
�

� �

�

A Practical Introduction
to Human-in-the-Loop
Cyber-Physical Systems

�

� �

�

A Practical Introduction to Human-in-the-Loop
Cyber-Physical Systems

David Nunes
University of Coimbra

Jorge Sá Silva
University of Coimbra

Fernando Boavida
University of Coimbra

�

� �

�

This edition first published 2018
© 2018 John Wiley & Sons Ltd

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or
transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise,
except as permitted by law. Advice on how to obtain permission to reuse material from this title is available
at http://www.wiley.com/go/permissions.

The right of David Nunes, Jorge Sá Silva and Fernando Boavida to be identified as the authors of this work
has been asserted in accordance with law.

Registered Office(s)
John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, USA
John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ, UK

Editorial Office
The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ, UK

For details of our global editorial offices, customer services, and more information about Wiley products
visit us at www.wiley.com.

Wiley also publishes its books in a variety of electronic formats and by print-on-demand. Some content that
appears in standard print versions of this book may not be available in other formats.

Limit of Liability/Disclaimer of Warranty
While the publisher and authors have used their best efforts in preparing this work, they make no
representations or warranties with respect to the accuracy or completeness of the contents of this work and
specifically disclaim all warranties, including without limitation any implied warranties of merchantability or
fitness for a particular purpose. No warranty may be created or extended by sales representatives, written
sales materials or promotional statements for this work. The fact that an organization, website, or product is
referred to in this work as a citation and/or potential source of further information does not mean that the
publisher and authors endorse the information or services the organization, website, or product may provide
or recommendations it may make. This work is sold with the understanding that the publisher is not engaged
in rendering professional services. The advice and strategies contained herein may not be suitable for your
situation. You should consult with a specialist where appropriate. Further, readers should be aware that
websites listed in this work may have changed or disappeared between when this work was written and when
it is read. Neither the publisher nor authors shall be liable for any loss of profit or any other commercial
damages, including but not limited to special, incidental, consequential, or other damages.

Library of Congress Cataloging-in-Publication Data

Names: Nunes, David, 1987- author. | Silva, Jorge Sá, author. | Boavida,
Fernando, 1959- author.

Title: A practical introduction to human-in-the-loop cyber-physical systems /
David Nunes, Jorge Sá Silva, Fernando Boavida.

Description: First edition. | Hoboken, NJ : John Wiley & Sons, 2018. |
Includes bibliographical references and index. |

Identifiers: LCCN 2017025006 (print) | LCCN 2017042126 (ebook) | ISBN
9781119377801 (pdf) | ISBN 9781119377788 (epub) | ISBN 9781119377771
(cloth)

Subjects: LCSH: Cooperating objects (Computer systems) | Human-computer
interaction.

Classification: LCC TJ213 (ebook) | LCC TJ213 .N86 2017 (print) | DDC
621.39–dc23

LC record available at https://lccn.loc.gov/2017025006

Cover Design: Wiley
Cover Image: © ipopba/Gettyimages

Set in 10/12pt Warnock by SPi Global, Chennai, India

10 9 8 7 6 5 4 3 2 1

�

� �

�

To my parents, Jorge and
Eulália, and to my brother,
Telmo.

David Nunes

To Fátima, Catarina,
Pedro, Jojó, and my parents

Jorge Sá Silva

To Maria João and our
three daughters – Susana,
Inês, and Catarina

Fernando Boavida

�

� �

�

vii

Contents

List of Figures xi
List of Tables xvii
Foreword xix
Preface xxi
Acknowledgments xxiii
List of Abbreviations xxv
About the Companion Website xxvii

1 Introduction 1
1.1 The Rise of Cyber-Physical Systems 1
1.2 Humans as Elements of Cyber-Physical Systems 4
1.3 Objectives and Structure 7

Part I Evolution and Theory 9

2 Evolution of HiTL Technologies 11
2.1 "Things", Sensors, and the Real World 11
2.2 Human Sensing and Virtual Communities 17
2.3 In Summary... 23

3 Theory of HiTLCPSs 25
3.1 Taxonomies for HiTLCPSs 25
3.2 Data Acquisition 28
3.2.1 Humans as Sets of Sensors 28
3.2.2 Humans as Communication Nodes 29
3.3 State Inference 30
3.3.1 Human Nature 30
3.3.2 Humans as Processing Nodes 31
3.4 Actuation 31
3.4.1 Humans and Robots as Actuators 31
3.5 In Summary... 32

�

� �

�

viii Contents

4 HITL Technologies and Applications 35
4.1 Technologies for Supporting HiTLCPS 35
4.1.1 Data Acquisition 35
4.1.2 State Inference 39
4.1.3 Actuation 42
4.2 Experimental Projects 45
4.2.1 HiTL in Industry and at Home 46
4.2.2 HiTL in Healthcare 48
4.2.3 HiTL in Smartphones and Social Networking 51
4.3 In Summary... 56

Part II Human-in-the-Loop: Hands-On 57

5 A Sample App 59
5.1 A Sample Behavior Change Intervention App 59
5.2 The Sample App’s Base Architecture 60
5.2.1 The Android App 60
5.2.2 The Server 65
5.3 Enhancing the Sample App with HiTL Emotion-awareness 66
5.3.1 Choosing a Machine Learning Technique 67
5.3.2 Implementing Emotion-awareness 68
5.4 In Summary... 71

6 Setting up the Development Environment 73
6.1 Installing Android Studio 73
6.2 Cloning the Android Project 77
6.3 Deploying the Server 85
6.3.1 Installing the Software and Cloning the Server’s Project 85
6.3.2 Obtaining a Foursquare®’s Client ID and Client Secret 88
6.3.3 Setting up the Database 91
6.3.4 Deploying the Server on Tomcat 7 95
6.4 Testing the Sample App 99
6.5 In Summary... 101

7 Data Acquisition 103
7.1 Creating the EmotionTasker 103
7.2 Processing Sensory Data 110
7.3 In Summary... 118

8 State Inference 121
8.1 Implementing a Neural Network 121
8.2 Requesting User Feedback 125
8.2.1 Creating the EmotionFeedback Activity 125
8.2.2 Implementing the EmotionSpace View 127
8.2.3 Finishing EmotionFeedback 151
8.2.4 Showing a Feedback Request Notification 158

�

� �

�

Contents ix

8.3 Processing User Feedback 168
8.3.1 Processing Feedback on the EmotionTasker 168
8.3.2 Training the Neural Network 170
8.3.3 Sending Emotional Information to the Server 173
8.4 In Summary... 176

9 Actuation 179
9.1 Handling Emotions on the Server 179
9.1.1 Parsing JSON Requests 180
9.1.2 Creating the Web Interface 189
9.1.3 Creating the Server’s Background Thread 190
9.1.4 Processing Incoming Emotions 192
9.1.5 Pruning Outdated Emotions 208
9.2 Finishing up EmotionTasker 210
9.2.1 Handling ANN Output 212
9.2.2 Posting New Emotion Inferences 217
9.3 Providing Positive Reinforcement 226
9.3.1 Creating a Motivational Dialog Box 226
9.3.2 Enabling the Emotion Heatmaps 234
9.4 In Summary… 237

Part III Future of Human-In-the-Loop Cyber-Physical Systems 239

10 Requirements and Challenges for HiTL Applications 241
10.1 Resilience 241
10.2 Security and Privacy 242
10.3 Standard Communications 244
10.4 Localization 248
10.5 State Inference 248
10.6 Safety 250
10.7 In Summary… 250

11 Human-in-the-Loop Constraints 253
11.1 Technical Limitations 253
11.2 Ethical limitations 256

A EmotionTasker’s full code 261

References 275

Index 289

�

� �

�

xi

List of Figures

2.1 In [1], books and other common objects were augmented with RFID
tags and associated with virtual documents by PDAs. 12

2.2 Shaman [2] acted as a representative for the connected LiteServers,
offering Java and HTML interfaces. 12

2.3 Device web presence in Cooltown [3]. Source: Adapted from
Kindberg et al. 2002. 13

2.4 JXTA [4] peers created virtual ad hoc networks which served to
abstract the real ones. 14

2.5 Works such as [5] and [6] used proxies to offer embedded devices’
capabilities through RESTful web services. 14

2.6 The SenseWeb [7] architecture. 16

2.7 WikiCity [8] interfaced between virtual data and the physical world
through a semantically defined format for data exchange. 18

2.8 Nokia 6101 vs iPhone 6s/LG Nexus 5X. 20

2.9 HiTL technologies evolution timeline. 22

3.1 Basic processes of human-in-the-loop control. 26

3.2 Taxonomy of human control. 27

3.3 Taxonomy of human roles. 28

4.1 SenQ’s query system stack shown side-by-side with the topology and
components of AlarmNet, a prototypical implementation for
assisted-living [9]. Source: Adapted from Wood 2008. 37

4.2 The architecture of CenceME [10], one of MetroSense’s
implementations. 38

4.3 The three key components of BCI using smartphones [11]. Source:
Adapted from Lathia et al. 2013. 40

4.4 SociableSense architecture [12]. Source: Adapted from Rachuri
2011. 41

�

� �

�

xii List of Figures

4.5 Control architecture for energy saving with HiTL [13]. Source:
Adapted from Liang 2013. 46

4.6 Architecture of an HiTL HVAC system [14]. Source: Adapted from
Agarwal 2011. 48

4.7 Diagram showing the main components of CAALYX’s roaming
monitoring system [15]. Source: Adapted from Boulos et al.
2007. 49

4.8 A semi-autonomous wheelchair receives brain signals from the user
and executes the associated tasks of path planning, obstacle
avoidance, and localization [16]. Source: Adapted from Schirner
2013. 50

4.9 A mockup of a map interface similar to the Highlight
application. 52

4.10 Overview of the system proposed in [17]. Source: Adapted from
W.-H. Rho and S.-B. Cho 2014. 54

5.1 HappyWalk HiTL control. 60

5.2 HappyWalk’s architecture. 61

5.3 Android’s activity lifecycle. 62

5.4 HappyWalk’s Android class structure. 63

5.5 An overview of HappyWalk Android app’s main classes. 64

5.6 An overview of HappyWalkServer’s main classes. 66

5.7 A typical artificial neural network architecture. 68

5.8 Sound signal in the time domain (left side) analyzed through a
Fourier transformation to show its frequency domain
(right side). 69

5.9 HappyWalk’s Emotional Feedback. 70

5.10 HappyWalk’s neural network design. 72

6.1 Installing Java SE Development Kit 7u79. 74

6.2 Installing Android Studio and Android SDK. 74

6.3 Canceling the setup wizard. 75

6.4 Opening the Android SDK manager. 75

6.5 Installing Android API 21. 76

6.6 Opening the standalone SDK manager. 76

6.7 Installing Android SDK Build-tools 21.1.2. 77

6.8 Installing Git #1. (a) Adding Git to the PATH, on Windows
(b) Choose Checkout Windows-style 78

�

� �

�

List of Figures xiii

6.9 Installing Git #2. (a) We recommend using MinTTY (b) Uncheck
Enable file system caching 78

6.10 Importing HappyWalk from Git. 79

6.11 Cloning the HappyWalk project. 79

6.12 Opening the HappyWalk project. 79

6.13 Choosing HappyWalk’s project folder. 80

6.14 Do not upgrade Android Gradle or its plugin. 80

6.15 Running HappyWalk. 81

6.16 HappyWalk’s first launch. 81

6.17 Obtaining the Android debug key. 82

6.18 Creating a project to obtain a Google Maps Android API key. 82

6.19 Creating the Google Maps Android API key. 83

6.20 Obtaining the Google Maps Android API key. 83

6.21 Changing into the project’s view. 84

6.22 Opening app/debug/res/values/google_maps_api.xml. 84

6.23 Choosing PostgreSQL superuser’s password. 86

6.24 No need to launch Stack Builder. 86

6.25 Clone from a URI. 87

6.26 Introduce the URI corresponding to HappyWalk’s server. 87

6.27 Select the master branch. 88

6.28 Selecting the local storage directory. 89

6.29 Select the option Import existing Eclipse projects. 89

6.30 Tick the checkbox of the HappyWalkServer project. 90

6.31 Creating a Foursquare®app. 90

6.32 Foursquare®’s Client ID and Client Secret. 90

6.33 Navigating into the server’s GlobalVariables. 91

6.34 Log in to the PostgreSQL 9.3 server. 92

6.35 Create a new database. 92

6.36 Name the new database as happywalk. 93

6.37 Select the correct SQL script. 93

6.38 Populating the database. 94

6.39 Create a new server. 95

�

� �

�

xiv List of Figures

6.40 Define a new Tomcat 7 installation. 95

6.41 Installing Tomcat 7 from Eclipse. 96

6.42 Adding HappyWalk to Tomcat 7. 97

6.43 Running the HappyWalk server. 97

6.44 Select the newly created Tomcat 7. 98

6.45 The HappyWalk server is up and running. 98

6.46 The ipconfig command. 100

6.47 HappyWalk’s map screen. 101

7.1 Creating a new class. 104

7.2 AS cannot resolve symbol issue. 108

7.3 Importing the appropriate class. 109

7.4 Creating a new package. 109

7.5 Creating the sensor processors. 110

7.6 Signal processing overview. 111

7.7 Current state of our HiTLCPS at the end of Chapter 7. 119

8.1 An example of a sigmoid activation function. 123

8.2 Creating a new basic activity. 126

8.3 Name the activity as EmotionFeedback. 126

8.4 The files that compose the EmotionFeedback activity. 127

8.5 Our goal for the EmotionSpace view. 128

8.6 Creating the EmotionSpace class. 129

8.7 Create EmotionSpace constructor matching super. 129

8.8 Choose View(context:Context, attrs:AttributeSet). 131

8.9 Changing from the layout Design view to Text view. 132

8.10 Creating a new Values resource file. 133

8.11 Naming the Values resource file. 133

8.12 The coordinates of the EmotionSpace view. 137

8.13 The emotion feedback notification. 162

8.14 Creating TaskSendEmotion. 174

8.15 Current state of our HiTLCPS at the end of Chapter 8. 176

9.1 HappyWalk’s database conceptual schema. 180

9.2 Creating a new class in Eclipse. 181

�

� �

�

List of Figures xv

9.3 Naming RequestSetEmotion. 182

9.4 Generating the Constructors, toString(), and the Getters and
Setters. 183

9.5 Generating a Constructor using fields. 183

9.6 Generating a Constructor from Superclass. 184

9.7 Generating the Getters and Setters. 185

9.8 Overriding the default toString() method. 187

9.9 The location of the HappyWalkServer’s web.xml. 191

9.10 The emotion alert dialog. 227

9.11 The emotion heatmaps. 237

9.12 Final state of our HiTLCPS at the end of Chapter 9. 238

10.1 The HiTL resilience paradigm. 242

11.1 Lessons learned towards human-in-the-loop control. 254

�

� �

�

xvii

List of Tables

4.1 Summary of some of the technologies/solutions that support
HiTLCPS. 45

4.2 Summary of experimental HiTLCPS projects. 55

5.1 Machine learning approaches for sensing context in
smartphones [18]. Source: Adapted from Guinness 2013. 67

5.2 Testing training performance (150 emotions). 71

5.3 Testing neural network accuracy (41 emotions). 71

6.1 Summary of the steps necessary to install AS 2.1.3. 77

6.2 Summary of the steps necessary to set up HappyWalk’s Android
project. 85

6.3 Summary of the steps necessary to deploy HappyWalk’s server. 99

6.4 Summary of the steps necessary to test the base HappyWalk
system. 101

10.1 Summary of the identified HiTL requirements and challenges. 251

�

� �

�

xix

Foreword

Our world keeps being an increasingly technological one. As first put forward by
the renowned computer scientist Mark Weiser, we continue to see that, as devices
get smaller in size, more mobile, powerful, and efficient, they begin to “disappear”.
Technology is now so intrinsic to our everyday lives that it has become an inherent
part of our existence. This is the premise behind concepts such as the Internet of things
and cyber-physical systems, in which distributed technology is used to monitor and
control the environment. However, our current technological advancement still falls
short of Weiser’s ideas. Each time we have to hurdle through unintuitive configuration
menus, errors, and software incompatibilities we become stressed by our computers
and appliances. Weiser argued that the ultimate form of computers was an extension of
our subconscious. To him, the ideal computer would be capable of truly understanding
people’s unconscious actions and desires. Instead of humans adapting to technology
and learning how to use it, it would be technology that would adapt to the disposition
and uniqueness of each human being.

In fact, systems that consider the human context are becoming increasingly
more important, and there are strong indications that most future technologies
will most likely be much more human-aware. This book focuses on the realm of
human-in-the-loop cyber-physical systems (HiTLCPSs), that is cyber-physical systems
that take human response into consideration. HiTLCPSs infer the user’s, intents,
psychological states, emotions, and actions through sensors, using this information
to determine the system’s actions. This involves using a large variety of sensors and
mobile devices to monitor and evaluate human nature. Therefore, this technology has
strong ties with wireless sensor networks, robotics, machine learning, and the Internet
of things.

This book is useful to BSc and MSc students, as well as to PhD students, researchers,
and professors addressing the areas of ubiquitous computing, Internet of things,
cyber-physical systems, and human–computer interaction. It can also be useful to
professional developers that intend to introduce HiTL concepts into their mobile apps
and/or Internet of things/cyber-physical system applications.

Throughout its pages, the book will guide the reader through a journey into this novel
and exciting area of research and technological development. As such, it is intended
to be used as a primer on HiTLCPSs, providing some insights into the research
being done on this topic, current challenges, and requirements. One of the book’s
objectives is to introduce the reader to the practical usage of HiTL paradigms within
software development. Therefore, we included a comprehensive hands-on tutorial

�

� �

�

xx Foreword

where the major theoretical concepts behind HiTLCPSs are applied to a sample mobile
application and explained from a practical perspective. This tutorial requires some
knowledge of Android and the Java programming language, as well as some notions
about databases and RESTful web services. It is accompanied by a base source code
repository and several code snippets which the reader can extensively modify.1 It is not
our intention to provide in-depth knowledge about the programming languages, and/or
the machine learning techniques, necessary to create complex HiTL systems. Instead,
the tutorial aims at illustrating and consolidating some of the book’s theoretical ideas.

Finally, we would like to thank you, the reader, for your interest. We would also like to
ask you to contact us and tell us about your experience with our book. Your feedback is
a very valuable resource towards improving the book. Send your email to dsnunes@dei
.uc.pt, sasilva@dei.uc.pt or boavida@uc.pt.

1 The source code repositories are located at: https://git.dei.uc.pt/dsnunes/happywalk.git https://git.dei.uc
.pt/dsnunes/happywalkserver.git

�

� �

�

xxi

Preface

The Internet has changed our whole life and it will have further impact on how we live
and how we work. Most of the cyber-physical systems (CPSs) make use of the Internet
and even define parts of it. Let me cite Wikipedia in this preface, even though it is not
very scientific so to do. Understanding the CPS as “a mechanism controlled or monitored
by computer-based algorithms, tightly integrated with the internet and its users” means
that users, humans, are essential for any CPS. The National Institute of Standards and
Technology of the US Department of Commerce (NIST) goes even further, stating that
“these systems will provide the foundation of our critical infrastructure, form the basis
of emerging and future smart services, and improve our quality of life in many areas”.
Looking at the examples mentioned in Wikipedia, “smart grid, autonomous automobile
systems, medical monitoring, process control systems, robotics systems, and automatic
pilot avionics”, human are always involved.

Humans are not only involved; humans are the essential part of CPSs; CPSs have
to serve us! With the basic idea, to incorporate humans as being in the system, we
encounter human-in-the-loop (HiTL). It comprises a model, an adequate representa-
tion of the human behavior in order to treat it as an integral part of the whole system.
Just as one example, let me cite Carsten Binning et.al. at his preface of the Proceedings
of the first Workshop on Human-In-the-Loop Data Analytics HILDA of June 26th,
2016, in San Francisco, California: “A major bottleneck in data analytics today is to
efficiently leverage the human capabilities to formulate questions and understand
answers of data analytics systems … Recent technology trends (such as touchscreens,
motion detection, and voice recognition) are widening the possibilities for users to
interact with data, and data-driven industries are shifting to personalized processing to
better target their services to users’ needs”.

Hence it seems somewhat natural to look at both topics together in a kind of text-
book and survey. In my six years as editor-in-chief of the journal ACM Transactions
on Multimedia Computing, Communications, and Applications (ACM TOMM), I have,
unfortunately, not come across a comprehensive high-quality survey paper of CPS HiTL;
it has been even more serious: nobody even tried to cover with a survey this essential
area on multimedia computing, communications, and its applications. No one did so far!

At the present time, writing this preface, I was only able to read parts of this book; I
am looking forward to reading it all together–the whole book.

The authors of this book, David Nunes, Jorge Sá Silva, and Fernando Boavida from
the University of Coimbra provide an in-depth view to HiTLCPS evolution, theory,
technologies, and applications. Moreover, they illustrate how to apply HiTLCPS

�

� �

�

xxii Preface

concepts to a sample smartphone application, through a hands-on approach that guides
the reader from the development environment to the final product, including data
acquisition, state inference, and actuation. With (1) their profound technical knowledge
of many areas in computing and communications, as well as with (2) their expertise and
experience as authors of other textbooks, the authors are certainly key for this book
being a long-term successful scientific book in this area. Congratulations!

Dr. Ralf Steinmetz
Fellow of the IEEE and Fellow of the ACM
Director, Multimedia Communications Laboratory, Technische Universität Darmstadt
Chairman of the Board, Hessian Telemedia Technology CompetenceCenter, Germany

Darmstadt, March 2017

�

� �

�

xxiii

Acknowledgments

A book such as this would not have been possible without the help and support of
many people and institutions.

First of all, we would like to thank our base institutions—the Department of
Informatics Engineering, and the Center for Informatics and Systems, both from the
University of Coimbra—in the scope of which we carry out our teaching and research
activities, for the provided facilities and research environment. With their effort and
contributions, enthusiasm, discussions, and suggestions during several years of joint
research activities and human-in-the-loop social interaction, our students and our
colleagues were instrumental in making this book a reality.

We also thank IMDEA Networks Institute, in Madrid, for the support provided dur-
ing Fernando Boavida’s sabbatical in 2015/2016, and especially to its leading computer
scientist, Arturo Azcorra, for his support; to Antonio Fernández Anta, Miguel Péon,
Jeanet Birkkjaer; and Rosa Gómez for their encouragement; and to all its researchers
and staff in general.

Some of the research that formed the basis for this book was carried out in the
scope of financed research projects and initiatives and, thus, it is also right to thank the
entities that made the referred research possible, namely the Portuguese Foundation
for Science and Technology (FCT), FCT’s POPH/FSE program, and the SOCIALITE
Project (PTDC/EEI-SCR/2072/2014), supported by COMPETE 2020, Portugal 2020,
Operational Program for Competitiveness and Internationalization (POCI), and the
European Union’s ERDF (European Regional Development Fund).

We would also like to thank David Hutchison, from Lancaster University, for believing
in us and putting us in contact with the excellent editorial team at John Wiley & Sons.

Finally, we would like to thank our families, for their unconditional love and support.

�

� �

�

xxv

List of Abbreviations

AI Artificial Intelligence
ANN Artificial Neural Network
API Application Programming Interface
AS Android Studio
AV Autonomous Vehicle
BCC Body-Coupled Communication
BCI Behavior Change Interventions
CHIL Computers in the Human Interaction Loop
CoAP Constrained Application Protocol
cOre Constrained RESTful environments
CPS(s) Cyber-Physical System(s)
CPU Central Processing Unit
DAO Data Access Object
ECG Electrocardiography
EEG Electroencephalography
ESM Experience Sampling Method
FCT Fast Cosine Transform
FFT Fast Fourier Transformation
GPRS General Packet Radio Service
GPS Global Positioning System
GSM Global System for Mobile Communications
HiTL Human-in-the-Loop
HiTLCPS(s) Human-in-the-Loop Cyber-Physical System(s)
HTML HyperText Markup Language
HTTP Hypertext Transfer Protocol
HVAC Heating, Ventilation, and Cooling
ID Identification
IFR International Federation of Robotics
IoA Internet of All
IoT Internet of Things
IP Internet Protocol
IDE Integrated Development Environment
IEEE Institute of Electrical and Electronics Engineers
IETF Internet Engineering Task Force
ISM band Industrial, Scientific, and Medical radio bands

�

� �

�

xxvi List of Abbreviations

Java EE Java Enterprise Edition
Java SE Java Standard Edition
JDK Java Development Kit
JSON JavaScript Object Notation
LTE Long-Term Evolution
M2M Machine-to-Machine
MPTCP MultiPath Transmission Control Protocol
NAT Network Address Translation
NSF National Science Foundation
OSI Open Systems Interconnection
OS Operating System
P2P Peer-to-Peer
POI(s) Point(s) of Interest
RAM Random-Access Memory
REST Representational state transfer
RF Radio Frequency
RFID Radio-Frequency Identification
RSSI Received Signal Strength Indication
SCTP Stream Control Transmission Protocol
SDK Software Development Kit
sMAP Simple Monitoring and Action Profile
SMS Short Message Service
SOAP Simple Object Access Protocol
SQL Structured Query Language
TCP Transmission Control Protocol
UDP User Datagram Protocol
URI Uniform Resource Identifier
URL Uniform Resource Locator
UUID Universally Unique Identifier
VoIP Voice Over Internet Protocol
WSDL Web Service Description Language
WSN(s) Wireless Sensor Network(s)
XML Extensible Markup Language

�

� �

�

xxvii

About the Companion Website

Don’t forget to visit the companion website for this book:

www.wiley.com/go/nunesloop

There you will find valuable material designed to enhance your learning, including:

• Source codes

Scan this QR code to visit the companion website.

�

� �

�

275

References

1 R. Want, K. P. Fishkin, A. Gujar, and B. L. Harrison, “Bridging physical and virtual
worlds with electronic tags,” 1999.

2 P. Schramm, E. Naroska, P. Resch, J. Platte, and H. Linde, “Integration of limited
servers into pervasive computing environments using dynamic gateway services,”
2007.

3 T. Kindberg, J. Barton, J. Morgan, G. Becker, D. Caswell, P. Debaty, G. Gopal,
M. Frid, V. Krishnan, H. Morris, J. Schettino, B. Serra, and M. Spasojevic, “Peo-
ple, places, things: Web presence for the real world,” Mob. Netw. Appl., vol. 7,
pp. 365–376, October 2002. [Online]. Available: http://dx.doi.org/10.1023/A:
1016591616731.

4 B. Traversat, M. Abdelaziz, D. Doolin, M. Duigou, J.-C. Hugly, and E. Pouyoul,
“Project JXTA-C: Enabling a web of things,” in Proceedings of the 36th Annual
Hawaii International Conference on System Sciences (HICSS’03), Washington, DC,
USA: IEEE Computer Society, 2003. [Online]. Available: http://portal.acm.org/
citation.cfm?id=820756.821825.

5 D. Guinard, V. Trifa, and E. Wilde, “A resource oriented architecture for the web
of things,” in Proceedings of IoT 2010 (International Conference on the Internet of
Things), Tokyo, Japan, November 2010.

6 X. Jiang, S. Dawson-Haggerty, and D. Culler, “smap: simple monitoring and
actuation profile,” in Proceedings of the 9th ACM/IEEE International Confer-
ence on Information Processing in Sensor Networks. New York, USA: ACM, 2010,
pp. 374–375. [Online]. Available: http://doi.acm.org/10.1145/1791212.1791261.

7 L. Luo, A. Kansal, S. Nath, and F. Zhao, “Sharing and exploring sensor streams
over geocentric interfaces,” in Proceedings of the 16th ACM SIGSPATIAL Interna-
tional Conference on Advances in Geographic Information Systems. New York, USA:
ACM, 2008, pp. 3:1–3:10. [Online]. Available: http://doi.acm.org/10.1145/1463434
.1463439.

8 F. Calabrese, K. Kloeckl, and C. Ratti, “Wikicity: Real-time location-sensitive tools
for the city,” Handbook of research on Urban Informatics: The practice and promise
of the real-time city, pp. 390–413, 2008.

9 A. Wood, L. Selavo, and J. Stankovic, “Senq: An embedded query system for
streaming data in heterogeneous interactive wireless sensor networks,” in Dis-
tributed Computing in Sensor Systems, Lecture Notes in Computer Science,

A Practical Introduction to Human-in-the-Loop Cyber-Physical Systems, First Edition.
David Nunes, Jorge Sá Silva and Fernando Boavida.
© 2018 John Wiley & Sons Ltd. Published 2018 by John Wiley & Sons Ltd.
Companion Website URL: www.wiley.com/go/nunesloop

�

� �

�

276 References

S. Nikoletseas, B. Chlebus, D. Johnson, and B. Krishnamachari, (eds), Springer,
Berlin/Heidelberg, 2008, vol. 5067, pp. 531–543.

10 M. Musolesi, E. Miluzzo, N. D. Lane, S. B. Eisenman, T. Choudhury, and A. T.
Campbell, “The second life of a sensor: Integrating real-world experience in virtual
worlds using mobile phones,” in In Proc. of HotEmNets 08, 2008.

11 N. Lathia, V. Pejovic, K. K. Rachuri, C. Mascolo, M. Musolesi, and P. J. Rentfrow,
“Smartphones for large-scale behavior change interventions,” IEEE Pervasive
Computing, vol. 12, no. 3, pp. 66–73, 2013.

12 K. K. Rachuri, C. Mascolo, M. Musolesi, and P. J. Rentfrow, “Sociablesense: Explor-
ing the trade-offs of adaptive sampling and computation offloading for social
sensing,” in Proceedings of the 17th Annual International Conference on Mobile
Computing and Networking, New York, USA: ACM, 2011, pp. 73–84. [Online].
Available: http://doi.acm.org/10.1145/2030613.2030623.

13 C.-J. M. Liang, J. Stankovic, and S. Lin, “Reducing energy waste for computers by
human-in-the-loop control,” IEEE Transactions on Emerging Topics in Computing,
vol. 99, no. PrePrints, p. 1, 2013.

14 Y. Agarwal, B. Balaji, S. Dutta, R. K. Gupta, and T. Weng, “Duty-cycling build-
ings aggressively: The next frontier in hvac control,” in 2011 10th International
Conference on. Information Processing in Sensor Networks (IPSN), IEEE, 2011,
pp. 246–257, 2011.

15 M. Boulos, A. Rocha, A. Martins, M. Vicente, A. Bolz, R. Feld, I. Tchoudovski,
M. Braecklein, J. Nelson, G. O Laighin, C. Sdogati, F. Cesaroni, M. Antomarini,
A. Jobes, and M. Kinirons, “CAALYX: A new generation of location-based services
in healthcare,” International Journal of Health Geographics, vol. 6, pp. 1–6, 2007.

16 G. Schirner, D. Erdogmus, K. Chowdhury, and T. Padir, “The future of
human-in-the-loop cyber-physical systems,” Computer, vol. 46, no. 1, pp. 36–45,
2013.

17 W.-H. Rho and S.-B. Cho, “Context-aware smartphone application category recom-
mender system with modularized bayesian networks.” in 10th International Confer-
ence on Natural Computation (ICNC 2014), pp. 775–779, 2014.

18 R. E. Guinness, “Beyond where to how: A machine learning approach for
sensing mobility contexts using smartphone sensors,” Sensors, vol. 15, no. 5,
pp. 9962–9985, 2015.

19 “The ‘only’ coke machine on the Internet,” https://www.cs.cmu.edu/coke/history_
long.txt, 1982.

20 G. E. Moore et al, “Cramming more components onto integrated circuits,” 1965.
21 P. Middleton, P. Kjeldsen, and J. Tully, “Forecast: The Internet of things, worldwide,

2013,” Gartner, Tech. Rep., November 2013.
22 S. Dawson-Haggerty, X. Jiang, G. Tolle, J. Ortiz, and D. Culler, “smap: a simple

measurement and actuation profile for physical information,” in Proceedings of the
8th ACM Conference on Embedded Networked Sensor Systems, New York, USA:
ACM, 2010, pp. 197–210. [Online]. Available: http://doi.acm.org/10.1145/1869983
.1870003.

23 A. Santanche, S. Nath, J. Liu, B. Priyantha, and F. Zhao, “Senseweb: Browsing the
physical world in real time,” in Demo Abstract, Nashville, TN, April 2006.

�

� �

�

References 277

24 G. Montenegro, N. Kushalnagar, J. Hui, and D. Culler, “Transmission of IPv6
packets over IEEE 802.15. 4 Networks,” Internet Engineering Task Force (IETF),
Request for Comments 4944 (Proposed Standard), 2007.

25 J. Bryzek, “Roadmap for the trillion sensor universe,” http://www-bsac.eecs
.berkeley.edu/scripts/show_pdf_publication.php?pdfID=1365520205, April 2013.

26 M. Conner, “Sensors empower the ‘Internet of things’”, EDN , vol. 55, pp. 32–38,
2010.

27 “World Robotics 2015,” International Federation of Robotics, 2015.
28 H. Sundmaeker, P. Guillemin, P. Friess, and S. Woelfflé, Vision and challenges for

realising the Internet of Things. European Commision, Information Society and
Media, 2010.

29 O. Vermesan and P. Friess, Internet of Things: From Research and Innovation to
Market Deployment. River Publishers, 2014.

30 A. Koubâa and B. Andersson, “A vision of cyber-physical internet,” in Proc. of the
Workshop of Real-Time Networks (RTN 2009), Satellite Workshop to (ECRTS 2009),
2009.

31 R. Baheti and H. Gill, “Cyber-physical systems,” The impact of control technology,
pp. 161–166, 2011.

32 S. Jeschke, “Everything 4.0? drivers and challenges of cyber physical sys-
tems,” http://www.ima-zlw-ifu.rwth-aachen.de/fileadmin/user_upload/
INSTITUTSCLUSTER/Publikation_Medien/Vortraege/download//
Forschungsdialog4Dez2013.pdf, December 2013.

33 A. D. Wood and J. A. Stankovic, “Human in the loop: Distributed data streams
for immersive cyber-physical systems,” SIGBED Rev., vol. 5, no. 1, pp. 20:1–20:2,
January 2008.

34 P. Rawat, K. Singh, H. Chaouchi, and J. Bonnin, “Wireless sensor networks: A
survey on recent developments and potential synergies,” The Journal of Supercom-
puting, vol. 66, no. 1, pp. 1–48, October 2013.

35 M. Weiser, “The computer for the twenty-first century,” Scientific American,
vol. 265, no. 3, pp. 94–104, 1991.

36 P. Makris, D. N. Skoutas, and C. Skianis, “A survey on context-aware mobile and
wireless networking: On networking and computing environments’ integration,”
Communications Surveys & Tutorials, IEEE, vol. 15, no. 1, pp. 362–386, 2013.

37 C. Perera, A. Zaslavsky, P. Christen, and D. Georgakopoulos, “Context aware com-
puting for the internet of things: A survey,” Communications Surveys & Tutorials,
IEEE, vol. 16, no. 1, pp. 414–454, 2014.

38 G. D. Abowd, A. K. Dey, P. J. Brown, N. Davies, M. Smith, and P. Steggles, “To-
wards a better understanding of context and context-awareness,” in Handheld and
Ubiquitous Computing. Springer, 1999, pp. 304–307.

39 S. H. Sigg and K. S David, “An alignment approach for context prediction tasks in
ubicomp environments,” Pervasive Computing, IEEE, 2010.

40 S. Fernandes and A. Karmouch, “Vertical mobility management architectures in
wireless networks: A comprehensive survey and future directions,” Communica-
tions Surveys & Tutorials, IEEE, vol. 14, no. 1, pp. 45–63, 2012.

41 A. Rahmati and L. Zhong, “Context-based network estimation for energy-efficient
ubiquitous wireless connectivity,” Mobile Computing, IEEE Transactions on, vol. 10,
no. 1, pp. 54–66, 2011.

�

� �

�

278 References

42 P. Bellavista, A. Corradi, M. Fanelli, and L. Foschini, “A survey of context data dis-
tribution for mobile ubiquitous systems,” ACM Computing Surveys (CSUR), vol. 44,
no. 4, p. 24, 2012.

43 D. Niewolny, “How the Internet of things is revolutionizing healthcare,” http://
cache.freescale.com/files/corporate/doc/white_paper/IOTREVHEALCARWP.pdf,
2013.

44 H. Gao, A. Yuce, and J.-P. Thiran, “Detecting emotional stress from facial expres-
sions for driving safety,” in International Conference on Image Processing (ICIP)
2014, 2014.

45 S. Munir, J. A. Stankovic, C.-J. M. Liang, and S. Lin, “Cyber physical system chal-
lenges for human-in-the-loop control,” in Presented as part of the 8th International
Workshop on Feedback Computing. Berkeley, CA: USENIX, 2013.

46 N. B. Priyantha, A. Kansal, M. Goraczko, and F. Zhao, “Tiny web services: Design
and implementation of interoperable and evolvable sensor networks,” in Proceed-
ings of the 6th ACM Conference on Embedded network sensor systems, New York,
USA: ACM, 2008, pp. 253–266. [Online]. Available: http://doi.acm.org/10.1145/
1460412.1460438.

47 D. Guinard, “Towards the web of things: Web mashups for embedded devices,” in
In MEM 2009 in Proceedings of WWW 2009. ACM, 2009.

48 Z. Shelby, K. Hartke, and C. Bormann, “The constrained application protocol
(coap),” Internet Engineering Task Force (IETF) , Request for Comments 7252,
June 2014. [Online]. Available: http://www.rfc-editor.org/rfc/rfc6275.txt.

49 MTA, “http://web.mta.info/developers/,” http://web.mta.info/developers/, July 2014.
50 “Opendatabcn,” http://opendata.bcn.cat/opendata/en/, July 2014.
51 “Open data: Toronto,” http://www1.toronto.ca/wps/portal/contentonly?

vgnextoid=9e56e03bb8d1e310VgnVCM10000071d60f89RCRD, July 2014.
52 “Edmonton’s open data catalogue,” https://data.edmonton.ca/, July 2014.
53 “Ottawa statistics,” http://ottawa.ca/en/city-hall/get-know-your-city/statistics, July

2014.
54 “Vancouver open data catalogue,” http://vancouver.ca/your-government/open-data-

catalogue.aspx, July 2014.
55 G. Boone, “Reality mining: Browsing reality with sensor neworks,” Sensors Maga-

zine, vol. 9, 2004.
56 M. Srivastava, M. Hansen, J. Burke, A. Parker, S. Reddy, G. Saurabh, M. Allman,

V. Paxson, and D. Estrin, “Wireless urban sensing systems,” Center for Embedded
Networked Sensing Systems, University of California, Los Angeles, Tech. Rep.,
2006.

57 D. Gelles, “Yp, a mobile search firm, buys sense networks,” http://dealbook.nytimes
.com/2014/01/06/yp-a-mobile-ad-firm-buys-a-rival-sense-networks/?_r=0, January
2014.

58 J. Lifton, “Dual reality: An emerging medium,” Ph.D. dissertation, Massachusetts
Institute of Technology. Dept. of Architecture. Program in Media Arts and Sci-
ences, 2007.

59 J. Lifton and J. A. Paradiso, “Dual reality: Merging the real and virtual,” in Proceed-
ings of the First International ICST Conference on Facets of Virtual Environments
(FaVE), Berlin, Germany, July 2009, pp. 27–29.

�

� �

�

References 279

60 J. Lifton, M. Laibowitz, D. Harry, N.-W. Gong, M. Mittal, and J. A. Paradiso,
“Metaphor and manifestation: Cross-reality with ubiquitous sensor/actuator net-
works,” IEEE Pervasive Computing, vol. 8, pp. 24–33, July 2009. [Online]. Available:
http://portal.acm.org/citation.cfm?id=1591886.1592128.

61 T. D. Tran and J. Silva, “A framework for integrating WSNs and external environ-
ments,” in 5th International Conference on Management and Control of Production
and Logistics, Coimbra, Portugal, 2010.

62 ITU, “The world in 2011: ICT facts and figures,” http://www.itu.int/ITU-D/ict/
facts/2011/material/ICTFactsFigures2011.pdf, November 2011.

63 R. Duncombe and R. Boateng, “Mobile phones and financial services in developing
countries: A review of concepts, methods, issues, evidence and future research
directions,” Third World Quarterly, vol. 30, no. 7, pp. 1237–1258, 2009.

64 J. James and M. Versteeg, “Mobile phones in Africa: How much do we really
know?” Social Indicators Research, vol. 84, no. 1, pp. 117–126, 2007.

65 I. Demsky, “Cell phones help under-developed countries manage diseases,” http://
ur.umich.edu/1011/May23_11/2374-cell-phones-help, May 2011.

66 K. Fox, “Africa’s mobile economic revolution,” http://www.guardian.co.uk/
technology/2011/jul/24/mobile-phones-africa-microfinance-farming, July 2011.

67 E. Brynjolfsson and A. McAfee, The second machine age: Work, progress, and pros-
perity in a time of brilliant technologies. WW Norton & Company, 2014.

68 M. Reardon, “Smartphones to outsell feature phones in 2013 for first time,” http://
www.cnet.com/news/smartphones-to-outsell-feature-phones-in-2013-for-first-
time/, March 2013.

69 (2011, May) People are changing their facebook profile photo more often every
year. Pixable Team. [Online]. Available: http://blog.pixable.com/2011/05/27/people-
are-changing-their-facebook-profile-photo-more-often-every-year/.

70 (2011, February) Facebook photo trends. Pixable Team. [Online]. Available: http://
blog.pixable.com/2011/02/14/facebook-photo-trends-infographic/.

71 “Social networking statistics,” http://www.statisticbrain.com/social-networking-
statistics/, July 2014.

72 “Facebook statistics,” http://www.statisticbrain.com/facebook-statistics/, 2016.
73 “Statistics and facts about social networks,” http://www.statista.com/topics/1164/

social-networks/, October 2016.
74 K. M. Tsui, D.-J. Kim, A. Behal, D. Kontak, and H. A. Yanco, “I want that:

Human-in-the-loop control of a wheelchair-mounted robotic arm,” Journal of
Applied Bionics and Biomechanics, vol. 8, 2011.

75 T. F. Sapata, “Look4mysounds: A remote monitoring platform for auscultation,”
Master’s thesis, University of Coimbra, 2010.

76 I. F. Akyildiz, J. M. Jornet, and M. Pierobon, “Nanonetworks: A new frontier
in communications,” Communications of the ACM, vol. 54, no. 11, pp. 84–89,
November 2011.

77 S. Pan, N. Wang, Y. Qian, I. Velibeyoglu, H. Y. Noh, and P. Zhang, “Indoor per-
son identification through footstep induced structural vibration,” in Proceedings of
the 16th International Workshop on Mobile Computing Systems and Applications.
ACM, 2015, pp. 81–86.

78 D. Wang, T. Abdelzaher, and L. Kaplan, Social Sensing: Building Reliable Systems
on Unreliable Data. Morgan Kaufmann, 2015.

�

� �

�

280 References

79 S. J. Stolfo, M. B. Salem, and A. D. Keromytis, “Fog computing: Mitigating insider
data theft attacks in the cloud,” in Security and Privacy Workshops (SPW), 2012
IEEE Symposium, 2012, pp. 125–128.

80 E. J. Hui and P. Thubert, “Compression format for IPv6 datagrams over IEEE
802.15.4-based networks,” Internet Engineering Task Force (IETF), Request for
Comments 6282, p. 28, September 2011.

81 Y. Song, Q. Hao, K. Zhang, M. Wang, Y. Chu, and B. Kang, “The simulation
method of the galvanic coupling intrabody communication with different signal
transmission paths.” IEEE T. Instrumentation and Measurement, vol. 60, no. 4,
pp. 1257–1266, 2011.

82 M. S. Wegmueller, M. Oberle, N. Felber, N. Kuster, and W. Fichtner, “Signal trans-
mission by galvanic coupling through the human body.” IEEE T. Instrumentation
and Measurement, vol. 59, no. 4, pp. 963–969, 2010.

83 S. B. Eisenman, N. D. Lane, E. Miluzzo, R. A. Peterson, G.-S. Ahn, and A. T.
Campbell, “Metrosense project: People-centric sensing at scale,” in WSW 2006 at
Sensys, 2006.

84 A. T. Campbell, S. B. Eisenman, N. D. Lane, E. Miluzzo, R. A. Peterson, H. Lu,
X. Zheng, M. Musolesi, K. Fodor, and G.-S. Ahn, “The rise of people-centric
sensing,” IEEE Internet Computing, vol. 12, pp. 12–21, July 2008.

85 H. Lu, J. Yang, Z. Liu, N. D. Lane, T. Choudhury, and A. T. Campbell, “The jigsaw
continuous sensing engine for mobile phone applications,” in Proceedings of the 8th
ACM Conference on Embedded Networked Sensor Systems. New York, USA: ACM,
pp. 71–84, 2010.

86 H. Lu, W. Pan, N. D. Lane, T. Choudhury, and A. T. Campbell, “Soundsense:
Scalable sound sensing for people-centric applications on mobile phones,” in Pro-
ceedings of the 7th International Conference on Mobile Systems, Applications, and
Services, New York, USA: ACM, 2009, pp. 165–178.

87 J. Lester, T. Choudhury, N. Kern, G. Borriello, and B. Hannaford, “A hybrid dis-
criminative/generative approach for modeling human activities,” in Proceedings of
the International Joint Conference on Artificial Intelligence (IJCAI), pp. 766–772,
2005.

88 S. Wang, W. Pentney, A.-M. Popescu, T. Choudhury, and M. Philipose, “Common
sense based joint training of human activity recognizers,” in Proceedings of the
20th International Joint Conference on Artificial Intelligence, pp. 2237–2242, 2007.

89 P. Zappi, “Activity recognition from on-body sensors by classifier fusion: Sensor
scalability and robustness,” 3rd International Conference on Intelligent Sensors,
Sensor Networks and Information, 2007 ., pp. 281–286, 2007.

90 A. Jehad Sarkar, S. Lee, and Y.-K. Lee, “A smoothed naive bayes-based classifier for
activity recognition,” IETE Technical Review, vol. 27, no. 2, pp. 107–119, 2010.

91 S. Das, L. Green, B. Perez, and M. Murphy, “Detecting user activities using the
accelerometer on Android smartphones,” 2010.

92 E. M. Tapia, S. S. Intille, W. Haskell, K. Larson, J. Wright, A. King, and
R. Friedman, “Real-time recognition of physical activities and their intensities
using wireless accelerometers and a heart rate monitor,” in Proceedings of the 2007
11th IEEE International Symposium on Wearable Computers, Washington, DC,
USA: IEEE Computer Society, pp. 1–4, 2007.

�

� �

�

References 281

93 N. D. Lane, Y. Xu, H. Lu, S. Hu, T. Choudhury, A. T. Campbell, and F. Zhao,
“Enabling large-scale human activity inference on smartphones using community
similarity networks (CSN),” in UbiComp’11, pp. 355–364, 2011.

94 G. Thatte, M. Li, S. Lee, A. Emken, S. S. Narayanan, U. Mitra, D. Spruijt-Metz, and
M. Annavaram, “Knowme: An energy-efficient, multimodal body area network for
physical activity monitoring,” ACM Transactions on Embedded Computing Systems,
2010.

95 M. Berchtold, M. Budde, D. Gordon, H. R. Schmidtke, and M. Beigl, “Actiserv:
Activity recognition service for mobile phones,” in ISWC’10, pp. 1–8, 2010.

96 R. Wagenaar, I. Sapir, Y. Zhang, S. Markovic, and L. Vaina, “Continuous monitor-
ing of functional activities using wearable, wireless gyroscope and accelerometer
technology,” Conf Proc IEEE Eng Med Biol Soc. 2011, pp. 4844–4847, 2011.

97 G. Bieber, A. Luthardt, C. Peter, and B. Urban, “The hearing trousers pocket:
Activity recognition by alternative sensors,” in Proceedings of the 4th International
Conference on Pervasive Technologies Related to Assistive Environments, New York,
USA: ACM, pp. 44:1–44:6, 2011.

98 J. Doyle, “Utilising mobile phone RSSI metric for human activity detection,” Signals
and Systems Conference (ISSC 2009), pp. 1–6, 2009.

99 P. Rani, N. Sarkar, C. A. Smith, and J. A. Adams, “Affective communication for
implicit human-machine interaction,” in Systems, Man and Cybernetics, 2003. IEEE
International Conference on, vol. 5. New York, pp. 4896–4903, 2003.

100 P. Rani, N. Sarkar, and J. Adams, “Anxiety-based affective communication for
implicit human-machine interaction,” Adv. Eng. Inform., vol. 21, no. 3, pp. 323–334,
Jul. 2007. [Online]. Available: http://dx.doi.org/10.1016/j.aei.2006.11.009.

101 J. M. Hektner, J. A. Schmidt, and M. Csikszentmihalyi, Experience sampling
method: Measuring the quality of everyday life. Sage, 2007.

102 N. Lathia, K. K. Rachuri, C. Mascolo, and P. J. Rentfrow, “Contextual dissonance:
Design bias in sensor-based experience sampling methods,” in Proceedings of the
2013 ACM International Joint Conference on Pervasive and Ubiquitous Computing
New York, USA: ACM, 2013, pp. 183–192. [Online]. Available: http://doi.acm.org/
10.1145/2493432.2493452.

103 M. Liberman, K. Davis, M. Grossman, N. Martey, and J. Bell, “Emotional prosody
speech and transcripts,” 2002.

104 H.-J. Kim and Y. S. Choi, “Exploring emotional preference for smartphone applica-
tions,” in CCNC. IEEE, pp. 245–249, 2012.

105 R. Li Kam Wa, Y. Liu, N. D. Lane, and L. Zhong, “Moodscope: Building a mood
sensor from smartphone usage patterns,” in Proceeding of the 11th Annual Interna-
tional Conference on Mobile Systems, Applications, and Services, New York, USA:
ACM, pp. 389–402, 2013.

106 M. Kay, E. K. Choe, J. Shepherd, B. Greenstein, N. Watson, S. Consolvo, and J. A.
Kientz, “Lullaby: A capture & access system for understanding the sleep envi-
ronment,” in Proceedings of the 2012 ACM Conference on Ubiquitous Computing,
New York, USA: ACM, pp. 226–234, 2012.

107 K. Kelly, “Better than human: Why robots will—and must—take our jobs,” http://
www.wired.com/2012/12/ff-robots-will-take-our-jobs/all/, December 2012.

108 A. Weiss, D. Wurhofer, M. Lankes, and M. Tscheligi, “Autonomous vs.
tele-operated: How people perceive human-robot collaboration with hrp-2,” in

�

� �

�

282 References

Proceedings of the 4th ACM/IEEE International Conference on Human Robot
Interaction (New York, NY, USA), pp. 257–258, 2009.

109 C. Heyer, “Human-robot interaction and future industrial robotics applications,”
in Proc. of IEEE/RSJ International Conference on Intelligent Robots and Systems,
Taiwan, 2010.

110 G. Amato, M. Broxvallx, S. Chessa, M. Dragone, C. Gennaro, and C. Vairo, “When
wireless sensor networks meet robots,” in ICSNC 2012, The Seventh International
Conference on Systems and Networks Communications, pp. 35–40, 2012.

111 G.-J. M. Kruijff, F. Colas, T. Svoboda, J. van Diggelen, P. Balmer, F. Pirri, and
R. Worst, “Designing intelligent robots for human-robot teaming in urban search
and rescue,” in AAAI Spring Symposium: Designing Intelligent Robots, 2012.

112 S. Haddadin, A. Albu-Schäffer, and G. Hirzinger, “Requirements for safe robots:
Measurements, analysis and new insights,” The International Journal of Robotics
Research, vol. 28, no. 11–12, pp. 1507–1527, 2009.

113 E. A. Sisbot and R. Alami, “A human-aware manipulation planner,” Robotics, IEEE
Transactions on, vol. 28, no. 5, pp. 1045–1057, 2012.

114 S. Lallée, U. Pattacini, S. Lemaignan, A. Lenz, C. Melhuish, L. Natale, S. Skachek,
K. Hamann, J. Steinwender, E. A. Sisbot et al., “Towards a platform-independent
cooperative human robot interaction system: III an architecture for learning and
executing actions and shared plans,” Autonomous Mental Development, IEEE
Transactions on, vol. 4, no. 3, pp. 239–253, 2012.

115 M. Dorigo, D. Floreano, L. M. Gambardella, F. Mondada, S. Nolfi, T. Baaboura,
M. Birattari, M. Bonani, M. Brambilla, A. Brutschy et al., “Swarmanoid,” IEEE
Robotics & Automation Magazine, vol. 1070, no. 9932/13, 2013.

116 F. Schlachter, E. Meister, S. Kernbach, and P. Levi, “Evolve-ability of the robot
platform in the symbrion project,” in Second IEEE International Conference on.
Self-Adaptive and Self-Organizing Systems Workshops, 2008. SASOW 2008. IEEE,
2008, pp. 144–149, 2008.

117 N. Casiddu, F. Cavallo, A. Divano, I. Mannari, E. Micheli, C. Porfirione, M. Zallio,
M. Aquilano, and P. Dario, “Robot interface design of domestic and condominium
robot for ageing population,” in Ambient Assisted Living: Italian Forum 2013,
Springer, pp. 53–60, 2014.

118 R. Schoenen and H. Yanikomeroglu, “User-in-the-loop: Spatial and temporal
demand shaping for sustainable wireless networks,” Communications Magazine,
IEEE, vol. 52, no. 2, pp. 196–203, February 2014.

119 D. Nunes, J. S. Silva, C. Herrera, and F. Boavida, “Human-in-the-loop connectiv-
ity management in smartphones,” in International Conference on Wired/Wireless
Internet Communication, Springer, pp. 159–170, 2016.

120 K. Yano, S. Lyubomirsky, and J. Chancellor. (2012, December) Can technology
make you happy? [Online]. Available: http://spectrum.ieee.org/at-work/innovation/
can-technology-make-you-happy.

121 A. Waibel, R. Stiefelhagen, R. Carlson, J. Casas, J. Kleindienst, L. Lamel, O. Lanz,
D. Mostefa, M. Omologo, F. Pianesi, L. Polymenakos, G. Potamianos, J. Soldatos,
G. Sutschet, and J. Terken, Handbook of Ambient Intelligence and Smart Envi-
ronments, Springer, New York, US Computers in the Human Interaction Loop,
pp. 1071–1116, 2010.

�

� �

�

References 283

122 J. Lu, T. Sookoor, V. Srinivasan, G. Gao, B. Holben, J. Stankovic, E. Field, and
K. Whitehouse, “The smart thermostat: Using occupancy sensors to save energy in
homes,” in Proceedings of the 8th ACM Conference on Embedded Networked Sen-
sor Systems, ser. SenSys ’10, New York, USA: ACM, pp. 211–224, 2010. [Online].
Available: http://doi.acm.org/10.1145/1869983.1870005.

123 M. Boulos and A. Anastasiou, “A complete ambient assisted living experiment
(caalyx) in second life (r),” in Proceedings of MedNet2008: The 13th World Congress
on the Internet in Medicine, Saint Petersburg, Russia, October 2008, pp. 4–5.

124 R. S. Desmond, M. F. Dickerman, and J. A. Fleming, “A human-in-the-loop cyber
physical system: Modular designs for semi-autonomous wheelchair navigation,”
Master’s thesis, Worcester Polytechnic Institute, 2013.

125 D.-J. Kim and A. Behal, “Human-in-the-loop control of an assistive robotic arm in
unstructured environments for spinal cord injured users,” in, 2009 4th ACM/IEEE
International Conference on Human-Robot Interaction (HRI). IEEE, pp. 285–286,
2009.

126 D. Arney, M. Pajic, J. M. Goldman, I. Lee, R. Mangharam, and O. Sokolsky, “To-
ward patient safety in closed-loop medical device systems,” in Proceedings of
the 1st ACM/IEEE International Conference on Cyber-Physical Systems. ACM,
pp. 139–148, 2010.

127 “Highlight,” Math Camp, Inc., December 2015. [Online]. Available: http://highlig
.ht/about.html.

128 R. Lawler, “Highlight app combines facebook and gps to make real-world connec-
tions,” January 2012. [Online]. Available: http://gigaom.com/2012/01/24/highlight-
app/.

129 K. Hill, “Using facial recognition technology to choose which bar to go to,” Scene-
Tap, LLC., September 2011. [Online]. Available: http://www.forbes.com/sites/
kashmirhill/2011/06/28/using-facial-recognition-technology-to-choose-which-bar-
to-go-to/.

130 M.-Y. Chen, M.-N. Wu, C.-C. Chen, Y.-L. Chen, and H.-E. Lin,
“Recommendation-aware smartphone sensing system,” Journal of Applied Research
and Technology, vol. 12, no. 6, pp. 1040–1050, 2014.

131 Statista, “Number of apps available in leading app stores as of July 2015,” http://
www.statista.com/statistics/276623/number-of-apps-available-in-leading-app-
stores/, July 2015.

132 B. Yan and G. Chen, “Appjoy: Personalized mobile application discovery,” in Pro-
ceedings of the 9th International Conference on Mobile Systems, Applications, and
Services. ACM, pp. 113–126, 2011.

133 M. G. Berman, E. Kross, K. M. Krpan, M. K. Askren, A. Burson, P. J. Deldin,
S. Kaplan, L. Sherdell, I. H. Gotlib, and J. Jonides, “Interacting with nature
improves cognition and affect for individuals with depression,” Journal of Affective
Disorders, vol. 140, no. 3, pp. 300–305, 2012.

134 M. G. Berman, J. Jonides, and S. Kaplan, “The cognitive benefits of interacting with
nature,” Psychological Science, vol. 19, no. 12, pp. 1207–1212, 2008.

135 N. Weinstein, A. K. Przybylski, and R. M. Ryan, “Can nature make us more caring?
Effects of immersion in nature on intrinsic aspirations and generosity,” Personality
and Social Psychology Bulletin, vol. 35, no. 10, pp. 1315–1329, 2009.

�

� �

�

284 References

136 S. Haykin, Neural Networks: A Comprehensive Foundation, 2nd ed. Upper Saddle
River, NJ, USA: Prentice Hall PTR, 1998.

137 H. Gunes and M. Pantic, “Automatic, dimensional and continuous emotion recog-
nition,” International Journal of Synthetic Emotions, vol. 1, no. 1, pp. 68–99,
January 2010.

138 B. Osgood, “The Fourier transform and its applications,” Lecture Notes for EE,
vol. 261, p. 20, 2009.

139 J. W. Cooley, P. A. Lewis, and P. D. Welch, “The fast Fourier transform and its
applications,” IEEE Transactions on Education, vol. 12, no. 1, pp. 27–34, 1969.

140 J. Heaton, “Encog: Library of interchangeable machine learning models for java and
c#,” Journal of Machine Learning Research, vol. 16, pp. 1243–1247, 2015. [Online].
Available: http://jmlr.org/papers/v16/heaton15a.html.

141 K. G. Sheela and S. Deepa, “Review on methods to fix number of hidden neurons
in neural networks,” Mathematical Problems in Engineering, vol. 2013, 2013.

142 N. Lathia, K. Rachuri, C. Mascolo, and G. Roussos, “Open source smartphone
libraries for computational social science,” in Proceedings of the 2013 ACM Confer-
ence on Pervasive and Ubiquitous Computing Adjunct Publication, New York, USA:
ACM, pp. 911–920, 2013. [Online]. Available: http://doi.acm.org/10.1145/2494091
.2497345.

143 F. J. Oppermann, C. A. Boano, M. A. Zúniga, and K. Römer, “Automatic protocol
configuration for dependable internet of things applications,” in Proceedings of the
10th IEEE International Workshop on Practical Issues in Building Sensor Network
Applications (SenseApp), Clearwater Beach, FL, USA, October 2015.

144 S. W. Smith, “Humans in the loop: Human-computer interaction and security,”
Security & Privacy, IEEE, vol. 1, no. 3, pp. 75–79, 2003.

145 V. Kostakos and E. O’Neill, “Human-in-the-loop: Rethinking security in mobile and
pervasive systems,” in CHI’08 Extended Abstracts on Human Factors in Computing
Systems. ACM, pp. 3075–3080, 2008.

146 L. F. Cranor, “A framework for reasoning about the human in the loop.” UPSEC,
vol. 8, pp. 1–15, 2008.

147 W. Qadeer, T. S. Rosing, J. Ankcorn, V. Krishnan, and G. D. Micheli, “Heteroge-
neous wireless network management,” in In PACS (2003), Springer, pp. 86–100,
2003.

148 (2015, May) Cisco visual networking index: Forecast and methodology, 2014–2019.
149 A. Balasubramanian, R. Mahajan, and A. Venkataramani, “Augmenting mobile 3G

using wifi,” in Proceedings of the 8th international conference on Mobile systems,
applications, and services, New York, USA: ACM, pp. 209–222, 2010.

150 T. Pering, Y. Agarwal, R. Gupta, and R. Want, “Coolspots: Reducing the power
consumption of wireless mobile devices with multiple radio interfaces,” in Pro-
ceedings of the 4th International Conference on Mobile Systems, Applications and
Services, New York, USA: ACM, pp. 220–232, 2006.

151 A. Rahmati and L. Zhong, “Context-for-wireless: Context-sensitive energy-efficient
wireless data transfer,” in Proceedings of the 5th International Conference on Mobile
Systems, Applications and Services, New York, USA: ACM, pp. 165–178, 2007.

152 IEEE Standard for Local and Metropolitan Area Networks: Part 21 Media Inde-
pendent Handover Services, IEEE Std 802.21-2008, Computer Society Ltd., January
2009.

�

� �

�

References 285

153 E. Piri and K. Pentikousis, “IEEE 802.21,” The Internet Protocol Journal, vol. 12,
no. 2, pp. 7–27, June 2009.

154 A. Fladenmuller and R. De Silva, “The effect of mobile IP handoffs on the perfor-
mance of TCP,” Mobile Networks and Applications, vol. 4, no. 2, pp. 131–135, May
1999.

155 A. Rahmati, C. Shepard, C. Tossell, A. Nicoara, L. Zhong, P. T. Kortum, and J. P.
Singh, “Seamless flow migration on smartphones without network support,” CoRR,
vol. abs/1012.3071, 2010.

156 C. Perkins, “Mobile IP,” IEEE Wireless Communications Magazine, vol. 35, no. 5,
pp. 84–99, 1997.

157 D. B. Johnson, C. E. Perkins, and J. Arkko, “Mobility support in IPv6,” Internet
Engineering Task Force (IETF), Request for Comments 6275, July 2011. [Online].
Available: http://www.rfc-editor.org/rfc/rfc6275.txt.

158 R. Koodli, “Mobile IPv6 fast handovers,” Internet Engineering Task Force (IETF) ,
Request for Comments 5568, p. 28, July 2009.

159 S. Zaki and S. Razak, “Mitigating packet loss in mobile IPv6 using two-tier buffer
scheme,” International Journal of Computer Science Letters, vol. 3, no. 2, pp. 1–10,
June 2011.

160 K. AI-Farabi and M. Kabir, “Reducing packet loss in mobile IPv6,” in 14th Interna-
tional Conference on Computer and Information Technology, pp. 38–43, 2011.

161 H. Soliman, C. Castelluccia, K. ElMalki, and L. Bellier, “Hierarchical mobile IPv6
(hmIPv6) mobility management,” Internet Engineering Task Force (IETF), Request
for Comments 5380, p. 28, October 2008.

162 C. Bernardos, “Proxy mobile IPv6 extensions to support flow mobility,” NETEXT
Working Group, Internet-Draft, October 2013.

163 S. Nirjon, A. Nicoara, C.-H. Hsu, J. Singh, and J. Stankovic, “Multinets: Policy
oriented real-time switching of wireless interfaces on mobile devices,” Real-Time
and Embedded Technology and Applications Symposium, IEEE, vol. 0, pp. 251–260,
2012.

164 A. Ford, C. Raiciu, M. Handley, S. Barre, and J. Iyengar, “Architectural guidelines
for multipath TCP development,” Internet Engineering Task Force (IETF), Request
for Comments 6182, p. 28, March 2011.

165 R. Stewart, “Stream control transmission protocol,” Internet Engineering Task
Force (IETF), Request for Comments 4960 (Proposed Standard), Internet Engi-
neering Task Force, September 2007. [Online]. Available: http://www.ietf.org/rfc/
rfc4960.txt.

166 A. A. E. Al, T. Saadawi, and M. Lee, “LS-SCTYP: A bandwidth aggregation tech-
nique for stream control transmission protocol,” Computer Communications,
vol. 27, no. 10, pp. 1012–1024, 2004.

167 J. Liao, J. Wang, and X. Zhu, “A multi-path mechanism for reliable voip transmis-
sion over wireless networks,” Computer Networks, vol. 52, no. 13, pp. 2450–2460,
2008.

168 P. D. Amer, M. Becke, T. Dreibholz, N. Ekiz, J. R. Iyengar, P. Natarajan, R. R.
Stewart, and M. Tuexen, “Load sharing for the stream control transmission proto-
col (SCTP),” IETF, Network Working Group, Internet Draft Version 07, Oct. 2013,
draft-tuexen-tsvwg-sctp-multipath-07.txt, work in progress. [Online]. Available:
http://tools.ietf.org/id/draft-tuexen-tsvwg-sctp-multipath-07.txt.

�

� �

�

286 References

169 I. van Beijnum, “Multipath TCP,” IETF Journal, vol. 5, no. 2, pp. 1, 8–10, Septem-
ber 2009. [Online]. Available: http://www.internetsociety.org/articles/multipath-
tcp.

170 P. Hui, J. Crowcroft, and E. Yoneki, “Bubble rap: Social-based forwarding in
delay-tolerant networks,” Mobile Computing, IEEE Transactions on, vol. 10, no. 11,
pp. 1576–1589, 2011.

171 J. Rodriguez, Fundamentals of 5G Mobile Networks. John Wiley & Sons, Ltd, 2015.
172 A. El-Rabbany, Introduction to GPS: The Global Positioning System. Artech House,

2002.
173 J. Liu, B. Priyantha, T. Hart, H. S. Ramos, A. A. F. Loureiro, and Q. Wang, “Energy

efficient GPS sensing with cloud offloading,” in Proceedings of the 10th ACM Con-
ference on Embedded Network Sensor Systems, New York, USA: ACM, pp. 85–98,
2012. [Online]. Available: http://doi.acm.org/10.1145/2426656.2426666.

174 N. B. Priyantha, A. Chakraborty, and H. Balakrishnan, “The cricket
location-support system,” in Proceedings of the 6th Annual International Con-
ference on Mobile Computing and Networking, New York, USA: ACM, pp. 32–43,
2000. [Online]. Available: http://doi.acm.org/10.1145/345910.345917.

175 Y.-C. Cheng, Y. Chawathe, A. LaMarca, and J. Krumm, “Accuracy characterization
for metropolitan-scale wi-fi localization,” in Proceedings of the 3rd International
Conference on Mobile Systems, Applications, and Services, New York, USA:
ACM, pp. 233–245, 2005. [Online]. Available: http://doi.acm.org/10.1145/1067170
.1067195.

176 M. A. Caceres, F. Sottile, and M. A. Spirito, “Adaptive location tracking by kalman
filter in wireless sensor networks,” in Proceedings of the 2009 IEEE International
Conference on Wireless and Mobile Computing, Networking and Communications,
Washington, DC, USA: IEEE Computer Society, pp. 123–128, 2009. [Online].
Available: http://dx.doi.org/10.1109/WiMob.2009.30.

177 A. Harter, A. Hopper, P. Steggles, A. Ward, and P. Webster, “The anatomy of a
context-aware application,” in Proceedings of the 5th Annual ACM/IEEE Interna-
tional Conference on Mobile Computing and Networking, New York, USA: ACM,
pp. 59–68, 1999. [Online]. Available: http://doi.acm.org/10.1145/313451.313476.

178 C.-L. Wu, L.-C. Fu, and F.-L. Lian, “WLAN location determination in e-home via
support vector classification,” in 2004 IEEE international conference on Networking,
Sensing and Control, vol. 2, pp. 1026–1031, 2004.

179 A. Shareef, Y. Zhu, and M. Musavi, “Localization using neural networks in wireless
sensor networks,” in Proceedings of the 1st International Conference on MOBILe
Wireless MiddleWARE, Operating Systems, and Applications, ICST, Brussels, Bel-
gium, Belgium: ICST (Institute for Computer Sciences, Social-Informatics and
Telecommunications Engineering), pp. 4:1–4:7, 2007. [Online]. Available: http://dl
.acm.org/citation.cfm?id=1361492.1361497.

180 B. Longstaff, S. Reddy, and D. Estrin, “Improving activity classification for health
applications on mobile devices using active and semi-supervised learning,” in
PervasiveHealth’10, pp. 1–7, 2010.

181 A. Ortony, The cognitive structure of emotions. Cambridge University Press, 1990.
182 P. Ekman and W. V. Friesen, “Facial action coding system,” http://face-and-emotion

.com/dataface/facs/new_version.jsp, 2002.

�

� �

�

References 287

183 J. A. Russell, “A circumplex model of affect,” Journal of Personality and Social Psy-
chology, vol. 39, no. 6, p. 1161, 1980.

184 R. S. Lazarus, Emotion and adaptation. Oxford University Press, 1991.
185 “Emotiv epoc,” http://emotiv.com/, April 2014.
186 R. A. Brooks, “A robust layered control system for a mobile robot,” IEEE Journal of

Robotics and Automation, vol. 2, no. 1, pp. 14–23, 1986.
187 M. Musolesi, M. Piraccini, K. Fodor, A. Corradi, and A. T. Campbell, “Support-

ing energy-efficient uploading strategies for continuous sensing applications on
mobile phones,” in Proceedings of the 8th International Conference on Pervasive
Computing, pp. 355–372, May 2010.

188 CNBC.com, “AP-CNBC Facebook IPO poll: Complete results & analysis,” http://
www.cnbc.com/id/47391504, May 2012.

189 E. C. Baig. (2012, March) Highlight app may tell others too much about you.
[Online]. Available: http://www.usatoday.com/tech/columnist/edwardbaig/story/
2012-03-20/highlight-app/53673820/1.

190 A. Robertson, “Crowd-detection app SceneTap tries to allay privacy fears after
rocky San Francisco launch,” May 2012. [Online]. Available: http://www.theverge
.com/2012/5/18/3029229/scenetap-san-francisco-launch-backlash.

191 L. Anderson, “A night on the town with SceneTap,” May 2012. [Online]. Available:
http://www.theverge.com/2012/5/29/3043790/scene-tap-professional-pick-up-artist-
smooth.

192 S. Das, L. Green, B. Perez, M. Murphy, and A. Perring, “Detecting user activi-
ties using the accelerometer on Android smartphones,” The Team for Research in
Ubiquitous Secure Technology, TRUST-REU Carnefie Mellon University, 2010.

193 G. Kasparov, “The chess master and the computer,” The New York Review of Books,
vol. 57, no. 2, pp. 16–19, 2010.

194 D. Rasskin-Gutman, Chess metaphors: Artificial intelligence and the human mind.
MIT Press, 2009.

195 “Baxter,” Rethink Robotics, December 2015. [Online]. Available: http://www
.rethinkrobotics.com/baxter/.

196 “Pepper robot,” Aldebaran Robotics, 2015. [Online]. Available: https://www
.aldebaran.com/en/a-robots/who-is-pepper.

197 I. J. Good, “The mystery of Go,” New Scientist, vol. 427, pp. 172–174, 1965.
198 D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. van den Driessche,

J. Schrittwieser, I. Antonoglou, V. Panneershelvam, M. Lanctot, S. Dieleman,
D. Grewe, J. Nham, N. Kalchbrenner, I. Sutskever, T. Lillicrap, M. Leach,
K. Kavukcuoglu, T. Graepel, and D. Hassabis, “Mastering the game of go with
deep neural networks and tree search,” Nature, vol. 529, no. 7587, pp. 484–489,
2016. [Online]. Available: http://dx.doi.org/10.1038/nature16961.

199 “Deepmind Alphago vs Lee Sedol,” https://gogameguru.com/tag/deepmind-
alphago-lee-sedol/, January 2017.

200 “Google’s self-driving car project,” https://www.google.com/selfdrivingcar/, Septem-
ber 2016.

201 J.-F. Bonnefon, A. Shariff, and I. Rahwan, “The social dilemma of autonomous vehi-
cles,” Science, vol. 352, no. 6293, pp. 1573–1576, 2016.

�

� �

�

1

1

Introduction

Humans are a remarkable species. For most of our history, we have used our intellectual
ability to create and develop many different tools and processes to assist us and ease
our lives. Since the days our ancestors discovered how to control fire, around 300,000
years ago, we have achieved an exponential technological progress. From the invention
of wheeled vehicles, around 6,000 years ago, to the transistor, invented just 70 years
ago, many were the technological advances that have drastically changed the way we
experience and perceive our reality.

The last few decades have seen an unprecedented surge of technological advancement,
particularly in the area of computer science, resulting in some of the most revolutionary
human inventions yet: we have developed personal desktop and portable computers,
as well as a global network that interconnects all kinds of computerized devices, aptly
called the Internet. Despite the fact that they have been in existence for an extremely
short time, these technologies have transformed, and will continue to transform, the way
our world and society work, at a very fundamental level and at an incredibly fast pace.

1.1 The Rise of Cyber-Physical Systems

Interestingly, once the Internet was in place, we quickly achieved the power to extend it
to our traditional tools and appliances, which then became “interconnected”. One of the
first “tools” ever connected to the Internet was the Carnegie Mellon University Com-
puter Science Department’s Coke Machine, in the early 1980s [19], which was able to
report its stock and label it as “cold” or not, depending on how much time it had been
inside the machine. An idea began to spread: a vision of an interconnected world where
information on most everyday objects was accessible.

Since then, scientists and engineers have developed this idea into a concept that is
known as the “Internet of Things” (IoT). The idea started small, considering scenarios
where radio-frequency identification allowed the “tagging” and managing of objects by
computers. Each object would carry a radio-frequency identification (RFID) tag, a small,
traceable chip which could be wirelessly scanned by a nearby RFID reader. The RFID tag
enabled the automatic identification of the object and allowed it to be traced/managed
through the Internet.

The continued advances in miniaturization allowed us to go beyond the simple tag-
ging and identification of everyday objects. As predicted by Gordon Moore, back in

A Practical Introduction to Human-in-the-Loop Cyber-Physical Systems, First Edition.
David Nunes, Jorge Sá Silva and Fernando Boavida.
© 2018 John Wiley & Sons Ltd. Published 2018 by John Wiley & Sons Ltd.
Companion Website URL: www.wiley.com/go/nunesloop

�

� �

�

2 A Practical Introduction to Human-in-the-Loop Cyber-Physical Systems

1965, the amount of computing power in integrated circuits has been doubling every 18
months for the last 50 years [20]. The remarkable work of computer industry engineers
and scientists has led to many new technologies. The continuous integration of compu-
tational resources into all kinds of objects made our tools “intelligent”. Everything from
light bulbs to refrigerators, microwaves, and coffee machines will soon be connected
to the Internet. In fact, some studies estimate that we will have an IoT with 26 billion
connected devices by 2020 [21].

We can see evidence of this trend all around us. The Internet now interconnects a
large number of highly heterogeneous devices, from traditional desktop PCs to laptops,
tablets, and smartphones.

For example, the area of sensing technologies and wireless sensor networks (WSNs)
is becoming increasingly prominent. WSNs are composed of dozens or even hundreds
of autonomous “sensor nodes”, small computerized devices that are capable of collect-
ing physical world data and forwarding it by means of wireless communication. They
can be used to monitor environmental luminosity, temperature, pressure, sound, and
many other parameters, and can be spatially distributed in an ad hoc fashion. These
technologies have been receiving a great deal of attention from the research community
due to their potential in almost every application area. In fact, WSN deployments can
now be found in many industrial, medical, and domestic environments. Recent stud-
ies in WSNs have brought great advancements in this area, namely in terms of energy
efficiency and integration capabilities, with sensors being provided as services [22, 23],
accessible through the Internet [24]. Sensors are now indispensable devices, for they
allow us to collect data from real-world phenomena, handle this data in digital form,
and ultimately extend the Internet to the physical world.

In fact, the number of sensors that nowadays can be deployed on humans can turn
them into walking sensor networks. Humans can use smart-shirts; carry a smartphone
with several sensors and networking capabilities (e.g. global system for mobile commu-
nications (GSM), Bluetooth, long-term evolution (LTE)); and use Google glasses, iPods,
smart watches, and shoes with sensors. In terms of sensing applied to individual users,
Bosch Sensory Swarms and the Qualcomm Swarm Lab at UC Berkeley estimate that
the number of sensors in personal devices can add up to 1000 wireless sensors per per-
son, to be deployed over the next 10 to 15 years [25], resulting in large amounts of data
being available for processing, and allowing a wide range of sensing applications to be
deployed. This reality depends, of course, on the drastic reduction of sensor production
costs, which are expected to come down to negligible values over time, as with most
silicon-based hardware [26].

As for automated actuation, the world has seen a gradual increase in the number of
installed robots per year. The 2015 World Robot Statistics study, issued by the Interna-
tional Federation of Robotics (IFR) [27], indicates that the total number of professional
service robots sold in 2014 rose by 11.5% compared to 2013, from 21,712 to 24,207 units.
IFR expects that, for the 2015–2018 period, sales of service robots for professional use
will increase to about 152,375 units, while sales of robots for personal use will reach
about 35 million units, with a total estimated value of about $40 billion. Global sales of
industrial robots, on the other hand, will experience a yearly growth of 15% until 2018,
while the number of sold units will double to around 400,000.

Interwoven with the concept of IoT is the concept of cyber-physical systems (CPSs),
which consist in the sensing and control of physical phenomena through networks of

�

� �

�

Introduction 3

devices that work together to achieve common goals. These CPSs represent a confluence
of robotics, wireless sensor networks, mobile computing, and the IoT, to achieve highly
monitored, easily controlled, and adaptable environments.

The IoT and CPS concepts have been pushed by two distinct communities. IoT
was initially developed using a computer science perspective, mostly supported by
the European Commission. The goal was to develop a network of smart objects with
self-configuration capabilities on top of the current Internet. This development effort
included hardware, software, standards, and interoperable communication protocols
and languages that describe these intelligent devices [28]. IoT builds on several require-
ments, namely the development of intelligence in devices, interfaces and services; the
assurance of security and privacy; systems integration; communication interoperability;
and data “semantization” and management [29].

On the other hand, the concept of CPSs was initially supported by the US National
Science Foundation (NSF). CPSs stem from an engineering perspective and concern
the control and monitoring of physical environments and phenomena through sensing
and actuation systems consisting of several distributed computing devices [30]. These
systems are mostly interdisciplinary, requiring expertise and skills in mathematical
abstractions (algorithms, processes) that model physical phenomena, smart devices and
services, effective actuation, security and privacy, systems integration, communication,
and data processing [31].

Thus, IoT tended to focus more on openness and the networking of intelligent devices,
while CPSs were more concerned with applicability, modeling of physical processes,
and problem solving, often through closed-looped systems. While their core philosophy
and focus were initially different, their many similarities, such as intensive information
processing, comprehensive intelligent services, and efficient interconnection and data
exchange, have led to both terms being used interchangeably [32] without clearly iden-
tified borders [30].

CPSs combine elements from robotics, wireless sensor networks, and mobile
computing, among others, to achieve specific goals. From industrial applications
that monitor and actuate on several industrial processes, to social applications that
aggregate data from various users in order to achieve goals, such as reducing pollution
and traffic in metropolitan areas, CPSs can encompass a multitude of domains. For
example, improvement of personal health can be achieved through body networks that
integrate the user’s vital signs and activity levels with environmental information on
pollutants or noise to suggest healthier and more pleasant walking routes, restaurants,
and leisure activities. CPSs can also be used in transportation, as many modern vehicles
feature cruise control systems that maintain the automobile’s speed or perform parking
maneuvers, not to mention autonomous driving. All these systems combine sensors,
actuators, and the computational capabilities of the devices to achieve the desired
results. In fact, these sensors and actuators can be used not only in individual objects but
also in structures and buildings in order to monitor, for example, their structural health.

While IoT and CPS technologies do exist, current systems are still designed with a
specific scientific, industrial, or engineering application in mind. They are, for example,
typically responsible for collecting data from sensors and analyzing it for a certain task.
This objective-driven approach results in academic or industrial systems that may be
effective for their targeted scenarios but are very constrained in applicability and, there-
fore, narrow in their usability.

�

� �

�

4 A Practical Introduction to Human-in-the-Loop Cyber-Physical Systems

Nevertheless, we know from previous experience that this happens during the begin-
ning of any new paradigm-changing technology, as was the case with most information
technologies. The most striking example is the Internet itself, which initially only con-
nected the University of California at Los Angeles, the Augmentation Research Center
at Stanford Research Institute, the University of California at Santa Barbara, and the
University of Utah’s Computer Science Department. This and other initial computer
networks continued to grow and merge, giving birth to the Internet as we know it today.

Much like the Internet, it is very likely that existing disconnected and restricted CPS
deployments, whose primary beneficiaries are privileged users who already benefit from
and explore their capabilities, are just the initial steps towards a future where the vast
majority of intelligent devices are interconnected in massive, non-centralized networks.
In fact, some researchers argue that future CPSs will become ubiquitous and distributed,
with many data streams overlaying the network, provided by large amounts of sensors.
They also argue that these streams should be open for use, without centrally controlled
authorization, through self-advertising and discovery by nearby users. Thus, data acqui-
sition, processing, and visualization should be focused on users, not administrators or
scientists [33].

1.2 Humans as Elements of Cyber-Physical Systems

The reduction of production costs of silicon-based hardware [34] continues to fuel this
increasingly pervasive technological world, endowing people with the ability to access
extremely rich and dynamic pools of data pertaining to their surrounding environment.
The epitome of these ideas was first put forward by the renowned computer scientist
Mark Weiser, in his famous 1991 article “The computer for the twenty-first century” [35].
Weiser maintained that, as devices became smaller in size, more powerful, and efficient,
they would eventually disappear. Technology would become so intrinsic to everyday life
that we would no longer perceive it as an isolated concept but as an inherent part of
our existence. This idea came to be known as “ubiquitous computing”, and the concept
of “calm” technology arose. This concept is a direct antitheses of the stressful use of
technology, which is still prevalent. Each time we have to navigate menus, errors, bugs,
or unintuitive setups, we become stressed by our computers and appliances. On the
other hand, Weiser suggested that the true purpose of computers was to help us in a
way similar to intuition. He propounded the view that the ideal computer would be
something invisible that could truly understand human nature and interpret people’s
unconscious actions and desires. Instead of humans adapting to technology and learning
how to use it, it would be technology that would adapt to the disposition of human
beings.

Weiser also predicted that these “calm” interactions would be informative but not
intrusive, not demanding the user’s attention, and would make use of human intuitive
clues. He was right, since we can see his vision materializing with every passing day.
Computers no longer require people to sit in front of them; machines now enter the
human environment embedded in all kinds of objects, integrating computing in the
course of everyday human activities. In fact, current technology is quickly evolving
towards these principles predicted 25 years ago: current mobile devices replaced tradi-
tional buttons with much more intuitive touchscreens, and software developers give an

�

� �

�

Introduction 5

ever-increasing importance to usability and non-intrusiveness. The number of portable
mobile devices has also grown exponentially, and the number of communication
interfaces used by them has also grown. It is not hard to imagine a near future where we
get up in the morning and our home also “wakes up” and automatically launches and
executes many of the routines corresponding to that particular day of the week, under
the control of several computing devices. In fact, as computation evolves, humans will
most likely stop “using” computer devices, that is human–computer interaction will no
longer require direct user attention and will become intuitive, as if it is second nature.
In the words of Weiser, “The more you can do by intuition, the smarter you are; the
computer should extend your unconscious.”

It is not sufficient for interconnected and intelligent tools to communicate with each
other without any human involvement. Human technology is made by humans, for
humans. In order to promote the creation of systems that are useful to the average
person, it is necessary to consider efficient and intuitive operation. Therefore, in
addition to providing basic functionality, openness, heterogeneity, and integration
capabilities, it is equally important to discern how systems or tools can be used within
a certain context.

These ideas have been previously explored as context awareness, or context adapta-
tion, for mobile and wireless networking [36] and IoT [37]. Actually, increasing context
awareness is a cross-cutting challenge for the design of highly optimized networking sys-
tems that support distributed autonomic decision making and reconfigurable aspects
[36]. However, current trends on context awareness research encompass a broad def-
inition of context. “Context” can be defined as any information that can be used to
characterize an entity, that is a person, place, or object [38]. Thus, several works in the
area attempt to assess context [39] and use this information to achieve several goals,
such as mobility management [40] or energy efficiency in ubiquitous environments [41].
There are also remarkable proposals for frameworks that manage and distribute this
contextual data [42, 37].

Yet, outside of the area of e-health, whose primary objective is the monitoring of
patients [43], there is still scarce knowledge on the actual effects of this human “con-
text” on the CPS control loop. Indeed, one important element often left out of current
CPS research is the human user [33]. Most current CPSs that involve control loops still
keep humans as external elements to the control system. This is apparent if we think on
the technology that we currently find around us. For example, aircraft pilots decide for
themselves when to engage the autopilot or when to take manual control of the plane,
and cruise control systems for automobiles simply maintain the desired speed without
taking the driver’s behavior into consideration.

Systems that consider the human context will become increasingly more important,
and most future technologies will be human-aware. Future CPSs will most likely bol-
ster a much stronger tie between humans and control loops. This involves using a large
variety of sensors and mobile devices to monitor and evaluate human nature, making
humans an integral part of the CPS.

