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Preface
In recent years, machine learning has changed from a niche technology asset for scientific
and theoretical experts to a ubiquitous theme in the day-to-day operations of the majority of
the big players in the IT field.

This phenomenon started with the explosion in the volume of available data: During the
second half of the 2000s, the advent of many kinds of cheap data capture devices
(cellphones with integrated GPS, multi-megapixel cameras, and gravity sensors), and the
popularization of new high-dimensional data capture (3D LIDAR and optic systems, the
explosion of IOT devices, etc), made it possible to have access to a volume of information
never seen before.

Additionally, in the hardware field, the almost visible limits of the Moore law, prompted
the development of massive parallel devices, which multiplied the data to be used to train a
determined models.

Both advancements in hardware and data availability allowed researchers to apply
themselves to revisit the works of pioneers on human vision-based neural network
architectures (convolutional neural networks, among others), finding many new problems
in which to apply them, thanks to the general availability of data and computation
capabilities.

To solve these new kinds of problems, a new interest in creating state-of-the-art machine
learning packages was born, with players such as: Keras, Scikyt-learn, Theano, Caffe, and
Torch, each one with a particular vision of the way machine learning models should be
defined, trained, and executed.

On 9 November 2015, Google entered into the public machine learning arena, deciding to
open-source its own machine learning framework, TensorFlow, on which many internal
projects were based. This first 0.5 release had a numbers of shortcomings in comparison
with others, a number of which were addressed later, specially the possibility of running
distributed models.

So this little story brings us to this day, where TensorFlow is one of the main contenders
for interested developers, as the number of projects using it as a base increases, improving
its importance for the toolbox of any data science practitioner.

In this book, we will implement a wide variety of models using the TensorFlow library,
aiming at having a low barrier of entrance and providing a detailed approach to the
problem solutions.
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What this book covers 
Chapter 1, Exploring and Transforming Data, guides the reader in undersanding the main
components of a TensorFlow application, and the main data-exploring methods included.

Chapter 2, Clustering, tells you about the possibility of grouping different kinds of data
elements, defining a previous similarity criteria.

Chapter 3, Linear Regression, allows the reader to define the first mathematical model to
explain diverse phenomena.

Chapter 4, Logistic Regression, is the first step in modeling non-linear phenomena with a
very powerful and simple mathematical function.

Chapter 5, Simple Feedforward Neural Networks, allows you to comprehend the main
component, and mechanisms of neural networks.

Chapter 6, Convolutional Neural Networks, explains the functioning and practical
application, of this recently rediscovered set of special networks.

Chapter 7, Recurrent Neural Networks, shows a detailed explanation of this very useful
architecture for temporal series of data.

Chapter 8, Deep Neural Networks, offers an overview of the latest developments on mixed
layer type neural networks.

Chapter 9, Running Models at Scale – GPU and Serving, explains the ways of tackling
problems of greater complexity, by dividing the work into coordinating units.

Chapter 10, Library Installation and Additional Tips, covers the installation of TensorFlow on
Linux, Windows, and Mac architectures, and presents you with some useful code tricks that
will ease day-to-day tasks.
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What you need for this book 
Software required (with version) Hardware specifications OS required

TensorFlow 0.10, Jupyter Notebook Any x86 computer Ubuntu Linux 16.04

Who this book is for 
This book is for data analysts, data scientists, and researchers who want to make the results
of their machine learning activities faster and more efficient. Those who want a crisp guide
to complex numerical computations with TensorFlow will find the book extremely helpful.
This book is also for developers who want to implement TensorFlow in production in
various scenarios. Some experience with C++ and Python is expected.

Conventions 
In this book, you will find a number of text styles that distinguish between different kinds
of information. Here are some examples of these styles and an explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions, path
names, dummy URLs, user input, and Twitter handles are shown as follows: "We can
include other contexts through the use of the include directive."

A block of code is set as follows:

>>> import tensorflow as tf
>>> tens1 = tf.constant([[[1,2],[2,3]],[[3,4],[5,6]]])
>>> print sess.run(tens1)[1,1,0]
5

When we wish to draw your attention to a particular part of a code block, the relevant lines
or items are set in bold:

>>> import tensorflow as tf
>>> tens1 = tf.constant([[[1,2],[2,3]],[[3,4],[5,6]]])
>>> print sess.run(tens1)[1,1,0]
5
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Any command-line input or output is written as follows:

# cp /usr/src/asterisk-addons/configs/cdr_mysql.conf.sample
     /etc/asterisk/cdr_mysql.conf

New terms and important words are shown in bold. Words that you see on the screen, for
example, in menus or dialog boxes, appear in the text like this: "Clicking the Next button
moves you to the next screen."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this
book—what you liked or disliked. Reader feedback is important for us as it helps us
develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention the
book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you
to get the most from your purchase.
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Downloading the example code 
You can download the example code files for this book from your account at
http://www.packtpub.com. If you purchased this book elsewhere, you can visit h t t p ://w w w. 

p a c k t p u b . c o m /s u p p o r t  and register to have the files e-mailed directly to you.

You can download the code files by following these steps:

Log in or register to our website using your e-mail address and password.1.
Hover the mouse pointer on the SUPPORT tab at the top.2.
Click on Code Downloads & Errata.3.
Enter the name of the book in the Search box.4.
Select the book for which you're looking to download the code files.5.
Choose from the drop-down menu where you purchased this book from.6.
Click on Code Download.7.

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

WinRAR / 7-Zip for Windows
Zipeg / iZip / UnRarX for Mac
7-Zip / PeaZip for Linux

The code bundle for the book is also hosted on GitHub at h t t p s ://g i t h u b . c o m /P a c k t P u b l

i s h i n g /B u i l d i n g - M a c h i n e - L e a r n i n g - P r o j e c t s - w i t h - T e n s o r F l o w . We also have other
code bundles from our rich catalog of books and videos available at h t t p s ://g i t h u b . c o m /P

a c k t P u b l i s h i n g /. Check them out!

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books-maybe a mistake in the text or the code-
we would be grateful if you could report this to us. By doing so, you can save other readers
from frustration and help us improve subsequent versions of this book. If you find any
errata, please report them by visiting h t t p ://w w w . p a c k t p u b . c o m /s u b m i t - e r r a t a , selecting
your book, clicking on the Errata Submission Form link, and entering the details of your
errata. Once your errata are verified, your submission will be accepted and the errata will
be uploaded to our website or added to any list of existing errata under the Errata section of
that title.
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To view the previously submitted errata, go to h t t p s ://w w w . p a c k t p u b . c o m /b o o k s /c o n t e n

t /s u p p o r t and enter the name of the book in the search field. The required information will
appear under the Errata section.
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1
Exploring and Transforming

Data
TensorFlow is an open source software library for numerical computation using data flow
graphs. Nodes in the graph represent mathematical operations, while the graph edges
represent the multidimensional data arrays (tensors) passed between them.

The library includes various functions that enable you to implement and explore the cutting
edge Convolutional Neural Network (CNN) and Recurrent Neural Network (RNN)
architectures for image and text processing. As the complex computations are arranged in
the form of graphs, TensorFlow can be used as a framework that enables you to develop
your own models with ease and use them in the field of machine learning.

It is also capable of running in the most heterogeneous environments, from CPUs to mobile
processors, including highly-parallel GPU computing, and with the new serving
architecture being able to run on very complex mixes of all the named options:
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TensorFlow's main data structure - tensors
TensorFlow bases its data management on tensors. Tensors are concepts from the field of
mathematics, and are developed as a generalization of the linear algebra terms of vectors
and matrices.

Talking specifically about TensorFlow, a tensor is just a typed, multidimensional array, with
additional operations, modeled in the tensor object.

Tensor properties - ranks, shapes, and types
As previously discussed, TensorFlow uses tensor data structure to represent all data. Any
tensor has a static type and dynamic dimensions, so you can change a tensor's internal
organization in real-time.

Another property of tensors, is that only objects of the tensor type can be passed between
nodes in the computation graph.

Let's now see what the properties of tensors are (from now on, every time we use the word
tensor, we'll be referring to TensorFlow's tensor objects).

Tensor rank
Tensor ranks represent the dimensional aspect of a tensor, but is not the same as a matrix
rank. It represents the quantity of dimensions in which the tensor lives, and is not a precise
measure of the extension of the tensor in rows/columns or spatial equivalents.

A rank one tensor is the equivalent of a vector, and a rank one tensor is a matrix. For a rank
two tensor you can access any element with the syntax t[i, j]. For a rank three tensor you
would need to address an element with t[i, j, k], and so on.

In the following example, we will create a tensor, and access one of its components:

import tensorflow as tf
sess = tf.Session()
tens1 = tf.constant([[[1,2],[2,3]],[[3,4],[5,6]]])
print sess.run(tens1)[1,1,0]

Output:

5



Exploring and Transforming Data

[ 9 ]

This is a tensor of rank three, because in each element of the containing matrix, there is a
vector element:

Rank Math entity Code definition example

0 Scalar scalar = 1000

1 Vector vector = [2, 8, 3]

2 Matrix matrix = [[4, 2, 1], [5, 3, 2], [5, 5, 6]]

3 3-tensor tensor = [[[4], [3], [2]], [[6], [100], [4]], [[5], [1], [4]]]

n n-tensor …

Tensor shape
The TensorFlow documentation uses three notational conventions to describe tensor
dimensionality: rank, shape, and dimension number. The following table shows how these
relate to one another:

Rank Shape Dimension number Example

0 [] 0 4

1 [D0] 1 [2]

2 [D0, D1] 2 [6, 2]

3 [D0, D1, D2] 3 [7, 3, 2]

n [D0, D1, … Dn-1] n-D A tensor with shape [D0, D1, … Dn-1].

 

In the following example, we create a sample rank three tensor, and print the shape of it:
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Tensor data types
In addition to dimensionality, tensors have a fixed data type. You can assign any one of the
following data types to a tensor:

Data type Python type Description

DT_FLOAT tf.float32 32 bits floating point.

DT_DOUBLE tf.float64 64 bits floating point.

DT_INT8 tf.int8 8 bits signed integer.

DT_INT16 tf.int16 16 bits signed integer.

DT_INT32 tf.int32 32 bits signed integer.

DT_INT64 tf.int64 64 bits signed integer.

DT_UINT8 tf.uint8 8 bits unsigned integer.

DT_STRING tf.string Variable length byte arrays. Each element of a tensor is a byte
array.

DT_BOOL tf.bool Boolean.

Creating new tensors
We can either create our own tensors, or derivate them from the well-known numpy
library. In the following example, we create some numpy arrays, and do some basic math
with them:

import tensorflow as tf
import numpy as np
x = tf.constant(np.random.rand(32).astype(np.float32))
y= tf.constant ([1,2,3])
x
y

Output:

<tf.Tensor 'Const_2:0' shape=(3,) dtype=int32>
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From numpy to tensors and vice versa
TensorFlow is interoperable with numpy, and normally the eval() function calls will
return a numpy object, ready to be worked with the standard numerical tools.

We must note that the tensor object is a symbolic handle for the result of
an operation, so it doesn't hold the resulting values of the structures it
contains. For this reason, we must run the eval() method to get the
actual values, which is the equivalent to
Session.run(tensor_to_eval).

In this example, we build two numpy arrays, and convert them to tensors:

import tensorflow as tf #we import tensorflow
import numpy as np #we import numpy
sess = tf.Session() #start a new Session Object
x_data = np.array([[1.,2.,3.],[3.,2.,6.]]) # 2x3 matrix
x = tf.convert_to_tensor(x_data, dtype=tf.float32)
print (x)

Output:

Tensor("Const_3:0", shape=(2, 3), dtype=float32)

Useful method

tf.convert_to_tensor: This function converts Python objects of various types to tensor
objects. It accepts tensorobjects, numpy arrays, Python lists, and Python scalars.

Getting things done - interacting with TensorFlow
As with the majority of Python's modules, TensorFlow allows the use of Python's
interactive console:

Simple interaction with Python's interpreter and TensorFlow libraries
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In the previous figure, we call the Python interpreter (by simply calling Python) and create
a tensor of constant type. Then we invoke it again, and the Python interpreter shows the
shape and type of the tensor.

We can also use the IPython interpreter, which will allow us to employ a format more
compatible with notebook-style tools, such as Jupyter:

IPython prompt

When talking about running TensorFlow Sessions in an interactive manner, it's better to
employ the InteractiveSession object.

Unlike the normal tf.Session class, the tf.InteractiveSession class installs itself as
the default session on construction. So when you try to eval a tensor, or run an operation, it
will not be necessary to pass a Session object to indicate which session it refers to.

Handling the computing workflow -
 TensorFlow's data flow graph
TensorFlow's data flow graph is a symbolic representation of how the computation of the
models will work:



Exploring and Transforming Data

[ 13 ]

A simple data flow graph representation, as drawn on TensorBoard

A data flow graph is, succinctly, a complete TensorFlow computation, represented as a
graph where nodes are operations and edges are data flowing between operations.

Normally, nodes implement mathematical operations, but also represent a connection to
feed in data or a variable, or push out results.

Edges describe the input/output relationships between nodes. These data edges exclusively
transport tensors. Nodes are assigned to computational devices and execute
asynchronously and in parallel once all the tensors on their incoming edges become
available.

All operations have a name and represent an abstract computation (for example, matrix
inverse or product).

Computation graph building
The computation graph is normally built while the library user creates the tensors and
operations the model will support, so there is no need to build a Graph() object directly.
The Python tensor constructors, such as tf.constant(), will add the necessary element to
the default graph. The same occurs for TensorFlow operations.
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For example, c = tf.matmul(a, b) creates an operation of MatMul type that takes
tensors a and b as input and produces c as output.

Useful operation object methods
tf.Operation.type: Returns the type of the operation (for example, MatMul)
tf.Operation.inputs: Returns the list of tensor objects representing the
operation's inputs
tf.Graph.get_operations(): Returns the list of operations in the graph
tf.Graph.version: Returns the graph's autonumeric version

Feeding
TensorFlow also provides a feed mechanism for patching a tensor directly into any
operation in the graph.

A feed temporarily replaces the output of an operation with a tensor value. You supply feed
data as an argument to a run()call. The feed is only used for the run call to which it is
passed. The most common use case involves designating specific operations to be feed
operations by using tf.placeholder() to create them.

Variables
In most computations, a graph is executed multiple times. Most tensors do not survive past
a single execution of the graph. However, a variable is a special kind of operation that
returns a handle to a persistent, mutable tensor that survives across executions of a graph.
For machine learning applications of TensorFlow, the parameters of the model are typically
stored in tensors held in variables, and are updated when running the training graph for the
model.

Variable initialization
To initialize a variable, simply call the Variable object constructor, with a tensor as a
parameter.
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In this example, we initialize some variables with an array of 1000 zeros:

b = tf.Variable(tf.zeros([1000]))

Saving data flow graphs
Data flow graphs are written using Google's protocol buffers, so they can be read
afterwards in a good variety of languages.

Graph serialization language - protocol buffers
Protocol buffers are a language-neutral, platform-neutral, extensible mechanism for
serializing structured data. You define the data structure first, and then you can use
specialized generated code to read and write it with a variety of languages.

Useful methods
tf.Graph.as_graph_def(from_version=None, add_shapes=False): returns a
serialized GraphDef representation of this graph.

Parameters:

from_version: If this is set, it returns a GraphDef with nodes that were added
from this version
add_shapes: If true, adds a shape attribute to each node

Example graph building
In this example we will build a very simple data flow graph, and observe an overview of
the generated protobuffer file:

import tensorflow as tf
g = tf.Graph()
with g.as_default():
    import tensorflow as tf
    sess = tf.Session()
    W_m = tf.Variable(tf.zeros([10, 5]))
    x_v = tf.placeholder(tf.float32, [None, 10])
    result = tf.matmul(x_v, W_m)
print (g.as_graph_def())
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The generated protobuffer (summarized) reads:

node {
  name: "zeros"
  op: "Const"
  attr {
    key: "dtype"
    value {
      type: DT_FLOAT
    }
  }
  attr {
    key: "value"
    value {
      tensor {
        dtype: DT_FLOAT
        tensor_shape {
          dim {
            size: 10
          }
          dim {
            size: 5
          }
        }
        float_val: 0.0
      }
    }
  }
}
node {
  name: "Variable"
  op: "VariableV2"
  attr {
    key: "container"
    value {
      s: ""
    }
  }
  attr {
    key: "dtype"
    value {
      type: DT_FLOAT
    }
  }
  attr {
    key: "shape"
    value {
      shape {
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        dim {
          size: 10
        }
        dim {
          size: 5
        }
      }
    }
  }
  attr {
    key: "shared_name"
    value {
      s: ""
    }
  }
}
node {
  name: "Variable/Assign"
  op: "Assign"
  input: "Variable"
  input: "zeros"
  attr {
    key: "T"
    value {
      type: DT_FLOAT
    }
  }
  attr {
    key: "_class"
    value {
      list {
        s: "loc:@Variable"
      }
    }
  }
  attr {
    key: "use_locking"
    value {
      b: true
    }
  }
  attr {
    key: "validate_shape"
    value {
      b: true
    }
  }
}
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node {
  name: "Variable/read"
  op: "Identity"
  input: "Variable"
  attr {
    key: "T"
    value {
      type: DT_FLOAT
    }
  }
  attr {
    key: "_class"
    value {
      list {
        s: "loc:@Variable"
      }
    }
  }
}
node {
  name: "Placeholder"
  op: "Placeholder"
  attr {
    key: "dtype"
    value {
      type: DT_FLOAT
    }
  }
  attr {
    key: "shape"
    value {
      shape {
      }
    }
  }
}
node {
  name: "MatMul"
  op: "MatMul"
  input: "Placeholder"
  input: "Variable/read"
  attr {
    key: "T"
    value {
      type: DT_FLOAT
    }
  }
  attr {
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    key: "transpose_a"
    value {
      b: false
    }
  }
  attr {
    key: "transpose_b"
    value {
      b: false
    }
  }
}
versions {
  producer: 21
}
}

Running our programs - Sessions
Client programs interact with the TensorFlow system by creating a Session. The Session
object is a representation of the environment in which the computation will run. The
Session object starts empty, and when the programmer creates the different operations and
tensors, they will be added automatically to the Session, which will do no computation until
the Run() method is called.

The Run() method takes a set of output names that need to be computed, as well as an
optional set of tensors to be fed into the graph in place of certain outputs of nodes.

If we call this method, and there are operations on which the named operation depends, the
Session object will execute all of them, and then proceed to execute the named one.

This simple line is the only one needed to create a Session:

s = tf.Session()

Sample command line output:

tensorflow/core/common_runtime/local_session.cc:45]Localsessioninteropparal
lelism threads:6
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Basic tensor methods
In this section we will be exploring some basic methods supported by TensorFlow. They are
useful for initial data exploration and for preparing the data for better parallel computation.

Simple matrix operations
TensorFlow supports many of the more common matrix operations, such as transpose,
multiplication, getting the determinant, and inverse.

Here is a little example of those functions applied to sample data:

import tensorflow as tf
sess = tf.InteractiveSession()
x = tf.constant([[2, 5, 3, -5],[0, 3,-2, 5],[4, 3, 5, 3],[6, 1, 4, 0]])
y = tf.constant([[4, -7, 4, -3, 4],[6, 4,-7, 4, 7],[2, 3, 2, 1, 4],[1, 5,
5, 5, 2]])
floatx = tf.constant([[2., 5., 3., -5.],[0., 3.,-2., 5.],[4., 3., 5.,
3.],[6., 1., 4., 0.]])
tf.transpose(x).eval() # Transpose matrix

Output:

array([[ 2,  0,  4,  6],
       [ 5,  3,  3,  1],
       [ 3, -2,  5,  4],
       [-5,  5,  3,  0]])

tf.matmul(x, y).eval()

Output:

array([[ 39, -10, -46,  -8,  45],
       [ 19,  31,   0,  35,  23],
       [ 47,  14,  20,  20,  63],
       [ 38, -26,  25, -10,  47]])

tf.matrix_determinant(floatx).eval()

Output:

818.0

tf.matrix_inverse(floatx).eval()
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Output:

array([[-0.00855745,  0.10513447, -0.18948655,  0.29584354],
       [ 0.12958434,  0.12224938,  0.01222495, -0.05134475],
       [-0.01955992, -0.18826404,  0.28117359, -0.18092909],
       [-0.08557458,  0.05134474,  0.10513448, -0.0415648 ]],
dtype=float32)

tf.matrix_solve(floatx, [[1],[1],[1],[1]]).eval()

Output:

array([[ 0.202934  ],
       [ 0.21271393],
       [-0.10757945],
       [ 0.02933985]], dtype=float32)

Reduction
Reduction is an operation that applies an operation across one of the tensor's dimensions,
leaving it with one less dimension.

The supported operations include (with the same parameters) product, minimum,
maximum, mean, all, any, and accumulate_n).

import tensorflow as tf
sess = tf.InteractiveSession()
x = tf.constant([[1, 2, 3],[3, 2, 1],[-1,-2,-3]])
boolean_tensor = tf.constant([[True, False, True],[False, False,
True],[True, False, False]])
tf.reduce_prod(x, reduction_indices=1).eval()

Output:

array([ 6,  6, -6])

tf.reduce_min(x, reduction_indices=1).eval()

Output:

array([ 1,  1, -3])

tf.reduce_max(x, reduction_indices=1).eval() 
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Output:

array([ 3,  3, -1])

tf.reduce_mean(x, reduction_indices=1).eval()

Output:

array([ 2,  2, -2])

tf.reduce_all(boolean_tensor, reduction_indices=1).eval()

Output:

array([False, False, False], dtype=bool)

tf.reduce_any(boolean_tensor, reduction_indices=1).eval()

Output:

array([ True,  True,  True], dtype=bool)

Tensor segmentation
Tensor segmentation is a process in which one of the dimensions is reduced, and the
resulting elements are determined by an index row. If some elements in the row are
repeated, the corresponding index goes to the value in it, and the operation is applied
between the indexes with repeated indexes.

The index array size should be the same as the size of dimension 0 of the index array, and
they must increase by one.

Segmentation explanation (redo)
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import tensorflow as tf
In [2]: sess = tf.InteractiveSession()
In [3]: seg_ids = tf.constant([0,1,1,2,2]); # Group indexes : 0|1,2|3,4
In [4]: tens1 = tf.constant([[2, 5, 3, -5],[0, 3,-2, 5],[4, 3, 5, 3],[6, 1,
4, 0],[6, 1, 4, 0]]) # A sample constant matrix
tf.segment_sum(tens1, seg_ids).eval()

Output:

array([[ 2,  5,  3, -5],
       [ 4,  6,  3,  8],
       [12,  2,  8,  0]])

tf.segment_prod(tens1, seg_ids).eval()

Output:

array([[  2,   5,   3,  -5],
       [  0,   9, -10,  15],
       [ 36,   1,  16,   0]])

tf.segment_min(tens1, seg_ids).eval()

Output:

array([[ 2,  5,  3, -5],
       [ 0,  3, -2,  3],
       [ 6,  1,  4,  0]])

tf.segment_max(tens1, seg_ids).eval()

Output:

array([[ 2,  5,  3, -5],
       [ 4,  3,  5,  5],
       [ 6,  1,  4,  0]])

tf.segment_mean(tens1, seg_ids).eval()

Output:

array([[ 2,  5,  3, -5],
       [ 2,  3,  1,  4],
       [ 6,  1,  4,  0]])
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Sequences
Sequence utilities include methods such as argmin and argmax (showing the minimum
and maximum value of a dimension), listdiff (showing the complement of the
intersection between lists), where (showing the index of the true values on a tensor), and
unique (showing unique values on a list).

import tensorflow as tf
sess = tf.InteractiveSession()
x = tf.constant([[2, 5, 3, -5],[0, 3,-2, 5],[4, 3, 5, 3],[6, 1, 4, 0]])
listx = tf.constant([1,2,3,4,5,6,7,8])
listy = tf.constant([4,5,8,9])
boolx = tf.constant([[True,False], [False,True]])
tf.argmin(x, 1).eval()

Output:

array([3, 2, 1, 3], dtype=int64)

tf.argmax(x, 1).eval()

Output:

array([1, 3, 2, 0], dtype=int64)

tf.where(boolx).eval()

Output:

array([[0, 0],
       [1, 1]], dtype=int64)

tf.unique(listx)[0].eval()

Output:

array([1, 2, 3, 4, 5, 6, 7, 8])

tf.setdiff1d(listx, listy)[0].eval()

Output:

array([1, 2, 3, 6, 7])
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Tensor shape transformations
These kinds of functions are related to a matrix shape.They are used to adjust unmatched
data structures and to retrieve quick information about the measures of data. This can be
useful when deciding a processing strategy at runtime.

In the following examples, we will start with a rank two tensor and will print some
information about it.

Then we'll explore the operations that modify the matrix dimensionally, be it adding or
removing dimensions, such as squeeze and expand_dims:

import tensorflow as tf
sess = tf.InteractiveSession()
x = tf.constant([[2, 5, 3, -5],[0, 3,-2, 5],[4, 3, 5, 3],[6, 1, 4, 0]])
tf.shape(x).eval() # Shape of the tensor

Output:

array([4, 4])

tf.size(x).eval()

Output:

16

tf.rank(x).eval()

Output:

2

tf.reshape(x, [8, 2]).eval()

Output:

array([[ 2,  5],
       [ 3, -5],
       [ 0,  3],
       [-2,  5],
       [ 4,  3],
       [ 5,  3],
       [ 6,  1],
       [ 4,  0]])

tf.squeeze(x).eval()
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Output:

array([[ 2,  5,  3, -5],
       [ 0,  3, -2,  5],
       [ 4,  3,  5,  3],
       [ 6,  1,  4,  0]])

tf.expand_dims(x,1).eval()

Output:

array([[[ 2,  5,  3, -5]],

       [[ 0,  3, -2,  5]],

       [[ 4,  3,  5,  3]],

       [[ 6,  1,  4,  0]]])

Tensor slicing and joining
In order to extract and merge useful information from big datasets, the slicing and joining
methods allow you to consolidate the required column information without having to
occupy memory space with nonspecific information.

In the following examples, we'll extract matrix slices, split them, add padding, and pack
and unpack rows:

import tensorflow as tf
sess = tf.InteractiveSession()
t_matrix = tf.constant([[1,2,3],[4,5,6],[7,8,9]])
t_array = tf.constant([1,2,3,4,9,8,6,5])
t_array2= tf.constant([2,3,4,5,6,7,8,9])
tf.slice(t_matrix, [1, 1], [2,2]).eval()

Output:

array([[5, 6],
       [8, 9]])

*tf.split(axis=0, num_or_size_splits=2, value=t_array) 
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Output:

[<tf.Tensor 'split_1:0' shape=(4,) dtype=int32>,
 <tf.Tensor 'split_1:1' shape=(4,) dtype=int32>]

tf.tile([1,2],[3]).eval()

Output:

array([1, 2, 1, 2, 1, 2])

tf.pad(t_matrix, [[0,1],[2,1]]).eval()

Output:

array([[0, 0, 1, 2, 3, 0],
       [0, 0, 4, 5, 6, 0],
       [0, 0, 7, 8, 9, 0],
       [0, 0, 0, 0, 0, 0]])

*tf.concat(axis=0, values=[t_array, t_array2]).eval()

Output:

array([1, 2, 3, 4, 9, 8, 6, 5, 2, 3, 4, 5, 6, 7, 8, 9])

*tf.stack([t_array, t_array2]).eval()

Output:

array([[1, 2, 3, 4, 9, 8, 6, 5],
       [2, 3, 4, 5, 6, 7, 8, 9]])

*sess.run(tf.unstack(t_matrix)) 

Output:

[array([1, 2, 3]), array([4, 5, 6]), array([7, 8, 9])]

tf.reverse(t_matrix, [False,True]).eval()

Output:

array([[9, 8, 7],
       [6, 5, 4],
       [3, 2, 1]])
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Dataflow structure and results visualization -
 TensorBoard
Visualizing summarized information is a vital part of any data scientist's toolbox.

TensorBoard is a software utility that allows the graphical representation of the data flow
graph and a dashboard used for the interpretation of results, normally coming from the
logging utilities:

TensorBoard GUI
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All the tensors and operations of a graph can be set to write information to logs.
TensorBoard analyzes that information, written normally, while the Session is running, and
presents the user with many graphical items, one for each graph item.

Command line use
To invoke TensorBoard, the command line is:

How TensorBoard works
Every computation graph we build, TensorFlow has a real-time logging mechanism for, in
order to save almost all the information that a model possesses.

However, the model builder has to take into account which of the possible hundred
information dimensions it should save, to later serve as an analysis tool.

To save all the required information, TensorFlow API uses data output objects, called
Summaries.

These Summaries write results into TensorFlow event files, which gather all the required
data generated during a Session's run.

In the following example, we'll running TensorBoard directly on a generated event log
directory:
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Adding Summary nodes
All Summaries in a TensorFlow Session are written by a SummaryWriter object. The main
method to call is:

tf.train.SummaryWriter.__init__(logdir, graph_def=None)

This command will create a SummaryWriter and an event file, in the path of the parameter.

The constructor of the the SummaryWriter will create a new event file in logdir. This
event file will contain Event type protocol buffers constructed when you call one of the
following functions: add_summary(), add_session_log(), add_event(), or
add_graph().

If you pass a graph_def protocol buffer to the constructor, it is added to the event file.
(This is equivalent to calling add_graph() later).

When you run TensorBoard, it will read the graph definition from the file and display it
graphically so you can interact with it.

First, create the TensorFlow graph that you'd like to collect summary data from and decide
which nodes you would like to annotate with summary operations.

Operations in TensorFlow don't do anything until you run them, or an operation that
depends on their output. And the summary nodes that we've just created are peripheral to
your graph: none of the ops you are currently running depend on them. So, to generate 
summaries, we need to run all of these summary nodes. Managing them manually would
be tedious, so use tf.merge_all_summaries to combine them into a single op that
generates all the summary data.

