between objects. For example, graphs can be used to
model chemical structures, biological pathways, and data generated by numeric
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simulations such as fluid-flow simulations. The success of graph or network mod-
eling, however, depends on improvements in the scalability and efficiency of many
graph-based data mining tasks such as classification, frequent pattern mining, and
clustering.

Visualization tools and domain-specific knowledge: High-level graphical user
interfaces and visualization tools are required for scientific data mining systems.
These should be integrated with existing domain-specific data and information sys-
tems to guide researchers and general users in searching for patterns, interpreting
and visualizing discovered patterns, and using discovered knowledge in their decision
making.

Data mining in engineering shares many similarities with data mining in science.
Both practices often collect massive amounts of data, and require data preprocessing,
data warehousing, and scalable mining of complex types of data. Both typically use
visualization and make good use of graphs and networks. Moreover, many engineer-
ing processes need real-time responses, and so mining data streams in real time often
becomes a critical component.

Massive amounts of human communication data pour into our daily life. Such com-
munication exists in many forms, including news, blogs, articles, web pages, online
discussions, product reviews, twitters, messages, advertisements, and communications,
both on the Web and in various kinds of social networks. Hence, data mining in social
science and social studies has become increasingly popular. Moreover, user or reader
feedback regarding products, speeches, and articles can be analyzed to deduce general
opinions and sentiments on the views of those in society. The analysis results can be
used to predict trends, improve work, and help in decision making.

Computer science generates unique kinds of data. For example, computer programs
can be long, and their execution often generates huge-size traces. Computer networks
can have complex structures and the network flows can be dynamic and massive. Sensor
networks may generate large amounts of data with varied reliability. Computer systems
and databases can suffer from various kinds of attacks, and their system/data accessing
may raise security and privacy concerns. These unique kinds of data provide fertile land
for data mining.

Data mining in computer science can be used to help monitor system status,
improve system performance, isolate software bugs, detect software plagiarism, analyze
computer system faults, uncover network intrusions, and recognize system malfunc-
tions. Data mining for software and system engineering can operate on static or dynamic
(i.e., stream-based) data, depending on whether the system dumps traces beforehand for
postanalysis or if it must react in real time to handle online data.

Various methods have been developed in this domain, which integrate and extend
methods from machine learning, data mining, software/system engineering, pattern
recognition, and statistics. Data mining in computer science is an active and rich domain
for data miners because of its unique challenges. It requires the further development
of sophisticated, scalable, and real-time data mining and software/system engineering
methods.
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13.3.4 Data Mining for Intrusion Detection and Prevention

The security of our computer systems and data is at continual risk. The extensive growth
of the Internet and the increasing availability of tools and tricks for intruding and
attacking networks have prompted intrusion detection and prevention to become a
critical component of networked systems. An intrusion can be defined as any set of
actions that threaten the integrity, confidentiality, or availability of a network resource
(e.g., user accounts, file systems, system kernels, and so on). Intrusion detection sys-
tems and intrusion prevention systems both monitor network traffic and/or system
executions for malicious activities. However, the former produces reports whereas the
latter is placed in-line and is able to actively prevent/block intrusions that are detected.
The main functions of an intrusion prevention system are to identify malicious activ-
ity, log information about said activity, attempt to block/stop activity, and report
activity.

The majority of intrusion detection and prevention systems use either signature-
based detection or anomaly-based detection.

Signature-based detection: This method of detection utilizes signatures, which
are attack patterns that are preconfigured and predetermined by domain experts.
A signature-based intrusion prevention system monitors the network traffic for
matches to these signatures. Once a match is found, the intrusion detection sys-
tem will report the anomaly and an intrusion prevention system will take additional
appropriate actions. Note that since the systems are usually quite dynamic, the sig-
natures need to be updated laboriously whenever new software versions arrive or
changes in network configuration or other situations occur. Another drawback is
that such a detection mechanism can only identify cases that match the signatures.
That is, it is unable to detect new or previously unknown intrusion tricks.

Anomaly-based detection: This method builds models of normal network behavior
(called profiles) that are then used to detect new patterns that significantly deviate
from the profiles. Such deviations may represent actual intrusions or simply be new
behaviors that need to be added to the profiles. The main advantage of anomaly
detection is that it may detect novel intrusions that have not yet been observed. Typ-
ically, a human analyst must sort through the deviations to ascertain which represent
real intrusions. A limiting factor of anomaly detection is the high percentage of false
positives. New patterns of intrusion can be added to the set of signatures to enhance
signature-based detection.

Data mining methods can help an intrusion detection and prevention system to
enhance its performance in various ways as follows.

New data mining algorithms for intrusion detection: Data mining algorithms can
be used for both signature-based and anomaly-based detection. In signature-based
detection, training data are labeled as either “normal” or “intrusion.” A classi-
fier can then be derived to detect known intrusions. Research in this area has
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included the application of classification algorithms, association rule mining, and
cost-sensitive modeling. Anomaly-based detection builds models of normal beha-
vior and automatically detects significant deviations from it. Methods include the
application of clustering, outlier analysis, and classification algorithms and statisti-
cal approaches. The techniques used must be efficient and scalable, and capable of
handling network data of high volume, dimensionality, and heterogeneity.

Association, correlation, and discriminative pattern analyses help select and build
discriminative classifiers: Association, correlation, and discriminative pattern min-
ing can be applied to find relationships between system attributes describing the
network data. Such information can provide insight regarding the selection of useful
attributes for intrusion detection. New attributes derived from aggregated data may
also be helpful such as summary counts of traffic matching a particular pattern.

Analysis of stream data: Due to the transient and dynamic nature of intrusions
and malicious attacks, it is crucial to perform intrusion detection in the data stream
environment. Moreover, an event may be normal on its own, but considered mali-
cious if viewed as part of a sequence of events. Thus, it is necessary to study what
sequences of events are frequently encountered together, find sequential patterns, and
identify outliers. Other data mining methods for finding evolving clusters and build-
ing dynamic classification models in data streams are also necessary for real-time
intrusion detection.

Distributed data mining: Intrusions can be launched from several different loca-
tions and targeted to many different destinations. Distributed data mining methods
may be used to analyze network data from several network locations to detect these
distributed attacks.

Visualization and querying tools: Visualization tools should be available for view-
ing any anomalous patterns detected. Such tools may include features for viewing
associations, discriminative patterns, clusters, and outliers. Intrusion detection sys-
tems should also have a graphical user interface that allows security analysts to pose
queries regarding the network data or intrusion detection results.

In summary, computer systems are at continual risk of breaks in security. Data mining
technology can be used to develop strong intrusion detection and prevention systems,
which may employ signature-based or anomaly-based detection.

13.3.5 Data Mining and Recommender Systems

Today’s consumers are faced with millions of goods and services when shopping online.
Recommender systems help consumers by making product recommendations that are
likely to be of interest to the user such as books, CDs, movies, restaurants, online
news articles, and other services. Recommender systems may use either a content-
based approach, a collaborative approach, or a hybrid approach that combines both
content-based and collaborative methods.
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The content-based approach recommends items that are similar to items the
user preferred or queried in the past. It relies on product features and textual item
descriptions. The collaborative approach (or collaborative filtering approach) may
consider a user’s social environment. It recommends items based on the opinions of
other customers who have similar tastes or preferences as the user. Recommender sys-
tems use a broad range of techniques from information retrieval, statistics, machine
learning, and data mining to search for similarities among items and customer prefer-
ences. Consider Example 13.1.

Example 13.1 Scenarios of using a recommender system. Suppose that you visit the web site of an
online bookstore (e.g., Amazon) with the intention of purchasing a book that you have
been wanting to read. You type in the name of the book. This is not the first time you
have visited the web site. You have browsed through it before and even made purchases
from it last Christmas. The web store remembers your previous visits, having stored click
stream information and information regarding your past purchases. The system displays
the description and price of the book you have just specified. It compares your interests
with other customers having similar interests and recommends additional book titles,
saying “Customers who bought the book you have specified also bought these other titles as
well.” From surveying the list, you see another title that sparks your interest and decide
to purchase that one as well.

Now suppose you go to another online store with the intention of purchasing a digital
camera. The system suggests additional items to consider based on previously mined
sequential patterns, such as “Customers who buy this kind of digital camera are likely to
buy a particular brand of printer, memory card, or photo editing software within three
months.” You decide to buy just the camera, without any additional items. A week later,
you receive coupons from the store regarding the additional items.

An advantage of recommender systems is that they provide personalization for cus-
tomers of e-commerce, promoting one-to-one marketing. Amazon, a pioneer in the use
of collaborative recommender systems, offers “a personalized store for every customer”
as part of their marketing strategy. Personalization can benefit both consumers and the
company involved. By having more accurate models of their customers, companies gain
a better understanding of customer needs. Serving these needs can result in greater suc-
cess regarding cross-selling of related products, upselling, product affinities, one-to-one
promotions, larger baskets, and customer retention.

The recommendation problem considers a set, C, of users and a set, S, of items. Let u
be a utility function that measures the usefulness of an item, s, to a user, c. The utility is
commonly represented by a rating and is initially defined only for items previously rated
by users. For example, when joining a movie recommendation system, users are typically
asked to rate several movies. The space C× S of all possible users and items is huge. The
recommendation system should be able to extrapolate from known to unknown ratings
so as to predict item–user combinations. Items with the highest predicted rating/utility
for a user are recommended to that user.
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“How is the utility of an item estimated for a user?” In content-based methods, it
is estimated based on the utilities assigned by the same user to other items that are
similar. Many such systems focus on recommending items containing textual infor-
mation, such as web sites, articles, and news messages. They look for commonalities
among items. For movies, they may look for similar genres, directors, or actors. For
articles, they may look for similar terms. Content-based methods are rooted in infor-
mation theory. They make use of keywords (describing the items) and user profiles
that contain information about users’ tastes and needs. Such profiles may be obtained
explicitly (e.g., through questionnaires) or learned from users’ transactional behavior
over time.

A collaborative recommender system tries to predict the utility of items for a user,
u, based on items previously rated by other users who are similar to u. For example,
when recommending books, a collaborative recommender system tries to find other
users who have a history of agreeing with u (e.g., they tend to buy similar books, or give
similar ratings for books). Collaborative recommender systems can be either memory
(or heuristic) based or model based.

Memory-based methods essentially use heuristics to make rating predictions based
on the entire collection of items previously rated by users. That is, the unknown rating
of an item–user combination can be estimated as an aggregate of ratings of the most
similar users for the same item. Typically, a k-nearest-neighbor approach is used, that is,
we find the k other users (or neighbors) that are most similar to our target user, u. Vari-
ous approaches can be used to compute the similarity between users. The most popular
approaches use either Pearson’s correlation coefficient (Section 3.3.2) or cosine simi-
larity (Section 2.4.7). A weighted aggregate can be used, which adjusts for the fact that
different users may use the rating scale differently. Model-based collaborative recom-
mender systems use a collection of ratings to learn a model, which is then used to make
rating predictions. For example, probabilistic models, clustering (which finds clusters
of like-minded customers), Bayesian networks, and other machine learning techniques
have been used.

Recommender systems face major challenges such as scalability and ensuring qual-
ity recommendations to the consumer. For example, regarding scalability, collaborative
recommender systems must be able to search through millions of potential neighbors
in real time. If the site is using browsing patterns as indications of product prefer-
ence, it may have thousands of data points for some of its customers. Ensuring quality
recommendations is essential to gain consumers’ trust. If consumers follow a system
recommendation but then do not end up liking the product, they are less likely to use
the recommender system again.

As with classification systems, recommender systems can make two types of errors:
false negatives and false positives. Here, false negatives are products that the system
fails to recommend, although the consumer would like them. False positives are prod-
ucts that are recommended, but which the consumer does not like. False positives
are less desirable because they can annoy or anger consumers. Content-based recom-
mender systems are limited by the features used to describe the items they recommend.
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Another challenge for both content-based and collaborative recommender systems is
how to deal with new users for which a buying history is not yet available.

Hybrid approaches integrate both content-based and collaborative methods to
achieve further improved recommendations. The Netflix Prize was an open competi-
tion held by an online DVD-rental service, with a payout of $1,000,000 for the best
recommender algorithm to predict user ratings for films, based on previous ratings.
The competition and other studies have shown that the predictive accuracy of a rec-
ommender system can be substantially improved when blending multiple predictors,
especially by using an ensemble of many substantially different methods, rather than
refining a single technique.

Collaborative recommender systems are a form of intelligent query answering,
which consists of analyzing the intent of a query and providing generalized, neighbor-
hood, or associated information relevant to the query. For example, rather than simply
returning the book description and price in response to a customer’s query, returning
additional information that is related to the query but that was not explicitly asked for
(e.g., book evaluation comments, recommendations of other books, or sales statistics)
provides an intelligent answer to the same query.

13.4 Data Mining and Society

For most of us, data mining is part of our daily lives, although we may often be unaware
of its presence. Section 13.4.1 looks at several examples of “ubiquitous and invisible”
data mining, affecting everyday things from the products stocked at our local super-
market, to the ads we see while surfing the Internet, to crime prevention. Data mining
can offer the individual many benefits by improving customer service and satisfaction
as well as lifestyle, in general. However, it also has serious implications regarding one’s
right to privacy and data security. These issues are the topic of Section 13.4.2.

13.4.1 Ubiquitous and Invisible Data Mining

Data mining is present in many aspects of our daily lives, whether we realize it or not.
It affects how we shop, work, and search for information, and can even influence our
leisure time, health, and well-being. In this section, we look at examples of such ubiq-
uitous (or ever-present) data mining. Several of these examples also represent invisible
data mining, in which “smart” software, such as search engines, customer-adaptive web
services (e.g., using recommender algorithms), “intelligent” database systems, email
managers, ticket masters, and so on, incorporates data mining into its functional
components, often unbeknownst to the user.

From grocery stores that print personalized coupons on customer receipts to online
stores that recommend additional items based on customer interests, data mining has
innovatively influenced what we buy, the way we shop, and our experience while shop-
ping. One example is Wal-Mart, which has hundreds of millions of customers visiting
its tens of thousands of stores every week. Wal-Mart allows suppliers to access data on
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their products and perform analyses using data mining software. This allows suppliers
to identify customer buying patterns at different stores, control inventory and prod-
uct placement, and identify new merchandizing opportunities. All of these affect which
items (and how many) end up on the stores’ shelves—something to think about the next
time you wander through the aisles at Wal-Mart.

Data mining has shaped the online shopping experience. Many shoppers routinely
turn to online stores to purchase books, music, movies, and toys. Recommender sys-
tems, discussed in Section 13.3.5, offer personalized product recommendations based
on the opinions of other customers. Amazon.com was at the forefront of using such a
personalized, data mining–based approach as a marketing strategy. It has observed that
in traditional brick-and-mortar stores, the hardest part is getting the customer into the
store. Once the customer is there, he or she is likely to buy something, since the cost
of going to another store is high. Therefore, the marketing for brick-and-mortar stores
tends to emphasize drawing customers in, rather than the actual in-store customer expe-
rience. This is in contrast to online stores, where customers can “walk out” and enter
another online store with just a click of the mouse. Amazon.com capitalized on this dif-
ference, offering a “personalized store for every customer.” They use several data mining
techniques to identify customer’s likes and make reliable recommendations.

While we are on the topic of shopping, suppose you have been doing a lot of buying
with your credit cards. Nowadays, it is not unusual to receive a phone call from one’s
credit card company regarding suspicious or unusual patterns of spending. Credit card
companies use data mining to detect fraudulent usage, saving billions of dollars a year.

Many companies increasingly use data mining for customer relationship man-
agement (CRM), which helps provide more customized, personal service addressing
individual customer’s needs, in lieu of mass marketing. By studying browsing and pur-
chasing patterns on web stores, companies can tailor advertisements and promotions
to customer profiles, so that customers are less likely to be annoyed with unwanted
mass mailings or junk mail. These actions can result in substantial cost savings for
companies. The customers further benefit in that they are more likely to be notified
of offers that are actually of interest, resulting in less waste of personal time and greater
satisfaction.

Data mining has greatly influenced the ways in which people use computers, search
for information, and work. Once you get on the Internet, for example, you decide to
check your email. Unbeknownst to you, several annoying emails have already been
deleted, thanks to a spam filter that uses classification algorithms to recognize spam.
After processing your email, you go to Google (www.google.com), which provides access
to information from billions of web pages indexed on its server. Google is one of the
most popular and widely used Internet search engines. Using Google to search for
information has become a way of life for many people.

Google is so popular that it has even become a new verb in the English language,
meaning “to search for (something) on the Internet using the Google search engine or,
by extension, any comprehensive search engine.”1 You decide to type in some keywords

1http://open-dictionary.com.
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for a topic of interest. Google returns a list of web sites on your topic, mined, indexed,
and organized by a set of data mining algorithms including PageRank. Moreover, if you
type “Boston New York,” Google will show you bus and train schedules from Boston to
New York; however, a minor change to “Boston Paris” will lead to flight schedules from
Boston to Paris. Such smart offerings of information or services are likely based on the
frequent patterns mined from the click streams of many previous queries.

While you are viewing the results of your Google query, various ads pop up relating
to your query. Google’s strategy of tailoring advertising to match the user’s interests is
one of the typical services being explored by every Internet search provider. This also
makes you happier, because you are less likely to be pestered with irrelevant ads.

Data mining is omnipresent, as can be seen from these daily-encountered examples.
We could go on and on with such scenarios. In many cases, data mining is invisible,
as users may be unaware that they are examining results returned by data mining or
that their clicks are actually fed as new data into some data mining functions. For data
mining to become further improved and accepted as a technology, continuing research
and development are needed in the many areas mentioned as challenges throughout this
book. These include efficiency and scalability, increased user interaction, incorporation
of background knowledge and visualization techniques, effective methods for finding
interesting patterns, improved handling of complex data types and stream data, real-
time data mining, web mining, and so on. In addition, the integration of data mining
into existing business and scientific technologies, to provide domain-specific data min-
ing tools, will further contribute to the advancement of the technology. The success of
data mining solutions tailored for e-commerce applications, as opposed to generic data
mining systems, is an example.

13.4.2 Privacy, Security, and Social Impacts of Data Mining

With more and more information accessible in electronic forms and available on the
Web, and with increasingly powerful data mining tools being developed and put into
use, there are increasing concerns that data mining may pose a threat to our privacy
and data security. However, it is important to note that many data mining applications
do not even touch personal data. Prominent examples include applications involving
natural resources, the prediction of floods and droughts, meteorology, astronomy, geog-
raphy, geology, biology, and other scientific and engineering data. Furthermore, most
studies in data mining research focus on the development of scalable algorithms and do
not involve personal data.

The focus of data mining technology is on the discovery of general or statistically
significant patterns, not on specific information regarding individuals. In this sense,
we believe that the real privacy concerns are with unconstrained access to individual
records, especially access to privacy-sensitive information such as credit card transaction
records, health-care records, personal financial records, biological traits, criminal/justice
investigations, and ethnicity. For the data mining applications that do involve personal
data, in many cases, simple methods such as removing sensitive IDs from data may
protect the privacy of most individuals. Nevertheless, privacy concerns exist wherever
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personally identifiable information is collected and stored in digital form, and data
mining programs are able to access such data, even during data preparation.

Improper or nonexistent disclosure control can be the root cause of privacy issues.
To handle such concerns, numerous data security-enhancing techniques have been
developed. In addition, there has been a great deal of recent effort on developing privacy-
preserving data mining methods. In this section, we look at some of the advances in
protecting privacy and data security in data mining.

“What can we do to secure the privacy of individuals while collecting and mining data?”
Many data security–enhancing techniques have been developed to help protect data.
Databases can employ a multilevel security model to classify and restrict data according
to various security levels, with users permitted access to only their authorized level. It has
been shown, however, that users executing specific queries at their authorized security
level can still infer more sensitive information, and that a similar possibility can occur
through data mining. Encryption is another technique in which individual data items
may be encoded. This may involve blind signatures (which build on public key encryp-
tion), biometric encryption (e.g., where the image of a person’s iris or fingerprint is used
to encode his or her personal information), and anonymous databases (which permit the
consolidation of various databases but limit access to personal information only to those
who need to know; personal information is encrypted and stored at different locations).
Intrusion detection is another active area of research that helps protect the privacy of
personal data.