We are now in the realm of human-in-the-loop cyber-physical systems (HiTLCPSs),
that is cyber-physical systems that take human response into consideration. Human
presence and behavior are no longer seen as external and unknown factors but have
become a key part of the system instead. HiTLCPSs infer the user’s intentions, psy-
chological states, emotions, and actions through sensors, integrating this information

�

� �

�

6 A Practical Introduction to Human-in-the-Loop Cyber-Physical Systems

into the control loop as feedback to determine the actions of the CPS. By considering
humans an integral part of the system, the control loop’s performance and accuracy can
be vastly improved. For example, cruise control HiTLCPS systems will be able take the
driver’s psychological state into consideration (e.g. fatigue, attention-levels, etc.) in order
to generate alarms and suggest the activation of cruise control [13]. In fact, previous
research has already proposed image-based processing of facial expressions to detect
irritation in drivers, and use this information to improve driving safety [44]. HiTLCPSs
also include brain–computer interfaces, controlled assistive robots, intelligent prosthe-
ses, and monitoring systems, among others [16]. In order to improve the accuracy and
timeliness of the system by considering the human element, it is essential to develop
and integrate reliable and accurate human behavior modeling techniques that attempt
to learn and predict human behavior. Since human behavior is quite hard to predict,
making humans part of CPSs is a colossal challenge, as it requires modeling of complex
behavioral, psychological, and physiological aspects of human nature. Nevertheless, a
multitude of variables regarding a person’s state may be measured, including movement,
vital signs, and attention level, among many other things, which may be crucial to control
the task at hand.

The maturing of HiTLCPS’s design has yet to be achieved. For the most part, we
have not reached a consensus or even a general understanding regarding the under-
lying requirements, principles, and theory. This drives us to ask questions, such as why
do current IoT solutions still leave behind the human factor? Why have we yet to inte-
grate the human component into CPSs? What challenges do we still face in order to
achieve true HiTLCPS deployments? How can we take advantage of new ubiquitous
sensing platforms such as smartphones and personal devices used massively by people
throughout the day?

In the paper written by Stankovic et al. [45] three main challenges were identified for
HiTLCPSs.

• First, there is a need for a comprehensive understanding of the spectrum of HiTL
applications, which requires a study of existing, emerging, and potential solutions
so that common underlying principles, requirements, and models may be found. As
HiTLCPSs have a wide spectrum of applicability, it is necessary to amass examples
of HiTL solutions from multiple domains before such an understanding may be
achieved [13].

• Second, it is necessary to improve the techniques that derive models of human
psychological states, emotions, physiological responses, and actions. In other words,
we need reliable mechanisms for modeling, detecting, and possibly predicting
human behavior, such as advanced mathematical models or machine learning
techniques. Current state-of-the-art techniques are either very coarse and general or
too application-specific. The development of dynamic human behavior models that
are both accurate and general enough remains an enormous challenge.

• Finally, human behavior models need to be incorporated into the formal methodology
of feedback control, either outside or inside the loop, within the system model or at
any other hierarchical control level.

As a consequence of our research activity, we have come to believe that current
research is close to providing answers to many of these obstacles, and that HiTL
concepts will become increasingly more common. Despite being in its infancy, we

�

� �

�

Introduction 7

have found promising research that indicates we may be reaching a tipping point in
our technological evolution. More than having intelligent IoT and CPS systems that
autonomously control our environment, these systems will, more importantly, adapt
to the human context and needs. In fact, with HiTLCPSs we may be on the verge of
achieving an unprecedented control over our environment, one that we could only
conceive of in our wildest dreams.

1.3 Objectives and Structure

The next few years will most likely converge into not an Internet of things, but an “In-
ternet of all” (IoA): an Internet that includes the emotions, psychological states, actions,
and drives of the ordinary user, the human user, as part of larger-scale systems.

In this context, this book has two main objectives. First, it is intended to be a primer on
HiTLCPSs, providing some insights into the research being done on this topic, current
challenges, and requirements. As such, throughout the book we will lead the reader on a
journey through this new and exciting area of research and technological development.
The book’s second objective is to initiate the reader in the development of HiTLCPS
systems, using a hands-on approach. We will guide the reader through a comprehensive
tutorial where the major theoretical concepts behind HiTLCPS are applied to a sample
application and explained from a practical perspective. To cope with these objectives,
this book is divided into three major parts.

Part I provides an overview of HiTLCPSs, encompassing their evolution, theory,
technologies, and some applications. Chapter 2 presents the evolution of these systems,
beginning with the scope of simple “things”. From there, we evolve to whole environ-
ments and, finally, we consider the monitoring of human beings. HiTLCPSs have a
wide spectrum of applicability. As such, in an attempt to cover as many solutions and
domains as possible, Chapter 3 presents a general taxonomy of human roles within
HiTLCPS. Concluding Part I, Chapter 4 presents several pieces of research work and
several technologies that can be or have been used in HiTLCPS deployments. The
purpose of this chapter is to provide the reader with an idea of current, real-world
HiTL implementations.

Part II addresses our second objective, that is to provide a hands-on tutorial that will
consolidate the previously presented theoretical concepts. To do so, we guide the reader
through the creation of a simple, smartphone-based HiTLCPS. In Chapter 5, we present
a sample Android application that we will endow with HiTL control. The objective is to
begin with a bare-bones map application to a system capable of rough estimations of
the user’s current mood, providing suggestions to improve their physical and mental
well-being. After explaining how to set up the necessary development environment in
Chapter 6, we delve into actual HiTL development, from Chapters 7 through 9.

Part III discusses topics that will affect future and emerging HiTLCPS applications,
providing the reader with pointers on several aspects that must be taken into considera-
tion when implementing HiTLCPSs. As such, we first discuss existing requirements and
challenges for HiTL applications in Chapter 10. Subsequently, we conclude our book in
Chapter 11, with some remarks and conclusions on the covered material, identifying the
main technical and ethical limitations that may be expected in future endeavors.

�

� �

�

9

Part I

Evolution and Theory

In this first part of the book, we will introduce the concept of human-in-the-loop
cyber-physical systems (HiTLCPSs), through an overview of the evolution of technol-
ogy and research that has led us to this new paradigm. We will begin with the sensing of
“things” and “places”, converging on the more recent phenomenon of sensing of humans
and their lives through smartphones in a social networking context. Afterwards, we
will try to provide the reader with an overview of the possible types of HiTLCPSs
and human roles in them, through a taxonomic analysis. At the end of this part, the
reader will have a sense of the extent and challenges of bringing technology closer to
understanding humans.

A Practical Introduction to Human-in-the-Loop Cyber-Physical Systems, First Edition.
David Nunes, Jorge Sá Silva and Fernando Boavida.
© 2018 John Wiley & Sons Ltd. Published 2018 by John Wiley & Sons Ltd.
Companion Website URL: www.wiley.com/go/nunesloop

�

� �

�

11

2

Evolution of HiTL Technologies

As we discussed in the introductory chapter of this book, the technological progress of
the last few decades has been particularly remarkable. Still, how did all of this come to
be? First, in Section 2.1, we will see how researchers began to address and understand
the scope of simple “things”, and we will subsequently consider work that targeted more
complex and larger environments. Finally, in Section 2.2, we will discuss more recent
examples of monitoring of human beings.

2.1 “Things”, Sensors, and the Real World

The linkage of physical objects and sensors to the Internet and their integration with
web and enterprise applications has long been considered in the literature. As previ-
ously mentioned, early works began by proposing the use of physical tokens (such as
barcodes or electronic tags) to relate objects to the web. An example of such an approach
was described in [1], as Figure 2.1 illustrates. Since these early times, researchers were
concerned with the heterogeneity and complexity of the available network protocols. In
the world of pervasive computing, “client devices” like PDAs were used to access ser-
vices on “server devices” like printers, light switches, or smart home appliances. Since
these regular server devices have limited computation, memory, and power capabilities,
they require extremely small and inexpensive servers that consist of low-performance
micro controllers with only a few kilobytes of memory. However, they are expected to
be able to support complex ad hoc networking protocols, and be capable of handling
computationally heavy communication tasks like parsing and generating XML mes-
sages. In an attempt to solve this problem, Shaman [2], a Java-based service gateway,
was proposed. As shown in Figure 2.2, it worked as a network proxy that supported
various standards for ad hoc networking, allowing for the integration of small, limited
and low-power server devices (known as LiteServers) into heterogeneous networking
communities.

Another interesting advancement in this area was achieved by the Cooltown project
[3], which provided an infrastructure for “nomadic computing”, a term used by the
authors to describe the human interaction with mobile and ubiquitous devices. In
the Cooltown project, the authors intended to push web technology into common
digital appliances such as printers, radios, and automobiles, and also to non-electronic
things like CDs, books, and/or paintings, connecting each “thing” to a web “presence”

A Practical Introduction to Human-in-the-Loop Cyber-Physical Systems, First Edition.
David Nunes, Jorge Sá Silva and Fernando Boavida.
© 2018 John Wiley & Sons Ltd. Published 2018 by John Wiley & Sons Ltd.
Companion Website URL: www.wiley.com/go/nunesloop

�

� �

�

12 A Practical Introduction to Human-in-the-Loop Cyber-Physical Systems

Figure 2.1 In [1], books and other common objects were augmented with RFID tags and associated
with virtual documents by PDAs.

Figure 2.2 Shaman [2] acted as a representative for the connected LiteServers, offering Java and HTML
interfaces.

�

� �

�

Evolution of HiTL Technologies 13

Figure 2.3 Device web presence in Cooltown [3]. Source: Adapted from Kindberg et al. 2002.

(see Figure 2.3). The web presence extended the concept of a web page to every
physical entity, basically a page with information and services for every entity of the
physical world. The authors designed the “Cooltown Museum” test environment, where
they implemented two different methods of web presence recognition. One method
consisted of the use of infrared beacons that supplied PDAs with the URL of the corre-
sponding point of web presence, where the other consisted of the use of tag identifiers
which were sensed by the PDAs and sent to a service that maintained a collection of
bindings from identifiers to URLs and which then returned the corresponding URL.

The success of Web 2.0 and the advent of web services and associated technologies
like SOAP (simple object access protocol) and WSDL (web service definition language)
brought brand-new approaches to the integration of devices and sensor networks. In
this vein, the “web of things” vision is concerned with providing a concrete architecture
where actuators and embedded devices expose their data and functionality as an integral
part of the web.

The open-source Project JXTA tried to specify a standard set of protocols for ad hoc,
pervasive, peer-to-peer (P2) computing as a foundation for the web of things. It stan-
dardized a thin and generic network protocol layer to build a wide variety of P2P appli-
cations, where each peer benefits from being connected to a high number of other peers,
and where information is shared and maintained among the community of embed-
ded devices. The network protocol itself is independent from software and hardware
platforms, and defines a virtual network on top of the existing physical network infras-
tructure in order to hide all the complexity of the underlying physical protocols (see
Figure 2.4). Thus, as long as the JXTA protocols are implemented in a given platform, all
peers in the network would be able to communicate with the members of that platform.
The members of the JXTA initiative have already ported the protocol to a few different
platforms; namely, the JXTA-C project delivers a small and efficient implementation
of the JXTA protocols that can be used for small memory embedded devices without
requiring any proxy servers [4].

Another approach was Tiny Web Services [46], a system that deployed web services
technology on resource-constrained sensor nodes, allowing their functionality and
data to be directly accessed by multiple applications. Data could be carried through
SOAP-formatted packets, while web service bindings were defined through XML and
the WSDL.

However, some members of the scientific community felt that these types of approach
were not ideal, arguing that both the interface definition (WSDL) and the messages

�

� �

�

14 A Practical Introduction to Human-in-the-Loop Cyber-Physical Systems

Figure 2.4 JXTA [4] peers created virtual ad hoc networks which served to abstract the real ones.

Figure 2.5 Works such as [5] and [6] used proxies to offer embedded devices’ capabilities through
RESTful web services.

(SOAP) were too complex for devices with limited capabilities and also that the overall
system was not truly loosely coupled [47]. Instead of relying on proprietary and tightly
coupled systems, REST principles were then applied to embedded devices, allowing the
use of web languages like HTML, JavaScript, and PHP to create novel web applications
(see Figure 2.5). With this approach, the interaction with a sensor node becomes as easy
as typing a URI into a Web browser, and it allows for traditional web mechanisms to be
applied to embedded devices such as browsing, searching, and bookmarking [5].

�

� �

�

Evolution of HiTL Technologies 15

Several other projects focused on REST protocol principles for sensor integration
with the web. One of these projects was the sMAP project [6], which presented an
architecture, specifications, and implementations of a simple monitoring and action
profile (sMAP) that promoted data interoperability between sensor and actuators in
building environments and the Internet. The sMAP architecture allowed clients to
communicate with embedded devices in buildings through the Internet. In order to
support resource-constrained devices, this communication was dependent on several
proxies that compressed and decompressed data between IP end points. The proposed
architecture was built on HTTP/REST protocols and used JSON as the object inter-
change format. The authors applied the architecture to several resource monitors and
actuators inside a commercial building, including mote-based wireless sensors. Overall,
the authors believed that the approach based on REST was widely implementable and
efficient, while the communication API definitions were expressive and concise. They
also believed that the use of proxies is ideally suited for resource-constrained embedded
devices.

More recently, the the Internet Engineering Task Force (IETF) Constrained RESTful
environments (CoRE) Working Group has standardized the Constrained Application
Protocol (CoAP). CoAP is a web transfer protocol for use with constrained nodes
with very few resources. The protocol is designed for machine-to-machine (M2M)
applications such as smart energy and building automation. According to its standards
track, “CoAP provides a request/response interaction model between application
endpoints, supports built-in discovery of services and resources, and includes key
concepts of the Web, such as URIs and Internet media types. CoAP is designed to easily
interface with HTTP for integration with the Web, while meeting specialized require-
ments such as multicast support, very low overhead, and simplicity for constrained
environments” [48].

These advances in the integration of sensing led to the use of IoT and wireless sen-
sor nodes, soon evolving beyond “things”, and also became a doorway between virtual
environments and real-world information. This sensing data has tremendous potential,
particularly when we consider the power of crowdsourcing. This is evidenced through
the number of organizations that freely open and share data with their users. MTA [49],
for example, provides open-source transit-related data for the development of applica-
tions. Also, the OpenDataBCN [50] open data portal shares the city of Barcelona’s data
regarding geography, demography, economy, city services and utilities, and administra-
tion. The cities of Toronto [51], Edmonton [52], Ottawa [53], and Vancouver [54] have
also joined forces to collaborate on an “open data framework” initiative that openly offers
city-related data sets to users.

Several initiatives are dedicated to applying all of this sensory information from
real-world locations to virtual representations of those locations.

One example is SenseWeb [7], a scalable infrastructure for sharing sensing resources
among sensor owners and exploring geocentric sensor data streams. This infrastructure
offered a web-based front-end, called SensorMap, which enabled users to visualize the
sensor data streams on an interactive map. Instead of depending on closed and mono-
lithic solutions, sensor deployments shared their data to make their resources re-usable
by other systems or concurrently used by multiple entities. The environment map was
a virtual representation of real-world locations, allowing users to analyze environmen-
tal phenomena through the combination of multiple sensor streams dispersed in space.

�

� �

�

16 A Practical Introduction to Human-in-the-Loop Cyber-Physical Systems

The SenseWeb proposal tackled two main problems. First, it succeeded in combining
information from groups of heterogeneous sensors that differed in resource, mobility,
and network connectivity. The solution used an open and extensible architecture that
resorted to remote sensor gateways to host the different sensor data streams, exposed
through uniform interfaces. These gateways communicated with a coordinator, which
served as a common point of access for the various sensor contributors and for appli-
cations to gain access to the available data (see Figure 2.6). The second problem tackled
by SenseWeb was the management of scalability when dealing with large amounts of
geographical data. To this end, the authors provided several techniques for caching com-
putationally expensive visualizations derived from sensor data and for efficiently reusing
them to serve user queries. The various components of the SenseWeb system exposed
their functionality by using a set of web service API interfaces that allowed applications
developed on different platforms to access SenseWeb data.

The work in [55] introduces the concept of “reality mining”, the data mining of sen-
sor streams that monitor specific environments. The manipulation of massive amounts
of sensory data can be used in detection and actuation systems, allowing users to use
sensor data in valuable ways. The authors designed a prototype of a sensor informa-
tion system that used geographic information systems software, mission planning/ter-
rain visualization systems, and sensor networks in conjunction with a photo-realistic,
3D visualization of the prototype’s environment. They used the prototype to propose
several systems where the use of sensors and virtual representations would be useful.
These propositions included a fire-detection system which used sensors in order to help

Figure 2.6 The SenseWeb [7] architecture.

�

� �

�

Evolution of HiTL Technologies 17

anticipate the initial spread of the fire, virtual tourism, and a live view of stock price
changes as clouds over a 3D map.

Other research projects and companies focus on the use of sensors and intelligent
devices in an urban context. For example, the Urban Sensing research project [56]
sought to develop cultural and technological approaches using mobile and embedded
sensing to enrich civic life. The idea was that many ubiquitous sensors for urban sensing
are already deployed and mobile phones can provide sounds and imagery from these
sensors. Thus, users will have access to a great diversity of sensors in future urban
settings that will allow them to know more about their homes, neighborhoods, and
communities. By sharing and cross-referencing sensed data with publicly available data
from private and municipal monitoring systems, a user can have access to information
about the city, such as traffic, weather, air quality, and pedestrian flow.

Sense Networks, Inc. was a company that indexed real-world data using real-time and
historical location data for predictive analytics across multiple industries (it has since
been acquired by YP Marketing Solutions [57]). Sense Networks developed machine
learning technology that indexes and ranks real-world places, based on movement data
between these places at different times. This movement and location data was collected
in real-time from devices with GPS or WiFi positioning technology, such as mobile
phones and automobiles. This information was used to create applications that can cre-
ate profiles of various locations within a city and use them to better understand visitors
and anticipate their needs. Earlier products were CitySense, a local nightlife discov-
ery and social navigation platform, and CabSense, an application that helped users find
available taxicabs near them.

WikiCity [8] was a project with the objective of developing a platform that allowed an
entire city to become a real-time control system. In order to achieve this, the platform
required sensors able to acquire information about several aspects of the city, intelli-
gent mechanisms that evaluated the performance of the system, and physical actuators
that performed actions on the system (see Figure 2.7). One interesting aspect of this
project was the fact that it considered the city’s own inhabitants actuators. The platform
was capable of storing and exchanging data with the users through mobile devices and
web interfaces, and it enabled people to “become distributed intelligent actuators, which
pursue their individual interests in cooperation and competition with others, and thus
become prime actors themselves in improving the efficiency of urban systems”.

2.2 Human Sensing and Virtual Communities

More recently, some researchers began to focus on the human side of sensing. Many of
these works also presented a strong social networking component.

One example is the work of Lifton, J. et al. at the Massachusetts Institute of Technol-
ogy media laboratory, who coined the term “dual reality” [58, 59] to indicate the ability
to merge the real and virtual realities by using sensor networks. They designed several
prototypes where they performed experiences in merging a real-world location, the MIT
Media Lab’s third floor, and virtual worlds, in this case Second Life®. One of these pro-
totypes is described in [60] in which the authors present the ShadowLab, a Second Life®map of the Media Lab’s third floor animated by data collected from a network of several

�

� �

�

18 A Practical Introduction to Human-in-the-Loop Cyber-Physical Systems

Figure 2.7 WikiCity [8] interfaced between virtual data and the physical world through a semantically
defined format for data exchange.

sensor/actuator nodes. The sensor nodes used in ShadowLab could sense light, vibra-
tion, sound, motion, temperature, and measure the amount of alternating current drawn
from each outlet. They also hosted a low-power radio for wireless communication. The
data provided by these sensors was animated in virtual environments in an engaging way
that naturally suggested the sensed stimuli. This was accomplished by resort to virtual
objects called DataPonds, that changed appearance depending on the activity level in
their respective location. The authors also began to experiment with virtual/real-world
interaction by allowing Second Life® avatars to interact with virtual objects that would
play audio clips through speakers, and by designing physical versions of DataPonds that
would be stimulated by avatar motion in a particular region of ShadowLab. They also
used ShadowLab to experiment with user avatar transformations based on real-world
data, as avatars could “metamorphose” according to the activity level outside of the
avatar’s corresponding user’s office.

Another dual reality implementation described in [60] was the Ubiquitous Sensor Por-
tal, a device designed for two-way cross-reality experience and communication. These
portals streamed information in both directions, from the user’s environment to Shad-
owLab, and from ShadowLab to the real world. The portals hosted several environ-
mental sensors that measured motion, light, sound level, vibration, temperature, and
humidity. They could also communicate with a family of badges designed to identify
individuals facing them and capture audio and video. Because the portals could stream
private data, an important requirement was to manage privacy. A system of user badges
was implemented, where each badge beaconed a unique ID, to wirelessly mediate pri-
vacy settings. Portals knew which badges were potentially in sensor capture range and
controlled data access according to the badge user’s preferences.

�

� �

�

Evolution of HiTL Technologies 19

Sensor nodes have also been used as a means of transmitting mobility of people into
virtual worlds. In [61] a framework is proposed which maps a sensor node to an object
in Second Life®. The location of the sensor mode is calculated by the framework and
reflected on an avatar in Second Life® which moves according to the real-world move-
ment of the node. The location of the node is calculated from the received signal strength
indication (RSSI) values from three or more fixed reference nodes, thus requiring a care-
fully designed WSN architecture.

Despite the importance of all of these research initiatives, one particular invention
has undeniably changed not only the landscape and prospects of human sensing but
also our very own society and daily life. This revolutionary invention surged in the form
of a small rectangular device that tends to accompany us everywhere we go: the mobile
phone. While traditional phones have been with us for the last 140 years, mobile phones
have drastically changed the paradigm of long-distance communication, owing to the
mobility they provide. In fact, the mobile phone has nearly become a basic need and an
important part of our lives; people often claim their day is “ruined” when they forget
theirs at home.

Mobile phones are so important that have been disseminated even in places that lack
much-needed basic infrastructure. The International Telecommunications Union found
that, by the end of 2011, the number of mobile phone subscriptions reached 5.9 billion,
representing a penetration of 87% of the entire world and 79% of all developing countries
[62]. In fact, the development of mobile phone networks surpasses other infrastruc-
tures, such as paved roads and electricity, in many low- and middle-income countries,
diminishing the need for fixed Internet deployment [63, 64].

Thus, mobile phones are extremely common, increasingly cheap, and provide
mobile Internet connectivity almost everywhere, even in less favored environments.
These characteristics make them excellent candidates for gateways for new types of
large-scale HiTLCPSs aimed at solving real-world social problems. Some research
suggested the use of these extended mobile networks to help low-income patients in
under-developed countries to manage chronic diseases, such as diabetes. This idea
was tested on patients with diabetes from a clinic in a semi-rural area of Honduras,
through a system that delivered automated phone calls that helped manage the disease
[65]. The lack of technological infrastructures also prompts the mobile phone to serve
as a very resourceful device, sometimes even more so than in developed countries.
One interesting example of this is mobile banking: Kenya’s mobile network Safaricom
introduced a service called M-Pesa, which allows users to store money on their mobiles.
Users can then pay utility bills or send money to friends through a simple SMS and
the recipient converts it into cash at their local M-Pesa office. This allows millions of
Africans to have cheap, mobile, and easy access to a bank account [66].

Perhaps because of their usefulness and dissemination, the evolution of mobile phones
has been extremely rapid and the market remains very volatile. In fact, mobile phones
are quickly being replaced by “smartphones”, devices possessing a computing power that
matches a desktop computer, and a size compatible with our pockets. And even in the
latest iteration, the evolution continues to be astonishing.

Consider the Nokia 6101 (Figure 2.8), a very popular smartphone at the time of its
release; current smartphones such as the iPhone 6s and Nexus 5X make this mobile
look almost archaic, yet it was released in 2005, a mere 12 years ago. Smartphones

�

� �

�

20 A Practical Introduction to Human-in-the-Loop Cyber-Physical Systems

Figure 2.8 Nokia 6101 vs iPhone 6s/LG Nexus 5X.

and tablets have become personal portable computers, representing a versatile com-
putational resource; nowadays, even the most basic and cheap smartphones are capable
of processing considerable amounts of information through basic programming plat-
forms. Modern smartphones are actually more powerful than desktop computers from
a decade ago. For example, an iPad 2 tablet, introduced in 2011, has a peak calculation
speed equivalent to that of the Cray-2 supercomputer, introduced in 1985 [67]. However,
tablets and smartphones also possess advanced sensors such as gyroscopes, accelerom-
eters, and digital compasses, feature quad-core processors and up to 2 gigabyes of RAM.
In a very real sense, these devices have brought us pocket-size, supercomputer-like com-
putational power in a matter of a few years. They have also brought us incredible mobile
connectivity, providing Internet access almost anywhere.

Even when seen in perspective, it is difficult to grasp how fast the mobile market has
been evolving. As it is the case with most silicon-based technology, mobile phones also
tend to become cheaper over time. This means that they are more easily adopted by
the general population, namely in developing countries. In fact, smartphone sales are
globally outpacing those of regular phones [68].

The possibilities of such advanced mobile platforms are already apparent in the diver-
sity of existing applications made available for them. However, these are only primordial
examples. Smartphones are not evolving alone, having grown together with the Internet
boom and closely accompanying the evolution of the World Wide Web and social net-
working. Almost all newer smartphone models offer native support for the integration
with several social networking services (such as Twitter1 and Facebook2) also offering
advanced Internet browsers that function almost as well as their personal computer
counterparts.

Not surprisingly, considering the social beings we humans are, as our
Internet-connected devices evolved so did the means we use to communicate

1 https://twitter.com/
2 https://www.facebook.com

�

� �

�

Evolution of HiTL Technologies 21

and interact with the people we deem close. In the past, people’s interactions were
mostly face-to-face amongst their peer groups, with occasional long-distance relation-
ships through letters or telephone calls. In today’s world, we see a social revolution
where people use their smartphones to share, in real time, funny stories, thoughts,
feelings, photographs, and other pieces of their lives with their family and friends, some
of which they have not physically been in contact with for a long time, and in some
cases not even ever seen in “real life”.

There has also been a considerable evolution over earlier iterations of social net-
working when it comes to the sharing of personal information: whereas users used to
simply fill their personal pages with static personal information (such as their hobbies
or self-descriptions), we are now seeing mobile social networks that use collaborative
feedback to acquire real-world information in order to provide more useful services.
We are also seeing an enormous increase in the sharing of social activity, with users
posting more multimedia items about their lives and social interests. According to
research by Pixable [69, 70], the changing of Facebook profile pictures seems to increase
every year; in fact, the number of profile photos per user per year tripled from 2006
to 2011, independently of the user’s age, since older users upload as much as younger
users do. The research indicated that, on average, a Facebook profile picture had two
comments and three likes and the average person had 26 profile pictures. From a social
networking point of view, the representation of the current status of people in virtual
environments is a very interesting concept: access to social networking nowadays is
becoming increasingly more mobile, and it is not uncommon to see people use their
smartphones to share and discuss daily experiences shortly after their occurrence,
updating thoughts, and responding to feedback from their friends as the situation
develops and the user’s life continues. Current users can announce social events to their
group of friends, share experiences through photos and comments, and show their
opinions and hobbies through “likes” and their own “private wall”.

Thus, social networking is a phenomenon that bloomed and continues to connect an
astonishing number of users, becoming the fastest-growing active social media behav-
ior online. The sheer scale at which these changes are happening is astonishing: a 2014
statistical analysis by Browser Media, Socialnomics, and MacWorld suggested that Face-
book, one of the largest social networks, had around 1.4 billion users worldwide, and that
98% of 18 to 24-year-olds already used social media websites [71]. This social network-
ing tendency continued as the number of Facebook users increased 12% from 2014 to
2015 [72]. In fact, in 2016, another study claimed that 31% of the global population used
Facebook [73].

Since social networks are becoming so important in the interconnections between
humans, it is expected that they will play a prominent role in HiTLCPSs. As mobile
technology develops, social networking websites become increasingly more pervasive.
This is evident when we take into consideration the ubiquity of social networking smart-
phone applications. In 2016, of the 1,721,000,000 monthly active Facebook users around
1,104,000,000 were mobile ones [72] who spent 68% of their total Facebook time on a
mobile device [73].

Despite these advancements and the general public’s interest in these social ser-
vices, their current functionality does not yet reflect the true dynamics of people’s
relationships and personal lives. Instead of being pre-determined and unique events
in time, social group activities can, in fact, happen very frequently and, most of the

�

� �

�

22 A Practical Introduction to Human-in-the-Loop Cyber-Physical Systems

Gordon

Moore’s Law

CMU’s

networked

Coke machine

Cray-2
Super Computer

Mark Weiser’s
“The Computer for

the 21st Century”

The term

“Internet of

Things” is coined

Bridging Physical

and Virtual Worlds

with Electronic

Tags

Cooltown Project

JXTA-C Project

Reality Mining
Facebook is

founded

Urban Sensing
Sense Networks,

Inc. is founded

Shaman Gateway

CenceMe
one of the first works that

combined smartphones with

people-centric sensing

Apple introduces

the iPhone®

HTC Dream®, the

first Android

Smartphone

WikiCity

Tiny Web Services
SenseWeb

MIT Media Lab's

ShadowLab and Ubiquitous

Sensor Portal

Towards the web of

things: Web mashups

for embedded devices

sMAPOpen data initiatives

start appearing in

several cities

iPad 2 tablet (same

peak computation as

Cray-2)

Figure 2.9 HiTL technologies evolution timeline.

�

� �

�

Evolution of HiTL Technologies 23

time, spontaneously. Current systems are not capable of providing this “real-time”
component to social networking, which diminishes its true potential. In a sense, we can
classify current social networks as still very “static” when compared to a more complete
system capable of closely following the extent of human social interactions. While the
use of collaborative contributions is still an important part of social applications and
can provide meaningful and useful data, sensing systems can provide a more reliable
and responsive feedback that is crucial in achieving “real-time and human-aware”
social-networking. In fact, an HiTL approach to social networking may well prove to
be a technological leap over current social networking of the same magnitude as the
one provided by mobile phones over traditional telephones.

2.3 In Summary...

This chapter showed us a certain evolution in terms of IoT and CPSs. Figure 2.9 shows
a timeline containing some of the relevant events and works that were referenced.

Research that began with a focus on “things” has then evolved to the monitoring
of entire environments and, more recently, of human users. This makes sense, since
real-world objects are more controllable: they are made by humans and we understand
the full extent of their uses and states. Thus, they became the initial targets for
extending CPSs into the web. Later development of WSNs enabled CPSs to monitor
wide geographical locations. However, only more recently did we achieve the necessary
advancements in miniaturization, computational power, sensing, information linkage,
and machine learning that allow us to focus on the most complex aspects of our reality,
including ourselves. These possibilities have been brought forward by the tremendous
advances in mobile devices, such as smartphones, and social-networking.

All of these advancements and ideas make it difficult for us to understand the range,
limits, and possibilities of these new “human-aware” paradigms. In an attempt to orga-
nize ideas, we will now focus our attention on organizing these HiTL concepts into
taxonomic concepts.

�

� �

�

25

3

Theory of HiTLCPSs

So, what exactly is a HiTLCPS? Understanding the principles and theory behind these
systems is the main objective of the current chapter. First, in Section 3.1, we will establish
a taxonomy that will be used throughout the book. Then, in Sections 3.2 through 3.4,
we will address the human role in the three basic processes of HiTLCPSs, namely data
acquisition, state inference, and actuation, respectively.

3.1 Taxonomies for HiTLCPSs

As HiTLCPSs have a wide spectrum of applicability, it is difficult to cover all possible
examples of HiTL solutions for a multitude of domains. Thus, we will begin by pre-
senting the most basic, common processes in HiTL control, shown in Figure 3.1. The
first phase is known as “data acquisition”. Data related to the human individual is gath-
ered from the available sensors. This data is then processed in the “state inference” stage
with the objective of inferring the human’s physical and/or psychological state. Some
approaches may also attempt to predict future states based on historical data and the
current state. Finally, in the “actuation” stage, the system may or may not perform certain
actions based on the observed state. Some “open-loop” systems do not affect the system
per se, that is their results are merely informative, without direct actuation. However,
“closed-loop” systems actuate directly on the environment or the human, in order to
influence the loop and achieve a given target.

From now on we will call this reference model the Internet of all (IoA), meaning that
it includes not only (traditional) IoT but also humans as fundamental elements. In this
way, we emphasize that this Internet is made by humans, for humans, and with humans.

IoA is built from spatially distributed devices that are considered by standard IoT, like
laptops, mobile phones, computers, sensors, actuators, “classic” network elements (we
mean all passive elements like routers, switches, access points, etc.), RFID tags, readers,
cars, intelligent clothes, wearable devices, furniture, and home appliances. As can be
inferred from the general model in Figure 3.1, IoA also includes robotics and its interac-
tion with intelligent devices and sensors. However, on top of these man-made devices,
we also consider human beings themselves as part of the system: their actions, drives,
desires, and emotions.

A Practical Introduction to Human-in-the-Loop Cyber-Physical Systems, First Edition.
David Nunes, Jorge Sá Silva and Fernando Boavida.
© 2018 John Wiley & Sons Ltd. Published 2018 by John Wiley & Sons Ltd.
Companion Website URL: www.wiley.com/go/nunesloop

�

� �

�

26 A Practical Introduction to Human-in-the-Loop Cyber-Physical Systems

Figure 3.1 Basic processes of human-in-the-loop control.

How can we distinguish between different types of HiTLCPSs? In order to better com-
prehend the dimension of such an expansive field as HiTLCPSs, it is important to resort
to taxonomies that allow us to better structure our ideas and concepts.

Some authors have previously proposed taxonomic distinctions and classifications for
HiTL systems based on the type of exerted control. In an attempt to attain a greater
understanding of the spectrum of HiTL applications, and of their underlying principles,
requirements, and models, Stankovic et al. [45] began to establish a taxonomic founda-
tion for HiTLCPSs applications. According to Stankovic et al. [45], it is possible to orga-
nize existing HiTL applications into three types: (1) applications where humans directly
control the system, (2) applications where the system passively monitors humans and
takes appropriate actions, and (3) a hybrid of (1) and (2). These three basic types are
represented in Figure 3.2, and are described below.

Human Control: there are two main scenarios where humans directly control
CPSs. In supervisory control scenarios, human operators oversee an otherwise mainly
autonomous process. The operators are responsible for adjusting certain set points
that may influence the system. This is the case of, for example, industrial scenarios
where operators mainly set or adjust certain target parameter values that are then
enforced by an autonomous robotic CPS. If humans have a more direct command
over the process, we are in the presence of direct control scenarios. These are typical
master slave scenarios where humans issue commands to the CPS, which then carries
the necessary actions, and reports back the results. An example of such a system can
be seen in [74], where a wheelchair-mounted robotic arm is controlled by a disabled
person to retrieve objects.

Human Monitoring: applications that passively monitor humans, also known as
people-centric sensing applications, use their monitoring data to take appropriate
actions. In the scope of CPSs, these can be of two types: open-loop and closed-loop
systems. Open-loop systems monitor information about humans regarding several
aspects (e.g. sleep quality, physical activity, attention-level) and report these results.

�

� �

�

Theory of HiTLCPSs 27

Figure 3.2 Taxonomy of human control.

One example is Look4MySounds, a remote monitoring platform for auscultation of
cardiac sounds and automatic detection of pathologies [75]. The platform uses an
integrated stethoscope with which auscultation sounds are recorded and processed
for automatically detecting pathologies. The sound samples and obtained diagnosis
are thereafter remotely sent to a clinician. Despite the human being in the loop, the
system does not take any proactive actions and simply relays the results to a specialized
medical practitioner. On the other hand, closed-loop systems use their sensory data
and processing results in order to actively contribute to a specific goal. For example,
a smartshirt may monitor a human’s exercise levels at the gym, while a sensor placed
on the wall monitors the room temperature. When the human is exercising, the HiTL
control may signal the heating, ventilation, and cooling (HVAC) systems to reduce the
room’s temperature in order to make the exercise more pleasurable.

Hybrid Systems: hybrid systems take people-centric sensing information as feedback
to their control-loops while also taking direct human inputs into consideration. Let us
expand our smartshirt example to include a smartphone application that allows the user
to keep track of his/her exercise and also set a desired room temperature. The hybrid
system could take the user’s desired temperature as input while using the activity infor-
mation to fine-tune the absolute temperature value, or to control the rate of temperature
change.

Stankovich et. al. [45] only classified the different types of HiTL applications accord-
ing to how humans interact with them. In this book, we intend to go a little further and
provide an alternative point of view of the HiTL process. We will expand this taxonomic
exercise to also consider the possible roles of humans in these systems. We believe such
a distinction is important, since it will allow us to better cope with some of the existing

�

� �

�

28 A Practical Introduction to Human-in-the-Loop Cyber-Physical Systems

Figure 3.3 Taxonomy of human roles.

challenges, such as determining how to incorporate human behavior into the method-
ology of feedback control. Thus, in the following text, we establish a classification of
human roles within future IoT.

How can humans contribute to CPSs? Human presence can manifest itself in different
ways: humans may acquire data by themselves, may provide assessment of situations,
and may also actuate when necessary. Thus, we would like to reflect not simply on
where to place the model of human behavior within the control loop but also under-
stand what roles a human may play within an HiTLCPS and how to best explore this
resource; not as an external and unpredictable element but as an inherent part of the
system. Figure 3.3 summarizes our understanding of the possible human roles within
HiTLCPSs.

The next subsections detail the human role in each of the identified categories.

3.2 Data Acquisition

3.2.1 Humans as Sets of Sensors

There are several ways a human can act as a sensor, or even as a set of sensors. Whenever
the human is capable of directly feeding the system with information, we can say that
human is acting as a sensor. For example, each time a user indicates that he likes some-
thing on a social network, gives feedback for machine learning, or provides collaborative
information for crowd sourcing (e.g. indicates that a road is blocked on a collaborative
navigation app), that user is acting as a human sensor. Human-provided information
has several advantages. It tends to be of a more abstract/complex type, and it may be
easier and less expensive to obtain than the one provided by sensor machines, as most
data is provided voluntarily and without the need for additional hardware. Taking our
road example, it is difficult to reliably detect a blockage without a considerable amount
of sensors (infrared proximity, cameras, etc.) and signal processing, which can end up
being rather expensive even for very short sections of the road. However, a human with a
smartphone can easily take pictures, comment, and report such blockages in a way that
is useful for the rest of the HiTLCPS. On the other hand, this information is also more
difficult to parse: rarely do people communicate in a machine-readable way. At the same
time, this source of information is also more unreliable: unlike people, machines do not

�

� �

�

Theory of HiTLCPSs 29

tend to lie or misinform (unless they are broken). Hence, most of the effort and cost of
using human-derived information comes from its parsing and validation: depending on
the use-case, it may be useful to use it or not.

Another way in which humans become an integral part of sensor networks is through
the sensors that they carry. Wearable devices, such as smartphones, smartwatches,
or intelligent clothing, can also become important elements in the future Internet.
Some years from now, nano-technology might also become an important element
in this regard; some researchers point out how this technology can bring intra-body
elements into the IoA [76]. Nano-networks have been receiving a lot of attention from
the scientific community and, in the near future, new studies and prototypes will begin
to emerge that might result in very advanced applications in the biomedical area. HiTL
concepts will certainly apply to these types of scenarios. The source of information is
definitely human-influenced but, at the same time, machine-derived, as this mitigates
many of the limitations associated with information derived exclusively from humans.
Still, depending on the use-case, the usage of these sensors in a useful way may require
a considerable amount of integration and processing.

The concept of humans as sensors extends beyond the use of direct human feedback
and sensor devices. Social-networking, for example, also serves as a rich information
source. In the not-too-distant future, this information could be combined from both
sources, with sensor nodes placed in major shopping centers to, for instance, help and
support the shopping of human beings. Smart glasses could overlay price-tags on the
products of its user’s interests (i.e. on things that they “liked”).

We can talk about two types of sensing in these scenarios: direct sensing and indi-
rect sensing. Direct sensing involves using sensors or human feedback that is directly
related to the sensing target. On our shopping mall example, using GPS localization
or a questionnaire asking the user which stores he visited are direct ways of determin-
ing his shopping habits. On the other hand, indirect sensing refers to a case where we
infer desired information from other responses. For example, by using the shopping mall
building’s vibration sensors [77], or even by aggregating information from the shopping
mall’s information terminals, one can infer which floors or shops tend to attract most
interest and customers.

While these sorts of applications are not unfeasible, concerns over the intrusiveness of
such practices are more than justified. Thus, as we will see in later chapters, it is also the
responsibility of HiTLCPSs to ensure the privacy of their users, enforcing strict control
over the sharing of personal information.

3.2.2 Humans as Communication Nodes

As social creatures, humans are masters of communication. Many of the technologies
that we see all around us were built specifically to improve this faculty: televisions,
radios, telephones, the Internet; they all have the purpose of conveying messages.
Thus, this ability of spreading information is not to be undervalued within HiTLCPS:
messages, photographs, tweets, comments, and posts are all perfectly valid subjects of
communication.

In fact, some researchers have pointed out that these data items may enable faster and
more reliable communication than traditional “news” media outlets. Wang et. al. have
explored these ideas in their 2015 book “Social Sensing: Building Reliable Systems on

�

� �

�

30 A Practical Introduction to Human-in-the-Loop Cyber-Physical Systems

Unreliable Data” [78]. According to the authors, human beings are “sensors engaging
directly with the mobile Internet”, emphasizing the key problem of extracting reliable
information from data collected from largely unknown and possibly unreliable sources.
The book explains how myriad societal applications can be derived from the massive
amount of data collected and shared by average individuals. In other words, how can
we know if this human communication is reliable? In the authors’ opinion, the rate of
human information generation has long outclassed humans’ own cognitive ability for
processing it. Thus, new algorithms are needed to preserve the quality of information as
much as possible. Ascertaining the correctness of reported information is referred to as
the “truth estimation problem”, and it affects the ability of humans to act as both sensors
and communication nodes.

Nevertheless, much like when acting as sensors, the ability of communicating
information is greatly increased when humans and machines work together. Multi-hop
is a very common technique used by tiny devices to save energy. Intermediate nodes
can be used in a communication process between a sender node and a receiver
node to reduce the required signal power. In this context, human devices such as
smartphones and body-area sensors may also be used as intermediate nodes in the
“hopping” process, taking advantage of human mobility and intelligence for distribut-
ing information more effectively in the network. This may be particularly useful in,
for example, metropolitan-wide collaboration systems, where human presence and
mobility may be crucial in re-passing non-critical information about the environment.
Instead of using multi-hopping or long-distance communication between sensor
nodes to, for example, monitor temperature, this information might be aggregated and
stored by human-carried devices as people move around the city, opportunistically
forwarding it when appropriate, thus, reducing the amount of energy required for
communications.

Either way, be it through their own means or supported by machines, the human
ability for transmitting information within HiTLCPS is undeniably important. Despite
having discussed this communication ability under Data Acquisition, it remains
important through all phases of HiTL control, particularly in Actuation, as discussed in
Section 3.4.

3.3 State Inference

3.3.1 Human Nature

Human nature is a mysterious thing, and tremendously difficult for current machines to
understand. Our best efforts at understanding what a person wants still reside in sim-
ply asking him/her directly. In fact, researchers are still trying to correlate smartphone
sensing data features with human behavior, through sampling questions and surveys
[11]. How can we hope to create machines that are capable of decoding such elusive
but important aspects of existence that are so difficult to understand even for humans
themselves?

The combination of sensors through body-area-networks may be able to alleviate
this difficulty in gathering human information. This human body-area-network is
composed of a variety of sensors (accelerometers, smartshirts, smartshoes, bracelets,

�

� �

�

Theory of HiTLCPSs 31

watches, etc.) and is capable of measuring several different aspects of human activity,
including vital signs (heart rate, ECG, EEG, movement, etc). More interestingly, we
are continuously learning how to use this information for characterizing actions, and
for detecting activities and even psychological states and emotions. Current research
indicates promising leads to new powerful and complex machine learning solutions
that are becoming increasingly more cognizant of “human nature” phenomena, making
them an integral part of the control loop in IoA scenarios. For example, the attention
level of a driver affects the cruise control mechanisms of an automobile, the user’s
exercise levels affect the air conditioning of his/her house, or a human’s emotional
state may affect the user interface of his/her smartphone application. Humans are no
longer external entities that simply benefit from the system. Their presence, actions,
and emotional states strongly affect how IoT things react. We will discuss some of these
new research lines in greater detail in Sections 4.1.2 and 4.2.

3.3.2 Humans as Processing Nodes

As we have discussed in Section 3.2.1 (Humans as Sets of Sensors) and 3.2.2 (Humans
as Communication Nodes), humans can also directly contribute to the processing
of information. No machine has yet been capable of matching human capability for
pattern recognition; thus, as previously discussed, human information should not be
undervalued.

Still, there are other aspects of processing that are not directly related to human
cognition and yet still greatly depend on human behavior. Since single individuals are
now becoming equipped with a considerable number of mobile devices (smartphones,
tablets, smart wearables, etc.), human behavior begins to have a significant impact
on the availability of resources within an HiTLCPS. These resources contribute to
the overall computation capability of the system: each of these individual devices
represents an untapped computational resource that is available on site; by taking
advantage of these devices, it is possible to reduce the need for distant service providers:
direct communication with neighboring devices becomes key for handling local tasks
and information. Thus, the traditional cloud is descending to the network edge and
becoming diffused among the client devices in both mobile and wired networks. This
concept has come to be known as the “fog of things” [79].

Although most devices carried by humans are very simple and have limited processing
capabilities, the use of distributed algorithms can take advantage of the huge number of
processing elements, and enable collaborative tasks that could not be fulfilled by any par-
ticular individual node. Smartphones can be major participants in this processing, but
other, simpler, wearables and appliances can also become useful processing sub-nodes
in the new IoA.

3.4 Actuation

3.4.1 Humans and Robots as Actuators

Humans already act as actuators and as a function of the medium. If a gas leak is
detected in a factory, the responsible employee quickly goes to the control room and
closes the respective valve. If in a hospital the blood pressure of a patient reaches

�

� �

�

32 A Practical Introduction to Human-in-the-Loop Cyber-Physical Systems

a prohibited value, the nurse on duty, hearing the alarm signal, goes directly to the
patient’s room to administer a new drug. Unfortunately, current IoT systems are
still mostly unprepared for handling human actuation as an inherent component of
the system. In HiTLCPSs, human actions remain extremely important, since human
conceptualization will continue to be unmatched by artificial intelligence (AI) for, most
likely, many years to come. However, unlike most current CPSs, the IoA paradigm takes
human action into consideration in the control-loop, in the sense that these systems
are made for humans, with humans. Examples of this human role are industrial systems
that may use WSNs and robots to monitor and detect problems, and then require
specialized actuation of humans to fix the problem. On our social-networking shopping
mall example, users may consider product suggestions from other clients with similar
interests and psychological states, and collaboratively suggest products of their own
interest.

In HiTLCPSs, human and machine actuation go hand-in-hand and can often com-
plement each other. In this way, IoA systems are not “devoid of human soul” but make
human actuation as an integral part of their functioning. As we will see in later chapters,
particularly in Part III,the ability to work in combination with actuation machines, such
as robots, will become increasingly important in the future.

3.5 In Summary...

In this chapter, we defined a general reference model, the Internet of all, where human
actions become a fundamental part of the control loop of CPSs. We then organized the
major ideas behind HiTLCPSs, starting with a previously proposed taxonomic classifi-
cation, based on the type of exerted control.

In this classification, we saw that HiTL control can be classified into three types: (1)
applications where humans directly control the system (human control), (2) applications
where the system passively monitors humans and takes appropriate actions (human
monitoring), and (3) hybrids of (1) and (2).

We then proposed an alternative taxonomic point of view of the HiTL process that
highlights the roles a human may play within HiTLCPSs:

• Data Acquisition
– Humans as sets of sensors: Humans can feed the system with information, either

collaboratively or through the sensors they carry.
– Humans as communication nodes: Humans are masterful communicators, able to

quickly share information through social networks. Their body-area devices can
also store and pass data as part of a “hopping” process.

• State Inference
– Human nature: Understanding human nature is tremendously difficult, but a com-

bination of body-area sensors and powerful machine learning solutions may alle-
viate the problem of recognizing human-centric states.

– Humans as processing nodes: Machines have yet to match humans in their capabil-
ity for pattern recognition. Additionally, human-carried devices (e.g. smartphones,
smartwearables) have considerable amounts of processing power and may dimin-
ish the need for cloud-centric solutions in the near future.

�

� �

�

Theory of HiTLCPSs 33

• Actuation
– Humans and robots as actuators: There is much to be said about human actuation

in HiTLCPSs. Issues such as human motivation, robotic collaboration, and AI will
have an important impact on future deployments. As we will see in later chapters,
it is likely that human-machine collaboration will play an important role in future
technologies.

Now that we have described HiTLCPSs from a theoretical perspective, we will focus
on providing practical examples of existing deployments and technologies.

�

� �

�

35

4

HITL Technologies and Applications

In an effort to gain an understanding of the existing types of solutions and methods, we
will begin by analyzing the scope of HiTLCPSs from a practical perspective, first delving
into the processes of data acquisition, then considering different solutions for inferring
state, and finally, different techniques for actuation. In the second part of the chapter we
will look at several experimental projects and research initiatives in this field.

4.1 Technologies for Supporting HiTLCPS

4.1.1 Data Acquisition

The acquisition of data through which a human’s state may be inferred is a complex pro-
cess, with a multitude of possible sources of information. HiTLCPSs have previously
used physical properties, such as localization (e.g. GPS positioning), vital signals (heart
rate, ECG, EEG, body temperature), movement (accelerometers), and sound (voice pro-
cessing) among many other types of information that can be acquired directly from the
physical reality. There are also many non-physical properties that may be derived, such
as communication behaviors (e.g. phone calls, SMSs) or socialization habits (e.g. social
networking data, friend lists). We will discuss some examples of the use of socializa-
tion habits and social networking in Sections 4.2.3 and 11.2. Here, we focus on physical
properties, since they have greater technological requirements.

Most raw physical data comes from distributed sensor architectures, which are
critically important for HiTLCPSs, since they allow the measurement of physiological
changes, which may be processed to infer current environmental conditions and human
activities, psychological states, and intent. In this regard, several types of architectures
and technologies have been proposed.

One of the most important technologies for the process of data acquisition in HiTL-
CPSs is the WSN. These are networks of small, battery-powered devices with limited
capabilities, wireless communication, and various sensors that have been applied in
countless application scenarios worldwide. One highly debated challenge of WSNs
applied to HiTLCPS is the integration of these tiny devices into the worldwide IoT. The
ease of integration of these small devices is of particular importance for HiTLCPSs,
since it would make these systems more distributed, open, interactive, discoverable, and
heterogeneous, as envisioned in [33]. In WSNs, the use of the Internet protocol (IP) has

A Practical Introduction to Human-in-the-Loop Cyber-Physical Systems, First Edition.
David Nunes, Jorge Sá Silva and Fernando Boavida.
© 2018 John Wiley & Sons Ltd. Published 2018 by John Wiley & Sons Ltd.
Companion Website URL: www.wiley.com/go/nunesloop

�

� �

�

36 A Practical Introduction to Human-in-the-Loop Cyber-Physical Systems

always raised some concerns, owing to the fact that it does not minimize memory usage
or processing. Moreover, the use of the full transmission control protocol (TCP) and/or
the IP stack is not possible because it requires more resources than the ones most of
these devices can offer. However, the integration of IP has the advantage of offering
a transparent communication between nodes while using a well-known protocol,
providing interoperability and even Internet connectivity. While working towards
employing IP in WSNs, the IETF created the 6LoWPAN group that has been working
on standards for the transmission of IPv6 packets over low-capability devices in wireless
personal areas, using IEEE 802.15.4 radios [80]. New drafts were also proposed for
adapting 6LoWPAN to other technologies like Bluetooth. Unfortunately, 6LoWPAN
cannot be applied to devices devoid of processing or memory capabilities, such as RFID
tags. Gateway-based approaches are a possible solution to support IP functionality in
these scenarios. The main advantage of these approaches is that terminal devices do not
require any processing or communication capabilities. Moreover, they make the sensor
and device networks transparent to external environments, and developers can use any
protocols as long as they are suitable for their needs. However, one inherent problem of
gateway-based approaches is that gateways are single points of failure. This problem is
exacerbated in environments where devices present some type of mobility, i.e. moving
from place to place while maintaining connectivity. In these mobile environments,
all of the communication processes are more fragile, and failure of fixed gateways
can compromise the integrity of the HiTLCPS. Another problem of gateway-based
approaches is that sensor nodes are often required to format the data according to
a specification defined by the provided drivers of the gateway, forcing the developer
to create a software driver or analyzer for each specific data frame format, further
reducing their interoperability for HiTLCPSs.

Some research work focused on some of the architectural issues of including WSNs
into HiTLCPS. SenQ [9] is a data streaming service for WSNs designed to support
user-driven applications through peer-to-peer (P2P) in-network queries between wear-
able interfaces and other resource-constrained devices. It introduced the concept of
“virtual sensors”, user-defined streams that could be dynamically discovered and shared.
For example, in assisted-living scenarios for elderly people, a doctor could combine
information from mobility speed, movement, and location (e.g. nearby stairs) to cre-
ate a virtual sensor that alerted nearby healthcare staff of an elevated risk of falls. SenQ
took into consideration several requirements that were not satisfied by existing query
system designs at the time, such as heterogeneity of sensor devices, dynamics of data
flow patterns, localized aggregation of sensor data, and in-network monitoring. The
system supported hierarchical architectures but predominantly favored ad hoc decen-
tralized ones, as the authors argued that ad hoc architectures with neighborhood devices
and service discovery are better suited to supporting large-scale and open systems with
many users and sensors [33]. Data and control logic was also kept close to the concerned
devices, in order to save energy and preserve scalability by providing a stack with loosely
coupled layers that were placed on devices according to their capabilities and by enabling
in-network P2P query issue for streaming data. Figure 4.1 shows SenQ’s query system
stack and the topology of one of its prototype implementations.

Another type of communication paradigm that may benefit HiTCPSs is body-coupled
communication (BCC) [45] for supporting low-energy usage, heterogeneity, and
reduced interference. BCC leverages the human body as the communication channel,

�

� �

�

HITL Technologies and Applications 37

Figure 4.1 SenQ’s query system stack shown side-by-side with the topology and components of
AlarmNet, a prototypical implementation for assisted-living [9]. Source: Adapted from Wood 2008.

i.e. signals are transmitted between sensors as electrical impulses directly through
human tissue to a point of data collection, a circuit-equivalent representation of the
body channel in which different types of body tissue (skin, fat, muscles, and bone)
are modeled with variable levels of impedance [81]. In particular, “Galvanic coupling”
differentially applies the signal over two coupler electrodes, which is then received by
two detector electrodes. The coupler establishes a modulated electrical field, which is
sensed by the detector. Therefore, a signal transfer is established between the coupler
and detector units by galvanically coupling signal currents into the human body [82].
There are several motivations for using this paradigm. First, the energy consumed in
BCC is shown to be approximately three orders of magnitude less than the low-power
classic RF-based network created through IEEE 802.15.4-based nodes. This technology
is also bolstered by high bandwidth availability, of approximately 10 Mbps, which
accommodates the needs of multiple sensor measurements. Finally, it offers a consid-
erable mitigation of fading phenomena and overcomes typical interference problems
of the industrial, scientific, and medical (ISM) which are usually affected by nearby
devices (e.g. Bluetooth, WiFi, or microwave ovens) [45].

Conversely, we argue that much of the computational power and sensing capabilities
for future HiTLCPSs will come from devices already existing in the environment. In par-
ticular, we believe that near-future HiTL systems will be heavily based on smartphone
technology, owing to their rapidly expanding dissemination and powerful computation
and sensing capabilities. A smartphone’s sensors can be used by simple inference mech-
anisms to evaluate a human’s psychological and physiologic states and integrate this
information into HiTLCPSs. These sensors may include accelerometers, GPS position-
ing, microphones, or even the smartphone’s camera.

In this line, some research attempted to combine smartphone data acquisition with
social networking. The term “people-centric sensing” was used by the MetroSense
project [83] to describe a vision where the majority of network traffic and applications

�

� �

�

38 A Practical Introduction to Human-in-the-Loop Cyber-Physical Systems

are related to sensor and actuator data, applied to the general citizen. The MetroSense
project envisioned collaborative data gathering of sensed data by individuals, facilitated
by sensing systems that comprise cheap and easily accessible mobile phones and their
interaction with software applications. The project proposed an architecture that sup-
ported heterogeneity by joining a variety of sensing platforms into a single architecture,
while considering the communication limitations of low-power wireless devices [84].

MetroSense’s architecture design followed a number of guiding principles: “network
symbiosis” meant that traditional networking infrastructures would be integrated into
the new sensing infrastructure in order to utilize the already existing power, communi-
cation, routing, reliability, and security resources; “asymmetric design” was a principle
where differences in computational power and resources between different members of
the network were exploited by pushing computational complexity and energy burden
to devices with greater capacity; “localized interaction” implied that network elements
should only interact with devices within a constrained “sphere of interaction”, sacrific-
ing network flexibility with the aim of increasing service implementation, simplicity, and
communications performance. The architecture of one of its project implementations
is shown in Figure 4.2.

Many of these guiding principles also apply to more general HiTLCPSs. We provide
further insight into this matter in Chapter 10.

Several mechanisms have been proposed to support continuous sensing using smart-
phones. Jigsaw [85] is a continuous sensing engine that supports resilient accelerome-
ter, microphone, and GPS data processing. It comprises a set of plug-and-play sensing
pipelines that adapt their depth and sophistication to the quality of data as well as the
mobility and behavioral patterns of the user, in order to drive down energy costs. This
reusable and application agnostic sensing engine proposed solutions to problems that
usually arise in mobile phone sensors, such as performing calibration of the accelerom-
eter independently of body position, reducing computational costs of microphone pro-
cessing, and reducing the GPS duty cycle by taking into account the activity of the
user. Focusing more specifically on the microphone, as one of the most ubiquitous but
least exploited of the smartphone’s sensors, SoundSense [86] is a scalable sound sensing
platform for people-centric sensing applications which classifies sound events. It is a

Figure 4.2 The architecture of CenceME [10], one of MetroSense’s implementations.

�

� �

�

HITL Technologies and Applications 39

general purpose sound sensing system for phones with limited resources that uses sev-
eral supervised and unsupervised sensing techniques to classify general types of sound
(music, voice) and discover novel sound events that are specific to individual users.
These sorts of sensing architectures could be exploited to enable future continuous and
ubiquitous smartphone sensing in HiTLCPSs.

4.1.2 State Inference

A recurring premise behind powerful HiTL systems is transparent interfaces that can
infer human intent, physical and psychological states, emotions, and actions. While tra-
ditional interface schemes such as the mouse and keyboard have long been used to
transmit human desires, they are not practical, involving series of key combinations or
sequences of mouse clicks that are unintuitive and require practice and repetition in
order to be learned and mastered. On the other hand, HiTLCPS applications are meant
to react to natural human behavior and do not necessarily require direct human interac-
tion. However, deriving advanced mathematical models or machine learning techniques
that can reliably classify and possibly predict human behavior is a colossal challenge.

Many different methods for human activity classification can be found in the litera-
ture. One of the most successful and popular techniques is the use of Hidden Markov
Models [87–89], but some approaches also use naive Bayes classifiers [90–93], Support
Vector Machines [94], C4.5 [92, 94], and Fuzzy classification [95]. Research also uses
different kinds of sensory data for activity detection: wearable sensor boards with many
different types of sensors [87, 88], wearable accelerometers [89, 92, 94, 96] , gyroscopes
[96], ECG [94], heart rate [92], smartphone accelerometer data and sound [97], and even
RSSI signals [98]. The application of activity recognition is present in many areas, from
sport solutions to social networking and health monitoring. Research in these topics is
very active and presents very good results, in some cases achieving accuracy levels in
the order of 90–95%.

The detection of a user’s psychological state has been previously attempted. A commu-
nication framework for human–machine interaction that is sensitive to human affective
states is presented in [99], through the detection and recognition of human affective
states based on physiological signals. Since anxiety plays an important role in various
human–machine interaction tasks and can be related to task performance, this frame-
work was applied in [100] to specifically detect anxiety through the user’s physiolog-
ical signals. The presented anxiety-recognition methods can be potentially applied in
advanced HiTLCPSs.

One example of such an application is the use of smartphones in experience sampling
method (ESM) studies. ESM is a research methodology that requires periodical notes
of the participant’s experience. The notes can encompass the participant’s feelings at a
given moment and are best employed when the subjects do not know in advance when
they will be asked to note their experience [101].

Different means can be used to signal a request for the participant’s notes. Traditional
methods include the use of preprogrammed stopwatches controlled by the researcher.
However, through a prototype smartphone-based ESM system, named EmotionSense,
it was possible to study the influence of different sampling strategies on the inferred
conclusions about the participants’ behavior [102]. This prototype system was based
on an Android application that used both “physical sensors” (including accelerom-
eter, microphone, proximity, GPS location, and the phone’s screen status) as well as

�

� �

�

40 A Practical Introduction to Human-in-the-Loop Cyber-Physical Systems

“software sensors” (capturing phone calls and messaging activity). These sensors were
used to evaluate the context of users and to trigger survey questions about their feelings,
namely how positive and negative they felt, their location, and their social setting.
These short questionnaires gave insight into the participants’ moods and behavior. The
application could be remotely reconfigured to vary the questions, sampling parameters,
and triggering mechanisms that notified users to answer a questionnaire. The results
were used to empirically quantify the extent to which sensor-triggered ESM designs
influence the breadth of behavioral data captured in this kind of studies.

EmotionSense was also used to enhance behavior change interventions (BCI) by using
the devices capabilities to positively influence human behavior [11]. Traditional BCIs
involve advice, support, and relevant information for the patient’s daily activities, which
are given during sessions by therapists and coaches. Smartphones with their powerful
sensing and machine learning capabilities, ubiquity, and presence allow for behavior sci-
entists to use directed, unobtrusive, and real-time BCIs to induce lifestyle changes that
may help people coping with chronic diseases, smoking addiction, diets, or even depres-
sion. Information can be delivered and measured in the moments when the users need it
the most. For example, people addicted to smoking usually suffer from detectable stress
when feeling the need to smoke, creating an opportunity for the system to send a notifi-
cation urging them not to do so. Thus, detecting the user’s context and emotions allows
for interventions to be delivered at the right time and place. The authors identified three
key components of BCI using smartphones (shown in Figure 4.3). Interestingly, they
closely match the basic processes of HiTL control (refer to Figure 3.1), where Monitor
corresponds to Data Acquisition, Learn is a part of State Inference and Deliver is a form
of Actuation.

The EmotionSense application uses the gaussian mixture model machine learning
technique to detect ongoing conversations and their respective participants. An emo-
tion inference component was also developed using a similar approach, training a back-
ground gaussian mixture model representative of all emotions through the Emotional
Prosody Speech and Transcripts library [103]. This component allowed the application
to infer five broad emotional states from the smartphone’s microphone: anger, fear, hap-
piness, neutrality, and sadness. The authors reported an accuracy of over 90% for speaker
identification and over 70% for emotion recognition.

Figure 4.3 The three key components of BCI using smartphones [11]. Source: Adapted from Lathia
et al. 2013.

�

� �

�

HITL Technologies and Applications 41

Also with the objective of providing positive behavioral change, SociableSense [12]
was a platform that monitored the user’s social interactions and provided real-time feed-
back to improve their relations with their peers. In this work, the authors attempted to
measure the “sociability” of users, which is an important factor in many behavioral dis-
orders, ranging from autism to depression. The system then closed the loop by providing
real-time feedback and alerts that aimed to make people more sociable. The sociability
measurement was divided into two factors: collocation and interaction. Collocation was
defined by the proximity between users, and it was inferred by a coarse-grained Blue-
tooth-based indoor localization mechanism. Interaction was derived from the speaking
between users, and it was inferred via the microphone sensor and a speaker identifica-
tion classifier, in a fashion similar to EmotionSense. Active socialization was promoted
through a gaming system which classified the most sociable persons as “mayors” of
the social groups. Results showed that such feedback mechanisms influenced users and
increased their sociability. SociableSense’s architecture is shown in Figure 4.4.

Several ongoing challenges for mobile sensing were also identified in [11], including:

• Energy constraints associated with continuous sensing, which require intelligent
mechanisms that dynamically adapt sampling rates depending on the user’s context.

• Data processing and inference mechanisms that can accurately extract information
on human behavior from raw sensor data, and the importance of balancing the distri-
bution of this computation among smartphone sensors and cloud-based back-ends.

• Generality of classification mechanisms that need to make uniform inferences regard-
ing widely different populations of users.

• Privacy concerns about the acquisition of sensitive data (locations, activities) and the
recording of data without people’s informed consent (e.g. inadvertently capturing the
voice of an external person through the microphone of a smartphone user).

The detection of emotion is not restricted to voice pattern recognition, however.
Other interesting ways of inferring the user’s psychological state have been proposed.
The touch interface and movement of a smartphone were used in [104] as a way

Figure 4.4 SociableSense architecture [12]. Source: Adapted from Rachuri 2011.

�

� �

�

42 A Practical Introduction to Human-in-the-Loop Cyber-Physical Systems

of inferring emotional states. The proposed framework consisted of an emotion
recognition process and an emotion preference learning algorithm which were used
to recommend smartphone applications, media contents, and mobile services that
fit the user’s current emotional state. The system collected data from three sensors:
the touch interface, accelerometer, and gyroscope, classifying it into types (e.g. touch
actions could be divided into tapping, dragging, flicking, and multi-touching). The
processed data was used to quantify higher level emotions, such as “neutral”, “disgust”,
“happiness”, or “sadness”, through decision tree classification methods. By analyzing
communication history and application usage patterns, MoodScope [105] also inferred
the mood of the user based on how the smartphone was used. The system passively
ran in the background, monitoring application usage, phone calls, email messages,
SMSs, web browsing histories, and location changes as user behavior features. With
daily mood averages as labels and usage records as a feature table, the authors applied a
regression algorithm to discern a mood inference model.

More recently, image-based processing of facial expressions was used to detect
irritation in drivers [44] and to improve driving safety. The developed system was
non-intrusive and ran in real-time. Through an NIR camera mounted inside the dash-
board, a near frontal view of the driver’s face was captured. A face tracker was applied
to track a set of facial landmarks used to classify the facial expressions. Experimental
results demonstrated that the system had a detection rate of 90.5% for in-door tests and
85% for the in-car tests.

4.1.3 Actuation

Actuation has a very broad definition in the field of HiTLCPS. For example, applications
that passively monitor a human being’s sleep environment to give information about
potential causes of sleep disruption [106] or that record a human’s cardiac sounds to
detect pathologies [75] do not directly influence the associated environment, nor do they
attempt to achieve a certain goal and yet they still “actuate” by providing information.

More direct actuation with the physical world can be achieved through specialized
devices, such as robots [16]. Historically, robots were designed and programmed for rel-
atively static and structured environments. Once programmed, it was usually expected
for the robot’s environment and interactions to remain within a very constrained range
of actions. Anything unaccounted for in the robot’s configuration is essentially invisible
and only minimal feedback is traditionally available, such as joint position measure-
ments. These primitive sensory capabilities require robots to operate in isolated “work
cells”, free from people and other interferences. Thus, current robots, including mobile
ones, far from being integrated into HiTLCPSs, continue, on the whole, to use collision
sensors that halt operation whenever something unaccounted for happens or whenever
somebody enters their workspace, to prevent accidents. This continues to enforce the
need for having areas for workers and areas for robots, which are mutually exclusive
and preclude any type of human–robot cooperation typically found in HiTLCPSs [107].
Apart from safety reasons, there is also the lack of trust of workers in robots. People pre-
fer to work alongside teleoperated robots than with autonomous ones [108]. The reason
for this mistrust is that people cannot predict the robot’s intentions or behavior, owing
to the lack of body language signs, common in humans. A second reason for mistrusting
robots is that people do not know if the robot “sees them” (lack of presence awareness).

�

� �

�

HITL Technologies and Applications 43

Without HiTL behavior modeling, robots in many automated factories remain isolated
in both physical and sensorial senses [109].

Yet, this is about to change. While robots were initially used in repetitive tasks where
all human commands were given a priori, the next generations of advanced robots is
envisioned to be mobile and operating in unstructured or uncertain contexts.

Achieving “human-awareness” requires robots to have sensing capabilities greater
than mere joint position measurements. Interestingly, in recent years there has been a
combination of two important technologies—robots and WSNs—that can complement
each other in this respect. WSNs can assist in the process of discovering the environ-
ment where robots actuate; the detailed level of information provided by sensors may
be essential for the tasks to be undertaken by a robot. On the other hand, robots can be
used as mules that collect and forward information from several sensor nodes spread
in the environment. Thus, the energy needed for long-distance or multi-hop transmis-
sions can be reduced. Robots can also perform the calibration of sensors and support
their recharging process when energy levels are low. Robots and wireless sensor tech-
nologies can be exploited to support remote monitoring in dangerous environments
under maintenance, using a set of sensors to measure, for example, gas levels. They can
also be applied in the monitoring of environmental parameters, such as in wastewater
treatment facilities or for measuring air pollutants, allowing a proactive implementation
of a social responsibility culture. Using wireless technology and robotic mobile inspec-
tion for the monitoring and surveillance of wide areas, where diagnosis and intrusion
detection are critical, is also more reliable and cost-efficient than traditional methods.

While WSNs offer the sensorial capabilities necessary for robots to perform the
desired tasks, humans provide the necessary management of their operation. Thus,
robots are capable of performing missions in hazardous environments in cooper-
ation with humans, taking into consideration the psychological state of humans,
while using data from WSNs to scan both humans and the environment. In fact, the
human–WSN–robot combination has huge potential in the perspective of actuation in
HiTLCPSs, since advanced industrial automation can strongly benefit from distributed
sensing capabilities. Robots, humans, and WSNs can be deployed to support personnel
safety, by complementing human work in hazardous contexts, with wireless sensor
networks collecting and processing information. Mobile workers and robots can be
equipped with multiple sensory systems that send information to a control center,
accessible and monitored by safety and health-control personnel. This allows workers
to safely and remotely control operations, and to take faster decisions. The combination
of these technologies allows us to envision highly advanced HiTLCPSs applied to many
different scenarios. As an example, flying inspection robots could be used to navigate
interactively and inspect power plant structures (including various components within
and around boilers, environmental filters, or cooling towers), as well as oil and gas
industrial structures (inside and outside large-scale chimneys, inside and outside flare
systems, inside button part of refining columns, as well as pipelines and pipe webs).
On the other hand, workers in the field may collaborate with these robots in their
inspection tasks, in the management of the whole operation, and in the deployment
and collection of sensor networks. HiTL controls allow for this collaboration to be safe
for humans, since their presence, actions, and intentions are made known to individual
robots as well as to the entire system.

�

� �

�

44 A Practical Introduction to Human-in-the-Loop Cyber-Physical Systems

There are several projects that specifically study and evaluate the integration
of WSNs with robots. For example, the Robotic UBIquitous COgnitive Network
(FP7-ICT-269914) [110] was a project that aimed to create autonomous and
auto-configured systems by combining WSNs, multi-agents, and mobile robots.
The proposed mechanisms reduced the complexity and the time needed in deployment
and reconfiguration tasks. However, the main objective of this project was to remove,
as much as possible, the human from the configuration and maintenance processes.
According to the authors, this meant that the quality of service that was offered by robot
WSNs was significantly improved, without the need for extensive human involvement.
Considering that these technologies coexist with human beings, why were humans
excluded from control loop decisions? Why not take advantage of the human potential
to create immersive HiTLCPSs?

Other research initiatives focus more on this human–robot cooperation. For instance,
the NIFTi European FP7 project (natural human–robot cooperation in dynamic envi-
ronments, FP7-ICT-247870) [111], which ran from January 2010 until December
2013, proposed new models for cooperation between robots and humans when they
work towards a shared goal, cooperatively performing a series of tasks. However, this
project required a lot of direct instructions from human to robots, and WSNs were
not used to dynamically contribute and adapt to these systems. PHRIENDS: Physical
Human–Robot Interaction: Dependability and Safety (FP6-IST-045359) [112] was
a project that aimed to propose the co-existence of robots and humans. One of its
main objectives was to find the strictest safety standards for this coexistence. Later,
this project resulted in a new PF7 project, SAPHARI [113], which maintained its
main objective but now used soft robotics, combining cognitive reaction and safe
physical human–robot interaction. In contrast with its precursor project, SAPHARI
intended to provide reliable, efficient, and easy-to-use functionality. There are also
other projects on the topic of safety in interaction between humans and robots. CHRIS
(Cooperative Human Robot Interaction Systems; FP7-ICT-215805) [114] evaluated a
mapping mechanism between robots and humans. This project also aimed at studying
the safety of cooperative tasks between humans and robots. However, once again, these
environments did not assume the existence and participation of WSNs. On the other
hand, humans were just seen as end users and they were not integrated into the system.
SWARMANOID: Towards Humanoid Robotic Systems (FP6-IST-022888) [115] and
SYMBRION (Symbiotic Robotic Organisms; FP7-ICT-2007.8.2) [116] were two similar
projects that aimed to find strategies to achieve collaborative work between robots.
SWARMANOID proposed joint mechanisms both by air and land to achieve search
tasks. The latter project intended to optimize energy by sharing policies. Robot-Era
[117] was a project that started in 2012 and finished in 2015. It intended to implement
and integrate advanced robotic systems and intelligent environments in real scenarios
for the aging population. Some of these intelligent environments were based on WSNs,
and their role was to support the quality of life and independent living for elderly
people.

In Table 4.1, we summarize the main technologies/solutions that are discussed in this
section.

Despite all of these efforts, much work still has to be done, in particular for robotic
actuation that considers the human state. Thus, the role of robotics in future HiTLCPSs
cannot be yet fully understood. In addition to the unmet technical challenges, there are

�

� �

�

HITL Technologies and Applications 45

Table 4.1 Summary of some of the technologies/solutions that support HiTLCPS.

Technology Description Examples of applied research

Data Acquisition
Wireless Sensor
Networks

Networks of small,
battery-powered devices

6LoWPan [80] and SenQ [9]

Body-Coupled
Communication

Sensors that leverage the
human body as their
communication channel

[81] and [82]

Smartphones Devices with powerful
computation and sensing
capabilities that accompany
users throughout their days

MetroSense [84], Jigsaw [85],
and SoundSense [86]

State Inference
Physical Activity
Classification

Detection of human activities
(e.g. walking, brushing teeth,)

Hidden Markov Models
[87–89], naive Bayes classifiers
[90–93], Support Vector
Machines [94], C4.5 [92, 94],
and Fuzzy classification [95]

Psychological State
Classification

Detection of human affective
states (e.g. happiness, anger)

Frameworks such as [99],
EmotionSense [11],
SociableSense [12],
smartphones’ touch interface
[104], MoodScope [105], and
facial recognition [44]

Actuation
Human–WSNs–
Robots

WSNs offer the sensorial
capabilities necessary for
robots to perform the desired
tasks, while humans provide
the necessary management of
their operation

RUBICON [110], NIFTi [111],
PHRIENDS [112], SAPHARI
[113], CHRIS [114],
SWARMANOID [115],
SYMBRION [116], and
Robot-Era [117]

Notifications and
Suggestions

Smartphone-based systems
often show suggestive
notifications

EmotionSense [11],
SociableSense [12, 118], and
HappyHour [119]

also questions of an ethical nature that will also need to be considered. We will identify
some these matters in Section 11.2.

4.2 Experimental Projects

As previously mentioned, the area of HiTLCPSs is vast. Not only can they be applied to
many different areas, the variety of their possible configurations and technologies makes
it very difficult to establish well-defined borders for classification. Nevertheless, in this
section we present several examples of some of the works in the area of HiTLCPSs that
apply the various technologies discussed in Chapter 2. By no means do we intend to

�

� �

�

46 A Practical Introduction to Human-in-the-Loop Cyber-Physical Systems

provide an extensive review on the state of the art; the purpose of this section is to give
the reader a better idea of the applicability of HiTLCPS concepts.

4.2.1 HiTL in Industry and at Home

To contribute towards a better understanding of the spectrum of HiTL applications,
the work in [13] provided its own implementation of an HiTL system that attempted
to reduce the energy waste in computer workstations by modeling human behavior and
detecting distractions. While current practices for reducing energy consumption are
usually based on fixed timers that initiate sleep mode after several minutes of inac-
tivity, the proposed system uses adaptive timeout intervals, multi-level sensing, and
background processing to detect distractions (e.g. phone calls, restroom breaks) with
97.28% accuracy and cutting energy waste by 80.19% [13]. The control architecture of
the system is shown in Figure 4.5. The proposed “distraction model” comprised two
main sources of information: user activity and system activity. At user-activity level, the
authors used a “gaze tracker”, which evaluated the user’s gazing at the computer’s screen
through a webcam. At system-activity level, the system evaluated keyboard and mouse
events, CPU usage, and network activities to infer the machine’s level of use. The con-
trol loop combined both types of information to determine the distraction status of the
user, with some self-correcting measures. For example, if the user resumed the system
shortly after it was put to sleep, the control loop took this as a negative feedback event,
and subsequently adjusted the timeout interval.

At the same time, there is an increasing concern of corporations with the well-being
and happiness of employees, since a happy employee is a more productive one. An
article published in the December 2012’s edition of IEEE Spectrum [120] discusses how
the same technology advances in computers and telecommunications that have brought
about tremendous gains in productivity may also be applied to increase happiness,
instead of stress. The work of engineers and psychologists over the last few decades has

Figure 4.5 Control architecture for energy saving with HiTL [13]. Source: Adapted from Liang 2013.

�

� �

�

HITL Technologies and Applications 47

allowed us to infer a person’s level of happiness by monitoring and analyzing a person’s
sleep patterns, exercise and dietary habits, as well as vital statistics like body temper-
ature, blood pressure, and heart rate. This technology might be used to improve the
overall environment of the workplace, resulting in better communication, teamwork,
and job satisfaction. The Hitachi Business Microscope is a small wearable device con-
taining six infrared transceivers, an accelerometer, a flash memory chip, a microphone,
a wireless transceiver, and a rechargeable lithium-ion battery that allows the badge to
operate for up to two days at a time. It measures the wearer’s body movements, voice
level, and location, as well as the ambient air temperature and illumination. When these
transceivers detect another badge within two meters, the two badges exchange IDs and
each badge then records the time, duration, and location of the interaction. This allows
the collection of data on the type of social exchanges that take place in the workplace.
The Hitachi Business Microscope is being used by hundreds of organizations (banks,
design firms, research institutes, hospitals, etc.) to collect behavioral data. This data
is then used in conjunction with studies from the field of positive psychology, which
focuses on desired mental states (including happiness), to improve people’s personal
and professional lives. Happy people tend to be more creative, more productive, and feel
more fulfilled by their work. Happy people also tend to more easily achieve a state of full
engagement and concentration. Interestingly, the research presented in [120] suggests
that it is possible to infer when a person has reached this state by analyzing the consis-
tency of their movements: for some people, that consistent movement is slow, while for
others it is fast. The time of day during which people tend to experience the “flow” is also
highly variable and individual, some people favor mornings while others favor after-
noons or evenings. Regardless of when participants experience “flow”, their motions
become more regular as they immerse themselves in the activity at hand. One advantage
of measuring the worker’s activity is that once people become aware of their daily pat-
terns they can better schedule their work to take advantage of times when they are most
likely to be in this focused mental state. Documenting social interactions can also help
to identify the areas in an office which tend to host the most frequent and active discus-
sions, helping in the restructuring of office layouts to foster more fruitful collaboration.

The area of human-computer interaction has long studied the concept of HiTL.
Humans prefer to attend to their surrounding environment and engage in dialog and
interaction with other humans rather than to control the operations of machines that
serve them. Thus, in [121] it is suggested that we must put computers in the human
interaction loop (CHIL), rather than the other way around. In this line, a consortium
of 15 laboratories in nine countries has teamed up to explore what is needed to build
usable CHIL services. The consortium developed an infrastructure used in several
prototype services, including a proactive phone/communication device; the Memory
Jog system for supportive information and reminders in meetings, collaborative
supportive workspaces, and meeting monitoring; and a simultaneous speech translator
for the lecture domain. These projects led to several advances in the areas of audiovisual
perceptual technologies, including speech recognition and natural language; person
tracking and identification; identification of interaction cues, such as gestures, body
and head poses, and attention; as well as human activity classification.

HVAC systems have also been endowed with HiTL control. For example, in [122] the
authors implemented a system that used cheap and simple wireless motion sensors and
door sensors to automatically infer when occupants were away, active, or sleeping. The

�

� �

�

48 A Practical Introduction to Human-in-the-Loop Cyber-Physical Systems

Figure 4.6 Architecture of an HiTL HVAC system [14]. Source: Adapted from Agarwal 2011.

system used these patterns to save energy by automatically turning off the home’s HVAC
system as much as possible without sacrificing occupant comfort, effectively creating a
HiTLCPS. Another example can be found in [14], where an occupancy sensor network
was deployed across an entire floor of a university building together with a control archi-
tecture (see Figure 4.6) that guided the operation of the building’s HVAC system, turning
it on or off to save energy, while meeting building performance requirements.

4.2.2 HiTL in Healthcare

CAALYX [15] was a research work that intended to develop a wearable light device
directed towards the monitoring of elderly people that could measure specific vital signs
in order to detect falls and to automatically communicate in real time with assistance ser-
vices in case of emergency (Figure 4.7). A number of wireless sensors that detected sev-
eral vital signs (blood pressure, heart rate, temperature, respiratory rate, etc.) were used.
These wireless sensors communicated within a body-area-network and with a mobile
phone with GPRS access. The mobile phone was able to analyze the data and detect
emergency situations, during which it would contact an emergency service, regardless
of the elderly person’s location. The CAALYX project also developed an initial simula-
tion of its workings in the Second Life® virtual world, as a means of disseminating and
showcasing the project’s concepts to wider audiences [123]. There are two interesting
aspects of this work: its use of mobile phones as gateways for ubiquitous communication
and its early attempts at integrating health monitoring with virtual environments.

Schirner et al. [16] stress the existing multidisciplinary challenges associated with the
acquisition of human states in HiTLCPS. For example, embedded systems are key com-
ponents used in these systems and, as such, they propose a holistic methodology for
system automation in which designers develop their algorithms in high-level languages
and fit them into an electronic system level tool suite which acts as a system compiler,
producing code for both the CPU and the field-programmable gate array. This automa-
tion allows researchers to more easily test their algorithms in real-life scenarios and to
focus on the important task of algorithm and model development. Schirner et al. also
used an EEG-based brain–computer interface for context-aware sensing of a human’s
status, which influenced the control of an electrical wheelchair. To improve the intent
inference accuracy, the authors suggest that inference algorithms should adapt to the

�

� �

�

HITL Technologies and Applications 49

Figure 4.7 Diagram showing the main components of CAALYX’s roaming monitoring system [15].
Source: Adapted from Boulos et al. 2007.

current application as well as to the user’s preferences and historical behavior, that is
they should use application-specific history and contextual information. The field of
robotics is also addressed, as robots are the primary means for actuation and interaction
with the physical world in CPSs. Their semi-autonomous wheelchair interpreted brain
signals that translated high-level tasks such as “navigate to kitchen”, and then executed
path planning and obstacle avoidance [16]. However, important research questions are
still unresolved in this area, namely the problem of dividing control between human and
machine, as well as the modularity and configurability of such systems. Distributed sen-
sor architectures are also very important for HiTL since they allow the measurement of
physiological changes, which may be processed to infer current human activities, psy-
chological states, and intent. In this regard, BCC was presented as a means of supporting
low-energy usage, high bandwidth, heterogeneity, and reduced interference.

At the Worcester Polytechnic Institute [124], a HiTLCPS prototype platform and
open design framework for a semi-autonomous wheelchair was developed. The authors
considered disabled individuals, namely those suffering from “locked-in syndrome”, a
condition in which an individual is fully aware and awake but all voluntary muscles of
the body are paralyzed. To improve the life condition of these individuals, they created
a HiLCPS wheelchair system which used infrared and ultrasonic sensors to navigate
through indoor environments, enabling the user to share control with the wheelchair
in an HiTL fashion. This allowed handicapped individuals to live more independently
and have mobility. The resulting prototype used modular components to provide
the wheelchair with a degree of semi-autonomy that would assist users of powered
wheelchairs to navigate through the environment. This work was extended in [16],
where the user could interface with the wheelchair through a brain–computer interface
based on steady-state visual-evoked potentials induced by flickering light patterns in

�

� �

�

50 A Practical Introduction to Human-in-the-Loop Cyber-Physical Systems

EEG

processing

Classification Internet
Context-sensitive

probabilistic filter

Sensor model
(human)

Transition
model

(context)

Global planner

Local planner

STOP

D2

D1

D3

D1 D2

D3

Predefined

destinations

Flickering

 checkerboards

Figure 4.8 A semi-autonomous wheelchair receives brain signals from the user and executes the
associated tasks of path planning, obstacle avoidance, and localization [16]. Source: Adapted from
Schirner 2013.

the operator’s visual field (see Figure 4.8). A monitor showed flickering checkerboards
with different frequencies. Each checkerboard and frequency corresponded to one of
four desired locations. When the operator focused on a desired checkerboard on the
monitor, his/her visual cortex predominantly synchronized with the checkerboard’s
flickering harmonic frequencies. These frequencies were detected through an electrode
on the scalp near the occipital lobe, where the visual cortex is located.

On the other hand, there are other projects that focus on the development of
intelligent wheelchairs with HiTL to assist disabled people. The work “I Want That”
[74] proposes a system that controls a commercially available wheelchair-mounted
robotic arm. Since people with cognitive impairments may not be able to navigate
the manufacturer-provided menu-based interface, the authors improved it with
a vision-based system which allows users to directly control the robotic arm to
autonomously retrieve a desired object from a shelf. To do so, they use a touchscreen
which displays a shoulder camera view, an approximation of the viewpoint of the user
in the wheelchair. An object selection module streams the live image feed from the
camera and computes the position of the objects. The user can indicate “I want that” by
pointing to an object on the screen. Afterwards, a visual tracking module recognizes
the object from a template database while the robotic arm grabs the object and gives it
to the user.