Then, you can just run the merged summary op, which will generate a serialized Summary
protobuf object with all of your summary data at a given step. Finally, to write this
summary data to disk, pass the Summary protobuf to a tf.train.SummaryWriter.

The SummaryWriter takes a logdir in its constructor, this logdir is quite important, it's
the directory where all of the events will be written out. Also, the SummaryWriter can
optionally take a GraphDef in its constructor. If it receives one, then TensorBoard will
visualize your graph as well.

Now that you've modified your graph and have a SummaryWriter, you're ready to start
running your network! If you want, you could run the merged summary op every single
step, and record a ton of training data. That's likely to be more data than you need, though.
Instead, consider running the merged summary op every n steps.
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Common Summary operations
This is a list of the different Summary types, and the parameters employed on its
construction:

tf.scalar_summary (tag, values, collections=None, name=None)
tf.image_summary (tag, tensor, max_images=3, collections=None, name=None)
tf.histogram_summary (tag, values, collections=None, name=None)

Special Summary functions
These are special functions, that are used to merge the values of different operations, be it a
collection of summaries, or all summaries in a graph:

tf.merge_summary (inputs, collections=None, name=None)
tf.merge_all_summaries (key='summaries')

Finally, as one last aid to legibility, the visualization uses special icons for constants and
summary nodes. To summarize, here's a table of node symbols:

Symbol Meaning

High-level node representing a name scope. Double-click to expand a high-level
node.

Sequence of numbered nodes that are not connected to each other.

Sequence of numbered nodes that are connected to each other.

 

 

An individual operation node.

 

 

A constant.
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A summary node.

Edge showing the data flow between operations.

Edge showing the control dependency between operations.

A reference edge showing that the outgoing operation node can mutate the incoming
tensor.

Interacting with TensorBoard's GUI
Navigate the graph by panning and zooming. Click and drag to pan, and use a scroll
gesture to zoom. Double-click on a node, or click on its + button, to expand a name scope
that represents a group of operations. To easily keep track of the current viewpoint when
zooming and panning, there is a minimap in the bottom-right corner:

Openflow with one expanded operations group and legends

To close an open node, double-click it again or click its – button. You can also click once to
select a node. It will turn a darker color, and details about it and the nodes it connects to
will appear in the info card in the upper-right corner of the visualization.
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Selection can also be helpful in understanding high-degree nodes. Select any high-degree
node, and the corresponding node icons for its other connections will be selected as well.
This makes it easy, for example, to see which nodes are being saved and which aren't.

Clicking on a node name in the info card will select it. If necessary, the viewpoint will
automatically pan so that the node is visible.

Finally, you can choose two color schemes for your graph, using the color menu above the
legend. The default Structure View shows the structure: when two high-level nodes have the
same structure, they appear in the same color of the rainbow. Uniquely structured nodes
are gray. There's a second view, which shows what device the different operations run on.
Name scopes are colored proportionally, to the fraction of devices for the operations inside
them.

Reading information from disk
TensorFlow reads a number of the most standard formats, including the well-known CSV,
image files (JPG and PNG decoders), and the standard TensorFlow format.

Tabulated formats - CSV
For reading the well-known CSV format, TensorFlow has its own methods. In comparison
with other libraries, such as pandas, the process to read a simple CSV file is somewhat more
complicated.

The reading of a CSV file requires a couple of the previous steps. First, we must create a
filename queue object with the list of files we'll be using, and then create a
TextLineReader. With this line reader, the remaining operation will be to decode the CSV
columns, and save it on tensors. If we want to mix homogeneous data together, the pack
method will work.

The Iris dataset
The Iris flower dataset or Fisher's Iris dataset is a well know benchmark for classification
problems. It's a multivariate data set introduced by Ronald Fisher in his 1936 paper The use
of multiple measurements in taxonomic problems as an example of linear discriminant analysis.
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The data set consists of 50 samples from each of three species of Iris (Iris setosa, Iris
virginica, and Iris versicolor). Four features were measured in each sample: the length and
the width of the sepals and petals, in centimeters. Based on the combination of these four
features, Fisher developed a linear discriminant model to distinguish the species from each
other. (You'll be able to get the .csv file for this dataset in the code bundle of the book.)

In order to read the CSV file, you will have to download it and put it in the same directory
as where the Python executable is running.

In the following code sample, we'll be reading and printing the first five records from the
well-known Iris database:

import tensorflow as tf
sess = tf.Session()
filename_queue = tf.train.string_input_producer(
tf.train.match_filenames_once("./*.csv"),
shuffle=True)
reader = tf.TextLineReader(skip_header_lines=1)
key, value = reader.read(filename_queue)
record_defaults = [[0.], [0.], [0.], [0.], [""]]
col1, col2, col3, col4, col5 = tf.decode_csv(value,
record_defaults=record_defaults) # Convert CSV records to tensors. Each
features = tf.pack([col1, col2, col3, col4])
tf.global_variables_initializer().run(session=sess)
coord = tf.train.Coordinator()
threads = tf.train.start_queue_runners(coord=coord, sess=sess)
for iteration in range(0, 5):
        example = sess.run([features])
        print(example)
coord.request_stop()
coord.join(threads)

And this is how the output would look:
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Reading image data
TensorFlow allows importing data from image formats, it will really be useful for importing
custom image inputs for image oriented models.The accepted image formats will be JPG
and PNG, and the internal representation will be uint8 tensors, one rank two tensor for
each image channel:

Sample image to be read
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Loading and processing the images
In this example, we will load a sample image and apply some additional processing to it,
saving the resulting images in separate files:

import tensorflow as tf
sess = tf.Session()
filename_queue =
tf.train.string_input_producer(tf.train.match_filenames_once("./blue_jay.jp
g"))
reader = tf.WholeFileReader()
key, value = reader.read(filename_queue)
image=tf.image.decode_jpeg(value)
flipImageUpDown=tf.image.encode_jpeg(tf.image.flip_up_down(image))
flipImageLeftRight=tf.image.encode_jpeg(tf.image.flip_left_right(image))
tf.initialize_all_variables().run(session=sess)
coord = tf.train.Coordinator()
threads = tf.train.start_queue_runners(coord=coord, sess=sess)
example = sess.run(flipImageLeftRight)
print example
file=open ("flippedUpDown.jpg", "wb+")
file.write (flipImageUpDown.eval(session=sess))
file.close()
file=open ("flippedLeftRight.jpg", "wb+")
file.write (flipImageLeftRight.eval(session=sess))
file.close()

The print example line will show a line-by-line summary of the RGB values in the image:
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The final images will look like:

Original and altered images compared (flipUpDown and flipLeftRight)

Reading from the standard TensorFlow format
Another approach is to convert the arbitrary data you have, into the official format. This
approach makes it easier to mix and match data sets and network architectures.

You can write a little program that gets your data, stuffs it in an example protocol buffer,
serializes the protocol buffer to a string, and then writes the string to a TFRecords file
using the tf.python_io.TFRecordWriter class.

To read a file of TFRecords, use tf.TFRecordReader with the
tf.parse_single_example decoder. The parse_single_example op decodes the
example protocol buffers into tensors.

Summary
In this chapter we have learned the main data structures and simple operations we can
apply to data, and a succinct summary of the parts of a computational graph.

These kinds of operations will be the foundation for the forthcoming techniques. They allow
the data scientist to decide on simpler models if the separation of classes or the adjusting
functions look sufficiently clear, or to advance directly to much more sophisticated tools,
having looked at the overall characteristics of the current data.

In the next chapter, we will begin building and running graphs, and will solve problems
using some of the methods found in this chapter.



2
Clustering

In this chapter, we will start applying the data transforming operations that we learned in
the previous chapter, and will begin finding interesting patterns in some given information,
discovering groups of data, or clusters, using clustering techniques.

In this process we will also gain two new tools: the ability to generate synthetic sample sets
from a collection of representative data structures via the scikit-learn library, and the ability
to graphically plot our data and model results, this time via the matplotlib library.

The topics we will cover in this chapter are as follows:

Getting an idea of how clustering works, and comparing it to alternative, existing
classification techniques
Using scikit-learn and matplotlib to enrich the possibilities of dataset choices, and
to get a professional-looking graphical representation of the data
Implementing the k-means clustering algorithm
Implementing the nearest neighbor method, and comparing the results with that
of the k-means

Learning from data - unsupervised learning
In this chapter we will be reviewing two cases of unsupervised learning.

Unsupervised learning basically consists of finding patterns on a previous dataset.
Normally, little or no information is given for this technique and the procedure should be
able to automatically determine how the information is organized, and recognize the
different structures in the data organization.
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Clustering
One of the simplest operations that can be initially to unlabeled dataset is to try to
understand the possible groups of the dataset members' common features.

To do so, the dataset can be split into an arbitrary number of segments, where each can be
represented as a central mass (centroid) point that represents the points belonging to a
determined group or cluster.

In order to define the criteria that assigns the same group to different group members, we
need to define a concept that represents the distance between data elements, so we can
simply say that all class members are closer to their own centroids than to any other
centroid.

In the following graphic, we can see the results of a typical clustering algorithm and the
representation of the cluster centers:

Sample clustering algorithm output
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k-means
k-means is a very popular clustering algorithm and it can be easily implemented. It is very
straight forward, and applying it as a first procedure to datasets with good class separation
can provide a good a priori understanding of the data.

Mechanics of k-means
k-means tries to divide a set of samples in k disjoint groups or clusters using the mean value
of the members as the main indicator. This point is normally called a Centroid, referring to
the arithmetical entity with the same name, and is represented as a vector in a space of
arbitrary dimensions.

k-means is a naive method because it works by looking for the appropriate centroids but
doesn't know a priori what the number of clusters is.

In order to get an evaluation of how many clusters give a good representation of the
provided data, one of the more popular methods is the Elbow method.

Algorithm iteration criterion
The criterion and goal of this method is to minimize the sum of squared distances from the
cluster's member to the actual centroid of all cluster-contained samples. This is also known
as Minimization of Inertia.

Error Minimization criteria for k-means

Latex: \sum_{i=0}^{n}\lim_{\mu_j\epsilon C}(\left \| x_{j} – \mu_i \right \|^{2}).
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k-means algorithm breakdown
The mechanism of the k-means algorithm can be summarized by the following flowchart:

Simplified flowchart of the k-means process

The algorithm can be simplified as follows:

We start with the unclassified samples and take k elements as the starting1.
centroids. There are also possible simplifications of this algorithm that take the
first elements in the element list for the sake of brevity.
We then calculate the distances between the samples and the first chosen samples2.
and get the first, calculated centroids (or other representative values). You can see
the centroids in the illustration move toward a more common-sense centroid.
After the centroids change, their displacement will provoke the individual3.
distances to change, and so the cluster membership can change.
This is the time when we recalculate the centroids and repeat the first steps in4.
case the stop condition isn't met.
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The stopping conditions could be of various types:

After N iterations it could be that either we chose a very large number and we'll
have unnecessary rounds of computing, or it could converge slowly and we will
have very unconvincing results if the centroid doesn't have a very stable means.
This stop condition could also be used as a last resort, in case we have a very long
iterative process.
Referring to the previous mean result, a possible better criterion for the
convergence of the iterations is to take a look at the changes of the centroids, be it
in total displacement or total cluster element switches. The last one is employed
normally, so we will stop the process once there are no more elements changing
from its current cluster to another one.

k-means simplified graphic

Pros and cons of k-means
The advantages of this method are:

It scales very well (most of the calculations can be run in parallel)
It has been used in a very large range of applications
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But simplicity also comes with a cost (no silver bullet rule applies):

It requires a-priori knowledge (the number of possible clusters should be known
beforehand)
The outlier values can Push the values of the centroids, as they have the same
value as any other sample
As we assume that the figure is convex and isotropic, it doesn't work very well
with non-circle-like delimited clusters

k-nearest neighbors
k-nearest neighbors (k-nn) is a simple, classical method for clustering that will serve as a
good introduction to this class of techniques, looking at the vicinity of each sample, and
supposing that each new sample should pertain to the class of the already known data
points.
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Mechanics of k-nearest neighbors
k-nn can be implemented in more than one of our configurations, but in this chapter we will
use the Semi Supervised approach. We will start from a certain number of already assigned
samples, and we will later guess the cluster membership based on the characteristics of the
train set.

Nearest neighbor algorithm
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In the previous figure, we can see a breakdown of the algorithm. It can be summarized by
the following steps:

We place the previously known samples on the data structures.1.
We then read the next sample to be classified and calculate the Euclidean distance2.
from the new sample to every sample of the training set.
We decide the class of the new element by selecting the class of the nearest3.
sample by Euclidean distance. The k-nn method requires the vote of the k closest
samples.
We repeat the procedure until there are no more remaining samples.4.

Pros and cons of k-nn
The advantages of this method are:

Simplicity; no need for tuning parameters
No formal training; we just need more training examples to improve the model

The disadvantages:

Computationally expensive (All distances between points and every new sample
have to be calculated)

Practical examples for Useful libraries
We will discuss some useful libraries in the following sections.

matplotlib plotting library
Data plotting is an integral part of data science discipline. For this reason, we need a very
powerful framework to be able to plot our results. For this task, we do not have a general
solution implemented in TensorFlow, we will use the matplotlib library.

From the matplotlib site (http://matplotlib.org/), the definition is:

“matplotlib is a Python 2D plotting library which produces publication quality figures in a
variety of hardcopy formats and interactive environments across platforms.”
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Sample synthetic data plotting
In this example, we will generate a list of 100 random numbers, generate a plot of the
samples, and save the results in a graphics file:

import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt
with tf.Session() as sess:
 fig, ax = plt.subplots()
 ax.plot(tf.random_normal([100]).eval(),
tf.random_normal([100]).eval(),'o')
 ax.set_title('Sample random plot for TensorFlow')
plt.savefig("result.png")

This is the resulting image:

Sample plot generated with TensorFlow and matplotlib

In order to see a more general explanation of the scikit dataset module,
please refer to: http://matplotlib.org/.

http://matplotlib.org/
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scikit-learn dataset module
TensorFlow is not currently implementing methods for the easy generation of synthetic
datasets. For this reason, we'll be using the sklearn library as a helper.

About the scikit-learn library
From its website (h t t p ://s c i k i t - l e a r n . o r g /s t a b l e /):

“scikit-learn (formerly scikits.learn) is an open source machine learning library for the
Python programming language. It features various classification, regression and
clustering, and is designed to interoperate with the Python numerical and scientific
libraries NumPy and SciPy.”

In this example, we will use the dataset module, which deals with the generation and
loading of many well-known synthetic, and field extracted, datasets.

In order to see a more general explanation of the scikit dataset module,
please refer to h t t p ://s c i k i t - l e a r n . o r g /s t a b l e /d a t a s e t s /.

Synthetic dataset types
Some of the generated dataset types we'll be using are:

Blob, circle, and moon dataset types
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Blobs dataset
This dataset is ideal for testing simple clustering algorithms. It doesn't present problems
because the data is grouped coherently and the separation of classes is clear.

Employed method
The following method is used for employed method:

sklearn.datasets.make_blobs(n_samples=100, n_features=2,  centers=3,
cluster_std=1.0, center_box=(-10.0, 10.0),  shuffle=True,
random_state=None)

Here, n_samples is the total data numbers, n_features is the quantity of columns or
features our data has, centers is a list of centers or a number of random centers,
cluster_std is the standard deviation, center_box is the bounding box for each cluster
center when centers are generated at random, shuffle indicates if we have to shuffle the
samples, and random_state is the random seed.

Circle dataset
This is a dataset that has circles within other circles. It is a nonlinear, separable problem, so
it needs to be solved by a nonlinear model. This rules out the simple algorithms such as k-
means. In this chapter we'll try to use it anyway, to make a point.

Employed method
The following method is used for employed method:

sklearn.datasets.make_circles(n_samples=100,shuffle=True,noise=None,
random_state=None,factor=0.8)

Here, n_samples is the total data numbers, shuffle indicates whether we have to shuffle
the samples, noise is the number of random amounts to be applied to the circular data,
random_state is the random seed, and factor is the scale factor between circles.

Moon dataset
This is another nonlinear problem but with another type of class separation, because there is
no closure such as in the circle's ring.
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Project 1 – k-means clustering on synthetic
datasets

Dataset description and loading
During this chapter, we'll be using generated datasets that are specially crafted to have
special properties. Two of the target properties are the possibility of linear separation of
classes and the existence of clearly separated clusters (or not).

Generating the dataset
With these lines, we create the data structures that will contain all the elements for working
on the solutions, that is:

centers = [(-2, -2), (-2, 1.5), (1.5, -2), (2, 1.5)]
data, features = make_blobs (n_samples=200, centers=centers, n_features =
2, cluster_std=0.8, shuffle=False, random_state=42)

Graphing the dataset via matplotlib:

    ax.scatter(np.asarray(centers).transpose()[0],
np.asarray(centers).transpose()[1], marker = 'o', s = 250)
    plt.plot()

Model architecture
The points variable contains the 2D coordinates of the dataset points, the centroids variable
will contain the coordinates of the center points of the groups, and
the cluster_assignments variable contains the centroid index for each data element.

For example, cluster_assignments[2] = 1 indicates that the data[2] data point
pertains to the cluster with the center, centroid 1. The location of centroid 1 is located in
centroids[1].

points=tf.Variable(data)
cluster_assignments = tf.Variable(tf.zeros([N], dtype=tf.int64))
centroids = tf.Variable(tf.slice(points.initialized_value(), [0,0], [K,2]))
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Then we can draw the position of these centroids using matplotlib:

fig, ax = plt.subplots()
ax.scatter(np.asarray(centers).transpose()[0],
np.asarray(centers).transpose()[1], marker = 'o', s = 250)
plt.show()

Initial center seeding

Loss function description and optimizer loop
Then we will do N copies of all centroids, K copies of each point, and N x K copies of every
point so we can calculate the distances between each point and every centroid, for each
dimension:

rep_centroids = tf.reshape(tf.tile(centroids, [N, 1]), [N, K, 2])
rep_points = tf.reshape(tf.tile(points, [1, K]), [N, K, 2])
sum_squares = tf.reduce_sum(tf.square(rep_points - rep_centroids),
reduction_indices=2)
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Then we perform the sum for all dimensions and get the index of the lowest sum (this will
be the index of the centroid or cluster assigned for each point):

best_centroids = tf.argmin(sum_squares, 1)

Centroids will also be updated with a bucket:mean function, defined in the full source
code.

Stop condition
This is the stop condition that the new centroids and assignments don't change:

did_assignments_change = tf.reduce_any(tf.not_equal(best_centroids,
cluster_assignments))

Here, we use control_dependencies to calculate whether we need to update the
centroids:

with tf.control_dependencies([did_assignments_change]):
    do_updates = tf.group(
    centroids.assign(means),
    cluster_assignments.assign(best_centroids))

Results description
We get the following output when the program is executed:
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This is a summarizing graphic of the centroid changes after a round of iterations with the
original clusters drawn as they were generated from the algorithm.

In the following image, we represent the different stages in the application of the k-means
algorithm for this clearly separated case:

Centroid changes per iteration

Full source code
Following is the complete source code:

import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt
with tf.Session() as sess:
 fig, ax = plt.subplots()
 ax.plot(tf.random_normal([100]).eval(),
tf.random_normal([100]).eval(),'o')
 ax.set_title('Sample random plot for TensorFlow')
plt.savefig("result.png")

import tensorflow as tf
import numpy as np
import time
import matplotlib
import matplotlib.pyplot as plt
from sklearn.datasets.samples_generator import make_blobs
from sklearn.datasets.samples_generator import make_circles
DATA_TYPE = 'blobs'
# Number of clusters, if we choose circles, only 2 will be enough
if (DATA_TYPE == 'circle'):
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 K=2
else:
 K=4
# Maximum number of iterations, if the conditions are not met
MAX_ITERS = 1000
N = 200
start = time.time()
centers = [(-2, -2), (-2, 1.5), (1.5, -2), (2, 1.5)]
if (DATA_TYPE == 'circle'):
 data, features = make_circles(n_samples=200, shuffle=True, noise=
0.01,factor=0.4)
else:
 data, features = make_blobs (n_samples=200, centers=centers, n_features=
2, cluster_std=0.8, shuffle=False, random_state=42)
fig, ax = plt.subplots()
ax.scatter(np.asarray(centers).transpose()[0],np.asarray(centers).transpose
()[1], marker = 'o', s = 250)
plt.show()
fig, ax = plt.subplots()
if (DATA_TYPE == 'blobs'):
ax.scatter(np.asarray(centers).transpose()[0],np.asarray(centers).transpose
()[1], marker = 'o', s = 250)
    ax.scatter(data.transpose()[0], data.transpose()[1], marker = 'o', s =
100,c = features, cmap=plt.cm.coolwarm )
plt.plot()
points=tf.Variable(data)
cluster_assignments = tf.Variable(tf.zeros([N], dtype=tf.int64))
centroids = tf.Variable(tf.slice(points.initialized_value(), [0,0], [K,2]))
sess = tf.Session()
sess.run(tf.global_variables_initializer())
rep_centroids = tf.reshape(tf.tile(centroids, [N, 1]), [N, K, 2])
rep_points = tf.reshape(tf.tile(points, [1, K]), [N, K, 2])
sum_squares = tf.reduce_sum(tf.square(rep_points -
rep_centroids),reduction_indices=2)
best_centroids = tf.argmin(sum_squares, 1)
did_assignments_change =
tf.reduce_any(tf.not_equal(best_centroids,cluster_assignments))
def bucket_mean(data, bucket_ids, num_buckets):
        total = tf.unsorted_segment_sum(data, bucket_ids, num_buckets)
        count = tf.unsorted_segment_sum(tf.ones_like(data),
bucket_ids,num_buckets)
        return total / count
means = bucket_mean(points, best_centroids, K)
with tf.control_dependencies([did_assignments_change]):
    do_updates =
tf.group(centroids.assign(means),cluster_assignments.assign(best_centroids)
)
changed = True
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iters = 0
fig, ax = plt.subplots()
if (DATA_TYPE == 'blobs'):
        colourindexes=[2,1,4,3]
else:
        colourindexes=[2,1]
while changed and iters < MAX_ITERS:
                fig, ax = plt.subplots()
                iters += 1
                [changed, _] = sess.run([did_assignments_change,
do_updates])
                [centers, assignments] = sess.run([centroids,
cluster_assignments])
                ax.scatter(sess.run(points).transpose()[0],
                sess.run(points).transpose()[1], marker = 'o', s = 200, c =
assignments,cmap=plt.cm.coolwarm )
                ax.scatter(centers[:,0],centers[:,1], marker = '^', s =
550, c =colourindexes, cmap=plt.cm.plasma)
                ax.set_title('Iteration ' + str(iters))
plt.savefig("kmeans" + str(iters) +".png")
ax.scatter(sess.run(points).transpose()[0],
sess.run(points).transpose()[1], marker = 'o', s = 200, c = assignments,
cmap=plt.cm.coolwarm )
plt.show()
end = time.time()
print ("Found in %.2f seconds" % (end-start)), iters, "iterations"
print ("Centroids:")
print (centers)
print ("Cluster assignments:", assignments)

This is the simplest case for observing the algorithm mechanics. When the data comes from
the real world, the classes are normally not so clearly separated and it is more difficult to
label the data samples.



Clustering

[ 55 ]

k-means on circle synthetic data
For the circular plot, we observe that this data characterization is not simple to represent by
a simple set of means. As the image clearly shows, the two circles either share a Centroid
position, or are really close and so we cannot predict a clear outcome:

Circle type dataset

For this dataset, we are only using two classes to be sure the main drawbacks of this
algorithm are understood:

k-means applied to a circular synthetic dataset
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As we can see, the initial centers drifted toward the areas that had the most concentrated
sample numbers, and so divided the data linearly. This is one of the limitations of the
simple models we are employing at this stage. To cope with nonlinear separability samples,
we can try other statistical approaches outside the scope of this chapter, such as density-
based spatial clustering of applications with noise (DBSCAN).

Project 2 – nearest neighbor on synthetic
datasets
In this project, we will be loading a dataset with which the previous algorithm (k-means)
has problems separating classes.

Dataset generation
The dataset is the same circular classes dataset from the first example with two classes, but
this time we will increase the error probability by adding a bit more noise (from 0.01 to
0.12):

    data, features = make_circles(n_samples=N, shuffle=True,
noise=0.12,factor=0.4)

This is the resulting training data plot:
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Model architecture
The variables that will sustain data are simply the original data and a test list, which will
hold the calculated classes for the test data:

    data, features = make_circles(n_samples=N, shuffle=True, noise= 0.12,
factor=0.4)
    tr_data, tr_features= data[:cut], features[:cut]
    te_data,te_features=data[cut:], features[cut:]
    test=[]

Loss function description
In clustering, we will use the function to optimize as the Euclidean distance, the same as
Chapter 1, Exploring and Transforming Data. It is calculated on the cluster assignment loop,
getting the distance from the new point to the existing training points, asking for the index
of the minimum, and then using that index to search the class of the nearest neighbor:

    distances = tf.reduce_sum(tf.square(tf.sub(i ,
tr_data)),reduction_indices=1)
    neighbor = tf.arg_min(distances,0)

Stop condition
In this simple example, we will finish once all the elements of the test partition have been
visited.

Results description
Here is a graphic of the test data class assignation where we can see the clearly separated
classes. We can observe that, at least with this limited dataset scope, this method works
better than the non-overlapping, blob-optimizing, k-means method.
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Full source code
Following is the complete source code:

import tensorflow as tf
import numpy as np
import time

import matplotlib
import matplotlib.pyplot as plt

from sklearn.datasets.samples_generator import make_circles

N=210
K=2
# Maximum number of iterations, if the conditions are not met
MAX_ITERS = 1000
cut=int(N*0.7)

start = time.time()

data, features = make_circles(n_samples=N, shuffle=True, noise= 0.12,
factor=0.4)
tr_data, tr_features= data[:cut], features[:cut]
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te_data,te_features=data[cut:], features[cut:]

fig, ax = plt.subplots()
ax.scatter(tr_data.transpose()[0], tr_data.transpose()[1], marker = 'o', s
= 100, c = tr_features, cmap=plt.cm.coolwarm )
plt.plot()

points=tf.Variable(data)
cluster_assignments = tf.Variable(tf.zeros([N], dtype=tf.int64))

sess = tf.Session()
sess.run(tf.global_variables_initializer())

test=[]

for i, j in zip(te_data, te_features):
    distances = tf.reduce_sum(tf.square(tf.subtract(i , tr_data)),axis=1)
    neighbor = tf.arg_min(distances,0)

    #print tr_features[sess.run(neighbor)]
    #print j
    test.append(tr_features[sess.run(neighbor)])
print (test)
fig, ax = plt.subplots()
ax.scatter(te_data.transpose()[0], te_data.transpose()[1], marker = 'o', s
= 100, c = test, cmap=plt.cm.coolwarm )
plt.plot()
plt.show()

#rep_points_v = tf.reshape(points, [1, N, 2])
#rep_points_h = tf.reshape(points, [N, 2])
#sum_squares = tf.reduce_sum(tf.square(rep_points - rep_points),
reduction_indices=2)
#print(sess.run(tf.square(rep_points_v - rep_points_h)))

end = time.time()
print ("Found in %.2f seconds" % (end-start))
print ("Cluster assignments:", test)
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Summary
In this chapter, we've seen a simple overview of some of the most basic models we can
implement, but tried to be as detailed in the explanation as possible.

From now on, we will be able to generate synthetic datasets, allowing us to rapidly test the
adequacy of a model for different data configurations and so evaluate the advantages and
shortcomings of them, without having to load models with a greater number of unknown
characteristics.

Additionally, we have implemented the first iterative methods and tested convergence, a
task that will continue in the following chapters in a similar way, but with finer and much
more exact methods.

In the next chapter, we will solve classification problems using linear functions, and for the
first time, use previous data from training sets to learn from its characteristics. This is the
objective of supervised learning techniques and is more useful in general for a lot of real-life
problem-solving.



3
Linear Regression

In this chapter, we will begin applying all the standard steps employed in a machine
learning project in order to fit previously given data with a line that minimizes error and
loss functions.

In the previous chapter, we saw problems with both a limited scope and a number of
possible solutions. These types of models are also related with a qualitative assessment
type, that is, assigning a label to a sample, based on previous labeling. This result
is normally found in problems pertaining to the social domain.

We could also be interested in predicting the exact numeric output value of a (previously
modeled) function. This approach is akin to the physical domain and can be used to predict
the temperature or humidity or the value of a certain good, knowing a series of its historical
values before hand, and it is called regression analysis.

In the case of linear regression, we look for a determinate relationship between the input
and the output variables, represented by a linear equation.

Univariate linear modelling function
As previously stated, in linear regression, we try to find a linear equation that minimizes
the distance between data points and the modeled line.
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This relationship can be represented by this canonical linear function:

The model function takes the form:

Here, ss0  or  bias is the intercept, the function value for x is zero, and ss1 is the slope of
the modeled line. The variable x is normally called the independent variable, and y the
dependent one, but they can also be called the regressor and response variables
respectively.

Sample data generation
In the following example, we will generate an approximate sample random distribution
based on a line with ss0 = 2.0, summed with a vertical noise of maximum amplitude 0.4.

In[]:
#Indicate the matplotlib to show the graphics inline
%matplotlib inline
import matplotlib.pyplot as plt # import matplotlib
import numpy as np # import numpy
trX = np.linspace(-1, 1, 101) # Linear space of 101 and [-1,1]
#Create The y function based on the x axis
trY = 2 * trX + np.random.randn(*trX.shape) * 0.4 + 0.2
plt.figure() # Create a new figure
plt.scatter(trX,trY) #Plot a scatter draw of the random datapoints
# Draw one line with the line function
plt.plot (trX, .2 + 2 * trX)
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And the resulting graph will look like this:

Noise added linear sampling and linear function

Determination of the cost function
As with all machine learning techniques, we have to determine an error function, which we
need to minimize, that indicates the appropriateness of the solution to the problem.