Privacy-preserving data mining is an area of data mining research in response
to privacy protection in data mining. It is also known as privacy-enhanced or privacy-
sensitive data mining. It deals with obtaining valid data mining results without disclosing
the underlying sensitive data values. Most privacy-preserving data mining methods use
some form of transformation on the data to perform privacy preservation. Typically, such
methods reduce the granularity of representation to preserve privacy. For example, they
may generalize the data from individual customers to customer groups. This reduction
in granularity causes loss of information and possibly of the usefulness of the data
mining results. This is the natural trade-off between information loss and privacy.
Privacy-preserving data mining methods can be classified into the following categories.

Randomization methods: These methods add noise to the data to mask some
attribute values of records. The noise added should be sufficiently large so that
individual record values, especially sensitive ones, cannot be recovered. However,
it should be added skillfully so that the final results of data mining are basically
preserved. Techniques are designed to derive aggregate distributions from the per-
turbed data. Subsequently, data mining techniques can be developed to work with
these aggregate distributions.

The k-anonymity and l-diversity methods: Both of these methods alter individual
records so that they cannot be uniquely identified. In the k-anonymity method, the
granularity of data representation is reduced sufficiently so that any given record
maps onto at least k other records in the data. It uses techniques like generalization
and suppression. The k-anonymity method is weak in that, if there is a homogeneity
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of sensitive values within a group, then those values may be inferred for the altered
records. The l-diversity model was designed to handle this weakness by enforcing
intragroup diversity of sensitive values to ensure anonymization. The goal is to make
it sufficiently difficult for adversaries to use combinations of record attributes to
exactly identify individual records.

Distributed privacy preservation: Large data sets could be partitioned and dis-
tributed either horizontally (i.e., the data sets are partitioned into different subsets
of records and distributed across multiple sites) or vertically (i.e., the data sets are
partitioned and distributed by their attributes), or even in a combination of both.
While the individual sites may not want to share their entire data sets, they may
consent to limited information sharing with the use of a variety of protocols. The
overall effect of such methods is to maintain privacy for each individual object, while
deriving aggregate results over all of the data.

Downgrading the effectiveness of data mining results: In many cases, even though
the data may not be available, the output of data mining (e.g, association rules and
classification models) may result in violations of privacy. The solution could be to
downgrade the effectiveness of data mining by either modifying data or mining results,
such as hiding some association rules or slightly distorting some classification models.

Recently, researchers proposed new ideas in privacy-preserving data mining such as
the notion of differential privacy. The general idea is that, for any two data sets that
are close to one another (i.e., that differ only on a tiny data set such as a single ele-
ment), a given differentially private algorithm will behave approximately the same on
both data sets. This definition gives a strong guarantee that the presence or absence of a
tiny data set (e.g., representing an individual) will not affect the final output of the query
significantly. Based on this notion, a set of differential privacy-preserving data mining
algorithms have been developed. Research in this direction is ongoing. We expect more
powerful privacy-preserving data publishing and data mining algorithms in the near
future.

Like any other technology, data mining can be misused. However, we must not lose
sight of all the benefits that data mining research can bring, ranging from insights
gained from medical and scientific applications to increased customer satisfaction by
helping companies better suit their clients’ needs. We expect that computer scientists,
policy experts, and counterterrorism experts will continue to work with social scientists,
lawyers, companies, and consumers to take responsibility in building solutions to ensure
data privacy protection and security. In this way, we may continue to reap the benefits of
data mining in terms of time and money savings and the discovery of new knowledge.

13.5 Data Mining Trends

The diversity of data, data mining tasks, and data mining approaches poses many chal-
lenging research issues in data mining. The development of efficient and effective data
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mining methods, systems and services, and interactive and integrated data mining envi-
ronments is a key area of study. The use of data mining techniques to solve large or
sophisticated application problems is an important task for data mining researchers
and data mining system and application developers. This section describes some of the
trends in data mining that reflect the pursuit of these challenges.

Application exploration: Early data mining applications put a lot of effort into help-
ing businesses gain a competitive edge. The exploration of data mining for businesses
continues to expand as e-commerce and e-marketing have become mainstream in the
retail industry. Data mining is increasingly used for the exploration of applications
in other areas such as web and text analysis, financial analysis, industry, govern-
ment, biomedicine, and science. Emerging application areas include data mining for
counterterrorism and mobile (wireless) data mining. Because generic data mining
systems may have limitations in dealing with application-specific problems, we may
see a trend toward the development of more application-specific data mining sys-
tems and tools, as well as invisible data mining functions embedded in various kinds
of services.

Scalable and interactive data mining methods: In contrast with traditional data
analysis methods, data mining must be able to handle huge amounts of data effi-
ciently and, if possible, interactively. Because the amount of data being collected
continues to increase rapidly, scalable algorithms for individual and integrated
data mining functions become essential. One important direction toward improv-
ing the overall efficiency of the mining process while increasing user interaction is
constraint-based mining. This provides users with added control by allowing the
specification and use of constraints to guide data mining systems in their search for
interesting patterns and knowledge.

Integration of data mining with search engines, database systems, data warehouse
systems, and cloud computing systems: Search engines, database systems, data
warehouse systems, and cloud computing systems are mainstream information pro-
cessing and computing systems. It is important to ensure that data mining serves
as an essential data analysis component that can be smoothly integrated into such
an information processing environment. A data mining subsystem/service should be
tightly coupled with such systems as a seamless, unified framework or as an invisible
function. This will ensure data availability, data mining portability, scalability, high
performance, and an integrated information processing environment for multi-
dimensional data analysis and exploration.

Mining social and information networks: Mining social and information net-
works and link analysis are critical tasks because such networks are ubiquitous and
complex. The development of scalable and effective knowledge discovery meth-
ods and applications for large numbers of network data is essential, as outlined in
Section 13.1.2.

Mining spatiotemporal, moving-objects, and cyber-physical systems: Cyber-
physical systems as well as spatiotemporal data are mounting rapidly due to the
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popular use of cellular phones, GPS, sensors, and other wireless equipment. As
outlined in Section 13.1.3, there are many challenging research issues realizing
real-time and effective knowledge discovery with such data.

Mining multimedia, text, and web data: As outlined in Section 13.1.3, mining such
kinds of data is a recent focus in data mining research. Great progress has been made,
yet there are still many open issues to be solved.

Mining biological and biomedical data: The unique combination of complexity,
richness, size, and importance of biological and biomedical data warrants spe-
cial attention in data mining. Mining DNA and protein sequences, mining high-
dimensional microarray data, and biological pathway and network analysis are just
a few topics in this field. Other areas of biological data mining research include
mining biomedical literature, link analysis across heterogeneous biological data, and
information integration of biological data by data mining.

Data mining with software engineering and system engineering: Software pro-
grams and large computer systems have become increasingly bulky in size
sophisticated in complexity, and tend to originate from the integration of multiple
components developed by different implementation teams. This trend has made it
an increasingly challenging task to ensure software robustness and reliability. The
analysis of the executions of a buggy software program is essentially a data mining
process—tracing the data generated during program executions may disclose impor-
tant patterns and outliers that could lead to the eventual automated discovery of
software bugs. We expect that the further development of data mining methodolo-
gies for software/system debugging will enhance software robustness and bring new
vigor to software/system engineering.

Visual and audio data mining: Visual and audio data mining is an effective way
to integrate with humans’ visual and audio systems and discover knowledge from
huge amounts of data. A systematic development of such techniques will facilitate
the promotion of human participation for effective and efficient data analysis.

Distributed data mining and real-time data stream mining: Traditional data min-
ing methods, designed to work at a centralized location, do not work well in
many of the distributed computing environments present today (e.g., the Inter-
net, intranets, local area networks, high-speed wireless networks, sensor networks,
and cloud computing). Advances in distributed data mining methods are expected.
Moreover, many applications involving stream data (e.g., e-commerce, Web mining,
stock analysis, intrusion detection, mobile data mining, and data mining for coun-
terterrorism) require dynamic data mining models to be built in real time. Additional
research is needed in this direction.

Privacy protection and information security in data mining: An abundance of
personal or confidential information available in electronic forms, coupled with
increasingly powerful data mining tools, poses a threat to data privacy and security.
Growing interest in data mining for counterterrorism also adds to the concern.
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Further development of privacy-preserving data mining methods is foreseen. The
collaboration of technologists, social scientists, law experts, governments, and
companies is needed to produce a rigorous privacy and security protection mech-
anism for data publishing and data mining.

With confidence, we look forward to the next generation of data mining technology
and the further benefits that it will bring.

13.6 Summary

Mining complex data types poses challenging issues, for which there are many dedi-
cated lines of research and development. This chapter presents a high-level overview
of mining complex data types, which includes mining sequence data such as time
series, symbolic sequences, and biological sequences; mining graphs and networks;
and mining other kinds of data, including spatiotemporal and cyber-physical system
data, multimedia, text and Web data, and data streams.

Several well-established statistical methods have been proposed for data analysis
such as regression, generalized linear models, analysis of variance, mixed-effect mod-
els, factor analysis, discriminant analysis, survival analysis, and quality control. Full
coverage of statistical data analysis methods is beyond the scope of this book. Inter-
ested readers are referred to the statistical literature cited in the bibliographic notes
(Section 13.8).

Researchers have been striving to build theoretical foundations for data mining. Sev-
eral interesting proposals have appeared, based on data reduction, data compression,
probability and statistics theory, microeconomic theory, and pattern discovery–based
inductive databases.

Visual data mining integrates data mining and data visualization to discover implicit
and useful knowledge from large data sets. Visual data mining includes data visu-
alization, data mining result visualization, data mining process visualization, and
interactive visual data mining. Audio data mining uses audio signals to indicate data
patterns or features of data mining results.

Many customized data mining tools have been developed for domain-specific
applications, including finance, the retail and telecommunication industries, science
and engineering, intrusion detection and prevention, and recommender systems.
Such application domain-based studies integrate domain-specific knowledge with
data analysis techniques and provide mission-specific data mining solutions.

Ubiquitous data mining is the constant presence of data mining in many aspects
of our daily lives. It can influence how we shop, work, search for information, and
use a computer, as well as our leisure time, health, and well-being. In invisible data
mining, “smart” software, such as search engines, customer-adaptive web services
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(e.g., using recommender algorithms), email managers, and so on, incorporates data
mining into its functional components, often unbeknownst to the user.

A major social concern of data mining is the issue of privacy and data security.
Privacy-preserving data mining deals with obtaining valid data mining results with-
out disclosing underlying sensitive values. Its goal is to ensure privacy protection and
security while preserving the overall quality of data mining results.

Data mining trends include further efforts toward the exploration of new applica-
tion areas; improved scalable, interactive, and constraint-based mining methods; the
integration of data mining with web service, database, warehousing, and cloud com-
puting systems; and mining social and information networks. Other trends include
the mining of spatiotemporal and cyber-physical system data, biological data, soft-
ware/system engineering data, and multimedia and text data, in addition to web
mining, distributed and real-time data stream mining, visual and audio mining, and
privacy and security in data mining.

13.7 Exercises

13.1 Sequence data are ubiquitous and have diverse applications. This chapter presented a
general overview of sequential pattern mining, sequence classification, sequence sim-
ilarity search, trend analysis, biological sequence alignment, and modeling. However,
we have not covered sequence clustering. Present an overview of methods for sequence
clustering.

13.2 This chapter presented an overview of sequence pattern mining and graph pattern
mining methods. Mining tree patterns and partial order patterns is also studied in
research. Summarize the methods for mining structured patterns, including sequences,
trees, graphs, and partial order relationships. Examine what kinds of structural pattern
mining have not been covered in research. Propose applications that can be created for
such new mining problems.

13.3 Many studies analyze homogeneous information networks (e.g., social networks con-
sisting of friends linked with friends). However, many other applications involve het-
erogeneous information networks (i.e., networks linking multiple types of object such
as research papers, conference, authors, and topics). What are the major differences
between methodologies for mining heterogeneous information networks and methods
for their homogeneous counterparts?

13.4 Research and describe a data mining application that was not presented in this chapter.
Discuss how different forms of data mining can be used in the application.

13.5 Why is the establishment of theoretical foundations important for data mining? Name
and describe the main theoretical foundations that have been proposed for data min-
ing. Comment on how they each satisfy (or fail to satisfy) the requirements of an ideal
theoretical framework for data mining.
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13.6 (Research project) Building a theory of data mining requires setting up a theoretical
framework so that the major data mining functions can be explained under this
framework. Take one theory as an example (e.g., data compression theory) and examine
how the major data mining functions fit into this framework. If some functions do not
fit well into the current theoretical framework, can you propose a way to extend the
framework to explain these functions?

13.7 There is a strong linkage between statistical data analysis and data mining. Some people
think of data mining as automated and scalable methods for statistical data analysis.
Do you agree or disagree with this perception? Present one statistical analysis method
that can be automated and/or scaled up nicely by integration with current data mining
methodology.

13.8 What are the differences between visual data mining and data visualization? Data visu-
alization may suffer from the data abundance problem. For example, it is not easy to
visually discover interesting properties of network connections if a social network is
huge, with complex and dense connections. Propose a visualization method that may
help people see through the network topology to the interesting features of a social
network.

13.9 Propose a few implementation methods for audio data mining. Can we integrate audio
and visual data mining to bring fun and power to data mining? Is it possible to develop
some video data mining methods? State some scenarios and your solutions to make such
integrated audiovisual mining effective.

13.10 General-purpose computers and domain-independent relational database systems have
become a large market in the last several decades. However, many people feel that generic
data mining systems will not prevail in the data mining market. What do you think? For
data mining, should we focus our efforts on developing domain-independent data mining
tools or on developing domain-specific data mining solutions? Present your reasoning.

13.11 What is a recommender system? In what ways does it differ from a customer or product-
based clustering system? How does it differ from a typical classification or predictive
modeling system? Outline one method of collaborative filtering. Discuss why it works
and what its limitations are in practice.

13.12 Suppose that your local bank has a data mining system. The bank has been studying
your debit card usage patterns. Noticing that you make many transactions at home
renovation stores, the bank decides to contact you, offering information regarding their
special loans for home improvements.

(a) Discuss how this may conflict with your right to privacy.

(b) Describe another situation in which you feel that data mining can infringe on your
privacy.

(c) Describe a privacy-preserving data mining method that may allow the bank to per-
form customer pattern analysis without infringing on its customers’ right to privacy.

(d) What are some examples where data mining could be used to help society? Can you
think of ways it could be used that may be detrimental to society?
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13.13 What are the major challenges faced in bringing data mining research to market? Illus-
trate one data mining research issue that, in your view, may have a strong impact on the
market and on society. Discuss how to approach such a research issue.

13.14 Based on your view, what is the most challenging research problem in data mining? If
you were given a number of years and a good number of researchers and implementors,
what would your plan be to make good progress toward an effective solution to such a
problem?

13.15 Based on your experience and knowledge, suggest a new frontier in data mining that was
not mentioned in this chapter.

13.8 Bibliographic Notes

For mining complex data types, there are many research papers and books covering
various themes. We list here some recent books and well-cited survey or research articles
for references.

Time-series analysis has been studied in statistics and computer science commu-
nities for decades, with many textbooks such as Box, Jenkins, and Reinsel [BJR08];
Brockwell and Davis [BD02]; Chatfield [Cha03b]; Hamilton [Ham94]; and Shumway
and Stoffer [SS05]. A fast subsequence matching method in time-series databases
was presented by Faloutsos, Ranganathan, and Manolopoulos [FRM94]. Agrawal, Lin,
Sawhney, and Shim [ALSS95] developed a method for fast similarity search in the pres-
ence of noise, scaling, and translation in time-series databases. Shasha and Zhu present
an overview of the methods for high-performance discovery in time series [SZ04].

Sequential pattern mining methods have been studied by many researchers,
including Agrawal and Srikant [AS95]; Zaki [Zak01]; Pei, Han, Mortazavi-Asl, et al.
[PHM-A+04]; and Yan, Han, and Afshar [YHA03]. The study on sequence classifica-
tion includes Ji, Bailey, and Dong [JBD05] and Ye and Keogh [YK09], with a survey by
Xing, Pei, and Keogh [XPK10]. Dong and Pei [DP07] provide an overview on sequence
data mining methods.

Methods for analysis of biological sequences including Markov chains and hidden
Markov models are introduced in many books or tutorials such as Waterman [Wat95];
Setubal and Meidanis [SM97]; Durbin, Eddy, Krogh, and Mitchison [DEKM98];
Baldi and Brunak [BB01]; Krane and Raymer [KR03]; Rabiner [Rab89]; Jones and
Pevzner [JP04]; and Baxevanis and Ouellette [BO04]. Information about BLAST
(see also Korf, Yandell, and Bedell [KYB03]) can be found at the NCBI web site
www.ncbi.nlm.nih.gov/BLAST/ .

Graph pattern mining has been studied extensively, including Holder, Cook, and
Djoko [HCD94]; Inokuchi, Washio, and Motoda [IWM98]; Kuramochi and Karypis
[KK01]; Yan and Han [YH02, YH03a]; Borgelt and Berthold [BB02]; Huan, Wang,
Bandyopadhyay, et al. [HWB+04]; and the Gaston tool by Nijssen and Kok [NK04].
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There has been a great deal of research on social and information network analysis,
including Newman [New10]; Easley and Kleinberg [EK10]; Yu, Han, and Faloutsos
[YHF10]; Wasserman and Faust [WF94]; Watts [Wat03]; and Newman, Barabasi,
and Watts [NBW06]. Statistical modeling of networks is studied popularly such
as Albert and Barbasi [AB99]; Watts [Wat03]; Faloutsos, Faloutsos, and Faloutsos
[FFF99]; Kumar, Raghavan, Rajagopalan, et al. [KRR+00]; and Leskovec, Kleinberg, and
Faloutsos [LKF05]. Data cleaning, integration, and validation by information net-
work analysis was studied by many, including Bhattacharya and Getoor [BG04] and
Yin, Han, and Yu [YHY07, YHY08].

Clustering, ranking, and classification in networks has been studied extensively,
including in Brin and Page [BP98]; Chakrabarti, Dom, and Indyk [CDI98]; Klein-
berg [Kle99]; Getoor, Friedman, Koller, and Taskar [GFKT01]; Newman and M. Girvan
[NG04]; Yin, Han, Yang, and Yu [YHYY04]; Yin, Han, and Yu [YHY05]; Xu, Yuruk,
Feng, and Schweiger [XYFS07]; Kulis, Basu, Dhillon, and Mooney [KBDM09]; Sun,
Han, Zhao, et al. [SHZ+09]; Neville, Gallaher, and Eliassi-Rad [NGE-R09]; and Ji, Sun,
Danilevsky et al. [JSD+10]. Role discovery and link prediction in information net-
works have been studied extensively as well, such as by Krebs [Kre02]; Kubica, Moore,
and Schneider [KMS03]; Liben-Nowell and Kleinberg [L-NK03]; and Wang, Han, Jia,
et al. [WHJ+10].

Similarity search and OLAP in information networks has been studied by many,
including Tian, Hankins, and Patel [THP08] and Chen, Yan, Zhu, et al. [CYZ+08].
Evolution of social and information networks has been studied by many researchers,
such as Chakrabarti, Kumar, and Tomkins [CKT06]; Chi, Song, Zhou, et al. [CSZ+07];
Tang, Liu, Zhang, and Nazeri [TLZN08]; Xu, Zhang, Yu, and Long [XZYL08]; Kim and
Han [KH09]; and Sun, Tang, and Han [STH+10].

Spatial and spatiotemporal data mining has been studied extensively, with a col-
lection of papers by Miller and Han [MH09], and was introduced in some textbooks,
such as Shekhar and Chawla [SC03] and Hsu, Lee, and Wang [HLW07]. Spatial clus-
tering algorithms have been studied extensively in Chapters 10 and 11 of this book.
Research has been conducted on spatial warehouses and OLAP, such as by Stefanovic,
Han, and Koperski [SHK00], and spatial and spatiotemporal data mining, such as by
Koperski and Han [KH95]; Mamoulis, Cao, Kollios, Hadjieleftheriou, et al. [MCK+04];
Tsoukatos and Gunopulos [TG01]; and Hadjieleftheriou, Kollios, Gunopulos, and
Tsotras [HKGT03]. Mining moving-object data has been studied by many, such as
Vlachos, Gunopulos, and Kollios [VGK02]; Tao, Faloutsos, Papadias, and Liu [TFPL04];
Li, Han, Kim, and Gonzalez [LHKG07]; Lee, Han, and Whang [LHW07]; and Li, Ding,
Han, et al. [LDH+10]. For the bibliography of temporal, spatial, and spatiotemporal
data mining research, see a collection by Roddick, Hornsby, and Spiliopoulou [RHS01].