A vision-based robot-assisted device to facilitate daily living activities of spinal cord
injured users with motor disabilities is also proposed in [125], through an HiTL con-
trol of a robotic arm. The research objective was to reduce time for task completion
and the cognitive burden for users interacting with unstructured environments via a
wheelchair-mounted robotic arm. Initially, the user needed to indicate the approximate
location of a desired object in the camera’s field of view using one of a number of diverse
user interfaces, including a touchscreen, a trackball, a jelly switch, and a microphone.

�

� �

�

HITL Technologies and Applications 51

Afterwards, the user could order the robotic arm to center the object of interest in the
visual field of the camera, and then grab the desired object.

A model-driven design and validation of closed-loop medical device systems is pre-
sented in [126]. The safety of a closed-loop control system of interconnected medical
devices and mechanisms was studied in a clinical scenario, with the objective of reducing
the possibility of human error and improving patient safety. A patient-controlled anal-
gesia pump delivered a drug to the patient at a programmed rate while a pulse oximeter
received physiological signals and processed them to produce heart rate and periph-
eral capillary oxygen saturation outputs. A supervisor component got these outputs and
used a patient’s model to calculate the level of drug in the patient’s body. This, in turn,
influenced the physiological output signals through a drug absorption function. Based
on this information, the supervisor decided whether to send a stop signal to the pump.
The main contribution of the project was the methodology for the analysis of safety
properties of closed-loop medical device systems.

4.2.3 HiTL in Smartphones and Social Networking

Exploiting the line of people-centric sensing, the authors of [10] propose the use of
sensors embedded in commercial mobile phones to extrapolate the user’s real-world
activities that in turn can be reproduced in virtual settings. The authors’ goal was to go
further than simply representing locations or objects; they intended to provide virtual
representations of humans, their surroundings, and their social interactions. The pro-
posed system prototype implementation was named CenceMe, and allowed members of
social networks, namely Second Life®, to process the information sensed by their mobile
phones and use this information to extrapolate the user’s surroundings and actions (refer
to Figure 4.2). The authors proposed to use mobile phone sensors, such as microphones
or accelerometers, to infer the user’s current activity. In fact, today’s mobile phones are
powerful enough to run activity recognition algorithms, and the results can be sent to
virtual worlds thanks to the phone’s mobile Internet capabilities. Activity recognition
algorithms extracted patterns from the obtained data, such as the current user status in
terms of activity (e.g., sitting, walking, standing, dancing, or meeting friends), and logi-
cal location (e.g., at the gym, coffee shop, work, or other). This information was reflected
in the virtual world, where the user’s friends could see what activities he/she was per-
forming at a given moment and his/her current geographical position. Real-world activ-
ities could be mapped to different activities in the virtual world; for example, the user
could choose to have real-world running represented by flying on the virtual world. The
avatar’s clothes and accessories could also be changed according to a user’s location; the
avatar’s shirt could display a logo of the user’s current location (cafe, home, school, etc.).
The authors also used external sensors to complement the ones provided by the mobile
phone, namely they suggested the use of galvanic skin response sensors to infer emo-
tional states and stress levels. The activity recognition algorithms were performed on the
mobile device in order to reduce communication costs and computational burden on the
server. However, in cases where the algorithms were too intensive for handheld devices,
the computation was partially or even completely performed on the server side. The use
of mobile phones as means of sensing and communicating with virtual realities is an
important aspect of this work, as relying on common and easily accessible technologies
fosters the adoption of these new systems by more users.

�

� �

�

52 A Practical Introduction to Human-in-the-Loop Cyber-Physical Systems

A few more recent mobile applications attempted to combine context awareness with
user social connections. Highlight [127] is a social application that allows users to learn
more about the people around them by displaying profiles of nearby users. The appli-
cation presents several data items, including names, photos, mutual friends, and other
information users have chosen to share, as well as a tiny map that shows their recent
location (in a fashion similar to the mockup shown in Figure 4.9). The closer a person
is to the user (the more interests, friends, or history they have in common), the more
likely the user will be notified of their presence. According to Paul Davison, Highlight’s
chief executive officer, the application “started with the idea that if you can just take two
people and connect them, you can make the world a better place” [128]. Thus, Highlight
hopes to increase synchronicity and reduce the friction in meeting new people, allowing
users to know a few things about each other in advance.

The SceneTap [129] application is an even more flexible and complex example of
detection of people for social networking purposes. The application uses anonymous
facial detection software to approximate the age and gender of people entering a night-
club environment. By counting the number of people entering and leaving a venue, the
application can estimate and report crowd size, gender ratios, and the average age of
people in a given location. This information is shared among users, allowing them to
better plan their nights out and decide which nightlife establishments are a better fit for
their desires.

HiTL concepts have also been applied to smartphone data usage. In fact, HiTL
has previously been proposed as a solution for addressing the increasing demand
for wireless data access [118]. Since the wireless spectrum is limited and shared, and
transmission rates can hardly be improved solely with physical layer innovations, a
“user-in-the-loop” mechanism was proposed that promoted spatial control, in which
the user is encouraged to move to a less congested location, and temporal control, in
which incentives, such as dynamic pricing, ensure that the user reduces or postpones
his/her current data demand in case the network is congested. This closed loop

Figure 4.9 A mockup of a map interface similar to the Highlight application.

�

� �

�

HITL Technologies and Applications 53

controlled user activity itself through suggestions and incentives, influenced by the
current location’s signal-to-interference-plus-noise ratio and traffic situation. The
authors propose that users receive control information in the form of a graphical user
interface, showing a map and directions towards a better location and a better time to
start the user traffic session (e.g. outside busy hours).

Another area that has been closely linked with smartphones and HiTLCPS is the area
of recommendation systems. On this information era, the ability to quickly and accu-
rately understand consumers’ desires allows companies to timely control supply and
demand, and cope with quick changes in consuming trends. There has been a consid-
erable amount of research in the area of data mining to derive intelligence from large
amounts of transaction records, so that individual consumer marketing strategies can be
developed [130]. Since consumers are also influenced by relevant information provided
by retailers, context-aware recommendation systems can have a considerable effect on
consumerism dynamics. In particular, smartphones are amazing candidates for sensing
and understanding consumer context (Data Acquisition and Inference) and powerful
dissemination vectors for recommendations (Actuation). In a sense, these systems can
be considered open-loop HiTLCPSs as they usually do not directly affect the environ-
ment or the consumer, but merely suggest products and services. A very large body of
research work has studied how smartphones can be used in this context. However, we
will only present a few examples of such research work, for the sake of brevity.

In [130], context-aware recommendation systems for smartphones were divided
into two modules to provide product recommendations. First, a simple RSSI indoor
localization module located the user’s position and determined his/her context
information. RFID readers would be equipped in shopping centers with a consumer
location mechanism. Consumers, would place their RFID tags close to the readers and
let them recognize their identity and location (based on which reader was accessed).
Second, a recommendation module provided directed product information to users,
through association rules mining. The system performed recommendation calculations
pertaining to merchandise in the region of the user, and passed on this information
through the smartphone.

Another example can be found in [17], where the authors managed to create a rec-
ommendation system to suggest smartphone applications. The motivation behind this
work is the huge number of available apps; Google’s own Android Play Store currently
has over 1,600,000 applications [131]. Bayesian networks processed data from several
of the smartphone’s sensors, including accelerometer, light, GPS, time of day, and date,
to perform context inference (see Figure 4.10). From this information, the recommen-
dation system was able to associate the user’s context with application categories of
interest, based on the author’s domain knowledge. The categories included communi-
cations, health and fitness, medical, media and video, news and magazines, weather,
business, social, games, or traffic information.

In a similar vein, the authors in [132] proposed AppJoy, a system that also made per-
sonalized application recommendations; however, instead of using the smartphone’s
sensors to understand context, the system actually analyzed how the user interacted
with his/her installed applications. AppJoy measured usage scores for each app, which
were then used by a collaborative filter algorithm to make personalized recommenda-
tions. What the user did directly affected his/her application profiling. AppJoy followed

�

� �

�

P
re

p
ro

c
e
s
s
 o

f ra
w

 s
e
n

s
o

r d
a
ta

Accelerometer

Light

GPS

Time

Date

Smartphone

Data
State Inference

Context Inference

Category

Recommendation

Modularized Bayesian

Network
Inference Result

Traffic
Yes

No

News
Yes

No

Weather
Yes

No

Health
Yes

No

Social
Yes

No

Games
Yes

No

Media
Yes

No

Business
Yes

No

Figure 4.10 Overview of the system proposed in [17]. Source: Adapted from W.-H. Rho and S.-B. Cho 2014.

�

� �

�

HITL Technologies and Applications 55

Table 4.2 Summary of experimental HiTLCPS projects.

Project Main objectives and features

Industry and home
Reducing Energy Waste for Computers by
Human-in-the-loop Control [13]

Attempted to reduce the energy waste in
computer workstations by detecting
distractions

Can Technology Make You Happy? [120] Used the Hitachi Business Microscope to
acquire workspace behavioral data. This data
was then used in conjunction with positive
psychology to improve people’s mood,
creativity, and productivity

Handbook of Ambient Intelligence and Smart
Environments [121]

Focused on human–computer interaction
within smart environments and described
several prototype services (proactive
phone/communication, information
reminders, collaborative supportive
workspaces, speech translators, etc.)

The Smart Thermostat [122] Smart HVAC systems that used HiTL control
to improve performance and save energy

Duty-cycling buildings aggressively [14]

Healthcare
CAALYX [15] Used wearable devices to measure specific vital

signs and detect falls of elderly people. Mobile
phones with GPRS access were also used to
analyze data and automatically communicate
with assistance services

Modular Designs for Semi-autonomous
Wheelchair Navigation [124]

Presented a semi-autonomous wheelchair that
navigated through indoor environments and
was controlled through a brain–computer
interface based on flickering light patterns

The Future of Human-in-the-loop
Cyber-physical Systems [16]
I Want That [74] HiTL control of wheelchair-mounted robotic

arms through touchscreens, visual tracking of
objects, trackballs, jelly switches, and
microphones

HiTL control of an assistive robotic arm in
unstructured environments for spinal cord
injured users [125]
Toward patient safety in closed-loop medical
device systems [126]

Design and validation of a closed-loop medical
device system that consisted of an
HiTL-controlled analgesia pump

(Continued)

�

� �

�

56 A Practical Introduction to Human-in-the-Loop Cyber-Physical Systems

Table 4.2 (Continued)

Project Main objectives and features

Smartphones and social networking
CenceMe [10] Second Life® users could use their

smartphone’s sensors to automatically detect
and share their location and actions in the
virtual world

Highlight [127] Mobile social application that allows users to
learn more about the people around them by
displaying profiles of nearby users

SceneTap [129] Application that used anonymous facial
detection software to approximate the age and
gender of people entering a nightclub

User-in-the-loop: spatial and temporal
demand shaping for sustainable wireless
networks [118]

HiTL control of the wireless spectrum through
suggestions and incentives that encouraged less
congested locations and the reduction of data
demand

Recommendation-aware Smartphone Sensing
System [130]

HiTL recommendation systems for
smartphones that used location, sensors, and
interaction to understand user context

Context-aware smartphone application
category recommender system with
modularized Bayesian networks [17]
AppJoy [132]

a ubiquitous usability approach, being completely automatic, without requiring manual
input, and adapted to changes of the user’s application taste.

Let us summarize the projects presented in this section by looking at Table 4.2.

4.3 In Summary...

The objective of this chapter was two-fold. In Section 4.1, we presented some of the
technologies (summarized in Table 4.1) that can support current and future HiTLCPSs
in terms of Data Acquisition, State Inference, and Actuation. This section was meant to
give the reader an overview of the tools currently available to him.

On the other hand, Section 4.2 presented several projects and scientific prototypes
(summarized in Table 4.2) to give the reader a better idea of how the previously pre-
sented HiTL concepts and technologies can be applied in real-world scenarios.

As such, we hope that, by now, the reader has enough awareness of the theoretical
concept behind HiTLCPSs to begin a practical exercise. In fact, in the next part of this
book we will attempt to strengthen this theoretical understanding through a hands-on
approach.

�

� �

�

57

Part II

Human-in-the-Loop: Hands-On

In this part of the book, we will perform a step-by-step tutorial on how to create a sim-
ple, collaborative HiTL Android application, named HappyWalk. Our application will
be a BCI system that will roughly estimate the user’s current mood to improve their
physical and mental well-being. This sample application requires some knowledge of
Android programming and the Java programming language, as well as some notions
about databases and RESTful web services.

Our main goal with this part of the book is to guide the reader through the creation of
a simple HiTLCPS. It is not our intention to provide in-depth knowledge about Java or
Android programming or the necessary machine learning algorithms to create complex
HiTL systems. Instead, we aim at giving the reader some hands-on experience that might
be helpful in consolidating some of the theories ideas presented in the previous chapters.

This part of the book is composed of Chapters 5 through 9. In Chapter 5 we will
describe the objectives and concepts of our sample app, its base architecture, and tech-
niques to be used. Chapter 6 explains how to install the necessary software, libraries,
dependencies, and development environments. Chapter 7 focuses on the Data Acqui-
sition process of the application and describes how to acquire and pre-process data
from the smartphone’s sensors. Chapter 8 is dedicated to the process of State Inference
and explains how to implement a machine learning technique and acquire user feed-
back. Finally, chapter 9 discusses Actuation and explains how to handle the results of
human-centric data and provide feedback to the user.

A Practical Introduction to Human-in-the-Loop Cyber-Physical Systems, First Edition.
David Nunes, Jorge Sá Silva and Fernando Boavida.
© 2018 John Wiley & Sons Ltd. Published 2018 by John Wiley & Sons Ltd.
Companion Website URL: www.wiley.com/go/nunesloop

�

� �

�

59

5

A Sample App

This chapter presents general architectural aspects of the sample HappyWalk Android
HiTLCPS application and, in doing so, some of its underlying concepts and tech-
nologies, from a practical perspective. We encourage avid readers to further explore
the presented technologies and solutions by complementing this presentation with
material from books focusing on each of the addressed topics.

HappyWalk’s base architecture will be presented, comprising an Android client
application and a server-side application. Also, the technologies that will be used for
the application development are briefly identified. Subsequently, the main classes that
constitute this sample app will be listed and succinctly explained, both for the client side
and the server side. Finally, the architectural options concerning emotion awareness
will be presented and justified, and some initial implementation aspects will also be
discussed.

5.1 A Sample Behavior Change Intervention App

As previously mentioned in Section 4.1.2, BCIs are therapeutic systems that focus
on providing advice, support and relevant information to patients. Traditionally
associated with presential therapeutic consultations, BCIs have recently begun to be
delivered through the Internet and smartphones [11]. Using smartphone sensors to
monitor humans with BCIs not only provides more effective feedback to help users
in adapting or controlling some aspects of their behavior but also helps behavioral
scientists’ research. The journey towards our first HiTL system begins with a simple
Android application, named HappyWalk, which we will modify throughout the book
to introduce several HiTL capabilities, turning it into a full BCI system. HappyWalk
will be an HiTL BCI application that attempts to positively influence its user’s mood
through moderate physical exercise.

In fact, recent research work has found evidence that moderate walking exercise and a
change of environments can contribute to the improvement of mental health, providing
several cognitive benefits such as improved memory, attention, and mood [133, 134].
Other studies suggest that contact with natural environments not only makes people feel
better but also makes them behave better, thus presenting both personal health benefits
and broader social benefits [135].

A Practical Introduction to Human-in-the-Loop Cyber-Physical Systems, First Edition.
David Nunes, Jorge Sá Silva and Fernando Boavida.
© 2018 John Wiley & Sons Ltd. Published 2018 by John Wiley & Sons Ltd.
Companion Website URL: www.wiley.com/go/nunesloop

�

� �

�

60 A Practical Introduction to Human-in-the-Loop Cyber-Physical Systems

C
a
lm

n
e
s
s

Boredom

A
n
x
ie

ty

Euphoria

Figure 5.1 HappyWalk HiTL control.

Thus, in this part of the book we will develop and extend an Android app that
promotes walking with the aim of improving the user’s mood. Our objective is to use
the smartphone’s sensors and a machine learning algorithm to trigger positive feedback
notifications that suggest walking exercise whenever the data from the smartphone’s
sensors indicates a negative state of mind. Collaborative data gathering is also employed
to show heatmaps representing the near real-time context of nearby points of interest
(POIs) that might be of interest to visit. Thus, HappyWalk will employ a full closed-loop
HiTL control, as shown in Figure 5.1.

5.2 The Sample App’s Base Architecture

Since the objective of this book is not to teach Android programming, we will not be
developing HappyWalk from scratch. Instead, we will be enhancing an existing base
app, capable of showing POIs on a map, with HiTL control. A high-level architecture
of HappyWalk can be seen in Figure 5.2, which shows that the basis of the system is
composed of an Android client application and a server-side application.

5.2.1 The Android App

The focus of this chapter is on HappyWalk’s Android App, responsible for the interaction
with the end user. It displays a map where the relevant POIs are shown, as well as menus
that show information about them.

Android is an ecosystem supported by the Open Handset Alliance made up of
devices and, primarily, an open-source operating system (OS) designed for smart-
phones, tablets, and other embedded devices. While Android applications are written
in the Java programming language,1 they are not run within a traditional Java virtual

1 See The Java® Language Specification; https://docs.oracle.com/javase/specs/jls/se8/jls8.pdf.

�

� �

�

A Sample App 61

Figure 5.2 HappyWalk’s architecture.

machine. Android has its own runtime (Android Runtime and, in older devices, its
predecessor Dalvik) and performs its own management of the application’s life cycle.
The end user is not concerned about which apps are running. Android is optimized for
low-power, low-memory devices, and is capable of closing and opening processes as
the device’s capabilities dictate. This directly translates into a programming in which
the developer has to always be aware of the possibility of the app suddenly being shut
down because of processing or memory constraints.

For the didactic purposes of our book, we would like to ensure that our application
is compatible with as many versions of Android as possible. Thus, as our minimum
Android SDK we chose API 10, corresponding to Android 2.3.3 (Gingerbread). This
ensures compatibility with 99.5% of Android handsets, according to Google’s statistics.2
This tutorial uses Android API level 21 as the compile SDK; since Android is an
ever-evolving development environment, the reader might be tempted to use a more
recent compilation API. However, to ensure that the tutorial can be smoothly followed,
we ask the reader to refrain from doing so, since it would certainly imply the adaptation
of various parts of the code.

Additionally, during this part of the book we strongly recommend using a real device
to develop the application, as virtual devices cannot be used to debug the usage of
sensors, such as microphone and accelerometer.

Most Android apps are constructed by linking several building blocks known as
Activities. In their essence, an activity can be described as a “thing” that the user
can do.3 This implies that, for the most part, an activity has a way of interacting with the

2 https://developer.android.com/about/dashboards/index.html?utm_source=ausdroid.net
3 http://developer.android.com/reference/android/app/Activity.html

�

� �

�

62 A Practical Introduction to Human-in-the-Loop Cyber-Physical Systems

Figure 5.3 Android’s activity lifecycle.

user (typically, a graphical user interface). The managing of an Android application is
inherently tied to the lifecycle of its activities. During their lifecycle, Android activities
can be in one of several states, as shown in Figure 5.3, which displays Android’s
Activity Lifecycle. Activity states are managed by the OS itself; the developer has the
responsibility of handling the transitions between each state. This is done through
special method calls, which should be overridden whenever necessary.

The entire lifetime of an activity occurs between the first call to onCreate() and a single
final call to onDestroy():

• onCreate() is called when the activity begins. It is typically used to perform
initialization tasks and the global setup of the activity.

• onRestart() runs when a previously stopped activity restarts and is always followed
by onStart().

• onStart() marks the beginning of the visible lifetime of an activity. It is called to
indicate that an activity is about to be displayed and can be used to maintain the
necessary visual resources.

• onResume() is called when an activity is about to become interactable. It is important
to note that this method may be called multiple times, since an activity may frequently

�

� �

�

A Sample App 63

waver between the resumed and paused states. Thus, this is a good place to update
visual elements or start animations and music.

• onPause() is a very important method and is called whenever an activity is about to
go into the background. The importance of this activity pertains to the fact that this
is the last non-killable method in older Android versions (pre-3.0); that is, after this
method returns, the process hosting the activity may be killed by Android at any time,
following memory or processing constraints. This is important to us, since we will be
targeting Android 2.3.3 (Gingerbread). Therefore, onPause() should be used to write
any persistent data to storage. Additionally, this method is also typically used to stop
animations, music, etc.

• onStop() is called when the activity is no longer visible to the user. Starting with
Android 3.0: Honeycomb, an application is not in the killable state until this method
has returned. The method can be followed by either onRestart() (activity goes back to
user interaction) or onDestroy().

• onDestroy() marks the end of the activity’s lifecycle, called right before it is destroyed.
This is triggered by specific methods (e.g. finish()) or because the system is destroying
the activity to save space.

An overview of HappyWalk’s class structure is shown in Figure 5.4, and the
relationship between its main classes is detailed in Figure 5.5.

HappyWalk’s primary class is named MapsActivity, which encompasses the handling
of the application’s main activity: the one containing the map. HappyWalk uses the

Figure 5.4 HappyWalk’s Android class
structure.

�

� �

�

64 A Practical Introduction to Human-in-the-Loop Cyber-Physical Systems

Figure 5.5 An overview of HappyWalk Android app’s main classes.

Google Maps Android API v2 to show its map and POIs.4 The MapsActivity class is
responsible for managing the Google Maps object and the user position marker. The
clustering of individual marker POIs on larger icons that occurs when the user zooms
out is performed by the GeoClusterer class, in conjunction with the GeoCluster and
GeoItem helper classes.

Whenever the user taps on a POI marker, the POIDescription activity is called. This
activity is responsible for displaying information regarding the selected POI, such as a
name, address, description, coordinates, and an illustrative image.

Another essential component of HappyWalk is its background service, providing
various functionalities to other classes. It runs on the background in a separate thread,
showing a notification while it is running, and also provides a handler object that can
be used to perform background tasks. The background service supports the HwLoca-
tionListener class, which is responsible for acquiring and managing the user’s location.

All of these functions are supported by helper Thread classes, which perform
various tasks in parallel with the main application (e.g. on their on thread). Namely,
ThreadGetPoi and ThreadGetDetailPoi handle the fetching of POI information.

Finally, the utilities package contains several useful classes that are used throughout
the application. CalcDistance is used to calculate the distance between two points from
their latitude and longitude coordinates. The CommunicationClass contains several
methods that facilitate communicating with the server. Lastly, the GlobalVariables
class is used to store values that are used by most other classes. This class allows it to
easily tune various aspects of the application (server URL, when to update POIs, etc.).

4 https://developers.google.com/maps/documentation/android-api/

�

� �

�

A Sample App 65

5.2.2 The Server

HappyWalk’s server-side application is responsible for the provision, management,
and fetching of POI information. It is a Java EE web application implemented through
the Java Servlet API5 that runs on the Apache TomcatTM 7 open-source web server.6 It
communicates in the form of Representational state transfer (RESTful) web services,
the communication style of the the World Wide Web. This form of communication
typically occurs over HTTP and uses the usual HTTP verbs (GET, POST, PUT, DELETE,
etc.). Services are identified through a URI, and data is encapsulated within an Internet
media type, which in our case is JSON. These RESTful web services and the JSON
encapsulation are supported by the Jersey Java library.7

HappyWalk’s POI information is retrieved from the well-known Foursquare®database.8 Foursquare® is a location-based mobile social network that takes into
consideration the position of its users to provide suggestions of places to visit. It allows
users to discover places that fit their interests based on the advice of other users they
trust. Foursquare®’s POI database is very complete and available free of charge through
a web API with a limit of 5000 requests per hour, which is more than enough for
our educational purposes. To facilitate the integration with Java, our server uses the
foursquare-api-java library.9

The server also communicates with a PostgreSQL database,10 where the records
of emotions and POI locations are kept, through Hibernate11. PostgreSQL is an
open-source object-relational database system that has earned a reputation for relia-
bility and correctness. On the other hand, Hibernate is an Object/Relational Mapping
framework concerned with data persistence in relational databases. Hibernate allows
us to cleanly map Java objects with PostgreSQL tables, greatly simplifying HappyWalk’s
database management.

Figure 5.6 presents an overview of the server’s packages and classes. Each package
holds a specific purpose:

• The Model package contains classes that are representative of the JSON communi-
cation messages, providing encapsulation through the Jersey library. As convention,
each class has either a “Request” or a “Response” prefix.

• The Web package contains classes that implement the RESTful web services’ inter-
faces. Using Jersey, two POST services were implemented: GetDetailPoi, which
returns detailed information regarding a certain POI, and GetListPoi, which returns
a list of POIs around a certain location.

• The Com package contains the actual intelligence of the server. The classes within
these packages tend to communicate with other entities, such as the Database and
Foursquare®. The GetDetailPoi and GetListPoi web service requests are processed
by the classes ComGetDetailPoi and ComGetListPoi, respectively. The classes

5 http://docs.oracle.com/javaee/6/api/javax/servlet/Servlet.html
6 “Apache”, “Apache Tomcat”, and “Tomcat” are trademarks of the Apache Software Foundation -
https://tomcat.apache.org
7 https://jersey.java.net/
8 https://developer.foursquare.com/
9 https://github.com/clinejj/foursquare-api-java
10 http://www.postgresql.org/
11 http://hibernate.org/

�

� �

�

66 A Practical Introduction to Human-in-the-Loop Cyber-Physical Systems

Figure 5.6 An overview of HappyWalkServer’s main classes.

ComUpdatePoiImagesandTips and ComGetPoiFoursquare retrieve the necessary
information from Foursquare®.

• Within the DAO package rest several data access objects that facilitate communica-
tion with the database. These are, in turn, supported by the HibernateMaps, which
provide an interface with the database’s tables.

• Finally, the Utilities package contains an ImageUtils class that processes images and a
GlobalVariables class, similar to the one used in the Android app, for storing impor-
tant variables that are used throughout the server.

Since the focus of this book is on HiTL control, which rests mostly on the Android
app, as far as the server is concerned we will focus mostly on the intelligence associated
with handling emotional information. Database structure and communication is already
implemented and ready for handling HiTL information. The tutorial sections will simply
use the Dao and HibernateMaps helper classes to save and update emotions. We will
explain how to use these classes in Section 9.1.4.

We will also detail how to fetch and deploy the server using the Eclipse Mars IDE
for Java EE Developers.12 Despite the fact that the scope of this book does not include
many of the server’s inner workings, its source code is openly available for the inquisitive
reader who might desire to tinker with it.

5.3 Enhancing the Sample App with HiTL Emotion-awareness

From this base map application, we will now take steps to introduce HiTL control.
Since we will be dealing with possibly sensitive data, such as location and mood, one of
the fundamental requirements of the design of our HiTL application will be to respect
the privacy of users. We will consider this requirement through data anonymization,
by generating a pseudo-random identifier (we will discuss this in greater detail in
Section 8.3). While the app will be responsible for acquiring and processing GPS

12 https://eclipse.org/downloads/

�

� �

�

A Sample App 67

positions, as well as accelerometer and microphone data, the resulting emotion will
be periodically sent in an anonymous way to the server. This allows HappyWalk
to display a near real-time average of the mood at each POI, through heatmaps with
different colors. This information allows users to pick areas which are either livelier
(euphoric mood) or calmer (relaxed mood). All of this real-time information may
provide the necessary motivation for walking and visiting places that the user feels are
better suited to his/her current mood.

5.3.1 Choosing a Machine Learning Technique

In HappyWalk, the core of our emotion-awareness rests on our ability to associate sen-
sory input with certain emotions. It would be arguably possible to simply periodically
ask the user how they are feeling. However, such an approach would go against the
principles of “calm” computing and non-intrusiveness inherent to HiTLCPS design.
Thus, HappyWalk will employ a state inference mechanism based on machine learning
which will attempt to automate the detection of mood. Nevertheless the detection
of emotions is an extremely complex issue and, as such, we will still require the use
of supervised learning systems which rely on direct user feedback. Even so, we will
attempt to reduce the amount of required feedback whenever the state inference
component is performing well enough.

As mentioned in the introduction to this part of the book, our objective with
HappyWalk is not to propose/develop robust methods for mood detection, but instead
to present a practical “proof of concept” that can show the reader how HiTL concepts
can be applied to create a simple, smart HiTLCPS. Thus, in order to determine a good
machine learning technique for our application, let us consider previous comparisons
between the different possibilities. Previous research work [18], the results of which
are shown in Table 5.1, has scored different classification algorithms in terms of correct
classification rate and in terms of CPU time needed for the classification. The latter is
of particular importance for smartphone HiTLCPSs, since these are limited in terms
of available processing power and energy. Based on this study, we will be using an
artificial neural network (ANN) as our mood inference tool, since it offers a reasonable
classification rate while being one of the least time-consuming techniques. Other good
alternatives could be C4.5 decision trees and Support vector machines, but ANNs make
it significantly easier to update our inference model with new data provided by the user.

Table 5.1 Machine learning approaches for sensing context
in smartphones [18]. Source: Adapted from Guinness 2013.

Machine learning techniques

Correct
classification
rate

CPU time
requirements
ranking

Random Forest 96.5% 5th

Support vector machines 80.2% 1st

Naive Bayes classifiers 81.5% 6th

Bayesian networks 90.9% 4th

Logistic regression 83.4% 3rd

Artificial neural networks 87.2% 2nd

�

� �

�

68 A Practical Introduction to Human-in-the-Loop Cyber-Physical Systems

Figure 5.7 A typical artificial neural network architecture.

ANNs are machine learning techniques based on biological neurons, the cells that
are the most representative of the thinking function of animal brains. As put by
Haykin in his book Neural Networks: A Comprehensive Foundation [136], the brain is
a highly complex, nonlinear and parallel computer that processes information in an
entirely different way from the conventional digital computer. Much like biological
brains, ANNs are systems of interconnected “neurons” which exchange messages with
each other. They possess plasticity, that is the ability to adapt the “strength” of the
connections between neurons, through numeric weights that can be tuned based on
experience. This endows ANNs with the ability to learn from training data. In Figure 5.7
we can see a typical ANN architecture. The neurons of an ANN are usually grouped in
layers; the first layer receives the input, while the last layer transmits the final output. In
between these layers are the hidden layers, which allow the ANN to extract higher-order
information from the data, by providing additional transformations and processing.
ANNs are usually considered black-box systems, in the sense that their functioning is
opaque: studying an ANN’s inner structure does not provide any logical insight into the
function being approximated. All the processing and memory of the ANN rests within
the weights of the connections between its neurons, which, by themselves, do not mean
much to the ANN designer.

5.3.2 Implementing Emotion-awareness

An important matter to decide on how to implement our emotion-aware ANN is which
sources of input should be used to teach it. In order to avoid obligating the reader to use
additional hardware and perform particularly complicated integration tasks, we want to
limit our choice of sensors to those already provided by the smartphone device.

�

� �

�

A Sample App 69

Current scientific knowledge does not yet have an exhaustive picture of all the
factors influencing a person’s emotions [137]. Nevertheless, in the case of our sample
application, we intend to consider at least three general sources of data: contextual
information, environmental clues, and body movement information.

In terms of context, most smartphones are equipped with GPS, allowing us to know
where the user is located. Regarding environmental clues and body movement, the
accelerometer and microphone have been previously identified as effective sensors for
identifying human context [97]. Thus, our application will acquire raw data from these
sensors, and will process it through a simple classifier.

Our classifiers will use some concepts of “signal processing”. In particular our
accelerometer processor will use a “Fourier Transformation”: a powerful signal pro-
cessing technique. In fact, signals can be understood from two different perspectives.
The time perspective is the way we instinctively perceive our reality: things happen
and vary as time passes. However, every signal in nature can also be described as a
frequency spectrum and is determined by its inherent frequencies [138]. Thus, we can
analyze a signal either in the time (or spatial) domain or in the frequency domain.

A Fourier transformation is a mathematical process which converts a finite signal,
acquired at a certain frequency for a certain duration, into a series of coefficients, which
represent a finite combination of complex sinusoid functions [139]. This combination
of sinusoid functions represents that same signal on its frequency domain, as shown in
Figure 5.813. Our accelerometer classifier will use this type of analysis by performing
a fast Fourier transformation (FFT) and summing the resulting fourier coefficients.
This sum gives the neural network an idea on the amount of movement detected by the
smartphone.

The user’s emotion will be inferred once or twice an hour. The time between
two sensory acquisitions will be randomly determined within these constraints, in
order to avoid user habituation. In our example implementation, we will consider four

Figure 5.8 Sound signal in the time domain (left side) analyzed through a Fourier transformation to
show its frequency domain (right side).

13 Obtained from the Audacity software, www.audacityteam.org

�

� �

�

70 A Practical Introduction to Human-in-the-Loop Cyber-Physical Systems

Figure 5.9 HappyWalk’s Emotional Feedback.

distinct moods: euphoria, calmness, boredom, and anxiety. Boredom and a Anxiety
are considered negative emotions, whereas euphoria and calmness are considered their
positive counterparts. Users receive a notification when an emotion is detected, and,
by selecting it, the application will open and display a feedback screen. The output
representing the inferred emotion will be shown as a yellow circle in a two-dimensional
space containing the four emotions (Figure 5.9). The user can provide corrective
feedback by dragging the yellow circle to a new position, now shown in green. This
feedback initiates an ANN re-training process, which will reflect the correction in
future inference tasks. After some training, and when the neural network begins
to become accurate, the feedback notifications will be progressively replaced with
notifications suggesting walking exercise, whenever negative emotions are detected.

The ANN will be implemented using the Encog14 [140] machine learning framework.
Designing an ANN architecture is a challenging task. How should we select a number
of neurons that provides minimal error and highest accuracy?

Previous research has shown that excessive hidden neurons will cause over fitting;
that is, the neural networks overestimate the complexity of the target problem. A rule of
thumb is selecting a size between the number of input neurons and number of output
neurons [141]. Thus, it was decided to test two possibilities: using a hidden layer with
four neurons or using two hidden layers, three neurons in the first and two neurons
in the second. Both of these configurations fit the rule of thumb without becoming
overly complex and taxing smartphone hardware. In the decision process, two major
requirements were considered: the amount of effort required for training the network
(which is important in terms of processing power and battery drain) and the accuracy
of the network.

In order to test the training effort, simulated emotions were generated. For each
type of emotion, a probability value for different ranges of its input components
(movement, background noise, etc.) was empirically defined. Through this method,
150 simulated emotions were generated; while not valid for testing accuracy, these
are sufficient for testing training performance. Thus, the number of epochs necessary
to successfully train the network for each configuration was counted. The results are
shown in Table 5.2. These show that using two hidden layers increases the training effort
significantly. Therefore, it was also necessary to test if using more layers would bring
any benefits in terms of accuracy. A test subject used HappyWalk for a week, during

14 Encog Framework: http://www.heatonresearch.com/encogin

�

� �

�

A Sample App 71

Table 5.2 Testing training performance (150 emotions).

Configuration
Number
of epochs

One hidden layer 100
Two hidden layers 3000

Table 5.3 Testing neural network accuracy (41 emotions).

Configuration Sensitivity Specificity

One hidden layer 0.679 0.766
Two hidden layers 0.720 0.830

which his sensory data and emotional feedback were recorded for a total of 41 records.
Using this data, both neural network configurations were tested to evaluate their
sensitivity and specificity. Considering that negative emotions are the events of interest,
performance was evaluated through two statistical measures known as “sensitivity” and
“specificity”. In our case, sensitivity is the proportion of negative emotions that were
correctly identified as such; in other words, it measures when our system was capable
of detecting that it was necessary to actuate. Specificity, on the other hand, measures
the proportion of correctly identified positive emotions. A perfect emotional predictor
would present the maximum value of 1 for each of these metrics.

The results shown in Table 5.3 suggest that using a two-layer configuration leads to
considerably better results. After pondering over the results, it was decided that, despite
being more demanding, a two-hidden-layer configuration, the first containing three
nodes and the second two nodes, constitutes a good compromise in terms of training
time and accuracy. Thus, this is the configuration used for our sample application. The
proposed neural network’s architecture is presented in Figure 5.10.

5.4 In Summary...

In this chapter we have seen a high-level overview of the HappyWalk app, which we will
use in this part of the book for illustrating the development of HiTLCPS applications.
This is a kind of BCI application that provides feedback to the users and may influence
their behavior, through a Data Acquisition, State Inference, and Actuation cycle.

HappyWalk is a BCI system that attempts to positively influence its user’s mood
throughout moderate physical exercise. The app’s base architecture consists of a
client application that requires at least Android Gingerbread. It already has classes
for controlling POI clustering, the map interface, detecting location, and showing
POI information. Many of its tasks are run under a background service to avoid
encumbering the user interface. As for the server-side, it runs on Apache TomcatTM

7 and uses the Jersey Java library to handle RESTful web service communication.

�

� �

�

72 A Practical Introduction to Human-in-the-Loop Cyber-Physical Systems

Figure 5.10 HappyWalk’s neural network design.

The server also communicates with Foursquare® to retrieve POI information, and a
PostgreSQL database to permanently store data.

The architectural options concerning emotion awareness were also presented and
justified. We will be using the Encog library to implement a simple ANN with two
hidden-layers as our mood inference tool. This network will be fed with various sources
of data provided by the smartphone, including location, movement, and noise. We will
pre-process this data before feeding it to the network through simple signal processing
techniques, including frequency analysis. The user’s emotion will be inferred once or
twice an hour, within four possible moods: euphoria, calmness, boredom, and anxiety.

�

� �

�

73

6

Setting up the Development Environment

Now that we have settled on the major ideas behind our HiTL application, it is time to
begin the actual implementation. To do so, we first have to set up the proper develop-
ment environment. Please note that this tutorial was devised from within a Windows 7
OS and, as such, most screenshot images refer to this OS. Nevertheless, the tools used
for these tutorials should also support most Linux distributions, Windows 7 , 8, and 10,
as well as MacOSX.

In the current chapter we will go through the various phases needed for setting up
the development environment. These comprise installing the Android software devel-
opment kit, cloning the HappyWalk Android project, deploying the server, and testing
the basic sample app. The following sections describe each of these phases in detail.

6.1 Installing Android Studio

Android applications are developed through Android Studio (AS). This tutorial was
written using version 2.1.3 of AS and, as such, we strongly recommend downloading
and using this version since newer versions may introduce discrepancies and incompat-
ibilities. In this section we will perform the necessary tasks to properly install this IDE,
including installing the Java SE Development kit, AS, and Android SDK.

At the time of writing, AS 2.1.3 requires the Java Development Kit (JDK) 7; in par-
ticular, we used Java SE Development Kit 7u79, which can be downloaded from http://
www.oracle.com/technetwork/java/javase/downloads/jdk7-downloads-1880260.html.
From the JDK, we will need the Development Tools and the Public JRE, as shown in
Figure 6.1.

After installing the JDK, the installation of AS 2.1.3 requires the reader to visit the
page http://tools.android.com/download/studio/builds/2-1-3, and download the Win-
dows bundle with SDK installer package. Alternatively, it is also possible to download
a zip package appropriate for other operating systems; however, in doing so, the reader
becomes responsible for manually setting up the necessary environmental variables.

After downloading and running the bundle’s executable, AS should begin its instal-
lation. As shown in Figure 6.2, the reader needs to install the Android SDK (by ticking
the appropriate checkboxes, if needed). The Android virtual device, while useful for
testing many types of applications, is not sufficient for this tutorial. Since we require
the accelerometer, location and microphone sensors, the use of a real device is strongly
encouraged.
A Practical Introduction to Human-in-the-Loop Cyber-Physical Systems, First Edition.
David Nunes, Jorge Sá Silva and Fernando Boavida.
© 2018 John Wiley & Sons Ltd. Published 2018 by John Wiley & Sons Ltd.
Companion Website URL: www.wiley.com/go/nunesloop

�

� �

�

74 A Practical Introduction to Human-in-the-Loop Cyber-Physical Systems

Figure 6.1 Installing Java SE Development Kit 7u79.

Figure 6.2 Installing Android Studio and Android SDK.

After its installation is complete, AS may greet the reader with a Missing SDK window.
As shown in Figure 6.3, we can safely cancel this setup wizard since we will be installing
the necessary SDK by ourselves. Notice the update notification in the upper-right cor-
ner of the window; we advise the reader not to update, as newer versions introduce
incompatibilities.

When you finally see AS’s welcome screen, open the Android SDK manager by clicking
on Configure and then SDK manager, as shown in Figure 6.4.

�

� �

�

Setting up the Development Environment 75

Figure 6.3 Canceling the setup wizard.

Figure 6.4 Opening the Android SDK manager.

�

� �

�

76 A Practical Introduction to Human-in-the-Loop Cyber-Physical Systems

Figure 6.5 Installing Android API 21.

Figure 6.6 Opening the standalone SDK manager.

You should see a window similar to the one shown in Figure 6.5. Since in this tutorial
we will be using Android API level 21, tick the corresponding checkbox as shown in
Figure 6.5, and click the OK button to let AS install the associated components.

Afterwards, open the same window and click on Launch Standalone SDK manager,
as highlighted in Figure 6.6.

�

� �

�

Setting up the Development Environment 77

Figure 6.7 Installing Android SDK Build-tools 21.1.2.

Table 6.1 Summary of the steps necessary to install AS 2.1.3.

Step Summarized Objective

Install JDK Installed JDK 7u79 from http://www.oracle.com/technetwork/java/javase/
downloads/jdk7-downloads-1880260.html

Install AS 2.1.3 Downloaded and extracted the AS package from http://tools.android.com/
download/studio/builds/2-1-3

Install Android SDK Used the SDK Manager to install Android API 21 and Build-Tools 21.1.2

On the Standalone SDK manager, check the box corresponding to Android SDK
Build-tools 21.1.2, just as Figure 6.7 shows. We will need these Build-tools to compile
HappyWalk properly.

Table 6.1 summarizes the steps we have taken so far.

6.2 Cloning the Android Project

In this section we will fetch and set up HappyWalk’s base client application code. To
do so, we will install Git, check out the HappyWalk client project, run the application
for the first time, discover our Android debug key, and obtain a Google Maps Android
API key.

The base HappyWalk app is available through Git1. As such, you will need to install an
appropriate Git distribution for your OS. You can download the appropriate Git release
for your OS from http://git-scm.com/downloads. This tutorial was developed using Git
version 2.7.1.2 for Windows, although it should also work with newer versions. We will
now demonstrate how to properly install Git on Windows 7 . Make sure to adapt these
steps to your own OS.

After running the installation package, choose a folder to install Git on. Make sure
to add Git to your PATH system variable so that AS can find and use it! On the Git
Windows installation, this can be done easily by choosing the option Use Git from the
Windows Command Prompt (see Figure 6.8a). We also recommend choosing the options

1 https://git-scm.com/

�

� �

�

78 A Practical Introduction to Human-in-the-Loop Cyber-Physical Systems

(a) (b)

Figure 6.8 Installing Git #1. (a) Adding Git to the PATH, on Windows (b) Choose Checkout
Windows-style.

(a) (b)

Figure 6.9 Installing Git #2. (a) We recommend using MinTTY (b) Uncheck Enable file system caching.

Checkout Windows-style, commit Unix-style line endings (see Figure 6.8b), Use MinTTY
(see Figure 6.9a), and uncheck Enable file system caching (see Figure 6.9b).

Now that Git is installed, let us import the HappyWalk project in AS. From the wel-
come screen, click on Check out project from Version Control → Git as indicated in
Figure 6.10 and fill the correct repository URL, as shown in Figure 6.11. Pick a Parent
Directory of your choosing, but please take note of its location.

After AS clones the project, it should ask you if you want to open the checked-out
Studio project file. As shown in Figure 6.12, respond “No” and, instead, select “Open
an existing Android Studio Project”). Select HappyWalk’s directory from the previously
chosen Parent Directory, as shown in Figure 6.13. As AS loads the project it is likely that
a “Gradle Update” and a “Gradle Plugin Update” window to appear, in which case you
should answer “Don’t remind me again for this project” to both (see Figure 6.14).

After AS finishes the project load process we can begin our deployment. The project’s
structure follows the general architecture presented in Section 5.2. As previously

�

� �

�

Setting up the Development Environment 79

Figure 6.10 Importing HappyWalk from Git.

Figure 6.11 Cloning the HappyWalk project.

Figure 6.12 Opening the HappyWalk project.

�

� �

�

80 A Practical Introduction to Human-in-the-Loop Cyber-Physical Systems

Figure 6.13 Choosing HappyWalk’s project folder.

Figure 6.14 Do not upgrade Android Gradle or its plugin.

mentioned, HappyWalk’s MapsActivity will serve the purpose of showing nearby POIs
and displaying collaborative data from all users, in order to provide near real-time
mood context. However, in order to use Google Maps within this activity, we must first
perform some additional steps.

�

� �

�

Setting up the Development Environment 81

First of all, we first need to run our application at least once. This will allow AS to
generate the necessary debug certificates. We can launch our Android application by
making sure that app is selected from the dropdown list near the small Android logo
and by clicking on Run app (the green “play” button), as shown in Figure 6.15.

Make sure your device appears on the Select Deployment Target window. In the Win-
dows operating systems, this may require installing the appropriate Android Debug
Bridge drivers for your device. For more information on this, check the Android Devel-
oper’s website.2 If AS was able to properly install the application on your device, you
should see a screen similar to what is shown in Figure 6.16.

Notice that Figure 6.16 shows an empty map screen. To use Google Maps, the
reader needs to acquire his/her own Google Maps Android API key. To do so, a

Figure 6.15 Running HappyWalk.

Figure 6.16 HappyWalk’s first launch.

2 https://developer.android.com/studio/run/oem-usb.html

�

� �

�

82 A Practical Introduction to Human-in-the-Loop Cyber-Physical Systems

Figure 6.17 Obtaining the Android debug key.

Google Account is required and it is also necessary to find the development com-
puter’s Android Debug Key. Figure 6.17 shows how this may be accomplished from
within AS. With the HappyWalk project open, first open up the Gradle right-side
panel (1). Click on its refresh button (2) and double-click on “happywalk/happy-
walk(root)/Tasks/android/signingReport” (3). The required SHA1 key takes the form
XX:XX:XX:XX:XX:XX:XX:XX:XX:XX:XX:XX:XX:XX:XX:XX:XX:XX:XX:XX and shall
appear on the Run console, at the bottom (4).

We cannot guarantee accurate instructions for the next few steps, since they may have
changed by the time the reader is following this sentence. At the time of writing, the
reader could follow the link below, replacing the XX:XX:XX:XX:XX:XX:XX:XX:XX:XX:
XX:XX:XX:XX:XX:XX:XX:XX:XX:XX on the URL with the SHA1 acquired above:

https://console.developers.google.com/flows/enableapi?apiid=maps_android_
backend&keyType=CLIENT_SIDE_ANDROID&r=XX:XX:XX:XX:XX:XX:XX:XX:XX:
XX:XX:XX:XX:XX:XX:XX:XX:XX:XX:XX%3Bhitlexamples.happywalk

Here, the reader should be able to log in to his/her own Google Account and follow the
provided directions to acquire a Google Maps Android API key. This involves creating a
project (Figure 6.18), creating a new Android API key (Figure 6.19), and obtaining the
mentioned key (Figure 6.20).

Figure 6.18 Creating a project to obtain a Google Maps Android API key.

�

� �

�

Setting up the Development Environment 83

Figure 6.19 Creating the Google Maps Android API key.

Figure 6.20 Obtaining the Google Maps Android API key.

In case the above instructions do not work, we advise the reader to search for the
Google Console Developers page.3 Either way, the reader should be able to log in to
his/her own Google Account and follow the provided directions to acquire a Google
Maps Android API key. At the end, Google should provide a development key free of
charge (it starts with “AIza”).

Let us now use the key by looking into the contents of the HappyWalk’s file app/de-
bug/res/values/google_maps_api.xml. To do so, it is easier to view the entire project
using the project tab’s Project view. By default, it should be set in Android view; you can
change the project tab’s view by clicking on the buttons shown in Figure 6.21. In this per-
spective, navigate to and double-click the app/debug/res/values/google_maps_api.xml
file, as shown in Figure 6.22. As soon as you double-click google_maps_api.xml, you
should see the following contents:

3 https://console.developers.google.com

�

� �

�

84 A Practical Introduction to Human-in-the-Loop Cyber-Physical Systems

Figure 6.21 Changing into the project’s view.

Figure 6.22 Opening app/debug/res/values/google_maps_api.xml.

1 < r e s o u r c e s >
<!−−

3 TODO: B e f o r e you run your a p p l i c a t i o n , you need a Google Maps API key .
−−>

5 < s t r i n g name= " google_maps_key " t r a n s l a t a b l e = " f a l s e "
t e m p l a t e M e r g e S t r a t e g y = " p r e s e r v e " >

YOUR_KEY_HERE
7 </ s t r i n g >

</ r e s o u r c e s >

�

� �

�

Setting up the Development Environment 85

Table 6.2 Summary of the steps necessary to set up HappyWalk’s Android project.

Step Summarized Objective

Install Git Installed Git for Windows from http://git-scm.com/downloads
Clone HappyWalk’s
Android project

Imported and opened HappyWalk’s client project from https://git
.dei.uc.pt/dsnunes/happywalk.git using AS

Launch HappyWalk Used AS to run HappyWalk’s Android application on a real device
Discover the debug key Used AS’s signingReport task to discover the computer’s SHA1

Android debug Key
Acquire a Google Maps
Android API key

Logged into the Google Console Developers page and used the debug
key to acquire a Google Maps Android API key

Place the Google Maps
Android API key

Navigated to the google_maps_api.xml file and replaced the Google
Maps Android API key

In place of YOUR_KEY_HERE, your google_maps_api.xml should contain your own
development key. Once the proper Google Maps API key is in place, we can fully utilize
the Maps interface on our application.

Table 6.2 summarizes the steps we have taken in this section.

6.3 Deploying the Server

As previously discussed in Section 5.2.2, to compile and use our server, we will be using
the following technologies:

• PostgreSQL 9.3, for hosting our database
• Eclipse Mars IDE for Java EE Developers
• Apache Tomcat 7.

As we also mentioned in Section 5.2.2, the server needs to communicate with
Foursquare® to acquire POI information. Therefore, the machine hosting it needs to
have an active Internet connection. This is essential for the proper functioning of the
HappyWalk system.

In the next section we will perform the necessary tasks to properly install Eclipse Mars
and PostgreSQL, import HappyWalk’s server project, obtain a Foursquare® client ID
and secret, set up the database, and deploy the server on Tomcat 7.

6.3.1 Installing the Software and Cloning the Server’s Project

Installing the Eclipse Mars is trivial; visit https://eclipse.org/mars/ , download the Eclipse
IDE for Java EE Developers package, and extract it to a location of your choice.

As for PostgreSQL, browse to http://www.postgresql.org/download/ and download
the appropriate 9.3 installer for your OS. Several installers are available in http://www
.enterprisedb.com/products-services-training/pgdownload. During installation, make
sure to take note of the superuser password that is requested in the screen shown in
Figure 6.23, we will need it later on. Uncheck Launch Stack Builder at exit, as it is not
necessary (Figure 6.24).

�

� �

�

86 A Practical Introduction to Human-in-the-Loop Cyber-Physical Systems

Figure 6.23 Choosing PostgreSQL superuser’s password.

Figure 6.24 No need to launch Stack Builder.

After installing both of these tools, open the Eclipse Mars IDE and select a path of your
choice for the workspace. Then, import a new Git project by clicking on File → Import
→ Git → Projects from Git. You should see a window similar to the one in Figure 6.25.

Select Clone URI and then fill the URI field, as shown in Figure 6.26. The Host and
Repository path fields will then be automatically filled.

�

� �

�

Setting up the Development Environment 87

Figure 6.25 Clone from a URI.

Figure 6.26 Introduce the URI corresponding to HappyWalk’s server.

�

� �

�

88 A Practical Introduction to Human-in-the-Loop Cyber-Physical Systems

Figure 6.27 Select the master branch.

Afterwards, just select the master branch (Figure 6.27) and select master as the
initial branch, origin as the remote name, and choose a directory to save the project
(Figure 6.28).

Eclipse will begin to receive the objects associated with our server. We now need to
tell it to import the Eclipse project (Figures 6.29 and 6.30).

6.3.2 Obtaining a Foursquare®’s Client ID and Client Secret

Now that we have cloned the HappyWalk Server project, we will need to make a few
modifications to the server’s code. First, we will need to create a Foursquare® Client ID
and a Client Secret.

Browse to the address https://developer.foursquare.com/ . The steps herein described
are valid for the version of the Foursquare® website available in the beginning of 2016.
We cannot account for future changes in website design but, hopefully, the functionality
will remain the same for the foreseeable future.

First, click on My Apps and create an account (if you do not already possess one).
After that, click on the button that says Create a new app. Fill the Your app name and
Download / welcome page url fields as you desire. You can leave the other fields empty,
as they are not relevant for our purposes. Afterwards, click on Save changes, shown
in Figure 6.31. Now, when you navigate into the MyApps menu, Foursquare® will pro-
vide you with a Client ID and a Client Secret (Figure 6.32), which we will need in our
server.

To do so, use Eclipse’s Project Explorer to browse and double-click the src/utilities/-
GlobalVariables.java class, as shown in Figure 6.33.

�

� �

�

Setting up the Development Environment 89

Figure 6.28 Selecting the local storage directory.

Figure 6.29 Select the option Import existing Eclipse projects.

�

� �

�

90 A Practical Introduction to Human-in-the-Loop Cyber-Physical Systems

Figure 6.30 Tick the checkbox of the HappyWalkServer project.

Figure 6.31 Creating a Foursquare® app.

Figure 6.32 Foursquare®’s Client ID and Client Secret.

�

� �

�

Setting up the Development Environment 91

Figure 6.33 Navigating into the server’s GlobalVariables.

p u b l i c c l a s s G l o b a l V a r i a b l e s {
2

/ / Foursquare keys
4 p u b l i c s t a t i c f i n a l S t r i n g FOURSQUARE_CLIENT_ID = " YOUR_CLIENT_ID_HERE " ;

p u b l i c s t a t i c f i n a l S t r i n g FOURSQUARE_CLIENT_SECRET = "
YOUR_CLIENT_SECRET_HERE " ;

6 p u b l i c s t a t i c f i n a l S t r i n g FOURSQUARE_REDIRECT_URL = " h t t p s : / / a p i .
f o u r s q u a r e . com/ v2 / " ;

Here, it is necessary to replace the FOURSQUARE_CLIENT_ID and FOURSQUARE_
CLIENT_SECRET strings with the values provided by Foursquare®, from the page
shown in Figure 6.32.

6.3.3 Setting up the Database

Now, let us set up our PostgreSQL database. To do so, we will use the pgAdmin III tool
which usually accompanies a PostgreSQL installation. If, for some reason, you are unable
to use pgAdmin, it is also possible to create our database using the command line as we
will show later on.

�

� �

�

92 A Practical Introduction to Human-in-the-Loop Cyber-Physical Systems

Figure 6.34 Log in to the PostgreSQL 9.3 server.

Using pgAdmin III, we first login by double-clicking on the PostgreSQL 9.3 server,
highlighted by the circle in Figure 6.34. When the login menu pops up, use the superuser
credentials obtained during the installation step shown in Figure 6.23.

Afterwards, right-click on Databases and select New Database, as shown in
Figure 6.35. Name the database “happywalk” and set its owner as your superuser (by
default, it should be postgres; see Figure 6.36).

After creating the database, we need to populate it. To do so, we will need to provide
the database creation SQL file contained within the server’s git repository. Since we
have already fetched the project files using Eclipse, the root of our server’s project
files rests on the directory selected in the step depicted by Figure 6.28. To begin,
click on the SQL button while having the happywalk database selected, as shown in
Figure 6.37.

Figure 6.35 Create a new database.

�

� �

�

Setting up the Development Environment 93

Figure 6.36 Name the new database as happywalk.

Figure 6.37 Select the correct SQL script.

On the Query window that appears, go to File → Open and select the file located in4

<root of HappyWalk’s server Git>/Database/HappyWalkDB.sql. Afterwards, click on
the Execute Query button (shown in Figure 6.38). If everything went well, the server
should output something akin to Query returned successfully with no result in xx ms.
With this, our database is fully operational.

4 From here on, most of the text between < and >is merely indicative and should be replaced with the
reader’s own paths/filenames, etc.

�

� �

�

94 A Practical Introduction to Human-in-the-Loop Cyber-Physical Systems

Figure 6.38 Populating the database.

As an alternative to pgAdmin III, you can also create the database through the com-
mand line. To do so, you need to either have the PostgreSQL binaries in your PATH sys-
tem variable or navigate to <PostgreSQL’s installation folder>/9.3/bin/ from the com-
mand prompt. Afterwards, just use the following command:

createdb -U <your superuser> -O <your superuser> happywalk

to create the database, and then the command:

psql -U <your superuser> -d happywalk -f <root of HappyWalk’s server Git
>/Database/HappyWalkDB.sql

to populate it.
Now that the database has been created, let us return to our server. In Eclipse, browse

to the src/hibernate.cfg.xml file:

< s e s s i o n − f a c t o r y >
2 < p r o p e r t y name= " h i b e r n a t e . c o n n e c t i o n . d r i v e r _ c l a s s " >org . p o s t g r e s q l .

D r i v e r </ p r o p e r t y >
< p r o p e r t y name= " h i b e r n a t e . c o n n e c t i o n . password " > p o s t g r e s </ p r o p e r t y >

4 < p r o p e r t y name= " h i b e r n a t e . c o n n e c t i o n . u r l " > j d b c : p o s t g r e s q l : / /
l o c a l h o s t : 5 4 3 2 / happywalk</ p r o p e r t y >

< p r o p e r t y name= " h i b e r n a t e . c o n n e c t i o n . username " > p o s t g r e s </ p r o p e r t y >

Here, you will need to replace the hibernate.connection.password and hiber-
nate.connection.username properties with your PostgreSQL superuser credentials
(chosen in the step shown in Figure 6.23). If necessary, also adjust the hiber-
nate.connection.url property to match your server’s URL and PostgreSQL port. If you
have been following this tutorial from a single computer without changing default
installation values, you should be connecting to a local PostgreSQL server and, thus,
the default URL and port should be localhost:5432. This information should match the
one shown in pgAdminIII, next to the PostgreSQL 9.3 server (see Figure 6.34).

�

� �

�

Setting up the Development Environment 95

6.3.4 Deploying the Server on Tomcat 7

Finally, we need to deploy our server on Tomcat 7 . To do so, let us define a new server on
Eclipse through the menu File → New → Other → Server (Figure 6.39), where we choose
a new Tomcat v7.0 Server (Figure 6.40).

Figure 6.39 Create a new server.

Figure 6.40 Define a new Tomcat 7 installation.

�

� �

�

96 A Practical Introduction to Human-in-the-Loop Cyber-Physical Systems

Figure 6.41 Installing Tomcat 7 from Eclipse.

Eclipse allows you to download and install the latest version of Apache Tomcat 7
from within the IDE. To do so, click on the Download and Install... button, as shown
in Figure 6.41, and choose a folder to install the server on. If you get a grayed out Next
button together with an error message saying Unknown version of Tomcat was specified,
try to wait for a little while. Eclipse downloads Tomcat in the background (you can check
the download progress in the bottom-right corner of Eclipse’s main window) and it does
not recognize the server until it has been fully downloaded.

Alternatively, you can also manually download Tomcat 75 and indicate its path to
Eclipse.

Finally, add our HappyWalkServer project to the newly created server by selecting it
and pressing Add > (figure 6.42) and then Finish.

Happywalk’s server should now be ready to be run. To test the server, try to run it
by pressing the Run as... button on Eclipse, choosing Run on server (Figure 6.43) and
selecting the newly created Tomcat 7 server (Figure 6.44).

At the bottom of Eclipse’s main window, click on the tab that says Console. If every-
thing is correctly configured, you should see a window similar to the one presented in
Figure 6.45, where the Console tab is highlighted by a circle. The bottom output of the
console should read something similar to INFO: Server startup in xx ms. Do check the
rest of the console’s output for any exceptions being thrown during the server’s startup,
which would indicate a configuration issue. Do not be alarmed by a possible browser
window showing an HTTP status 404, as it simply means that we are not running any
web interface within our server.

5 http://tomcat.apache.org/download-70.cgi

�

� �

�

Setting up the Development Environment 97

Figure 6.42 Adding HappyWalk to Tomcat 7.

Figure 6.43 Running the HappyWalk server.

�

� �

�

98 A Practical Introduction to Human-in-the-Loop Cyber-Physical Systems

Figure 6.44 Select the newly created Tomcat 7.

Figure 6.45 The HappyWalk server is up and running.

�

� �

�

Setting up the Development Environment 99

Table 6.3 Summary of the steps necessary to deploy HappyWalk’s server.

Step Summarized Objective

Install Eclipse
Mars

Downloaded and extracted the Eclipse IDE for Java EE Developers
package from https://eclipse.org/mars/

Install PostgreSQL
9.3

Downloaded a PostgreSQL 9.3 installer by visiting http://www
.postgresql.org/download/

Import
HappyWalk’s
server

Used Eclipse to import HappyWalk’s server project from https://git
.dei.uc.pt/dsnunes/happywalk.git

Obtain a
Foursquare®client ID and
secret

Visited https://developer.foursquare.com/ , created an account and a
new app to obtain a Client ID and a Client Secret, and replaced the
appropriate variables within the server’s GlobalVariables.java class

Set up the database Used pgAdmin III to create a new “happywalk” database, populated
this database using the project’s HappyWalkDB.sql query, and
updated the server’s hibernate.cfg.xml file

Deploy the server
on Tomcat 7

Used Eclipse to install Tomcat 7, added the HappyWalkServer
project to it, and tested the server

Table 6.3 summarizes the steps we have taken in this section.

6.4 Testing the Sample App

To finalize our preparatory work, we will now attempt to launch HappyWalk’s base sys-
tem. This involves allowing communication between the server and the Android app.
As such, we will need to discover the server’s IP address and set that information in the
client application.

The exchange of information between the server and the Android client requires a
communication channel between the machine hosting the server and your Android
phone. This may be achieved within a local network (e.g. both devices connected to the
same wireless network) or by having both devices connected to the Internet and know-
ing the server’s public IP. Either way, as mentioned in Section 6.3, the server needs an
active Internet connection, to communicate with Foursquare®.

In Windows 7 (and most other Windows operating systems), knowing your com-
puter’s IP address can be easily achieved through the command line. Click on the Start
menu, on the search box type cmd, and open cmd.exe. On the command prompt type
ipconfig and press the ENTER key. As shown in Figure 6.46, the command will display
several IP addresses; in the example, this computer was connected to a router giving
access to a WiFi network to which our Android phone was connected. Thus, in this case,
we were interested in the IPv4 address, which represents the address of the computer
within the local area network.

The Linux and MacOSX operating systems have their own equivalent command
for displaying IP information; typically, one can execute the ifconfig command in the
terminal.

�

� �

�

100 A Practical Introduction to Human-in-the-Loop Cyber-Physical Systems

Figure 6.46 The ipconfig command.

Figuring out the correct IP address to provide to HappyWalk is a process that is highly
dependent on your network configuration. If your server and your Android phone can
communicate through the Internet, you can use websites such as www.myipaddress.com
to discover your server’s external IP.

After taking note of the server’s IP, we will need to set this information in
our Android app. In AS, change back to the Android view, just like we did a
while back to change to Project view in Figure 6.21, and open the file hitlexam-
ples.happywalk/utilities/GlobalVariables.java:

package h i t l e x a m p l e s . happywalk . u t i l i t i e s ;
2

p u b l i c c l a s s G l o b a l V a r i a b l e s {
4 / / S e r v e r L o c a t i o n

f i n a l s t a t i c p u b l i c S t r i n g URL= " h t t p : / / < I P _ o f _ S e r v e r > : 8 0 8 0 /
h a p p y w a l k s e r v e r / r e s t / " ;

Change the field <IP_of_Server> within the URL variable to match the location of
your server. Now, we should attempt to run HappyWalk once more by clicking on the
Run app button (refer to Figure 6.15 back on page ??).

If both the server and the app have been properly configured and assuming that your
Android device has an active Internet connection and location services enabled, you
should see an image similar to the one presented in Figure 6.47.

During development and testing, remember that your device needs to have an active
connection to the server and location services enabled. If it doesn’t, the app will not work
properly.

Table 6.4 summarizes the steps we have taken in this section.

�

� �

�

Setting up the Development Environment 101

Figure 6.47 HappyWalk’s map screen.

Table 6.4 Summary of the steps necessary to test the base HappyWalk system.

Step Summarized Objective

Ensure connectivity The server and the Android device must be able to
communicate with each other, and the server needs an active
Internet connection

Discover the server’s IP Used the command line / terminal together with the ipconfig
/ ifconfig command to discover the server’s IP address

Set server IP in Android app Edited the Android client’s GlobalVariables.java class and
updated the <IP_of_Server> field within the URL variable

Launch HappyWalk Launched both the server and the client and made sure that
the map interface appeared on the Android device, together
with POI information

6.5 In Summary...

In this chapter we prepared the development environment necessary to work on Hap-
pyWalk. We went through the various steps needed for setting up AS, the IDE that we
will use to work on the Android client, and Eclipse, which is used to program our server.
We installed Git and used it to import the base HappyWalk client and server projects.
Additionally, we obtained a Google Maps Android API key, a Foursquare® client ID and
secret, and added them to the necessary project files.

We also installed PostgreSQL, created a database, and populated it through an SQL
query. We then deployed and ran our server using Tomcat 7. Finally, we made sure that

�

� �

�

102 A Practical Introduction to Human-in-the-Loop Cyber-Physical Systems

the server machine and Android device could communicate, informed the client appli-
cation of the server’s IP address, and tested the base HappyWalk system.

Now that HappyWalk is up and running, let us begin our work towards transforming
it into a fully fledged HiTL BCI system.

�

� �

�

103

7

Data Acquisition

As discussed in Chapter 5, data acquisition is a fundamental stage of the control loop
of HiTL processes, and this is why we will dedicate the whole of the current chapter
to it. With this objective in mind, we will start by presenting and describing the class
that will handle most of the emotion-related tasks in our sample HappyWalk Android
app, in Section 7.1. Next, in Section 7.2, we will explore the processing of sensory
data.

More often than not, the burden of data acquisition and processing is too much for
the application’s user interface thread. Concurrently performing heavy computational
tasks generally results in an application with usability issues. For example, in the Hap-
pyWalk’s case, the usage of map-related functionality could suffer from stuttering if the
user interface thread were not freed from heavy tasks such as data acquisition. This is,
thus, the main reason why in HappyWalk we have opted for performing data acquisition
in a background thread, leaving the main thread purely to user interface operation. This
also has advantages from a modularity point of view, allowing to perform data acquisi-
tion as a background task through the HappyWalk Service, which is decoupled from the
main application.

7.1 Creating the EmotionTasker

In this section, we will introduce the EmotionTasker. This class represents the core of
our emotional inference mechanism; it will be responsible for things such as controlling
when to perform emotion recognition, presenting suggestive notifications, and train-
ing the neural network. In fact, it is so important that we will continuously work on it
throughout most of this tutorial.

For now, we will focus on its basic creation, setting up a constructor and some of its
class variables, instantiating an object of it in our background service, and defining a
method for data collection.

Right click on the service folder of our HappyWalk AS project, select New → Java
Class, and name it EmotionTasker, as shown in Figure 7.1.

A Practical Introduction to Human-in-the-Loop Cyber-Physical Systems, First Edition.
David Nunes, Jorge Sá Silva and Fernando Boavida.
© 2018 John Wiley & Sons Ltd. Published 2018 by John Wiley & Sons Ltd.
Companion Website URL: www.wiley.com/go/nunesloop

�

� �

�

104 A Practical Introduction to Human-in-the-Loop Cyber-Physical Systems

Figure 7.1 Creating a new class.

We can begin by setting up some class variables and a simple constructor. To start with,
we will need a reference to our HappyWalkService and our HappyWalkServiceHandler
(see lines 6 and 7 of the code below):

1 package h i t l e x a m p l e s . happywalk . s e r v i c e ;

3 import andro id . os . Handler ;

5 p u b l i c c l a s s EmotionTasker {
p r i v a t e HappyWalkService hWServ ;

7 p r i v a t e Handler hWServiceHandler ;

9 p u b l i c EmotionTasker (HappyWalkService hWServ) {
t h i s . hWServ = hWServ ;

11 t h i s . hWServiceHandler = hWServ . getHappyWalkServ iceHandler () ;
}

13 }

Additionally, we should also add a reference and instantiate an EmotionTasker object
within our HappyWalkService. To do so, double-click the service/HappyWalkService file
and edit it as shown below:

package h i t l e x a m p l e s . happywalk . s e r v i c e ;
2

import (. . .)
4

p u b l i c c l a s s HappyWalkService e x t e n d s S e r v i c e {
6

p r i v a t e boolean i sRunning = f a l s e ;
8 p r i v a t e f i n a l I B i n d e r hwBinder = new HappyWalkBinder () ;

p r i v a t e M a p s A c t i v i t y mapAct ;
10 p r i v a t e Thread hWServiceThread ;

p r i v a t e Handler hWServiceHandler ;
12 p r i v a t e H w L o c a t i o n L i s t e n e r h w L o c a t i o n L i s t e n e r ;

p r i v a t e EmotionTasker emotionTasker ;
14

(. . .)
16

/ / Gets and S e t s
18

(. . .)

�

� �

�

Data Acquisition 105

20

p u b l i c H w L o c a t i o n L i s t e n e r g e t H w L o c a t i o n L i s t e n e r () {
22 r e t u r n h w L o c a t i o n L i s t e n e r ;

}
24 p u b l i c boolean i sRunning () {

r e t u r n i sRunning ;
26 }

p u b l i c N o t i f i c a t i o n M a n a g e r g e t N o t i f i c a t i o n M a n a g e r () {
28 r e t u r n mNM;

}
30 p u b l i c EmotionTasker getEmot ionTasker () {

r e t u r n emotionTasker ;
32 }

34 @O v e r r i d e
p u b l i c v o i d onCreate () {

36

(. . .)
38

/ / P r e p a r e our worker t h r e a d
40 hWServiceThread = new Thread (new Runnable () {

p u b l i c v o i d run () {
42

(. . .)
44

/ / −−−−−−−−−−−−−−−−− LOCATION −−−−−−−−−−−−−−−−−−−−−−−−−−
46

Locat ionManager mlocManager = (Locat ionManager)
g e t S y s t e m S e r v i c e (Context . LOCATION_SERVICE) ;

48

L i s t < S t r i n g > p r o v i d e r s = mlocManager . g e t P r o v i d e r s (t r u e) ;
50

f o r (S t r i n g p r o v i d e r : p r o v i d e r s) {
52 mlocManager . r e q u e s t L o c a t i o n U p d a t e s (p r o v i d e r , 0 , 0 ,

h w L o c a t i o n L i s t e n e r) ;
}

54

/ / I n s t a n t i a t e Emotion Tasker
56 emotionTasker = new EmotionTasker (HappyWalkService . t h i s) ;

58 (. . .)

60 Looper . loop () ;
}

62 }) ;
hWServiceThread . s t a r t () ;

64 i sRunning = t r u e ;
}

66

(. . .)
68 }

During this tutorial, we will often deal with classes that are very large; such as is the
case of HappyWalkService above. Therefore, we will often abbreviate parts of code that
are not relevant to the explanation at hand by using the (...) characters. This means
that the line numbers shown on the left side of code snippets contained in this book
are often not representative of the line numbers in the original code (which we fetched

�

� �

�

106 A Practical Introduction to Human-in-the-Loop Cyber-Physical Systems

during Chapter 6). Nevertheless, we will make an effort to clearly identify the sections
of the code we are working with by displaying several of the original lines around the
area of interest. This should allow the reader to easily find the corresponding locations
in the original code.

Returning to HappyWalkService’s code snippet above, notice that we first added a ref-
erence to an EmotionTasker object, named emotionTasker, in line 13. We then added a
getter function for this object in line 30. Finally, we instantiated it after a for loop, in
line 56).

The EmotionTasker will make use of the ES Sensor Manager, a library for Android
developed as part of the EPSRC Ubhave (Ubiquitous and Social Computing for Positive
Behaviour Change) project that makes accessing and polling of smartphone sensor
data an easy, highly configurable, and battery-friendly task1 [142]. The ES Sensor
Manager library is already available as part of the HappyWalk project, within the
com.ubhave.sensormanager module. Using this library, we will write a collectInputs()
method that will be responsible for fetching information from the Location services,
the Microphone, and the Accelerometer.

1 package h i t l e x a m p l e s . happywalk . s e r v i c e ;

3 import andro id . os . Handler ;

5 import com . g o o g l e . andro id . gms . maps . model . LatLng ;
import com . ubhave . sensormanager . ESExcept ion ;

7 import com . ubhave . sensormanager . ESSensorManager ;
import com . ubhave . sensormanager . c o n f i g . G l o b a l C o n f i g ;

9 import com . ubhave . sensormanager . d a t a . p u l l . Acce lerometerData ;
import com . ubhave . sensormanager . d a t a . p u l l . MicrophoneData ;

11 import com . ubhave . sensormanager . s e n s o r s . S e n s o r U t i l s ;

13 import h i t l e x a m p l e s . happywalk . u t i l i t i e s . G l o b a l V a r i a b l e s ;

15 p u b l i c c l a s s EmotionTasker {
p r i v a t e HappyWalkService hWServ ;

17 p r i v a t e Handler hWServiceHandler ;
p r i v a t e ESSensorManager esSensorManager ;

19

p u b l i c EmotionTasker (HappyWalkService hWServ) {
21 t h i s . hWServ = hWServ ;

t h i s . hWServiceHandler = hWServ . getHappyWalkServ iceHandler () ;
23 / / p r e p a r i n g s e n s o r manager to f e t c h d a t a

t r y {
25 esSensorManager = ESSensorManager . getSensorManager (hWServ) ;

esSensorManager . s e t G l o b a l C o n f i g (G l o b a l C o n f i g .
PRINT_LOG_D_MESSAGES , f a l s e) ;

27 } c a t c h (ESExcept ion e) {
e . p r i n t S t a c k T r a c e () ;

29 }
}

31

/∗∗
33 ∗ The i n p u t s a r e c o l l e c t e d through the ubhave module

∗ We use ESSensorManager ’ s d e f a u l t s e n s e window time
35 ∗ @r e t u r n − an a r r a y o f d o u b l e s c o n t a i n i n g the normal ized (0 −1)

1 http://www.emotionsense.org

�

� �

�

Data Acquisition 107

∗ c o l l e c t e d i n p u t s . The i n d e x e s a r e d e f i n e d i n G l o b a l V a r i a b l e s
37 ∗/

p r i v a t e double [] c o l l e c t I n p u t s () throws N o C u r r e n t P o s i t i o n {
39 double [] i n p u t s = n u l l ;

LatLng a c t u a l P o s i t i o n ;
41 /∗

f i r s t , check i f we have l o c a t i o n i n f o r m a t i o n . This i s r e q u i r e d f o r
per forming emotion r e c o g n i t i o n

43 ∗/
i f ((a c t u a l P o s i t i o n = hWServ . g e t H w L o c a t i o n L i s t e n e r () .

g e t A c t u a l p o s i t i o n ()) ! = n u l l) {
45 t r y {

/ / n o r m a l i z e l o c a t i o n d a t a
47 double [] n o r m a l i z e d L o c a t i o n = HwLocat ionProcessor .

normal izeLatLng (a c t u a l P o s i t i o n) ;
/ / c o l l e c t and p r o c e s s microphone and a c c e l e r o m e t e r d a t a

49 MicrophoneData micData = (MicrophoneData) esSensorManager .
getDataFromSensor (S e n s o r U t i l s . SENSOR_TYPE_MICROPHONE) ;

double averageMicValue = HwMicrophoneProcessor .
getAverageAmpl i tude (micData) ;

51 averageMicValue = HwMicrophoneProcessor .
normal izeAvgAmplitude (averageMicValue) ;

53 Acce lerometerData accData = (Acce lerometerData)
esSensorManager . getDataFromSensor (S e n s o r U t i l s .
SENSOR_TYPE_ACCELEROMETER) ;

double normFCTCoeffSum = HwAccelerometerProcessor .
getNormalizedFCTCoeffSum (HwAccelerometerProcessor . g e t T o t a l A c c e l e r a t i o n
(accData)) ;

55

/ / i n s e r t i n p u t s i n t o a r r a y
57 i n p u t s = new double [G l o b a l V a r i a b l e s . NN_INPUTS] ;

i n p u t s [G l o b a l V a r i a b l e s . NN_INPUT_ARRAY_INDEX_LATITUDE] =
n o r m a l i z e d L o c a t i o n [HwLocat ionProcessor . LATITUDE_INDEX] ;

59 i n p u t s [G l o b a l V a r i a b l e s . NN_INPUT_ARRAY_INDEX_LONGITUDE] =
n o r m a l i z e d L o c a t i o n [HwLocat ionProcessor . LONGITUDE_INDEX] ;

i n p u t s [G l o b a l V a r i a b l e s . NN_INPUT_ARRAY_INDEX_NOISE] =
averageMicValue ;

61 i n p u t s [G l o b a l V a r i a b l e s . NN_INPUT_ARRAY_INDEX_MOVEMENT] =
normFCTCoeffSum ;

} c a t c h (ESExcept ion e) {
63 e . p r i n t S t a c k T r a c e () ;

}
65 }

e l s e {
67 / / There i s no l o c a t i o n i n f o r m a t i o n .

throw new N o C u r r e n t P o s i t i o n (" No c u r r e n t p o s i t i o n a v a i l a b l e ,
cannot perform emotion c l a s s i f i c a t i o n . ") ;

69 }
r e t u r n i n p u t s ;

71 }
}

Notice that we need to declare an ESSensorManager esSensorManager class variable,
at the beginning of EmotionTasker (line 18). This variable is initialized through the Emo-
tionTasker’s constructor, in line 25 (where we also deactivate its debug messages, in line
26, for a cleaner output). The ESSensorManager class requires us to do all of these tasks
inside a try/catch block, to handle possible exceptions.

�

� �

�

108 A Practical Introduction to Human-in-the-Loop Cyber-Physical Systems

The collectInputs() method begins at line 38. It first declares two variables: a double
array named inputs, where data will be stored, and a LatLng actualPosition object, which
will store the user’s current location in terms of latitude and longitude.

The if clause in line 44 makes use of the HwLocationListener supported by Happy-
Walk’s background service (as the reader may remember from Figure 5.5 back on page
??). It simply checks if the HwLocationListener has position information and, if it does,
uses a HwLocationProcessor to normalize it, in line 47.

It then retrieves data from the microphone (MicrophoneData, in line 49) and the
accelerometer (AccelerometerData, in line 53), storing this information within the mic-
Data and accData objects. It also uses an HwMicrophoneProcessor, in lines 50 and 51,
and a HwAccelerometerProcessor, in line 54, to process microphone and accelerometer
data, storing the results, together with the normalized location, into inputs (lines 58–61).
Finally, it returns inputs.

Notice that the size of inputs (line 57) and its array indexes (lines 58–61) are clearly
defined. We have previously discussed in Section 5.3 that we would handle four types
of inputs, and that information is stored on the GlobalVariables.NN_INPUTS variable.
Knowing the array indexes where we stored the results is also important, as we will need
to distinguish them later on when feeding information to our neural network. Thus, it is
a good idea to define where each type of data is stored through global variables, which
can be accessed from anywhere within our application. For convenience, these should
be already defined within the hitlexamples.happywalk/utilities/GlobalVariables class:

/ /EMOTION INPUT ARRAY INDEXES
2 /∗ [0] − l a t i t u d e

∗ [1] − l o n g i t u d e
4 ∗ [2] − amount o f n o i s e

∗ [3] − amount o f movement ∗/
6 p u b l i c s t a t i c f i n a l i n t NN_INPUT_ARRAY_INDEX_LATITUDE = 0 ;

p u b l i c s t a t i c f i n a l i n t NN_INPUT_ARRAY_INDEX_LONGITUDE = 1 ;
8 p u b l i c s t a t i c f i n a l i n t NN_INPUT_ARRAY_INDEX_NOISE = 2 ;

p u b l i c s t a t i c f i n a l i n t NN_INPUT_ARRAY_INDEX_MOVEMENT = 3 ;

As the reader writes the collectInputs() method into their own copy of the project, AS
will notify that it “cannot resolve” certain “symbols”, highlighting certain words with a
red color (see how AS cannot resolve LatLng, as the popup warns in Figure 7.2). This
means that it cannot identify what those words mean and that it is necessary to add
the appropriate import declarations. One easy way of doing so is by placing the writing
cursor on the highlighted word and pressing the Alt+Enter keys simultaneously. A small
pop-up will appear, where you can tell AS to import the appropriate class, as shown in
Figure 7.3. As we delve into our project in the next sections, do not forget to add the
appropriate import declarations whenever necessary.

Figure 7.2 AS cannot resolve symbol issue.

�

� �

�

Data Acquisition 109

Figure 7.3 Importing the appropriate class.

Figure 7.4 Creating a new package.

Notice that, in case there is no location information, collectInputs() throws a NoCur-
rentPosition exception (see lines 38 and 68 of the code snippet on page ???). This excep-
tion cannot be imported using the method above because we not implemented it yet.
As we have discussed in Section 5.3.2 and showned in Figure 5.10, our neural network
will require position information for its processing. Thus, it does not make sense to
gather other types of data if our HwLocationListener cannot provide us with location
information.

Let us first create a new package to hold the exception. To do so, follow the steps shown
in Figure 7.4: use the project tab’s Android view, navigate into hitlexamples.happywalk,
right-click on it, and select New → Package. Name this new package as exceptions.

Now, let us right-click this new package, select New → Java Class, and name it NoCur-
rentPosition. The class shall extend the Exception Java class, as shown by the code below:

package h i t l e x a m p l e s . happywalk . e x c e p t i o n s ;
2

p u b l i c c l a s s N o C u r r e n t P o s i t i o n e x t e n d s E x c e p t i o n {
4 p u b l i c N o C u r r e n t P o s i t i o n (S t r i n g d e t a i l M e s s a g e) {

super (d e t a i l M e s s a g e) ;
6 }

8 p u b l i c N o C u r r e n t P o s i t i o n (S t r i n g d e t a i l M e s s a g e , Throwable t h r o w a b l e) {
super (d e t a i l M e s s a g e , t h r o w a b l e) ;

10 }
}

�

� �

�

110 A Practical Introduction to Human-in-the-Loop Cyber-Physical Systems

This exception serves as a last-resort safety net. As we will see in Section 9.2, we should
ensure that location information is available before attempting to use the collectInputs()
method. Do not forget to import the new NoCurrentPosition class into EmotionTasker.

As the reader might have noticed, the HwLocationProcessor, the HwMicrophonePro-
cessor, and the HwAccelerometerProcessor classes, used to process data, also need to be
implemented. Let us look into how these processors can be created.

7.2 Processing Sensory Data

In this section we shall prepare a package and several classes specifically dedicated to
processing sensory data. In particular, we will focus on creating the HwLocationPro-
cessor, HwMicrophoneProcessor, and HwAccelerometerProcessor, to process location,
sound, and movement, respectively. These classes will normalize the inputs and
implement very simple signal processing techniques, which we will also explain.

Let us first create a new package to hold emotion-related classes. Follow the steps
shown in Figure 7.4: navigate into hitlexamples.happywalk, right-click on it, and select
New → Package. Name this new package emotion.

Under this new package hitlexamples.happywalk.emotion let us create yet another
package, named processors, where three new classes should be created: HwLocation-
Processor, HwAccelerometerProcessor, and HwMicrophoneProcessor (see Figure 7.5).

Since signal processing is not the main focus of this book, and for the sake of brevity,
our approach will be very simplistic. Figure 7.6 gives an overview of how the location,
microphone, and accelerometer processors will be implemented.

When working with neural networks, it is good practice to normalize the data before
using it. This is because normalization may reduce the training effort and increase the
efficiency of the network. As Figure 7.6 shows, the simplest type of processing we will
perform is on location. We will merely normalize latitude and longitude values on a [0,1]

Figure 7.5 Creating the sensor processors.

�

� �

�

Data Acquisition 111

Microphone
Average

Amplitude

Normalization

Normalization

Neural

Network
Normalization

Latitude

Longitude

Location

Accelerometer

Total

Acceleration

FFT
x2 + y2 + z2

FFTcoef.

X

Y

Z

90° 180°

Figure 7.6 Signal processing overview.

range by considering their maximum and minimum possible values. The processing of
microphone data will also be rather straightforward. We shall acquire the signal, aver-
age its amplitude, and normalize this value on a [0,1] scale through empirically derived
minimum and a maximum thresholds. The processing of movement, however, shall be
slightly more complex. We will first attempt to calculate the total acceleration (indepen-
dent of direction), perform frequency analysis of the signal, and, finally, normalize the
result.

Let us begin with the processing of location. Normalizing latitude and longitude
values is trivial, since latitude ranges from -90 to 90 degrees, while longitude ranges from
-180 to 180. As such, we simply have to employ feature scaling, through the formula:

X′ =
X − Xmin

Xmax − Xmin

Where X′ is the normalized result, X is the original value, and Xmin and Xmax are
the minimum and maximum values of the variable, respectively. The following code
implements the formula above:

1 package h i t l e x a m p l e s . happywalk . emotion . p r o c e s s o r s ;

3 import com . g o o g l e . andro id . gms . maps . model . LatLng ;

5 p u b l i c c l a s s HwLocat ionProcessor {
/∗ L a t i t u d e s range from −90 to 9 0 .