The most generally used cost function for linear regression is called least squares.

Least squares
In order to calculate the least squares error for a function, we look for a measure of how
close the points are to the modeling line, in a general sense. So we define a function that
measures for each tuple xn, yn how far it is from the modeled line's corresponding value.
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For 2D regression, we have a list of number tuples (X0,Y0),(X1,Y1)…(Xn,Yn), and the values to
find are of β0 and β1, by minimizing the following function: 

In simple terms, the summation represents the sum of Euclidean distances between
predicted and actual values.

The reason for the operations is that the summation of the squared errors gives us a unique
and simple global number, the difference between expected and real number gives us the
proper distance, and the square power gives us a positive number, which penalizes
distances in a more-than-linear fashion.

Minimizing the cost function
The next step is to set a method to minimize the cost function. In linear calculus, one of the
fundamental elements of the task of locating minima is reduced to calculating the
derivatives of the function and to seek its zeroes. For this, the function has to have a
derivative and preferably be convex; it can be proved that the least squares function
complies with these two conditions. This is very useful for avoiding the known problems of
local minima.

Loss function representation
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General minima for least squares
The kind of problem we are trying to solve (least squares) can be presented in matrix form:

Here, J is the cost function and has the following solution:

In this chapter, we will use an iterative method gradient descent, which will be useful in the
following chapters in a more generalized fashion.

Iterative methods - gradient descent
The gradient descent is by its own nature an iterative method and the most generally used
optimization algorithm in the machine learning field. It combines a simple approach with a
good convergence rate, considering the complexity of parameter combinations that it can be
optimized with it.

A 2D linear regression starts with a function with randomly defined weights or multipliers
for the linear coefficient. After the first values are defined, the second step is to apply a
recurrent function in the following form:

In this equation, we can easily derive the mechanism of the method. We start with the initial
set of coefficients and then move in the opposite direction of maximum change in the
function. The α variable is named the step and will affect how far we will move in the
direction of the gradient searching for minimal.
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The final step is to optionally test the changes between iteration and see whether the
changes are greater than an epsilon or to check whether the iteration number is reached.

If the function is not convex, it is suggested to run gradient descent multiple times with
random values and then select coefficients for which the cost value is the lowest. In the case
of non-convex functions, the gradient descent ends up in a minimum, which can be local.
Therefore, as for non-convex functions, the result depends on initial values, it is suggested
to randomly set them multiple times and among all the solutions, pick the one with lowest
cost.

Example section
Let's now discuss useful libraries and modules.

Optimizer methods in TensorFlow – the train
module
The training or parameter optimization stage is a vital part of the machine learning
workflow.

For this matter, TensorFlow has a tf.train module, which is a helper set of objects
dedicated to implementing a range of different optimizing strategies that the data scientist
will need. The main object provided by this module is called Optimizer.

The tf.train.Optimizer class
The Optimizer class allows you to calculate gradients for a loss function and apply them
to different variables of a model. Among the most well-known algorithm subclasses, we
find gradient descent, Adam, and Adagrad.

One major tip regarding this class is that the Optimizer class itself cannot be instantiated;
one of the subclasses should be.
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As discussed previously, TensorFlow allows you to define the functions in a symbolic way,
so the gradients will be applied in a symbolic fashion, too, improving the accuracy of the
results and the versatility of the operations to be applied to the data.

In order to use the Optimizer class, we need to perform the following steps:

Create an Optimizer with the desired parameters (in this case, gradient descent).1.

        opt = GradientDescentOptimizer(learning_rate= [learning rate])

Create an operation calling the minimize method for the cost functions.2.

        optimization_op = opt.minimize(cost, var_list=[variables list])

The minimize method has the following form:

tf.train.Optimizer.minimize(loss, global_step=None, var_list=None,
gate_gradients=1, aggregation_method=None,
colocate_gradients_with_ops=False, name=None)

The main parameters are as follows:

loss: This is a tensor that contains the values to be minimized.
global_step: This variable will increment by one after the Optimizer works.
var_list: This contains variables to optimize.

In practice, the optimize method combines calls
to compute_gradients() and apply_gradients(). If you want to
process the gradient before applying them, call compute_gradients()
and apply_gradients() explicitly instead of using this function. If we
want to perform only one step of training, we must execute the run
method in the form of opt_op.run().



Linear Regression

[ 68 ]

Other Optimizer instance types
Following are the other Optimizer instance types:

tf.train.AdagradOptimizer: This is an adaptive method based on the
frequency of parameters, with a monotonically descending learning rate.
tf.train.AdadeltaOptimizer: This is an improvement on Adagrad, that
doesn't carry a descending learning rate.
tf.train.MomentumOptimizer: This is an adaptive method that accounts for
different change rates between dimensions.
And there are other more specific ones, such as tf.train.AdamOptimizer,
tf.train.FtrlOptimizer, tf.train.RMSPropOptimizer.

Example 1 – univariate linear regression
We will now work on a project in which we will apply all the concepts we succinctly
covered in the preceding pages. In this example, we will create one approximately linear
distribution; afterwards, we will create a regression model that tries to fit a linear function
that minimizes the error function (defined by least squares).

This model will allow us to predict an outcome for an input value, given one new sample.

Dataset description
For this example, we will be generating a synthetic dataset consisting of a linear function
with added noise:

import TensorFlow as tf
import numpy as np
trX = np.linspace(-1, 1, 101)
trY = 2 * trX + np.random.randn(*trX.shape) * 0.4 + 0.2 # create a y value
which is approximately linear but with some random noise
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With these lines, we can represent the lines as a scatter plot and the ideal line function.

import matplotlib.pyplot as plt
plt.scatter(trX,trY)
plt.plot (trX, .2 + 2 * trX)

Generated samples and original linear function without noise

Model architecture
Now we create a variable to hold the values in the x and y axes. Then we1.
symbolically define the model as the multiplication of X and the weights w.
Then we generate some variables, to which we assign initial values in order to2.
launch the model:

        In[]:
        X = tf.placeholder("float", name="X") # create symbolic variables
        Y = tf.placeholder("float", name = "Y")
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We now define our model by declaring name_scope as Model. This scope groups3.
all the variables it contains in order to form a unique entity with homogeneous
entities. In this scope, we first define a function that receives the variables of the x
axis coordinates, the weight (slope), and the bias. Then we create a new variable,
objects, to hold the changing parameters and instantiate the model with the
y_model variable:

         with tf.name_scope("Model"):

           def model(X, w, b):
             return tf.mul(X, w) + b # just define the line as X*w + b0

           w = tf.Variable(-1.0, name="b0") # create a shared variable
           b = tf.Variable(-2.0, name="b1") # create a shared variable
           y_model = model(X, w, b)

In the dashboard, you can see the image of the loss function we have been recollecting. In
the graph section, when you zoom into the Model, you can see the sum and multiplication
operation, the parameter variables b0 and b1, and the gradient operation applied over the
Model, as shown next:
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Cost function description and Optimizer loop
In the Cost Function, we create a new scope to include all the operations of this1.
group and use the previously created y_model to account for the calculated y
axis values that we use to calculate the loss.

        with tf.name_scope("CostFunction"):
        cost = (tf.pow(Y-y_model, 2)) # use sqr error for cost

To define the chosen optimizer, we initialize a GradientDescentOptimizer,2.
and the step will be of 0.01, which seems like a reasonable start for convergence.

         train_op = tf.train.GradientDescentOptimizer(0.05).minimize(cost)

It's time to create the session and to initialize the variables we want to save for3.
reviewing in TensorBoard. In this example, we will be saving one scalar variable
with the error result of the last sample for each iteration. We will also save the
graph structure in a file for reviewing.

        sess = tf.Session()
        init = tf.initialize_all_variables()
        tf.train.write_graph(sess.graph,
          '/home/ubuntu/linear','graph.pbtxt')
        cost_op = tf.scalar_summary("loss", cost)
        merged = tf.merge_all_summaries()
        sess.run(init)
        writer = tf.train.SummaryWriter('/home/ubuntu/linear',
          sess.graph)

For model training, we set an objective of 100 iterations, where we send each of4.
the samples to the train operation of the gradient descent. After each iteration,
we plot the modeling line and add the value of the last error to the summary.

        In[]:
        for i in range(100):
         for (x, y) in zip(trX, trY):
           sess.run(train_op, feed_dict={X: x, Y: y})
           summary_str = sess.run(cost_op, feed_dict={X: x, Y: y})
           writer.add_summary(summary_str, i)
         b0temp=b.eval(session=sess)
         b1temp=w.eval(session=sess)
         plt.plot (trX, b0temp + b1temp * trX )
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The resulting plot is as follows; we can see how the initial line rapidly converges into a
more plausible result:

With the CostFunction scope zoomed in, we can see the power and subtraction operations
and also the written summary, as shown in the following figure:
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Stop condition

Results description
Now let's check the parameter results, printing the run output of the w and b variables:

printsess.run(w) # Should be around 2
printsess.run(b) #Should be around 0.2
2.09422
0.256044

It's time to graphically review the data again and the suggested final line.

plt.scatter(trX,trY)
plt.plot (trX, testb + trX * testw)
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Reviewing results with TensorBoard
Now let's review the data we saved in TensorBoard.

In order to start TensorBoard, you can go to the logs directory and execute the following
line:

$ tensorboard --logdir=.

TensorBoard will load the event and graph files and will be listening on the 6006 port. You
can then go from your browser to localhost:6000 and see the TensorBoard dashboard as
shown in the following figure:

Full source code
The following is the complete source code:

import matplotlib.pyplot as plt
import numpy as np
import tensorflow as tf
import numpy as np

trX = np.linspace(-1, 1, 101)
trY = 2 * trX + np.random.randn(*trX.shape) * 0.4 + 0.2
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plt.figure()
plt.scatter(trX,trY)
plt.plot (trX, .2 + 2 * trX) # Draw one line with the line function
plt.show()

import matplotlib.pyplot as plt
import tensorflow as tf
import numpy as np

trX = np.linspace(-1, 1, 101)
trY = 2 * trX + np.random.randn(*trX.shape) * 0.4 + 0.2 # create a y value
which is approximately linear but with some random noise

X = tf.placeholder("float", name="X") # create symbolic variables
Y = tf.placeholder("float", name = "Y")

with tf.name_scope("Model"):

    def model(X, w, b):
        return tf.mul(X, w) + b # We just define the line as X*w + b0

    w = tf.Variable(-1.0, name="b0") # create a shared variable
    b = tf.Variable(-2.0, name="b1") # create a shared variable
    y_model = model(X, w, b)

with tf.name_scope("CostFunction"):
    cost = (tf.pow(Y-y_model, 2)) # use sqr error for cost function

train_op = tf.train.GradientDescentOptimizer(0.05).minimize(cost)

sess = tf.Session()
init = tf.global_variables_initializer()
tf.train.write_graph(sess.graph, '/home/ubuntu/linear','graph.pbtxt')
cost_op = tf.summary.scalar("loss", cost)
merged = tf.summary.merge_all()
sess.run(init)
writer = tf.summary.FileWriter('/home/ubuntu/linear', sess.graph)

for i in range(100):
    for (x, y) in zip(trX, trY):
        sess.run(train_op, feed_dict={X: x, Y: y})
        summary_str = sess.run(cost_op, feed_dict={X: x, Y: y})
        writer.add_summary(summary_str, i)
    b0temp=b.eval(session=sess)
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    b1temp=w.eval(session=sess)
    plt.plot (trX, b0temp + b1temp * trX )
plt.show()

print  (sess.run(w)) # Should be around 2
print (sess.run(b)) #Should be around 0.2

plt.scatter(trX,trY)
plt.plot (trX, sess.run(b) + trX * sess.run(w))
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Example – multivariate linear regression
In this example, we will work on a regression problem involving more than one variable.

This will be based on a 1993 dataset of a study of different prices among some suburbs of
Boston. It originally contained 13 variables and the mean price of the properties there.

The only change in the file from the original one is the removal of one variable (b), which
racially profiled the different suburbs.

Apart from that, we will choose a handful of variables that we consider have good
conditions to be modeled by a linear function.

Useful libraries and methods
This section contains a list of useful libraries that we will be using in this example and in
some parts of the rest of the book, outside TensorFlow, to assist the solving of different
problems we will be working on.

Pandas library
When we want to rapidly read and get hints about normally sized data files, the creation of
read buffers and other additional mechanisms can vea overhead. This is one of the current
real-life use cases for Pandas.

This is an excerpt from the Pandas site (pandas.pydata.org):

“Pandas is an open source, BSD-licensed library providing high-performance, easy-to-use
data structures and data analysis tools for Python.”

Pandas main features are as follows:

It has read write file capabilities from CSV and text files, MS Excel, SQL
databases, and even the scientifically oriented HDF5 format
The CSV file-loading routines automatically recognize column headings and
support a more direct addressing of columns
The data structures are automatically translated into NumPy multidimensional
arrays

http://pandas.pydata.org/
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Dataset description
The dataset is represented in a CSV file, and we will open it using the Pandas library.

The dataset includes the following variables:

CRIM: Per capita crime rate by town
ZN: Proportion of residential land zoned for lots over 25,000 sq.ft.
INDUS: Proportion of non-retail business acres per town
CHAS: Charles River dummy variable (= 1 if tract bounds river; 0 otherwise)
NOX: Nitric oxides concentration (parts per 10 million)
RM: Average number of rooms per dwelling
AGE: Proportion of owner-occupied units built prior to 1940
DIS: Weighted distances to five Boston employment centers
RAD: Index of accessibility to radial highways
TAX: Full-value property-tax rate per $10,000
PTRATIO: Pupil-teacher ratio by town
LSTAT: % lower status of the population
MEDV: Median value of owner-occupied homes in $1000's

Here, we have a simple program that will read the dataset and create a detailed account of
the data:

import tensorflow.contrib.learn as skflow
fromsklearn import datasets, metrics, preprocessing
import numpy as np
import pandas as pd

df = pd.read_csv("data/boston.csv", header=0)
printdf.describe()

This will output a statistical summary of the dataset's variable. The first six results are as
follows:

CRIM         ZN       INDUS         CHAS         NOX          RM  \
count  506.000000  506.000000  506.000000  506.000000  506.000000
506.000000
mean     3.613524   11.363636   11.136779    0.069170    0.554695
6.284634
std      8.601545   23.322453    6.860353    0.253994    0.115878
0.702617
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min      0.006320    0.000000    0.460000    0.000000    0.385000
3.561000
25%      0.082045    0.000000    5.190000    0.000000    0.449000
5.885500
50%      0.256510    0.000000    9.690000    0.000000    0.538000
6.208500
75%      3.677082   12.500000   18.100000    0.000000    0.624000
6.623500
max     88.976200  100.000000   27.740000    1.000000    0.871000
8.780000
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Model architecture
The model we will employ in this example is simple but has almost all the elements that we
will need to tackle a more complex one.

In the following diagram, we see the different actors of the whole setup: a model, the
CostFunction, and the gradients. A really useful feature of TensorFlow is the ability to
automatically differentiate between the Model and functions.
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Here, we can find the definition of the variables represented in the preceding section: w, b,
and the model linear equation.

X = tf.placeholder("float", name="X") # create symbolic variables
Y = tf.placeholder("float", name = "Y")

withtf.name_scope("Model"):
    w = tf.Variable(tf.random_normal([2], stddev=0.01), name="b0") # create
a shared variable
    b = tf.Variable(tf.random_normal([2], stddev=0.01), name="b1") # create
a shared variable
def model(X, w, b):
returntf.mul(X, w) + b # We just define the line as X*w + b0
y_model = model(X, w, b)
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Loss function description and Optimizer loop
In this example, we will use the commonly employed mean squared error, but this time
with a multivariable; so we apply reduce_mean to collect error values across the different
dimensions:

withtf.name_scope("CostFunction"):
    cost = tf.reduce_mean(tf.pow(Y-y_model, 2)) # use sqr error for cost
function
train_op = tf.train.AdamOptimizer(0.1).minimize(cost)
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 for a in range (1,10):
    cost1=0.0
fori, j in zip(xvalues, yvalues):
sess.run(train_op, feed_dict={X: i, Y: j})
        cost1+=sess.run(cost, feed_dict={X: i, Y: i})/506.00
        #writer.add_summary(summary_str, i)
xvalues, yvalues = shuffle (xvalues, yvalues)

Stop condition
The stop condition will simply consist of training the parameters with all data samples for
the number of epochs determined in the outer loop.

Results description
The following is the result:

1580.53295174
[ 2.25225258  1.30112672]
[ 0.80297691  0.22137061]
1512.3965525
[ 4.62365675  2.90244412]
[ 1.16225874  0.28009811]
1495.47174799
[ 6.52791834  4.29297304]
[ 0.824792270.17988272]
...
1684.6247849
[ 29.71323776  29.96078873]
[-0.68271929 -0.13493828]
1688.25864746
[ 29.78564262  30.09841156]
[-0.58272243 -0.08323665]
1684.27538102
[ 29.75390816  30.13044167]
[-0.59861398 -0.11895057]
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From the results, we see that in the final stage of the training, the modeling lines settle on
the following coefficients simultaneously:

price = 0.6 x Industry + 29.75

price = 0.1 x Age + 30.13

Full source code
The following is the complete source code:

import matplotlib.pyplot as plt
import tensorflow as tf
import tensorflow.contrib.learn as skflow
from sklearn.utils import shuffle
import numpy as np
import pandas as pd

df = pd.read_csv("boston.csv", header=0)
print (df.describe())

f, ax1 = plt.subplots()
plt.figure() # Create a new figure

y = df['MEDV']

for i in range (1,8):
    number = 420 + i
    ax1.locator_params(nbins=3)
    ax1 = plt.subplot(number)
    plt.title(list(df)[i])
    ax1.scatter(df[df.columns[i]],y) #Plot a scatter draw of the
datapoints
plt.tight_layout(pad=0.4, w_pad=0.5, h_pad=1.0)

X = tf.placeholder("float", name="X") # create symbolic variables
Y = tf.placeholder("float", name = "Y")

with tf.name_scope("Model"):

    w = tf.Variable(tf.random_normal([2], stddev=0.01), name="b0") # create
a shared variable
    b = tf.Variable(tf.random_normal([2], stddev=0.01), name="b1") # create
a shared variable
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    def model(X, w, b):
        return tf.mul(X, w) + b # We just define the line as X*w + b0

    y_model = model(X, w, b)

with tf.name_scope("CostFunction"):
    cost = tf.reduce_mean(tf.pow(Y-y_model, 2)) # use sqr error for cost
function

train_op = tf.train.AdamOptimizer(0.001).minimize(cost)

sess = tf.Session()
init = tf.global_variables_initializer()
tf.train.write_graph(sess.graph, '/home/bonnin/linear2','graph.pbtxt')
cost_op = tf.summary.scalar("loss", cost)
merged = tf.summary.merge_all()
sess.run(init)
writer = tf.summary.FileWriter('/home/bonnin/linear2', sess.graph)

xvalues = df[[df.columns[2], df.columns[4]]].values.astype(float)
yvalues = df[df.columns[12]].values.astype(float)
b0temp=b.eval(session=sess)
b1temp=w.eval(session=sess)

for a in range (1,50):
    cost1=0.0
    for i, j in zip(xvalues, yvalues):
        sess.run(train_op, feed_dict={X: i, Y: j})
        cost1+=sess.run(cost, feed_dict={X: i, Y: i})/506.00
        #writer.add_summary(summary_str, i)
    xvalues, yvalues = shuffle (xvalues, yvalues)
    print (cost1)
    b0temp=b.eval(session=sess)
    b1temp=w.eval(session=sess)
    print (b0temp)
    print (b1temp)
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Summary
In this chapter, we built our first complete model with a standard loss function using
TensorFlow's training utilities. We also built a multivariate model to account for more than
one dimension to calculate regression. Apart from that, we used TensorBoard to observe the
variable's behavior during the training phase.

In the next chapter, we will begin working with non-linear models, through which we will
get closer to the domain of neural networks, which is the main supported field of
TensorFlow and the area where its utilities provide great value.



4
Logistic Regression

In the previous chapter, we have seen an approach to model a part of reality as a linear
function, which has independent variables and bias minimized an error function.

This particular analysis is not enough except for some very clearly defined problems, with
expected results being continuous variables and function.

But what would happen if we are faced with data with qualitative dependent variables? For
example, the presence or absence of a determinate feature; has a subject got blond hair? Has
the patient had a previous illness?

These are the kinds of problem that we will be working on in this chapter.

Problem description
The kind of problem that linear regression aims to solve is not the prediction of a value
based on a continuous function, this time we want to know the probability for a sample of
pertaining to a determined class.
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In this chapter, we will rely on a generalization of the linear model solving a regression, but
with the final objective of solving classification problems where we have to apply tags or
assign all the elements from an observation set to predefined groups.

In the preceding figure, we can see how the old and new problems can be classified. The
first one (linear regression) can be imagined as a continuum of increasingly growing values.

The other is a domain where the output can have just two different values, based on the x
value. In the particular case of the second graphic, we can see a particular bias to one of the
options, toward the extremes: on the left there is a bias towards the 0 y value, and to the
right the bias is towards a value of 1.

This terminology can be bit tricky given that even when we are doing a regression, thus
looking for a continuous value, in reality, the final objective is building a prediction for a
classification problem, with discrete variables.

The key here is to understand that we will obtain probabilities of an item pertaining to a
class, and not a totally discrete value.
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Logistic function predecessor – the logit
functions
Before we study the logistic function, we will review the original function on which it is
based, and which gives it some of its more general properties.

Essentially, when we talk about the logit function, we are working with the function of a
random variable p, more specifically, one corresponding with a Bernoulli distribution.

Bernoulli distribution
Before explaining theoretical details it is worthwhile noting that a Bernoulli distribution is a
random variable that:

Takes a value of 0 with a failure probability of q = 1 – p

Takes a value of 1 with a success probability of p

It can be expressed as follows (for a random variable X with Bernoulli distribution):

This is the kind of probability distribution that will represent the probability of occurrence
of the events as binary options, just as we want to represent our variables (existence of
features, event occurrence, causality of phenomena, and so on).

Link function
As we are trying to build a generalized linear model, we want to start from a linear 
function, and from the dependent variable, obtain a mapping to a probability distribution.

Since the options are of a binary nature, the normally chosen distribution is the recently
mentioned Bernoulli distribution, and the link function, leaning toward the logistic
function, is the logit function.
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Logit function
One of the possible variables that we could utilize, is the natural logarithm of the odds that
p equals one. This function is called the logit function:

We can also call the logit function a log-odd function, because we are calculating the log
of the odds (p/1-p) for a given probability p:

So, as we can visually infer, replacing X with the combination of the independent variables,
no matter the value of them, replacing X with any occurrence from minus infinity to
infinity, we are scaling the response to be within 0 and 1.
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The importance of the logit inverse
Suppose that we calculate the inverse of the logit function. This will let us write the
following function:

This function is a sigmoid function.

The logistic function
The logistic function will serve us to represent the binary options in our new regression
tasks.

In the following figure, you will find the graphical representation of the sigmoid function:

Graphical representation of the logistic function or Sigmoid
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Logistic function as a linear modeling
generalization
The logistic function δ(t) is defined as follows:

The normal interpretation of this equation is that t represents a simple independent
variable. But we will improve this model, and will assume that t is a linear function of a
single explanatory variable x (the case where t is a linear combination of multiple
explanatory variables is treated similarly).

We will then express t as the following:

Final estimated regression equation
So we start from the following equation:

With all these elements, we can calculate the regression equation, which will give us the
regressed probability:
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The following graphic will show how the mapping from arbitrary range will be finally
transformed to range [0, 1], which can be interpreted as probability p of the occurrence of
the event being represented:

What effects will make changes to the parameters of the linear function? They are the values
that will change the central slope and the displacement from zero of the sigmoid function,
allowing it to more exactly reduce the error between the regressed values and the real data
points.

Properties of the logistic function
Every curve in the function space can be described by the possible objectives it could be
applied to. In the case of the logistic function, they are:

Model the probability of an event p depending on one or more independent
variables. For example, the probability of being awarded a prize, given previous
qualifications.
Estimate (this is the regression part) p for a determined observation, related to the
possibility of the event not occurring.
Predict the effect of the change of independent variables on a binary response.
Classify observations by calculating the probability of an item being of a
determined class.

Loss function
In the previous section we saw our approximated  function, which will model the
probability of a sample being of a particular class. In order to measure how well we are
approximating to the solution, we will look for a carefully chosen loss function.
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This loss function is expressed as:

The main property of this loss function is that it doesn't penalize the error in a similar
manner, the error penalization factor grows asymptotically when the error increases far
beyond 0.5.

Multiclass application – softmax regression
Up until now, we have been classifying for the case of only two classes, or in probabilistic
language, event occurrence probabilities, p.

In the case of having more than two classes to decide from, there are two main approaches;
one versus one, and one versus all.

The first technique consists of calculating many models that represent the
probability of every class against all the other ones.
The second one consists of one set of probabilities, in which we represent the
probability of one class against all the others.
This second approach is the output format of the softmax regression, a
generalization of the logistic regression for n classes.

So we will be changing, for training samples, from binary labels ( y(i)ε{0,1}), to vector labels,
using the handle y(i)ε{1,…,K}, where K is the number of classes, and the label Y can take on
K different values, rather than only two.

So for this particular technique, given a test input X, we want to estimate the probability
that P(y=k|x) for each value of k=1,…,K. The softmax regression will output a K-
dimensional vector (whose elements sum to 1), giving us our K estimated probabilities.
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In the following diagram, we represent the mapping that occurs on the probability
mappings of the uniclass and multiclass logistic regression:

Cost function
The cost function of the softmax function is an adapted cross entropy function, which is
not linear, and thus penalizes the big order function differences much more than the very
small ones.

Here, c is the class number and I the individual train sample index, and yc is 1 for the
expected class and 0 for the rest.

Expanding this equation, we get the following:
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Data normalization for iterative methods
As we will see in the following sections, for logistic regression we will be using the
gradient descent method for minimizing a cost function.

This method is very sensitive to the form and the distribution of the feature data.

For this reason, we will be doing some preprocessing in order to get better and faster
converging results.

We will leave the theoretical reasons for this method to other books, but we will summarize
the reason saying that with normalization, we are smoothing the error surface, allowing the
iterative gradient descent to reach the minimum error faster.
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One hot representation of outputs
In order to use the softmax function as the regression function, we must use a type of
encoding known as one hot. This form of encoding simply transforms the numerical integer
value of a variable into an array, where a list of values is transformed into a list of arrays,
each with a length of as many elements as the maximum value of the list, and the value of
each elements is represented by adding a one on the index of the value, and leaving the
others at zero.

For example, this will be the representation of the list [1, 3, 2, 4] in one hot encoding:

[[0 1 0 0 0]
[0 0 0 1 0]
[0 0 1 0 0]
[0 0 0 0 1]]

Example 1 – univariate logistic regression
In this first example, we will work approximating the probability of the presence of heart
disease, using an univariate logistic regression, being this variable, the patients age.

Useful libraries and methods
Since version 0.8, TensorFlow has provided a means of generating one hot. The function
used for this generation is tf.one_hot, which has this form:

    tf.one_hot(indices, depth, on_value=1, off_value=0, axis=None,
dtype=tf.float32, name=None)

This functions generates a generalized one hot encoding data structure, which can specify
the values, axis of generation, data type, and so on.

In the resulting tensors, the indicated values of the indexes will take the on_value, default
1, and the others will have off_value, default 0.

Dtype is the data type of the generated tensor; the default is float32.

The depth variable defines how many columns each element will have. We suppose it
logically should be max(indices) + 1, but it could be also cut.



Logistic Regression

[ 98 ]

TensorFlow's softmax implementation
The included method for applyingsoftmax regression in TensorFlow is
tf.nn.log_softmax, with the following form:

tf.nn.log_softmax(logits, name=None)

Here, the arguments are:

logits: A tensor must be one of the following types: float32, float64 2D
with shape [batch_size, num_classes]
name: A name for the operation (optional)

This function returns a tensor with the same type and shape as logits.

Dataset description and loading
The first case we will cover is where we want to fit a logistic regression, measuring only one
variable and we only have a binary possible result.

The CHDAGE dataset
For the first simple example, we will use a very simple and studied dataset, first known for
being published in the book; Applied Logistic Regression-Third Edition, David W. Hosmer Jr.,
Stanley Lemeshow, Rodney X. Sturdivant, by Wiley.

Lists the age in years (AGE), and presence or absence of evidence of significant Coronary
Heart Disease (CHD) for 100 subjects in a hypothetical study of risk factors for heart
disease. The table also contains an identifier variable (ID) and an age group variable
(AGEGRP). The outcome variable is CHD, which is coded with a value of 0 to indicate that
CHD is absent, or 1 to indicate that it is present in the individual. In general, any two values
could be used, but we have found it most convenient to use zero and one. We refer to this
data set as the CHDAGE data.

CHDAGE dataset format
The CHDAGE dataset is a two-column CSV file that we will download from an external
repository.
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In the chapter 1, Exploring and Transforming Data, we used native TensorFlow methods for
the reading of the dataset. In this chapter, we will use a complementary and popular library
to get the data.

The cause for this new addition is that, given that the dataset only has 100 tuples, it is
practical to just have to read it in one line, and also we get simple but powerful analysis
methods for free, provided by the pandas library.

So in the first stage of this project, we will start loading an instance of the CHDAGE dataset,
then we will print vital statistics about the data, and then proceed to preprocessing.

After doing some plots of the data, we will build a model composed of the activation
function, which will be a softmax function for special cases where it becomes a standard
logistic regression; that is when there are only two classes (existence, or not, of the illness).