Multimedia data mining has deep roots in image processing and pattern recogni-
tion, which have been studied extensively in many textbooks, including Gonzalez and
Woods [GW07]; Russ [Rus06]; Duda, Hart, and Stork [DHS01]; and Z. Zhang and
R. Zhang [ZZ09]. Searching and mining of multimedia data has been studied by many
(see, e.g., Fayyad and Smyth [FS93]; Faloutsos and Lin [FL95]; Natsev, Rastogi, and
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Shim [NRS99]; and Zaı̈ane, Han, and Zhu [ZHZ00]). An overview of image mining
methods is given by Hsu, Lee, and Zhang [HLZ02].

Text data analysis has been studied extensively in information retrieval, with
many textbooks and survey articles such as Croft, Metzler, and Strohman [CMS09];
S. Buttcher, C. Clarke, G. Cormack [BCC10]; Manning, Raghavan, and Schutze
[MRS08]; Grossman and Frieder [GR04]; Baeza-Yates and Riberio-Neto [BYRN11];
Zhai [Zha08]; Feldman and Sanger [FS06]; Berry [Ber03]; and Weiss, Indurkhya, Zhang,
and Damerau [WIZD04]. Text mining is a fast-developing field with numerous papers
published in recent years, covering many topics such as topic models (e.g., Blei and
Lafferty [BL09]); sentiment analysis (e.g., Pang and Lee [PL07]); and contextual text
mining (e.g., Mei and Zhai [MZ06]).

Web mining is another focused theme, with books like Chakrabarti [Cha03a], Liu
[Liu06], and Berry [Ber03]. Web mining has substantially improved search engines with
a few influential milestone works, such as Brin and Page [BP98]; Kleinberg [Kle99];
Chakrabarti, Dom, Kumar, et al. [CDK+99]; and Kleinberg and Tomkins [KT99].
Numerous results have been generated since then, such as search log mining (e.g.,
Silvestri [Sil10]); blog mining (e.g., Mei, Liu, Su, and Zhai [MLSZ06]); and mining
online forums (e.g., Cong, Wang, Lin, et al. [CWL+08]).

Books and surveys on stream data systems and stream data processing include Babu
and Widom [BW01]; Babcock, Babu, Datar, et al. [BBD+02]; Muthukrishnan [Mut05];
and Aggarwal [Agg06].

Stream data mining research covers stream cube models (e.g., Chen, Dong, Han,
et al. [CDH+02]), stream frequent pattern mining (e.g., Manku and Motwani [MM02]
and Karp, Papadimitriou and Shenker [KPS03]), stream classification (e.g., Domingos
and Hulten [DH00]; Wang, Fan, Yu, and Han [WFYH03]; Aggarwal, Han, Wang, and
Yu [AHWY04b]), and stream clustering (e.g., Guha, Mishra, Motwani, and O’Callaghan
[GMMO00] and Aggarwal, Han, Wang, and Yu [AHWY03]).

There are many books that discuss data mining applications. For financial data
analysis and financial modeling, see, for example, Benninga [Ben08] and Higgins
[Hig08]. For retail data mining and customer relationship management, see, for exam-
ple, books by Berry and Linoff [BL04] and Berson, Smith, and Thearling [BST99]. For
telecommunication-related data mining, see, for example, Horak [Hor08]. There are
also books on scientific data analysis, such as Grossman, Kamath, Kegelmeyer, et al.
[GKK+01] and Kamath [Kam09].

Issues in the theoretical foundations of data mining have been addressed by many
researchers. For example, Mannila presents a summary of studies on the foundations of
data mining in [Man00]. The data reduction view of data mining is summarized in The
New Jersey Data Reduction Report by Barbará, DuMouchel, Faloutos, et al. [BDF+97].
The data compression view can be found in studies on the minimum description length
principle, such as Grunwald and Rissanen [GR07].

The pattern discovery point of view of data mining is addressed in numerous
machine learning and data mining studies, ranging from association mining, to deci-
sion tree induction, sequential pattern mining, clustering, and so on. The probability
theory point of view is popular in the statistics and machine learning literature, such
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as Bayesian networks and hierarchical Bayesian models in Chapter 9, and probabilis-
tic graph models (e.g., Koller and Friedman [KF09]). Kleinberg, Papadimitriou, and
Raghavan [KPR98] present a microeconomic view, treating data mining as an optimiza-
tion problem. Studies on the inductive database view include Imielinski and Mannila
[IM96] and de Raedt, Guns, and Nijssen [RGN10].

Statistical methods for data analysis are described in many books, such as
Hastie, Tibshirani, Friedman [HTF09]; Freedman, Pisani, and Purves [FPP07]; Devore
[Dev03]; Kutner, Nachtsheim, Neter, and Li [KNNL04]; Dobson [Dob01]; Breiman,
Friedman, Olshen, and Stone [BFOS84]; Pinheiro and Bates [PB00]; Johnson and
Wichern [JW02b]; Huberty [Hub94]; Shumway and Stoffer [SS05]; and Miller [Mil98].

For visual data mining, popular books on the visual display of data and information
include those by Tufte [Tuf90, Tuf97, Tuf01]. A summary of techniques for visualizing
data is presented in Cleveland [Cle93]. A dedicated visual data mining book, Visual
Data Mining: Techniques and Tools for Data Visualization and Mining, is by Soukup and
Davidson [SD02]. The book Information Visualization in Data Mining and Knowledge
Discovery, edited by Fayyad, Grinstein, and Wierse [FGW01], contains a collection of
articles on visual data mining methods.

Ubiquitous and invisible data mining has been discussed in many texts including
John [Joh99], and some articles in a book edited by Kargupta, Joshi, Sivakumar, and
Yesha [KJSY04]. The book Business @ the Speed of Thought: Succeeding in the Digital
Economy by Gates [Gat00] discusses e-commerce and customer relationship manage-
ment, and provides an interesting perspective on data mining in the future. Mena
[Men03] has an informative book on the use of data mining to detect and prevent
crime. It covers many forms of criminal activities, ranging from fraud detection, money
laundering, insurance crimes, identity crimes, and intrusion detection.

Data mining issues regarding privacy and data security are addressed popularly
in literature. Books on privacy and security in data mining include Thuraisingham
[Thu04]; Aggarwal and Yu [AY08]; Vaidya, Clifton, and Zhu [VCZ10]; and Fung,
Wang, Fu, and Yu [FWFY10]. Research articles include Agrawal and Srikant [AS00];
Evfimievski, Srikant, Agrawal, and Gehrke [ESAG02]; and Vaidya and Clifton [VC03].
Differential privacy was introduced by Dwork [Dwo06] and studied by many such as
Hay, Rastogi, Miklau, and Suciu [HRMS10].

There have been many discussions on trends and research directions of data min-
ing in various forums. Several books are collections of articles on these issues such as
Kargupta, Han, Yu, et al. [KHY+08].
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dimensional data: The emergence and influence of hubs. In Proc. 2009 Int. Conf.
Machine Learning (ICML’09), pp. 865–872, Montreal, Quebec, Canada, June 2009.

[Ros58] F. Rosenblatt. The perceptron: A probabilistic model for information storage and
organization in the brain. Psychological Rev., 65:386–498, 1958.

[RS89] C. Riesbeck and R. Schank. Inside Case-Based Reasoning. Lawrence Erlbaum, 1989.
[RS97] K. Ross and D. Srivastava. Fast computation of sparse datacubes. In Proc. 1997 Int. Conf.

Very Large Data Bases (VLDB’97), pp. 116–125, Athens, Greece, Aug. 1997.
[RS98] R. Rastogi and K. Shim. Public: A decision tree classifer that integrates building and

pruning. In Proc. 1998 Int. Conf. Very Large Data Bases (VLDB’98), pp. 404–415,
New York, Aug. 1998.

[RS01] F. Ramsey and D. Schafer. The Statistical Sleuth: A Course in Methods of Data Analysis.
Duxbury Press, 2001.

[RSC98] K. A. Ross, D. Srivastava, and D. Chatziantoniou. Complex aggregation at multiple gran-
ularities. In Proc. Int. Conf. Extending Database Technology (EDBT’98), pp. 263–277,
Valencia, Spain, Mar. 1998.

[Rus06] J. C. Russ. The Image Processing Handbook (5th ed.). CRC Press, 2006.
[SA95] R. Srikant and R. Agrawal. Mining generalized association rules. In Proc. 1995 Int. Conf.

Very Large Data Bases (VLDB’95), pp. 407–419, Zurich, Switzerland, Sept. 1995.
[SA96] R. Srikant and R. Agrawal. Mining sequential patterns: Generalizations and perfor-

mance improvements. In Proc. 5th Int. Conf. Extending Database Technology (EDBT’96),
pp. 3–17, Avignon, France, Mar. 1996.

[SAM96] J. Shafer, R. Agrawal, and M. Mehta. SPRINT: A scalable parallel classifier for data min-
ing. In Proc. 1996 Int. Conf. Very Large Data Bases (VLDB’96), pp. 544–555, Bombay,
India, Sept. 1996.

[SAM98] S. Sarawagi, R. Agrawal, and N. Megiddo. Discovery-driven exploration of OLAP data
cubes. In Proc. Int. Conf. Extending Database Technology (EDBT’98), pp. 168–182,
Valencia, Spain, Mar. 1998.



Bibliography 663

[SBSW99] B. Schölkopf, P. L. Bartlett, A. Smola, and R. Williamson. Shrinking the tube: A new
support vector regression algorithm. In M. S. Kearns, S. A. Solla, and D. A. Cohn (eds.),
Advances in Neural Information Processing Systems 11, pp. 330–336. Cambridge, MA:
MIT Press, 1999.

[SC03] S. Shekhar and S. Chawla. Spatial Databases: A Tour. Prentice-Hall, 2003.
[Sch86] J. C. Schlimmer. Learning and representation change. In Proc. 1986 Nat. Conf. Artificial

Intelligence (AAAI’86), pp. 511–515, Philadelphia, PA, 1986.
[Sch07] S. E. Schaeffer. Graph clustering. Computer Science Rev., 1:27–64, 2007.
[SCZ98] G. Sheikholeslami, S. Chatterjee, and A. Zhang. WaveCluster: A multi-resolution clus-

tering approach for very large spatial databases. In Proc. 1998 Int. Conf. Very Large Data
Bases (VLDB’98), pp. 428–439, New York, Aug. 1998.

[SD90] J. W. Shavlik and T. G. Dietterich. Readings in Machine Learning. Morgan Kaufmann,
1990.

[SD02] T. Soukup and I. Davidson. Visual Data Mining: Techniques and Tools for Data Visual-
ization and Mining. Wiley, 2002.

[SDJL96] D. Srivastava, S. Dar, H. V. Jagadish, and A. V. Levy. Answering queries with aggregation
using views. In Proc. 1996 Int. Conf. Very Large Data Bases (VLDB’96), pp. 318–329,
Bombay, India, Sept. 1996.

[SDN98] A. Shukla, P. M. Deshpande, and J. F. Naughton. Materialized view selection for
multidimensional datasets. In Proc. 1998 Int. Conf. Very Large Data Bases (VLDB’98),
pp. 488–499, New York, Aug. 1998.

[SE10] G. Seni and J. F. Elder. Ensemble Methods in Data Mining: Improving Accuracy Through
Combining Predictions. Morgan and Claypool, 2010.

[Set10] B. Settles. Active learning literature survey. In Computer Sciences Technical Report 1648,
University of Wisconsin–Madison, 2010.

[SF86] J. C. Schlimmer and D. Fisher. A case study of incremental concept induction. In Proc.
1986 Nat. Conf. Artificial Intelligence (AAAI’86), pp. 496–501, Philadelphia, PA, 1986.

[SFB99] J. Shanmugasundaram, U. M. Fayyad, and P. S. Bradley. Compressed data cubes for
OLAP aggregate query approximation on continuous dimensions. In Proc. 1999 Int.
Conf. Knowledge Discovery and Data Mining (KDD’99), pp. 223–232, San Diego, CA,
Aug. 1999.

[SG92] P. Smyth and R. M. Goodman. An information theoretic approach to rule induction.
IEEE Trans. Knowledge and Data Engineering, 4:301–316, 1992.

[She31] W. A. Shewhart. Economic Control of Quality of Manufactured Product. D. Van Nostrand,
1931.

[Shi99] Y.-S. Shih. Families of splitting criteria for classification trees. Statistics and Computing,
9:309–315, 1999.

[SHK00] N. Stefanovic, J. Han, and K. Koperski. Object-based selective materialization for effi-
cient implementation of spatial data cubes. IEEE Trans. Knowledge and Data Engi-
neering, 12:938–958, 2000.

[Sho97] A. Shoshani. OLAP and statistical databases: Similarities and differences. In Proc. 16th
ACM Symp. Principles of Database Systems, pp. 185–196, Tucson, AZ, May 1997.

[Shu88] R. H. Shumway. Applied Statistical Time Series Analysis. Prentice-Hall, 1988.



664 Bibliography

[SHX04] Z. Shao, J. Han, and D. Xin. MM-Cubing: Computing iceberg cubes by factorizing the
lattice space. In Proc. 2004 Int. Conf. Scientific and Statistical Database Management
(SSDBM’04), pp. 213–222, Santorini Island, Greece, June 2004.

[SHZ+09] Y. Sun, J. Han, P. Zhao, Z. Yin, H. Cheng, and T. Wu. RankClus: Integrating clustering
with ranking for heterogeneous information network analysis. In Proc. 2009 Int. Conf.
Extending Data Base Technology (EDBT’09), pp. 565–576, Saint Petersburg, Russia, Mar.
2009.

[Sil10] F. Silvestri. Mining query logs: Turning search usage data into knowledge. Foundations
and Trends in Information Retrieval, 4:1–174, 2010.

[SK08] J. Shieh and E. Keogh. iSAX: Indexing and mining terabyte sized time series. In Proc.
2008 ACM SIGKDD Int. Conf. Knowledge Discovery and Data Mining (KDD’08), pp. 623–
631, Las Vegas, NV, Aug. 2008.

[SKS10] A. Silberschatz, H. F. Korth, and S. Sudarshan. Database System Concepts (6th ed.).
McGraw-Hill, 2010.

[SLT+01] S. Shekhar, C.-T. Lu, X. Tan, S. Chawla, and R. R. Vatsavai. Map cube: A visualiza-
tion tool for spatial data warehouses. In H. J. Miller and J. Han (eds.), Geographic Data
Mining and Knowledge Discovery, pp. 73–108. Taylor and Francis, 2001.

[SM97] J. C. Setubal and J. Meidanis. Introduction to Computational Molecular Biology. PWS
Publishing Co., 1997.

[SMT91] J. W. Shavlik, R. J. Mooney, and G. G. Towell. Symbolic and neural learning algorithms:
An experimental comparison. Machine Learning, 6:111–144, 1991.

[SN88] K. Saito and R. Nakano. Medical diagnostic expert system based on PDP model. In Proc.
1988 IEEE Int. Conf. Neural Networks, pp. 225–262, San Mateo, CA, 1988.

[SOMZ96] W. Shen, K. Ong, B. Mitbander, and C. Zaniolo. Metaqueries for data mining. In
U. M. Fayyad, G. Piatetsky-Shapiro, P. Smyth, and R. Uthurusamy (eds.), Advances in
Knowledge Discovery and Data Mining, pp. 375–398. AAAI/MIT Press, 1996.

[SON95] A. Savasere, E. Omiecinski, and S. Navathe. An efficient algorithm for mining associa-
tion rules in large databases. In Proc. 1995 Int. Conf. Very Large Data Bases (VLDB’95),
pp. 432–443, Zurich, Switzerland, Sept. 1995.

[SON98] A. Savasere, E. Omiecinski, and S. Navathe. Mining for strong negative associations in
a large database of customer transactions. In Proc. 1998 Int. Conf. Data Engineering
(ICDE’98), pp. 494–502, Orlando, FL, Feb. 1998.

[SR81] R. Sokal and F. Rohlf. Biometry. Freeman, 1981.
[SR92] A. Skowron and C. Rauszer. The discernibility matrices and functions in information

systems. In R. Slowinski (ed.), Intelligent Decision Support, Handbook of Applications
and Advances of the Rough Set Theory, pp. 331–362. Kluwer Academic, 1992.

[SS88] W. Siedlecki and J. Sklansky. On automatic feature selection. Int. J. Pattern Recognition
and Artificial Intelligence, 2:197–220, 1988.

[SS94] S. Sarawagi and M. Stonebraker. Efficient organization of large multidimensional arrays.
In Proc. 1994 Int. Conf. Data Engineering (ICDE’94), pp. 328–336, Houston, TX, Feb.
1994.

[SS01] G. Sathe and S. Sarawagi. Intelligent rollups in multidimensional OLAP data. In
Proc. 2001 Int. Conf. Very Large Data Bases (VLDB’01), pp. 531–540, Rome, Italy, Sept.
2001.



Bibliography 665

[SS05] R. H. Shumway and D. S. Stoffer. Time Series Analysis and Its Applications. New York:
Springer, 2005.

[ST96] A. Silberschatz and A. Tuzhilin. What makes patterns interesting in knowledge discovery
systems. IEEE Trans. Knowledge and Data Engineering, 8:970–974, Dec. 1996.

[STA98] S. Sarawagi, S. Thomas, and R. Agrawal. Integrating association rule mining with rela-
tional database systems: Alternatives and implications. In Proc. 1998 ACM-SIGMOD Int.
Conf. Management of Data (SIGMOD’98), pp. 343–354, Seattle, WA, June 1998.

[STH+10] Y. Sun, J. Tang, J. Han, M. Gupta, and B. Zhao. Community evolution detection in
dynamic heterogeneous information networks. In Proc. 2010 KDD Workshop Mining
and Learning with Graphs (MLG’10), Washington, DC, July 2010.

[Ste72] W. Stefansky. Rejecting outliers in factorial designs. Technometrics, 14:469–479, 1972.
[Sto74] M. Stone. Cross-validatory choice and assessment of statistical predictions. J. Royal

Statistical Society, 36:111–147, 1974.
[SVA97] R. Srikant, Q. Vu, and R. Agrawal. Mining association rules with item constraints.

In Proc. 1997 Int. Conf. Knowledge Discovery and Data Mining (KDD’97), pp. 67–73,
Newport Beach, CA, Aug. 1997.

[SW49] C. E. Shannon and W. Weaver. The Mathematical Theory of Communication. University
of Illinois Press, 1949.

[Swe88] J. Swets. Measuring the accuracy of diagnostic systems. Science, 240:1285–1293, 1988.
[Swi98] R. Swiniarski. Rough sets and principal component analysis and their applications in

feature extraction and selection, data model building and classification. In S. K. Pal
and A. Skowron (eds.), Rough Fuzzy Hybridization: A New Trend in Decision-Making,
Springer Verlag, Singapore, 1999.

[SWJR07] X. Song, M. Wu, C. Jermaine, and S. Ranka. Conditional anomaly detection. IEEE Trans.
on Knowledge and Data Engineering, 19(5):631–645, 2007.

[SZ04] D. Shasha and Y. Zhu. High Performance Discovery in Time Series: Techniques and Case
Studies. New York: Springer, 2004.

[TD02] D. M. J. Tax and R. P. W. Duin. Using two-class classifiers for multiclass classification. In
Proc. 16th Intl. Conf. Pattern Recognition (ICPR’2002), pp. 124–127, Montreal, Quebec,
Canada, 2002.

[TFPL04] Y. Tao, C. Faloutsos, D. Papadias, and B. Liu. Prediction and indexing of moving objects
with unknown motion patterns. In Proc. 2004 ACM-SIGMOD Int. Conf. Management of
Data (SIGMOD’04), pp. 611–622, Paris, France, June 2004.