7 L o n g i t u d e s range from −180 to 1 8 0 .∗ /
p r i v a t e s t a t i c f i n a l double MIN_LAT = −90;

9 p r i v a t e s t a t i c f i n a l double MAX_LAT = 9 0 ;
p r i v a t e s t a t i c f i n a l double MIN_LNG = −180;

11 p r i v a t e s t a t i c f i n a l double MAX_LNG = 1 8 0 ;

13 p u b l i c s t a t i c f i n a l i n t LATITUDE_INDEX = 0 ;
p u b l i c s t a t i c f i n a l i n t LONGITUDE_INDEX = 1 ;

15

/∗∗
17 ∗ Normal izes l a t i t u d e / l o n g i t u d e to [0 , 1] range .

�

� �

�

112 A Practical Introduction to Human-in-the-Loop Cyber-Physical Systems

∗ @param l a t L n g
19 ∗ @r e t u r n normal ized double − [l a t i t u d e , l o n g i t u d e]

∗/
21 p u b l i c s t a t i c double [] normal izeLatLng (LatLng l a t L n g) {

double [] normLatLng = new double [2] ;
23 normLatLng [LATITUDE_INDEX] = (l a t L n g . l a t i t u d e − MIN_LAT) / (MAX_LAT

− MIN_LAT) ;
normLatLng [LONGITUDE_INDEX] = (l a t L n g . l o n g i t u d e − MIN_LNG) / (

MAX_LNG − MIN_LNG) ;
25 r e t u r n normLatLng ;

}
27 }

This processor implements a single method, normalizeLatLng() (line 21), which
returns an array of doubles containing the normalized latitude and longitude values
from a LatLng object (the standard object used by the Google Maps Android API to
represent latitude/longitude coordinates). The minimum and maximum values for lati-
tude and longitude are defined in lines 8–11. The indexes used by HwLocationProcessor
are defined by the LATITUDE_INDEX (line 13) and LONGITUDE_INDEX (line 14)
variables, which are thereafter used by collectInputs() as we have seen back on page ???.

Now, let us move on to the microphone signal. Here, as suggested in Figure 7.6, we
will calculate the average amplitude of the signal and normalize this value within certain
limits:

1 package h i t l e x a m p l e s . happywalk . emotion . p r o c e s s o r s ;

3 import com . ubhave . sensormanager . d a t a . p u l l . MicrophoneData ;

5 import org . encog . u t i l . a r r a y u t i l . N o r m a l i z a t i o n A c t i o n ;
import org . encog . u t i l . a r r a y u t i l . N o r m a l i z e d F i e l d ;

7

p u b l i c c l a s s HwMicrophoneProcessor {
9

p r i v a t e s t a t i c f i n a l double MAX_AVG = 6 0 0 0 ;
11 p r i v a t e s t a t i c f i n a l double MIN_AVG = 1 5 0 ;

p r i v a t e s t a t i c f i n a l double NORM_HIGH = 1 ;
13 p r i v a t e s t a t i c f i n a l double NORM_LOW = 0 ;

15 /∗∗
∗ This method r e t u r n s the a v e r a g e v a l u e o f the am pl i tu de o f a

MicrophoneData . I f the d a t a does not c o n t a i n v a l u e s , i t r e t u r n s an
a v e r a g e o f z e r o .

17 ∗ @param d a t a − The microphone d a t a
∗ @r e t u r n − the a v e r a g e ampl i tude

19 ∗/
p u b l i c s t a t i c double getAverageAmpl i tude (MicrophoneData d a t a) {

21 i n t [] a mpl i tudeArray = d a t a . ge tAmpl i tudeArray () ;
double avgAmplitude = 0 ;

23

i f (a m p l i t u d e A r r a y . l e n g t h > 0) {
25 f o r (i n t aValue : a m p l i t u d e A r r a y)

{
27 avgAmplitude += aValue ;

}
29 avgAmplitude = avgAmplitude / (double) a m p l i t u d e A r r a y . l e n g t h ;

}
31 r e t u r n avgAmplitude ;

�

� �

�

Data Acquisition 113

}
33

/∗∗
35 ∗ This method n o r m a l i z e s the a v e r a g e v a l u e o f the am pl i tu de o f a

MicrophoneData between 0 and 1 .
∗ @param avgAmp − The a v e r a g e am pl i tu de

37 ∗ @r e t u r n − normal ized a v e r a g e am pl i tu de
∗/

39 p u b l i c s t a t i c double normal izeAvgAmpli tude (double avgAmp) {
i f (avgAmp> MAX_AVG) {

41 avgAmp = NORM_HIGH;
}

43 e l s e i f (avgAmp< MIN_AVG) {
avgAmp = NORM_LOW;

45 }
e l s e {

47 N o r m a l i z e d F i e l d normNoise = new N o r m a l i z e d F i e l d (
N o r m a l i z a t i o n A c t i o n . Normalize , " m y f i e l d " , MAX_AVG, MIN_AVG, NORM_HIGH,
NORM_LOW) ;

avgAmp = normNoise . n o r m a l i z e (avgAmp) ;
49 }

r e t u r n avgAmp ;
51 }

}

The code is rather self-explanatory, with the threshold values resting on the vari-
ables MAX_AVG (line 10) and MIN_AVG (line 11), meaning Maximum average and
Minimum average, respectively. The suggested values are merely indicative. In fact, we
encourage the reader to experiment empirically and determine more appropriate values.

The method getAverageAmplitude() (line 20) iterates over the amplitude array
present in a MicrophoneData object and calculates its average. On the other hand,
the method normalizeAvgAmplitude() (line 39) normalizes the average amplitude to
a [NORM_LOW , NORM_HIGH] range (in this case, it is [0,1]). First, it compares
the average amplitude with its thresholds. If the average amplitude is outside the
[MIN_AVG, MAX_AVG] range, its value is set to NORM_LOW or NORM_HIGH ,
accordingly. However, if the thresholds are respected, Encog’s NormalizedField utility
is used. A new NormalizedField object is set up in line 47 by using Encog’s Normal-
izationAction.Normalized field, as well as MAX_AVG, MIN_AVG, NORM_HIGH , and
NORM_LOW , to properly define the range.

As mentioned, we will attempt something slightly more complex for the accelerom-
eter signal. Since we simply want to have an idea of the amount of movement of the
smartphone, independently of its orientation, we need to first calculate the total accel-
eration from all axes (x, y, z). To do so, we can define new helper methods within our
HwAccelerometerProcessor class to calculate the square root of the sum of their squared
values, as suggested by Figure 7.6. This provides us with a value representing the general
acceleration of the device:

/∗∗
2 ∗ Returns an a r r a y r e p r e s e n t i n g the " t o t a l " a c c e l e r a t i o n f o r each

measurement , by merging the a c c e l e r a t i o n d a t a from the x , y and z a x e s
.

∗ @param d a t a − a c c e l e r o m e t e r d a t a a r r a y
4 ∗ @r e t u r n − t o t a l a c c e l e r a t i o n a r r a y

∗/

�

� �

�

114 A Practical Introduction to Human-in-the-Loop Cyber-Physical Systems

6 p u b l i c s t a t i c double [] g e t T o t a l A c c e l e r a t i o n (Acce lerometerData d a t a) {
A r r a y L i s t < f l o a t [] > r e a d i n g s = d a t a . g e t S e n s o r R e a d i n g s () ;

8 double [] t o t a l A c c = new double [r e a d i n g s . s i z e ()] ;

10 f o r (i n t i = 0 ; i < t o t a l A c c . l e n g t h ; i ++) {
f l o a t [] sample = r e a d i n g s . g e t (i) ;

12 t o t a l A c c [i] = squareRootSumSquare (sample [AcXX] , sample [AcYY] ,
sample [AcZZ]) ;
}

14 r e t u r n t o t a l A c c ;
}

16

p r i v a t e s t a t i c double squareRootSumSquare (f l o a t x , f l o a t y , f l o a t z) {
18 r e t u r n Math . s q r t (x ∗ x + y ∗ y + z ∗ z) ;

}

As discussed in Section 5.3.2, we will now attempt to perform a simple Fourier analysis
of the transformed signal. This type of signal processing technique involves decompos-
ing a signal into oscillatory components (frequencies). In HappyWalk, we will use a basic
form of Fourier analysis. More complex approaches are outside the scope of this book.
In particular, we will use the fast cosine transform (FCT), a type of Fourier transforma-
tion that only uses real values (as opposed to using complex numbers). Since we are only
interested in the real component of our signal, we can use the FCT for our frequency
analysis.

The Apache Commons Mathematics Library (org.apache.commons.math3) allows us
to access methods that calculate the FCT of a signal. To use this library we will need to
reference it in the app/build.gradle file, under dependencies, as indicated in line 19 of
the following code snippet:

1 a p p l y p l u g i n : ’ com . andro id . a p p l i c a t i o n ’

3 andro id {
compi leSdkVers ion 21

5 b u i l d T o o l s V e r s i o n " 2 1 . 1 . 2 "

7 d e f a u l t C o n f i g {
(. . .)

9 }
b u i l d T y p e s {

11 (. . .)
}

13 }

15 d e p e n d e n c i e s {
compi le f i l e T r e e (d i r : ’ l i b s ’ , i n c l u d e : [’ ∗ . j a r ’])

17 compi le ’ com . andro id . s u p p o r t : appcompat−v7 : 2 1 . 0 . 3 ’
compi le ’ com . g o o g l e . andro id . gms : p lay − s e r v i c e s : 6 . 5 . 8 7 ’

19 compi le ’ org . apache . commons : commons−math3 : 3 . 0 ’
compi le p r o j e c t (’ : com . ubhave . sensormanager ’)

21 }

However, the present implementation of FCT requires the length of the data set to
be a power of two plus one (N = 2n + 1). There are several methods to handle this
limitation. In this example, we will simply “zero-pad” our signal (add zero values at the
end of the signal) until we achieve the necessary length. While this method is not optimal

�

� �

�

Data Acquisition 115

(it has some side effects in the resulting Fourier transformation), it is sufficient for our
purposes. The resulting array contains a series of “FCT coefficients”, which represent
the frequency components contained within the original signal. These coefficients can
be normalized. They are divided by a value corresponding to the original signal’s length.

1 /∗∗
∗ Performs a F a s t Cosine Transform (FCT) o f an a r r a y o f d a t a and

3 ∗ r e t u r n s the normal ized F o u r i e r c o e f f i c i e n t s
∗

5 ∗ The F a s t Cosine Transform i s a t y p e o f F o u r i e r Trans format ion
∗ t h a t o n l y u s e s r e a l v a l u e s (opposed to u s i n g complex numbers)

7 ∗ S i n c e we a r e o n l y i n t e r e s t e d i n the r e a l component o f our s i g n a l ,
∗ we can use the FCT f o r our f r e q u e n c y a n a l y s i s .

9 ∗ Also , t h i s method o n l y a c c e p t s a r r a y s i z e s t h a t a r e o f
∗ power o f 2 + 1 (e . g . 5 or 9−> 2^2 +1 = 5 ; 2^3 +1 = 9)

11 ∗
∗ @param d a t a − the d a t a

13 ∗ @r e t u r n − normal ized FCT c o e f f i c i e n t s
∗/

15 p r i v a t e s t a t i c double [] c a l c u l a t e F C T (double [] d a t a) {
double [] paddedData = zeroPadData (d a t a) ;

17 F a s t C o s i n e T r a n s f o r m e r t r a n s f = new F a s t C o s i n e T r a n s f o r m e r (
DctNormal iza t ion . STANDARD_DCT_I) ;
double [] d a t a S t r e a m _ f f t = t r a n s f . t r a n s f o r m (paddedData , TransformType .
FORWARD) ;

19 / / f o r n o r m a l i z a t i o n , we d i v i d e by the o r i g i n a l s i g n a l ’ s l e n g t h
f o r (i n t i = 0 ; i < d a t a . l e n g t h ; i ++) {

21 d a t a S t r e a m _ f f t [i] = d a t a S t r e a m _ f f t [i] / d a t a . l e n g t h ;
}

23 r e t u r n d a t a S t r e a m _ f f t ;
}

25

/∗∗∗
27 ∗ This method z e r o pads an a r r a y o f d a t a

∗ @r e t u r n − padded d a t a
29 ∗/

p r i v a t e s t a t i c double [] zeroPadData (double [] d a t a) {
31 double [] paddedData = new double [closestUpperPowerOfTwoPlusOne (d a t a .

l e n g t h)] ;
System . a r r a y c o p y (data , 0 , paddedData , 0 , d a t a . l e n g t h) ;

33 r e t u r n paddedData ;
}

35

/∗∗
37 ∗ F i n d s the c l o s e s t upper v a l u e o f a number t h a t i s a s o l u t i o n f o r

∗ 2^n + 1 , with n b e i n g a r e a l number
39 ∗ @r e t u r n − the c l o s e s t power o f two p l u s one

∗/
41 p r i v a t e s t a t i c i n t closestUpperPowerOfTwoPlusOne (i n t number) {

long c l o s e s t P o T P 1 = (long) Math . c e i l (Math . l o g 1 0 (number) / Math . l o g 1 0
(2)) ;

43 c l o s e s t P o T P 1 = (long) Math . pow (2 , c l o s e s t P o T P 1) + 1 ;
r e t u r n (i n t) c l o s e s t P o T P 1 ;

45 }

The method calculateFCT() (line 15) begins by calling zeroPadData() (line 30) which,
as the name indicates, zero-pads the data. To do so, zeroPadData() calls, in turn, clos-
estUpperPowerOfTwoPlusOne() (line 41) which, when given an integer, finds its closest

�

� �

�

116 A Practical Introduction to Human-in-the-Loop Cyber-Physical Systems

upper value that is a power of two plus one. The Fourier transformation is performed
through a FastCosineTransformer (line 17), which is part of the Apache Commons
Mathematics Library2 .

To achieve a value that represents the overall movement of the device, we sum the FCT
coefficients and normalize the result between two empirically derived minimum and
maximum values. Below is the full implementation of our HwAccelerometerProcessor
class:

1 package h i t l e x a m p l e s . happywalk . emotion . p r o c e s s o r s ;

3 import com . ubhave . sensormanager . d a t a . p u l l . Acce lerometerData ;

5 import org . apache . commons . math3 . t r a n s f o r m . D ctNo rm al iz a t ion ;
import org . apache . commons . math3 . t r a n s f o r m . F a s t C o s i n e T r a n s f o r m e r ;

7 import org . apache . commons . math3 . t r a n s f o r m . TransformType ;
import org . encog . u t i l . a r r a y u t i l . N o r m a l i z a t i o n A c t i o n ;

9 import org . encog . u t i l . a r r a y u t i l . N o r m a l i z e d F i e l d ;

11 import j a v a . u t i l . A r r a y L i s t ;

13 /∗∗
∗ In t h i s c l a s s , we use a F o u r i e r Trans format ion to e v a l u a t e the amount

o f movement b e i n g produced by the u s e r
15 ∗/

p u b l i c c l a s s HwAccelerometerProcessor {
17

p r i v a t e s t a t i c f i n a l double MAX_AVG = 4 0 0 ;
19 p r i v a t e s t a t i c f i n a l double MIN_AVG = 1 0 0 ;

p r i v a t e s t a t i c f i n a l double NORM_HIGH = 1 ;
21 p r i v a t e s t a t i c f i n a l double NORM_LOW = 0 ;

23 p r i v a t e s t a t i c f i n a l i n t AcXX = 0 ;
p r i v a t e s t a t i c f i n a l i n t AcYY = 1 ;

25 p r i v a t e s t a t i c f i n a l i n t AcZZ = 2 ;

27 /∗∗
∗ Returns an a r r a y r e p r e s e n t i n g the " t o t a l " a c c e l e r a t i o n f o r each

measurement , by merging the a c c e l e r a t i o n d a t a from the x , y and z a x e s
.

29 ∗ @param d a t a − a c c e l e r o m e t e r d a t a a r r a y
∗ @r e t u r n − t o t a l a c c e l e r a t i o n a r r a y

31 ∗/
p u b l i c s t a t i c double [] g e t T o t a l A c c e l e r a t i o n (Acce lerometerData d a t a) {

33 A r r a y L i s t < f l o a t [] > r e a d i n g s = d a t a . g e t S e n s o r R e a d i n g s () ;
double [] t o t a l A c c = new double [r e a d i n g s . s i z e ()] ;

35

f o r (i n t i = 0 ; i < t o t a l A c c . l e n g t h ; i ++) {
37 f l o a t [] sample = r e a d i n g s . g e t (i) ;

t o t a l A c c [i] = squareRootSumSquare (sample [AcXX] , sample [AcYY] ,
sample [AcZZ]) ;

39 }
r e t u r n t o t a l A c c ;

41 }

2 More information can be found in the library’s documentation, at http://commons.apache.org/proper/
commons-math/

�

� �

�

Data Acquisition 117

43 p r i v a t e s t a t i c double squareRootSumSquare (f l o a t x , f l o a t y , f l o a t z) {
r e t u r n Math . s q r t (x ∗ x + y ∗ y + z ∗ z) ;

45 }

47 /∗∗
∗ Performs a F a s t Cosine Transform (FCT) o f an a r r a y o f d a t a and

49 ∗ r e t u r n s the normal ized F o u r i e r c o e f f i c i e n t s
∗

51 ∗ The F a s t Cosine Transform i s a t y p e o f F o u r i e r Trans format ion
∗ t h a t o n l y u s e s r e a l v a l u e s (opposed to u s i n g complex numbers)

53 ∗ S i n c e we a r e o n l y i n t e r e s t e d i n the r e a l component o f our s i g n a l ,
∗ we can use the FCT f o r our f r e q u e n c y a n a l y s i s .

55 ∗ Also , t h i s method o n l y a c c e p t s a r r a y s i z e s t h a t a r e o f
∗ power o f 2 + 1 (e . g . 5 or 9−> 2^2 +1 = 5 ; 2^3 +1 = 9)

57 ∗
∗ @param d a t a − the d a t a

59 ∗ @r e t u r n − normal ized FCT c o e f f i c i e n t s
∗/

61 p r i v a t e s t a t i c double [] c a l c u l a t e F C T (double [] d a t a) {
double [] paddedData = zeroPadData (d a t a) ;

63 F a s t C o s i n e T r a n s f o r m e r t r a n s f = new F a s t C o s i n e T r a n s f o r m e r (
DctNormal iza t ion . STANDARD_DCT_I) ;

double [] d a t a S t r e a m _ f f t = t r a n s f . t r a n s f o r m (paddedData ,
TransformType .FORWARD) ;

65 / / f o r n o r m a l i z a t i o n , we d i v i d e by the o r i g i n a l s i g n a l ’ s l e n g t h
f o r (i n t i = 0 ; i < d a t a . l e n g t h ; i ++) {

67 d a t a S t r e a m _ f f t [i] = d a t a S t r e a m _ f f t [i] / d a t a . l e n g t h ;
}

69 r e t u r n d a t a S t r e a m _ f f t ;
}

71

/∗∗∗
73 ∗ This method z e r o pads an a r r a y o f d a t a

∗ @r e t u r n − padded d a t a
75 ∗/

p r i v a t e s t a t i c double [] zeroPadData (double [] d a t a) {
77 double [] paddedData = new double [closestUpperPowerOfTwoPlusOne (

d a t a . l e n g t h)] ;
System . a r r a y c o p y (data , 0 , paddedData , 0 , d a t a . l e n g t h) ;

79 r e t u r n paddedData ;
}

81

/∗∗
83 ∗ F i n d s t h e c l o s e s t upper v a l u e o f a number t h a t i s a s o l u t i o n f o r

∗ 2^n + 1 , with n b e i n g a r e a l number
85 ∗ @r e t u r n − the c l o s e s t power o f two p l u s one

∗/
87 p r i v a t e s t a t i c i n t closestUpperPowerOfTwoPlusOne (i n t number) {

long c l o s e s t P o T P 1 = (long) Math . c e i l (Math . l o g 1 0 (number) / Math .
l o g 1 0 (2)) ;

89 c l o s e s t P o T P 1 = (long) Math . pow (2 , c l o s e s t P o T P 1) + 1 ;
r e t u r n (i n t) c l o s e s t P o T P 1 ;

91 }

93 /∗∗
∗ Returns a normal ized sum o f F a s t Cosine Transform c o e f f i c i e n t s ,

95 ∗ from a t o t a l A c c e l e r a t i o n a r r a y
∗ @param t o t a l A c c D a t a − an a r r a y c o n t a i n i n g the t o t a l a c c e l e r a t i o n

v a l u e s

�

� �

�

118 A Practical Introduction to Human-in-the-Loop Cyber-Physical Systems

97 ∗ @r e t u r n − normal ized sum o f FCT c o e f f i c i e n t s
∗/

99 p u b l i c s t a t i c double getNormalizedFCTCoeffSum (double [] t o t a l A c c D a t a) {

double [] f c t C o e f f s = c a l c u l a t e F C T (t o t a l A c c D a t a) ;
101

double sumFCTcoeff = 0 ;
103 / / sum the a b s o l u t e v a l u e o f the c o e f f i c i e n t s

f o r (double v a l : f c t C o e f f s) {
105 sumFCTcoeff += Math . abs (v a l) ;

}
107 / / perform n o r m a l i z a t i o n

i f (sumFCTcoeff > MAX_AVG) {
109 sumFCTcoeff = NORM_HIGH;

}
111 e l s e i f (sumFCTcoeff< MIN_AVG) {

sumFCTcoeff = NORM_LOW;
113 }

e l s e {
115 N o r m a l i z e d F i e l d normMove = new N o r m a l i z e d F i e l d (

N o r m a l i z a t i o n A c t i o n . Normalize , " m y f i e l d " , MAX_AVG,
117 MIN_AVG, NORM_HIGH, NORM_LOW) ;

sumFCTcoeff = normMove . n o r m a l i z e (sumFCTcoeff) ;
119 }

r e t u r n sumFCTcoeff ;
121 }

}

This class is, in some ways, similar to HwMicrophoneProcessor. Between the lines
18 and 21 we can find the threshold values MAX_AVG and MIN_AVG. The reader is,
once again, encouraged to experiment with these values to fine-tune the application.
We can also find that NORM_HIGH and NORM_LOW define a [0,1] range once
more. Between lines 23 and 25 we find the indexes used by getTotalAcceleration() to
read the acceleration values in the x, y, and z axes from within an AccelerometerData
object.

In line 99 we find the getNormalizedFCTCoeffSum() method. It first calculates the FCT
coefficients (line 100) and then determines the sum of their absolute values (line 103).
This sum is then normalized in a manner very similar to what was done for HwMicro-
phoneProcessor (line 107).

Now that they are implemented, do not forget to add the appropriate imports for the
HwLocationProcessor, the HwAccelerometerProcessor, and the HwMicrophoneProcessor
to EmotionTasker.

7.3 In Summary...

In this section we began our work in the EmotionTasker class, which represents the core
of our emotional inference mechanism. In particular, we handled its creation, set up a
constructor and some of its class variables, made our background service aware of its
existence, and defined its first method, collectInputs(), for data collection.

�

� �

�

Data Acquisition 119

Microphone

Normalization

Normalization

Normalization

Latitude

Longitude

Location

Accelerometer

STATE
INFERENCE

DATA ACQUISITION

Emotion

Recognition task

Runs

periodically

Performs

ACTUATION

Total

Acceleration

FFT

x2 + y2 + z2

FFTcoef.

X

Y

Z

90° 180°

Average

Amplitude

Figure 7.7 Current state of our HiTLCPS at the end of Chapter 7. (See insert for color representation of
the figure.)

We then developed the HwLocationProcessor, HwMicrophoneProcessor, and HwAc-
celerometerProcessor classes, which are specifically dedicated to processing sensory
data. We studied how to acquire and normalize the inputs, and also implemented some
simple signal processing techniques for sound and movement.

With these tasks completed, we have finished the process of Data Acquisition.
Figure 7.7 shows an overview of what we have achieved and how it fits into the larger
picture of our HiTLCPS.

Several parts of Figure 7.7 are dimmed out and composed of dashed arrows and
squares. These identify the tasks that we have yet to address. At the top we have an

�

� �

�

120 A Practical Introduction to Human-in-the-Loop Cyber-Physical Systems

Emotion Recognition Task, which should be responsible for periodically beginning
a new emotion recognition. We also need to address the major processes of State
Inference and Actuation.

In the next chapter we will focus on State Inference and also partially address the peri-
odicity of emotion recognition. We shall define the core of our machine learning, which
will make use of the processed inputs that we created in this chapter. Eventually, we will
be one step closer to the creation of our emotional inference mechanism.

�

� �

�

121

8

State Inference

In Chapter 5 we saw that, in the HiTL control loop, the stage that follows data acquisi-
tion is state inference. Subsequently, we have also justified the use of artificial neural
networks (ANNs) as our mood inference tool. In this chapter, we will approach the
implementation and development of our neural network, as well as the user feedback
mechanisms, both of which are cornerstones of state inference in our sample Happy-
Walk app. In this context, our objective is to implement a learning mechanism that will
receive periodic feedback from the user and learn to associate emotions with sensory
inputs. The frequency of these feedback requests will be dynamically adapted to the
accuracy of the network.

We will first start, in Section 8.1, by explaining how to implement the neural network
that will be used as an inference tool. Next, in Section 8.2, we will deal with the problem
of requesting user feedback, following which we will present the solutions for processing
user feedback, in Section 8.3.

8.1 Implementing a Neural Network

HappyWalk’s neural network will be implemented using the Encog Machine Learning
Framework [140].1 For this, we will perform the following steps:
• Reference the Encog library in our build dependencies.
• Declare and initialize a BasicNetwork object.
• Fetch input, feed it into the neural network, and collect the result.

During the first step identified above, the library must be referenced in the
app/build.gradle file, similar to what we did for org.apache.commons.math3 (see
line 20, below):
a p p l y p l u g i n : ’ com . andro id . a p p l i c a t i o n ’

2

andro id {
4 compi leSdkVers ion 21

b u i l d T o o l s V e r s i o n " 2 1 . 1 . 2 "
6

d e f a u l t C o n f i g {

1 http://www.heatonresearch.com/encog/

A Practical Introduction to Human-in-the-Loop Cyber-Physical Systems, First Edition.
David Nunes, Jorge Sá Silva and Fernando Boavida.
© 2018 John Wiley & Sons Ltd. Published 2018 by John Wiley & Sons Ltd.
Companion Website URL: www.wiley.com/go/nunesloop

�

� �

�

122 A Practical Introduction to Human-in-the-Loop Cyber-Physical Systems

8 (. . .)
}

10 b u i l d T y p e s {
(. . .)

12 }
}

14

d e p e n d e n c i e s {
16 compi le f i l e T r e e (d i r : ’ l i b s ’ , i n c l u d e : [’ ∗ . j a r ’])

compi le ’ com . andro id . s u p p o r t : appcompat−v7 : 2 1 . 0 . 3 ’
18 compi le ’ com . g o o g l e . andro id . gms : p lay − s e r v i c e s : 6 . 5 . 8 7 ’

compi le ’ org . apache . commons : commons−math3 : 3 . 0 ’
20 compi le ’ org . encog : encog−core : 3 . 0 . 1 ’

compi le p r o j e c t (’ : com . ubhave . sensormanager ’)
22 }

Our next step is to declare a BasicNetwork object within our EmotionTasker, which
conceptually represents our neural network (see line 11, below). We also require a
method which initializes this object (lines 21–29):

package h i t l e x a m p l e s . happywalk . s e r v i c e ;
2

import (. . .)
4 import org . encog . e n g i n e . network . a c t i v a t i o n . A c t i v a t i o n S i g m o i d ;

import org . encog . n e u r a l . networks . Bas icNetwork ;
6 import org . encog . n e u r a l . networks . l a y e r s . B a s i c L a y e r ;

8 p u b l i c c l a s s EmotionTasker {
p r i v a t e HappyWalkService hWServ ;

10 p r i v a t e Handler hWServiceHandler ;
p r i v a t e BasicNetwork network ;

12 p r i v a t e ESSensorManager esSensorManager ;

14 (. . .)

16 /∗∗
∗This method i n i t i a l i z e s a Neural Network with

18 ∗ two hidden l a y e r s , t h r e e neurons i n the f i r s t and two
∗ neurons i n the second

20 ∗/
p r i v a t e v o i d i n i t N e t w o r k () {

22 network = new BasicNetwork () ;
network . addLayer (new B a s i c L a y e r (n u l l , t rue , G l o b a l V a r i a b l e s .

NN_INPUTS)) ;
24 network . addLayer (new B a s i c L a y e r (new A c t i v a t i o n S i g m o i d () , t rue ,

G l o b a l V a r i a b l e s . NN_HL1_NEURONS)) ;
network . addLayer (new B a s i c L a y e r (new A c t i v a t i o n S i g m o i d () , t rue ,

G l o b a l V a r i a b l e s . NN_HL2_NEURONS)) ;
26 network . addLayer (new B a s i c L a y e r (new A c t i v a t i o n S i g m o i d () , f a l s e ,

G l o b a l V a r i a b l e s . NN_OUTPUTS)) ;
network . g e t S t r u c t u r e () . f i n a l i z e S t r u c t u r e () ;

28 network . r e s e t () ;
}

30

(. . .)
32

}

�

� �

�

State Inference 123

In accordance with what we discussed in Section 5.3, this initialization code creates
a neural network which receives four inputs, has two hidden layers, and outputs two
values.

Its first input layer will receive latitude, longitude, noise, and movement data. It is
defined in line 23, where the GlobalVariables.NN_INPUTS variable is used (as we had
seen back on page ???). As for the two hidden layers, the first one contains three neu-
rons (line 24, determined by the GlobalVariables.NN_HL1_NEURONS variable) and the
second two neurons (line 25, determined by the GlobalVariables.NN_HL2_NEURONS
variable). The final output layer is defined in line 26, and the number of its neurons by
GlobalVariables.NN_OUTPUTS.

Each layer has an activation function. Activation functions are mathematical functions
which define the output of a neuron from its input. There are several types of activation
functions typically used with neural networks. In our case, we will use Encog’s Activa-
tionSigmoid class, which represents an activation function with a sigmoidal shape that
generates only positive numbers, similar to what is shown in Figure 8.1. As such, and
since we have two neurons in our final layer, our neural network’s output will be two
values, ranging from 0 to 1.

The reader is welcome to experiment by adding more hidden layers (using the
addLayer() method) and/or by changing the number of neurons in the hidden layers
we have defined above. As we have seen in Section 5.3.2, different types of neural
networks may result in different performance requirements and accuracies. For
example, one could experiment and compare the implementation above with one
that uses a 4-10-10-10-2 neural network configuration (three hidden layers with 10
neurons each) by changing the values of GlobalVariables.NN_HL1_NEURONS and

1,00

0,95

0,95

0,85

0,80

0,75

0,70

0,65

0,65

0,55

0,50

0,45

0,40

0,35

0,30

0,25

0,20

0,15

0,10

0,05

0,00
–1,1 –1,0 –0,9 –0,8 –0,7 –0,6 –0,5 –0,4 –0,3 –0,2 –0,1 0,0

Neuron Input

N
e

u
ro

n
 O

u
tp

u
t

0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1,0

Figure 8.1 An example of a sigmoid activation function.

�

� �

�

124 A Practical Introduction to Human-in-the-Loop Cyber-Physical Systems

GlobalVariables.NN_HL2_NEURONS to 10 and by adding the following code after
line 25:

network.addLayer(new BasicLayer(new ActivationSigmoid(), false, 10));

Changing the number of inputs and outputs is not advised, since it would conflict
with the rest of the tutorial.

The most important building blocks of our EmotionTasker class are now in place: we
can fetch inputs and use a neural network. The next logical step will be to feed these
inputs to our network and collect the result. Since this is a task we will be performing
periodically, we will define a new subclass within EmotionTasker to perform it, named
EmotionRecognitionTask (lines 26 to 41), as well as an appropriate object declaration
(line 10):
package h i t l e x a m p l e s . happywalk . s e r v i c e ;

2

import (. . .)
4

p u b l i c c l a s s EmotionTasker {
6 p r i v a t e HappyWalkService hWServ ;

p r i v a t e Handler hWServiceHandler ;
8 p r i v a t e BasicNetwork network ;

p r i v a t e ESSensorManager esSensorManager ;
10 p r i v a t e Emot ionRecogni t ionTask emotionRecog ;

12 p u b l i c EmotionTasker (HappyWalkService hWServ) {
(. . .)

14 }

16 p r i v a t e v o i d i n i t N e t w o r k () {
(. . .)

18 }

20 p r i v a t e double [] c o l l e c t I n p u t s () throws N o C u r r e n t P o s i t i o n {
(. . .)

22 }

24 (. . .)

26 c l a s s Emot ionRecogni t ionTask implements Runnable {
p r i v a t e double [] o u t p u t s ;

28 p r i v a t e double [] i n p u t s ;

30 @O v e r r i d e
p u b l i c v o i d run () {

32 / / Perform r e c o g n i t i o n o f emotions here
}

34

p r i v a t e v o i d fetchInputsAndCompute () throws N o C u r r e n t P o s i t i o n {
36 o u t p u t s = new double [G l o b a l V a r i a b l e s . NN_OUTPUTS] ;

i n p u t s = c o l l e c t I n p u t s () ;
38 / / compute the emotion

network . compute (i n p u t s , o u t p u t s) ;
40 }

}
42

}

�

� �

�

State Inference 125

The code above shows the skeleton of our new subclass. It is important to note that
this class implements the Runnable interface. This allows us to run it on a thread other
than the main one; for example, as a background task. We have already implemented
an inner method named fetchInputsAndCompute() (lines 35-40), where we use our pre-
vious collectInputs() method to collect the necessary inputs and then use them on our
network object. Notice how Encog simplifies the use of this machine learning technique:
we can compute our result in a single line of code: network.compute(inputs, outputs); -
the output is stored in the outputs array variable, the size of which is determined by the
global variable GlobalVariables.NN_OUTPUTS.

8.2 Requesting User Feedback

Now that we can gather input and compute emotions, we need to present these results
to the user, so that he/she may provide us with some feedback. To do so, we will cre-
ate a new activity especially dedicated to requesting user feedback. This comprises the
following steps:
• Create the EmotionFeddback activity, which will be responsible for handling the

process of acquiring emotional feedback, as we showed with Figure 5.9 and discussed
back on page ??.

• Implement the EmotionSpace view, which will represent a color space where the user
can point his/her current mood.

• Finish EmotionFeedback by making it use EmotionSpace and send emotional feedback
results back to EmotionTasker.

• Show a feedback request notification that the user may press to provide emotional
feedback. We will also dynamically control the frequency of these feedback requests.

8.2.1 Creating the EmotionFeedback Activity

Right-click on the activities package and select New → Activity → Basic Activity (see
Figure 8.2). Name this activity EmotionFeedback, as shown if Figure 8.3.

After the completion of this process, AS will have created and opened two new
files, a Java class activities/EmotionFeedback.java and a layout file res/layout/activ-
ity_emotion_feedback.xml, as shown in Figure 8.4 and the code that follows it.
package h i t l e x a m p l e s . happywalk . a c t i v i t i e s ;

2

import andro id . os . Bundle ;
4 import andro id . s u p p o r t . v7 . app . A c t i o n B a r A c t i v i t y ;

6 import h i t l e x a m p l e s . happywalk . R ;

8 p u b l i c c l a s s EmotionFeedback e x t e n d s A c t i o n B a r A c t i v i t y {

10 @O v e r r i d e
p r o t e c t e d v o i d onCreate (Bundle s a v e d I n s t a n c e S t a t e) {

12 super . onCreate (s a v e d I n s t a n c e S t a t e) ;
se tContentView (R . l a y o u t . a c t i v i t y _ e m o t i o n _ f e e d b a c k) ;

14 }

16 }

�

� �

�

126 A Practical Introduction to Human-in-the-Loop Cyber-Physical Systems

Figure 8.2 Creating a new basic activity.

Figure 8.3 Name the activity as EmotionFeedback.

We want the user to provide feedback only once per emotional inference. Thus, we
have to avoid the possibility of having the user return to the feedback activity after feed-
back has been given. We also want to avoid having multiple feedback screens opened at
any one time. Therefore, we need to make sure that only a single instance of this activ-
ity is allowed. Additionally, the entire HappyWalk application is developed towards the
portrait orientation.

Let us edit the file happywalk/app/src/main/AndroidManifest.xml and add the
attributes android:screenOrientation=“portrait” and android:launchMode=“single
Instance” to our new activity:

�

� �

�

State Inference 127

<? xml v e r s i o n = " 1 . 0 " encoding= " u t f −8 " ?>
2 < m a n i f e s t x m l n s : a n d r o i d = " h t t p : / / schemas . andro id . com/ apk / r e s / andro id "

x m l n s : t o o l s = " h t t p : / / schemas . andro id . com/ t o o l s "
4 package= " h i t l e x a m p l e s . happywalk " >

6 (. . .)
< a c t i v i t y

8 android :name = " . a c t i v i t i e s . EmotionFeedback "
a n d r o i d : l a b e l = " @ s t r i n g / t i t l e _ a c t i v i t y _ e m o t i o n _ f e e d b a c k "

10 android : launchMode= " s i n g l e I n s t a n c e "
a n d r o i d : s c r e e n O r i e n t a t i o n = " p o r t r a i t " >

12 </ a c t i v i t y >
</ a p p l i c a t i o n >

14

</ m a n i f e s t >

Figure 8.4 The files that compose the EmotionFeedback activity.

This activity will require a means to interface with the user and receive his/her
emotional feedback. In this tutorial, this will be achieved through a specialized
implementation of an Android View named EmotionSpace, which will be described
next.

8.2.2 Implementing the EmotionSpace View

The objective of EmotionSpace is to allow the user to point to his/her current mood. To
do so, EmotionSpace will extend the android.view.View class. Our goal is to achieve an
interface similar to the one shown in Figure 8.5: a view which presents the user with a
color space and two circles: the yellow circle represents the output of the neural network
and the green circle can be dragged by the user to provide feedback.

To achieve this view, we will go through several steps. We will begin by creating a
new package and, within it, a new class that extends android.view.View, implementing
its required constructors. We will then begin to translate the concept of an EmotionCir-
cle into actual code. In doing so, we will make an effort to keep our code flexible and

�

� �

�

128 A Practical Introduction to Human-in-the-Loop Cyber-Physical Systems

Figure 8.5 Our goal for the
EmotionSpace view. (See insert for color
representation of the figure.)

reusable with different kinds of graphical interfaces. Afterwards, we will focus on the
task of drawing our graphical resources on screen and updating their position whenever
the user interfaces with them. To do so, we will also need to consider what positioning
means in the context of emotional inference and discover how to relate a certain posi-
tion with an emotional output. Finally, we will handle the proper initialization of our
EmotionSpace and the retrieval of emotional feedback. This will make our view usable
by activities, including our own EmotionFeedback.

As mentioned above, the implementation of this EmotionSpace view will begin with
the creation of a new class. Create a new package named feedback under the previous
emotion package. Within it, we create a new class named EmotionSpace, as shown in
Figure 8.6.

The first thing to do is make EmotionSpace extend android.view.View. To do so, simply
add extends View in front of the class name, as shown in Figure 8.7. Do not forget to add
the appropriate import declaration, as explained on page ???. However, in doing so, AS
will note that There is no default constructor available in ’android.view.View’; we need to
create one. One easy way of doing so is placing the cursor on top of the class declaration
and pressing the Alt + Enter keys simultaneously. A pop-up similar to the one shown in
Figure 8.7 will appear. Choose the option Create constructor matching super and then
the option View(context:Context, attrs:AttributeSet) (see Figure 8.8). AS should add the
necessary constructor and associated imports automatically.

Looking back at Figure 8.5, it shows us that there are several components that must
be conceptually represented in EmotionSpace: there is a color space with the four
emotions, the yellow circle for neural network output and green circle for user feed-
back. Let us consider the concept of EmotionCircle, which encompasses both the green
and the yellow circles. We will represent this concept through an inner class within
EmotionSpace:

�

� �

�

State Inference 129

Figure 8.6 Creating the EmotionSpace class.

Figure 8.7 Create EmotionSpace constructor matching super.

1 package h i t l e x a m p l e s . happywalk . emotion . f e e d b a c k ;

3 import andro id . c o n t e n t . Context ;
import andro id . g r a p h i c s . Bitmap ;

5 import andro id . g r a p h i c s . P o i n t ;
import andro id . u t i l . A t t r i b u t e S e t ;

7 import andro id . view . View ;

9 p u b l i c c l a s s EmotionSpace e x t e n d s View {
p u b l i c EmotionSpace (Context co ntext , A t t r i b u t e S e t a t t r s) {

�

� �

�

130 A Practical Introduction to Human-in-the-Loop Cyber-Physical Systems

11 super (context , a t t r s) ;
}

13

p r i v a t e c l a s s E m o t i o n C i r c l e {
15 p r i v a t e Bitmap bitmap ;

p r i v a t e P o i n t p o i n t ;
17

p u b l i c E m o t i o n C i r c l e (Bitmap bitmap) {
19 t h i s . bitmap = bitmap ;

p o i n t = new P o i n t (0 , 0) ;
21 }

23 p u b l i c Bitmap getBi tmap () {
r e t u r n bitmap ;

25 }

27 p u b l i c P o i n t g e t P o i n t () {
r e t u r n p o i n t ;

29 }

31 p u b l i c v o i d s e t P o i n t (P o i n t p o i n t) {
t h i s . p o i n t = p o i n t ;

33 }
}

35 }

The EmotionCircle class contains two class variables: Bitmap, which represents the
graphics of our circle, and Point, which is its position within the EmotionSpace. We also
define a constructor that takes Bitmap and places the circle within point 0,0 (the origin of
EmotionSpace; we will talk about where this point is located on page ???). The developer
will be able to specify the initial positions of each circle within another function we
will implement later on. After the standard Getters and Setters, we also define a setPoint
method that rewrites the internal point variable.

In this tutorial, the EmotionSpace class will only be used with the previously defined
EmotionFeedback. However, let us imagine that, for some reason, we wanted to provide
different types of EmotionFeedback activities, with different colors, button placements
and graphics, depending on how the user is feeling. Or, in another possibility, the reader
might be interested in expanding HappyWalk by adding other means of providing feed-
back. In these cases, it is a bad practice to “hardcode” the bitmaps used for the circles
and the EmotionSpace background. Therefore, as an exercise, let us attempt to imple-
ment the EmotionSpace class in a flexible way that allows the developer to easily reuse
the class and change its appearance.

A possible way of doing this is to define which bitmaps should be used within
the layout of the activity that uses EmotionSpace (in our case, EmotionFeedback).
Let us inspect the code behind EmotionFeedback’s layout file, res/layout/activ-
ity_emotion_feedback.xml. To do so, change to the Text view, as shown in Figure 8.9.

1 <? xml v e r s i o n = " 1 . 0 " encoding= " u t f −8 " ?>
< R e l a t i v e L a y o u t x m l n s : a n d r o i d = " h t t p : / / schemas . andro id . com/ apk / r e s / andro id "

3 x m l n s : t o o l s = " h t t p : / / schemas . andro id . com/ t o o l s "
a n d r o i d : l a y o u t _ w i d t h = " match_parent "

5 a n d r o i d : l a y o u t _ h e i g h t = " match_parent "
andro id :paddingBot tom= " @dimen / a c t i v i t y _ v e r t i c a l _ m a r g i n "

7 a n d r o i d : p a d d i n g L e f t = " @dimen / a c t i v i t y _ h o r i z o n t a l _ m a r g i n "

�

� �

�

State Inference 131

a n d r o i d : p a d d i n g R i g h t = " @dimen / a c t i v i t y _ h o r i z o n t a l _ m a r g i n "
9 andro id :paddingTop = " @dimen / a c t i v i t y _ v e r t i c a l _ m a r g i n "

t o o l s : c o n t e x t = " h i t l e x a m p l e s . happywalk . a c t i v i t i e s . EmotionFeedback " >
11

< h i t l e x a m p l e s . happywalk . emotion . f e e d b a c k . EmotionSpace
13 a n d r o i d : l a y o u t _ w i d t h = " 360dp "

a n d r o i d : l a y o u t _ h e i g h t = " 360dp "
15 a n d r o i d : b a c k g r o u n d = " @drawable / emotion_color_map "

a n d r o i d : i d = "@+ i d / emotionSpace "
17 a n d r o i d : l a y o u t _ c e n t e r H o r i z o n t a l = " t r u e " />

19 </ R e l a t i v e L a y o u t >

Defining the background’s bitmap this way is straightforward, since Android provides
an android:background that can point to a bitmap of our choosing. In the example
above, we use @drawable/emotion_color_map (line 15), which represents the bitmap

Figure 8.8 Choose View(context:Context, attrs:AttributeSet).

�

� �

�

132 A Practical Introduction to Human-in-the-Loop Cyber-Physical Systems

Figure 8.9 Changing from the layout Design view to Text view.

emotion_color_map.png already present in our project, placed in the folder app/res/-
drawable. The reader is welcome to replace this background with another of his/her own
choosing and to experiment with the android:layout_width and android:layout_height
values.

However, what about the bitmaps for the neural network output and user feedback
circles? Despite the fact that there is not a straightforward way of defining these
bitmaps within the layout file, fortunately Android provides a way of defining custom
layout attributes. Therefore, we can create our own attributes to define the circle
bitmaps.

These attributes can be defined in a new Values resource file. Let us create one by
right-clicking on the app/res/values folder and choosing File → New → Values resource
file (see Figure 8.10). On the popup window that appears, name the file as attrs and leave
Directory name as values (see Figure 8.11).

AS should open the new app/res/values/attrs.xml file, which should contain an empty
resources root element. Our custom attributes are resources that should be declared
inside a <declare-styleable> child element. Additionally, each individual attribute has
a name and a value and can be defined within a particular <attr> element. As such,
attrs.xml can be defined as shown in the code below:

�

� �

�

State Inference 133

Figure 8.10 Creating a new Values resource file.

Figure 8.11 Naming the Values resource file.

�

� �

�

134 A Practical Introduction to Human-in-the-Loop Cyber-Physical Systems

1 <? xml v e r s i o n = " 1 . 0 " encoding= " u t f −8 " ?>
< r e s o u r c e s >

3 < d e c l a r e − s t y l e a b l e name= " EmotionSpace " >
< a t t r name= " n e u r o C i r c l e I m a g e " format= " i n t e g e r " />

5 < a t t r name= " u s e r C i r c l e I m a g e " format= " i n t e g e r " />
</ d e c l a r e − s t y l e a b l e >

7 </ r e s o u r c e s >

Despite having a single <declare-styleable> element, we have named it with the same
name as our EmotionSpace view. This allows us to easily identify which attributes belong
to a view, in case we want to expand our application. As the code shows, we have named
our attributes as neuroCircleImage (for the circle representing the neural network out-
put) and userCircleImage (for the circle representing the user feedback). Readers unfa-
miliar with Android might be puzzled as to why the format of each attribute is of the type
integer, since we are attempting to reference bitmap images. This is because resources
in Android are internally referenced by a resource ID, an integer belonging to Android’s
R class. Therefore, our new attributes are actually intended to represent this resource ID,
which will, in turn, point towards its respective bitmap file.

We can now use the EmotionSpace’s new attributes within EmotionFeedback’s layout,
as illustrated below:

1 <? xml v e r s i o n = " 1 . 0 " encoding= " u t f −8 " ?>
< R e l a t i v e L a y o u t x m l n s : a n d r o i d = " h t t p : / / schemas . andro id . com/ apk / r e s / andro id "

3 x m l n s : t o o l s = " h t t p : / / schemas . andro id . com/ t o o l s "
xmlns :custom= " h t t p : / / schemas . andro id . com/ apk / res −auto "

5 a n d r o i d : l a y o u t _ w i d t h = " match_parent "
a n d r o i d : l a y o u t _ h e i g h t = " match_parent "

7 andro id :paddingBot tom= " @dimen / a c t i v i t y _ v e r t i c a l _ m a r g i n "
a n d r o i d : p a d d i n g L e f t = " @dimen / a c t i v i t y _ h o r i z o n t a l _ m a r g i n "

9 a n d r o i d : p a d d i n g R i g h t = " @dimen / a c t i v i t y _ h o r i z o n t a l _ m a r g i n "
andro id :paddingTop = " @dimen / a c t i v i t y _ v e r t i c a l _ m a r g i n "

11 t o o l s : c o n t e x t = " h i t l e x a m p l e s . happywalk . a c t i v i t i e s . EmotionFeedback " >

13 < h i t l e x a m p l e s . happywalk . emotion . f e e d b a c k . EmotionSpace
a n d r o i d : l a y o u t _ w i d t h = " 360dp "

15 a n d r o i d : l a y o u t _ h e i g h t = " 360dp "
a n d r o i d : b a c k g r o u n d = " @drawable / emotion_color_map "

17 c u s t o m : n e u r o C i r c l e I m a g e = " @drawable / y e l l o w _ c i r c l e "
c u s t o m : u s e r C i r c l e I m a g e = " @drawable / g r e e n _ c i r c l e "

19 a n d r o i d : i d = "@+ i d / emotionSpace "
a n d r o i d : l a y o u t _ c e n t e r H o r i z o n t a l = " t r u e " / >

21

</ R e l a t i v e L a y o u t >

Notice the additional namespace declaration at the top of the XML file, xmlns:custom=
“http://schemas.android.com/apk/res-auto” (line 4). This allows us to use our
custom-defined attributes custom:neuroCircleImage and custom:userCircleImage,
which represent an integer pointing towards a bitmap. In this case, we are using the
yellow_circle and green_circle bitmaps already present in our project, placed in the
folder app/res/drawable. Again, the reader is welcome to replace these bitmaps with
others of his/her own choosing, although it is convenient that they still represent a
circle of the same radius (we will discuss why in the next few paragraphs).

�

� �

�

State Inference 135

Now that the new attributes have been defined, we need to retrieve their values
from within EmotionSpace. This can be done on the class constructor, as shown by the
following code:

package h i t l e x a m p l e s . happywalk . emotion . f e e d b a c k ;
2

import andro id . c o n t e n t . Context ;
4 import andro id . c o n t e n t . r e s . TypedArray ;

import andro id . g r a p h i c s . Bitmap ;
6 import andro id . g r a p h i c s . P o i n t ;

import andro id . g r a p h i c s . drawable . BitmapDrawable ;
8 import andro id . g r a p h i c s . drawable . Drawable ;

import andro id . u t i l . A t t r i b u t e S e t ;
10 import andro id . view . View ;

12 import h i t l e x a m p l e s . happywalk . R ;

14 p u b l i c c l a s s EmotionSpace e x t e n d s View {
p r i v a t e E m o t i o n C i r c l e n e u r o c i r c l e ;

16 p r i v a t e E m o t i o n C i r c l e u s e r c i r c l e ;

18 p u b l i c EmotionSpace (Context co ntext , A t t r i b u t e S e t a t t r s) {
super (context , a t t r s) ;

20 /∗
This a l l o w s us to f e t c h EmotionSpace ’ s custom a t t r i b u t e s ,

22 a s d e f i n e d i n v a l u e s / a t t r s . xml . In t h i s case , i t a l l o w s f o r
us to d e f i n e the images to be used f o r the n e u r o c i r c l e and

u s e r c i r c l e
24 ∗/

TypedArray a = c o n t e x t . getTheme () . o b t a i n S t y l e d A t t r i b u t e s (
26 a t t r s ,

R . s t y l e a b l e . EmotionSpace ,
28 0 , 0) ;

30 Drawable neuroDraw = a . getDrawable (R . s t y l e a b l e .
Emot ionSpace_neuroCirc le Image) ;

Drawable userDraw = a . getDrawable (R . s t y l e a b l e .
E m o t i o n S p a c e _ u s e r C i r c l e I m a g e) ;

32

i f (! (neuroDraw i n s t a n c e o f BitmapDrawable) | | ! (userDraw
i n s t a n c e o f BitmapDrawable)) {

34 throw new RuntimeExcept ion (" n e u r o C i r c l e I m a g e and
u s e r C i r c l e I m a g e a t t r i b u t e s r e q u i r e Bitmap d r a w a b l e s . ") ;

}
36

n e u r o c i r c l e = new E m o t i o n C i r c l e (
38 ((BitmapDrawable) neuroDraw) . getBi tmap ()) ;

u s e r c i r c l e = new E m o t i o n C i r c l e (
40 ((BitmapDrawable) userDraw) . getBi tmap ()) ;

}
42

p r i v a t e c l a s s E m o t i o n C i r c l e {
44 (. . .)

}
46 }

The TypedArray object contains references to the previously defined attributes. From
this array, we fetch their associated values and perform a check to see if these are, indeed,

�

� �

�

136 A Practical Introduction to Human-in-the-Loop Cyber-Physical Systems

bitmaps that can be used and not some other form of resources (e.g. text). If they do not
represent bitmaps, we throw a RuntimeException which will, essentially, crash our appli-
cation (since the developer is providing nonsensical resources). Finally, we instantiate
two class variables of type EmotionCircle using the provided bitmaps.

Our circles now have bitmaps and coordinates, but how and when are they displayed
on the device’s screen? Android abstracts the drawing of graphical information through
the onDraw method of android.view.View. We can Override this method to tell View
how it should update its graphical information. In our case, what exactly does Emotion-
Space do each time it needs to update what the user is viewing? First, it needs to confirm
whether it should actually be drawing anything; we should have a mechanism that avoids
drawing onto the screen until we are ready to do so. In case we can draw, Emotion-
Space should verify the current position of each circle and redraw their bitmaps accord-
ingly. The following shows an implementation of onDraw (lines 15 –23) that follows this
logic:

package h i t l e x a m p l e s . happywalk . emotion . f e e d b a c k ;
2

import (. . .)
4 import andro id . g r a p h i c s . Canvas ;

6 p u b l i c c l a s s EmotionSpace e x t e n d s View {
p r i v a t e E m o t i o n C i r c l e n e u r o c i r c l e ;

8 p r i v a t e E m o t i o n C i r c l e u s e r c i r c l e ;
p r i v a t e boolean showEmot ionCirc les = f a l s e ;

10

p u b l i c EmotionSpace (Context co ntext , A t t r i b u t e S e t a t t r s) {
12 (. . .)

}
14

/ / C a l l e d when drawing the s c r e e n
16 @O v e r r i d e

p r o t e c t e d v o i d onDraw (Canvas c a n v a s) {
18 i f (showEmot ionCirc les) {

/ / draw c i r c l e p o s i t i o n s
20 c a n v a s . drawBitmap (n e u r o c i r c l e . getBi tmap () , n e u r o c i r c l e .

g e t P o i n t () . x , n e u r o c i r c l e . g e t P o i n t () . y , n u l l) ;
c a n v a s . drawBitmap (u s e r c i r c l e . getBi tmap () , u s e r c i r c l e . g e t P o i n t

() . x , u s e r c i r c l e . g e t P o i n t () . y , n u l l) ;
22 }

}
24

p r i v a t e c l a s s E m o t i o n C i r c l e {
26 (. . .)

}
28 }

The variable showEmotionCircles (declared in line 9) acts as a control that impedes
onDraw from doing anything unless we want it to (through the if branch in line 18).
The rest of the method is straightforward: we simply tell our Canvas (an object that
represents what is going to be drawn) to draw the neurocircle’s and the emotioncircle’s
bitmaps at the correct position (lines 20 and 21).

�

� �

�

State Inference 137

(0,0)

(0,YMAX)

(XMAX, 0)

(XMAX, YMAX)

Figure 8.12 The coordinates of the EmotionSpace view. (See insert for color representation of the figure.)

Another question that we must ask ourselves is what exactly does this position mean?
First, let us study how Android handles positioning coordinates within a View by looking
at Figure 8.12.

The origin of our View rests on the top left corner, whereas the bottom right cor-
ner corresponds to the point where X and Y are equivalent to its width and height,
respectively. As we have seen in Section 8.1, the output of our neural network is two
decimal values, with the range [0,1]. As it stands, these values remain meaningless: it is
left to us to give them meaning.

We will give meaning to the output of our ANN by associating each value with an axis.
In this way, we can translate an emotional value into a position within EmotionSpace. As
shown by Figure 8.12, the provided EmotionSpace bitmap implies that the x axis (width)
corresponds to an Anxiety-Calmness value, whereas the y axis (height) corresponds to
an Euphoria-Boredom value. As such, two variables are defined within GlobalVariables
which store this associative meaning:

/ /EMOTION OUTPUT ARRAY INDEXES
2 /∗

∗ [0] − Euphoric−Bored a x i s
4 ∗ [1] − Anxious−Calm a x i s

∗/
6 p u b l i c s t a t i c f i n a l i n t NN_OUTPUT_ARRAY_INDEX_EUPHORIC_BORED = 0 ;

p u b l i c s t a t i c f i n a l i n t NN_OUTPUT_ARRAY_INDEX_ANXIOUS_CALM = 1 ;

We can now simply refer to these two variables to know which position of the output
array an emotional axis corresponds to.

�

� �

�

138 A Practical Introduction to Human-in-the-Loop Cyber-Physical Systems

Now, let us continue to build upon this association by translating ANN output values
to EmotionCircle points:

package h i t l e x a m p l e s . happywalk . emotion . f e e d b a c k ;
2

import (. . .)
4

p u b l i c c l a s s EmotionSpace e x t e n d s View {
6

(. . .)
8

p u b l i c EmotionSpace (Context co ntext , A t t r i b u t e S e t a t t r s) {
10 (. . .)

}
12

@O v e r r i d e
14 p r o t e c t e d v o i d onDraw (Canvas c a n v a s) {

(. . .)
16 }

18 /∗∗
∗ Updates the p o s i t i o n o f the n e u r o c i r c l e , which r e p r e s e n t s the

20 ∗ r e s u l t o f the n e u r a l network output
∗ @param euphor icBored − v a l u e o f the euphoric−bored a x i s

22 ∗ @param anxiousCalm − v a l u e o f the anxious−calm a x i s
∗/

24 p r i v a t e v o i d u p d a t e N e u r o C i r c l e P o s i t i o n (double euphoricBored , double
anxiousCalm) {

u p d a t e C i r c l e P o s i t i o n (n e u r o c i r c l e , euphoricBored , anxiousCalm) ;
26 }

28 p r i v a t e v o i d u p d a t e U s e r C i r c l e P o s i t i o n (double euphoricBored , double
anxiousCalm) {

u p d a t e C i r c l e P o s i t i o n (u s e r c i r c l e , euphoricBored , anxiousCalm) ;
30 }

32 p r i v a t e v o i d u p d a t e C i r c l e P o s i t i o n (E m o t i o n C i r c l e c i r c l e , double
euphoricBored , double anxiousCalm) {

c i r c l e . s e t P o i n t (c a l c u l a t e P o i n t F r o m E m o t i o n (euphoricBored ,
anxiousCalm)) ;

34 / / redraws the s c r e e n
i n v a l i d a t e () ;

36 }

38 p r i v a t e P o i n t c a l c u l a t e P o i n t F r o m E m o t i o n (double euphor iaBor ing , double
anxietyCalm) {

i f (e u p h o r i a B o r i n g < 0 | | e u p h o r i a B o r i n g > 1 | |
40 anxietyCalm < 0 | | anxietyCalm > 1) {

throw new A s s e r t i o n E r r o r (" e u p h o r i a B o r i n g and / or anxietyCalm
o u t s i d e o f the [0 , 1] range ") ;

42 }
/∗ Our max v a l u e i s a c t u a l l y the h e i g h t / width o f the view minus

the h e i g h t / width o f the c i r c l e , s i n c e the c i r c l e should remain i n s i d e
the view ∗/

44 i n t y = (i n t) ((g e t H e i g h t ()−u s e r c i r c l e . getBi tmap () . g e t H e i g h t ()) ∗
e u p h o r i a B o r i n g) ;

i n t x = (i n t) ((getWidth ()−u s e r c i r c l e . getBi tmap () . getWidth ()) ∗
anxietyCalm) ;

46 r e t u r n new P o i n t (x , y) ;

�

� �

�

State Inference 139

}
48

p r i v a t e c l a s s E m o t i o n C i r c l e {
50 (. . .)

}
52 }

Here, we have implemented four new methods; updateNeuroCirclePosition (line 24)
and updateUserCirclePosition (line 28) are minor helper methods which simply use
updateCirclePosition (line 32) to update and redraw the position of the neurocircle and
the emotioncircle, respectively.

How does the redrawing of the position work? In Android, the developer does not have
direct control over when the screen is updated. In fact, onDraw (discussed on page ???)
is called when View is initially drawn and whenever the system feels it is necessary. As
developers, the only thing we can do is request a current View to be redrawn, through a
method named invalidate(). As such, the method updateCirclePosition updates an Emo-
tionCircle’s Point variable (line 33) and calls invalidate() (line 35) to request Android for
a redrawing of the View.

To update the Point variable, updateCirclePosition uses another method named calcu-
latePointFromEmotion (defined between lines 38 and 47) which receives two variables of
type double, euphoricBored and anxiousCalm, that should correspond to outputs from
the neural network (line 32). In any case, we implemented a simple assertion (between
lines 39 and 42) to ensure that these values are at least within the [0,1] range; otherwise,
our application would probably crash. This is because we use these values to determine
the corresponding position of the EmotionCircle within the View; for values greater than
1 or less than 0, we would most likely return negative positions or ones that are outside
of the View’s limits.

At first glance, one could be tempted to simply multiply the emotion outputs by their
corresponding axis (euphoriaBoring by the View’s height and anxietyCalm by its width).
However, it is important to notice that the EmotionCircles’ bitmaps also have their own
height and width. For the sake of usability, we will now impose that these bitmaps always
remain fully inside the View. Since the coordinates of bitmaps follow the same con-
vention as those of Views (shown in Figure 8.12), the maximum value of an emotional
output corresponds to the size of the view minus the size of the circle’s bitmap. This
is reflected in the proposed implementation of the calculatePointFromEmotion method.

Since the idea behind EmotionSpace is for the user to drag and drop the usercircle,
marking how he/she is feeling, we need some way of distinguishing whether or not the
circle is being touched. There are several ways to accomplish this. One way of doing so
is to assume that the provisioned bitmap is, in fact, a circle, with a diameter equivalent
to the bitmap’s width. We can then take advantage of this fact to compute the circle’s
radius and, therefore, determine whether the point where the user touched is within
this radius. This is illustrated below.
package h i t l e x a m p l e s . happywalk . emotion . f e e d b a c k ;

2

p u b l i c c l a s s EmotionSpace e x t e n d s View {
4 (. . .)

p r i v a t e boolean i s T o u c h i n g U s e r C i r c l e = f a l s e ;
6 p r i v a t e f i n a l double TOUCHING_DEVIATION = 1 . 3 5 ;

8 p u b l i c EmotionSpace (Context co ntext , A t t r i b u t e S e t a t t r s) {

�

� �

�

140 A Practical Introduction to Human-in-the-Loop Cyber-Physical Systems

(. . .)
10 }

12 (. . .)

14 p r i v a t e boolean i s T o u c h i n g U s e r C i r c l e (P o i n t t o u c h P o i n t) {
boolean i s To u ching = f a l s e ;

16 P o i n t u s e r c i r c l e C e n t e r = u s e r c i r c l e . g e t C e n t e r P o s i t i o n () ;

18 double d i s tanceFromCenter = Math . s q r t ((double) (u s e r c i r c l e C e n t e r . x
− t o u c h P o i n t . x) ∗ (u s e r c i r c l e C e n t e r . x − t o u c h P o i n t . x) + (

u s e r c i r c l e C e n t e r . y − t o u c h P o i n t . y) ∗ (u s e r c i r c l e C e n t e r . y − t o u c h P o i n t . y)
) ;

/∗
20 i f the d i s t a n c e i s l e s s e r than the r a d i u s , the u s e r

i s t o u c h i n g i n s i d e the c i r c l e
22 ∗/

i f (d i s tanceFromCenter< u s e r c i r c l e . r a d i u s ∗TOUCHING_DEVIATION) {
24 i sTouching = t r u e ;

}
26 r e t u r n i s To u ching ;

}
28

/∗∗
30 ∗ R e p r e s e n t s an e m o t i o n a l c i r c l e .

∗ I t i s assumed t h a t the p r o v i s i o n e d bitmap
32 ∗ has i d e n t i c a l width and h e i g h t and r e p r e s e n t s a c i r c l e

∗ with a d i a m e t e r e q u a l to th e bitmap ’ s s i z e .
34 ∗/

p r i v a t e c l a s s E m o t i o n C i r c l e {
36 p r i v a t e Bitmap bitmap ;

p r i v a t e P o i n t p o i n t ;
38 p r i v a t e i n t r a d i u s ;

40 p u b l i c E m o t i o n C i r c l e (Bitmap bitmap) {
t h i s . bitmap = bitmap ;

42 p o i n t = new P o i n t (0 , 0) ;
/ / c a l c u l a t e r a d i u s :

44 r a d i u s = bitmap . getWidth () / 2 ;
}

46

p u b l i c Bitmap getBi tmap () {
48 r e t u r n bitmap ;

}
50

p u b l i c P o i n t g e t P o i n t () {
52 r e t u r n p o i n t ;

}
54

p u b l i c v o i d s e t P o i n t (P o i n t p o i n t) {
56 t h i s . p o i n t = p o i n t ;

}
58

p u b l i c P o i n t g e t C e n t e r P o s i t i o n () {
60 r e t u r n new P o i n t (p o i n t . x + r a d i u s , p o i n t . y + r a d i u s) ;

}
62 }

}

�

� �

�

State Inference 141

Let us begin by focusing on the code that follows line 29. To avoid constantly
calculating the circle’s radius each time the user touches the View, we have extended the
EmotionCircle class. After adding a small documentation comment where we express
our assumptions regarding the provided bitmap, we added a new inner variable named
radius (line 38), which is calculated during the construction of the EmotionCircle
(line 44). This variable is used within a new method named getCenterPosition(), which
returns the current position of circle’s center (lines 59–61).

These new functionalities are used by the method isTouchingUserCircle(Point touch-
Point) (lines 14–27) which implements the logic proposed above. Considering the circle
radius as a strict frontier makes sense in theory (the user is either touching inside or
outside the circle), but in practice we have found this to be too restrictive. As such, a new
final variable named TOUCHING_DEVIATION was created (line 6), which increases
(or decreases, if its value is set to less than 1) the effective touching radius (see line 23).
The reader is free to adjust this value to his/her own liking. Finally, we have also defined
a new control Boolean, named isTouchingUserCircle (line 5), which will be used by
EmotionSpace to evaluate the current touching state.

As previously mentioned, the usercircle should remain fully inside View. This is impor-
tant, since otherwise the user could fully or partially drag the circle to the outside of View
and not be able to drag it back in. Let us write a simple method that verifies and corrects
the usercircle’s positioning:

1 package h i t l e x a m p l e s . happywalk . emotion . f e e d b a c k ;

3 import (. . .)

5 p u b l i c c l a s s EmotionSpace e x t e n d s View {

7 (. . .)

9 p u b l i c EmotionSpace (Context co ntext , A t t r i b u t e S e t a t t r s) {
(. . .)

11 }

13 p r i v a t e v o i d c o r r e c t U s e r C i r c l e P o s i t i o n () {
/ / I f the u s e r c i r c l e i s beyond the View ’ s borders , b r i n g i t back i n

.
15 i f (u s e r c i r c l e . g e t P o i n t () . x + u s e r c i r c l e . getBi tmap () . getWidth () >

getWidth ()) {
u s e r c i r c l e . g e t P o i n t () . x = getWidth () − u s e r c i r c l e . getBi tmap () .

getWidth () ;
17 }

e l s e i f (u s e r c i r c l e . g e t P o i n t () . x < 0) {
19 u s e r c i r c l e . g e t P o i n t () . x = 0 ;

}
21 i f (u s e r c i r c l e . g e t P o i n t () . y + u s e r c i r c l e . getBi tmap () . g e t H e i g h t ()

> g e t H e i g h t ()) {
u s e r c i r c l e . g e t P o i n t () . y = g e t H e i g h t () − u s e r c i r c l e . getBi tmap ()

. g e t H e i g h t () ;
23 }

e l s e i f (u s e r c i r c l e . g e t P o i n t () . y < 0) {
25 u s e r c i r c l e . g e t P o i n t () . y = 0 ;

}
27 i n v a l i d a t e () ;

}

�

� �

�

142 A Practical Introduction to Human-in-the-Loop Cyber-Physical Systems

29

(. . .)
31 }

Remember that the lone getWidth() and getHeight() methods are implemented by the
parent class. Since EmotionSpace extends android.view.View, they return EmotionSpace’s
width and height, respectively. The method is rather self-explanatory: if its bitmap is
extending beyond the View’s limits (lines 15, 18, 21, and 24), we set the usercircle’s coor-
dinates to the outermost value that is still inside the View (lines 16, 19, 22, and 25).
Afterwards, we use invalidate() to redraw EmotionSpace (line 27).

We now have all the necessary methods to handle the user’s touch gestures. Each
time the user touches our EmotionSpace view, Android calls upon the View’s method
onTouchEvent(MotionEvent event). There are three types of touch events which we need
to consider:

• ACTION_DOWN : The user has just touched the screen. Here, we need to check if
the user is touching the usercircle.

• ACTION_MOVE: The user is still touching the screen and moving around. If the user
was previously touching the usercircle, we shall move it according to the input gesture.

• ACTION_UP: The user has lifted his/her finger from the screen. Now is the time to
check if the usercircle has been left inside the View and, if not, correct its position.

Let us translate this logic into Java code:

1 package h i t l e x a m p l e s . happywalk . emotion . f e e d b a c k ;

3 import (. . .)
import andro id . view . MotionEvent ;

5

p u b l i c c l a s s EmotionSpace e x t e n d s View {
7 p r i v a t e E m o t i o n C i r c l e n e u r o c i r c l e ;

p r i v a t e E m o t i o n C i r c l e u s e r c i r c l e ;
9 p r i v a t e boolean i s T o u c h i n g U s e r C i r c l e = f a l s e ;

p r i v a t e boolean showEmot ionCirc les = f a l s e ;
11

/ / These v a l u e s were e x p e r i m e n t a l l y d e r i v e d to improve u s e r c i r c l e
placement .

13 p r i v a t e f i n a l double TOUCHING_DEVIATION = 1 . 3 5 ;
p r i v a t e f i n a l double MOVING_DEVIATION = 1 . 1 5 ;

15

p u b l i c EmotionSpace (Context co ntext , A t t r i b u t e S e t a t t r s) {
17 (. . .)

}
19

(. . .)
21

/ / This method h a n d l e s touch e v e n t s
23 p u b l i c boolean onTouchEvent (MotionEvent e v e n t) {

/ / f i r s t , check i f we can move the e m o t i o n C i r c l e
25 i f (showEmot ionCirc les) {

/ / f i g u r e out the t y p e o f e v e n t
27 s w i t c h (e v e n t . g e t A c t i o n ()) {

c a s e MotionEvent .ACTION_DOWN: / / the u s e r has touched the
s c r e e n

29 P o i n t t o u c h P o i n t = new P o i n t ((i n t) e v e n t . getX () , (i n t)
e v e n t . getY ()) ;

�

� �

�

State Inference 143

i s T o u c h i n g U s e r C i r c l e = i s T o u c h i n g U s e r C i r c l e (t o u c h P o i n t
) ;

31 break ;
c a s e MotionEvent . ACTION_MOVE :

33 / / i f the u s e r i s t o u c h i n g the u s e r C i r c l e , we move i t .
i f (i s T o u c h i n g U s e r C i r c l e) {

35 / / s e t th e c e n t e r o f t h e c i r c l e t o t h e new t o u c h i n g
p o i n t

u s e r c i r c l e . s e t P o i n t (new P o i n t ((i n t) ((e v e n t . getX ()
− u s e r c i r c l e . getBi tmap () . getWidth ()) ∗ MOVING_DEVIATION) , (i n t) ((

e v e n t . getY () − u s e r c i r c l e . getBi tmap () . g e t H e i g h t ()) ∗ MOVING_DEVIATION)
)) ;

37 }
/ / redraw new u s e r c i r c l e p o s i t i o n

39 i n v a l i d a t e () ;
break ;

41 c a s e MotionEvent . ACTION_UP :
/ / f i x e s the c a s e s where the u s e r p l a c e s the c i r c l e

beyond the View b o u n d a r i e s .
43 c o r r e c t U s e r C i r c l e P o s i t i o n () ;

break ;
45 }

}
47 r e t u r n t r u e ;

}
49

p r i v a t e boolean i s T o u c h i n g U s e r C i r c l e (P o i n t t o u c h P o i n t) {
51 (. . .)

}
53

p r i v a t e v o i d c o r r e c t U s e r C i r c l e P o s i t i o n () {
55 (. . .)

}
57

p r i v a t e c l a s s E m o t i o n C i r c l e {
59 (. . .)

}
61 }

Again, after some experimentation, we found that slightly adjusting the placement
of the usercircle resulted in a more intuitive manipulation. As such, we defined a new
double variable MOVING_DEVIATION , which influences said placement (line 14). The
reader is free to adjust and fine-tune this value.

To effectively use EmotionSpace we still need to allow the developer to somehow ini-
tialize it. There has to be some way to define the initial positions of the neurocircle and
the usercircle. After such initialization has taken place, we can then set the showEmotion-
Circles variable to true, which will trigger the drawing and manipulation capabilities of
View. However, this process is not completely straightforward. Before we allow drawing
and dragging, we need to make sure that the parent activity (in our case, EmotionFeed-
back) has fully drawn EmotionSpace. This is because, if EmotionSpace has yet to be
drawn, the view’s coordinate system is nonexistent and we cannot properly place the
bitmap circles. Therefore, we need to somehow know when our view is ready to be ini-
tialized. This can be achieved through a ViewTreeObserver object, as shown by the code
below:

�

� �

�

144 A Practical Introduction to Human-in-the-Loop Cyber-Physical Systems

1 package h i t l e x a m p l e s . happywalk . emotion . f e e d b a c k ;

3 import (. . .)
import andro id . view . ViewTreeObserver ;

5

p u b l i c c l a s s EmotionSpace e x t e n d s View {
7 (. . .)

9 p r i v a t e boolean showEmot ionCirc les = f a l s e ;

11 (. . .)

13 p u b l i c EmotionSpace (Context co ntext , A t t r i b u t e S e t a t t r s) {
(. . .)

15 }

17 (. . .)

19 /∗∗
∗ I n i t i a l i z e s t h i s EmotionSpace through the n e u r a l network o u t p u t s .

21 ∗ T r i g g e r s the d i s p l a y o f the c i r c l e markers and u s e r i n t e r a c t i o n .
∗ @param euphor icBored

23 ∗ @param anxiousCalm
∗/

25 p u b l i c v o i d i n i t i a l i z e (f i n a l double euphoricBored , f i n a l double
anxiousCalm)
{

27 /∗
∗ Now, we need to w a i t u n t i l the emotionSpace has been draw ,

29 ∗ so we can p l a c e our u s e r and neuro c i r c l e s . To do t h i s , we use a
∗ G l o b a l L a y o u t L i s t e n e r

31 ∗/
ViewTreeObserver v t o = getViewTreeObserver () ;

33 v t o . a d d O n G l o b a l L a y o u t L i s t e n e r (new ViewTreeObserver .
O n G l o b a l L a y o u t L i s t e n e r () {

/∗
35 On the code below , we need to remove the l a y o u t o b s e r v e r we

added above . The c o r r e c t method to do t h i s i s
removeOnGloba lLayoutLis tener () . However , we a r e t a r g e t i n g Android API
l e v e l 10 , where t h i s method i s not supported . Thus , we a r e f o r c e d to
use the o l d e r and d e p r e c a t e d removeGloba lOnLayoutLis tener () , which
works f o r our purposes .

∗/
37 @SuppressWarnings (" d e p r e c a t i o n ")

@O v e r r i d e
39 p u b l i c v o i d onGloba lLayout () {

getViewTreeObserver () . removeGloba lOnLayoutLis tener (t h i s) ;
41 / / update c i r c l e p o s i t i o n s based on ANN o u t p u t s ;

u p d a t e N e u r o C i r c l e P o s i t i o n (euphoricBored ,
43 anxiousCalm) ;

u p d a t e U s e r C i r c l e P o s i t i o n (euphoricBored ,
45 anxiousCalm) ;

showEmot ionCirc les = t r u e ;
47 }

}) ;
49 }

51 (. . .)

�

� �

�

State Inference 145

53 p r i v a t e c l a s s E m o t i o n C i r c l e {
(. . .)

55 }
}

Note that, as mentioned in the comments (lines 34–36), we are using a deprecated
function. This shouldn’t cause any issues. However, if for some reason the above code
does not work in future Android versions, the reader is encouraged to try to use
removeOnGlobalLayoutListener() instead of removeGlobalOnLayoutListener(). When
onGlobalLayout() is called, we know that the global layout is fully drawn and, as such,
so is our EmotionSpace view. Therefore, we then use the emotion axes provided by the
developer (which should reflect the output of the ANN) to place our emotion circles
(both start at the same position). Finally, we set showEmotionCircles to true.

Now that the user can see, move, and place his/her feedback intent, we need a way to
retrieve it. In our particular example, we want a way for the EmotionFeedback activity
to get the emotion values corresponding to the last position of the usercircle:

package h i t l e x a m p l e s . happywalk . emotion . f e e d b a c k ;
2

import (. . .)
4 import h i t l e x a m p l e s . happywalk . e x c e p t i o n s . I n i t i a l i z a t i o n E x c e p t i o n ;

import h i t l e x a m p l e s . happywalk . u t i l i t i e s . G l o b a l V a r i a b l e s ;
6

p u b l i c c l a s s EmotionSpace e x t e n d s View {
8

(. . .)
10

p u b l i c EmotionSpace (Context co ntext , A t t r i b u t e S e t a t t r s) {
12 (. . .)

}
14

(. . .)
16

p u b l i c double [] getEmotionFeedback () throws I n i t i a l i z a t i o n E x c e p t i o n {
18 i f (! showEmot ionCirc les) {

throw new I n i t i a l i z a t i o n E x c e p t i o n (" EmotionSpace has not been
i n i t i a l i z e d . ") ;

20 }
e l s e {

22 double [] emotionFeedback = new double [G l o b a l V a r i a b l e s .
NN_OUTPUTS] ;

/∗
24 The v a l u e o f the u s e r f e e d b a c k i s g i v e n by p o s i t i o n o f the

c i r c l e , d i v i d e d by the maximum v a l u e (h e i g h t / width view minus the
h e i g h t / width o f the c i r c l e)

∗/
26 i f (g e t H e i g h t ()−u s e r c i r c l e . getBi tmap () . g e t H e i g h t () == 0 | |

getWidth ()−u s e r c i r c l e . getBi tmap () . getWidth () == 0) {
28 throw new A s s e r t i o n E r r o r (" EmotionSpace view − bitmap (

h e i g h t / width) = 0 ") ;
}

30 emotionFeedback [G l o b a l V a r i a b l e s .
NN_OUTPUT_ARRAY_INDEX_EUPHORIC_BORED] =

((double) u s e r c i r c l e . g e t P o i n t () . y) / (g e t H e i g h t ()−
u s e r c i r c l e . getBi tmap () . g e t H e i g h t ()) ;

�

� �

�

146 A Practical Introduction to Human-in-the-Loop Cyber-Physical Systems

32 emotionFeedback [G l o b a l V a r i a b l e s .
NN_OUTPUT_ARRAY_INDEX_ANXIOUS_CALM] =

((double) u s e r c i r c l e . g e t P o i n t () . x) / (getWidth ()−
u s e r c i r c l e . getBi tmap () . getWidth ()) ;

34 r e t u r n emotionFeedback ;
}

36 }

38 (. . .)

40 p r i v a t e c l a s s E m o t i o n C i r c l e {
(. . .)

42 }
}

The public method getEmotionFeedback, as shown above, handles this task (line 17).
First, we need to check if EmotionSpace has been initialized. We can do this through the
showEmotionCircles variable (line 18). If it was not, it is not possible to return mean-
ingful feedback. Therefore, an exception is thrown, warning the developer of his/her
mistake (line 19). We encourage the reader to create a new class under the package
exceptions named InitializationException, similarly to what was done for the NoCur-
rentPosition exception back on page ???. Below, a possible implementation of Initializa-
tionException is presented:

1 package h i t l e x a m p l e s . happywalk . e x c e p t i o n s ;

3 p u b l i c c l a s s I n i t i a l i z a t i o n E x c e p t i o n e x t e n d s E x c e p t i o n {
p u b l i c I n i t i a l i z a t i o n E x c e p t i o n (S t r i n g d e t a i l M e s s a g e) {

5 super (d e t a i l M e s s a g e) ;
}

7

p u b l i c I n i t i a l i z a t i o n E x c e p t i o n (S t r i n g d e t a i l M e s s a g e , Throwable
t h r o w a b l e) {

9 super (d e t a i l M e s s a g e , t h r o w a b l e) ;
}

11 }

Let us return our focus to the getEmotionFeedback() code. If, on the other hand, Emo-
tionSpace has been properly initialized the else branch in line 21 is run. In this case, all
we need to do is fetch the position of the usercircle. Since emotion values are restricted
to the [0,1] range, the value of the user feedback is given by the position of the circle
divided by the maximum possible value, which is the size of the view minus the size of
the bitmap (as discussed on page ???). This reasoning is applied in lines 30 and 32. To
avoid divisions by zero, we also verify if the bitmap does not fill the entire view (which
could happen, if the developer is not careful in picking a bitmap which is sufficiently
small), and throw an AssertionError if necessary (line 28).

Our feedback acquisition view should finally be complete! The full code is presented
below:

1 package h i t l e x a m p l e s . happywalk . emotion . f e e d b a c k ;

3 import andro id . c o n t e n t . Context ;
import andro id . c o n t e n t . r e s . TypedArray ;

5 import andro id . g r a p h i c s . Bitmap ;

�

� �

�

State Inference 147

import andro id . g r a p h i c s . Canvas ;
7 import andro id . g r a p h i c s . P o i n t ;

import andro id . g r a p h i c s . drawable . BitmapDrawable ;
9 import andro id . g r a p h i c s . drawable . Drawable ;

import andro id . u t i l . A t t r i b u t e S e t ;
11 import andro id . view . MotionEvent ;

import andro id . view . View ;
13 import andro id . view . ViewTreeObserver ;

15 import h i t l e x a m p l e s . happywalk . R ;
import h i t l e x a m p l e s . happywalk . e x c e p t i o n s . I n i t i a l i z a t i o n E x c e p t i o n ;

17 import h i t l e x a m p l e s . happywalk . u t i l i t i e s . G l o b a l V a r i a b l e s ;

19 p u b l i c c l a s s EmotionSpace e x t e n d s View {
p r i v a t e E m o t i o n C i r c l e n e u r o c i r c l e ;

21 p r i v a t e E m o t i o n C i r c l e u s e r c i r c l e ;
p r i v a t e boolean i s T o u c h i n g U s e r C i r c l e = f a l s e ;

23 p r i v a t e boolean showEmot ionCirc les = f a l s e ;

25 / / These v a l u e s were e x p e r i m e n t a l l y d e r i v e d to improve u s e r c i r c l e
placement .
p r i v a t e f i n a l double TOUCHING_DEVIATION = 1 . 3 5 ;

27 p r i v a t e f i n a l double MOVING_DEVIATION = 1 . 1 5 ;

29 p u b l i c EmotionSpace (Context co ntext , A t t r i b u t e S e t a t t r s) {
super (context , a t t r s) ;

31 /∗
This a l l o w s us to f e t c h EmotionSpace ’ s custom a t t r i b u t e s ,

33 a s d e f i n e d i n v a l u e s / a t t r s . xml . In t h i s case , i t a l l o w s f o r
us to d e f i n e the images to be used f o r the n e u r o c i r c l e and

u s e r c i r c l e
35 ∗/

TypedArray a = c o n t e x t . getTheme () . o b t a i n S t y l e d A t t r i b u t e s (
37 a t t r s ,

R . s t y l e a b l e . EmotionSpace ,
39 0 , 0) ;

41 Drawable neuroDraw = a . getDrawable (R . s t y l e a b l e .
Emot ionSpace_neuroCirc le Image) ;

Drawable userDraw = a . getDrawable (R . s t y l e a b l e .
E m o t i o n S p a c e _ u s e r C i r c l e I m a g e) ;

43

i f (! (neuroDraw i n s t a n c e o f BitmapDrawable) | | ! (userDraw
i n s t a n c e o f BitmapDrawable)) {

45 throw new RuntimeExcept ion (" n e u r o C i r c l e I m a g e and
u s e r C i r c l e I m a g e a t t r i b u t e s r e q u i r e Bitmap d r a w a b l e s . ") ;

}
47

n e u r o c i r c l e = new E m o t i o n C i r c l e (
49 ((BitmapDrawable) neuroDraw) . getBi tmap ()) ;

u s e r c i r c l e = new E m o t i o n C i r c l e (
51 ((BitmapDrawable) userDraw) . getBi tmap ()) ;

}
53

/∗∗
55 ∗ I n i t i a l i z e s t h i s EmotionSpace through the n e u r a l network o u t p u t s .

∗ T r i g g e r s the d i s p l a y o f the c i r c l e markers and u s e r i n t e r a c t i o n .
57 ∗ @param euphor icBored

∗ @param anxiousCalm

�

� �

�

148 A Practical Introduction to Human-in-the-Loop Cyber-Physical Systems

59 ∗/
p u b l i c v o i d i n i t i a l i z e (f i n a l double euphoricBored , f i n a l double
anxiousCalm)

61 {
/∗

63 ∗ Now, we need to w a i t u n t i l the emotionSpace has been draw ,
∗ so we can p l a c e our u s e r and neuro c i r c l e s . To do t h i s , we use a

65 ∗ G l o b a l L a y o u t L i s t e n e r
∗/

67 ViewTreeObserver v t o = getViewTreeObserver () ;
v t o . a d d O n G l o b a l L a y o u t L i s t e n e r (new ViewTreeObserver .