Dataset loading and preprocessing implementation
First, we import the required libraries, and indicate that all our matplotlib programs will
be included inline (if we are using Jupyter):

import pandas as pd
import numpy as np
%matplotlib inline
import matplotlib.pyplot as plt
import tensorflow as tf

Then we read the data and ask pandas to check important statistical information about the
dataset:

df = pd.read_csv("data/CHD.csv", header=0)
print (df.describe())

    age        chd
    count  100.000000  100.00000
    mean    44.380000    0.43000
    std     11.721327    0.49757
    min     20.000000    0.00000
    25%     34.750000    0.00000
    50%     44.000000    0.00000
    75%     55.000000    1.00000
    max     69.000000    1.000000
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We then proceed with drawing the data to get an idea of the data:

plt.figure() # Create a new figure
plt.scatter(df['age'],df['chd']) #Plot a scatter draw of the random
datapoints

Model architecture
Here, we describe the sections of the code where we will build the elements of the model,
starting from the following variables:

learning_rate = 0.2
training_epochs = 5
batch_size = 100
display_step = 1

Here, we create the initial variables and placeholders for the graph, the univariate x and y
float values:

x = tf.placeholder("float", [None, 1]) # Placeholder for the 1D data
y = tf.placeholder("float", [None, 2]) # Placeholder for the classes (2)
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Now we will create linear model variables, which will be modified and updated as the
model fitting goes on:

W = tf.Variable(tf.zeros([1, 2]))
b = tf.Variable(tf.zeros([2]))

And finally, we will build the activation function applying the softmax operation to the
linear function:

activation = tf.nn.softmax(tf.matmul(x, W) + b)

Loss function description and optimizer loop
Here, we just define the cross correlation function as the loss function, and define the
optimizer operation, which will be the gradient descent. This will be explained in the
following chapters; for now, you can see it as a black box that will change the variables until
the loss is minimized:

cost = tf.reduce_mean(-tf.reduce_sum(y*tf.log(activation),
reduction_indices=1)) # Cross entropy
optimizer = tf.train.GradientDescentOptimizer(learning_rate).minimize(cost)
# Gradient Descent
#Iterate through all the epochs
 for epoch in range(training_epochs):
 avg_cost = 0.
 total_batch = int(400/batch_size)
 # Loop over all batches

 for i in range(total_batch):
 # Transform the array into a one hot format

 temp=tf.one_hot(indices = df['chd'].values, depth=2, on_value = 1,
off_value = 0, axis = -1 , name = "a")
 batch_xs, batch_ys = (np.transpose([df['age']])-44.38)/11.721327, temp

 # Fit training using batch data
 sess.run(optimizer, feed_dict={x: batch_xs.astype(float), y:
batch_ys.eval()})

 # Compute average loss, suming the corrent cost divided by the batch total
number
 avg_cost += sess.run(cost, feed_dict={x: batch_xs.astype(float), y:
batch_ys.eval()})/total_batch
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Stop condition
The process will simply stop once the data has been training according to training epochs
times.

Results description
This will be the output of the program:

    Epoch: 0001 cost= 0.638730764
    [ 0.04824295 -0.04824295]
    [[-0.17459483  0.17459483]]
    Epoch: 0002 cost= 0.589489654
    [ 0.08091066 -0.08091066]
    [[-0.29231569  0.29231566]]
    Epoch: 0003 cost= 0.565953553
    [ 0.10427245 -0.10427245]
    [[-0.37499282  0.37499279]]
    Epoch: 0004 cost= 0.553756475
    [ 0.12176144 -0.12176143]
    [[-0.43521613  0.4352161 ]]
    Epoch: 0005 cost= 0.547019333
    [ 0.13527818 -0.13527818]
    [[-0.48031801  0.48031798]]

Fitting function representations across epochs
In the following image we represent the progression of the fitting function across the
different epochs:
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Full source code
Here is the complete source code:

import pandas as pd
import numpy as np
%matplotlib inline
import matplotlib.pyplot as plt
import tensorflow as tf

df = pd.read_csv("data/CHD.csv", header=0)
print (df.describe())
plt.figure() # Create a new figure
plt.axis ([0,70,-0.2,1.2])
plt.title('Original data')
plt.scatter(df['age'],df['chd']) #Plot a scatter draw of the random
datapoints

plt.figure() # Create a new figure
plt.axis ([-30,30,-0.2,1.2])
plt.title('Zero mean')
plt.scatter(df['age']-44.8,df['chd']) #Plot a scatter draw of the random
datapoints
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plt.figure() # Create a new figure
plt.axis ([-5,5,-0.2,1.2])
plt.title('Scaled by std dev')
plt.scatter((df['age']-44.8)/11.7,df['chd']) #Plot a scatter draw of the
random datapoints
#plt.plot (trX, .2 + 2 * trX) # Draw one line with the line function

print ((df['age']/11.721327).describe())

# Parameters
learning_rate = 0.2
training_epochs = 5
batch_size = 100
display_step = 1
sess = tf.Session()
b=np.zeros((100,2))
#print pd.get_dummies(df['admit']).values[1]
print (sess.run(tf.one_hot(indices = [1, 3, 2, 4], depth=5, on_value = 1,
off_value = 0, axis = 1 , name = "a")))
#print a.eval(session=sess)

# tf Graph Input
x = tf.placeholder("float", [None, 1])
y = tf.placeholder("float", [None, 2])

# Create model
# Set model weights
W = tf.Variable(tf.zeros([1, 2]))
b = tf.Variable(tf.zeros([2]))

# Construct model
activation = tf.nn.softmax(tf.matmul(x, W) + b)
# Minimize error using cross entropy
cost = tf.reduce_mean(-tf.reduce_sum(y*tf.log(activation),
reduction_indices=1)) # Cross entropy
optimizer = tf.train.GradientDescentOptimizer(learning_rate).minimize(cost)
# Gradient Descent

# Initializing the variables
init = tf.initialize_all_variables()

# Launch the graph

with tf.Session() as sess:
    tf.train.write_graph(sess.graph, './graphs','graph.pbtxt')
    sess.run(init)
    writer = tf.train.SummaryWriter('./graphs', sess.graph)
    #Initialize the graph structure
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    graphnumber=321
    #Generate a new graph
    plt.figure(1)
    #Iterate through all the epochs
    for epoch in range(training_epochs):
        avg_cost = 0.
        total_batch = int(400/batch_size)
        # Loop over all batches

        for i in range(total_batch):
            # Transform the array into a one hot format
            temp=tf.one_hot(indices = df['chd'].values, depth=2, on_value =
1, off_value = 0, axis = -1 , name = "a")
            batch_xs, batch_ys =
(np.transpose([df['age']])-44.38)/11.721327, temp
            # Fit training using batch data
            sess.run(optimizer, feed_dict={x: batch_xs.astype(float), y:
batch_ys.eval()})
            # Compute average loss, suming the corrent cost divided by the
batch total number
            avg_cost += sess.run(cost, feed_dict={x:
batch_xs.astype(float), y: batch_ys.eval()})/total_batch
        # Display logs per epoch step

        if epoch % display_step == 0:
            print ("Epoch:", '%05d' % (epoch+1), "cost=",
"{:.8f}".format(avg_cost))
            #Generate a new graph, and add it to the complete graph
            trX = np.linspace(-30, 30, 100)
            print (b.eval())
            print (W.eval())
            Wdos=2*W.eval()[0][0]/11.721327
            bdos=2*b.eval()[0]
            # Generate the probabiliy function
            trY = np.exp(-(Wdos*trX)+bdos)/(1+np.exp(-(Wdos*trX)+bdos) )
            # Draw the samples and the probability function, whithout the
normalization
            plt.subplot(graphnumber)
            graphnumber=graphnumber+1
            #Plot a scatter draw of the random datapoints
            plt.scatter((df['age']),df['chd'])
            plt.plot(trX+44.38,trY) #Plot a scatter draw of the random
datapoints
            plt.grid(True)
        #Plot the final graph
        plt.savefig("test.svg")
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Graphical representation
Using the TensorBoard utility, we will see the operation chain. Note that in half of the
operation graphics we define the main global operation (doftmas), and the gradient
operations applied to the remaining terms, which are needed to do the loss function
minimization. This is a theme to be talked about in the following chapters.
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Example 2 – Univariate logistic regression
with skflow
In this example, we will explore the univariate examples domain, but this time we will use
help from a new library, which eases the model building for us, called skflow.

Useful libraries and methods
In the field of machine learning libraries, there is a great number and variety of alternatives.
One of the most well-known is sklearn, which we talked about in Chapter 2, Clustering.

Very early after the release of TensorFlow, a new contribution library appeared, called
skflow, with the main objective of emulating the interface and workflow of sklearn,
which is much more succinct to work in this TensorFlow session environment.

In the following example, we will repeat the analysis of the previous regression, but using
the skflow interface.

In the example, we will also see how skflow automatically generates a detailed and very
organized graph for the regression model, just setting a log directory as a parameter.

Dataset description
The dataset loading stage is the same as the previous example, using the pandas library:

import pandas as pd

df = pd.read_csv("data/CHD.csv", header=0)
print df.describe()

Model architecture
Here is the code snippet for my_model:

 def my_model(X, y):
    return skflow.models.logistic_regression(X, y)

X1 =a.fit_transform(df['age'].astype(float))
y1 = df['chd'].values
classifier = skflow.TensorFlowEstimator(model_fn=my_model, n_classes=2)
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Here we can see a detailed view of the logistic regression stage, with the softmax classifier:
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Results description
score = metrics.accuracy_score(df['chd'].astype(float),
classifier.predict(X))
print("Accuracy: %f" % score)

The output result is a respectable (for the simplicity of the model) 74% accuracy:

Accuracy: 0.740000

Full source code
Here is the complete source code:

import tensorflow.contrib.learn as skflow
from sklearn import datasets, metrics, preprocessing
import numpy as np
import pandas as pd
df = pd.read_csv("data/CHD.csv", header=0)
print (df.describe())
def my_model(X, y):
    return skflow.models.logistic_regression(X, y)

a = preprocessing.StandardScaler()

X1 =a.fit_transform(df['age'].astype(float))
y1 = df['chd'].values
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classifier = skflow.TensorFlowEstimator(model_fn=my_model, n_classes=2)
classifier.fit(X1,y1 , logdir='/tmp/logistic')

score =
metrics.accuracy_score(df['chd'].astype(float),classifier.predict(X1))

print("Accuracy: %f" % score)

Summary
In this chapter, we have learned a new modeling technique, the logistic function, and began
with a simple approach to the task of classification.

We also learned a new approach for the reading of text-based data via the pandas library.

Additionally, we have seen a complementary approach to the classical workflow, working
with the skflow library.

In the next chapter, we will start working with more complex architectures, and enter the
field where the TensorFlow library excels: the training, testing, and final implementation of
neural networks to solve real-world problems.



5
Simple FeedForward Neural

Networks
Neural Networks are really the area of Machine Learning where Tensorflow excels. Many
types of architectures and algorithms can be implemented with it, along with the additional
advantage of having a symbolic engine incorporated, which will really help in the training
of more complex setups.

With this chapter, we are beginning to harness the power of high-performance primitives
for solving increasingly complex problems with a high number of supported input
variables.

In this chapter, we will cover the following topics:

Preliminary concepts of neural networks
Neural network projects on non-linear synthetic function regression
Projects on predicting car fuel efficiency with nonlinear regression
Learning to classify wines andmulticlass classification

Preliminary concepts
To build a simple framework into the neural network components and architectures, we
will give a simple and straightforward build of the original concepts which paved the way
to the current,complexand variedNeural Network landscape.
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Artificial neurons
An artificial neuron is a mathematical function conceived as a model for a real biological
neuron.

Its main features are that it receives one or more inputs (training data), and sums them to
produce an output. Additionally, the sums are normally weighted (weight and bias), and the 
sum is passed to a nonlinear function (Activation function or transfer function).

Original example – the Perceptron
The Perceptron is one of the simplest ways of implementing an artificial neuron and it's an
algorithm that dates back from the 1950s, first implemented in the 1960s.

It is basically an algorithm that learns a binary classification function, which maps a real
function with a single binary one:

The following image shows a single layer perceptron

Perceptron algorithm
The simplified algorithm for the perceptron is:

Initialize the weights with a random distribution (normally low values)1.
Select an input vector and present it to the network,2.
Compute the output y' of the network for the input vector specified and the3.
values of the weights.
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The function for a perceptron is:4.

                 

If y' ≠ y modify all connections wi by adding the changes Δw =yxi5.
Return to step 2.6.

Neural network layers
The single layer perceptron can be generalized to many layers connected to eachother, but
there is an issue remaining;the representing function is a linear combination of the inputs,
and the perceptron being just a kind of linear classifier,there is no possibility of correctly
fitting a nonlinear function.
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Neural Network activation functions
The learning properties of a Neural Network would not be so great with only the help of a
univariate linear classifier. Even some mildly complex problemsin machine learning involve
multiple nonlinear variables, so many variants were developed as replacements of the
transfer functions of the perceptron.

In order to represent nonlinear models, a number of different nonlinear functions can be
used in the activation function. This implies changes in the way the neurons will react to
changes in the input variables. The most common activation functions used in practice are:

Sigmoid : The canonical activation function, and has very good qualities for
calculating probabilities in classification properties.

Tanh: Very similar to the sigmoid, but its value range is [-1,1] instead of [0,1]

Relu: This is called a rectified linear unit, and one of its main advantages is that it
is not affected by the Vanishing Gradients problem, which generally exists on the
first layers of a network to tend to values of 0, or a tiny epsilon:

Gradients and the back propagation algorithm
When we described the learning phase of the perceptron, we described a stage in which the
weights were adjusted proportionally according to the “responsibility” of a weight in the
final error.

In this complex network of neurons, the responsibility of the error will be distributed
among all the functions applied to the data in the whole architecture.
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So once we have calculated the total error, and we have the whole function applied to the
original data, we must now try to adjust all variables in the equation to minimize it.

What we need to know to be able to minimize this error, as the Optimization field has
studied, is the gradient of the loss function.

Given that the data goes through many weights and transfer functions, the resulting
compound function's gradient will have to be solved by the chain rule.

Minimizing loss function: Gradient descent
Lets have a look at the following graph to understand the loss function:

Neural networks problem choice - Classification vs
Regression
Neural Networks can be used for regression problems and classification ones. The common
architectural difference resides in the output layer: in order to be able to bring a real
number base result, no standardization function, like sigmoid, should be applied.In this
way, we won't be changing the outcomes of the variable to one of many possible class
values, getting a continuum of possible outcomes.
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Useful libraries and methods
In this chapter we will be using some new utilities from TensorFlow, and also from utility
libraries, these would be the most important ones:

TensorFlow activation functions
Most commonly used functions for TensorFlow navigation:

tf.sigmoid(x): The standard sigmoid function
tf.tanh(x): Hyperbolic tangent
tf.nn.relu(features): Relu transfer function

Other functions  for TensorFlow navigation:

tf.nn.elu(features): Computes exponential linear: exp(features) – 1 if < 0, features
otherwise
tf.nn.softsign(features): Computes softsign: features / (abs(features) + 1)
tf.nn.bias_add(value, bias): Adds bias to value

TensorFlow loss optimization methods
TensorFlow Loss optimization methods are described in the following:

tf.train.GradientDescentOptimizer(learning_rate, use_locking, name): This is
the original Gradient descent method, with only the learning rate parameter
tf.train.AdagradOptimizer(learning_rate, initial_accumulator_value,
use_locking, name): This method adapts the learning rate, to the frequency of the
parameters, improving the efficiency of the minimum search for sparse
parameters
tf.train.AdadeltaOptimizer (learning_rate, rho, epsilon, use_locking, name):
This is a modified AdaGrad, which will restrict the accumulation of frequent
parameters to a maximum window, so it takes in account a certain number of
steps, and not the whole parameter history.
tf.train.AdamOptimizertf.train.AdamOptimizer.__init__(learning_rate, beta1,
beta2, epsilon, use_locking, name): This method adds a factor when calculating
gradients, corresponding to the average of the past gradients, equivalent to a
momentum factor. Thus the name Adam, from Adaptive Moment Estimation.
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Sklearn preprocessing utilities
Lets have a look at the following Sklearn preprocessing utilities:

preprocessing.StandardScaler(): Normalization of datasets is a common
requirement for many machine learning estimators, so in order to make convergence more
straightforward the dataset will have to be more like a standard normally distribution
that is a Gaussian curve with zero mean and unit variance. In practice, we often
ignore the shape of the distribution and just transform the data to center it by
removing the mean value of each feature, then scale it by dividing non-constant
features by their standard deviation. For this task, we use the StandardScaler,
which implements the tasks previously mentioned. It also stores the transforms,
in order to be able to reapply it to the testing set.
StandardScaler .fit_transform(): Simply fit the data to the required form. The
StandardScaler object will save the transform variables, so you will be able to get
the denormalized data back.
cross_validation.train_test_split: This method splits the dataset into train and
test segments, we only need to provide the percentage of the dataset assigned to
each stage.

First project – Non linear synthetic function
regression
Artificial neural network examples normally include a great majority of classification
problems, but in fact there are a great number of applications that could be expressed as
regressions.

The network architectures used for regression don't differ in great measure from the ones
used for classification problems: They can take multi-variable input and can use linear and
nonlinear activation functions too.

In some cases, the only necessary case is just to remove the sigmoid-like function at the end
of the layers to allow the full range of options to appear.

In this first example, we will model a simple, noisy quadratic function, and will try to
regress it by means of a single hidden layer network and see how close we can be
topredicting values taken from a test population.
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Dataset description and loading
In this case, we will be using a generated dataset, which will be very similar to the one in
Chapter 3, Linear Regression.

We will generate a quadratic function using the common Numpy methods, and then we
will add random noise, which will help us to see how the linear regression can generalize.

The core sample creation routines are as follows:

import numpy as np
trainsamples = 200
testsamples = 60
dsX = np.linspace(-1, 1, trainsamples + testsamples).transpose()
dsY = 0.4* pow(dsX,2) +2 * dsX + np.random.randn(*dsX.shape) * 0.22 + 0.8

Dataset preprocessing
This dataset doesn't need preprocessing as it is being generated, and has good properties
such asbeing centered and having a -1, 1 x sample distribution.

Modeling architecture - Loss Function
description
The loss for this setup will simply be represented by the same as the mean squares error,
with the line:

cost = tf.pow(py_x-Y, 2)/(2)

Loss function optimizer
In this particular case we will be using the Gradient Descent cost optimizer, which we can
invoke with the line:

train_op = tf.train.AdamOptimizer(0.5).minimize(cost)

 



Simple FeedForward Neural Networks

[ 119 ]

Accuracy and Convergence test
predict_op = tf.argmax(py_x, 1)

cost1 += sess.run(cost, feed_dict={X: [[x1]], Y: y1}) / testsamples

Example code
Lets have a look at the example code shown in the following:

import tensorflow as tf
import numpy as np
from sklearn.utils import shuffle
%matplotlib inline
import matplotlib.pyplot as plt

trainsamples = 200
testsamples = 60

#Here we will represent the model, a simple imput, a hidden layer of
sigmoid activation
def model(X, hidden_weights1, hidden_bias1, ow):
    hidden_layer =  tf.nn.sigmoid(tf.matmul(X, hidden_weights1)+ b)
    return tf.matmul(hidden_layer, ow)

dsX = np.linspace(-1, 1, trainsamples + testsamples).transpose()
dsY = 0.4* pow(dsX,2) +2 * dsX + np.random.randn(*dsX.shape) * 0.22 + 0.8

plt.figure() # Create a new figure
plt.title('Original data')
plt.scatter(dsX,dsY) #Plot a scatter draw of the  datapoints
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X = tf.placeholder("float")
Y = tf.placeholder("float")
# Create first hidden layer
hw1 = tf.Variable(tf.random_normal([1, 10], stddev=0.1))
# Create output connection
ow = tf.Variable(tf.random_normal([10, 1], stddev=0.0))
# Create bias
b = tf.Variable(tf.random_normal([10], stddev=0.1))
model_y = model(X, hw1, b, ow)
# Cost function
cost = tf.pow(model_y-Y, 2)/(2)
# construct an optimizer
train_op = tf.train.GradientDescentOptimizer(0.05).minimize(cost)
# Launch the graph in a session
with tf.Session() as sess:
    tf.initialize_all_variables().run() #Initialize all variables
    for i in range(1,100):
        dsX, dsY = shuffle (dsX.transpose(), dsY) #We randomize the samples
to mplement a better training
        trainX, trainY =dsX[0:trainsamples], dsY[0:trainsamples]
        for x1,y1 in zip (trainX, trainY):
            sess.run(train_op, feed_dict={X: [[x1]], Y: y1})
        testX, testY = dsX[trainsamples:trainsamples + testsamples],
dsY[0:trainsamples:trainsamples+testsamples]
        cost1=0.
        for x1,y1 in zip (testX, testY):
            cost1 += sess.run(cost, feed_dict={X: [[x1]], Y: y1}) /
testsamples      
        if (i%10 == 0):
            print "Average cost for epoch " + str (i) + ":" + str(cost1)
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Results description
This is a copy of the different epoch results.Note that as this is a very simple function, even
the first iteration has very good results:

Average cost for epoch 1:[[ 0.00753353]]
Average cost for epoch 2:[[ 0.00381996]]
Average cost for epoch 3:[[ 0.00134867]]
Average cost for epoch 4:[[ 0.01020064]]
Average cost for epoch 5:[[ 0.00240157]]
Average cost for epoch 6:[[ 0.01248318]]
Average cost for epoch 7:[[ 0.05143405]]
Average cost for epoch 8:[[ 0.00621457]]
Average cost for epoch 9:[[ 0.0007379]]

Second project – Modeling cars fuel
efficiency with non linear regression
In this example, we will enter into an area where Neural Networks provide most of their
added value; solving non linear problems. To begin this journey, we will be modeling a
regression model for the fuel efficiency of several car models, based on several variables,
which can be better represented by non linear functions.

Dataset description and loading
For this problem, we will be analyzing a very well-known, standard,well-formeddataset,
which will allow us to analyze a multi-variable problem: guessing the mpg an automobile
will have based on some related variables, discrete and continuous.

This could be considered a toy and somewhat dated example, but it will pave the way to
more complex problems, and has the advantage of being already analyzed by numerous
bibliographies.

Attribute Information

This dataset has the following data columns:

mpg: continuous
cylinders: multi-valued discrete
displacement: continuous
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horsepower: continuous
weight: continuous
acceleration: continuous
model year: multi-valued discrete
origin: multi-valued discrete
car name: string (won't be used)

We won't be doing a detailed analysis of the data, but we can informally infer that all of the
continuous variables have a correlation with increasing or decreasing the goal variable:

Dataset preprocessing
For this function, we will be using the previously-describedscaler objects, from sklearn:

scaler = preprocessing.StandardScaler()
X_train = scaler.fit_transform(X_train)
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Modeling architecture
What we are about to build is a feedforward neural network, with a multivariate input, and
a simple output:
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Convergency test
score =
metrics.mean_squared_error(regressor.predict(scaler.transform(X_test)),
y_test)
print('MSE: {0:f}'.format(score))

Results description
Step #99, avg. train loss: 182.33624
Step #199, avg. train loss: 25.09151
Step #300, epoch #1, avg. train loss: 11.92343
Step #400, epoch #1, avg. train loss: 11.20414
Step #500, epoch #1, avg. train loss: 5.14056
Total Mean Squared Error: 15.0792258911

get_ipython().magic('matplotlib inline')
import matplotlib.pyplot as plt

import pandas as pd

from sklearn import datasets, cross_validation, metrics
from sklearn import preprocessing

import tensorflow.contrib.learn as skflow

# Read the original dataset
df = pd.read_csv("data/mpg.csv", header=0)
# Convert the displacement column as float
df['displacement']=df['displacement'].astype(float)
# We get data columns from the dataset
# First and last (mpg and car names) are ignored for X
X = df[df.columns[1:8]]
y = df['mpg']

plt.figure() # Create a new figure
f, ax1 = plt.subplots()
for i in range (1,8):
 number = 420 + i
 ax1.locator_params(nbins=3)
 ax1 = plt.subplot(number)
 plt.title(list(df)[i])
 ax1.scatter(df[df.columns[i]],y) #Plot a scatter draw of the datapoints
plt.tight_layout(pad=0.4, w_pad=0.5, h_pad=1.0)

# Split the datasets
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X_train, X_test, y_train, y_test = cross_validation.train_test_split(X, y,
 test_size=0.25)

# Scale the data for convergency optimization
scaler = preprocessing.StandardScaler()

# Set the transform parameters
X_train = scaler.fit_transform(X_train)

# Build a 2 layer fully connected DNN with 10 and 5 units respectively
regressor = skflow.TensorFlowDNNRegressor(hidden_units=[10, 5],
 steps=500, learning_rate=0.051, batch_size=1)

# Fit the regressor
regressor.fit(X_train, y_train)

# Get some metrics based on the X and Y test data
score =
metrics.mean_squared_error(regressor.predict(scaler.transform(X_test)),
y_test)

print(" Total Mean Squared Error: " + str(score))

Third project – Learning to classify wines:
Multiclass classification
In this section we will work with a more complex dataset, trying to classify wines based on
theirplace of origin.

Dataset description and loading
This data contains the results of a chemical analysis of wines grown in the same region in
Italy but derived from three different cultivars. The analysis determined the quantities of 13
constituents found in each of the three types of wines.

Data variables:

 Alcohol
Malic acid
Ash
Alcalinity of ash
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Magnesium
Total phenols
Flavanoids
Nonflavanoid phenols
Proanthocyanins
Color intensity
Hue
OD280/OD315 of diluted wines
Proline

To read the dataset, we will simply use the provided CSV file and pandas:

df = pd.read_csv("./wine.csv", header=0)

Dataset preprocessing
As the values on the csv begin at 1, we will normalize the values resting the bias:

y = df['Wine'].values-1
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For the results, we will have to represent the options as a one hot list of arrays:

Y = tf.one_hot(indices = y, depth=3, on_value = 1., off_value = 0., axis =
1 , name = "a").eval()

We will also shuffle the values beforehand:

X, Y = shuffle (X, Y)
scaler = preprocessing.StandardScaler()
X = scaler.fit_transform(X)

Modeling architecture
This particular model will consist of a single layer, fully-connected, neural network:

x = tf.placeholder(tf.float32, [None, 12])
W = tf.Variable(tf.zeros([12, 3]))
b = tf.Variable(tf.zeros([3]))
y = tf.nn.softmax(tf.matmul(x, W) + b)

Loss function description
We will use the cross entropy function to measure loss:

y_ = tf.placeholder(tf.float32, [None, 3])
cross_entropy = tf.reduce_mean(-tf.reduce_sum(y_ * tf.log(y),
reduction_indices=[1]))

Loss function optimizer
Again the Gradient Descent method will be used to reduce the loss function:

train_step = tf.train.GradientDescentOptimizer(0.1).minimize(cross_entropy)
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Convergence test
In the convergence test, we will cast every good regression to 1, and every false one to 0,
and then get the mean of the values to measure the accuracy of the model:

correct_prediction = tf.equal(tf.argmax(y, 1), tf.argmax(y_, 1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
print(accuracy.eval({x: Xt, y_: Yt}))

Results description
As we see, we have a variating accuracy as the epochs progress, but it is always superior to
a 90% accuracy, with a 30% random base (if we'd generated a random number between 0
and 3 to guess the result).

0.973684
0.921053
0.921053
0.947368
0.921053

Full source code
Lets have a look at the complete source code:

sess = tf.InteractiveSession()
import pandas as pd
# Import data
from tensorflow.examples.tlutorials.mnist import input_data
from sklearn.utils import shuffle
import tensorflow as tf

from sklearn import preprocessing

flags = tf.app.flags
FLAGS = flags.FLAGS

df = pd.read_csv("./wine.csv", header=0)
print (df.describe())
#df['displacement']=df['displacement'].astype(float)
X = df[df.columns[1:13]].values
y = df['Wine'].values-1
Y = tf.one_hot(indices = y, depth=3, on_value = 1., off_value = 0., axis =
1 , name = "a").eval()
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X, Y = shuffle (X, Y)

scaler = preprocessing.StandardScaler()
X = scaler.fit_transform(X)

# Create the model
x = tf.placeholder(tf.float32, [None, 12])
W = tf.Variable(tf.zeros([12, 3]))
b = tf.Variable(tf.zeros([3]))
y = tf.nn.softmax(tf.matmul(x, W) + b)

# Define loss and optimizer
y_ = tf.placeholder(tf.float32, [None, 3])
cross_entropy = tf.reduce_mean(-tf.reduce_sum(y_ * tf.log(y),
reduction_indices=[1]))
train_step = tf.train.GradientDescentOptimizer(0.1).minimize(cross_entropy)
# Train
tf.initialize_all_variables().run()
for i in range(100):
X,Y =shuffle (X, Y, random_state=1)

Xtr=X[0:140,:]
Ytr=Y[0:140,:]

Xt=X[140:178,:]
Yt=Y[140:178,:]
Xtr, Ytr = shuffle (Xtr, Ytr, random_state=0)
#batch_xs, batch_ys = mnist.train.next_batch(100)
batch_xs, batch_ys = Xtr , Ytr
train_step.run({x: batch_xs, y_: batch_ys})
cost = sess.run (cross_entropy, feed_dict={x: batch_xs, y_: batch_ys})
# Test trained model
correct_prediction = tf.equal(tf.argmax(y, 1), tf.argmax(y_, 1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
print(accuracy.eval({x: Xt, y_: Yt}))
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Summary
In this chapter, we have been starting the path toward implementing the real quid of
TensorFlow capability: Neural Network models.

We have also seen the use of simple Neural Networks in both regression and classification
tasks, with simple generated models, and experimental ones.

In the next chapter we will advance the knowledge of new architectures and ways of
applying the Neural Network paradigm for other knowledge fields, such as computer
vision, in the form of convolutional neural networks.