[TG01] I. Tsoukatos and D. Gunopulos. Efficient mining of spatiotemporal patterns. In Proc.
2001 Int. Symp. Spatial and Temporal Databases (SSTD’01), pp. 425–442, Redondo
Beach, CA, July 2001.

[THH01] A. K. H. Tung, J. Hou, and J. Han. Spatial clustering in the presence of obstacles. In
Proc. 2001 Int. Conf. Data Engineering (ICDE’01), pp. 359–367, Heidelberg, Germany,
Apr. 2001.

[THLN01] A. K. H. Tung, J. Han, L. V. S. Lakshmanan, and R. T. Ng. Constraint-based clustering
in large databases. In Proc. 2001 Int. Conf. Database Theory (ICDT’01), pp. 405–419,
London, Jan. 2001.

[THP08] Y. Tian, R. A. Hankins, and J. M. Patel. Efficient aggregation for graph summariza-
tion. In Proc. 2008 ACM SIGMOD Int. Conf. Management of Data (SIGMOD’08),
pp. 567–580, Vancouver, British Columbia, Canada, June 2008.



666 Bibliography

[Thu04] B. Thuraisingham. Data mining for counterterrorism. In H. Kargupta, A. Joshi,
K. Sivakumar, and Y. Yesha (eds.), Data Mining: Next Generation Challenges and Future
Directions, pp. 157–183. AAAI/MIT Press, 2004.

[TK08] S. Theodoridis and K. Koutroumbas. Pattern Recognition (4th ed.) Academic Press, 2008.
[TKS02] P.-N. Tan, V. Kumar, and J. Srivastava. Selecting the right interestingness measure for

association patterns. In Proc. 2002 ACM SIGKDD Int. Conf. Knowledge Discovery in
Databases (KDD’02), pp. 32–41, Edmonton, Alberta, Canada, July 2002.

[TLZN08] L. Tang, H. Liu, J. Zhang, and Z. Nazeri. Community evolution in dynamic multi-mode
networks. In Proc. 2008 ACM SIGKDD Int. Conf. Knowledge Discovery and Data Mining
(KDD’08), pp. 677–685, Las Vegas, NV, Aug. 2008.

[Toi96] H. Toivonen. Sampling large databases for association rules. In Proc. 1996 Int. Conf. Very
Large Data Bases (VLDB’96), pp. 134–145, Bombay, India, Sept. 1996.

[TS93] G. G. Towell and J. W. Shavlik. Extracting refined rules from knowledge-based neural
networks. Machine Learning, 13:71–101, Oct. 1993.

[TSK05] P. N. Tan, M. Steinbach, and V. Kumar. Introduction to Data Mining. Boston: Addison-
Wesley, 2005.

[TSS04] A. Tanay, R. Sharan, and R. Shamir. Biclustering algorithms: A survey. In S. Aluru (ed.),
Handbook of Computational Molecular Biology, pp. 26:1–26:17. London: Chapman &
Hall, 2004.

[Tuf83] E. R. Tufte. The Visual Display of Quantitative Information. Graphics Press, 1983.
[Tuf90] E. R. Tufte. Envisioning Information. Graphics Press, 1990.
[Tuf97] E. R. Tufte. Visual Explanations: Images and Quantities, Evidence and Narrative. Graphics

Press, 1997.
[Tuf01] E. R. Tufte. The Visual Display of Quantitative Information (2nd ed.). Graphics Press,

2001.
[TXZ06] Y. Tao, X. Xiao, and S. Zhou. Mining distance-based outliers from large databases in any

metric space. In Proc. 2006 ACM SIGKDD Int. Conf. Knowledge Discovery in Databases
(KDD’06), pp. 394–403, Philadelphia, PA, Aug. 2006.

[UBC97] P. E. Utgoff, N. C. Berkman, and J. A. Clouse. Decision tree induction based on efficient
tree restructuring. Machine Learning, 29:5–44, 1997.

[UFS91] R. Uthurusamy, U. M. Fayyad, and S. Spangler. Learning useful rules from inconclusive
data. In G. Piatetsky-Shapiro and W. J. Frawley (eds.), Knowledge Discovery in Databases,
pp. 141–157. AAAI/MIT Press, 1991.

[Utg88] P. E. Utgoff. An incremental ID3. In Proc. Fifth Int. Conf. Machine Learning (ICML’88),
pp. 107–120, San Mateo, CA, 1988.

[Val87] P. Valduriez. Join indices. ACM Trans. Database Systems, 12:218–246, 1987.
[Vap95] V. N. Vapnik. The Nature of Statistical Learning Theory. Springer Verlag, 1995.
[Vap98] V. N. Vapnik. Statistical Learning Theory. John Wiley & Sons, 1998.
[VC71] V. N. Vapnik and A. Y. Chervonenkis. On the uniform convergence of relative fre-

quencies of events to their probabilities. Theory of Probability and Its Applications,
16:264–280, 1971.

[VC03] J. Vaidya and C. Clifton. Privacy-preserving k-means clustering over vertically parti-
tioned data. In Proc. 2003 ACM SIGKDD Int. Conf. Knowledge Discovery and Data
Mining (KDD’03), Washington, DC, Aug 2003.



Bibliography 667

[VC06] M. Vuk and T. Curk. ROC curve, lift chart and calibration plot. Metodološki zvezki,
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background knowledge. In Proc. 2001 Int. Conf. Machine Learning (ICML’01), pp. 577–
584, Williamstown, MA, June 2001.

[Wei04] G. M. Weiss. Mining with rarity: A unifying framework. SIGKDD Explorations, 6:7–19,
2004.

[WF94] S. Wasserman and K. Faust. Social Network Analysis: Methods and Applications. Cam-
bridge University Press, 1994.

[WF05] I. H. Witten and E. Frank. Data Mining: Practical Machine Learning Tools and Techniques
(2nd ed.). Morgan Kaufmann, 2005.

[WFH11] I. H. Witten, E. Frank, and M. A. Hall. Data Mining: Practical Machine Learning Tools
and Techniques with Java Implementations (3rd ed.). Boston: Morgan Kaufmann, 2011.

[WFYH03] H. Wang, W. Fan, P. S. Yu, and J. Han. Mining concept-drifting data streams using
ensemble classifiers. In Proc. 2003 ACM SIGKDD Int. Conf. Knowledge Discovery and
Data Mining (KDD’03), pp. 226–235, Washington, DC, Aug. 2003.

[WHH00] K. Wang, Y. He, and J. Han. Mining frequent itemsets using support constraints. In
Proc. 2000 Int. Conf. Very Large Data Bases (VLDB’00), pp. 43–52, Cairo, Egypt, Sept.
2000.

[WHJ+10] C. Wang, J. Han, Y. Jia, J. Tang, D. Zhang, Y. Yu, and J. Guo. Mining advisor-advisee
relationships from research publication networks. In Proc. 2010 ACM SIGKDD Conf.
Knowledge Discovery and Data Mining (KDD’10), Washington, DC, July 2010.

[WHLT05] J. Wang, J. Han, Y. Lu, and P. Tzvetkov. TFP: An efficient algorithm for mining top-k
frequent closed itemsets. IEEE Trans. Knowledge and Data Engineering, 17:652–664,
2005.



668 Bibliography

[WHP03] J. Wang, J. Han, and J. Pei. CLOSET+: Searching for the best strategies for mining fre-
quent closed itemsets. In Proc. 2003 ACM SIGKDD Int. Conf. Knowledge Discovery and
Data Mining (KDD’03), pp. 236–245, Washington, DC, Aug. 2003.

[WI98] S. M. Weiss and N. Indurkhya. Predictive Data Mining. Morgan Kaufmann, 1998.
[Wid95] J. Widom. Research problems in data warehousing. In Proc. 4th Int. Conf. Information

and Knowledge Management, pp. 25–30, Baltimore, MD, Nov. 1995.
[WIZD04] S. Weiss, N. Indurkhya, T. Zhang, and F. Damerau. Text Mining: Predictive Methods for

Analyzing Unstructured Information. New York: Springer, 2004.
[WK91] S. M. Weiss and C. A. Kulikowski. Computer Systems That Learn: Classification and

Prediction Methods from Statistics, Neural Nets, Machine Learning, and Expert Systems.
Morgan Kaufmann, 1991.

[WK05] J. Wang and G. Karypis. HARMONY: Efficiently mining the best rules for classification.
In Proc. 2005 SIAM Conf. Data Mining (SDM’05), pp. 205–216, Newport Beach, CA,
Apr. 2005.

[WLFY02] W. Wang, H. Lu, J. Feng, and J. X. Yu. Condensed cube: An effective approach to reduc-
ing data cube size. In Proc. 2002 Int. Conf. Data Engineering (ICDE’02), pp. 155–165,
San Fransisco, CA, Apr. 2002.

[WRL94] B. Widrow, D. E. Rumelhart, and M. A. Lehr. Neural networks: Applications in industry,
business and science. Communications of the ACM, 37:93–105, 1994.

[WSF95] R. Wang, V. Storey, and C. Firth. A framework for analysis of data quality research. IEEE
Trans. Knowledge and Data Engineering, 7:623–640, 1995.

[Wu83] C. F. J. Wu. On the convergence properties of the EM algorithm. Ann. Statistics, 11:95–
103, 1983.

[WW96] Y. Wand and R. Wang. Anchoring data quality dimensions in ontological foundations.
Communications of the ACM, 39:86–95, 1996.

[WWYY02] H. Wang, W. Wang, J. Yang, and P. S. Yu. Clustering by pattern similarity in large
data sets. In Proc. 2002 ACM-SIGMOD Int. Conf. Management of Data (SIGMOD’02),
pp. 418–427, Madison, WI, June 2002.

[WXH08] T. Wu, D. Xin, and J. Han. ARCube: Supporting ranking aggregate queries in partially
materialized data cubes. In Proc. 2008 ACM SIGMOD Int. Conf. Management of Data
(SIGMOD’08), pp. 79–92, Vancouver, British Columbia, Canada, June 2008.

[WXMH09] T. Wu, D. Xin, Q. Mei, and J. Han. Promotion analysis in multi-dimensional space. In
Proc. 2009 Int. Conf. Very Large Data Bases (VLDB’09), 2(1):109–120, Lyon, France, Aug.
2009.

[WYM97] W. Wang, J. Yang, and R. Muntz. STING: A statistical information grid approach
to spatial data mining. In Proc. 1997 Int. Conf. Very Large Data Bases (VLDB’97),
pp. 186–195, Athens, Greece, Aug. 1997.

[XCYH06] D. Xin, H. Cheng, X. Yan, and J. Han. Extracting redundancy-aware top-k patterns.
In Proc. 2006 ACM SIGKDD Int. Conf. Knowledge Discovery in Databases (KDD’06),
pp. 444–453, Philadelphia, PA, Aug. 2006.

[XHCL06] D. Xin, J. Han, H. Cheng, and X. Li. Answering top-k queries with multi-dimensional
selections: The ranking cube approach. In Proc. 2006 Int. Conf. Very Large Data Bases
(VLDB’06), pp. 463–475, Seoul, Korea, Sept. 2006.



Bibliography 669

[XHLW03] D. Xin, J. Han, X. Li, and B. W. Wah. Star-cubing: Computing iceberg cubes by top-down
and bottom-up integration. In Proc. 2003 Int. Conf. Very Large Data Bases (VLDB’03),
pp. 476–487, Berlin, Germany, Sept. 2003.

[XHSL06] D. Xin, J. Han, Z. Shao, and H. Liu. C-cubing: Efficient computation of closed cubes by
aggregation-based checking. In Proc. 2006 Int. Conf. Data Engineering (ICDE’06), p. 4,
Atlanta, GA, Apr. 2006.

[XHYC05] D. Xin, J. Han, X. Yan, and H. Cheng. Mining compressed frequent-pattern sets. In Proc.
2005 Int. Conf. Very Large Data Bases (VLDB’05), pp. 709–720, Trondheim, Norway,
Aug. 2005.

[XOJ00] Y. Xiang, K. G. Olesen, and F. V. Jensen. Practical issues in modeling large diagnostic sys-
tems with multiply sectioned Bayesian networks. Intl. J. Pattern Recognition and Artificial
Intelligence (IJPRAI), 14:59–71, 2000.

[XPK10] Z. Xing, J. Pei, and E. Keogh. A brief survey on sequence classification. SIGKDD
Explorations, 12:40–48, 2010.

[XSH+04] H. Xiong, S. Shekhar, Y. Huang, V. Kumar, X. Ma, and J. S. Yoo. A framework for discov-
ering co-location patterns in data sets with extended spatial objects. In Proc. 2004 SIAM
Int. Conf. Data Mining (SDM’04), Lake Buena Vista, FL, Apr. 2004.

[XYFS07] X. Xu, N. Yuruk, Z. Feng, and T. A. J. Schweiger. SCAN: A structural clustering algorithm
for networks. In Proc. 2007 ACM SIGKDD Int. Conf. Knowledge Discovery in Databases
(KDD’07), pp. 824–833, San Jose, CA, Aug. 2007.

[XZYL08] T. Xu, Z. M. Zhang, P. S. Yu, and B. Long. Evolutionary clustering by hierarchical Dirich-
let process with hidden Markov state. In Proc. 2008 Int. Conf. Data Mining (ICDM’08),
pp. 658–667, Pisa, Italy, Dec. 2008.

[YC01] N. Ye and Q. Chen. An anomaly detection technique based on a chi-square statistic
for detecting intrusions into information systems. Quality and Reliability Engineering
International, 17:105–112, 2001.

[YCHX05] X. Yan, H. Cheng, J. Han, and D. Xin. Summarizing itemset patterns: A profile-based
approach. In Proc. 2005 ACM SIGKDD Int. Conf. Knowledge Discovery in Databases
(KDD’05), pp. 314–323, Chicago, IL, Aug. 2005.

[YFB01] C. Yang, U. Fayyad, and P. S. Bradley. Efficient discovery of error-tolerant frequent item-
sets in high dimensions. In Proc. 2001 ACM SIGKDD Int. Conf. Knowledge Discovery in
Databases (KDD’01), pp. 194–203, San Fransisco, CA, Aug. 2001.

[YFM+97] K. Yoda, T. Fukuda, Y. Morimoto, S. Morishita, and T. Tokuyama. Computing optimized
rectilinear regions for association rules. In Proc. 1997 Int. Conf. Knowledge Discovery and
Data Mining (KDD’97), pp. 96–103, Newport Beach, CA, Aug. 1997.

[YH02] X. Yan and J. Han. gSpan: Graph-based substructure pattern mining. In Proc. 2002 Int.
Conf. Data Mining (ICDM’02), pp. 721–724, Maebashi, Japan, Dec. 2002.

[YH03a] X. Yan and J. Han. CloseGraph: Mining closed frequent graph patterns. In Proc. 2003
ACM SIGKDD Int. Conf. Knowledge Discovery and Data Mining (KDD’03), pp. 286–295,
Washington, DC, Aug. 2003.

[YH03b] X. Yin and J. Han. CPAR: Classification based on predictive association rules. In Proc.
2003 SIAM Int. Conf. Data Mining (SDM’03), pp. 331–335, San Fransisco, CA, May
2003.



670 Bibliography

[YHA03] X. Yan, J. Han, and R. Afshar. CloSpan: Mining closed sequential patterns in large
datasets. In Proc. 2003 SIAM Int. Conf. Data Mining (SDM’03), pp. 166–177,
San Fransisco, CA, May 2003.

[YHF10] P. S. Yu, J. Han, and C. Faloutsos. Link Mining: Models, Algorithms and Applications. New
York: Springer, 2010.

[YHY05] X. Yin, J. Han, and P. S. Yu. Cross-relational clustering with user’s guidance. In Proc.
2005 ACM SIGKDD Int. Conf. Knowledge Discovery in Databases (KDD’05), pp. 344–353,
Chicago, IL, Aug. 2005.

[YHY07] X. Yin, J. Han, and P. S. Yu. Object distinction: Distinguishing objects with identical
names by link analysis. In Proc. 2007 Int. Conf. Data Engineering (ICDE’07), Istanbul,
Turkey, Apr. 2007.

[YHY08] X. Yin, J. Han, and P. S. Yu. Truth discovery with multiple conflicting information
providers on the Web. IEEE Trans. Knowledge and Data Engineering, 20:796–808, 2008.

[YHYY04] X. Yin, J. Han, J. Yang, and P. S. Yu. CrossMine: Efficient classification across multiple
database relations. In Proc. 2004 Int. Conf. Data Engineering (ICDE’04), pp. 399–410,
Boston, MA, Mar. 2004.

[YK09] L. Ye and E. Keogh. Time series shapelets: A new primitive for data mining. In
Proc. 2009 ACM SIGKDD Int. Conf. Knowledge Discovery and Data Mining (KDD’09),
pp. 947–956, Paris, France, June 2009.

[YWY07] J. Yuan, Y. Wu, and M. Yang. Discovery of collocation patterns: From visual words to
visual phrases. In Proc. IEEE Conf. Computer Vision and Pattern Recognition (CVPR’07),
pp. 1–8, Minneapolis, MN, June 2007.

[YYH03] H. Yu, J. Yang, and J. Han. Classifying large data sets using SVM with hierarchical clus-
ters. In Proc. 2003 ACM SIGKDD Int. Conf. Knowledge Discovery and Data Mining
(KDD’03), pp. 306–315, Washington, DC, Aug. 2003.

[YYH05] X. Yan, P. S. Yu, and J. Han. Graph indexing based on discriminative frequent structure
analysis. ACM Trans. Database Systems, 30:960–993, 2005.

[YZ94] R. R. Yager and L. A. Zadeh. Fuzzy Sets, Neural Networks and Soft Computing. Van
Nostrand Reinhold, 1994.

[YZYH06] X. Yan, F. Zhu, P. S. Yu, and J. Han. Feature-based substructure similarity search. ACM
Trans. Database Systems, 31:1418–1453, 2006.

[Zad65] L. A. Zadeh. Fuzzy sets. Information and Control, 8:338–353, 1965.
[Zad83] L. Zadeh. Commonsense knowledge representation based on fuzzy logic. Computer,

16:61–65, 1983.
[Zak00] M. J. Zaki. Scalable algorithms for association mining. IEEE Trans. Knowledge and Data

Engineering, 12:372–390, 2000.
[Zak01] M. Zaki. SPADE: An efficient algorithm for mining frequent sequences. Machine

Learning, 40:31–60, 2001.
[ZDN97] Y. Zhao, P. M. Deshpande, and J. F. Naughton. An array-based algorithm for simultan-

eous multidimensional aggregates. In Proc. 1997 ACM-SIGMOD Int. Conf. Management
of Data (SIGMOD’97), pp. 159–170, Tucson, AZ, May 1997.

[ZH02] M. J. Zaki and C. J. Hsiao. CHARM: An efficient algorithm for closed itemset min-
ing. In Proc. 2002 SIAM Int. Conf. Data Mining (SDM’02), pp. 457–473, Arlington, VA,
Apr. 2002.



Bibliography 671

[Zha08] C. Zhai. Statistical Language Models for Information Retrieval. Morgan and Claypool,
2008.

[ZHL+98] O. R. Zaı̈ane, J. Han, Z. N. Li, J. Y. Chiang, and S. Chee. MultiMedia-Miner: A sys-
tem prototype for multimedia data mining. In Proc. 1998 ACM-SIGMOD Int. Conf.
Management of Data (SIGMOD’98), pp. 581–583, Seattle, WA, June 1998.

[Zhu05] X. Zhu. Semi-supervised learning literature survey. In Computer Sciences Technical
Report 1530, University of Wisconsin–Madison, 2005.

[ZHZ00] O. R. Zaı̈ane, J. Han, and H. Zhu. Mining recurrent items in multimedia with progressive
resolution refinement. In Proc. 2000 Int. Conf. Data Engineering (ICDE’00), pp. 461–470,
San Diego, CA, Feb. 2000.

[Zia91] W. Ziarko. The discovery, analysis, and representation of data dependencies in databases.
In G. Piatetsky-Shapiro and W. J. Frawley (eds.), Knowledge Discovery in Databases,
pp. 195–209. AAAI Press, 1991.

[ZL06] Z.-H. Zhou and X.-Y. Liu. Training cost-sensitive neural networks with methods
addressing the class imbalance problem. IEEE Trans. Knowledge and Data Engineering,
18:63–77, 2006.