O n G l o b a l L a y o u t L i s t e n e r () {
69 /∗

On the code below , we need to remove the l a y o u t o b s e r v e r we
added above . The c o r r e c t method to do t h i s i s
removeOnGloba lLayoutLis tener () . However , we a r e t a r g e t i n g Android API
l e v e l 10 , where t h i s method i s not supported . Thus , we a r e f o r c e d to
use the o l d e r and d e p r e c a t e d removeGloba lOnLayoutLis tener () , which
works f o r our purposes .

71 ∗/
@SuppressWarnings (" d e p r e c a t i o n ")

73 @O v e r r i d e
p u b l i c v o i d onGloba lLayout () {

75 getViewTreeObserver () . removeGloba lOnLayoutLis tener (t h i s) ;
/ / update c i r c l e p o s i t i o n s based on ANN o u t p u t s ;

77 u p d a t e N e u r o C i r c l e P o s i t i o n (euphoricBored ,
anxiousCalm) ;

79 u p d a t e U s e r C i r c l e P o s i t i o n (euphoricBored ,
anxiousCalm) ;

81 showEmot ionCirc les = t r u e ;
}

83 }) ;
}

85

/ / C a l l e d when drawing the s c r e e n
87 @O v e r r i d e

p r o t e c t e d v o i d onDraw (Canvas c a n v a s) {
89 i f (showEmot ionCirc les) {

/ / draw c i r c l e p o s i t i o n s
91 c a n v a s . drawBitmap (n e u r o c i r c l e . getBi tmap () , n e u r o c i r c l e .

g e t P o i n t () . x , n e u r o c i r c l e . g e t P o i n t () . y , n u l l) ;
c a n v a s . drawBitmap (u s e r c i r c l e . getBi tmap () , u s e r c i r c l e . g e t P o i n t

() . x , u s e r c i r c l e . g e t P o i n t () . y , n u l l) ;
93 }

}
95

/∗∗
97 ∗ Updates the p o s i t i o n o f the n e u r o c i r c l e , which r e p r e s e n t s the

∗ r e s u l t o f the n e u r a l network output
99 ∗ @param euphor icBored − v a l u e o f the euphoric−bored a x i s

∗ @param anxiousCalm − v a l u e o f the anxious−calm a x i s
101 ∗/

p r i v a t e v o i d u p d a t e N e u r o C i r c l e P o s i t i o n (double euphoricBored , double
anxiousCalm) {

103 u p d a t e C i r c l e P o s i t i o n (n e u r o c i r c l e , euphoricBored , anxiousCalm) ;
}

105

p r i v a t e v o i d u p d a t e U s e r C i r c l e P o s i t i o n (double euphoricBored , double
anxiousCalm) {

�

� �

�

State Inference 149

107 u p d a t e C i r c l e P o s i t i o n (u s e r c i r c l e , euphoricBored , anxiousCalm) ;
}

109

p r i v a t e v o i d u p d a t e C i r c l e P o s i t i o n (E m o t i o n C i r c l e c i r c l e , double
euphoricBored , double anxiousCalm) {

111 c i r c l e . s e t P o i n t (c a l c u l a t e P o i n t F r o m E m o t i o n (euphoricBored ,
anxiousCalm)) ;

/ / redraws the s c r e e n
113 i n v a l i d a t e () ;

}
115

p r i v a t e P o i n t c a l c u l a t e P o i n t F r o m E m o t i o n (double euphor iaBor ing , double
anxietyCalm) {

117 i f (e u p h o r i a B o r i n g < 0 | | e u p h o r i a B o r i n g > 1 | |
anxietyCalm < 0 | | anxietyCalm > 1) {

119 throw new A s s e r t i o n E r r o r (" e u p h o r i a B o r i n g and / or anxietyCalm
o u t s i d e o f the [0 , 1] range ") ;

}
121 /∗ Our max v a l u e i s a c t u a l l y the h e i g h t / width o f the view minus

the h e i g h t / width o f the c i r c l e , s i n c e the c i r c l e should remain i n s i d e
the view ∗/

i n t y = (i n t) ((g e t H e i g h t ()−u s e r c i r c l e . getBi tmap () . g e t H e i g h t ()) ∗
e u p h o r i a B o r i n g) ;

123 i n t x = (i n t) ((getWidth ()−u s e r c i r c l e . getBi tmap () . getWidth ()) ∗
anxietyCalm) ;

r e t u r n new P o i n t (x , y) ;
125 }

127 p u b l i c double [] getEmotionFeedback () throws I n i t i a l i z a t i o n E x c e p t i o n {
i f (! showEmot ionCirc les) {

129 throw new I n i t i a l i z a t i o n E x c e p t i o n (" EmotionSpace has not been
i n i t i a l i z e d . ") ;

}
131 e l s e {

double [] emotionFeedback = new double [G l o b a l V a r i a b l e s .
NN_OUTPUTS] ;

133 /∗
The v a l u e o f the u s e r f e e d b a c k i s g i v e n by p o s i t i o n o f the

c i r c l e , d i v i d e d by the maximum v a l u e (h e i g h t / width view minus the
h e i g h t / width o f the c i r c l e)

135 ∗/
i f (g e t H e i g h t ()−u s e r c i r c l e . getBi tmap () . g e t H e i g h t () == 0 | |

137 getWidth ()−u s e r c i r c l e . getBi tmap () . getWidth () == 0) {
throw new A s s e r t i o n E r r o r (" EmotionSpace view − bitmap (

h e i g h t / width) = 0 ") ;
139 }

emotionFeedback [G l o b a l V a r i a b l e s .
NN_OUTPUT_ARRAY_INDEX_EUPHORIC_BORED] =

141 ((double) u s e r c i r c l e . g e t P o i n t () . y) / (g e t H e i g h t ()−
u s e r c i r c l e . getBi tmap () . g e t H e i g h t ()) ;

emotionFeedback [G l o b a l V a r i a b l e s .
NN_OUTPUT_ARRAY_INDEX_ANXIOUS_CALM] =

143 ((double) u s e r c i r c l e . g e t P o i n t () . x) / (getWidth ()−
u s e r c i r c l e . getBi tmap () . getWidth ()) ;

r e t u r n emotionFeedback ;
145 }

}
147

/ / This method h a n d l e s touch e v e n t s

�

� �

�

150 A Practical Introduction to Human-in-the-Loop Cyber-Physical Systems

149 p u b l i c boolean onTouchEvent (MotionEvent e v e n t) {
/ / f i r s t , check i f we can move the e m o t i o n C i r c l e

151 i f (showEmot ionCirc les) {
/ / f i g u r e out the t y p e o f e v e n t

153 s w i t c h (e v e n t . g e t A c t i o n ()) {
c a s e MotionEvent .ACTION_DOWN: / / the u s e r has touched the

s c r e e n
155 P o i n t t o u c h P o i n t = new P o i n t ((i n t) e v e n t . getX () , (i n t)

e v e n t . getY ()) ;
i s T o u c h i n g U s e r C i r c l e = i s T o u c h i n g U s e r C i r c l e (t o u c h P o i n t

) ;
157 break ;

c a s e MotionEvent . ACTION_MOVE :
159 / / i f the u s e r i s t o u c h i n g the u s e r C i r c l e , we move i t .

i f (i s T o u c h i n g U s e r C i r c l e) {
161 / / s e t th e c e n t e r o f t h e c i r c l e to th e new t o u c h i n g

p o i n t
u s e r c i r c l e . s e t P o i n t (new P o i n t ((i n t) ((e v e n t . getX ()

− u s e r c i r c l e . getBi tmap () . getWidth ()) ∗ MOVING_DEVIATION) , (i n t) ((
e v e n t . getY () − u s e r c i r c l e . getBi tmap () . g e t H e i g h t ()) ∗ MOVING_DEVIATION)
)) ;

163 }
/ / redraw new u s e r c i r c l e p o s i t i o n

165 i n v a l i d a t e () ;
break ;

167 c a s e MotionEvent . ACTION_UP :
/ / f i x e s the c a s e s where the u s e r p l a c e s the c i r c l e

beyond the View b o u n d a r i e s .
169 c o r r e c t U s e r C i r c l e P o s i t i o n () ;

break ;
171 }

}
173 r e t u r n t r u e ;

}
175

p r i v a t e boolean i s T o u c h i n g U s e r C i r c l e (P o i n t t o u c h P o i n t) {
177 boolean i s To u ching = f a l s e ;

P o i n t u s e r c i r c l e C e n t e r = u s e r c i r c l e . g e t C e n t e r P o s i t i o n () ;
179

double d i s tanceFromCenter = Math . s q r t ((double) (u s e r c i r c l e C e n t e r . x
− t o u c h P o i n t . x) ∗ (u s e r c i r c l e C e n t e r . x − t o u c h P o i n t . x) + (

u s e r c i r c l e C e n t e r . y − t o u c h P o i n t . y) ∗ (u s e r c i r c l e C e n t e r . y − t o u c h P o i n t . y)
) ;

181 /∗
i f the d i s t a n c e i s l e s s e r than the r a d i u s , the u s e r

183 i s t o u c h i n g i n s i d e the c i r c l e
∗/

185 i f (d i s tanceFromCenter< u s e r c i r c l e . r a d i u s ∗TOUCHING_DEVIATION) {
i sTouching = t r u e ;

187 }
r e t u r n i s To u ching ;

189 }

191 p r i v a t e v o i d c o r r e c t U s e r C i r c l e P o s i t i o n () {
/ / I f the u s e r c i r c l e i s beyond the View ’ s borders , b r i n g i t back i n

.
193 i f (u s e r c i r c l e . g e t P o i n t () . x + u s e r c i r c l e . getBi tmap () . getWidth () >

getWidth ()) {

�

� �

�

State Inference 151

u s e r c i r c l e . g e t P o i n t () . x = getWidth () − u s e r c i r c l e . getBi tmap () .
getWidth () ;

195 }
e l s e i f (u s e r c i r c l e . g e t P o i n t () . x < 0) {

197 u s e r c i r c l e . g e t P o i n t () . x = 0 ;
}

199 i f (u s e r c i r c l e . g e t P o i n t () . y + u s e r c i r c l e . getBi tmap () . g e t H e i g h t ()
> g e t H e i g h t ()) {

u s e r c i r c l e . g e t P o i n t () . y = g e t H e i g h t () − u s e r c i r c l e . getBi tmap ()
. g e t H e i g h t () ;

201 }
e l s e i f (u s e r c i r c l e . g e t P o i n t () . y < 0) {

203 u s e r c i r c l e . g e t P o i n t () . y = 0 ;
}

205 i n v a l i d a t e () ;
}

207

/∗∗
209 ∗ R e p r e s e n t s an e m o t i o n a l c i r c l e .

∗ I t i s assumed t h a t the p r o v i s i o n e d bitmap
211 ∗ has i d e n t i c a l width and h e i g h t and r e p r e s e n t s a c i r c l e

∗ with a d i a m e t e r e q u a l to th e bitmap ’ s s i z e .
213 ∗/

p r i v a t e c l a s s E m o t i o n C i r c l e {
215 p r i v a t e Bitmap bitmap ;

p r i v a t e P o i n t p o i n t ;
217 p r i v a t e i n t r a d i u s ;

219 p u b l i c E m o t i o n C i r c l e (Bitmap bitmap) {
t h i s . bitmap = bitmap ;

221 p o i n t = new P o i n t (0 , 0) ;
/ / c a l c u l a t e r a d i u s :

223 r a d i u s = bitmap . getWidth () / 2 ;
}

225

p u b l i c Bitmap getBi tmap () {
227 r e t u r n bitmap ;

}
229

p u b l i c P o i n t g e t P o i n t () {
231 r e t u r n p o i n t ;

}
233

p u b l i c v o i d s e t P o i n t (P o i n t p o i n t) {
235 t h i s . p o i n t = p o i n t ;

}
237

p u b l i c P o i n t g e t C e n t e r P o s i t i o n () {
239 r e t u r n new P o i n t (p o i n t . x + r a d i u s , p o i n t . y + r a d i u s) ;

}
241 }

}

8.2.3 Finishing EmotionFeedback

In this section we will finish our EmotionFeedback activity by connecting it with our
background HappyWalkService. We will then create a “provide feedback” button and

�

� �

�

152 A Practical Introduction to Human-in-the-Loop Cyber-Physical Systems

make use of EmotionSpace. Finally, we will handle sending emotional feedback results
back to EmotionTasker.

Returning to our EmotionFeedback activity, after we get the user’s feedback we
will need to make use of it by sending it back to EmotionTasker somehow. As such,
one of our priorities should be to connect and get a reference to our background
HappyWalkService:
package h i t l e x a m p l e s . happywalk . a c t i v i t i e s ;

2

import andro id . c o n t e n t . ComponentName ;
4 import andro id . c o n t e n t . Context ;

import andro id . c o n t e n t . I n t e n t ;
6 import andro id . c o n t e n t . S e r v i c e C o n n e c t i o n ;

import andro id . os . Bundle ;
8 import andro id . os . I B i n d e r ;

import andro id . s u p p o r t . v7 . app . A c t i o n B a r A c t i v i t y ;
10

import h i t l e x a m p l e s . happywalk . R ;
12 import h i t l e x a m p l e s . happywalk . s e r v i c e . HappyWalkService ;

14 p u b l i c c l a s s EmotionFeedback e x t e n d s A c t i o n B a r A c t i v i t y {

16 p r i v a t e HappyWalkService hWService ;

18 @O v e r r i d e
p r o t e c t e d v o i d onCreate (Bundle s a v e d I n s t a n c e S t a t e) {

20 super . onCreate (s a v e d I n s t a n c e S t a t e) ;
se tContentView (R . l a y o u t . a c t i v i t y _ e m o t i o n _ f e e d b a c k) ;

22 }

24 /∗∗
∗ Here we have to bind to our HappyWalk s e r v i c e

26 ∗/
@O v e r r i d e

28 p r o t e c t e d v o i d onResume () {
b i n d S e r v i c e (new I n t e n t (t h i s , HappyWalkService . c l a s s) , hwConnection

, Context . BIND_AUTO_CREATE) ;
30 super . onResume () ;

}
32

p r i v a t e S e r v i c e C o n n e c t i o n hwConnection = new S e r v i c e C o n n e c t i o n () {
34 p u b l i c v o i d onServ iceConnected (ComponentName className , I B i n d e r

s e r v i c e) {
/∗ This i s c a l l e d when the c o n n e c t i o n with the s e r v i c e has

been e s t a b l i s h e d , g i v i n g us a s e r v i c e o b j e c t we can use to i n t e r a c t
with the s e r v i c e . Because we have bound to a e x p l i c i t s e r v i c e t h a t we

know i s running i n our own p r o c e s s , we can c a s t i t s I B i n d e r to a
c o n c r e t e c l a s s and d i r e c t l y a c c e s s i t . ∗/

36 hWService = ((HappyWalkService . HappyWalkBinder) s e r v i c e) .
g e t S e r v i c e () ;

/∗
38 ∗ now t h a t our s e r v i c e i s connected , we can f i n a l l y

∗ s e t up the emotion s p a c e
40 ∗/

setupEmotionSpace () ;
42 }

p u b l i c v o i d o n S e r v i c e D i s c o n n e c t e d (ComponentName className) {

�

� �

�

State Inference 153

44 /∗ This i s c a l l e d when the c o n n e c t i o n with the s e r v i c e has
been u n e x p e c t e d l y d i s c o n n e c t e d −− t h a t i s , i t s p r o c e s s c r a s h e d .
Because i t i s running i n our same p r o c e s s , we should never s e e t h i s
happen . ∗/

hWService = n u l l ;
46 }

} ;
48

/∗∗
50 ∗ Here we unbind the s e r v i c e

∗/
52 @O v e r r i d e

p r o t e c t e d v o i d onPause () {
54 u n b i n d S e r v i c e (hwConnection) ;

hWService = n u l l ;
56 super . onPause () ;

}
58 }

The above code shows our proposed implementation. As we may remember from
Section 5.2.1, the method onResume() is run after onCreate() and every time the user
returns to the activity from the foreground (see Figure 5.3). Therefore, onResume()
(lines 27–31) is a prime candidate for attempting to connect and get a reference to
our background service, by calling bindService() (available to Activities) to connect
to HappyWalkService (line 29). While doing so, we provide an appropriate Intent and
Context.BIND_AUTO_CREATE flag (which automatically creates the service as long
as the binding exists). We also provide a reference to an hwConnection object, which is
responsible for handling the connection of the service.

As the reader may see, hwConnection is an object of type ServiceConnection (line 33)
which implements the onServiceConnected() method (line 34), called right after the con-
nection to HappyWalkService has been established, and where a reference to the Hap-
pyWalkService object is acquired (line 36). After we have our reference we may set up
the EmotionSpace through the setupEmotionSpace() method (in line 41, which we shall
implement in the next paragraphs). Also, whenever the activity is paused, we unbind the
service (line 54).

Now, we need a way for the user to indicate that he/she is ready to provide feedback.
We can do this through a simple button. First, let us define the text that appears inside
this new button. In Android, it is good practice to define all strings in a proper XML
resource file, located at src/main/res/values/strings.xml:

< r e s o u r c e s >
2 < s t r i n g name= " app_name " >HappyWalk</ s t r i n g >

< s t r i n g name= " t i t l e _ a c t i v i t y _ m a p s " >HappyWalk Map</ s t r i n g >
4 < s t r i n g name= " t i t l e _ a c t i v i t y _ e m o t i o n _ f e e d b a c k " >EmotionFeedback</ s t r i n g >

6 <!−− GPS s t a t e s −−>
< s t r i n g name= " l o c a t i o n U n a v a i l a b l e " >HappyWalk r e q u i r e s l o c a t i o n
i n f o r m a t i o n to work p r o p e r l y ! </ s t r i n g >

8

(. . .)
10

<!−−Emotion Feedback −−>
12 < s t r i n g name= " emotFeedButton " >This i s how I f e e l </ s t r i n g >

</ r e s o u r c e s >

�

� �

�

154 A Practical Introduction to Human-in-the-Loop Cyber-Physical Systems

For the sake of readability, we define a new separator comment “<!–Emotion Feedback
–>”. We then define a new string resource emotFeedButton whose value is “This is how
I feel” (the reader is welcome to change this value to one of his/her own preference).

Now, we can easily add our button to EmotionFeedback through its layout activ-
ity_emotion_feedback.xml:

1 < R e l a t i v e L a y o u t x m l n s : a n d r o i d = " h t t p : / / schemas . andro id . com/ apk / r e s / andro id "
x m l n s : t o o l s = " h t t p : / / schemas . andro id . com/ t o o l s "

3 xmlns :custom= " h t t p : / / schemas . andro id . com/ apk / res −auto "
a n d r o i d : l a y o u t _ w i d t h = " match_parent "

5 a n d r o i d : l a y o u t _ h e i g h t = " match_parent "
a n d r o i d : p a d d i n g L e f t = " @dimen / a c t i v i t y _ h o r i z o n t a l _ m a r g i n "

7 a n d r o i d : p a d d i n g R i g h t = " @dimen / a c t i v i t y _ h o r i z o n t a l _ m a r g i n "
andro id :paddingTop = " @dimen / a c t i v i t y _ v e r t i c a l _ m a r g i n "

9 andro id :paddingBot tom= " @dimen / a c t i v i t y _ v e r t i c a l _ m a r g i n "
t o o l s : c o n t e x t = " h i t l e x a m p l e s . happywalk . a c t i v i t i e s . EmotionFeedback " >

11

< h i t l e x a m p l e s . happywalk . emotion . f e e d b a c k . EmotionSpace
13 a n d r o i d : l a y o u t _ w i d t h = " 360dp "

a n d r o i d : l a y o u t _ h e i g h t = " 360dp "
15 a n d r o i d : b a c k g r o u n d = " @drawable / emotion_color_map "

c u s t o m : n e u r o C i r c l e I m a g e = " @drawable / y e l l o w _ c i r c l e "
17 c u s t o m : u s e r C i r c l e I m a g e = " @drawable / g r e e n _ c i r c l e "

a n d r o i d : i d = "@+ i d / emotionSpace "
19 a n d r o i d : l a y o u t _ c e n t e r H o r i z o n t a l = " t r u e " / >

21 <Button
a n d r o i d : l a y o u t _ w i d t h = " wrap_content "

23 a n d r o i d : l a y o u t _ h e i g h t = " wrap_content "
a n d r o i d : t e x t = " @ s t r i n g / emotFeedButton "

25 a n d r o i d : i d = "@+ i d / emotionFeedbackButton "
a n d r o i d : l a y o u t _ c e n t e r H o r i z o n t a l = " t r u e "

27 a n d r o i d : l a y o u t _ a l i g n P a r e n t B o t t o m = " t r u e "
a n d r o i d : l a y o u t _ m a r g i n B o t t o m = " 50dp "

29 a n d r o i d : c l i c k a b l e = " f a l s e "
a n d r o i d : o n C l i c k = " emotionFeedback " / >

31

</ R e l a t i v e L a y o u t >

As the reader might remember from page ???, EmotionSpace should already be set
up within app/res/layout/activity_emotion_feedback.xml. The id of EmotionFeedback’s
EmotionSpace is defined by the android:id attribute. Here, we use “@+id/emotionSpace”
(line 18) to tell Android to store a new id named emotionSpace, which represents our
EmotionSpace view.

The code presented above also shows that the button’s text is defined by the
android:text attribute. This attribute is pointing to the string resource emotFeedButton
we just defined. The id of the button is defined to be emotionFeedbackButton (line 25).
Finally, the android:onClick=“emotionFeedback” attribute (line 30) indicates that
whenever the user presses this button the emotionFeedback() method should be called.

Now that our layout elements are properly defined and identified, we can use them in
EmotionFeedback’s code:
package h i t l e x a m p l e s . happywalk . a c t i v i t i e s ;

2

import (. . .)
4 import andro id . os . Bundle ;

�

� �

�

State Inference 155

import andro id . view . View ;
6 import andro id . widget . Button ;

8 import h i t l e x a m p l e s . happywalk . emotion . f e e d b a c k . EmotionSpace ;
import h i t l e x a m p l e s . happywalk . e x c e p t i o n s . I n i t i a l i z a t i o n E x c e p t i o n ;

10 import h i t l e x a m p l e s . happywalk . u t i l i t i e s . G l o b a l V a r i a b l e s ;

12 p u b l i c c l a s s EmotionFeedback e x t e n d s A c t i o n B a r A c t i v i t y {
p r i v a t e EmotionSpace emotionspace ;

14 p r i v a t e HappyWalkService hWService ;
p r i v a t e double [] nnOutput ;

16

(. . .)
18

p r i v a t e v o i d setupEmotionSpace () {
20 emot ionspace = (EmotionSpace) f indViewById (R . i d . emotionSpace) ;

/∗ The bundle p r o v i d e s us an a r r a y o f d o u b l e s c o n t a i n i n g the
output (0 −1) o f the n e u r a l network . The i n d e x e s a r e d e f i n e d i n
G l o b a l V a r i a b l e s . ∗/

22 nnOutput = g e t I n t e n t () . g e t E x t r a s () . ge tDoubleArray (
G l o b a l V a r i a b l e s . BND_EXTRA_EMOTION_OUTPUT_ARRAY_KEY) ;

24 emot ionspace . i n i t i a l i z e (nnOutput [G l o b a l V a r i a b l e s .
NN_OUTPUT_ARRAY_INDEX_EUPHORIC_BORED] ,

nnOutput [G l o b a l V a r i a b l e s .
NN_OUTPUT_ARRAY_INDEX_ANXIOUS_CALM]) ;

26 / / u s e r can now p r e s s the f e e d b a c k button
Button f e e d b a c k B u t t o n = (Button) f indViewById (R . i d .

emotionFeedbackButton) ;
28 f e e d b a c k B u t t o n . s e t C l i c k a b l e (t r u e) ;

}
30

/∗∗
32 ∗ Run when the u s e r p r e s s e s the f e e d b a c k button

∗ @param view
34 ∗/

p u b l i c v o i d emotionFeedback (View view) {
36 i f (emot ionspace ! = n u l l) {

t r y {
38 double [] userEmotionFeedback = emotionspace .

getEmotionFeedback () ;
double [] i n p u t s = g e t I n t e n t () . g e t E x t r a s () . ge tDoubleArray (

G l o b a l V a r i a b l e s . BND_EXTRA_EMOTION_INPUT_ARRAY_KEY) ;
40 long timestamp = g e t I n t e n t () . g e t E x t r a s () . getLong (

G l o b a l V a r i a b l e s . BND_EXTRA_EMOTION_TIMESTAMP_KEY) ;
hWService . getEmot ionTasker () . p r o c e s s U s e r F e e d b a c k (i n p u t s ,

nnOutput , userEmotionFeedback , t imestamp) ;
42 / / show the map

I n t e n t i n t e n t = new I n t e n t (t h i s , M a p s A c t i v i t y . c l a s s) ;
44 s t a r t A c t i v i t y (i n t e n t) ;

} c a t c h (I n i t i a l i z a t i o n E x c e p t i o n e) {
46 e . p r i n t S t a c k T r a c e () ;

}
48 / / f i n i s h t h i s a c t i v i t y

t h i s . f i n i s h () ;
50 }

}
52 }

�

� �

�

156 A Practical Introduction to Human-in-the-Loop Cyber-Physical Systems

The method setupEmotionSpace() (lines 19–29) is called right after we get a refer-
ence to HappyWalkService. First, it fetches a reference to EmotionSpace through its
id (line 20). Then, we expect that whoever starts EmotionFeedback also provides an
array of doubles containing the output of the neural network. This can be done through
the extras of the Intent that started EmotionFeedback. An Intent’s extras is a bun-
dle that can be used to pass any additional information. The keys used to fetch this
array from the Intent’s extras should be already defined within the GlobalVariables class
(BND_EXTRA_EMOTION_OUTPUT_ARRAY_KEY , in line 22).

The output of the neural network is stored in a class private variable nnOutput
(declared in line 15). We then use its values to initialize EmotionSpace (line 24). Now
that the activity is ready, we enable the feedback button (lines 27 and 28).

The method emotionFeedback() (lines 35–51) is called after the button has been
pressed. It is responsible for storing the position of the green circle within a double
array (line 38) and passing this information, together with the corresponding neural
network inputs and outputs, and a timestamp, to the EmotionTasker (line 41). Notice
that the information is passed through the processUserFeedback() method, which we
will implement later on.

It is equally important to note that we expect from whoever starts Emo-
tionFeedback to also provide the inputs and timestamp, through the Intent’s
extras. The global variables BND_EXTRA_EMOTION_INPUT_ARRAY_KEY and
BND_EXTRA_EMOTION_TIMESTAMP_KEY hold the keys needed to fetch these
values (lines 39 and 40). Afterwards, the method shows the map (lines 43 and 44) and
closes the EmotionFeedback activity (line 49).

We have now finished our EmotionFeedback activity! Below, the reader can find its
complete Java code:

package h i t l e x a m p l e s . happywalk . a c t i v i t i e s ;
2

import andro id . c o n t e n t . ComponentName ;
4 import andro id . c o n t e n t . Context ;

import andro id . c o n t e n t . I n t e n t ;
6 import andro id . c o n t e n t . S e r v i c e C o n n e c t i o n ;

import andro id . os . I B i n d e r ;
8 import andro id . s u p p o r t . v7 . app . A c t i o n B a r A c t i v i t y ;

import andro id . os . Bundle ;
10 import andro id . view . View ;

import andro id . widget . Button ;
12

import h i t l e x a m p l e s . happywalk . R ;
14 import h i t l e x a m p l e s . happywalk . emotion . f e e d b a c k . EmotionSpace ;

import h i t l e x a m p l e s . happywalk . e x c e p t i o n s . I n i t i a l i z a t i o n E x c e p t i o n ;
16 import h i t l e x a m p l e s . happywalk . s e r v i c e . HappyWalkService ;

import h i t l e x a m p l e s . happywalk . u t i l i t i e s . G l o b a l V a r i a b l e s ;
18

p u b l i c c l a s s EmotionFeedback e x t e n d s A c t i o n B a r A c t i v i t y {
20 p r i v a t e EmotionSpace emotionspace ;

p r i v a t e HappyWalkService hWService ;
22 p r i v a t e double [] nnOutput ;

24 @O v e r r i d e
p r o t e c t e d v o i d onCreate (Bundle s a v e d I n s t a n c e S t a t e) {

26 super . onCreate (s a v e d I n s t a n c e S t a t e) ;
se tContentView (R . l a y o u t . a c t i v i t y _ e m o t i o n _ f e e d b a c k) ;

�

� �

�

State Inference 157

28 }

30 /∗∗
∗ Here we have to bind to our HappyWalk s e r v i c e

32 ∗/
@O v e r r i d e

34 p r o t e c t e d v o i d onResume () {
b i n d S e r v i c e (new I n t e n t (t h i s , HappyWalkService . c l a s s) , hwConnection

, Context . BIND_AUTO_CREATE) ;
36 super . onResume () ;

}
38

p r i v a t e S e r v i c e C o n n e c t i o n hwConnection = new S e r v i c e C o n n e c t i o n () {
40 p u b l i c v o i d onServ iceConnected (ComponentName className , I B i n d e r

s e r v i c e) {
/∗ This i s c a l l e d when the c o n n e c t i o n with the s e r v i c e has

been e s t a b l i s h e d , g i v i n g us a s e r v i c e o b j e c t we can use to i n t e r a c t
with the s e r v i c e . Because we have bound to a e x p l i c i t s e r v i c e t h a t we

know i s running i n our own p r o c e s s , we can c a s t i t s I B i n d e r to a
c o n c r e t e c l a s s and d i r e c t l y a c c e s s i t . ∗/

42 hWService = ((HappyWalkService . HappyWalkBinder) s e r v i c e) .
g e t S e r v i c e () ;

/∗
44 ∗ now t h a t our s e r v i c e i s connected , we can f i n a l l y

∗ s e t up the emotion s p a c e
46 ∗/

setupEmotionSpace () ;
48 }

p u b l i c v o i d o n S e r v i c e D i s c o n n e c t e d (ComponentName className) {
50 /∗ This i s c a l l e d when the c o n n e c t i o n with the s e r v i c e has

been u n e x p e c t e d l y d i s c o n n e c t e d −− t h a t i s , i t s p r o c e s s c r a s h e d .
Because i t i s running i n our same p r o c e s s , we should never s e e t h i s
happen . ∗/

hWService = n u l l ;
52 }

} ;
54

/∗∗
56 ∗ Here we unbind the s e r v i c e

∗/
58 @O v e r r i d e

p r o t e c t e d v o i d onPause () {
60 u n b i n d S e r v i c e (hwConnection) ;

hWService = n u l l ;
62 super . onPause () ;

}
64

p r i v a t e v o i d setupEmotionSpace () {
66 emot ionspace = (EmotionSpace) f indViewById (R . i d . emotionSpace) ;

/∗ The bundle p r o v i d e s us an a r r a y o f d o u b l e s c o n t a i n i n g the
output (0 −1) o f the n e u r a l network . The i n d e x e s a r e d e f i n e d i n
G l o b a l V a r i a b l e s . ∗/

68 nnOutput = g e t I n t e n t () . g e t E x t r a s () . ge tDoubleArray (
G l o b a l V a r i a b l e s . BND_EXTRA_EMOTION_OUTPUT_ARRAY_KEY) ;

70 emot ionspace . i n i t i a l i z e (nnOutput [G l o b a l V a r i a b l e s .
NN_OUTPUT_ARRAY_INDEX_EUPHORIC_BORED] ,

nnOutput [G l o b a l V a r i a b l e s .
NN_OUTPUT_ARRAY_INDEX_ANXIOUS_CALM]) ;

72 / / u s e r can now p r e s s the f e e d b a c k button

�

� �

�

158 A Practical Introduction to Human-in-the-Loop Cyber-Physical Systems

Button f e e d b a c k B u t t o n = (Button) f indViewById (R . i d .
emotionFeedbackButton) ;

74 f e e d b a c k B u t t o n . s e t C l i c k a b l e (t r u e) ;
}

76

/∗∗
78 ∗ Run when the u s e r p r e s s e s the f e e d b a c k button

∗ @param view
80 ∗/

p u b l i c v o i d emotionFeedback (View view) {
82 i f (emot ionspace ! = n u l l) {

t r y {
84 double [] userEmotionFeedback = emotionspace .

getEmotionFeedback () ;
double [] i n p u t s = g e t I n t e n t () . g e t E x t r a s () . ge tDoubleArray (

G l o b a l V a r i a b l e s . BND_EXTRA_EMOTION_INPUT_ARRAY_KEY) ;
86 long timestamp = g e t I n t e n t () . g e t E x t r a s () . getLong (

G l o b a l V a r i a b l e s . BND_EXTRA_EMOTION_TIMESTAMP_KEY) ;
hWService . getEmot ionTasker () . p r o c e s s U s e r F e e d b a c k (i n p u t s ,

nnOutput , userEmotionFeedback , t imestamp) ;
88 / / show the map

I n t e n t i n t e n t = new I n t e n t (t h i s , M a p s A c t i v i t y . c l a s s) ;
90 s t a r t A c t i v i t y (i n t e n t) ;

} c a t c h (I n i t i a l i z a t i o n E x c e p t i o n e) {
92 e . p r i n t S t a c k T r a c e () ;

}
94 / / f i n i s h t h i s a c t i v i t y

t h i s . f i n i s h () ;
96 }

}
98 }

8.2.4 Showing a Feedback Request Notification

Before processing the feedback, we still need to request it first. As discussed on page ??, a
possibility is to use a notification which will prompt the user to teach our neural network
mechanism. In this section we will implement a way of showing a feedback request noti-
fication to the user, which may be pressed to trigger the emotional feedback process. To
do so, we will begin by extending our EmotionTasker with a new method that can create
and remove this notification. We will then focus on creating a dynamic mechanism that
adapts the frequency of feedback requests to the accuracy of our neural network.

Let us create a method within EmotionTasker that will present a notification to the
user which, when pressed, will call the EmotionFeedback activity. We should also assume
that our emotion inference has an expiration date: it does not make sense for the user
to provide feedback to an inference task that was performed a long time ago. Therefore,
we need to consider a mechanism that will revert notifications and filter feedback which
has “expired”. This can be achieved using a simple timestamp:

package h i t l e x a m p l e s . happywalk . s e r v i c e ;
2

import (. . .)
4 import andro id . c o n t e n t . I n t e n t ;

import andro id . os . Bundle ;
6 import andro id . media . RingtoneManager ;

import andro id . app . P e n d i n g I n t e n t ;

�

� �

�

State Inference 159

8 import andro id . s u p p o r t . v4 . app . N o t i f i c a t i o n C o m p a t ;
import andro id . u t i l . Log ;

10

import h i t l e x a m p l e s . happywalk . R ;
12 import h i t l e x a m p l e s . happywalk . a c t i v i t i e s . EmotionFeedback ;

14 p u b l i c c l a s s EmotionTasker {

16 p r i v a t e HappyWalkService hWServ ;
p r i v a t e Handler hWServiceHandler ;

18 p r i v a t e BasicNetwork network ;
p r i v a t e ESSensorManager esSensorManager ;

20 p r i v a t e Emot ionRecogni t ionTask emotionRecog ;

22 /∗ t h i s v a r i a b l e keeps t r a c k o f the t ime when we f i r e d our l a s t
emotion n o t i f i c a t i o n ∗/

24 p r i v a t e long l a s t E m o t i o n N o t i f M i l l i s = 0 ;
p r i v a t e N o t i f i c a t i o n R e m o v a l T a s k currentNot i fRemovTask ;

26

(. . .)
28

p r i v a t e v o i d s h o w E m o t i o n F e e d b a c k N o t i f i c a t i o n (double [] i n p u t s , double []
o u t p u t s) {

30 / / F i r s t , c a n c e l p r e v i o u s n o t i f i c a t i o n removal t a s k s
hWServiceHandler . r e m o v e C a l l b a c k s (currentNot i fRemovTask) ;

32 / /Now, p r e p a r e a Bundle with the i n f o r m a t i o n to be p a s s e d to
EmotionFeedback

Bundle bnd = new Bundle () ;
34 bnd . putDoubleArray (G l o b a l V a r i a b l e s .

BND_EXTRA_EMOTION_INPUT_ARRAY_KEY ,
i n p u t s) ;

36 bnd . putDoubleArray (G l o b a l V a r i a b l e s .
BND_EXTRA_EMOTION_OUTPUT_ARRAY_KEY,

o u t p u t s) ;
38 /∗ put a timestamp on t h i s bundle to a v o i d e x p i r e d f e e d b a c k . We

s t o r e t h i s same v a l u e w i t h i n l a s t E m o t i o n N o t i f M i l l i s long , to keep
t r a c k o f when the l a s t emotion f e e d b a c k n o t i f i c a t i o n was s e n t . ∗ /

l a s t E m o t i o n N o t i f M i l l i s = System . c u r r e n t T i m e M i l l i s () ;
40 bnd . putLong (G l o b a l V a r i a b l e s . BND_EXTRA_EMOTION_TIMESTAMP_KEY,

l a s t E m o t i o n N o t i f M i l l i s) ;
bnd . p u t I n t (G l o b a l V a r i a b l e s . BND_EXTRA_REQ_CODE_KEY ,

42 G l o b a l V a r i a b l e s . AREQ_EMOTION_FEEDBACK_NOTIF) ;

44 I n t e n t i n t e n t = new I n t e n t (hWServ , EmotionFeedback . c l a s s) ;
i n t e n t . p u t E x t r a s (bnd) ;

46

P e n d i n g I n t e n t r e s u l t P e n d i n g I n t e n t =
48 P e n d i n g I n t e n t . g e t A c t i v i t y (

hWServ ,
50 0 ,

i n t e n t ,
52 P e n d i n g I n t e n t . FLAG_UPDATE_CURRENT

) ;
54

N o t i f i c a t i o n C o m p a t . B u i l d e r m N o t i f y B u i l d e r = new N o t i f i c a t i o n C o m p a t
. B u i l d e r (hWServ)

56 . s e t T i c k e r (hWServ . g e t R e s o u r c e s () . g e t S t r i n g (R . s t r i n g .
app_name) + " " + hWServ . g e t R e s o u r c e s () . g e t S t r i n g (R . s t r i n g .
emot ionFeedbackNot i fContent))

�

� �

�

160 A Practical Introduction to Human-in-the-Loop Cyber-Physical Systems

. s e t C o n t e n t T i t l e (hWServ . g e t R e s o u r c e s () . g e t S t r i n g (R . s t r i n g .
app_name))

58 . s e t C o n t e n t T e x t (hWServ . g e t R e s o u r c e s () . g e t S t r i n g (R . s t r i n g .
emot ionFeedbackNot i fContent))

. s e t S m a l l I c o n (R . drawable . e m o t _ n o t i f _ i c o n)
60 . s e t C o n t e n t I n t e n t (r e s u l t P e n d i n g I n t e n t)

. setOngoing (t r u e)
62 . setSound (RingtoneManager . g e t D e f a u l t U r i (RingtoneManager .

TYPE_NOTIFICATION)) ;

64 hWServ . g e t N o t i f i c a t i o n M a n a g e r () . n o t i f y (
hWServ . hHNotificNum ,

66 m N o t i f y B u i l d e r . b u i l d ()) ;
}

68

(. . .)
70

c l a s s Emot ionRecogni t ionTask implements Runnable {
72 p r i v a t e double [] o u t p u t s ;

p r i v a t e double [] i n p u t s ;
74

@O v e r r i d e
76 p u b l i c v o i d run () {

/ / Perform r e c o g n i t i o n o f emotions here
78 }

80 p r i v a t e v o i d p o s t N o t i f i c a t i o n R e m o v a l T a s k () {
/∗ p o s t a n o t i f i c a t i o n R e m o v a l T a s k , which w i l l r e v e r t the

n o t i f i c a t i o n i n c a s e the u s e r t a k e s too long to p r o v i d e i n p u t .
82 I t runs a l i t t l e a f t e r t h e e x p e c t e d e x p i r a t i o n time .

∗/
84 currentNot i fRemovTask = new N o t i f i c a t i o n R e m o v a l T a s k () ;

hWServiceHandler . p o s t D e l a y e d (currentNoti fRemovTask , (long)
(G l o b a l V a r i a b l e s . EXPIRE_EMOTION_MILLIS ∗1 . 0 5)) ;

86 }

88 p r i v a t e v o i d fetchInputsAndCompute () throws N o C u r r e n t P o s i t i o n {
(. . .)

90 }
}

92

/∗∗ This r u n n a b l e t a s k r e v e r t s our n o t i f i c a t i o n to i t s d e f a u l t
94 ∗ s t a t e i n c a s e the i n f e r r e d emotion has a l r e a d y e x p i r e d .

∗/
96 c l a s s N o t i f i c a t i o n R e m o v a l T a s k implements Runnable {

@O v e r r i d e
98 p u b l i c v o i d run () {

i f (System . c u r r e n t T i m e M i l l i s () − l a s t E m o t i o n N o t i f M i l l i s >
G l o b a l V a r i a b l e s . EXPIRE_EMOTION_MILLIS) {

100 / / r e v e r t the n o t i f i c a t i o n
Log . d ("EMOTION NOTIFICATION " , " l a s t E m o t i o N o t i f M i l l i s shows t h a t

c u r r e n t n o t i f i c a t i o n has e x p i r e d . R e v e r t i n g . . . ") ;
102 hWServ . s h o w N o t i f i c a t i o n (f a l s e) ;

}
104 }

}
106 }

�

� �

�

State Inference 161

EmotionTasker’s new showEmotionFeedbackNotification() method is responsible for
creating a notification that asks the user for feedback (lines 29–67). First, it cancels
previous notification removal tasks (those that revert to expired notifications, which we
will discuss below) since a new one will be created (line 31). As the reader may remember
from page ???, if we intend to use the EmotionFeedback activity, we need to provide addi-
tional data in an extras Bundle. Therefore, our method also includes the sensory input,
the neural network output, as well as a timestamp, into a Bundle to pass to EmotionFeed-
back. Notice that we use the correct global variable key for each data element (lines 34,
36, and 40). The timestamp is also stored in the lastEmotionNotifMillis variable. This
will be used to check if the user feedback is still valid.

In line 41, we add an integer to our extras Bundle with the key BND_EXTRA_REQ_
CODE_KEY . This integer represents a “request code key”, which we will use
later on in this tutorial. Its purpose is to help our MapsActivity to initialize
differently, depending on who called it. In this case, the value GlobalVari-
ables.AREQ_EMOTION_FEEDBACK_NOTIF is used to clearly identify that
redirections to MapsActivity come from emotion feedback notifications.

Afterwards, showEmotionFeedbackNotification() builds an Intent describing the
desire to call EmotionFeedback (line 44). It also builds a PendingIntent from this original
Intent using the getActivity() method (line 47). A PendingIntent is a type of Intent that
can be handed to other elements so that they can perform the action at a later time.
In our case, this means that our notification will only call EmotionFeedback when
pressed. Notice that we pass FLAG_UPDATE_CURRENT during our PendingIntent’s
construction. This way, if the described PendingIntent already exists it will be kept, but
its extra data shall be replaced with the one from the new Intent.

The method then uses a NotificationCompat.Builder, several resource strings, and
a bitmap icon to construct our notification message (lines 55–62). A working bitmap
should already be present in src/main/res/drawable/emot_notif_icon.png (represented
by the id R.drawable.emot_notif_icon). The reader is free to use his/her own image. As
for the strings, we need to define emotionFeedbackNotifContent within src/main/res/-
values/strings.xml), as shown below (line 8):

< r e s o u r c e s >
2 < s t r i n g name= " app_name " >HappyWalk</ s t r i n g >

4 (. . .)

6 <!−− N o t i f i c a t i o n s −−>
< s t r i n g name= " s e r v i c e N o t i f C o n t e n t " > i s w a l k i n g with you</ s t r i n g >

8 < s t r i n g name= " emot ionFeedbackNot i fContent " >Can you t e l l me how you
f e e l ?</ s t r i n g >

10 <!−−Emotion Feedback −−>
< s t r i n g name= " emotFeedButton " >This i s how I f e e l </ s t r i n g >

12 </ r e s o u r c e s >

The final result should be a notification that says, “Can you tell me how you feel?” (or
any other sentence, in case the reader decides to personalize the emotionFeedbackNo-
tifContent resource), as shown in Figure 8.13.

�

� �

�

162 A Practical Introduction to Human-in-the-Loop Cyber-Physical Systems

Figure 8.13 The emotion feedback notification.

Going back to our EmotionTasker code on page ???, we have also implemented yet
another method within EmotionRecognitionTask named postNotificationRemoval-
Task() (line 80). It makes use of a NotificationRemovalTask inner class, which also
implements the Runnable interface (much like EmotionTasker, as we saw on page ???).
The NotificationRemovalTask uses the lastEmotionNotifMillis and the GlobalVari-
ables.EXPIRE_EMOTION_MILLIS variables to evaluate if an emotion notification
has expired (see lines 96–105). This mechanism serves as a failsafe, in case a newer
notification is fired before the previous NotificationRemovalTask has been run. This
could happen when the period of emotion recognition tasks (dictated by the variable
GlobalVariables.RECOG_MIN_HOURS_WITHOUT_FEEDBACK) is lower than the
time an emotion is considered valid (GlobalVariables.EXPIRE_EMOTION_MILLIS).
However, since we cancel previous notification removal tasks before creating a new
notification, this situation should never occur under normal circumstances.

Now that we have our feedback request notifications in place, we can begin thinking
about when they should be fired. If we repeatedly request user feedback, there is no
point to our learning mechanism: the main focus of our HiTL app should be to become
as unobtrusive as possible. Therefore, we are going to devise a simple mechanism that
will determine when user feedback requests are necessary. Since we want to avoid overly
complex solutions, let us consider the following pseudocode:

v o i d f u n c t i o n UpdateEmotionAccuracy (neuralNetworkOutput , UserFeedback) {
2 c u r r e n t E u c l i d e a n = c a l c u l a t e the e u c l i d e a n d i s t a n c e between

neuralNetworkOutput and UserFeedback ;
weightedMeanEucl idean = use the c u r r e n t E u c l i d e a n to update a weighted

mean v a l u e ;
4 newFeedbackTime = d i r e c t L i n e a r V a r i a t i o n (weightedMeanEucl idean) ;

6 /∗ the base t ime to the next emotion f e e d b a c k r e q u e s t i s c a l c u l a t e d from
a weighted a r i t h m e t i c mean t h a t i n c l u d e s t h i s newFeedbackTime and a l s o a

b i t o f randomizat ion ∗/
8 baseTimeToNextEmoFdbckReq = weightedMean (newFeedbackTime) + randomFactor

() ;

10 / / keep t r a c k o f when we l a s t performed t h i s f e e d b a c k r e q u e s t
lastEmoFeedbackReq = currentTime () ;

12 }

The previous approach simply associates the time it takes until the next feedback
request with the distance between the result of the neural network and the user feed-
back (line 2). To smooth this change, we perform a weighted mean (line 3); that is, newer
emotional feedback with very low accuracy won’t punish a previously well-performing
neural network too harshly. A newFeedbackTime value is calculated based on a direct lin-
ear variation of the weighted mean of the Euclidean distance (line 4). This value is then

�

� �

�

State Inference 163

used to calculate the base time to the next emotion feedback request through another
weighted mean. We also introduce some randomness to the equation: this lessens the
possibility of users starting to associate their feedback with specific feedback request
intervals (line 8). Finally, we store a timestamp to keep track of when the last feed-
back request was performed (line 11). Below follows this reasoning in concrete Java
code:

package h i t l e x a m p l e s . happywalk . s e r v i c e ;
2

import (. . .)
4 import j a v a . u t i l . Random ;

6 p u b l i c c l a s s EmotionTasker {

8 (. . .)

10 /∗
we keep the c u r r e n t base time , the l a s t t ime and the

12 p r e v i o u s e u c l i d e a n d i s t a n c e f o r emotion f e e d b a c k r e q u e s t s
i n memory , to a v o i d c o n s t a n t l y a c c e s s i n g the d i s k

14 ∗/
p r i v a t e long baseTimeToNextEmoFdbckReq = 0 ;

16 p r i v a t e long lastEmoFeedbackReq = 0 ;
p r i v a t e f l o a t wMeanEucl ideanDistance = 0 ;

18

(. . .)
20

/∗∗
22 ∗ This method c a l c u l a t e s the e u c l i d e a n d i s t a n c e between the u s e r

f e e d b a c k and the n e u r a l network output
∗/

24 p r i v a t e double c o m p u t e E u c l i d e a n D i s t a n c e (double [] output , double []
i d e a l O u t p u t) {
double e u c l i d e a n D i s t a n c e = 0 ;

26 f o r (i n t i = 0 ; i <output . l e n g t h ; i ++) {
e u c l i d e a n D i s t a n c e += Math . pow ((output [i]− i d e a l O u t p u t [i]) , 2) ;

28 }
e u c l i d e a n D i s t a n c e = Math . s q r t (e u c l i d e a n D i s t a n c e) ;

30 r e t u r n e u c l i d e a n D i s t a n c e ;
}

32

(. . .)
34

/∗∗
36 ∗ This c l a s s i s r e s p o n s i b l e f o r u p d a t i n g the emotion a c c u r a c y f e e d b a c k

t i m e s and p r e v i o u s e u c l i d e a n d i s t a n c e v a l u e s
∗/

38 c l a s s UpdateEmotionAccuracyTask implements Runnable {
p r i v a t e double [] output ;

40 p r i v a t e double [] i d e a l O u t p u t ;

42 p u b l i c UpdateEmotionAccuracyTask (double [] output , double [] i d e a l O u t p u t
) {

i f (output . l e n g t h ! = i d e a l O u t p u t . l e n g t h) {
44 throw new A s s e r t i o n E r r o r (" output and i d e a l O u t p u t a r e o f d i f f e r e n t

s i z e s ") ;
}

46 e l s e {

�

� �

�

164 A Practical Introduction to Human-in-the-Loop Cyber-Physical Systems

t h i s . output = output ;
48 t h i s . i d e a l O u t p u t = i d e a l O u t p u t ;

}
50 }

52 @O v e r r i d e
p u b l i c v o i d run () {

54 /∗ c a l c u l a t e the e u c l i d e a n d i s t a n c e
This g i v e s us an e s t i m a t e on how a c c u r a t e our l a s t i n f e r e n c e was . ∗/

56 double e u c l i d e a n D i s t a n c e = c o m p u t e E u c l i d e a n D i s t a n c e (output ,
i d e a l O u t p u t) ;

/∗
58 This weighted mean w i l l be used to check i f our n e u r a l network

i s per forming w e l l enough to t r i g g e r n o t i f i c a t i o n s and send
i n f o r m a t i o n to the s e r v e r .

60 ∗/
wMeanEucl ideanDistance = (f l o a t) (e u c l i d e a n D i s t a n c e ∗

G l o b a l V a r i a b l e s . WEIGHT_OF_NEW_EUCLIDEAN_DISTANCE +
62 wMeanEucl ideanDistance ∗ (1− G l o b a l V a r i a b l e s .

WEIGHT_OF_NEW_EUCLIDEAN_DISTANCE)) ;

64 f l o a t m a x E u c l i d e a n D i s t a n c e = (f l o a t) Math . s q r t (G l o b a l V a r i a b l e s .
NN_OUTPUTS) ;

/∗
66 we compute a new f e e d b a c k t ime through a d i r e c t l i n e a r v a r i a t i o n

based on the weighted mean o f the e u c l i d e a n d i s t a n c e
68

number o f m i l l i s e c o n d s i n an hour = 3600000
70 ∗/

long newFeedbackTime = (long) ((G l o b a l V a r i a b l e s .
RECOG_MAX_HOURS_WITHOUT_FEEDBACK −

72 ((G l o b a l V a r i a b l e s . RECOG_MAX_HOURS_WITHOUT_FEEDBACK −
G l o b a l V a r i a b l e s . RECOG_MIN_HOURS_WITHOUT_FEEDBACK) ∗

wMeanEucl ideanDistance / m a x E u c l i d e a n D i s t a n c e)) ∗3600000) ;
74

/∗ update the f e e d b a c k t ime through a weighted a r i t h m e t i c mean , with
a b i t o f randomizat ion ∗/

76 baseTimeToNextEmoFdbckReq = (long) (newFeedbackTime ∗
G l o b a l V a r i a b l e s . WEIGHT_OF_NEW_EMOTION_FEEDBACK_TIME +

baseTimeToNextEmoFdbckReq ∗ (1− G l o b a l V a r i a b l e s .
WEIGHT_OF_NEW_EMOTION_FEEDBACK_TIME)) ;

78 Random rand = new Random () ;
long margin = (long) (baseTimeToNextEmoFdbckReq∗G l o b a l V a r i a b l e s .

MARGIN_PERCNT_RANDOM_EMO_FDBCK_TIME) ;
80 / / the f i n a l v a l u e w i l l o s c i l l a t e between b as eV a lu e −/+ (margin / 2)

baseTimeToNextEmoFdbckReq = (baseTimeToNextEmoFdbckReq −(margin / 2)) +

82 ((long) (rand . nextDouble () ∗margin)) ;

84 /∗ update the l a s t emotion f e e d b a c k timestamp ∗/
lastEmoFeedbackReq = System . c u r r e n t T i m e M i l l i s () ;

86 }
}

88 }

We define and use several important new class variables on the code above:

• wMeanEuclideanDistance (line 17): is a weighted mean of the Euclidean distance,
which relates to the history of the performance of our neural network.

�

� �

�

State Inference 165

• baseTimeToNextEmoFdbckReq (line 15): represents the time, in milliseconds, until
our next emotion feedback request.

• lastEmoFeedbackReq (line 16): is a timestamp of the last emotion feedback request.

The new inner class UpdateEmotionAccuracyTask (lines 38–87) allows us to easily
compute and update each of these values. As the reader may see from line 38, this class
implements the Runnable interface and, as such, can be used as a background task. We
define a simple constructor (lines 42–50) which receives two arrays of doubles: output
(the output of the neural network) and idealOutput (the feedback from the user). The
constructor also serves to verify if the two arrays are of equal size.

The actual workload of UpdateEmotionAccuracyTask rests on its run() method
(lines 53–86). It begins by calculating the Euclidean distance between output and
idealOutput (line 56). To do so, it uses the computeEuclideanDistance() method, which
is defined between lines 24 and 31.

The value of wMeanEuclideanDistance is calculated in line 61. It is a simple weighted
mean where new Euclidean distance values have a weight of WEIGHT_OF_NEW_
EUCLIDEAN_DISTANCE (which, by default, is 0.4).

We then calculate the maximum possible Euclidean distance (line 64). This is used
to compute newFeedbackTime (line 71) through a simple direct linear variation based
on the weighted mean of the Euclidean distance. Here, newFeedbackTime represents a
temporary value that will be used to compute baseTimeToNextEmoFdbckReq, the time
until the next emotion feedback request.

As we can see in line 76, baseTimeToNextEmoFdbckReq is also calculated through
a simple weighted mean, where newFeedbackTime has a weight equivalent to
WEIGHT_OF_NEW_EMOTION_FEEDBACK_TIME (which, by default, is also 0.4).
We then shuffle this value by adding a randomized margin, calculated from a percentage
of baseTimeToNextEmoFdbckReq in line 79, and applied in line 81. This shuffling is
a preventive measure against user habituation (e.g. the user expects a notification
at certain intervals), which may happen when the user repeatably provides similar
feedback.

The variables wMeanEuclideanDistance, baseTimeToNextEmoFdbckReq, lastE-
moFeedbackReq, and lastEmotionNotifMillis remain important even when the user
stops using our app, since they provide us with the necessary history that allows us
to comprehend how well our neural network has been performing and when the user
should be consulted. Thus, they should be made persistent. To do this, we will be using
Android’s SharedPreferences APIs.2 These allow us to easily store a relatively small
collection of key-value pairs. As such, let us write some helper methods that store and
retrieve these values from the app’s preferences:

package h i t l e x a m p l e s . happywalk . s e r v i c e ;
2

import (. . .)
4 import andro id . c o n t e n t . S h a r e d P r e f e r e n c e s ;

import andro id . p r e f e r e n c e . Pre ferenceManager ;
6

p u b l i c c l a s s EmotionTasker {
8

(. . .)

2 https://developer.android.com/training/basics/data-storage/shared-preferences.html

�

� �

�

166 A Practical Introduction to Human-in-the-Loop Cyber-Physical Systems

10

p r i v a t e v o i d r e s t o r e E m o F e e d b a c k V a l s F r o m P r e f e r e n c e s () {
12 S h a r e d P r e f e r e n c e s p r e f = PreferenceManager .

g e t D e f a u l t S h a r e d P r e f e r e n c e s (hWServ) ;

14 /∗ i f , f o r some reason , we cannot f i n d t h i s v a lu e , we use
getDefaultBaseEmoFeedbackTime () ∗/

baseTimeToNextEmoFdbckReq = p r e f . getLong (G l o b a l V a r i a b l e s .
PREF_EMOTION_BASE_FEEDBACK_MILLIS_KEY ,

16 getDefaultBaseEmoFeedbackTime ()) ;

18 /∗ i f , f o r some reason , we cannot f i n d t h i s v a lu e , s e t i t to z e r o
to ens u re a f e e d b a c k r e q u e s t i n the next emotion d e t e c t i o n t a s k ∗/

lastEmoFeedbackReq = p r e f . getLong (G l o b a l V a r i a b l e s .
PREF_LAST_EMOTION_FEEDBACK_REQ_KEY , 0) ;

20

/ / same t h i n g f o r l a s t E m o t i o n N o t i f M i l l i s
22 l a s t E m o t i o n N o t i f M i l l i s = p r e f . getLong (G l o b a l V a r i a b l e s .

PREF_LAST_EMOTION_NOTIF_KEY , 0) ;

24 /∗ by d e f a u l t , we d e f i n e h a l f o f l a r g e s t d i s t a n c e p o s s i b l e to
ens u re t h a t new n e u r a l n e t s w i l l r e q u i r e some t r a i n i n g b e f o r e hav ing
t h e i r r e s u l t s tak en i n t o account

∗/
26 f l o a t m a x E u c l i d e a n D i s t a n c e = (f l o a t) Math . s q r t (G l o b a l V a r i a b l e s .

NN_OUTPUTS) ;
wMeanEucl ideanDistance = p r e f . g e t F l o a t (G l o b a l V a r i a b l e s .

PREF_NEURALNETWORK_EUCLDIST_WGT_AVG_KEY,
28 m a x E u c l i d e a n D i s t a n c e / 2) ;

30 }

32 /∗∗
∗ S t o r e s the c u r r e n t v a l u e f o r the base and l a s t emotion f e e d b a c k

t i m e s i n t o the s h a r e d p r e f e r e n c e s
34 ∗/

p u b l i c v o i d saveEmoFeedbackValsToSharedPre ferences () {
36 S h a r e d P r e f e r e n c e s p r e f = PreferenceManager .

g e t D e f a u l t S h a r e d P r e f e r e n c e s (hWServ) ;
S h a r e d P r e f e r e n c e s . E d i t o r e d i t o r = p r e f . e d i t () ;

38 e d i t o r . putLong (G l o b a l V a r i a b l e s .
PREF_EMOTION_BASE_FEEDBACK_MILLIS_KEY , baseTimeToNextEmoFdbckReq) ;

e d i t o r . putLong (G l o b a l V a r i a b l e s . PREF_LAST_EMOTION_FEEDBACK_REQ_KEY ,
lastEmoFeedbackReq) ;

40 e d i t o r . putLong (G l o b a l V a r i a b l e s . PREF_LAST_EMOTION_NOTIF_KEY ,
l a s t E m o t i o n N o t i f M i l l i s) ;

e d i t o r . p u t F l o a t (G l o b a l V a r i a b l e s .
PREF_NEURALNETWORK_EUCLDIST_WGT_AVG_KEY, wMeanEucl ideanDistance) ;

42 e d i t o r . commit () ;
}

44

/∗∗
46 ∗ Returns the d e f a u l t baseTimeToNextEmoFdbckReq v a l u e

∗ by a v e r a g i n g between the maximum and minimum v a l u e s .
48 ∗/

p r i v a t e long getDefaultBaseEmoFeedbackTime () {
50 / / number o f m i l l i s e c o n d s i n an hour = 3600000

r e t u r n (long) ((G l o b a l V a r i a b l e s . RECOG_MAX_HOURS_WITHOUT_FEEDBACK +
G l o b a l V a r i a b l e s . RECOG_MIN_HOURS_WITHOUT_FEEDBACK) / 2

�

� �

�

State Inference 167

52 ∗ 3600000) ;
}

54

(. . .)
56 }

Let us begin with the saveEmoFeedbackValsToSharedPreferences() method
(lines 35–43). As the reader can see, storing values on SharedPreferences is a rel-
atively simple task. We begin by getting a reference to the default SharedPreferences,
in line 36. This allows us to acquire a SharedPreferences.Editor (line 37), which we
use to store the desired values together with their corresponding global variable keys
(lines 38–41). Finally, we commit the changes using the editor’s commit() method
(line 42).

We also wrote a restoreEmoFeedbackValsFromPreferences() method to load the values
from storage into memory (lines 11–30). We begin by fetching a reference to SharedPref-
erences in line 12. We then attempt to restore baseTimeToNextEmoFdbckReq (line 15).
One property of SharedPreferences’s getter methods is that they allow us to define a
default value, in case the provided key does not exist. We use this to our advantage
by defining a getDefaultBaseEmoFeedbackTime() method (lines 49–53). This method
simply averages the global variables RECOG_MAX_HOURS_WITHOUT_FEEDBACK
and RECOG_MIN_HOURS_WITHOUT_FEEDBACK , which define the maximum
and minimum periods for feedback requests (in hours), and returns the result in
milliseconds.

We use a similar strategy for restoring lastEmoFeedbackReq (line 19) and lastEmotion-
NotifMillis (line 22), except we provide the default value of 0 for both. For the maxEu-
clideanDistance variable, we define its default value as half of the maximum Euclidean
distance. As we will see in Section 9.2, these default values make sense, since they will
ensure that we perform feedback requests if there is no data stored and that newly cre-
ated neural networks perform a certain amount of training before having their results
taken into account.

Lest we forget, let us actually use the saveEmoFeedbackValsToSharedPreferences().
Since EmotionTasker is intimately related to our service, we should save its values when
the service is about to be destroyed, as can be seen below:

p u b l i c c l a s s HappyWalkService e x t e n d s S e r v i c e {
2

(. . .)
4

@O v e r r i d e
6 p u b l i c v o i d onDestroy () {

i sRunning = f a l s e ;
8 i f (hWServiceHandler ! = n u l l) {

/∗
10 ∗ This u s e s the Handler to send a " q u i t " message to the Looper ,

∗ th u s t e r m i n a t i n g our background Thread .
12 ∗/

hWServiceHandler . ge tLooper () . q u i t () ;
14 }

/ / s a v e l a s t known p o s i t i o n to s h a r e d p r e f e r e n c e s
16 h w L o c a t i o n L i s t e n e r . s t o r e A c t u a l P o s i t i o n I n S h a r e d P r e f s () ;

/ / s a v e c u r r e n t base emotion f e e d b a c k t ime to s h a r e d p r e f e r e n c e s
18 emotionTasker . saveEmoFeedbackValsToSharedPre ferences () ;

�

� �

�

168 A Practical Introduction to Human-in-the-Loop Cyber-Physical Systems

/ / remove l i s t e n e r
20 Locat ionManager mlocManager = (Locat ionManager) g e t S y s t e m S e r v i c e (

Context . LOCATION_SERVICE) ;
mlocManager . removeUpdates (h w L o c a t i o n L i s t e n e r) ;

22

/ / remove n o t i f i c a t i o n
24 mNM. c a n c e l (hHNotificNum) ;

super . onDestroy () ;
26 }

28 (. . .)
}

As we have seen in Section 5.2.1, the method onDestroy() is called at the end of
the service’s lifecycle (see Figure 5.3). In order to save EmotionFeedback’s values, we
changed HappyWalkService’s onDestroy() method by adding a call to saveEmoFeed-
backValsToSharedPreferences(), in line 18.

Now that we know when to request and how to retrieve user feedback, it is time to
start thinking about how to process this information.

8.3 Processing User Feedback

In this section we will handle what happens after the user presses the emotionFeed-
back button in the EmotionFeedback activity. This triggers the processing of user feed-
back, which, as mentioned on page ???, is passed on to the EmotionTasker through the
processUserFeedback() method. We will begin by implementing this method, where we
restore the HappyWalk notification to its default status and verify if the provided emo-
tional data is still valid. If it is valid, we shall use it to train the neural network and
then send it to the server. As such, let us detail each of these tasks in its respective
subsection.

8.3.1 Processing Feedback on the EmotionTasker

As mentioned above, the EmotionTasker shall process feedback within a processUser-
Feedback() method, which we will now implement:

1 package h i t l e x a m p l e s . happywalk . s e r v i c e ;

3 import (. . .)

5 p u b l i c c l a s s EmotionTasker {

7 (. . .)

9 /∗∗
∗ Handles u s e r emotion f e e d b a c k . T r a i n i n g o f the n e u r a l network o n l y

t a k e s p l a c e i f the emotion n o t i f i c a t i o n has not e x p i r e d .
11 ∗ This a v o i d s the p o s s i b l e i s s u e o f u s e r s p r o v i d i n g f e e d b a c k long

a f t e r our n o t i f i c a t i o n has been shown .
∗/

13 p u b l i c v o i d p r o c e s s U s e r F e e d b a c k (double [] i n p u t s , double [] outputs ,
double [] i d e a l O u t p u t , long emotionTimestamp) {

/∗

�

� �

�

State Inference 169

15 We r e q u e s t a timestamp i n s t e a d o f r e l y i n g on our i n t e r n a l
l a s t E m o t i o n N o t i f M i l l i s because t h e r e i s a p o s s i b i l i t y t h a t a new
emotion was i n f e r r e d w h i l e the u s e r was s t i l l u s i n g the f e e d b a c k
s c r e e n . Thus , w h i l e the l a s t E m o t i o n N o t i f M i l l i s works f o r n o t i f i c a t i o n s
, t h e r e a r e no g u a r a n t e e s t h a t i t i s a s s o c i a t e d with the emotion we
a r e about to p r o c e s s r i g h t now . Hence , t imestamps a r e n e c e s s a r y .

17 I f no new n o t i f i c a t i o n s were c r e a t e d i n the meantime , we can
c a n c e l the n o t i f i c a t i o n removal t a s k s and r e v e r t the n o t i f i c a t i o n to
i t s normal s t a t e .

∗/
19 i f (emotionTimestamp == l a s t E m o t i o n N o t i f M i l l i s) {

/ / c a n c e l n o t i f i c a t i o n removal t a s k
21 hWServiceHandler . r e m o v e C a l l b a c k s (currentNot i fRemovTask) ;

/ / r e v e r t n o t i f i c a t i o n
23 hWServ . s h o w N o t i f i c a t i o n (f a l s e) ;

}
25 / / perform t r a i n i n g and send to s e r v e r , i f emotion has not e x p i r e d

i f (System . c u r r e n t T i m e M i l l i s () − emotionTimestamp <
G l o b a l V a r i a b l e s . EXPIRE_EMOTION_MILLIS) {

27 hWServiceHandler . p o s t (new NeuralNetworkTrainingTask (i n p u t s ,
i d e a l O u t p u t)) ;

sendEmotionToServer (i d e a l O u t p u t) ;
29 / / update emotion f e e d b a c k f r e q u e n c y

hWServiceHandler . p o s t (new UpdateEmotionAccuracyTask (outputs ,
i d e a l O u t p u t)) ;

31 }
e l s e {

33 Log . d ("NEURALNETWORK TRAINING " , " E x p i r e d emotion , d i s c a r d i n g
f e e d b a c k . . . ") ;

}
35 }

37 (. . .)

39 }

This method achieves several objectives. First, it checks if the last fired notification
corresponds to the emotion currently being processed (line 19). If it does, we can safely
remove the pending notification removal task (line 21) and revert the notification to
its default status (“HappyWalk is walking with you”) by passing a false Boolean value
to HappyWalkService’s showNotification() method (line 23). If there are newer notifica-
tions, we shall do nothing that interferes with their lifecycle.

Afterwards, the method uses the timestamp to check if the emotion we are about to
process is still valid (line 26). As noted in the comments (lines 14–18), it is possible
that the user opened the EmotionFeedback activity and forgot to provide feedback until
much later. If it is valid, we use the feedback to train the neural network (through a Neu-
ralNetworkTrainingTask class, in line 27), send this information to the server (through
a sendEmotionToServer() method, in line 28), and update the frequency of user feed-
back requests, through the UpdateEmotionAccuracyTask that we implemented in the
previous section (line 30).

As the reader might have noticed, we still need to implement the NeuralNetwork-
TrainingTask class and the sendEmotionToServer() method. Let us consider each of these
issues separately.

�

� �

�

170 A Practical Introduction to Human-in-the-Loop Cyber-Physical Systems

8.3.2 Training the Neural Network

In this section we will implement our neural network’s training process. We will first cre-
ate a task specifically tailored for this purpose, which will use the Encog library to train
the network. We will then use the SharedPreferences API to make our neural network’s
state persistent.

As we have seen in the previous section, the processUserFeedback() method refer-
ences a NeuralNetworkTrainingTask, which is responsible for training the neural net-
work based on the provided feedback. Thankfully, the Encog library makes this step a
rather painless process:

1 package h i t l e x a m p l e s . happywalk . s e r v i c e ;

3 import (. . .)
import org . encog . ml . d a t a . b a s i c . BasicMLDataSet ;

5 import org . encog . n e u r a l . networks . t r a i n i n g . p r o p a g a t i o n . r e s i l i e n t .
R e s i l i e n t P r o p a g a t i o n ;

7

p u b l i c c l a s s EmotionTasker {
9

(. . .)
11

/∗∗
13 ∗ T r a i n s the n e u r a l network based on the R e s i l i e n t P r o p a g a t i o n

h e u r i s t i c
∗/

15 c l a s s Neura lNetworkTrainingTask implements Runnable {
p r i v a t e double [] i n p u t s ;

17 p r i v a t e double [] i d e a l O u t p u t ;

19 p u b l i c Neura lNetworkTrainingTask (double [] i n p u t s , double []
i d e a l O u t p u t) {

t h i s . i n p u t s = i n p u t s ;
21 t h i s . i d e a l O u t p u t = i d e a l O u t p u t ;

}
23

@O v e r r i d e
25 p u b l i c v o i d run () {

double [] [] t r a i n i n g I n p u t = { i n p u t s } ;
27 double [] [] t r a i n i n g I d e a l O u t p u t = { i d e a l O u t p u t } ;

BasicMLDataSet t r a i n i n g S e t = new BasicMLDataSet (t r a i n i n g I n p u t ,
t r a i n i n g I d e a l O u t p u t) ;

29 R e s i l i e n t P r o p a g a t i o n rProp = new R e s i l i e n t P r o p a g a t i o n (network ,
t r a i n i n g S e t) ;

/ / t r a i n the network
31 do {

rProp . i t e r a t i o n () ;
33 } w h i l e (rProp . g e t E r r o r () >= G l o b a l V a r i a b l e s .

NN_MAX_TRAINING_ERROR) ;

35 / / s a v e the new w e i g h t s
saveNNWeightsToPreferences (network . dumpWeights ()) ;

37 }
}

39

(. . .)
41 }

�

� �

�

State Inference 171

The NeuralNetworkTrainingTask’s code is rather self-explanatory. Similar to what we
previously did for UpdateEmotionAccuracyTask (back on page ???), this task also imple-
ments the Runnable interface (line 15) and defines a simple constructor that takes two
arrays of doubles: inputs and idealOutput (lines 19–22). The inputs array represents the
original sensory input, which should still be accompanying the current emotion (the
result of collectInputs(), discussed back on page ???, which is then passed to showEmo-
tionFeedbackNotification(), EmotionFeedback and, finally, processUserFeedback()). The
idealOutput, on the other hand, represents the user feedback that was provided by Emo-
tionFeedback.

In the class run() method these two arrays are used in conjunction to create a BasicML-
DataSet object, which is Encog’s representation of a set of training data (line 28). Notice
that the BasicMLDataSet’s constructor takes two double[][] objects and we only have a
single emotion to process. As such, we first translate inputs and idealOutput into two
double[][] arrays (lines 26 and 27).

Afterwards, we use a technique named “Resilient Propagation” (line 29) to train
the network until its error is below a certain customizable threshold. The training is
performed inside a do while loop (lines 31–33), and the threshold is defined by the
NN_MAX_TRAINING_ERROR global variable (line 33). Ideally, this training process
should use more than one training value; however, since this task will be performed
each time the user provides feedback, we should still expect the neural network to
adapt over a considerable period.

The result of the neural network training is another element that has to be made per-
manent. Each time the app is started, the previous state of the neural network must be
loaded from the device’s storage, so that HappyWalk may progressively become more
accurate and personalized. Thus, we reference a method saveNNWeightsToPreferences()
to save this information. Let us implement this and another helper method (restoreN-
NWeightsFromPreferences()) to save and load the neural network’s state information
from the app’s preferences:

1 package h i t l e x a m p l e s . happywalk . s e r v i c e ;

3 import (. . .)

5 p u b l i c c l a s s EmotionTasker {

7 (. . .)

9 p r i v a t e BasicNetwork network ;

11 (. . .)

13 p r i v a t e v o i d restoreNNWeightsFromPreferences () {
/ / Try to g e t network from p r e f e r e n c e s f i r s t

15 S h a r e d P r e f e r e n c e s p r e f = PreferenceManager .
g e t D e f a u l t S h a r e d P r e f e r e n c e s (hWServ) ;

i f (p r e f . c o n t a i n s (G l o b a l V a r i a b l e s . PREF_NEURALNETWORK_WEIGHT_KEY))
{

17 S t r i n g w e i g h t s = p r e f . g e t S t r i n g (G l o b a l V a r i a b l e s .
PREF_NEURALNETWORK_WEIGHT_KEY, n u l l) ;

i f (w e i g h t s ! = n u l l) {
19 S t r i n g [] w e i g h t s _ s t r i n g _ a r r a y = w e i g h t s . s p l i t (" , ") ;

double [] w e i g h t s _ a r r a y = new double [w e i g h t s _ s t r i n g _ a r r a y .
l e n g t h] ;

�

� �

�

172 A Practical Introduction to Human-in-the-Loop Cyber-Physical Systems

21 i n t i = 0 ;
f o r (S t r i n g v a l u e : w e i g h t s _ s t r i n g _ a r r a y) {

23 w e i g h t s _ a r r a y [i ++] = Double . parseDouble (v a l u e) ;
}

25 network . decodeFromArray (w e i g h t s _ a r r a y) ;
}

27 } e l s e {
Log . d (" NEURAL NETWORK" , "No w e i g h t s were found ; n e u r a l network

has been r e s e t ") ;
29 }

}
31

p r i v a t e v o i d saveNNWeightsToPreferences (S t r i n g w e i g h t s) {
33 S h a r e d P r e f e r e n c e s p r e f = PreferenceManager .

g e t D e f a u l t S h a r e d P r e f e r e n c e s (hWServ) ;
S h a r e d P r e f e r e n c e s . E d i t o r e d i t o r = p r e f . e d i t () ;

35 e d i t o r . p u t S t r i n g (G l o b a l V a r i a b l e s . PREF_NEURALNETWORK_WEIGHT_KEY,
w e i g h t s) ;

e d i t o r . commit () ;
37 }

39 (. . .)

41 }

The saveNNWeightsToPreferences() method (lines 32–37) is somewhat similar to
saveEmoFeedbackValsToSharedPreferences(), which we wrote back on page ???. We
begin by getting a reference to the default SharedPreferences (line 33) and then to its
Editor (line 34). The major difference is that we only have a single key-value pair to store:
a weights string and its key (stored in the REF_NEURALNETWORK_WEIGHT_KEY
global variable). These shall contain our neural network’s weights (line 35). Once again,
we commit the changes using the editor’s commit() method (line 36).

The restoreNNWeightsFromPreferences() method (lines 13–30) also begins by
acquiring a reference to the default SharedPreferences (line 15). We then verify if
PREF_NEURALNETWORK_WEIGHT_KEY exists in the SharedPreferences (line 16).
If it does, we attempt to store its corresponding string within a variable called weights
(line 17). If the weights string does exist (line 18), we split it by the “,” character, and
store the corresponding substrings within a weights_string_array (line 19). These
substrings are then converted into an array of doubles (lines 20–24). Finally, we use the
BasicNetwork.decodeFromArray() method to restore our neural network (line 25). If we
cannot find weights stored within SharedPreferences our neural network will reset, and
we log this occurrence (line 28).

We can make use of restoreNNWeightsFromPreferences() and the other helper meth-
ods we have written so far to further initialize our EmotionTasker:

1 package h i t l e x a m p l e s . happywalk . s e r v i c e ;

3 import (. . .)

5 p u b l i c c l a s s EmotionTasker {

7 (. . .)

9 p u b l i c EmotionTasker (HappyWalkService hWServ) {

�

� �

�

State Inference 173

t h i s . hWServ = hWServ ;
11 t h i s . hWServiceHandler = hWServ . getHappyWalkServ iceHandler () ;

/ / p r e p a r i n g s e n s o r manager to f e t c h d a t a
13 t r y {

esSensorManager = ESSensorManager . getSensorManager (hWServ) ;
15 esSensorManager . s e t G l o b a l C o n f i g (G l o b a l C o n f i g .

PRINT_LOG_D_MESSAGES , f a l s e) ;
} c a t c h (ESExcept ion e) {

17 e . p r i n t S t a c k T r a c e () ;
}

19 / / f e t c h the base emotion f e e d b a c k t ime i n t e r v a l
r e s t o r e E m o F e e d b a c k V a l s F r o m P r e f e r e n c e s () ;

21 / / i n i t i a l i z e Neural Network
i n i t N e t w o r k () ;

23 / / r e s t o r e n e u r a l network w e i g h t s from our p r e f e r e n c e s , i f we have
them

restoreNNWeightsFromPreferences () ;
25 }

27 (. . .)

29 }

As the code above shows, we have edited our EmotionTasker’s constructor to better
initialize the class. We now use restoreEmoFeedbackValsFromPreferences() to restore
our emotion feedback values (line 20), initialize the neural network using the initNet-
work() method we previously implemented on page ??? (line 22), and restore the neural
network’s state using restoreNNWeightsFromPreferences() (line 24). This way, the con-
structor now handles the initialization of the sensing library, fetches the base values of
emotional feedback requests, initializes the ANN, and restores its weights. Let us move
on to the task of sending emotional information to the server.

8.3.3 Sending Emotional Information to the Server

As previously discussed back in Section 5.3, one of the objectives of HappyWalk is to
display a near real-time average of the mood at each POI, through heatmaps with differ-
ent colors, so that users may pick walking destinations with the moods they desire. To
do this, the server needs to collectively acquire the current moods of HappyWalk users,
and it is up to the Android app to send this information. As such, what kind of data do
we need to send?

First of all we need to obviously send emotional data, so that the server may aggregate
it. We also need to send location data, since we need to know where the user is before
we can associate his/her emotions with a certain POI. Finally, to avoid duplicate data,
we also need to somehow identify individual user records.

Here, it is important that we comply with the requirement of anonymization, since
we are dealing with possibly sensitive information. To do so, HappyWalk generates a
pseudo-random universally unique identifier (UUID), a “practically unique” 128-bit
value. This identifier will serve as the only means of “tracking” each user’s data, thus
avoiding the storage of any type of personal information. HappyWalkService makes use
of Java’s java.util.UUID utility class to handle the generation of these identifiers.

Therefore, our implementation should send this anonymous UUID of the user,
his/her current position and his/her emotional feedback. This information is going to

�

� �

�

174 A Practical Introduction to Human-in-the-Loop Cyber-Physical Systems

Figure 8.14 Creating TaskSendEmotion.

be aggregated by the server in order to be shared with the community, so that users
may know the average mood at a certain POI as well as the number of people in its
surroundings.

Let us write a new class that sends this information to the server. Create a new class
under hitlexamples.happywalk/tasks, as shown in Figure 8.14.

Name this new class TaskSendEmotion. Below, the reader can find a suggested imple-
mentation:

package h i t l e x a m p l e s . happywalk . t a s k s ;
2

import andro id . u t i l . Log ;
4 import org . j s o n . JSONObject ;

import h i t l e x a m p l e s . happywalk . u t i l i t i e s . CommunicationClass ;
6

p u b l i c c l a s s TaskSendEmotion implements Runnable {
8

p r i v a t e S t r i n g uuid ;
10 p r i v a t e double userEuphor iaBored ;

p r i v a t e double userAnxietyCalm ;
12 p r i v a t e double l a t i t u d e ;

p r i v a t e double l o n g i t u d e ;
14

p u b l i c TaskSendEmotion (S t r i n g uuid , double userEuphor iaBored , double
userAnxietyCalm , double l a t i t u d e , double l o n g i t u d e) {

16 t h i s . uuid = uuid ;
t h i s . userEuphor iaBored = userEuphor iaBored ;

18 t h i s . userAnxietyCalm = userAnxietyCalm ;
t h i s . l a t i t u d e = l a t i t u d e ;

20 t h i s . l o n g i t u d e = l o n g i t u d e ;
}

22

p u b l i c v o i d run () {
24 Log . d (" r e q u e s t s " , " TaskSendEmotion ") ;

JSONObject ob = requestSendEmotion (uuid , userEuphor iaBored ,
26 userAnxietyCalm , l a t i t u d e , l o n g i t u d e) ;

28 i f (ob ! = n u l l) {
CommunicationClass . sendPostMessage (ob , " setEmot ion / ") ;

30 }
}

�

� �

�

State Inference 175

32

/∗∗
34 ∗ This f u n c t i o n b u i l d one o b j e c t j s o n with the r e q u e s t to s e r v e r .

∗
36 ∗ @r e t u r n J s o n o b j e c t with username password and l o c a t i o n . I f an

e r r o r occurs , i t r e t u r n s n u l l
∗/

38 p u b l i c JSONObject requestSendEmotion (S t r i n g uuid , double
userEuphor iaBored , double userAnxietyCalm , double l a t i t u d e , double
l o n g i t u d e) {

40 JSONObject j s o n = new JSONObject () ;

42 t r y {
j s o n . put (" uuid " , uuid) ;

44 j s o n . put (" userEuphor iaBored " , userEuphor iaBored) ;
j s o n . put (" userAnxietyCalm " , userAnxietyCalm) ;

46 j s o n . put (" l a t i t u d e " , l a t i t u d e) ;
j s o n . put (" l o n g i t u d e " , l o n g i t u d e) ;

48

} c a t c h (E x c e p t i o n e) {
50 e . p r i n t S t a c k T r a c e () ;

}
52 Log . i ("−> setEmot ion " , j s o n . t o S t r i n g ()) ;

r e t u r n j s o n ;
54 }

}

The TaskSendEmotion class implements the Runnable interface; as such, it can be
fed as a task to be run in the background through our HappyWalkServiceHandler
(line 7). Its constructor takes a uuid string, two double values corresponding to the
Anxiety–Calmness and Euphoria–Boredom axes, as well as the user’s latitude and
longitude (lines 15–21). The requestSendEmotion() method creates a JSON object
containing the necessary information (lines 38–54). Finally, the run() method uses
CommunicationClass (a utility class that contains several communication methods) to
send our JSON object to a service hosted by the server named setEmotion/ (line 29).
We will consider the implementation of this service later on, in Section 9.1.

Now that we have TaskSendEmotion, we can use it to easily implement Emotion-
Tasker’s sendEmotionToServer() method, previously discussed on page ???:

1 package h i t l e x a m p l e s . happywalk . s e r v i c e ;

3 import (. . .)
import h i t l e x a m p l e s . happywalk . t a s k s . TaskSendEmotion ;

5

p u b l i c c l a s s EmotionTasker {
7

(. . .)
9

/∗∗
11 ∗ Sends output emotion to the s e r v e r

∗ @param o u t p u t s − the emotion output to be s e n t
13 ∗/

p r i v a t e v o i d sendEmotionToServer (double [] o u t p u t s) {
15 LatLng c u r r e n t P o s = hWServ . g e t H w L o c a t i o n L i s t e n e r () .

g e t A c t u a l p o s i t i o n () ;

�

� �

�

176 A Practical Introduction to Human-in-the-Loop Cyber-Physical Systems

hWServiceHandler . p o s t (new TaskSendEmotion (
17 G l o b a l V a r i a b l e s . UUID ,

o u t p u t s [G l o b a l V a r i a b l e s .
NN_OUTPUT_ARRAY_INDEX_EUPHORIC_BORED] ,

19 o u t p u t s [G l o b a l V a r i a b l e s . NN_OUTPUT_ARRAY_INDEX_ANXIOUS_CALM
] ,

c u r r e n t P o s . l a t i t u d e ,
21 c u r r e n t P o s . l o n g i t u d e)) ;

}
23

(. . .)
25

}

The sendEmotionToServer() method simply fetches the device’s current position
(line 15) and sends it to the server, together with the user’s UUID and emotional
information (lines 16–21).

With its last piece in place, our processUserFeedback() method should now be com-
plete. With this, we have completed the app’s ability to acquire and use feedback to train
the neural network.

8.4 In Summary...

In this chapter we have handled the state inference process of our HiTLCPS. Figure 8.15
shows a summary of the current state of our HiTLCPS. It illustrates many of the tasks we

STATE INFERENCE

SERVER

YES

NO

Runs

periodically

Performs

Feeds

Persists

Shared

Preferences

Time to request

feedback?

DATA
ACQUISITION

Trains

Sends
Updates

Calls

ACTUATION

Triggers

Emotion

Recognition Task

Figure 8.15 Current state of our HiTLCPS at the end of Chapter 8. (See insert for color representation of
the figure.)