6
Convolutional Neural Networks

Convolutional neural networks are part of many of the most advanced models currently
being employed. They are used in numerous fields, but the main application field is in the
realm of image classification and feature detection.

The topics we will cover in this chapter are as follows:

Getting an idea of how convolution functions and convolutional networks work
and the main operation types used in building them
Applying convolution operations to image data and learning some of the
preprocessing techniques applied to images to improve the accuracy of the
methods
Classifying digits of the MNIST dataset using a simple setup of CNN
Classifying real images of the CIFAR dataset, with a CNN model applied to color
images

Origin of convolutional neural networks
The neocognitron is a predecessor to convolutional networks, introduced in a 1980 paper by
Prof. Fukushima, and is a self-organizing neural network tolerant to shifts and deformation.

This idea appeared again in 1986 in the book version of the original back propagation
paper, and it was also employed in 1988 for temporal signals in speech recognition.

The original design was later reviewed and improved in 1998 with LeCun's paper, gradient-
based learning applied to document recognition, which presented the LeNet-5 network,
which is able to classify handwritten digits. The model showed increased performance
compared with other existing models, especially over several variations of SVM, one of the
most performant operations in the year of publication.
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Then a generalization of that paper came in 2003, with the paper Hierarchical Neural
Networks for Image Interpretation. However, in general, we will be using a close
representation of LeCun's LeNet paper architecture.

Getting started with convolution
In order to understand the operations being applied to the information in these kinds of
operations, we will start by studying the origin of the convolution function, and then we
will explain how this concept is applied to the information.

In order to begin following the historical development of the operation, we will start
looking at convolution in the continuous domain.

Continuous convolution
The original use of this function comes from the eighteenth century and can be expressed, in
the original application context, as an operation that blends two functions occurring on
time.

Mathematically, it can be defined as follows:

When we try to conceptualize this operation as an algorithm, the preceding equation can be
explained in the following steps:

Flip the signal: This is the (-τ) part of the variable.1.
Shift it: This is given by the t summing factor for g(τ).2.
Multiply it: This is the product of f and g.3.
Integrate the resulting curve: This is the less intuitive part because each 4.
instantaneous value is the result of an integral.
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Discrete convolution
The convolution can be translated into a discrete domain and described in discrete terms for
discrete functions:

Kernels and convolutions
When applying the concept of convolution in the discrete domain, kernels are used quite
frequently.

Kernels can be defined as nxm-dimensional matrices, which are normally a few elements
long in all dimensions and usually, m = n.

The convolution operation consists of multiplying the corresponding pixels with the kernel,
one pixel at a time, and summing the values for the purpose of assigning that value to the
central pixel.

The same operation will then be applied, shifting the convolution matrix to the left until all
possible pixels are visited.

In the following example, we have an image of many pixels and a kernel of size 3×3, which
is particularly common in image processing:
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Interpretation of the convolution operations
Having reviewed the main characteristics of the convolution operation for continuous and
discrete fields, let's now look at the use of this operation in machine learning.

The convolution kernels highlight or hide patterns. Depending on the trained (or in the
example, manually set) parameters, we can begin to discover parameters, such as
orientation and edges in different dimensions. We may also cover some unwanted details or
outliers by means such as blurring kernels.

As LeCun in his fundational paper stated:

“Convolutional networks can be seen as synthesizing their own feature extractor.”

This characteristic of convolutional neural networks is the main advantage over previous
data processing techniques; we can determine with great flexibility the primary components
of a determined dataset and represent further samples as a combination of these basic
building blocks.

Applying convolution in TensorFlow
TensorFlow provides a variety of methods for convolution. The canonical form is applied
by the conv2d operation. Lets have a look at the usage of this operation:

tf.nn.conv2d(input, filter, strides, padding, use_cudnn_on_gpu,
data_format, name=None)

The parameters we use are as follows:

input: This is the original tensor to which the operation will be applied. It has a
definite format of four dimensions, and the default dimension order is shown
next.
[batch, in_height, in_width, in_channels]: Batch is a dimension that 
allows you to have a collection of images. This order is called NHWC. The other 
option is NCWH.

For example, a single 100×100 pixel color image will have the following shape:

[1,100,100,3]
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filter: This is a tensor representing a kernel or filter. It has a very generic
method:

        [filter_height, filter_width, in_channels, out_channels]

strides: This is a list of four int tensor datatypes, which indicate the sliding
windows for each dimension.
Padding: This can be SAME or VALID. SAME will try to conserve the initial tensor
dimension, but VALID will allow it to grow in case the output size and padding
are computed.
use_cudnn_on_gpu: This indicates whether or not to use the CUDA GPU CNN
library to accelerate calculations.
data_format: This specifies the order in which data is organized (NHWC or
NCWH).

Other convolutional operations
TensorFlow provides a number of ways of applying convolutions, which are listed as
follows:

tf.nn.conv2d_transpose: This applies the transpose (gradient) of conv2d and
is used in deconvolutional networks
tf.nn.conv1d: This performs 1D convolution, given a 3D input and filter
tensors
tf.nn.conv3d: This performs 3D convolution, given a 5D input and filter
tensors

Sample code – applying convolution to a grayscale
image
In this sample code, we will read a grayscale image in the GIF format, which will generate a
three-channel tensor but with the same RGB values per pixel. We will then transform the
tensor into a real grayscale matrix, apply a kernel, and retrieve the results in an output
image in the JPEG format.
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Note that you can tune the parameter in the kernel variable to observe
the effects of the changes in the image.

The following is the sample code:

import tensorflow as tf

#Generate the filename queue, and read the gif files contents
filename_queue =
tf.train.string_input_producer(tf.train.match_filenames_once("data/test.gif
"))
reader = tf.WholeFileReader()
key, value = reader.read(filename_queue)
image=tf.image.decode_gif(value)

#Define the kernel parameters
kernel=tf.constant(
        [
         [[[-1.]],[[-1.]],[[-1.]]],
         [[[-1.]],[[8.]],[[-1.]]],
         [[[-1.]],[[-1.]],[[-1.]]]
         ]
    )

#Define the train coordinator
coord = tf.train.Coordinator()

with tf.Session() as sess:
    tf.initialize_all_variables().run()
    threads = tf.train.start_queue_runners(coord=coord)
    #Get first image
    image_tensor = tf.image.rgb_to_grayscale(sess.run([image])[0])
    #apply convolution, preserving the image size
    imagen_convoluted_tensor=tf.nn.conv2d(tf.cast(image_tensor,
tf.float32),kernel,[1,1,1,1],"SAME")
    #Prepare to save the convolution option
    file=open ("blur2.png", "wb+")
    #Cast to uint8 (0..255), previous scalation, because the convolution
could alter the scale of the final image
out=tf.image.encode_png(tf.reshape(tf.cast(imagen_convoluted_tensor/tf.redu
ce_max(imagen_convoluted_tensor)*255.,tf.uint8),
tf.shape(imagen_convoluted_tensor.eval()[0]).eval()))
    file.write(out.eval())
    file.close()
    coord.request_stop()
coord.join(threads)
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Sample kernels results
In the following figure, you can observe how the changes in the parameters affect the
outcome of the image. The first image is the original one.

The filter types are from left to right and top to bottom-blur, bottom Sobel (a kind of filter
searching from top to bottom edges), emboss (which highlights the corner edges), and
outline (which outlines the exterior limits of the figures).
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Subsampling operation – pooling
The subsampling operation is performed in TensorFlow by means of an operation called 
pool. The idea is to apply a kernel (of varying dimensions ) and extract one of the elements
covered by the kernel, the max_pool and avg_pool  being a few of the most well known,
which get only the maximum and the average of the elements for an applied kernel.

In the following figure, you can see the action of applying a 2×2 kernel to a one-channel,
16×16 matrix. It just keeps the maximum value of the internal zone it covers.

The type of pooling operations that can be made are also varied; for example, in LeCun's
paper, the operation applied to the original pixels has to multiply them for a trainable
parameter and add an additional trainable bias.

Properties of subsampling layers
The main purpose of subsampling layers is more or less the same as that of convolutional
layers; to reduce the quantity and complexity of information while retaining the most
important information elements. They build a compact representation of the underlying
information.

Invariance property
Subsampling layers also allow important parts of the information to be translated from a
detailed to a simpler representation of the data. By sliding the filter across the image, we
translate the detected features to more significant image parts, eventually reaching a 1-pixel
image, with the feature represented by that pixel value. Conversely, this property could also
produce the model to lose the locality of feature detection.
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Subsampling layers implementation performance.
Subsampling layers are much faster to implement because the elimination criterion for
unused data elements is really simple; it just needs a couple of comparisons, in general.

Applying pool operations in TensorFlow
First we will analyze the most commonly used pool operation, max_pool. It has the
following signature:

tf.nn.max_pool(value, ksize, strides, padding, data_format, name)

This method is similar to conv2d, and the parameters are as follows:

value: This is a 4D tensor of float32 elements and shape (batch length, height,
width, channels)
ksize: This is a list of ints representing the window size on each dimension
strides: This is the step of the moving windows on each dimension
data_format: This sets the data dimensions
ordering: NHWC, or NCHW
padding: VALID or SAME

Other pool operations
tf.nn.avg_pool: This returns a reduced tensor with the avg of each window
tf.nn.max_pool_with_argmax: This returns the max_pool tensor and a tensor
with the flattened index of the max_value
tf.nn.avg_pool3d: This performs an avg_pool operation with a cubic-like
window; the input has an additional depth
tf.nn.max_pool3d: This performs the same function as (...) but applies the
max operation
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Sample code
In the following sample code, we will take an original:

import tensorflow as tf

#Generate the filename queue, and read the gif files contents
filename_queue =
tf.train.string_input_producer(tf.train.match_filenames_once("data/test.gif
"))
reader = tf.WholeFileReader()
key, value = reader.read(filename_queue)
image=tf.image.decode_gif(value)

#Define the  coordinator
coord = tf.train.Coordinator()

def normalize_and_encode (img_tensor):
    image_dimensions = tf.shape(img_tensor.eval()[0]).eval()
    return tf.image.encode_jpeg(tf.reshape(tf.cast(img_tensor, tf.uint8),
image_dimensions))

with tf.Session() as sess:
    maxfile=open ("maxpool.jpeg", "wb+")
    avgfile=open ("avgpool.jpeg", "wb+")
    tf.initialize_all_variables().run()
    threads = tf.train.start_queue_runners(coord=coord)

    image_tensor = tf.image.rgb_to_grayscale(sess.run([image])[0])

    maxed_tensor=tf.nn.avg_pool(tf.cast(image_tensor,
tf.float32),[1,2,2,1],[1,2,2,1],"SAME")
    averaged_tensor=tf.nn.avg_pool(tf.cast(image_tensor,
tf.float32),[1,2,2,1],[1,2,2,1],"SAME")

    maxfile.write(normalize_and_encode(maxed_tensor).eval())
    avgfile.write(normalize_and_encode(averaged_tensor).eval())
    coord.request_stop()
    maxfile.close()
    avgfile.close()
coord.join(threads)
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In the following figure, we see the original image and the reduced-size image, first with the
max_pool and then the avg_pool. As you can see, the two images seem equal, but if we
draw the image differences between them, we see that there is a subtle difference if we take
the maximum value instead of the mean, which is always lower or equal.

Improving efficiency – dropout operation
One of the main advantages observed during the training of large neural networks is
overfitting, that is, generating very good approximations for the training data but emitting
noise for the zones between single points.

In case of overfitting, the model is specifically adjusted to the training dataset, so it will not
be useful for generalization. Therefore, although it performs well on the training set, its
performance on the test dataset and subsequent tests is poor because it lacks the
generalization property.
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For this reason, the dropout operation was introduced. This operation reduces the value of
some randomly selected weights to zero, making null the subsequent layers.

The main advantage of this method is that it avoids all neurons in a layer to synchronously
optimize their weights. This adaptation made in random groups avoids all the neurons
converging to the same goals, thus decorrelating the adapted weights.

A second property discovered in the dropout application is that the activation of the hidden
units becomes sparse, which is also a desirable characteristic.

In the following figure, we have a representation of an original fully connected multilayer
neural network and the associated network with the dropout linked:

Applying the dropout operation in TensorFlow
In order to apply the dropout operation, TensorFlows implements the tf.nn.dropout
method, which works as follows:

tf.nn.dropout (x, keep_prob, noise_shape, seed, name)

The parameters are as follows:

x: This is the original tensor
keep_prob: This is the probability of keeping a neuron and the factor by which
the remaining nodes are multiplied
noise_shape: This is a four-element list that determines whether a dimension
will apply zeroing independently or not



Convolutional Neural Networks

[ 144 ]

Sample code
In this sample, we will apply the dropout operation to a sample vector. Dropout will also
work on transmitting the dropout to all the architecture-dependent units.

In the following example, you can see the results of applying dropout to the x variable, with
a 0.5 probability of zeroing, and in the cases in which it didn't occur, the values were
doubled (multiplied by 1/1.5, the dropout probability):

It's clear that approximately half of the input was zeroed (this example was chosen to show that probabilities
will not always give the expected four zeroes).

One factor that could have surprised you is the scale factor applied to the non-dropped
elements. This technique is used to maintain the same network, and restore it to the original
architecture when training, using keep_prob as 1.

Convolutional type layer building methods
In order to build convolutional neural networks layers, there exist some common practices
and methods, which can be considered quasi-canonical in the way deep neural networks
are built.

In order to facilitate the building of convolutional layers, we will look at some some simple
utility functions.
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Convolutional layer
This is an example of a convolutional layer, which concatenates a convolution, adds a bias
parameter sum, and finally returns the activation function we have chosen for the whole
layer (in this case, the relu operation, which is a frequently used one).

def conv_layer(x_in, weights, bias, strides=1):
x = tf.nn.conv2d(x, weights, strides=[1, strides, strides, 1],
padding='SAME')
x = tf.nn.bias_add(x_in, bias)
return tf.nn.relu(x)

Subsampling layer
A subsampling layer can normally be represented by a max_pool operation by maintaining
the initial parameters of the layer:

def maxpool2d(x, k=2):
return tf.nn.max_pool(x, ksize=[1, k, k, 1], strides=[1, k, k, 1],
padding='SAME')

Example 1 – MNIST digit classification
In this section, we will work for the first time on one of the most well-known datasets for
pattern recognition. It was initially developed in order to train neural networks for
character recognition of handwritten digits on checks.

The original dataset has 60,000 different digits for training and 10,000 for testing, and it was
a subset of the original employed dataset when it was used.

In the following diagram, we show the LeNet-5 architecture, which was the first well-
known convolutional architecture published regarding that problem.
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Here, you can see the dimensions of the layers and the last result representation:

Dataset description and loading
MNIST as a dataset that is easy to understand and read but difficult to master. Currently,
there are a number of good algorithms for solving this problem. In our case, we will look to
build a model sufficiently good to be quite far from the 10% random results.

In order to access the MNIST dataset, we will be using some utility classes developed for
the MNIST tutorials of TensorFlow.

These two lines are all we need to have a complete MNIST dataset available to work.

In the following figure, we can see an approximation of the data structures of the dataset
object:
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With this code, we will open and explore the MNIST dataset:

To print a character (in the Jupyter Notebook) we will reshape the linear way the image is
represented, form a square matrix of 28×28, assign a grayscale colormap, and draw the
resulting data structure using the following line:

plt.imshow(mnist.train.images[0].reshape((28, 28), order='C'),
cmap='Greys', interpolation='nearest')
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The following figure shows the results of this line applied to different dataset elements:

Dataset preprocessing
In this example, we won't be doing any preprocessing; we will just mention that better
classification scores can be achieved just by augmenting the dataset examples with linearly
transformed existing samples, such as translated, rotated, and skewed samples.

Modelling architecture
Here, we will look at the different layers that we have chosen for this particular
architecture.

It begins generating a dictionary of weights with names:

'wc1': tf.Variable(tf.random_normal([5, 5, 1, 32])),
'wc2': tf.Variable(tf.random_normal([5, 5, 32, 64])),
'wd1': tf.Variable(tf.random_normal([7*7*64, 1024])),
'out': tf.Variable(tf.random_normal([1024, n_classes]))

For each weight, a bias will be also added to account for constants.
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Then we define the connected layers, integrating one after another:

conv_layer_1 = conv2d(x_in, weights['wc1'], biases['bc1'])

conv_layer_1 = subsampling(conv_layer_1, k=2)

conv_layer_2 = conv2d(conv_layer_1, weights['wc2'], biases['bc2'])

conv_layer_2 = subsampling(conv_layer_2, k=2)

fully_connected_layer = tf.reshape(conv_layer_2, [-1,
weights['wd1'].get_shape().as_list()[0]])
fully_connected_layer = tf.add(tf.matmul(fully_connected_layer,
weights['wd1']), biases['bd1'])
fully_connected_layer = tf.nn.relu(fully_connected_layer)

fully_connected_layer = tf.nn.dropout(fully_connected_layer, dropout)

prediction_output = tf.add(tf.matmul(fully_connected_layer,
weights['out']), biases['out'])

Loss function description
The loss function will be the mean of the cross entropy error function, typical of softmax
functions for classification.

cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(pred, y))

Loss function optimizer
For this example, we will use the improvedAdamOptimizer, with a configurable learning
rate, which we define at 0.001.

optimizer = tf.train.AdamOptimizer
           (learning_rate=learning_rate).minimize(cost)
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Accuracy test
The accuracy test calculates the mean of the comparison between the label and the results,
obtaining a value between 0 and 1.

correct_pred = tf.equal(tf.argmax(pred, 1), tf.argmax(y, 1))
accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32))

Result description
The results of this example are succinct, and given that we train with only 10,000 samples,
the accuracy is not stellar but clearly separated from one-tenth of the random sampling
results:

Optimization Finished!
Testing Accuracy: 0.382812

Full source code
The following is the source code:

import tensorflow as tf
%matplotlib inline
import matplotlib.pyplot as plt

# Import MINST data
from tensorflow.examples.tutorials.mnist import input_data
mnist = input_data.read_data_sets("/tmp/data/", one_hot=True)
#Show the first training image
plt.imshow(mnist.train.images[0].reshape((28, 28), order='C'),
cmap='Greys',  interpolation='nearest')

# Parameters
batch_size = 128
learning_rate = 0.05
number_iterations = 2000
steps = 10

# Network Parameters
n_input = 784 # 28x28 images
n_classes = 10 # 10 digit classes
dropout = 0.80 # Dropout probability

# tf Graph input
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X = tf.placeholder(tf.float32, [None, n_input])
Y = tf.placeholder(tf.float32, [None, n_classes])
keep_prob = tf.placeholder(tf.float32) #dropout (keep probability)

# Create some wrappers for simplicity
def conv2d(x, W, b, strides=1):
    # Conv2D wrapper, with bias and relu activation
    x = tf.nn.conv2d(x, W, strides=[1, strides, strides, 1],
padding='SAME')
    x = tf.nn.bias_add(x, b)
    return tf.nn.relu(x)

def subsampling(x, k=2):
    # MaxPool2D wrapper
    return tf.nn.max_pool(x, ksize=[1, k, k, 1], strides=[1, k, k, 1],
                          padding='SAME')

# Create model
def conv_net(x_in, weights, biases, dropout):
    # Reshape input picture
    x_in = tf.reshape(x_in, shape=[-1, 28, 28, 1])

    # Convolution Layer 1
    conv_layer_1 = conv2d(x_in, weights['wc1'], biases['bc1'])
    # Subsampling
    conv_layer_1 = subsampling(conv_layer_1, k=2)

    # Convolution Layer 2
    conv_layer_2 = conv2d(conv_layer_1, weights['wc2'], biases['bc2'])
    # Subsampling
    conv_layer_2 = subsampling(conv_layer_2, k=2)

    # Fully connected layer
    # Reshape conv_layer_2 output to fit fully connected layer input
    fully_connected_layer = tf.reshape(conv_layer_2, [-1,
weights['wd1'].get_shape().as_list()[0]])
    fully_connected_layer = tf.add(tf.matmul(fully_connected_layer,
weights['wd1']), biases['bd1'])
    fully_connected_layer = tf.nn.relu(fully_connected_layer)
    # Apply Dropout
    fully_connected_layer = tf.nn.dropout(fully_connected_layer, dropout)

    # Output, class prediction
    prediction_output = tf.add(tf.matmul(fully_connected_layer,
weights['out']), biases['out'])
    return prediction_output
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# Store layers weight & bias
weights = {
    # 5x5 convolutional units, 1 input, 32 outputs
    'wc1': tf.Variable(tf.random_normal([5, 5, 1, 32])),
    # 5x5 convolutional units, 32 inputs, 64 outputs
    'wc2': tf.Variable(tf.random_normal([5, 5, 32, 64])),
    # fully connected, 7*7*64 inputs, 1024 outputs
    'wd1': tf.Variable(tf.random_normal([7*7*64, 1024])),
    # 1024 inputs, 10 outputs (class prediction)
    'out': tf.Variable(tf.random_normal([1024, n_classes]))
}

biases = {
    'bc1': tf.Variable(tf.random_normal([32])),
    'bc2': tf.Variable(tf.random_normal([64])),
    'bd1': tf.Variable(tf.random_normal([1024])),
    'out': tf.Variable(tf.random_normal([n_classes]))
}

# Construct model
pred = conv_net(X, weights, biases, keep_prob)

# Define loss and optimizer
cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(pred, Y))
optimizer =
tf.train.AdamOptimizer(learning_rate=learning_rate).minimize(cost)

# Evaluate model
correct_pred = tf.equal(tf.argmax(pred, 1), tf.argmax(Y, 1))
accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32))

# Initializing the variables
init = tf.global_variables_initializer()

# Launch the graph
with tf.Session() as sess:
    sess.run(init)
    step = 1
    # Keep training until reach max iterations
    while step * batch_size < number_iterations:
        batch_x, batch_y = mnist.train.next_batch(batch_size)
        test = batch_x[0]
        fig = plt.figure()
        plt.imshow(test.reshape((28, 28), order='C'), cmap='Greys',
                   interpolation='nearest')
        # Run optimization op (backprop)
        sess.run(optimizer, feed_dict={X: batch_x, Y: batch_y,
                                       keep_prob: dropout})
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        if step % steps == 0:
            # Calculate batch loss and accuracy
            loss, acc = sess.run([cost, accuracy], feed_dict={X: batch_x,
                                                              Y: batch_y,
                                                              keep_prob:
1.})
            print ("Iter " + str(step*batch_size) + ", Minibatch Loss= " +
\
                  "{:.6f}".format(loss) + ", Training Accuracy= " + \
                  "{:.5f}".format(acc))
        step += 1

    # Calculate accuracy for 256 mnist test images
    print ("Testing Accuracy:", \
        sess.run(accuracy, feed_dict={X: mnist.test.images[:256],
                                      Y: mnist.test.labels[:256],
                                      keep_prob: 1.}))

Example 2 – image classification with the
CIFAR10 dataset
In this example, we will be working on one of the most extensively used datasets in image
comprehension, one which is used as a simple but general benchmark. In this example, we
will build a simple CNN model to have an idea of the general structure of computations
needed to tackle this type of classification problem.

Dataset description and loading
This dataset consists of 40,000 images of 32×32 pixels, representing the following categories:
airplane, automobile, bird, cat, deer, dog, frog, horse, ship, and truck. In this example, we
will just take the first of the 10,000 image bundles to work on.
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Here are some examples of the images you can find in the dataset:

Dataset preprocessing
We must make some data-structure adjustments to the original dataset, first by
transforming it into a [10000, 3, 32, 32] multidimensional array and then moving the
channel dimension to the last order.

datadir='data/cifar-10-batches-bin/'
plt.ion()
G = glob.glob (datadir + '*.bin')
A = np.fromfile(G[0],dtype=np.uint8).reshape([10000,3073])
labels = A [:,0]
images = A [:,1:].reshape([10000,3,32,32]).transpose (0,2,3,1)
plt.imshow(images[14])
print labels[11]
images_unroll = A [:,1:]
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Modelling architecture
Here, we will define our modeling function, which is a succession of convolution and
pooling operations, with a final flattened layer and a logistic regression applied in order to
determine the class probability of the current sample.

def conv_model (X, y):
X= tf. reshape(X, [-1, 32, 32, 3])
    with tf.variable_scope('conv_layer1'):
        h_conv1=tf.contrib.layers.conv2d(X, num_outputs=16,
kernel_size=[5,5],  activation_fn=tf.nn.relu)#print (h_conv1)
        h_pool1=max_pool_2x2(h_conv1)#print (h_pool1)
with tf.variable_scope('conv_layer2'):
        h_conv2=tf.contrib.layers.conv2d(h_pool1, num_outputs=16,
kernel_size=[5,5], activation_fn=tf.nn.relu)
    #print (h_conv2)
    h_pool2=max_pool_2x2(h_conv2)
    h_pool2_flat = tf.reshape(h_pool2,  [-1,8*8*16 ])
    h_fc1 = tf.contrib.layers.stack(h_pool2_flat,
tf.contrib.layers.fully_connected ,[96,48], activation_fn=tf.nn.relu )

return skflow.models.logistic_regression(h_fc1,y)

Loss function description and optimizer
The following is the function:

classifier = skflow.TensorFlowEstimator(model_fn=conv_model, n_classes=10,
batch_size=100, steps=2000, learning_rate=0.01)

Training and accuracy tests
With these two commands, we start the fitting of the model and producing the scoring of
the trained model, using the image set:

%time classifier.fit(images, labels, logdir='/tmp/cnn_train/')
%time score =metrics.accuracy_score(labels, classifier.predict(images))
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Results description
The following is the result:

Parameter Result 1 Result 2

CPU times user 35min 6s user 39.8 s

sys 1min 50s 7.19 s

total 36min 57s 47 s

Wall time 25min 3s 32.5 s

Accuracy 0.612200

Full source code
The following is the complete source code:

import glob
import numpy as np
import matplotlib.pyplot as plt
import tensorflow as tf
import tensorflow.contrib.learn as skflow
from sklearn import metrics
from tensorflow.contrib import learn

datadir='data/cifar-10-batches-bin/'

plt.ion()
G = glob.glob (datadir + '*.bin')
A = np.fromfile(G[0],dtype=np.uint8).reshape([10000,3073])
labels = A [:,0]
images = A [:,1:].reshape([10000,3,32,32]).transpose (0,2,3,1)
plt.imshow(images[15])
print labels[11]
images_unroll = A [:,1:]
def max_pool_2x2(tensor_in):
        return tf.nn.max_pool(tensor_in,  ksize= [1,2,2,1], strides=
[1,2,2,1], padding='SAME')

def conv_model (X, y):
    X= tf. reshape(X, [-1, 32, 32, 3])
    with tf.variable_scope('conv_layer1'):
        h_conv1=tf.contrib.layers.conv2d(X, num_outputs=16,
kernel_size=[5,5],  activation_fn=tf.nn.relu)#print (h_conv1)
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        h_pool1=max_pool_2x2(h_conv1)#print (h_pool1)
    with tf.variable_scope('conv_layer2'):
        h_conv2=tf.contrib.layers.conv2d(h_pool1, num_outputs=16,
kernel_size=[5,5], activation_fn=tf.nn.relu)
    #print (h_conv2)
    h_pool2=max_pool_2x2(h_conv2)
    h_pool2_flat = tf.reshape(h_pool2,  [-1,8*8*16 ])
    h_fc1 = tf.contrib.layers.stack(h_pool2_flat,
tf.contrib.layers.fully_connected ,[96,48], activation_fn=tf.nn.relu )
    return skflow.models.logistic_regression(h_fc1,y)

images = np.array(images,dtype=np.float32)
classifier = skflow.TensorFlowEstimator(model_fn=conv_model, n_classes=10,
batch_size=100, steps=2000, learning_rate=0.01)

%time classifier.fit(images, labels, logdir='/tmp/cnn_train/')
%time score =metrics.accuracy_score(labels, classifier.predict(images))
print ('Accuracy: {0:f}'.format(score))

#Examining fitted weights
#First 'onvolutional Layer
print ('1st Convolutional Layer weights and Bias')
#print (classifier.get_tensor_value('conv_layer1/convolution/filters:0'))
#print (classifier.get_tensor_value('conv_layer1/convolution/filters:1'))

Summary
In this chapter, we learned about one of the building blocks of the most advanced neural
network architectures: convolutional neural networks. With this new tool, we worked on
more complex datasets and concept abstractions, and so we will be able to understand state-
of-the-art-models.

In the next chapter, we will be working with another new form of neural network and a
part of a more recent neural network architecture: recurrent neural networks.



7
Recurrent Neural Networks and

LSTM
Reviewing what we know about the more traditional neural networks models, we observe
that the train and prediction phases are normally expressed in a static manner, where an
input is feed, and we get an output, but we don't just take in account the sequence in which
the events occur. Unlike the prediction models reviewed so far, recurrent neural networks
predictions depends on the current input vector and also the values of previous ones.

The topics we will cover in this chapter are as follow:

Getting an idea of how recurrent neural networks works, and the main operation
types used in building them
Explain the ideas implemented in more advanced models, like LSTM
Applying an LSTM model in TensorFlow to predict energy consumption cycles
Compose new music, starting with a series of studies from J.S Bach

Recurrent neural networks
Knowledge doesn't normally appear from a void. Many new ideas are born as a
combination of previous knowledge, and so that's a useful behaviour to emulate.
Traditional neural networks don't include any mechanism translating previous seen
elements to the current state.
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Trying to implement this concepts, we have recurrent neural networks, or RNN. Recurrent
neural networks can be defined a sequential model of neural networks, which have the
property of reusing information already given. One of their main assumptions is that the
current information has a dependency on previous data. In the following figure, we observe
a simplified diagram of a RNN basic element, called Cell:

The main information elements of a cell are the input (Xt), an state, and an output (ht). But
as we said before, cells have not an independent state, so it stores also state information. In
the following figure we will show an “unrolled” RNN cell, showing how it goes from the
initial state, to outputting the final hn value, with some intermediate states in between.
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Once we define the dynamics of the cell, the next objective would be to investigate the
contents of what makes or defines an RNN cell. In the most common case of standard RNN,
there is simply a neural network layer, which takes the input, and the previous state as
inputs, applies the tanh operation, and outputs the new state h(t+1).