[ZPOL97] M. J. Zaki, S. Parthasarathy, M. Ogihara, and W. Li. Parallel algorithm for discovery of
association rules. Data Mining and Knowledge Discovery, 1:343–374, 1997.

[ZRL96] T. Zhang, R. Ramakrishnan, and M. Livny. BIRCH: An efficient data clustering method
for very large databases. In Proc. 1996 ACM-SIGMOD Int. Conf. Management of Data
(SIGMOD’96), pp. 103–114, Montreal, Quebec, Canada, June 1996.

[ZS02] N. Zapkowicz and S. Stephen. The class imbalance program: A systematic study.
Intelligence Data Analysis, 6:429–450, 2002.

[ZYH+07] F. Zhu, X. Yan, J. Han, P. S. Yu, and H. Cheng. Mining colossal frequent patterns by
core pattern fusion. In Proc. 2007 Int. Conf. Data Engineering (ICDE’07), pp. 706–715,
Istanbul, Turkey, Apr. 2007.

[ZYHY07] F. Zhu, X. Yan, J. Han, and P. S. Yu. gPrune: A constraint pushing framework for graph
pattern mining. In Proc. 2007 Pacific-Asia Conf. Knowledge Discovery and Data Mining
(PAKDD’07), pp. 388–400, Nanjing, China, May 2007.

[ZZ09] Z. Zhang and R. Zhang. Multimedia Data Mining: A Systematic Introduction to Concepts
and Theory. Chapman & Hall, 2009.

[ZZH09] D. Zhang, C. Zhai, and J. Han. Topic cube: Topic modeling for OLAP on multi-
dimensional text databases. In Proc. 2009 SIAM Int. Conf. Data Mining (SDM’09),
pp. 1123–1134, Sparks, NV, Apr. 2009.



This page intentionally left blank



Index

Numbers and Symbols
.632 bootstrap, 371
δ-bicluster algorithm, 517–518
δ-pCluster, 518–519

A
absolute-error criterion, 455
absolute support, 246
abstraction levels, 281
accuracy

attribute construction and, 105
boosting, 382
with bootstrap, 371
classification, 377–385
classifier, 330, 366
with cross-validation, 370–371
data, 84
with holdout method, 370
measures, 369
random forests, 383
with random subsampling, 370
rule selection based on, 361

activation function, 402
active learning, 25, 430, 437
ad hoc data mining, 31
AdaBoost, 380–382

algorithm illustration, 382
TrAdaBoost, 436

adaptive probabilistic networks, 397
advanced data analysis, 3, 4
advanced database systems, 4
affinity matrix, 520, 521
agglomerative hierarchical method, 459

AGNES, 459, 460
divisive hierarchical clustering versus,

459–460
Agglomerative Nesting (AGNES), 459, 460
aggregate cells, 189

aggregation, 112
bootstrap, 379
complex data types and, 166
cube computation and, 193
data cube, 110–111
at multiple granularities, 230–231
multiway array, 195–199
simultaneous, 193, 195

AGNES. See Agglomerative Nesting
algebraic measures, 145
algorithms. See specific algorithms
all confidence measure, 268, 272
all-versus-all (AVA), 430–431
analysis of variance (ANOVA), 600
analytical processing, 153
ancestor cells, 189
angle-based outlier detection (ABOD), 580
angle-based outlier factor (ABOF), 580
anomalies. See outliers
anomaly mining. See outlier analysis
anomaly-based detection, 614
antimonotonic constraints, 298, 301
antimonotonic measures, 194
antimonotonicity, 249
apex cuboids, 111, 138, 158
application domain-specific semantics, 282
applications, 33, 607–618

business intelligence, 27
computer science, 613
domain-specific, 625
engineering, 613, 624
exploration, 623
financial data analysis, 607–609
intrusion detection/prevention, 614–615
recommender systems, 615–618
retail industry, 609–611
science, 611–613
social science and social studies, 613
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applications (Continued)
targeted, 27–28
telecommunications industry, 611
Web search engines, 28

application-specific outlier detection, 548–549
approximate patterns, 281

mining, 307–312
Apriori algorithm, 248–253, 272

dynamic itemset counting, 256
efficiency, improving, 254–256
example, 250–252
hash-based technique, 255
join step, 249
partitioning, 255–256
prune step, 249–250
pseudocde, 253
sampling, 256
transaction reduction, 255

Apriori property, 194, 201, 249
antimonotonicity, 249
in Apriori algorithm, 298

Apriori pruning method, 194
arrays

3-D for dimensions, 196
sparse compression, 198–199

association analysis, 17–18
association rules, 245

approximate, 281
Boolean, 281
compressed, 281
confidence, 21, 245, 246, 416
constraint-based, 281
constraints, 296–297
correlation, 265, 272
discarded, 17
fittest, 426
frequent patterns and, 280
generation from frequent itemsets, 253, 254
hybrid-dimensional, 288
interdimensional, 288
intradimensional, 287
metarule-guided mining of, 295–296
minimum confidence threshold, 18, 245
minimum support threshold, 245
mining, 272
multidimensional, 17, 287–289, 320
multilevel, 281, 283–287, 320
near-match, 281
objective measures, 21
offspring, 426
quantitative, 281, 289, 320
redundancy-aware top-k, 281

single-dimensional, 17, 287
spatial, 595
strong, 264–265, 272
support, 21, 245, 246, 417
top-k, 281
types of values in, 281

associative classification, 415, 416–419, 437
CBA, 417
CMAR, 417–418
CPAR, 418–419
rule confidence, 416
rule support, 417
steps, 417

asymmetric binary dissimilarity, 71
asymmetric binary similarity, 71
attribute construction, 112

accuracy and, 105
multivariate splits, 344

attribute selection measures, 331, 336–344
CHAID, 343
gain ratio, 340–341
Gini index, 341–343
information gain, 336–340
Minimum Description Length (MDL),

343–344
multivariate splits, 343–344

attribute subset selection, 100, 103–105
decision tree induction, 105
forward selection/backward elimination

combination, 105
greedy methods, 104–105
stepwise backward elimination, 105
stepwise forward selection, 105

attribute vectors, 40, 328
attribute-oriented induction (AOI), 166–178, 180

algorithm, 173
for class comparisons, 175–178
for data characterization, 167–172
data generalization by, 166–178
generalized relation, 172
implementation of, 172–174

attributes, 9, 40
abstraction level differences, 99
behavioral, 546, 573
binary, 41–42, 79
Boolean, 41
categorical, 41
class label, 328
contextual, 546, 573
continuous, 44
correlated, 54–56
dimension correspondence, 10
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discrete, 44
generalization, 169–170
generalization control, 170
generalization threshold control, 170
grouping, 231
interval-scaled, 43, 79
of mixed type, 75–77
nominal, 41, 79
numeric, 43–44, 79
ordered, 103
ordinal, 41, 79
qualitative, 41
ratio-scaled, 43–44, 79
reducts of, 427
removal, 169
repetition, 346
set of, 118
splitting, 333
terminology for, 40
type determination, 41
types of, 39
unordered, 103

audio data mining, 604–607, 624
automatic classification, 445
AVA. See all-versus-all
AVC-group, 347
AVC-set, 347
average(), 215

B
background knowledge, 30–31
backpropagation, 393, 398–408, 437

activation function, 402
algorithm illustration, 401
biases, 402, 404
case updating, 404
efficiency, 404
epoch updating, 404
error, 403
functioning of, 400–403
hidden layers, 399
input layers, 399
input propagation, 401–402
interpretability and, 406–408
learning, 400
learning rate, 403–404
logistic function, 402
multilayer feed-forward neural network,

398–399
network pruning, 406–407
neural network topology definition, 400
output layers, 399

sample learning calculations, 404–406
sensitivity analysis, 408
sigmoid function, 402
squashing function, 403
terminating conditions, 404
unknown tuple classification, 406
weights initialization, 401
See also classification

bagging, 379–380
algorithm illustration, 380
boosting versus, 381–382
in building random forests, 383

bar charts, 54
base cells, 189
base cuboids, 111, 137–138, 158
Basic Local Alignment Search Tool (BLAST), 591
Baum-Welch algorithm, 591
Bayes’ theorem, 350–351
Bayesian belief networks, 393–397, 436

algorithms, 396
components of, 394
conditional probability table (CPT),

394, 395
directed acyclic graph, 394–395
gradient descent strategy, 396–397
illustrated, 394
mechanisms, 394–396
problem modeling, 395–396
topology, 396
training, 396–397
See also classification

Bayesian classification
basis, 350
Bayes’ theorem, 350–351
class conditional independence, 350
naive, 351–355, 385
posterior probability, 351
prior probability, 351

BCubed precision metric, 488, 489
BCubed recall metric, 489
behavioral attributes, 546, 573
believability, data, 85
BI (business intelligence), 27
biases, 402, 404
biclustering, 512–519, 538

application examples, 512–515
enumeration methods, 517, 518–519
gene expression example, 513–514
methods, 517–518
optimization-based methods, 517–518
recommender system example, 514–515
types of, 538
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biclusters, 511
with coherent values, 516
with coherent values on rows, 516
with constant values, 515
with constant values on columns, 515
with constant values on rows, 515
as submatrix, 515
types of, 515–516

bimodal, 47
bin boundaries, 89
binary attributes, 41, 79

asymmetric, 42, 70
as Boolean, 41
contingency table for, 70
dissimilarity between, 71–72
example, 41–42
proximity measures, 70–72
symmetric, 42, 70–71
See also attributes

binning
discretization by, 115
equal-frequency, 89
smoothing by bin boundaries, 89
smoothing by bin means, 89
smoothing by bin medians, 89

biological sequences, 586, 624
alignment of, 590–591
analysis, 590
BLAST, 590
hidden Markov model, 591
as mining trend, 624
multiple sequence alignment, 590
pairwise alignment, 590
phylogenetic tree, 590
substitution matrices, 590

bipartite graphs, 523
BIRCH, 458, 462–466

CF-trees, 462–463, 464, 465–466
clustering feature, 462, 463, 464
effectiveness, 465
multiphase clustering technique, 464–465
See also hierarchical methods

bitmap indexing, 160–161, 179
bitmapped join indexing, 163, 179
bivariate distribution, 40
BLAST. See Basic Local Alignment Search Tool
BOAT. See Bootstrapped Optimistic Algorithm for

Tree construction
Boolean association rules, 281
Boolean attributes, 41
boosting, 380

accuracy, 382

AdaBoost, 380–382
bagging versus, 381–382
weight assignment, 381

bootstrap method, 371, 386
bottom-up design approach, 133, 151–152
bottom-up subspace search, 510–511
boxplots, 49

computation, 50
example, 50
five-number summary, 49
illustrated, 50
in outlier visualization, 555

BUC, 200–204, 235
for 3-D data cube computation, 200
algorithm, 202
Apriori property, 201
bottom-up construction, 201
iceberg cube construction, 201
partitioning snapshot, 203
performance, 204
top-down processing order, 200, 201

business intelligence (BI), 27
business metadata, 135
business query view, 151

C
C4.5, 332, 385

class-based ordering, 358
gain ratio use, 340
greedy approach, 332
pessimistic pruning, 345
rule extraction, 358
See also decision tree induction

cannot-link constraints, 533
CART, 332, 385

cost complexity pruning algorithm, 345
Gini index use, 341
greedy approach, 332
See also decision tree induction

case updating, 404
case-based reasoning (CBR), 425–426

challenges, 426
categorical attributes, 41
CBA. See Classification Based on Associations
CBLOF. See cluster-based local outlier factor
CELL method, 562, 563
cells, 10–11

aggregate, 189
ancestor, 189
base, 189
descendant, 189
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dimensional, 189
exceptions, 231
residual value, 234

central tendency measures, 39, 44, 45–47
mean, 45–46
median, 46–47
midrange, 47
for missing values, 88
models, 47

centroid distance, 108
CF-trees, 462–463, 464

nodes, 465
parameters, 464
structure illustration, 464

CHAID, 343
Chameleon, 459, 466–467

clustering illustration, 466
relative closeness, 467
relative interconnectivity, 466–467
See also hierarchical methods

Chernoff faces, 60
asymmetrical, 61
illustrated, 62

ChiMerge, 117
chi-square test, 95
chunking, 195
chunks, 195

2-D, 197
3-D, 197
computation of, 198
scanning order, 197

CLARA. See Clustering Large Applications
CLARANS. See Clustering Large Applications

based upon Randomized Search
class comparisons, 166, 175, 180

attribute-oriented induction for,
175–178

mining, 176
presentation of, 175–176
procedure, 175–176

class conditional independence, 350
class imbalance problem, 384–385, 386

ensemble methods for, 385
on multiclass tasks, 385
oversampling, 384–385, 386
threshold-moving approach, 385
undersampling, 384–385, 386

class label attributes, 328
class-based ordering, 357
class/concept descriptions, 15
classes, 15, 166

contrasting, 15

equivalence, 427
target, 15

classification, 18, 327–328, 385
accuracy, 330
accuracy improvement techniques, 377–385
active learning, 433–434
advanced methods, 393–442
applications, 327
associative, 415, 416–419, 437
automatic, 445
backpropagation, 393, 398–408, 437
bagging, 379–380
basic concepts, 327–330
Bayes methods, 350–355
Bayesian belief networks, 393–397, 436
boosting, 380–382
case-based reasoning, 425–426
of class-imbalanced data, 383–385
confusion matrix, 365–366, 386
costs and benefits, 373–374
decision tree induction, 330–350
discriminative frequent pattern-based, 437
document, 430
ensemble methods, 378–379
evaluation metrics, 364–370
example, 19
frequent pattern-based, 393, 415–422, 437
fuzzy set approaches, 428–429, 437
general approach to, 328
genetic algorithms, 426–427, 437
heterogeneous networks, 593
homogeneous networks, 593
IF-THEN rules for, 355–357
interpretability, 369
k-nearest-neighbor, 423–425
lazy learners, 393, 422–426
learning step, 328
model representation, 18
model selection, 364, 370–377
multiclass, 430–432, 437
in multimedia data mining, 596
neural networks for, 19, 398–408
pattern-based, 282, 318
perception-based, 348–350
precision measure, 368–369
as prediction problem, 328
process, 328
process illustration, 329
random forests, 382–383
recall measure, 368–369
robustness, 369
rough set approach, 427–428, 437
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classification (Continued)
rule-based, 355–363, 386
scalability, 369
semi-supervised, 432–433, 437
sentiment, 434
spatial, 595
speed, 369
support vector machines (SVMs), 393,

408–415, 437
transfer learning, 434–436
tree pruning, 344–347, 385
web-document, 435

Classification Based on Associations (CBA), 417
Classification based on Multiple Association Rules

(CMAR), 417–418
Classification based on Predictive Association Rules

(CPAR), 418–419
classification-based outlier detection, 571–573, 582

one-class model, 571–572
semi-supervised learning, 572
See also outlier detection

classifiers, 328
accuracy, 330, 366
bagged, 379–380
Bayesian, 350, 353
case-based reasoning, 425–426
comparing with ROC curves, 373–377
comparison aspects, 369
decision tree, 331
error rate, 367
k-nearest-neighbor, 423–425
Naive Bayesian, 351–352
overfitting data, 330
performance evaluation metrics, 364–370
recognition rate, 366–367
rule-based, 355

Clementine, 603, 606
CLIQUE, 481–483

clustering steps, 481–482
effectiveness, 483
strategy, 481
See also cluster analysis; grid-based methods

closed data cubes, 192
closed frequent itemsets, 247, 308

example, 248
mining, 262–264
shortcomings for compression, 308–309

closed graphs, 591
closed patterns, 280

top-k most frequent, 307
closure checking, 263–264
cloud computing, 31

cluster analysis, 19–20, 443–495
advanced, 497–541
agglomerative hierarchical clustering,

459–461
applications, 444, 490
attribute types and, 446
as automatic classification, 445
biclustering, 511, 512–519
BIRCH, 458, 462–466
Chameleon, 458, 466–467
CLIQUE, 481–483
clustering quality measurement, 484, 487–490
clustering tendency assessment, 484–486
constraint-based, 447, 497, 532–538
correlation-based, 511
as data redundancy technique, 108
as data segmentation, 445
DBSCAN, 471–473
DENCLUE, 476–479
density-based methods, 449, 471–479, 491
in derived space, 519–520
dimensionality reduction methods, 519–522
discretization by, 116
distance measures, 461–462
distance-based, 445
divisive hierarchical clustering, 459–461
evaluation, 483–490, 491
example, 20
expectation-maximization (EM) algorithm,

505–508
graph and network data, 497, 522–532
grid-based methods, 450, 479–483, 491
heterogeneous networks, 593
hierarchical methods, 449, 457–470, 491
high-dimensional data, 447, 497, 508–522
homogeneous networks, 593
in image recognition, 444
incremental, 446
interpretability, 447
k-means, 451–454
k-medoids, 454–457
k-modes, 454
in large databases, 445
as learning by observation, 445
low-dimensional, 509
methods, 448–451
multiple-phase, 458–459
number of clusters determination, 484, 486–487
OPTICS, 473–476
orthogonal aspects, 491
for outlier detection, 445
outlier detection and, 543
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partitioning methods, 448, 451–457, 491
pattern, 282, 308–310
probabilistic hierarchical clustering, 467–470
probability model-based, 497–508
PROCLUS, 511
requirements, 445–448, 490–491
scalability, 446
in search results organization, 444
spatial, 595
spectral, 519–522
as standalone tool, 445
STING, 479–481
subspace, 318–319, 448
subspace search methods, 510–511
taxonomy formation, 20
techniques, 443, 444
as unsupervised learning, 445
usability, 447
use of, 444

cluster computing, 31
cluster samples, 108–109
cluster-based local outlier factor (CBLOF), 569–570
clustering. See cluster analysis
clustering features, 462, 463, 464
Clustering Large Applications based upon

Randomized Search (CLARANS), 457
Clustering Large Applications (CLARA), 456–457
clustering quality measurement, 484t, 487–490

cluster completeness, 488
cluster homogeneity, 487–488
extrinsic methods, 487–489
intrinsic methods, 487, 489–490
rag bag, 488
silhouette coefficient, 489–490
small cluster preservation, 488

clustering space, 448
clustering tendency assessment, 484–486

homogeneous hypothesis, 486
Hopkins statistic, 484–485
nonhomogeneous hypothesis, 486
nonuniform distribution of data, 484
See also cluster analysis

clustering with obstacles problem, 537
clustering-based methods, 552, 567–571

example, 553
See also outlier detection

clustering-based outlier detection, 567–571, 582
approaches, 567
distance to closest cluster, 568–569
fixed-width clustering, 570
intrusion detection by, 569–570
objects not belonging to a cluster, 568

in small clusters, 570–571
weakness of, 571

clustering-based quantitative associations, 290–291
clusters, 66, 443, 444, 490

arbitrary shape, discovery of, 446
assignment rule, 497–498
completeness, 488
constraints on, 533
cuts and, 529–530
density-based, 472
determining number of, 484, 486–487
discovery of, 318
fuzzy, 499–501
graph clusters, finding, 528–529
on high-dimensional data, 509
homogeneity, 487–488
merging, 469, 470
ordering, 474–475, 477
pattern-based, 516
probabilistic, 502–503
separation of, 447
shapes, 471
small, preservation, 488