�

� �

�

State Inference 177

have performed during this chapter. We began by implementing a neural network and
creating an activity for acquiring user feedback. This activity is triggered by an emotion
feedback notification, the frequency of which is controlled by a dynamic mechanism
based on the performance of the neural network. We also handled persistence by saving
and restoring the values pertaining to this dynamic notification frequency and to the
state of our neural network’s weights. Finally, the processing of user feedback was cov-
ered, where we performed the training of our neural network and sent relevant data to
the server.

However, as the reader may have noticed, there are several parts of Figure 8.15 that we
have yet to address, identified by dashed arrows and squares. At the top we have Emo-
tionRecognitionTask, which is still incomplete. As the reader may remember, its run()
method (line 77 of the code on page ???) still needs to be implemented. This task should
run periodically (once or twice an hour), as we decided back on page ??. It should also
trigger the beginning of the data acquisition process, which we handled in Chapter 7.
We still need to feed the acquired data to our neural network. This has been partially
handled by the fetchInputsAndCompute() method (lines 35–40 of the code on page ???),
but the method has yet to be used within EmotionRecognitionTask.

Additionally, the dynamic feedback mechanism we implemented in Section 8.2.4 only
computes the neural network’s performance and the feedback notification period. These
values still need to be put to use, to decide if we should trust the neural network (i.e. if its
performance is good enough), and to determine whether the application should show a
feedback request or actuate.

In what concerns feedback requests, we covered most of the necessary work in this
chapter. However, within our HiTL application we still need to be able to use the neural
network to effectively produce a positive effect on the user. This challenge lies within
the Actuation part of the app. In the next chapter, we will discuss how to use the ANN
results to present suggestions to the user through the map interface.

�

� �

�

179

9

Actuation

After tackling data acquisition and state inference in the previous two chapters, in this
chapter we will address the final step of our HiTLCPS sample app: actuation. To do so,
in Section 9.1 we will first handle emotions on the server side. This implies the need to
implement intelligence that saves and updates emotional information and associates it
with certain POIs. We will also need to prune the database for outdated emotions; that
is, each emotion has limited validity, after which it should be deleted from the database.
Afterwards, in Section 9.2, we will keep working on EmotionTasker, defining when the
results of our neural network should be considered, as well as what to do with them. Last
but not least, in Section 9.3, we will also discuss how to provide positive reinforcement
to the user and how to represent emotional information on the map.

9.1 Handling Emotions on the Server

As previously mentioned in Section 5.2.2, this book does not cover how to implement
and handle the database. Instead, it focuses on the intelligence associated with the han-
dling of emotions in the server. In particular, we will detail how to save and update
emotional information and how to prune outdated emotions.

In this section we will be implementing the setEmotion web service referenced back
on page ???. Before we begin, we suggest a revision of the server’s class structure,
previously discussed on page ??. We will need to create new classes in the Model,
Web, and Com packages. As such, we also need to familiarize ourselves with Hap-
pyWalk’s database schema, in order to make proper use of the necessary DAOs and
HibernateMaps. Figure 9.1 shows an overview of its conceptual schema.

HappyWalk’s database has only two entities: Pointofinterest and Emotion. These enti-
ties are related by a “many-to-many” cardinality, that is a Pointofinterest can have several
Emotions and an Emotion can affect several Pointofinterests.

This is because each emotion will affect every POI within a certain range of the
user. This design decision stems from the fact that the objective of HappyWalk is to pro-
vide general information about areas through heatmaps, not about specific places. It also
accounts for areas with several nearby POIs: considering that users only send emotional
updates periodically, their location may change between updates. Additionally, not asso-
ciating an emotion with a unique POI further contributes towards our anonymization
requirement.

A Practical Introduction to Human-in-the-Loop Cyber-Physical Systems, First Edition.
David Nunes, Jorge Sá Silva and Fernando Boavida.
© 2018 John Wiley & Sons Ltd. Published 2018 by John Wiley & Sons Ltd.
Companion Website URL: www.wiley.com/go/nunesloop

�

� �

�

180 A Practical Introduction to Human-in-the-Loop Cyber-Physical Systems

Pointofinterest

idPoi

address

longitude

type

emotionEuphoriaBored emotionAnxietyCalm

Emotion

city

attendance

name description

uuid

anxietyCalm updatedAt

euphoriaBoard

latitude

image

Figure 9.1 HappyWalk’s database conceptual schema.

The Pointofinterest entity contains various attributes:

• idPoi: an alphanumeric string which uniquely identifies the POI.
• name: a string containing the name of the POI.
• description: a string containing a description of the POI.
• address: a string with the POI’s address.
• type: a string with the POI’s type (plaza, garden, park, etc.).
• latitude/longitude: doubles containing the POI’s coordinates.
• city: the name of the POI’s location.
• image: a binary representation of an image associated with the POI.
• emotionEuphoriaBored/emotionAnxietyCalm: doubles containing the average val-

ues of each emotional axis calculated from all the users at the POI.
• attendance: an integer representing the number of users at a POI.

The Emotion entity contains only four attributes:

• uuid: a string with the UUID of the user to which this emotion belongs.
• euphoriaBored/anxietyCalm: doubles representing the emotional axes of this emo-

tion.
• updatedAt: a long representing a timestamp of the last time this emotion was

updated.

In the next few sections, we will be making use of these entities through their associ-
ated DAOs and HibernateMaps.

• We will begin with the modeling of setEmotion requests. This will allow us to easily
parse subsequent JSON messages and their contents (Section 9.1.1).

• We will then create an interface to act as a “point of entry” for our setEmotion web
service (Section 9.1.2).

• Afterwards, we will delve more deeply into our server and create a background thread
to perform emotion-related tasks (Section 9.1.3).

• Using our background thread, we will process incoming emotions by updating the
respective POI information (Section 9.1.4).

• Finally, our background thread will also be used to periodically prune outdated emo-
tions from the database (Section 9.1.5).

9.1.1 Parsing JSON Requests

To begin, we shall create a model of incoming setEmotion requests. This will be, essen-
tially, a basic Java class whose attributes will represent the data elements being sent by

�

� �

�

Actuation 181

Figure 9.2 Creating a new class in Eclipse.

the Android client. Constructing this type of model allows us to easily use the Jersey
library to parse JSON data.

Open the server’s project in Eclipse, the one previously cloned in Section 6.3.1. Make
sure Eclipse is on its “Java EE” perspective and create a new class within the model pack-
age, as shown in Figure 9.2. Name this new class RequestSetEmotion (see Figure 9.3).

Eclipse should generate an empty class within the model package. This Request-
SetEmotion will be used by Jersey to parse incoming JSON messages belonging to our
setEmotion.

As the user may remember from our TaskSendEmotion Android class, back on
page ???, the requestSendEmotion() method created a JSON containing a uuid string,
two double values corresponding to the Anxiety-Calmness and Euphoria-Boredom axes,
as well as the user’s latitude and longitude. As such, our server’s RequestSetEmotion
class has to reflect all of this incoming information accurately, so that no data is missed.
Let us begin by creating class variables for each of these elements:

1 package model ;

3 p u b l i c c l a s s RequestSetEmotion {

5 p r i v a t e S t r i n g uuid ;
p r i v a t e Double userEuphor iaBored ;

7 p r i v a t e Double userAnxietyCalm ;
p r i v a t e Double l a t i t u d e ;

9 p r i v a t e Double l o n g i t u d e ;

11 }

�

� �

�

182 A Practical Introduction to Human-in-the-Loop Cyber-Physical Systems

Figure 9.3 Naming RequestSetEmotion.

The above implementation shows that RequestSetEmotion is just a regular Java object.
However, in order for Jersey to properly parse incoming JSONs, there are some impor-
tant particularities that need to be taken into consideration.

As the reader may have noticed, RequestSetEmotion’s class variables’ names match
the corresponding JSON attributes defined by TaskSendEmotion (see page ???). This is
relevant, since we need to generate some boilerplate code based on these names.

We need to provide two class constructors: Jersey requires a non-argument default
constructor (based on Java’s Object superclass) and a constructor using all the fields we
have just defined. We also need to provide the variables’ Getters and Setters. Fortunately,
Eclipse makes this task rather effortless: as shown in Figure 9.4, simply right-click on
RequestSetEmotion’s editor window and hover your mouse cursor over Source. Here, one
can access four useful code-generation options: Generate Getters and Setters…, Gener-
ate toString()…, Generate Constructor using Fields…, and Generate Constructor from
Superclass….

Let us first generate a constructor using fields. After clicking on the associated option,
a window similar to Figure 9.5 should appear. Select all of our previously defined vari-
ables. As for the other options, follow Figure 9.5 and click “Ok”. Now, click on Gen-
erate Constructor from Superclass…, follow the options shown in Figure 9.6 and click
“Ok”.

�

� �

�

Actuation 183

Figure 9.4 Generating the Constructors, toString(), and the Getters and Setters.

Figure 9.5 Generating a Constructor using fields.

�

� �

�

184 A Practical Introduction to Human-in-the-Loop Cyber-Physical Systems

Figure 9.6 Generating a Constructor
from Superclass.

These steps should have generated the necessary constructors. Our RequestSetEmo-
tion class should now look like this:

1 package model ;

3 p u b l i c c l a s s RequestSetEmotion {

5 p r i v a t e S t r i n g uuid ;
p r i v a t e Double userEuphor iaBored ;

7 p r i v a t e Double userAnxietyCalm ;
p r i v a t e Double l a t i t u d e ;

9 p r i v a t e Double l o n g i t u d e ;

11 p u b l i c RequestSetEmotion (S t r i n g uuid , Double userEuphor iaBored , Double
userAnxietyCalm , Double l a t i t u d e ,

Double l o n g i t u d e) {
13 super () ;

t h i s . uuid = uuid ;
15 t h i s . userEuphor iaBored = userEuphor iaBored ;

t h i s . userAnxietyCalm = userAnxietyCalm ;
17 t h i s . l a t i t u d e = l a t i t u d e ;

t h i s . l o n g i t u d e = l o n g i t u d e ;
19 }

21 p u b l i c RequestSetEmotion () {
super () ;

23 / / TODO Auto−g e n e r a t e d c o n s t r u c t o r s t u b
}

25

}

�

� �

�

Actuation 185

Figure 9.7 Generating the Getters and Setters.

Next, we shall generate the necessary Getters and Setters. Use the code-generation
option Generate Getters and Setters… shown in Figure 9.4 and enter the settings shown
in Figure 9.7 in the popup that appears.

Several new methods should have been generated: a getter and a setter for each of
our class variables. Finally, we should also override the class default toString() method
in order to more easily visualize and debug incoming JSON requests. Simply use the
Generate toString()… option and follow the settings shown in Figure 9.8.

Now that all of the necessary code generators have been used, RequestSetEmotion
should look similar to the following:

package model ;
2

p u b l i c c l a s s RequestSetEmotion {
4

p r i v a t e S t r i n g uuid ;
6 p r i v a t e Double userEuphor iaBored ;

p r i v a t e Double userAnxietyCalm ;
8 p r i v a t e Double l a t i t u d e ;

p r i v a t e Double l o n g i t u d e ;
10

�

� �

�

186 A Practical Introduction to Human-in-the-Loop Cyber-Physical Systems

p u b l i c RequestSetEmotion (S t r i n g uuid , Double userEuphor iaBored , Double
userAnxietyCalm , Double l a t i t u d e ,

12 Double l o n g i t u d e) {
super () ;

14 t h i s . uuid = uuid ;
t h i s . userEuphor iaBored = userEuphor iaBored ;

16 t h i s . userAnxietyCalm = userAnxietyCalm ;
t h i s . l a t i t u d e = l a t i t u d e ;

18 t h i s . l o n g i t u d e = l o n g i t u d e ;
}

20

p u b l i c RequestSetEmotion () {
22 super () ;

}
24

@O v e r r i d e
26 p u b l i c S t r i n g t o S t r i n g () {

r e t u r n " RequestSetEmotion [uuid =" + uuid + " , userEuphor iaBored =" +
userEuphor iaBored + " , userAnxietyCalm ="

28 + userAnxietyCalm + " , l a t i t u d e =" + l a t i t u d e + " , l o n g i t u d e =" +
l o n g i t u d e + "] " ;

}
30

p u b l i c S t r i n g getUuid () {
32 r e t u r n uuid ;

}
34

p u b l i c v o i d s e t U u i d (S t r i n g uuid) {
36 t h i s . uuid = uuid ;

}
38

p u b l i c Double getUserEuphor iaBored () {
40 r e t u r n userEuphor iaBored ;

}
42

p u b l i c v o i d s e t U s e r E u p h o r i a B o r e d (Double userEuphor iaBored) {
44 t h i s . userEuphor iaBored = userEuphor iaBored ;

}
46

p u b l i c Double getUserAnxietyCalm () {
48 r e t u r n userAnxietyCalm ;

}
50

p u b l i c v o i d setUserAnxietyCalm (Double userAnxietyCalm) {
52 t h i s . userAnxietyCalm = userAnxietyCalm ;

}
54

p u b l i c Double g e t L a t i t u d e () {
56 r e t u r n l a t i t u d e ;

}
58

p u b l i c v o i d s e t L a t i t u d e (Double l a t i t u d e) {
60 t h i s . l a t i t u d e = l a t i t u d e ;

}
62

p u b l i c Double g e t L o n g i t u d e () {
64 r e t u r n l o n g i t u d e ;

}
66

�

� �

�

Actuation 187

p u b l i c v o i d s e t L o n g i t u d e (Double l o n g i t u d e) {
68 t h i s . l o n g i t u d e = l o n g i t u d e ;

}
70 }

Figure 9.8 Overriding the default toString() method.

Our RequestSetEmotion is nearly complete. We only need to inform Jersey that this
class represents the root element of incoming JSONs. The following code represents
RequestSetEmotion’s final form:

package model ;
2

import j a v a x . xml . bind . a n n o t a t i o n . XmlRootElement ;
4

@XmlRootElement
6 p u b l i c c l a s s RequestSetEmotion {

8 p r i v a t e S t r i n g uuid ;
p r i v a t e Double userEuphor iaBored ;

10 p r i v a t e Double userAnxietyCalm ;
p r i v a t e Double l a t i t u d e ;

12 p r i v a t e Double l o n g i t u d e ;

�

� �

�

188 A Practical Introduction to Human-in-the-Loop Cyber-Physical Systems

14 p u b l i c RequestSetEmotion (S t r i n g uuid , Double userEuphor iaBored , Double
userAnxietyCalm , Double l a t i t u d e ,

Double l o n g i t u d e) {
16 super () ;

t h i s . uuid = uuid ;
18 t h i s . userEuphor iaBored = userEuphor iaBored ;

t h i s . userAnxietyCalm = userAnxietyCalm ;
20 t h i s . l a t i t u d e = l a t i t u d e ;

t h i s . l o n g i t u d e = l o n g i t u d e ;
22 }

24 p u b l i c RequestSetEmotion () {
super () ;

26 }

28 @O v e r r i d e
p u b l i c S t r i n g t o S t r i n g () {

30 r e t u r n " RequestSetEmotion [uuid =" + uuid + " , userEuphor iaBored =" +
userEuphor iaBored + " , userAnxietyCalm ="

+ userAnxietyCalm + " , l a t i t u d e =" + l a t i t u d e + " , l o n g i t u d e =" +
l o n g i t u d e + "] " ;

32 }

34 p u b l i c S t r i n g getUuid () {
r e t u r n uuid ;

36 }

38 p u b l i c v o i d s e t U u i d (S t r i n g uuid) {
t h i s . uuid = uuid ;

40 }

42 p u b l i c Double getUserEuphor iaBored () {
r e t u r n userEuphor iaBored ;

44 }

46 p u b l i c v o i d s e t U s e r E u p h o r i a B o r e d (Double userEuphor iaBored) {
t h i s . userEuphor iaBored = userEuphor iaBored ;

48 }

50 p u b l i c Double getUserAnxietyCalm () {
r e t u r n userAnxietyCalm ;

52 }

54 p u b l i c v o i d setUserAnxietyCalm (Double userAnxietyCalm) {
t h i s . userAnxietyCalm = userAnxietyCalm ;

56 }

58 p u b l i c Double g e t L a t i t u d e () {
r e t u r n l a t i t u d e ;

60 }

62 p u b l i c v o i d s e t L a t i t u d e (Double l a t i t u d e) {
t h i s . l a t i t u d e = l a t i t u d e ;

64 }

66 p u b l i c Double g e t L o n g i t u d e () {
r e t u r n l o n g i t u d e ;

68 }

�

� �

�

Actuation 189

70 p u b l i c v o i d s e t L o n g i t u d e (Double l o n g i t u d e) {
t h i s . l o n g i t u d e = l o n g i t u d e ;

72 }
}

Despite its somewhat misleading naming, notice that we only need to import and use
the @XmlRootElement annotation, placing it before the beginning of the class. Jersey
will understand that the class does, in fact, represent a JSON (and not an XML) when
we use it later on our sevice’s web interface.

9.1.2 Creating the Web Interface

Now that we have a way of parsing JSON objects into a Java class, we can define a web
interface that serves as a “point of entry” for our setEmotion web service. Similarly to
what we did for RequestSetEmotion in Figure 9.2, create a new class, this time in the
web package, and name it SetEmotion. Below follows a possible implementation of our
new web interface:

1 package web ;

3 import j a v a x . ws . r s . Consumes ;
import j a v a x . ws . r s . POST ;

5 import j a v a x . ws . r s . Path ;
import j a v a x . ws . r s . co re . MediaType ;

7

import model . RequestSetEmotion ;
9

import com . ComEmotions ;
11

@Path (" / setEmot ion ")
13 p u b l i c c l a s s SetEmotion {

@POST
15 @Consumes (MediaType . APPLICATION_JSON)

p u b l i c v o i d setEmot ion (RequestSetEmot ion r e q u e s t S e t E m o t i o n) {
17 System . out . p r i n t l n ("−> S e t t i n g emotion : " + r e q u e s t S e t E m o t i o n . t o S t r i n g ()) ;

ComEmotions comEmotions= new ComEmotions () ;
19 comEmotions . setEmotionFromRequest (r e q u e s t S e t E m o t i o n) ;

}
21 }

We use Jersey’s @Path annotation to define the path to our service. Notice that it
matches the “/setEmotion” path we have previously used in TaskSendEmotion (page ???).
Next, we define that the setEmotion() method shall implement the POST operation of
our RESTful web service (by using the @POST annotation). We also define that this
operation consumes a JSON (see the @Consumes(MediaType.APPLICATION_JSON)
annotation). Note that setEmotion() receives a RequestSetEmotion object. Jersey will
interpret this as meaning that RequestSetEmotion represents the incoming JSON and
will, thus, attempt to parse it accordingly.

Within our setEmotion() method, we print a logging message which uses RequestSetE-
motion’s toString(). This allows us to confirm that the JSON information is being properly
parsed, as well as easily study the contents of incoming setEmotion requests. Finally,
we refer to a non-implemented com class, ComEmotions, which will be responsible for
processing the request. We will begin implementing this class in Section 9.1.4.

�

� �

�

190 A Practical Introduction to Human-in-the-Loop Cyber-Physical Systems

9.1.3 Creating the Server’s Background Thread

In order to provide near real-time information about the attendance and the emotional
status of each POI, we need to make sure that each emotional input has a limited lifes-
pan. As such, there are two major tasks that we have to perform when dealing with
incoming emotions. First, we need to process incoming emotions, creating or updat-
ing them as necessary. Second, we need to periodically prune outdated emotions from
the database.

Processing incoming emotions is a task that will be performed whenever a new setE-
motion request arrives. Pruning outdated emotions is a periodic task that shall be run on
a background thread on the server, similar to what happens with the Android app’s back-
ground service. However, since we cannot predict when a user will send us emotional
input, we have to be careful. This is because these tasks may interfere with each other.
Imagine, for example, that we are about to delete a certain emotional input that has just
expired. What if, at that exact moment, the corresponding user sends us a request with
updated data? The server may become confused, since the emotion we were supposed
to update suddenly got deleted by our pruning task! Therefore, we need to make sure
that emotional pruning and updates occur sequentially and never at the same time.

One way of dealing with this requirement is to create a single background thread that
accepts tasks in a “first come, first served” basis. We can then feed this background
thread with both emotion processing and pruning tasks, and they will never overlap.
This is essentially the same approach we have been using on the Android app whenever
we passed tasks to the HappyWalkServiceHandler. However, the android.os.Handler
class belongs to the Android OS. Therefore, we will need to find an alternative way of
implementing our background thread. An appropriate class that we may use to achieve
this goal is the java.util.concurrent.ScheduledExecutorService. In particular, we can
instantiate a SingleThreadScheduledExecutor that never executes anything in parallel,
which is exactly what we need. But how and when can we tell our server to use this
executor?

As the reader may remember from Section 5.2.2, our server is implemented through
the Java Servlet API. This API offers an interface for receiving notification events about
the server’s lifecycle changes. In particular, we are interested in the contextInitialized
and contextDestroyed events which represent the initialization and the finalization of
our server, respectively. As such, we can instantiate an executor when the server starts
and shut it down when the server stops. We can then use this executor to perform back-
ground tasks whenever we see fit.

With this objective in mind, create a new class on the utilities package and name it
EmotionListener (in a manner similar to what we did for RequestSetEmotion, back on
page ???). This class shall implement a ServletContextListener that will handle the server’s
initialization and destruction events:

1 package u t i l i t i e s ;

3 import j a v a . u t i l . c o n c u r r e n t . E x e c u t o r s ;
import j a v a . u t i l . c o n c u r r e n t . S c h e d u l e d E x e c u t o r S e r v i c e ;

5

import j a v a x . s e r v l e t . S e r v l e t C o n t e x t E v e n t ;
7 import j a v a x . s e r v l e t . S e r v l e t C o n t e x t L i s t e n e r ;

9 p u b l i c c l a s s E m o t i o n L i s t e n e r implements S e r v l e t C o n t e x t L i s t e n e r {

�

� �

�

Actuation 191

/∗
11 ∗ p u b l i c s c h e d u l e r t h a t w i l l e x e c u t e a l l t a s k s r e l a t e d

∗ with Emotions .
13 ∗/

p u b l i c s t a t i c S c h e d u l e d E x e c u t o r S e r v i c e s c h e d u l e r ;
15

@O v e r r i d e
17 p u b l i c v o i d c o n t e x t I n i t i a l i z e d (S e r v l e t C o n t e x t E v e n t e v e n t) {

s c h e d u l e r = E x e c u t o r s . newSing leThreadScheduledExecutor () ;
19 }

21 @O v e r r i d e
p u b l i c v o i d c o n t e x t D e s t r o y e d (S e r v l e t C o n t e x t E v e n t e v e n t) {

23 s c h e d u l e r . shutdownNow () ;
}

25 }

The public variable scheduler of type ScheduledExecutorService is initialized as a
SingleThreadScheduledExecutor when the server starts and shut down when the server
stops.

Finally, we need to inform our server of the existence of EmotionListener. This can be
done within the HappyWalkServer/WebContent/WEB-INF/web.xml file (see Figure 9.9).

Here, we will need a new <listener> element within the <web-app> root element.
Within it, we need to add yet another <listener-class> sub-element, declaring our util-
ities.EmotionListener.

Figure 9.9 The location of the HappyWalkServer’s web.xml.

�

� �

�

192 A Practical Introduction to Human-in-the-Loop Cyber-Physical Systems

The following example shows a modified web.xml where the <listener> element was
added between the <servlet> and the <servlet-mapping> elements (lines 18–20):

1 <? xml v e r s i o n = " 1 . 0 " encoding= "UTF−8 " ?>
<web−app xmlns= " h t t p : / / j a v a . sun . com/ xml / ns / j a v a e e " xmlns:web= " h t t p : / / j a v a .

sun . com/ xml / ns / j a v a e e / web−app_2_5 . xsd " >
3 < s e r v l e t >

< s e r v l e t −name>HappyWalkServlet</ s e r v l e t −name>
5 < s e r v l e t −c l a s s >

com . sun . j e r s e y . s p i . c o n t a i n e r . s e r v l e t . S e r v l e t C o n t a i n e r
7 </ s e r v l e t −c l a s s >

< i n i t −param>
9 <param−name>com . sun . j e r s e y . c o n f i g . p r o p e r t y . p a c k a g e s </ param−name>

<param−v a l u e >web</ param−v a l u e >
11 </ i n i t −param>

< i n i t −param>
13 <param−name>com . sun . j e r s e y . s p i . c o n t a i n e r . C o n t a i n e r R e q u e s t F i l t e r s </

param−name>
<param−v a l u e >com . sun . j e r s e y . a p i . c o n t a i n e r . f i l t e r . L o g g i n g F i l t e r </

param−v a l u e >
15 </ i n i t −param>

<load−on−s t a r t u p >1</ load−on−s t a r t u p >
17 </ s e r v l e t >

< l i s t e n e r >
19 < l i s t e n e r −c l a s s > u t i l i t i e s . E m o t i o n L i s t e n e r </ l i s t e n e r −c l a s s >

</ l i s t e n e r >
21 < s e r v l e t −mapping>

< s e r v l e t −name>HappyWalkServlet</ s e r v l e t −name>
23 < u r l −p a t t e r n >/ r e s t /∗</ u r l −p a t t e r n >

</ s e r v l e t −mapping>
25 < s e s s i o n −c o n f i g >

< s e s s i o n −t imeout>120</ s e s s i o n −t imeout>
27 </ s e s s i o n −c o n f i g >

</ web−app>

Now that our EmotionListener is declared, we will use its scheduler to handle any
emotion-related tasks during the next sections.

9.1.4 Processing Incoming Emotions

In this section we will tackle the requirement of processing incoming setEmotion
requests. Emotional requests may pertain to new emotional records or they may be
updates to existing ones. As the user moves around, the surrounding POIs affected
by his/her emotional information also change. Therefore, we will need to write meth-
ods able to add, remove, or update the influence of emotional information to the
corresponding sets of POIs.

Before we continue developing code, let us take a step back and think on what needs
to be done whenever a new request arrives at the server. This is actually a somewhat
complex issue that can be illustrated by the following pseudocode:

v o i d f u n c t i o n processIncomingEmotion (r e q u e s t) {
2 emotion = searchDatabaseForEmot ion (r e q u e s t . uuid) ;

4 / / I f we do not have e m o t i o n a l i n f o r m a t i o n from t h a t uuid . . .
i f (emotion == n u l l) {

6 / / c r e a t e emotion and p r o v i d e a timestamp

�

� �

�

Actuation 193

emotion = createNewEmotion (r e q u e s t . uuid ,
8 r e q u e s t . euphoriaBored , r e q u e s t . anxietyCalm ,

System . currentTime) ;
10 / / s e a r c h f o r POIs w i t h i n a c e r t a i n range o f the user ’ s l o c a t i o n

l i s t P O I s = searchForPOIsWithinRange (r e q u e s t . l a t i t u d e ,
12 r e q u e s t . l o n g i t u d e) ;

f o r each (po i : l i s t P O I s) {
14 / / a s s o c i a t e each POI with t h i s new emotion

po i . a s s o c i a t e (emotion) ;
16 / / increment i t s a t t e n d a n c e

po i . a t t e n d a n c e += 1 ;
18 / / update e m o t i o n a l mean

po i . updateEmotionMean (emotion) ;
20 }

}
22 / / I f t h i s i s updated i n f o r m a t i o n about an emotion . . .

e l s e {
24 / / update v a l u e s

emotion . anxietyCalm (r e q u e s t . anxietyCalm) ;
26 emotion . euphor iaBored (r e q u e s t . euphor iaBored) ;

emotion . updatedAt (System . currentTime) ;
28

/∗ c o n s i d e r the new l o c a t i o n to update the l i s t o f POIs a s s o c i a t e d with
30 t h i s emotion and t h e i r v a l u e s ∗/

l i s t P r e v i o u s P O I s = emotion . g e t A s s o c i a t e d P O I s () ;
32 l i s tNewPOIs = searchForPOIsWithinRange (r e q u e s t . l a t i t u d e ,

r e q u e s t . l o n g i t u d e) ;
34

f o r each (newpoi : l i s tNewPOIs) {
36 f o r each (o l d p o i : l i s t P r e v i o u s P O I s) {

/∗ t h i s boolean keeps t r a c k o f whether
38 the newpoi was p r e v i o u s l y a s s o c i a t e d ∗/

boolean isACurrentPOI = f a l s e ;
40 i f (o l d p o i == newpoi) {

/∗ This newpoi was p r e v i o u s l y a s s o c i a t e d
42 l e t us remove i t from the p r e v i o u s l i s t ∗/

l i s t P r e v i o u s P O I s . remove (o l d p o i) ;
44 isACurrentPOI = t r u e ;

}
46 i f (isACurrentPOI) {

/ / j u s t need to update the e mot iona l mean
48 newpoi . updateEmotionMean (emotion) ;

}
50 e l s e {

/ / a s s o c i a t e the POI with emotion
52 po i . a s s o c i a t e (emotion) ;

/ / increment i t s a t t e n d a n c e
54 po i . a t t e n d a n c e += 1 ;

/ / update e m o t i o n a l mean
56 po i . updateEmotionMean (emotion) ;

}
58 }

}
60

/∗ Now t h a t we have i t e r a t e d through a l l the newPOIs ,
62 t h o s e remain ing on l i s t P r e v i o u s P O I s a r e o l d e r

a s s o c i a t i o n s t h a t need to be removed and have
64 t h e i r means and a t t e n d a n c e updated a c c o r d i n g l y ∗/

�

� �

�

194 A Practical Introduction to Human-in-the-Loop Cyber-Physical Systems

66 f o r each (o l d p o i : l i s t P r e v i o u s P O I s) {
o l d p o i . removeEmotionFromMean (emotion) ;

68 po i . d i s a s s o c i a t e (emotion) ;
}

70 }
}

As the above code suggests, we have a lot of ground to cover. First and foremost, when-
ever we begin to process a new request, we need to check if we already have information
from its UUID on the database (line 2). Since a UUID should uniquely identify a user,
it makes no sense to have multiple records of different emotions belonging to the same
person. Therefore, by checking if a certain UUID is already present, we can determine
whether we are dealing with a new emotion or an update to an existing value.

In case no emotion with the request’s UUID is found (line 5), we create a new emo-
tional record in the database by providing the request’s UUID and emotional axes (lines
7 and 8). We also need to register a timestamp that will be used by our pruning task
(to simplify, this can be the time of registration within the server) (line 9). As discussed
on page ???, in order for the new emotion to have an impact, it must be associated with
nearby POIs. Therefore, we need to search for every POI within a certain range of the
location of the request (line 11). For each of these, we perform an association with the
new emotion, increment the attendance count, and, finally, calculate the new emotional
average (lines 13–20).

When an emotion with the same UUID as the incoming request already exists in
the database (line 23), we first need to update its data and timestamp, which is rather
straightforward; a simple database request is enough (lines 25–27). However, updat-
ing its POI associations is a bit more complex. Since the user may have moved his/her
physical location between requests, the previous POI associations may be outdated.
Therefore, we need to first retrieve a list of previously associated POIs (line 31), which
we will compare with a list of POIs located nearby the new location (line 32). For each of
the new POIs, we check if it was previously associated with the request’s UUID. If it was,
we remove it from the previous POI list and update its emotional mean. If it was not,
we associate it with the emotion, increment its attendance count, and update its mean
(lines 35–59). After iterating through all of the new POIs, the previous POI list is left
with the outdated associations. As such, we iterate over this list one last time to remove
the emotion’s stale associations and their effect on the old POIs’ means (lines 66–69).

Now that we have an idea of what we need to accomplish, we can focus on writing Java
code. As we had previously referenced when impl ementing SetEmotion back on page ???,
we shall implement the above logic in a new com package class. Create this new class by
right-clicking on the com package → New → Class, and naming it ComEmotions.

Let us first identify the necessary building blocks to support emotional processing.
Considering the tasks associated with both the pruning of old emotions and the pro-
cessing of new ones, our ComEmotions shall implement the following helper methods:

• addEmotionValToPOI: adds the influence of an emotion to a POI’s attendance and
emotional average.

• removeEmotionValFromPOI: removes the influence of an emotion from a POI’s
attendance and emotional average.

• updatePOIsOfAddedEmotion: finds, associates, and updates the appropriate POIs
with a new emotion.

�

� �

�

Actuation 195

• updatePOIsOfUpdatedEmotion: finds which new POIs should be associated with
an emotion, from its updated location, and performs the necessary associations and
value updates. It also removes outdated associations and influences.

• updatePOIsOfRemovedEmotion: finds the POIs currently associated with an
emotion and removes the corresponding influences.

Since addEmotionValToPOI and removeEmotionValFromPOI are more fundamental
methods, let us implement them first:

1 package com ;

3 import hibernateMaps . Emotion ;
import hibernateMaps . P o i n t o f i n t e r e s t ;

5

p u b l i c c l a s s ComEmotions {
7

/∗∗
9 ∗ This method adds the i n f l u e n c e o f an emotion to a poi ’ s

∗ at tendance , EmotionAnxietyCalm and EmotionEuphoriaBored v a l u e s .
11 ∗

∗ @param po i − POI to be updated
13 ∗ @param emo − Emotion to be added

∗
15 ∗ @r e t u r n updated POI

∗/
17 p r i v a t e s t a t i c P o i n t o f i n t e r e s t addEmotionValToPOI (P o i n t o f i n t e r e s t poi ,

Emotion emo) {
Double newEmotionAnxietyCalm ;

19 Double newEmotionEuphoriaBored ;

21 / / i n c r e a s e a t t e n d a n c e by 1
i n t newAttendance = po i . g e t A t t e n d a n c e () + 1 ;

23

/ / a v o i d n u l l s and check i f emotion v a l u e s a r e g r e a t e r than 0 to
a v o i d u n n e c e s s a r y computat ion

25 i f (po i . getEmotionAnxietyCalm () ! = n u l l && po i .
getEmotionAnxietyCalm () . compareTo (0 d) > 0) {

newEmotionAnxietyCalm = (po i . getEmotionAnxietyCalm () ∗poi .
g e t A t t e n d a n c e () + emo . getAnxietyCalm () . doubleValue ()) / newAttendance ;

27 }
e l s e {

29 newEmotionAnxietyCalm = emo . getAnxietyCalm () . doubleValue () ;
}

31

i f (po i . getEmotionEuphoriaBored () ! = n u l l && po i .
getEmotionEuphoriaBored () . compareTo (0 d) > 0) {

33 newEmotionEuphoriaBored = (po i . getEmotionEuphoriaBored () ∗poi .
g e t A t t e n d a n c e () + emo . g e t E u p h o r i a B o r e d () . doubleValue ()) / newAttendance ;

}
35 e l s e {

newEmotionEuphoriaBored = emo . ge tEuphor iaBored () . doubleValue ()
;

37 }

39 po i . setEmotionAnxietyCalm (newEmotionAnxietyCalm) ;
po i . se tEmot ionEuphor iaBored (newEmotionEuphoriaBored) ;

41 po i . s e t A t t e n d a n c e (newAttendance) ;

�

� �

�

196 A Practical Introduction to Human-in-the-Loop Cyber-Physical Systems

43 r e t u r n po i ;
}

45

/∗∗
47 ∗ This method removes the i n f l u e n c e o f an emotion from a poi ’ s

∗ a t tenda nce , EmotionAnxietyCalm and EmotionEuphoriaBored v a l u e s .
49 ∗

∗ @param po i − POI to be updated
51 ∗ @param emo − Emotion to be removed

∗
53 ∗ @r e t u r n updated POI

∗/
55 p r i v a t e s t a t i c P o i n t o f i n t e r e s t removeEmotionValFromPOI (P o i n t o f i n t e r e s t

poi , Emotion emo) {
Double newEmotionAnxietyCalm ;

57 Double newEmotionEuphoriaBored ;
i n t newAttendance ;

59

/ / I f a t t e n d a n c e i s g r e a t e r than one , d e c r e a s e i t and perform
c a l c u l a t i o n s

61 i f (po i . g e t A t t e n d a n c e () > 1) {
newAttendance = po i . g e t A t t e n d a n c e () −1;

63 newEmotionAnxietyCalm = (po i . getEmotionAnxietyCalm () ∗poi .
g e t A t t e n d a n c e () − emo . getAnxietyCalm () . doubleValue ()) / newAttendance ;

newEmotionEuphoriaBored = (po i . getEmotionEuphoriaBored () ∗poi .
g e t A t t e n d a n c e () − emo . ge tEuphor iaBored () . doubleValue ()) / newAttendance ;

65 }
/ / I f not , then a t t e n d a n c e and emotions v a l u e s a r e n e c e s s a r i l y 0

67 e l s e {
newAttendance = 0 ;

69 newEmotionAnxietyCalm = 0d ;
newEmotionEuphoriaBored = 0d ;

71 }
po i . setEmotionAnxietyCalm (newEmotionAnxietyCalm) ;

73 po i . se tEmot ionEuphor iaBored (newEmotionEuphoriaBored) ;
po i . s e t A t t e n d a n c e (newAttendance) ;

75 r e t u r n po i ;
}

77

}

The proposed implementation of addEmotionValToPOI receives both a Pointofinter-
est and Emotion objects (line 17). As we can see by their respective import declarations
(lines 3 and 4), both of these belong to the hibernateMaps package, which, as discussed
in Section 5.2.2, provides classes that interface with the database. We encourage the
reader to think of these objects as singular representations of POIs and emotions that
can be retrieved, deleted, or saved to the database.

The method begins by declaring two doubles where the POI’s new emotionAnxiety-
Calm and emotionEuphoriaBored attributes (refer to Figure 9.1) will be temporarily
stored (lines 18 and 19). Since this method adds the influence of an emotion to a POI
(we are not dealing with updates to existing influences yet), that means a new user is
now in the surroundings of the POI. Therefore, a new attendance value is calculated by
increasing the current attendance count by 1 (line 22).

�

� �

�

Actuation 197

To avoid unnecessary computation, the method checks if the POI’s emotional averages
are null (lines 25 and 32). If they are not, a new average is computed by multiplying
the previous average by the previous attendance, adding the new emotion’s value and
dividing the result by the new attendance (lines 26 and 33). If they are, the new average
is simply the new emotion’s value (lines 29 and 36).

Finally, the POI’s new values are set and the resulting Pointofinterest object is returned
(lines 39–43). Notice that, as suggested by its name, the method does not perform an
association between the POI and the emotion; it simply adds the emotion’s values to
the POI.

Turning our attention to removeEmotionValFromPOI, we see that it also receives a
Pointofinterest and Emotion objects (line 55), and declares variables for temporarily stor-
ing the new values (lines 56–58). Since the influence from a previously existing emotion
is being removed, the method does not verify if the POI’s emotional averages are zero,
since it is unlikely. However, as a small optimization and to avoid divisions by zero, the
method does check if the POI’s attendance count is greater than one (line 61). If it is not,
the attendance and emotion values are necessarily zero and nothing needs to be com-
puted (lines 67–71). In case it is greater than one, the attendance is decreased by one and
the emotional averages are recomputed (lines 61–65). Again, the POI’s new values are
set and the resulting Pointofinterest object is returned (lines 72–75). Similarly to addE-
motionValToPOI, the method does not remove the association between the POI and the
emotion.

Let us build upon these two methods to implement updatePOIsOfAddedEmotion and
updatePOIsOfRemovedEmotion:

package com ;
2

import j a v a . u t i l . I t e r a t o r ;
4 import j a v a . u t i l . L i s t ;

6 import dao . DaoEmotion ;
import dao . D a o P o i n t o f i n t e r e s t ;

8 import hibernateMaps . Emotion ;
import hibernateMaps . P o i n t o f i n t e r e s t ;

10 import u t i l i t i e s . G l o b a l V a r i a b l e s ;

12 p u b l i c c l a s s ComEmotions {
p r i v a t e s t a t i c P o i n t o f i n t e r e s t addEmotionValToPOI (P o i n t o f i n t e r e s t poi ,

Emotion emo) {
14 (. . .)

}
16 p r i v a t e s t a t i c P o i n t o f i n t e r e s t removeEmotionValFromPOI (P o i n t o f i n t e r e s t

poi , Emotion emo) {
(. . .)

18 }

20 /∗∗
∗ Finds , a s s o c i a t e s and u p d a t e s the

22 ∗ a p p r o p r i a t e POIs with a new emotion .
∗

24 ∗ @param emo
∗ @param l a t i t u d e

26 ∗ @param l o n g i t u d e
∗/

�

� �

�

198 A Practical Introduction to Human-in-the-Loop Cyber-Physical Systems

28 p u b l i c s t a t i c v o i d updatePOIsOfAddedEmotion (Emotion emo , Double
l a t i t u d e , Double l o n g i t u d e) {

L i s t < P o i n t o f i n t e r e s t > poisToUpdate = n u l l ;
30 D a o P o i n t o f i n t e r e s t daopoi = new D a o P o i n t o f i n t e r e s t () ;

poisToUpdate = daopoi . g e t P o i b y L o c a t i o n (
32 l a t i t u d e , l o n g i t u d e ,

G l o b a l V a r i a b l e s . EMOTION_AFFECT_POI_MILE_RADIUS) ;
34 I t e r a t o r < P o i n t o f i n t e r e s t > p o i s T o U p d a t e i t = poisToUpdate . i t e r a t o r ()

;

36 w h i l e (p o i s T o U p d a t e i t . hasNext ())
{

38 P o i n t o f i n t e r e s t po i = p o i s T o U p d a t e i t . next () ;
daopoi . update (addEmotionValToPOI (poi , emo)) ;

40 daopoi . addEmotion (poi , emo . getUuid ()) ;
}

42 }

44 /∗∗
∗ F i n d s the POIs c u r r e n t l y a s s o c i a t e d with an emotion and

46 ∗ removes the c o r r e s p o n d i n g i n f l u e n c e s .
∗

48 ∗ @param emo
∗/

50 p u b l i c s t a t i c v o i d updatePOIsOfRemovedEmotion (Emotion emo) {
L i s t < P o i n t o f i n t e r e s t > poisToUpdate = n u l l ;

52 DaoEmotion demo = new DaoEmotion () ;
D a o P o i n t o f i n t e r e s t daopoi = new D a o P o i n t o f i n t e r e s t () ;

54 poisToUpdate = demo . g e t A s s o c i a t e d P O I s (emo . getUuid ()) ;
I t e r a t o r < P o i n t o f i n t e r e s t > p o i s T o U p d a t e i t = poisToUpdate . i t e r a t o r ()

;
56

w h i l e (p o i s T o U p d a t e i t . hasNext ())
58 {

P o i n t o f i n t e r e s t po i = p o i s T o U p d a t e i t . next () ;
60 daopoi . update (removeEmotionValFromPOI (poi , emo)) ;

}
62 }

}

The updatePOIsOfAddedEmotion method receives an Emotion object, representing
the emotion to add, and two doubles, for its latitude and longitude (line 28). It begins
by declaring a java.util.List of Pointofinterests named poisToUpdate, which will hold all
the POIs affected by this new emotion (line 29).

Next, it instantiates a dao.DaoPointofinterest object (line 30). As we explained
back in Section 5.2.2, both the hibernateMaps and the DAOs interface with the
database. The DAOs’ function provides actions over specific hibernateMaps (e.g.
find, save, delete, update). Therefore, the method uses a DaoPointofinterest to
get all POIs around a certain location, within a range determined by GlobalVari-
ables.EMOTION_AFFECT_POI_MILE_RADIUS (which, by default, is 200 meters or
0.12 miles) (lines 31–33).

Finally, poisToUpdate is iterated upon (using an iterator, defined in line 34). For
each POI in range, we call addEmotionValToPOI and associate the new emotion
through the DaoPointofinterest’s addEmotion method (lines 36–41). Notice that

�

� �

�

Actuation 199

updatePOIsOfAddedEmotion() does not create a new emotion in the database; it is
merely responsible for finding and updating the related POIs.

The method updatePOIsOfRemovedEmotion works on a similar premise. It receives
an Emotion object (line 50) and begins by declaring a poisToUpdate list (line 51). It then
instantiates not only a DaoPointofinterest (line 52) but also a DaoEmotion object (line
53), which it uses to fetch all of the POIs currently associated with the emotion, from
its UUID (line 54). The method finishes by calling removeEmotionValFromPOI for each
associated POI (lines 57–61). The inquisitive reader may be wondering why the emo-
tion associations are not being removed from within the while loop. That is because it
is not necessary to do so; when the emotion is finally deleted from the database (sup-
posedly after this method is called), Hibernate will also automatically remove any of its
associations for us.

Finally, let us consider the last of ComEmotion’s helper methods, updatePOIsOfUp-
datedEmotion:

1 package com ;

3 import (. . .) ;

5 p u b l i c c l a s s ComEmotions {

7 (. . .)

9 /∗∗
∗ Updates the POIs o f a s s o c i a t e d with an Emotion . The two Emotion

o b j e c t s should r e p r e s e n t two s t a t e s o f the same emotion − o u t d a t e d
s t a t e and up−to−d a t e s t a t e .

11 ∗ Thus , t h e y should have the same uuid .
∗

13 ∗ @param oldEmo − o b j e c t c o n t a i n i n g the v a l u e s o f the o u t d a t e d
emotion
∗ @param newEmo − o b j e c t c o n t a i n i n g new e m o t i o n a l v a l u e s

15 ∗ @param l a t i t u d e − the emotion ’ s l a t e s t l a t i t u d e
∗ @param l o n g i t u d e − the emotion ’ s l a t e s t l o n g i t u d e

17 ∗/
p u b l i c s t a t i c v o i d updatePOIsOfUpdatedEmotion (Emotion oldEmo , Emotion
newEmo , Double l a t i t u d e , Double l o n g i t u d e) {

19 DaoEmotion demo = new DaoEmotion () ;
D a o P o i n t o f i n t e r e s t daopoi = new D a o P o i n t o f i n t e r e s t () ;

21 L i s t < P o i n t o f i n t e r e s t > c u r r e n t P O I s = demo . g e t A s s o c i a t e d P O I s (oldEmo .
getUuid ()) ;

L i s t < P o i n t o f i n t e r e s t > newPOIs = daopoi . g e t P o i b y L o c a t i o n (
23 l a t i t u d e , l o n g i t u d e ,

G l o b a l V a r i a b l e s . EMOTION_AFFECT_POI_MILE_RADIUS) ;
25 I t e r a t o r < P o i n t o f i n t e r e s t > newPOISit = newPOIs . i t e r a t o r () ;

I t e r a t o r < P o i n t o f i n t e r e s t > c u r r e n t P O I s i t ;
27

w h i l e (newPOISit . hasNext ())
29 {

P o i n t o f i n t e r e s t newpoi = newPOISit . next () ;
31 /∗

∗ Using L i s t . c o n t a i n s method does not work i n t h i s c a s e
33 ∗ Thus , we must i n d i v i d u a l l y compare the i d s .

∗/
35 boolean isACurrentPOI = f a l s e ;

/ / r e s e t i t e r a t o r

�

� �

�

200 A Practical Introduction to Human-in-the-Loop Cyber-Physical Systems

37 c u r r e n t P O I s i t = c u r r e n t P O I s . i t e r a t o r () ;
w h i l e (c u r r e n t P O I s i t . hasNext ()) {

39 P o i n t o f i n t e r e s t currentPOI = c u r r e n t P O I s i t . next () ;
i f (currentPOI . g e t I d P o i () . e q u a l s (newpoi . g e t I d P o i ())) {

41 /∗
∗ Remove POI from the c u r r e n t P O I s l i s t .

43 ∗ This i s important , s i n c e we w i l l be u p d a t i n g the
remain ing currentPOIs (t h o s e t h a t a r e no l o n g e r a s s o c i a t e d with t h i s
emotion .)

∗/
45 c u r r e n t P O I s i t . remove () ;

isACurrentPOI = t r u e ;
47 break ;

}
49 }

51 i f (isACurrentPOI) {
System . out . p r i n t l n (" CurrentPOIs c o n t a i n s " +newpoi .

g e t I d P o i ()) ;
53 / / Ok , t h i s POI was a l r e a d y i n our l i s t o f a s s o c i a t e d POIs ,

update i t s means remove o l d v a l u e and r e c a l c u l a t e mean with the new
one

Double newEmotionAnxietyCalm ;
55 Double newEmotionEuphoriaBored ;

57 i f (newpoi . getEmotionAnxietyCalm () ! = n u l l && newpoi .
getEmotionAnxietyCalm () . compareTo (0 d) > 0) {

newEmotionAnxietyCalm = ((newpoi . getEmotionAnxietyCalm
() ∗newpoi . g e t A t t e n d a n c e () − oldEmo . getAnxietyCalm () . doubleValue ()) +
newEmo . getAnxietyCalm () . doubleValue ()) / newpoi . g e t A t t e n d a n c e () ;

59 }
e l s e {

61 System . e r r . p r i n t l n (newpoi . g e t I d P o i () + " has n u l l or 0
AnxietyCalm emotion v a l u e s ! ") ;

newEmotionAnxietyCalm = newEmo . getAnxietyCalm () .
doubleValue () ;

63 }
i f (newpoi . getEmotionEuphoriaBored () ! = n u l l && newpoi .

getEmotionEuphoriaBored () . compareTo (0 d) > 0) {
65 newEmotionEuphoriaBored = ((newpoi .

getEmotionEuphoriaBored () ∗newpoi . g e t A t t e n d a n c e () − oldEmo .
getEuphor iaBored () . doubleValue ()) + newEmo . getEuphor iaBored () .
doubleValue ()) / newpoi . g e t A t t e n d a n c e () ;

}
67 e l s e {

System . e r r . p r i n t l n (newpoi . g e t I d P o i () + " has n u l l or 0
EuphoriaBored emotion v a l u e s ! ") ;

69 newEmotionEuphoriaBored = newEmo . getEu pho r iaBo red () .
doubleValue () ;

}
71

newpoi . setEmotionAnxietyCalm (newEmotionAnxietyCalm) ;
73 newpoi . se tEmot ionEuphor iaBored (newEmotionEuphoriaBored) ;

daopoi . update (newpoi) ;
75 }

e l s e {
77 System . out . p r i n t l n (" CurrentPOIs does NOT c o n t a i n " +newpoi

. g e t I d P o i ()) ;

�

� �

�

Actuation 201

/ / w e l l , t h i s POI i s new to t h i s emotion , so l e t us
c o n s i d e r r e c a l c u l a t e i t s means a c c o r d i n g l y

79 / / the a t t e n d a n c e i n c r e a s e s by 1
daopoi . update (addEmotionValToPOI (newpoi , newEmo)) ;

81 / / Ok , now we c r e a t e the a s s o c i a t i o n between the newEmotion
and the new POI

daopoi . addEmotion (newpoi , newEmo . getUuid ()) ;
83 }

}
85 /∗

∗ Now we should have i t e r a t e d through a l l the newPOIs . Those
remain ing on the currentPOI l i s t a r e o ld ones t h a t should have t h e i r
a s s o c i a t i o n s removed and means updated a c c o r d i n g l y

87 ∗/
/ / r e s e t the i t e r a t o r

89 c u r r e n t P O I s i t = c u r r e n t P O I s . i t e r a t o r () ;

91 w h i l e (c u r r e n t P O I s i t . hasNext ())
{

93 P o i n t o f i n t e r e s t o l d p o i = c u r r e n t P O I s i t . next () ;
daopoi . update (removeEmotionValFromPOI (o l d p o i , oldEmo)) ;

95 daopoi . removeEmotion (o l d p o i , newEmo . getUuid ()) ;
}

97 }
}

This is a more complex method that implements most of the update logic from the
pseudocode on page ???. The method requires two Emotion objects that represent the
outdated state (from before the update, the oldEmo argument) and the up-to-date
state (from the new setEmotion request, the newEmo argument) of the emotion. It also
requires the emotion’s latest location in terms of latitude and longitude (line 18). It
begins by fetching the emotion’s currently associated POIs (currentPOIs, line 21) and
those that are in the range of the new location (newPOIs, line 22). For each new POI,
the method checks if it was previously associated (line 40) and, if it was, removes it
from the currentPOIs list (line 45).

The isACurrentPOI Boolean (defined in line 35) is used to mark these previously asso-
ciated POIs; the corresponding if block updates the POI’s means without changing its
attendance (lines 51–75). The computations performed here follow a logic similar to the
one used for addEmotionValToPOI(), back on page ???, but the emotional averages are
updated by removing the old value before adding the new one. If the POI was not pre-
viously associated, addEmotionValToPOI is called and an association is created (lines
76–83). Finally, removeEmotionValFromPOI is called and associations are removed for
each POI remaining within currentPOIs (lines 91–96).

We have finally implemented all of the necessary helper methods. All that is left is
to actually use them to process incoming emotions. Let us implement the setEmotion-
FromRequest method, previously referenced by SetEmotion, on page ???:

package com ;
2

import j a v a . u t i l . c o n c u r r e n t . TimeUnit ;
4 import org . h i b e r n a t e . H i b e r n a t e E x c e p t i o n ;

import model . RequestSetEmotion ;
6 import u t i l i t i e s . E m o t i o n L i s t e n e r ;

import (. . .) ;

�

� �

�

202 A Practical Introduction to Human-in-the-Loop Cyber-Physical Systems

8

p u b l i c c l a s s ComEmotions {
10 /∗∗

∗ P r o c e s s e s a r e q u e s t to s e t new Emotion i n f o r m a t i o n . In o r d e r to a v o i d
p o s s i b l e c o n f l i c t s with Pruning t a s k s , t h i s t a s k i s s c h e d u l e d on a

p u b l i c s c h e d u l e r
12 ∗

∗ @param r e q u e s t
14 ∗/

p u b l i c s t a t i c v o i d setEmotionFromRequest (f i n a l RequestSetEmotion r e q u e s t
) {

16 E m o t i o n L i s t e n e r . s c h e d u l e r . s c h e d u l e (new Runnable () {
@O v e r r i d e

18 p u b l i c v o i d run () {
t r y {

20 DaoEmotion daoEmotion = new DaoEmotion () ;
Emotion emotion = daoEmotion . f i n d (r e q u e s t . getUuid ()) ;

22

/ / I f we do not have e m o t i o n a l i n f o r m a t i o n from t h a t uuid . . .
24 i f (emotion == n u l l) {

System . out . p r i n t l n (" uuid : " + r e q u e s t . getUuid () + " i s new ,
c r e a t i n g emotion ") ;

26 emotion = new Emotion (r e q u e s t . getUuid () , r e q u e s t .
ge tUserEuphor iaBored () , r e q u e s t . getUserAnxietyCalm ()) ;

t r y {
28 daoEmotion . c r e a t e (emotion) ;

/ / update POIs w i t h i n the range o f the uuid l o c a t i o n
30 updatePOIsOfAddedEmotion (emotion , r e q u e s t . g e t L a t i t u d e () ,

r e q u e s t . g e t L o n g i t u d e ()) ;
} c a t c h (H i b e r n a t e E x c e p t i o n e) {

32 System . out . p r i n t l n (" E r r o r : I n t e r n a l e r r o r i n DB ") ;
}

34 }
/ / I f t h i s i s updated i n f o r m a t i o n about an emotion . . .

36 e l s e {
System . out . p r i n t l n (" uuid : " + r e q u e s t . getUuid () + " , u p d a t i n g

emotion ") ;
38 Emotion newEmotion = new Emotion (r e q u e s t . getUuid () , r e q u e s t .

ge tUserEuphor iaBored () , r e q u e s t . getUserAnxietyCalm ()) ;
/ / update a s s o c i a t e d POIs

40 updatePOIsOfUpdatedEmotion (emotion , newEmotion , r e q u e s t .
g e t L a t i t u d e () , r e q u e s t . g e t L o n g i t u d e ()) ;

/ / update emotion
42 emotion . se tAnxie tyCalm (newEmotion . getAnxietyCalm ()) ;

emotion . s e t E u p h o r i a B o r e d (newEmotion . ge tEuphor iaBored ()) ;
44 emotion . setUpdatedAt (newEmotion . getUpdatedAt ()) ;

daoEmotion . update (emotion) ;
46 }

} c a t c h (E x c e p t i o n e) {
48 e . p r i n t S t a c k T r a c e () ;

}
50 }

} , 0 , TimeUnit . MILLISECONDS) ;
52 }

54 (. . .)

56 }

�

� �

�

Actuation 203

Here, we receive a RequestSetEmotion (line 15) and create a new task for our Emo-
tionListener’s scheduler, to be run as soon as possible (line 16). First, we attempt to find
an emotion in the database that corresponds to the request’s UUID, through the DaoE-
motion’s find method (line 21). If no such emotion was found, this is a new emotional
record that is consequently created and whose associated POI’s are found and handled
by updatePOIsOfAddedEmotion (lines 24–34). If an emotion with the request’s UUID
is already present, we use updatePOIsOfUpdatedEmotion to update the necessary POIs
and then use DaoEmotion’s update method to insert the new information (lines 36–46).

Our finished ComEmotions is presented below:

package com ;
2

import j a v a . u t i l . I t e r a t o r ;
4 import j a v a . u t i l . L i s t ;

import j a v a . u t i l . c o n c u r r e n t . TimeUnit ;
6

import org . h i b e r n a t e . H i b e r n a t e E x c e p t i o n ;
8

import u t i l i t i e s . E m o t i o n L i s t e n e r ;
10 import u t i l i t i e s . G l o b a l V a r i a b l e s ;

import dao . DaoEmotion ;
12 import dao . D a o P o i n t o f i n t e r e s t ;

import hibernateMaps . Emotion ;
14 import hibernateMaps . P o i n t o f i n t e r e s t ;

import model . RequestSetEmotion ;
16

18 p u b l i c c l a s s ComEmotions {
/∗∗

20 ∗ P r o c e s s e s a r e q u e s t to s e t new Emotion i n f o r m a t i o n . In o r d e r to a v o i d
p o s s i b l e c o n f l i c t s with Pruning t a s k s , t h i s t a s k i s s c h e d u l e d on a

p u b l i c s c h e d u l e r
∗

22 ∗ @param r e q u e s t
∗/

24 p u b l i c s t a t i c v o i d setEmotionFromRequest (f i n a l RequestSetEmotion r e q u e s t
) {
E m o t i o n L i s t e n e r . s c h e d u l e r . s c h e d u l e (new Runnable () {

26 @O v e r r i d e
p u b l i c v o i d run () {

28 t r y {
DaoEmotion daoEmotion = new DaoEmotion () ;

30 Emotion emotion = daoEmotion . f i n d (r e q u e s t . getUuid ()) ;

32 / / I f we do not have e m o t i o n a l i n f o r m a t i o n from t h a t uuid . . .
i f (emotion == n u l l) {

34 System . out . p r i n t l n (" uuid : " + r e q u e s t . getUuid () + " i s new ,
c r e a t i n g emotion ") ;

emotion = new Emotion (r e q u e s t . getUuid () , r e q u e s t .
ge tUserEuphor iaBored () , r e q u e s t . getUserAnxietyCalm ()) ;

36 t r y {
daoEmotion . c r e a t e (emotion) ;

38 / / update POIs w i t h i n the range o f the uuid l o c a t i o n
updatePOIsOfAddedEmotion (emotion , r e q u e s t . g e t L a t i t u d e () ,

r e q u e s t . g e t L o n g i t u d e ()) ;
40 } c a t c h (H i b e r n a t e E x c e p t i o n e) {

System . out . p r i n t l n (" E r r o r : I n t e r n a l e r r o r i n DB ") ;

�

� �

�

204 A Practical Introduction to Human-in-the-Loop Cyber-Physical Systems

42 }
}

44 / / I f t h i s i s updated i n f o r m a t i o n about an emotion . . .
e l s e {

46 System . out . p r i n t l n (" uuid : " + r e q u e s t . getUuid () + " , u p d a t i n g
emotion ") ;

Emotion newEmotion = new Emotion (r e q u e s t . getUuid () , r e q u e s t .
ge tUserEuphor iaBored () , r e q u e s t . getUserAnxietyCalm ()) ;

48 / / update a s s o c i a t e d POIs
updatePOIsOfUpdatedEmotion (emotion , newEmotion , r e q u e s t .

g e t L a t i t u d e () , r e q u e s t . g e t L o n g i t u d e ()) ;
50 / / update emotion

emotion . se tAnxie tyCalm (newEmotion . getAnxietyCalm ()) ;
52 emotion . s e t E u p h o r i a B o r e d (newEmotion . ge tEuphor iaBored ()) ;

emotion . setUpdatedAt (newEmotion . getUpdatedAt ()) ;
54 daoEmotion . update (emotion) ;

}
56 } c a t c h (E x c e p t i o n e) {

e . p r i n t S t a c k T r a c e () ;
58 }

}
60 } , 0 , TimeUnit . MILLISECONDS) ;

}
62

/∗∗
64 ∗ F i n d s the POIs c u r r e n t l y a s s o c i a t e d with an emotion and

∗ removes the c o r r e s p o n d i n g i n f l u e n c e s .
66 ∗

∗ @param emo
68 ∗/

p u b l i c s t a t i c v o i d updatePOIsOfRemovedEmotion (Emotion emo) {
70 L i s t < P o i n t o f i n t e r e s t > poisToUpdate = n u l l ;

DaoEmotion demo = new DaoEmotion () ;
72 D a o P o i n t o f i n t e r e s t daopoi = new D a o P o i n t o f i n t e r e s t () ;

poisToUpdate = demo . g e t A s s o c i a t e d P O I s (emo . getUuid ()) ;
74 I t e r a t o r < P o i n t o f i n t e r e s t > p o i s T o U p d a t e i t = poisToUpdate . i t e r a t o r () ;

76 w h i l e (p o i s T o U p d a t e i t . hasNext ())
{

78 P o i n t o f i n t e r e s t po i = p o i s T o U p d a t e i t . next () ;
daopoi . update (removeEmotionValFromPOI (poi , emo)) ;

80 }
}

82

/∗∗
84 ∗ Finds , a s s o c i a t e s and u p d a t e s the a p p r o p r i a t e POIs with a new emotion

.
∗

86 ∗ @param emo
∗ @param l a t i t u d e

88 ∗ @param l o n g i t u d e
∗/

90 p u b l i c s t a t i c v o i d updatePOIsOfAddedEmotion (Emotion emo , Double
l a t i t u d e , Double l o n g i t u d e) {
L i s t < P o i n t o f i n t e r e s t > poisToUpdate = n u l l ;

92 D a o P o i n t o f i n t e r e s t daopoi = new D a o P o i n t o f i n t e r e s t () ;
poisToUpdate = daopoi . g e t P o i b y L o c a t i o n (

94 l a t i t u d e , l o n g i t u d e ,
G l o b a l V a r i a b l e s . EMOTION_AFFECT_POI_MILE_RADIUS) ;

�

� �

�

Actuation 205

96 I t e r a t o r < P o i n t o f i n t e r e s t > p o i s T o U p d a t e i t = poisToUpdate . i t e r a t o r () ;

98 w h i l e (p o i s T o U p d a t e i t . hasNext ())
{

100 P o i n t o f i n t e r e s t po i = p o i s T o U p d a t e i t . next () ;
daopoi . update (addEmotionValToPOI (poi , emo)) ;

102 daopoi . addEmotion (poi , emo . getUuid ()) ;
}

104 }

106 /∗∗
∗ Updates the POIs o f a s s o c i a t e d with an Emotion . The two Emotion

o b j e c t s should r e p r e s e n t two s t a t e s o f the same emotion − o u t d a t e d
s t a t e and up−to−d a t e s t a t e .

108 ∗ Thus , t h e y should have the same uuid .
∗

110 ∗ @param oldEmo − o b j e c t c o n t a i n i n g the v a l u e s o f the o u t d a t e d
emotion
∗ @param newEmo − o b j e c t c o n t a i n i n g new e m o t i o n a l v a l u e s

112 ∗ @param l a t i t u d e − the emotion ’ s l a t e s t l a t i t u d e
∗ @param l o n g i t u d e − the emotion ’ s l a t e s t l o n g i t u d e

114 ∗/
p u b l i c s t a t i c v o i d updatePOIsOfUpdatedEmotion (Emotion oldEmo , Emotion
newEmo , Double l a t i t u d e , Double l o n g i t u d e) {

116 DaoEmotion demo = new DaoEmotion () ;
D a o P o i n t o f i n t e r e s t daopoi = new D a o P o i n t o f i n t e r e s t () ;

118 L i s t < P o i n t o f i n t e r e s t > c u r r e n t P O I s = demo . g e t A s s o c i a t e d P O I s (oldEmo .
getUuid ()) ;
L i s t < P o i n t o f i n t e r e s t > newPOIs = daopoi . g e t P o i b y L o c a t i o n (

120 l a t i t u d e , l o n g i t u d e ,
G l o b a l V a r i a b l e s . EMOTION_AFFECT_POI_MILE_RADIUS) ;

122 I t e r a t o r < P o i n t o f i n t e r e s t > newPOISit = newPOIs . i t e r a t o r () ;
I t e r a t o r < P o i n t o f i n t e r e s t > c u r r e n t P O I s i t ;

124

w h i l e (newPOISit . hasNext ())
126 {

P o i n t o f i n t e r e s t newpoi = newPOISit . next () ;
128 /∗

∗ Using L i s t . c o n t a i n s method does not work i n t h i s c a s e
130 ∗ Thus , we must i n d i v i d u a l l y compare the i d s .

∗/
132 boolean isACurrentPOI = f a l s e ;

/ / r e s e t i t e r a t o r
134 c u r r e n t P O I s i t = c u r r e n t P O I s . i t e r a t o r () ;

w h i l e (c u r r e n t P O I s i t . hasNext ()) {
136 P o i n t o f i n t e r e s t currentPOI = c u r r e n t P O I s i t . next () ;

i f (currentPOI . g e t I d P o i () . e q u a l s (newpoi . g e t I d P o i ())) {
138 /∗

∗ Remove POI from the c u r r e n t P O I s l i s t .
140 ∗ This i s important , s i n c e we w i l l be u p d a t i n g the remain ing

c u r r e n t P O I s (t h o s e t h a t a r e no l o n g e r a s s o c i a t e d with t h i s emotion .)
∗/

142 c u r r e n t P O I s i t . remove () ;
isACurrentPOI = t r u e ;

144 break ;
}

146 }

148 i f (isACurrentPOI) {

�

� �

�

206 A Practical Introduction to Human-in-the-Loop Cyber-Physical Systems

System . out . p r i n t l n (" CurrentPOIs c o n t a i n s " +newpoi . g e t I d P o i ()) ;
150 / / Ok , t h i s POI was a l r e a d y i n our l i s t o f a s s o c i a t e d POIs , update

i t s means remove o l d v a l u e and r e c a l c u l a t e mean with the new one
Double newEmotionAnxietyCalm ;

152 Double newEmotionEuphoriaBored ;

154 i f (newpoi . getEmotionAnxietyCalm () ! = n u l l && newpoi .
getEmotionAnxietyCalm () . compareTo (0 d) > 0) {

newEmotionAnxietyCalm = ((newpoi . getEmotionAnxietyCalm () ∗newpoi .
g e t A t t e n d a n c e () − oldEmo . getAnxietyCalm () . doubleValue ()) + newEmo .
getAnxietyCalm () . doubleValue ()) / newpoi . g e t A t t e n d a n c e () ;

156 }
e l s e {

158 System . e r r . p r i n t l n (newpoi . g e t I d P o i () + " has n u l l or 0
AnxietyCalm emotion v a l u e s ! ") ;

newEmotionAnxietyCalm = newEmo . getAnxietyCalm () . doubleValue () ;
160 }

i f (newpoi . getEmotionEuphoriaBored () ! = n u l l && newpoi .
getEmotionEuphoriaBored () . compareTo (0 d) > 0) {

162 newEmotionEuphoriaBored = ((newpoi . getEmotionEuphoriaBored () ∗
newpoi . g e t A t t e n d a n c e () − oldEmo . getEuphor iaBored () . doubleValue ()) +
newEmo . g e t E u p h o r i a B o r e d () . doubleValue ()) / newpoi . g e t A t t e n d a n c e () ;

}
164 e l s e {

System . e r r . p r i n t l n (newpoi . g e t I d P o i () + " has n u l l or 0
EuphoriaBored emotion v a l u e s ! ") ;

166 newEmotionEuphoriaBored = newEmo . getEuphor iaBored () . doubleValue
() ;

}
168

newpoi . setEmotionAnxietyCalm (newEmotionAnxietyCalm) ;
170 newpoi . se tEmot ionEuphor iaBored (newEmotionEuphoriaBored) ;

daopoi . update (newpoi) ;
172 }

e l s e {
174 System . out . p r i n t l n (" CurrentPOIs does NOT c o n t a i n " +newpoi .

g e t I d P o i ()) ;
/ / w e l l , t h i s POI i s new to t h i s emotion , so l e t us c o n s i d e r

r e c a l c u l a t e i t s means a c c o r d i n g l y
176 / / the a t t e n d a n c e i n c r e a s e s by 1

daopoi . update (addEmotionValToPOI (newpoi , newEmo)) ;
178 / / Ok , now we c r e a t e the a s s o c i a t i o n between the newEmotion and the

new POI
daopoi . addEmotion (newpoi , newEmo . getUuid ()) ;

180 }
}

182 /∗
∗ Now we should have i t e r a t e d through a l l the newPOIs . Those

remain ing on the currentPOI l i s t a r e o ld ones t h a t should have t h e i r
a s s o c i a t i o n s removed and means updated a c c o r d i n g l y

184 ∗/
/ / r e s e t the i t e r a t o r

186 c u r r e n t P O I s i t = c u r r e n t P O I s . i t e r a t o r () ;

188 w h i l e (c u r r e n t P O I s i t . hasNext ())
{

190 P o i n t o f i n t e r e s t o l d p o i = c u r r e n t P O I s i t . next () ;
daopoi . update (removeEmotionValFromPOI (o l d p o i , oldEmo)) ;

192 daopoi . removeEmotion (o l d p o i , newEmo . getUuid ()) ;

�

� �

�

Actuation 207

}
194 }

196 /∗∗
∗ This method adds the i n f l u e n c e o f an emotion to a poi ’ s

198 ∗ at tendance , EmotionAnxietyCalm and EmotionEuphoriaBored v a l u e s .
∗

200 ∗ @param po i − POI to be updated
∗ @param emo − Emotion to be added

202 ∗
∗ @r e t u r n updated POI

204 ∗/
p r i v a t e s t a t i c P o i n t o f i n t e r e s t addEmotionValToPOI (P o i n t o f i n t e r e s t poi ,

Emotion emo) {
206 Double newEmotionAnxietyCalm ;

Double newEmotionEuphoriaBored ;
208

/ / i n c r e a s e a t t e n d a n c e by 1
210 i n t newAttendance = po i . g e t A t t e n d a n c e () + 1 ;

212 / / a v o i d n u l l s and check i f emotion v a l u e s a r e g r e a t e r than 0 to a v o i d
u n n e c e s s a r y computat ion
i f (po i . getEmotionAnxietyCalm () ! = n u l l && po i . getEmotionAnxietyCalm ()
. compareTo (0 d) > 0) {

214 newEmotionAnxietyCalm = (po i . getEmotionAnxietyCalm () ∗poi .
g e t A t t e n d a n c e () + emo . getAnxietyCalm () . doubleValue ()) / newAttendance ;
}

216 e l s e {
newEmotionAnxietyCalm = emo . getAnxietyCalm () . doubleValue () ;

218 }

220 i f (po i . getEmotionEuphoriaBored () ! = n u l l && po i .
getEmotionEuphoriaBored () . compareTo (0 d) > 0) {

newEmotionEuphoriaBored = (po i . getEmotionEuphoriaBored () ∗poi .
g e t A t t e n d a n c e () + emo . g e t E u p h o r i a B o r e d () . doubleValue ()) / newAttendance ;

222 }
e l s e {

224 newEmotionEuphoriaBored = emo . ge tEuphor iaBored () . doubleValue () ;
}

226

po i . setEmotionAnxietyCalm (newEmotionAnxietyCalm) ;
228 po i . se tEmot ionEuphor iaBored (newEmotionEuphoriaBored) ;

po i . s e t A t t e n d a n c e (newAttendance) ;
230

r e t u r n po i ;
232 }

234 /∗∗
∗ This method removes the i n f l u e n c e o f an emotion from a poi ’ s

236 ∗ at tendance , EmotionAnxietyCalm and EmotionEuphoriaBored v a l u e s .
∗

238 ∗ @param po i − POI to be updated
∗ @param emo − Emotion to be removed

240 ∗
∗ @r e t u r n updated POI

242 ∗/
p r i v a t e s t a t i c P o i n t o f i n t e r e s t removeEmotionValFromPOI (P o i n t o f i n t e r e s t

poi , Emotion emo) {
244 Double newEmotionAnxietyCalm ;

�

� �

�

208 A Practical Introduction to Human-in-the-Loop Cyber-Physical Systems

Double newEmotionEuphoriaBored ;
246 i n t newAttendance ;

248 / / I f a t t e n d a n c e i s g r e a t e r than one , d e c r e a s e i t and perform
c a l c u l a t i o n s
i f (po i . g e t A t t e n d a n c e () > 1) {

250 newAttendance = po i . g e t A t t e n d a n c e () −1;
newEmotionAnxietyCalm = (po i . getEmotionAnxietyCalm () ∗poi .

g e t A t t e n d a n c e () − emo . getAnxietyCalm () . doubleValue ()) / newAttendance ;
252 newEmotionEuphoriaBored = (po i . getEmotionEuphoriaBored () ∗poi .

g e t A t t e n d a n c e () − emo . ge tEuphor iaBored () . doubleValue ()) / newAttendance ;
}

254 / / I f not , then a t t e n d a n c e and emotions v a l u e s a r e n e c e s s a r i l y 0
e l s e {

256 newAttendance = 0 ;
newEmotionAnxietyCalm = 0d ;

258 newEmotionEuphoriaBored = 0d ;
}

260 po i . setEmotionAnxietyCalm (newEmotionAnxietyCalm) ;
po i . se tEmot ionEuphor iaBored (newEmotionEuphoriaBored) ;

262 po i . s e t A t t e n d a n c e (newAttendance) ;

264 r e t u r n po i ;
}

266 }

With this, we have finished our processing of incoming emotions. Let us now focus
on pruning outdated emotions from the database.

9.1.5 Pruning Outdated Emotions

As we previously discussed, pruning outdated emotions is a periodic task. How often
should it be performed? For this tutorial, we are aiming at providing near real-time emo-
tional information to HappyWalk’s users. As such, we choose the arbitrary lifespan of
5 minutes as the time to live of emotional data, which can be regarded as a reasonable
compromise between accuracy and performance. Lifespan is translated into the Glob-
alVariables.OUTDATED_EMOTION_MILLIS variable, which the reader is welcome to
change and experiment with.

Let us create a new class named PruneTask within the utilities package. By using a
combination of the DaoEmotion’s and ComEmotions’ helper methods, the implementa-
tion of this pruning class becomes trivial:

package u t i l i t i e s ;
2

import hibernateMaps . Emotion ;
4

import j a v a . u t i l . Date ;
6 import j a v a . u t i l . A r r a y L i s t ;

import j a v a . u t i l . L i s t ;
8

import com . ComEmotions ;
10

import u t i l i t i e s . G l o b a l V a r i a b l e s ;
12 import dao . DaoEmotion ;

14

�

� �

�

Actuation 209

p u b l i c c l a s s PruneTask implements Runnable {
16 @O v e r r i d e

p u b l i c v o i d run () {
18 System . out . p r i n t l n (" R e f r e s h i n g and Purg ing Data . . . ") ;

long c u r r e n t = new Date () . getTime () ;
20

L i s t <Emotion> l i s t e m o t i o n s = new A r r a y L i s t <Emotion> () ;
22 t r y {

DaoEmotion emodao = new DaoEmotion () ;
24 l i s t e m o t i o n s = emodao . f i n d A l l () ;

26 c u r r e n t −= G l o b a l V a r i a b l e s . OUTDATED_EMOTION_MILLIS ;
f o r (i n t i = 0 ; i < l i s t e m o t i o n s . s i z e () ; i ++)

28 {
Emotion emo= l i s t e m o t i o n s . g e t (i) ;

30 i f (emo . getUpdatedAt () . getTime () < c u r r e n t) {
/ / Emotion i s outdated , update POI v a l u e s

32 ComEmotions . updatePOIsOfRemovedEmotion (emo) ;
/ / remove emotion

34 emodao . d e l e t e (emo) ;
System . out . p r i n t l n (" Emotion uuid : "+emo . getUuid () +" i s too o l d

so i t has been d e l e t e d ! ") ;
36 }

}
38

} c a t c h (E x c e p t i o n e) {
40 e . p r i n t S t a c k T r a c e () ;

}
42 }

}

First, we get the current time (line 19), save it into a variable (long current) and sub-
tract the value of GlobalVariables.OUTDATED_EMOTION_MILLIS (line 26). Then,
we iterate over all available emotions and verify if they have expired. For those whose
lifespan has reached its end, we call ComEmotions.updatePOIsOfRemovedEmotion and
subsequently remove them (lines 27–37).

To finalize, we need to actually schedule our PruneTask. This can be done within
EmotionListener, right after our scheduler is instantiated:

1 package u t i l i t i e s ;

3 import j a v a . u t i l . c o n c u r r e n t . E x e c u t o r s ;
import j a v a . u t i l . c o n c u r r e n t . S c h e d u l e d E x e c u t o r S e r v i c e ;

5 import j a v a . u t i l . c o n c u r r e n t . TimeUnit ;

7 import j a v a x . s e r v l e t . S e r v l e t C o n t e x t E v e n t ;
import j a v a x . s e r v l e t . S e r v l e t C o n t e x t L i s t e n e r ;

9

p u b l i c c l a s s E m o t i o n L i s t e n e r implements S e r v l e t C o n t e x t L i s t e n e r {
11 /∗

∗ p u b l i c s c h e d u l e r t h a t w i l l e x e c u t e a l l t a s k s r e l a t e d
13 ∗ with Emotions .

∗/
15 p u b l i c s t a t i c S c h e d u l e d E x e c u t o r S e r v i c e s c h e d u l e r ;

17 @O v e r r i d e
p u b l i c v o i d c o n t e x t I n i t i a l i z e d (S e r v l e t C o n t e x t E v e n t e v e n t) {

19 s c h e d u l e r = E x e c u t o r s . newSing leThreadScheduledExecutor () ;

�

� �

�

210 A Practical Introduction to Human-in-the-Loop Cyber-Physical Systems

s c h e d u l e r . s c h e d u l e A t F i x e d R a t e (
21 new PruneTask () , 0 , G l o b a l V a r i a b l e s . OUTDATED_EMOTION_MILLIS ,

TimeUnit . MILLISECONDS) ;
}

23

@O v e r r i d e
25 p u b l i c v o i d c o n t e x t D e s t r o y e d (S e r v l e t C o n t e x t E v e n t e v e n t) {

s c h e d u l e r . shutdownNow () ;
27 }

}

With this, our server should now be ready to process emotional information.
Test it out by running it as it was previously explained on page ???. Check the
console log for any glaring exceptions (there should be none, but some warnings
and information messages are to be expected). The console should also display the
message Refreshing and Purging Data… once during the server’s startup, and every
GlobalVariables.OUTDATED_EMOTION_MILLIS milliseconds thereafter.

In the next section we will resume our work on the Android application and finish its
EmotionTasker.

9.2 Finishing up EmotionTasker

In this section we will finish up the EmotionTasker, by handling the output of the ANN
(Section 9.2.1) and posting new emotion inferences (Section 9.2.2). Before we proceed,
as a first step, let us consider when to use the results of our neural network instead of
asking the user for feedback. One possibility is to use our previous wMeanEuclideanDis-
tance value; as the reader may recall from page ???, wMeanEuclideanDistance represents
an averaged sum of the distance between previous emotional classifications and the
user’s feedback. This directly relates to how accurate our neural network has been behav-
ing. Thus, we can define a simple rule that states that our neural network results will
only be considered if wMeanEuclideanDistance is greater than a certain percentage of
the maximum Euclidean distance:

package h i t l e x a m p l e s . happywalk . s e r v i c e ;
2

import (. . .)
4

p u b l i c c l a s s EmotionTasker {
6

(. . .)
8

c l a s s Emot ionRecogni t ionTask implements Runnable {
10 p r i v a t e double [] o u t p u t s ;

p r i v a t e double [] i n p u t s ;
12

@O v e r r i d e
14 p u b l i c v o i d run () {

/ / Only run i f we have l o c a t i o n , s i n c e we need i t f o r the
n e u r a l net !

16 i f (hWServ . g e t H w L o c a t i o n L i s t e n e r () . g e t A c t u a l p o s i t i o n () ! = n u l l
) {

t r y {
18 /∗ Check i f i t i s t ime to r e q u e s t u s e r f e e d b a c k ∗/

�

� �

�

Actuation 211

i f ((lastEmoFeedbackReq + baseTimeToNextEmoFdbckReq) <
System . c u r r e n t T i m e M i l l i s ()) {

20 fetchInputsAndCompute () ;
/ / o n l y f i r e n o t i f i c a t i o n i f the s e r v i c e i s s t i l l

running !
22 i f (hWServ . i sRunning ()) {

s h o w E m o t i o n F e e d b a c k N o t i f i c a t i o n (i n p u t s ,
o u t p u t s) ;

24 p o s t N o t i f i c a t i o n R e m o v a l T a s k () ;
}

26 } e l s e {
/∗ f i r s t , check i f our n e u r a l network has been

behav ing w e l l enough f o r us to c o n s i d e r i t s output ∗/
28 f l o a t m a x E u c l i d e a n D i s t a n c e = (f l o a t) Math . s q r t (

G l o b a l V a r i a b l e s . NN_OUTPUTS) ;
i f (wMeanEucl ideanDistance < G l o b a l V a r i a b l e s .

MARGIN_PERCNT_MAX_EUCLD_DIST_ACCPT ∗ m a x E u c l i d e a n D i s t a n c e) {
30 / /TODO: here , we w i l l use our NN output

}
32 }

} c a t c h (E x c e p t i o n e) {
34 e . p r i n t S t a c k T r a c e () ;

}
36 }

/ /TODO: p o s t a new emotion i n f e r e n c e
38 }

40 p r i v a t e v o i d p o s t N o t i f i c a t i o n R e m o v a l T a s k () {
(. . .)

42 }

44 p r i v a t e v o i d fetchInputsAndCompute () throws N o C u r r e n t P o s i t i o n {
(. . .)

46 }
}

First, we verify if the HwLocationListener has location information (line 16); if not,
there is no point in performing emotion recognition, since we cannot feed location
information to the neural network. We perform this verification here even when col-
lectInputs() throws an exception with this exact purpose (as seen on page ???). This is
because it is bad coding practice to rely on Java exceptions to control the execution flow.
Thus, collectInputs() only throws a NoCurrentPosition exception in the event that, owing
to some unexpected circumstance, we lose location information just before collecting
sensor data.

We then check if it is time to request user feedback, by checking if the current time is
greater than the sum of the time when we last sent a feedback request plus baseTime-
ToNextEmoFdbckReq (line 19). In case it is, we fetch sensory inputs and compute a result
using the ANN (line 20). We also display a notification asking for user feedback and its
respective notification removal task (see page ???). However, we only fire the notification
in case our service is still running (lines 22–25). This is important, since the user may
have closed the application while we were still acquiring sensory data. If this is the case,
EmotionRecognitionTask would be completely oblivious to this fact. Firing notifications
while our background service is not running is asking for trouble. If it is not yet time to
ask for user feedback, we determine whether or not to use our neural network results
by resorting to the rule discussed above (lines 26–32).

�

� �

�

212 A Practical Introduction to Human-in-the-Loop Cyber-Physical Systems

The TODO comments above (lines 30 and 37) denote the two tasks that we still need
to tackle. First, we need to handle our ANN output and find a way to make it useful to
the user. Second, we need to figure out how to post new emotion inference tasks. We
will consider each of these challenges in their own subsections.

9.2.1 Handling ANN Output

In case our neural network has been behaving well, we need to act upon its result. As the
reader may remember from Section 5.1, the objective here is to show a notification that
suggests walking exercise whenever the data from the smartphone’s sensors indicates
a negative state of mind. To do so, we will first need to determine if the ANN’s output
represents a negative emotion or not. We will then need to implement a second type of
notification, different from the one used for emotional feedback. Whenever a negative
emotion is detected this new notification shall, instead of requesting feedback, suggest
walking exercise, and show our map.

Let us first determine the type emotion our ANN output represents:

1 package h i t l e x a m p l e s . happywalk . s e r v i c e ;

3 import (. . .)

5 p u b l i c c l a s s EmotionTasker {

7 (. . .)