This simple setup is able to sum up information as the epochs pass, but further
experimentation showed that for complex knowledge, the sequence distance makes difficult
to relate some contexts (For example, The architect knows about designing beautiful buildings)
seems like a simple structure to remember, but the context needed for them for being
associated, requires an increasing sequence to be able to relate both concepts. This also
brings the associated issue of exploding and vanishing gradients.

Exploding and vanishing gradients
One of the main problems of recurrent neural networks happens in the back propagation
stages, given its recurrent nature, the number of steps that the back propagation of the
errors has is one corresponding to a very deep network. This cascade of gradient
calculations could lead to a very non significant value on the last stages, or in the contrary,
to ever increasing and unbounded parameter. Those phenomena receive the name of
vanishing and exploding gradients. This is one of the reasons for which LSTM architecture
was created.
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LSTM neural networks
The Long Short—Term Memory (LSTM) is a specific RNN architecture whose special
architecture allows them to represent long term dependencies. Moreover, they are
specifically designed to remember information patterns and information over long periods
of time.

The gate operation – a fundamental component
In order to better understand the building blocks of the internal of the lstm cell, we will
describe the main operational block of the LSTM: the gate operation.

This operation basically has a multivariate input, and in this block we decide to let some of
the inputs go trough, and block the other. We can think of it as an information filter, and
contributes mainly to allow for getting and remembering the needed information elements.

In order to implement this function, we take a multivariate control vector (marked with an
arrow), which is connected with a neural network layer with a sigmoid activation function.
Applying the control vector and passing through the sigmoid function, we will get a binary
like vector.

We will represent this function with many switch signs:

After defining that binary vector, we will multiply the input function with the vector so we
will filter it, letting only parts of the information to get through. We will represent this
operation with a triangle, pointing in the direction to which the information goes.
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General LSTM cell structure

In the following picture, we represent the general structure of a LSTM Cell. It mainly consist
of three of the the mentioned gate operations, to protect and control the cell state.

This operation will allow both discard (Hopefully not important) low state data, and
incorporate (Hopefully important) new data to the state.
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The previous figure tries to show all concepts going on on the operation of one LSTM Cell.

As the inputs we have:

The cell state, which will store long term information, because it carries on the
optimized weights from the starting coming from the origin of the cell training,
and
The short term state, h(t), which will be used directly combined with the current
input on each iteration, and so it will have a much bigger influence from the
latest values of the inputs

And as outputs, we have, the result of combining the application of all the gate operations.

Operation steps
In this section we will describe a generalization of all the different substeps that the
information will do for each loop steps of its operation.

Part 1 – set values to forget (input gate)
In this section, we will take the values coming from the short term, combined with the input 
itself, and this values will set the values for a binary function, represented by a multivariable 
sigmoid. Depending on the input and short term memory values, the sigmoid output will 
allow or restrict some of the previous Knowledge or weights contained on the cell state.
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Part 2 – set values to keep, change state
Then is time to set the filter which will allow or reject the incorporation of new and short
term memory to the cell semi-permanent state.

So in this stage, we will determine how much of the new and semi-new information will be
incorporated in the new cell state. Additionally, we will finally pass through the
information filter we have been configuring, and as a result, we will have an updated long
term state.

In order to normalize the new and short term information, we pass the new and short term
info via a neural network with tanh activation, this will allow to feed the new information in
a normalized (-1,1) range.
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Part 3 – output filtered cell state
Now its the turn of the short term state. It will also use the new and previous short term
state to allow new information to pass, but the input will be the long term status, dot
multiplied multiplied by a tanh function, again to normalize the input to a (-1,1) range.

Other RNN architectures
In this chapter in general, and assuming the field of RNN is much more general that the we
will be focusing on the LSTM type of recurrent neural network cells. There are also other
variations of the RNN that are being employed and add advantages to the field, for
example.

LSTM with peepholes: In this networks the cell gates are connected to the cell
state
Gate Recurring Unit: It's a simpler model which combines the forget and input
gates, merges the state and hidden state of the cell, and so simplifies a lot the
training of the net
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TensorFlow LSTM useful classes and methods
In this section, we will review the main classes and methods that we can use to build a
LSTM layer, which we will use in the examples of the book.

class tf.nn.rnn_cell.BasicLSTMCell
This class basic LSTM recurrent network cell, with a forget bias, and no fancy characteristics
of other related types, like peep-holes, that allow the cell to take a look on the cell state even
on stages where it's not supposed to have an influence on the results.

The following are the main parameters:

num_units: Int, the number of units of the LSTM cell
forget_bias: Float, This bias (default 1) is added to the forget gates in order to
allow the first iterations to reduce the loss of information for the initial training
steps.
activation: Is the activation function of the inner states (The default is the
standard tanh)

class MultiRNNCell(RNNCell)
In the architectures we will be using for this particular example, we won't be using a single
cell to take in account the historical values. In this case we will be using a stack of connected
cells. For this reason we will be instantiating the MultiRNNCell class.

MultiRNNCell(cells, state_is_tuple=False)
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This is the constructor for the multiRNNCell, the main argument of this method is cells, 
which will be an instance of RNNCells we want to stack.

learn.ops.split_squeeze(dim, num_split, tensor_in)
This function split the input on a dimension, and then it squeezes the previous dimension
the splitted tensor belonged. It takes the dimension to cut, the number of ways to split, and
then tensor to split. It return the same tensor but with one dimension reduced.
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Example 1 – univariate time series prediction
with energy consumption data
In this example, we will be solving a problem of the domain of regression. The dataset we
will be working on is a compendium of many measurements of power consumption of one
home, throughout a period of time. As we could infer, this kind of behaviour can easily
follow patterns (It increases when the persons uses the microwave to prepare breakfast, and
computers after the wake up hour, can decrease a bit in the afternoon, and then increase at
night with all the lights, decreasing to zero starting from midnight until next wake up
hour).

So let's try to model for this behavior in a sample case.

Dataset description and loading
In this example we will be using the Electricity Load Diagrams Data Sets, from Artur Trindade
(site: h t t p s ://a r c h i v e . i c s . u c i . e d u /m l /d a t a s e t s /E l e c t r i c i t y L o a d D i a g r a m s 20112014).

This is the description of the original dataset:

Data set has no missing values.
Values are in kW of each 15 min. To convert values in kWh values must be divided by 4.
Each column represent one client. Some clients were created after 2011. In these cases
consumption were considered zero.
All time labels report to Portuguese hour. However all days present 96 measures (24*15).
Every year in March time change day (which has only 23 hours) the values between 1:00
am and 2:00 am are zero for all points. Every year in October time change day (which has
25 hours) the values between 1:00 am and 2:00 am aggregate the consumption of two
hours.

In order to simplify our model description, we took just one client complete measurements,
and converted its format to standard CSV. It is located on the data subfolder of this chapter
code folder
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With this code lines, we will open and represent the client's data:

import pandas as pd
from matplotlib import pyplot as plt
df = pd.read_csv("data/elec_load.csv", error_bad_lines=False)
plt.subplot()
plot_test, = plt.plot(df.values[:1500], label='Load')
plt.legend(handles=[plot_test])

I we take a look at this representation (We look to the first 1500 samples) we see an initial
transient state, probable when the measurements were put in place, and then we see a really
clear cycle of high and low consumption levels.

From simple observation we also see that the cicles are more or less of 100 samples, pretty
close to the 96 samples per day this dataset has.
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Dataset preprocessing
In order to assure a better convergency of the back propagation methods, we should try to
normalize the input data.

So we will be applying the classic scale and centering technique, substracting the mean
value, and scaling by the floor of the maximum value.

To get the needed values, we use the pandas the describe() method.

                Load
count  140256.000000
mean      145.332503
std        48.477976
min         0.000000
25%       106.850998
50%       151.428571
75%       177.557604
max       338.218126
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Modelling architecture
Here we will succinctly describe the architecture that will try to model the variations on
electricity consumption:

The resulting architecture basically consists on a 10 member serial connected LSTM
multicell, which has a linear regress or variable at the end, which will transform the results
of the output of the linear array of cells, to a final real number, for a given history of values
(in this case we have to input the last 5 values to predict the next one).

def lstm_model(time_steps, rnn_layers, dense_layers=None):
    def lstm_cells(layers):
        return
[tf.nn.rnn_cell.BasicLSTMCell(layer['steps'],state_is_tuple=True)
                for layer in layers]

    def dnn_layers(input_layers, layers):
            return input_layers

    def _lstm_model(X, y):
        stacked_lstm = tf.nn.rnn_cell.MultiRNNCell(lstm_cells(rnn_layers),
state_is_tuple=True)
        x_ = learn.ops.split_squeeze(1, time_steps, X)
        output, layers = tf.nn.rnn(stacked_lstm, x_, dtype=dtypes.float32)
        output = dnn_layers(output[-1], dense_layers)
        return learn.models.linear_regression(output, y)

    return _lstm_model
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The following figure shows the main blocks, complemented later by the learn module, there
you can see the RNN stage, the optimizer, and the final linear regression before the output.
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In this picture we take a look at the RNN stage, there we can observe the cascade of
individual LSTM cells, with the input squeeze, and all the complementary operations that
the learn package adds.

And then we will complete the definition of the model with the regressor:

regressor = learn.TensorFlowEstimator(model_fn=lstm_model(
                                    TIMESTEPS, RNN_LAYERS, DENSE_LAYERS),
n_classes=0,
                                      verbose=2,  steps=TRAINING_STEPS,
optimizer='Adagrad',
                                      learning_rate=0.03,
batch_size=BATCH_SIZE)
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Loss function description
For the loss function, the classical regression parameter mean squared error will do:

rmse = np.sqrt(((predicted - y['test']) ** 2).mean(axis=0))

Convergency test
Here we will run the fit function for the current model:

regressor.fit(X['train'], y['train'], monitors=[validation_monitor],
logdir=LOG_DIR)

And will obtain the following (Very good)! error rates. One exercise we could do is to avoid
normalizing the data, and see if the mean error is the same (NB: It's not, its much worse)

This is the simple console output we will get:

MSE: 0.001139

And this is the generated loss/mean graphic that tells us how the error is decaying with
every iteration:
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Results description
Now we can get a graphic of the real test values, and the predicted one, where we see that
the mean error indicates a very good predicting capabilities of our recurrent model:

Full source code
The following is the complete source code:

%matplotlib inline
%config InlineBackend.figure_formats = {'png', 'retina'}

import numpy as np
import pandas as pd
import tensorflow as tf
from matplotlib import pyplot as plt

from tensorflow.python.framework import dtypes
from tensorflow.contrib import learn
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import logging
logging.basicConfig(level=logging.INFO)

from tensorflow.contrib import learn
from sklearn.metrics import mean_squared_error

LOG_DIR = './ops_logs'
TIMESTEPS = 5.
RNN_LAYERS = [{'steps': TIMESTEPS}]
DENSE_LAYERS = None
TRAINING_STEPS = 10000
BATCH_SIZE = 100
PRINT_STEPS = TRAINING_STEPS / 100

def lstm_model(time_steps, rnn_layers, dense_layers=None):
    def lstm_cells(layers):
        return
[tf.nn.rnn_cell.BasicLSTMCell(layer['steps'],state_is_tuple=True)
                for layer in layers]

    def dnn_layers(input_layers, layers):
            return input_layers

    def _lstm_model(X, y):
        stacked_lstm = tf.nn.rnn_cell.MultiRNNCell(lstm_cells(rnn_layers),
state_is_tuple=True)
        x_ = tf.unpack( X, axis=1)
        output, layers = tf.nn.rnn(stacked_lstm, x_, dtype=dtypes.float64)
        output = dnn_layers(output[-1], dense_layers)
        return learn.models.linear_regression(output, y)

    return _lstm_model

regressor = learn.TensorFlowEstimator(model_fn=lstm_model(TIMESTEPS,
RNN_LAYERS, DENSE_LAYERS), n_classes=0,
 verbose=2, steps=TRAINING_STEPS, optimizer='Adagrad',
 learning_rate=0.03, batch_size=BATCH_SIZE)

df = pd.read_csv("data/elec_load.csv", error_bad_lines=False)
plt.subplot()
plot_test, = plt.plot(df.values[:1500], label='Load')
plt.legend(handles=[plot_test])

print df.describe()
array=(df.values- 147.0) /339.0
plt.subplot()
plot_test, = plt.plot(array[:1500], label='Normalized Load')
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plt.legend(handles=[plot_test])

listX = []
listy = []
X={}
y={}

for i in range(0,len(array)-6):
    listX.append(array[i:i+5].reshape([5,1]))
    listy.append(array[i+6])

arrayX=np.array(listX)
arrayy=np.array(listy)

X['train']=arrayX[0:12000]
X['test']=arrayX[12000:13000]
X['val']=arrayX[13000:14000]

y['train']=arrayy[0:12000]
y['test']=arrayy[12000:13000]
y['val']=arrayy[13000:14000]

# print y['test'][0]
# print y2['test'][0]

#X1, y2 = generate_data(np.sin, np.linspace(0, 100, 10000), TIMESTEPS,
seperate=False)
# create a lstm instance and validation monitor
validation_monitor = learn.monitors.ValidationMonitor(X['val'], y['val'],
 every_n_steps=PRINT_STEPS,
 early_stopping_rounds=1000)

#print (X1['train'][1])
#print (X)
#print X['train'][0]

with tf.Session() as sess:
    regressor.fit(tf.cast(X['train'],tf.float64).eval(),
tf.cast(y['train'],tf.float64).eval(),  logdir=LOG_DIR)

predicted = regressor.predict(X['test'])
rmse = np.sqrt(((predicted - y['test']) ** 2).mean(axis=0))
score = mean_squared_error(predicted, y['test'])
print ("MSE: %f" % score)

#plot_predicted, = plt.plot(array[:1000], label='predicted')
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plt.subplot()
plot_predicted, = plt.plot(predicted, label='predicted')

plot_test, = plt.plot(y['test'], label='test')
plt.legend(handles=[plot_predicted, plot_test])

Example 2 – writing music “a la” Bach
In this example, we will work with a recurrent neural network specialized in character
sequences, or the char RNN model.

We will feed this neural network with a series of musical tunes, the Bach Goldberg
Variations, expressed in a character based format, and write a sample piece of music based
on the learned structures.

Note that this examples owes many ideas and concepts to the paper
Visualizing and Understanding Recurrent Networks (h t t p s ://a r x i v . o r g /a b s

/1506. 02078) and the article titled The Unreasonable Effectiveness of
recurrent neural networks, available at (h t t p ://k a r p a t h y . g i t h u b . i o

/2015/05/21/r n n - e f f e c t i v e n e s s /).

Character level models
As we previously saw, Char RNN models work with character sequences. This category of
inputs can represent a vast array of possible languages. The following, are a few examples:

Programming code
Different human languages (modeling of the writing style of certain author)
Scientific papers (tex) and so on

Character sequences and probability representation
The input contents of an RNN need a clear and straightforward way of representation. For
this reason, the one hot representation is chosen, which is convenient to use directly for the
characterization of an output of a limited quantity of possible outcomes (the number of
limited characters is finite and in tens), and use it to directly compare with a Sotmax
function value.
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So the input of the model is a sequence of characters, and the output of the model will be a
sequence of an array per instance. The length of the array will be the same as the vocabulary
size, so each of the array positions will represent the probability of the current character
being in this sequence position, given the previously entered sequence characters.

In the following figure, we observe a very simplified model of the setup, with the encoded
input word and the model predicting the word TEST as the expected output:

Encoding music as characters – the ABC music format
When searching for a format to represent the input data, it is important to choose the one
that is more simple but structurally homogeneous, if possible.

Regarding music representation, the ABC format is a suitable candidate because it has a
very simple structure and uses a limited number of characters, and it is a subset of the
ASCII charset.
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ABC format data organization
An ABC format page has mainly two components: a header and the notes.

Header: A header contains some key: value rows, such as X:[Reference
number], T:[Title], M:[Meter], K:[Key], C[Composer].
Notes: The notes start after the K header key and list the different notes of each
bar, separated by the | character.

There are other elements, but with the following example, you will have an idea of how the
format works, even with no music training:

The original sample is as follows:

X:1
T:Notes
M:C
L:1/4
K:C
C, D, E, F,|G, A, B, C|D E F G|A B c d|e f g a|b c' d' e'|f' g' a' b'|]

The final representation is as follows:

Bach Goldberg variations:

The Bach Goldberg variations is a set of an original aria and 30 works based on it, named
after a Bach disciple, Johann Gottlieb Goldberg, who was probably its main interpreter.
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In the next listing and figure, we will represent the first part of the variation Nr 1 so you
have an idea of the document structure we will try to emulate:

X:1
T:Variation no. 1
C:J.S.Bach
M:3/4
L:1/16
Q:500
V:2 bass
K:G
[V:1]GFG2- GDEF GAB^c |d^cd2- dABc defd |gfg2- gfed ^ceAG|
[V:2]G,,2B,A, B,2G,2G,,2G,2 |F,,2F,E, F,2D,2F,,2D,2 |E,,2E,D,
E,2G,2A,,2^C2|
%  (More parts with V:1 and V:2)

Useful libraries and methods
In this section, we will learn the new functionalities we will be using in this example.

Saving and restoring variables and models
One very important feature for real world applications is the ability to save and retrieve
whole models. TensorFlow provides this ability through the tf.train.Saver object.
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The main methods of this object are the following:

tf.train.Saver(args): This is the constructor. This is a list of the main
parameters:

var_list: This is a list containing the list of all variables to save.
For example, {firstvar: var1, secondvar: var2}. If none, save
all the objects.
max_to_keep: This denotes the maximum number of checkpoints
to maintain.
write_version: This is the file format version, actually only 1 is
valid.

tf.train.Saver.save: This method runs the ops added by the constructor for
saving variables. This requires a current session and all variables to have been
initialized. The main parameters are as follows:

session: This is a session to save the variables
save_path: This is the path to the checkpoint filename
global_step: This is a unique step identifier

This methods returns the path where the checkpoint was saved.

tf.train.Saver.restore: This method restores the previously saved
variables. The main parameters are as follows:

session: The session is where the variables are to be restored
save_path: This is a variable previously returned by the save
method, a call to the latest_checkpoint(), or a provided one

 

Loading and saving pseudocode
Here, we will build with some sample code a minimal structure for saving and retrieving
two sample variables.

Variable saving
The following is the code to create variables:

# Create some variables.
simplevar = tf.Variable(..., name="simple")
anothervar = tf.Variable(..., name="another")
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...
# Add ops to save and restore all the variables.
saver = tf.train.Saver()
# Later, launch the model, initialize the variables, do some work, save the
# variables to disk.
with tf.Session() as sess:
  sess.run(tf.initialize_all_variables())
  # Do some work with the model.
  ..
  # Save the variables to disk.
  save_path = saver.save(sess, "/tmp/model.ckpt")

Variable restoring
The following is the code for restoring the variables:

saver = tf.train.Saver()
# Later, launch the model, use the saver to restore variables from disk,
and
# do some work with the model.
with tf.Session() as sess:
#Work with the restored model....

Dataset description and loading
For this dataset, we start with the 30 works, and then we generate a list of 1000 instances of
theirs, randomly distributed:

import random
input = open('input.txt', 'r').read().split('X:')
for i in range (1,1000):
    print "X:" + input[random.randint(1,30)] +
"\n_____________________________________\n"
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Network Training
The original material for the network training will be the 30 works in the ABC format.

Note that the original ABC file was located at h t t p ://w w w . b a r f l y . d i a l . p

i p e x . c o m /G o l d b e r g s . a b c .

Then we use this little program ().

For this dataset, we start with the 30 works, and then we generate a list of 1000 instances of
theirs, randomly distributed:

import random
input = open('original.txt', 'r').read().split('X:')
for i in range (1,1000):
    print "X:" + input[random.randint(1,30)] +
"\n_____________________________________\n"

And then we execute the following to get the data set:

python generate_dataset.py > input.txt

Dataset preprocessing
The generated dataset needs a bit of information before being useful. First, it needs the
definition of the vocabulary.

Vocabulary definition
The first step in the process is to find all the different characters that can be found in the
original text in order to be able to dimension and fill the one-hot encoded inputs later.
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In the following figure, we represent the different characters found in the ABC music
format. Here you can see what's represented in the standard, with normal and special
punctuation characters:

Modelling architecture
The model for this RNN is described in the following lines, and it is a multilayer LSTM with
initial zero state:

        cell_fn = rnn_cell.BasicLSTMCell
        cell = cell_fn(args.rnn_size, state_is_tuple=True)
        self.cell = cell = rnn_cell.MultiRNNCell([cell] * args.num_layers,
state_is_tuple=True)
        self.input_data = tf.placeholder(tf.int32, [args.batch_size,
args.seq_length])
        self.targets = tf.placeholder(tf.int32, [args.batch_size,
args.seq_length])
        self.initial_state = cell.zero_state(args.batch_size, tf.float32)
        with tf.variable_scope('rnnlm'):
            softmax_w = tf.get_variable("softmax_w", [args.rnn_size,
args.vocab_size])
            softmax_b = tf.get_variable("softmax_b", [args.vocab_size])
            with tf.device("/cpu:0"):
                embedding = tf.get_variable("embedding", [args.vocab_size,
args.rnn_size])
                inputs = tf.split(1, args.seq_length,
tf.nn.embedding_lookup(embedding, self.input_data))
                inputs = [tf.squeeze(input_, [1]) for input_ in inputs]
        def loop(prev, _):
            prev = tf.matmul(prev, softmax_w) + softmax_b
            prev_symbol = tf.stop_gradient(tf.argmax(prev, 1))
            return tf.nn.embedding_lookup(embedding, prev_symbol)
        outputs, last_state = seq2seq.rnn_decoder(inputs,
self.initial_state, cell, loop_function=loop if infer else None,
scope='rnnlm')
        output = tf.reshape(tf.concat(1, outputs), [-1, args.rnn_size])
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Loss function description
The loss function is defined by the losss_by_example function. This is based on a measure
called perplexity, which measures how well a probability distribution predicts a sample.
This measure is used extensively in language models:

        self.logits = tf.matmul(output, softmax_w) + softmax_b
        self.probs = tf.nn.softmax(self.logits)
        loss = seq2seq.sequence_loss_by_example([self.logits],
                [tf.reshape(self.targets, [-1])],
                [tf.ones([args.batch_size * args.seq_length])],
                args.vocab_size)
        self.cost = tf.reduce_sum(loss) / args.batch_size / args.seq_length

Stop condition
The program will iterate until the number of epochs and the batch number is reached. Here
is the condition block:

if (e==args.num_epochs-1 and b == data_loader.num_batches-1)

Results description
In order to run the program, first you run the training script using the following code:

python train.py

Then you run the sample program with the following code:

python sample.py

Configuring a prime of X:1\n, which is a plausible initialization character sequence, we
obtain, depending on the depth (recommended 3) and the length (recommended 512) of the
RNN, almost an recognizable complete composition.
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The following music sheet was obtained copying the resulting character sequence at h t t p

://w w w . d r a w t h e d o t s . c o m / and applying simple character corrections, based on on-site
diagnostics:

Full source code
The following is the complete source code(train.py):

from __future__ import print_function
import numpy as np
import tensorflow as tf

import argparse
import time
import os
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from six.moves import cPickle
from utils import TextLoader
from model import Model
class arguments:
    def __init__(self):
        return
def main():
    args = arguments()
    train(args)
def train(args):
    args.data_dir='data/'; args.save_dir='save'; args.rnn_size =64;
    args.num_layers=1;  args.batch_size=50;args.seq_length=50
    args.num_epochs=5;args.save_every=1000; args.grad_clip=5.
    args.learning_rate=0.002; args.decay_rate=0.97
    data_loader = TextLoader(args.data_dir, args.batch_size,
args.seq_length)
    args.vocab_size = data_loader.vocab_size
    with open(os.path.join(args.save_dir, 'config.pkl'), 'wb') as f:
        cPickle.dump(args, f)
    with open(os.path.join(args.save_dir, 'chars_vocab.pkl'), 'wb') as f:
        cPickle.dump((data_loader.chars, data_loader.vocab), f)
    model = Model(args)
    with tf.Session() as sess:
        tf.initialize_all_variables().run()
        saver = tf.train.Saver(tf.all_variables())
        for e in range(args.num_epochs):
            sess.run(tf.assign(model.lr, args.learning_rate *
(args.decay_rate ** e)))
            data_loader.reset_batch_pointer()
            state = sess.run(model.initial_state)
            for b in range(data_loader.num_batches):
                start = time.time()
                x, y = data_loader.next_batch()
                feed = {model.input_data: x, model.targets: y}
                for i, (c, h) in enumerate(model.initial_state):
                    feed[c] = state[i].c
                    feed[h] = state[i].h
                train_loss, state, _ = sess.run([model.cost,
model.final_state, model.train_op], feed)
                end = time.time()
                print("{}/{} (epoch {}), train_loss = {:.3f}, time/batch =
{:.3f}" \
                    .format(e * data_loader.num_batches + b,
                            args.num_epochs * data_loader.num_batches,
                            e, train_loss, end - start))
                if (e==args.num_epochs-1 and b ==
data_loader.num_batches-1): # save for the last result
                    checkpoint_path = os.path.join(args.save_dir,
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'model.ckpt')
                    saver.save(sess, checkpoint_path, global_step = e *
data_loader.num_batches + b)
                    print("model saved to {}".format(checkpoint_path))

if __name__ == '__main__':
    main()

The following is the complete source code (model.py):

import tensorflow as tf
from tensorflow.python.ops import rnn_cell
from tensorflow.python.ops import seq2seq
import numpy as np

class Model():
    def __init__(self, args, infer=False):
        self.args = args
        if infer: #When we sample, the batch and sequence lenght are = 1
            args.batch_size = 1
            args.seq_length = 1
        cell_fn = rnn_cell.BasicLSTMCell #Define the internal cell
structure
        cell = cell_fn(args.rnn_size, state_is_tuple=True)
        self.cell = cell = rnn_cell.MultiRNNCell([cell] * args.num_layers,
state_is_tuple=True)
        #Build the inputs and outputs placeholders, and start with a zero
internal values
        self.input_data = tf.placeholder(tf.int32, [args.batch_size,
args.seq_length])
        self.targets = tf.placeholder(tf.int32, [args.batch_size,
args.seq_length])
        self.initial_state = cell.zero_state(args.batch_size, tf.float32)
        with tf.variable_scope('rnnlm'):
            softmax_w = tf.get_variable("softmax_w", [args.rnn_size,
args.vocab_size]) #Final w
            softmax_b = tf.get_variable("softmax_b", [args.vocab_size])
#Final bias
            with tf.device("/cpu:0"):
                embedding = tf.get_variable("embedding", [args.vocab_size,
args.rnn_size])
                inputs = tf.split(1, args.seq_length,
tf.nn.embedding_lookup(embedding, self.input_data))
                inputs = [tf.squeeze(input_, [1]) for input_ in inputs]
        def loop(prev, _):
            prev = tf.matmul(prev, softmax_w) + softmax_b
            prev_symbol = tf.stop_gradient(tf.argmax(prev, 1))
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            return tf.nn.embedding_lookup(embedding, prev_symbol)
        outputs, last_state = seq2seq.rnn_decoder(inputs,
self.initial_state, cell, loop_function=loop if infer else None,
scope='rnnlm')
        output = tf.reshape(tf.concat(1, outputs), [-1, args.rnn_size])
        self.logits = tf.matmul(output, softmax_w) + softmax_b
        self.probs = tf.nn.softmax(self.logits)
        loss = seq2seq.sequence_loss_by_example([self.logits],
            [tf.reshape(self.targets, [-1])],
            [tf.ones([args.batch_size * args.seq_length])],
            args.vocab_size)
        self.cost = tf.reduce_sum(loss) / args.batch_size / args.seq_length
        self.final_state = last_state
        self.lr = tf.Variable(0.0, trainable=False)
        tvars = tf.trainable_variables()
        grads, _ = tf.clip_by_global_norm(tf.gradients(self.cost,      
 tvars),
        args.grad_clip)
        optimizer = tf.train.AdamOptimizer(self.lr)
        self.train_op = optimizer.apply_gradients(zip(grads, tvars))
    def sample(self, sess, chars, vocab, num=200, prime='START',
sampling_type=1):
        state = sess.run(self.cell.zero_state(1, tf.float32))
        for char in prime[:-1]:
            x = np.zeros((1, 1))
            x[0, 0] = vocab[char]
            feed = {self.input_data: x, self.initial_state:state}
            [state] = sess.run([self.final_state], feed)
        def weighted_pick(weights):
            t = np.cumsum(weights)
            s = np.sum(weights)
            return(int(np.searchsorted(t, np.random.rand(1)*s)))
        ret = prime
        char = prime[-1]
        for n in range(num):
            x = np.zeros((1, 1))
            x[0, 0] = vocab[char]
            feed = {self.input_data: x, self.initial_state:state}
            [probs, state] = sess.run([self.probs, self.final_state], feed)
            p = probs[0]
            sample = weighted_pick(p)
            pred = chars[sample]
            ret += pred
            char = pred
        return ret
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The following is the complete source code(sample.py):

from __future__ import print_function

import numpy as np
import tensorflow as tf
import time
import os
from six.moves import cPickle
from utils import TextLoader
from model import Model
from six import text_type

class arguments: #Generate the arguments class
    save_dir= 'save'
    n=1000
    prime='x:1\n'
    sample=1 

def main():
    args = arguments()
    sample(args)   #Pass the argument object

def sample(args):
    with open(os.path.join(args.save_dir, 'config.pkl'), 'rb') as f:
        saved_args = cPickle.load(f) #Load the config from the standard
file
    with open(os.path.join(args.save_dir, 'chars_vocab.pkl'), 'rb') as f:

        chars, vocab = cPickle.load(f) #Load the vocabulary
    model = Model(saved_args, True) #Rebuild the model
    with tf.Session() as sess:
        tf.initialize_all_variables().run() 
        saver = tf.train.Saver(tf.all_variables())   
        ckpt = tf.train.get_checkpoint_state(args.save_dir) #Retrieve the
chkpoint
        if ckpt and ckpt.model_checkpoint_path:
            saver.restore(sess, ckpt.model_checkpoint_path) #Restore the
model
            print(model.sample(sess, chars, vocab, args.n, args.prime,
args.sample))
            #Execute the model, generating a n char sequence
            #starting with the prime sequence
if __name__ == '__main__':
    main()
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The following is the complete source code(utils.py):

import codecs
import os
import collections
from six.moves import cPickle
import numpy as np

class TextLoader():
    def __init__(self, data_dir, batch_size, seq_length, encoding='utf-8'):
        self.data_dir = data_dir
        self.batch_size = batch_size
        self.seq_length = seq_length
        self.encoding = encoding

        input_file = os.path.join(data_dir, "input.txt")
        vocab_file = os.path.join(data_dir, "vocab.pkl")
        tensor_file = os.path.join(data_dir, "data.npy")

        if not (os.path.exists(vocab_file) and
os.path.exists(tensor_file)):
            print("reading text file")
            self.preprocess(input_file, vocab_file, tensor_file)
        else:
            print("loading preprocessed files")
            self.load_preprocessed(vocab_file, tensor_file)
        self.create_batches()
        self.reset_batch_pointer()

    def preprocess(self, input_file, vocab_file, tensor_file):
        with codecs.open(input_file, "r", encoding=self.encoding) as f:
            data = f.read()
        counter = collections.Counter(data)
        count_pairs = sorted(counter.items(), key=lambda x: -x[1])
        self.chars, _ = zip(*count_pairs)
        self.vocab_size = len(self.chars)
        self.vocab = dict(zip(self.chars, range(len(self.chars))))
        with open(vocab_file, 'wb') as f:
            cPickle.dump(self.chars, f)
        self.tensor = np.array(list(map(self.vocab.get, data)))
        np.save(tensor_file, self.tensor)

    def load_preprocessed(self, vocab_file, tensor_file):
        with open(vocab_file, 'rb') as f:
            self.chars = cPickle.load(f)
        self.vocab_size = len(self.chars)
        self.vocab = dict(zip(self.chars, range(len(self.chars))))
        self.tensor = np.load(tensor_file)
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        self.num_batches = int(self.tensor.size / (self.batch_size *
                                                   self.seq_length))

    def create_batches(self):
        self.num_batches = int(self.tensor.size / (self.batch_size *
                                                   self.seq_length))

        self.tensor = self.tensor[:self.num_batches * self.batch_size *
self.seq_length]
        xdata = self.tensor
        ydata = np.copy(self.tensor)
        ydata[:-1] = xdata[1:]
        ydata[-1] = xdata[0]
        self.x_batches = np.split(xdata.reshape(self.batch_size, -1),
self.num_batches, 1)
        self.y_batches = np.split(ydata.reshape(self.batch_size, -1),
self.num_batches, 1)

    def next_batch(self):
        x, y = self.x_batches[self.pointer], self.y_batches[self.pointer]
        self.pointer += 1
        return x, y

    def reset_batch_pointer(self):
        self.pointer = 0

Summary
In this chapter, we reviewed one of the most recent neural networks architectures, recurrent
neural networks, completing the panorama of the mainstream approaches in the machine
learning field.