CMAR. See Classification based on Multiple
Association Rules

CN2, 359, 363
collaborative recommender systems, 610, 617, 618
collective outlier detection, 548, 582

categories of, 576
contextual outlier detection versus, 575
on graph data, 576
structure discovery, 575

collective outliers, 575, 581
mining, 575–576

co-location patterns, 319, 595
colossal patterns, 302, 320

core descendants, 305, 306
core patterns, 304–305
illustrated, 303
mining challenge, 302–303
Pattern-Fusion mining, 302–307

combined significance, 312
complete-linkage algorithm, 462
completeness

data, 84–85
data mining algorithm, 22

complex data types, 166
biological sequence data, 586, 590–591
graph patterns, 591–592
mining, 585–598, 625
networks, 591–592
in science applications, 612
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complex data types (Continued)
summary, 586
symbolic sequence data, 586, 588–590
time-series data, 586, 587–588

composite join indices, 162
compressed patterns, 281

mining, 307–312
mining by pattern clustering, 308–310

compression, 100, 120
lossless, 100
lossy, 100
theory, 601

computer science applications, 613
concept characterization, 180
concept comparison, 180
concept description, 166, 180
concept hierarchies, 142, 179

for generalizing data, 150
illustrated, 143, 144
implicit, 143
manual provision, 144
multilevel association rule mining with, 285
multiple, 144
for nominal attributes, 284
for specializing data, 150

concept hierarchy generation, 112, 113, 120
based on number of distinct values, 118
illustrated, 112
methods, 117–119
for nominal data, 117–119
with prespecified semantic connections, 119
schema, 119

conditional probability table (CPT), 394, 395–396
confidence, 21

association rule, 21
interval, 219–220
limits, 373
rule, 245, 246

conflict resolution strategy, 356
confusion matrix, 365–366, 386

illustrated, 366
connectionist learning, 398
consecutive rules, 92
Constrained Vector Quantization Error (CVQE)

algorithm, 536
constraint-based clustering, 447, 497, 532–538, 539

categorization of constraints and, 533–535
hard constraints, 535–536
methods, 535–538
soft constraints, 536–537
speeding up, 537–538
See also cluster analysis

constraint-based mining, 294–301, 320
interactive exploratory mining/analysis, 295
as mining trend, 623

constraint-based patterns/rules, 281
constraint-based sequential pattern mining, 589
constraint-guided mining, 30
constraints

antimonotonic, 298, 301
association rule, 296–297
cannot-link, 533
on clusters, 533
coherence, 535
conflicting, 535
convertible, 299–300
data, 294
data-antimonotonic, 300
data-pruning, 300–301, 320
data-succinct, 300
dimension/level, 294, 297
hard, 534, 535–536, 539
inconvertible, 300
on instances, 533, 539
interestingness, 294, 297
knowledge type, 294
monotonic, 298
must-link, 533, 536
pattern-pruning, 297–300, 320
rules for, 294
on similarity measures, 533–534
soft, 534, 536–537, 539
succinct, 298–299

content-based retrieval, 596
context indicators, 314
context modeling, 316
context units, 314
contextual attributes, 546, 573
contextual outlier detection, 546–547, 582

with identified context, 574
normal behavior modeling, 574–575
structures as contexts, 575
summary, 575
transformation to conventional outlier

detection, 573–574
contextual outliers, 545–547, 573, 581

example, 546, 573
mining, 573–575

contingency tables, 95
continuous attributes, 44
contrasting classes, 15, 180

initial working relations, 177
prime relation, 175, 177

convertible constraints, 299–300
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COP k-means algorithm, 536
core descendants, 305

colossal patterns, 306
merging of core patterns, 306

core patterns, 304–305
core ratio, 305
correlation analysis, 94

discretization by, 117
interestingness measures, 264
with lift, 266–267
nominal data, 95–96
numeric data, 96–97
redundancy and, 94–98

correlation coefficient, 94, 96
numeric data, 96–97

correlation rules, 265, 272
correlation-based clustering methods, 511
correlations, 18
cosine measure, 268
cosine similarity, 77

between two term-frequency vectors, 78
cost complexity pruning algorithm, 345
cotraining, 432–433
covariance, 94, 97

numeric data, 97–98
CPAR. See Classification based on Predictive

Association Rules
credit policy analysis, 608–609
CRM. See customer relationship management
crossover operation, 426
cross-validation, 370–371, 386

k-fold, 370
leave-one-out, 371
in number of clusters determination, 487
stratified, 371

cube gradient analysis, 321
cube shells, 192, 211

computing, 211
cube space

discovery-driven exploration, 231–234
multidimensional data analysis in, 227–234
prediction mining in, 227
subspaces, 228–229

cuboid trees, 205
cuboids, 137

apex, 111, 138, 158
base, 111, 137–138, 158
child, 193
individual, 190
lattice of, 139, 156, 179, 188–189,

234, 290
sparse, 190

subset selection, 160
See also data cubes

curse of dimensionality, 158, 179
customer relationship management (CRM),

619
customer retention analysis, 610
CVQE. See Constrained Vector Quantization Error

algorithm
cyber-physical systems (CPS), 596, 623–624

D
data

antimonotonicity, 300
archeology, 6
biological sequence, 586, 590–591
complexity, 32
conversion to knowledge, 2
cyber-physical system, 596
for data mining, 8
data warehouse, 13–15
database, 9–10
discrimination, 16
dredging, 6
generalizing, 150
graph, 14
growth, 2
linearly inseparable, 413–415
linearly separated, 409
multimedia, 14, 596
multiple sources, 15, 32
multivariate, 556
networked, 14
overfitting, 330
relational, 10
sample, 219
similarity and dissimilarity measures, 65–78
skewed, 47, 271
spatial, 14, 595
spatiotemporal, 595–596
specializing, 150
statistical descriptions, 44–56
streams, 598
symbolic sequence, 586, 588–589
temporal, 14
text, 14, 596–597
time-series, 586, 587
“tombs,” 5
training, 18
transactional, 13–14
types of, 33
web, 597–598

data auditing tools, 92
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data characterization, 15, 166
attribute-oriented induction, 167–172
data mining query, 167–168
example, 16
methods, 16
output, 16

data classification. See classification
data cleaning, 6, 85, 88–93, 120

in back-end tools/utilities, 134
binning, 89–90
discrepancy detection, 91–93
by information network analysis, 592–593
missing values, 88–89
noisy data, 89
outlier analysis, 90
pattern mining for, 318
as process, 91–93
regression, 90
See also data preprocessing

data constraints, 294
antimonotonic, 300
pruning data space with, 300–301
succinct, 300
See also constraints

data cube aggregation, 110–111
data cube computation, 156–160, 214–215

aggregation and, 193
average(), 215
BUC, 200–204, 235
cube operator, 157–159
cube shells, 211
full, 189–190, 195–199
general strategies for, 192–194
iceberg, 160, 193–194
memory allocation, 199
methods, 194–218, 235
multiway array aggregation, 195–199
one-pass, 198
preliminary concepts, 188–194
shell fragments, 210–218, 235
Star-Cubing, 204–210, 235

data cubes, 10, 136, 178, 188
3-D, 138
4-D, 138, 139
apex cuboid, 111, 138, 158
base cuboid, 111, 137–138, 158
closed, 192
cube shell, 192
cuboids, 137
curse of dimensionality, 158
discovery-driven exploration, 231–234
example, 11–13

full, 189–190, 196–197
gradient analysis, 321
iceberg, 160, 190–191, 201, 235
lattice of cuboids, 157, 234, 290
materialization, 159–160, 179, 234
measures, 145
multidimensional, 12, 136–139
multidimensional data mining and, 26
multifeature, 227, 230–231, 235
multimedia, 596
prediction, 227–230, 235
qualitative association mining, 289–290
queries, 230
query processing, 218–227
ranking, 225–227, 235
sampling, 218–220, 235
shell, 160, 211
shell fragments, 192, 210–218, 235
sparse, 190
spatial, 595
technology, 187–242

data discretization. See discretization
data dispersion, 44, 48–51

boxplots, 49–50
five-number summary, 49
quartiles, 48–49
standard deviation, 50–51
variance, 50–51

data extraction, in back-end tools/utilities, 134
data focusing, 168
data generalization, 179–180

by attribute-oriented induction, 166–178
data integration, 6, 85–86, 93–99, 120

correlation analysis, 94–98
detection/resolution of data value conflicts,

99
entity identification problem, 94
by information network analysis, 592–593
object matching, 94
redundancy and, 94–98
schema, 94
tuple duplication, 98–99
See also data preprocessing

data marts, 132, 142
data warehouses versus, 142
dependent, 132
distributed, 134
implementation, 132
independent, 132

data matrix, 67–68
dissimilarity matrix versus, 67–68
relational table, 67–68
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rows and columns, 68
as two-mode matrix, 68

data migration tools, 93
data mining, 5–8, 33, 598, 623

ad hoc, 31
applications, 607–618
biological data, 624
complex data types, 585–598, 625
cyber-physical system data, 596
data streams, 598
data types for, 8
data warehouses for, 154
database types and, 32
descriptive, 15
distributed, 615, 624
efficiency, 31
foundations, views on, 600–601
functionalities, 15–23, 34
graphs and networks, 591–594
incremental, 31
as information technology evolution, 2–5
integration, 623
interactive, 30
as interdisciplinary effort, 29–30
invisible, 33, 618–620, 625
issues in, 29–33, 34
in knowledge discovery, 7
as knowledge search through data, 6
machine learning similarities, 26
methodologies, 29–30, 585–607
motivation for, 1–5
multidimensional, 11–13, 26, 33–34, 155–156,

179, 227–230
multimedia data, 596
OLAP and, 154
as pattern/knowledge discovery process, 8
predictive, 15
presentation/visualization of results, 31
privacy-preserving, 32, 621–622, 624–625, 626
query languages, 31
relational databases, 10
scalability, 31
sequence data, 586
social impacts, 32
society and, 618–622
spatial data, 595
spatiotemporal data and moving objects,

595–596, 623–624
statistical, 598
text data, 596–597, 624
trends, 622–625, 626
ubiquitous, 618–620, 625

user interaction and, 30–31
visual and audio, 602–607, 624, 625
Web data, 597–598, 624

data mining systems, 10
data models

entity-relationship (ER), 9, 139
multidimensional, 135–146

data objects, 40, 79
similarity, 40
terminology for, 40

data preprocessing, 83–124
cleaning, 88–93
forms illustration, 87
integration, 93–99
overview, 84–87
quality, 84–85
reduction, 99–111
in science applications, 612
summary, 87
tasks in, 85–87
transformation, 111–119

data quality, 84, 120
accuracy, 84
believability, 85
completeness, 84–85
consistency, 85
interpretability, 85
timeliness, 85

data reduction, 86, 99–111, 120
attribute subset selection, 103–105
clustering, 108
compression, 100, 120
data cube aggregation, 110–111
dimensionality, 86, 99–100, 120
histograms, 106–108
numerosity, 86, 100, 120
parametric, 105–106
principle components analysis, 102–103
sampling, 108
strategies, 99–100
theory, 601
wavelet transforms, 100–102
See also data preprocessing

data rich but information poor, 5
data scrubbing tools, 92
data security-enhancing techniques, 621
data segmentation, 445
data selection, 8
data source view, 151
data streams, 14, 598, 624
data transformation, 8, 87, 111–119, 120

aggregation, 112
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data transformation (Continued)
attribute construction, 112
in back-end tools/utilities, 134
concept hierarchy generation, 112, 120
discretization, 111, 112, 120
normalization, 112, 113–115, 120
smoothing, 112
strategies, 112–113
See also data preprocessing

data types
complex, 166
complex, mining, 585–598
for data mining, 8

data validation, 592–593
data visualization, 56–65, 79, 602–603

complex data and relations, 64–65
geometric projection techniques, 58–60
hierarchical techniques, 63–64
icon-based techniques, 60–63
mining process, 603
mining result, 603, 605
pixel-oriented techniques, 57–58
in science applications, 613
summary, 65
tag clouds, 64, 66
techniques, 39–40

data warehouses, 10–13, 26, 33, 125–185
analytical processing, 153
back-end tools/utilities, 134, 178
basic concepts, 125–135
bottom-up design approach, 133, 151–152
business analysis framework for, 150
business query view, 151
combined design approach, 152
data mart, 132, 142
data mining, 154
data source view, 151
design process, 151
development approach, 133
development tools, 153
dimensions, 10
enterprise, 132
extractors, 151
fact constellation, 141–142
for financial data, 608
framework illustration, 11
front-end client layer, 132
gateways, 131
geographic, 595
implementation, 156–165
information processing, 153
integrated, 126

metadata, 134–135
modeling, 10, 135–150
models, 132–134
multitier, 134
multitiered architecture, 130–132
nonvolatile, 127
OLAP server, 132
operational database systems versus, 128–129
planning and analysis tools, 153
retail industry, 609–610
in science applications, 612
snowflake schema, 140–141
star schema, 139–140
subject-oriented, 126
three-tier architecture, 131, 178
time-variant, 127
tools, 11
top-down design approach, 133, 151
top-down view, 151
update-driven approach, 128
usage for information processing, 153
view, 151
virtual, 133
warehouse database server, 131

database management systems (DBMSs), 9
database queries. See queries
databases, 9

inductive, 601
relational. See relational databases
research, 26
statistical, 148–149
technology evolution, 3
transactional, 13–15
types of, 32
web-based, 4

data/pattern analysis. See data mining
DBSCAN, 471–473

algorithm illustration, 474
core objects, 472
density estimation, 477
density-based cluster, 472
density-connected, 472, 473
density-reachable, 472, 473
directly density-reachable, 472
neighborhood density, 471
See also cluster analysis; density-based methods

DDPMine, 422
decimal scaling, normalization by, 115
decision tree analysis, discretization by, 116
decision tree induction, 330–350, 385

algorithm differences, 336
algorithm illustration, 333
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attribute selection measures, 336–344
attribute subset selection, 105
C4.5, 332
CART, 332
CHAID, 343
gain ratio, 340–341
Gini index, 332, 341–343
ID3, 332
incremental versions, 336
information gain, 336–340
multivariate splits, 344
parameters, 332
scalability and, 347–348
splitting criterion, 333
from training tuples, 332–333
tree pruning, 344–347, 385
visual mining for, 348–350

decision trees, 18, 330
branches, 330
illustrated, 331
internal nodes, 330
leaf nodes, 330
pruning, 331, 344–347
root node, 330
rule extraction from, 357–359

deep web, 597
default rules, 357
DENCLUE, 476–479

advantages, 479
clusters, 478
density attractor, 478
density estimation, 476
kernel density estimation, 477–478
kernels, 478
See also cluster analysis; density-based methods

dendrograms, 460
densification power law, 592
density estimation, 476

DENCLUE, 477–478
kernel function, 477–478

density-based methods, 449, 471–479, 491
DBSCAN, 471–473
DENCLUE, 476–479
object division, 449
OPTICS, 473–476
STING as, 480
See also cluster analysis

density-based outlier detection, 564–567
local outlier factor, 566–567
local proximity, 564
local reachability density, 566
relative density, 565

descendant cells, 189
descriptive mining tasks, 15
DIANA (Divisive Analysis), 459, 460
dice operation, 148
differential privacy, 622
dimension tables, 136
dimensional cells, 189
dimensionality reduction, 86, 99–100, 120
dimensionality reduction methods, 510,

519–522, 538
list of, 587
spectral clustering, 520–522

dimension/level
application of, 297
constraints, 294

dimensions, 10, 136
association rule, 281
cardinality of, 159
concept hierarchies and, 142–144
in multidimensional view, 33
ordering of, 210
pattern, 281
ranking, 225
relevance analysis, 175
selection, 225
shared, 204
See also data warehouses

direct discriminative pattern mining, 422
directed acyclic graphs, 394–395
discernibility matrix, 427
discovery-driven exploration, 231–234, 235
discrepancy detection, 91–93
discrete attributes, 44
discrete Fourier transform (DFT), 101, 587
discrete wavelet transform (DWT), 100–102,

587
discretization, 112, 120

by binning, 115
by clustering, 116
by correlation analysis, 117
by decision tree analysis, 116
by histogram analysis, 115–116
techniques, 113

discriminant analysis, 600
discriminant rules, 16
discriminative frequent pattern-based classification,

416, 419–422, 437
basis for, 419
feature generation, 420
feature selection, 420–421
framework, 420–421
learning of classification model, 421
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dispersion of data, 44, 48–51
dissimilarity

asymmetric binary, 71
between attributes of mixed type, 76–77
between binary attributes, 71–72
measuring, 65–78, 79
between nominal attributes, 69
on numeric data, 72–74
between ordinal attributes, 75
symmetric binary, 70–71

dissimilarity matrix, 67, 68
data matrix versus, 67–68
n-by-n table representation, 68
as one-mode matrix, 68

distance measures, 461–462
Euclidean, 72–73
Manhattan, 72–73
Minkowski, 73
supremum, 73–74
types of, 72

distance-based cluster analysis, 445
distance-based outlier detection, 561–562

nested loop algorithm, 561, 562
See also outlier detection

distributed data mining, 615, 624
distributed privacy preservation, 622
distributions

boxplots for visualizing, 49–50
five-number summary, 49

distributive measures, 145
Divisive Analysis (DIANA), 459, 460
divisive hierarchical method, 459

agglomerative hierarchical clustering versus,
459–460

DIANA, 459, 460
DNA chips, 512
document classification, 430
documents

language model, 26
topic model, 26–27

drill-across operation, 148
drill-down operation, 11, 146–147
drill-through operation, 148
dynamic itemset counting, 256

E
eager learners, 423, 437
Eclat (Equivalence Class Transformation) algorithm,

260, 272
e-commerce, 609
editing method, 425

efficiency
Apriori algorithm, 255–256
backpropagation, 404
data mining algorithms, 31

elbow method, 486
email spam filtering, 435
engineering applications, 613
ensemble methods, 378–379, 386

bagging, 379–380
boosting, 380–382
for class imbalance problem, 385
random forests, 382–383
types of, 378, 386

enterprise warehouses, 132
entity identification problem, 94
entity-relationship (ER) data model, 9, 139
epoch updating, 404
equal-frequency histograms, 107, 116
equal-width histograms, 107, 116
equivalence classes, 427
error rates, 367
error-correcting codes, 431–432
Euclidean distance, 72

mathematical properties, 72–73
weighted, 74
See also distance measures

evaluation metrics, 364–370
evolution, of database system technology, 3–5
evolutionary searches, 579
exception-based, discovery-driven exploration,

231–234, 235
exceptions, 231
exhaustive rules, 358
expectation-maximization (EM) algorithm,

505–508, 538
expectation step (E-step), 505
fuzzy clustering with, 505–507
maximization step (M-step), 505
for mixture models, 507–508
for probabilistic model-based clustering,

507–508
steps, 505
See also probabilistic model-based clustering

expected values, 97
cell, 234

exploratory data mining. See multidimensional data
mining

extraction
data, 134
rule, from decision tree, 357–359

extraction/transformation/loading (ETL) tools, 93
extractors, 151
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F
fact constellation, 141

example, 141–142
illustrated, 142

fact tables, 136
summary, 165

factor analysis, 600
facts, 136
false negatives, 365
false positives, 365
farthest-neighbor clustering algorithm, 462
field overloading, 92
financial data analysis, 607–609

credit policy analysis, 608–609
crimes detection, 609
data warehouses, 608
loan payment prediction, 608–609
targeted marketing, 609

FindCBLOF algorithm, 569–570
five-number summary, 49
fixed-width clustering, 570
FOIL, 359, 363, 418
Forest-RC, 383
forward algorithm, 591
FP-growth, 257–259, 272

algorithm illustration, 260
example, 257–258
performance, 259

FP-trees, 257
condition pattern base, 258
construction, 257–258
main memory-based, 259
mining, 258, 259

Frag-Shells, 212, 213
fraudulent analysis, 610–611
frequency patterns

approximate, 281, 307–312
compressed, 281, 307–312
constraint-based, 281
near-match, 281
redundancy-aware top-k, 281
top-k, 281

frequent itemset mining, 18, 272, 282
Apriori algorithm, 248–253
closed patterns, 262–264
market basket analysis, 244–246
max patterns, 262–264
methods, 248–264
pattern-growth approach, 257–259
with vertical data format, 259–262, 272

frequent itemsets, 243, 246, 272
association rule generation from, 253, 254

closed, 247, 248, 262–264, 308
finding, 247
finding by confined candidate generation,