9 p u b l i c s t a t i c i n t getTypeOfEmotion (double [] emotionArray) {
/∗

11 f o r code r e a d a b i l i t y , l e t us use an (x , y) r e p r e s e n t a t i o n o f the
emotion c o l o r map :

13

(0 . 0) ____________
15 y | Eph |

| |
17 | Anx Clm |

| |
19 | ____Brd_____ |

x (1 , 1)
21 ∗/

23 double y = emotionArray [G l o b a l V a r i a b l e s .
NN_OUTPUT_ARRAY_INDEX_EUPHORIC_BORED] ;

double x = emotionArray [G l o b a l V a r i a b l e s .
NN_OUTPUT_ARRAY_INDEX_ANXIOUS_CALM] ;

25 i n t typeOfEmotion ;

27 i f (y < 0 . 5 && x < 0 . 5) {
i f (y>x) {

29 / / a n x i e t y
typeOfEmotion = G l o b a l V a r i a b l e s . EMOTION_ANXIETY ;

31 }
e l s e {

33 / / e u p h o r i a
typeOfEmotion = G l o b a l V a r i a b l e s . EMOTION_EUPHORIA ;

35 }
}

37 e l s e i f (y < 0 . 5 && x >= 0 . 5)

�

� �

�

Actuation 213

{
39 i f (y>x) {

/ / ca lmness
41 typeOfEmotion = G l o b a l V a r i a b l e s . EMOTION_CALMNESS ;

}
43 e l s e {

/ / e u p h o r i a
45 typeOfEmotion = G l o b a l V a r i a b l e s . EMOTION_EUPHORIA ;

}
47 }

e l s e i f (y >= 0 . 5 && x < 0 . 5)
49 {

i f (y>x) {
51 / / a n x i e t y

typeOfEmotion = G l o b a l V a r i a b l e s . EMOTION_ANXIETY ;
53 }

e l s e {
55 / / boredom

typeOfEmotion = G l o b a l V a r i a b l e s .EMOTION_BOREDOM;
57 }

}
59 e l s e

{
61 i f (y>x) {

/ / boredom
63 typeOfEmotion = G l o b a l V a r i a b l e s .EMOTION_BOREDOM;

}
65 e l s e {

/ / ca lmness
67 typeOfEmotion = G l o b a l V a r i a b l e s . EMOTION_CALMNESS ;

}
69 }

r e t u r n typeOfEmotion ;
71 }

73 /∗∗
∗ checks i f an emotion i s " n e g a t i v e "

75 ∗ @param typeOfEmotion an i n t r e p r e s e n t i n g the t y p e o f emotion
∗ @r e t u r n t r u e i f emotion i s n e g a t i v e / f a l s e i f i t i s n t

77 ∗/
p r i v a t e boolean e m o t i o n I s N e g a t i v e (i n t typeOfEmotion) {

79 boolean e m o t i o n I s N e g a t i v e = f a l s e ;
f o r (i n t i = 0 ; i < G l o b a l V a r i a b l e s . NEGATIVE_EMOTIONS . l e n g t h ; i ++) {

81 i f (typeOfEmotion == G l o b a l V a r i a b l e s . NEGATIVE_EMOTIONS[i]) {
e m o t i o n I s N e g a t i v e = t r u e ;

83 break ;
}

85 }
r e t u r n e m o t i o n I s N e g a t i v e ;

87 }

89 (. . .)
}

This can be done through the above EmotionTasker’s helper methods getTypeOfEmo-
tion() (lines 9–71) and emotionIsNegative() (lines 78–87).

As we can see by the comment in lines 10–21, the method getTypeOfEmotion()
determines the position of the neural network’s output within the coordinates

�

� �

�

214 A Practical Introduction to Human-in-the-Loop Cyber-Physical Systems

of our EmotionSpace view (refer to Figure 8.1) and returns a globally defined
integer value representative of the corresponding emotion (lines 27–69). As for
emotionIsNegative(), it makes use of a list of negative emotions kept within the
GlobalVariables.NEGATIVE_EMOTIONS array (line 81).

Note that, while emotionIsNegative() is a private method, getTypeOfEmotion() is a pub-
lic and static method. This is because we will reuse this method later on.

The notification to be shown in this case is slightly different from the emotion feed-
back notification we previously implemented. Let us define a new string resource to
contain this “normal emotion notification” message in the proper XML resource file,
src/main/res/values/strings.xml:

< r e s o u r c e s >
2 < s t r i n g name= " app_name " >HappyWalk</ s t r i n g >

4 (. . .)

6 <!−− N o t i f i c a t i o n s −−>
< s t r i n g name= " s e r v i c e N o t i f C o n t e n t " > i s w a l k i n g with you</ s t r i n g >

8 < s t r i n g name= " emot ionFeedbackNot i fContent " >Can you t e l l me how you
f e e l ?</ s t r i n g >

< s t r i n g name= " emotionNormalNoti fContent " >How a r e you f e e l i n g ? What
about a walk ?</ s t r i n g >

10

</ r e s o u r c e s >

The newly defined emotionNormalNotifContent resource now contains the sentence
How are you feeling? What about a walk? We can use this resource to create a “normal”
notification through a new method, showNormalEmotionNotification():

1 package h i t l e x a m p l e s . happywalk . s e r v i c e ;

3 import h i t l e x a m p l e s . happywalk . a c t i v i t i e s . M a p s A c t i v i t y ;
import (. . .)

5

p u b l i c c l a s s EmotionTasker {
7

(. . .)
9

p r i v a t e v o i d showNormalEmot ionNot i f icat ion (i n t typeOfEmotion) {
11 / / F i r s t , c a n c e l p r e v i o u s n o t i f i c a t i o n removal t a s k s

hWServiceHandler . r e m o v e C a l l b a c k s (currentNot i fRemovTask) ;
13 / /Now, p r e p a r e a Bundle with the n e c e s s a r y i n f o r m a t i o n

Bundle bnd = new Bundle () ;
15 /∗ put a timestamp on t h i s bundle to a v o i d the u s e r c l i c k i n g

n o t i f i c a t i o n s t h a t have been f i r e d a long time ago . ∗/
l a s t E m o t i o n N o t i f M i l l i s = System . c u r r e n t T i m e M i l l i s () ;

17 bnd . putLong (G l o b a l V a r i a b l e s . BND_EXTRA_EMOTION_TIMESTAMP_KEY,
l a s t E m o t i o n N o t i f M i l l i s) ;

19 bnd . p u t I n t (G l o b a l V a r i a b l e s . BND_EXTRA_EMOTION_TYPE_NOTIF_KEY ,
typeOfEmotion) ;

bnd . p u t I n t (G l o b a l V a r i a b l e s . BND_EXTRA_REQ_CODE_KEY ,
21 G l o b a l V a r i a b l e s . AREQ_EMOTION_NORMAL_NOTIF) ;

23 / / We w i l l show our map , to promote w a l k i n g when emotions a r e
n e g a t i v e

I n t e n t i n t e n t = new I n t e n t (hWServ , M a p s A c t i v i t y . c l a s s) ;

�

� �

�

Actuation 215

25 i n t e n t . p u t E x t r a s (bnd) ;

27 P e n d i n g I n t e n t r e s u l t P e n d i n g I n t e n t =
P e n d i n g I n t e n t . g e t A c t i v i t y (

29 hWServ ,
0 ,

31 i n t e n t ,
P e n d i n g I n t e n t . FLAG_UPDATE_CURRENT

33) ;

35 N o t i f i c a t i o n C o m p a t . B u i l d e r m N o t i f y B u i l d e r = new N o t i f i c a t i o n C o m p a t
. B u i l d e r (hWServ)

. s e t T i c k e r (hWServ . g e t R e s o u r c e s () . g e t S t r i n g (R . s t r i n g .
app_name) + " " + hWServ . g e t R e s o u r c e s () . g e t S t r i n g (R . s t r i n g .
emotionNormalNoti fContent))

37 . s e t C o n t e n t T i t l e (hWServ . g e t R e s o u r c e s () . g e t S t r i n g (R . s t r i n g .
app_name))

. s e t C o n t e n t T e x t (hWServ . g e t R e s o u r c e s () . g e t S t r i n g (R . s t r i n g .
emotionNormalNoti fContent))

39 . s e t S m a l l I c o n (R . drawable . e m o t _ n o t i f _ i c o n)
. s e t C o n t e n t I n t e n t (r e s u l t P e n d i n g I n t e n t)

41 . setOngoing (t r u e)
. setSound (RingtoneManager . g e t D e f a u l t U r i (RingtoneManager .

TYPE_NOTIFICATION)) ;
43

hWServ . g e t N o t i f i c a t i o n M a n a g e r () . n o t i f y (
45 hWServ . hHNotificNum ,

m N o t i f y B u i l d e r . b u i l d ()) ;
47 }

49 (. . .)
}

This method is very similar to showEmotionFeedbackNotification(), previously
discussed on page ???; however, it displays the new message How are you feeling? What
about a walk?, as defined by the R.string.emotionNormalNotifContent resource. Notice
that this notification also calls the MapsActivity class instead of EmotionFeedback.
This is because our intention is to show a map to the user, with interesting POIs that
serve as possible destinations for his walking exercise. We will further customize this
motivational action through a dialog box in Section 9.3.

Let us now use this new method to complete the associated logic within Emotion-
RecognitionTask:

package h i t l e x a m p l e s . happywalk . s e r v i c e ;
2

import (. . .)
4

p u b l i c c l a s s EmotionTasker {
6

(. . .)
8

c l a s s Emot ionRecogni t ionTask implements Runnable {
10 p r i v a t e double [] o u t p u t s ;

p r i v a t e double [] i n p u t s ;
12

@O v e r r i d e
14 p u b l i c v o i d run () {

�

� �

�

216 A Practical Introduction to Human-in-the-Loop Cyber-Physical Systems

/ / Only run i f we have l o c a t i o n , s i n c e we need i t f o r the
n e u r a l net !

16 i f (hWServ . g e t H w L o c a t i o n L i s t e n e r () . g e t A c t u a l p o s i t i o n () ! = n u l l
) {

t r y {
18 /∗ Check i f i t i s t ime to r e q u e s t u s e r f e e d b a c k ∗/

i f ((lastEmoFeedbackReq + baseTimeToNextEmoFdbckReq) <
System . c u r r e n t T i m e M i l l i s ()) {

20 fetchInputsAndCompute () ;
/ / o n l y f i r e n o t i f i c a t i o n i f the s e r v i c e i s s t i l l

running !
22 i f (hWServ . i sRunning ()) {

s h o w E m o t i o n F e e d b a c k N o t i f i c a t i o n (i n p u t s ,
o u t p u t s) ;

24 p o s t N o t i f i c a t i o n R e m o v a l T a s k () ;
}

26 } e l s e {
/∗ f i r s t , check i f our n e u r a l network has been

behav ing w e l l enough f o r us to c o n s i d e r i t s output ∗/
28 f l o a t m a x E u c l i d e a n D i s t a n c e = (f l o a t) Math . s q r t (

G l o b a l V a r i a b l e s . NN_OUTPUTS) ;
i f (wMeanEucl ideanDistance < G l o b a l V a r i a b l e s .

MARGIN_PERCNT_MAX_EUCLD_DIST_ACCPT ∗ m a x E u c l i d e a n D i s t a n c e) {
30 fetchInputsAndCompute () ;

/ / f i r e a r e g u l a r emotion n o t i f i c a t i o n , i n c a s e
emotion i s n e g a t i v e

32 i n t typeOfEmotion = getTypeOfEmotion (o u t p u t s) ;

/ / o n l y f i r e n o t i f i c a t i o n i f the s e r v i c e i s
s t i l l running !

34 i f (hWServ . i sRunning ()) {
i f (e m o t i o n I s N e g a t i v e (typeOfEmotion)) {

36 showNormalEmot ionNot i f icat ion (
typeOfEmotion) ;

p o s t N o t i f i c a t i o n R e m o v a l T a s k () ;
38 }

sendEmotionToServer (o u t p u t s) ;
40 }

}
42 }

} c a t c h (E x c e p t i o n e) {
44 e . p r i n t S t a c k T r a c e () ;

}
46 }

/ /TODO: p o s t a new emotion i n f e r e n c e
48 }

50 p r i v a t e v o i d p o s t N o t i f i c a t i o n R e m o v a l T a s k () {
(. . .)

52 }

54 p r i v a t e v o i d fetchInputsAndCompute () throws N o C u r r e n t P o s i t i o n {
(. . .)

56 }
}

�

� �

�

Actuation 217

The code between lines 30–40 completes the first TODO comment we had left in the
code from page ???.

We begin by fetching sensory inputs and computing a result (line 30). If we are going to
use our ANN’s output, we first determine which type of emotion it represents (line 32).
In case our service is still running and the emotion is negative, a notification motivating
the user to go for a walk is shown, together with a removal task which will revert it after
its expiration time has passed (lines 34–38). Regardless of the type of emotion that was
detected, the result is sent to the server in order to update POI information (line 39).

Now that we can handle the ANN’s output, let us consider the issue of posting New
Emotion Inferences.

9.2.2 Posting New Emotion Inferences

On this section we will be looking at handling the remaining TODO task from line 37
back on page ???. One may be tempted to think that posting new emotion inferences
should be simple enough. After all, we have previously posted runnable tasks using the
HappyWalkService’s handler. That was the case when we posted new NeuralNetwork-
TrainingTasks and UpdateEmotionAccuracyTasks back in Section 8.3. However, using
the same approach for EmotionRecognitionTasks may cause problems.

EmotionRecognitionTasks differ from other tasks in the sense that they are to be exe-
cuted periodically, with large time intervals (as we defined back on page ??, once or twice
an hour). In theory, we could use our handler’s postDelayed method to run this task
whenever we saw fit. On the other hand, to avoid draining the battery, most Android
devices that are left idle for few minutes go into a sleep state where the CPU is inac-
tive. Unfortunately for us, Android handlers cannot guarantee their operation in this
condition. Instead of running after the desired time period, handlers will resume their
operation whenever the device awakes again. This defeats the purpose of background
emotion inference and of our dynamic feedback strategy, since we would only be able to
acquire information and fire notifications whenever the user handled the device.

Fortunately, Android offers a way of submitting cron jobs to be executed at specific
times. This may be achieved through a combination of Android’s AlarmManager, a
WakefulBroadcastReceiver, an IntentService, and Wakelocks. In this section, we will use
each of these elements to schedule our EmotionRecognitionTasks.

The AlarmManager is a class that provides access to the system alarm services. Alarms
are the basis for what is used for Android’s alarm clocks: they must be run at specific
times, independently of the sleep state of the device. Alarms are also associated with
intents that are processed whenever they go off. Therefore, our objective is to define a
class that receives these intents and will, thereafter, initiate the process of starting a new
EmotionRecognitionTask.

In this book we will be using a WakefulBroadcastReceiver, a special type of Broadcas-
tReceiver. BroadcastReceivers are classes specifically dedicated to receiving and process-
ing intents. A WakefulBroadcastReceiver is special in the sense that it prevents a device
from going back to sleep during this processing. It does so through the use of Wakelocks.

Wakelocks are objects that indicate that the application needs to have the device’s CPU
to stay on. We could, theoretically, use a wakelock to always have the device on while
HappyWalk was running. However, as the reader may imagine, this would be a highly
effective way of killing the device’s battery very quickly. Therefore, wakelocks should be
used sparingly.

�

� �

�

218 A Practical Introduction to Human-in-the-Loop Cyber-Physical Systems

BroadcastReceivers do not usually perform work by themselves. Their job is to pass
the work on to a service. We will be using an IntentService, whose purpose is to handle
single asynchronous intent requests and stop themselves after their work is done. Thus,
our IntentService will interface with our EmotionTasker to post a new EmotionRecogni-
tionTask.

We will approach this challenge by first acquiring the necessary permissions to
use wakelocks. Then, we will create our own extension of a WakefulBroadcastRe-
ceiver, which will start our IntentService. This IntentService will acquire a connection
to our main HappyWalkService, request a new emotion inference, and release the
WakefulBroadcastReceiver’s wakelock. We will then turn our attention back to the
EmotionTasker class, where we will acquire a new wakelock and implement a method
that handles the posting of a new EmotionRecognitionTask. Then, we will finalize
EmotionRecognitionTask by allowing it to determine when it should be run again,
making it schedule the next emotion inference, and release the wakelock. Finally, we
conclude our EmotionTasker by kickstarting the emotion recognition process during
initialization and stopping it when the app is closed.

Before we continue, let us first give our app the ability to use wakelocks. Edit the file
happywalk/app/src/main/AndroidManifest.xml and add the following permission:

1 <? xml v e r s i o n = " 1 . 0 " encoding= " u t f −8 " ?>
< m a n i f e s t x m l n s : a n d r o i d = " h t t p : / / schemas . andro id . com/ apk / r e s / andro id "

3 x m l n s : t o o l s = " h t t p : / / schemas . andro id . com/ t o o l s "
package= " h i t l e x a m p l e s . happywalk " >

5

<uses−p e r m i s s i o n android :name = " andro id . p e r m i s s i o n . INTERNET " / >
7 <uses−p e r m i s s i o n android :name = " andro id . p e r m i s s i o n . ACCESS_NETWORK_STATE

" />
<uses−p e r m i s s i o n android :name = " andro id . p e r m i s s i o n .
WRITE_EXTERNAL_STORAGE" / >

9 <uses−p e r m i s s i o n android :name = " com . g o o g l e . andro id . p r o v i d e r s . g s f .
p e r m i s s i o n . READ_GSERVICES " / >
<!−− P e r m i s s i o n to use the wakelock −−>

11 <uses−p e r m i s s i o n android :name = " andro id . p e r m i s s i o n .WAKE_LOCK" />

13 (. . .)

15 </ m a n i f e s t >

Now, let us create a new class under the package hitlexamples.happywalk.service and
name it EmotionWakefulReceiver. It shall extend the WakefulBroadcastReceiver class to
process the appropriate incoming intents:

1 package h i t l e x a m p l e s . happywalk . s e r v i c e ;

3 import andro id . c o n t e n t . Context ;
import andro id . c o n t e n t . I n t e n t ;

5 import andro id . s u p p o r t . v4 . c o n t e n t . W a k e f u l B r o a d c a s t R e c e i v e r ;

7 p u b l i c c l a s s EmotionWakefulReceiver e x t e n d s W a k e f u l B r o a d c a s t R e c e i v e r {
p u b l i c s t a t i c f i n a l i n t REQUEST_CODE = 3 3 2 4 5 ;

9

@O v e r r i d e
11 p u b l i c v o i d onRece ive (Context r e c e i v e C o n t e x t , I n t e n t i n t e n t) {

/ / C a l l upon the E m o t i o n I n t e n t S e r v i c e .

�

� �

�

Actuation 219

13 I n t e n t s e r v i c e = new I n t e n t (r e c e i v e C o n t e x t , E m o t i o n I n t e n t S e r v i c e .
c l a s s) ;

15 / / S t a r t the s e r v i c e , h o l d i n g a Wakelock
s t a r t W a k e f u l S e r v i c e (r e c e i v e C o n t e x t , s e r v i c e) ;

17 }
}

We first define a public static REQUEST_CODE, which is a way of identifying our
intents (line 8). Then, we override the onReceive method (lines 10 and 11), where we
start a wakeful EmotionIntentService which we still need to implement (lines 12–16).

Create yet another class under the package hitlexamples.happywalk.service and name
it EmotionIntentService. This class shall extend the IntentService class:

package h i t l e x a m p l e s . happywalk . s e r v i c e ;
2

import andro id . app . I n t e n t S e r v i c e ;
4 import andro id . c o n t e n t . ComponentName ;

import andro id . c o n t e n t . Context ;
6 import andro id . c o n t e n t . I n t e n t ;

import andro id . c o n t e n t . S e r v i c e C o n n e c t i o n ;
8 import andro id . os . I B i n d e r ;

10 p u b l i c c l a s s E m o t i o n I n t e n t S e r v i c e e x t e n d s I n t e n t S e r v i c e {

12 p r i v a t e S e r v i c e C o n n e c t i o n hwConnection ;
p r i v a t e HappyWalkService hWService ;

14 p r i v a t e I n t e n t i n c o m i n g I n t e n t ;

16 p u b l i c E m o t i o n I n t e n t S e r v i c e () {
super (" E m o t i o n I n t e n t S e r v i c e ") ;

18 hwConnection = new S e r v i c e C o n n e c t i o n () {
p u b l i c v o i d onServ iceConnected (ComponentName className ,

I B i n d e r s e r v i c e) {
20 hWService = ((HappyWalkService . HappyWalkBinder) s e r v i c e) .

g e t S e r v i c e () ;
/ / The s e r v i c e s h a l l b e g i n a new Emotion R e c o g n i t i o n t a s k

22 hWService . getEmot ionTasker () . pos tEmot ionRecogni t ionTask () ;

/∗ S i n c e the EmotionTasker a c q u i r e s i t s own wakelock , we
no l o n g e r need EmotionWakefulReceiver to hold one f o r us . ∗/

24 EmotionWakefulReceiver . c o m p l e t e W a k e f u l I n t e n t (
i n c o m i n g I n t e n t) ;

/ / Our work i s done .
26 u n b i n d S e r v i c e (hwConnection) ;

hWService = n u l l ;
28 }

30 @O v e r r i d e
p u b l i c v o i d o n S e r v i c e D i s c o n n e c t e d (ComponentName componentName)

{
32 u n b i n d S e r v i c e (hwConnection) ;

hWService = n u l l ;
34 EmotionWakefulReceiver . c o m p l e t e W a k e f u l I n t e n t (

i n c o m i n g I n t e n t) ;
}

36 } ;

�

� �

�

220 A Practical Introduction to Human-in-the-Loop Cyber-Physical Systems

38 }

40 @O v e r r i d e
p r o t e c t e d v o i d onHandleIntent (I n t e n t i n t e n t) {

42 /∗ This i s the i n t e n t t h a t we w i l l need to p a s s
to EmotionWakefulReceiver , i n o r d e r to r e l e a s e i t s wakelock ∗/

44 i n c o m i n g I n t e n t = i n t e n t ;

46 / / The main HappyWalk s e r v i c e should a l r e a d y be running , we s i m p l y
need to bind

b i n d S e r v i c e (new I n t e n t (t h i s , HappyWalkService . c l a s s) , hwConnection
, Context . BIND_AUTO_CREATE) ;

48 }
}

In its constructor, we instantiate a ServiceConnection hwConnection object (line
18), similar to what we previously did for EmotionFeedback on page ???. This object
connects us to our HappyWalkService (line 20), from which we can get a reference to
EmotionTasker to post a new EmotionRecognitionTask (line 22). We will do so through
a postEmotionRecognitionTask() method, which we will implement next.

The objective of postEmotionRecognitionTask() will be to pass on the work to our
HappyWalkService handler, which runs it on HappyWalk’s background thread. The
problem here is that, from our current thread’s perspective, we don’t really know
when the work will be complete. Therefore, we should make sure that EmotionTasker
acquires its own wakelock. As such, for now, we can tell our EmotionWakefulReceiver to
release its wakelock through the completeWakefulIntent() method (line 24). Afterwards,
EmotionIntentService’s work is complete.

Now, we just need to actually attempt to bind to the HappyWalkService. We do this
by overriding the onHandleIntent() method, which is called whenever a new intent is
received (lines 40–48).

The only thing left to do is to let the application know that our new receiver and service
exist. To do so, we need to edit the file happywalk/app/src/main/AndroidManifest.xml
again:

<? xml v e r s i o n = " 1 . 0 " encoding= " u t f −8 " ?>
2 < m a n i f e s t x m l n s : a n d r o i d = " h t t p : / / schemas . andro id . com/ apk / r e s / andro id "

x m l n s : t o o l s = " h t t p : / / schemas . andro id . com/ t o o l s "
4 package= " h i t l e x a m p l e s . happywalk " >

6 (. . .)

8 < s e r v i c e
android :name = " . s e r v i c e . HappyWalkService "

10 a n d r o i d : e n a b l e d = " t r u e "
a n d r o i d : e x p o r t e d = " f a l s e " >

12 </ s e r v i c e >

14 < r e c e i v e r
android :name = " . s e r v i c e . EmotionWakefulReceiver " >

16 </ r e c e i v e r >

18 < s e r v i c e
android :name = " . s e r v i c e . E m o t i o n I n t e n t S e r v i c e "

20 a n d r o i d : e x p o r t e d = " f a l s e " >

�

� �

�

Actuation 221

</ s e r v i c e >
22

(. . .)
24

</ a p p l i c a t i o n >
26

</ m a n i f e s t >

Now that our EmotionWakefulReceiver and EmotionIntentService are implemented,
we can focus back our attention on EmotionTasker. Let us begin by implementing the
postEmotionRecognitionTask() method:

1 package h i t l e x a m p l e s . happywalk . s e r v i c e ;

3 import andro id . os . PowerManager ;
import (. . .)

5

p u b l i c c l a s s EmotionTasker {
7 (. . .)

p r i v a t e Emot ionRecogni t ionTask emotionRecog ;
9 PowerManager . WakeLock wakeLock ;

11 (. . .)

13 p u b l i c EmotionTasker (HappyWalkService hWServ) {
t h i s . hWServ = hWServ ;

15 t h i s . hWServiceHandler = hWServ . getHappyWalkServ iceHandler () ;
/ / p r e p a r i n g s e n s o r manager to f e t c h d a t a

17 t r y {
esSensorManager = ESSensorManager . getSensorManager (hWServ) ;

19 esSensorManager . s e t G l o b a l C o n f i g (G l o b a l C o n f i g .
PRINT_LOG_D_MESSAGES , f a l s e) ;

} c a t c h (ESExcept ion e) {
21 e . p r i n t S t a c k T r a c e () ;

}
23 / / f e t c h the base emotion f e e d b a c k t ime i n t e r v a l

r e s t o r e E m o F e e d b a c k V a l s F r o m P r e f e r e n c e s () ;
25 / / i n i t i a l i z e Neural Network

i n i t N e t w o r k () ;
27 / / r e s t o r e n e u r a l network w e i g h t s from our p r e f e r e n c e s , i f we have

them
restoreNNWeightsFromPreferences () ;

29

emotionRecog = new EmotionRecogni t ionTask () ;
31 PowerManager powerManager = (PowerManager) hWServ . g e t S y s t e m S e r v i c e

(hWServ . POWER_SERVICE) ;
wakeLock = powerManager . newWakeLock (PowerManager . PARTIAL_WAKE_LOCK

, " EmotionTaskerWakeLock ") ;
33 }

35 (. . .)

37 /∗∗
∗ P o s t s a new emotion r e c o g n i t i o n t a s k

39 ∗/
p u b l i c v o id postEmot ionRecogni t ionTask () {

41 /∗ We need the d e v i c e ’ s CPU to remain
awake w h i l e we perform our emotion r e c o g n i t i o n ∗/

43 wakeLock . a c q u i r e () ;

�

� �

�

222 A Practical Introduction to Human-in-the-Loop Cyber-Physical Systems

hWServiceHandler . p o s t (emotionRecog) ;
45 }

47 (. . .)

49 }

To begin, we first declare a PowerManager.WakeLock wakeLock object (line 9), which
we initialize, together with emotionRecog, on the constructor (lines 30–32). The postE-
motionRecognitionTask() method itself is very simple; it acquires a wakeLock and posts
an EmotionRecognitionTask (lines 40–45).

This is not enough, however, since we also need to keep our emotion recognitions
working while HappyWalk is running. Therefore, let us go back to the EmotionRecogni-
tionTask class and make it post itself again in the future:
package h i t l e x a m p l e s . happywalk . s e r v i c e ;

2

import andro id . app . AlarmManager ;
4 import (. . .)

6 p u b l i c c l a s s EmotionTasker {

8 (. . .)

10 /∗∗
∗ Returns a pseudo−random v a l u e (i n M i l l i s e c o n d s) t h a t r e p r e s e n t s

12 ∗ the amount o f t ime u n t i l the next emotion r e c o g n i t i o n t a s k
∗/

14 p r i v a t e long n e x t E m o t i o n E x e c u t i o n M i l l i s () {
Random rand = new Random () ;

16 i n t randomNum = rand . n e x t I n t (
(G l o b a l V a r i a b l e s . RECOG_EMOTION_MAX_MINUTES −

G l o b a l V a r i a b l e s . RECOG_EMOTION_MIN_MINUTES) + 1) + G l o b a l V a r i a b l e s .
RECOG_EMOTION_MIN_MINUTES ;

18 r e t u r n (long) 1000∗60∗randomNum ;
}

20

c l a s s Emot ionRecogni t ionTask implements Runnable {
22 p r i v a t e double [] o u t p u t s ;

p r i v a t e double [] i n p u t s ;
24

@O v e r r i d e
26 p u b l i c v o i d run () {

/ / Only run i f we have l o c a t i o n , s i n c e we need i t f o r the
n e u r a l net !

28 i f (hWServ . g e t H w L o c a t i o n L i s t e n e r () . g e t A c t u a l p o s i t i o n () ! = n u l l
) {

t r y {
30

(. . .)
32

} c a t c h (E x c e p t i o n e) {
34 e . p r i n t S t a c k T r a c e () ;

}
36 }

/ / p o s t a new emotion i n f e r e n c e
38 scheduleEmotionRecog (System . c u r r e n t T i m e M i l l i s () +

n e x t E m o t i o n E x e c u t i o n M i l l i s ()) ;

�

� �

�

Actuation 223

/∗ S i n c e we have po s ted our nex emotion i n f e r e n c e , we
40 no l o n g e r need to keep the d e v i c e ’ s CPU awake . ∗/

wakeLock . r e l e a s e () ;
42 }

44 /∗∗
∗ S c h e d u l e s the next emotion r e c o g n i t i o n through the

46 ∗ AlarmManager c l a s s
∗ @param t r i g g e r A t M i l l i s − Time when the alarm should t r i g g e r

48 ∗/
p r o t e c t e d v o i d scheduleEmotionRecog (long t r i g g e r A t M i l l i s) {

50 / / C o n s t r u c t an i n t e n t t h a t w i l l e x e c u t e the AlarmRece iver
I n t e n t i n t e n t = new I n t e n t (hWServ . g e t A p p l i c a t i o n C o n t e x t () ,

EmotionWakefulReceiver . c l a s s) ;
52 / / C r e a t e a P e n d i n g I n t e n t to be t r i g g e r e d when the alarm goes

o f f
f i n a l P e n d i n g I n t e n t p I n t e n t = P e n d i n g I n t e n t . g e t B r o a d c a s t (

hWServ , EmotionWakefulReceiver . REQUEST_CODE, i n t e n t , P e n d i n g I n t e n t .
FLAG_UPDATE_CURRENT) ;

54 AlarmManager alarm = (AlarmManager) hWServ . g e t S y s t e m S e r v i c e (
hWServ . ALARM_SERVICE) ;

/ / F i r s t parameter u s e s the w a l l c l o c k t ime i n UTC
56 / / I n t e r v a l i s c a l c u l a t e d based on n e x t E m o t i o n E x e c u t i o n M i l l i s

a larm . s e t (AlarmManager . RTC_WAKEUP, t r i g g e r A t M i l l i s , p I n t e n t) ;
58 }

60 p r o t e c t e d v o i d cancelEmotionRecog () {
I n t e n t i n t e n t = new I n t e n t (hWServ . g e t A p p l i c a t i o n C o n t e x t () ,

EmotionWakefulReceiver . c l a s s) ;
62 f i n a l P e n d i n g I n t e n t p I n t e n t = P e n d i n g I n t e n t . g e t B r o a d c a s t (

hWServ , EmotionWakefulReceiver . REQUEST_CODE, i n t e n t , P e n d i n g I n t e n t .
FLAG_UPDATE_CURRENT) ;

AlarmManager alarm = (AlarmManager) hWServ . g e t S y s t e m S e r v i c e (
hWServ . ALARM_SERVICE) ;

64 a larm . c a n c e l (p I n t e n t) ;
}

66

p r i v a t e v o i d p o s t N o t i f i c a t i o n R e m o v a l T a s k () {
68 (. . .)

}
70

p r i v a t e v o i d fetchInputsAndCompute () throws N o C u r r e n t P o s i t i o n {
72 (. . .)

}
74 }

We begin by writing a new method or EmotionTasker named nextEmotionExecution-
Millis() (lines 14–19). It is responsible for determining when the next EmotionRecog-
nitionTask will run. Notice that this is different from checking when the next emotion
feedback request is to be sent (back on page ???, we did this by checking the value of
baseTimeToNextEmoFdbckReq). Here, we want to run automatic emotion recognitions
once or twice an hour, randomly determined within these constraints in order to
avoid user habituation (see page ??). Therefore, nextEmotionExecutionMillis() returns
a pseudo-random value (in milliseconds) that represents the amount of time until the
next emotion recognition task.

We use this method at the end of our EmotionRecognitionTask by summing it
with currentTimeMillis() and passing the result to scheduleEmotionRecog() (line 38).

�

� �

�

224 A Practical Introduction to Human-in-the-Loop Cyber-Physical Systems

The scheduleEmotionRecog() method (lines 49–58) constructs a PendingIntent that
contains a reference to our EmotionWakefulReceiver and its REQUEST_CODE (line
53). It then schedules it through Android’s AlarmManager class (lines 54–57). We also
implemented a cancelEmotionRecog() method, which cancels any pending intents with
the corresponding REQUEST_CODE that have yet to be delivered (lines 60–65).

Since our emotional recognition work is complete, we release the EmotionTasker’s
wakelock so that the device can return to sleep (line 41). Notice that the code between
lines 37–41 completes the second TODO comment we had left in the code from page ???.

To conclude our EmotionTasker, we still need to implement a way to actually trigger
the initial EmotionRecognitionTask. Let us write methods to start and stop the emotion
recognition process:

package h i t l e x a m p l e s . happywalk . s e r v i c e ;
2

import (. . .)
4

p u b l i c c l a s s EmotionTasker {
6

(. . .)
8

/∗∗
10 ∗ B e g i n s the p r o c e s s o f s c h e d u l i n g emotion r e c o g n i t i o n t a s k s

∗/
12 p u b l i c v o i d s t a r t E m o t i o n R e c o g n i t i o n T a s k s () {

/∗ F i r s t , check i f we should perform emotion recog r i g h t now . ∗/
14 long timeToNextEmoRecog = n e x t E m o t i o n E x e c u t i o n M i l l i s () ;

16 /∗ Let us compare with the t ime when the l a s t emotion reco g was
performed . ∗/

i f (l a s t E m o t i o n N o t i f M i l l i s + timeToNextEmoRecog < System .
c u r r e n t T i m e M i l l i s ()) {

18 / / enough time has p a s s e d
postEmot ionRecogni t ionTask () ;

20 }
e l s e {

22 /∗ not enough time has p a s s e d .
Let us s c h e d u l e a emotion recog u s i n g the remain ing t ime ∗/

24 emotionRecog . scheduleEmotionRecog (l a s t E m o t i o n N o t i f M i l l i s +
timeToNextEmoRecog) ;

}
26 }

28 p u b l i c v o i d s t o p E m o t i o n R e c o g n i t i o n T a s k s () {
i f (emotionRecog ! = n u l l) {

30 hWServiceHandler . r e m o v e C a l l b a c k s (emotionRecog) ;
emotionRecog . cancelEmotionRecog () ;

32 }
}

34

(. . .)
36

}

The startEmotionRecognitionTasks() method first checks if emotion recognition tasks
should initiate as soon as it is called (line 17). If so, the first emotion recognition task

�

� �

�

Actuation 225

is triggered (line 19); if not, it is scheduled appropriately (line 24). On the other hand,
stopEmotionRecognitionTasks() cancels any pending emotion recognitions (lines 28–33).

Let us now use these methods within HappyWalkService. As the reader may remem-
ber, we previously instantiated an emotionTasker object back on page ???. We can now
use it to start and stop the emotion recognition process within the service’s onCreate()
and onDestroy() methods:

1 package h i t l e x a m p l e s . happywalk . s e r v i c e ;

3 import (. . .)

5 p u b l i c c l a s s HappyWalkService e x t e n d s S e r v i c e {

7 (. . .)

9 @O v e r r i d e
p u b l i c v o i d onCreate () {

11

(. . .)
13

/ / P r e p a r e our worker t h r e a d
15 hWServiceThread = new Thread (new Runnable () {

p u b l i c v o i d run () {
17

(. . .)
19

/ / I n s t a n t i a t e Emotion Tasker
21 emotionTasker = new EmotionTasker (HappyWalkService . t h i s) ;

/ / s t a r t the emotion r e c o g n i t i o n t a s k s
23 emotionTasker . s t a r t E m o t i o n R e c o g n i t i o n T a s k s () ;

25 (. . .)

27 Looper . loop () ;
}

29 }) ;
hWServiceThread . s t a r t () ;

31 i sRunning = t r u e ;
}

33

@O v e r r i d e
35 p u b l i c v o i d onDestroy () {

i sRunning = f a l s e ;
37 i f (hWServiceHandler ! = n u l l) {

/ / s t o p emotion r e c o g n i t i o n t a s k s
39 emotionTasker . s t o p E m o t i o n R e c o g n i t i o n T a s k s () ;

/∗
41 ∗ This u s e s the Handler to send a " q u i t " message to the Looper ,

∗ th u s t e r m i n a t i n g our background Thread .
43 ∗/

hWServiceHandler . ge tLooper () . q u i t () ;
45 }

(. . .)
47 }

49 (. . .)
}

�

� �

�

226 A Practical Introduction to Human-in-the-Loop Cyber-Physical Systems

As shown above, we start the emotion recognition process right after emotionTasker’s
instantiation (line 23) and stop it as the service is destroyed (line 39). With this, we
have finally finished our EmotionTasker and, with it, HappyWalk’s ability to perform
emotion recognition. As a reference, we provide a final overview of the class’s full code
in Appendix A.

In the next section, we will finalize this tutorial by using what we have built so far in
order to provide positive reinforcement to the user.

9.3 Providing Positive Reinforcement

When describing our HiTL approach in Section 5.1, it was mentioned that the app
should show some sort of “positive notification” that motivates the user to go for walks,
as well as heatmaps representing the near real-time context of nearby POIs.

How can we translate these requirements into actual functionality? The approach we
are going to describe in this section will use the MapsActivity class to display a dialog
box containing a motivational message, similar to the one presented in Figure 9.10. For
completeness, sake, we will implement a dialog box that handles all the four types of
emotions, not just the negative ones. As such, the reader is welcome to expand the usage
of this motivational messages to positive cases in the future. As for the heatmaps, we will
resort to existing functionality already implemented within HappyWalk. The next two
subsections will focus on each of these tasks.

9.3.1 Creating a Motivational Dialog Box

As we described back on page ???, our “normal emotion notification” is displayed
whenever a negative emotion is detected, redirecting the user towards the MapsActiv-
ity whenever pressed. How should the activity respond to these notifications? As the
reader might have noticed, the method that creates this notification (EmotionTasker’s
showNormalEmotionNotification() defines an extras Bundle that accompanies the
Intent to call MapsActivity:

1 p r i v a t e v o i d showNormalEmot ionNot i f icat ion (i n t typeOfEmotion) {
/ / F i r s t , c a n c e l p r e v i o u s n o t i f i c a t i o n removal t a s k s

3 hWServiceHandler . r e m o v e C a l l b a c k s (currentNot i fRemovTask) ;
/ /Now, p r e p a r e a Bundle with the n e c e s s a r y i n f o r m a t i o n

5 Bundle bnd = new Bundle () ;
/∗ put a timestamp on t h i s bundle to a v o i d the u s e r c l i c k i n g

n o t i f i c a t i o n s t h a t have been f i r e d a long time ago . ∗/
7 l a s t E m o t i o n N o t i f M i l l i s = System . c u r r e n t T i m e M i l l i s () ;

bnd . putLong (G l o b a l V a r i a b l e s . BND_EXTRA_EMOTION_TIMESTAMP_KEY,
9 l a s t E m o t i o n N o t i f M i l l i s) ;

bnd . p u t I n t (G l o b a l V a r i a b l e s . BND_EXTRA_EMOTION_TYPE_NOTIF_KEY ,
typeOfEmotion) ;

11 bnd . p u t I n t (G l o b a l V a r i a b l e s . BND_EXTRA_REQ_CODE_KEY ,
G l o b a l V a r i a b l e s . AREQ_EMOTION_NORMAL_NOTIF) ;

13

/ / We w i l l show our map , to promote w a l k i n g when emotions a r e
n e g a t i v e

15 I n t e n t i n t e n t = new I n t e n t (hWServ , M a p s A c t i v i t y . c l a s s) ;
i n t e n t . p u t E x t r a s (bnd) ;

�

� �

�

Actuation 227

Figure 9.10 The emotion alert dialog.

This bundle uses several GlobalVariables keys to identify and include a timestamp,
the type of emotion that was detected and a “request code”. The value of the extra’s key
GlobalVariables.BND_EXTRA_REQ_CODE_KEY can be used by MapsActivity to know
what part of the application requested it. Therefore, we can take advantage of this value
to determine how to act when the user presses the normal notification. The handling of
request codes is performed right after MapsActivity has connected to our background
service:

1 package h i t l e x a m p l e s . happywalk . a c t i v i t i e s ;

3 import (. . .)

5 p u b l i c c l a s s M a p s A c t i v i t y e x t e n d s A c t i o n B a r A c t i v i t y {

7 (. . .)

�

� �

�

228 A Practical Introduction to Human-in-the-Loop Cyber-Physical Systems

9 p r i v a t e S e r v i c e C o n n e c t i o n hwConnection = new S e r v i c e C o n n e c t i o n () {
p u b l i c v o i d onServ iceConnected (ComponentName className , I B i n d e r

s e r v i c e) {
11 /∗

This i s c a l l e d when the c o n n e c t i o n with the s e r v i c e has been
e s t a b l i s h e d , g i v i n g us a s e r v i c e o b j e c t we can use to i n t e r a c t with
the s e r v i c e . Because we have bound to a e x p l i c i t s e r v i c e t h a t we know

i s running i n our own p r o c e s s , we can c a s t i t s I B i n d e r to a c o n c r e t e
c l a s s and d i r e c t l y a c c e s s i t .

13 ∗/
hWService = ((HappyWalkService . HappyWalkBinder) s e r v i c e) .

g e t S e r v i c e (M a p s A c t i v i t y . t h i s) ;
15

/∗ Now we check from where t h i s a c t i v i t y i s b e i n g i n i t i a t e d
from ∗/

17 i f (requestCode == G l o b a l V a r i a b l e s .
AREQ_POI_DESCRIPTION_REQUEST) {

/∗ i f we come from POI d e s c r i p t i o n , we do noth ing .
19 ∗ The camera should a l r e a d y be f o c u s e d on the a p p r o p r i a t e

POI∗/
/ / r e v e r t requestCode

21 requestCode = 9 9 ;
}

23 e l s e {
LatLng p o s i t i o n ;

25 / / I f our s e r v i c e was p r e v i o u s l y running , l e t us f o c u s the
camera on the user ’ s c u r r e n t p o s i t i o n .

i f ((p o s i t i o n = hWService . g e t H w L o c a t i o n L i s t e n e r () .
g e t A c t u a l p o s i t i o n ()) ! = n u l l) {

27 u p d a t e U s e r M a r k e r P o s i t i o n (p o s i t i o n) ;
focusCameraOnPosi t ion (p o s i t i o n) ;

29 }
/ / i f not , l e t us f o c u s our camera onto the l a s t known

p o s i t i o n
31 e l s e i f ((p o s i t i o n = hWService . g e t H w L o c a t i o n L i s t e n e r () .

g e t L a s t K n o w n P o s i t i o n F r o m S h a r e d P r e f s ()) ! = n u l l) {
33 focusCameraOnPosi t ion (p o s i t i o n) ;

}
35 }

}
37 }

39 (. . .)
}

Notice that MapsActivity currently only checks for a request code of type GlobalVari-
ables.AREQ_POI_DESCRIPTION_REQUEST , which corresponds to returning from a
POI description activity. Let us add an additional check for the normal notification’s
request code:

package h i t l e x a m p l e s . happywalk . a c t i v i t i e s ;
2

import (. . .)
4

p u b l i c c l a s s M a p s A c t i v i t y e x t e n d s A c t i o n B a r A c t i v i t y {
6

(. . .)

�

� �

�

Actuation 229

8

p r i v a t e S e r v i c e C o n n e c t i o n hwConnection = new S e r v i c e C o n n e c t i o n () {
10 p u b l i c v o i d onServ iceConnected (ComponentName className , I B i n d e r

s e r v i c e) {

12 (. . .)

14 /∗ Now we check from where t h i s a c t i v i t y i s b e i n g i n i t i a t e d
from ∗/

i f (requestCode == G l o b a l V a r i a b l e s .
AREQ_POI_DESCRIPTION_REQUEST) {

16 /∗ i f we come from POI d e s c r i p t i o n , we do noth ing .
∗ The camera should a l r e a d y be f o c u s e d on the a p p r o p r i a t e

POI∗/
18 / / r e v e r t requestCode

requestCode = 9 9 ;
20 }

e l s e {
22 i f (requestCode == G l o b a l V a r i a b l e s .

AREQ_EMOTION_NORMAL_NOTIF) {
i f (g e t I n t e n t () . g e t E x t r a s () . c o n t a i n s K e y (

G l o b a l V a r i a b l e s . BND_EXTRA_EMOTION_TYPE_NOTIF_KEY)) {
24 / / TODO: show m o t i v a t i o n d i a l o g here

}
26 e l s e {

throw new A s s e r t i o n E r r o r (" No typeOfEmotion i n
I n t e n t e x t r a s ") ;

28 }
/ / r e v e r t n o t i f i c a t i o n

30 hWService . s h o w N o t i f i c a t i o n (f a l s e) ;
/ / r e v e r t requestCode

32 requestCode = 9 9 ;
}

34 LatLng p o s i t i o n ;
/ / I f our s e r v i c e was p r e v i o u s l y running , l e t us f o c u s the

camera on the user ’ s c u r r e n t p o s i t i o n .
36 (. . .)

}
38 }

40 p u b l i c v o i d o n S e r v i c e D i s c o n n e c t e d (ComponentName className) {
(. . .)

42 }
} ;

44

(. . .)
46 }

In case MapsActivity has been called from a normal notification, we want to display
a motivational dialog box, as suggested by the TODO comment in line 24. How should
this dialog work?

With the objective of implementing our motivational dialog, we will create a new Emo-
tionAlertDialog class which will receive the type of emotion as an argument. Let us begin
by creating and editing a new layout resource file for our dialog as app/res/layout/nega-
tive_emotion_alert. As usual, right-click on the app/res/layout/ folder → New → Layout
resource file. Use a RelativeLayout and name the file as negative_emotion_alert (refer to
page ??? for how to edit the newly created file):

�

� �

�

230 A Practical Introduction to Human-in-the-Loop Cyber-Physical Systems

<? xml v e r s i o n = " 1 . 0 " encoding =" u t f −8"?>
2 < R e l a t i v e L a y o u t xmlns : andro id =" h t t p : / / schemas . andro id . com/ apk / r e s / andro id "

andro id : l a y o u t _ w i d t h =" wrap_content " andro id : l a y o u t _ h e i g h t ="
wrap_content " >

4

6 <ImageView
andro id : l a y o u t _ w i d t h =" wrap_content "

8 andro id : l a y o u t _ h e i g h t =" wrap_content "
andro id : i d ="@+ i d / a l e r t _ n e g a t i v e _ e m o t i o n _ i v i e w "

10 andro id : layout_marginTop ="30 dp "
andro id : l a y o u t _ c e n t e r H o r i z o n t a l =" t r u e "

12 andro id : s r c ="@drawable / a l e r t _ n e g a t i v e _ e m o t i o n "
andro id : l a y o u t _ a l i g n P a r e n t L e f t =" t r u e "

14 andro id : l a y o u t _ a l i g n P a r e n t B o t t o m =" f a l s e "
andro id : l a y o u t _ a l i g n P a r e n t R i g h t =" t r u e "

16 andro id : l a y o u t _ a l i g n P a r e n t T o p =" f a l s e " />

18 <TextView
andro id : l a y o u t _ w i d t h =" wrap_content "

20 andro id : l a y o u t _ h e i g h t =" wrap_content "
andro id : t e x t A p p e a r a n c e = " ? andro id : a t t r / textAppearanceMedium "

22 andro id : t e x t ="@s t r i n g / emotAler tDiag1 "
andro id : i d ="@+ i d / a l e r t _ n e g a t i v e _ e m o t i o n _ t e x t v i e w 1 "

24 andro id : l a y o u t _ a l i g n P a r e n t B o t t o m =" f a l s e "
andro id : l a y o u t _ a l i g n P a r e n t L e f t =" t r u e "

26 andro id : l a y o u t _ a l i g n P a r e n t R i g h t =" t r u e "
andro id : l a y o u t _ a l i g n P a r e n t E n d =" f a l s e "

28 andro id : l a y o u t _ b e l o w ="@+ i d / a l e r t _ n e g a t i v e _ e m o t i o n _ i v i e w "
andro id : layout_marginTop ="15 dp "

30 andro id : g r a v i t y =" c e n t e r _ v e r t i c a l | c e n t e r _ h o r i z o n t a l " />

32 <TextView
andro id : l a y o u t _ w i d t h =" wrap_content "

34 andro id : l a y o u t _ h e i g h t =" wrap_content "
andro id : t e x t A p p e a r a n c e = " ? andro id : a t t r / textAppearanceMedium "

36 andro id : t e x t ="@s t r i n g / emotAler tDiag2 "
andro id : i d ="@+ i d / a l e r t _ n e g a t i v e _ e m o t i o n _ t e x t v i e w 2 "

38 andro id : g r a v i t y =" c e n t e r _ v e r t i c a l | c e n t e r _ h o r i z o n t a l "
andro id : l a y o u t _ a l i g n P a r e n t T o p =" f a l s e "

40 andro id : l a y o u t _ c e n t e r H o r i z o n t a l =" t r u e "
andro id : l a y o u t _ b e l o w ="@+ i d / a l e r t _ n e g a t i v e _ e m o t i o n _ e m o t i o n _ t e x t V i e w

"
42 andro id : l a y o u t _ a l i g n P a r e n t L e f t =" t r u e "

andro id : l a y o u t _ a l i g n P a r e n t R i g h t =" t r u e "
44 andro id : layout_marginTop ="15 dp "

andro id : layout_marginBottom ="15 dp " />
46

<TextView
48 andro id : l a y o u t _ w i d t h =" wrap_content "

andro id : l a y o u t _ h e i g h t =" wrap_content "
50 andro id : t e x t A p p e a r a n c e = " ? andro id : a t t r / t e x t A p p e a r a n c e L a r g e "

andro id : t e x t =" Emotion "
52 andro id : i d ="@+ i d / a l e r t _ n e g a t i v e _ e m o t i o n _ e m o t i o n _ t e x t V i e w "

andro id : l a y o u t _ a l i g n P a r e n t T o p =" f a l s e "
54 andro id : l a y o u t _ c e n t e r H o r i z o n t a l =" t r u e "

andro id : l a y o u t _ b e l o w ="@+ i d / a l e r t _ n e g a t i v e _ e m o t i o n _ t e x t v i e w 1 "
56 andro id : l a y o u t _ a l i g n P a r e n t L e f t =" t r u e "

�

� �

�

Actuation 231

andro id : l a y o u t _ a l i g n P a r e n t R i g h t =" t r u e "
58 andro id : g r a v i t y =" c e n t e r _ v e r t i c a l | c e n t e r _ h o r i z o n t a l "

andro id : layout_marginTop ="15 dp "
60 andro id : t e x t S t y l e =" bold " />

62 </ R e l a t i v e L a y o u t >

The above layout should represent the format of the dialog previously shown
in Figure 9.10. We begin by defining an ImageView to contain the image ref-
erenced in the android:src property, @drawable/alert_negative_emotion, which
should already exist within the project (lines 6–16). We then define several
TextViews to contain our text (lines 18–60). We will later modify the contents of
alert_negative_emotion_emotion_textView (line 52) programmatically, to present the
neural network’s output.

A few associated strings also need to be defined within app/res/values/strings.xml:

< r e s o u r c e s >
2

(. . .)
4

<!−−Emotion Feedback −−>
6 < s t r i n g name= " emotFeedButton " >This i s how I f e e l </ s t r i n g >

< s t r i n g name= " emotAler tDiag1 " > I t h i n k you might be f e e l i n g . . . < / s t r i n g >
8 < s t r i n g name= " emotAler tDiag2 " >How about go ing f o r a walk ?</ s t r i n g >

< s t r i n g name= " emotAler tDiagButton " >Show map</ s t r i n g >
10 < s t r i n g name= " emotAler tEuphor ic " >Euphoric</ s t r i n g >

< s t r i n g name= " emotAlertAnxious " >Anxious</ s t r i n g >
12 < s t r i n g name= " emotAlertBored " >Bored</ s t r i n g >

< s t r i n g name= " emotAlertCalm " >Calm</ s t r i n g >
14 </ r e s o u r c e s >

Let us also define some colors to be associated with each emotion within app/res/val-
ues/colors.xml. Notice that, for extendability’s sake, we already define a color for each
type of emotion despite the fact that our notification only appears for negative ones:

<? xml v e r s i o n = " 1 . 0 " encoding= " u t f −8 " ?>
2 < r e s o u r c e s >

< c o l o r name= " darkText " ># f f 0 0 0 0 0 0 </ c o l o r >
4 < c o l o r name= " scVpoiDescBck " ># d 2 f 7 c f </ c o l o r >

< c o l o r name= " whi teText " ># f f f f f f </ c o l o r >
6 < c o l o r name= " happyWalkGreen1 " >#3 e8c39</ c o l o r >

<!−− Emotion C o l o r s −−>
8 < c o l o r name= " emot ionColor_euphor ia " ># f e 0 1 0 1 < / c o l o r >

< c o l o r name= " e m o t i o n C o l o r _ a n x i e t y " ># d9d619</ c o l o r >
10 < c o l o r name= " emotionColor_boredom " >#0 cd900</ c o l o r >

< c o l o r name= " emot ionColor_ca lmness " >#00 a 2 f f </ c o l o r >
12 </ r e s o u r c e s >

We can now create a new EmotionAlertDialog class within the package hitlexam-
ples.happywalk.activities:

package h i t l e x a m p l e s . happywalk . a c t i v i t i e s ;
2

import andro id . app . A l e r t D i a l o g ;
4 import andro id . app . D i a l o g ;

import andro id . c o n t e n t . D i a l o g I n t e r f a c e ;

�

� �

�

232 A Practical Introduction to Human-in-the-Loop Cyber-Physical Systems

6 import andro id . os . Bundle ;
import andro id . s u p p o r t . a n n o t a t i o n . NonNull ;

8 import andro id . s u p p o r t . v4 . app . Dia logFragment ;
import andro id . view . L a y o u t I n f l a t e r ;

10 import andro id . view . View ;
import andro id . widget . TextView ;

12

import h i t l e x a m p l e s . happywalk . R ;
14 import h i t l e x a m p l e s . happywalk . u t i l i t i e s . G l o b a l V a r i a b l e s ;

16 p u b l i c c l a s s E m o t i o n A l e r t D i a l o g e x t e n d s Dia logFragment {
@NonNull

18 @O v e r r i d e
p u b l i c D i a l o g o n C r e a t e D i a l o g (Bundle s a v e d I n s t a n c e S t a t e) {

20 A l e r t D i a l o g . B u i l d e r b u i l d e r = new A l e r t D i a l o g . B u i l d e r (g e t A c t i v i t y
()) ;

L a y o u t I n f l a t e r i n f l a t e r = g e t A c t i v i t y () . g e t L a y o u t I n f l a t e r () ;
22 View emotionAlertView = i n f l a t e r . i n f l a t e (R . l a y o u t .

n e g a t i v e _ e m o t i o n _ a l e r t , n u l l) ;

24 TextView emotionText =
(TextView) emotionAlertView . f indViewById (

26 R . i d . a l e r t _ n e g a t i v e _ e m o t i o n _ e m o t i o n _ t e x t V i e w) ;

28 i n t typeOfEmotion = getArguments () .
g e t I n t (G l o b a l V a r i a b l e s . BND_EXTRA_EMOTION_TYPE_NOTIF_KEY) ;

30

setUpTextViewFromEmotion (emotionText , typeOfEmotion) ;
32

b u i l d e r . setView (emot ionAlertView)
34 . s e t T i t l e (R . s t r i n g . emotAler tDiag2)

. s e t P o s i t i v e B u t t o n (R . s t r i n g . emotAlertDiagButton ,
36 new D i a l o g I n t e r f a c e . O n C l i c k L i s t e n e r () {

@O v e r r i d e
38 p u b l i c v o i d o n C l i c k (D i a l o g I n t e r f a c e d i a l o g ,

i n t which) {
40 E m o t i o n A l e r t D i a l o g . t h i s . d i s m i s s () ;

}
42 }) ;

r e t u r n b u i l d e r . c r e a t e () ;
44 }

46 p r i v a t e v o i d setUpTextViewFromEmotion (TextView emotionText , i n t
typeOfEmotion) {

s w i t c h (typeOfEmotion) {
48 c a s e G l o b a l V a r i a b l e s . EMOTION_EUPHORIA :

emotionText . s e t T e x t (g e t R e s o u r c e s () . g e t T e x t (R . s t r i n g .
emotAler tEuphor ic)) ;

50 emotionText . s e t T e x t C o l o r (g e t R e s o u r c e s () . g e t C o l o r (R . c o l o r .
emot ionColor_euphor ia)) ;

break ;
52 c a s e G l o b a l V a r i a b l e s . EMOTION_ANXIETY :

emotionText . s e t T e x t (g e t R e s o u r c e s () . g e t T e x t (R . s t r i n g .
emotAlertAnxious)) ;

54 emotionText . s e t T e x t C o l o r (g e t R e s o u r c e s () . g e t C o l o r (R . c o l o r .
e m o t i o n C o l o r _ a n x i e t y)) ;

break ;
56 c a s e G l o b a l V a r i a b l e s .EMOTION_BOREDOM:

�

� �

�

Actuation 233

emotionText . s e t T e x t (g e t R e s o u r c e s () . g e t T e x t (R . s t r i n g .
emotAlertBored)) ;

58 emotionText . s e t T e x t C o l o r (g e t R e s o u r c e s () . g e t C o l o r (R . c o l o r .
emotionColor_boredom)) ;

break ;
60 c a s e G l o b a l V a r i a b l e s . EMOTION_CALMNESS :

emotionText . s e t T e x t (g e t R e s o u r c e s () . g e t T e x t (R . s t r i n g .
emotAlertCalm)) ;

62 emotionText . s e t T e x t C o l o r (g e t R e s o u r c e s () . g e t C o l o r (R . c o l o r .
emot ionColor_ca lmness)) ;

break ;
64 }

}
66 }

This class is an extension of the Android support library’s DialogFragment
(android.support.v4.app.DialogFragment, lines 8 and 16). As evidenced by its code, the
EmotionAlertDialog inflates the layout R.layout.negative_emotion_alert (line 22). It then
acquires a reference to a TextView object with id R.id.alert_negative_emotion_emotion_
textView (lines 24–26) and sets its text and color according to the received type of emo-
tion, through the method setUpTextViewFromEmotion() (line 31). This method consists
of a switch statement that evaluates the type of emotion and calls the TextView’s set-
Text() and setTextColor() methods, providing them with the string and color resources
we defined above (lines 46–65).

We build the view using an AlertDialog.Builder object, defined in line 20. We set
the dialog’s view to the emotionAlertView object we had previously inflated (line
33), and reuse the emotAlertDiag2 string resource as a title (line 34). Notice that the
AlertDialog’s builder provides us with a setPositiveButton() method that we can use
to define an “acknowledgment-type” button. We use this to our advantage and set
the emotAlertDiagButton string resource as the button’s text, followed by an imple-
mentation of the DialogInterface.OnClickListener interface where we simply dismiss
the dialog (lines 35–42). Finally, we return the result of the builder’s create() method
(line 43).

The resulting AlertDialog is identical to the one shown in Figure 9.10. As soon as the
user presses the button “Show map”, the dialog closes and the app displays the map, as
normal.

Finally, let us use this new class to complete the TODO left in MapsActivity:

package h i t l e x a m p l e s . happywalk . a c t i v i t i e s ;
2

import (. . .)
4

p u b l i c c l a s s M a p s A c t i v i t y e x t e n d s A c t i o n B a r A c t i v i t y {
6

(. . .)
8

p r i v a t e S e r v i c e C o n n e c t i o n hwConnection = new S e r v i c e C o n n e c t i o n () {
10 p u b l i c v o i d onServ iceConnected (ComponentName className , I B i n d e r

s e r v i c e) {

12 (. . .)

14 e l s e {

�

� �

�

234 A Practical Introduction to Human-in-the-Loop Cyber-Physical Systems

i f (requestCode == G l o b a l V a r i a b l e s .
AREQ_EMOTION_NORMAL_NOTIF) {

16 i f (g e t I n t e n t () . g e t E x t r a s () . c o n t a i n s K e y (
G l o b a l V a r i a b l e s . BND_EXTRA_EMOTION_TYPE_NOTIF_KEY)) {

showEmotionAlertDia log (g e t I n t e n t () . g e t E x t r a s () .
g e t I n t (G l o b a l V a r i a b l e s . BND_EXTRA_EMOTION_TYPE_NOTIF_KEY)) ;

18 }
e l s e {

20 throw new A s s e r t i o n E r r o r (" No typeOfEmotion i n
I n t e n t e x t r a s ") ;

}
22 / / r e v e r t n o t i f i c a t i o n

hWService . s h o w N o t i f i c a t i o n (f a l s e) ;
24 / / r e v e r t requestCode

requestCode = 9 9 ;
26 }

28 (. . .)
}

30 }

32 p u b l i c v o i d o n S e r v i c e D i s c o n n e c t e d (ComponentName className) {
(. . .)

34 }
} ;

36

p r i v a t e v o i d showEmotionAlertDia log (i n t typeOfEmotion) {
38 / / p a s s t y p e o f emotion to the new emotion a l e r t d i a l o g

E m o t i o n A l e r t D i a l o g e m o t i o n A l e r t D i a l o g = new E m o t i o n A l e r t D i a l o g () ;
40 Bundle a l e r t B n d = new Bundle () ;

a l e r t B n d . p u t I n t (G l o b a l V a r i a b l e s . BND_EXTRA_EMOTION_TYPE_NOTIF_KEY ,
typeOfEmotion) ;

42 e m o t i o n A l e r t D i a l o g . setArguments (a l e r t B n d) ;
/ / show the a l e r t d i a l o g

44 e m o t i o n A l e r t D i a l o g . show (getSupportFragmentManager () , "
E m o t i o n A l e r t D i a l o g ") ;
}

46

(. . .)
48 }

In the code presented above, we have replaced the TODO comment from page ??? with
a call to a method named showEmotionAlertDialog() (line 17). This method initializes,
passes the emotion on to, and shows a new instance of our EmotionAlertDialog (lines
37–45).

9.3.2 Enabling the Emotion Heatmaps

One final piece is missing in our HiTL application: the displaying of emotional informa-
tion on the map. This will be achieved by displaying heatmaps whose color is associated
with the average emotion being felt at a certain POI. Heatmaps are currently managed
by the classes GeoCluster and GeoClusterer. Since the clustering of POIs can be a rather
complex problem that remains outside of the HiTL focus of this tutorial, most tasks
described in this section should already be implemented.

However, we still need to tell our GeoCluster class how to calculate the type of emo-
tion. Fortunately, we already implemented this in our EmotionTasker.getTypeOfEmotion()

�

� �

�

Actuation 235

method, which we previously exposed as public static back on page ???. Therefore, let
us edit the code of the hitlexamples.happywalk/cluster/GeoCluster class, particularly
within its already existing getHeatMapImageFromEmotion() method:

package h i t l e x a m p l e s . happywalk . c l u s t e r ;
2

import h i t l e x a m p l e s . happywalk . s e r v i c e . EmotionTasker ;
4 import (. . .) ;

6 /∗∗
∗ GeoCluster c l a s s .

8 ∗ c o n t a i n s s i n g l e Marker o b j e c t t h a t i s a l s o
∗ s t o r e d i n the G e o c l u s t e r e r ’ s " MarkerGeo " HashMap " .

10 ∗/
p u b l i c c l a s s GeoCluster {

12

(. . .)
14

p r i v a t e i n t getHeatMapImageFromEmotion (double [] meanEmotion)
16 {

/∗
18 Emotions a r e mapped to c o l o r s i n accordance to the

emotion_color_map , which f o l l o w s (i n a somewhat l i m i t e d way) the
Wright Theory on the Colour A f f e c t s System :

20 red −> e u p h o r i a
a n x i e t y −> y e l l o w

22 boredom −> green
ca lmness −> b l u e

24 ∗/
i n t i m a g e D e s c r i p t o r ;

26 i n t typeOfEmotion = EmotionTasker . getTypeOfEmotion (meanEmotion) ;

28 s w i t c h (typeOfEmotion) {
c a s e G l o b a l V a r i a b l e s . EMOTION_EUPHORIA :

30 i m a g e D e s c r i p t o r = R . drawable . heatmap_red ;
break ;

32 c a s e G l o b a l V a r i a b l e s . EMOTION_ANXIETY :
i m a g e D e s c r i p t o r = R . drawable . heatmap_ye l low ;

34 break ;
c a s e G l o b a l V a r i a b l e s .EMOTION_BOREDOM:

36 i m a g e D e s c r i p t o r = R . drawable . heatmap_green ;
break ;

38 c a s e G l o b a l V a r i a b l e s . EMOTION_CALMNESS :
i m a g e D e s c r i p t o r = R . drawable . heatmap_blue ;

40 break ;
d e f a u l t :

42 i m a g e D e s c r i p t o r = R . drawable . heatmap_red ;
break ;

44 }
r e t u r n i m a g e D e s c r i p t o r ;

46 }

48 (. . .)

50 }

�

� �

�

236 A Practical Introduction to Human-in-the-Loop Cyber-Physical Systems

For the sake of simplicity, all the reader should need to do is uncomment a line that
properly sets the following variable (see line 26):

int typeOfEmotion = EmotionTasker.getTypeOfEmotion(meanEmotion);
Nevertheless, the curious reader is more than welcome to further explore the provided

source code.
Our next objective is to allow for heatmaps to be toggled each time the user presses

a button on the MapsActivity’s action bar. To do so, we will use the method toggle-
HeatMaps() of the MapActivity’s GeoClusterer object.

Let us define this new button in the resource file res/menu/map_menu.xml:

<? xml v e r s i o n = " 1 . 0 " encoding= " u t f −8 " ?>
2 <menu x m l n s : a n d r o i d = " h t t p : / / schemas . andro id . com/ apk / r e s / andro id "

xmlns :happywalk = " h t t p : / / schemas . andro id . com/ apk / res −auto " >
4

<item a n d r o i d : i d = "@+ i d / menuHeatmapToggle "
6 a n d r o i d : i c o n = " @drawable / emotion_color_map "

a n d r o i d : t i t l e = " @ s t r i n g / menuHeatmap "
8 happywalk :showAsAction= " ifRoom " / >

10 <item a n d r o i d : i d = "@+ i d / menuExit "
a n d r o i d : i c o n = " @drawable / o f f "

12 a n d r o i d : t i t l e = " @ s t r i n g / menuExit "
happywalk :showAsAction= " ifRoom " / >

14 < / menu>

Notice that we reuse @drawable/emotion_color_map (the background of Emotion-
Space) as the button’s icon, in line 6. Let us also define a title string for our new menu
button in res/values/strings.xml:

< r e s o u r c e s >
2

(. . .)
4

<!−− Menu −−>
6 < s t r i n g name= " menuExit " > E x i t </ s t r i n g >

< s t r i n g name= " menuHeatmap " >Emotion Heatmap</ s t r i n g >
8

(. . .)
10

</ r e s o u r c e s >

Now, we simply have to change the onOptionsItemSelected() method of MapsActivity:

1 package h i t l e x a m p l e s . happywalk . a c t i v i t i e s ;

3 import (. . .)

5 p u b l i c c l a s s M a p s A c t i v i t y e x t e n d s A c t i o n B a r A c t i v i t y {

7 (. . .)

9 /∗∗
∗ This method h a n d l e s menu i t e m s

11 ∗/
@O v e r r i d e

13 p u b l i c boolean o n O p t i o n s I t e m S e l e c t e d (MenuItem item) {

�

� �

�

Actuation 237

/ / Handle item s e l e c t i o n
15 s w i t c h (i tem . g e t I t e m I d ()) {

c a s e R . i d . menuHeatmapToggle :
17 c l u s t e r e r . toggleHeatMaps () ;

r e t u r n t r u e ;
19 c a s e R . i d . menuExit :

p e r f o r m E x i t () ;
21 r e t u r n t r u e ;

d e f a u l t :
23 r e t u r n super . o n O p t i o n s I t e m S e l e c t e d (i tem) ;

}
25 }

}

Figure 9.11 The emotion heatmaps

We added a new case label within the method’s switch block (lines 16–18). Now,
each time the user presses this new button, the app should show or hide the associated
heatmaps, as shown in Figure 9.11.

9.4 In Summary…

We have finally completed our smartphone-based HiTLCPS. Figure 9.12 shows the final
state of our HiTLCPS. It illustrates all of the tasks we have performed through the

�

� �

�

238 A Practical Introduction to Human-in-the-Loop Cyber-Physical Systems

STATE INFERENCE

YES
NO

YES

Sends

NO

YES

NO

Do not use the

Neural Networks

Output

Neural Network’s

average performance

above threshold?

Send emotion to

server

Do not actuate Is the emotion

negative?

Runs

periodically

Performs DATA ACQUISITION

Sends ACTUATION

SERVER

Update and create
association with

POIs in range

Create
Emotion

Pruning Task

NEW

Runs

periodicallyNew emotion or

update?

Web
Interface

UPDATE

Update
Emotion
Values

Update POI
associations
and values

Updates

Trains

Feeds

Persists

Shared

Preferences

Time to request

feedback?

Calls

Calls

Triggers

Emotion

Recognition

Task

Normalization

Normalization

Accelerometer

x2+y2+z2
x

Y

z

FFTcoef.FFT

Latitude

Longitude
Location

Total

Acceleration

90° 180°

Microphone
Average

Amplitude

Normalization

Figure 9.12 Final state of our HiTLCPS at the end of Chapter 9. (See insert for color representation of the
figure.)

tutorial, including those related to Actuation, which we covered in this chapter. Focusing
on actuation in particular, we began by saving and updating incoming emotions on the
server side. We also covered a pruning task that removed outdated emotions. Then, we
finished our EmotionTasker by defining when the results of our neural network should
be considered and how to kickstart and keep running the emotion recognition process.
Finally, we implemented the positive reinforcement feature in the form of a notification
and an alert dialog.

Nevertheless, there are still a number of improvements that could be made: support
more emotional states, display a dialog requesting the enabling of location for proper
emotion inference, supporting smartwatch heart-rate data… the possibilities are end-
less. We leave these as exercises for the curious reader who might be willing to experi-
ment further with HappyWalk.

Despite its simplicity, we hope this tutorial has given the reader a more complete
notion of how the theoretical concepts of Data Acquisition, State Inference, and Actua-
tion may be applied in actual systems.

�

� �

�

239

Part III

Future of Human-In-the-Loop Cyber-Physical Systems

After looking at their trajectory, theory, and practice in Parts I and II, in this part of
the book we will conclude our journey through human-in-the-loop cyber-physical
systems by discussing their likely evolution, given the state of the art. In Chapter 10
we will delve into the requirements and challenges faced by emerging and future HiTL
applications. Both developers and users should be aware of them, as they are crucial
for any human-centric application. Afterwards, in Chapter 10, we will look at the
constraints that affect HiTL systems and review the lessons learned throughout the
book, in order to understand how the remaining challenges may shape the next steps
of HiTL research and development.

A Practical Introduction to Human-in-the-Loop Cyber-Physical Systems, First Edition.
David Nunes, Jorge Sá Silva and Fernando Boavida.
© 2018 John Wiley & Sons Ltd. Published 2018 by John Wiley & Sons Ltd.
Companion Website URL: www.wiley.com/go/nunesloop

�

� �

�

241

10

Requirements and Challenges for HiTL Applications

Many roadblocks stand in the path of future HiTLCPSs. In this chapter, we will attempt
to identify some of the major requirements and challenges that still need to be addressed
before we start to see a truly human-aware IoA. These include resilience, security, and
privacy, standard communications, localization, state inference, and safety.

10.1 Resilience

It is important to extend current research by providing resilient and performance-
controlled solutions for IoA environmental interactions. Instead of targeting previously
planned and static deployments, new performance-controlled systems will need to
be designed in an adaptable way in order to operate in dynamic environments and to
enable coordinated HiTL control. This also has to be achieved while keeping the system
performance under acceptable levels, even in the presence of mobility and a diversity
of faults. These requirements raise a number of new challenges that must be addressed
to enable the successful implementation of the IoA and HiTL paradigms in real-world
situations, particularly in critical ones (e.g. industrial management or healthcare).

Key innovation still needs to be achieved in terms of performance-aware models and
mechanisms that enhance the overall performance and management of HiTL systems.
An inherent ability for handling faults in these naturally distributed environments also
needs to be considered. To allow performance-controlled HiTLCPSs to meet depend-
ability targets it is, therefore, necessary to incorporate performance, fault-tolerant, and
self-healing mechanisms into their design, deployment, and execution tasks. These
mechanisms will ensure end-to-end performance in environments where HiTL control
is an important feature.

When sensitive data retrieved by sensors is transmitted through critical environ-
ments, security challenges are also raised. If not protected, data may be unduly accessed,
corrupted, or even destroyed, reducing the safety required in critical environments.
Consequently, security mechanisms should also be investigated and added to the design.

We consider the term “resilience” to encompass a combination of a number of features
such as the ones discussed above. As shown in Figure 10.1, these include dependability,
security, and privacy, as well as the required means to provide overall robustness and
performance to the system.

A Practical Introduction to Human-in-the-Loop Cyber-Physical Systems, First Edition.
David Nunes, Jorge Sá Silva and Fernando Boavida.
© 2018 John Wiley & Sons Ltd. Published 2018 by John Wiley & Sons Ltd.
Companion Website URL: www.wiley.com/go/nunesloop

�

� �

�

242 A Practical Introduction to Human-in-the-Loop Cyber-Physical Systems

Resilience

Dependability Security/Privacy

Fault Tolerance Self-healing Scenario-based Protocols Dynamic Architectures

Figure 10.1 The HiTL resilience paradigm.

Dependability is achieved by integrating, at development time, static approaches
based on fault-tolerance mechanisms, and by providing, at runtime, dynamic
approaches based on self-healing. These approaches will probably be, however, depen-
dent on the deployment technology; IoT may still be too young for researchers to have
a proper grasp of how to plan and design proper dependability. Nevertheless, some
projects, such as the RELYonIT [143], are already laying the groundwork for how to
bring dependability into IoT.

10.2 Security and Privacy

Security and privacy, on the other hand, have long been addressed in academic
research, with several secure protocols having been proposed over the years. However,
most of these protocols have only been evaluated in an isolated fashion and not in the
context of overall HiTLCPS security, often because of the lack of concrete applications
or deployment scenarios. In fact, most of the current state-of-the art IoT security
protocols are purely academic, as they are based on theoretical or simulation results.
Thus, security in IoA can be achieved by developing new protocols targeted to the
specific needs of HiTL scenarios and applications.

While secure systems exist for serving humans and carrying out human-oriented
tasks, and are designed and built by humans, most of them often compromise usability
for the sake of security, requiring the use of passwords and authentication methods that
are cumbersome and/or too difficult to remember but should never be written down.
Thus, security often becomes a hurdle that has to be worked around, which translates
into difficulties in integrating humans into HiTLCPSs. These difficulties often stem
from bad system design, which does not consider the interaction between humans
and systems, restricting analysis and designs exclusively to the computation side. To
solve this problem, it is necessary to rethink the underlying technology and keep users
central in threat model security design, aligning and inferring security state changes
from humans’ actions and states, and communicating these changes back to the human
[144]. This idea was reinforced in [145], where security in mobile and pervasive systems
was rethought in an HiTL perspective. The authors argued that pervasive systems
introduce human-driven security vulnerability that traditional usability design cannot
address, which raises the need for better understanding the roles and relationships of
humans in the context of pervasive systems security. In particular, they highlighted
mobility and sociability as two new sources of security vulnerability that need to
be addressed. There are also some dissident views on the human role in security, as

�

� �

�

Requirements and Challenges for HiTL Applications 243

presented in [146]. In this work, a framework for reasoning about HiTL was presented,
arguing that humans often fail in their security roles, and thus secure system designers
should find ways of keeping humans out of the loop. Automated security measures
tend to be more accurate, predictable, and, unlike humans, do not get tired or bored.
Thus, secure systems should “just work”, without any human intervention. However, for
tasks where feasible or cost-effective alternatives to humans are not available, secure
system designers should engineer their systems to support humans in the loop while
maximizing their chances of performing their security-critical functions successfully.

It is our opinion that future HiTLCPSs should adopt a position midway between these
oppossing views. Humans should always be a part of the security loop, but security
mechanisms should not critically depend on invasive and direct human intervention,
such as intrusive notifications requesting human judgment. Instead, HiTLCPSs should
follow the same principles of ubiquity and pervasiveness that are typical of the IoT and
CPSs paradigms, and “just work” while still considering the human. This means that
HiTLCPSs should automatically evaluate the human context, including psychological
states, emotions, position, movements, and actions to modulate security and even
privacy mechanisms.

As for privacy, there is a need to define models and architectures for HiTLCPSs,
for supporting dynamic policies that are adapted and tailored to each individual. As
different applications of IoA have different security and privacy requirements, an
architecture should be able to guarantee a variety of privacy levels. As the desired level
might change even during the deployment of an IoA system, it should be possible to
dynamically configure and control both security and privacy levels. Thus, we believe
the major challenge concerning security and privacy is to define an adaptable and
manageable architecture for use in real-time scenarios that combine humans and IoT.
Instead of an isolated analysis of different protocols or communication layers, this
architecture should consider the security and privacy of real application deployments.

Let us consider a real-world HiTL scenario where privacy and security settings
may dynamically adapt to the human situation, and a hypothetical HiTL mobile app
that allows users to share their location with their friends in real time, continuously
monitoring their states, including location. Users can easily see which of their friends
are nearby and figure out who is up for grabbing a drink. However, users might not want
to share this information continuously, and only share it when they are out for a drink
and only with a specific group of people. In this case, the user’s privacy settings should
dynamically adapt to their position, avoiding the sharing of location when location is
sensitive. On the other hand, if the user is in a crowded and public place, the messages
exchanged with the server might not require particularly high levels of protection since
this information is not particularly sensitive. Thus, security mechanisms can be relaxed,
in order to save the mobile’s devices processing and battery power. Other locations,
such as the user’s home or workplace, might invoke the need for additional levels of
privacy and encryption, in order to avoid abuse by malicious entities. For example,
thieves could attempt to exploit a user’s location information to more easily discover
when homes are empty, thus facilitating their illegal activity.

Future work should, therefore, define, implement, and evaluate a set of resilient
protocols, techniques, and tools for performance-controlled supervision of cooperating
humans and technology, with HiTL control. The devised resilient supervision should
be designed for providing safe and mobile HiTL interaction and cooperation in
various scenarios, including safety-critical environments. This work should rely on the

�

� �

�

244 A Practical Introduction to Human-in-the-Loop Cyber-Physical Systems

complementary use of design-time and run-time approaches for obtaining compliant
solutions that enable the provision of performance-controlled services even in the
presence of changes that may occur to the system, its environment, or its requirements.

10.3 Standard Communications

The current Internet already displays high heterogeneity in terms of devices and
communication protocols. This heterogeneity will become even more pronounced if we
consider all the human elements (human as a set of sensors, human nature, human as
actuator, human as a communications node, and human as a processing node) described
in Chapter 3. Thus, it is important to find processes and protocols that can support
communication between all these elements, human and otherwise. These heteroge-
neous processes and protocols must be able to allow communication between devices
that are highly heterogeneous in terms of processing capabilities, size, and function,
such as robotic elements, wireless sensor nodes, body-coupled sensors, smartphones,
etc. Additionally, communication must remain reliable even in the face of the highly
crowded wireless spectrum, where different kinds of communication technologies
co-exist. Supporting persistent, reliable, and interoperable connections, in addition to
mobility and different kinds of wireless mediums, is a very demanding challenge.

The dynamic management of network connections is an important task for
HiTLCPSs, since different human contexts set dissimilar requirements for network
communications. For example, most mobile devices use wireless interfaces to commu-
nicate, but amongst these we have a multitude of possibilities: GPRS, WiFi, Bluetooth,
ZigBee, etc. This heterogeneity in terms of types of devices and communication
interfaces has its advantages, since each wireless technology adapts better to specific
conditions: Bluetooth is great for replacing cables in short-distance communica-
tions, while RFID and near-field communication are better when devices come into
near-physical contact; WiFi and ZigBee are excellent technologies for mid-range wire-
less communication, used to cover areas from single buildings to large campuses, while
cellular communications allow for long-range packet-oriented mobile communication.
Thus, HiTLCPSs should be able to determine the necessary levels of quality of service
and quality of experience depending on the human context, and manage the device’s
wireless technologies that better adapt to the current situation.

Since the availability of wireless connections and their signal strength changes
considerably as users move, the multiple network interfaces of their devices can
allow for more flexibility and greater Internet coverage. In fact, the importance of
network switching, also known as multi-homing, in face of heterogeneous mobile
environments has long been noted by academic research [147]. One reason for this is
the ever-increasing mobile traffic. A recent study by Cisco [148] forecasts staggering
increases in mobile networking: traffic from wireless devices will exceed traffic from
wired devices in 2019 and WiFi and mobile devices will account for 66% of all IP traffic.
Globally, mobile data traffic will increase ten-fold between 2014 and 2019, and will
grow three times faster than fixed IP traffic from 2014 to 2019.

To counter this issue, some researchers have suggested that the usage of multiple
wireless mediums and network interfaces will contribute not only to a better distribu-
tion of network traffic but also to the increase of Internet coverage and connectivity

�

� �

�

Requirements and Challenges for HiTL Applications 245

for mobile environments [149], and even to the energy efficiency of devices [150, 151].
However, mobile handoff is a complex problem, with a large amount of research and
effort targeting it. Most of this complexity comes from the fact that there are multiple
layers to be considered, since proper handoff requires several different types of tasks
that need to be performed.

To deal with the low-level “Link and Network Technology Information” layer,
working at the data-link and physical levels of the OSI model, the IEEE 802.21 working
group finalized the first standard for handovers in heterogeneous networks, called
Media-Independent Handovers (IEEE 802.21-2008) [152]. The latest draft version
of the standard was accepted as a new standard by the IEEE-SA Standards Board in
November 2008 and published in January 2009 [153]. It provided a framework for
efficiently discovering the networks in range, as well as their respective capabilities and
current link conditions. HiTL handover mechanisms, conceptually existing in upper
layers, have to rely on limited and rudimentary information, such as signal quality, for
understanding the state of surrounding networks. If mobile devices could collect timely
and consistent information about the state of all available networks in range, much more
accurate and efficient network selection mechanisms would be possible. In this context,
IEEE 802.21-2008 aimed at being a standard framework for enhancing the efficiency of
handover decision makers. The standard contributes to seamless handovers by specify-
ing mechanisms to gather and distribute notifications about changes in link conditions
and available access networks. Nevertheless, the scope of IEEE 802.21-2008 is restricted
to this gathering of technology-independent information. Actual technical solutions
for performing intratechnology handovers, handover policies, or security mechanisms
are not considered. Thus, while the efforts made by the IEEE 802.21 group are certainly
important for achieving efficient handover mechanisms, they do not directly embrace
the development of these mechanisms themselves. The difficulty in switching between
networks is to change the network flow without disrupting the corresponding applica-
tion. Simple “brute force” switching, where one network is simply disabled and another
enabled, causes periods of interruption of connectivity, which lead to losses of data
and latency. While UDP (User Datagram Protocol) is a protocol traditionally used for
applications that can handle this intermittent connectivity (e.g. VoIP, video streaming),
its lack of ordering and error correction schemes make it unfeasible for people-centric
sensing scenarios, since their robustness depends on the quality of sensed data.
Unfortunately, TCP does not play well with “brute force” handoffs, since acknowledg-
ments from the mobile host may not be delivered. TCP misinterprets the loss of data as
a congestion problem and tries to re-send the missing packets, exponentially increasing
the time between each unsuccessful retransmission (exponential backoff), while also
reducing its window size when the network is congested. This results in long delays
before retransmitting a data packet, even after connection has been reestablished
[154]. Since 99.7% of all mobile traffic is TCP [155], this is a serious problem. In
order to achieve seamless handoff, which are necessary for many HiTLCPSs, it is
necessary to perform make-before-break handoff, that is activating a new network
interface and deactivating the current one—dynamically and without interrupting
existing connections. Smooth interface switching brings a multitude of advantages to
HiTLCPSs since it increases the connectivity range and decreases intermittency.

Initial work on this area attempted to solve the problem of intermittent switching
by proposing changes to the IP protocol, as with Mobile IP [156, 157]. Despite being a

�

� �

�

246 A Practical Introduction to Human-in-the-Loop Cyber-Physical Systems

mature standard, Mobile IP has yet to achieve widespread adoption, and there are sev-
eral drawbacks to the protocol that might explain its limited deployment. One of these
drawbacks has to do with handoff operations, which are usually riddled with large delays
[158] and high data loss rates [159, 160], making it an unfit protocol for an HiTLCPS’s
real-time traffic. While there are some extensions for improving handoff performance
(namely FMIPv6 [158] and HMIPv6 [161]) and promoting flow mobility through
PMIPv6 [162], these features come at the cost of modifying the standard to a great
extent. This results in additional hurdles for achieving widespread deployment, since it
is necessary for each of these approaches to be adopted on top of the standard by all par-
ties. Additionally, both standard Mobile IPv6 and its extensions are highly dependent
on the existence of proxies or gateways, which, considering the huge size of the current
Internet, would be an extremely expensive endeavor in terms of additional hardware
or implementation of software agents and other changes to currently deployed systems
[155]. Finally, a large part of the Internet is made of “middleboxes” (routers, firewalls,
and NATs) that modify TCP/IP headers to distribute traffic and that are not prepared
to handle new protocols that they have not been designed to. It is also necessary to
consider that changing the standard network protocols (IP/TCP) may not be compatible
with existing applications and operating systems, also resulting in backward compati-
bility issues. This leads us to believe that network-level solutions such as Mobile IP are
not sufficient to effectively solve the problem of seamless handoffs in a practical way.

There are, however, approaches that do not depend on additional infrastructure or
on changes to current network protocols. The authors of [155] performed a charac-
terization of IP traffic on smartphones for three months. They found that 99.7% of
all mobile traffic is TCP, and that most TCP connections in current applications are
short-lived (two seconds or less). Propelled by these results, they devised a client-side
handoff technique based on the manipulation of the device’s routing tables. This
same approach was also employed in MultiNets [163] to create a system which is
capable of seamlessly switching between wireless network interfaces on mobile devices,
while considering different switching policies: energy saving, data offloading, and
performance. Nevertheless, this handoff approach does not work for long-lived TCP
flows: older TCP flows that are still connected to the previous interface are broken
whenever the connection lives past the handoff time and the original network’s signal
is lost before the transmission finishes. This is quite a common occurrence, particularly
in cases where links are transient (e.g. when the user is on a bus). While the authors
make the assumption that this is not a problem for most applications, we believe that
the need for reliable connections in HiTLCPSs makes such an assumption fall short.