In the following chapter, we will research the different neural network layer type
combinations appearing in state of the art implementations and cover some new interesting
experimental models.



8
Deep Neural Networks

In this chapter, we will be reviewing one of the most state of the art, and most prolifically
studied fields in Machine Learning, Deep neural networks.

Deep neural network definition
This is an area which is experiencing a blast on news techniques, and every day we hear of
successful experiments applying DNN in solving new problems, for example, in computer
vision, autonomous car driving, speech and text understanding, and so on.

In the previous chapters, we were using techniques that can be related with DNN,
especially in the one covering Convolutional Neural Network.

For practical reasons, we will be referring to Deep Learning and Deep Neural Networks, to
the architectures where the number of layers is significantly superior to a couple of similar
layer, we will be referring to the Neural Network architectures with like tens of layer, or
combinations of complex constructs.
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Deep network architectures through time
In this section, we will be reviewing the milestone architectures that appeared throughout
the history of deep learning, starting with LeNet5.

LeNet 5
The field of neural networks had been quite silent during the 1980s and the 1990s. There
were some efforts, but the architectures were quite simple, and a big (and often not
available) machine power was needed to try more complex approaches.

Around 1998, in Bells Labs, during research around the classification of hand written check
digits, Ian LeCun started a new trend implementing the bases of what is considered Deep
Learning – The Convolutional Neural Networks, which we have already studied in Chapter 5,
Simple FeedForward Neural Networks .

In those years, SVM and other much more rigorously defined techniques were used to
tackle those kinds of problems, but the fundamental paper on CNN, shows that Neural
Networks could have a comparable or better performance compared to the then state of the
art methods.

Alexnet
After some more years of hiatus (even though LeCun continued applying his networks to
other tasks, such as face and object recognition), the exponential growth of both available
structured data, and raw processing power, allowed the teams to grow and tune the
models, to an extent that could have been considered impossible, and thus the complexity
of the models could be increased without the risk of waiting months for training.
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Computer research teams from a number of technological firms and universities began
competing on some very difficult tasks, including image recognition. For one of these
challenges, the Imagenet Classification Challenge, the Alexnet architecture was developed:

Alexnet architecture

Main features
Alexnet can be seen as an augmented LeNet5, in the sense that its first layers with
convolution operations. but add the not so used max pooling layers, and then a series of
dense connected layers, building a last output class probability layer. The Visual Geometry
Group (VGG) model

One of the other main contenders of the image classification challenge was the VGGof the
University of Oxford.

The main characteristic of the VGG network architecture is that they reduced the size of the
convolutional filters, to a simple 3×3, and combined them in sequences.
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This idea of tiny convolutional kernels was disruptive to the initial ideas of the LeNet and
its successor Alexnet, which used filters of up to 11×11 filters, much more complex and low
in performance. This change in filter size was the beginning of a trend that is still current:

Summary of the parameter number per layer in VGG
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However, this positive change of using a series of small convolution weights, the total setup
amounted to a really big number of parameters (in the order of many millions) and so it had
to be limited by a number of measures.

The original inception model
After two main research cycles dominated by Alexnet and VGG, Google disrupted the
challenges with a very powerful architecture, Inception, which has several iterations.

The first of these iterations, started with its own version of Convolutional Neural Network
layer-based architecture, called GoogLeNet, an architecture with a name reminiscent to the
network approach that started it all.

GoogLenet (Inception V1)

1Inception module
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GoogLeNet was the first iteration of this effort, and as you will see in the following figure, it
has a very deep architecture, but it has the chilling sum of nine chained inception modules,
with little or no modification:

Inception original architecture

Even being so complex, it managed to reduce the needed parameter number, and increased
the accuracy, compared to Alexnet, which had been released just two years before.

The comprehension and scalability of this complex architecture is improved nevertheless,
by the fact that almost all the structure consists of a determined arrangement and repetition
of the same original structural layer building blocks.

Batch normalized inception (V2)
The state of the art neural networks of 2015, while improving iteration over iteration, were
having a problem of training instability.

In order to understand how the problems consisted, first we will remember the simple
normalization steps that we applied in the previous examples. It basically consisted of
centering the values on zero, and dividing by the maximum value, or the standard
deviation, in order to have a good baseline for the gradients of the back propagations.
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What occurs during the training of really large datasets, is that after a number of training
examples, the different value oscillations begin to amplify the mean parameter value, like in
a resonance phenomenon. What we very simply described is called a co variance shift.

Performance comparison with and without Batch Normalization

This is the main reason why the Batch Normalization techniques had been developed.

Again simplifying the process description, it consists of applying normalizations not only to
the original input values, it also normalizes the output values at each layer, avoiding the
instabilities appearing between layers, before they begin to affect or drift the values.

This is the main feature that Google shipped in its improved implementation of GoogLeNet,
released in February 2015, and it is also called Inception V2.

Inception v3
Fast forward to December 2015, and there is a new iteration of the Inception architecture.
The difference of months between releases gives us an idea of the pace of development of
the new iterations.

The basic adaptations for this architecture are:

Reduce the number of convolutions to maximum 3×3
Increase the general depth of the networks
Use the width increase technique at each layer to improve feature combination
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The following diagram illustrates how the improved inception module can be interpreted:

Inception V3 base module

And this is a representation of the whole V3 architecture, with many instances of the
common building module:

Inception V3 general diagram
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Residual Networks (ResNet)
The Residual Network architecture appears in December 2015 (more or less the same time
as the Inception V3), and it brought a simple but novel idea: not only use the output of each
constitutional layer, but also combine the output of the layer with the original input.

In the following diagram, we observe a simplified view of one of the ResNet modules; it
clearly shows the sum operation at the end of the Convolutional layer stack, and a final relu
operation:

ResNet general architecture

The convolutional part of the module includes a feature reduction from 256 to 64 values, a
3×3 filter layer maintaining the features number, and then a feature augmenting 1×1 layer,
from 64 x 256 values. In recent developments, ResNet is also used in a depth of less than 30
layers, with a wide distribution.
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Other deep neural network architectures
There are a big number of recently developed neural network architectures; in fact, the field
is so dynamic that we have more or less a new outstanding architecture apparition every
year. A list of the most promising neural network architectures are:

SqueezeNet: This architecture is an effort at reducing the parameter number and
complexity of Alexnet, claiming a 50x parameter number reduction
Efficient Neural Network (Enet): Aims to build a simpler, low latency, number
of floating point operations, neural networks with real-time results
Fractalnet: Its main characteristics are the implementation of very deep networks,
without requiring the residual architecture, organizing the structural layout as a
truncated fractal

Example – painting with style – VGG style
transfer
In this example, we will work with the implementation of the paperA Neural Algorithm of
Artistic Style from Leon Gatys.

The original code for this exercise was kindly provided by Anish Athalye (h
t t p ://w w w . a n i s h a t h a l y e . c o m /).

We have to note that this exercise does not have a training part. We will just be loading a
pretrained coefficient matrix, provided by VLFeat, a database of pre trained models, which
can be used to work on models, avoiding the normally computationally intensive training:
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Style transfer main concepts

Useful libraries and methods
Loading parameters files with scipy.io.loadmat

The first useful library that we will be using is the scipy io module,
to load the coefficient data, which is saved as a matlab mat format.

Usage of the preceding parameter:

scipy.io.loadmat(file_name, mdict=None, appendmat=True, **kwargs)

Returns of the preceding parameter:

mat_dict : dict :dictionary with variable names as keys, and
loaded matrices as values. If the mdict parameter is filled, the results
will be assigned to it.
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Dataset description and loading
For the solution of this problem, we will be using a pre-trained dataset, that is, the retrained
coefficients of a VGG neural network, with the Imagenet dataset.

Dataset preprocessing
Given that the coefficients are given in the loaded parameter matrix, there is not much work
to do regarding the initial dataset.

Modeling architecture
The modeling architecture is divided mainly in two parts: the style and the content.

For the generation of the final images, a VGG network without the final fully connected
layer is used.

Loss functions
This architecture defines two different loss functions to optimize the two different aspects of
the final image, one for the content and one for the style.
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Content loss function
The code for content_loss function is as follows:

 # content loss
        content_loss = content_weight * (2 * tf.nn.l2_loss(
                net[CONTENT_LAYER] - content_features[CONTENT_LAYER]) /
                content_features[CONTENT_LAYER].size)

Style loss function

Loss optimization loop
The code for loss optimization loop is as follows:

        best_loss = float('inf')
        best = None
        with tf.Session() as sess:
            sess.run(tf.initialize_all_variables())
            for i in range(iterations):
                last_step = (i == iterations - 1)
                print_progress(i, last=last_step)
                train_step.run()

                if (checkpoint_iterations and i % checkpoint_iterations ==
0) or last_step:
                    this_loss = loss.eval()
                    if this_loss < best_loss:
                        best_loss = this_loss
                        best = image.eval()
                    yield (
                        (None if last_step else i),
                        vgg.unprocess(best.reshape(shape[1:]), mean_pixel)
                    )

Convergency test
In this example, we will just check for the number of indicated iterations (the iterations
parameter).
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Program execution
For the execution of this program for a good (around 1000) iteration number, we
recommend to have at least 8GB of RAM memory available:

    python neural_style.py --content examples/2-content.jpg --styles
examples/2-style1.jpg  --checkpoint-iterations=100 --iterations=1000 --
checkpoint-output=out%s.jpg --output=outfinal

The results for the preceding command is as follows:

Style transfer steps

The console output is as follows:

    Iteration 1/1000
    Iteration 2/1000
    Iteration 3/1000
    Iteration 4/1000
    ...
    Iteration 999/1000
    Iteration 1000/1000
      content loss: 908786
        style loss: 261789
           tv loss: 25639.9
        total loss: 1.19621e+06
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Full source code
The code for neural_style.py is as follows:

import os

import numpy as np
import scipy.misc

from stylize import stylize

import math
from argparse import ArgumentParser

# default arguments
CONTENT_WEIGHT = 5e0
STYLE_WEIGHT = 1e2
TV_WEIGHT = 1e2
LEARNING_RATE = 1e1
STYLE_SCALE = 1.0
ITERATIONS = 100
VGG_PATH = 'imagenet-vgg-verydeep-19.mat'

def build_parser():
    parser = ArgumentParser()
    parser.add_argument('--content',
            dest='content', help='content image',
            metavar='CONTENT', required=True)
    parser.add_argument('--styles',
            dest='styles',
            nargs='+', help='one or more style images',
            metavar='STYLE', required=True)
    parser.add_argument('--output',
            dest='output', help='output path',
            metavar='OUTPUT', required=True)
    parser.add_argument('--checkpoint-output',
            dest='checkpoint_output', help='checkpoint output format',
            metavar='OUTPUT')
    parser.add_argument('--iterations', type=int,
            dest='iterations', help='iterations (default %(default)s)',
            metavar='ITERATIONS', default=ITERATIONS)
    parser.add_argument('--width', type=int,
            dest='width', help='output width',
            metavar='WIDTH')
    parser.add_argument('--style-scales', type=float,
            dest='style_scales',
            nargs='+', help='one or more style scales',
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            metavar='STYLE_SCALE')
    parser.add_argument('--network',
            dest='network', help='path to network parameters (default
%(default)s)',
            metavar='VGG_PATH', default=VGG_PATH)
    parser.add_argument('--content-weight', type=float,
            dest='content_weight', help='content weight (default
%(default)s)',
            metavar='CONTENT_WEIGHT', default=CONTENT_WEIGHT)
    parser.add_argument('--style-weight', type=float,
            dest='style_weight', help='style weight (default %(default)s)',
            metavar='STYLE_WEIGHT', default=STYLE_WEIGHT)
    parser.add_argument('--style-blend-weights', type=float,
            dest='style_blend_weights', help='style blending weights',
            nargs='+', metavar='STYLE_BLEND_WEIGHT')
    parser.add_argument('--tv-weight', type=float,
            dest='tv_weight', help='total variation regularization weight
(default %(default)s)',
            metavar='TV_WEIGHT', default=TV_WEIGHT)
    parser.add_argument('--learning-rate', type=float,
            dest='learning_rate', help='learning rate (default
%(default)s)',
            metavar='LEARNING_RATE', default=LEARNING_RATE)
    parser.add_argument('--initial',
            dest='initial', help='initial image',
            metavar='INITIAL')
    parser.add_argument('--print-iterations', type=int,
            dest='print_iterations', help='statistics printing frequency',
            metavar='PRINT_ITERATIONS')
    parser.add_argument('--checkpoint-iterations', type=int,
            dest='checkpoint_iterations', help='checkpoint frequency',
            metavar='CHECKPOINT_ITERATIONS')
    return parser

def main():
    parser = build_parser()
    options = parser.parse_args()

    if not os.path.isfile(options.network):
        parser.error("Network %s does not exist. (Did you forget to
download it?)" % options.network)

    content_image = imread(options.content)
    style_images = [imread(style) for style in options.styles]

    width = options.width
    if width is not None:
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        new_shape = (int(math.floor(float(content_image.shape[0]) /
                content_image.shape[1] * width)), width)
        content_image = scipy.misc.imresize(content_image, new_shape)
    target_shape = content_image.shape
    for i in range(len(style_images)):
        style_scale = STYLE_SCALE
        if options.style_scales is not None:
            style_scale = options.style_scales[i]
        style_images[i] = scipy.misc.imresize(style_images[i], style_scale
*
                target_shape[1] / style_images[i].shape[1])

    style_blend_weights = options.style_blend_weights
    if style_blend_weights is None:
        # default is equal weights
        style_blend_weights = [1.0/len(style_images) for _ in style_images]
    else:
        total_blend_weight = sum(style_blend_weights)
        style_blend_weights = [weight/total_blend_weight
                               for weight in style_blend_weights]

    initial = options.initial
    if initial is not None:
        initial = scipy.misc.imresize(imread(initial),
content_image.shape[:2])

    if options.checkpoint_output and "%s" not in options.checkpoint_output:
        parser.error("To save intermediate images, the checkpoint output "
                     "parameter must contain `%s` (e.g. `foo%s.jpg`)")

    for iteration, image in stylize(
        network=options.network,
        initial=initial,
        content=content_image,
        styles=style_images,
        iterations=options.iterations,
        content_weight=options.content_weight,
        style_weight=options.style_weight,
        style_blend_weights=style_blend_weights,
        tv_weight=options.tv_weight,
        learning_rate=options.learning_rate,
        print_iterations=options.print_iterations,
        checkpoint_iterations=options.checkpoint_iterations
    ):
        output_file = None
        if iteration is not None:
            if options.checkpoint_output:
                output_file = options.checkpoint_output % iteration
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        else:
            output_file = options.output
        if output_file:
            imsave(output_file, image)

def imread(path):
    return scipy.misc.imread(path).astype(np.float)

def imsave(path, img):
    img = np.clip(img, 0, 255).astype(np.uint8)
    scipy.misc.imsave(path, img)

if __name__ == '__main__':
    main()

The code for Stilize.py is as follows:

import vgg

import tensorflow as tf
import numpy as np

from sys import stderr

CONTENT_LAYER = 'relu4_2'
STYLE_LAYERS = ('relu1_1', 'relu2_1', 'relu3_1', 'relu4_1', 'relu5_1')

try:
    reduce
except NameError:
    from functools import reduce

def stylize(network, initial, content, styles, iterations,
        content_weight, style_weight, style_blend_weights, tv_weight,
        learning_rate, print_iterations=None, checkpoint_iterations=None):
    """
    Stylize images.

    This function yields tuples (iteration, image); `iteration` is None
    if this is the final image (the last iteration).  Other tuples are
yielded
    every `checkpoint_iterations` iterations.
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    :rtype: iterator[tuple[int|None,image]]
    """
    shape = (1,) + content.shape
    style_shapes = [(1,) + style.shape for style in styles]
    content_features = {}
    style_features = [{} for _ in styles]

    # compute content features in feedforward mode
    g = tf.Graph()
    with g.as_default(), g.device('/cpu:0'), tf.Session() as sess:
        image = tf.placeholder('float', shape=shape)
        net, mean_pixel = vgg.net(network, image)
        content_pre = np.array([vgg.preprocess(content, mean_pixel)])
        content_features[CONTENT_LAYER] = net[CONTENT_LAYER].eval(
                feed_dict={image: content_pre})

    # compute style features in feedforward mode
    for i in range(len(styles)):
        g = tf.Graph()
        with g.as_default(), g.device('/cpu:0'), tf.Session() as sess:
            image = tf.placeholder('float', shape=style_shapes[i])
            net, _ = vgg.net(network, image)
            style_pre = np.array([vgg.preprocess(styles[i], mean_pixel)])
            for layer in STYLE_LAYERS:
                features = net[layer].eval(feed_dict={image: style_pre})
                features = np.reshape(features, (-1, features.shape[3]))
                gram = np.matmul(features.T, features) / features.size
                style_features[i][layer] = gram

    # make stylized image using backpropogation
    with tf.Graph().as_default():
        if initial is None:
            noise = np.random.normal(size=shape, scale=np.std(content) *
0.1)
            initial = tf.random_normal(shape) * 0.256
        else:
            initial = np.array([vgg.preprocess(initial, mean_pixel)])
            initial = initial.astype('float32')
        image = tf.Variable(initial)
        net, _ = vgg.net(network, image)

        # content loss
        content_loss = content_weight * (2 * tf.nn.l2_loss(
                net[CONTENT_LAYER] - content_features[CONTENT_LAYER]) /
                content_features[CONTENT_LAYER].size)
        # style loss
        style_loss = 0
        for i in range(len(styles)):
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            style_losses = []
            for style_layer in STYLE_LAYERS:
                layer = net[style_layer]
                _, height, width, number = map(lambda i: i.value,
layer.get_shape())
                size = height * width * number
                feats = tf.reshape(layer, (-1, number))
                gram = tf.matmul(tf.transpose(feats), feats) / size
                style_gram = style_features[i][style_layer]
                style_losses.append(2 * tf.nn.l2_loss(gram - style_gram) /
style_gram.size)
            style_loss += style_weight * style_blend_weights[i] *
reduce(tf.add, style_losses)
        # total variation denoising
        tv_y_size = _tensor_size(image[:,1:,:,:])
        tv_x_size = _tensor_size(image[:,:,1:,:])
        tv_loss = tv_weight * 2 * (
                (tf.nn.l2_loss(image[:,1:,:,:] - image[:,:shape[1]-1,:,:])
/
                    tv_y_size) +
                (tf.nn.l2_loss(image[:,:,1:,:] - image[:,:,:shape[2]-1,:])
/
                    tv_x_size))
        # overall loss
        loss = content_loss + style_loss + tv_loss

        # optimizer setup
        train_step = tf.train.AdamOptimizer(learning_rate).minimize(loss)

        def print_progress(i, last=False):
            stderr.write('Iteration %d/%d\n' % (i + 1, iterations))
            if last or (print_iterations and i % print_iterations == 0):
                stderr.write('  content loss: %g\n' % content_loss.eval())
                stderr.write('    style loss: %g\n' % style_loss.eval())
                stderr.write('       tv loss: %g\n' % tv_loss.eval())
                stderr.write('    total loss: %g\n' % loss.eval())

        # optimization
        best_loss = float('inf')
        best = None
        with tf.Session() as sess:
            sess.run(tf.initialize_all_variables())
            for i in range(iterations):
                last_step = (i == iterations - 1)
                print_progress(i, last=last_step)
                train_step.run()

                if (checkpoint_iterations and i % checkpoint_iterations ==
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0) or last_step:
                    this_loss = loss.eval()
                    if this_loss < best_loss:
                        best_loss = this_loss
                        best = image.eval()
                    yield (
                        (None if last_step else i),
                        vgg.unprocess(best.reshape(shape[1:]), mean_pixel)
                    )

def _tensor_size(tensor):
    from operator import mul
    return reduce(mul, (d.value for d in tensor.get_shape()), 1)
 vgg.py
import tensorflow as tf
import numpy as np
import scipy.io

def net(data_path, input_image):
    layers = (
        'conv1_1', 'relu1_1', 'conv1_2', 'relu1_2', 'pool1',

        'conv2_1', 'relu2_1', 'conv2_2', 'relu2_2', 'pool2',

        'conv3_1', 'relu3_1', 'conv3_2', 'relu3_2', 'conv3_3',
        'relu3_3', 'conv3_4', 'relu3_4', 'pool3',

        'conv4_1', 'relu4_1', 'conv4_2', 'relu4_2', 'conv4_3',
        'relu4_3', 'conv4_4', 'relu4_4', 'pool4',

        'conv5_1', 'relu5_1', 'conv5_2', 'relu5_2', 'conv5_3',
        'relu5_3', 'conv5_4', 'relu5_4'
    )

    data = scipy.io.loadmat(data_path)
    mean = data['normalization'][0][0][0]
    mean_pixel = np.mean(mean, axis=(0, 1))
    weights = data['layers'][0]

    net = {}
    current = input_image
    for i, name in enumerate(layers):
        kind = name[:4]
        if kind == 'conv':
            kernels, bias = weights[i][0][0][0][0]
            # matconvnet: weights are [width, height, in_channels,
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out_channels]
            # tensorflow: weights are [height, width, in_channels,
out_channels]
            kernels = np.transpose(kernels, (1, 0, 2, 3))
            bias = bias.reshape(-1)
            current = _conv_layer(current, kernels, bias)
        elif kind == 'relu':
            current = tf.nn.relu(current)
        elif kind == 'pool':
            current = _pool_layer(current)
        net[name] = current

    assert len(net) == len(layers)
    return net, mean_pixel

def _conv_layer(input, weights, bias):
    conv = tf.nn.conv2d(input, tf.constant(weights), strides=(1, 1, 1, 1),
            padding='SAME')
    return tf.nn.bias_add(conv, bias)

def _pool_layer(input):
    return tf.nn.max_pool(input, ksize=(1, 2, 2, 1), strides=(1, 2, 2, 1),
            padding='SAME')

def preprocess(image, mean_pixel):
    return image - mean_pixel

def unprocess(image, mean_pixel):
    return image + mean_pixel

Summary
In this chapter, we have been learning about the different Deep Neural Network
architectures.

We learned about building one of the most well known architectures of recent years, VGG,
and how to employ it to generate images that translate artistic style.

In the next chapter, we will be using one of the most useful technologies in Machine
Learning: Graphical Processing Units. We will review the steps needed to install
TensorFlow with GPU support and train models with it, comparing execution times with
the CPU as the only model running.
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Running Models at Scale –

GPU and Serving
Until now, we have been running code that runs on the host computer's main CPU. This
implies that, at most, we use all the different processor cores (2 or 4 for low-end processors,
up to 16 in more advanced processors).

In the last decade, the General Processing Unit, or GPU, has become a ubiquitous part of
any high performance computing setup. Its massive, intrinsic parallelism is very well suited
for the high dimension matrix multiplications and other operations required in machine
learning model training and running.

Nevertheless, even having really powerful computing nodes there is a large number of
tasks with which even the most powerful individual server can't cope.

For this reason, a distributed way of training and running a model had to be developed.
This is the original function of distributed TensorFlow.

In this chapter, you will:

Learn how to discover the available computing resources TensorFlow has
available
Learn how to assign tasks to any of the different computing units in a computing
node
Learn how to log the GPU operations
Learn how to distribute the computing not only in the main host computer, but
across a cluster of many distributed units
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GPU support on TensorFlow
TensorFlow has native support for at least two computing capabilities: CPU and GPU. For
this, it implements one version of each operation for each kind of computing device it
supports:

Log device placement and device capabilities
Before trying to perform calculations, TensorFlow allows you to log all the available
resources. In this way we can apply operations only in existing computing types.

Querying the computing capabilities
In order to obtain a log of the computing elements on a machine, we can use the
log_device_placement flag when we create a TensorFlow session, in this way:

    python
    >>>Import tensorflow as tf
    >>>sess = tf.Session(config=tf.ConfigProto(log_device_placement=True))
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This is the output of the commands:

Selecting a GPU to run code

This long output mainly shows the loading of the different needed CUDA library, and then
the name (GRID K520) and the computing capabilities of the GPU.

Selecting a CPU for computing
If we have a GPU available, but still want to continue working with the CPU, we can select
one via the method, tf.Graph.device.
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The method call is the following:

tf.Graph.device(device_name_or_function) :

This function receives a processing unit string, a function returning a processing unit string,
or none, and returns a context manager with the processing unit assigned.

If the parameter is a function, each operation will call this function to decide in which
processing unit it will execute, a useful element to combine all operations.

Device naming
To specify which computing unit we are referring to when specifying a device, TensorFlow
uses a simple scheme with the following format:

Device ID format

Example device identification includes:

“/cpu:0”: The first CPU of your machine
“/gpu:0”: The GPU of your machine, if you have one
“/gpu:1”: The second GPU of your machine, and so on

When available, if nothing is indicated to the contrary, the first GPU device is used.

Example 1 – assigning an operation to the
GPU
In this example, we will create two tensors, locate the existing GPU as the default location,
and will execute the tensor sum on it on a server configured with the CUDA environment
(which you will learn to install in Appendix A – Library Installation and Additional Tips).
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Here we see that both the constants and the sum operation are built on the /gpu:0 server.
This is because the GPU is the preferred computing device type when available.

Example 2 – calculating Pi number in parallel
This example will serve as an introduction of parallel processing, implementing the Monte
Carlo approximation of Pi.

Monte Carlo utilizes a random number sequence to perform an approximation.
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In order to solve this problem, we will throw many random samples, knowing that the ratio
of samples inside the circle over the ones on the square, is the same as the area ratio.

Random area calculation techniques

The calculation assumes that if the probability distribution is uniform, the number of
samples assigned is proportional to the area of the figures.

We use the following proportion:

Area proportion for Pi calculation

From the aforementioned proportion, we infer that number of sample in the circle/number
of sample of square is also 0.78.

An additional fact is that the more random samples we can generate for the calculation, the
more approximate the answer. This is when incrementing the number of GPUs will give us
more samples and accuracy.

A further reduction that we do is that we generate (X,Y) coordinates, ranging from (0..1), so
the random number generation is more direct. So the only criteria we need to determine if a
sample belongs to the circle is distance = d < 1.0 (radius of the circle).
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Solution implementation
This solution will be based around the CPU; it will manage the GPU resources that we have
in the server (in this case, 4) and then we will receive the results, doing the final sample
sum.