248–253
maximal, 247, 248, 262–264, 308
subsets, 309

frequent pattern mining, 279
advanced forms of patterns, 320
application domain-specific semantics, 282
applications, 317–319, 321
approximate patterns, 307–312
classification criteria, 280–283
colossal patterns, 301–307
compressed patterns, 307–312
constraint-based, 294–301, 320
data analysis usages, 282
for data cleaning, 318
direct discriminative, 422
high-dimensional data, 301–307
in high-dimensional space, 320
in image data analysis, 319
for indexing structures, 319
kinds of data and features, 282
multidimensional associations, 287–289
in multilevel, multidimensional space, 283–294
multilevel associations, 283–294
in multimedia data analysis, 319
negative patterns, 291–294
for noise filtering, 318
Pattern-Fusion, 302–307
quantitative association rules, 289–291
rare patterns, 291–294
in recommender systems, 319
road map, 279–283
scalable computation and, 319
scope of, 319–320
in sequence or structural data analysis, 319
in spatiotemporal data analysis, 319
for structure and cluster discovery, 318
for subspace clustering, 318–319
in time-series data analysis, 319
top-k, 310
in video data analysis, 319
See also frequent patterns

frequent pattern-based classification, 415–422, 437
associative, 415, 416–419
discriminative, 416, 419–422
framework, 422

frequent patterns, 17, 243
abstraction levels, 281
association rule mapping, 280
basic, 280
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frequent patterns (Continued)
closed, 262–264, 280
concepts, 243–244
constraint-based, 281
dimensions, 281
diversity, 280
exploration, 313–319
growth, 257–259, 272
max, 262–264, 280
mining, 243–244, 279–325
mining constraints or criteria, 281
number of dimensions involved in, 281
semantic annotation of, 313–317
sequential, 243
strong associations, 437
structured, 243
trees, 257–259
types of values in, 281

frequent subgraphs, 591
front-end client layer, 132
full materialization, 159, 179, 234
fuzzy clustering, 499–501, 538

data set for, 506
with EM algorithm, 505–507
example, 500
expectation step (E-step), 505
flexibility, 501
maximization step (M-step), 506–507
partition matrix, 499
as soft clusters, 501

fuzzy logic, 428
fuzzy sets, 428–429, 437, 499

evaluation, 500–501
example, 499

G
gain ratio, 340

C4.5 use of, 340
formula, 341
maximum, 341

gateways, 131
gene expression, 513–514
generalization

attribute, 169–170
attribute, control, 170
attribute, threshold control, 170
in multimedia data mining, 596
process, 172
results presentation, 174
synchronous, 175

generalized linear models, 599–600
generalized relations

attribute-oriented induction, 172

presentation of, 174
threshold control, 170

generative model, 467–469
genetic algorithms, 426–427, 437
genomes, 15
geodesic distance, 525–526, 539

diameter, 525
eccentricity, 525
measurements based on, 526
peripheral vertex, 525
radius, 525

geographic data warehouses, 595
geometric projection visualization, 58–60
Gini index, 341

binary enforcement, 332
binary indexes, 341
CART use of, 341
decision tree induction using,

342–343
minimum, 342
partitioning and, 342

global constants, for missing values, 88
global outliers, 545, 581

detection, 545
example, 545

Google
Flu Trends, 2
popularity of, 619–620

gradient descent strategy, 396–397
algorithms, 397
greedy hill-climbing, 397
as iterative, 396–397

graph and network data clustering, 497,
522–532, 539

applications, 523–525
bipartite graph, 523
challenges, 523–525, 530
cuts and clusters, 529–530
generic method, 530–531
geodesic distance, 525–526
methods, 528–532
similarity measures, 525–528
SimRank, 526–528
social network, 524–525
web search engines, 523–524
See also cluster analysis

graph cuts, 539
graph data, 14
graph index structures, 591
graph pattern mining, 591–592, 612–613
graphic displays

data presentation software, 44–45
histogram, 54, 55
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quantile plot, 51–52
quantile-quantile plot, 52–54
scatter plot, 54–56

greedy hill-climbing, 397
greedy methods, attribute subset selection,

104–105
grid-based methods, 450, 479–483, 491

CLIQUE, 481–483
STING, 479–481
See also cluster analysis

grid-based outlier detection, 562–564
CELL method, 562, 563
cell properties, 562
cell pruning rules, 563
See also outlier detection

group-based support, 286
group-by clause, 231
grouping attributes, 231
grouping variables, 231
Grubb’s test, 555

H
hamming distance, 431
hard constraints, 534, 539

example, 534
handling, 535–536

harmonic mean, 369
hash-based technique, 255
heterogeneous networks, 592

classification of, 593
clustering of, 593
ranking of, 593

heterogeneous transfer learning, 436
hidden Markov model (HMM), 590, 591
hierarchical methods, 449, 457–470, 491

agglomerative, 459–461
algorithmic, 459, 461–462
Bayesian, 459
BIRCH, 458, 462–466
Chameleon, 458, 466–467
complete linkages, 462, 463
distance measures, 461–462
divisive, 459–461
drawbacks, 449
merge or split points and, 458
probabilistic, 459, 467–470
single linkages, 462, 463
See also cluster analysis

hierarchical visualization, 63
treemaps, 63, 65
Worlds-with-Worlds, 63, 64

high-dimensional data, 301
clustering, 447

data distribution of, 560
frequent pattern mining, 301–307
outlier detection in, 576–580, 582
row enumeration, 302

high-dimensional data clustering, 497, 508–522,
538, 553

biclustering, 512–519
dimensionality reduction methods, 510,

519–522
example, 508–509
problems, challenges, and methodologies,

508–510
subspace clustering methods, 509,

510–511
See also cluster analysis

HilOut algorithm, 577–578
histograms, 54, 106–108, 116

analysis by discretization, 115–116
attributes, 106
binning, 106
construction, 559
equal-frequency, 107
equal-width, 107
example, 54
illustrated, 55, 107
multidimensional, 108
as nonparametric model, 559
outlier detection using, 558–560

holdout method, 370, 386
holistic measures, 145

homogeneous networks, 592
classification of, 593
clustering of, 593

Hopkins statistic, 484–485
horizontal data format, 259
hybrid OLAP (HOLAP), 164–165, 179
hybrid-dimensional association rules,

288

I
IBM Intelligent Miner, 603, 606
iceberg condition, 191
iceberg cubes, 160, 179, 190, 235

BUC construction, 201
computation, 160, 193–194, 319
computation and storage, 210–211
computation with Star-Cubing algorithm,

204–210
materialization, 319
specification of, 190–191
See also data cubes

icon-based visualization, 60
Chernoff faces, 60–61
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icon-based visualization (Continued)
stick figure technique, 61–63
See also data visualization

ID3, 332, 385
greedy approach, 332
information gain, 336
See also decision tree induction

IF-THEN rules, 355–357
accuracy, 356
conflict resolution strategy, 356
coverage, 356
default rule, 357
extracting from decision tree, 357
form, 355
rule antecedent, 355
rule consequent, 355
rule ordering, 357
satisfied, 356
triggered, 356

illustrated, 149
image data analysis, 319
imbalance problem, 367
imbalance ratio (IR), 270

skewness, 271
inconvertible constraints, 300
incremental data mining, 31
indexes

bitmapped join, 163
composite join, 162
Gini, 332, 341–343
inverted, 212, 213

indexing
bitmap, 160–161, 179
bitmapped join, 179
frequent pattern mining for, 319
join, 161–163, 179
OLAP, 160–163

inductive databases, 601
inferential statistics, 24
information age, moving toward, 1–2
information extraction systems, 430
information gain, 336–340

decision tree induction using, 338–339
ID3 use of, 336
pattern frequency support versus, 421
single feature plot, 420
split-point, 340

information networks
analysis, 592–593
evolution of, 594
link prediction in, 593–594
mining, 623

OLAP in, 594
role discovery in, 593–594
similarity search in, 594

information processing, 153
information retrieval (IR), 26–27

challenges, 27
language model, 26
topic model, 26–27

informativeness model, 535
initial working relations, 168, 169, 177
instance-based learners. See lazy learners
instances, constraints on, 533, 539
integrated data warehouses, 126
integrators, 127
intelligent query answering, 618
interactive data mining, 604, 607
interactive mining, 30
intercuboid query expansion, 221

example, 224–225
method, 223–224

interdimensional association rules, 288
interestingness, 21–23

assessment methods, 23
components of, 21
expected, 22
objective measures, 21–22
strong association rules, 264–265
subjective measures, 22
threshold, 21–22
unexpected, 22

interestingness constraints, 294
application of, 297

interpretability
backpropagation and, 406–408
classification, 369
cluster analysis, 447
data, 85
data quality and, 85
probabilistic hierarchical clustering,

469
interquartile range (IQR), 49, 555
interval-scaled attributes, 43, 79
intracuboid query expansion, 221

example, 223
method, 221–223
value usage, 222

intradimensional association rules, 287
intrusion detection, 569–570

anomaly-based, 614
data mining algorithms, 614–615
discriminative classifiers, 615
distributed data mining, 615
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signature-based, 614
stream data analysis, 615
visualization and query tools, 615

inverted indexes, 212, 213
invisible data mining, 33, 618–620, 625
IQR. See Interquartile range
IR. See information retrieval
item merging, 263
item skipping, 263
items, 13
itemsets, 246

candidate, 251, 252
dependent, 266
dynamic counting, 256
imbalance ratio (IR), 270, 271
negatively correlated, 292
occurrence independence, 266
strongly negatively correlated, 292
See also frequent itemsets

iterative Pattern-Fusion, 306
iterative relocation techniques, 448

J
Jaccard coefficient, 71
join indexing, 161–163, 179

K
k-anonymity method, 621–622
Karush-Kuhn-Tucker (KKT) conditions, 412
k-distance neighborhoods, 565
kernel density estimation, 477–478
kernel function, 415
k-fold cross-validation, 370–371
k-means, 451–454

algorithm, 452
application of, 454
CLARANS, 457
within-cluster variation, 451, 452
clustering by, 453
drawback of, 454–455
functioning of, 452
scalability, 454
time complexity, 453
variants, 453–454

k-means clustering, 536
k-medoids, 454–457

absolute-error criterion, 455
cost function for, 456
PAM, 455–457

k-nearest-neighbor classification, 423
closeness, 423
distance-based comparisons, 425

editing method, 425
missing values and, 424
number of neighbors, 424–425
partial distance method, 425
speed, 425

knowledge
background, 30–31
mining, 29
presentation, 8
representation, 33
transfer, 434

knowledge bases, 5, 8
knowledge discovery

data mining in, 7
process, 8

knowledge discovery from data (KDD), 6
knowledge extraction. See data mining
knowledge mining. See data mining
knowledge type constraints, 294
k-predicate sets, 289
Kulczynski measure, 268, 272

negatively correlated pattern based on, 293–294

L
language model, 26
Laplacian correction, 355
lattice of cuboids, 139, 156, 179, 188–189, 234
lazy learners, 393, 422–426, 437

case-based reasoning classifiers, 425–426
k-nearest-neighbor classifiers, 423–425

l-diversity method, 622
learning

active, 433–434, 437
backpropagation, 400
as classification step, 328
connectionist, 398
by examples, 445
by observation, 445
rate, 397
semi-supervised, 572
supervised, 330
transfer, 430, 434–436, 438
unsupervised, 330, 445, 490

learning rates, 403–404
leave-one-out, 371
lift, 266, 272

correlation analysis with, 266–267
likelihood ratio statistic, 363
linear regression, 90, 105

multiple, 106
linearly, 412–413
linearly inseparable data, 413–415
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link mining, 594
link prediction, 594
load, in back-end tools/utilities, 134
loan payment prediction, 608–609
local outlier factor, 566–567
local proximity-based outliers, 564–565
logistic function, 402
log-linear models, 106
lossless compression, 100
lossy compression, 100
lower approximation, 427

M
machine learning, 24–26

active, 25
data mining similarities, 26
semi-supervised, 25
supervised, 24
unsupervised, 25

Mahalanobis distance, 556
majority voting, 335
Manhattan distance, 72–73
MaPle, 519
margin, 410
market basket analysis, 244–246, 271–272

example, 244
illustrated, 244

Markov chains, 591
materialization

full, 159, 179, 234
iceberg cubes, 319
no, 159
partial, 159–160, 192, 234
semi-offline, 226

max patterns, 280
max confidence measure, 268, 272
maximal frequent itemsets, 247, 308

example, 248
mining, 262–264
shortcomings for compression, 308–309

maximum marginal hyperplane (MMH), 409
SVM finding, 412

maximum normed residual test, 555
mean, 39, 45

bin, smoothing by, 89
example, 45
for missing values, 88
trimmed, 46
weighted arithmetic, 45

measures, 145
accuracy-based, 369
algebraic, 145

all confidence, 272
antimonotonic, 194
attribute selection, 331
categories of, 145
of central tendency, 39, 44, 45–47
correlation, 266
data cube, 145
dispersion, 48–51
distance, 72–74, 461–462
distributive, 145
holistic, 145
Kulczynski, 272
max confidence, 272
of multidimensional databases, 146
null-invariant, 272
pattern evaluation, 267–271
precision, 368–369
proximity, 67, 68–72
recall, 368–369
sensitivity, 367
significance, 312
similarity/dissimilarity, 65–78
specificity, 367

median, 39, 46
bin, smoothing by, 89
example, 46
formula, 46–47
for missing values, 88

metadata, 92, 134, 178
business, 135
importance, 135
operational, 135
repositories, 134–135

metarule-guided mining
of association rules, 295–296
example, 295–296

metrics, 73
classification evaluation, 364–370

microeconomic view, 601
midrange, 47
MineSet, 603, 605
minimal interval size, 116
minimal spanning tree algorithm, 462
minimum confidence threshold, 18, 245
Minimum Description Length (MDL), 343–344
minimum support threshold, 18, 190

association rules, 245
count, 246

Minkowski distance, 73
min-max normalization, 114
missing values, 88–89
mixed-effect models, 600
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mixture models, 503, 538
EM algorithm for, 507–508
univariate Gaussian, 504

mode, 39, 47
example, 47

model selection, 364
with statistical tests of significance, 372–373

models, 18
modularity

of clustering, 530
use of, 539

MOLAP. See multidimensional OLAP
monotonic constraints, 298
motifs, 587
moving-object data mining, 595–596, 623–624
multiclass classification, 430–432, 437

all-versus-all (AVA), 430–431
error-correcting codes, 431–432
one-versus-all (OVA), 430

multidimensional association rules, 17, 283,
288, 320

hybrid-dimensional, 288
interdimensional, 288
mining, 287–289
mining with static discretization of quantitative

attributes, 288
with no repeated predicates, 288
See also association rules

multidimensional data analysis
in cube space, 227–234
in multimedia data mining, 596
spatial, 595
of top-k results, 226

multidimensional data mining, 11–13, 34 155–156,
179, 187, 227, 235

data cube promotion of, 26
dimensions, 33
example, 228–229
retail industry, 610

multidimensional data model, 135–146, 178
data cube as, 136–139
dimension table, 136
dimensions, 142–144
fact constellation, 141–142
fact table, 136
snowflake schema, 140–141
star schema, 139–140

multidimensional databases
measures of, 146
querying with starnet model, 149–150

multidimensional histograms, 108
multidimensional OLAP (MOLAP), 132, 164, 179

multifeature cubes, 227, 230, 235
complex query support, 231
examples, 230–231

multilayer feed-forward neural networks,
398–399

example, 405
illustrated, 399
layers, 399
units, 399

multilevel association rules, 281, 283, 284, 320
ancestors, 287
concept hierarchies, 285
dimensions, 281
group-based support, 286
mining, 283–287
reduced support, 285, 286
redundancy, checking, 287
uniform support, 285–286

multimedia data, 14
multimedia data analysis, 319
multimedia data mining, 596
multimodal, 47
multiple linear regression, 90, 106
multiple sequence alignment, 590
multiple-phase clustering, 458–459
multitier data warehouses, 134
multivariate outlier detection, 556

with Mahalanobis distance, 556
with multiple clusters, 557
with multiple parametric distributions, 557
with χ2-static, 556

multiway array aggregation, 195, 235
for full cube computation, 195–199
minimum memory requirements, 198

must-link constraints, 533, 536
mutation operator, 426
mutual information, 315–316
mutually exclusive rules, 358

N
naive Bayesian classification, 351

class label prediction with, 353–355
functioning of, 351–352

nearest-neighbor clustering algorithm, 461
near-match patterns/rules, 281
negative correlation, 55, 56
negative patterns, 280, 283, 320

example, 291–292
mining, 291–294

negative transfer, 436
negative tuples, 364
negatively skewed data, 47
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neighborhoods
density, 471
distance-based outlier detection, 560
k-distance, 565

nested loop algorithm, 561, 562
networked data, 14
networks, 592

heterogeneous, 592, 593
homogeneous, 592, 593
information, 592–594
mining in science applications, 612–613
social, 592
statistical modeling of, 592–594

neural networks, 19, 398
backpropagation, 398–408
as black boxes, 406
for classification, 19, 398
disadvantages, 406
fully connected, 399, 406–407
learning, 398
multilayer feed-forward, 398–399
pruning, 406–407
rule extraction algorithms, 406, 407
sensitivity analysis, 408
three-layer, 399
topology definition, 400
two-layer, 399

neurodes, 399
Ng-Jordan-Weiss algorithm, 521, 522
no materialization, 159
noise filtering, 318
noisy data, 89–91
nominal attributes, 41

concept hierarchies for, 284
correlation analysis, 95–96
dissimilarity between, 69
example, 41
proximity measures, 68–70
similarity computation, 70
values of, 79, 288
See also attributes

nonlinear SVMs, 413–415
nonparametric statistical methods,

553–558
nonvolatile data warehouses, 127
normalization, 112, 120

data transformation by, 113–115
by decimal scaling, 115
min-max, 114
z-score, 114–115

null rules, 92
null-invariant measures, 270–271, 272

null-transactions, 270, 272
number of, 270
problem, 292–293

numeric attributes, 43–44, 79
covariance analysis, 98
interval-scaled, 43, 79
ratio-scaled, 43–44, 79

numeric data, dissimilarity on, 72–74
numeric prediction, 328, 385

classification, 328
support vector machines (SVMs) for, 408

numerosity reduction, 86, 100, 120
techniques, 100

O
object matching, 94
objective interestingness measures, 21–22
one-class model, 571–572
one-pass cube computation, 198
one-versus-all (OVA), 430
online analytical mining (OLAM), 155, 227
online analytical processing (OLAP), 4, 33, 128,

179
access patterns, 129
data contents, 128
database design, 129
dice operation, 148
drill-across operation, 148
drill-down operation, 11, 135–136, 146
drill-through operation, 148
example operations, 147
functionalities of, 154
hybrid OLAP, 164–165, 179
indexing, 125, 160–163
in information networks, 594
in knowledge discovery process, 125
market orientation, 128
multidimensional (MOLAP), 132, 164, 179
OLTP versus, 128–129, 130
operation integration, 125
operations, 146–148
pivot (rotate) operation, 148
queries, 129, 130, 163–164
query processing, 125, 163–164
relational OLAP, 132, 164, 165, 179
roll-up operation, 11, 135–136, 146
sample data effectiveness, 219
server architectures, 164–165
servers, 132
slice operation, 148
spatial, 595
statistical databases versus, 148–149
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user-control versus automation, 167
view, 129

online transaction processing (OLTP), 128
access patterns, 129
customer orientation, 128
data contents, 128
database design, 129
OLAP versus, 128–129, 130
view, 129

operational metadata, 135
OPTICS, 473–476

cluster ordering, 474–475, 477
core-distance, 475
density estimation, 477
reachability-distance, 475
structure, 476
terminology, 476
See also cluster analysis; density-based methods

ordered attributes, 103
ordering

class-based, 358
dimensions, 210
rule, 357

ordinal attributes, 42, 79
dissimilarity between, 75
example, 42
proximity measures, 74–75

outlier analysis, 20–21
clustering-based techniques, 66
example, 21
in noisy data, 90
spatial, 595

outlier detection, 543–584
angle-based (ABOD), 580
application-specific, 548–549
categories of, 581
CELL method, 562–563
challenges, 548–549
clustering analysis and, 543
clustering for, 445
clustering-based methods, 552–553, 560–567
collective, 548, 575–576
contextual, 546–547, 573–575
distance-based, 561–562
extending, 577–578
global, 545
handling noise in, 549
in high-dimensional data, 576–580, 582
with histograms, 558–560
intrusion detection, 569–570
methods, 549–553
mixture of parametric distributions, 556–558

multivariate, 556
novelty detection relationship, 545
proximity-based methods, 552, 560–567, 581
semi-supervised methods, 551
statistical methods, 552, 553–560, 581
supervised methods, 549–550
understandability, 549
univariate, 554
unsupervised methods, 550

outlier subgraphs, 576
outliers

angle-based, 20, 543, 544, 580
collective, 547–548, 581
contextual, 545–547, 573, 581
density-based, 564
distance-based, 561
example, 544
global, 545, 581
high-dimensional, modeling, 579–580
identifying, 49
interpretation of, 577
local proximity-based, 564–565
modeling, 548
in small clusters, 571
types of, 545–548, 581
visualization with boxplot, 555

oversampling, 384, 386
example, 384–385

P
pairwise alignment, 590
pairwise comparison, 372
PAM. See Partitioning Around Medoids algorithm
parallel and distributed data-intensive mining

algorithms, 31
parallel coordinates, 59, 62
parametric data reduction, 105–106
parametric statistical methods, 553–558
Pareto distribution, 592
partial distance method, 425
partial materialization, 159–160, 179, 234

strategies, 192
partition matrix, 538
partitioning

algorithms, 451–457
in Apriori efficiency, 255–256
bootstrapping, 371, 386
criteria, 447
cross-validation, 370–371, 386
Gini index and, 342
holdout method, 370, 386
random sampling, 370, 386
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partitioning (Continued)
recursive, 335
tuples, 334