A recent protocol, devised by the IETF, is capable of performing smooth handoffs
while being compatible with regular TCP/IP. MultiPath TCP (MPTCP) is a modified
version of TCP that implements multipath transport by pooling multiple TCP paths (or
“subflows”) within a transport connection in such a way that they appear as a single logi-
cal resource to the application [164]. Multiple disjoint network interfaces might be used
simultaneously, thus avoiding intermittent connectivity by providing multiple connec-
tion paths that protect end hosts from failure of any single one. The protocol follows the
same model as regular TCP and maintains backward compatibility with existing TCP
APIs; changes are made exclusively at the OS level. MPTCP was designed to remain
compatible with the Internet as it exists today, that is to be able to flow freely through
existing middleboxes, supporting both IPv4 and IPv6 connections interchangeabl.

�

� �

�

Requirements and Challenges for HiTL Applications 247

Previous extensions to known protocols, such as the Stream Control Transmis-
sion Protocol (SCTP) [165], also supported multihoming and multipath functions
[166, 167, 168]. However, most middleboxes, such as firewalls and NAT devices, that are
pervasive in our home and enterprise networks do not support any transport protocol
that they haven’t been designed for in advance. Since these entities require considerable
knowledge of the network and transport layers to be able to handle ports and addresses,
and keep track of the connection state, their unawareness of SCTP leads to the protocol
being consequently blocked. SCTP is also fundamentally different from TCP in the sense
that it is a message-oriented protocol, transporting data in the form of a sequence of
messages, rather than a continuous stream of bytes. This means that applications would
need to be modified to support MultiPath SCTP, while MultiPath TCP can work with
current applications as they are. Additionally, SCTP uses a more complex packet format
than TCP, and a cyclic redundancy checksum that is expensive to compute in software,
making SCTP less appropriate for mobile scenarios where energy is constrained [169].

An interesting take on this issue was the Socialnets initiative [170], which aimed at
enabling wireless devices, such as mobile phones or sensors, to socially network with
each other in order to disseminate information. Instead of depending on end-to-end
connectivity to transmit information, the idea is to take advantage of human social
interactions, which allows for the existence of temporary short-range connections
between devices worn by different people in close physical proximity with each other.
Using these short-range connections between devices of people within the same social
group, it is possible to share information relevant to diverse aspects of everyday human
life. Thus, the project was dedicated to the creation of social-inspired opportunistic net-
work protocols for HiTLCPSs, which could be used as a basis for sharing information
pertaining to real-world social activities.

More recently, the attention of researchers and industry players has began to focus on
the so-called 5G mobile technologies. From its conceptualization, the core tenets of IoT
are being integrated within the next generation of mobile communication technologies.
5G will be ready for the massive amount of data advent from M2M communication.
According to the book Fundamentals of 5G Mobile Networks [171], it is envisaged
that this ultra-broadband and ultra-low latency wireless infrastructure will be able to
provide fiber-like experience for mobile users as early as 2020. Advances expected in
small-cell technologies will be aggregated with advanced antennas (mmWave, massive
multiple-input and multiple-output) and additional spectrum to meet the 5G challenge.

One could argue that the advent of mobile 5G technologies will attenuate or even solve
this problem. We believe that such a notion is merely an illusion; much like the increased
3G bandwidth allowed for much more complex network applications when compared
to 2G, 5G will act as a mere “band-aid” compared to 4G. This is particularly apparent
in the face of the tremendous evolution of smartphones and their increasing demand
for advanced multimedia applications, such as ultra-high definition and 3D video or
augmented reality.

Since the wireless spectrum is finite, and as international bandwidth demand con-
tinues to grow, the problem of allocating enough bandwidth for everyone becomes
critical. Unless we witness the surge of a new disruptive technology in the next few
years, once the densification limits of current cells are reached it will be increasingly
difficult to further increase spectral efficiency levels. Thus, wider spectrum and a more
efficient utilization of available resources remain the way forward [171].

�

� �

�

248 A Practical Introduction to Human-in-the-Loop Cyber-Physical Systems

In conclusion, future research work will need to consider the existing communication
processes and protocols at the different OSI layers to evaluate their feasibility into real
HiTLCPSs. If existing solutions are unable to support seamless interfacing between
IoT devices, robots, WSNs, humans, and smartphones, while supporting reliability
and mobility, new kinds of protocols and communication paradigms might have to be
considered.

10.4 Localization

Determining the location of CPS elements, especially mobile nodes or humans, is
critical for some types of IoA applications, since many times the data is meaningless
if the location where it was generated is unknown. Location is also often critically
important for supporting HiTL control-loop decisions in a timely manner. Thus,
localization helps in the determination of the location of collected data, coming from
people, animals, robots, or vehicles. It plays an important role in many types of HiTL-
CPS scenarios, ranging from monitoring healthcare patients, people-centric sensing,
mobile applications, monitoring of workers within hazardous environments, robotic
drone positioning, smart homes, etc. The localization problem has been considered
since the 1960s, resulting in the GPS location system that is widely in use today [172].
While GPS is an excellent solution for outdoor localization, it is not adequate for many
types of devices. For example, cost and energy consumption constraints in wireless
sensor nodes makes localization using GPS inefficient in most WSNs. In addition, there
are some cases in which GPS is not feasible, such as indoor locations, underground
tunnels, or places with a lot of obstacles. The accuracy of civil GPS units may also not
satisfy the requirements of some HiTL applications. Despite some previous attempts
at embedding GPS receivers into constrained devices [173] by offloading processing
to the cloud, the resulting accuracy is still low (35m). Numerous other approaches
for achieving localization have previously been proposed, notably those based on the
“closest beacon principle” [174], WiFi-based positioning systems [175], Kalman filters
[176], multilateration [177], and even machine learning techniques [178, 179].

A critical problem in localization is the accuracy and stability of the measurement
methods, which is even more exacerbated in HiTLCPS, since these values may influence
the result of the entire control-loop decision. Consequently, it is necessary to have
scalable, low-cost, and near real-time localization systems which can lead to acceptable
accuracy using the commonly available measurements for controlled HiTLCPSs.
Thus, future research will need to study current localization methods in order to find
appropriate solutions for determining location in different situations (outdoor, indoor)
and for different elements (humans, robots, smartphones, sensor nodes).

10.5 State Inference

The accuracy and reliability of the inference of human states, is critical for HiTLCPSs
[45]. This is a very broad requirement that includes the detection of many states
related to the human, be it activities or actions, commands, intents, attention level,

�

� �

�

Requirements and Challenges for HiTL Applications 249

physiological parameters, psychological states, or emotions. Some of these aspects of
human nature are more challenging than others.

As discussed in Section 4.1.2, the detection of physiological parameters is a topic that
has long been debated in research, and we have plenty of devices capable of detecting
a wide range of parameters, ranging from one’s heart rate to the electromagnetic waves
generated by neural activity. In terms of activity detection, current approaches can
achieve high levels of accuracy for narrow ranges of activities in specific scenarios,
such as medical environments or daily activities. However, despite many activity
detection solutions reaching high levels of accuracy, these results are only valid for
a limited number of activities and for a limited audience. The standard practice in
most sensing systems is the use of unchanging classification models trained prior to
deployment. When dealing with large-scale HiTLCPSs, this poses a big problem, since
the target audience is highly heterogeneous (e.g. an elderly person walks in a way that
is very different from how a young person does). Some recent research has attempted
to address these issues through the personalization of existing classification models
through manually provided training data [180], and by incorporating inter-person
similarity into the process of classifier training and allowing crowd-sourced sensor data
to personalize classifiers [93]. Another gap in current activity recognition research is the
problem of flexibility of activities. The way a certain activity is performed may change
over time: a person may develop quirks or get more efficient without even realizing
it. The personalization of existing classification models shouldn’t depend on manually
provided training examples or labeling, it should be a transparent process that happens
during daily life. Additionally, most research focuses on achieving high accuracy rates
for a limited number of activities. In HiTLCPSs the number of activities of interest may
be very high and change over time: it is limiting to develop a system that only handles a
few of activities. A more interesting solution would allow the collaborative identification
of new activities by users. This requires HiTL control to detect new types of activities
that are not envisioned at the time of deployment. This requirement brings a number
of challenges yet to be addressed: how to scale the introduction of new activities? How
to avoid redundant labeling? How to perform lightweight classifier training in a fashion
not too taxing on mobile hardware? These are important challenges that need to be
addressed in order to achieve good contextual analysis in future HiTLCPSs.

On the other hand, the quantitative detection of the more abstract aspects of
human nature, such as feelings and emotions, is less established. The emotions and
psychological states are crucial aspects for improving relations, learning, health, and
the quality of life of human beings. These emotional processes have a crucial value
for determining human behavior in HiTLCPSs because they are the primary source
of human motivation. The literature on emotion is very extensive, and there have
been controversies even in its definition. The word “emotion” has its foundations in
Latin emovere, a word that derives from movi, which means to “put in motion”. Thus,
first of all, emotion means movement, and without emotions nothing progresses. A
more scientific definition of emotion can be that it is a psychological construction
where cognitive, physiological, and subjective components interact. Several psychology
researchers have focused on the problem of definition emotion. Early researchers
proposed various models that grouped emotions into several categories. For example,
Ortony et al. [181] established an architecture of conditions and variables which influ-
enced emotions. In another attempt of emotion classification, Ekman studied human

�

� �

�

250 A Practical Introduction to Human-in-the-Loop Cyber-Physical Systems

facial expressions and associated them with a set of six basic emotions, through the
Facial Action Coding System [182], which is now widely used in the field of psychology,
animation, and robotics. A circumplex model of emotion was first proposed by Russell
[183], where emotions were distributed in a two-dimensional circular space, ranging
from “miserable” to “pleased” and from “sleepy” to “aroused”. The work of psychologist
Magda Arnold, then followed by Richard Lazarus [184], resulted in the “appraisal
theory”, which states that emotions derive from our own evaluation of physical events,
which then cause different reactions in different people. For example, if a certain event
is perceived as positive, it will trigger a response that will evoke positive emotions; on
the other hand, negative perceptions of reality will result in negative emotions.

The area of HiTLCPSs will have to build upon the fundamental works of psychology
as a basis for accurate and reliable emotional classification, relating each emotion
to associated physiological signals such as skin conductivity, blood pressure, heart
rate, and breathing rate. Such areas are currently very active in computer science
and engineering. Body and wireless sensors that measure these vital signals, video
cameras for facial recognition, and several other devices are frequently used to capture
emotional states. Nowadays, even the use of EEG sensors in an obtrusive way for
measuring emotions is a realistic possibility, thanks to portable EEG devices such as the
Emotiv [185]. Identifying physical activities and measuring quantitative emotion states
is, however, still more challenging than measuring the associated physical parameters,
being one of the major challenges for future HiTLCPS research.

10.6 Safety

Safety in actuation can become a primary concern in real-world HITLCPS deploy-
ments. This is particularly true when dealing with robotic actuation. As discussed in
Section 4.1.3, robots are becoming progressively integrated in HiTLCPSs and involved
in increasingly more complex and less structured environments and activities, including
interaction with people for task execution. This means that there is a critical need
for novel safety mechanisms that can ensure a safe and effective cooperation between
humans and robots, that is robots need to start considering the “human-in-the-loop”
aspect of working tasks.

10.7 In Summary…

In Table 10.1 we summarize the identified requirements and challenges faced by
emerging and future HiTLCPSs and IoA.

Now that we have identified their requirements and challenges, let us consider the
constraints that affect HiTL systems and review the lessons we have learned throughout
the book.

�

� �

�

Requirements and Challenges for HiTL Applications 251

Table 10.1 Summary of the identified HiTL requirements and challenges.

Requirement/Challenge Description

Resilience
Adaptability It is necessary for operation in dynamic environments and to enable

coordinated HiTL control
Performance It must be kept under acceptable levels, even in the presence of

mobility and a diversity of faults.
Dependability HiTLCPSs should incorporate fault tolerance and self-healing

mechanisms

Security and Privacy
Lack of real-world
research

Many protocols have only been evaluated in an isolated fashion, or are
academic and based on theoretical or simulation results

Usability It is important to avoid cumbersome authentication methods and keep
users central in threat model security design

Human-driven
vulnerabilities

There is a need to better understand the roles and relationships of
humans in the context of pervasive systems, particularly in terms of
mobility and sociability

Independence from
human intervention

Humans should be a part of the security loop, but without a need for
direct human intervention

Adaptable and
manageable architecture

Security and privacy policies should be adapted and tailored to each
individual in real-time

Standard Communications
Heterogeneity Communication must occur between humans and devices that are

highly heterogeneous in terms of processing capabilities, size, and
function

Reliability Communication must remain reliable even in face of the highly
crowded wireless spectrum, where different kinds of communication
technologies co-exist

Dynamic management Different contexts set dissimilar requirements for networking and each
wireless technology adapts better to specific conditions

Mobile handoff Multiple wireless mediums and network interfaces allow for more
flexibility, but switching between them can cause periods of
interruption of connectivity, which lead to losses of data and latency

Opportunistic
networking

Temporary short-range connections between devices in close physical
proximity can share delay-tolerant information relevant to diverse
aspects of human context

Finite wireless bandwidth It will be increasingly difficult to further increase spectral efficiency
levels. Thus, a wider spectrum and more efficient utilization of available
resources will become essential

Localization
Cost and energy
consumption

Limited and battery-powered devices struggle with the use of
power-hungry location technologies (e.g. GPS)

Indoor location GPS is not feasible indoors and, despite extensive research, indoor
localization techniques remain challenging

(Continued)

�

� �

�

252 A Practical Introduction to Human-in-the-Loop Cyber-Physical Systems

Table 10.1 (Continued)

Requirement/Challenge Description

State Inference
Accuracy and reliability There is a need for precise and consistent detection of human activities,

commands, intents, physiological parameters, and psychological states
or emotions

Heterogeneity of people HiTLCPSs target people of different sexes, ages, cultural backgrounds,
and health status

Flexibility and scope The number of human activities of interest can be very high and
dynamic, and the way each individual activity is performed can change
over time

Emotions and
psychological states

The quantitative detection of more abstract aspects of human nature,
such as feelings and emotions, is highly difficult and yet to be fully
understood

Safety
Robotic actuation It is necessary to ensure a safe and effective cooperation between

humans and robots

�

� �

�

253

11

Human-in-the-Loop Constraints

As suggested in Chapter 2, although many of the developments we have discussed so
far happened in parallel and overlapped with each other, it is quite possible to identify
a certain convergence. We believe that technological progress will always revert back to
its origins: the adaptation of the environment to human beings, be it an ancient terrain
that became a cultivated field or a world filled with intelligent devices that work together
to accommodate human needs.

Throughout this book, we have observed many limitations in the current state of the
art. Several limitations are of a technical nature, requiring additional research effort
in order to be overcome. However, there are also limitations of a more ethical nature
that relate to the public’s acceptance of these new types of technological paradigms.
We dedicate this chapter to the identification of both types of limitations–technical and
non-technical–which, in fact, can be looked at as lessons learned from the by now long
journey we initiated with the writing of this book.

11.1 Technical Limitations

Despite all of the development in terms of base technologies, only now are we beginning
to devise how sensing, state inference, and actuation can be combined together in
HiTLCPSs, as evidenced by the research projects described in Sections 4.1 and 4.2.
In general, most of these projects still assume architectures within environments that
are well known and static. We believe that future IoT environments will be mobile,
dynamic, and reactive, where humans and technology will have to react in real time to
stimuli from the environment, in order to guide their actions [186]. To this end, WSNs
allow for the monitoring of environmental conditions, helping IoT devices, robots, and
humans to react much more effectively to changes.

Additionally, most current scenarios do not fully consider humans, their behaviour,
and their psychological state as integral parts of the system. Humans are still mostly
seen as an external final user, and rarely directly interfere in the control loop of working
tasks. As far as we know, there is no significant work that fully utilizes the potential of
the human element to support the control system itself. In all previous projects there is
a very well-defined border between humans and the system, instead of a tightly coupled
integration. As we saw in Chapter 3, humans can play various roles within HiTLCPSs,
ranging from actuators co-helped by robotic elements and acting on information

A Practical Introduction to Human-in-the-Loop Cyber-Physical Systems, First Edition.
David Nunes, Jorge Sá Silva and Fernando Boavida.
© 2018 John Wiley & Sons Ltd. Published 2018 by John Wiley & Sons Ltd.
Companion Website URL: www.wiley.com/go/nunesloop

�

� �

�

254 A Practical Introduction to Human-in-the-Loop Cyber-Physical Systems

collected by the sensor networks to intermediate nodes in multi-hop communication
processes. They can also become an element of environmental monitoring (through
the sensors carried by them, e.g. on smartphones or smartshirts).

The pieces of work presented in [74], [124], and [16] are quite good demonstrations
of the potential of HiTLCPSs. Still, we have some reservations about the feasibility of
the presented approaches for widespread deployment. The use of vision-based systems
is very prone to noise and limitations in image processing, only working for very
controlled environments (e.g. recognizable objects limited to those programmed into
the system). Brain/computer interfaces based on EEG signals are not practical, since
electrodes are usually very cumbersome to wear and thus not suitable for day-to-day
HiTL applications. This leads us to believe that near-future HiTLCPSs will most likely
be based on more pervasive and mobile technology. In particular, the smartphone is a
ubiquitous sensing platform that is already used by millions of people around the globe,
every day. Theis device gives us the sensing power and computational capabilities that
might be key for the first generation of massive HiTL deployments coming in the next
few years. Still, there are few actual applications of smartphones and HiTLCPSs. While
[118] did use HiTL concepts to limit the current mobile data demand, the actuation
aspect was limited to suggestions and incentives on a smartphone’s graphical user
interface, and aspects such as robotics and direct actuation were not considered.

Let us attempt to condense all of these technical limitations and challenges in to a sin-
gle model, shown in Figure 11.1. This model presents the various processes associated
with HiTL control. A human is integrated into a CPS through “human-in-the-loop
intelligence”, responsible for receiving input from the human sensors and also for influ-
encing the system’s control loop depending on the inferred context. This intelligence’s
specific implementation should follow the general principles and requirements intro-
duced in Chapter 10, to guarantee reliable and secure human-context monitoring. In
particular, we consider the issues of privacy and reliability as two of the most important
requirements, largely responsible for the current lack of HiTLCPSs in real scenarios.

In a first step, determining a human’s state requires the acquisition of data, through
sensors (carried by the human or present in the environment) and/or from information
present in social networks. This information can relate to several aspects of physical

System

Data
Acquisition

Actuation

State
Inference History

Motivation

Action

Future
 State

Prediction

Figure 11.1 Lessons learned towards human-in-the-loop control.

�

� �

�

Human-in-the-Loop Constraints 255

reality, such as the human’s thought patterns through EEG, who their friends are, their
heart rate, movement through accelerometers, positioning through GPS, and facial
expressions through video-cameras. Assessing physical reality through sensory data is
the cornerstone of HiTL control, since every other aspect of the system is related to the
raw data acquired from the sensors.

History, or memory, is another important aspect that is closely relate to the acqui-
sition of data. In fact, research has shown how previous human states may provide
important insights for inference mechanisms [187]. This historical data can also be
used by delay-tolerant mechanisms in non-critical applications, setting a meaningful
state whenever the real-time connection to sensory data is interrupted.

Perhaps one of the most critical aspects of HiTLCPSs is the reliable inference of
human state. State inference mechanisms need to adapt to the current context as well
as the human’s preferences and historical behavior, integrating this information into the
control-loop as feedback to determine the actions of the HiTLCPS. This is extremely
difficult and implies a need for reliable and secure mechanisms for modeling, detecting,
and possibly predicting human nature, as discussed in Section 4.1.2.

There are two types of actuation in HiTL controls. A system actuation is based on the
system’s current status and the inference of human state. For example, an HiTL-enabled
HVAC system should only adapt the room temperature in the presence of humans.
Human actuation relates to the actions of humans within the HiTL system, since they
can themselves actuate whenever necessary. Motivation is a crucial aspect of this type of
actuation and one of the most important research challenges. Future HiTLCPSs need to
provide the necessary motivation and benefits for humans to act in a way that benefits
the overall system and refrain from adopting greedy or prejudicial attitudes.

Finally, noise reminds us how real-world environments are far from idealized
academic-controlled testbeds. For example, HiTLCPSs based on speech and
video-captured gestures have to deal with challenges such as ambient noise, moving
background clutter, and object segmentation. The acquisition of human vital signs is
also prone to problems in terms of signal-to-noise ratios, where many signal frequencies
result from internal physiological functions that have nothing to do with what needs to
be acquired.

Another source of noise relates to human variability. The human species has a high
genetic variance and thrives in many different environments with highly disparate
cultural backgrounds, which results in many possible phenotypes. Age, physical
disability, and interperson variability also need to be taken into account. While current
research in HiTL state inference can reach high levels of accuracy, as discussed in
Section 4.1.2, these results are mostly limited in terms of number of human activities,
psychological states, and audience. On the other hand, future HiTLCPSs will most
likely address a highly heterogeneous target audience. This personalization of existing
state-inference models should follow a ubiquitous approach, and not overly depend on
manually providing training examples or on the collaborative labeling by the system
user. To promote usability, it should be a transparent process that happens naturally, as
the user lives his/her daily life.

The identification of new human states that were not predicted at the time of
deployment may also be important. However, this brings yet another realm of unre-
solved challenges. It is necessary to scale the learning of new states, avoid redundant

�

� �

�

256 A Practical Introduction to Human-in-the-Loop Cyber-Physical Systems

labeling, perform training in a lightweight fashion, ensure security and privacy, and
take advantage of collaboration between users while avoiding overlapping efforts.

All of these are important challenges for HiTLCPSs that have yet to be properly
addressed by research in the field.

11.2 Ethical limitations

As discussed in Section 4.1, much of the necessary technology for supporting HiTLCPSs
is already in place. But then, why are current IoT and CPSs still unable to integrate the
human element into the control loop? As previously discussed, we believe that reliability
is one of the major factors that influence the current lack of real-world deployments.
Reliable and consistent inference of a human’s state are essential for the adoption of
HiTLCPS in real industrial, medical, or social scenarios. The inability to do so can have
severe consequences on the effectiveness of the entire system. Reliable networking is
also crucial for HiTLCPS, since these systems are often distributed and need to share
information between many devices.

There is, however, another important factor that needs to be taken into consideration:
the introduction of radically new technologies is usually accompanied by a considerable
dose of skepticism. Thus, reliability is only relevant if the market accepts the underlying
technology. This is crucial, since this new paradigm of human-centric technologies
has already been previously met with some reservation. As evidenced by Section 2.2,
current attempts at creating social-networking HiTLCPSs show that users place a high
importance on their privacy and on the security of their personal information. In fact,
these privacy concerns have been present since the beginning of social networking.
Facebook, for example, has been the target of criticism since its beginnings because
of its reliance on the user’s willingness to share information as the key point of its
business. In fact, according to an AP-CNBC pool [188] with a sample of 1004 people,
59% of Facebook users have little to no trust in Facebook to keep their information
private. This apparent lack of trust reflects just how closely people follow intrusive
practices, further exemplifying how privacy concerns are one of the biggest obstacles
to the growth of social networking and, by extension, to HiTLCPSs.

Concrete examples of how such reservations may affect the introduction
smartphone-based HiTLCPSs can be seen in the cases of Highlight and Scene-
Tap, previously presented in Section 4.2.3. Concerning Highlight, Baig [189] argued
that such encounters are sometimes best “left to fate” and that the application “may tell
others too much about you”, but still praised its functionality and novel features.

As for SceneTap, skeptics advocate privacy concerns and have raised questions
around the facial detection technologies used to collect information, since they are
employed without people’s consent. The application met a troubling launch in May
2012, where it was supposed to be supported by 25 San Francisco bars of which ten
dropped out after angry calls and an editorial that called the service “creepy”. The app
has also been criticized for its gender filtering options, letting people find bars with
a larger proportion of men or women in a certain age range [190]. In addition to the
ethical concerns, SceneTap was also plagued with technical limitations, as pointed out
by Anderson [191]: the app apparently had accuracy problems with its facial recognition
software, with several bars showing high attendance levels when in fact they were “as

�

� �

�

Human-in-the-Loop Constraints 257

dead as can be”. She also claimed that the software failed to register her presence when
she attempted to enter a bar very slowly.

Putting skepticism aside, it is difficult to deny that the idea of someone else monitoring
our every step and activity is very disturbing. However, it is also true that this problem
does not reside entirely with the existence of HiTLCPS frameworks. For example, Sauvik
et al. [192] discussed the possibility of current smartphones posing a security threat to
the user, claiming that accelerometers and other sensors within the device could be used
without the user’s consent. They have also shown how activity recognition algorithms
can be used to obtain sensitive information about users without their knowledge, by
having them identify pre-defined general activities or even make the user’s phone learn
to identify new ones. Hence, the existence of smartphone-based HiTLCPSs does not
impede this type of privacy invasion, although it might make it easier to accomplish.

Still, it would have been, perhaps, unthinkable in a pre-social-networking era that
people would enjoy publishing their personal information in a public database for
their peers to see and comment on. Yet, little by little, we have reached the stage
where huge social networks and photo sharing are the norm. Despite all the past and
ongoing privacy concerns and surrounding criticism, both the number of users and
their engagement in mobile social networks continue to increase [73].

Nevertheless, security and privacy are two other critical requirements, in addition
to reliability, for HiTLCPSs. Industrial processes, medical data, and sensitive personal
information need to be protected from unauthorized exploitation. As already discussed,
protecting confidential information is often not only a business requirement but, in
many cases, also an ethical and legal requirement.

Another important ethical consideration relates to the use of robotics in HiTLCPSs.
As mentioned in Section 4.1.3, robotics is growing at a progressively faster pace
and there are some who believe its role in future HiTLCPSs may not be completely
optimistic. For example, while robotics enables automation, this may in turn result in
human unemployment. In fact, futuristic journalist Kevin Kelly predicts that a wave
of automation centered on artificial cognition, cheap sensors, machine learning, and
distributed intelligence will likely result in 70% of today’s occupations being replaced by
automation before the end of this century. Starting with assembly line and warehouse
work, agriculture picking, cleaning, “it doesn’t matter if you are a doctor, lawyer,
architect, reporter, or even programmer: The robot takeover will be epic” [107].

Brynjolfsson and McAffee provide an interesting insight into this matter, argu-
ing that despite the improvement of technology in areas that used to be typically
human-oriented, such as pattern recognition, people will still have vital roles to play
[67]. As an example, they refer to Garry Kasparov’s experience in “freestyle” chess
tournaments, where teams combining average-skilled humans and machines domi-
nated both strong computers and human grandmasters [193]. As pointed out in Diego
Rasskin-Gutman’s book, Chess Metaphors, what computers are good at is where humans
are weak, and vice versa [194]. This is evidence of the importance of human–machine
collaboration in the years to come, the cornerstone of HiTLCPSs. Brynjolfsson and
McAffee continue their discussion on these “uniquely human” abilities that will remain
essential, even in the face of the continued automation of routine tasks by technological
advancement. Despite their impressive calculation capabilities, there has yet to exist a
machine that is capable of human creativity and intuition. The ability to create and inno-
vate through new and meaningful ideas preoccupies the pinnacle of AI (AI) research,

�

� �

�

258 A Practical Introduction to Human-in-the-Loop Cyber-Physical Systems

and is the one task that humans still excel in comparison to machines. Additionally,
evolution has shaped humans into highly responsive beings that can quickly adapt to
new situations, while current machines simply cannot react outside of the frame of
their programming. As evidenced by Brynjolfsson and McAffee, “[The supercomputer]
Watson is an amazing Jeopardy! player, but would be defeated by a child at Wheel of
Fortune, The Price is Right, or any other TV game show unless it was substantially
reprogrammed by its human creators” [67]. Thus, human–machine collaboration
will most likely become increasingly critical in the next few decades, at least until
machines evolve to a point where they reach (or surpass) “human-like” intelligence. As
memorization skills become increasingly redundant owing to the assistance of modern
search engines, it is this human ability to quickly combine information from different
sources and to react to new situations that will remain essential in future HiTLCPSs.

Precursors of this human–machine interaction are already among us. Baxter, a
workbot from Rethink Robotics, is an early example of a new class of industrial robots
created to work alongside humans [195]. Baxter has several characteristics that make
it more “human-aware” than most of its ancestors. It is capable of showing where it is
looking by shifting drawn eyes on its “head”. It is also capable of perceiving humans and
avoid injuring them, using force-feedback mechanisms that tell it it is colliding with a
person or another bot. This “human-like” body language is an innovation that allows
humans to understand and predict the robot’s intentions, which may in turn reduce the
previous mistrust placed in robotic companions [108, 109]. Equally important is Baxter’s
capability of learning through imitation: to train it, one simply grabs its arms and guides
them through the correct motions and sequence. This mode of operation is remarkably
different from traditional industrial robotics, which requires highly educated personnel
to program even the simplest tasks. Considering all of these tendencies, it is very likely
that, in the future, people will be paid “based on how well they work with robots” [107].

Another good example of how robotics and HiTL are becoming intimately related
is Pepper, a humanoid robot designed by Aldebaran Robotics and SoftBank Mobile
who is capable of reading human emotions [196]. Unlike the Baxter workbot, Pepper
is an emotional robot, not a functional robot. It was designed with the purpose of
making people happy, making them grow, enhancing their life, and facilitating their
relationships. To do so, it is capable of communicating through “voice, touch and
emotions”, maintaining conversations, and “having fun”. For example, Pepper is capable
of understanding laughter and associate it with “good mood”. It does this through
knowledge of “universal emotions” (joy, surprise, anger, doubt, and sadness) and its
ability to analyze facial expression, body language, and language. Its also adapts its
behavior according to the situation, and employs machine learning to better understand
humans, being capable of learning its user’s tastes.

It is very likely that Baxter and Pepper are just the first signs of a new technological
revolution that is quickly approaching. On one hand, expecting AI to evolve until
it becomes “humanlike” is “the same flawed logic as demanding that artificial flying
be birdlike, with flapping wings” [67]. It has already been proven that tremendously
complex programs, despite being based on simple instructions, are already able to
outperform human thinking. On the other hand, innovative, creative, and imaginative
machines are yet to be seen and it is unlikely that humans will be replaced in this
department in the decades to come… or is it?

�

� �

�

Human-in-the-Loop Constraints 259

Developments in AI research are continuously casting shadows of doubt on the
prowess of the human mind. One of the last bastions of the human mind against AI
evolution was the ancient game of Go: originated in ancient China, more than 2500
years ago, Go remains the oldest board game still played today. Unlike chess, which has
long been beaten by machines, Go had, until recently, been considered a tremendous
challenge for AI. As put by mathematician I. J. Good in 1965 [197]:

In order to programme a computer to play a reasonable game of Go […] it is
necessary to formalise the principles of good strategy, or to design a learning pro-
gramme. The principles are more qualitative and mysterious than in chess, and
depend more on judgment. So I think it will be even more difficult to programme
a computer to play a reasonable game of Go than of chess.

In fact, for a very long time, most computer Go programs were considered worse than
an average player with just a few years, experience; Go is a game that may take an entire
lifetime to master. However, that all changed very recently.

In January 2016, Google published a paper on how they managed to build an AI,
named AlphaGo, that won a match against a professional Go player: the European
champion Fan Hui [198]. Hui, ranked 2-dan, lost a five-game match at the Google
DeepMind office in London in October, without handicaps. In March 2016, AlphaGo
and South Korea’s Lee Sedol, considered one of the highest-ranking Go players of the
last decade, played an historic five-game match. AlphaGo won the match (4–1), making
it the first time a computer Go program defeated a world-class human player on even
terms [199]. Mankind may have just lost its last bastion against computer intelligence,
at least as far as board games are concerned.

However, what about scenarios where machine intelligence can have a more dire
impact on human lives? This is the case for autonomous vehicles (AVs), which are
about to become a tremendously important type of CPS. Projects such as Google’s
Self-Driving Car [200] are racing ahead, trying to create fully automatic cars that
simply require no human driving whatsoever. It is rather interesting to consider the
possibility of such vehicles adapting their behavior or their interior environment to
their occupants’ desires. Should a self-driving car attempt to go faster if its owner is in
a hurry? What about slow leisure drives across the country? Could a driverless car be
capable of adapting its driving behavior and route in order for its occupants to enjoy
the scenery?

One of the most prominent reasons in favor of automated vehicles is the possible
reduction of deaths from traffic accidents. However, in these HiTL scenarios, the
consequence of failure certainly has a greater impact than losing a freestyle chess match
or mis-detecting a human emotion in a smartphone app. What if, in its attempt to
please its owner by changing its driving condition, the vehicle ends up being forced
to choose between two evils? In a situation where an accident is inevitable, should the
vehicle run over pedestrians or sacrifice its passengers? This dilemma is interestingly
discussed by Bonnefon et al. in their report The Social Dilemma of Autonomous Vehicles
[201]. The authors pointed out how the potential consumers may be more willing to
ride in AVs that protect their passengers at all costs.

How can this selfishness factor be input into the design of decision-making algo-
rithms for AVs? Will car manufacturers favor AI that values the desires and safety of

�

� �

�

260 A Practical Introduction to Human-in-the-Loop Cyber-Physical Systems

their passengers over other individuals? According to Bonnefon et al., manufacturers
and regulators will need to accomplish three potentially incompatible objectives: being
consistent, not causing public outrage, and not discouraging buyers [201]. These are
difficult ethical decisions that will have a profound impact on the adoption of this and
other types of HiTLCPS technology that can influence human integrity.

From all of this, we can safely say that while intelligent HiTLCPSs will most likely
“think” very differently from us, at the same time they will further integrate humans
and their intuition into their own control-loop tasks. Without a doubt, for better or for
worse, HiTLCPSs are here to stay and will become increasingly more prominent and
ubiquitous in our daily lives. In the face of this, it is now high time that we, humans, take
decisions and act, and do not limit ourselves to observing the long-term consequences
of such systems and how they will transform our world and the way we live.

�

� �

�

261

A

EmotionTasker’s full code

This appendix provides a final overview of HappyWalk’s EmotionTasker class so that it
may serve as a reference to the reader.
package h i t l e x a m p l e s . happywalk . s e r v i c e ;

2

import andro id . app . AlarmManager ;
4 import andro id . app . P e n d i n g I n t e n t ;

import andro id . c o n t e n t . I n t e n t ;
6 import andro id . c o n t e n t . S h a r e d P r e f e r e n c e s ;

import andro id . media . RingtoneManager ;
8 import andro id . os . Bundle ;

import andro id . os . Handler ;
10 import andro id . os . PowerManager ;

import andro id . p r e f e r e n c e . Pre ferenceManager ;
12 import andro id . s u p p o r t . v4 . app . N o t i f i c a t i o n C o m p a t ;

import andro id . u t i l . Log ;
14

import com . g o o g l e . andro id . gms . maps . model . LatLng ;
16 import com . ubhave . sensormanager . ESExcept ion ;

import com . ubhave . sensormanager . ESSensorManager ;
18 import com . ubhave . sensormanager . c o n f i g . G l o b a l C o n f i g ;

import com . ubhave . sensormanager . d a t a . p u l l . Acce lerometerData ;
20 import com . ubhave . sensormanager . d a t a . p u l l . MicrophoneData ;

import com . ubhave . sensormanager . s e n s o r s . S e n s o r U t i l s ;
22

import org . encog . e n g i n e . network . a c t i v a t i o n . A c t i v a t i o n S i g m o i d ;
24 import org . encog . ml . d a t a . b a s i c . BasicMLDataSet ;

import org . encog . n e u r a l . networks . Bas icNetwork ;
26 import org . encog . n e u r a l . networks . l a y e r s . B a s i c L a y e r ;

import org . encog . n e u r a l . networks . t r a i n i n g . p r o p a g a t i o n . r e s i l i e n t .
R e s i l i e n t P r o p a g a t i o n ;

28

import j a v a . u t i l . Random ;
30

import h i t l e x a m p l e s . happywalk . R ;
32 import h i t l e x a m p l e s . happywalk . a c t i v i t i e s . EmotionFeedback ;

import h i t l e x a m p l e s . happywalk . a c t i v i t i e s . M a p s A c t i v i t y ;
34 import h i t l e x a m p l e s . happywalk . emotion . p r o c e s s o r s . HwAccelerometerProcessor ;

import h i t l e x a m p l e s . happywalk . emotion . p r o c e s s o r s . HwLocat ionProcessor ;
36 import h i t l e x a m p l e s . happywalk . emotion . p r o c e s s o r s . HwMicrophoneProcessor ;

import h i t l e x a m p l e s . happywalk . e x c e p t i o n s . N o C u r r e n t P o s i t i o n ;
38 import h i t l e x a m p l e s . happywalk . t a s k s . TaskSendEmotion ;

A Practical Introduction to Human-in-the-Loop Cyber-Physical Systems, First Edition.
David Nunes, Jorge Sá Silva and Fernando Boavida.
© 2018 John Wiley & Sons Ltd. Published 2018 by John Wiley & Sons Ltd.
Companion Website URL: www.wiley.com/go/nunesloop

�

� �

�

262 A Practical Introduction to Human-in-the-Loop Cyber-Physical Systems

import h i t l e x a m p l e s . happywalk . u t i l i t i e s . G l o b a l V a r i a b l e s ;
40

p u b l i c c l a s s EmotionTasker {
42 p r i v a t e HappyWalkService hWServ ;

p r i v a t e Handler hWServiceHandler ;
44 p r i v a t e BasicNetwork network ;

p r i v a t e ESSensorManager esSensorManager ;
46 p r i v a t e Emot ionRecogni t ionTask emotionRecog ;

PowerManager . WakeLock wakeLock ;
48

/∗ t h i s v a r i a b l e keeps t r a c k o f the t ime when we f i r e d our l a s t
50 emotion n o t i f i c a t i o n ∗/

p r i v a t e long l a s t E m o t i o n N o t i f M i l l i s = 0 ;
52 p r i v a t e N o t i f i c a t i o n R e m o v a l T a s k currentNot i fRemovTask ;

54 /∗
we keep the c u r r e n t base time , the l a s t t ime and the

56 p r e v i o u s e u c l i d e a n d i s t a n c e f o r emotion f e e d b a c k r e q u e s t s
i n memory , to a v o i d c o n s t a n t l y a c c e s s i n g the d i s k

58 ∗/
p r i v a t e long baseTimeToNextEmoFdbckReq = 0 ;

60 p r i v a t e long lastEmoFeedbackReq = 0 ;
p r i v a t e f l o a t wMeanEucl ideanDistance = 0 ;

62

p u b l i c EmotionTasker (HappyWalkService hWServ) {
64 t h i s . hWServ = hWServ ;

t h i s . hWServiceHandler = hWServ . getHappyWalkServ iceHandler () ;
66 / / p r e p a r i n g s e n s o r manager to f e t c h d a t a

t r y {
68 esSensorManager = ESSensorManager . getSensorManager (hWServ) ;

esSensorManager . s e t G l o b a l C o n f i g (G l o b a l C o n f i g .
PRINT_LOG_D_MESSAGES , f a l s e) ;

70 } c a t c h (ESExcept ion e) {
e . p r i n t S t a c k T r a c e () ;

72 }
/ / f e t c h the base emotion f e e d b a c k t ime i n t e r v a l

74 r e s t o r e E m o F e e d b a c k V a l s F r o m P r e f e r e n c e s () ;
/ / i n i t i a l i z e Neural Network

76 i n i t N e t w o r k () ;
/ / r e s t o r e n e u r a l network w e i g h t s from our p r e f e r e n c e s , i f we have

them
78 res toreNNWeightsFromPreferences () ;

80 emotionRecog = new EmotionRecogni t ionTask () ;
PowerManager powerManager = (PowerManager) hWServ . g e t S y s t e m S e r v i c e

(hWServ . POWER_SERVICE) ;
82 wakeLock = powerManager . newWakeLock (PowerManager . PARTIAL_WAKE_LOCK

, " EmotionTaskerWakeLock ") ;
}

84

/∗∗
86 ∗This method i n i t i a l i z e s a Neural Network with

∗ two hidden l a y e r s , t h r e e neurons i n the f i r s t and two
88 ∗ neurons i n the second

∗/
90 p r i v a t e v o i d i n i t N e t w o r k () {

network = new BasicNetwork () ;
92 network . addLayer (new B a s i c L a y e r (n u l l , t rue , G l o b a l V a r i a b l e s .

NN_INPUTS)) ;

�

� �

�

EmotionTasker’s full code 263

network . addLayer (new B a s i c L a y e r (new A c t i v a t i o n S i g m o i d () , t rue ,
G l o b a l V a r i a b l e s . NN_HL1_NEURONS)) ;

94 network . addLayer (new B a s i c L a y e r (new A c t i v a t i o n S i g m o i d () , t rue ,
G l o b a l V a r i a b l e s . NN_HL2_NEURONS)) ;

network . addLayer (new B a s i c L a y e r (new A c t i v a t i o n S i g m o i d () , f a l s e ,
G l o b a l V a r i a b l e s . NN_OUTPUTS)) ;

96 network . g e t S t r u c t u r e () . f i n a l i z e S t r u c t u r e () ;
network . r e s e t () ;

98 }

100 /∗∗
∗ B e g i n s the p r o c e s s o f s c h e d u l i n g emotion r e c o g n i t i o n t a s k s

102 ∗/
p u b l i c v o i d s t a r t E m o t i o n R e c o g n i t i o n T a s k s () {

104 /∗ F i r s t , check i f we should perform emotion recog r i g h t now . ∗/
long timeToNextEmoRecog = n e x t E m o t i o n E x e c u t i o n M i l l i s () ;

106

/∗ Let us compare with the t ime when the l a s t emotion reco g was
performed . ∗/

108 i f (l a s t E m o t i o n N o t i f M i l l i s + timeToNextEmoRecog < System .
c u r r e n t T i m e M i l l i s ()) {

/ / enough time has p a s s e d
110 pos tEmot ionRecogni t ionTask () ;

}
112 e l s e {

/∗ not enough time has p a s s e d .
114 Let us s c h e d u l e a emotion recog u s i n g the remain ing t ime ∗/

emotionRecog . scheduleEmotionRecog (l a s t E m o t i o n N o t i f M i l l i s +
timeToNextEmoRecog) ;

116 }
}

118

/∗∗
120 ∗ P o s t s a new emotion r e c o g n i t i o n t a s k

∗/
122 p u b l i c v o id postEmot ionRecogni t ionTask () {

/∗ We need the d e v i c e ’ s CPU to remain
124 awake w h i l e we perform our emotion r e c o g n i t i o n ∗/

wakeLock . a c q u i r e () ;
126 hWServiceHandler . p o s t (emotionRecog) ;

}
128

p u b l i c v o i d s t o p E m o t i o n R e c o g n i t i o n T a s k s () {
130 i f (emotionRecog ! = n u l l) {

hWServiceHandler . r e m o v e C a l l b a c k s (emotionRecog) ;
132 emotionRecog . cancelEmotionRecog () ;

}
134 }

136 /∗∗
∗ Handles u s e r emotion f e e d b a c k . T r a i n i n g o f the n e u r a l network o n l y

t a k e s p l a c e i f the emotion n o t i f i c a t i o n has not e x p i r e d .
138 ∗ This a v o i d s the p o s s i b l e i s s u e o f u s e r s p r o v i d i n g f e e d b a c k long

a f t e r our n o t i f i c a t i o n has been shown .
∗/

140 p u b l i c v o i d p r o c e s s U s e r F e e d b a c k (double [] i n p u t s , double [] outputs ,
double [] i d e a l O u t p u t , long emotionTimestamp) {

/∗

�

� �

�

264 A Practical Introduction to Human-in-the-Loop Cyber-Physical Systems

142 We r e q u e s t a timestamp i n s t e a d o f r e l y i n g on our i n t e r n a l
l a s t E m o t i o n N o t i f M i l l i s because t h e r e i s a p o s s i b i l i t y t h a t a new
emotion was i n f e r r e d w h i l e the u s e r was s t i l l u s i n g the f e e d b a c k
s c r e e n . Thus , w h i l e the l a s t E m o t i o n N o t i f M i l l i s works f o r n o t i f i c a t i o n s
, t h e r e a r e no g u a r a n t e e s t h a t i t i s a s s o c i a t e d with the emotion we
a r e about to p r o c e s s r i g h t now . Hence , t imestamps a r e n e c e s s a r y .

144 I f no new n o t i f i c a t i o n s were c r e a t e d i n the meantime , we can
c a n c e l the n o t i f i c a t i o n removal t a s k s and r e v e r t the n o t i f i c a t i o n to
i t s normal s t a t e .

∗/
146 i f (emotionTimestamp == l a s t E m o t i o n N o t i f M i l l i s) {

/ / c a n c e l n o t i f i c a t i o n removal t a s k
148 hWServiceHandler . r e m o v e C a l l b a c k s (currentNot i fRemovTask) ;

/ / r e v e r t n o t i f i c a t i o n
150 hWServ . s h o w N o t i f i c a t i o n (f a l s e) ;

}
152 / / perform t r a i n i n g and send to s e r v e r , i f emotion has not e x p i r e d

i f (System . c u r r e n t T i m e M i l l i s () − emotionTimestamp <
G l o b a l V a r i a b l e s . EXPIRE_EMOTION_MILLIS) {

154 hWServiceHandler . p o s t (new NeuralNetworkTrainingTask (i n p u t s ,
i d e a l O u t p u t)) ;

sendEmotionToServer (i d e a l O u t p u t) ;
156 / / update emotion f e e d b a c k f r e q u e n c y

hWServiceHandler . p o s t (new UpdateEmotionAccuracyTask (outputs ,
i d e a l O u t p u t)) ;

158 }
e l s e {

160 Log . d ("NEURALNETWORK TRAINING " , " E x p i r e d emotion , d i s c a r d i n g
f e e d b a c k . . . ") ;

}
162 }

164 p r i v a t e v o i d restoreNNWeightsFromPreferences () {
/ / Try to g e t network from p r e f e r e n c e s f i r s t

166 S h a r e d P r e f e r e n c e s p r e f = PreferenceManager .
g e t D e f a u l t S h a r e d P r e f e r e n c e s (hWServ) ;

i f (p r e f . c o n t a i n s (G l o b a l V a r i a b l e s . PREF_NEURALNETWORK_WEIGHT_KEY))
{

168 S t r i n g w e i g h t s = p r e f . g e t S t r i n g (G l o b a l V a r i a b l e s .
PREF_NEURALNETWORK_WEIGHT_KEY, n u l l) ;

i f (w e i g h t s ! = n u l l) {
170 S t r i n g [] w e i g h t s _ s t r i n g _ a r r a y = w e i g h t s . s p l i t (" , ") ;

double [] w e i g h t s _ a r r a y = new double [w e i g h t s _ s t r i n g _ a r r a y .
l e n g t h] ;

172 i n t i = 0 ;
f o r (S t r i n g v a l u e : w e i g h t s _ s t r i n g _ a r r a y) {

174 w e i g h t s _ a r r a y [i ++] = Double . parseDouble (v a l u e) ;
}

176 network . decodeFromArray (w e i g h t s _ a r r a y) ;
}

178 } e l s e {
Log . d (" NEURAL NETWORK" , "No w e i g h t s were found ; n e u r a l network

has been r e s e t ") ;
180 }

}
182

p r i v a t e v o i d saveNNWeightsToPreferences (S t r i n g w e i g h t s) {

�

� �

�

EmotionTasker’s full code 265

184 S h a r e d P r e f e r e n c e s p r e f = PreferenceManager .
g e t D e f a u l t S h a r e d P r e f e r e n c e s (hWServ) ;

S h a r e d P r e f e r e n c e s . E d i t o r e d i t o r = p r e f . e d i t () ;
186 e d i t o r . p u t S t r i n g (G l o b a l V a r i a b l e s . PREF_NEURALNETWORK_WEIGHT_KEY,

w e i g h t s) ;
e d i t o r . commit () ;

188 }

190 p r i v a t e v o i d r e s t o r e E m o F e e d b a c k V a l s F r o m P r e f e r e n c e s () {
S h a r e d P r e f e r e n c e s p r e f = PreferenceManager .

g e t D e f a u l t S h a r e d P r e f e r e n c e s (hWServ) ;
192

/∗ i f , f o r some reason , we cannot f i n d t h i s v a lu e , we use
getDefaultBaseEmoFeedbackTime () ∗/

194 baseTimeToNextEmoFdbckReq = p r e f . getLong (G l o b a l V a r i a b l e s .
PREF_EMOTION_BASE_FEEDBACK_MILLIS_KEY ,

getDefaultBaseEmoFeedbackTime ()) ;
196

/∗ i f , f o r some reason , we cannot f i n d t h i s v a lu e , s e t i t to z e r o
to ens u re a f e e d b a c k r e q u e s t i n the next emotion d e t e c t i o n t a s k ∗/

198 lastEmoFeedbackReq = p r e f . getLong (G l o b a l V a r i a b l e s .
PREF_LAST_EMOTION_FEEDBACK_REQ_KEY , 0) ;

200 / / same t h i n g f o r l a s t E m o t i o n N o t i f M i l l i s
l a s t E m o t i o n N o t i f M i l l i s = p r e f . getLong (G l o b a l V a r i a b l e s .

PREF_LAST_EMOTION_NOTIF_KEY , 0) ;
202

/∗ by d e f a u l t , we d e f i n e h a l f o f l a r g e s t d i s t a n c e p o s s i b l e to
ens u re t h a t new n e u r a l n e t s w i l l r e q u i r e some t r a i n i n g b e f o r e hav ing
t h e i r r e s u l t s tak en i n t o account

204 ∗/
f l o a t m a x E u c l i d e a n D i s t a n c e = (f l o a t) Math . s q r t (G l o b a l V a r i a b l e s .

NN_OUTPUTS) ;
206 wMeanEucl ideanDistance = p r e f . g e t F l o a t (G l o b a l V a r i a b l e s .

PREF_NEURALNETWORK_EUCLDIST_WGT_AVG_KEY,
m a x E u c l i d e a n D i s t a n c e / 2) ;

208

}
210

/∗∗
212 ∗ S t o r e s the c u r r e n t v a l u e f o r the base and l a s t emotion f e e d b a c k

t i m e s i n t o the s h a r e d p r e f e r e n c e s
∗/

214 p u b l i c v o i d saveEmoFeedbackValsToSharedPre ferences () {
S h a r e d P r e f e r e n c e s p r e f = PreferenceManager .

g e t D e f a u l t S h a r e d P r e f e r e n c e s (hWServ) ;
216 S h a r e d P r e f e r e n c e s . E d i t o r e d i t o r = p r e f . e d i t () ;

e d i t o r . putLong (G l o b a l V a r i a b l e s .
PREF_EMOTION_BASE_FEEDBACK_MILLIS_KEY , baseTimeToNextEmoFdbckReq) ;

218 e d i t o r . putLong (G l o b a l V a r i a b l e s . PREF_LAST_EMOTION_FEEDBACK_REQ_KEY ,
lastEmoFeedbackReq) ;

e d i t o r . putLong (G l o b a l V a r i a b l e s . PREF_LAST_EMOTION_NOTIF_KEY ,
l a s t E m o t i o n N o t i f M i l l i s) ;

220 e d i t o r . p u t F l o a t (G l o b a l V a r i a b l e s .
PREF_NEURALNETWORK_EUCLDIST_WGT_AVG_KEY, wMeanEucl ideanDistance) ;

e d i t o r . commit () ;
222 }

224 /∗∗

�

� �

�

266 A Practical Introduction to Human-in-the-Loop Cyber-Physical Systems

∗ Returns the d e f a u l t baseTimeToNextEmoFdbckReq v a l u e
226 ∗ by a v e r a g i n g between the maximum and minimum v a l u e s .

∗/
228 p r i v a t e long getDefaultBaseEmoFeedbackTime () {

/ / number o f m i l l i s e c o n d s i n an hour = 3600000
230 r e t u r n (long) ((G l o b a l V a r i a b l e s . RECOG_MAX_HOURS_WITHOUT_FEEDBACK +

G l o b a l V a r i a b l e s . RECOG_MIN_HOURS_WITHOUT_FEEDBACK) / 2
∗ 3600000) ;

232 }

234 /∗∗
∗ The i n p u t s a r e c o l l e c t e d through the ubhave module

236 ∗ We use ESSensorManager ’ s d e f a u l t s e n s e window time
∗ @r e t u r n − an a r r a y o f d o u b l e s c o n t a i n i n g the normal ized (0 −1)

238 ∗ c o l l e c t e d i n p u t s . The i n d e x e s a r e d e f i n e d i n G l o b a l V a r i a b l e s
∗/

240 p r i v a t e double [] c o l l e c t I n p u t s () throws N o C u r r e n t P o s i t i o n {
double [] i n p u t s = n u l l ;

242 LatLng a c t u a l P o s i t i o n ;
/∗

244 f i r s t , check i f we have l o c a t i o n i n f o r m a t i o n . This i s r e q u i r e d f o r
per forming emotion r e c o g n i t i o n

∗/
246 i f ((a c t u a l P o s i t i o n = hWServ . g e t H w L o c a t i o n L i s t e n e r () .

g e t A c t u a l p o s i t i o n ()) ! = n u l l) {
t r y {

248 / / n o r m a l i z e l o c a t i o n d a t a
double [] n o r m a l i z e d L o c a t i o n = HwLocat ionProcessor .

normal izeLatLng (a c t u a l P o s i t i o n) ;
250 / / c o l l e c t and p r o c e s s microphone and a c c e l e r o m e t e r d a t a

MicrophoneData micData = (MicrophoneData) esSensorManager .
getDataFromSensor (S e n s o r U t i l s . SENSOR_TYPE_MICROPHONE) ;

252 double averageMicValue = HwMicrophoneProcessor .
getAverageAmpl i tude (micData) ;

averageMicValue = HwMicrophoneProcessor .
normal izeAvgAmplitude (averageMicValue) ;

254

Acce lerometerData accData = (Acce lerometerData)
esSensorManager . getDataFromSensor (S e n s o r U t i l s .
SENSOR_TYPE_ACCELEROMETER) ;

256 double normFCTCoeffSum = HwAccelerometerProcessor .
getNormalizedFCTCoeffSum (HwAccelerometerProcessor . g e t T o t a l A c c e l e r a t i o n
(accData)) ;

258 / / i n s e r t i n p u t s i n t o a r r a y
i n p u t s = new double [G l o b a l V a r i a b l e s . NN_INPUTS] ;

260 i n p u t s [G l o b a l V a r i a b l e s . NN_INPUT_ARRAY_INDEX_LATITUDE] =
n o r m a l i z e d L o c a t i o n [HwLocat ionProcessor . LATITUDE_INDEX] ;

i n p u t s [G l o b a l V a r i a b l e s . NN_INPUT_ARRAY_INDEX_LONGITUDE] =
n o r m a l i z e d L o c a t i o n [HwLocat ionProcessor . LONGITUDE_INDEX] ;

262 i n p u t s [G l o b a l V a r i a b l e s . NN_INPUT_ARRAY_INDEX_NOISE] =
averageMicValue ;

i n p u t s [G l o b a l V a r i a b l e s . NN_INPUT_ARRAY_INDEX_MOVEMENT] =
normFCTCoeffSum ;

264 } c a t c h (ESExcept ion e) {
e . p r i n t S t a c k T r a c e () ;

266 }
}

268 e l s e {

�

� �

�

EmotionTasker’s full code 267

/ / There i s no l o c a t i o n i n f o r m a t i o n .
270 throw new N o C u r r e n t P o s i t i o n (" No c u r r e n t p o s i t i o n a v a i l a b l e ,

cannot perform emotion c l a s s i f i c a t i o n . ") ;
}

272 r e t u r n i n p u t s ;
}

274

/∗∗
276 ∗ Returns a pseudo−random v a l u e (i n M i l l i s e c o n d s) t h a t r e p r e s e n t s

∗ the amount o f t ime u n t i l the next emotion r e c o g n i t i o n t a s k
278 ∗/

p r i v a t e long n e x t E m o t i o n E x e c u t i o n M i l l i s () {
280 Random rand = new Random () ;

i n t randomNum = rand . n e x t I n t (
282 (G l o b a l V a r i a b l e s . RECOG_EMOTION_MAX_MINUTES −

G l o b a l V a r i a b l e s . RECOG_EMOTION_MIN_MINUTES) + 1) + G l o b a l V a r i a b l e s .
RECOG_EMOTION_MIN_MINUTES ;

r e t u r n (long) 1000∗60∗randomNum ;
284 }

286 p r i v a t e v o i d s h o w E m o t i o n F e e d b a c k N o t i f i c a t i o n (double [] i n p u t s , double []
o u t p u t s) {

/ / F i r s t , c a n c e l p r e v i o u s n o t i f i c a t i o n removal t a s k s
288 hWServiceHandler . r e m o v e C a l l b a c k s (currentNot i fRemovTask) ;

/ /Now, p r e p a r e a Bundle with the i n f o r m a t i o n to be p a s s e d to
EmotionFeedback

290 Bundle bnd = new Bundle () ;
bnd . putDoubleArray (G l o b a l V a r i a b l e s .

BND_EXTRA_EMOTION_INPUT_ARRAY_KEY ,
292 i n p u t s) ;

bnd . putDoubleArray (G l o b a l V a r i a b l e s .
BND_EXTRA_EMOTION_OUTPUT_ARRAY_KEY,

294 o u t p u t s) ;
/∗ put a timestamp on t h i s bundle to a v o i d e x p i r e d f e e d b a c k . We

s t o r e t h i s same v a l u e w i t h i n l a s t E m o t i o n N o t i f M i l l i s long , to keep
t r a c k o f when the l a s t emotion f e e d b a c k n o t i f i c a t i o n was s e n t . ∗ /

296 l a s t E m o t i o n N o t i f M i l l i s = System . c u r r e n t T i m e M i l l i s () ;
bnd . putLong (G l o b a l V a r i a b l e s . BND_EXTRA_EMOTION_TIMESTAMP_KEY,

l a s t E m o t i o n N o t i f M i l l i s) ;
298 bnd . p u t I n t (G l o b a l V a r i a b l e s . BND_EXTRA_REQ_CODE_KEY ,

G l o b a l V a r i a b l e s . AREQ_EMOTION_FEEDBACK_NOTIF) ;
300

I n t e n t i n t e n t = new I n t e n t (hWServ , EmotionFeedback . c l a s s) ;
302 i n t e n t . p u t E x t r a s (bnd) ;

304 P e n d i n g I n t e n t r e s u l t P e n d i n g I n t e n t =
P e n d i n g I n t e n t . g e t A c t i v i t y (

306 hWServ ,
0 ,

308 i n t e n t ,
P e n d i n g I n t e n t . FLAG_UPDATE_CURRENT

310) ;

312 N o t i f i c a t i o n C o m p a t . B u i l d e r m N o t i f y B u i l d e r = new N o t i f i c a t i o n C o m p a t
. B u i l d e r (hWServ)

. s e t T i c k e r (hWServ . g e t R e s o u r c e s () . g e t S t r i n g (R . s t r i n g .
app_name) + " " + hWServ . g e t R e s o u r c e s () . g e t S t r i n g (R . s t r i n g .
emot ionFeedbackNot i fContent))

�

� �

�

268 A Practical Introduction to Human-in-the-Loop Cyber-Physical Systems

314 . s e t C o n t e n t T i t l e (hWServ . g e t R e s o u r c e s () . g e t S t r i n g (R . s t r i n g .
app_name))

. s e t C o n t e n t T e x t (hWServ . g e t R e s o u r c e s () . g e t S t r i n g (R . s t r i n g .
emot ionFeedbackNot i fContent))

316 . s e t S m a l l I c o n (R . drawable . e m o t _ n o t i f _ i c o n)
. s e t C o n t e n t I n t e n t (r e s u l t P e n d i n g I n t e n t)

318 . setOngoing (t r u e)
. setSound (RingtoneManager . g e t D e f a u l t U r i (RingtoneManager .

TYPE_NOTIFICATION)) ;
320

hWServ . g e t N o t i f i c a t i o n M a n a g e r () . n o t i f y (
322 hWServ . hHNotificNum ,

m N o t i f y B u i l d e r . b u i l d ()) ;
324 }

326 p r i v a t e v o i d showNormalEmot ionNot i f icat ion (i n t typeOfEmotion) {
/ / F i r s t , c a n c e l p r e v i o u s n o t i f i c a t i o n removal t a s k s

328 hWServiceHandler . r e m o v e C a l l b a c k s (currentNot i fRemovTask) ;
/ /Now, p r e p a r e a Bundle with the n e c e s s a r y i n f o r m a t i o n

330 Bundle bnd = new Bundle () ;
/∗ put a timestamp on t h i s bundle to a v o i d the u s e r c l i c k i n g

n o t i f i c a t i o n s t h a t have been f i r e d a long time ago . ∗/
332 l a s t E m o t i o n N o t i f M i l l i s = System . c u r r e n t T i m e M i l l i s () ;

bnd . putLong (G l o b a l V a r i a b l e s . BND_EXTRA_EMOTION_TIMESTAMP_KEY,
334 l a s t E m o t i o n N o t i f M i l l i s) ;

bnd . p u t I n t (G l o b a l V a r i a b l e s . BND_EXTRA_EMOTION_TYPE_NOTIF_KEY ,
typeOfEmotion) ;

336 bnd . p u t I n t (G l o b a l V a r i a b l e s . BND_EXTRA_REQ_CODE_KEY ,
G l o b a l V a r i a b l e s . AREQ_EMOTION_NORMAL_NOTIF) ;

338

/ / We w i l l show our map , to promote w a l k i n g when emotions a r e
n e g a t i v e

340 I n t e n t i n t e n t = new I n t e n t (hWServ , M a p s A c t i v i t y . c l a s s) ;
i n t e n t . p u t E x t r a s (bnd) ;

342

P e n d i n g I n t e n t r e s u l t P e n d i n g I n t e n t =
344 P e n d i n g I n t e n t . g e t A c t i v i t y (

hWServ ,
346 0 ,

i n t e n t ,
348 P e n d i n g I n t e n t . FLAG_UPDATE_CURRENT

) ;
350

N o t i f i c a t i o n C o m p a t . B u i l d e r m N o t i f y B u i l d e r = new N o t i f i c a t i o n C o m p a t
. B u i l d e r (hWServ)

352 . s e t T i c k e r (hWServ . g e t R e s o u r c e s () . g e t S t r i n g (R . s t r i n g .
app_name) + " " + hWServ . g e t R e s o u r c e s () . g e t S t r i n g (R . s t r i n g .
emotionNormalNoti fContent))

. s e t C o n t e n t T i t l e (hWServ . g e t R e s o u r c e s () . g e t S t r i n g (R . s t r i n g .
app_name))

354 . s e t C o n t e n t T e x t (hWServ . g e t R e s o u r c e s () . g e t S t r i n g (R . s t r i n g .
emotionNormalNoti fContent))

. s e t S m a l l I c o n (R . drawable . e m o t _ n o t i f _ i c o n)
356 . s e t C o n t e n t I n t e n t (r e s u l t P e n d i n g I n t e n t)

. setOngoing (t r u e)
358 . setSound (RingtoneManager . g e t D e f a u l t U r i (RingtoneManager .

TYPE_NOTIFICATION)) ;

360 hWServ . g e t N o t i f i c a t i o n M a n a g e r () . n o t i f y (

�

� �

�

EmotionTasker’s full code 269

hWServ . hHNotificNum ,
362 m N o t i f y B u i l d e r . b u i l d ()) ;

}
364

p u b l i c s t a t i c i n t getTypeOfEmotion (double [] emotionArray) {
366 /∗

f o r code r e a d a b i l i t y , l e t us use an (x , y) r e p r e s e n t a t i o n o f the
368 emotion c o l o r map :

370 (0 . 0) ____________
y | Eph |

372 | |
| Anx Clm |

374 | |
| ____Brd_____ |

376 x (1 , 1)
∗/

378

double y = emotionArray [G l o b a l V a r i a b l e s .
NN_OUTPUT_ARRAY_INDEX_EUPHORIC_BORED] ;

380 double x = emotionArray [G l o b a l V a r i a b l e s .
NN_OUTPUT_ARRAY_INDEX_ANXIOUS_CALM] ;

i n t typeOfEmotion ;
382

i f (y < 0 . 5 && x < 0 . 5) {
384 i f (y>x) {

/ / a n x i e t y
386 typeOfEmotion = G l o b a l V a r i a b l e s . EMOTION_ANXIETY ;

}
388 e l s e {

/ / e u p h o r i a
390 typeOfEmotion = G l o b a l V a r i a b l e s . EMOTION_EUPHORIA ;

}
392 }

e l s e i f (y < 0 . 5 && x >= 0 . 5)
394 {

i f (y>x) {
396 / / ca lmness

typeOfEmotion = G l o b a l V a r i a b l e s . EMOTION_CALMNESS ;
398 }

e l s e {
400 / / e u p h o r i a

typeOfEmotion = G l o b a l V a r i a b l e s . EMOTION_EUPHORIA ;
402 }

}
404 e l s e i f (y >= 0 . 5 && x < 0 . 5)

{
406 i f (y>x) {

/ / a n x i e t y
408 typeOfEmotion = G l o b a l V a r i a b l e s . EMOTION_ANXIETY ;

}
410 e l s e {

/ / boredom
412 typeOfEmotion = G l o b a l V a r i a b l e s .EMOTION_BOREDOM;

}
414 }

e l s e
416 {

i f (y>x) {

�

� �

�

270 A Practical Introduction to Human-in-the-Loop Cyber-Physical Systems

418 / / boredom
typeOfEmotion = G l o b a l V a r i a b l e s .EMOTION_BOREDOM;

420 }
e l s e {

422 / / ca lmness
typeOfEmotion = G l o b a l V a r i a b l e s . EMOTION_CALMNESS ;

424 }
}

426 r e t u r n typeOfEmotion ;
}

428

/∗∗
430 ∗ checks i f an emotion i s " n e g a t i v e "

∗ @param typeOfEmotion an i n t r e p r e s e n t i n g the t y p e o f emotion
432 ∗ @r e t u r n t r u e i f emotion i s n e g a t i v e / f a l s e i f i t i s n t

∗/
434 p r i v a t e boolean e m o t i o n I s N e g a t i v e (i n t typeOfEmotion) {

boolean e m o t i o n I s N e g a t i v e = f a l s e ;
436 f o r (i n t i = 0 ; i < G l o b a l V a r i a b l e s . NEGATIVE_EMOTIONS . l e n g t h ; i ++) {

i f (typeOfEmotion == G l o b a l V a r i a b l e s . NEGATIVE_EMOTIONS[i]) {
438 e m o t i o n I s N e g a t i v e = t r u e ;

break ;
440 }

}
442 r e t u r n e m o t i o n I s N e g a t i v e ;

}
444

/∗∗
446 ∗ This method c a l c u l a t e s the e u c l i d e a n d i s t a n c e between the u s e r

f e e d b a c k and the n e u r a l network output
∗/

448 p r i v a t e double c o m p u t e E u c l i d e a n D i s t a n c e (double [] output , double []
i d e a l O u t p u t) {

double e u c l i d e a n D i s t a n c e = 0 ;
450 f o r (i n t i = 0 ; i <output . l e n g t h ; i ++) {

e u c l i d e a n D i s t a n c e += Math . pow ((output [i]− i d e a l O u t p u t [i]) , 2) ;
452 }

e u c l i d e a n D i s t a n c e = Math . s q r t (e u c l i d e a n D i s t a n c e) ;
454 r e t u r n e u c l i d e a n D i s t a n c e ;

}
456

/∗∗
458 ∗ Sends output emotion to the s e r v e r

∗ @param o u t p u t s − the emotion output to be s e n t
460 ∗/

p r i v a t e v o i d sendEmotionToServer (double [] o u t p u t s) {
462 LatLng c u r r e n t P o s = hWServ . g e t H w L o c a t i o n L i s t e n e r () .

g e t A c t u a l p o s i t i o n () ;
hWServiceHandler . p o s t (new TaskSendEmotion (

464 G l o b a l V a r i a b l e s . UUID ,
o u t p u t s [G l o b a l V a r i a b l e s .

NN_OUTPUT_ARRAY_INDEX_EUPHORIC_BORED] ,
466 o u t p u t s [G l o b a l V a r i a b l e s . NN_OUTPUT_ARRAY_INDEX_ANXIOUS_CALM

] ,
c u r r e n t P o s . l a t i t u d e ,

468 c u r r e n t P o s . l o n g i t u d e)) ;
}

470

c l a s s Emot ionRecogni t ionTask implements Runnable {

�

� �

�

EmotionTasker’s full code 271

472 p r i v a t e double [] o u t p u t s ;
p r i v a t e double [] i n p u t s ;

474

@O v e r r i d e
476 p u b l i c v o i d run () {

/ / Only run i f we have l o c a t i o n , s i n c e we need i t f o r the
n e u r a l net !

478 i f (hWServ . g e t H w L o c a t i o n L i s t e n e r () . g e t A c t u a l p o s i t i o n () ! = n u l l
) {

t r y {
480 /∗ Check i f i t i s t ime to r e q u e s t u s e r f e e d b a c k ∗/

i f ((lastEmoFeedbackReq + baseTimeToNextEmoFdbckReq) <
System . c u r r e n t T i m e M i l l i s ()) {

482 fetchInputsAndCompute () ;
/ / o n l y f i r e n o t i f i c a t i o n i f the s e r v i c e i s s t i l l

running !
484 i f (hWServ . i sRunning ()) {

s h o w E m o t i o n F e e d b a c k N o t i f i c a t i o n (i n p u t s ,
o u t p u t s) ;

486 p o s t N o t i f i c a t i o n R e m o v a l T a s k () ;
}

488 } e l s e {
/∗ f i r s t , check i f our n e u r a l network has been

behav ing w e l l enough f o r us to c o n s i d e r i t s output ∗/
490 f l o a t m a x E u c l i d e a n D i s t a n c e = (f l o a t) Math . s q r t (

G l o b a l V a r i a b l e s . NN_OUTPUTS) ;
i f (wMeanEucl ideanDistance < G l o b a l V a r i a b l e s .

MARGIN_PERCNT_MAX_EUCLD_DIST_ACCPT ∗ m a x E u c l i d e a n D i s t a n c e) {
492 fetchInputsAndCompute () ;

/ / f i r e a r e g u l a r emotion n o t i f i c a t i o n , i n c a s e
emotion i s n e g a t i v e

494 i n t typeOfEmotion = getTypeOfEmotion (o u t p u t s) ;
/ / o n l y f i r e n o t i f i c a t i o n i f the s e r v i c e i s

s t i l l running !
496 i f (hWServ . i sRunning ()) {

i f (e m o t i o n I s N e g a t i v e (typeOfEmotion)) {
498 showNormalEmot ionNot i f icat ion (

typeOfEmotion) ;
p o s t N o t i f i c a t i o n R e m o v a l T a s k () ;

500 }
sendEmotionToServer (o u t p u t s) ;

502 }
}

504 }
} c a t c h (E x c e p t i o n e) {

506 e . p r i n t S t a c k T r a c e () ;
}

508 }
/ / p o s t a new emotion i n f e r e n c e

510 scheduleEmotionRecog (System . c u r r e n t T i m e M i l l i s () +
n e x t E m o t i o n E x e c u t i o n M i l l i s ()) ;

/∗ S i n c e we have po s ted our nex emotion i n f e r e n c e , we
512 no l o n g e r need to keep the d e v i c e ’ s CPU awake . ∗/

wakeLock . r e l e a s e () ;
514 }

516 /∗∗
∗ S c h e d u l e s the next emotion r e c o g n i t i o n through the

518 ∗ AlarmManager c l a s s

�

� �

�

272 A Practical Introduction to Human-in-the-Loop Cyber-Physical Systems

∗ @param t r i g g e r A t M i l l i s − Time when the alarm should t r i g g e r
520 ∗/

p r o t e c t e d v o i d scheduleEmotionRecog (long t r i g g e r A t M i l l i s) {
522 / / C o n s t r u c t an i n t e n t t h a t w i l l e x e c u t e the AlarmRece iver

I n t e n t i n t e n t = new I n t e n t (hWServ . g e t A p p l i c a t i o n C o n t e x t () ,
EmotionWakefulReceiver . c l a s s) ;

524 / / C r e a t e a P e n d i n g I n t e n t to be t r i g g e r e d when the alarm goes
o f f

f i n a l P e n d i n g I n t e n t p I n t e n t = P e n d i n g I n t e n t . g e t B r o a d c a s t (
hWServ , EmotionWakefulReceiver . REQUEST_CODE, i n t e n t , P e n d i n g I n t e n t .
FLAG_UPDATE_CURRENT) ;

526 AlarmManager alarm = (AlarmManager) hWServ . g e t S y s t e m S e r v i c e (
hWServ . ALARM_SERVICE) ;

/ / F i r s t parameter u s e s the w a l l c l o c k t ime i n UTC
528 / / I n t e r v a l i s c a l c u l a t e d based on n e x t E m o t i o n E x e c u t i o n M i l l i s

a larm . s e t (AlarmManager . RTC_WAKEUP, t r i g g e r A t M i l l i s , p I n t e n t) ;
530 }

532 p r o t e c t e d v o i d cancelEmotionRecog () {
I n t e n t i n t e n t = new I n t e n t (hWServ . g e t A p p l i c a t i o n C o n t e x t () ,

EmotionWakefulReceiver . c l a s s) ;
534 f i n a l P e n d i n g I n t e n t p I n t e n t = P e n d i n g I n t e n t . g e t B r o a d c a s t (

hWServ , EmotionWakefulReceiver . REQUEST_CODE, i n t e n t , P e n d i n g I n t e n t .
FLAG_UPDATE_CURRENT) ;

AlarmManager alarm = (AlarmManager) hWServ . g e t S y s t e m S e r v i c e (
hWServ . ALARM_SERVICE) ;

536 a larm . c a n c e l (p I n t e n t) ;
}

538

p r i v a t e v o i d p o s t N o t i f i c a t i o n R e m o v a l T a s k () {
540 /∗ p o s t a n o t i f i c a t i o n R e m o v a l T a s k , which w i l l r e v e r t the

n o t i f i c a t i o n i n c a s e the u s e r t a k e s too long to p r o v i d e i n p u t .
I t runs a l i t t l e a f t e r t h e e x p e c t e d e x p i r a t i o n time .

542 ∗/
currentNot i fRemovTask = new N o t i f i c a t i o n R e m o v a l T a s k () ;

544 hWServiceHandler . p o s t D e l a y e d (currentNoti fRemovTask , (long) (
G l o b a l V a r i a b l e s . EXPIRE_EMOTION_MILLIS ∗1 . 0 5)) ;

}
546

p r i v a t e v o i d fetchInputsAndCompute () throws N o C u r r e n t P o s i t i o n {
548 o u t p u t s = new double [G l o b a l V a r i a b l e s . NN_OUTPUTS] ;

i n p u t s = c o l l e c t I n p u t s () ;
550 / / compute the emotion

network . compute (i n p u t s , o u t p u t s) ;
552 }

}
554

/∗∗ This r u n n a b l e t a s k r e v e r t s our n o t i f i c a t i o n to i t s d e f a u l t
556 ∗ s t a t e i n c a s e the i n f e r r e d emotion has a l r e a d y e x p i r e d .

∗/
558 c l a s s N o t i f i c a t i o n R e m o v a l T a s k implements Runnable {

@O v e r r i d e
560 p u b l i c v o i d run () {

i f (System . c u r r e n t T i m e M i l l i s () − l a s t E m o t i o n N o t i f M i l l i s >
G l o b a l V a r i a b l e s . EXPIRE_EMOTION_MILLIS) {

562 / / r e v e r t the n o t i f i c a t i o n
Log . d ("EMOTION NOTIFICATION " , " l a s t E m o t i o N o t i f M i l l i s shows

t h a t c u r r e n t n o t i f i c a t i o n has e x p i r e d . R e v e r t i n g . . . ") ;
564 hWServ . s h o w N o t i f i c a t i o n (f a l s e) ;

�

� �

�

EmotionTasker’s full code 273

}
566 }

}
568

/∗∗
570 ∗ T r a i n s the n e u r a l network based on the R e s i l i e n t P r o p a g a t i o n

h e u r i s t i c
∗/

572 c l a s s Neura lNetworkTrainingTask implements Runnable {
p r i v a t e double [] i n p u t s ;

574 p r i v a t e double [] i d e a l O u t p u t ;

576 p u b l i c Neura lNetworkTrainingTask (double [] i n p u t s , double []
i d e a l O u t p u t) {

t h i s . i n p u t s = i n p u t s ;
578 t h i s . i d e a l O u t p u t = i d e a l O u t p u t ;

}
580

@O v e r r i d e
582 p u b l i c v o i d run () {

double [] [] t r a i n i n g I n p u t = { i n p u t s } ;
584 double [] [] t r a i n i n g I d e a l O u t p u t = { i d e a l O u t p u t } ;

BasicMLDataSet t r a i n i n g S e t = new BasicMLDataSet (t r a i n i n g I n p u t ,
t r a i n i n g I d e a l O u t p u t) ;

586 R e s i l i e n t P r o p a g a t i o n rProp = new R e s i l i e n t P r o p a g a t i o n (network ,
t r a i n i n g S e t) ;

/ / t r a i n the network
588 do {

rProp . i t e r a t i o n () ;
590 } w h i l e (rProp . g e t E r r o r () >= G l o b a l V a r i a b l e s .

NN_MAX_TRAINING_ERROR) ;

592 / / s a v e the new w e i g h t s
saveNNWeightsToPreferences (network . dumpWeights ()) ;

594 }
}

596

/∗∗
598 ∗ This c l a s s i s r e s p o n s i b l e f o r u p d a t i n g the emotion a c c u r a c y

f e e d b a c k t i m e s and p r e v i o u s e u c l i d e a n d i s t a n c e v a l u e s
∗/

600 c l a s s UpdateEmotionAccuracyTask implements Runnable {
p r i v a t e double [] output ;

602 p r i v a t e double [] i d e a l O u t p u t ;

604 p u b l i c UpdateEmotionAccuracyTask (double [] output , double []
i d e a l O u t p u t) {

i f (output . l e n g t h ! = i d e a l O u t p u t . l e n g t h) {
606 throw new A s s e r t i o n E r r o r (" output and i d e a l O u t p u t a r e o f

d i f f e r e n t s i z e s ") ;
}

608 e l s e {
t h i s . output = output ;

610 t h i s . i d e a l O u t p u t = i d e a l O u t p u t ;
}

612 }

614 @O v e r r i d e
p u b l i c v o i d run () {

�

� �

�

274 A Practical Introduction to Human-in-the-Loop Cyber-Physical Systems

616 /∗ c a l c u l a t e the e u c l i d e a n d i s t a n c e
This g i v e s us an e s t i m a t e on how a c c u r a t e our l a s t i n f e r e n c e

was . ∗/
618 double e u c l i d e a n D i s t a n c e = c o m p u t e E u c l i d e a n D i s t a n c e (output ,

i d e a l O u t p u t) ;
/∗

620 This weighted mean w i l l be used to check i f our n e u r a l network
i s per forming w e l l enough to t r i g g e r n o t i f i c a t i o n s and send

i n f o r m a t i o n to the s e r v e r .
622 ∗/

wMeanEucl ideanDistance = (f l o a t) (e u c l i d e a n D i s t a n c e ∗
G l o b a l V a r i a b l e s . WEIGHT_OF_NEW_EUCLIDEAN_DISTANCE +

624 wMeanEucl ideanDistance ∗ (1− G l o b a l V a r i a b l e s .
WEIGHT_OF_NEW_EUCLIDEAN_DISTANCE)) ;

626 f l o a t m a x E u c l i d e a n D i s t a n c e = (f l o a t) Math . s q r t (G l o b a l V a r i a b l e s
. NN_OUTPUTS) ;

/∗
628 we compute a new f e e d b a c k t ime through a d i r e c t l i n e a r

v a r i a t i o n
based on the weighted mean o f the e u c l i d e a n d i s t a n c e

630

number o f m i l l i s e c o n d s i n an hour = 3600000
632 ∗/

long newFeedbackTime = (long) ((G l o b a l V a r i a b l e s .
RECOG_MAX_HOURS_WITHOUT_FEEDBACK −

634 ((G l o b a l V a r i a b l e s . RECOG_MAX_HOURS_WITHOUT_FEEDBACK −
G l o b a l V a r i a b l e s . RECOG_MIN_HOURS_WITHOUT_FEEDBACK) ∗

wMeanEucl ideanDistance / m a x E u c l i d e a n D i s t a n c e))
∗3600000) ;

636

/∗ update the f e e d b a c k t ime through a weighted a r i t h m e t i c mean
, with a b i t o f randomizat ion ∗/

638 baseTimeToNextEmoFdbckReq = (long) (newFeedbackTime ∗
G l o b a l V a r i a b l e s . WEIGHT_OF_NEW_EMOTION_FEEDBACK_TIME +

baseTimeToNextEmoFdbckReq ∗ (1− G l o b a l V a r i a b l e s .
WEIGHT_OF_NEW_EMOTION_FEEDBACK_TIME)) ;

640 Random rand = new Random () ;
long margin = (long) (baseTimeToNextEmoFdbckReq∗

G l o b a l V a r i a b l e s . MARGIN_PERCNT_RANDOM_EMO_FDBCK_TIME) ;
642 / / the f i n a l v a l u e w i l l o s c i l l a t e between b as eV a lu e −/+ (margin

/ 2)
baseTimeToNextEmoFdbckReq = (baseTimeToNextEmoFdbckReq −(margin

/ 2)) +
644 ((long) (rand . nextDouble () ∗margin)) ;

646 /∗ update the l a s t emotion f e e d b a c k timestamp ∗/
lastEmoFeedbackReq = System . c u r r e n t T i m e M i l l i s () ;

648 }
}

650 }

�

� �

�

Microphone

Normalization

Normalization

Normalization

Latitude

Longitude

Location

Accelerometer

STATE
INFERENCE

DATA ACQUISITION

Emotion

Recognition task

Runs

periodically

Performs

ACTUATION

Total

Acceleration

FFT

x2 + y2 + z2

FFTcoef.

X

Y

Z

90° 180°

Average

Amplitude

Figure 7.7 Current state of our HiTLCPS at the end of Chapter 7.

A Practical Introduction to Human-in-the-Loop Cyber-Physical Systems, First Edition.
David Nunes, Jorge Sá Silva and Fernando Boavida.
© 2018 John Wiley & Sons Ltd. Published 2018 by John Wiley & Sons Ltd.
Companion Website URL: www.wiley.com/go/nunesloop

�

� �

�

Figure 8.5 Our goal for the EmotionSpace view.

�

� �

�

(0,0)

(0,YMAX)

(XMAX, 0)

(XMAX, YMAX)

Figure 8.12 The coordinates of the EmotionSpace view.

�

� �

�

STATE INFERENCE

SERVER

YES

NO

Runs

periodically

Performs

Feeds

Persists

Shared

Preferences

Time to request

feedback?

DATA
ACQUISITION

Trains

Sends
Updates

Calls

ACTUATION

Triggers

Emotion

Recognition Task

Figure 8.15 Current state of our HiTLCPS at the end of Chapter 8.

�

� �

�

STATE INFERENCE

YES
NO

YES

Sends

NO

YES

NO

Do not use the

Neural Networks

Output

Neural Network’s

average performance

above threshold?

Send emotion to

server

Do not actuate Is the emotion

negative?

Runs

periodically

Performs DATA ACQUISITION

Sends ACTUATION

SERVER

Update and create
association with

POIs in range

Create
Emotion

Pruning Task

NEW

Runs

periodicallyNew emotion or

update?

Web
Interface

UPDATE

Update
Emotion
Values

Update POI
associations
and values

Updates

Trains

Feeds

Persists

Shared

Preferences

Time to request

feedback?

Calls

Calls

Triggers

Emotion

Recognition

Task

Normalization

Normalization

Accelerometer

x2+y2+z2

x

Y

z

FFTcoef.FFT

Latitude

Longitude
Location

Total

Acceleration

90° 180°

Microphone
Average

Amplitude

Normalization

Figure 9.12 Final state of our HiTLCPS at the end of Chapter 9.

�

� �

�

289

Index

a
Android 60

c
Context Awareness 5
Cyber-Physical Systems / Internet of Things

1, 2
distinction between IoT and CPS 3
Ubiquitous Computing 4

Open Data 15
Urban Sensing 17

h
Human-in-the-Loop 5

Behavior Change Interventions 40, 59
definition 25, 254
Human-Centric Sensing

Dual Reality 17
Mobile phones and Smartphones see

also Smartphone sensing 19, 48, 51
Social Networks 20, 51

Internet of All 25, 254
Requirements and Challenges 241, 253,

256
Dependability 242
Localization 17, 19, 39, 40, 48, 51, 52,

111, 243, 248
Privacy 18, 41, 66, 243, 257

Security 242
Skepticism 256
Standard Communications 11, 13,

15, 35, 244
taxonomy based on control 26
taxonomy based on human roles 28

m
Moore’s law 1

t
Technologies for CPS and HiTL

Actuation
Robotics 2, 42, 48, 250, 257

Data Acquisition
Body-coupled Communication 36
People-Centric Sensing 37
Smartphone sensing 37, 41
Wireless Sensor Networks 2, 35

State Inference
Artificial Neural Networks See also

Machine Learning 68
Experience Sampling Method 39
Fourier Transformation 69, 114
Machine Learning 39, 67, 257
Physical State Classification 39, 249
Psychological State Classification 39,

41, 249

A Practical Introduction to Human-in-the-Loop Cyber-Physical Systems, First Edition.
David Nunes, Jorge Sá Silva and Fernando Boavida.
© 2018 John Wiley & Sons Ltd. Published 2018 by John Wiley & Sons Ltd.
Companion Website URL: www.wiley.com/go/nunesloop