Note: This method has a really slow convergence rate of O(n1/2), but will be
used as an example, given its simplicity.

Computing tasks timeline

In the preceding figure, we see the parallel behavior of the calculation, being the sample
generation and counting the main activity.

Source code
The source code is as follows:

import tensorflow as tf
import numpy as np
c = []
#Distribute the work between the GPUs
for d in ['/gpu:0', '/gpu:1', '/gpu:2', '/gpu:3']:
    #Generate the random 2D samples
    i=tf.constant(np.random.uniform(size=10000), shape=[5000,2])
    with tf.Session() as sess:

tf.initialize_all_variables()
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        #Calculate the euclidean distance to the origin
        distances=tf.reduce_sum(tf.pow(i,2),1)
        #Sum the samples inside the circle
        tempsum =
sess.run(tf.reduce_sum(tf.cast(tf.greater_equal(tf.cast(1.0,tf.float64),dis
tances),tf.float64)))
        #append the current result to the results array
        c.append( tempsum)
    #Do the final ratio calculation on the CPU
    with tf.device('/cpu:0'):
        with tf.Session() as sess:
            sum = tf.add_n(c)
            print (sess.run(sum/20000.0)*4.0)

Distributed TensorFlow
Distributed TensorFlow is a complementary technology, which aims to easily and
efficiently create clusters of computing nodes, and to distribute the jobs between nodes in a
seamless way.

It is the standard way to create distributed computing environments, and to execute the
training and running of models at a massive scale, so it's very important to be able to do the
main task found in production, high volume data setups.

Technology components
In this section, we will describe all the components on a distributed TensorFlow computing
setup, from the most fine-grained task elements, to the whole cluster description.

Jobs
Jobs define a group of homogeneous tasks, normally aimed to the same subset of the
problem-solving area.

Examples of job distinctions are:

A parameter server job which will store the model parameters in an individual
job, and will be in charge of distributing to all the distributed nodes the initial
and current parameter values
A worker job, where all the computing intensive tasks are performed
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Tasks
Tasks are subdivisions of jobs, which perform the different steps or parallel work units to
solve the problem area of its job, and are normally attached to a single process.

Every job has a number of tasks, and they are identified by an index. Normally the task
with the index 0, is considered the main or coordinator task.

Servers
Server are logical objects representing a set of physical devices dedicated to implementing
tasks. A server will be exclusively assigned to a single task.

Combined overview
In the following figure, we will represent all the participating parts in a cluster computing
setup:

TensorFlow cluster setup elements
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The figure contains the two jobs represented by the ps and the worker jobs, and the grpc
communication channels (covered in Appendix A – Library Installation and Additional Tips)
that can be created from the clients for them. For every job type, there are servers
implementing different tasks, which solve subsets of the job's domain problem.

Creating a TensorFlow cluster
The first task for a distributed cluster program will be defining and creating a ClusterSpec
object, which contains the real server instance's addresses and ports, which will be a part of
the cluster.

The two main ways of defining this ClusterSpec are:

Create a tf.train.ClusterSpec object, which specifies all cluster tasks
Passing the mentioned ClusterSpec object, when creating a tf.train.Server,
and relating the local task with a job name plus task index

ClusterSpec definition format
ClusterSpec objects are defined using the protocol buffer format, which is a special format
based on JSON.

The format is the following:

{
    "job1 name": [
        "task0 server uri",
        "task1 server uri"
         ...
    ]
...
    "jobn name"[
        "task0 server uri",
        "task1 server uri"
    ]})
...

So this would be the function call to create a cluster with a parameter server task server and
three worker task servers:

tf.train.ClusterSpec({
    "worker": [
        "wk0.example.com:2222",
        "wk1.example.com:2222",
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        "wk2.example.com:2222"
    ],
    "ps": [
        "ps0.example.com:2222",
    ]})

Creating tf.Train.Server
After we create the ClusterSpec, we now have an exact idea of the cluster configuration, in
the runtime. We will proceed to create the local server instance, creating an instance of
tf.train.Server:

This is a sample server creation, which takes a cluster object, a job name, and a task index as
a parameter:

server = tf.train.Server(cluster, job_name="local", task_index=[Number of
server])

Cluster operation – sending computing methods
to tasks
In order to begin learning the operation of the cluster, we need to learn the addressing of
the computing resources.

First of all, we suppose we have already created a cluster, with its different resources of jobs
and tasks. The ID string for any of the resources has the following form:

And the normal invocation of the resource in a context manager is the with keyword, with
the following structure.

with tf.device("/job:ps/task:1"):
  [Code Block]

The with keyword indicates that whenever a task identifier is needed, the one specified in
the context manager directive will be used.
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The following figure illustrates a sample cluster setup, with the addressing names of all the
different parts of the setup:

Server elements naming

Sample distributed code structure
This sample code will show you the approximate structure of a program addressing
different tasks in a cluster, specifically a parameter server and a worker job:

#Address the Parameter Server task
with tf.device("/job:ps/task:1"):
  weights = tf.Variable(...)
  bias = tf.Variable(...)

#Address the Parameter Server task
with tf.device("/job:worker/task:1"):
    #... Generate and train a model
  layer_1 = tf.nn.relu(tf.matmul(input, weights_1) + biases_1)
  logits = tf.nn.relu(tf.matmul(layer_1, weights_2) + biases_2)
  train_op = ...

#Command the main task of the cluster
with tf.Session("grpc://worker1.cluster:2222") as sess:
  for i in range(100):
    sess.run(train_op)
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Example 3 – distributed Pi calculation
In this example, we will change the perspective, going from one server with several
computing resources, to a cluster of servers with a number of resources for each one.

The execution of the distributed version will have a different setup, explained in the
following figure:

Distributed coordinated running
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Server script
This script will be executed on each one of the computation nodes, which will generate a
batch of samples, augmenting the number of generated random numbers by the number of
available servers. In this case, we will use two servers and we suppose we initiate them
in the localhost, indicating in the command-line the index number. If you want to run them
in separate nodes, you just have to replace the localhost addresses in the ClusterSpec
definition (and the name if you want it to be more representative).

The source code for the script is as follows:

import tensorflow as tf
tf.app.flags.DEFINE_string("index", "0","Server index")
FLAGS = tf.app.flags.FLAGS
print FLAGS.index
cluster = tf.train.ClusterSpec({"local": ["localhost:2222",
"localhost:2223"]})
server = tf.train.Server(cluster, job_name="local",
task_index=int(FLAGS.index))
server.join()

The command lines for executing this script in localhost are as follows:

    python start_server.py -index=0 #Server  task 0
    python start_server.py -index=1 #Server task 1

This is the expected output for one of the servers:

Individual server starting command line

Client script
Then we have the client script which will send the random number creation tasks to the
cluster members, and will do the final Pi calculations, almost in the same way as the GPU
example.
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Full source code
The source code is as follows:

import tensorflow as tf
import numpy as np

tf.app.flags.DEFINE_integer("numsamples", "100","Number of samples per
server")
FLAGS = tf.app.flags.FLAGS

print ("Sample number per server: " + str(FLAGS.numsamples)  )
cluster = tf.train.ClusterSpec({"local": ["localhost:2222",
"localhost:2223"]})
#This is the list containing the sumation of samples on any node
c=[]

def generate_sum():
        i=tf.constant(np.random.uniform(size=FLAGS.numsamples*2),
shape=[FLAGS.numsamples,2])
        distances=tf.reduce_sum(tf.pow(i,2),1)
        return
(tf.reduce_sum(tf.cast(tf.greater_equal(tf.cast(1.0,tf.float64),distances),
tf.int32)))

with tf.device("/job:local/task:0"):
        test1= generate_sum()

with tf.device("/job:local/task:1"):
        test2= generate_sum()
#If your cluster is local, you must replace localhost by the address of the
first node
with tf.Session("grpc://localhost:2222") as sess:
      result = sess.run(tf.cast(test1 +
test2,tf.float64)/FLAGS.numsamples*2.0)
      print(result)
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Example 4 – running a distributed model in a
cluster
This very simple example will serve us as an example of how the pieces of a distributed
TensorFlow setup work.

In this sample, we will do a very simple task, which nevertheless takes all the needed steps
in a machine learning process.

Distributed training cluster setup

The Ps Server will contain the different parameters of the linear function to solve (in this
case just x and b0), and the two worker servers will do the training of the variable, which
will constantly update and improve upon the last one, working on a collaboration mode.

Sample code
The sample code is as follows:

import tensorflow as tf
import numpy as np
from sklearn.utils import shuffle

# Here we define our cluster setup via the command line
tf.app.flags.DEFINE_string("ps_hosts", "",
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                           "Comma-separated list of hostname:port pairs")
tf.app.flags.DEFINE_string("worker_hosts", "",
                           "Comma-separated list of hostname:port pairs")

# Define the characteristics of the cluster node, and its task index
tf.app.flags.DEFINE_string("job_name", "", "One of 'ps', 'worker'")
tf.app.flags.DEFINE_integer("task_index", 0, "Index of task within the
job")

FLAGS = tf.app.flags.FLAGS

def main(_):
  ps_hosts = FLAGS.ps_hosts.split(",")
  worker_hosts = FLAGS.worker_hosts.split(",")

  # Create a cluster following the command line paramaters.
  cluster = tf.train.ClusterSpec({"ps": ps_hosts, "worker": worker_hosts})
  # Create the local task.
  server = tf.train.Server(cluster,
                           job_name=FLAGS.job_name,
                           task_index=FLAGS.task_index)

  if FLAGS.job_name == "ps":
    server.join()
  elif FLAGS.job_name == "worker":

    # Assigns ops to the local worker by default.
    with tf.device(tf.train.replica_device_setter(
        worker_device="/job:worker/task:%d" % FLAGS.task_index,
        cluster=cluster)):

      #Define the training set, and the model parameters, loss function and
training operation
      trX = np.linspace(-1, 1, 101)
      trY = 2 * trX + np.random.randn(*trX.shape) * 0.4 + 0.2 # create a y
value
      X = tf.placeholder("float", name="X") # create symbolic variables
      Y = tf.placeholder("float", name = "Y")

      def model(X, w, b):
        return tf.mul(X, w) + b # We just define the line as X*w + b0

      w = tf.Variable(-1.0, name="b0") # create a shared variable
      b = tf.Variable(-2.0, name="b1") # create a shared variable
      y_model = model(X, w, b)

      loss = (tf.pow(Y-y_model, 2)) # use sqr error for cost function
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      global_step = tf.Variable(0)

      train_op = tf.train.AdagradOptimizer(0.8).minimize(
          loss, global_step=global_step)

    #Create a saver, and a summary and init operation
      saver = tf.train.Saver()
      summary_op = tf.merge_all_summaries()
      init_op = tf.initialize_all_variables()

    # Create a "supervisor", which oversees the training process.
    sv = tf.train.Supervisor(is_chief=(FLAGS.task_index == 0),
                             logdir="/tmp/train_logs",
                             init_op=init_op,
                             summary_op=summary_op,
                             saver=saver,
                             global_step=global_step,
                             save_model_secs=600)

    # The supervisor takes care of session initialization, restoring from
    # a checkpoint, and closing when done or an error occurs.
    with sv.managed_session(server.target) as sess:
      # Loop until the supervisor shuts down
      step = 0
      while not sv.should_stop() :
        # Run a training step asynchronously.
        # See `tf.train.SyncReplicasOptimizer` for additional details on
how to
        # perform *synchronous* training.
        for i in range(100):
          trX, trY = shuffle (trX, trY, random_state=0)
          for (x, y) in zip(trX, trY):
              _, step = sess.run([train_op, global_step],feed_dict={X: x,
Y: y})
          #Print the partial results, and the current node doing the
calculation
          print ("Partial result from node: " + str(FLAGS.task_index) + ",
w: " + str(w.eval(session=sess))+ ", b0: " + str(b.eval(session=sess)))
    # Ask for all the services to stop.
    sv.stop()

if __name__ == "__main__":
  tf.app.run()
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In the parameter server current host:

    python trainer.py  --ps_hosts=localhost:2222   --
worker_hosts=localhost:2223,localhost:2224   --job_name=ps -task_index=0
    he first

In the worker host number one:

    python trainer.py  --ps_hosts=localhost:2222   --
worker_hosts=localhost:2223,localhost:2224   --job_name=worker -
task_index=0

In the worker host number two:

    python trainer.py  --ps_hosts=localhost:2222   --
worker_hosts=localhost:2223,localhost:2224   --job_name=worker --
task_index=1

Summary
In this chapter, we have reviewed the two main elements we have in the TensorFlow
toolbox to implement our models in a high performance environment, be it in single servers
or a distributed cluster environment.

In the following chapter, we will review detailed instructions about how to install
TensorFlow under a variety of environments and tools.
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Library Installation and

Additional Tips
There are several options to install TensorFlow. Google has prepared packages for many
architectures, operating systems, and Graphic Processing Unit (GPU). Although the
execution of machine learning tasks is much faster on a GPU, both install options are
available:

CPU: This will work in parallel across all processing units of the processing cores
of the machine.
GPU: This functionality only works using one of the various architectures that
make use of the very powerful graphic processing unit that is CUDA architecture
from NVIDIA. There are a number of other architectures/frameworks, such
as Vulkan, which haven't reached the critical mass to become standard.

In this chapter, you will learn:

How to install TensorFlow on three different operating systems (Linux,
Windows, and OSX)
How to test the installation to be sure that you will be able to run the examples,
and develop your own scripts from thereon
About the additional resources we are preparing to simplify your way to 
programming machine learning solutions
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Linux installation
First of all, we should make a disclaimer. As you probably know, there is a really big
number of alternatives in the Linux realm, and they have their own particular package
management. For this reason, we chose to use the Ubuntu 16.04 distribution. It is 
undoubtedly the most widespread Linux distro, and additionally, Ubuntu 16.04 is an LTS
version, or Long Term Support. This means that the distro will have three years of support
for the desktop version, and five years for the server one. This implies that the base
software we will run in this book will have support until the year 2021!

You will find more information about the meaning of LTS at
https://wiki.ubuntu.com/LTS

Ubuntu, even if considered a more newbie-oriented distro, has all the necessary support for
all the technologies that TensorFlow requires, and has the most extended user base. For this
reason, we will be explaining the required steps for this distribution, which will also be
really close to those of the remaining Debian-based distros.

At the time of the writing, there is no support for 32 bits Linux in
TensorFlow, so be assured to run the examples in the 64 bits version.

Initial requirements
For the installation of TensorFlow, you can use either option:

An AMD64-based image running on the cloud
An AMD64 instruction capable computer (commonly called a 64 bit processor)

On AWS, a well suited ami image, is code ami-cf68e0d8. It will work well
on a CPU and if you so wish, on GPU images.
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Ubuntu preparation tasks (need to apply before
any method)
As we are working on the recently-released Ubuntu 16.04, we will make sure that we are
updated to the latest package versions and we have a minimal Python environment
installed.

Let's execute these instructions on the command line:

    $ sudo apt-get update
    $ sudo apt-get upgrade -y
    $ sudo apt-get install -y build-essential python-pip python-dev python-
numpy swig python-dev default-jdk zip zlib1g-dev

Pip Linux installation method
In this section, we will use the pip (pip installs packages) package manager, to get
TensorFlow and all its dependencies.

This is a very straightforward method, and you only need to make a few adjustments to get
a working TensorFlow installation.

CPU version
In order to install TensorFlow and all its dependencies, we only need a simple command
line (as long as we have implemented the preparation task).

So this is the required command line, for the standard Python 2.7:

    $ sudo pip install --upgrade
https://storage.googleapis.com/tensorflow/linux/cpu/tensorflow-0.9.0-cp27-n
one-linux_x86_64.whl
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Then you will find the different dependent packages being downloaded and if no problem
is detected, a corresponding message will be displayed:

Pip installation output

Testing your installation
After the installation steps we can do a very simple test, calling the Python interpreter, and
then importing the TensorFlow library, defining two numbers as a constant, and getting its
sum after all:

    $ python
    >>> import tensorflow as tf
    >>> a = tf.constant(2)
    >>> b = tf.constant(20)
    >>> print(sess.run(a + b))
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GPU support
In order to install the GPU-supporting TensorFlow libraries, first you have to perform all
the steps in the section the GPU support, from Install from source.

Then you will invoke:

    $ sudo pip install -upgrade
https://storage.googleapis.com/tensorflow/linux/gpu/tensorflow-0.10.0rc0-cp
27-none-linux_x86_64.whl

There are many versions of pre-packaged TensorFlow.

They follow the following form:

    https://storage.googleapis.com/tensorflow/linux/[processor
type]/tensorflow-[version]-cp[python version]-none-linux_x86_64.whl

Where [version] can be cpu or gpu, [version] is the TensorFlow
version (actually 0.11), and the Python version can be 2.7, 3.4, or 3.5.

Virtualenv installation method
In this section, we will explain the preferred method for TensorFlow using the virtualenv
tool.

From the virtualenv page (virtualenv.pypa.io):

“Virtualenv is a tool to create isolated Python environments.(…) It creates an environment
that has its own installation directories, that doesn't share libraries with other virtualenv
environments (and optionally doesn't access the globally installed libraries either).”

By means of this tool, we will simply install an isolated environment for our TensorFlow
installation, without interfering with all the other system libraries which in turn won't affect
our installation either.
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These are the simple steps we will follow (from a Linux terminal):

Set the LC_ALL variable:1.

    $ export LC_ALL=C

Install the virtualenv Ubuntu package from the installer:2.

    $ sudo apt-get install python-virtualenv

Install the virtualenv package:3.

    virtualenv --system-site-packages ~/tensorflow

Then to make use of the new TensorFlow, you will always need to remember to4.
activate the TensorFlow environment:

    source ~/tensorflow/bin/activate

Then install the tensorflow package via pip:5.

    pip install --upgrade
https://storage.googleapis.com/tensorflow/linux/cpu/tensorflow-0.9.0-cp27-n
one-linux_x86_64.whl

You will be able to install all the alternative official tensorflow packages transcribed in the
pip linux installation method.

Environment test
Here we will do a minimal test of TensorFlow.

First, we will activate the newly-created TensorFlow environment:

    $ source ~/tensorflow/bin/activate

Then, the prompt will change with a (tensorflow) prefix, and we can execute simple code
which loads TensorFlow, and sums two values:

    (tensorflow) $ python
    >>> import tensorflow as tf
    >>> a = tf.constant(2)
    >>> b = tf.constant(3)
    >>> print(sess.run(a * b))
    6
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After your work is done, and if you want to return to normal environment, you can simply
deactivate the environment:

    (tensorflow)$ deactivate

Docker installation method
This TensorFlow installation method uses a recent type of operation technology called
containers.

Containers are in some ways related to what virtualenv does, in that with Docker, you will
have a new virtual environment. The main difference is the level at which this virtualization
works. It contains the application and all dependencies in a simplified package, and these
encapsulated containers can run simultaneously, all over a common layer, the Docker
engine, which in turn runs over the host operative system.

Docker main architecture( image source - h t t p s ://w w w . d o c k e r . c o m /p r o d u c t s /d o c k e r - e n g i n e )
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Installing Docker
First of all, we will installdocker via the apt package:

    sudo apt-get install docker.io

Allowing Docker to run with a normal user
In this step, we create a Docker group to be able to use Docker as a user:

    sudo groupadd docker

It is possible that you get the error; group 'docker' already exists.
You can safely ignore it.

Then we add the current user to the Docker group:

    sudo usermod -aG docker [your user]

This command shouldn't return any output.

Reboot
After this step, a reboot is needed for the changes to apply.

Testing the Docker installation
After the reboot, you can try calling the hello world Docker example, with the command
line:

    $ docker run hello-world
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Docker Hello World container

Run the TensorFlow container
Then we run (and install if it was not installed before) the TensorFlow binary image (in this
case the vanilla CPU binary image):

    docker run -it -p 8888:8888 gcr.io/tensorflow/tensorflow

TensorFlow installation via PIP
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After the installation is finished, you will see the final installation steps, and Jupyter
notebook starting:

Many of the samples use the Jupyter notebook format. In order to execute
and run them, you can find information about installation and use for
many architectures at it's home page, jupyter.org

Linux installation from source
Now we head to the most complete and developer-friendly installation method for
TensorFlow. Installing from source code will allow you to learn about the different tools
used for compiling.

Installing the Git source code version manager
Git is one of the most well-known source code version managers in existence, and is the one
chosen by Google, publishing its code on GitHub.

In order to download the source code of TensorFlow, we will first install the Git source code
manager:

http://jupyter.org
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Git installation in Linux (Ubuntu 16.04)
To install Git on your Ubuntu system, run the following command:

    $ sudo apt-get install git

Installing the Bazel build tool
Bazel (bazel.io) is a build tool, based on the internal build tool Google has used for more
than seven years, known as Blaze, and released as beta on September 9, 2015.

It is additionally used as the main build tool in TensorFlow, so in order to do some
advanced tasks, a minimal knowledge of the tool is needed.

Different advantages, compared with competing projects, such as Gradle,
the main ones being:

Support for a number of languages, such as C++, Java, Python, and so on
Support for creating Android and iOS applications, and even Docker images
Support for using libraries from many different sources, such as GitHub, Maven,
and so on
Extensiblity through an API for adding custom build rules

Adding the Bazel distribution URI as a package source
First we will add the Bazel repository to the list of available repositories, and its respective
key to the configuration of the apt tool, which manages dependencies on the Ubuntu
operating system.

    $ echo "deb http://storage.googleapis.com/bazel-apt stable jdk1.8" |
sudo tee /etc/apt/sources.list.d/bazel.list
    $ curl https://storage.googleapis.com/bazel-apt/doc/apt-key.pub.gpg |
sudo apt-key add -

Bazel installation
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Updating and installing Bazel
Once we have all the package source installed, we proceed to install Bazel via apt-get:

    $ sudo apt-get update && sudo apt-get install bazel

This command will install Java and a big number of dependencies, so it
could take some time to get it installed.

Installing GPU support (optional)
This section will teach us to install the required packages needed to have GPU support in
our Linux setup.

Actually the only way to get GPU computing support is through CUDA.

Check that the nouveau NVIDIA graphic card drivers don't exist. To test this, execute the
following command and check if there is any output:

    lsmod | grep nouveau

If there is no output, see Installing CUDA system packages, if not, execute the following
commands:

    $ echo -e "blacklist nouveau\nblacklist lbm-nouveau\noptions nouveau
modeset=0\nalias nouveau off\nalias lbm-nouveau off\n" | sudo tee
/etc/modprobe.d/blacklist-nouveau.conf
    $ echo options nouveau modeset=0 | sudo tee -a /etc/modprobe.d/nouveau-
kms.conf
    $ sudo update-initramfs -u
    $ sudo reboot (a reboot will occur)

Installing CUDA system packages
The first step is to install the required packages from the repositories:

    sudo apt-get install -y linux-source linux-headers-`uname -r`
    nvidia-graphics-drivers-361
    nvidia-cuda-dev
    sudo apt install nvidia-cuda-toolkit
    sudo apt-get install libcupti-dev
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If you are installing CUDA on a cloud image, you should run this
command before this commands block:

    sudo apt-get install linux-image-extra-virtual

Creating alternative locations
The current TensorFlow install configurations expect a very rigid structure, so we have to
prepare a similar structure on our filesystem.

Here are the commands we will need to run:

    sudo mkdir /usr/local/cuda
    cd /usr/local/cuda
    sudo ln -s /usr/lib/x86_64-linux-gnu/ lib64
    sudo ln -s /usr/include/ include
    sudo ln -s /usr/bin/ bin
    sudo ln -s /usr/lib/x86_64-linux-gnu/ nvvm
    sudo mkdir -p extras/CUPTI
    cd extras/CUPTI
    sudo ln -s /usr/lib/x86_64-linux-gnu/ lib64
    sudo ln -s /usr/include/ include
    sudo ln -s /usr/include/cuda.h /usr/local/cuda/include/cuda.h
    sudo ln -s /usr/include/cublas.h /usr/local/cuda/include/cublas.h
    sudo ln -s /usr/include/cudnn.h /usr/local/cuda/include/cudnn.h
    sudo ln -s /usr/include/cupti.h
/usr/local/cuda/extras/CUPTI/include/cupti.h
    sudo ln -s /usr/lib/x86_64-linux-gnu/libcudart_static.a
/usr/local/cuda/lib64/libcudart_static.a
    sudo ln -s /usr/lib/x86_64-linux-gnu/libcublas.so
/usr/local/cuda/lib64/libcublas.so
    sudo ln -s /usr/lib/x86_64-linux-gnu/libcudart.so
/usr/local/cuda/lib64/libcudart.so
    sudo ln -s /usr/lib/x86_64-linux-gnu/libcudnn.so
/usr/local/cuda/lib64/libcudnn.so
    sudo ln -s /usr/lib/x86_64-linux-gnu/libcufft.so
/usr/local/cuda/lib64/libcufft.so
    sudo ln -s /usr/lib/x86_64-linux-gnu/libcupti.so
/usr/local/cuda/extras/CUPTI/lib64/libcupti.so
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Installing cuDNN
TensorFlow uses the additional cuDNN package to accelerate the deep neural network
operations.

We will then download the cudnn package:

    $ wget
http://developer.download.nvidia.com/compute/redist/cudnn/v5/cudnn-7.5-linu
x-x64-v5.0-ga.tgz

Then we need to unzip the packages and link them:

    $ sudo cp cuda/lib64/libcudnn* /usr/local/cuda/lib64
    $ sudo cp cuda/include/cudnn.h /usr/local/cuda/include/

Clone TensorFlow source
Finally, we arrive at the task of getting TensorFlow source code.

Getting it is as easy as executing the following command:

    $ git clone https://github.com/tensorflow/tensorflow

Git installation

Configuring TensorFlow build
Then we access the tensorflow main directory:

    $ cd tensorflow

And then we simply run the configure script:

    $ ./configure



Library Installation and Additional Tips

[ 249 ]

In the following figure you can see the answers to most of the questions (they are almost all
enters and yes)

CUDA configuration

So we are now ready to proceed with the building of the library.

If you are installing it on AWS, you will have to execute the modified line:

    TF_UNOFFICIAL_SETTING=1 ./configure

Building TensorFlow
After all the preparation steps, we will finally compile TensorFlow. The following line could
get your attention because it refers to a tutorial. The reason we build the example is that it
includes the base installation, and provides a means of testing if the installation worked.

Run the following command:

    $ bazel build -c opt --config=cuda
//tensorflow/cc:tutorials_example_trainer
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Testing the installation
Now it is time to test the installation. From the main tensorflow installation directory, just
execute the following command:

    $ bazel-bin/tensorflow/cc/tutorials_example_trainer --use_gpu

This is a sample representation of the commands output:

TensorFlow GPU test



Library Installation and Additional Tips

[ 251 ]

Windows installation
Now it is the turn of the Windows operating system. First, we have to say that this is not a
first choice for the TensorFlow ecosystem, but we can definitely play and develop with the
Windows operating system.

Classic Docker toolbox method
This method uses the classic toolbox method, which is the method that works with the
majority of the recent Windows releases (from Windows 7, and always with a 64 bit
operating system).

In order to have Docker working (specifically VirtualBox), you need to
have the VT-X extensions installed. This is a task you need to do at the
BIOS level.

Installation steps
Here we will list the different steps needed to install tensorflow via Docker in Windows.

Downloading the Docker toolbox installer
The current URL for the installer is located at h t t p s ://g i t h u b . c o m /d o c k e r /t o o l b o x /r e l e

a s e s /d o w n l o a d /v 1. 12. 0/D o c k e r T o o l b o x - 1. 12. 0. e x e .
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After executing the installer, we will see the first installation screen:

Docker Toolbox installation first screen

Docker toolbox installer path chooser
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Then we select all the components we will need in our installation:

Docker Toolbox package selection screen
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After various installation operations, our Docker installation will be ready:

Docker toolbox installation final screen



Library Installation and Additional Tips

[ 255 ]

Creating the Docker machine
In order to create the initial machine, we will execute the following command in the Docker
Terminal:

    docker-machine create vdocker -d virtualbox

Docker initial image installation
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Then, in a command window, type the following:

    FOR /f "tokens=*" %i IN ('docker-machine env --shell cmd vdocker') DO
%i docker run -it b.gcr.io/tensorflow/tensorflow

This will print and read a lot of variables needed to run the recently-created virtual
machine.

Then finally, to install the tensorflow container, we proceed as we did with the Linux
counterpart, from the same console:

    docker run -it -p 8888:8888 gcr.io/tensorflow/tensorflow

If you don't want to execute Jupyter, but want to directly boot into a
console, you run the Docker image this way:

    run -it -p 8888:8888 gcr.io/tensorflow/tensorflow bash

MacOS X installation
Now let's turn to installation on MacOS X. The installation procedures are very similar to
Linux. They are based on the OS X El Capitan edition. We will also refer to version 2.7 of
Python, without GPU support.

The installation requires sudo privileges for the installing user.

Install pip
In this step, we will install the pip package manager, using the easy_install package
manager which is included in the setup tools Python package, and is included by default in
the operating system.
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For this installation, we will execute the following in a terminal:

    $ sudo easy_install pip
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Then we will install the six module, which is a compatibility module to help Python 2
programs support Python 3 programming:

To install six, we execute the following command:

    sudo easy_install --upgrade six
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After the installation of the six package, we proceed to install the tensorflow package, by
executing the following command:

    sudo pip install -ignore-packages six
https://storage.googleapis.com/tensorflow/mac/cpu/tensorflow-0.10.0-py2-non
e-any.whl
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Then we adjust the path of the numpy package, which is needed in El Capitan:

    sudo easy_install numpy

And we are ready to import the tensorflow module and run some simple examples:

Summary
In this chapter, we have reviewed some of the main ways in which a TensorFlow
installation can be performed.

Even if the list of possibilities is finite, every month or so we see a new architecture or
processor being supported, so we can only expect more and more application fields for this
technology.
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