Partitioning Around Medoids (PAM) algorithm,
455–457

partitioning methods, 448, 451–457, 491
centroid-based, 451–454
global optimality, 449
iterative relocation techniques, 448
k-means, 451–454
k-medoids, 454–457
k-modes, 454
object-based, 454–457
See also cluster analysis

path-based similarity, 594
pattern analysis, in recommender systems,

282
pattern clustering, 308–310
pattern constraints, 297–300
pattern discovery, 601
pattern evaluation, 8
pattern evaluation measures, 267–271

all confidence, 268
comparison, 269–270
cosine, 268
Kulczynski, 268
max confidence, 268
null-invariant, 270–271
See also measures

pattern space pruning, 295
pattern-based classification, 282, 318
pattern-based clustering, 282, 516
Pattern-Fusion, 302–307

characteristics, 304
core pattern, 304–305
initial pool, 306
iterative, 306
merging subpatterns, 306
shortcuts identification, 304
See also colossal patterns

pattern-guided mining, 30
patterns

actionable, 22
co-location, 319
colossal, 301–307, 320
combined significance, 312
constraint-based generation, 296–301
context modeling of, 314–315
core, 304–305
distance, 309
evaluation methods, 264–271
expected, 22

expressed, 309
frequent, 17
hidden meaning of, 314
interesting, 21–23, 33
metric space, 306–307
negative, 280, 291–294, 320
negatively correlated, 292, 293
rare, 280, 291–294, 320
redundancy between, 312
relative significance, 312
representative, 309
search space, 303
strongly negatively correlated, 292
structural, 282
type specification, 15–23
unexpected, 22
See also frequent patterns

pattern-trees, 264
Pearson’s correlation coefficient, 222
percentiles, 48
perception-based classification (PBC), 348

illustrated, 349
as interactive visual approach, 607
pixel-oriented approach, 348–349
split screen, 349
tree comparison, 350

phylogenetic trees, 590
pivot (rotate) operation, 148
pixel-oriented visualization, 57
planning and analysis tools, 153
point queries, 216, 217, 220
pool-based approach, 433
positive correlation, 55, 56
positive tuples, 364
positively skewed data, 47
possibility theory, 428
posterior probability, 351
postpruning, 344–345, 346
power law distribution, 592
precision measure, 368–369
predicate sets

frequent, 288–289
k, 289

predicates
repeated, 288
variables, 295

prediction, 19
classification, 328
link, 593–594
loan payment, 608–609
with naive Bayesian classification, 353–355
numeric, 328, 385
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prediction cubes, 227–230, 235
example, 228–229
Probability-Based Ensemble, 229–230

predictive analysis, 18–19
predictive mining tasks, 15
predictive statistics, 24
predictors, 328
prepruning, 344, 346
prime relations

contrasting classes, 175, 177
deriving, 174
target classes, 175, 177

principle components analysis (PCA), 100, 102–103
application of, 103
correlation-based clustering with, 511
illustrated, 103
in lower-dimensional space extraction, 578
procedure, 102–103

prior probability, 351
privacy-preserving data mining, 33, 621, 626

distributed, 622
k-anonymity method, 621–622
l-diversity method, 622
as mining trend, 624–625
randomization methods, 621
results effectiveness, downgrading, 622

probabilistic clusters, 502–503
probabilistic hierarchical clustering, 467–470

agglomerative clustering framework, 467,
469

algorithm, 470
drawbacks of using, 469–470
generative model, 467–469
interpretability, 469
understanding, 469
See also hierarchical methods

probabilistic model-based clustering, 497–508, 538
expectation-maximization algorithm, 505–508
fuzzy clusters and, 499–501
product reviews example, 498
user search intent example, 498
See also cluster analysis

probability
estimation techniques, 355
posterior, 351
prior, 351

probability and statistical theory, 601
Probability-Based Ensemble (PBE), 229–230
PROCLUS, 511
profiles, 614
proximity measures, 67

for binary attributes, 70–72

for nominal attributes, 68–70
for ordinal attributes, 74–75

proximity-based methods, 552, 560–567, 581
density-based, 564–567
distance-based, 561–562
effectiveness, 552
example, 552
grid-based, 562–564
types of, 552, 560
See also outlier detection

pruning
cost complexity algorithm, 345
data space, 300–301
decision trees, 331, 344–347
in k-nearest neighbor classification, 425
network, 406–407
pattern space, 295, 297–300
pessimistic, 345
postpruning, 344–345, 346
prepruning, 344, 346
rule, 363
search space, 263, 301
sets, 345
shared dimensions, 205
sub-itemset, 263

pyramid algorithm, 101

Q
quality control, 600
quantile plots, 51–52
quantile-quantile plots, 52

example, 53–54
illustrated, 53
See also graphic displays

quantitative association rules, 281, 283, 288,
320

clustering-based mining, 290–291
data cube-based mining, 289–290
exceptional behavior disclosure, 291
mining, 289

quartiles, 48
first, 49
third, 49

queries, 10
intercuboid expansion, 223–225
intracuboid expansion, 221–223
language, 10
OLAP, 129, 130
point, 216, 217, 220
processing, 163–164, 218–227
range, 220
relational operations, 10
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queries (Continued)
subcube, 216, 217–218
top-k, 225–227

query languages, 31
query models, 149–150
query-driven approach, 128
querying function, 433

R
rag bag criterion, 488
RainForest, 347, 385
random forests, 382–383
random sampling, 370, 386
random subsampling, 370
random walk, 526

similarity based on, 527
randomization methods, 621
range, 48

interquartile, 49
range queries, 220
ranking

cubes, 225–227, 235
dimensions, 225
function, 225
heterogeneous networks, 593

rare patterns, 280, 283, 320
example, 291–292
mining, 291–294

ratio-scaled attributes, 43–44, 79
reachability density, 566
reachability distance, 565
recall measure, 368–369
recognition rate, 366–367
recommender systems, 282, 615

advantages, 616
biclustering for, 514–515
challenges, 617
collaborative, 610, 615, 616, 617, 618
content-based approach, 615, 616
data mining and, 615–618
error types, 617–618
frequent pattern mining for, 319
hybrid approaches, 618
intelligent query answering, 618
memory-based methods, 617
use scenarios, 616

recursive partitioning, 335
reduced support, 285, 286
redundancy

in data integration, 94
detection by correlations analysis, 94–98

redundancy-aware top-k patterns, 281, 311, 320
extracting, 310–312
finding, 312
strategy comparison, 311–312
trade-offs, 312

refresh, in back-end tools/utilities, 134
regression, 19, 90

coefficients, 105–106
example, 19
linear, 90, 105–106
in statistical data mining, 599

regression analysis, 19, 328
in time-series data, 587–588

relational databases, 9
components of, 9
mining, 10
relational schema for, 10

relational OLAP (ROLAP), 132, 164, 165, 179
relative significance, 312
relevance analysis, 19
repetition, 346
replication, 347

illustrated, 346
representative patterns, 309
retail industry, 609–611
RIPPER, 359, 363
robustness, classification, 369
ROC curves, 374, 386

classification models, 377
classifier comparison with, 373–377
illustrated, 376, 377
plotting, 375

roll-up operation, 11, 146
rough set approach, 428–429, 437
row enumeration, 302
rule ordering, 357
rule pruning, 363
rule quality measures, 361–363
rule-based classification, 355–363, 386

IF-THEN rules, 355–357
rule extraction, 357–359
rule induction, 359–363
rule pruning, 363
rule quality measures, 361–363

rules for constraints, 294

S
sales campaign analysis, 610
samples, 218

cluster, 108–109
data, 219



Index 699

simple random, 108
stratified, 109–110

sampling
in Apriori efficiency, 256
as data redundancy technique, 108–110
methods, 108–110
oversampling, 384–385
random, 386
with replacement, 380–381
uncertainty, 433
undersampling, 384–385

sampling cubes, 218–220, 235
confidence interval, 219–220
framework, 219–220
query expansion with, 221

SAS Enterprise Miner, 603, 604
scalability

classification, 369
cluster analysis, 446
cluster methods, 445
data mining algorithms, 31
decision tree induction and, 347–348
dimensionality and, 577
k-means, 454

scalable computation, 319
SCAN. See Structural Clustering Algorithm for

Networks
core vertex, 531
illustrated, 532

scatter plots, 54
2-D data set visualization with, 59
3-D data set visualization with, 60
correlations between attributes, 54–56
illustrated, 55
matrix, 56, 59

schemas
integration, 94
snowflake, 140–141
star, 139–140

science applications, 611–613
search engines, 28
search space pruning, 263, 301
second guess heuristic, 369
selection dimensions, 225
self-training, 432
semantic annotations

applications, 317, 313, 320–321
with context modeling, 316
from DBLP data set, 316–317
effectiveness, 317
example, 314–315
of frequent patterns, 313–317

mutual information, 315–316
task definition, 315

Semantic Web, 597
semi-offline materialization, 226
semi-supervised classification, 432–433,

437
alternative approaches, 433
cotraining, 432–433
self-training, 432

semi-supervised learning, 25
outlier detection by, 572

semi-supervised outlier detection, 551
sensitivity analysis, 408
sensitivity measure, 367
sentiment classification, 434
sequence data analysis, 319
sequences, 586

alignment, 590
biological, 586, 590–591
classification of, 589–590
similarity searches, 587
symbolic, 586, 588–590
time-series, 586, 587–588

sequential covering algorithm, 359
general-to-specific search, 360
greedy search, 361
illustrated, 359
rule induction with, 359–361

sequential pattern mining, 589
constraint-based, 589
in symbolic sequences, 588–589

shapelets method, 590
shared dimensions, 204

pruning, 205
shared-sorts, 193
shared-partitions, 193
shell cubes, 160
shell fragments, 192, 235

approach, 211–212
computation algorithm, 212, 213
computation example, 214–215
precomputing, 210

shrinking diameter, 592
sigmoid function, 402
signature-based detection, 614
significance levels, 373
significance measure, 312
significance tests, 372–373, 386
silhouette coefficient, 489–490
similarity

asymmetric binary, 71
cosine, 77–78
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similarity (Continued)
measuring, 65–78, 79
nominal attributes, 70

similarity measures, 447–448, 525–528
constraints on, 533
geodesic distance, 525–526
SimRank, 526–528

similarity searches, 587
in information networks, 594
in multimedia data mining, 596

simple random sample with replacement
(SRSWR), 108

simple random sample without replacement
(SRSWOR), 108

SimRank, 526–528, 539
computation, 527–528
random walk, 526–528
structural context, 528

simultaneous aggregation, 195
single-dimensional association rules, 17, 287
single-linkage algorithm, 460, 461
singular value decomposition (SVD), 587
skewed data

balanced, 271
negatively, 47
positively, 47
wavelet transforms on, 102

slice operation, 148
small-world phenomenon, 592
smoothing, 112

by bin boundaries, 89
by bin means, 89
by bin medians, 89
for data discretization, 90

snowflake schema, 140
example, 141
illustrated, 141
star schema versus, 140

social networks, 524–525, 526–528
densification power law, 592
evolution of, 594
mining, 623
small-world phenomenon, 592
See also networks

social science/social studies data mining,
613

soft clustering, 501
soft constraints, 534, 539

example, 534
handling, 536–537

space-filling curve, 58
sparse data, 102

sparse data cubes, 190
sparsest cuts, 539
sparsity coefficient, 579
spatial data, 14
spatial data mining, 595
spatiotemporal data analysis, 319
spatiotemporal data mining, 595, 623–624
specialized SQL servers, 165
specificity measure, 367
spectral clustering, 520–522, 539

effectiveness, 522
framework, 521
steps, 520–522

speech recognition, 430
speed, classification, 369
spiral method, 152
split-point, 333, 340, 342
splitting attributes, 333
splitting criterion, 333, 342
splitting rules. See attribute selection measures
splitting subset, 333
SQL, as relational query language, 10
square-error function, 454
squashing function, 403
standard deviation, 51

example, 51
function of, 50

star schema, 139
example, 139–140
illustrated, 140
snowflake schema versus, 140

Star-Cubing, 204–210, 235
algorithm illustration, 209
bottom-up computation, 205
example, 207
for full cube computation, 210
ordering of dimensions and, 210
performance, 210
shared dimensions, 204–205

starnet query model, 149
example, 149–150

star-nodes, 205
star-trees, 205

compressed base table, 207
construction, 205

statistical data mining, 598–600
analysis of variance, 600
discriminant analysis, 600
factor analysis, 600
generalized linear models, 599–600
mixed-effect models, 600
quality control, 600
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regression, 599
survival analysis, 600

statistical databases (SDBs), 148
OLAP systems versus, 148–149

statistical descriptions, 24, 79
graphic displays, 44–45, 51–56
measuring the dispersion, 48–51

statistical hypothesis test, 24
statistical models, 23–24

of networks, 592–594
statistical outlier detection methods, 552, 553–560,

581
computational cost of, 560
for data analysis, 625
effectiveness, 552
example, 552
nonparametric, 553, 558–560
parametric, 553–558
See also outlier detection

statistical theory, in exceptional behavior disclosure,
291

statistics, 23
inferential, 24
predictive, 24

StatSoft, 602, 603
stepwise backward elimination, 105
stepwise forward selection, 105
stick figure visualization, 61–63
STING, 479–481

advantages, 480–481
as density-based clustering method, 480
hierarchical structure, 479, 480
multiresolution approach, 481
See also cluster analysis; grid-based methods

stratified cross-validation, 371
stratified samples, 109–110
stream data, 598, 624
strong association rules, 272

interestingness and, 264–265
misleading, 265

Structural Clustering Algorithm for Networks
(SCAN), 531–532

structural context-based similarity, 526
structural data analysis, 319
structural patterns, 282
structure similarity search, 592
structures

as contexts, 575
discovery of, 318
indexing, 319
substructures, 243

Student’s t-test, 372

subcube queries, 216, 217–218
sub-itemset pruning, 263
subjective interestingness measures, 22
subject-oriented data warehouses, 126
subsequence, 589

matching, 587
subset checking, 263–264
subset testing, 250
subspace clustering, 448

frequent patterns for, 318–319
subspace clustering methods, 509, 510–511,

538
biclustering, 511
correlation-based, 511
examples, 538

subspace search methods, 510–511
subspaces

bottom-up search, 510–511
cube space, 228–229
outliers in, 578–579
top-down search, 511

substitution matrices, 590
substructures, 243
sum of the squared error (SSE), 501
summary fact tables, 165
superset checking, 263
supervised learning, 24, 330
supervised outlier detection, 549–550

challenges, 550
support, 21

association rule, 21
group-based, 286
reduced, 285, 286
uniform, 285–286

support, rule, 245, 246
support vector machines (SVMs), 393, 408–415,

437
interest in, 408
maximum marginal hyperplane, 409, 412
nonlinear, 413–415
for numeric prediction, 408
with sigmoid kernel, 415
support vectors, 411
for test tuples, 412–413
training/testing speed improvement, 415

support vectors, 411, 437
illustrated, 411
SVM finding, 412

supremum distance, 73–74
surface web, 597
survival analysis, 600
SVMs. See support vector machines
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symbolic sequences, 586, 588
applications, 589
sequential pattern mining in, 588–589

symmetric binary dissimilarity, 70
synchronous generalization, 175

T
tables, 9

attributes, 9
contingency, 95
dimension, 136
fact, 165
tuples, 9

tag clouds, 64, 66
Tanimoto coefficient, 78
target classes, 15, 180

initial working relations, 177
prime relation, 175, 177

targeted marketing, 609
taxonomy formation, 20
technologies, 23–27, 33, 34
telecommunications industry, 611
temporal data, 14
term-frequency vectors, 77

cosine similarity between, 78
sparse, 77
table, 77

terminating conditions, 404
test sets, 330
test tuples, 330
text data, 14
text mining, 596–597, 624
theoretical foundations, 600–601, 625
three-layer neural networks, 399
threshold-moving approach, 385
tilted time windows, 598
timeliness, data, 85
time-series data, 586, 587

cyclic movements, 588
discretization and, 590
illustrated, 588
random movements, 588
regression analysis, 587–588
seasonal variations, 588
shapelets method, 590
subsequence matching, 587
transformation into aggregate approximations,

587
trend analysis, 588
trend or long-term movements, 588

time-series data analysis, 319
time-series forecasting, 588

time-variant data warehouses, 127
top-down design approach, 133, 151
top-down subspace search, 511
top-down view, 151
topic model, 26–27
top-k patterns/rules, 281
top-k queries, 225

example, 225–226
ranking cubes to answer, 226–227
results, 225
user-specified preference components,

225
top-k strategies

comparison illustration, 311
summarized pattern, 311
traditional, 311

TrAdaBoost, 436
training

Bayesian belief networks, 396–397
data, 18
sets, 328
tuples, 332–333

transaction reduction, 255
transactional databases, 13

example, 13–14
transactions, components of, 13
transfer learning, 430, 435, 434–436, 438

applications, 435
approaches to, 436
heterogeneous, 436
negative transfer and, 436
target task, 435
traditional learning versus, 435

treemaps, 63, 65
trend analysis

spatial, 595
in time-series data, 588
for time-series forecasting, 588

trends, data mining, 622–625, 626
triangle inequality, 73
trimmed mean, 46
trimodal, 47
true negatives, 365
true positives, 365
t-test, 372
tuples, 9

duplication, 98–99
negative, 364
partitioning, 334, 337
positive, 364
training, 332–333

two sample t-test, 373
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two-layer neural networks, 399
two-level hash index structure, 264

U
ubiquitous data mining, 618–620, 625
uncertainty sampling, 433
undersampling, 384, 386

example, 384–385
uniform support, 285–286
unimodal, 47
unique rules, 92
univariate distribution, 40
univariate Gaussian mixture model, 504
univariate outlier detection, 554–555
unordered attributes, 103
unordered rules, 358
unsupervised learning, 25, 330, 445, 490

clustering as, 25, 445, 490
example, 25
supervised learning versus, 330

unsupervised outlier detection, 550
assumption, 550
clustering methods acting as, 551

upper approximation, 427
user interaction, 30–31

V
values

exception, 234
expected, 97, 234
missing, 88–89
residual, 234
in rules or patterns, 281

variables
grouping, 231
predicate, 295
predictor, 105
response, 105

variance, 51, 98
example, 51
function of, 50

variant graph patterns, 591
version space, 433
vertical data format, 260

example, 260–262

frequent itemset mining with, 259–262,
272

video data analysis, 319
virtual warehouses, 133
visibility graphs, 537
visible points, 537
visual data mining, 602–604, 625

data mining process visualization, 603
data mining result visualization, 603
data visualization, 602–603
as discipline integration, 602
illustrations, 604–607
interactive, 604, 607
as mining trend, 624

Viterbi algorithm, 591

W
warehouse database servers, 131
warehouse refresh software, 151
waterfall method, 152
wavelet coefficients, 100
wavelet transforms, 99, 100–102

discrete (DWT), 100–102
for multidimensional data, 102
on sparse and skewed data, 102

web directories, 28
web mining, 597, 624

content, 597
as mining trend, 624
structure, 597–598
usage, 598

web search engines, 28, 523–524
web-document classification, 435
weight arithmetic mean, 46
weighted Euclidean distance, 74
Wikipedia, 597
WordNet, 597
working relations, 172

initial, 168, 169
World Wide Web (WWW), 1–2, 4, 14
Worlds-with-Worlds, 63, 64
wrappers, 127

Z
z-score normalization, 114–115
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